

ALGORITHMS
IN
·SNOBOL4

JAMES F. GIMPEL

CATSPAW, INC.
P.o. Box 1123. SALIDA, COLORADO 81201 USA. (303) 539-3884

Published in 1986 by Catspaw, Inc.

Copyright (C) 1976 by Bell Telephone Labs., Inc.

All rights reserved.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine language
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data:
Gimpel, James F.

Algorithms in SNOBOL4.
Reprint. Originally published: New York: Wiley, c1976
Bibliography: p.
Includes index.
1. SNOBOL (Computer program language) I. Title.

QA 76.73.S6G55 1986 005.26 86-26340
ISBN 0-939793-01-6
ISBN 0-939793-00-8 (pbk.)
(previously published by John Wiley & Sons,
under ISBN 0-471-30213-9)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To Anna

,.--,
If-, I
p_..1 I

"'-' It"~
U U L---J U

,--, ,..-. ,
II " I L....I f
1..-. ,

When I first began collecting SNOBOL4 programs for a book, I
had two major misgivings. First, I wondered whether there
would be enough material and second, I wondered whether the
programs would be sufficiently nonobvious to warrant publica
tion. Both fears slowly evaporated. On the one hand, the
range of SNOBOL4 applications is as wide as the spectrum of
computer uses and this, it seems, is well-nigh inexhaustible.
Indeed, an entire book of algorithms and algorithmic techni
ques has recently appeared [Aho et aI, 1974] in which the
range of applications and techniques when intersected with
that of my own book approximates the empty set. It gives one
pause to contemplate the complement of both sets. In the end,
I had a considerable amount of material left over and so my
one fear was baseless.

As to my other concern, I was happy to discover in the course
of writing the book many new and nonobvious ways of program
ming in SNOBOL4 (not all of my own discovery) so that I can
now be confident that the collection of routines are more than
merely exercises in the use of the language. Indeed, some
routines or techniques were previously believed to be im
possible to write in SNOBOL4. For example, employing SNOBOL4
patterns directly in the compilation process, dynamically
loading SNOBOL4 functions on a call basis, and determining the
compilation numbers of statements compiled at execution time
are three problems encountered during the development of
production programs which were previously thought simply not
doable in the language. These are relatively easily achievable
by techniques described in this book (see Programs L_ONE
(18.2), DEXTERN (14.2) and LPROG (11.5) respectively). Since
I have been a SNOBOL programmer for over a decade and since I
am still discovering how to do things in the language, the
reader may conclude either that I am a dunce or that the
designers of SNOBOL4 have created a very flexible and powerful
language that deserves further study and wider use. The
remainder of the book will convince him, I hope, that it is
the latter and not the former.

Another, less prominent, concern was the relative obscurity of
the SNOBOL4 language. While more widely used and available
than most languages, it is not so ubiquitous as say Fortran or
Cobol. For a variety of reasons such as cheaper machines it

________________________ ~efS£~ ______________________ ~~_Yii

is not hard to visualize a future in which S~OBOL4, or at
least a SNOBOL4-like approach to life, will play a more promi
nent role. Also the quest for simplicity of programming may
ultimately be achieved by way of semantic richness rather than
by feature elimination.

Viewed most generally, the book is a collection of algorithms
with SNOBOL4 used as a communication vehicle. The algorithms
are decidedly oriented toward the nonnumerical as this is
SNOBOL4's forte and as such tend to supplement other published
algorithms such as those appearing in the Communications of
the ACM which, due to the reliance on Fortran and Algol, are
primarily mathematical in nature. Because of its nonnumerical
character, the book should be especially helpful to artisans
in the humanities and in business applications as well as to
the information scientists to whom the work is primarily ad
dressed. The reader is assumed to know or be learning SNOBOL4
and if his knowledge in this respect is a little weak he
should be willing to consult an appropriate manual or primer
for reference. Little or no assumption is made with respect
to his knowledge of other areas of computer science and
mathematics.

As a collection of SNOBOL4 algorithms~ the book lends itself
for direct use by the growing number of SNOBOL4 programmers
who may use the programs as is, or modify them to suit their
particular a~plication. To further this end, virtually all
programs are written as functions with a conscientiously ap
plied naming system so that they can be sim?ly 'plugged in' to
existing programs without disturbing things. Hence another
purpose is served, i.e., to foster and illustrate a technique
of well-structured modular programming which is all too fre
quently lacking in many SNOBOL4 programs. There is currently
great interest and for good reason in goto-Iess structured
programs and while the control structures of SNOBOL4 prohibit
adherence to the letter of this dictum, the examples in this
book serve to carry out its spirit.

The SNOBOL4
plementation
intended to
programs but
formation.
ching more
heretofore
language.

programmer will find much information of an im
nature not available elsewhere. Most of this is
guide him in the writing of more efficient
some SNOBOL4 lore is included for his general in-

An effort has been made to describe pattern mat
fully and comprehensively than it has been

as this has been one of the murkier aspects of the

Finally, the large number of SNOBOL4 example programs should
complement well a SNOBOL4 primer or manual in teaching the
language. This author's experience has been that programming
languages as well as natural languages are most easily taught
by varied and intriguing examples. Not only is interest
heightened and motivation increased, but the example carries
the student forward on a familiar framework and provides a
convenient gestalt for later recall. Because of this use as a
supplementary text, various features of the language are com-

Page viii, ____ . Preface

partmentalized in the early chapters so that their introduc
tion can be synchronized with a course of instruction. In fact
the author has used notes from this book very successfully in
teaching a course in nonnumerical programming to members of
the staff at Bell Laboratories and to graduate students at
Stevens Institute of Technology. A number of exercises have
been included to extend its usefulness in ~he classroom as
well as to suggest possible modifications of the routines
themselves.

The alert reader will note that the book was prepared by a
computer. This was done to permit the automatic testing of
the programs. TO remain faithful to this idea, all figures,
titling, paragraph illumination, etc. were done without suc
cumbing to the temptation of later touchup. Chapter 10
describes in detail some of the routines used in the book's
production.

The programs, as presented, are directly applicable to the IBM
360 implementation of SNOBOL4 and SPITBOL. In virtually all
cases, these programs can be used with SNOBOL4 processors
(including SITBOL) on other machines without change or, at
most, by a transliteration of characters.

The writing style has been chosen to be direct, informal and
sometimes even cheerful. It is hoped that occasional lapses
into whimsy (not expunged by the final version) do not disturb
the reader; the intent is not so much to amuse as to present
a welcome relief to the frankly difficult task of reading and
interpreting programs.

A number of individuals have contributed in one way or another
to the production of this book. Thanks go to Frank Boesch,
Len Bosack, Fran Brophy, Steve Chen, Bob Dewar, Ralph
Griswold, Scott Guthrey, Dave Hanson, Cass Lewart, J. C. Noll,
Ivan Polonsky, Mark Rochkind, Larry samberg, Dick stone, and
Jane Walsh. A special appreciation goes to Ralph Griswold who
taught a Computer Science course at the University of Arizona
from an early computerized draft of Chapters 2-5 and provided
valuable feedback. I am flattered that he was able to expand
on this material to produce an excellent and very readable
book [Griswold 1974a]. Those having difficulty reading the
early chapters here may wish to consult this text.

Finally, thanks go to the
Laboratories whose consent,
made this text possible.

management and staff of Bell
cooperation and computers have

James F. Gimpel
Holmdel, New Jersey
May 1, 1975

,--, ,.--, n n r----t

1 r-t 1 'r-t 1 " 'I ,
" u " " II\\.I
II n " " II " IL-II t'--" II "
L--J '---' U U

'--, r--'

1. Preliminarie~

Algorithms and programs
SNOBOL.4 orig ins
The future
SNOBOL4 implementations
SNOBOL4 foibles
Structured programminq
Conventions

2. Conversions

Upper-case to lower case
BCD code to EBCDIC code
Arabic to Roman

" " It
u

Base 10 to arbitrary base
Arbitrary base to ease 10
Character string to hexadecimal
The inverse of HEX
Day of the week from date
Month, day, year from day number
spelled out form of an integer

3. Basic string Functign§

Ordering the characters of a string
Padding (left

and right)
Counting substring occurrences
Rotating a string
string transformations

n n

" "I I""
" \1
" It u u

UPLO
BCP EBCDIC
ReMAN
BASE 10
Sf\SE10
HEX
CH
DAY.
MOY
SPELL

ORDER
LPAP
~AD

COUNT
li()'PATER

2.1
2.2
2.3
2.5
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5

vi

ix

22

41

Page x, __ _ . _______ ~nt~~ ____________________ __

Reversing a string
Blending two strings
Balanced reversals
substringing
Set difference
Skimming off unique character,s
Lexical comparison
Alphabetic comparison
SWapping variable values
String replacement
string quoting

4. Basic Array FunctioD§

Converting strings to arrays
Converting arrays to strings
Sequencing
Array operators
Array searching
Array subscripting
Array truncation
Array concatenation

5. Basic List Processing

Read a list
Read a list in reverse
Reverse a list
Retrieve the last item of a list
Stack manipulation

Copying a Ii st
Obtaining the field of a structure
Visiting nodes of a list

Patterns and cursors
Nonlinear patterns
FUndamental properties of patterns
Scanning
ARBNO
Recursive patterns

REVERSE 3.6
BLEND 3.7
BALREV 3.8
SUBSTR 3.9
DIFF 3.10
SKIM 3.11
LEXGT 3.12
AGT 3.13
SWAP 3.14
REPL 3.15
QUOTE 3.16

63

CRACK 4.1
STRINGOUT 4.2
SEQ 4.3
AOPA 4.4
FIND 4.5
AI 4.6
TRUNC 4.7
CATA 4.8

79

READL 5.1
READRL 5.2
REVL 5.3
LAST 5.4
PUSH 5.5
POP 5.6
TOP 5.7
COPYL 5.8
FLD 5.9
VISIT 5.10

99

. ______________________ contents

Path diagrams
Derived patterns
The scanning algorithm - SCAN
Heuristics
Compounds
Unevaluated expressions

~~ Pattern cQnstruction

Extending BREAI<

Matching balanced strings

Pattern complementation
Picking off the first alternative
Trouble-free pattern predicates
Matching a similar string
Speeding up alternation
Matching a PL/I statement
Matching OS/360 assembler input

Pattern-based reading
Reading Fortran source
Reading text
Reading trees
Multi-file reading
OUtputting lines
Outputting Fortran source
peeling off SNOBOL4 source segments
outputting SNOBOL4 source

Backspace normalization
Image Normalization
Line extraction
Padding with blanks
Measuring the print width
Determining the minimum print width
Hyphenation
Determining the printed image

__________________ Pgge xi

BREAI<REM
BREAKX
BAL
FASTBAL
NOT
ONCE
TEST
LIKE
OR
PLI.STMT
ASM360

READ
FOR TREAD
PARAGRAPH
TREEREAD
MFREAD
PUT
FORTPUT
PEEL
SNOPUT

BNORM
INORM
LINE
PAD
SPACING
MINP
HYPHENATE
IMAGE

8. 1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.10
8. 11
8.12

9.1
9.2
9.3
9.4
9.6
9.7
9.8
9.9
9.10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

121

145

166

188

Page~x-=i.;:i __ _ ___________ £Qntent_s ___________ -----------

l1~__1IDQlementation and Timing 224

symbol tables
Types of compilers
Floating storage
Anatomy of a processor
Determing the clock resolution
Timing program sections
Determining the processor
Anatomy of a SNOBOL4 statement
Timing the garbage collector
The inner loop
Determining the length of your host
obtaining a frequency profile
Obtaining a time profile

Permutation records
Determining the Ith permutation
Trotter's algorithm
String permutations
Permutations with repeated elements
Lexicographic permutations
Inverting a permutation

13. SQrting

Comparison sorts
Interchange sorting

A bubble sort
Hoare's QUICKSORT

Merging
A linked-list sort
sorting by merging arrays
A frequency sort

Selection sorting
A tournament (and table) sort

Insertion sorting
A quick and dirty sort
A tree sort
Linearizing the tree
A backwards insertion sort

Distributive sorts

RESOLUTION
TIMER
SYSTEM

TIMEGC

LPROG
FPROFILE
TPROFILE

PERMUTATION
PERM
PERMS
REORDER
LPERM
IP

BSORT
HSORT

LSORT
MSORT
FRSORT

TSORT

SSORT
INSERT
LINEARIZE
INSERTB

11. 1
11.2
11.3

11.4

11.5
11.6
11.7

12. 1
12.2
12.3
12.4
12.5
12.6

13. 1
13.2

13.3
13.4
13.5

13.6

13.1
13.8
13.9
13.10

214

cOlltentL-

Defining an expression
Dynamically loadable functions
Self-defined function tracing
Changing the universe at function

crossings
Large-scale redefinition
Arithmetic on physical quamtitie.s
Co-routines and state functions
State-function definiti0n
Multiple stacks

Combinations
Combinatorial number system
Infinite precision arithmetic
Reals and mixed mode
Reals to integer

Transcendental functions
Finding the square' root
The trigonometric functions
The inverse trigonometrics
Logarithms
Raising to powers

16. Stochastic Strings

A random number generator
A more random generator
Randomly permuted strings
Oneway ciphers
Random character (in context)
Random words
Random selection (with weights)
Random sentence generation
Random poetry
Sirr.ulation
Baseball simulation
Random story generation

DEXP
DEXTERN
FTRACE

INSOLATE
REDEFINE
PHYSICAL

STATEF
S'l"'ACl(

COMB
DE COMB
fNFINIP

FLOOR
CEIL

SQRT
TRIG
ARC
LOG
RAISE

RANDOM
RAMM
RPERMUTE
ONEWAY
RCHAR
RWORD
RSELECT
RSENTENCE
RPOEM

RSEASON
RSTORY

Page xiii

14.1
14.2
14.3

14.4
14.5
14.6

14.7
14.8

15.1
15.2
15.3

15.4
15.5

15.6
15.7
15.8
15.9
15.10

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10
16.11

301

318

341

Gaming phrases
Gaming dialogue
The stone game
Tick-tack-toe
Game theory
Functions for card-playing
A poker evaluation function
Optimal poker

Contents

An assembler for a simple machine
Compiling using SNOBOL4
A compiler for a simple language
partitioning the compiler
Blank removal in Fortran
Converting to Polish notation
A pattern to match a tree
Translating from Polish to

an intermediate form
Code generation from 4-tuples
A general purpose macro processor

solutions to odd-numbered exercises

PHRASE
QUEST
STONE
TICTACTOE

CARDPAK
POKEV
POKER

ASM

L_ONE

BLANKS
POL
TREE

TR
TUPLE
GPM

~2~n9iX-b - Cross ref~r§Dces of functions

Beferences

17.1
17.2
11.3
11.4

17.5
11.6
17.1

18.1

18.2

18.3
18.4
18.5

18.6
18.1
18.8

314

405

441

460

469

478

.----, n r---'1 r---1 .----, ,---, ,----, " " n n r---,
I ,-, I 'I I,---J 1,-,' I rw I L,.... '--,.--' I' I I I I ,/ I I ,.---'
" 'I I' I 1,-, I' 'I ,L-I, , , , , , L-I, " ,/" ,L--,
, L-I I 'I , I L, I I' 'I , "-" I I , , I ,-" I' "L--, ,
'rw' IL--, 1'--11 ,L-II ",' L, II """ ",---JI
U U L--J '----' L---J U U L--J U U U U U L---J

,--, " n

L, r' "'" " "", , , I'"
r'L, " " L--J U U

,..----, n " ,..----,,---, ,---, n

,,---J 'I'" 1,-,' I rw, I r-I' "
,L-.-., " , , , " " I 1. 1.1 " " "

'--, I II " I I " 1,-" " " 'I
r--" I' 'I ,L-I I ,L-I II L-I, ,L--,
L--J U U L--J L-...........I L---J L-...........I

n n
II II
, 1.-1 L,
L-.-., r'

" u

,.--,
, ,.-, I
P--'I
I r--'

CHAPTE~ ONE

II R ELI M I H A R I E S
u

Alqorithms ana Programs

SNOBOL4 or:i~ins

The Future

SNOBOL4 Implementations

SNOBOL4 Foibles

Structured proqramming

convent ions

r--------------------------------~
I II
I I I
, I •
I IIII
I I I

19orithms and Programs An algorithm is a sequence
of self-evident steps for

carrying out some activity. A familiar example of
an algorithm is the procedure for 'long' multiplica
tion which multiplies two numbers which are bigger
than the operands in a memorized table. The notion

of algorithm is actually quite old going back several thousand
years B.C. [Knuth 1972], and the word 'algorithm' has a long
and convoluted etymology [Knuth Vol. 1, p. 1-2].

We sayan algorithm is composed of "self-evident steps" to
rule out some such phrases as "add salt to taste", or "apply
sward to mainskee according to Fig. 3". That is, each step
can be mechanically carried out without assistance from a
human being. But it is interesting to note that the definition
of algorithm is not a rigorous one, since no one can ever give
an all-inclusive definition of "self-evident step". What we
generally do is devise a special language within which each
operation is carefully defined, and this language is used to
express all algorithms. Thus we can devise a special machine
language as was done by Knuth (Vol. 1-3], or we may devise a
matching and replacement operation as was done by Markov
[1954], or invent a dialect of some existing language, such as
Pidgin ALGOL [Aho et aI, 1974], or we may use an existing
programming language, such as is used in the Algorithms sec
tion of the Communications of the ACM. In this book we will
use an existing language, viz. SNOBOL4 [Griswold et aI, 1971].

This means that our collection of techniques are not merely
algorithms, they are programs as well. Since there is some
question (not to mention controversy) as to the distinction
between algorithm and program [ACM Algorithm Letters, 1966 and
ACM Forum, 1974-1975], it is perhaps worth our trouble to
consider these two notions. An algorithm is a method, distinct
from any external form, and distinct from any language. On
the other hand, a program is a sequence of characters which
will irrplement some process. For example, we may say that a
program is 332 characters long, but we may not say such a
thing about an algorithm, because an algorithm may be im
plemented in several different languages producing programs of
various lengths. To communicate the algorithm to another human
being, we generally require its formulation in terms of
concrete symbols. Any such formulation may be said to be a
program. Hence, on the surface at least, the notions of al
gorithm and program would seem to bear the same relationship
to each other as the notions of function and expression in
mathematics. That is, one is a representation of the other.
However, the analogy is somewhat imperfect. Programs are
generally written to be run on a digital computer, and, as
such, tend to communicate an algorithm to a machine, as op
posed to another human being. Programs are a medium whereby a
process is effected, and hence are, as it were, part of the
machinery. We may therefore expect them to reflect
idiosyncrasies not part of the original pure algorithmic no
tion. That is, programs may be dirty. On the other hand,

Algorithms and Prog~SID§ ____ _ ____ ~e 3

programs, when coupled with an appropriate linguistic proces
sor, can actually carry out the activity for which they are
designed. In short, they work.

Although in principle an algorithm is independent of the par
ticular language in· which it is expressed, in practice, this
is an impossibility. This is because, as the notion of self
evident step varies, the techniques employed to carry out an
overall activity will vary. Thus, a method to compute a hash
function will depend on what arithmetic operations (such as
division) are available. Random number generators will depend
not only on what operations are present, but on whether some
forms of arithmetic overflow are permitted. Certainly, string
algorithms implemented in a Markov language such as SNOBOL4,
which permit string scanning as a fundamental operation, will
a~pear entirely different than when written in some other
language. This is unavoidable and is, of course, one of the
purposes of a text like this one.

There is currently heightened interest in both algorithms and
in programs. For example, there is a famous problem in graph
theory called the Koenigsberg Bridge Problem. The problem
calls for a path leading across all edges (bridges) of a graph
without traveling along any edge twice. A constructive
procedure for finding such a path was furnished by Euler in
1736; this has long been regarded as the starting point of
modern graph theory. However, it was not until 1973 [Edmonds
and Johnson] that anyone specified a method for finding such a
path in an amount of time proportional to the number of edges.
This particular example is only typical of a general trend.
We are no longer content with knowing that a procedure can be
carried out, nor even with how such a procedure can be carried
out. The thrust of much computer science activity is in deter
mining how effective a particular algorithm is, and in care
fully specifying an algorithm to maximize efficiency.

Another area of waxing interest is in determining the proper
form of a program. Virtually unheard of five years ago, the
term 'structured programming' has captured the fancy of the
computing fraternity and, at this writing, is perhaps the most
used (and abused) term in the literature's lexicon. While the
term means many things to many people, the general idea is
that many of the ills plaguing the software industry are
traceable to the fact that we are incapable of properly struc
turing large complex tasks. While we can study the'strategy
of structuring from a language-independent pOint of view, many
of the tactics in forming clear and cogent code depend on the
particular tools at one's disposal. Hence, another purpose of
this text is to discuss and present methods of organizing,
i.e., structuring, SNOBOL4 programs.

~g.~e~4 ____ __

r------------------------,
IIII NOBOL4 ORIGINS Programs written in SNOBOL4 tend to
I i be oriented toward the manipulation
1111, of strings. A string is a sequence of characters I, and a character is any of the various letters,
I'll I digits, logograms and punctuation symbols (including

~----~I the blank) that one might punch on cards or type on
an electronic terminal. The stream of characters you are
reading now is an example of a string. It has, in fact, been
subjected to some of the algorithms to be described in this
book.

string processing includes the testing, comparing, scanning,
rearrang1ng, transliterating, transforming, inserting,
crunching, and deletion of strings. Since programs and data
are normally entered into a digital computer in the form of
strings and since all data printed is in this form, it might
seem that string processing is, and always has been, in the
forefront of computer studies. But this is hardly the case.
Historically, string processing has been something of a step
child of computation.

The computer was initially perceived as a machine whose
primary purpose was performing numerical computations. Getting
numbers and programs into the machine was considered inciden
tal to computing rather than occupying any central role. In
fact, to program an early machine, one did not use characters
at all, but wired up a plug board. A single program took weeks
of effort. Humans began to realize that they were more like
slaves to the machine than high-priests as they were forced to
do an inordinate amount of work just to keep the machine busy.
Alt [1972] recalls that, as early as 1947, the team of
programmers for the ENIAC discovered a method whereby they
could enter programs by merely dialing digits rather than
wiring plug boards. To do this they wired the plug-board con
trol permanently in such a way that the machine read the
digits and performed associated instructions in much the same
way that a modern interpreter might do. This seems to be the
world's first higher level language. At any rate, the machine
slowed by a factor of five but the technique was the preferred
one thereafter. Why? Was it because men are lazy and they
want the machine to do all the work? Well, there is a way to
express this less argumentatively. The machine was so success
ful at performing arithmetic that the bottle-neck shifted away
from calculations with numbers to the logistics of presenting
the problems to the machine. In many ways this problem is
still with us.

Peripheral devices for reading characters from paper tape and
cards had existed for some time and it did not take long
before such devices were attached to the machine for
input/output. More importantly, machines were beginning to be
designed with the stored-program concept which meant that plug
boards did not have to be wired for each different program.
Rather, like the trick used with the ENIAC, the machine would
translate numbers into instructions, but with the important

___________________ SNQ~OL~ORI~§ _____________________ Pa~

difference that the numbers did not have to be set manually.
They could be read from some external device or they could be
computed; in particular, they could be produced by some other
program and the Great Age 'of computer languages was born. From
this point on, the evolution of machine design gave way to an
evolution of languages, in much the same way that human
biological evolution has given way to a cultural evolution.
Although the components have changed to give us cheaper, smal
ler, more efficient machines, the machine organization has
remained essentially the same (the Von Neumann Machine). In
this organization main storage consists of an aggregate of
words each addressable by some assigned number. The data
within this storage is entirely unstructured as seen by the
hardware. Complex data such as strings, patterns, arrays, etc.
are only such in the eyes of the software, not as viewed by
the hardware.

The first programming languages were, of course, assembly
languages in which generally there is a one-to-one correspon
dence between lines in the source language and machine
instructions. The assembler's job is essentially to translate
froro names (suitable to humans) to numbers (suitable to
machine). This is unnatural for a machine to do and it was
resolved essentially by a mechanism known as a symbol table
(see Chapter 11). The use and disposition of a symbol table
is key to the implementation and understanding of many
programming languages in addition to assemblers.

A rather impressive advance was made by the Fortran language
which was developed in the mid-1950's. This language was so
well designed that today it is perhaps the most widely used
programming languag~ in spite of regular denunciations by the
academic community. Fortran opened up computation to a large
number of programmers who would need to know nothing or very
little of the internal organization of the machine in order to
§!2rt programming (although they usually wind up having to
know a great deal). Now an important point to note in connec
tion with Fortran is its peculiarly numerical orientation. The
tools provided to the Fortran programmer were totally dif
ferent than the tools required by the system programmers who
had to write assemblers, operating systems and the Fortran
compiler itself. Fortran had, for example, a rich mathematical
library containing trigonometric functions, exponentiation,
etc. which the writers of Fortran had absolutely no need for;
on the other hand, Fortran lacked string, character, bit and
address data objects which are essential to 'systems' work.
Although a step away from the numerical was made in that the
language gave the machines the ability to accept programs in
human style, it was assumed that the end use would be 'number
crunching'.

The first non-numerical language of consequence was IPL
[Newell 1957]. This language was developed as a by-product of
some experiments in artificial intelligence by Newell, Shaw
and Simon in which an attempt was made to mimic the thinking
patterns of human beings. In particular, the mental processes

Egge 6

involved in theorem-proving were explored (Feigenbaum and
Feldman 1963]. IPi is a list-processing language. All data
is in the form of lists; the components of a list may be other
lists or basic non-decomposable units which are actually ad
dresses referenced symbolically as in an assembler. Numerous
built-in functions are available to manipulate lists. In fact,
an IPL program is itself a list. The arch-difficulty of IPL
is its syntax which is forbiddingly like.assembly language.

IPL was soon followed by LISP [Mccarthy 1960] which overcame
some of the syntactic difficulties of IPL. Rather than place
components of a list vertically down the page with symbolic
reference to sublists, LISP provided a more abbreviated
horizontal notation with nested parenthetical expressions to
denote sublists. Moreover, the basic nondecomposible unit,
called the atom in LISP, was a string. In LISP, large strings
were represented as lists of atoms, and atoms, as their name
suggests, could not be decomposed.

A list was the first data object whose size was not fixed for
the duration of the program but which could vary as required.
Lists are particularly useful in problem areas which are not
well understood and cannot, or at least, have not been reduced
to easily computable mathematical formulas. Hence list struc
tures have been a favorite form of data for artificial intel
ligence applications.

COM IT is often considered the first true string processing
language. Unlike LISP, the strings of COMIT can be arbitrarily
manipulated not by rearranging pointers between fixed strings
but by completely rearranging the characters (and hang the
cost) • With COMIT the string had become a data object; a
variable (of sorts) could range over the entire set of
strings. These variables were called 'shelves' and were
referenced by shelf number. A very powerful process called
pattern matching could be applied to such strings and matched
substrings could be replaced by other strings. COMIT has one
major deficiency; one may not use ordinary common names such
as S, LIST, or BILL to denote variables as one might do with
numerical variables in Fortran or even assembly language.

The pattern matching notation entered COMIT by way of
linguistics where the notation is quite old. The notation was
studied in depth by Markov [1954] who treated the replacement
operation as a fundamental algorithmic component and showed
that all computations were possible using replacement alone.
Languages such as COMIT and SNOBOL4 are sometimes referred to
as Markov languages even though there is no evident historical
connection.

Early work at Bell Laboratories in string processing included
the d~velopment of a language called SCL (Symbolic communica
tion Language) by Lee, et al [1962]. SCL extended the
facilities of COMIT for string process1ng but had several
deficiencies including an ungainly assembly-language syntax
and the absence of variable names (as in COMIT). SCL had cer-

The Future _____________ ~ge 1

tain unique and valuable features such as a run-time compila
tion and execution of strings, but its most valuable contribu
tion was that it provided a gestation period for SNOBOL.

SNOBOL [Farber et aI, 1964] combined two very important ideas,
the string processing and pattern matching of COMIT and the
symbolic referencing of variables. Thus for the first time in
any major language (and possibly ever), a programmer could
write:

ABC

to indicate in a simple and natural way that the string B
concatenated with the string C is to be assigned to the string
A without disturbinq the values of either B or C. The pattern
matching operation of COMIT could be invoked in a similarly
convenient and concise fashion. Thus for the first time,
strings of characters could be manipulated with the notational
ease that Fortran provided for numbers.

Unlike Fortran, however, no simple easy translation existed
into machine orders. On the IBM 1090, on which SNOBOL was
first implemented, concatenation was a complex process re
quiring the shifting of characters through an ungainly
accumulator. Also, the use of variables whose values cannot
be destroyed complicates further the operation of concatena
tion. Thus, we cannot merely direct a pointer from B to C to
effect the above concatentation as this would alter B. We
cannot copy C onto the tail end of B as this would destroy
other data. Rather, a separate section of core is allocated,
the strings Band C are copied in, and a pOinter is directed
from A to the new storage. Since storage is being generated
continuously, a process of storage recovery (garbage collec
tion) is required. Thus, the apparent simplicity requires a
rather considerable software system to support it. It is not
surprising that it appeared relatively late on the programming
scene.

SNOBOL's successors, SNOBOL3 [Farber et al 1966] and SNOBOL4
[Griswold et al 1968], while retaining the simple and powerful
notation of the original SNOBOL, greatly extended and
generalized its facilities. In fact, it is no longer accurate
to characterize SNOBOL4 as a string language, since its
facilities extend considerably beyond string manipulation.

III
I
I
I
I

he Future How well may we expect SNOBOL4 to fare in
the future? Certainly, this is an in

triguing question to ask of any language and one
which is extremely difficult to answer. To a first
approximation, the success of the language will
depend on the future importance of nonnumeric data

processing. Although numerical programming will doubtlessly
increase in the future, non-numerical processing should
increase even faster. This is due to the economics of the
situation. A computer can multiply two 8-digit numbers

.Pag§~ ________________ C~h~a~p~t~e~r:-_ Preliminaries

together in approximately 6 microseconds whereas it takes a
human about 60 seconds. The computer is therefore 107 times
(or 7 orders of magnitud~ faster at this activity than
humans. On the other hand, to take a typical string-processing
problem, a computer, carefully programmed, will require about
two millisconds to scan a paragraph containing 1000 characters
for some string such as 'ALPHA', whereas a human will require
approximately 20 seconds. Hence, the machine for the non
numeric problem is only 10. (or 4 orders of magnitude) faster
than the human. Hence, the machine is better at numerical
processing by about 3 orders of magnitude. Since historically
computers have been much more expensive than humans it is un
derstandable that they have been applied mostly in those areas
with a strong arithmetic flavor.

Another factor to consider in comparing the two kinds of
processing is input/output (i/o). Two numbers that are mul
tiplied together typically do not come from typed data but are
the result of other computations within the machine. But the
string that is being scanned for the word 'ALPHA' has
generally entered the machine from some i/o device such as
disk, tape or terminal. If we consider disk as typical we find
that this device transmits 10,000 characters in a total time
of about 100 milliseconds so that our paragraph to be scanned
requires 10 milliseconds. Multi-programming operating systems
help somewhat to alleviate the problems of delay time due to
disk i/o by transferring control to another resident program
while i/o is in progress but the program doing i/o must remain
resident in main storage thereby consuming resources. If we
add a factor for the inefficiency of the transfer of control
process and the time expended in transporting the characters
from the main storage receiving stations (i/o buffers) into
work areas we arrive at a figure very much like ten mil
liseconds anyway_ The net effect is that if the string to be
scanned is' also read and written we increase the cost of
string processing by another order of magnitude.

Another difficulty with string processing that has helped hin
der its more rapid development is that string operations are
py no means standardized at the machine level. Thus, string
processing is not only slower, it is more complicated. In
Fortran, the statement:

x = Y * Z

results in three instructions, LOAD Y, MULTIPLY by Z, and
STORE into X. No such corresponding instruction sequence can
be produced for typical SNOBOL4 operations such as pattern
matching or concatenation. Not only do these operations re
quire more instructions but the methods vary from machine to
machine. To begin with, the method of representing strings
varies [Madnick 1967]. Representational decisions such as
whether to store one character per word or several characters
per word may depend on machine characteristics such as whether
characters are directly addressable. Another important dif
ference is how string values are bound (assigned) to

The Future

variables. For example, in PL/I the only very efficient string
representation is to allocate a given storage area of maximum
size for each string variable. On the other hand, an implemen
tation of the SNOBOL4 language requires that a pointer be
associated with each variable which points to the actual
characters. This may seem like a minor difference but it is
not; in the PL/I approach a simple string assignment such as:

S1 S2

results in copying the string. In SNOBOL4, only the address
is copied. However, the latter method implies the necessity
to garbage collect whereas the former does not. That is, if
S1's pointer is overwritten by another pointer, the old string
pointed to by S1 may no longer be needed. Experience shows
that we cannot afford the luxury of retaining every string
ever referenced in a string-processing application, and so,
obsolete strings must be discarded.

Even fixing on a common data representation, the method of
scanning a string S for a substring, say 'ALPHA', can vary
considerably. The IBM 360/370 contains a TRT* instruction
which enables the machine to quickly scan a string for one of
a set of characterS. Thus, we might rapidly scan the string S
for the lead character 'A' thus increasing the scan rate. But
time is required to set up this rapid scanning. For short
strings or for strings containing many A's it would be more
economical not to use this special scan. Even given the rapid
scan ability, it is not clear that 'A' should be the character
searched for. If we assume that pes occur less frequently than
A's then a rapid scan for the letter 'P' should be made. Given
any SlICh 'P' we can then check for the characters 'AL'
directly before and 'HA' directly after.

The setup tradeoff is not unique to the 360/370 architecture.
For many machines a fast inner loop can be written to test for
a specific character that will be faster than a loop to test
for an arbitrary character (which is, say, in a register). If
one is willing to invest time in forming characterizations of
the subject string (the string being scanned) one can perform
a kind of hash test [Harrison 1971] which is very fast. This
is inefficient, however, unless the subject string will be
scanned repeatedly.

The complexity involved in specifying string algorithms
becomes significant in several ways._ The languages for string
processing must call functions rather than compile in-line
code and the linkage overhead further slows down computation.
In fact, most implementations tend to be interpretive which
greatly reduces the speed of numerical operations if, for sim
plicity, these are also treated interpretively. Complex
language processors cannot be built as rapidly and any string

*TRT stands for TRanslate and Test. This is a misnomer; 'Scan
and Test' would have been better.

Page 10 Chapter Preliminaries

language will experience more difficulty in being reproduced
on some other machine. When a processor, such as the macro
implementation of SNOBOL4, attempts to be machine-independent,
it must sacrifice efficiency significantly. For example, the
macro implementation of SNOBOL4 will scan a string for a sub
string at the rate of 40 microseconds per character (on the
IBM 360/Mod 65) a full order of magnitude slower than is
possible on that machine essentially because of its machine
independence. The most efficient utilization of any machine
for typical string operations requires in general a complete
restructuring of the program and this tends to inhibit the
rapid spread of any language.

The complexity issue becomes iroportant when one realizes that
the very great strides in producing economical computation in
the last several years have come in the form of minicomputers
and microcomputers. These machines tend to be small, new and,
as is characteristic of a new industry, exhibit a relatively
large number of different designs. All three factors tend to
work against a large ambitious SNOBOL-like language.

As the early ENIAC programmers discovered, however, very few
problems are so purely numerical that the machine can be
casually fed problems and spew out answers. In fact, most of
what mankind wants done is non-numerical and is difficult if
not impossible to program. By contrast, those problems which
are very numerical have probably already been programmed ·or
are embedded so intricately in an essentially non-numerical
setting that the numerical part can't be brought easily to the
machine. To consider just one example, the filling out of
one's income tax can be done conversationally from a computer
terminal; the amount of computation that must be performed is
insignificant compared to the total programming required to
make the system usable by the 'unwashed' (naive) user. Hence,
if we are to extend the application of computers to new areas
there will surely be much about these areas that is non
numerical.

1,.1 NOBOL4 Implementations SNOBOL4 was developed during
" I a period of computer
1111, changeover at Bell Laboratories and so the language

I, was written in a system of macros [Griswold 1912].
'III I In this way, the language could relatively easily be

~----~I transported to the new machine (whatever it was
goi~g to be). This had the fortunate consequence of making
SNOBOL4 transferrable to other different machines with far
less difficulty and with much greater faithfulness to the
original design than would otherwise have been possible. This
implementation is usually referred to as the MAcro
ImplementatioN of SNOBOL4; we will refer to it throughout as
MAINBOL.

While MAINBOL is relatively portable, it is also inefficient.
This is due primarily to its machine independence. A fair

____________ SNOBOL4 foibles Pgg.~L.11

estimate of the cost of machine independence in the case of
SNOBOL4 is a factor of two in both space and time.

SPITBOL [Dewar 1971] was developed to overcome the inef
ficiencies of SNOBOL4, at least for the IBM 360. By writing
exclusively in assembly language, by developing new techniques
for string handling and storage management, and by compiling
executable code rather than running interpretively, SPITBOL
was able to better the running speed of MAINBOL by a factor of
7 (this was a median figure of 21 programs tested at Bell
Laboratories). SPITBOL is also smaller than MAINBOL by a fac
tor of two. It should also be pointed out that SPITBOL not
only did not compromise with the language which so often hap
pens when a language is reimplemented from scratch, but
actually extended the language in several significant ways.

The SITBOL processor [Gimpel 1973a & 1974] is a completely new
implementation of the SNOBOL4 language for the PDP-10. SITBOL
benefitted greatly from the SPITBOL experience, using and im
proving upon the implementation innovations of SPITBOL.
Although SITBOL is an interpreter, it is faster than MAINBOL
by a factor of from 3 to 5 and is smaller by a factor of 3.
SITBOL is upward compatible with both SNOBOL4 and SPITBOL and
contains many language enhancements as well. These three im
plementations are discussed more fully in Chapter 11.

While these are the only implementations that can claim to
support a full SNOBOL4, the FASBOL implementation [Santos
1971] should also be mentioned. This ambitio~s project is in
tended to produce a compiler for SNOBOL4 that, in addition to
obtaining high speed, supports separate subroutine compila
tion, compiled patterns and in-line arithmetic. FASBOL,
however, lacks several SNOBOL4 features and many of the
programs in this book will therefore not run under that
system.

r------------------------,
, 1111 NOBOL4 foibles Winston Churchill's famous statement

about democracy can be made with
particular aptness about SNOBOL4. It is the worst
of all programming languages, except for all the
rest. By this we mean that SNOBOL4 is a very effec
tive programming language not because it is free of

,I ~I--------------~
, 1111 , , .,
, IIII ,

blemish, it actually has quite a few, but because of the many
valuable features which it do~~ have. In my own experience,
unless the problem is totally numerical, a SNOBOL4 program
will be at most half as large as one written in some other
language to achieve the same effect. In some cases the reduc
tion in size and complexity is indeed dramatic. SNOBOL4
achieves this code condensation by providing a number of
facilities simply not available in most other languages. These
include pattern matching which is so rich as to amount to a
language within a language. The storage allocation facility,
while conceptually simple, completely frees the user from
concern over the detailed disposition of data objects. All
data objects are represented by a descriptor of fixed size.

Chapter Preliminaries

This makes it possible to have heterogenous arrays,
declaration-free variables and structures, and, most impor
tantly, it allows data objects to be freely transferred bet
ween calling and called functions. The historic tendency of
interpreters to include symbol tables during execution leads
to a number of fac.ilities not normally available. These
include indirect referencing, indirect goto'.s, dynamic defini
tion of functions and structures and, the ultimate source of
freedom and flexibility, the ability to compile and execute
arbitrary strings. It has a ~omprehensive tracing and error
recovery facility and the ability, through numerous keywords,
to provide the user with all sorts of information concerning
his running program.

In general, the power and flexibility of SNOBOL4 are une
qualed. While the language can be abused, as many languages
can be, it has many features which, properly employed, enable
large programs to be written with a minimum of difficulty.

This is not to suggest that the language is entirely free of
defect. As in any ambitious project of SNOBOL4's magnitude,
there are many minor deficiencies. Moreover, merely knowing
about them does the language designer no good. Liabilities
get 'frozen' into a language since it is impolitic to make
non-compatible changes. For casual SNOBOL4 programming we may
ignore many' of these deficiencies. When composing large
programs, however, it is much more important to develop a
systematic approach and we must confront these defects
squarely.

As remarked by Dunn [1973], a language which is very inef
ficient can be a burden to use even though the application,
such as bOOtstrapping, is not nominally one demanding high ef
ficiency. Dunn was critical of SNOBOL4 in this regard but his
remarks were actually directed to a specific implementation,
MAINBOL. As Hanson [1973] remarks, the inefficiencies noted
in using MAINBOL do not apply to SPITBOL and SITBOL. Our
remarks in this critique will be directed only to the SNOBOL4
language as described by Griswold et al [1971] and not to any
particular implementation

~ Perhaps the most noted deficiency of SNOBOL4, especially
in an age when the goto is harangued daily, is the lack of
good £Qnt!Q1-_~~Y~~. They are admittedly primitive
[Griswold 1974]. There is no IF ••• THEN ••• ELSE, and no
repetition element such astbe Fortran DO. One is forced to
use many goto's and to invent unique label names. This is a
bother and conventions must be adopted. It is not, however,
as detrimental to good programming practice as one might
think, since it generates dependency on the use of the func
tion which is a superior control structure anyway. See the
remarks on Structured Programming.

l~ A number of difficulties involve pattern matching. Pattern
matching is a complex process and to be used fully requires a
comprehensive understanding on the part of the user. For this

SNOBOL4 foi:b=l_e~s _____ , Page 13

reason two chapters in this book are devoted to a theoretical
and practical treatment of the subject. But aside from the
learning problem there are residual difficulties. One of these
is the one-character as§Ymption which we discuss more fully in
Chapter 7. The statement below:

HERE S LEN(1) $ C LEN(1) $ D *LGT(C,O) o C :S (HERE)

should sort the string S as it repeatedly swaps any consecu
tive pair of characters not in the correct lexicographic
order. Unfortunately, if the last two characters are out of
order they are never swapped because the pattern matching
mechanism assumes that *LGT(C,D) matches at least one charac
ter and that therefore the entire pattern requires at least
three characters and that it would be a waste of time to try
the pattern on merely two characters. The manual will say to
use FULLS CAN mode to circumvent this but, as we will argue
later, mode switching is not good practice for large programs.

Predicates may be employed within patterns in spite of the
one-character assumption if one employs a trick. See Prog.
8.7.

3. Another heuristic that gives problems is the length
failure, or futility heuristic. Under this assumption, the
very natural back-referencing operation becomes virtually
unusable. For example, the pattern matching statement:

S LEN(3) $ X ARB *X

examines the string S for a pair of identical three-character
substrings, if it would only work. The first three characters
of S are assigned to X and this string is searched for in the
remainder of S. Upon failing, the next three characters of S
should be assigned to X and the search should continue. This
will not happen, however. When *x does not match by reason
that there are insufficient characters remaining in S, it
signals 'length failure' or 'futility' (See Chapter 7 for a
more detailed discussion of these terms). The scanner believes
that it can immediately halt all processing and so it does.
The result is that, unless the first of the pair of three
character strings begins with the first character, the pattern
fails. The error can be cured by FULLSCAN. As indicated in
the preceding paragraph, however, this introduces other
problems.

!~ Pattern builging, as distinct from matching, also causes
some problems. The pattern matching statement:

S LEN(N). K

removes the first N characters from the string S and assigns
them to the variable K. Unfortunately, the pattern must be
constructed each time the statement is executed. The cost of
building the pattern with the concomitant garbage collection

will require more time than the pattern match itself. A solu
tion is

P = IsEN(*N) • K

S P

Although this can serve to remove the pattern-building opera
tion from the 'inner loop', it creates several other problems.
One has to think up a unique name (P just won't do in a large
program). ~he statement bearing the pattern definition is
separated from the statement bearing the match. This can cause
difficulties when trying to decipher a large program. The
side-effect of setting the variable K without any apparent in
dication at the pattern match is poor practice. Finally, the
use of *N is awkward. The novice tends to overuse the deferred
expression and begins to use it where it produces errors. In
short, the language becomes more confusing, difficult to learn
and error prone.

2~ It should be possible in any language to write a function
whose behavior will be invariant with respect to its environ
ment. The language that comeS-closest to this ideal is Fortr~n
with its separately compiled subprogram. SNOBOL4 tends to be
worse than others in this respect. For example, the function
XeS), below, will return its string argument rotated one
character to the right.

DEFINE (' ROT (S) T')
RO'I S RPOS (1) LEN (1) • T

RO'I T S

: (ROT_END)

: (RETURN)

This function will behave properly provided (1) LEN, RPOS,
binary'.' and concatenation have not been redefined, (2)
RETURN has not been redefined, (3) the &ANCHOR mode has not
been set, (4) ROT is not used as a label outside the program,
and (5) neither ROT, S nor T have been I/O associated.

~~ SNOBOL4 contains no block structure so that problems of
§£QE~ emerge. For example, the function INC(NAME), defined
below, will increment the named variable. Also, COUNT will
record the number of times the function was called.

DEFINE('INC(NAME) ')
INC COUNT COUNT + 1

$NAME $NAME + 1

: (INC_END)

: (RETURN)

If COUNT is used outside the function, its current value can
be destroyed. That is, there is no way to isolate this use of
COUNT from any other that might exist in a program. One may
designate that COUNT is local (a misnomer, 'temporary' would
be better) to the function. But this would mean that the value

SNOBOL4 foibles

of COUNT would be saved before entering the function and
restored on return and hence could not be used to count the
number of calls.

The named variable being incremented by INC may not be ar
bitrary. If it were COUNT, then it will be incremented twice.
If it were INC, then it would be incremented once, but on
return its old value would be restored. If it were NAME, there
would be an attempt to add 1 to the string 'NAME' resulting in
a fatal error.

1~ Fun£~iQn~~!initiQn is unusually flexible in SNOBOL4, but,
as has been noted by Abrahams (1974], it also leads to dif
ficulties. Since function definition is dynamic, the DEFINE
must be executed; but where should it be placed? If the DEFINE
is placed in some initialization section s~parated from the
body of the function by some distan€e, programs become dif
ficult to follow. To place the DEFINE adjacent to the body of
the function, which is good practice, it is necessary to use a
hop-around construct as we have done above with ROT (A) and
INC (NAMEl • But this is troublesome and wastes space. Execu
tion time and space is required for: (1) the string bearing
the function prototype, (2) the code required for the DEFINE,
the hop-around and the target of the hop, and (3) the string
bearing the hop-around label. The third item above is ex
plained more fully below.

~~ By means of the indirect goto it is possible to do a multi
way branch. For example:

: ($TRIM (INPUT))

will read a label and go to it. But this requires that every
label must be in the symbol table at run-time. Not only must
the physical characters of each label be present but an amount
of additional storaqe to house other data associated with a
name. This additional information averages about 32 characters
across several implementations. A 40-character storage penalty
for each label is considerable for large programs.

~~ In SNOBOL4, I~R~T/QUTPUT is markedly clean and uncluttered;
but it generally lacks facilities. If one is only transmitting
strings to sequential files, SNOBOL4 is adequate. However, no
special facilities exist for printing columns of numbers or
for doinq direct-access I/O. Output ~edia intended for human
viewing is really two dimensional and merely outputtinq
strinqs is inadequate. Although an extension to the language
was made in this regard (Gimpel 1972a] space limitations have
excluded it from most irrplementations.

10. The statement

x X * .1

results in ~ strange error. One must write '0.1', not '.1',
because Ynary_~! is an operator, which should be applied to a
variable, not a value such as 1.

1-1. There are severalprecede~ anomolies. In virtually all
programming languages, the operators '/' and '*' have the same
precedence and associate to the left. In SNOBOL4, '*' has a
higher precedence than '/'.

The precedence of concatenation is one of the lowest whereas
it should be one of the highest. Thus,

A B + C

is parsed as A (B + C).

The two highest precedence binary operators, viz. ',' and '1'
associate differently. The first associates to the right and
the second associates to the left. What is one then to make
of:

A B 1 C

1l~ SNOBOL4 usurps the characters '<' __ a_n~d-='~>~' for bracketing
which renders them unusarle as operators. This means one must
use the relatively primitive: GT(X,Y), GE(X,y), etc. But
square brackets are available, at least in ASCII, for the pur
pose and these are unused.

13. The use of a blank to denote concatenation seems to force
the language to require surrounding binarY--operators with
blanks. Thus, it is a mistake in SNOBOL4 to write 'A+B'; one
must write 'A + B'. This causes learning problems.

The blank operator also requires placing a fun~tion call adja
cent to its arguments. A common mistake for beginners, for
example, is to write:

TRIM (INPUT)

and wonder why the TRIM function didn't work. No error can be
signalled for this sequence, of course, which dutifully
prepends the input with the current value of the variable TRIM
'which is probably null.

1~~ To compound the learning difficulties, the blank binary
operator is also used to denote pattern matching. If one is
teaching SNOBOL4 one must explain why the sixth blank below
denotes pattern matching while the others denote concatenta
tion.

«A B C) A B C) A B ~

12~ While SNOEOL4 is more than just a string language, the
facilities of the language are geared much more for string
processing than any other kind. For example, although SNOBOL4

structured Programming _____ __ Page 11

contains ~~y~ there is no way to automatically sequence
through an array as one can by pattern matching a string or as
is possible with APL. Worse, SNOBOL4 does not even contain a
conventional repetition-element like the DO-loop. Also, the
tracing facilities, while quite useful for strings yield lit
tle information with arrays. When accessing strings to do
fairly complex activities one does not mind paying a small in
terpretive overhead since this is a relatively small part of
the overall computation. But the interpretive overhead of ar
ray processing can be several times the cost of accessing the
array. The net result is that although SNOBOL4 contains ar
rays, it is not very good at processing them. One is much
better off in some other language. Similar remarks may be made
with perhaps less force about the programmer-defined datatype.

16. There is some language clutter which could be removed.
~-particular &TRIM, &INPUT and &OUTPUT were introduced into
the language to overcome implementation inefficiencies of
MAINBOL. The &ANCHOR keyword invites unstructured programming
and should be abolished. The VALUE function was a nice idea
but was defined incorrectly and, in its current form, is use
less. I know of no serious uses of the SUCCEED pattern but,
if needed, one could use ARBNO(NULL) were it not for the fact
that SNOBOL4 attempts to 'protect' you from having a null ar
gument to ARBNO.

11~ Although essential for some applications, FENCE and ABQSI
are difficult to learn and use and do not compound very well.
A NOT function would have been better. See chapters 6-8 in
this respect.

It is hoped that the reader has not by now come to the conclu
sion that SNOBOL4 is an utter abomination. With care and
foresight many of these deficiencies can not only be overcome
but turned to advantage. We will see ample evidence of this
in this and the remaining chapters. It is also the writer's
hope that this catalog of defects can serve to dispel the no
tion that a recognition of a language's strengths is tan
tamount to being in love with the language and hence blind to
its flaws. (This happens frequently but it is not a universal
phenomenon.)

Having thusly disposed of the bath water, and assuming that we
still have our baby, we may proceed to the important topic of:

"11 tructured Programming An unsophisticated program
mer, in a surge of program

ming frenzy, will write a large program straight-out
over several pages which will exhibit no evidence of
structure. Such programs generally prove to be bit
terly difficult to debug and modify. Dijkstra [1968]

I r.------------------~--~
IIII ,

I ,
IIII ,

cited the over use of the goto as one of the most flagrant
abuses in such run-on programs. Willy-nilly transfers of con
trol from one program segment to another results in a mangle
of spaghetti-like confusion. In fact, the abuse has become so

great that a controversy has arisen over whether the goto
should be ~~i!teg~_211 by a programming language.

It is this writer's contention that improper use of the goto
is a symptom rather than a cause of poor structuring. To
properly structure a large program it must be decomposed into
smaller subroutines (or, equivalently, functions, procedures,
etc.) • Subroutinizing reduces the overall size of a program
since the same section of code may be referred to by several
different statements. It also allows greater flexibility in
the writing of a program since it is often unclear at the
start where an important subactivity will be ne~ded. But the
most important aspect of subroutinizing is the structure it
endows the overall program. With reasonably well-defined in
terfaces between subroutines, the complexity of a large
program becomes merely the sum of the complexity of the in
dividual component routines, not the product or some higher
order function. Under such circumstances, the subroutine call
becomes the primary method of inter-routine transfers of con
trol. Intra-routine transfers of control can quite comfortably
be made with the goto. In fact, many algorithms described in
a half dozen or so English statements use the goto as a means
of making more precise that which might otherwise be am
biguous. Far from being inherently evil, the goto is a power
ful, and the most basic, control element. It is perhaps
because of this power that it can so easily be abused.

But whereas we may elect to keep the goto as a control element
of last resort, it is not generally the best control structure
for all circumstances. In particular, the IF ••• THEN ••• ELSE

sequence as well as a repetition structure (such as the
Fortran DO) are ideal in many instances. Their absence in
SNOEOL4 has led some critics to be unkind to the language. To
a certain extent the deficiency is real, but is ameliorated
considerably by what may be called the implicit iteration of
pattern matching. Thus, the statement:

S , , , ,

which removes the first blank from the string S contains an
implicit iteration over the characters of the string S. The
result is a statement which is considerably easier to under
stand than an explicit sequencing. Thus the reason for the
lack of conventional control structures in SNOBOL4 is that the
need for them is not felt so acutely. As confirmation of this
supposition, APL, with its many forms of implicit array itera
tion, also lacks the standard control structures (other than
the goto).

It would not be correct to conclude that to write large
programs in SNOBOL4 we subroutinize everything in sight and
let it go. at that. certain conventions must be followed with
respect to names of labels, global variables, keywords, etc.
so that separately written subroutines can co-exist comfor
tably. A system of conventions of this kind is followed in
writing the individual functions in this book so that they in-

__ --__________________ ConY~ntiQ~_

deed can be joined together without mutually interfering with
each other. Many of the routines, in fact, call each other
and the text processor which produced this book is a rather
large assemblage (over 3000 statements) of functions which in
some cases are identical to routines described and in all
cases were written according to the conventions advocated.

r-------------------~
I IIII
, I
, I , .
, IIII

onventions In order to write well-structured
programs in SNOBOL4 it is rather more

important to establish a system of conventions than
in other languages. This is because the language
does not support separately-compiled functions and
hence there is a potential problem with name con

flicts. Another problem has to do with mode switches. For
example, if we write a function which uses pattern matching,
we are not generally free to set the mode of &ANCHOR. To do
so would set the mode of &ANCHOR for the calling routine. But
how can the called function know which setting exists for the
&ANCHOR switch? There are only two ways out of this dilemma;
either the called routine saves the old value of &ANCHOR, as
signs it a new value, and restores the old value before retur
ning, or it makes an assumption as to what its value will be
and all routines live by that assumption. The first method is
clearly too awkward and is made more odious by the thought
that we would have to do the same for &FULLSCAN as well.
Hence, our routines will assume these keywords to contain cer
tain values. There are perhaps good reasons to always assume
&ANCHOR to be on and/or to assume &FULLSCAN to be on, but we
will abide by the convention that they always have their
default value of 0 (off).

It is possible to vary the value of variables having preas
signed (pattern) values such as ARB, BAL, FAIL, etc. However,
it should be obvious that it is poor practice to change these
values for normal programming. The only exception may be to
modify ARB (and other patterns) in an upperward compatible way
for debugging purposes. For example, if we set:

ARB ARB $ OUTPUT

at the beginning of the program then every string matched by
ARB will be printed. since such a modification only produces
an upward compatible side-effect, and since the change is only
temporary, no ill can come of it.

It is also poor practice to redefine built-in operators and
functions unless they are done in an upward compatible manner.
For example, since the SIZE function is not pre-defined for
array arguments it is not necessarily poor practice to
redefine the SIZE function so that if the argument is an array
it will return the number of elements in the array '(a function
which is very possible to write in SNOBOL4). On the other hand
to redefine SIZE where it is already defined is to produce the
sort of global change in the language which makes
subroutinizing difficult.

' ____ -=C~er 1 ____ ~P~r~e,limin,_a~r~i~e_s _____________ ,

How should names be kept separate to avoid collision? Con
flicts can occur with names of functions, variables, and
labels. Since the number of functions are relatively small (a
few hundred at most) there is generally no problem here. The
names of functions in this book were generally chosen after
English words and if this is the case conflicts are readily
apparent.

Variable-name conflicts could be a severe problem if one does
not subroutinize. If one does, the problem virtually disap
pears. One simply designates the variables to be temporary to
some given procedure. If the functions are kept short enough
no problems arise. It's occasionally necessary to use global
variables. Here potential conflicts can arise unless one is
careful. We will use the general policy of designating such
global names with a name bearing one of the special characters
'.' or '_I. This tends to reduce the possibility of collision.
We will typically use the '.' in a pattern name to suggest
that a variable is being assigned a value. Thus we may write:

LEN1.T = LEN(1) • T

and the name becomes a convenient mnemonic. In fact if this
is not done a strong argument can be made that the use of a
pre-defined pattern is too obscuring to be used as a general
programming practice.

To keep labels from conflicting we will employ the usual prac
tice of appending an identifying suffix to some convenient
root. Thus, for function ALPHA, we can use labels ALPHA 1,
ALPHA_2, etc. Labels such as LOOP or DONE are obviously poor
practice except for examples or in a main routine but we al
ways shudder a bit when forced to contemplate them.

We will rely a great deal on the follOWing convention for
defining functions. The DEFINE function must be executed in
SNOBOL4 before a function can be defined. For well-structured
programs, the body of the function should be adjacent to the
function definition. The function body should not be entered
other than via a function call. Hence we will use a hop-around
convention. To define the function ALPHA() we write:

ALPHA

DEFINE ('ALPHA() ')
Initialization for ALPHA

Function body of ALPHA

As indicated here, unless we have special reasons for dOing
otherwise the entry label will be the same as the name of the
function. Following the call to DEFINE(), we have what is
termed the initializatiQn section. Here we may assign patterns
to variables, initialize tables, etc. The initialization sec-

ConventioD;s ____ __ Page 21

tion is especially helpful in SNOBOL4 since for efficiency
reasons many patterns should be defined 'out-of-line'. The
ability to perform initializing computations on a per-function
basis is not generally available in most programming
languages. Hence, the hop-around technique, which at first
appears to be a cumbersome apparatus for overcoming a language
deficiency, becomes a language asset for structuring one's
programs.

Other conventions are as follows. Although the initial value
of each variable is the null string, we will not generally use
this fact. Hence, the initialization section is free to modify
any variable not used globally (i.e., one whose name does not
contain one of the special characters '.' or '_'). An excep
tion is the variable NULL whose value is never changed. Of
course any variable which is a temporary variable of a func
tion will be automatically assigned the null string before
function entry and this fact will be used throughout.

Occasionally a transfer is made to the label ERROR. It is not
necessarily presumed that a label named ERROR actually appears
in the source program. If a branch is attempted to some un
defined label, the program will halt and an appropriate
diagnostic will be given. This will indicate where the error
occurred. It is also helpful in this regard and in general to
always set &DUMP on (=1) at the start of the program as this
can provide vital clues as to the source of any error. It is
easy enough to turn the &DUMP off if the program terminates
normally.

C B APT E R TWO

o N V E R S ION S

CONTENTS

UPLO •••••••••••••••••••• 2.1

BCD_EBCDIC •••••••••••••• 2.2

ROMAN 2.3

BASEB 2.4

BASE10 •••••••••••••••••• 2.5

HEX •••••••••••• · ••••••••• 2.6

CH •••••••••••••••••••••• 2.7

DAY 2.8

MDY 2.9

SPELL ••••••••••••••••••• 2.10

___________________ fIQgram 2.1 - UPLO ___ .-P..-a g e 23

r----1
'-,,.-J his chapter covers bas ic conversions of a kind fre-

II quently needed in a computer environment. We are
II presenting this material first, not necessarily
II because it is the easiest but because it is relatively
U unsophisticated. That is, the intent of a program that

does a conversion will probably be clear even if nothing else
is. SNOBOL4 is a good language to represent conversion al
gorithms because frequently the objects converted are strings.
This is natural because we are normally converting between two
external representations of the same thing and the way we
represent things externally is most often via strings of
characters.

II

" "
Program

2.1
UPLO

1

" " II

UPLO is a program for converting all upper
case characters within a string to lower
case and vice versa. Thus UPLO('UPlo') will
return 'upLO'. In all cases, characters

which cannot be converted are left_unchang~g. The program as
sumes the IBM 360 EBCDIC encoding of characters [IBM360a;
Appendix Fl. There are many uses for such a program owing to
the relative difficulty of keypunching lower case letters and
the growing use of printers with lower case graphics.

UPLO(S) will convert upper case to lower case and vice
versa. The argument S 1S an arbitrary string. Nonal
phabetic characters are ignored.

DEFINE ('UPLO (S) ,)

The first problem is to obtain the sequence of lower case
letters. This is done by a computation to avoid having to
type lower case letters in the program itself. The com
putation depends on the fact that the upper case letters
and the lower case letters are arranged in an identical
pattern on the EBCDIC chart. The only difference is that
the lower case letters are in the 3rd quadrant (Q3) of
&ALPHABET and the uppers are in the 4th quadrant (Q4).

&ALPHABET
UPPERS_

LOWERS
UP_LO -
LO_UP

LEN(128) LEN (64) • Q3 LEN(64) • Q4
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

REPLACE (UPPERS_,Q4,Q3)
UPPERS_ LOWERS_
LOWERS_ UPPERS_

Then the function UPLO merely consists of a call to the
REPLACE function.

UPLO : (RETURN)

Chapter 2 CONVERSIONS

As discussed in chapter one. we will generally begin a func
tion with a call to DEFINE. Following this is the initializa
tion section. Here we initialize variables such as UP LO so
that subsequent execution is fast. After initializatIon a
transfer around the function body is made to a label which is
normally the function name followed by '_END' (UPLO_END in our
example). When the function is called. execution normally
begins at the statement labeled with the same name as the name
of the function (UPLO in this example).

The encoding of UPLO depends on the arrangement of characters
in the string &ALPHABET. The characters shown in the box below
are the result of printing &ALPHABET on .the printer used to
produce this book.

• i
I ,
, I , ,
I -.< (+ I & !S*) ; ,
1-/ ,I_>? :10)1="1
I ,
, .. abcdefghi+ {S21 +' jklmnopqr"'} '3:1:"
I-nstuvwxyz(Lr[~00123"56789).J,]¢_I
1 1
I ABCOEFGHI JKLMNOPQR I
I STUVWXYZ 0123456789 ,
, I

In EBCDIC, &ALPHABET contains 256 characters which may be
regarded as consisting of four quadrants of 64 characters
each. In the above, each quadrant is printed in a separate
sector as two lines of 32 characters each. It is easy to see
from this table that the relative positions of the upper and
lower case alphabets in their respective quadrants is the
same. Hence it is possible to obtain the lower case alphabet
from the upper case by a simple replacement.

Although UPLO is character-code dependent, it can easily be
modified for ASCII [ASCII]. In this case, &ALPHABET contains
128 characters whose printing graphics are shown (in order)
below.

, ,
1------------------------------

,
1
I

I ! "IS"&' ()*+,-./0123456789:;<=>?1
1--------------------------------
I~ABCDEFGHIJKLMNOPQRSTUVWXYZ['] ... _
1--------------------------------
' .. abcdefghijklmnopqrstuvwxyz{I}
•

, ,
I ,

_____ ,P=-r:.o=q=r,:am 2.3 - ROMAN

UPLO can be modified to operate with such an &ALPHABET by
changing five numbers.

, i

'I Program II The transition to the 3rd generation
'I 2.2 "brought with it, for IBM users, a charac-
II BCD_EBCDIC II ter conversion problem. The old 6-bit
L-- BCD code was replaced by an expanded
8-bit code. One disadvantage of the older code was that busi
ness and scientific users had different graphics for the same
card code. In particular, the 5 characters t~%<& known only
to the business users had the same card code respectively as
=' ()+ which were known only to the scientific user. These
two sets diverged in the 3rd generation. The fortunate busi
ness users saw no change, but the scientific user (such as the
FORTRAN programmer) suddenly found lots of strange characters
in his source program.

In such cases one would like to write a program to convert an
input deck with these 5 commercial characters into the scien
tific equivalents. One such program is Program 2.2; it appears
on one line and in the days when we were converting to 3rd
generation, I found it convenient to carry such a card on my
person as a ready answer for anyone wishing to know the
whereabouts of a program for translating BCD to EBCDIC.

L

This is a complete program to convert BCD card code to
EBCDIC card code. Input cards will be read in, converted,
and punched. When no more cards· remain the program
terminates.

PUNCH REPLACE (INPUT, "#~'<&", It=, () +It) : S (L) ; END

Epiloque

This is a neat and compact example of the use of the REPLACE
function. A card is read in and any character of the second
argument found in this card is replaced by the corresponding
character in the 3rd argument. The REPLACE function is fast,
proceeding at machine speeds (on the IBM 360-70 a 256-byte
table is set up, after which a single instruction (TR) trans
lates the entire string [IBM360a]). The REPLACE function is
not only extremely useful for such transliterations but, as we
shall see in the next chapter, can be used for permuting and
rearranging characters as well.

r-·-------i
I , Program I I
I , 2. ~ , I
" ROMAN "

ROMAN will convert its argument, assumed to
be an integer, into Roman numeral format.
Thus, ROMAN (256) returns 'CCLVI'. Though a
classic problem in string manipulation, the

reader may wonder about the utility of such a program (are we
going to use SNOBOL4 to print tombstones?). But there is one

Es~L~L~ _______ £llSEter 2 CONVERS=I~O.:.:N=S __

common application in which such an algorithm is essential,
viz. a text formatter which must number pages preceding the
first with Roman numerals. In such cases it is customary to
perform computations (such as adding one for each page) in toe
normal Arabic system before converting. In this example, toe
Roman numeral would normally appear in loWer case. This con
version, if necessary, can be done using UPLO, Program 2.1.

Although it occasionally happens that we wish to convert from
Arabic to Roman we almost never want to do the reverse so that
we will be content here with going in one direction only.

ROMAN(N) will return a string equal to the Roman numeral
equivalent of the integer N. N is assumed to be less than
4000 and nonnegative.

DEF INE (, ROMAN (N) T ')

Entry point: remove the last digit and call it T.

ROMAN N RPOS (1) LEN(1) • T :F(RETURN)

+

Convert T to its equivalent Roman form. Then append it to
the Romanized form of the preceding digits multiplied by
10.

'0,1I,2II,3III,4IV,5V,6VI,1VII,8VIII,9IX,'
T BREAK (' , .) • T : F (FRETURN)

ROMAN = REPLACE(ROMAN(N), 'IVXLCDM', 'XLCDM**') T
:S (RETURN) F(FRETURN)

The big trick here is to realize that it is relatively easy to
multiply a Roman number by 10 by merely dOing a translitera
tion of its symbols into the next higher 'octave'. This is
done by REPLACE. Another trick which reduces the size of the
program is to compact a set of information into a long string
and use SNOBOL4's powerful pattern matching to extract the
information.

This is not the fastest encoding of ROMAN. There was no effort
to economize on time because it may be presumed that the use
of ROMAN is infrequent. If anything, an effort was made to
reduce the size of the program in order to minimize storage
consumption. This is good practice for seldomly used code.

______ Programs 2.4 & 2.5 - EASEB & BASE10 ___ ~e 27

r----------------------,i
I' Programs I'
II 2.4 & 2.5 "
" BASEB & BASE10 "

The decimal system in common use to
represent numbers is a positional
system, meaning that the value of a

L-_________ digit depends on its position.
Generally, in a positional number system, the numeral

represents the number

n-1 n-2
+ ••• + an

where B is some integer called the base. The decimal system
uses E = 10. A positional system can represent arbitrarily
large quantities with only a finite number (equal to B) of
symbols. This is in contrast to the Roman numbers where the
value of a symbol depends on the symbol itself and not on its
position. Hence,. for arbitrarily large numbers, we need ar
bitrarily many symbols.

Though our current decirral system was introduced in Europe by
the Arabs in the 9th Century, the system did not flourish
there until the 16th century Spanish merchants were humiliated
by the arithmetic prowess of the stone-age Mayan Indians who
were using a base 20 positional system. Se~ Von Hagen (1960].

The growth of computer systems in which base 2 arithmetic is
used internally to represent numeric quantities has drawn at
tention to the representation of numbers in various bases and
has led to the need in many cases to convert from one base to
another.

In this section we include two routines for base conversion.
BASEE(N,B) will convert integer N into its representation in
base B. Thus, BASEB(15,3) will return '120' as this is the
base 3 representation of 15. conversly, BASE10(N,B) will con
vert the numeral N in base B to the equivalent decimal number.
Thus BASE10('120',3) will return '15'. This is customarily
written

(120)3 15

where the absence of an explicit base indication implies base
10.

To convert N from base b l to base C2 we could combine the
functions thusly:

BASEB (BASE1 0 (N, b l), b 2)

The characters used to indicate digits higher than 9 are the
letters of the alphabet with A equal to 10, B equal to 11,
etc. This seems to. be the most common method of denoting the
higher digits. On the other hand, there are dissenters who

__________ £hapter .2 ______ co_NVERsloNS

say that this encoding is unnatural in that the even letters
(B, 0, F, etc.) correspond to odd numbers (11, 13, 15, •••)
whereas the odd letters (A, C, E, •••) correspond to even num
bers (10, 12, 14, •••). These people might prefer the letters
'XAEC •• rather than 'ABC ••• another.method might be to use
some arbitrary sequence from the end of the alphabet such as
'UVWXYZ' rather than 'ABCDEF'. In either case, the functions
BASEB and BASE10 can be modified to suit by changing the value
of the global variable BASEB_ALPHA.

BASEB(N,B) will
representation.

convert the integer N to its base B
B may be any positive integer ~36.

DEFINE ('BASEB(N;B)R,C')
BASEB_ALPHA '0123456189ABCDEFGHIJKLMNOPQRSTUVWXYZ'

: (BASEB_END)

Entry point and top of loop: If N is zero we are done

BASEB EQ (N, 0)

Obtain the base-B representation (C) of
significant digit of N.

:S(RETURN)

the least

R = REMDR (N, B)
BASEB_ALPHA TAB (*R) LEN (1) • C : F(ERROR)

Tack result onto previous value, update N and loop.

BASEB = C BASEB
N N / B : (BASEB)

BASE10(N,B) will convert the string N assumed to be a
numeral expressed in base B arithmetic to decimal (base
10) •

DEFINE('BASE10(N,B)T')
BASEB_ALPHA '0123456189ABCDEFGHIJKLMNOPQRSTUVWXYZ'

: (BASE10_END)

Entry point and top of loop. Find first digit in Nand
determine its value in base 10.

BASE10 N LEN (1) . T :F (RETURN)
BASEB_ALPHA BREAK (*T) alT :F(ERROR)

Then use standard conversion algorithm for converting to
base 10.

BASE10 = (BASE10 * B) + T : (BASE10)
BASE 1 O_END

______ !XQ~ams 2.4 & 2.5 - BASEB & BASE10 Page 29

In BASEB, the search for the representation of the Rth charac
ter is done using the pattern

TAB (*R) LEN (1) • C

This pattern is identical in performance to the pattern

TAB (R) LEN (1) • C

strangely enough, the former is faster in SPITBOL. This is
because TAB(*R) LEN(1) • C is a constant valued pattern and
can be pre-evaluated, whereas the same pattern without the 1*1
is not constant. It requires more time, in general, to form
the pattern than it does to do the pattern match so that much
has been gained. A similar remark can be made about the pat
tern matching statement involving BREAK(*T) immediately fol
lowing label BASE10.

In SNOBOL4, similar considerations apply except that the
programmer must pre-evaluate his own expressions; the compiler
will not do it for him. Thus

TAB (*R) LEN (1) • C

would yield a more efficient rendition, in SNOBOL4, of the
function BASEB. This is recommended if speed is of importance.
The pattern CONVERT_R could be defined in the initialization
section of the function thereby keeping the pattern associated
with the function. But note that

TAB(R) LEN(1) • C

BASEB_ALPHA

would not be valid because the pattern CONVERT_R would be
using the value of R at the time of assignment and not at the
time-of the pattern match.

We will not always use a deferred form such as TAB(*R) but
will generally prefer TAB(R). This is simpler and is not im
plementation dependent. It is always easy enough to modify
the function so that a pattern is not continually being
generated. Choosing the path of least resistance, as we will
tend to do, has another advantage. For those programs for
which space is more important than time, pre-defining the pat
tern is actually less efficient for the pattern must then
occupy space continuously and not merely when it is needed.

~g~~ ____ ChSl2~l--=_..£.Q!jVER'§Im!_S __ _

,
I'
" "

Program
2.6
HEX

i

If
If

"
To a human being a character is some
geometric configuration, but to a machine it
is just a sequence of bits. On the IBM

L--__________ ~ 360-370 series machines, a character is a
sequence of a bits. For example, the pattern of bits represen
ting the letter A is

11000001

it is obviously more convenient to write these a bits in base
16 notation so that A comes out looking like

C1

HEX(S) is a function which will accept a string of characters
and return a string of hexadecimal digits representing its in
ternal representation. Thus

HEX (' ABA')

returns 'C1C2Cl'.

All characters have an a-bit code and all 8-bit codes
represent some character, but not all characters are prin
table. Thus the SNOBOL4 keyword &ALPHABET is a string of all
the 8-bit characters starting with 00000000 and going on up to
11111111 (in numerical order). If this string were to be
printed (as we did earlier) most of the characters would ap
pear blank. The graphical image printed is a function of the
printer. The IBM 1403 printer has room for at most 240
graphics. Moreover, to increase printing speed there are many
duplications of the more frequently appearing characters. The
net result is that there are seldom more than 100 graphics in
&ALPHABET. Thus, an important use of HEX is for processing
data which is not character oriented and is therefore not
easily dealt with in terms of characters. For example, suppose
we wish to scan the input text for 2 consecutive occurrences
of the hexadecimal constant 50. Then the following statement
would perform the scan

HEX (INPUT) POS(O) ARBNO(LEN(2» • 5050'

HEX(S) will return the hexadecimal (internal) representa
tion of the string S.

DEFINE (' HEX (S) ')

Prepare tables of the 1st and 2nd hex digits.

H '0123456789ABCDEF'
HEX_2ND DUPL(H,16)
H LEN (1) • T
HEX_1ST HEX_1ST DUPL(T,16)

: F (HEX_END)
: (HEX_1)

Entry point: Form the first and second digits separately
and then blend them.

HEX BLEND(REPLACE(S, SALPHABET, HEX_1ST),
REPLACE(S, SALPHABET, HEX_2ND» : (RETURm

Names referenced
~-HE~.i.-----

Name
BLEND

:rYE~
Function

Where defined
-Program 3.:;-

We have taken an unusual approach in encoding HEX. It might
seem at first that it would be better to prepare some table
which would yield the correct pair of characters for every
character in the SALPHABET. But we have already noted how fast
REPLACE can be so that we can obtain either hex digit ex
tremely quickly. The question remains as to how we may swiftly
merge the 2 character sequences. This we do by the program
BLEND CProgram 3.7) which merges 2 equi-length strings. As we
shall see, BLEND also uses the REPLACE function in an unob
vious way and is quite rapid.

i

" 11

"
Program

2.7
CH

i

" " "
CH(H) will take a string of hexadecimal
digits (H) and convert them to the cor
responding character sequence. Thus
CHC'C1C2') will return 'AB'. CH is the in

verse of HEX so that CH(HEX(S» = S. The conversion provided
by CH can be useful for obtaining characters that can be prin
ted but not typed. Thus CHC'818283') returns 'abc'.

r-------------------------~------------------------------------,
I CHCHEX) will convert the sequence of hexadecimal digits
I into the corresponding character string. CH is the inverse
I of HEX.
I

DEFINE('CH(HEX}T,C,N')
: (CH_END)

Entry point: Remove 2 characters from string HEX. Then
convert to decimal (using BASE10) and retrieve the indexed
character from the &ALPHABET. L-----__ --'

CH HEX LEN(2). T
C BASE10(T,16)
&ALPHABET LEN (C) LEN(1). C
CH CH C

Names referenced
~_£H.i. ----

Nam~
BASE10

I~~
Function

:FCRETURN)

: (CH)

Where defined
Program 2.5

Chapter 2 CONVERSIONS

The method used to program CH is to treat each pair of hex
adecimal characters as a number in base 16. This number can
be converted to decimal using BASE10 (Program 2.5). This
decimal number can then be used to index into the keyword
&ALPHABET.

. ,
" Program " DAY will return the day of the week given
" 2.8 'I some date. Thus DAY('3/24/71') will return
, , DAY , I 'WEDNESDAY', and DAY (DATE () will return the
L-. ______ ~, current day_ As an added bonus, the global
variable D will be set to an integer between 0 and 6 inclusive
to give a numeric indication of the day. Ifa year other than
one from the 20th century is intended then a 4-digit year must
be given as in DAY('3/24/1825'). If the year is missing, the
current year is assumed. Thus:

'CHRISTMAS FALLS ON' DAY('12/25') 'THIS YEAR.'

will be a sematically correct string when evaluated, no matter
in what year it is evaluated.

The program assumes the Gregorian Calendar and will accept
dates for any date from the 2nd century onward (i.e. after 100
A.D.). The extrapolation into the time period before the
Gregorian calendar went into effect (1588), however, will not
agree with historical records.

It is interesting to note' that the revision of the calendar
followed on the heels of the discoveries of Indian civiliza
tions in the New World whose elaborate and involved calendrics
are said to be even more accurate than our present Gregorian
calendar (see Morley (1956] for example).

DAY (DATE) will return the day of the week appropriate to
the given DATE. DATE is given as month/day/year.

DEFINE('DAY(DATE)M,Y')

YEAR_ is the number of days in a year. YEAR_4, CENT_ and
CENT 4 are the number of days in the cyclic time periods
of respectively 4 years, a century and 4 centuries.

YEAR
YEAR:4 =
CENT_
CENT 4
DAY_ZERO

365
4 * YEAR + 1

(25 * YEAR_4) - 1
4 * CENT + 1 = 2 -

i
First extract the month, day, and year. If the year is,
null the current year (obtained from DATE) is used. Then,

____________ ~P~r~o.gram 2.8 - DAY Page 33

, '19' is prep ended if the year is only 2 characters long. ,.
I I

DAY
+

DATE BREAK('/'). M
(BREAl< (' /') • D LEN (1)

(IDENT (Y, , ') DATE ())

LEN (1)
REM • Y I

,/, ARB ,/,
REM. D)
REM • Y

•

Y = EQ (SIZE (Y) ,2) '19' Y

The number of days since March 0, 0000 will be computed.
First compute the number of whole months and the number of
whole years since that date.

M
Y
M =

LE (M,2)
Y - 1
M - 3

M + 12 :F (DAY_1)

, Now add an appropriate number of days for each cyclic year
I period. Note: integer divided by integer yields integer.

DAY_2 DAY = (Y / 400) * CENT_4 + (REMOR(Y,400) / 100) * CENT_
+ (REMDR(Y,100) / 4) * YEAR_4 + REMDR(Y,4) * YEAR_

+

Now add an appropriate amount for the month (note that 153
is the number of days in a 5-month period), the day, and
an initializing constant. This value is taken modulo 7
and a search is made based on that value.

DAY = DAY + «153 * M) + 2) / 5 + D + DAY_ZERO
D = REMDR (DAY, 7)

'OSUN1MON2TUES3WEDNES4THURS5FRI6SATUR7'
D BREAK('01234567') • DAY

DAY = DAY • DAY' : (RETURN)

]!pilog~

This program was modified for SNOBOL4 from an Algol program by
Tantzen [1963]. His version is slightly more efficient and we
leave this refinement as an exercise.

The program is' done by a computation; it could also have been
done by a look-up procedure in which a string might contain a
month-day sequence in which the proper number of days are as
sociated with each month. In general, this would have been
easier and less error-prone but would not have been as
efficient.

A very clever scheme is used to obtain the number of days that
a given month is worth. It is recognized that if we start in
March, the number of days per month is given by the sequence
31 30 31 30 31 which repeats itself for effectively the
remainder of the March - March year. The computation:

153 • M + 2

5

Esse 34 ________ _ Chapter 2 CONVERSIONS

is so calculated as to yield precisely the correct number of
days.

r- ,
II Program I' MDY(YrD) will convert a yearrday date into a

month/day/year date. For example MDY(71 r 83)
will return '3/24/71'. The global variables
M and D are set to equal the month and day
is useful in an environment where the system
not months (such as OS 360).

" 2.9 " I' MDY II
, I

respectively. MDY
computes days but

MDY(YrD) will convert its argument which is given as year
r day into month/day/year format.

DEFINEC'MDYCYrDY)XrT')

Set up 2 tables to be searched. One showing cumulative
days vs. month (DAY_MONTH) for normal years and one for
leap years (LY_DAY_MONTH).

DAY_MONTH ' (334 r 12) (304 r 11) (27 3 r 10) (243 r 9) ,
+ '(212,8) (181 r 7) (151 r 6) (120 r 5) (90,4) (59 r 3) (31r2) (Or1)'

LY_DAY_MONTH '(335 r 12) (305 r 11) (274r10) (244 r 9) '
+ '(213 r 8) (182 r 7) (152,6) (121 r 5) (91 r 4) (60r 3) (31r2) (Or1)'

Set up a pattern to search the tables.

I SPAN('0123456789')
SEARCH.X.M = '(' I $ X *GT(DYrX) 'r' I $ M

Entry point: Set up the proper table in T. Use leap year
table if Y is either (divisible by 400) or (divisible by 4
but not 100).

MDY T
T
T
T

EQ(REMDR(Yr 400),O) LY_DAY_MON~H
EQ(REMDR(Y,100),O) DAY MONTH
EQ(REMDR(Y r 4) ,0) LY_DAY_MONTH

DAY_MONTH

: S (MDY_ 1)
: S (MDY_1)
: S (MOY_1)

Then search the table for the current month (M) and the
number of days (X) associated with that month. Fail if DY
is not a valid day.

T SEARCH.X.M
D DY - X
GT (0, 31)
MDY M '/' 0 '/' Y

,ID?ilogue

:F(FRETURN)

: S (FRETURN)
: (RETURN)

We have written this program in terms of a 'table-look-up'
procedure (actually string look-up would be more correct). But
we could have done this by computational methods by turning

,_~P=a.;:a.q,~22

the DAY function around and 'pointing it backward'.
invite the reader to try as an Exercise.

r ,

This we

I I Prograrr I I SPELL (N) will return an English phrase
II 2.10 'I designating the integer N. Thus SPELL(13)
I , SPELL , , will return 'THIRTEEN'. SPELL will convert
~----------~, all integers from 0 to 999999999 (a thousand
~illion - 1). SPELL can easily be extended to handle larger
ranges; see Exercise 2.16. One obvious application of SPELL
is in writing checks.

DEFINE('SPELL(N)M')

Entry Point: Fan out to one of several labels depending
on the value of N.

SPELL GE (N, 1000)
GE (N, 100)
GE(N,20)
GE (N, 13)

:S(SPELL_1000)
:S (SPELL_100)
:S(SPELL_20)
: S (SPELL_ 13)

Here if N is 12 or less; look its value up in a table.

('10NE,2TWO,3THREE,4FOUR,SFIVE,6SIX,7SEVEN,8EIGHT,9NINE,'
+ '10TEN, 11ELEVEN, 12TWELVE, ') N ARB. SPELL ',' : (RETURN)

Here to do the teens. It will be simpler to do the tens
version and substitute 'TEEN' for 'TY' afterward.

SPELL_13 N 1
SPELL
SPELL
SPELL

LEN (1) • M
SPELL (M 0)

'TY' 'TEEN'
'FOR' 'FOUR' : (RETURN)

Here to handle all compounds from 20 through 99. Just look
up the root in a table and add the suffix 'TY'. Then call
SPELL recursively to handle the units.

SPELL_20 N LEN(1) • M
'2TWEN,3THIR,4FOR,SFIF,6SIX,7SEVEN,8EIGH,9NINE.'

+ M BREAK(','). SPELL
SPELL SPELL 'TY'
SPELL = NE(N,O) SPELL '_I SPELL(N) : (RETURN)

Hundreds are handled by converting the hundreds and tens
recursively.

SPELL_100 N LEN(1) • M
SPELL SPELL(M)' HUNDRED'
SPELL = NE(N,O) SPELL' AND • SPELL(N) : (RETURN)

For numbers over 1000, remove all but the last three I
digits of N assigning them to M. Convert M, 'multiply' it I

,fgge 36 ______ ,£hfe~~ _ _= __ QQNVERS=I_O~N_S __________ _

, by 1000 and 'add' N.

SPELL 1000
- N RTAB(3). M

SPELL SPELL(M)
SPELL 'THOUSANDt = 'MILLION'
SPELL SPELL' THOUSAND'
SPELL = NE(N,O) SPELL' AND' SPELL(N)

SPELL_END
: (RETURN)

!;12ilogy~

SPELL was written to be small rather than fast and uses recur
sion quite liberally and effectively to render a smaller and
more readable program.

????1?11
1111111111111111111111111 EXERCISES 111111111?11111111111111
11111?1111?111111?111?111111111111111111111?11111111?1?1111111

, ,
, Exercise 2.1, using strings prepared in the initialization
L- ' section of UPLO write a function UP() which
will convert any lower case in its argument to upper case.

, i

, Exercise 2.2, Given the function UPLO() and a function
UP () which converts lower case to upper

case, write a function LO() which converts upper case to lower
case.

r--------------,
, Exercise 2.3 Given a paragraph in P assumed keypunched in

upper case, use UPLO to convert P into lower
case except that the first character of every sentence should
remain capitalized. The first nonblank character is regarded
as the beginning of the first sen~ence. Subsequent sentences
are marked by a period followed by at least 2 blanks. (This
requires only two statements.)

I

I Exercise 2.4 write a function (ARABIC) to convert a num-
ber in the Roman representation to one in

standard (base 10) notation.

I -,

, Exercise 2.5 I

ceiling of x).

Let {x} be the smallest integer ~ the
number x (sometimes referred to as

Thus

{1.5) = 2
{2.0} 2
{-9.5} -9

real
the

Exercises for chapter 1 Page 37

with the help of functions defined in this section write
SNOBOL4 expressions equivalent to

{log2 K}

{logn K}

where K and n are positive integers.

i ,

, Exercise 2.6 I The Mayan Indians used a base 20 positional
number system. The figures for the digits 0

thru 19 were built up systematically as in the table below.

==
Arabic Mayan Arabic Mayan

form equiv form equiv
---------~----------------------------- --------

0 0 10 I
1 11 , .
2 12 I ..
3 13 , ...
4 14 t •• • •
5 , 15 II
6 , . 16 II·
7 , .. 17 II· .
8 , ... 18 II .. •
9 , 19 , I . • • .

=======================================-========

Hence the number 752 would be represented as

III.. It··

Here the digits are run from left to right in descending
significance whereas the Mayans would allign their digits ver
tically. Also the dots ran in a direction orthogonal to the
bars. One has a great deal more freedom in these matters if
one is merely carving the figures out of stone.

The exercise is, given the integer N write a loop to convert N
to its Mayan form. This can be done in 4 statements (without
using the functions defined in this chapter) •

. ,
I Exercise 2.7 I A hypothetical machine has a word size of 32

bits represented as b t b2 ••• b32 • The bits
have the follOWing meaning when representing floating point.

s: b l (sign) 0: positive, 1:negative

E: {b2 ••• b ll l exponent of 2 in excess 1024 notation

F: {bt2 ••• b32} fractional part with decimal point to the
left of b t2 •

Hence a floating point number will have the value:

S
V = (-1)

F

21
2

(E-512)
2

write a function (using the base conversion algorithms) to
convert an eiqht-hexadecimal-diqit machine word into a
floatinq point number.

r---------------,
, Exercise 2.8' Extend the routines BASEB and BASE10 to han-

dle decimal points. Assume a global cell
PRECISION which will hold the number of diqits of precision
required in the fraction. Allow EASEB and BASE10 to call
themselves recursively.

Exercise 2.9 what statements would have to be modified if
BASEB and BASE10 were to be extended to

unlimited-precision arithmetic?

Exercise 2.10 Let Y, Nand M be integers.

a) Show that:

REMDR(Y,N*Ml/N = (Y/Nl-(Y/(M*N»*M

and hence that line labeled DAY_2 in Program 2.8 can be
rewritten:

DAY ~ / 400) * K1 + (Y / 100) * K2
+ (Y / 4) * K3 + Y * K4

where K1, K2, K3, K4 are values which can be precomputed.

bl Compute K1, K2, K3, K4.

r----------------,
, Exercise 2. 11 Suppose there are 64 characters in

SALPHABET. Rewrite HEX so that it returns
representation of a string. Call the function the base-8

OCTAL.

r----------------~
1 Exercise 2.12 In writinq a compiler

necessary to manipulate
instruction is formed as a sequence of bits.

it is
bits

sometimes
since the

Page 39

a) set the Nth bit of a string S to 1. Assume the bits are
numbered starting with 0 and ending with 8 * SIZE(S) - 1 (This
assumes 8 bits per character).

b) Invert the Nth bit of a string S.

Exercise 2.13

invalid.

r----------------,
, Exercise 2.14 L-______________ ~

r-----------------
, Exercise 2.15

Using DAY, determine whether a given date
is valid. For example, 2/29/1973 is

Using DAY, write a program which prints a
calendar for the month M and year Y.

Given that the number of days since March 0
L-______________ ~ is (153*M+2)/5 where M ~s the number of
whole months since that date, write an expression for the num
ber of whole months given the number of days. Using this for
mula rewrite MDY as a computation.

Exercise 2.16 Assuming that a billion is a thousand mil-
L-- lion, add a single statement to SPELL to
increase the range of convertable numbers to a thousand bil
lion - 1.

Exercise 2.17 In the u.s. the terms billion, trillion,
L-- quadrillion, quintillion, sextillion, sep
tillion and octillion refer to the numbers 1000 million, 10002
million, 1000 3 million, ••• , 1000 7 million respectively whereas
in Great Britain these terms refer respectively to million2,
million 3 " million4 , ••• , million 8 • Extend SPELL so that it will
convert its argument up to the octillions in the British
system. NOte that SNOBCL4 integers don't go that high so as
sume the input is string and don't use arithmetic operators
(like GE) on anything too big.

f ,

, Exercise 2.18, pick a number; count the letters in its
spelled-out form and you produce a new num

ber. For example 13 is spelled 'THIRTEEN' and hence transforms
into 8. This transformation has the interesting property that
its repeated application will cause every number to converge
rapidly to 4. For example, starting with 13, the sequence

13 8 5 4 4 4 4

is produced. write a program to determine the smallest integer
between 0 and 10000 which requires the most steps to converge
to 4 (the integer is 113 and it requires 6 steps).

______ ------~C~h~a~~ter 2 CONVERSIONS

Exercise 2.19 The musical scale is given by the following
sequence of 12 notes.

C ct D Dt E Ft G Gt A At B

Given a number N between 1 and 12, write a single pattern
matching statement to assign the Nth note (a one or two
character string) to the variable NOTE.

C HAP T E R T H R E E

BAS I C

,.--, ,..---, ,--, .--, n n
I ,---J Lw r-' Irl , .., 11"1
I L---, " , L-.J I

" I "'I
'---, I " 1"-' " " " .--' I tI II", II II
'----I L.J U L.J L-J L.J U

FUN C T ION S

ORDER
LPAD ••••••••••••••••••••
RPAD ••••••••••••••••••••
COUNT •••••••••••••••••••
ROTATER •••••••••••••••••
REVERSE •••••••••••••••••
BLEND •••••••••••••••••••
BALR~ ••••••••••••••••••
SUBSTR ••••••••••••••••••
DIFF ••••••••••••••••••••
SKIM ••••••••••••••••••••
LEXGT •••••••••••••••••••
AGT •••••••••••••••••••••
SWAP ••••••••••••••••••••
REPL ••••••••••••••••••••
QUOTE •••••••••••••••••••

,--,
I ,---J
1Ir-1
II t, I
, L-.J I
'-----'

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

__ .;:;C::::hapter 3 STRIN§-EY~!,~O~N~S ____ __

~

I.--J NOBOL4 represents strings by a pointer to st:r:ing
,'----, storage. One of the consequences of this storage
~I management philosophy is that the cost of string as
r--JI siqnment is relatively low. That is, it costs very
L--J little to interchange string values among variables.
In particular it is relatively inexpensive to pass string
values to and from functions.

The functions ?resented in this chapter all are fairly short
utility-like functions which operate primarily with strings.
We will see most of these functions later in the book where
they will serve as lemma-like procedures to make larger
programs more understandable.

, .
II Program " ORDER(S) will return an alphabetized version
II 3.1 'I of its argument S. Thus, ORDER ('ORDER')
" ORDER " will return 'DEORR'. The alphabetic ordering
L- , of characters is determined, as usual, by
&ALPHABET. To modify the ordering produced by ORDER the state
ment containing this keyword should be replaced. ORDER, as we
will see, has many uses. For example, it furnishes an easy
way to check for set equality.

ORDER(S) will put the characters of its argument in al
phabetic order.

DEFINE('ORDER(S)T,HIGHS,S1')

Entry Point: Extract a character (T) from S; obtain (in
HIGHS) characters alphabetically ~ the extracted charac
ter. Then scan ORDER for the first occurrence of one of
these higher characters.

ORDER

ORDER_END

EEilogu~

S LEN (1) • T
&ALPHABET BREAK(T) REM. HIGHS
CRDER (BREAK (HIGHS) I REM) • S1

:F(RETURN)

S1 T : (ORDER)

ORDER is essentially a sorting routine and as such it is an
insertion sort~ Characters are extracted one at a time from
the argument S and are inserted in order into the growing
string ORDER.

, i

" Programs II (available in SPITEOL and SITBOL) LPAD
'I 3.2 & 3.3 I' and RPAD are useful in formatting line
'I LPAD & RPAD , , output. They are patterned after the
~----------------~, built-in functions in SPITBOL and are
included here for use with SNOBOL4. LPAD will pad on the left
to fill out a string to the required field width and RPAD will
pad on the right. Thus

OUTPUT RPAD(S1,60) LPAD(S2,60)

will place string S1 on the left and string S2 on the extreme
right of a computer printout page that happens to be 120
characters wide. Both functions may be called with a 3rd ar
gument to indicate a pad character other than a blank.

LPAD(S,N,C) will pad string S on the left with character
C until the string is N characters long. S is returned if
it is ~ N characters long. C is taken to be if
unspecified.

DEFINE (' LPAD (S, N, C) ') : (LPAD_END)
LPAD LPAD GE(SIZE(S) ,N) S :S (RETURN)

C IDENT(C)"
LPAD DUPL(C, N - SIZE(S» S : (RETURN)

I RPAD(S,N,C) pads on the right rather than on the left but
I its behaviour is otherwise the same as LPAD.

DEFINE('RPAD(S,N,C) ')
RPAD RPAD GE(SIZE(S), N) S

: (RPAD_END)
:S (RETURN)

,
" " "

C = IDENT (C) "
RPAD S DUPL(C, N - SIZE(S» : (RETURN)

Program
3.4

COUNT

i

" II

"
COUNT(S1,S2) will count the number of occur
rences of string S2 in S1. Overlapping
occurrences of S1 are counted as separate
occurrences. Thus COUNT('MISSISSIPPI', 'SI')

returns 2, and COUNT('AAA', 'AA') also returns 2. If a sub
string ~s not found the function effectively returns a zero
(actually the null string).

COUNT (S1,S2) counts the number of occurrences of string
S2 in string S1.

DEFINE('COUNT(S1,S2)FIRST,REST,P')
: (COUNT_END)

Entry point: Set up pattern P to scan S1. P makes rapid
scan for first character of S2 and then checks to see if

Page 44

, S2 matches.

COUNT 82
P

ChaQter 3 STRINg-IYNCTI_O.N;S __ __

LEN(1) • FIRST RE~. REST
POS(O) BREA~X(FIRST) S2

:F (RETURN)

i ,

, Find and remove all characters up to an occurrence of 52. ,
, If found put all but first character of S2 back onto S1. I

COUNT_1

COUNT_END

S1 P
COUNT

REST
COUNT +

:F(RETURN)
: (COUNT_1)

,

~smes referenc~g
!2.Y_£OUNT:

Nam~
BREAKX

I~
Function

Where defined
program 8.2

The simple-minded approach to this problem is to simply scan
the string S1 for an occurrence 'of the string S2, removing all
that precedes the substring and repeating the process until no
more occurrences are found. A faster technique (used here) is
to use the high speed operation of the BREAK function which
scans across a string at machine speeds looking for one of a
class of characters. If successful, then and only then is the
entire word (S2) matched. To employ BREAK in this way it is
convenient to use BREAKX which is defin~d in Program 8.2
(BREAKX is a built-in function in SPITBOL but not available in
SNOBOL4). BREAKX, unlike BREAK, has implicit alternatives.
If a pattern to its right (its subsequent) fails, it will try
again, picking up one character to the right of where it left
off.

• i

" Program 'I
I' 3.5 II
I I ROTATER "
1 '.

ROTATER(S,~ will rotate the string S right
by N characters. If N is negative the rota
tion will be to the left. Thus
ROTATER(IABCDI,1) will return IDABC'.

ROTATER(S,N) will rotate the string S right by N charac
ters. If N is negative, S will be rotated to the left.

DEFINE('ROTATER(S,N)S1')

Entry point: If S is null, return.

ROTATER IDENT(S) :S (RETURN) ,
,Reduce number of positions to be rotated modulo SIZE(S).
, Note REMDR preserves the sign of N. If N is negative, use
I complement. L-__ ~

N REMDR(N, SIZE(S»
N LT(N,O) SIZE(S) - N

______ ~Program 3.6 - REVERSE Page 45

r'---, I Perform the rotation and return L-__ ~

S RTAB(N). S REM. S1 = S1 S
ROTATER = S : (RETURN)

ROTATER_END

i ,

't Program II (available in SPITBOL and SITBOL) REVERSE(S)
II 3.6 It will return S with its characters reversed.
I I REVERSE " Thus REVERSE (' SERUTAN') will return
L- "NATURES'. One use of REVERSE is to effec
tively reverse the order of pattern matching. For example, if
one wishes to replace the last occurrence of the substring SS
in the string S with the string R one can write:

S = REVERSE(S)
S REVERSE (SS)
S = REVERSE (S)

REVERSE(R)

REVERSE(S) will reverse the sequence of characters in the
string S and return the result.

DEFINE('REVERSE(S)A1,A2,L')

Initialize REV_ALPHA to hold the reversed alphabet.

REV_1
TEMP = & ALPHABET
TEMP LEN(1). T =
REV~ALPHA T REV_ALPHA

: F (REVERSE_END)
: (REV_1)

Entry point: For oversize strings go to REVERSE_1.
ignore nuil strings.

Also

REVERSE L = SIZE (S)
GT(L,256)
LE (L, 0)

: S (REVERSE_ 1)
:S (RETURN)

Take the first L characters of &ALPHABET and the last L
characters of the reversed alphabet and issue a REPLACE.

&ALPHABET
REV_ALPHA
REVERSE

Divide and Conquer.

TAB (*L) • A1
RTAB(*L) REM. A2

REPLACE (A2,A 1 ,S)

S LEN (256) • A1 REM. A2

: (RETURN)

REVERSE_1

REVERSE_END
REVERSE REVERSE (A2) REVERSE (A1) : (RETURN)

Page 4~6 ______________ C;h=aEte~ __ - __ ~~-IYB£I10N_S __________ __

The method used to perform the reversal follows a suggestion
by Morris Siegel. It transforms a string, not by setting up
the last 2 arguments of REPLACE and effecting a translitera
tion, but by setting up the first 2 arguments to accomplish a
rearrangement. We will elaborate on thi$ before continuing to
the next function.

IIII tring Transformations A striD9~gnsformation is any
I , function which accepts a
1111, string as argument and returns a string as value.

I I As a humble example, TRIM(S) is a transformation
1111, which produces a string without trailing blanks.

L-____ ~, Special kinds of transformations exist which are
either interesting in their own right or can be programmed to
run very rapidly.

A Dgmomorphi§ID is a transformation T such that

(3. 1)

That is, the transformation of the concatenation is equal to
the concatenation of the transformations. Said another way,
the transformation is context'free. Since any string Scan
ultimately be decomposed into characters, C,C2 ••• cn we have

(3.2)

And from this last equation we can see that a homomorphism is
£2mEletely characterized by the transformation on individual
characters. Let a,a2 ••• an be a list of all the characters
of the alphabet. Then the set of strings (T(a,), T(a2)' ••• ,
T{an)} identify completely and unambiguously the transforma
tion T.

A transliteration is an important special case of a homomor
phism in that each of the strings {T(a,), T(a2)' ••• , T(an)}
is a character. If T is a transliteration then T can be
programmed in SNOBOL4 as:

T(S) REPLACE(S, SALPHABET, T(SALPHABET» (3.3)

In this way any transliteration can be programmed to run very
swiftly merely by obtaining the transliteration of &ALPHABET.
We have seen a number of examples of transliterations.
Programs UPLO (2.1), BCD_EBCDIC(2.2) and HEX(2.6) all make use
of REPLACE to perform the transliteration.

Consider the following statement

5 (3.4)

Here 51 and S2 are two equi-Iength strings which describe a
transliteration on the string 5. In fact, only those charac-

_______ ~ing Transforme!iQD§_" Page 47

ters which appear in SI undergo a change. If we subject
&ALPHABET to such a transliteration to obtain

TT REPLACE(&ALPHABET, SI' S2) (3.5)

we can use the result to effect the same transliteration on S
as in (3.4).

S = REPLACE(S, &ALPHABET, TT) (3.6)

A k-transformation is a string transformation that operates
only on--strings of length k and is undefined for strings of
other length. (Its domain is said to consist of the strin9s
of length k.) For example, the permutation (1 3 2) which
rearranges the 2nd and 3rd characters of a string of length 3
is a 3-transformation since it only ap~lies to strings of
length 3.

A 2Qsitional transformation is a k-transforrraticn in which the
output is some rearrangement of the characters of the input
string with the properties that 1) characters in some posi
tions of the input string may be dropped, while others may
appear several times and 2) constant characters may be added
into some fixed positions of the output string. But in any
case the disposition of a character depends on its position
and not its value. More formally, the positional transforma
tion on strings of length k can be described as:

T(c
1

t
1

c
2

c

•• 'I

t
2

c
k

c t c t
n n+1

where t l , t 2 , ••• are constant strings depending only on the
transformation and i l • i 2 ••••• in are constant integers
chosen from the set n1,2 •••• ,k •

An example of a positional transformation is depicted
graphically in Figure 3.1. It transforms a restricted class
of English words into the corresponding 'pig Latin'. Thus DIG
becomes IGDAY, DOG becomes OGDAY and CAT becomes ATCAY. In
general, it permutes a 3-character string and appends an 'AY'.

Another example of a positional transformation, one chosen
from a more practical point of view, is the translation from
ASCII to EBCDIC (see [IBM360a], App. F and [ASCII]). This
transformation is indicated graphically in Figure 3.2. It,
for example, transforms the ASCII code 1010101 to 10110101.

A call to the replace function REPLACE(St,Sz,S3) is said to
be well-defig~g if S2 is as long as 53. If repeated characters
exist in S2 the last appearance of each character will in
dicate the mapping. In this latter case the operation of the

______ ~C~h:~a~p_t_e~r __ 3 ____ ~STRI~G FUNCTIONS

,----,
1 I ,
L---J 1
,----, 1 ,----,

1--1-->1
L---J I ~
,----, I ,----,

1--1-->1
L---J 1 ~

1 ,---,
'---->,
~

,---,
1 A ,
~

,---,
I Y ,
~

A positional transformation that translates three
character words into their pig-latin equivalent.

function would not be ambiguous although the programmer's
motives might be.

As we have described earlier r every transformation T defined
as

is a transliteration provided the operation is well-defined.
Alsor as has been previously notedr any transliteration T can
be written as REPLACE(SrSI,S2) for some Sir 52. Hence the set
of all transliterations are identical with the set of all
REPLACE's with given 2nd and 3rd arguments.

In a considerably less otvious way, the positional transforma
tions can also be implemented by the REPLACE function.

For any strings SI, S2' the transformation defined as

is a positional k-transformation on S where k is the size of
8 2 -

ConverselYr any positional transformation satisfying certain
size constraints can be written as a REPLACE. Let P(8) be a
positional k-transformation. Let 8 1 be a string composed of k
different characters none of which are included in the
constant characters of the mapping. Then we can express P as

Strin9-Transformations

,-----, ,-----,
, , i >1 1
L--.J f '----J

,.---, 1 ,-----,
I--f-"""->I

L--J I '----J

..---,
1 1
L--J

..---,
1 1
L--J

..---,
I I
L--J

..---,
f I-
L--J

r----1 , ,
L--J

1 ,-----,
L->f

'----J

,-----,
>f I

'----J

,-----,
>1 1

'----J

.-----,
>1 1

'----J

,..----,
>f I

'----J

.-----,
>, I

'----J

________ ~P~a~ge 49

A positional transformation for converting ASCII
to EBCDIC.

P(S) REPLACE(P(SI)' SI, S)

Like the transliterations, we need only obtain the positional
transformation for one model string to set up a high speed
program for transforming all strings in the domain.

As an example, the transformation indicated in Figure 3.1 can
be expressed as

REPLACEC 'OGDAY', 'DOG' ,S)

As another example the transformation indicated in Figure 3.2
can be expressed as

REPLACEC'12134561', '1234561', S)

The characters in the model string must all be different from
any constant characters added to the string. Moreover, the
characters in the model string must all be different from each
other except that characters corresponding to positions that

STRING FU~CTIONS

are dropped may be duplicates of other characters which follow
them. Thus

REPLACE('XY','XYYYY',S)

will extract the first and last characters from S provided S
is 5 characters long. Therefore, the size constraints imposed
by the REPLACE function are that the total number of charac
ters in the second argument (i.e. k) plus the number of dif
ferent constant characters added in the mapping minus the
positions ignored plus 1 if the last position is ignored
should not exceed the size of &ALPHABET.

A ~~mutatiQU of a string is simply a rearrangement of its
characters and clearly this is a special case of a positional
transformation. String reversal, of a constant length string,
is a permutation and hence can be accomplished by using
REPLACE with suitable 1st and 2nd argu~nts. But string
reversal of arbitrary length strings represents a class of
permutations and for this reason REVERSE must prepare ap
propriate 1st and 2nd arguments depending on the particular k
transformation it must deal with. But this preparation is
rapidly accomplished by a simple fixed-length pattern matching
operation.

i ,

" Program " BLEND (X,Y) will merge the two strings X and
II 3.7 'I Y taking the first character from X, the 2nd
, , BLEND , I from Y, the 3rd from X, etc. Thus
, , BLEND('ABC','123') equals 'A1B2C3'. BLEND
has been used previously by the HEX function (Program 2.6) and
is an example of a class of positional transformations which
can be programmed to run quite rapidly. The 2 strings X and Y
are either the same length or X is one character longer than
Y. Thus BLEND ('CHAPTER', DUPL(' ',6» will return
'c HAP T E R'. BLEND's of strings not satisfying these
constraints are undefined.

r---,
I BLEND (S1,S2) will blend the two (equi-Iength) strings S1
, and S2 such that every other character is taken from each
,string. Thus BLEND('ABC','123') will return 'A1B2C3'.

DEFINE('BLEND(S1,S2)T1,T2,ABC,XYZ,L1,L2')

Prepare in BLENDED_ALPHABET a blend of the lower and upper
halves of &ALPHABET.

&ALPHABET LEN(128) • ABC
ABC LEN(1) • T1

LEN (128) • XYZ
: F (BLEND_END)

XYZ LEN(1). T2
BLENDED_ALPHABET BLENDED_ALPHABET T1 T2

,: (BLE_1)

Program 3.8 - BALREV Page 51

Entry point: If 51 is too large, subdivide and recurse.

BLEND L 1 5IZE (5 1)

+

GT (L 1,128) : F (BLEND_ 1)
EQ (L 1,0) : 5 (RETURN)
5 1 LEN (1 28) • 5 1 REM. T 1
52 LEN(128). 52 REM. T2
BLEND REPLACE(BLENDED_ALPHABET,&ALPHABET,51 52)

BLEND (T1,T2) : (RETURN)

Otherwise prepare AXBYCZ to be a BLEND of ABC and XYZ and
to be as long as the string to be returned. These strings
serve as a template for a positional transformation of the
combined string 51 52.

BLEND_1 L2 5IZE(52)
&ALrHABET LEN (*L1) • ABC TAB(128) LEN (*L2) • XYZ
BLENDED_ALPHABET LEN(*(L1 + L2» • AXBYCZ
BLEND REPLACE(AXBYCZ, ABC XYZ, 51 52)

: (RETURN)

The initialization section of BLEND prepares a string
BLENDED_ALPHABET which thereafter is used to obtain templates
for a positional transformation. For very large strings BLEND
is called recursively. As in REVER5E, this is done because of
limitations in the size of &ALPHABET rather than due to any
difficulties or limitations in handling long strings in
5NOBOL4. A slightly faster version of BLEND can be achieved
by nonrecursive methods but it seems hardly worth it.

i

It
II
II

Program
3.8

BALFEV

i

11

" II

BALREV(5) will return the balanced reversal
of the string 5. That is, the characters of
S are reversed and the parenthesis are in
terchanged. For example, BALREV(IF(X)') is

'(X)F' rather than ')X(F' as would be returned by REVER5E.
BALREV can be used to reverse the order of scanning in an en
vironment in which BAL plays a role in the pattern matching.
For example

5 ' (I BAL. E')'

will find the first parenthesized expression in 5, whereas

BALREV (5) , (' BAL. E I)'
E BALREV(E)

will set E to be the last parenthesized expression in 5.

Page 52 Chapter 3 STRI~G FUNCTIONS

BALREV(S) will return the balanced reversal of S.

DEFINE('BALREV(S) .) : (BALREV_END)
BALREV BALREV = REPLACE(REVERSE(S), ') (', '() ')

BALREV_END

Names referenced
by BALR~--

Name
REVERSE

I.YE~
Function

: (RETURN)

Where defined
Program 3.6

BALREV is not of interest because it offers a challenge to
one's program-writing abiliti~s but rather because of the
general notion of balanced reversal that it introduces and the
fact that we will have occasion to make use of the function in
later chapters. It is also of interest in that it provides in
one line of code not only a useful function but one which uses
both a transliteration and a positional transformation.

r i
II Program II (available in SPITBOL anq SITBOL)
II 3.9 II SUBSTR(S,I,L) will return a substring of the
II SUBSTR II string S beginning at character I and exten
, , ding for L characters. If such a string is
not properly included in S then SUBSTR fails. The SUB5TR
function was patterned after the function by the same name in
PL/I. Although the taking of a substring is a capability im
plicit in the pattern-matching facilities of SNOBOL4, its
availablity as a function offers another dimension to this
most fundamental of string operations.

SUBSTR(S,I,L) returns a substring of length L beginning at
the Ith character of S.

DEFINEC'SUBSTFCS,I,L)') :CSUBSTR_END)
LEN(*CI - 1» LENC*L) • SUBSTR :S(RETURN)FCFRETURN)

• i

I' Program· I I We may regard a string as a set of charac-
I I 3. 10 , , ters if we ignore duplicates and their
, , DIFF I , ordering. The fundamental set operations
L- ' are union, intersection and complementation.
String concatenation gives us union. Intersection can be ob
tained from union if we also have complementation. complemen
tation can be obtained if we have the universe string Cset of
all characters) and set difference. &ALPHABET serves as the
universe and DIFFCS1,S2) will return the set difference, 51 -
S2. That is, DIFFCS1,S2) returns a string containing all those
characters that are in S1 and not S2.

Program 3.11 - SKIM Page 53

DEFINE('DIFF(S1,S2)')

Entry point: set DIFF to S1 and then remove any consecu
tive string of S2 characters.

DIFF DIFF = S1
IDENT (S2, NULL)
S2 SPAN (S2)
DIFF S2

:S (RETURN)

:S(DIFF_1)F(RETURN)

• i I' Program 'I
I' 3.11 'I
" SKIM 'I ,

SKIM(S) 'skims off' the first appearance of
each different character of S and returns
the result. Thus SKIM('MISSISSIPPI') returns
'MISP' •

DEFINE('SKIM(S)C')

Entry point: Remove character from S and if not already
in SKIM, put it there and repeat.

SKIM S LEN (1) • C =
SKIM C
SKIM SKIM C

:F (RETURN)
:S (SKIM_D)
: (SKIM)

r---~
,But if C was found in SKIM, it may be prudent to remove
, all characters already SKIM'ed from S.

SKIM D
SKIM:END

S

Names referenced fu!_siir{i-----

]!Qi12gY~

DIFF (S, SKIM)

Name
nIFF IY~

Function

: (SKIM)

SKIM is slightly more complicated than it has to be. The line
at SKIM D is not strictly necessary and the statement that
branches to SKIM D could as well branch to SKIM. But for ef
ficiency purposes it is better to remove already-skimmed
characters in the wholesale manner of DIFF rather than pain
fully, one at a time. The technique used in SKIM is to call
DIFF whenever an old character is found. This will be an im
provement even if it takes relatively long to call DIFF. If
the ratio of times of calling DIFF vs. going through the loop
is 5, then it will pay if as few as 5 characters are removed
from DIFF. It is possible, however, that the calls to DIFF
are too frequent. It may be better to call DIFF only when,
say, 2 characters in a row have already been found.

Page 54 Chsm~L..L_= . STRING FUNCTIONS ______ _

•
t1

" "
ProgralY'

3.12
LEXGT

,

" " "
There exists a built-in function in SNOBOL4
called LGT. LGT(S1,S2) is a predicate which
will succeed if string S1 is lexically
greater than S2 and fail otherwise. The

determination of lexical ordering is based on SALPHABET which
is machine dependent and may not represent the desired
ordering. In particular the lower case alphabet appears
separate from the upper case alphabet so that all upper case
letters are regarded as greater than all lower case letters.
Thus, 'Arabic' is considered greater than 'zebra'. The func
tion LEXGT which we define below will differ from LGT in that
the lexical ordering will not be based on SALPHABET but on a
user-supplied transliteration table: LEX_TT.

+

LEXGT(S1,S2) is a predicate to determine whether S1 is
lexically greater than S2 according to a user-supplied
transliteration table in LEX_TT.

DEFINE('LEXGT(S1,S2)')

As an example, we will initialize LEX_TT to a value such
that upper and lower case letters of the same letter will
be regarded as being adjacent. Also letters will compare
lower than anything else. First form, in ALPHA, the new
alphabetic ordering.

ALPHA BLEND (LOWERS_,UPPERS_)
DIFF(SALPHABET, LOWERS_ UPPERS_)

Now transform this string to form a transliteration table.

LEX_TT REPLACE(SALPHABET, ALPHA, SALPHABET)
: (LEXGT_END)

Entry point: translate and compare.

LEXGT LGT(REPLACE(S1, SALPHABET, LEX_TT),
REPLACE (S2, SALPHABET, LEX_TT»

:S(RETURN)F(FRETURN)
+
+
LEXGT_END

Names referenced
~ LEXGIl.----

* indicates name is

];J2iloque

~~
BLEND *
UPPERS_ *
LOWERS_ *
DIFF *

referenced

IY~ Where defined
Function Program 3.7
string Program 2.1
String Program 2. 1
Function Program 3.10

in the initialization section.

We have effectively modified LGT by modifying its arguments.
In many problems this could be carried one step further for
greater efficiency. Assume that all the data that would ever

__________ E~gJ;:am 3.13 - AGT

appear for comparison purposes is coming from the normal input
stream Cunder INPUT). We could convert characters as they were
being read in via a statement such as

L REPLACE(INPUT. SALPHABET. LEX_TT)

But were we to do this we must be careful in using pattern
matching so that all character strings used to specify pat
terns were also mapped in the same way. Thus to match the line
L for 'CAT' we would have to write:

L REPLACEC'CAT'. SALPHABET. LEX_TT)

. ,
I' Program 'lOne might suspect that LEXGT provides max-
" 3.13 " Imum flexibility in the comparison of
, I AGT , , strings. since one may supply one's own al-
L-- 'phabet. But it does not handle the important
case in which certain distinct characters are to be regarded
as identical for comparison purposes. In particular. the lower
case 'a' and upper case 'A' are normally regarded as equal for
dictionary purposes. LEXGT would sort words
'able,Afghan.artist~ as 'able.artist,Afghan' which is not the
dictionary ordering. AGTCS1.S2) will compare 2 strings and
return success if S1 is alphabetically greater than S2. AGT
is blind to the distinction between upper and lower case.
Otherwise it accepts the ordering implied by SALPHABET.

AGT(S1.S2) is a predicate to determine if S1 is al
phabetically greater than S2. Upper and lower case ver
sions of the same letter are regarded as equal.

DEFINEC'AGT(S1.S2)·)
AGT_TT REPLACEC~ALPHABET. UPPERS_. LOWERS_)

AGT
+

: (AGT_END)
LGT(REPLACE(S1, SALPHABET. AGT_TT),

REPLACE(S2. &ALPHABET, AGT_TT»
:S(RETURN)F(FRETURN)

Names referenced
2y-A§T: ---

N~ Iv~ Where def ined
UPPERS_ * string program~-.-1-
LOWERS * String Program 2.1

indicates name is referenced in the initialization section. *

AGT and LEXGT provide 2 distinct means whereby one may alter
the effective behaviour of LGT. If necessary, these 2 methods
may be combined into one suitably-designed call to REPLACE.
We leave this as an exercise.

Pa~ 56 Cha12ter 3 STRING FU~.~CT~IO~N~S~ ________ __

.-------..
I I Program I'
II 3.14 " I' SWAP , t

SWAP(NAME1.NAME2) will swap the values of
the named variables. Thus, SWAP (.N,.M) will
interchange the values of Nand M.

L- '

DEFINE('SWAP(SWAP_ARG1,SWAP_ARG2) ')
SWAP SWAP $SWAP ARG1

$SWAP ARG 1 = - $SWAP ARG2
$SWAP:ARG2 SWAP -
SWAP : (RETURN)

SWAP_END

Epilogue

The names of the arguments to SWAP were deliberately chosen
strange so as to avoid collision with the outside world. The
variable 5WAP is set to null before returning because other
wise a value would be returned and it is conceivable that in
some cases this would not be desirable.

,

" II

"
Program

3.15
REPL

i

" " "
REPL(S1,52,53) will do a string-by-string
replacement (as opposed to a character-by
character replacement ala REPLACE) on the
string 51. The string 51 is scanned for

instances of the string 52 and each is replaced by 53. Por
tions of S1 already scanned and the replaced string are not
reexamined for ~nstances of S2.

DEFINE('REPL(S1,52,53)C,T,FINDC')

Entry point: Define pattern FINDC which will do a fast
scan for the initial character. L-----, __ ~

REPL S2 LEN (1) • C

,

FINDC BREAK (C) • T LEN(1)
S2 P05 (0) 52

Top of loop: First remove the prefix, T;
52.

S1 FINDC
S1 52
REPL REPL T S3
REPL REPL T C

: F (FRETURN)

then test for

:F (REPL_2)
:F(REPL_3)
: (REPL_1)
: (REPL_1)

, Return point: The lead character, C, was not found in S1 •
•
REPL 2 REPL
REPL:END

Names referenced
!?y REPL: ----

REPL 51

Nam~
BREAKX

!YE~
Function

: (RETURN)

Where defined
Program 8.2

Exercises for chapter 3 Page 57

l1!Bilog,g~

like the function COUNT, the technique used to speed the
search is to do a fast scan (at BREAK speeds) for the initial
character. Other than this, the coding is straightforward but
surprisingly lengthy.

r-

" " "
Program

3.16
QUOTE

,

" " "
QUOTE(S) will convert its argument to a
string which will resemble a SNOBOL4 expres
sion which, when evaluated, will yield the
original string. In the simplest case

QUOTE(S) will place the string S between apostrophes. However,
if S contains apostrophes, QUOTE will enclose these within
double quotes. Thus

OUTPUT QUOTE ("OON' T")

will print

, DON' "'" 'T '

Note that EVAL(QUOTE(S» is always equal to S. QUOTE is useful
when preparing code. An example is given in RSELECT (Prog.
16.7) •

DEFINE('QUOTE(S)S1,Q,QQ')

, Entry point: The only thing that gives us any trouble is
, the single quote. If we find one we must wrap it in double
, quotes and offset it with blanks. L __ ~

QUOTE Q "'''; QQ ''''
QUOTE = Q REPL(S, Q, Q ' , QQ Q QQ ' , Q) Q : (RETURN)

QUOTE_END

Names referenced
!?'Y=OUOTE: -----

~
REPL

I.YE~
Function

Where defined
Program 3.15

111111111111111111?111111?1111111111111?1?111??111111111111111
1?11111111111111111111111 EXERCISES 1111111?1111111111111111
111111111111111111111?111111?1111111111111?11??111111?1111?111

r-------------~

, Exercise 3.1
L-____________ ~

r-------------~
I Exercise 3.2
L--

Write RPAD in terms of LPAD and REVERSE.

Write RPAD in terms of LPAD and ROTATER.
Assume that SIZE(S) ~ N.

r---------------
, Exercise 3.3 L-____________ ~

Chapter 3 -=--STRING FUNCTIONS

write a function CENTER(S,N,C) for centering
objects within a field of width N.

Exercise 3.4 Use the REPLACE function and BLEND to
L- rapidly extract every other character from
the string 5, starting with the first (Assume that SIZE(S) is
less than 2 * SIZE (&ALPHABET) and can be even or odd). This
can be done in 2 statements.

,
1 Exercise 3.5 a) Determine 5, and 52

REPLACE (5 t ,5 2 ,S) realizes the
transformation shown in Figure 3.3.

so that
positional

b) What is the fewest number of different characters needed
in 5, and 8 2 •

Exercise 3.6

,..---,
.-->1 ,
1 L..---I

1
,.---, 1,..---,
1 1----, 1 1 X 1
L..---I I I L..---I

1 1
,..---, 1 1,..---,

1-1--..... '----> I I
L..---I, '----'

1
,..---, 1 ,..---,
, 1 L-' --->1 ,
L..---I L..---I

a) Using REPLACE, obtain the last charac
ter of string 5.

b) In a similar way extract the Kth character.

______ =E~x~e~rcis~s for chapter 3_

r----------------,
, Exercise 3.7 Some cyphers (called Transpositional) serve

to encode text by rearranging characters
(see for example Smith [1955]). The message is written in a
rectangular matrix horizontally from left to right. The
encoding is obtained by reading vertically. Thus, if the
matrix is 2x6 and the message is

the encoding is

ATTACR
ATDAWN

A ATTTDAACWRN

a) Write a function TPOS(S,H,W) to encode the string S. H
is the height and W is the width of the matrix and S is as
sumed to be exactly H * W characters long.

b) Using TPOS, find Sa & S2 such that REPLACE(SI' S2' S)
will convert all strings of length H * W (Assume that H * W
does not exceed SIZE(&ALPHABET».

c) Using the scheme of b) write a function ENCODE which will
encode arbitrary length strings. Trailing characters are
ignored. Thus, if the matrix is 7x3 and the message is

then the e~coding is

THEBRIT
ISHAREC
OMING

'TIOHSMEHIBANRRGIETC'

(Hint: assume some character exists, say colon (:), which will
never appear in the string to be encoded).

r I

I Exercise 3.8, a) Extend BLEND(X,Y) so that if string X is
, , n times longer than string Y then the
characters of Y will be inserted at every (n+1)st position.
Thus BLEND('ABCDEF', '123') will return 'AB1CD2EF3'. For ef
ficiency purposes, a tacle of templates may be stored for the
positional transformations.

b) How would the new BLEND be used in the encoding of TPOS
(see Exercise 3.7).

r I

, Exercise 3.9 I Assuming a function OR(S1,S2) is available
for ORing the bits of the equi-length

character strings S1 and S2 (at high speeds). Rewrite CH
(Program 2.7) so that it performs at high speed using the
REPLACE function.

Page 60 Chapter 3

Exercise 3.10 E contains a string representing a Fortran
arithmetic expression which consists, pos

sibly, of the sum or difference of expressions E1 and E2.
Keeping in mind that Fortran associates operators from left to
right, parse E assigning to E1 and E2 the proper values. If E
is not of this form go to label NOT.

r---------------~
, Exercise 3.11

long.

r---------------~

Design a
argument

• worst-case , (time-wise) string
for 5KIM that is 20 characters

, Exercise 3.12 Any string may be said to denote a set of
L- characters, viz. the set of which it
consists. Assuming that the strings denoting sets may have
duplicate characters, write an expression to express the a)
union and b) intersection of 2 sets 51 and 52. c) write an
expression to indicate the negation of 5. d) Write an expres
sion which succeeds if set 51 equals set 52.

r-
, Exercise 3.13 Write an expression which will succeed if

there are no duplicate characters in the
string 5 (you may use functions defined in this chapter).

r----------------,
, Exercise 3.14

string S.

r----------------~

Write an expression
characters that occur

to obtain the set of
exactly once in a

, Exercise 3.15 (a) Remove leading O's from a string by
means of TRIM, REPLACE, and REVERSE. (b)

Remove leading O's from a numeric string S (one capable of
being converted to integer) by means of a single operator.

Exercise 3.16 AGT and LEXGT represent 2 methods of effec-
L- tively modifying the lexical comparison.
To generalize, let the string ALPHA denote an alphabetic
ordering as follows. Sets of equal letters are enclosed in
parenthesis. otherwise the lowest to the highest character
are ordered left to right. Characters not in ALPHA may occur
in any order. Thus

ALPHA = • (Aa) (Bb) (Ccl (Od) (Ee) ••• (Zz) 0 123q.56789'

would describe an ordering in which all the alphabetics appear
before the numerics and in which the alphabetics are grouped
in their normal order. (a) write a program to convert a string
such as ALPHA into a pair of strings A1 and A2 such that

LGT(REPLACE(S1,A1,A2) , REPLACE(S2,A1,A2))

________ Exercises for chapter 3 Page 61

will compare strings S1 and S2.

(b) If parenthesis themselves are to be included in the
characters to be explicitly ordered a difficulty arises.
Establishes escape conventions for parens and modify your con
version program accordingly.

Exercise 3.17 What 3 variables may not be swapped using
SWAP? (Prog. 3.14)

r---------------,
, Exercise 3.18 Assume that input text, contained in the
L- string S, is a personalized message to some
one or some organization. within S, and embedded within paired
tis are SNOBOL4 expressions to be evaluated on an individual
basis. The rest of the text is constant for each message.
This text may have quotes embedded within it but not its.
Compose, in Q, a SNOBOL4 expression which when evaluated will
yield the desired string. For example ifS is:

DEAR MR. 'NAME.:

then a correct translation is

'DEAR MR. ' NAME ':'

r----------------,
, Exercise 3.19 state which of the following are homomor-

phisms (h) and which of the homomorphisms
are also transliterations (ht). (a) UPLO, (b) BCD_EBCDIC, (c)
ROMAN, (d) HEX, (e) CH, (f) QUOTE

i
, Exercise 3.20 Some systems accept abreviations

command names. For example, DEL, DE
D would be acceptable abreviations for the DELETE
provided this uniquely specified the command. Given a
commands in the string CMD such as:

CMD ',ALLOCATE,AUGMENT,BEGIN,CHANGE,

of all
or even
command
list of

write a function C(S) which will determine if a given string S
uniquely specifies a command. If it does C should return the
command. If it does not it should fail. Hint: using COUNT
(Prog. 3.4) the body of the routine can be written in one
statement.

Exercise 3.21

third variable.

Assume that X and Y are string-valued. In
one statement, swap X and Y without using a

~ge 62 Chapter 3 _=--STRING FU~N~CT~I~O~N:~S~ ____ __

r-
, Exercise 3.22 What is the value of

SIZE(QUOTE(QUOTE('X'»)?

C HAP T E R F 0 U R

BAS I C

..--, r--1 r----1 r---1 n n
I,..., , , ,.-, , 'r-1 , , ,.-, 1 "//

" " 1 L-.J , 11---' , " "
,/

, L-.J 1 " ,--' 1"--' , L-.J , , ,
, ,.-, I "" " "

, ,.-, ,
" u u U L..J U U U LJ U

FUN C T ION S

CRACK ••••••••••••••••••• 4.1

STRINGOUT ••••••••••••••• 4.2

SEQ ••••••••••••••••••••• 4.3

AOPA 4.4

FIND 4.5

AI •••••••••••••••••••••• 4.6

TRUNe ••••••••••••••••••• 4.7

CATA •••••••••••••••••••• 4.8

Chapter 4 ARRAY FU~C~T~r~O~N_S ____________ _

n n
'I I I hi le strings are convenient for representing input
'1/"1 data and for economizing on search time when scanning
1//'" for patterns, arrays are quite useful when it is
t/ 'I necessary to randomly alter selected portions of the
U U interior of the structure. Arrays are also convenient
when dealing with sequences of things other than characters,
such as numbers, patterns, and strings themselves.

To effectively use the array facility in SNOBOL4 it is impor
tant to have some conception as to how arrays are implemented.
The 3 statements below allocate an array and assign values to
its first 2 elements. Figure 4.1 indicates the data configura
tion after the statements are executed.

ALPHA ARRAY (4)
ALPHA<1> 16
ALPHA<2> • ABC'

i

I
I

A *--, i ,
ALPHA t , ..

i
/////////// I

I
<1> r 16 I

I
<2> S *--1-> 'ABC'

I
<3> S 0 I

I
<4> S 0 I

The data configuration after an array allocation
and 2 element assignments.

________ Cha.Q:!:er ~_-=- ARR~Y F:QNCTIQN8 ________ P,gg~-2.2.

The array is a data object of type ARRAY (denoted by A in the
datatype field of the descriptor in the variable ALPHA) • The
data object has information (denoted by cross hatching) to in
dicate its physical extent and upper and lower bounds. In
addition, for every array element, there is one descriptor.
Hence, each array element may be assigned a data object of any
datatype; also, the objects may be of roixed type as the exam
ple illustrates. Thus, an array in 8NOBOL4 is more properly
regarded as an array of variables rather than as an array of
data. The default value of array elements is the null string
denoted by (8,0) in the figure.

Since an array is a value, it may readily be passed from
variable to variable. The data configuration resulting from
the following statements is indicated in Figure 4.2.

BETA = ALPHA
BETA<1) 3.7

A *-----,---------------.
ALPHA

• i , , , I , •• ,
i , /////////// I , I

I <1) R 3.7 , , , I
A *--1--' <2> 8 *--, > 'ABC'

I
BETA <3> 8 0 I

I
<4> 8 0 I

The data configuration after an array assignment
(to BETA) and one element assignment.

.ARRAY FUN£II2m2 _____ _

The assignment to BETA is accomplished only by copying the
descriptor in ALPHA, not by copying the array_ Thus, a
reference to BETA<1) becomes also a reference to ALPHA<1), so
that modification of BETA<1) implies modification of ALPHA<1).
This sort of collision can be avoided by use of the COpy func
tion. Figure 4.3 illustrates the data configuration which
results by executing the following 2 statements in place of
the above 2.

BETA COpy (ALPHA)
BETA<1) 3.7

The array elements are variables and hence may be assigned any
data objects as value, including an array. For example

ALPHA<2> = BETA

will result in the data configuration shown in Figure 4.4.

Compared with the rather rich string-handling facilities in
SNOBOL4 there is a relative lack of such facility with respect
to arrays. Arrays may be allocated; they may be assigned
values and these values may later be examined; and the size of
the array may be obtained via the PROTOTYPE function. But few
operations are supported that deal with arrays as an entire
entity. Arithmetic operators may not be applied to arrays.
Arrays may not be scanned for patterns; they may not be trim
med, or concatenated or truncated other than as the programmer
may provide these facilities himself.

But the way in which arrays have been implemented in SNOBOL4
does provide the basis for forming a more elaborate array
processing facility. Because arrays are represented via a
pointer, they can readily be passed to and returned from
subroutines; the time-consuming overhead of copying arrays
across the boundaries of the call does not exist. Also, and
perhaps more importantly, the user need not specify the size
that the returned array is to be, nor need he specify the na
ture (i.e. the datatype) of the array elements. Indeed, the
value returned may be scalar or array with the decision depen
ding on what happens at execution time. Array elements may be
mixed, some being string, some, integer and some, even array.
With many of the normal restrictions removed, the user if free
to concoct seemingly wild and fanciful operations upon arrays,
manipulating these data objects with a degree of freedom that
one normally associates only with strings. Several examples
of this sort of thing follow.

The use of descriptor notation can be cumbersome in dealing
with an array of simple objects such as integers, reals or
strings. Hence, where the meaning is otherwise clear, we will
display an array of data objects in the simplified notation
shown in Figure 4.Sb.

Chapter 4 ___ ~A~RR=AY FUNCTIONS _____ ..::.P.;a~qe 67

i ,
I

A *--1 i

1
ALPHA , ..

• i , /////////// ,
I ,

<1> 1 I 16 1
I 1

<2> , S *--1 i

I 1 1
<3> , S 0 , 1

I I 1
<4> I S 0 1 1

• 1
I

i I
1 ... ,

A *--1 i 'ABC'
I

BETA I A
I 1 .. I

i 1
/////////// , 1

I 1
<1> R 3.7 , I

1 1
<2> S *--1 • ,
<3> S 0 I

I
<4> S 0 1

This figure i.llustrates the effect of the COpy
function as contrasted with assignment.

Chapter ~ .ARRAY FUNCTI.Q~§ ______ _

• ,
I

A *-1 ,
1

ALPHA , ..
I • 1 /////////// 1
I I

<1> , I 16 ,
I I

<2> , A *-1
I I

<3> , S 0 1
I 1

<4> 1 S 0 1

, ,
, I

AI *-1 i

I
BETA I

1 I .. ~
i •
I /////////// 1
I ,

<1> , R 3.7 I , I
<2) I s *-1-> 'ABC'

I ,
<3> I s 0 I

I 1
<4> , S 0 ,

I

Fi9!!!:e 4~

The result of executing ALPHA<2) BETA.

<1>

<2>

<3>

<4>

Program 4.1 - CRACK ________________ ~e 69

,
/////////// I , <1> 'ABLE'
S *-1---> 'ABLE'

I <2> 'BAKER'
S *--1--> 'BAKER' , <3> 3.6
R 3.6 ,

I <4> 16
I 16 ,

(b)
(al

Figy!:~4.5

(al shows the descriptor representation of an ar
ray. (b) shows a simplified representation for
the same array.

,
I I Program II CRACK(S,B) is used to 'crack' open the
" 4.1 II string S and assign its contents to an ar-
" CRACK II ray. This array is returned. B is a break
~------------~I character which serves to separate items in
the string. The caller has the option of ending the string S
with a break character. If none exists, CRACK will append one
before further processing. Thus

CRACK('ABLE BAKER CHARLIE',' ')

will return the array

<1> 'ABLE'

<2> 'BAKER'

<3> 'CHARLIE'

If E is null, the individual characters are cracked apart.

CRACK (S,E) will convert from string to array breaking at
the character B.

DEFINE ('CRACK (S,B) I ,PAT')
.---,
I Entry point: If B is null branch off to CRACK_1.
'--~
CRACK IDENT (B,NULL) : S (CRACK_ 1)

Page 10 Chapter 4 .ARRAY ~£:r!ONS _______ _

If S does not end with a break character append one.

S RTAB(1) B ABORT I REM. S S B

Then prepare an array (CRACK) of appropriate size and as
sign to the variable PAT a pattern to extract substrings
from S.

CRACK ARRAY(COUNT(SrB»
PAT = BREAK(Bl • *CRACK<I> LEN(1)

Merge here from CRACK 1. Remove the strings and insert
them into CRACK. Return when S is exhausted.

I
S

1+1
PAT :S(CRACK_2)F(RETURN)

If no break characterrallocate CRACK and assign pattern to
PAT. This pattern will strip individual characters from S.

CRACK_1 CRACK ARRAY(SIZE(S»
PAT = LEN(1) • *CRACK<I>

Names referenced
~-CRACK: -----

, ,
, , Program , ,
, , 4.2 , ,
, , STRINGOUT I' ,
array with values

!!2m~
COUNT

IYE§
Function

Where defined
Program 3.4

STRINGOUT(ArSEP) will serve to convert
from array to string. SEP contains a
separation string to be inserted between
strings of the array A. Thus if A is an

<1> 'CAT'

<2> 'DOG'

<3> 'MOUSE'

then STRINGOUT(Ar'r') will return 'CAT,DOG,MOUSE'. A is as
sumed to be singly dimensioned with lower bound 1 and composed
of strings or items which can be concatenated. Note that
STRINGOUT(CRACK(SrB)) will return S provided that S does not
end in B. Note also that STRINGOUT(CRACK(S B,B)) will always
return S.

STRINGOUT(A,SEP) will convert from an array of strings to
a string. SEP will serve to separate the strings.

DEFINE ('STRINGOUT (A,SEP) I')

Entry point: Initialize I and STRINGOUT.

S'IRINGOUT I 1
STRINGOUT A<1> :F (RETURN)

I TOp of loop L-. __ ~

STRlNGOUT_1 I I +
STFINGOUT STRINGOUT SEP A<I>

,

" " "
Program

4.3
SEQ

,

" II

"

:S (STRlNGOUT_1) F(RETURN)

Although it is not conceptually difficult to
sequence through an array, it can be a
tedious exercise if it is required that we
do it over and over. This is especially true

in SNOBOL4 which has no DO or FOR statement. SEQ (S,N) provides
a sequencing capability similar to the action of a DO-loop.
For example:

SEQ(' A<l> = I " .I)

will initialize an array A such that the Ith element is as
signed the value I. The first argument is a statement or
sequence of statements separated by semicolons. The second
argument is the name of a variable. The variable is assigned
the values 1,2,... and the statement or statements are ex
ecuted for each such assignment. This is repeated until
failure is detected on the last statement of the sequence.
Thus

SEQ(" A<K> = TRIM(INPUT) ; DIFFER (A<K>, 'STOP') ", .K)

will read cards successively into the array A until either A
has no more room or the word 'STOP' is encountered on the in
put stream. But note that if an end-of-file is encountered
(INPUT fails) the sequencing will not be stopped. In this
case, if no subsequent file exists, the program will terminate
in error.

If failure is detected on the first attempt to execute the
statements then SEQ will return failure. This permits compoun
ding the iteration as in the following:

SEQ(" SEQ(' A<I,J> = 1* J',.J)", .l)

The above statement will assign a value (as indicated) to each
element of a doubly dimensioned array A.

fg~~7=2 ___ ,

IsEQ (S,N) will sequence through a set of statements until -i
, failure is detected. The indexing variable is given by the ,
I name N. I

DEFINE ('SEQ (ARG_S,ARG_NAME) .)

Entry point: Initialize indexing variable.
ARG_S to code.

Then convert

SEQ

+

,

• :S(SEQ_1)F(SEQ_2) ')
:F (ERROR)

Increment indexing variable by 1 and spring off to com
piled code. Return will be to SEQ_1 or SE~2.

, Control flows to SEQ_2 if a fail was detected.
1 time through fail; otherwise succeed.

If first

:S(FRETURN)F(RETURN)

i i 'I Program II Some languages such as PL/I and APL permit
II 4.4 'I arrays to be arguments to arithmetic
, , AOPA , I operators. SNOBOL 4 does not permit. such
, , operations, but functions can be written to
serve the same purpose. The resulting function will not be as
convenient as the built-in facility but it will be at least,
if not more, general and will be programmer-modifiable.
AOPA(A1,OP,A2) will return a new array whose elements are the
result of applying the indicated operation between correspon
ding elements of the' arrays A1 and A2. Both Al and A2 are
assumed to be singly dimensioned of lower bound 1. Either A1
or A2 or both may be scalar. OP is indicated by a string and
can be any SNOBOL4 operator. Thus

A AOPA(A, '+', B)

will add the array Ato B.

C = AOPA(A,' ',',')

will concatenate a comma to every element of the array A.

AOPA(A1,OP,A2) will apply the infix operator OP to cor
responding pairs of A1 and A2. An array will be returned
unless both are scalars.

DEFINE('AOPA(A1,OP,A2)S1,I,S2,S')

Entry point: First check datatypes. If neither is an ar-

__ ~P;r~ogram 4.5 - FIND~ ____ , ____ __

, ray we fall through the two tests, apply the OP to the two
I scalars and return.

AOPA IDENT(DATATYPE(A1), 'ARRAY')
IDENT (DATATYPE (~2), 'ARRAY')
AOPA = EVAL (' A l' OP 'A2')

A1 is an array; A2 is in doubt.

AOPA_1 51 = '(I>'
S2 IDENT(DATATYPE(A2), 'ARRAY')
AOPA ARRAY(PROTOTYPE(A1»

A2 is an array; A1 is not.

Common code

AOPA_COMMON

'(I)'
ARRAY(PROTOTYPE(A2»

, : 5 (AOPA_ 1)
:5 (AOPA_2)
: (RETURN)

'(I)'
: (AOPA_ COMMON)

S AOPA(I> A 1 ' S 1 ' , OP 'A2' 52
SEQ (5,. I)

AOPA_END

Names referenced
~_AOPA: ---

, ,
I I Program "

" 4.5 " II FIND I' L-. ______ .J

~~
SEQ

:ry12~
Function

: (RETURN)

Where defined
Program ii:3

FI~m(A,PRED) will search an array for an ex
treme element. The type of extreme element
will be determined by the predicate PRED.
Thus

FIND(A, 'GE')

will find
array A.
which is
index.

and return the index of the largest element in the
Specifically it will return the first element in A
greater than or equal to all elements of higher

FIND (A, 'GT')

will also return the index of the largest element. If there
is a tie, FIND will return the index of the last such element.
Thus

EQ(FIND(A,'GT') , FIND(A,'GE'))

may fail, but

EQ(A(F1ND(A,'GT') > , A< FIND(A,'GE')))

will succeed.

.ARRAY FUNCTIONS

The predicate may be prefixed with the ,~, operator. Thus

A< FIND (A, '~LGT") >

will return the string lowest in alphabetic order of the
strings of the array A.

FIND (A,PRED) will return the index of an extreme element
in the array A as determined by the predicate PRED.

DEFINE ('FIND (A,PRED) EX,I,MAX,TEST') : (FI ND _ END)

Entry Point: Construct an expression for comparing 2
values. Also initialize FIND and MAX, tentatively.

FIND
EX
FIND
MAX

CONVERT(PRED '(MAX,TEST)' , 'EXPRESSION')
1

A<FIND>

compare MAX with all elements of higher index than FIND
until failure is encountered. If no elements remain,
return.

I 1
I I + 1

A<I> TEST
EVAL(EX)

A new extreme element has been found.

FIND_END

~!2ilogue

MAX
FIND

TEST
I

:F (RETURN)
: S (FIND_1)

: (FIND_ 1)

Testing of the array is completed when a reference to A<I>
(first statement after FIND_1) fails (indicating array
reference out of bounds). Note that EX has been assigned an
expression to test MAX against TEMP rather than to test MAX
against A<I>. The reader might argue that the latter strategy
is more efficient since it would save one instruction in the
inner loop. That is, failure of EVAL(EX), in this case, would
mean either failure of the predicate PRED or array reference
out of bounds and the distinction could be made afterwards.
But this scheme would not work because ~LGT(MAX,A<I» actually
succeeds if the array reference A<I> is out of bounds. That
is to say the unary ~ operator does not merely negate the
predicate, it negates the entire expression. In any case, the
savings would not be very great. As we will see, assignments
and statement overhead cost little compared with anything else
in the language.

Program 4.7 - TRUNC Page 75

,.-- ,
I' Program " AI(~,I) (Apply Index) - where A and I are

arrays will regard I as a set of indices to
be applied to the array A. The result is an
array. Thus if

It 4.6 "
II AI "

i

<1> , 'CAT'
I- <1> 3

A <2> , 'DOG' I , <2> 2
<3> , 'CANARY'

the array returned is

<1> 'CANARY'

<2> 'DOG'

If I is a scalar the result will be A<I>.

AI

AI(A,I) will apply the indices contained in I to the array
A.

DEFINE (' AI (A, I) J')

Entry point: If I is not an array, go to AI_1 where we
merely return the Ith element.

I DENT (DATATYPE (I) , 'ARRAY') :F (AI_ 1)

Make AI, the array to ~e returned, look like I. Then apply
the indices.

AI ARRAY(PROTOTYPE(I»
SEQ(' AI<J> A<I<J» " .J)
AI A<I>

: (RETURN)
: (RETURN)

Names referenced IY:!2~
Function

Where defined
Program 4.3 !2Y:AI: ------

, ,
It Program " II 4.7 " " TRONe " ... , A<H> •

TRUNC(A,L,H) will return the truncation of.
the singly-dimensioned array A. That is, a
new array will be created and returned
consisting of the elements A<L>, A<L+1>,

Page 76 ________ . __ ~C~h~a~p~t=er 4 - ARRAY FUNCTI_O=N=S ____ __

DEFINE ('TRUNC (A,L,H) ') : (TRUNC_END)
TRUNC TRUNC ARRAY(H - L + 1)

L L - 1
SEQ(' TRUNC<I> A<L + I> ',.I)

Names referenced
£y_TRUN£1.

!Y~
Function

: (P.ETURN)

Where defined
-program 4:3

i i
, , Program I'
" 4.8 "
" CATA "

CATA(A1,A2) will concatenate the two arrays
A1 and A2. Both are assumed singly
dimensioned of lower bound one. The returned
array also has lower bound one.

DEFINE (' CATA (A 1 ,A2) I, N1')

CATA N1 PROTOTYPE (A1)
CATA ARRAY(N1 + PROTOTYPE(A2»
SEQ(' CATA<I> A1<I> " .I)
SEQ(' CATA<N1 + I> A2<I>', .I)

Names referenced
by CATA1. ----

Nam~
SEQ

IYE~
Function

: (RETURN)

Where defined
Program 4.3

11111111111111111111?1???1?1???111??1?????1???1???11?111?1????
1????1?111?11???????1?11? EXERCISES ?1111??111??111111??1?11
?111?11????1111????1????111??111111??11?11?1???1?????11?1??1?1

Exercise 4.1 A common problem is to initialize an array
with a large number of strings. Commonly

this is done with assignment statements but if the list is
long this technique can prove wearisome. Using CRACK, assign
an array of length 12 to the variable M assigning to M<I> the
name of the Ith month (or an acceptable abbreviation). Thus
M<1> = 'JAN.', etc.

I

, Exercise 4.2 Modify SEQ so that it accepts 2 additional
(optional) arguments. The first will be a

lower bound (if not present the lower bound is taken to be 1)
and the second will indicate the increment (either positive or
negative). The default increment should, of course, be 1.

I
, Exercise 4.3 Let A be an array with lower bound 1.

a) What will be the result of the following 2 statements1

N +PROTO~PE(A)

SEQ(' SWAP (.A<I>, .A<N + 1 - I» " .I)

b) Modify the second statement above so that the array A is
actually reversed.

r---------------,
, . Exercise 4." Rewrite STRINGOUT using SEQ.
I

Exercise 4.5 Assume A is an array of strings having a
lower bound of 1. Use SEQ to find the index

of the first element in A which begins with the character 'M'.

Exercise 4.6 Modify AOPA so that if the value of OP syn-
tactically resembles an identifier, it is

regarded as a binary function.

Exercise 4.7

r---------------~
I Exercise 4.8

the array A.

i

Is AOPA(A1"A2) a valid call? If so, what
does it do?

write a function OPA(OP,A) which will apply
the unary operator OP to every element of

, Exercise 4.9 Write ELEND(X,Y) where X and Yare equi-
length strings by an expression involving

functions defined in this chapter.

Exercise 4.10 Extend AI to permit I to range over a)
2-dimensional arrays, b) multidimensional

arrays, and c) programmer-defined data objects.

t
Exercise 4.11 I The statement
~ _____________ ,--J

&ALPHABET BRFAR (S) LEN (1) • T

will assign to T the character in S lowest in the alphabet.
Do the same using FIND and other functions defined in this
chapter.

,
1 Exercise 4.12 In TRUNC, the statement L = L - 1 could be

removed if the subsequent statement were
What modification is needed? Why was it not done modified.

this way?

Exercise 4.13 write a function DO(S,N,L,U,I) where S is a
statement sequence, N is a name, L is a

lower bound, U is an upper bound, and I is an increment. DO
should simulate a Fortran DO-loop.

r----------------,
, Exercise 4.14 (a) Define a function LBOUNDS(A) which will

return an array equal to the sequence Of
lower bounds of the array A. Define a function UBOUNDS(A) to
do a similar thing with upper bounds. For example,
LBOUNDS(ARRAY('3:10,-1:1'» will return an array containing
two integers, 3 and -1.

(b) write a function INCREMENT(S,L,U,N) which will increment
and return a sequence of subscripts contained in the array S.
L is an array of lower bounds as might be obtained from the
LBOUNDS function of the previous exercise and U is an array of
upper bounds. N is the size of each of these arrays. The
function should fail if no more increments remain.

(c) Using the functions INCREMENT, LBOUNDS, UBOUNDS defined
above, write a program to print out every item in an array A.
A may have any prototype but all of its items may be assumed
to be printable.

Exercise 4.15 Write a function called PUSH (A,E) which
will push an element E onto an array A

which is acting like a stack. The first element of A contains
the index of the last element pushed. If A runs out of room,
double its size. PUSH will return A or the newly created ar
ray. Routines in this section may be used if applicable.

CHAPTER

n
tI

" " ,--...
L---J

BAS I C

F I V E

PRO C E S SIN G

CONTENTS

READL ••••••••••••••••••• 5.1

READRL 5.2

REVL 5.3

LAST •................... 5.4

PUSH 5.5

POP 5.6

TOP 5.7

OOPYL ••••••••••••••••••• 5.8

FLD ••••••••••••••••••••• 5.9

VISIT ••••••••••••••••••• 5.10

Page 8Q________ Chapter 5 BASIC LIST PEQg;SSING ____ _

.-----,
'--, he SNOBOL series of programming languages through

II SNOBOL3 had only one datatype, the string. Even the
I I arithmetic facilities of SNOBOL3'were implemented as
II operations on strings of digits rather than on machine
U integers. Because of this historical bias, and because

the language is extaordinarily rich in string handling,
SNOBOL4 is still regarded by some as exclusively a string
language. Yet, all the basic facilities which one expects in
a list processing language have been incorporated into
SNOEOL4; these include the automatic allocation and freeing of
storage, recursive functions, the pointer, and the data struc
ture. Moreover, the notation is, for the most part, conven
tional, convenient and flexible. Were SNOBOL4 suddenly strip
ped of all its pattern matching capabilities, it would still
be a powerful and convenient list-processing language.

What do we mean by list processing? This is the kind of data
processing in which associated data is linked together via
pointers as opposed to an array organization in which as
sociated data 1S placed in consecutive locations. List
processing is used whenever the association of data is likely
to change because such change can be readily accomplished
merely be modifying links rather than by moving data.

A list is technically a sequence of items joined together by
pointers and is really just a special case of an arbitrary
linked structure. Hence 'list processing' is a misnomer for
what might be better termed 'link processing'. However, a list
may contain items of any kind, including other lists so that
arbitrary trees may be formed. Hence, a list is more general
than what is at first blush indicated. Nonetheless, it is im
portant to realize that ty list" processing we mean, really, an
arbitrarily interlaced collection of data objects with the
possibility of loops and with no restrictions on the number of
nodes or the number of links per node. In other words we are
really speaking of arbitrary graphs.

The method by which one does list-processing in SNOBOL4 is via
the so-called programmer-defined datatype. calling the func
tion DATA, one can define a new datatype. Instances of this
datatype can be created by making what appear to be function
calls to the name of the datatype. Thus

DATA('LINK(NEXT,VALUE) ')
L LINK ('XYZ', 22)

will first define a datatype called LINK and then assign to L
an object whose 2 fields (viz. NEXT and VALUE) are initialized
with the 2 values given as arguments. The result is shown in
Figure 5.1.

For convenience we will refer to data objects of this kind as
structures and to an interlaced set of structures as a data
gon!Iguration. Like arrays, structures consist of a sequence
of variables (one created variable for each field) together

. , , ,
I i I
,lINK, *-1---.
~I--~i~'--------~' ,
, L I I
'---' 1 , ,

•
///////////

, ,
I

NEXT S *--,
i I

VALUE I , 22 ,
figyre 5.1

----> 'XYZ'

with some miscellaneous information denoted by cross hatching
in the figure. These fields may be referenced via function
notation such as

NEXT(L) = 'ABC'
N = VALUE(L) + 3

Such field references may be used wherever a variable may be
used, such as on the left hand side of a~ assignment (as
above) or on the right hand side of a. variable association
operator (binary • or $). As in the case of all variables,
the field of a structure may be assigned a data object of any
type, including another structure. Thus

NEXT (L) = LINK ()

will allocate a new LINK structure and assign it to the NEXT
field of L. This statement will resul~ in the configuration
shown in Figure 5.2.

A field of a structure may refer to the structure in which it
is embedded or to any part of the configuration. Thus,
continuing

NEXT(NEXT(L» L

will produce the configuration shown in Figure 5.3.

Page 82

, ,
I i
,LINK,
• i '
, L ,
L--.I

*--1 ,

i

,
I ..

• , /////////// ,
I i

NEXT ,LINK,
I

VALUE , I

There is no intrinsic limit
structure or to the number of
created.

1 *--,
1

22 ,

NEXT

VALUE

i

I , ..
///////////

s o

s o

to the number of fi'elds of a
new datatypes that may be

It is sometimes required that we obtain a pointer to one of
the fields of a structure. This we may do by use of the unary
name operator. Thus

i ,
I i
,LINK,
Ii'
, L 1
L--.I

*-1----."
1 , , , i , /////////// I

I i I
NEXT ,LINK, *-1 ,

I I ,
VALUE , I 22 , 1

L , ..
, ,
I /////////// ,
I i I

NEXT ,LINK, *-1----"
I I

VALUE , SO, ,

Chapter 5

L = LINKO
ALPHA = .NEXT(L)

, _____ P-=;a:.ol,qe 83

will result in the configuration shown in Figure 5.4.

i i , ,
I , I
,LINKI *-, i

I , , , , L , ,
L--.I I , , , ,

I
~

i , ///////////

I
N *-, > NEXT S 0

ALPHA VALUE S 0

fgg,g_ 84 ____ .-£~:t~r.~5 ___ ~AS.IC LIST PBQg§.§Dm ___ _

The datatype indicated for ALPHA is 'N' for NAME. We may as
sign any value to the variable whose name ALPHA contains, by
using the unary $ operator. For example:

$ALPHA = LINK()

will result in the configuration shown in Figure 5.5.

,.-- i , ,
I i I
,LINK, *-,
I •

, , L ,
'----'

,.-- i

I I
I I , N *-1--> NEXT , , ALPHA VALUE

i ,
I ,
I
I

'Y
i i , /////////// ,
I i I
,LINK, *-1
I I , S 0 1

NEXT

VALUE

,
1
1
1
1
1

'Y

///////////

S o

S o

___ ,Ch=a=-pl;..t::.;e=:r=--5:::-._.--=B=A.:.:S::.:I~C=-LIST PROCESSING

Two different datatypes may have the same field without fear
of collision. Thus

DATA (• TN (VALUE, NEXT, LSON, RSON) .)

will define a new kind of data called TN (for Tree Node).
Executing

T = TN(16, LINK(»
NEXT(NEXT(T» .T

will result in the structure shown in Figure 5.6.

i i

1 1
I I

>1 TN *---1
I , , , TI
'---J

VALUE

NEXT

LSON

RSON

i

1
1
I
I
I
• , i

I /////////// I
I
I I
I i

ILINRI
I
I S
I
I S

I
16 1

1
*-1---.

0

0

I 1
I I
I I
I 1

I
I
I
•

i i
, /////////// I

.1 ,
NEXT I N *---1---,

~I----------~I I
VALUE ISO I 1 ,

1
I
I

_______ £hapter 5 BASIC LIST PROCESSING

.----------.. I' Program ,t The function READL(P) will read in a se
tl 5.1 " quence of items, placing them in a list, and
II READL I' return the head of the list. P is a pattern
L- to indicate the end of the list. If P is
null (or equivalently, absent) the list is read in until an
end-of-file condition is encountered. otherwise, it will stop
reading when the pattern match succeeds. It will not include
the card matched. Thus READL(POS(O) 'STOP') will read a se
quence of strings up to but not including the first string
having the word ISTOpl in column 1.

DEFINE('READL(P)N,SI)
DATA (ILINK(NEXT,VALUE) I)

Entry point:
fail.

If P is null, make sure the pattern will

READL P IDENT(P) ABORT

N will be the name of the variable to receive the next
LINK of the list. Initialize it to point to READL.

N .READL

Top of loop: Read a card; try the pattern; append the
LINK; and update N.

READL_1 S INPUT
S P
$N LINK (,S)
N • NEXT ($N)

:F (RETURN)
:S(RETURN)

: (READL_l)

i • I' Program 'I READRL(P) will read a list in reverse. That
I' 5.2 ff is, the head of the returned list will con
" READRL " tain the last string read. The reversed read
.... ' --------", is curiously easier to write (and keypunch)
than READL
items onto

and appears to be a more natural way of appending
a list.

DEFINE('REAORL(P) I)
DATA ('LIST (NEXT,VALUE) I)

Entry point: Set P; go through the loop inserting the
latest LINK onto the front of the list.

READRL
READRL_

P IDE~~(P) ABORT
S = INPUT
S P
READRL LINK (READRL, S)

F(RETURN)
S (RETURN)
(READRL_1)

__________________ ~gram~_=~sI_ _______________ __f~~

i

" , I

"
Program

5.3
REVL

i

fI
II
II

REVL(L) will reverse a list L. The algorithm
works according to the diagram in Figure
5.7. For simplicity the list elements have
been denoted by a single cell. Also, an ar

row impinging onto the outline of a cell represents a pointer
to the data object and not a pointer to any particular field
within the data object. REVL and L work their way down the
list with L leading the way and REVL right behind. At each
step the NEXT field of L is made to point backward to the
value of REVL and then the 2 variables are incremented, so
that they always span the 'gap' in the chain of links.

j

II
II

"

DEFINE ('REVL (L) T')
DATA ('LINR(NEXT,VALUE) ') : (REVL.;,.END)

Entry point: Return L if it is not a link. Otherwise,
initialize REVL and L to span the gap between the first
link and the rest of the list.

REVL L
IDENT(DATATYPE(L), 'LINK') :F(RETURN)
L NEXT (REVL)
NEXT (REVL)

Go through loop making NEXT(L) point backward to REVL and
walk one step forward (T is a temporary to hold NEXT(L».
Quit when L becomes NULL.

I DENT (L) :S(RETURN)
T NEXT(L)
NEXT(L) = REVL
REVL L
L = T : (REVL_ 1)

Program
5.4

LAST

i

II
II
II

LAST(L) will return (by name)
the last NEXT field of a list.
and L2 are lists

LAST(L1) L2

the name of
Thus, if L1

will concatenate the two lists. If the argument to LAST is
null the function fails. Thus

LAST(L1) = L2 : S (LAB1)
L 1 L2

LAB 1

will concatenate L2 to L1 even if one or both of the lists are
null. Also

LAST(L) L

bge 88 ChaRter 5 BASIC LIST PROCESSING

<-,
• I ,
, I
* "<----, , ,

'--_-.I' I
i

I I
* 1<-,

I I
--.--..' I

--------I I
I r"---'

t--.~---II , I
*--1 >1 *

I
REVL

t i

I I
r---> I *-1 --."
, 1 1 1
I ~I----~I •

I
.------11 I

*--I--.J
I

Figure 5.7

,
1

*-1-> ,

creates a circular list.

DEFINE ('LAST (L) ')

Entry point: if L is null, fail.

LAST IDENT (Ll :S(FRETURN)
.--, Seek a null NEXT field.

LAST_1 L DIFFER (NEXT (L)) NEXT (L) : S (LAST_1)

, Return the name of this field by name.
L-

LAST .NEXT (L) : (NFETURN)
LAST_Et-.."D

'I Programs "These routines are stack manipula
I' 5.5, 5.6 & 5.7 I I tion routines. As their names sug-
'I PUSH, POP & TOP " gest PUSH and POP are used to
L- respectively put on and take off an
item from a stack. TOP is used to examine the last element of
a stack without modifying it. Thus

PUSH ('ABC')

will push 2 items onto a stack.

I<1
I<3

POPO ;
POP () ;

PUSH (3)

I<2
I<4

TOP ()
TOP ()

will assign to I<1 the value 3, to I<2 the value 'ABC', to I<3
the value 'ABC' and will not modify K4 as the calls to TOP and
POP fail when the stack is empty. As an added bonus, TOP and
POP will return by name. In the case of TOP, this means that
values can be assigned into the top element. For example,

TOP 0 'Xyz·

will change the value at the top of the stack. PUSH returns
the item pushed; more exactly it returns the f!~!9 bearing the
item last pushed. Hence,

PUSH 0 S

has the same effect as PUSHeS). Having been written in this
way, PUSH can be used to push matched substrings of a pattern
match onto a stack. For example,

S P1. *PUSH () P2. *PUSH ()

is a pattern matching statement which, if the match succeeds,
cause two substrings to be pushed onto the stack. We will re
quire this property of PUSH in the chapter on compiling. See
L_ONE, Prog. 18.2.

Page 90 Chapter 5 BASIC LIST PBOC=E=S=S=I~N=G ________ __

DEFINE('PUSH(X) ')
DEFINE (' POP 0 ')
DEFINE ('TOP () ')
DATA ('LINK (NEXT,VALUE) ')

Entry paint for PUSH: Just allocate a LINK and put it at
the head of the stack pointed to by the global variable
PUSH_POP. Then return the VALUE field by name.

PUSH PUSH_POP = LINK (PUSH_POP, X)
PUSH • VALUE (PUSH_POP) : (NRETURN)

Entry paint for POP: If the global stack is null, fail.
Otherwise return the element and pop the stack.

POP IDENT (PUSH_POP)
POP VALUE (PUSH_POP)
PUSH_POP NEXT (PUSH_POP)

: S (FRETURN)

: (RETURN)

Entry point for TOP: Return name of V~UE field by name.
Fail if none exists.

TOP IDENT (PUSH_POP)
TOP • VALUE (PUSH_POP)

i ,

: S (FRETURN)
: (NRETURN)

I' Program " COPYL will copy a list. It makes use of the
'I 5.8 " built-in function COpy which can be used to
I' COPYL II copy structures (as well as arrays). Hence
L-- if a list is a chain of LINKs then COpy will
be used to copy each LINK in turn. If it should happen that
the VALUE field of a list points off to some other list, then
a recursive function call is used to copy this subsidiary
list. No difficulty follows from this simple procedure unless
the data configuration has loops. If one of the fields points
back to a node which has already been copied, we need not, and
in fact must not, make a new copy of this node. Hence we must
find a method to indicate which nodes have already been
visited. This problem is not unique to COPYL. It arises
whenever we wish to process every node of a data configuration
with loops. We solve the problem here with tables. Another
method, one involving marking the structure itself is
described in VISIT, Prog. 5.10.

To avoid marking structures, we keep a list of all items al
ready copied paired with copied counterparts. This is most
easily done with a SNOBOL4 table. A table is similar to an
array except that the subscripts are no~ restricted to in
tegers but may be any value. Thus

TBL = TABLE (100)
TBL<X> = Y

will assign the Xth element of TBL the value Y, no matter what
the datatypes of X and Yare. The value of 100 is an est1mate
of the number of items to be placed into the table. Thus, a
table is a kind of associative array. It is implemented as a
collection of descriptor pairs. When items are entered or ex
tracted, a search must be made for the subscript. In SPITBOL
the value is hashed so that the search is fairly rapid. In
MAINBOL the search is linear but is not all that slow because
only descriptors need be compared. In both languages the
search is quite rapid for small tables.

In our particular application we are interested in the case
where X and Yare structures. If L is a LINK then

TBL<L> COPY(L)

will associate with that particular LINK a copy of that LINK.
In this way, we not only mark that a LINK has been copied but
we point directly to the copied LINK.

All this suggests allocating a table when COPYL is first
called. But, if COPYL is called recursively, we do not want
to allocate a new table but rather retain the old one. This
can be done in several ways. Two functions may be defined
COPYL and COPYL INT. COPYL will receive control from external
sources; COPYL:INT will be called internally and will not al
locate the table.

Another approach, one to be used here, does not require that
another function be defined. Rather, the COPYL function is
redefined, by itself, twice, once immediately after rece1ving
control, and once immediately before returning.

r---,
COPYL{L) will copy a list of LINKs.
have loops.

DEFINE{'COPYL{L)T')
DATA (ILINK{NEXT,VALUE) I)

The configuration may I
I

-J

r---.------------------------,
Entry point: Redefine COPYL to have a new entry point and I
in which T will be treated as global. I

~---~
COPYL DEFINE (ICOPYL{L) I, 'COPYL_11)
r---,

Allocate a table and call COPYL.
the number of nodes in the list

100 is the estimate of I
I

~---~
T TABLE (100)
COPYL COPYL{L)

r---,
We are done!
and return.

Redefine COPYL to the original definition I
I

L-----__________________ ---------------------------------------~

DEFINE('COPYL{L)T') : (RETUR~

Page 92 Chaet~r 5 BASIC LIST PROCESSING

Internal entry pOint: If L is not a link there is no need
to copy it. Just return L.

COPYL_1 COPYL L
IDENT(OATATYPE(L), 'LINK') :F(RETURN)

Have we ever copied this LINK before? If we have, just
return the copied LINK.

COPYL = T<L)
DIFFER(COPYL, NULL) :S (RETURN)

r---,
I otherwise copy the LINK and indicate this fact in the
I table.
I

COPYL
T<L>

COPY(L)
COPYL

Now copy the 2 fields.

•

" " "

VALUE (COPYL)
NEXT (COPYL)

COPYL(VALUE(L»
COPYL(NEXT(L» : (RETURN)

Program
5.9
FLD

i

" " "
FLD(ST,I) will return (by name) the Ith
field of the structure ST, failing if I ex
ceeds the number of fields in the structure
ST. It is written using 2 built-in func

tions, APPLY and FIELD. APPLY may be used with arbitrary
function names as well as with fields of a structure. Note
that APPLY returns by name (where applicable) and also note
that FIELD requires a datatype, not a data object.

FLD
DEFINE('FLD(ST,I) ') : (FLD_END)
FLD = . APPLY (FIELD (DATATYPE (ST) , I), ST)

:S(NRETURN)F(FRETURN)

i ,

II Program I I VISIT will visit every structure of a con
II 5.10 'I figuration, once and only once, calling
II VISIT " PROCESS (ST) upon arrival, where ST is the
L--,, _____ -'" structure visited. PROCESS represents some
activity to be carried out and is left to be defined by the
user.

COPYL, in the process of copying a configuration, had to visit
every node and we could let that function serve as a model
from which to write VISIT. The only basic difference would be
that, in COPYL, we knew the kind of structures we were dealing
with and so we could reference the fields by name. In VISIT,
the structures are arbitrary and so we must use a function
such as FLD to sequence through every field.

P~ogram 5.10 - VISIT __________ ~P~93

But we will depart from the COPYL method in two other ways.
In the first place, we would like to present a method which
avoids recursion. In many languages recursion is either
unavailable or inefficient. Also, recursion, if carried to
too many levels, will result in stack overflow. Also, we would
like to present a method of marking structures which does not
depend on tables.

The algorithm, to be presented, was discovered independently
in 1965 by Deutsch and Schorr and Waite; see Knuth [Vol.1,
p.416-417]. It was developed in connection with garbage col
lection. One phase of garbage collection is the marking phase
when every structure which can be accessed is marked. Subse
quent phases insure that the marked structures are saved and
the unmarked structures discarded. Avoiding recursion when
garbage collecting is highly desirable if the recursion stack
is sharing collectable storage.

The algorithm works as follows. SON initially points to the
root node of a tree as indicated in Figure 5.8(a), and the
node is marked with a 1 (also shown in the figure). All poin
ters in the structure are examined to see if they point off to
any as-yet-unmarked structure. If an unmarked structure is
found, it is regarded as the new SON and the old son becomes
the FATHER. If, in the new son, there is a pointer off to an
unmarked node, the SON and FATHER descend another level. The
pointer which had been used to point downward in the tree is
redirected upwarg so that it is possible to determine from
whence we came. The situation is depicted in Figure 5.B(b).
Note that FATHER and SON span a 'gap' in the structure created
by our backward pointer. This is similar to REVL.

The backward pointers ~ermit us to crawl back up the tree when
we are through examining all the descendants of SON. The MARK
serves also the purpose of denoting which field is being used
as backward pointer. For example, Figure 5.8(c) shows the
situation a little later in which a mark of 2 on the grand
father indicates that the 2nd field is pointing to the great
grandfather.

When we are done, all the marks will have been set positive.
We cannot make all the marks 0 again using our VISIT function
but we can make them all negative by setting SIGN = -1. VISIT
will work properly if the initial value of the marks is ~ 0 so
that this procedure can be used to restore the state of the
configuration to one which will accept subsequent VISITs.

We could use a table to record the marks, as we did with
COPYL. However, a more efficient method would be to add a MARK
field to each data structure. For example, to add a MARK field
to the LINK data type we could execute

DATAC'LINK(NEXT,VALUE,MARK) .)

It is rather remarkable that we may substitute this DATA call
for the DATA call

Egge 9~4 __________ C~h~a~pt~e~:r~5~ ___ ~~!-~EOCESSING ________ _

SON
~ , , , , i , *-1 >1 *-1 >1

1-1-1 1 1 1 , *-1--, 1 *-1-.. ,
, I , , i , I

1 1
I , , 1 i , I

I , 1 '-->1 *-1 >1
(a) '--->1 1 1 I 1 , *-1 >1 I 1

I I I .J ,

==

FATHER
~

SON
~

i i • I , i

, 1< 1-* 1 1 1
1-1-1 1-1-1 1-1-1
1 *-1----, 1 *-1-..' 1
I I I' I I' ,

1 1
1 ill i i r"1----'

1 1 1 '-->1 *-1 >1
(b) '--->1 1 1 'I 1---

1 *-1 >1 1 1
t I , I I ___ .JI

==
,i ,i i

1 1<-.. *-1--->1 ,
1-1-1 1 1-2-. I 1-1-1
1 *-1----, '--1-* '1<--, "I 1

. I I, I " I

, 1
1 1 FATHER
1 1 ~
I, I I i ,

1 1 1 '--1-* 1
(e) , '--->1 1 1-1-1

1 *-1 >1 1
, • t ,

Figyre 5.8

SON
~

, i
, 1
1-1-1 , ,
, ,

__________________ prog~ID_5.10_=_Y!SI! __________________ Page_22

DATA('LINK(NEXT,VALUE)')

in just about any program without modifying its behaviour. But
it is at least inelegant, and perhaps impractical, to request
users of VISIT to add a MARK field to every structure. Hence
we will do this for him by ~ed~fininq the DATA function. The
new data function will capture control of each call to DATA,
insert a MARK field, and then call the old original DATA
function.

If the user is using the FIELD function, as we do in FLD, he
may inadvertently sequence into the MARK field which is sup
posed to be kept invisible. But we can keep him out of the
MARK field by redefLning the FIELD function.

r---,
,VISIT(ST) will visit every node of the configuration
, headed by structure ST. Visitation consists of calling
, PROCESS(ND) where ND is the node. VISIT (S'I',-1) will reset
, the marks •
•

DEFINE('VISIT(SON,SIGN)FATHER,GS,GF,DT,I')

Redefine the DATA function so that a MARK field is inser
ted into each new datatype.

OPSYN('OLD_DATA', 'DATA')
DEFINE ('DATA (S) ')

DATA S ') , , , MARK) ,
: (DATA_END)

: (RETURN) OLD_DATA (S)

Redefine the FIELD function so that the user won't know
about the MARK field.

OPSYN('OLD_FIELD', 'FIELD')
DEFINE('FIELD(DT,I) ')

FIELD -
: (FIELD_END)

:F(FRETtrnN)
:S(RETURN)F(FRETURN)

+
+

OLD_FIELD(DT,I + 1)
FIELD OLD_FIELD(DT,I)

Initialization section for VISIT: STND_DT will match a
standard datatype.

STND_DT POS(O) ('STRING' I 'INTEGER' , 'REAL'
I 'PATTERN' , 'ARRAY' I 'TABLE' , 'NAME' I

'EXPRESSION' , 'CODE' I 'EXTERNAL') RPOS(O)
: (VI SIT_END)

I
Entry point for VISIT: The default value for
If the datatype of the node is standard
programmer-defined), just return.

SIGN is
(i.e.

1 •• ,
not ,

f .

Chapt~r 5 BASIC LIST PROCESSI~N~G __ __

VISIT SIGN = EQ (SIGN, 0) 1
DATATYPE(SON) STND_DT :S (RETURN)

Control flows to VISIT_2 whenever a previously unmarked
SON is found. Here it is processed and marked and I is
initialized.

PROCESS (SON)
MARK (SON) = SIGN
I 0

Examine the Ith node of SON (GS means grandson). If GS is
an unmarked structure, fall through. Else, loop. If no
more grandsons remain, go to VISIT_3.

VISIT_1 I I + 1
GS = FLD (SON, I)
DATATYPE(GS) STND_DT
GT (SIGN * MARK (GS), 0)

:F (VISIT_3)
:S (VISIT_ 1)
: S (VISIT_1)

Mark the SON with the current value of I so we can pick up
later where we left off. Point back to FATHER rather than
forward to GS.

Descend
the new

MARK (SON)
FLD (SON,I)

down one
SON.

FATHER
SON = GS

SIGN * I
FATHER

level; then

SON

go back to PROCESS and MARK

: (VISIT_2)

Here if no grandsons are left. If FATHER is null we are
done. Otherwise set GF to be the grandfather.

IDENT (FATHER) :S(RETURN)
I SIGN * MARK(FATHER)
GF = FLD(FATHE~,I)

Point back toward the SON. Then hoist up one level.

FLD (FATHER, I) SON
SON FATHER
FATHER = GF : (VISIT_1)

,
I
I ,

Names referenced
i2LVISIT: ----

Name
FI.D

IYp~
Function

Where defined
Program 5.9

________________ .~E~x~e~r~c~ises fo!-£hapter 5

11??1???????1??????????????????1???1??1???1????11??11111?????1
??1?????????????????????? EXERCISES ??1??1??????1???????1???
?????????????????????????????1????????????????????????????11??

Exercise 5.1

of strings.

Rewrite CRACK(S,C) (Prog. 4.1) to return a
linked list of strings rather than an array

Exercise 5.2 A doubly-linked list is one in which, in ad-
dition to a NEXT field pointing to the next

item on the list, there is a PREV field pointing to the
previous item on the list. Let L be an item of such a list.
Write code to remove the item from its list.

Exercise 5.3 Write a routine FIRST() which will remove
(and return) the firsi item on the push-down

stack maintained by PUSH and POP and fail if no such item
exists. Do this (a) without modifying PUSH and POP and (b) by
modifying PUSH so that the process of getting the first ele
ment is more efficient.

Exercise 5.4

types •

•

Modify COPYL so that it copies a configura
tion composed of structures of arbitrary

I Exercise 5.5 As indicated in the text, the assignment
LAST(L) = L will create a circular list.

What modification to REVL (Prog. 5.3) is required to reverse a
circular list (the node returned should be the node originally
given) •

•
I Exercise 5.6 write a routine DISPLAY(L) which will

display a data configuration headed by L.
The type of structures in the configuration may be dissimilar
and arbitrary.

Exercise 5.7 Write a function called IFFLD(N,S) which
will serve as a predicate to determine

whether N is the name of a field of the structure S. The body
of the function requires two statements.

Exercise 5.8 Modify DATA and FIELD (subfunctions of
VISIT, Prog. 5.10) so that every structure

created will have not one but two additional fields MARK and
THREAD. Moreover, arrange to sieze control at each request to
allocate a new structure so that all structures will be

Page 98 ________ ~hapte~r~5 ____ ~B~AS~I~C~LIST PROCES_S:IN~G __ __

threaded together via the THREAD field. Rewrite VISIT so that
by chaining down the THREAD field, the MARK field of each
structure is initially set to O.

Exercise 5.9 How would you modify VISIT (Prog. 5.10) in
order to copy an arbitrary configuration?

(Hint: Add a field called NEW to every structure which will
pOint to the copied version.)

, ,
, Exercise 5.10, Two configurations are said to be isomor-

phic if there is a one-one correspondence
between the structures of the configurations such that if two
structures correspond (a) they have the same type, (b) any
field of one structure that does not have a structure as value
must equal the corresponding field of the other, and (c) if a
field of one has a structure S as value then the field of the
other must have a structure S' such that S corresponds with
st. Write a subroutine ISO(S1,S2) which will succeed if struc
tures S1 and S2 correspond in an isomorphic configuration.

C HAP T E R S I X

,---, ,---, r----1 r-----1 ,---, ,..---, n n
, r-wl ,~, '--, r-' L-., ,........ 1 r--' I r-, I If'" p_.1 ,

" " " " I L-., ,'-' 1 1 "'I
, ,.--I fI-..J , " II I,.-J 1,,--1

" 'I

" 'r-, I " "
, L.......o, "" " " u u u u U L--.J U U U U

,----, n n ,---, ,---, ,---, n n
L-, ..-' " " 1,---1 I r-,' I r-1 , "//

" 1'-" I L-., " " 1'-'1 ,/
" I r-, I I r-' " II "~ " " " "

, '---., 1'-' I "" II
u u U L---I '----' U U U

Patterns and CUrsors

Nonlinear Patterns

FUndamental Properties

Scanning

ARBNO

Recursive Patterns

Pa~ 100

n n
" " hat is a pattern? we have used patterns throughout "1',, the preceding sections of this book without cons-
1//'" ciously evoking this question. Indeed it is perhaps
1/ 'I not strictly necessary to know what patterns are so
U U long as one knows how they work and what they do.
However, patterns play such an important role in SNOBOL4
programming and ~hey provide such ~ powerful facility for
analyzing input data strings that a strong conceptual
framework becomes necessary in order to derive clean and ef
ficient implementations, resolve complex and seemingly
ambiguous issues and contrive reasonable extensions.

It is tempting to suggest that a pattern is a set of strings.
Thus

P = 'ABI I 'A'

would identify P as the two strings 'AB' and 'A'.
in this vein

Continuing

P LEN (3)

would be the set of all strings consisting of three characters
and

P ARBNO (ANY (, AB ' »
would be the set of all strings (including the null
comprised of characters chosen from the s.et {A, B} •
course, would be the empty set.

string)
FAIL, of

But what would we make of the patterns POSen), RPOS(n),
TAB(n), RTAB(n), BREAK(s), SPAN(s), FENCE, and ABORT which
cannot be uniquely identified with a set of strings. Thus
POSen) matches the null string when it matches but it doesn't
match all null strings, only those at position n. If we iden
tified POS(O) with the null string, we would be forced to
conclude that POS(O) = POS(1) which is nonsense. By a similar
token, BREAK(s), when it matches, will match a string not con
taining a character of s but it cannot be said to match all
such strings, only those followed by a character of s. Hence,
although BREAR(s) can match a null string on occasion, it can
not be related uniquely to the null string. The strings that
BREAK(s) matches are determined in part by the context in
which the strings are embedded and this is true of most of the

'patterns which cannot be related ta string set$.

Another difference between patterns and sets of strings is
that a pattern, if it matches more than one string, expresses
a preference between any two. Thus

'AB' I 'A'

implies that 'AB' is tried before 'A' and behaves differently
from

'A' I 'AB'

r----------------------------,
•• 1. ATTERNS AND CURSORS Patterns are more accurately

thought of as recognition • I r,--------------------~
IIII ,
I I
I ,

processes operating on cursors. A ~§Q! is a pair
(S,I) where S is a string called the §Y£j~~ and I
is an integer ~arking a position in the subject. I
is called the ~!§~_position. A cursor points bet

ween characters (as opposed to at them) and therefore the cur
sor position ranges between 0 and the length of the subject
inclusive. The cursor ('ABCDEF',2) is depicted in Figure 6.1.

r-1 r-1 r-1 r-1 r-1 r-1
,A, ,B, ,e, ID, lEI IFI
L-J L-I L-I L-J L-.I L-J

• ,
Figyre 6.J

A depiction of the cursor ('ABCDEF' ,2)

when a pattern is called upon to match, it is presented with a
cursor called the p!~~~ and the pattern either matches or
fails to match at that point. If it matches, there will be a
sequence of one or more EQ§i~y!§Q! positions to identify the
portion of the subject matched. A ~g~te~n P can then be
defined as a function whose input value is a cursor and whose
output value is a sequence of cursors. For reasons which will
become apparent later we will use backward notation {c)P or
simply cP to represent the application of the pattern P to its
cursor argument c. Hence we write

cP [cucu...]

We will use square brackets as above to represent sequences,
reserving braces to represent sets and parentheses for other
kinds of scope delimitation.

For example, if the pattern ('CDE' 1 'e') is applied to the
cursor position of Figure 6.1 we have

('ABeDEF' , 2) (' eDE ' , ' e') [5, 3]

In the above, the cursor position 5 stands as an abbreviation
for the cursor ('ABeDEF',5) and similarly 3 is an abbreviation
for ('ABeDEF',3). This represents no ambiguity since the sub
ject does not change during a match.

Page 102 ________ C=hapter 6--=- PATTERN THEORY

We will use ~ to represent the null sequence. Thus

('ABCDEF' , 1) ('CDE' I 'C ') 0

Two patterns are egualif they represent the same function.
That is, if (c)P, = (c)P z, for all c then P, = Pz •

Below are some examples of built-in patterns in SNOBOL4. L is
the length of the subject string. When a cursor is used in an
arithmetic context it is the cursor position that is implied.
For simplicity, the sequence [c] is represented as simply c.

cPOS (n) = c if n = c
t! otherwise

c RPOS Cn) c if n = L -
t! otherwise

c TABCn) = n if n ~ c
0 oth~rwise

c RTAB (n) L-n if L-n
t! otherwise

c LEN (n) c+n if c+n
= 0 otherwise

(, ABCOEF' , 1) BREAK ('TAF')

(' ABCOEF' ,2) SPAN (' CAT')

c

~

S

c

L

[5]

(3]

('A(B(»CO', O)BAL (1, 6,1,8]

('ABCOE',O)ARB = (0, 1, 2, 3, 4, 5]

Note that in the above, most built in patterns bave at most
one post-cursor position. ARB and BAL are exceptions and these
are regarded as having 'implicit alternatives'.

Unevaluated expressions within patterns may make their
behavior vary during a match. Thus

P = BREAK (*S)

will succeed or fail depending on the value of S. Any such
pattern is termed varying. For the duration of this chapter
we will only be concerned with nonvarying patterns.

The al~~nation (I) of two patterns is defined as:

(6. 1)

where the right hand side indicates the concatenation of the
two sequences.

PATTERNS AND CURSORS

To define the concatenation of patterns we must extend the
definition of pattern to operate on sequences of cursor posi
tions. This is easily done:

] P (6.2)

Note that the notation C1PC2P is ambiguous because it can mean
either «C 1 P)C2)P or (cIP) (C2P) and so will be avoided. For
completeness

For example

('ABCDEF' ,2) «'CDE' I 'C') LEN (1))

The pattern FAIL is defined as:

(c) FAIL (ij

for all c. Hence

FAIL I P P P I FAIL

[5,3] LEN (1)
[6,4]

(6.3)

for all P. That is, FAIL is the identity element under pattern
alternation. Note that

(c) NULL c

where NULL is the null string. This is the identity mapping
for cursors and hence NULL is the identity element for pattern
concatenation. That is

NULL P = P P NULL

for all patterns P.

A pattern may have a countably infinite number of post-cursor
positions. For example:

(c) SUCCEED [c, c, c, •••]

where the sequence goes on indefinitely. An infinitude of al
ternates, therefore, produces a well-defined pattern. Thus

ARB = (NULL I LEN (1) I LEN (.2) I ...)

may be regarded as a proper definition for ARB. Whereas the
number of post-cursor positions of (c)ARB is bounded by the
length of the subject and so is always finite, its finiteness
is not in general a requirement that the pattern be well-

Page 104 c~er 6 PATTERN TH~2EX--__________ _

defined. A pattern whose sequence of post-cursors is finite
for all pre-cursors is said to be !ini~~. If there is at least
one pre-cursor such that the list of post-cursors is infinite
the pattern is said to be infinite. As usual, we will hold
that if C is infinite then

C = C C·

for all sequences C'. Thus

SUCCEED SUCCEED , P

for all patterns P.

It should not be here thought that the definition of pattern
is to be restricted in any way to those patterns which are
directly available via SNOBOL4 primitives or by combinations
of simple operations such as alternation or concatenation. A
pattern is any well-defined process which maps a cursor into
cursors of the same subject.

I I ONLINEAR PATTERNS ABORT is a more pungent form of
II I I FAIL. Whereas (c) ABORT, like
I I I I (c) FAIL, contains no post-cursor positions (ABORT
I II, always fails) ABORT differs from FAIL in that it
I I, causes an immediate halt of scanning. To include

L- ABORT in the theory it is necessary to annex a new
element which is the value of ABORT. We write

(c) ABORT t

t is called the ~bort symbol. When it is concatenated on the
left of any sequence of cursors it yields itself. That is

• [C., C2' •••] = t

More generally, an ext~nde9-seg~~ E is defined as

E C). [Cl' C2' •••]).

where C is a sequence of cursor positions, possibly infinite,
possibly null, and). is either t or 0. Concatenation of ex
tended sequences is defined as

if).1 = "
if).1 = t

it is easy to see that the concatenation of extended sequences
is associative (the left most abort symbol is the important
one no matter how the sequences are grouped) so that

(6.4)

We can extend the domain of patterns from mere -sequences to
extended sequences as follows:

FUNDAMENTAL PRO_P=ER_T~I~E:S~ ____ . __________ ~p~a~q~e~1~0~5

(C)..) P (CP)). (6.5)

Note that (t)P = t.

An extended sequence which does not have a terminal abort sym
bol is called linear; otherwise it is called D-onlin~. If
for all cursors c, the value of (c)P is linear then P itself
is said to be linear.

The built-in pattern FENCE which matches the null string but
causes an immediate halt of scanning (like ABORT) when backed
into is defined as

"11
I
III
I
I

(c) FENCE [c] t

UNDAMENTAL PROPERTIES The definition of concatena-
tion and alternation of pat

terns given above (6.1) and (6.3) are still valid
with extended sequences. It follows immediately from
the associativity of extended sequences that the al
ternation of patterns is associative. That is

(6.6)

We briefly introduced the notions of transformations and
homomorphisms on strings in Chapter 3. It readily follows from
(6.2) and (6.5) that patterns are homomorphic transformations
on extended sequences. That is

(El E2) P = (El P) (E2 P)

From this it follows that

(6.7)

(6.8)

Thus, if a ~attern is regarded as a transformation on extended
sequences, concatenation becomes function composition. It is
an interesting fact that function composition is always as
sociative. Thus

F!2]2Q§itiQ!!
the right.

Concatenation distributes over
That is

alternation

(6.9)

from

(6.10)

Proof: The left hand side when applied to a cursor c will
produce by (6.1) and (6.7) and (6.1) again

«cPa> (CP 2»P 3

g~ge 106 Chapter 6 ______ PATTERN THEORY

Note that distribution from the left would depend upon
E(P t , Pz) (EP t) (EPz) which is not true for arbitrary E.
See Exercise 6.2.

A pattern P is said to be monic if (c)P has at most one post
cursor. Thus 'A' , 'AE'~S-not monic but 'A' , 'B' is monic
since both alternands could not match at the same pre-cursor
position. Also, FENCE is monic for although (c) FENCE is ct
the abort symbol does not count as a post-cursor position.
Note that if HI and M2 are monic patterns then so is their
concatenation (HI H2).

g~QEQ§~n If m is monic and linear then it distributes over
alternation from the left. That is

(6.11)

The proof of this is simple and will be left as an exercise.

MOst of SNOBOL4's built-in patterns are, as has been
previously noted, monic. The others are referred to as having
implicit alternatives. If a pattern is composed only of monics
then it can be decomposed into an alternation of monics as in
the proposition below. This yields a kind of canonical form
for patterns.

g~QEOsitiQn Let P be any pattern formed by concatenation and
alternation of linear monic patterns and ABORT and FENCE. Then
P can be written

(6.12)

where each m(i) is linear monic and where each A(i) is either
ABORT or NULL (the null string also serves as the null pattern
and both differ from the null sequence, Z).

~Qof: By induction, if P has only one element and since

FENCF = NULL I ABORT

P is 'of the indicated form. If P is of the form PI I P2 and
both PI and Pz are in the form of (6.12), P is also. If P is
of the form, PI P 2 and both are of the form (6.12) we have, by
right distribution

Focus on only one term, for if we can show that each term
reduces to (6.12), their alternation will. Consider

If A is ABORT, the value is m A and is of the desired form.
Otherwise apply left distribution of mover P2 •

___ ARBNO ___________ Pag~107

.111
I
IIII

CANNING In the normal unanchored mode of scanning

I
"11

the cursor first presented to the pattern is
(Subject, 0) and upon failure is presented with
(Subject, 1) and so forth until the pattern succeeds.
That is, the effect of a pattern match is the first
cursor position of

(0 P) (1 P) • •• (L P)

if any. Here L is the length of the subject. The string
matched is determined by th~ first non empty (c P). Let (Cl
P) be the first nonempty one. Let C2 be the first post-cursor
of (el P). Then the string bounded by Cl, Cz is the substring
matched. For example, let the subject be 'ABC' and let the
pattern be 'AB' , 'ct. Then the sequence

(0 P) (1 P) (2 P) (3 P)

is

(2] (lj (3] f1J [2, 3]

The first pre-cursor position (0) and the first post-cursor
position (2) determine the string matche1 ('AB').

If the pattern matcher is in anchored mode then the sequence
of cursor positions of interest is only (0 P) •

r-- ,
, II RBNO ,
,I 1.---' '" I, I IIII t

'" I,

The function ARBNO(P) which may also be written
p* is defined as

p* = NULL, P p* (6.13)

since p* is defined in terms of itself we may well ask, is it
well-defined? That is, does (6.13) specify one and only one
pattern. The answer, as we will see, is yes, but the question
is at least as intriguing as the answer. will a pattern, in
general, defined in terms of itself have a unique solution?
the answer is, obviously, no since

P P

will be satisfied by any pattern. Next, we might consider
patterns having the same general form as (6.13), viz.

p (6.14l

will this always uniquely define P where Ql and Q2 are given?
The answer is no, for let Ql = FAIL and let Qz = NULL. Then
(6.14) reduces to

P FAIL , NULL P NULL P = P

~sge 1~0.;::.8 __ _ Chapter 6

Here, as before, there are an infinite number of solutions to
the equation. As a less trivial example, let

Ql POS (0)
Q2 POS (1)

Then (6.14) has an infinitude of solutions of the form:

P POS (0) I POS (1) P'

where P' is any pattern. (Note that POS(i) POS(j) is either
FAIL if the arguments are unequal or POS(i) if i = j.)

For the special case that Q1 is NULL, however, we have the
following

R~Q~QsitiQn For any pattern Q the equation

P NULL I Q P (6.15)

can be satisfied by one and only one pattern P.

~Qof~ We will prove this by providing a procedure for com
puting the kth cursor position (if one exists) of (c)P for all
c and for all k. Since (c) NULL = c, the first cursor position
of (c)P is determinable for all c, viz. c itself. This forms
the basis of an inductive proof. Suppose that we can compute
the first k-l cursor positions of (c)P for all c. In some
cases there may not be as many as k-l in which case we would
know all of them and also how the sequence terminated (i.e.
with an abort symbol or not). Then to compute the k th cursor
position of (c}P we note that

(c)P = c (c Q P)

Letting (c)Q

Now all that is needed to compute the k th cursor of (c)P is
to compute the (k-1}st cursor of (Cl)P if it exists. If it
does not and if the sequence is not terminated by an abort
symbol, we reduce k-l by the number of cursor positions in
(Cl)P and find the required cursor position of (C2)P. In this

way the sequence (c)P can be effectively computed for all k.

If the argument to ARBNO is monic and if ARBNO is anchored a
kind of £~ck~p-free scanning results which can be useful for
selectively scanning over portions of a string. For example,

Q " ...
S POS(O) ARBNO(Q BREAR(Q) Q I NOTANY(Q» P

will scan S for a substring not contained in quotes which will
match the pattern P.

ARBNO

A reasonable exercise at this point is to demonstrate that P
is applied at all pre-cursors not within quotes. First note
that the argument to ARBNO is monic and linear. Next we need
a

E~QEosition Let m be linear monic. Then

ARBNO(m) NULL, m , m2 , m3 , •••

where m2 is m concatenated with m, m3 = m2 m, etc.

ARBNO (m)

By (6. 10)

m*
NULL
NULL
NULL

m m*
m (NULL , m m*)
m , m2 m*

(6.16)

By induction it can be shown that the ith term is m to the
(i-1) st power.

Given (6.16) it should be evident that the sequence of pre
cursors applied to P are monotonically increasing and are ap
plied at all points other than within quotes.

As another example, PL/I comments are delimited by /* on the
left and */ on the right. To match pattern P against a string
not contained in a comment we can execute:

S POS(O) ARBNO('/*' FENCE ARB '*/' FENCE I LEN(1» P
(6.11)

Even the most ardent SNOBOL4 enthusiast will admit to being
puzzled occasionally over the use of FENCE. It's double ap
plication in this example virtually begs for analysis. First
note that any pattern of the form P FENCE , M is monic for all
patterns P and all monic patterns M. Hence the argument to
ARBNO is monic. For any pattern P we have

(c) PC).

The ~Q£i2te9-!ine~ pattern, PL, sometimes called the li~
ES~~ of P is defined as

(c) PL C

The associated nonlinear pattern, PN, sometimes called the
nQDli~ear_ESrt-of P is defined as

(c) PN c).

For example, the linear part of (ANY ('AB') FENCE) is ANY('AB')
and, in general, the linear part of (m FENCE) for any linear
monic m is m itself. The nonlinear part is NULL , m ABORT.
The linear part of a monic pattern is monic. For example, the
linear part of ('/*' , LEN(1» FENCE is the monic pattern that

____________ Chapter 6 PATTERN IHEQE! ______ _

matches '/*' if present or a single character if '/*' is not
present. Note that

(e) (PN PL) = (c).) PL
C).

and hence for all patterns P

PN PL P

(c PL)).

(6. 18)

Note too that if PN is the associated nonlinear part of some
pattern then

FENCE PN FENCE PN"FENCE

From (6.19) and (6.18) and associativity it follows that

FENCE P FENCE PL

for all patterns P. In what follows. let

As stated previously

F =
N =
A =

FENCE
NULL
ABORT

F = N I A

For all patterns P, using (6.21) and right distribution

F P = P I A

For all P

P A I A A

(6. 19)

(6.20)

(6.21)

(6.22)

(6.23)

If M is monic. it may easily be shown using (6.23) and (6.21)
and right distribution that

F M F F M (6.24)

f~QPQsi tim}
then

If M is monic and if m is the linear part of M

F M* (F M) * F (M F) * = F m* (6.25)

Proof: To prove the first equality, by (6.22),(6.13), (6.22),
and(6.24)

F M* M* , A
N I M M* , A
N I F M M*
N I F M F M*

The last equation has the general form

A~B_NO ____ _ Page 111

P N I F M P

Since (F M)* also satisfies this equation we have by (6.15)

F M* = (F M) *

To prove the second equality. let MI = M F.
monic. By the first equality

HI is clearly

(F MI) *
Replacing HI by M F and then using (6.24) we have

F(M F)* (F H F) * = (F M') *
To prove the third equality, use the fact that F M
(6.20» and the first equality to obtain

F m (see

(F M) * = (F m) * F m*

Let us return to our example of searching for a semi-colon not
within comment delimiters. The pattern

POS(O) ARBNO('/*' FENCE ARB '*/' FENCE I LEN(1» P

is of the
lows from
monic.
anchoring
scanning.

form POS(O) ARBNO(~ P where M is monic. This fol
the fact that any pattern of the form P FENCE I M is
Anchoring on the left with POS(O) is equivalent to
on the left with FENCE from the standpoint of global

By (6.25)

FENCE ARBNO(M) P FENCE ARBNO(ML) P
FENCE (NULL , ML , (ML) 2 I •••) P

where ML is the linear part of M. We need only show that ML
behaves properly. From its definition there are only 3 cases
to consider at any given cursor position.

1.) The string '/*' appears at the cursor position and there
follows a '*/' in the string. In this case the entire comment
is matched by ML.

2) The string '/*' appears but no following '*/' is present.
In this case ML fails.

3) The string '/*' does not appear at the cursor in which case
a single character is matched.

From this it should be clear that P is applied to all cursors
in the order of increasing cursor position except within com
ments or unclosed comment constructions.

Chapter6_-_.~~IHEORY

r--------------------------,
IIII

• • IIII
I I
I I

ECURSIVE PATTERNS A pattern P which is defined in
terms of itself is said to be

defined recursively. In the investigation of ARBNO,
we have encountered the definition P Q, I Q2 P
where Q, and Q2 were given. Even in this simple case
there were values for Q, and Q2 which would lead to

an improper definition for P even though the specific case of
ARBNO led in all cases to a valid definition. The general case
of recursive definition is of interest to the SNOBOL4 program
mer because the language permits, via unevaluated expressions,
arbitrarily constructed recursive definitions. For example,
the SNOBOL4 assignment

P NULL I 'A' *p

assigns to P a pattern which will satisfy the equation

P NULL I 'A' P

From Prop. (6.15) we know that P is well-defined and has a
value according to (6.13) of ARBNO('A').

More generally, if P is assigned the value f(*P), where f is
some functional form, then the pattern so defined is the one
·which satisfies the equation

P f (P)

It may be that no pattern or more that one pattern satisfies
the equation in which case P is not wel1-defin~g. The scanner
typically loops for not well-defined cases. In SNOBOL4 it is
quite easy to write a recursive definition which has more than
one solution. For example:

P *p

has an infinite number of solutions. It is not quite so easy
to find a recursive definition such that there is no solution
to P. To do so we make up a primitive pattern function called
NOT, defined as:

(c) NOT (P) c if (c)P = 0
(IJ if (c)P ~ (IJ

There surely is no solution to the equation

P NOT (P)

and hence the assignment P = NOT(*P) would lead to an ill
defined construct. NOT, however, is not a primitive facility
of SNOBOL4 and, moreover, it is not known whether a recursive
definition can be written in SNOBOL4 which does not have at
least one solution.

RECURSIVE PAITPNL-_______ ----n~l11

There are many ways in which a recursive definition can be
poorly formed in SNOBOL4 and these usually result in having
more than one possible solution. Frequently the following
principle is violated.

~~QEositiQn Let A, B, C and D be patterns. If B does not
match the null string or a string of negative length then

P = A B P C I D (6.26)

has at most one solution for P.

Proof: Let P, and P 2 be diffet"ent solutions to (6.26). Let S
beastring which is matched differently by P, arud Pa• Let c
be the cursor in S with the largest cursor positioR such that
(c)P l ~ (c)P z• Then

(cA) (cBPlC) (cD)
(cBP l C)

(cBP l)

~ (cA) (cl3P 2 C) (cD)
~ (eBP2 C)
~ (CBP2)

Then for some c' in the sequence (cB) we must have

But by definition of B, c' is greater than c which contradicts
the assumption that c was greatest.

(6.26) can be strengthened a. great deal (See Exer. 6.20) but
this simple statement is quite powerful. For example, let

P = 'B' I 'A' P (6.27)

Then by (6.26), P is unique. Now

ARBNO (• A ') , B ' = (NULL I ' A' ARENO (, A'» , B '
= , 13' , 'A' (ARBNO (' A I) I B')

This last equation is in the form (6.27) so that

P = ARBNO('A') IB'

is the unique solution for P.

If P is given as

P A , B P

where B can match the null string we can frequently formulate
a set of solutions fo.r P which satisfy the equation. First we
define IF (P) as:

IF (P) NOT (NOT (P)) (6.28)

Then note that from the definition of NOT

~gg~1! ___________ ~apter_6 ___ =--E~~S~~_Y ___________ __

NULL NOT(P) IF(P) (6.29)

for all patterns P.
and Q:

It follows that for arbitrary patterns P

P IF(Q) P NOT(Q) P (6.3(»)

In this way we can decompose P into a number of disjoint al
ternatives from which we may analyze the behavior of P. Note
from this last equation, since NOT(P) P ~ ~, we have

P IF (P) P (6.31)

For example, let P be 'defined' recursively as:

P LEN(1) ,POS(O} p (6.32)

By considering various disjoint situations we can reason out a
behaviour pattern for P as follows:

(c) P = (1, 1, •••] if POS(O) LEN(1) would succeed
(c) P c+1
(c) P ?

if NOT(POS(O» LEN(1) would succeed
if FOS(O} NOT(LEN(1» would succeed

(c) P ~ if NOT(POS(O)} NOT(LEN(1» would succeed

The question mark (?) indicates that at this set of conditions
the equation merely says that P = P and so any pattern would
do. Letting X indicate such an arbitrary pattern we have

P POS(O) LEN(1) SUCCEED I NOT(POS(O» LEN(1) I
POS(O) NOT (LEN (1» X (6.33)

We will let the reader confirm that any pattern of the form
(6.33) is a solution to (6.32) noting that NULL, SUCCEED =
SUCCEED, that PI , P 2 = P 2 , PI if PI is mutually. exclusive
with P 2 and that POSen) NOT(POS(n» = FAIL.

Patterns exhibiting left recursion present ambiguous condi
tions which are resolved when the scanner is in a mode known
as QUICKSCAN (the default mode). Consider

p P 'A' , 'B'

This equation has a solution P = ABORT.
however, in QUICKSCAN mode the pattern

p *p 'A' , 'B'

operates as if it were defined as

(6.34)

As we will see,

(6.35)

P 'BAA ••• • , ••• I ' BAA ' I ' BA • , • B '

where this indicates that P matches any substring equal to a
IB' followed by an arbitrary number of 'A's matching alter
nates in the order of decreasing length. The reader may easily
confirm that this value for P also satisfies (6.34).

RECURSIVE PATTERNS Page 115

This is implemented roughly as follows. When *p is called upon
to match in (6.35) the subject is reduced (on the right) by
the minimum number of characters required by *P's subsequent
(1 character in this case). Hence recursive plunges are taken
until no more characters remain which breaks the loop. Some
of the details of this process are described in the next chap
ter. To establish the theoretical background for understanding
this heuristic, first note that if A does not match the null
string or a string of negative length, then for any finite se
quence C

(C) A = C => (6.36)

This is easily seen by considering the smallest cursor posi
tion in C and an immediate contradiction results.

E{QEositiQn If A does ,not match the null string or a string
of negative length and if both A and B are finite linear pat
terns then

P = P A , B (6.31)

has exactly one finite linear solution for P, viz.

P ••• , B A3 , B A2 t B A I B (6.38)

Proof: We first note that (6.38) is well-defined if A must
match a nonzero length string since we can discard all alter
nates other than the last L where L is the length of the sub
ject. Using (6.37) we obtain

cP = (cPA) (cB) (6.39)

If (cB) = ~ then, by (6.36), (cP) = 0. Since (cB) is finite
linear it. may, by Exer. 6.6, be removed from both sides of
(6.39) • Letting C l be the result of this removal from cP we
have

cPA = (C l (cB»A (C l A) (cBA)

Again, by (6.36), if cBA = 0 we have that Cl = 0. Otherwise
we may remove cBA from both sides. Assume that C2 is what
remains after removing cBA from C l • Then, as before

this process eventually terminates with cn = 0 and this is
ensured by the fact that A does not match the null string.
Hence we have

cP • •• (cBA3) (cBA2) (cBA) (cB)

from which we obtain (6.38). We conclude that the QUICKSCAN
heuristic limits the solution space of (6.31) to finite linear
solutions. On the other hand under FULLSCAN, (6.37) loops im
plying no such restriction on the solution space.

pagjLl1§ ______ ~hapter 6--=- PATTERN THEORY

11
1111111111111111111111111 EXERCISES 111111111111111111111111
11

Exercise 6.1 Which of the following are true1

a) 'A' 'A' , 'A'
b) 'A" 'B' ANY ('AB')
c) ARBNO('A') NULL, ARBNO('A')
d) BREAK(S) ANY(S) = ARB ANY(S)
e) 'A'" B' 'B ' , 'A'
f) ANY('ABC') = NOTANY(DIFF(&ALPHABET,'ABC'»
g) FENCE (P t , P 2) FENCE PI , FENCE P2
h) (, AB ' , ' DEF ') ('G ' , ' H')

'ABG' I 'ABH' I 'DEFG' , 'DEFH'
i) ARB ARBNO(LEN(1»
j) (P t ' P2) FENCE P t FENCE I P2 FENCE

Exercise 6.2 While pattern alternation is defined as

it is not in general true that

(C) PI (C) P 2

where C is a sequence of cursor positions.
example.

Find a counter-

Exercise 6.3 Reduce the following pattern to canonical
form

('B' , 'R') ('E' , 'EA') ('D' I 'DS')

Is the pattern monic1

• , Exercise 6.4 In semigroup terminology a left zero z is
defined as an element such that z e = z for

all elments e of a semigroup. What is a left zero for a) the
semigroup of patterns with the alternation operator, b) the
semigroup of patterns with the concatenation operator, and c)
the semigroup of linear but possibly infinite cursor sequences
under concatenation1

r ---------~
, Exercise 6.5 An idempotent element E for an operator *

has the property that

Exercises for chapter 6 Page 117

E * E = E

Which of the following are idempotent under concatenation?

a) BREAK (S)
b) SPAN (S)
c) TAB (N)
d) P~S (N)
e) FAIL

f)
g)
h)
i)
j)

NULL
FENCE
ABORT
, A'
ARB

Exercise 6.6 Let El and E2 be extended sequences and C a
finite linear sequence. Show that any C is

left and right cancellative, where left cancellative is
defined by a) and right cancellative is defined by b).

a) =)

b) =)

Show that arbitrary E are not cancellative by finding an E, El
and E2 such that

c)

d)

Demonstrate that if pattern R is finite, linear, then for any
two patterns PI and P 2

e)

f)

Exercise 6.7

.---------,
, Exercise 6.8

is monic.

r
, Exercise 6.9

there in (O)P?

=)

=)

What are the first five alternands in the
expression:

ARBNO(ARBNO(LEN(1»)

Show that if M is monic and P is merely any
pattern, then

P FENCE M

Let P = ARE ARB. Let L be the length of the
Subject. How many post-cursor positions are

Chapter 6 PATT~RN !HEORL _______ _

r---------------~
I Exercise 6.10 Show that the pattern matching statement
L-, _____________ ~

Subject POS{O) Pattern

is equivalent to the statement

Subject FENCE Pattern

Exercise 6.11 Let

P ARBNO{LEN{l) ARB)

How many post-cursor positions are there in (O)P where the
size of the subject is L characters?

Exercise 6.12
L-----_________ ~

Exercise 6.13

Prove that if m is linear monic then m (P1 I
P2) mP 1 I mP2·

Which of the following patterns are neces
sarily monic?

a) BREAKC'ABC') e) ,P I ABORT
b) paSCO) I RPOS(O) f) FENCE P
c) ANY (S) I BREAK (S) g) P FENCE
d) POS (N) I TAB (N) h) FENCE I FENCE

r------------,
Exercise 6.14 I Augment the pattern shown in (6.17) to skip

L-_____________ ~I over material in quotes (•••••) as well as
within comments. Make sure that characters within unclosed
quotes are also passed over.

Exercise 6.15

a) (' AB' ,0) P ?

Let P = ARBNO('A' ARB ·B·). What is the
sequence of post-cursor positions for

b) (• ABAB' , 0) P ?

c) How many post-cursors are there 1n (DUPL('AB',K),O)P ?

Exercise 6.16 Using the technique of Exercise 6.14, wr1te
L----- a pattern which will scan for a PL/I state-
ment failing if none exists.

Exercise 6.17 Furnish a counter-example to the following

ARBNO (P) NULL I P I p2 I p3 I ••.

r---------------~
, Exercise 6.18 Using back-up-free scanning, write a pat-

tern which will print out all SNOBOL4 iden
tifiers in a string of SNOBOL4 source. Identifiers within
quotes should not be printed. It will be OK to print out the
Sand F of GOTO's. For example

ALPHA = 'ABC' B(flX") : S (SAM)

should print the strings 'ALPHA', 'B', '5' and 'SAM'.

r-'---------------,
, Exercise 6.19 Let PL I and PL 2 be the associated linear
L- patterns of PI and P2 respectively. Provide
a counter-example to the conjecture that PLt , PL2 is the as
sociated linear pattern of PI , P 2 -

r-
, Exercise 6.20 Let f(P) be an expression involving P com-

posed of constant patterns, alternation and
concatenation. Show that f(F) can be written as

BI P f I (P) A2 , B2 P f2 (P)
••• An Bn P fn (P) , A

where A, At, A2 , ••• ,An , Bt , B2 •••• ,Bn are patterns not in~
volving P and f t , f 2 , ••• ,fn are functions. From this, show
that if Bt , B2 , ••• ,Bn do not match the null string and if no
pattern primitive matches a string of negative length, then

P f (P)

has at most one value for P.

Exercise 6.21 Which of the following equations for P
uniquely specify a pattern? If P is unique,

give its value. Otherwise indicate a class of values (via X)
which will satisfy it.

a)
b)
c)
d)
e)

r----------------,
, Exercise 6.22 L-______________ ~

P
P
P
P
P

let P
string.

RPOS(O) , BREAK(S) P
ANY (5) , SPAN (S) P
ANY(S) , BREAK(S) P
TAB(N) I POSeN) P
TAB(N) I R~AB(N) P

be a pattern not matching the null
Define P- recursively as

P- = P P- NULL

Show that P- is well defined. P- is called the negative ARBNO
of P.

Let P be given as

Pag~ 120 Chapter 6 . PATTERN THEO~RY~ __________ __

P = X Y P z

where Y is monic and does not match the null string.
explicitly in terms of X, Y, Z and the two ARBNO'S.

write P

,---.,
1,.-, I
I L-.I I
I r--'

C HAP T E R S EVE N

II AT T ERN
L.J

n n
11'/1 I
"'/1 ,
" 'I 'I I' A T CHI N G
L.J U

r--,
L,,-I

" " r'L, MPLEMENTATION
'---'

Path Diagrams

Derived Patterns

SCAN

Heuristics

Compounds

Unevaluated Expressions

n n
I I II hile it is not strictly necessary to know how pattern
11/'11 matching is implemented in order to use SNOBOL4 pat-
11/"1 terns, it is necessary to be somewhat aware of the
II 'I implementation in order to program efficiently and
U U well. This chapter is based on the internals of three
independent SNOBOL4 implementations, MAINBOL, SPITBOL, and
SITBOL.

The compiler processes all statements in a uniform manner
without treating the pattern-matching statement any dif
ferently (essentially) than any other statement. Every state
ment is compiled into a kind of polish notation which may be
visualized as a tree. For example the pattern

(, A' BREAK (, XY ') I ' 0 ') (ANY (, ABC •) I ' HA ' 'TA')

is depicted in Figure 1.1. An empty box denotes concatenation
and the compiler treats I as associating to the left •

..----,
r--I 1-----------,
, L---.J

1
..----,

.---1 I 1----,
I L---.J 1
I I

,---, I
r---I 1----, '0'
, L--.J , , , , , ,

'A' BREAK

'XY'

The compiled form of

.----.
.-----1 I ,----,
, L-..--I ,

, I
..---, ,

r--I 1 1----, 'TA'
1 L--I I
1 I
I I

I
ANY 'HA'

I
I

'ABC'

(• A' BREAK (, XY ') 1 ' 0') (ANY (, ABC') 'HA' I ITA')

Pattern matching operates by the concerted action of a set of
built-in monic patterns called 2rimitiy~~. 'strings used as
patterns, and the patterns indicated by BREAK and ANY, fall
into this category. Abstractinq Figure 1.1 to the point of
representing all primitives by single letters we arrive at the
diagram in Figure 1.2.

PATH DIAGRAMS _______ 2.ige 123

r----t

r------I 1------,

r----1

.----1 1 1---,
, L---J 1
1 1 , ,

r----1 1
r--I 1---, C
, L---J ,

I ,
1 ,
1 ,

L---J

r---I
,....---1 , 1----,
1 '---' I
, I
, 1

..---. ,
.---- , , 1---, F
1 '----' ,
1 1
1 1
1 ,

A B D E

The abstract tree of the ~press ion:
(• A' BREAK (• Xy·) , • D') (ANY (• ABC') • HA' , • TA')

This form or structure for the pattern is, however, not the
most suitable for doing pattern matching. In Figure 7.2 if
nodes A and B match successfully, node D is then attempted.
But to obtain D the scanner must go up the tree to the top
node and back down on the right hand side to find the primi
tive which is to be matched next. Since ancester information
is not present explicitly in the compiled Polish prefix this
tree walking would be prohibitively expensive. A similar thing
can be said about the events which occur when a primitive
fails. The information available from the tree, while com
plete, does not seem to be in a form most conducive to rapid
search. Hence, when the expression represented by the polish
tree is evaluated, an entirely new structure is created. An
example of such a structure is shown in Figure 7.3. A solid
arrow drawn from a node X to a node Y indicates that if X is
successful Y will be matched next. Y is called the subsequent
of X. A dotted arrow from X to Y indicates that, if X fails,
Y can be tried immediately with the same pre-cursor position.
Y is then called the alternate of X.

IIII
• I
IIII
I
I

~TH DIAGRAMS More formally, a path diagram is an in
terconnection of nodes. Each node may

have a sub~quen! (indicated by a-Solid arrow) or an
alt~TI!2te (indicated by a dotted. arrow) or both.
Each noae has an associated primitive which is a
monic pattern. An s-vacancy is a node without. a

subsequent. An ~cancy is a node withOQt an alternate. The
~Q!: of a path diagram is the node with no arcs directed into
it. (It is easy to show that construction limits the number
of root nodes to one.)

•••••••••••••••••• >1 c 1-----.
L.-...J ,

I
~

..---,
.... >1 F I

'----'

..---, ..---, ..---, ..---,
I A 1---->' B 1---->1 D I >, E ,
'---I L--.--I '---I L--J

Figu£Ll~

The path diagram associated with Figure 7.2.

The E~ih-giag~~m of a pattern consisting only of a primitive p
is simply a node without subsequent and without alternate and
with p as its associated primitive. The concatenation of two
E~th diagram~ D, D2 is found by drawing a solid arrow from
every s-vacancy of D, to the root of D2 _ The ~l t~nation of
tW2-ES~h dia~ams D, I D2 is obtained as follows: starting
with the root of D" search down the chain of alternates until
an a-vacancy is found_ Then draw a dotted arrow from this a
vacancy to the root of D2-

It is interesting to note that the operations of alternation
and concatenation of path diagrams are (like patterns) as
sociative. Hence path diagrams form a semigroup under these
two operations.

The pattern node contains four essential fields. as indicated
below (one more field is introduced later).

• i
PROG ,program address,

I I
SUBS , subsequent ,

I I
ALT , alternate I

I I
ARG , argument ,

To describe the pattern matching algorithms in SNOBOL4 we
would declare a structure of type NODE as

DATA('NODE(PROG,SUBS,ALT,ARG) ')

Then, to allocate a node for, say, LEN(13), we may execute

NODE('LENP'",13)

where the label 'LENP' indicates the location which handles
the LEN primitive. Its encoding would be the machine language
counterpart of the following SNOBOL4 statements.

PATH DIAGRAMS

Is the number of characters remaining in the SUBJECT ~
ARG(NODE}? If not, fail!

LENP GE(SIZE(SUBJECT) - CURSOR, ARG(NODE» :F (F)

Otherwise compute the post-cursor position and succeed.

CURSOR CURSOR + ARG(NODE} : (S)

Here F is a label in the scanner where all primitives go to
upon encountering failure and S is the label they go to when
they encounter success. Note that the primitive bumps the
CURSOR.

One may suppose that a routine to concatenate two path
diagrams can be written in SNOBOL4 very easily. Consider the
following attempt.

DEFINE ('CONCAT(P1,P2) ')

If P1 is null, just fail! L--__ ~

CONCAT IDENT (P 1, NULL) :S(FRETURN)

Otherwise fill up the S-vacancies of the alternate and
subsequent.

r-

CONCAT (ALT (P1) , P2)
CONCAT (SUBS (P 1), P2) : S (RETURN)

t Failure to CONCAT iroplies that the subsequent was null.
, Plug it!
I

SUBS (Pl)
CONCAT_END

P2 : (RETURN)

The above routine is not valid for several reasons. 1. Path
diagrams, as we will see later can have loops and this will
possibly ensnare CONCAT in a recursive loop. 2. If the two
arguments, Pl and P2, are identical the result is an abomina
tion. 3. The algorithm modifies Pl, the first pattern. This
is only permissible if it is known that P1 is not to be used
for any other purpose. This guarantee, of course, does not
exist.

All three problems can be surmounted by copying the first pat
tern. Copying a graph with loops was treated earlier (COPYL,
Prog. 5.8) and that function can be modified to perform the
concatenation. See Exercise 7.4. A similar situation prevails
with respect to alternation.

A much more practical method, and one that is used by most im
plementors, is to group all the pattern nodes together in one
contiguous block. This not only facilitates the copy operation

~ge 126

but increases the speed of sequencing through the nodes of a
pattern. (Exercise 7.6 explores this possibility.) Logically,
however, it is correct to think of the pattern as being an
inter-linked collection of nodes.

III ERIVED PATTERNS Can a pattern be reconstructed from
I I the path diagram? The answer is yes.
I I Let pen) be the primitive associated with node n.
I I The derived pattern of node n, D(n), is defined in
III terms of its associated primitive and the derived

L------J patterns of its subsequent node s and its alternate
a as follows:

D(n) pen) D(s) , D(a) if a and sexist
pen) D(s) if only sexists
p (n) , 0 (a) if only a exists
pen) if'neither a nor sexists

The derived pattern of a path diagram is defined as the
derived pattern of its root.

When the scanner is defined, it will be seen that it imple
ments the derived pattern. Also, it can be shown (Gimpel,
1911] that any pattern will equal the derived pattern of its
path diagram. Together these two observations constitute a
proof of the pattern matching algorithm and provides a
theoretical basis for the extensions which follow.

, ,
" Program ,t The algorithm used internally to do pattern
I' 7.1 'I matching is illustrated by the function
" SCAN I' SCAN. SCAN has two arguments, the LENGTH of
L-- • the subject and a pattern identified by its
root node NODE. The subject itself is held by a global
variable SUBJECT and the current cursor value is held in a
global variable CURSOR. There are good reasons for the selec
tion of which quantities are to be passed to SCAN and which
quantites are global. These reasons will be evident when
Unevaluated Expressions are discussed.

The initial value of CURSOR is set by a driver program called
MATCH (Exercise 7.8). In unanchored mode, if SCAN fails, MATCH
increments this pre-cursor by 1 and calls SCAN again. The al
gorithm requires a stack and the familiar operations of PUSH
and POP. The driver program initializes things by pushing a
null alternate and a pre-cursor value.

Basic SCAN function. The pattern identified by its root
node NODE is matched against the SUBJECT at a pre-cursor
position given by the global variable CURSOR. CURSOR is
updated on success. The stack is another global quantity
which SCAN modifies as a side-effect. If it fails, the
start-up alternate-cursor pair are popped. On success, a

______________ !!!l;URISTI£~ ____________ Pa~ 127

sequence of alternates may remain on the stack.

DEFINE (' SCAN (LENGTH, NODE) ,)
DATA ('NODE (PROG,ALT,SUBS,ARG) ,., : (SCAN_END)

Entry point and top of loop: If an alternate to the cur
rent node exists, push the alternate and the current
cursor.

SCAN (DIFFER (ALT (NODE» PUSH (ALT (NODE» PUSH (CURSOR))

.---,
, Go to the program label associated with the current node.
I Return arrives at either S or F.

: (SPROG (NODE))

Here on success. Set NODE to the subsequent. If there is
none, we are done; report success. Otherwise go back to
SCAN.

S NODE SUBS (NODE)
IDENT(NODE,NULL) :S(RETURN)F(SCAN)

r---,
, Here on failure. Pop the stack for an alternate. If null,
, fail. Otherwise attempt to SCAN at this node • .
F CURSOR = POpe)

IDENT (NODE)
SCAN_END

~~m~§_~ef~~~g
!2y_£CAN:

r-----------------,

NODE = POP()

~S!!!~
PUSH
POP

: S (FFETURN) F (SCAN)

!Y£~
Function
Function

Where defined
programs:5

Program 5.6

I I I EURISTICS Each implementation contains a certain
I I • number of so-called pattern matching
,lltl heuristics which are intended to increase the speed
, I I of matching while having minimal effects upon the
, I I success or failure of the match. Generally they fall
L- into two categories, those which speed up matching
without affecting the overall outcome of the match (termed
~nobt~~iY~) and those which may have some effect on the out
come of the match (ob~Y§ive heuristics) • The programmer may
turn off all heuristics by setting &FULLSCAN = 1 in which case
he is said to be matching in FULLSCAN mode. Otherwise he is
operating in QUICKSCAN mode. At this writing he cannot selec
tively turn off individual heuristics or, for example, choose
the unobtrusive but suppress the obtrusive heuristics. There
are four heuristics: futility, length-checking, start-up and
recursive reduction. None of these heuristics are in
trinsically obtrusive but under certain assumptions they may
indeed become obtrusive. There is a fifth heuristic which is
a protection heuristic as opposed to a speed heuristic. Its
purpose is to catch programming errors. The pattern
ARBNO(NULL) will 1000 forever in FULLSCAN mode. In QUICKSCAN

Chapter 1

mode, the scanner checks the number of characters matched by
the argument to ARB NO and terminates if 0 characters were mat
ched. Some implementations have not included this heuristic
and its inclusion in a language which permits arbitrary state
ment looping seems questionable. We will not consider it
further.

~~ility Under FULL SCAN the driver program successively
calls SCAN for all cursor values with the given subject in the
order of increasing cursor position. But such a procedure can
be woefully time-consuming as in the following common example.

S BREAK (' ; ,) • K

which causes string S to be scanned for a semicolon and, if
found, assigns the initial substring to K. Under FULLSCAN, a
failure at CURSOR = 0 will cause a repeat at CURSOR = 1 which
will necessarily also result in failure, etc. A total of L + 1
scans will be made where L is the length of the string. The
wary user can anchor the scan either by prefixing a POS(O) to
the pattern or by using &ANCHOR mode. However under QUICKSCAN
mode, the futility heuristic will cause an abrupt halt of
scanning after the first failure.

A pattern is said to te futile for a certain cursor c if it
fails at this and all advances-Of the cursor position. That
is, if

(c')P = QJ for all c' ~ c

then P is futile for cursor c. If BREAK(S) fails at cursor c
it is also futile at cursor c. Hence, in the above example,
additional scanning at advanced cursor positions 1S not
needed. But it is not always possible to make a simple test
to determine the futility of a pattern.. If the pattern is the
string 'XXX' and the subject is 'ABCDE' the pattern is futile
for any cursor position but normally this is not discovered
until after at least 3 attempts are made to match 'XXX'.
Hence, string patterns report futility only when there is
insufficient length in the subject string. This is termed
l~ngth_f~ilu~. For convenience, whenever a primitive detects
futility, it is said to experience length failure, or simply,
to length fail. Thus, when BREAK fails, it reports length
failure even though, strictly speaking, the futility is not
due to an insufficient number of characters.

If a pattern primitive detects that it is futile, it branches
to a length-failure exit (LF). Otherwise it branches to match
failure (MF). Both of these are in lieu of the single fail
location (F) in the function SCAN. Most pattern primitives
can transmit futility detected by a subsequent. This means
that if P2 is the subsequent of Pt, and if P2 reports length
failure, PI can also report length failure. More formally,
the primitive P is called a tr~nsmittef if, whenever any pat
tern P is futile at cursor c, and if (c')p = c, then (p P) is
futile at ct.

_______ HEURISTICS ______ fage-1l2

A necessary and sufficient condition that a monic pattern p be
a transmitter is that p ~e monotonic in the sense that any
increase in pre-cursor position brings about a non-decrease in
post-cursor position. virtually all primitives in SNOBOL4 are
monotonic. Hence the scanner makes the assumption that all
primitives are transmitters. Under the transmitter assumption,
if all local failures are length-failures then the overall
pattern is futile.

For example, let

subject: 'ABC •••••••••••••••••• D'
Pattern: 'ABC' BREAK('D') 'DE'

Then the 'DE' when matched against the 'D' will le~gth-fail
indicating futility. BFEAKC'D') is a transmitter S1nce its
~ost-cursor position cannot possibly back-up if its pre-cursor
advances. Hence (BREAK ('D') 'DE') is futile. By a similar
line of reasoning, 'ABC' is also a transmitter and hence the
entire pattern is futile. The initial cursor position,
therefore, need not be advanced beyond o.
The futility heuristic is implemented by a global flag which
is set on at the start of a scan and is turned off at any
match-fail or if a non-transmitter succeeds. The flag is
called the futility flag. If the futility flag is on when the
overall pattern fails, it is useless to go on. The overall
pattern is futile.

The futility heuristic is unobtrusive for patterns which are
nonvarying. For varying patterns the heuristic becomes obtru
sive. For example, the pattern matching statement

'ABXB' ANY ('AB ') $ C BREAK (*C)

will first assign 'A' to C and the pattern BREAK(*C) will
fail. BREAK signals length failure and the scanner erroneously
concludes that the entire pattern is futile. Should the pat
tern be matched with a pre-cursor of 1, C would be assigned
the character 'B' and the subsequent BREAK would succeed.
Hence the pattern was not futile. The difficulty stems from
the fact that BREAK lied. If its argument is indeed an
unevaluated expression, it should not signal length failure
unless there are no characters left in the string.

ARB is a pattern which can use the futility heuristic in two
ways to hasten scanning. If the subsequent to ARB is futile
at any given cursor then ARB need not extend. Moreover, (ARB
P) where P is the subsequent will be futile. For example:

Subject: 'AXXXBXXX'
Pattern: 'A' ARB 'B' ARB 'c'

In the above, the 'A' will be matched against the first
character. ARB will match 0, then 1, 2, and 3 characters until
'B' succeeds. The second ARB will match 0, 1, 2 characters

until 'C' is futile. Hence, ARB 'C' is detected as being
futile at position 5 and ARB 'B' ARB 'C' is detected as futile
at position 1. The scanner can halt immediately. The futility
heuristic for ARB is implemented by pushing the original state
of the futility flag onto the stack. When the subsequent to
ARB signals futility ARB restores the state of the futility
flag and takes the length-fail exit. If ARB receives no in
dication of futility for all post-cursor positions up to and
including L, the length of the subject, then ARB should in
dicate match failure.

§!2~=~2_Heuristic - the start-up heuristic permits a pattern
beginning with POSen) to be applied immediately at CURSOR =
n. The effect is an anchored mode except that the anchoring
is done at a position other than CURSOR = O. Both SPITBOL and
SITBOL use this heuristic and SITBOL also uses a similar
heuristic for patterns beginning with RPOS(n). Another start
up heuristic exclusive to SITBOL is so-called contextual
anchoring. Many patterns will only match substrings beginning
with certain letters. For example SPAN('ABC') can only match
a substring starting with one of these 3 letters. The pattern
'CAT' , 'DOG' will match only a string beginning with 'c' or
'D'. Rather than call SCAN at each cursor position, it is
faster if the driver program makes a rapid pre-scan (at BREAK
speeds) to a point where a pattern would find a letter that it
could possibly begin matching. Failure at the first contextual
anchor pOint implies a repeated attempt to scan for the next
contextual anchor point. The alternation of two patterns
which are both contextually anchored is also contextually
anchored by the union of the anchoring sets. The concatenation
of two patterns is always anchored by the anchoring, if any,
of the left-most pattern. The start-up heuristics in all their
variations are unobtrusive. .

~~ng!h-Checking This check operates as follows. In the
course of building a pattern the pattern builder deduces a
minimum length for each node. During a match, if the number
of characters remaining in the subject is below this number,
then the node can immediately signal length-failure. The dif
ficulty with this technique is that it takes time to make this
test and it effectively duplicates another test made concur
rently, the futility check. For example suppose the pattern
is the string 'ABC'. Suppose the subject is '1234567'. The
minimum length required by the pattern is 3. The length check
is made 6 times. The first 5 times indicates that there is
sufficient room in the subject. The last time a check is made,
the length fail exit is given. However if the primitive were
given control it would also have length failed so that the
test is redundant. Moreover the primitive could have deduced
that after the 5th time it was futile. If it signals length
failure when there are 3 characters remaining (which it should
ideally do) then the minimum length check never gets a chance
to signal length failure. All of its activity went to increase
the time of scanning. The length test came historically before
the futility heuristic and its retention is probably for that
reason.

________ ~QMPQUN=D=S ____ __ Page 131

Length-checking would not be obtrusive if it were not for the
so-called ~h~a9t~g§sumptiQg. Any unevaluated expression
is assumed to match at least one character. For example

(LEN (1) $ X) (LEN (1) $ Y) *LGT(X, Y)

will look for two characters out of order in a string. Unfor
tunately, if the two characters are the last two of the
string, it will not find them because the predicate is assumed
(erroneously) to consume one character. This is perhaps the
most obtrusive heuristic of them all since the case of
~redicates within a pattern are extremely common and would be
even more so if it were not for this heuristic. The length
test heuristic a~pears only in SPITBOL and MAINBOL. SITBOL
and FASTBOL avoid this test for the reasons indicated.

Recursive Reduction This refers to the scheme whereby
SNOBOL4 is abre-~o- break left-recursive loops as in the
pattern:

P = *p 'A' I 'B'

We will defer a discussion of this heuristic until after the
implementation of recursive patterns is considered.

IIII
I
I
I

••••

OMPOUNDS Some built-in patterns are not implemented
by a single node, either because they are

not monic or because it is more efficient to imple
ment them as several nodes rather than one node •
These patterns are predefined by a path diagram of
two or more nodes and are called compound§. Examples

of compounds are the patterns with implicit alternatives such
as ARB, BAL, and ARBNO(p).

A pattern which does nothing but succeed is called nil. The
node for nil is shown below

i
, S
I
I subsequent
I
I alternate
I

where S refers to that label in the scanner to which control
is passed in the event of a successful match. Since the primi
tive ~s effectively short-circuited, this is the fastest
possible successful pattern. The null string may be coded as

the nil node (it is not normally).
nil.

There is no argument for

ARB can be thought of as being recursively defined as

ARB = NULL (LEN (1) ARB)

and this leads to the compound shown in Figure 1.4. Here, 'a"
denotes the alternate to ARB and's' denotes its subsequent.

a

nil

LEN (1)

,
'-----> 1 ni 1

------->1
I

Figure 1.,!!

A compound for ARB.

---> s

Figure 1.4, though conceptually simple, is not the most ef
ficient form of ARB. The futility heuristic as applied to ARB
needs to be implemented (see Futility) and more scanner ac
tivity can be incorporated within the ARB compound with a
consequent gain in efficiency. The more efficient ARB realiza
tion is shown in Figure 1.5.

a

ARB 1

ARB 2

• ----->1 nil

,
1
1
1
1
~

-------> s

An improved version of ARB.

_____________ COM~Q~ ________ _ ______ P=a ... q~_133

The associated primitives ARB1 and ARB2 are defined as:

,
, Save the state of the futility flag and set it in order to
I detect it in the subsequent.
I

ARB1 PUSH (FUTILITY)
FUTILITY 1 : (S)

i If the subsequent ~s futile, restore the old futility flag
I and length fail provided we're in QUICKSCAN mode.
I

ARB2
+

FUTILITY EQ(FUTILITY,1)
POP ()

EQ(&FULLSCAN,O)
: S (LF)

.--~
, Else bump the cursor and compare with LENGTH of subject.
I If beyond the end of the subject, pop the old futility
, flag and match-fail.
I

CURSOR CURSOR + 1
(GT(CURSOR, LENGTH) POpe»~ : S (MF)

Otherwise, play scanner by pushing ourself and the current
cursor onto the stack and' succeed.

PUSH (NODE) ; PUSH (CURSOR) : (S)

Note the action of ARB if its subsequent is futile. ARB itself
is regarded as being futile and it indicates this condition by
restoring the state of the futility flag. Note that this al
gorithm is obtrusive if the subsequent is varying. For exam
ple, the pattern matching statement

'ABCB' LEN(1) $ X ARB 'C' *x

will succeed in FULLSCAN mode with X matching 'B' but will
fail in QUICKSCAN mode. In QUICKSCAN mode the 'A' is assigned
to X initially; when 'C' match-fails, control arrives at ARB2
which increments the cursor. Ultimately, 'C' length-fails.
When control arrives at ARB2, the FUTILITY flag is still on
resulting ina length failure and termination of the match.
If is important that ARB length-fail if its subsequent is
futile. Consider the pattern match

S ARB. T 'CAT'

which scans S for 'CAT' assigning the prefix to T. If no 'CAT'
exists in S, the match will require on the order of L2 matches
under FULLSCAN and on the order of L matches under QUICKSCAN
where L is the length of the string. Here the desire to have
unobtrusive heuristics seems to collide with the need for an
intelligent scanner. NO completely satisfactory scheme has
yet been worked out.

Chapter 7

Define a balan£~g __ ~trinq as any string which either 1) does
not contain a parenthesis, or 2) is a balanced string bounded
by parenthesis or 3) consists of any sequence of balanced
strings. The BAL pattern of SNOBOL 4 matches all nonnull
balanced strings beginning at a given pre-cursor position. The
sequence of post-cursor positions is from smaller to larger.
It is relatively straightforward to write a monic pattern to
match the earliest (i.e. shortest) balanced string starting at
a pre-cursor position. A parenthesis count is maintained. If
a left paren is encountered the count is incremented by 1. If
a right paren is encountered the count is diminished by 1. If
the count ever goes negative the monic fails. If the count
reaches 0 (after the first character), a successful match is
reported. This monic pattern is available as a primitive
(called GBAL) within the implementation and is used to imple-
ment BAL. As an example the table below shows the behavior of
GBAL on the subject 'A(C()D) I.

Pre-cursor
Post-cursor

o
1

1
7

2
3

3
5

4 5
6

6 7

where a dash (-) indicates failure.
terms of GBAL as

BAL can be written in

BAL = GBAL ARBNO(GBAL)

and the corresponding BAL compound is shown in Figure 7.6.

a

nil
i

--->1 GEAL
i --->, ·nil

The BAL compound.

-----> s

The GBAL primitive, as the above example illustrated,
monotonic and hence does not transmit length failure.
therefore, turns the futility flag off if it succeeds.
subsequent s is futile, further alternatives need
taken.

is not
GBAL,

If the
not be

________ ~EQ1lliQ~ ____________ ~~~_.U.2

The path diagram for ARBNO(p} is obtained from the path
diagram for p in the by-now familiar method suggested by the
examples of ARB and BAL. Figure 7.7 indicates how we can form
this path diagram from the path diagram for the pattern p.

0000000000000
o 0

r<---O 0
a 1<-0 p 0

I ••• 0 0
1<-0 0
I 0000000000000
I A-
I , r',---,

nil ~----->, nil ------> s
-------->1 ,

A path diagram for ARBNO(p) •

Y~~iab!~~iation

An expression of the form p • v where p is a pattern and v is
a variable (or an unevaluated expression which will evaluate
to a variable) is called a conditional variable association.
The variable v is associated with the indicated pattern and
will be assigned the substring matched by p on the condition
that the overall pattern is successful. An expression p $ v
is called an immediate association. Any substring matched by
p is assigned immediately to v. The path diagram for p • v
can be given in terms of the path diagram for p and is shown
in Figure 7.8. A similar diagram could be drawn for p $ v.

The stack Which receives alternates and cursor values during
the course of the match is called the Estte~~tching-history
stack or PM stack for short. To describe the operation of
conditional variable association, we postulate the existence
of two more stacks which we will refer to as stack Alpha and
stack Beta. When VA1 (Variable Association 1) receives con
trol, it pushes the current cursor (pre-cursor position) onto
stack Alpha. If p should fail, VAB1 (Variable Association on
Backup 1) will receive control and it will pop Alpha. It will
then fail forcing control to go to alternate a. Should p suc
ceed, control arrives at VA2. The current cursor and the pre
cursor pushed by VA1 are sufficient to define the string to be
assigned to variable v. The two cursor positions and v are

a

VAB1 VAB2

0000000000000
o 0

r---." 0 0--->, r"i ---.,

VA1 '->0 p 0--->1---->1 VA2 ----> s
o 0 •••• ,
o 0--->.1
0000000000000

Figure 7.l!

A compound for p • v

pushed onto stack Beta and the cursor on stack Alpha is
popped. Should the subsequent fail, VAB2 gets control and un
does what VA2 did. That is, the three values on Beta are
popped and Alpha is pushed with the original pre-cursor posi
tion. VAB2 then fails forcing alternates on the PM stack to
be invoked.

If the overall match is successful, Beta is scanned on a FIFO
basis (left-to-right) and assignments are made in turn. If
the variable is an unevaluated expression, the evaluation is
made at this time, by a possibly recursive call.

Stack Beta is normally called the name-list stack. It operates
in synchronism with the PM stack and, hence, it would have
been possible to use this latter stack to push the two cursor
values and the variable. It would not normally be difficult
or time-consuming to extract these values from the PM stack at
termination of matching. But differences in the way the gar
bage collector treats each stack may make a separate name-list
stack desirable. Here, implementation considerations at the
bit level often determine whether 1 or 2 stacks are used for
this purpose. stack Alpha, on the other hand, grows dif
ferently than the PM stack. The overall system stack which is
employed for expression evaluation and recursive calls is
used. The system stack, as we will see, may be active during
pattern matching (to implement uneva~uated expressions) but
its net growth from the beginning of processing of one node to
the beginning of processing of its subse~ent is always 0 (un
less used as the Alpha stack of substring assignment).

Immediate variable association is similar but simpler than
conditional association and will be left as an exercise.

I I
I I
I I
I I
IIII

______ ~UNEVALUATED EXPRESSIONS

-------,
NEVALUATED EXPRESSIONS I Unevaluated ex~ressions may

be used as patterns and, if
so, are evaluated durinq a pattern match. The
result of such an evaluaticn may be any pattern,
even one containing unevaluated expressions. The

~ _____ J difficulty with unevaluated expressions, which can
result in arbitrary path diagrams, is in how to effectively
combine the new path diagram ~ith the old. In principle, this
path diaqram could be fused into the overall pattern by rreans
of the pattern building process discussed earlier. However,
since this pattern is evaluated whenever the scanner is reeving
forward through the pattern, this pattern tuilding process may
take place many times during a sinqle pattern match. Worse,
the pattern would have to be detached cefore the next new pat
terns were joined and this would promise more difficulties.
Hence, rebuilding the pattern is not a satisfactory solution.

Let STAR be the proqram label associated with that ~art of the
system which is to process unevaluated expressions. The argu
ment in the node associated with S!AR is the unevaluated
expression which we assume that STAR can readily evaluate. We
note that the evaluation of the argument can invoke a
programmer-defined function which can, by virtue of its per
forminq pattern matching, re-enter the scanner. This requires
that, before the unevaluated expression is evaluated, a host
of values such as the cursor position, the subject, the cur
rent value of the push-down list, and the NODE ~osition be
placed in the system stack to be restored after the argument
is evaluated. In our pseudo-irrplementation of pattern matching
all this is taken care of automatically be declaring the ap
propriate variables to be either ~ararreters or temporaries of
the function MATCH.

Assuming that this is done, the result of this evaluation is a
pattern P. What STAR must do is ap~ly this pattern to the
sub;ect at the given pre-cursor position. !his can be done by
a call (recursive) to the function SCAN if we first provide
isolation between this call and previous uses of the stack.
This takes the form

STAR P EVAL(ARG(NODE»
PUSH (NULL) PUSH (CURSOR)
SCAN (LENGTH, P) :F(MF)S(S)

It is a minor detail but if the result of evaluation is an
unevaluated expression it is again EVALed. Assurring that a
pattern P emerges from the evaluation procedure it is applied
to the subject at the current cursor position by means of the
call to SCAN. If P fails, the insulating null-cursor will have
been popped and SCAN will fail. In this case STAR simply
relays the failure. If P succeeds, SCAN will succeed and STAR
reports success. If the subsequent to STAR is ultimately suc
cessful, nothing more need be said. If unsuccessful, the list
of alternates laid down on the stack ty P must be invoked. But
they cannot be invoked straight away as any gyrations of their

Chapter 7 Pattern MatchingImple~D~ion __ __

own accord would cause success or failure of the evaluated
pattern P to be interpreted as success or failure of the pat
tern as a whole. Hence a kind of second insulation is set up
to receive control should s fail. This comes in the form of
the primitive RESTAR shown in Figure 7.9.

STAR
STAR_

RESTAR

a RESTAR

A
A

r
STAR >1 nil

>1 ,

P ARG (NODE)
P EVAL (P)
IDENT(DATATYPE(F) r'EXPRESSION')
PUSH (NULL) PUSH (CURSOR)
REDUCTION 0
REDUCTION EQ(SFULLSCAN,O)
GT(REDUCTION,LENGTH)
SCAN(LENGTH - REDUCTION, P)

CURSOR POP ()
P POP 0
IDENT (P r NULL)

> s

:F (MF)
:S (STAR_ 1)

RESID (NODE)
:S (LF) .
: F (MF) S (S)

:S(MF)F(STAR_2)

A compound to implement Unevaluated Expressions.

When'RESTAR receives control it pops the stack. If the alter
nate is null, this is the insulating null-cursor pair and
RESTAR simply fails. Otherwise it merges with the STAR primi
tive which calls SCAN with the popped alternate as argument.

The previously cited Recursive Reduction heuristic is shown in
Figure 7.9. A fifth field of a pattern node is called the
residual. This equals the minimum number of characters re
quired by the node's subsequent to match. The field name used
is RESID so that the data statement for a pattern node should
really read

DATA('NODE(PROG,SUBS,ALTrARG,RESID) ')

Residuals are computed by assigning a m1n1mum length string to
each pattern. For example, the minimum lengths of BREAK(S),
TAB(N), POSeN) and FENCE are each O. The minimum length of
SPAN(S) and BAL are each 1. The minimum length of a string is
the size of the string, etc. The minimum length of the
concatenation of two patterns is the sum of their minimum
lengths. The minimum length of the alternation of two patterns
is the minimum of their minimum lengths. When two patterns
are concatenated, the residual of each node is incremented by
the minimu~ length of the second pattern. When two patterns
are alternated, all residuals remain unchanged. The minimum
length of a pattern can either be partially recomputed for
each concatenation from the residual of the root node and the
minimum length of the root or may be stored in a pattern
header where global information about the pattern is kept or
may be retained separately for each node in another field
(MINLEN) of the pattern node.

As an example of the recusive reduction heuristic

P *p 'A' , 'B'

will not loop. Since the residual of *p is 1 (the minimum
length of 'A'), SCAN is called with ever decreasing LENGTH'S.
On the other hand

P *p BREAK('A') BREAK('B') , 'B'

will loop because the residual of *p is O. Note that
EREAK('A') BREAK('B') matches at least one character but the
simple-minded minimum-character algorithm fails to detect
this.

It is not uncommon to experience the BNF-like expression

P *p *Q , 'A'

This pattern would loop if it were not for the drastic assump
tion that unevaluated expressions require a single character
to match. This is the so-called one-character assumption.
Given this assumption, the residual of *p is 1 and so the num
ber of recursive plunges is limited by the length of the
string. Note that the one-character assumption has nothing to
do with the number of characters required by *p but only *Q.

111111111111111111111111111?1?????11???1??11?1??1?1?11111?1111
1111??1111111111111??1111 EXERCISES 1111111111111??111?11111
11111?11111?1111111111111111?1111111?111111111111??11??1??1??1

Exercise 7.1
L-

similar to the

Implement the BREAK(S) primitive (call it
BREAKP) in SNOBOL4 source in a manner
way in which the LEN(N) primitive (called

,fgge 140 Chapter 7 ____ ~p~a~tteIn~ching Implemen!ation __ __

'LENP') was implemented in the text.
POSeN) are available •

Assume that ANY(S) and

• , Exercise 7.2 There is a singl~ pattern primitive called
CHARP which is used in matching any string

against the subject. The string is contained in ARG(NODE)
while PROG(NODE) contains CHARP. Assuming SUBSTR (Prog. 3.9)
is available show how CHARP could be ireplemented in SNOBOL4
source. Pass control to LF or MF on failure depending on
whether or not the pattern is futile.

Exercise 7.3 After executing the instructions below, (a)
how many s-vacancies will there be in P? (b)

how many a-vacancies? Express your answer in terms of N.

LOOP

P
I
P
I

=
'A'
o
(P I P) (P I P)
I + 1 LT(I,N) :S (LOOP)

r--------------~

, Exercise 7.4 As indicated in the text, to properly
concatentate two patterns, the first must be

Assuming the patterns are linked structures as in
in the function CONCAT, implement CONCAT as a modified
COPYL (Prog. 5.8).

copied.
dicated
form of

r-- ,
, Exercise 7.5, A path diagram is ~ll-fo~ed if (1) any se

quence of alternates ends in an a-vacancy
(i.e. no loop of alternates exist) and (2) no loop of subse
quents exist. Show that any path diagram formed by alter
nating, concatenating or ARBNo'ing (see Figure 7.7) well
formed (and distinct) path diagrams produces only well-formed
path diagrams •

• , Exercise 7.6 One implementation of patterns encodes them
as a contiguous set of nodes together with a

header to form one large array as shown in Figure 7.10.

The root node is always node 1. The MIN field is the minimum
length string that the pattern will match. FLAG and START are
used as the anchoring field. If FLAG is 1 and START contains
N, then the pattern is anchored in the form POSeN) ••• If FLAG
is -1 then the pattern is anchored in the form RPOS(N) ••• If
FLAG is 0, no special anchoring heuristic exists.

The alternate and subsequent fields contain the subscript of
the target nodes. If empty, these fields contain some nonposi
tive integers.

Exercises for chapter 7 Page 141

, ,
<1> MIN , I

I I
<2> FLAG I I-Header

I I
<3> START , I

I .J

,
<4> PROG I ,
<5> ALT ,

I
<6> SUBS I-Node ,
<7> ARG I

I
<8> RESID ,

.J

,
I
I ,
,-all other nodes
I
I
I

.J

The data structure for a practical implementation
of patterns.

write a subroutine to build (a) the alternation and (b) the
concatenation of two patterns and (c) find the ARBNO of one
pattern.

r-.------------~
I Exercise 7.7 How many primitive matches (successful and

unsuccessful) are involved in the following
pattern matching statements?

(a) 'ABCDEFGHIJRLMN' 'EF' I 'e'

(b) DUPL (, A I , 20) IB' am

(c) DUPL (, A I , 2 0) iN 'B'

(d) 'AAEAAAeE' (' e' I 'D') (' EI I 'F')

(e) DUPL (, A I , 20) SPAN ('A') BREAK ('A')

(f) 'AABAAC' SPAN (I A') , C'

Chapter 1

Exercise 7.8 Write the MATCH function which serves to
drive the SCANer. Be sure to set and test

the futility flag (FUTILITY) if &FULLSCAN is off and check
&ANCHOR. MATCH will have two arguments, the subject S and the
pattern P. Have MATCH fail if the pattern fails and return
the string matched if it succeeds. Be sure to indicate which
variables are temporary.

i ,

t Exercise 1.9 I L--____________ ~ Which of the following monic patterns are
transmitters of futility?

(a) SPAN (' AB') I NOTANY('AB ')

(b)

(c)

(d)

TAB (N)

'ABA'

'ABCO'

f 1

POS eN + 1)

, B'

'OCBA'

, Exercise 1.10, Which of the following patterns are contex-
tually anchored and what is the character

set in each case?

(ANY C ' AB ') , SPAN (, DE ') I • CAT') LEN (3)
POS (3) BREAK (' AB')
('A' , (SPANC'B') I 'CAN'»

ARBNO (ANY (' AB'»

,
Exercise 1.11 , If the subsequent P to' the pattern TAB(N)

L----- fails (even if the failure is match
failure) one may presume that TAB(N) P is futile and no
1ncrease in cursor position can help. How would we implement
TAB(~ to take advantage of this?

i i
, Exercise 1.12, If a user requires that BAL match the null

string he may very easily create a pattern
which will provide this extension. He may write:

NULL I BAL

(a) Draw the resulting path diagram.

(b) Design a compound for implementing NULL
(using GBAL of course).

, t

BAL directly

, Exercise 1.13, In QUICKSCAN mode, if the subsequent to
ARBNO(P) is futile, no further extensions

need be taken provided P cannot match a string of negative
.length. ~he compound shown in Figure 7.11 below is designed
to implement this heuristic. Describe the operation of the

primitives ARBN1 and ARBN2 in SNOBOL4 source, i.e. in a manner
similar to the descriptions of ARB1 and ARB2.

a

nil

0000000000000
o 0
o 0 ir-----~
o p 0<--1
o 0
o 0
0000000000000

1 1 1
1 1 1 •

ARBN2

--------------------->1 ARBN1 -------> s

A path diagram to implement a futility heuristic
for ARBNO.

r--------------,
Exercise 7.14 I Design a compound for implementing BREAKX()

L-- , (the SPITBOL function, see Prog. 8.2) as-
suming that the BREAK ~rimitive and LEN(1) are available.

,
, Exercise 7.15 Describe how you would implement the ?at-

tern NOT(P) defined as matching the null
string if P fails, failing if P succeeds, and aborting if P
aborts.

Exercise 7.16 In chapter 6, ARBNO(P) was defined as

ARBNO(P) NULL I P ARBNO(P)

Show that the derived pattern of the path diagram in Figure
7.7 is

ARBNO (P) D (s) D (a)

where P is the derived pattern of the path diagram p. You may
assume in your proof that P does not match the null string.

,
, Exercise 7.17

derived pattern:

The scanner function operates in such a
manner that the pattern implemented is the

p Des) D(a)

,Eage 144 Pattern. Matching IroElementation

Rewrite SCAN so that the derived pattern is:

r---------------,
I Exercise 7.18
l.--

D (a) p D(s)

Rewrite SCAN to implement the
pattern

(p I 0 (a» D (s)

derived

(Hint: study STAR and RESTAR carefully and do not un
derestimate this problem.)

r-- i
I Exercise 7.19 , To eliminate one of the nil nodes of Figure
I I 7.4 r it is proposed that the alternate be
'hung off' the LEN(1) node r eliminating the first nil en
tirely. Show that the derived path diagram of this combination
does not equal

ARB O(s) o (a)

as it should.

Exercise 7.20 Assume that a flag exists called UEFLAG
L- which is set by STAR to indicate that an
unevaluated expression was encountered. Modify ARB so that
the length fail heuristic is unobtrusive but so that ARB
reports length fail if there are no un evaluated expressions
encountered in the subsequent to ARB.

C HAP T E R E I G H T

,..---, ,.."
" U

" n IL--' ,
L--..J

BRKREM

BREAKX

ATTERN

o N S T R U C T ION

8.1

8.2

BAL ••••••••••••••••••••• 8.3

FASTBAL ••••••••••••••••• 8.4

NOT ••••••••••••••••••••• 8.5

ONCE 8.6

TEST 8.1

LIKE 8.8

OR •••••••••••••••••••••• 8.9

PLI.STMT •••••••••••••••• 8.10

ASM360 •••••••••••••••••• 8.11

Page. ,..:.1_:,4..:;6 ____ ._..;:::C;.:.:h::a=pter 8

r----1
,~, atterns are data objects and, as such,' enjoy the same
'~I rights and priviliges bestowed on objects having the
I r---' more conventional typings of STRING, INTEGER and REAL.
II In particular, patterns may be assigned to variables
U (possibly array elements or field variables) and may be
passed to and from functions. This chapter tends to
demonstrate these capabilities and describes a number of use
ful (and not-so-useful) pattern-valued functions and also
provides a few very practical patterns for analyzing common
linguistic cases.

A word perhaps should be said about the virtue of attempting
to solve as much of the problem as possible with one big pat
tern match. This can obvously be overdone. For example:

S (FEM $ OUTPUT FAIL LEN (1) • T REM. 5}

serves to both
first character.

print the string S and separate it from its
This has the same effect as:

OUTPUT S
S LEN(1). T REM. 8

The two-line version is clearer and, if anything, more ef
ficient and is easier to type and modify. The one-line version
might perhaps be written to be cute or perhaps in the mistaken
belief that statement overhead is significant (it is not).

There are, however, often excellent reasons for using one pat
tern match as opposed to two or more. Consider looking for a
quoted literal while analyzing 8NOBOL4 source. Assume 8 con
tains a valid 8NOBOL4 statement and assume we wish to search
for the existence of a quoted literal assigning it to the
variable X and transferring to NONE if none exists. One poor
attempt is:

AROUND

Q
QQ
8
S

"."
= .".

(Q BREAK (Q) Q) • X
CQQ BREAK(QQ) 00) • X

If the two pattern matches are replaced by:

8 (Q BREAK(Q) Q , QQ BREAK(QQ) 00) ~ X

:8 (AROUND)
:F(NONE)

: F (DONE)

the result is not necessary clearer or more efficient but does
have the beneficial property of not being wrong. If the string
8 contained

" II

then the two-pattern case would have erred.

_____________ E!:Q~~._!!.:.1_=~RKE!!tL _________ _.f~~ 147

There are times when a single large pattern can take the place
of many lines of code. I have seen a case where a programmer
wrote a machine-language subroutine (to be called from
SNOBOL4) to parse the 360 assembler language where this parse
can be written as one not-too-complex pattern (ASM360, Program
8.11). The reason I saw it at all was because the program
became a hopeless jumble and the writer of the program was
virtually lost in a sea of complexity. The mistake made here
was to assume that because, in assembly language, each step is
quite clear, that the composition of an arbitrary number of
such steps should also be clear. Programming offers no more
vivid testimony than to deny this assumption.

t ,

" Program II There are cases when it is desirous that the
" 8.1 " pattern BREAK(S) match the entire string if
" BRKREM 'I (and only if) there are no break characters
L- found. If it were not for the 'only if'
proviso, the pattern

BREAK(S) , REM

would do. But this pattern has the potentiality of matching 2
strings; i.e. it is not monic.

r---~
, BRKREM(S) returns a pattern that will behave like BREAK(S)
, if that pattern would succeed and will match the remainder
, of the subject string otherwise. ,

DEFINE('ERKREM(S)CS')
r---,
, If S is null there are no break characters. Return a pat-
, tern which will consume the rest of the string.

BRKREM BRKREM IDENT(S) REM :S(RETURN)

r--,
I Find the set complement (CS) of S. If this is null, BRKREM
, should match the null string.

cs DIFF(&ALPHABET, S)
IDENT (CS) : S (RETURN)

otherwise return the alternation of 3 mutually exclusive
cases.

BRKREM RPOS (0) , SPAN (CS) RPOS (0) , BREAK (S)
: (RETURN)

Nam~
DIFF

!YE~
Function

Where defined
Program 3:1'0

Chapter 8 PATTERN CONSTRUCTION

r- •
11 Program 'I The pattern BREAK(S) where S is a string
I' 8.2 'I will rapidly scan for one of the characters
II BREAKX II in S, stopping j~st short of the found
L-- 'character. The scanning is done as fast as
the hardware will allow and, for 360 implementations this is
quite rapid. But suppose the problem i$·not to scan for a
character but for a string S. This can Qe done quite easily
by the statement

SUBJECT S

To speed up the search, we might think of using BREAK to scan
for the initial character of S as follows

S LEN(1). INITIAL
SUBJECT POS(O) BREAK (INITIAL) S

this will succeed if S appears at the first instance of its
initial character. otherwise the pattern would fail since
BREAK cannot match a string containing INITIAL. If we were to
remove the POS(O) the pattern would 'work' in the sense that
it would succeed when required but the time required to do so
could be worse than before. This is because the scanner would
increment the cursor by 1 after each failure and thereby move
quite slowly toward its destination. To fix the situation we
define a function called BREAK X (BREAK eXtended) which, upon
failing, will extend past the break character to find another.
Like BAL and ARBNO, BREAKX is said to have implicit
alternatives.

BREAKX was first introduced as a built-in function in SPITBOL
and appears in SITBOL and FASBOL.

BREAKX
DEFINE ('BREAKX(S) '}
BREAK X = BREAK(S)

: (BREARX_END)
ARBNO(LEN(1) BREAK(S»

EREARX_END

•
II Program
II 8.3
II BAL

the string

,

" II
11

I

: (RETURN)

In analyzing programs BAL can be quite use
ful but it is also limited in that it cannot
be applied freely to expressions which per
mit quote marks. For example, even though

"ABC (DEF ' (' GHI) JKL"

is balanced in the syntax of SNOBOL4, BAL would not match it.
Since most languages have the capability of permitting quoted
expressions within an expression, this severely hinders the
application of BAL.

Analyzing languages which have bracketing other than, or in
addition to, parenthesization also presents a situation in
which BAL is inadequate. For example, suppose that a list of

arguments (expressions separated by commas) is contained in
the string LIST and suppose that its initial left parenthesis
were removed. For example

LIST '13, A + B(3,4), C)'

In order to pick off arguments from such a list, we may think
of using the pattern matching statement:

LIST POS(O) BAL. ARG ANY(',) ')

Aside from the problem of quoted literals this statement will
work correctly only if the source language contains no other
kind of bracketing. For example, if the source language were
SNOEOL4 and if LIST contained:

LIST '13, A + B<3, 4>, C)'

the pattern matching statement described above would find
, A + B<3' as second argument which of course is incorrect.

The function BAL(PARENS,QTS) will return a pattern which will
match all nonnull balanced strings where the first argument is
used to specify paired brackets in nested fashion and the
second argument specifies characters used as quotes. For ex
ample BAL(' «» , ,"'" "") will match a balanced string in
SNOEOL4 source. Also BAL(' () ') is equivalent to the built-in
pattern BAL.

Let us consider how we might define the built-in pattern BAL
if it did not exist before proceeding to the more general
case. EAL is a pattern which will match any string balanced
with respect to parenthesis. A balanced string is defined as

1. Any single character not a parenthesis is balanced.

2. If B is balanc~d or is null then '(' B ')' is balanced.

3. If El and B2 are balanced, then Bl B2 is balanced.

A straightforward translation of this definition could be used
to define EAL and it would have the appearance:

BAL = NOTANY (') (') , '(' (*BAL , NULL) ')' , *BAL *BAL

The difficulty with this rendition of BAL is twofold. It uses
the stack heavily (even when there are no parentheses in the
subject) and it is inefficient especially if it is headed for
failure. The difficulty in both cases is the third alterna
tive. As discussed in the previous chapter, there are two
kinds of stack usage that we must be concerned with. There is
the relatively mild requirements of the alternatives which
must be placed on the history stack; then there are the more
severe requirements of recursion. This version of BAL uses
the recursion stack quite heavily. Consider the match

'(XXX ••• X)' , (' BAL ')'

where there are N X'S in the subject string. The maximum
recursive level is N-1. What's worser if the pattern BAL does
not succeed as in

'(XXX ••• X' , (' BAL ')'

the time required rises exponentially with the length of the
subject.

Another approach to encoding BAL is as follows: let GBAL match
only the first balanced string (as opposed to all balanced
strings). Then express BAL in terms of GBAL.

GBAL
BAL

NOTANY(') (I) 11(' (*BAL I NULL) ')'
GBAL ARENO (GBAL)

This reduces BAL to sequential application of GBAL'S and the
time to determine failure does not rise exponentially. There
is still the problem that the amount of stack used rises
linearly with the length of the subject. Though this timer
the stack used is the history stack and not the recursive
stack. An alternate-cursor pair is laid down at each nonparen
thesis scanned in the subject string. As this may be distur
bing for large strings a better tactic is to reverse the order
of alternation in defining GBAL as follows:

GBAL 1(' (*BAL , NULL) I)' NOTANY (') (.)

There is a time-storage tradeoff here. While this version of
GBAL consumes less stack, it requires slightly more time in
the event that the pattern is to succeed. We will opt for
reduced stack usage.

Another problem associated with writing the BAL function is
how do we return a recursively defined pattern from a func
tion. consider the function F(P) which attempts to return a
pattern to match a sequence of PiS.

DEFINE (1 F (P) .)
F P *F , NULL

: (F_END)
: (RETURN)

F returns a pattern whose definition depends on the current
value of F. But Lord knows what the value of F is after the
return. It can be anything, since the old value of F is
restored. Moreover, even if a global name were used, the name
would be reassigned a new value each call. A way to avoid
these-problems is to create a unique name at each call. Assume
for the sak.e of argument that F1876 is such a unique name.
Then if

F1876 P *F1876 NULL
F F1876 : (RETURN)

Pro~am 8.4 - FASTBAL Page 151

were executed, the desired value would be returned. Code such
as this could be created dynamically via the CODE function. A
more efficient technique is to convert the unique name to
EXPRESSION. This is done in defining BAL.

DEFINE(iBAL(PARENS,QTS)Q,GBAL,NAME,STAR,LP,RP')
: (13AL_END)

Entry point: Create a unique .but uncommon name (NAME) for
a variable which is to be assigned the pattern. To use it
recursively, we will need the associated unevaluated ex
pression (STAR). Also initialize GBAL.

BAL NAME
STAR
GBAL

'BAL .' & STCOUNT
CONVERT (NAME, 'EXPRESSION')
NOTANY (PARENS QTS)

Loop on quote characters inserting a quoted literal as an
optional condidate for a balanced string.

QTS LEN(1). Q :F (BAL_2)
: (BlU._ 1) GBAL Q BREAK(Q) Q GBAL

I Loop on the nested bracketing characters and create a I
I balanced alternate for each pair. I L __ ~I

PARENS

GBAL

LEN(1) • LP RTAB(1) • PARENS LEN(1) • RP
: F (BAL_3)

LP (STAR I NULL) RP GBAL: (BAL_2)

Define BAL (the returned string) in terms of GBAL and as
sign it to the strangely named variable so that recursion
works.

BAL_3

BAL_END

E2ilogu~

BAL = GBAL ARBNO(GBAL)
$NAME = BAL : (RETURN)

Note that the name of the function is the same as the name of
a built-in pattern BAL. Both the variable and the function
can co-exist and can be entirely unrelated. Note that when
the function is called the variable BAL is temporarily as
signed a null value and is subsequently assign~d the return
value. Upon return, the original value of BAL is restored so
no difficulty ensues.

r--------"
, , Program I'
" 8.4 " II FASTBAL I'

A criticism that could be leveled against
the BAL function is that the pattern it
returns creeps along, one character at a
time, at speeds determined by

ARBNO(NOTANY(». A much faster version can be written which
will skip over uninteresting characters at BREAK speeds and

ES!g,g 15=2 __ _

stop only before parens, quoted-literals and any of a set of
designated characters provided as a third argument. For
example

SNOARG = FASTBAL (' «» " '''' "''', ",)') • ARG ANY (' ,) ')

will assign to SNOARG a pattern which can be used to scan for
the arguments of a function call in SNOBOL4 source. If the
string to be scanned is

A ' B' + F (') '), X)

then SNOARG will tentatively match "A " and then "A 'B' + F"
before finally matching "A 'B' + F(') ')". FASTBAL, like
BREARX, will continue to take extensions. For example, the
pattern match

'WB(/D)/O' POS(O) FASTBAL(' 0 ',,'/1) '/0'

will succeed with the entire subject being matched.

Like BREARX and unlike BAL, FASTBAL will not match the entire
string since it requires a break character. Such a modifica
tion, however, is easily made and is explored in an exercise.

OEFINE('FASTBAL(PARENS,QTS,S)NAME,IBAL,SPCHARS,ELEM'
+ " LPS, Q, LP, RP') : (FASTBAL_END)
r---------------~--,

Entry point: NAME is a uniquely created name for the
variable that will eventually hold the returned pattern.
IBAL is a pattern to match balanced strings on the in
terior of brackets.

FASTBAL NAME
IBAL
lEAL

'FASTBAL_' &STCOUNT
CONVERT (NAME, 'EXPRESSION')
UIFFER(S,NULL) FASTBAL(PARENS,QTS)

r---,
, SPCHARS are all the special characters. ELEM is a monic
, pattern to match a balanced string to be built up during
, the subsequent computation. L-____________________________ ~ __________________________________ ~

SPCHARS PARENS QTS S
ELEM NOTANY(PARENS QTS) BREAR(SPCHARS)

r---,
, Loop on quotes, oring in a quoted literal pattern for
I every quote. ,
FASTBAL_ 1 QTS

ELEM
LEN (1) • Q

Q BREAK(Q) Q
:F(FASTBAL_2)

ELEM : (FASTBAL_1)

Loop on parens, oring in a balanced form for each pair.

PARENS LEN(1) • LP RTAB(1) • PARENS
LEN(1) • RP :F(FASTBAL_3)

ELEM LP IBAL RP ,ELEM : (FASTBAL_2)

__________ --F~~am 8.5 - NOT

Wrap things up and return. L-----__ ~

FASTBAL_3 FASTBAL
$NAME

EREAK (SPCHARS)
FASTBAL

ARBNO (ELEM)
: (RETURN)

•

" " II

Program
8.5
NOT

,

" " "

=

The function NOT(P) returns a pattern which
will match the null string provided P would
fail and will fail if P would succeed.
NOT(P) is undefined if P is nonlinear. As

an example of the use of NOT assume we wish to write a pattern
which will match a PL/I comment. The pattern '/*' ARB '*/'
will not do since it will match other things in addition to
comments. For example it will match three strings in the PL/I
statement below where only two are comments.

GOU~ /* GARBAGE OUT */ GIN /* GARBAGE IN */

To match a comment we can write:

'/*' ARBNO(NOT(',*/') LEN(l» '*/'

Here the ARB is replaced by a pattern constructed from ARBNO
which will match an arbitrary string not containing the sub
string 1*/' • To speed up the search for the closing '*/' we
can employ BREAR as follows:

'/*' ARBNO(NOT('*/') LEN(l} BREAR('*'}) '*/'

The function NOT is so constructed as to be embeddable in it
self. Thus NOT(NOT(P» will match the null string if P would
succeed. Also if C were the comment matcher defined above,
NOT (C) would operate correctly.

One drawback of NOT, which is the reason we will not use it
more widely in building other patterns, is that it must be
used in FULLSCAN mode. The reason for this is the one
character assumption of the recursive reduction heuristic
described in the previous chapter. Since mode switching is
generally poor programming practice, we will generally avoid
the use of NOT.

NOT(P) will return a pattern which will match the null
string if P fails and fail if P matches. If P aborts,
NOT(P) will also abort.

DEFINE('NOT(P) ')
r---~
I Entry point: Return a pattern which pushes null onto the
I stack and replaces it with nonnull only if the pattern
I succeeds. The flag is eventually popped and tested by the

~~ge 154

, alternative.

NOT NOT
+
NOT_END

Names referenced
~Y_NOT':" -----

Chapter 8 PATTERN CONSTRUCIION

*PUSH() P *(POP() PUSH(1» FAIL I
*IDENT(POP(» : (RETURN)

~.9ID~
PUSH
POP

IY12~
Function
Function

Where defined
program-S:S

Program 5.6

P is assumed not to have side effects which will alter the
stack. For example, if

P NULL I * (POP() PUSH(» FAIL

then P will cleverly undo what NOT was trying to do and cause
NOT(P} to succeed where it should always fail. But this
amounts to almost deliberate meddling. If P uses the stack
normally (i.e. leaving its state the way it was found) then
NOT will operate correctly.

i ,

" Program " ONCE() returns a pattern which will succeed
once and only once and thereafter fail
forever. For example the pattern matching
statement

" 8.6 " 'f ONCE "
'-

'AAAB' 'A' ONCEO 'B' , B'

will result in the 'B' being matched, but not the lAB', since
the first time through the left alternation, 'B' failed, in
dicating that that path could no longer be taken. Note that
ONCE() must return a new and distinct pattern on each call
since once it is used it can never be reused.

ONCE(} is similar to FENCE in that it matches the null string
initially. Unlike FENCE, however, failure in subsequent tries
is like FAIL (as opposed to ABORT) which permits other alter
nates to be taken.

ONCE () will return a pattern that will succeed just once.

DEFINE('ONCE(ID)NAME')

Entry point: If the argument is null we return a new pat
tern equal to *ONCE(id) where id is a unique integer.

ONCE ONCE I DENT (ID,NULL)
+ CONVERT('ONCE(' &STCOUNT ')' ,'EXPRESSION') :S(RETURN)

Otherwise compute a name based on the unique ID. Return

its value. It will be initially null. set it to FAIL for
all subsequent calls.

NAME
ONCE
$NAME =

'ONCE •• '
$NAME
FAIL

ID

: (RETURN)
ONCE_END

£!Eilogy~

the function ONCE() returns an expression of the form *ONCE(n)
which will succeed just once and fail forever after. It il
lustrates several principles. First, a function can return
different patterns and each of these patterns can vary their
own behavior with time. Second, the function serves both to
return a pattern initially and is also the function invoked
during the match. Both of these operating principles will be
in use in the next function.

The technique used to encode ONCE() can be used to pick·off
the first match of a pattern and thereby increase efficiency.
See Exercise 8.8.

,

" " "
Program

8.7
TEST

i

II
, I

"
TEST is designed to alleviate some of the
problems involved with the one-character as
sumption which we have already indicated
might be a source of difficulty with the NOT

function. TEST will accept an unevaluated expression as argu
ment and return a pattern. When the pattern is encountered by
the scanner during a pattern match the original unevaluated
expression will be EVALed and the pattern will succeed or fail
depending on the outcome of the EVAL. If it succeeds it mat
ches the null string. For example

TEST (*LGT (A, B))

will return a pattern which,
succeed or fail depending
ically greater than B.

during pattern matching, will
on whether A is, or is not, lex-

Thus TEST(exp) acts like exp. It differs from exp in that its
minimum length will be 0 as opposed to 1 and it will match the
null string if the evaluation succeeds.

DEFINE ('TEST (ARG) NAME')

Entry point: If ARG is an EXPRESSION we will return a
pattern. The expression is saved in a unique name (NAME)
and this name, in the form of a string, is used as an ar
gument on subsequent calls to TEST. L--__ ~

TEST IDENT(DATATYPE(AFG),'EXPRESSION') :F (TEST_ 1)
NAME 'TEST_' &STCOUNT

PATTERN CONSTRUCTION

$NAME = ARG
TEST = EVAL{tlNUI.L $ *'IEST('" NAME ''')") : (RETURN)

If ARG is not an EXPRESSION we presume that
with one of those subsequent calls to TEST.
can conclude that we're in the middle of a
Retrieve the old expression and evaluate it
dummy name.

we are dealing
In fact, we

pattern match.
and return a

TEST_1 TEST
TEST_END

?EVAL($ARG) • TEST_ :S(NRETURN)F(FRETURN)

, i

" Program 'I LIKE(S) returns a pattern that will match a
I' 8.8 I' string like the one passed as argument. A
'I LIKE I I like string is defined as anyone differing
L- from the argument by a) a rearrangement of
two characters, b) the deletion of a character or c) the
insertion of a character.

DEFINE('LIKE(S)C,T1,T2,N')

Entry point: Make sure that S itself is regarded as LIKE
S.

LIKE LIKE S ,
, LOOp on N where N denotes a cursor position within s.
I Split S into two parts, T1 and T2.

S
N

TAB(N) • T1 REM. T2
N + 1

:F(RETURN)

First OF. in a pattern which matches S with one character
inserted at position N.

LIKE LIKE T1 LEN (1) T2

Then OR in the pattern which matches with one character
deleted at position N.

T2 LEN(1). C = :F (RETURN)
LIKE LIKE, T1 T2

r---, , Then OF. in the pattern where the two characters at posi-
I tion N have been rearranged. ,

T2 POS(1) = C
LIKE LIKE T1 T2

:F (LIKE_1)
: (LIKE_1)

r- ,
" Prograre , J
" 8.9 "
" OR "

program8.~ - OR Page 157

ORCS) is intended to form the OR (in the
pattern sense) of several strings contained
in S. For example OR (' ,ABC, DEF,XYZ') IS
EQUIVALENT TO

, ABC' , ' D EF ' , ' XY Z '

The initial character (in this case a comma) is used to
separate elements. For efficiency puroses, OR will factor out
like initial characters. Thus

OR(',ABLE,ACTOR,ANCHOR,BAKER,BULL')

is equivalent to

, A ' (, BLE ' I ' CTOR ' , NeHOR') , B ' (' AI<ER ' , ' ULL ')

The resulting expression in this example is over twice as fast
as alternating 5 strings since for most subjects only 2 checks
are needed for every pre-cursor position as opposed to 5. The
initial character extraction is done to arbitrary levels so
that

OR(',ABC,ABBOT,ACTOR,BARER')

will return

'A' ('B' ('C' I 'BOT') , 'CTOR') , 'BAKER'

For efficiency purposes, if a factored character contains only
one branch, the character is combined with the head of the
branch. Thus

OR (' ,ABC,ABBOT,BAKER')

returns

, AB ' (, C' , ' BOT') I • BAKER'

Characters in parenthesis imply an ANY-like construction. Thus

ORe ',C(AO)D,C(AO)ST')

will return

, C ' ANY (, AO ') (, D" 'ST ')

Several examples of the use of OR are given in the initializa
tion section of HYPHENATE (Program 10.7).

OR (LIST) will return the alternation of the substring of
LIST separated by the break character determined by the
first character in LIST. Parenthesized strings are
regarded as ANY. L-__ ~

OR

DEFINE ('OR (LIST) BC,SEIZE,ANC')

OR_EXTRACT() is a function used by OR to extract from the
global variable LIST, the sUbstrings beginning with the
same first character (or parenthesized expression).

DEFINE('OR_EXTRACT()COMMON,IC,P,SOBLIST,T,TLIST,C1,C2')
: (OR_END)

Entry point for OR. Determine the break character and
define a pattern to be used throughout to SEIZE all up to
the next break character. Define ANC as a pattern to
anchor the scan and match the Break Character.

LIST
SEIZE
ANC

LEN (1) • BC
BREAK (Be) I REM

POS (0). BC

Or together all extractions.

OR
OR

OR_EXTRACT ()
OR I OR_EXTRACT()

: F(FRETUFN)

:S(OR_LOOP)F(RETURN)

Entry point for OR_EXTRACT 0: Set TLIST to be a copy of
LIST. Extract initial character (IC) and set COMMON equal
to the first substring. If this pattern fails, no IC could
be found. This means that LIST is either empty in which
case we fail, or contains only BC in which case we return
the null string. Both of these cases are important since
the former terminates the loop. in OR () and the latter
breaks the recursion of OR_EXTRACT().

OR_EX'IRACT
TLIST = LIST
LIST ANC (BAL -. IC SEIZE) • COMMON :S(ORX_1)
IDENT(LIST, NOLL)
LIST = NULL

•

: S (FRETURN)
: (RETURN)

I Find the largest COMMON prefix contained in all strings
, beginning with IC.

•

TLIST
TLIST

ANC IC
ANC COMMON SEIZE

:F (ORX_3)
: S (ORX_1)

I COMMON was not there. Reduce COMMON by one character and
, try again. This means extract the last balanced.,string of
, COMMON. L-__ ~

BALREV(COMMON) BAL REM. COMMON
COMMON BALREV(COMMON)

:F (ERROR)
: (ORX_2)

Program 8.11 - ASM360 Page 159

Now remove the COMMON characters from each string as we
prepare a SUBLIST to be OR'ed.

LIST ANC COMMON SEIZE. T = : F (ORX_ 4)
: (ORX_3) SUBLIST = SUBLIST BC T

Convert any parenthesized expression in COMMON to an ANY.
Build up the pattern in a temporary P. Then join this with
the result of a recursive call to OR.

COMMON BREAR (' (') • <::1
') ,

P P C1 ANY (C2)

, (' BREAR (') ') .. C 2
: F (ORX_5)
: (ORX_4)

OR_EXTRACT = P COMMON OR (SUBLIST) : (RETURN)

Names referenced
QL2El.

i i

Name
BALREV

TY:Q~
Function

Where defined
Program 3.8

" Program II This pattern is intended to match a PL/I
I' 8.10 I' statement (assigning to STMT the string
II PLI.STMT " matched) and to fail if none exists. The
I , presumed scenario is that a program is
reading lines of a PLII program and continues to apply the
pattern until it succeeds in matching a prefix of the combined
input lines. The pattern need not check for'syntactic correct
ness of the input and hence it will be sufficient to check
for the presence of a semicolon provided this character does
not appear within quotes or comments.

Define an ELEM as a quoted literal or a comment or a non
null sequence containing neither a semicolon nor a comment
or quote delimeter.

Q
QLIT
CMNT
ELEM

"'" Q FENCE BREAK(Q) Q
'/*' FENCE ARB '*/'

= QLIT, CMNT , LEN(1) BREAR('/j' Q)

Use back-up-free scanning (Chapter 6) to search for the
statement.

PLI.STMT POS (0) (ARENO(ELEM FENCE) ';') • STMT

, ,
I I Program 'I Many problems involving the processing of
II 8.11 'I assembler source can be conceptually simple
'I ASM360 I' and yet provide a challenge to the program
I~------------~' mer. Consider the problem of reformatting
the source so that various syntactic parts such as operations,

Page 160 Chaeter .~8 ____ ~P~ATTERN OO~STRUCTION

operands and comments are set to allign at pre-determined card
columns. The heart of this problem as well as. many others is
simply the extraction of the various fields since once these
have been obtained it is a relatively simple matter to recast
a given line in a new format. Different assembler languages
offer different problems to be solved. The os assembler
[IBM360b] is noted for its relative ubiquity and complexity
and will offer a fine example to consider.

In the OS assembler there are four fields separated by blanks@
viz.

NAME OPERATION OPERAND COMMENT

where the optional NAME field must begin in column 1 if it
exists. One is tempted to use BREAKC' ') to separate the
fields. This works for the first two fields but the operand
field may have blanks embedded in quoted literals and so this
simple scheme will not do. Moreover, the quote that appears
in an expression beginning with L' is not to be considered for
quote-balancing. Thus

L MVI 3,L'ABC 'THIS IS A COMMENT'

has an operand field (3rd field) that breaks after ABC and not
after THIS. The rule for determining whether L' is to be
considered specially is given on p. 71 of (IBM360b]

"An apostrophe not within a quoted string
immediately followed by a letter and immediately
preceded by the letter L (where L is preceded by
any special character other than an ampersand) is
not considered in determining paired apostrophes."

On page 10 of [IBM360b] we obtain the definitions of 'letter'
.and 'special character' and so we begin coding •••

LETTER
$P.CH

'ABCDEFGHIJKLMNOPQRSTUVWXYZ$t~'
"+-,=.*()'/S"

From this we obtain 'special character other than
ampersand' which we will call SCOTA.

SCOTA
SCOTA

SP.CH
'S' =

We consider the line decomposed into disjoint elements
where each element is either (in order) a quoted literal,
an L' construct, a single SCO~A or a sequence of
non-SCOTA's.

Q "'"
QLIT Q FENCE BREAK(Q) Q
ELEM QLIT , 'L' Q , ANY(SCOTA) , BREAK (SCOTA) I REM

From this we may use back-up-free scanning to define the

+

+
+
+

Pro~am 8~L= ASM360 __________ Pa~--1.ll

operand field (F3). B is used to separate fields. The
first two fields according to p. 8 of [IBM360b] are ter
minated by blanks (or the end of the line).

F3
B =
F1 =
F2 =

ARBNO(ELEM FENCE)
(SPANC' ') , RPOS(O»
BREAK (' ') , REM
F1

FENCE

To further complicate the issue, if the operation is one
of a class of conditional assembly operations defined on
p. 75 of [IBM360b] as:

CAOP C'LCL'
IAIF' ,

, ISET') ANYCIABC') I
'AGO' 'ACTR', 'ANOP'

then the operand is a conditional assembly operand. For
such operands the number of ways of using the quote
character in unbalanced situations is increased. For ex
ample TINAME refers to the type attribute of the symbol
NAME and the quote here is not to be considered as one of
a pair of balanced quotes. The set of attributes is given
by the pattern ATTR.

ATTR ANY ('TI.SIKN')

Moreover, the operations SETB and AIF permit 'logical ex
pressions enclosed in parenthesis'. Logical expressions
may contain blanks so we must ignore any blanks contained
within paired parenthesis. Of course we must ignore any
parens within quotes and we must continue to ignore quotes
which occur merely as part of an attribute. Since it can
not hurt to ignore blanks within parens in any of the con
ditional assembly operations w,e can treat all of them
uniformly. ELEMC is an expanded form of ELEM permitting
the additional attributes and the parenthetical groupings.
F3C will match an operand field (field 3) if the operation
is a conditional assembly.

ELEMC
F3C

'(' FENCE *F3C 1)1
ARBNO(ELEMC FENCE)

ATTR Q

Putting it all together:

ASM360 F1. NAME B
(CAOP • OPERATION B

F2 • OPERATION B
B REM. COMMENT

F3C • OPERAND
F3 • OPERAND)

ELEM

gsg~ 162

11?11??11111111111
1111111?11111111111111111 EXERCISES 111111111111111111111111
11

, i

, Exercise 8.1 , Assuming S is nonnull, rewrite BRKREM(S) as
a single expression involving only (but not

necessarily all of) LEN, P~S, RPOS, SPAN, BREAK, ANY, NOTANY
and ARBNO.

,
, Exercise 8.2 Write a version of SPAN(S) (call it S PAN ULL)

which will match the null string in the case
that SPAN(S) would fail. Otherwise, SPANULL(S) should behave
exactly like SPAN(S). Thus SPANULL(S) must be monic. This
can be done in several ways. Try it a) using NOT(P), b) using
ERKREM(S) and c) from scratch.

, .
, Exercise 8.3, Modify BREAKX (call it BRKXREM) so that it
L-. will match the remainder of the subject
string as its last extension. Thus

'A,B,C' POS(O) BRKXREM(',') $ OUTPUT FAIL

will print 'A', 'A,B' and 'A,B,C'.

. ,
, Exercise 8.4, Which of the following assignments would

also be valid . ways of implementing
BREAKX(S)1 That is, which of the statements below, if sub
stituted for the one statement in Prog. 8.2, will produce a
correct rendition of BREAKX1

BREAKX =
BREAKX =
BREAKX
BREAKX

Exercise 8.5

pattern

match1

I

ARBNO(BREAK(S) LEN(1» BREAK(S)
BREAK(S) (NULL I LEN(1) *BREAKX)
ARB NO (LEN (1) BREAK(S) BREAK(S)
BREAK (S) (NULL, LEN (1) BREAKX (S))

Given the subject, "AB(C,D')E')GH", which
values of pre-cursor position will the

BAL (' 0' , " , ") ANY (' ,) ')

, Exercise 8.6 Let RULE be string-valued and contain the
L-. ____ --I rule of some SNOEOL4 statement (i. e. the
statement without the label and goto fields). Assume the rule
is trimmed of leading and trailing blanks. write code to
determine the type of SNOBOL4 statement and branch to one of

Exercises for chap~_8_____________ Page 163

the following labels: PM for pattern match, PMR for pattern
match with replacement, ASGN for assignment and EXP for none
of the above (Hint: Using the BAL function, this will require
one pattern assignment and three pattern matches).

i Exercise 8.7 The author once comitted an error similar to
the following. Assume that to create a truly

the first statement of FASTBAL (Prog. 8.4) is

,
unusual name
changed to:

FASTBAL NAME 'FASTBAL' &STCOUNT

Surely, vanishingly few identifiers contain
&STCOUNT makes it that much more unusual.
error?

blanks and the
Why is this an

Exercise 8.8 write a function FIRST(P) which will return
L- a monic pattern whose post-cursor position
is the first post-cursor position yielded by the pattern P.
Note that unlike ONCE(), FIRST(P) should be reset at each cur
sor position.

Exercise 8.9 What is *ONCE() equivalent to ?

Exercise 8.10 Write a function NTIMES(N) which
return a pattern which will match the

string exactly N times and thereafter fail forever.

will
null

Exercise 8.11 Write a function IF(P) which will match the
null string if P would succeed and will

fail if P would fail. (Hint: you may use functions defined in
this chapter).

Exercise 8.12 Let the SIZE of a string S be L. How many
alternates will LIKE(S) have (Prog. 8.8)?

Modif:r LIRE so that it uses OR (Note: ANY (&ALPHABET) can be
used ~n palce of LEN(1». How many principal alternates will
LIKE then have (assume that S contains at least 3 characters
and that the first two characters are different)? What is the
fewest number of principal alternates that LIKE coul1 have?
Re'write LIKE to obtain that many.

Exercise 8.13 Modi fy LIKE (8) (Program 8.8) so that, in
addition to insertions, deletions and rear

r-agements, any string differing from S in a single character
will be matched.

~ge 1,~6~4 __________ C:h=a:p~t~e=r~8~ __ .~P~A~TT~E=R=N CONSTRUCTIO,~N ________ _

Exercise 8.14 LIRE will tolerate just one error. Rewrite
LIKE so. that it will tolerate K errors

(Hint: Rewrite LIKE recursively).

r----------------
, Exercise 8.15 What character(s) could, not be used as a

break character for OR?

r---------------~
, Exercise 8.16

returns

To allow for really rapid scanning for a
set of strings, modify OR(S) so that it

BREAKX(S1) OLD_OR(S)

where OLD OR is the OR function defined in Prog. 8.9 and where
S1 is derIved from the argument S.

Exercise 8.17 Rewrite PLI.STMT so that it does not use
FENCE but NOT instead.

Exercise 8.18
L-

Find a subject for which PLI.STMT will
behave incorrectly if any of the following

changes are made.

(a) removing the FENCE from QLIT

(b) removing the FENCE from CMNT

(c) removing the FENCE in the argument to ARBNO •

.--- i
, Exercise 8.19, A telephone information service operates by
, , the user dialing (or touch-toning) a
party's name using the letters that appear on the dial. This
does not uniquely specify a string of letters since each digit
has a group of 3 characters associated with it as follows:

ABC- 2 PRS - 7
DEF - 3 TUV - 8
GHI - 4 wxy - 9
LKJ - 5 z - 0
MNO- 6

write a function called NAME which accepts as argument a
string of digits and will return a pattern which can be
matched against all names in a directory. The pattern should
be of the form ANY() ANYO ••• ANY() where there are as many
ANY's as there are characters in the string. (Hint: the body
of the function requires only 3 relatively simple statements.)

r----------------~
, Exercise 8.20 Assuming that LEN(N) can have negative ar-

guments we could make a rapid search for
the least likely character of a string using BREAKX. For ex
ample, to scan for 'EXAMPLE' in a string of text, it would in
general be more efficient to use the pattern

BREAKX('X') LEN(-1) 'EXAMPLE'

than a BREAKX('E') construction because of the low frequency
of the letter 'X' in English text compared with 'E'. Write a
function called SEARCH(S) which will return an optimal pattern
in the above form for searching for the string S. Assume that
S contains only alphabetics and that the letter frequency is
that of English, viz.

FREQ_TBL = 'ETOANIRSFDLCWUMFYGPBVKXQJZ'

(Interesting note: The least-frequent character can be deter
mined in one statement by a simple scan.)

CHAPTER NINE

,.--, n n r----1 n n ,--,
a.,

"" I
,,-, I

" " L-, .-'

" II'" ,'-' , It " " II II 'I , .---'
II " " ria., " " " fL-..... , II

L-......J U U U L--J U

,--, n n ,-----, ,--, " n ,--, 'r-t , " " L-,~ ,,....., ,
" "

'-t ,.......

" " " " "
,L-I,

" " " " " " " II , .---' " " " ,'-' , 1 L-I , II " II-If " L--J L--J U U L--J U

READ 9.1

FORTREAD •••••••••••••••• 9.2

PARAGRAPH ••••••••••••••• 9.3

SNOREAD ••••••••••••••••• 9.4

TREEREAD •••••••••••••••• 9.5

MFREAD •••••••••••••••••• 9.6

PUT ••••••••••••••••••••• 9.7

FORTPUT ••••••••••••••••• 9.8

PEEL •••••••••••••••••••• 9.9

SNOPUT •••••••••••••••••• 9.10

____________ PrQgram 9.1 = READ ____ _ ____ p~167

r---t 'r-,' ne of SNOBOLq's many assets is the simplicity and
" " directness of its I/O. One need merely mention the
" II variable INPUT in an expression and, automatically, a
, '--I , card (or card image) is read and the string of charac
L--J ters on the card is used as the value of the variable
INPUT. Similarly, the mere assignment of a value to the
variable OUTPUT or PUNCH will cause that value to be respec
tively printed or punched.

In many cases, however, we want something slightly richer than
this, as the following programs will illustrate.

r- i

" Program 'I For many applications the basic input
" 9.1 " process is less than completely ideal. We
" READ " often would like to read in a card, compare
L-- , , it against a pattern, and, if the card was
not what we sought, transfer to another section of the program
which will read the same card from the input stream. Our aim
could be realized if we had the ability to put something back
on the input stream. This act is impossible in SNOBOLq but it
could be effectively done by writing a subroutine which could
store things we 'pushed' onto the input stream and yield them
up when we sought to read. This we will not do (but leave as
an exercise). We will create something which will be less
general but simpler and, in most situations, easier to use.
We will define a function called READ which will accept one
argument, viz. a pattern, which will be matched against the
next string on the input stream. If the pattern matches this
string, the string will te returned. If the pattern fails to
match, the READ function will fail but will save the string
for the next time READ is called. In the several programs
following this one, we will show how this property can be
used.

Another inadequacy with the basic input facility of SNOBOLq
has to do with file sequencing on the IBM 360/370. When no
more input remains on the current input file, and an input re
quest is made (by a reference to the variable INPUT) the
reference will FAIL (in the SNOBOLq sense of statement
failure). If an input request is made after the initial
failure, the next file in sequence will be opened. If this
file is not present, the program terminates abnormally.

Unfortunately, this is not what we want most of the time.
often, the rea,son several files have been placed in sequence
is to make them appear to the program as one long file, an ap
pearance which is blemished if failures occur in between. Also
we would like the liberty of making several read requests
after the final failure without fear of blowing the program.

READ will take care of this file sequencing problem. It will
fail only after the last file has been exhausted and subse
quent calls thereafter will merely fail.

E.gge 168 Chapter 9 ____ =IN~P_UT OUTPUT

READ(P) will read in and return a card provided it is mat
ched by the pattern P. If there are no cards remaining or
if the pattern fails READ will fail.

DEFINE('READ(P)')

Check to see if the number of files beyond the current is i
negative. If so return failure. I

READ : S (FRETURN)
r---, , Fill the input buffer if it is empty. L-__ ~

IDENT (INPUT_BUF. NULL)
INPUT_BUF = INPUT

:F (READ_1)
:F (READ_2)

Check the buffer for a successful match against P. If no
match, then fail return. If match. then return the value
in the buffer (INPUT_BUF) and clear the buffer.

INPUT BUF P
READ -= INPUT_BUF
INPUT_BUF = NULL

: F (FRETURN)

: (RETURN)

If the attempt to read resulted in failure. then control
passes to READ 2. Deduct 1 from the number of remaining
files and transfer to label READ. If this number becomes
negative, the function will fail continually.

READ 2
READ:END

];1211oqu~

: (READ)

The variable NF_INPUT (Number of Files on INPUT) is to be set
equal to the number of files beyond the current one. Normally
NF INPUT is equal toO since the default value of variables is
null (which numerically equals' 0). Therefore, the programmer
normally need not worry about its value. However. he may set
this at any time during the running of the program if ad
ditional files remain. For example if a special marker is
placed at the end of a 'file to indicate that this was not the
last one in a sequence then the appearance of that marker
could Qe used to trigger an assignment of the value 1 to the
variable NF_INPUT.

r-------------~i

II Program , , Many string-processing problems involve the
II 9.2 II analysis of the source language of some
I I FORTREAD I I other program. FORTRAN is perhaps typical
L-____________ ~I of the kind of language which we might wish
to process. Examples include compilation (translation of

Page 169

FORTRAN programs for sematic errors not discoverable by the
compiler), flow charting (describing diagrammatically the flow
of control), preprocessing (translation of an extension of
FORTRAN into FORTRAN such as SIMSCRIPT [Dimsdale & Markowitz,
1964], and conversion (translating a version of FORTRAN for
one machine to a version suitable for another) • In addition
to these fairly·complex undertakings, the processing could be
some simple house-keeping chore such as converting every
reference of 'ALPHA' to a reference to 'BETA'.

When writing programs to analyze other pr~grams it is usually
wise to write a function whose only duty 1S to collect and
return the next statement on the input stream and FAIL if no
statement remains. The benefits of doing this are the same as
those derived from subroutinizing one's program generally. It
saves duplication of code, allows subdivision of labor, the
program logic is easier to follow and the program is easier to
mOdify and maintain.

A card with a 'c' in column 1 is regarded as a comment card by
the FORTRAN compiler. comments may appear anywhere, even bet
ween a statement and its continuation. These are ignored. A
continuation I card is indicated by a nonblank in column 6. A
blank in column 6 indicates the start of a new statement.

FORTREAD will read in and return the next FORTRAN state
ment on the input stream.

DEFINE ('FORTREAD ()T')
INPUT (.INPUT,S,12)
FORT_COMMENT = POS(O) 'c'
FORT_CONTINUE POS(O) LEN(S) NOTANY(' ') REM. T

: (FORTREAD_END)

First pass over any initial comment cards and then read in
the first statement.

FORTREAD READ (FORT_COMMENT)
FORTREAD READ()

:S(FORTREAD)
: F (FRETURN)

Then pass over more comments (if any) and then look for a
continue card. If not found we return. But if found, the
variable T will hold the desired value. This is tacked
onto FORTREAD and we renew the search for a continue.

FORTREAD_1 READ (FORT_COMMENT)
READ (FORT_CONTINUE)
FORTREAD FORTREAD T

FORTREAD_END

~.E~
Function

S (FOR TREAD _ 1)
F(RETURN)
(FORTREAD _ 1)

where defined
Program 9.1

The initialization section of FORTREAD reassociates the
variable INPUT with the first 72 characters of a card. In this
way the identification field of the FORTRAN deck (columns 73
through 80) are ignored.

Two patterns are also set in this initialization section. The
first pattern matches successfully any FORTRAN comment card;
the second will not only match successfully a FORTRAN continue
but will assign the 'meat' of any continue card to the tem
porary variable T.

One may note the rather heavy use to which READ has been put.
It is called at four separate places and has greatly sim
plified the writing of FORTREAD. The first call represents a
rather conventional use of READ. "Give me the next card if it
is a comment." It is in fact thrown away immediately. The
second call of READ, which is made with no argument, makes use
of the fact that a null string will be supplied by default.
Since a null string as a pattern will always match, READ() is,
in effect, an unconditional grab at the next string on the in
put stream. It can only fail if there is nothing left.

Another use of READ is in the fourth call in the third last
line of the program. This call not only tests the next string
but causes a variable (T) to be assigned a subpart of the
string. Patterns, in general, can denote arbitrarily complex
computations with the subject string as effective argument.
This property of patterns imparts to READ a high degree of
flexibility.

• , 1 Program , , For many of the same reasons that we might
, , 9.3 , , want a FORTRAN statement grabber if we
" PARAGRAPH " were processing FORTRAN decks, we might
L- I want a paragraph grabber if we are proces
sing text. A paragraph, here, is assumed to be a sequence of
lines down to the next paragraph whose start is designated by
a blank in column 1. Since the information on the cards is
assumed to be sentences, we will place a blank between lines
(after trimming) • Moreover, if a line ends in a period, we
will place an extra blank between it and the succeeding line,
since it is conventional, in typing, to separate sentences
with two blanks. If no paragraphs remain, or if the first line
to be read does not match the pattern passed to PARAGRAPH as
arguroent, then PARAGRAPH will FAIL.

r---,
PARAGRAPH(p) will read in a paragraph provided the first
card on input matches the pattern p. The paragraph is as
sumed to continue until a blank appears in column 1. It
will fail if a paragraph is not found.

Program 9.4 - SNOREAD_

DEFINE(IPARAGRAPH(FIRST_LINE)T,PI)
PARA_CONTINUE = POS(O) NOTANY(I I)

Page 111

: (PARAGRAPH_END) ,
Read in the first line, provided it is the first line of a I
paragraph. If it is not, fa il. I

I

PARAGRAPH P TRIM (READ (FIRST_LINE» : F (FRETURN)

Set the variable T equal to 2 blanks or 1 blank depending
on whether or not the paragraph accumulated so far (in P)
ends with a period.

PARAGRAPH_1 T = I I

P POS (0) RTAB (1) , • I : F (PARAGRAPH_ 2)
T I

PARAGRAPH~2

Now join the next input line provided it is still part of
the paragraph. If so, recycle; otherwise return what is
in P. Note that the blanks in T are not joined to P unless
the READ() is successful.

P P T TRIM(READ(PARA_CONTINUE»
PARAGRAPH = P

~~
READ

TYl?~
Function

: S (PARAGRAPH_1)
: (RETURN)

where defined
Program 9.'1

~i19gue

PARAGRAPH, like FORTSTAT, refers to the READ function to do
its basic input. The pattern which defines what determines
the start of a new paragraph (or more exactly the end of a
current paragraph) is contained in PARA_CONTINUE. This pattern
can be modified for slightly different paragraph conventions
or can be set as an argument.

Note that the temporary variable P was used to accumulate the
material in the paragraph. The variable PARAGRAPH could have
been used and this would have saved one assignment statement.
P was used for brevity and convenience and with the knowledge
that straight assignments of the kind indicated are quite fast
and their effects on the running time of the overall program
are negligible.

i

" It
It

Program
9.4

SNOREAD

i

" " "
For many of the same reasons that we would
want statement-gathering activities to be
focused in one function in FORTRAN statement
processing, we would want to do the same if

we were processing SNOBOL4. A complexity introduced in ob
taining SNOBOL4 statements is the possibility of multiple

Page 172 __ _ Chapter 9 INPUT OUTPUT

statements per line (separated by semicolons). Moreover, the
fact that quoted literals may have semicolons embedded within
them means that a blind search for a semicolon will not do. A
further complexity is introduced by the fact that labels may
have quotes embedded within them (only semicolons and blanks
may not appear in labels) so that such quotes are to be
ignored when ignoring semicolons within quotes. But we have
encontered such problems in the preceding chapter and, by now,
they should be routine.

Like FOR~STAT, SNOREAD will ignore comment cards and fail when
no more statements remain.

SNOREAD will read in and return the next SNOBOL4 state
ment. If no statements remain it will fail.

DEFINE('SNOREAD()S,LBL')

Initialization section: Establish I/O and initialize
patterns. L---__ ~

INPUT(.INPUT, 5, 72)
ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
NOM '0123456789'
CONTINUE.S = POS(O) ANY('+.') REM S
SNO_STMTS P~S (0) ANY (ALPHA NOM ' I)
SNO_STMT (POSCO) BREAKC' ;1)

+ FASTBAL (, • It. It'", ';') , ; ') . SNOREAD
: (SNOREAD_END)

Examine a buffer (SNO_EUFFER) which presumably has charac
ters in it left over from the last read. If a statement
can be pulled out, fine, just return..

SNOREAD : S (RETURN)

otherwise check the buffer for null. If nonnull, then
there is a syntactic error in the input.

IDENTCSNO_BUFFER) :F (ERROR)

We now try to fill the buffer. We first make an attempt
to read the first card of a sequence of SNOBOL4 state
ments. If this fails, we assume it's a comment or list
control card; in either case we throw the card away and
try again until we succeed in getting a statement or hit
an end of file.

SNOREAD_1 SNO_BUFFER = TRIM(READ(SNO_STMTS» :S(SNOREAD_2)
READ 0 :F(FRETURN)S(SNOR~D_1)

Scoop up all succeeding continue cards and place a
semicolon behind the last card. Then go back to the start
of SNOREAD.

Program 9.5 - TREEREAD Page 173

SNO BUFFER = SNO_BUFFER
- TRIM(S)

, • ?READ(CONTlNUE.S)
: S (SNOREAD_2)

SNO_BUFFEF = SNO_BUFFER , ; , : (SNOREAD)

)~ ~ Where defined
READ Function Prog,ram 9.1
FASTBAL * Function Proqram 8.4

* indicates name is referenced in the initialization section.

• t
" Program , ,
, I 9.5 , ,
" TREEREAD I'
L-- •

A tree, in the context we will be using it,
will be a collection of data in a hierar
chical organization. An example of a tree
is shown in Fi~ure 9.1.

,.----,
r---------------I A ,--------------~

r----,
, B ,

'----'

L.---J

,.----,
-----I C 1---....

L.---J

Figure 9.1

An example of a tree.

There is a ~ node at the top (just the reverse of
biological trees which have their roots at the bottom). The
root node has 0 or more i~~~cendants or sons. Each
of these, in turn, have 0 or more immediate descendants.
MOreover, each node has a value associated with it which, for
the sake of current discussion, we will assume is a string.

In the example shown in Figure 9.1, the root node has the
value 'A' and its 3 sons have the values 'B', 'C' and 'F'
respectively.

Reading a tree implies both an external form by which the
programmer specifies his tree, and an internal form by which
the tree will be represented in the machine. These represent

page-.;.1..:.1~4 _______ £hapter 9 INPUT OUTPUT

two decisions which will have to be made before we can
progress further.

In general, the representation of computer data is'an issue
which is perpetually confronted by the computer programmer.
His choice can significantly influence the runtime and storage
efficiency of the resulting program, as well as the ease with
which he can write, debug, modify, and extend his program. In
a string language such as SNOBOL 4 there is a built-in
prejudice to represent. data objects as strings, because of the
languages's rich string handling capability. That is, one
feels that when it 'comes time to process the data object, in a
way or ways not clearly foreseen at the start of the program,
the necessary tools will probably be there.

Another strong advantage of using strings to represent data in
SNOBOL4 is the relative ease with which one can monitor the
changing forms of the data. There are several semiautomatic
tracing features available to the SNOBOL4 user (&FTRACE and
&TRACE) which print out the values of variables if they are
strings, integers or reals but not otherwise. Under such cir
cumstances the advantage of using strings to represent data is
more than obvious.. But even if these tracing features were
not especially inclined to favor the string, there is nonethe
less a convenience in being able to display an entire data
object in one fell swoop merely by printing a string.

Another advantage of using a string to represent the data is
th~t (in SNOBOL4 at least) the data within the string will oc
cupy contiguous storage locations. This can mean that certain
kinds of analysis can be made very rapidly by a scan. Many
machines have built-in mechanisms for quickly scanning con
tiguous core storage for particular data items. Such efficient
machinery can be brought to bear upon a data structure in con
tiguous core whereas it could not if the data were associated
by means, for example, of address links.

One reason for not representing a tree as a string is that the
values of the nodes may not be conveniently representable as
strings. Another reason may .. be that the operations that an
application will typically make upon a tree may be rather un
natural for a string. We will show in a later chapter how a
tree may be represented in SNOBOL4 as a linked structure. For
this chapter, we will consider only string representations.

There are many ways in which trees may be represented as
strings internally. To visualize one very exotic way, imagine
that a tree is elaborately displayed in a printout page with
lines of, say asterisks connecting up boxes denoting the
nodes, etc. Then the sequence of lines o£ this printable image

• This limitation need not be viewed as a strict one. The
discussion surrounding the function FTRACE, Prog. 14.3,
describes how the values of data aggregates may be
automatically dumped as well.

________________ ~P~-r~o~g.r~am 9.5 - TREEREAO pa~12

will, when concatenated, denote unabiguously a tree. Such an
example is a very good One of how not to encode a tree. Not
only is the encoding inefficient in terms of storage but it
also would prove to be unwieldy in processing (selecting,
searching, deleting, adding, etc.).

One sane way of representing
representation (Mccarthy, 1960].

a tree is by a LISP-like
A node is encoded

(V,SI'SZ' ••• ,sn)

where v is the value of the node, and where each s is the
representation of a son. For example, the tree in Figure 9.1
is represented as

(A,B, (e, (O,E», (F,G»

Using such a representation, the value of nodes are restricted
in that they may not contain commas or either of the paren
theses (or if they do, three other characters would have to be
found at the loss of some notational naturalness). Another
disadvantage is that, in many applications, it is convenient
to be able to obtain, without an involved computation, the
number of sons of a given father node. For both these reasons,
we will use a slightly different method which is a variant of
polish prefix notation (from Lukasiewicz (195, p. 78] but see
Higman [1967, p. 24] for a nice general discussion. We will
represent a node as

where, as before, v is the value of a node, n is the number of
sons and s represents a son. The tree in Figure 9.1 would be
represented as:

A,3,B"C,2,O"E"F,1,G"

Here a node without sons is represented as

v"

That is, the null string as well as an explicit 0 can be used
to denote 0 sons. This blends well with the SNOBOL convention
of regarding null strings as arithmetically equal to O.

The parenthesis-free or polish notation is somewhat more dif
ficult to analyze visually than the parenthesis notation but
it is significantly easier to manipulate and for that reason
is a good machine representation.

The external representation of the tree would be that form as
it is keypunched onto cards or typed onto a teletypewriter.
To be more explicit, we are concerned with an external input
representation as opposed to an external ~put representa
tion. There are obvious fundamental distinctions between a
tree representation which one is willing to type and a tree

~ge 11~6 ___________ , Chapter 9 INPUT OU.=,T.:,;P=.,UT:;:.::. _______ _

which one would like to see. For the former, we require ease
of typing and ease of modifying which are not considerations
of the latter.

The form of external input representation we will use is
similar to the form used by COBOL and PL/I to represent struc
tures. The root node is said to be on level 1. Its immediate
descendants are on level 2; the immediate descendants of any
node are one level number greater than the level number of
that node. Thus the representation of any node of a tree is
given as

k V
St
S2

sn

where k is the level number of the node, v is the value of the
node and each s represents a son (in the same format). For
example, the representation of the tree shown in Figure 9.1 is

1 A
2 B
2 C
3 D
3 E
2 F
3 G

This form of the tree is not difficult to type or to modify.
It is also not very difficult to read, particularly if the in
put processor permits indentation (as ours will) so that the
tree may be typed:

1 A
2 B
2 C

3 D
3 E

2 F
3 G

The actual program to cOQvert trees from the external input
form into modified polish is given below.

TREEREAD(level) will read a tree beginning at the given
level. It will fail if this level is not found' on the
input.

DEFINE ('TREEREAD (LEVEL) SONS,NI)

TR_BC is .the tree break character used to separate items

Program 9.5 - IREEREAD Page 177

in the strungout version of the tree.

The pattern LEVEL.TREEREAD tests the level and extracts
the value placing this value into TREEREAD.

LEVEL.TREEREAD = POS(O) (SPAN(' ') I NULL) *LEVEL
+ SPAN(' ') REM. TREEREAD

: (TREE READ _ END)

Read in the node at the current LEVEL and assign the value
of this node to TREEREAD and tack on the break character.
If the LEVEL argument does not match the input level then
fail.

TREEREAD READ (LEVEL.TREEREAD) : F (FRETURN)
TREEREAD = TRIM (TREEREAD) TR_BC

Read in the sons of this node by calling TREEREAD recur
sively at a level one higher than the current level. The
number of sons is counted in N.

TREEREAD_1
+

SONS = SONS TREEREAD(LEVEL + 1)
: F (TREEREAD_2)

N N + 1 : (TREEREAD_1)

concatenate the value of the father, the number of sons
and the representation of the sons.

TREEREAD_2

TREEREAD_END

TREEREAD = TREEREAD N TR_BC SONS

Names referenced
.2Y TREEREAD:

Nam~
READ

IY12~
Function

: (RETURN)

Where defined
Program 9.1

The first executed statement on entry to TREEREAD calls the
by-now familiar READ, requesting that a card be read only if
it is of the level requested. TREEREAD will then call itself
recursively to obtain trees at levels one deeper. When recur
sion is called for, the savings in program length can be
dramatic and the subjective effects exhilarating. There are
types of environments in which recursion seems quite well
suited. one of these environments is when the data structure
is organized recursively such as the trees in this example.

The break character is set in the initialization section to be
a comma. This can change at any time by assigning a new break
character to the variable TR_BC.

Page 178 Chapter 9

,

" " "
Program

9.6
MFREAD

,

"
" It

The READ function (Program 9.1) is flexible
to the extent that input can be obtained,
not merely from the standard card reader,
but from any file associated with the

var,iable INPUT. That is, we could reassociate the variable
INPUT in order to obtain the INPUT from a source other than
the standard input. An example of a reassociation of INPUT
was given in tbe FORTREAD and SNOREAD functions (Programs 9.2
and 9.4); there, INPUT was reassociated not with a nonstandard
file (although it could have been) but with a file whose
record length was nonstandard (i.e., 12 rather than 80).

It may be, however, that it is desired to read from two or
more files simultaneously and then, the original READ would
not do. Even if the user would be willing to reassociate the
variable INPUT on each shift of the input stream, the scheme
would not work because the saved string in INPUT_BUF would
become hopelessly mixed between the various streams.

But it is possible to generalize READ to handle multiple
streams. Our extended version will allow a second argument to
indicate the source. Thus

READ(P, .SYSUT1)

will read from source associated with the variableSYSUT1.
Also, a null second argument will imply the stream associated
with INPUT. Thus, READ(P) will be equivalent to

READ (P, • INPUT)

In this way our new READ will be u~ward-compatible with the
old READ.

The new READ, while more general, is less efficient than the
old READ, and so there are advantages to both. In practice,
one can do with the efficient READ until such time as it
becomes necessary to read more than one stream; then one can
simply 'plug-in' the more general READ.

MFREAD(P,U,L) will behave like READ(P) except that an op
tional second argument (U) can be used to specify a unit
other than the normal reader. An optional 3rd argument
can specify a logical record length other than 80 (for the
first call associated with a given unit).

DEFINE('MFREAD(P,U,L)B9F,NF,NM,DATA')

Establish structure to hold data on each file. L-__ ~

DATA('RDATA(RNM,RBUF,RNF)')

Establish table to hold structures. Establish default

file.

Program 9.6 - MFREAD

READ_TBL
READ_TBL<>

TABLE ()
= RDAT A (. INPUT)

Page 179

Sieze control on calls to the REWIND function. Do a real
rewind but also discard any file information for unit N.

REWIND

OPSYN('REWIND.','REWIND')
DEFINE ('REWIND (N) .)
READ_TBL<N>

: (MFR EAD _ END)

: (RETURN) REWIND. (N)

Entry point: Obtain DATA associated with unit U. If DATA
is null establish an ~ntry for this unit and input
associate some contrived name. L--__ ~

MFREAD DATA READ TBL<U>
I DENT (DATA, NULL)
NM 'READ:' U
DATA RDATA (NM)
READ_TBL<U> = DATA
INPUT (NM,U,L)

: F (MFREAD_1)

r--
, Arrival here means that DATA contains the data associated
,with our i/o unit. Extract information. If NF is less
, than 0 fail immediately.
I

MFREAD_1 NM RNM (DATA)
BUF RBUF(DATA)
NF RNF(DATA)
LT (NF ,0) : S (FRETURN)

If BUF is null, fill it. Then test it against P. If fail,
FRETURN. Otherwise return BUF.

I DENT (BUF , NULL)
BUF $NM
RBUF(DATA) BUF
BUF P
MFREAD BUF
RBUF(DATA)

Decrement NF and try again.

:F (MFREAD_2)
:F (MFREAD_3)

:F (FRETURN)

: (RETURN)

L--__ ~

MFREAD_3 RNF(DATA)
MFREAD_END

~ilog~

NF - : (MFREAD _ 1)

The extended version of READ is patterned after the single
file READ. There are several additional statements in the
initializing section which set up t.he names of variables which
are to be. indirectly referenced. Beyond the label READ_3,
things are pretty much the same as the simpler READ with in
direct referencing replacing the direct referencing. That is,

Page ,..:.1~8~0 ____ , _____ ~Chap~~~ ____ _:I=NgUT OUTPUT

instead of referring for example to the variable INPUT BUF a
reference to the variable $B is made where B has been assigned
an appropriate name.

The first statement executed (after the entry point) assigns
the name 'INPUT' to the variable F provided F is null. This
is a common way of assigning default values to dummy
parameters in functions.

The reader may be somewhat alarmed as to the amount of over
head associated with each read request. This overhead,
however, may be quite tolerable in a programming situation
which involves relatively few reads compared with other com
putations or in a situation in which programming the problem
costs more than running it. If the overhead proves excessive,
the reader will find an. outline for a faster Multifile READ in
Exercise 4.6.

IIII UTPUT ROUTINES As was mentioned in the introductory
I I. remarks of this chapter, output in
I I, SNOBOL4 is almost magically simple. Assigning a
I I I string to the variable OUTPUT or PUNCH will print or
III' I punch the string respectively. Moreover, it does

'-----...... ' not have the problems that/input has; i. e. trans
mission is not typically tentative depending on the value of
the string and output files are not sequenced like input files
may be. But there are problems nonetheless. For one thing,
printed output .must appeal to the human eye which means ver
tical as well as horizontal allignment and this generally is
difficult to do when simply outputting strings. For the same
reason, overstriking, which calls for a perpendicular allign
ment is equally awkward and unnatural. Both of these obstacles
are overcome quite easily with the use of the block datatype,
a discussion of which is deferred until a later chapter.

For this chapter we will consider only basic card output;
i.e., output which is meant to be read by some other computer
program.

i i

't, Program "
11 9.7 "
" PUT II '------_

Just as it is good practice to focus input
activities into a single function, so it is
a good idea to do the same for output. PUT
is a function which will accept as argument

a string (of no greater than 72 charaeters) and print this
card labeled and numbered in the identification field (columns
73 through 80). It will also punch what is printed.

Labelling is effected by the user of PUT by aSSigning a string
to the variable PUT_LABEL. Thus

PUT_LABEL = 'PUT'

will set this label to equal the indicated 3 letters.

______ . ________ .~P~r~o~q~r~am: 9.8 - FORTPUT Page 181

Numbering of cards is by increments of 1. sometimes it is
desired to increment by a number other than 1 which is accom
plished by setting the value of PUT_INC. Thus

PUT_INC = 10

will set the increment to 10.

PUT(L) will output L (presumed to be a card image). It
will label the OUTPUTted card starting in column 73. The
user may specify the label by assigning a string to the
variable PUT LABEL. The cards will be numbered in incre
ments of 1; the increment can be changed by assigning an
appropriate value to PUT_INC.

DEFINE('PUT(L) ')
PUT_INC 1

: (PUT ... END)
PUT PUT N PUT_N + PUT_INC

+
OUTPUT = RPAD(L,72) PUT LABEL

LPAD(PUT_N, 8 - SIZE(PUT_LABEL»
PUNCH OUTPUT : (RETURN)

Names referenced
£l!_PUT: ---- ~~

LPAD
RPAD

IY12~
Function
Function

Where defined
-program3."2

Program 3.3

Note that when OUTPUT is used on the right hand side of the
assignment (last executable statement) the value last output
is used as value and no OUTPUTing of information is implied or
inferred.

For debugging purposes, it is perhaps prudent to turn punching
off. This can be done either by removing the assignment to
PUNCH or by executing the statement:

DETACH (• PUNCH)

The latter is preferred since when it comes time to actually
punch, it will be obvious what to do.

i ,

" Program " In the description of FORTREAD (Program 9.2)
" 9.8 I' several examples of FORTRAN source proces
" FORTPUT 'I sing were given. In three of these examples
L-__________ --~, (preprocessing, conversion and housekeeping)
the output is also FORTRAN and, in such cases, theprogramminq
situation can be simplified by writing an ou'tput function spe
cially designed for FORTRAN statements.

Page 182 ___________ Chapter 9 ~ INPUT OUTPUT

FORTPU~(S) will output a FORTRAN statement S. The card
will also be punched, labeled, numbered, and continued if
necessary.

DEFINE('FORTPUT(S)T') : (FORTPUT_END)

Entry point: Remove initial chunk from S; output it; check
for completion, if so return. L-__ --J

FORTPUT S (LEN (72) , REM) • T =
PUT(T)
IDENT(S,NULL) . :S (RETURN)

Since something is left in S we must supply a continuation ,
card. The location field of this continuation card (the ,
first 5 characters) must be blank. ,

S

Names referenced
~Y-FORTPUT':' ---

, ,

DUPL (, " 5) , l' S

~p~
Function

,
: (FORTPUT)

Where defined
Program 9.7

II Program II SNOBOL4 statement outputting (which we do
" 9.9 'I next in Program 9.10) is more complex than
, , PEEL , I FORTRAN outputting attributable to the fact
, that a SNOBOL4 statement cannot be split ar-
bitrarily but only at a point where a blank may appear (but
not within quoted literals). The determination of a suitable
break point in a SNOBOL4 statement will be done by the func
tion PEEL. This function is being isolated because it can be
used for other purposes such as compressing and reformatting
SNOBOL4 statements. Also, a slightly modified version of PEEL
can be used for finding break points in JCL (Exercise 9.8) •

PEEL(name, n) will peel off and return a prefix from the named
string. The prefix is to be as large as possible but not
longer than n characters. The named string will be mOdifled.
The prefix will be broken off from the named string only at a
suitable break point defined as follows. The break may never
appear within quotes. Given this first condition, it may occur
before any of the characters in BEFORE or after any of the
characters in AFTER. If no prefix can be found other than the
null string then PEEL will fail.

PEEL has a side effect. In addition to returning a value, it
will modify a part of the outside world. In particular, it
will remove a prefix from the string named by the first argu
ment. The modification of supplied arguments can only be
accomplished in SNOBOL4 by passing as argument the name of the
variable. Thus to remove a prefix from the string S the call
to PEEL must be of the form

____________ p!:gg~2!L~L=_PE~L ___________ fgS!L 183

PEEL (. S, n)

(the call PEEL('S',n) although equivalent is not recommended
because it does not provide as good documentation and in some
implementations is less efficient). This method of denoting
arguments is a bit unusual inasmuch as the arithmetic
languages, FORTRAN, PL/I and ALGOL permit functions to modify
argument variables without the encumbrance of an initial
period. At first, the initial period appears to be something
of a nuisance. As it turns out, however, it has the important
advantage of alerting the reader to the possibility of side
effects.

PEEL (NAME,N) will peel off and return a prefix from the
named string. The prefix is to be as large as possible
but not longer than N characters. The named string will
be modified. The prefix will be broken off from the named
string only at a suitable break point. The break may never
appear within quotes. It may occur before any of the
characters in BEFORE or after any of the characters in
AFTER. If no prefix can be found other than the null
string then PEEL will fail. L-__ ~

DEFINE('PEEL(NAME.,N.)K1.,K2.')
BEFORE ') ,>'
AFTER '(,<'

PEEL.K2. = POS(O) TAB(*K1.) (ANY (AFTER) iDK2. I
+ BAL (, "" ""') (iDK2. ANY (BEFORE) ANY (AFTER) iDK2.
+ RPOS(O) iDK2.»

,
If the NAME.ed string is no longer than N. characters, I
return the value and null out the variable. I

PEEL LE(SIZE($NAME.),N.)
PEEL = SNAME.
SNAME.

: F (PEEL_1)

: (RETURN)

,

r---,
, Otherwise we scan for a break point in the named string.
lOur search begins after the K1.th character (K1. is ini
, tially 0) and assigns' the numerical value of the break
, point to K2. Ultimately K2. exceeds the value of N. at
, which point we transfer to PEEL_2. ,

$NAME. PEEL.R2.
GT (K2. ,N.)
1<:1. = K2.

:F (ERROR)
: S (PEEL_2)
: (PEEL_1) ,

The break?oint is now indicated by K1. and provided it is ,
not zero we can return normally. ,

EQ(K1.,0)
$NAME. LEN(K1.). PEEL

: S (FRETURN)
: (RETURN)

Page 1,.-,8...-4 __ ___ ~C=hSQter _9 ___ ~I~NPUT OUTPUT ______ _

Names referenced Name I~E~ Where defined
by-PEEL: BiL-* Function -Program 8.3
* indicates name is referenced in the initialization section.

Epilogue

PEEL is not as fast as it could be. The pattern PEEL.K2. ad
vances by 1 character at a time until overflow occurs. The
inefficiency is normally not troublesome because PEEL will
normally be able to return the entire string without having to
search for a break point. Nevertheless, some applications
might call for a faster PEEL and Exercise 9.9 outlines a
method for increasing the speed as well as increasing the
selectivity as to where Creaks may occur.

The names of parameters and temporary variables (viz. NAME.,
N., K1. and K2.) were deliberately made strange so as to
reduce the chances of duplicating the name passed as first ar
gument to PEEL. This issue is discussed fully in the Epilogue
of the SWAP routine (Program 3.14) .•

r i
I f Program f f
11 9.10 , f
f' SNOPUT "

The function to output SNOBOL4 statements is
shown in Program 9.10. PEEL has greatly
simplified its writing.

SNOPUT(S) will output a SNOBOL4 statement S. It will han
dle automatically: labeling, numbering, punching, and, if
necessary, continuation.

DEFINE('SNOPUT(S)')
: (SNOPUT_END)

output the first 72 characters (breaking appropriately).

SNOPUT PUT(PEEL(.S,72» :F (ERROR)

If S is null we are done, otherwise peel off the next 71
characters and prefix with a continuation (+). Continue
to do this until S is null.

SNOPUT_1

SNOPUT_END

IDENT (S, NULL)
PUT('+' PEEL(.S,71»

Names referenced
J2Y:~!!QPUT:--

Nsm~
PUT
PEEL

:S (RETURN)
:F(ERROR)S(SNOPUT_1)

IYE~
Function
Function

Where defined
-Program9.7

Program 9.9

______ =E:xercises for ch2Q~_9 ____________ ~~~

1111111111111111111111??11111111111111111111111111?11111111111
111111?111111111111111111 EXERCISES 111111111111111111111111
11?1

Exercise 9.1 Extend the basic READ routine so that it can
operate like a pushdown stack. thus

PUSH (• ABC •)
PUSH (• XYZ •)
A = READO
BREAD C' Sf)
C READ C'YZ')
D READ 0

when executed will cause the following values to be assigned.

A = 'ABC'
C = 'XYZ'
D = the next input card

The PUSH & POP routines (Progs. 5.5 & 5.6) may be used. In
fact, the PUSH above is assumed to be exactly Prog. 5.5.

r-------------~

f Exercise 9.2 Modify PARAGRAPH so that the start of the
next paragraph is denoted by a pattern given

to PARAGRAPH as argument. You may use the modified READ given
in Ex. 9.1 •

• , Exercise 9.3 Modify FORTFEAD so that it returns the
FORTRAN statement with all extraneous blanks

removed (i.e., blanks not in positions 1 through 6, not within
quotes, and not within a hollerith field (nH ••• ».
i i
f Exercise 9.4, Modify TREEREAD to accept trees whose struc

ture is denoted by

Ca) indentation (allow sons to have any indentation greater
than their fathers)

(b) numerical values without the restriction that level num
bers increase in steps of 1.

In each case assume that the value of a node is some nonnull
quantity •

• , Exercise 9.5 Use READ to write a function called ASMREAD
L which is to read in statements from IBM's
OS/360 assembly language (IBM360b]. The fact that a given card
is to be continued is denoted by a nonblank in column 12 but

~~ __ 1_8~6 __ . ______________ C~h_a_p_t_e.r~9 _____ I~N~OT O~U~T~P~U~T ________ . ____ __

this character is not considered part of the statement. The
next following card (incredibly) must have blanks in columns 1
through 15 and these blanks (but no following blanks) are
ignored when building the statement. ASMREAD should fail if
an inconsistency is encountered in one of the continu~
conventions •

• , Exercise 9.6 Write a multifile READ which avoids most of
I the inefficiences of multifile reading in
the following way: When READ is called, control is directed to
the label 'READ ' F where F is the file name. The statements
transferred to- can be compiled at runtime (using the CODE
function) at the first use of file F andean be 'custom-made'
for the particular file name.

r- ,
, Exercise 9.7 I Given the tab mechanisms of keypunches and

teletypewriters, it is easier, in typing, to
left-justify elements within fields whereas many applications
(especially numerical) call for right justification of ele
ments within fields.

(a) Given an 80-character string (card image) in the variable
S, write a single statement to right justify any left
justified element in the field which starts in column
numbered C and whose length is L. YOU may use LPAD and/or
RPAD (Progs. 3.2 & 3.3).

(b) Use (a) as the basis for a program which will right
justify elements in a deck of cards. The first input card
contains a sequence of X's in each field to denote their
locations. This can be converted to a sequence of number
pairs and then (a) can be repeated for each number pair
and each card.

Exercise 9.8 (a) Using READ, write a function (called
JCLREAD) which will extract a complete JCL

statement [IBM360c] from the input stream (let it pass over
and output all non-JCL). Delete unnecessary blanks between a
control card and the following continue. Remove all comments.

(b) write a function to output JCL.
used.)

(Hint:

(c) Test the two functions by replacing
statements every occurrence of
'DSNAME=LIBRARY.'.

PEEL can be

in a set of JCL
'DSNAME=' by

Exercise 9.9; To improve the operating speed of PEEL
'- (Prog. 9.9) one may search over nonbreaks
and/or decrease the number of break points.

_________ Exercis~s for chapter 9

(a) write a pattern which behaves like PEEL.K2. but which
uses FASTBAL, Prog. 8.4, to rapidly scan over characters
which are not significant in determining break points
(viz. BEFORE, AFTER and the quotes) •

(b) If we reduce the break set (say AFTER = '=' and BEFORE
':') then we will have higher speed and the. break points
will be more aesthetically placed. There is the danger,
however, that a nonnull peel cannot be made. Rewrite PEEL
so that if it runs into difficulties with the given
BEFORE and AFTER, it temporarily uses a stronger version
of PEEL.K2. (richer BEFORE and AFTER) to crack the given
statement.

Exercise 9.10 (a) Let the variable NAME. have the value L-______________ ~

'LABEL SUBJECT PATTERN = OBJECT : (LABEL) ,

What value is returned by the call

PEEL('NAME.',35)

(b) Modify PEEL so tpat if the name given is a forbidden
name, PEEL will go to ERROR.

Exercise 9.11 Using SNOREAD and SNOPUT write a SNOBOL4
program to process other SNOBOL4 programs

such that every call to the function ALPHA is replaced by a
call to the function ALPHANUMERIC.

Exercise 9.12 L-______________ ~

SNOBOL4 program.
as possible.

Using SNOREAD and SNOPUT write a program to
squeeze out extraneous blanks from another

Be sure to pack as many statements on a line

~ r---1 , r-t' 1 r-t 1
"--If " " I ,....---I 1 L-I,

" 'r-t I u u u

~ ~ , ,........... I r-"'1 I
It......, II " , ,........

" " " I L.....I I
U '----'

C HAP T E R TEN

r---1 ,----, ~ ~ ,----,
1 r-t 1 ,,-, , , r---' ,,-, , , r-11
1'-'1 " " IIr-"'1 ,L-I ,

" II

"'-' ,L-I, " .., 1 1"-' , L-J 1

"" I ,....., , 11-'1 '" '\
I r-"'1 I

u u u U L--.I U U U

~ " n ,----, .-----, .-----,
I r.-1 I IIVII I r-t' '-, r-' L--. r-.I
, L-II "V" II " " 'I

"'-' " "
, L.....I ,

" " II" " " 'r-t , " 11
U U U U

BNORM

I NORM

U U U U

10.1

10.2

LINE ••••••••••••••••••• 10.3

PAD •••••••••••••••••••• 10.Q

SPACING •••••••••••••••• 10.5

MINP ••••••••••••••••••• 10.6

.HYPHENATE •••••••••••••• 10.1

IMAGE •••••••••••••••••• 10.8

U

,--, ..,,...

" " ,.....,
L........J

,----, " " I r-1 I " " , L.....II 1 L-I,
1 ,....---I I,....., ,

" i ,
" U U U

" n ,----,
II" , , ,...........
I"" 1tr-"'1

" 'I " .., ,
" II , L-I,
U U L.............J

______ ~C~h~a~pter 10 PARAGRAPH FOR~Ir!_N_G ________ ~P~a~q~e~1~8~9

,----,
L-.,,..-I he paragraph you are reading now has been formatted by

II a computer directed by the very programs we will
II describe in this chapter. Paragraph formatting is a
II special case of the more general activity known as
u text formatting. Whereas the former activity is

limited to the shaping of individual paragraphs the latter ac
tivity is more open-ended and includes page layout, pagina
tion, etc.

what, the reader may ask, is so complicated about decomposing
a paragraph into lines that we must spend an entire chapter in
its discussion? If all that were involved in this process were
the cutting of lines at convenient blanks and padding with
blanks to right-justify margins, then we could dispose of the
subject in about a page of text and 6 lines of code. But the
task is complicated considerably by the seemingly minor
details of backspacing, underscoring and hyphenation. Though
the need for overstriking is relatively rare, it does exist
and just as much code need be written if we are backspacing
occasionally as frequently. In fact, it is quite normal that
90% of execution time of a program is spent in only 10~ of it.
A grasp of this fact and its implications toward optimum
programming is not always fully appreciated. All too often,
programmers care only to get the program performing as expec
ted without regard to efficiency considerations or, to the
other extreme, have a compulsive urge to optimize every bit of
it. Both miss the sound central approach of implementing ef
ficiently that portion which is used most frequently. In this
chapter we will have ample occasion to employ this principle

In Program 9.3 we showed how to read in a paragraph and in
this section we will format it. Between these two activities,
the paragraph may undergo conversions in what we will refer to
as the E!~-pro~~inq stage. If the original input device were
a keypunch, then almost certainly some kind of upper to lower
case conversion would be necessary. More generally, if charac
ters appear on the printer which are not available on the
input I device, a conversion is necessary to produce those
characters. Another instance in which conversion is used is
in the indication of variable information such as figure num
bers and exercise numbers. In a sophisticated text processor,
these will be given in symbolic form to be converted to actual
numbers when the text is printed.

We will assume that, possibly as a result of this pre
processing, the input text will possibly contain the special
characters BSPACE and USCORE. BSPACE, as its name implies,
will permit the user to overstrike print characters. We will
denote this character by backarrow (-) so that '0-/' will
print as '~'. Just what character the user types to obtain a
BSPACE in his text is determined by the pre-processor. In the
system used to prepare t.his document, the symbol '..... was used.
Backspacing complicates such issues as separating a paragraph
into lines and printing a line on a device which does not
directly support the backspace character (such as a printer).

Chapter 10 PARAGBAPH_FORMATTING ______ __

It also serves to cloud the issue of when a line equals
another line.

overstriking can extend the set of characters which one can
print. Several examples of interesting overstruck combinations
are shown in Table 10.1.

Table 10.1 Characters
via-overstriking

,
obtainable , ,

--------------------------------------t
,A B A - B Name ,

---------------------------------------f
cit (cent sign) I
I t (dagger) f
, t (double dagger)

b
>
<
o
o
/ ,

/ ~ (not equal)

/

/
)
,

+ (division)
)5 (symbolic blank)
~ (right arrow)
~ (left arrow)
e (Theta)
f} (Phi)
Y (Gamma)
}. (Lambda)

USCORE is a character which appears in pairs and indicates
that any material between them is to be underscored. In a
sense, underscoring is a special case of backspacing but, in a
sense it is not. For example, we are permitted to break lines
at blanks and expand lines at blanks for the purpose of for
matting paragraphs. But we would also like to be able to break
the line:

"A quick brown fox !:~!lLdig jump over ••• " after the "!:~lly"
so that we might print:

A quick brown fox !:~ally
did jump over •••

Note that not only are we breaking at a nonblank, we are ac
tually discarding a character. If the underscore character
('_') were treated as a break character, then there may be
difficulties with formatting paragraphs which contain '_'. One
example of this is the paragraph you are reading now. Another
example is

"Printing the string 'A B-__ ' yields '~12'."

In the above case it becomes not merely awkward but actually
impossible to disentangle that which is regarded as under
scoring from that which is overstriking.

Program 10. 1 - BNORM

The USCORE character is inserted into the text by the pre
processor and is not actually typed by the user. The way in
which the user will indicate underscoring will depend on the
input device. In the system which formatted this text (and
which is oriented toward key punch input) the underscor~
character ('_') is used to denote that the following word is
to be underscored and a sequence of the form __ _ in
dicates underscoring of an arbitrary string of characters. In
a system oriented toward teletype input the sequence

n-characters n-backspaces n-underscores

could be translated by the pre-processor, into

USC ORE n-characters USCORE

r- i

'I Program " Backspace normalization is the process of
" 10.1 " converting a string with backspaces embedded
" BNORM I' in it into a string which prints identically
, , to the first but in which no 2 backspaces
occur consecutively. Thus 'ABCD----1234' is translated into
'A-1B-2C-3D-4'. This serves to localize the effect of
backspacing simplifying later processing. It also serves as a
necessary prelude to image normalization as described in
INORM, Program 10.2.

To describe rigorously what is meant by B-normalization, we
define the ~pacing of a string as equal to the number of
characters in the string minus twice the number of BSPACE's
and minus the number of USCORE's. Thus, the string 'AB-C' has
a spacing of 4-2(1) = 2. The string 'A~B-C~' (where ~ is the
USCORE) has a spacing of 6 - 2(1) - 2 = 2. Informally the
spacing of a string equals the net movement of the type ball
(or equivalent mechanism) when the string is printed on a
teletypewriter. Note that the spacing can be negative as in
the string '--A'.

We define a prefix of a string as any initial sequence of
characters of the string. Thus, 'PRe is a prefix of the string
'PREFIX'. In general, a string of n characters will have n+1
prefixes including the null string and the string itself.
Similarly, a §uffix is any terminal sequence of characters.
More formally, P is a prefix of S if there exists a string T
such that

P T S

and F is a suffix of S if there exists a string T such that

T F S

A string is said to be balanced on the left if the spacing of
each of its prefixes is nonnegative:----rniormally, if, when
printing the string, we attempt to force the typeball beyond

Chapter 10

the left margin of the paper, the string is not balanced on
the left. In a similar way, we define a string to be balanced
Qn __ the right if all of its suffixes have nonnegative spacing.
Informally, a string is balanced on the right if its maximum
rightward movement is reached at the end of the string. We
call a string balanced if it is balanced on the left and on
the right.

Examples of strings unbalanced on the left are '-ABC' and
'AB---__ '; such strings cannot generally be printed and are
almost certainly errors. Any interpretation short of abnor
mally terminating the run will probably be an acceptable one.
Strings unbalanced on the right such as 'FOB--/' or 'ABC-' are
not errors and have well-defined meanings.

Let a character c which is neither USC ORE nor BSPACE be embed
ded in the string S as

Then the position number of c is defined as equal to the
spacing of S, plus 1. We refer to the characters of S other
than USCORE and BSPACE as the positiQn ch2~~~ of S.

Let S be a string without USCORES. Then the B-normalization
of S is defined as that string S' such that

1) S' is balanced

2) The position numbers of the characters of S' are
monotonically nondecreasing.

3) The position characters of S' are identical to the posi
tion characters of S and each such character retains its
position number and, moreover, any pair of characters
having identical position numbers retain their relative
ordering in S' as they had in S.

As an immediate consequence of the definition, all position
numbers in the B-normalization of a string are nonnegative.
Hence, strings unbalanced on the left having negative position
numbers will not have a B-normal form. On the other hand all
strings balanced on the left have a unique B-normalization
which can be produced by construction. This follows because
items 1) and 2) assure us that S· is a sequence of substrings
each representing one print position having the form:

where n~1 and in general varies with the print position. The
characters c l , C2, ••• ,cn each have the same position number.
Note that they all rnus~ retain their relative ordering. This
is done not merely to make B-normalization unique, but also
because we do not know the intended purpose of the

Program 10.1 - BNORM

backspacing. Thus, Ct-C2 is indistinguishable from C2-Ct when
printed but if we choose to interpret '_I as subscript or
superscript the ordering is important.

If S contains USCORES the situation is complicated slightly.
What are we to make of

, FOl{"/RTAANI!I'

Should it be

'~RAN' or 'F0B1BM:!'

Obviously this is a mistake. The string to the right of 'I!I'
should be balanced on the left so that the 'I!I' is not shifted
to the right of characters which appeared after it. Similarly
the string to the left of 'I!I' should be balanced on the right.
Hence we'define the B-normalization S' of the string S where

as

where St' and, S2' are the B-normalized versions of St and S2
respectively. Of course, S, and S2 may either or both contain
USCORE's in which case the definition applies recursively •

.f~QEQsitio!L1Q.!.l

If any string S is balanced on the left, then REVERSE(S) is
balanced on the right. Conversely, if S is balanced on the
right, then REVERSE(S) is balanced on the left.

Proof: The proof is simple but instructive. If S is balanced
on the left then all prefixes of S have nonnegative spacing,
by definition. If P is a prefix of S then REVERSE(P) is a
suffix of REVERSE(S). Since the spacing of REVERSE(P) is the
same as the spacing of P the spacing of the suffix is nonnega
tive. Since all suffixes of REVERSE(S) correspond in this way
to some prefix of S, we conclude that S is balanc~d on the
right. In a similar way we can prove the converse.

If St and S2 are right-balanced then S, S2 is right-balanced.
Similarly if St and S2 are left-balanced then St S2 is left
balanced.

~of: Any suffix of S, S2 is either a suffix of S2 in which
case its spacing is nonnegative or is of the form F S2 where F
is a suffix of St. But the spacing of F S2 = spacing F +
spacing S2 and hence is also nonnegative. Hence 5, 52 is right
balanced. In a similar way S, S2 is left balanced.

E~~ 194

Every suffix of a
Similarly every
balanced.

right-balanced string is right-balanc~g.
prefix of a left-balanced string is lett-

Proof: is obvious.

An algorithm to B-normalize a string p containing no USCORE's
is given below:

(i)

(ii)

Reverse S

Apply the followina transformation repeatedly until it
can no longer be applied.

S NOTANY(B) • X B B ONE_POS. Y B Y X B

(where B is the BSPACE character and where ONE POS is a
pattern which will match the shortest string whose
spacing is 1).

(iii) Remove initial BSPACE's from S.

(iv) Test for double BSPACE or trailing BSPACE. If yes to
either question, the original string was not left
balanced, respond appropriately. otherwise return the
reverse of S.

To. illustrate the algorithm, let S be the string
'abcd----efgh'. By step (i~ it is reversed to form
'hgfe----dcba'. Step (ii) 1S a multistepped process il-
lustrated in Figure 10.1, yielding the string shown. Step
(iii) does nothing. Step (iv) reverses the string to return
'a-~b-fc-gd-h' which is the result sought.

Step (ii) is the heart of the algorithm and does the fol
lowing. The spacing of (B B Y) is -1. Hence the position
number of X is higher than the position number of all charac
ters in Y. since in B-normalization the position numbers must
be in ascending sequence, ,the X and the Yare interchanged.
It is for this reason too that the transformation of (ii) must
terminate since there are only a finite number of inversions
in the original string.

will we be able to reverse all inversions? In order to have
an inversion we must have at least one double BSPACE. If the
double ESPACE is not removed by (ii) then it either is at the
beginning in which case it is removed by (iii) or the sequence

NCTANY(B) B B

occurs in S but is not followed by ONE_POSe This implies that
S is not balanced on the right; the transformation indicated
in (ii) preserves right balancing (the proof of which is left
as an exercise) so this implies that the original reversed

____ -=P~r~o~g=ram 10.1 - BNORM Page 195

h g f e d c b a ,
L-.I L-J L...J ,

X B B Y

B Y X B
r-, , i rI r-1 ,

h g f d c b e a I

L-J L-.I L-J '

X B B Y

B Y X B
r-, i ,rI r-1 ,

h g d c f b e a I

L-J L-J L-J L...J

X B B Y

B Y X B
r-1 ,.-, r-, r-1

i
h d g c f b e a I

l:igure 10 • .1

string was not right-balanced. This implies by proposition
10.1 that the original string S was not left-balanced.

The aefinition of ONE_p~s can be given recursively as:

NOTANY(B)

this definition while 'correct' could prove impractical. Let
us assume that 100 backspaces appear consecutively. Then
ONE_p~s will descend to 100 levels before matching. Though
there is no inherent limitation on the number of recursive
levels to which we can plunge, there are often practical
limitations, and this will, in general, depend on the im
plementation. Since the limit on the recursive depth has been
known to be less than 100 for some implementations and since
100 consecutive backspaces, while unusually large, is not an
unreasonable quantity, we must seek a solution. We solve our
problem by scanning first for a group of BSPACE's (viz. 5 of
them) and only if the group is not there do we choose to try
the case of one ESPACE. Thus

~sge 1~9~6~ ______ . __ ~C~h~a~p~t~e~r~1~0~ PARAGRAPH FORMATTING

+
+

NOTANY(B)
DUPL(B,5) FENCE *FIVE_POS *ONE_POS
B *ONE P~S *ONE P~S
ONE_p~s ONE_POS ONE_POS ONE_POS ONE POS

The maximum recursive plunge becomes [k/5] '+ REMDR(K,5) where
k is the number of consecutive BSPACE's. If recursive levels
of 70 are permitted, we can tolerate kS338. We can use the
same basic scheme to achieve even longer lengths of consecu
tive BSPACE's but 338 should suffice.

Note the effect of FENCE. If it were not there our clever
scheme would be thwarted if a long sequence of BSPACE's ap
peared in a string which was unbalanced on the left. The
reason 1s that, as we have discussed earlier, the right-most
*ONE P~S will fail. Without the FENCE the alternate
B *ONE_POS *ONE_POS will be tried. We will ultimately recurse
as many levels as there are BSPACE's only it will take longer.

+
+

BNORM(S) will return the B-normalization of the string S.
Blanks will be prepended to S if it is not balanced on the
left.

DEFINE (' BNORM (S) B,S 1, S2, X, Y ,P')

Initialize patterns

ONE_POS NOT ANY (BSPACE)
I
I

FIVE_POS
IF_BSPACE

DUPL(BSPACE,5) FENCE *FIVE_POS *ONE POS
BSPACE *ONE_POS *ONE_POS

ONE_PCS ONE_POS ONE_POS ONE_POS ONE_POS
BREAK (BSPACE)

Entry point: First make a quick
backspace character exists in S.
immediately.

scan to see if any
If none such, return

BNORM S IF_BSPACE : S (BNORM_ 1)
: (RETURN)

,

BNORM S

Are there any USCORE's? If so, subdivide and recurse.

S BREAK (USCORE) • S 1 USCORE REM. S2
BNORM = BNORM(S1) USCORE BNORM(S2)

:F (BNORM_B)
: (RETURN)

Reverse the string and apply the transformation described
in the text.

S
B
P
S

REVERSE (S)
BSPACE
NOTANY(B) X B B ONE_POS

P B Y X B
Y
: S (BNORM_ 2)

, The transformation has been applied as far as it will go.

__________ ~ogram 10.1 - BNORM Pa~-1.ll

Remove leading BSPACE's.

S P~S (0) SPAN (E)

If a double BSPACE or trailing BSPACE remains, add a blank
to S and try again. Otherwise reverse and return.

S B B
BNORM
BNORM

BNORM_UNB S S
BNCRM_END

Names referenced
!2y_]NORM:----

* indicates name is

E2.i.!ogu~

REVERSE (S)
P~S (0) B , ,

~~
REVERSE
BSPACE *
USCORE

referenced in

: S (ENORM_UNB)

: F (RETURN)
: (BNORM_2)

IY12~
Function
Character
Character

Where defined
program3:6

the initialization section.

BNORM was written under the assumption that most paragraphs do
not contain USCORE's or BSPACE's. such paragraphs are handled
as efficiently as possible. Other paragraphs are not treated
as quickly as could be done. specifically, patterns are not
predefined where they could be. The scanning for the pattern
P could be replaced by a more elaborate process so that double
ESPACE would be found rapidly via BREAKX. Similarly, the
double BSPACE check at the end could also be done more rapidly
using EREAKX. Another improvement might be to handle the spe
cial case of

n-nonBSPACE's n-BSPACE's n-nonBSPACE's

by a variant of the BLEND operation. But such sequences are
likely to be used in the case of underscoring so that the pre
processor would be expected to catch this special case.

Given our assumptions, however, none of these changes seem
warranted, since, for seldom used code, we want to be guided
more by the desire to save program space (which is also worth
money) than execution time. If the ground rules change,
rewriting according to the above principles may be indicated.

Note that if S is not left-balanced, BNORM(S) returns a
balanced string which is similar to S. An alternate approach
would be to have BNOFM fail. In the latter case, however, the
calling subroutine would have to specify recovery operations.
This can become a continuing nuisance and can be all the more
irritating because it involves a case which probably will
never occur.

Page 198 ______ ~C_h~a=pter 10 PARAGB~PH FORMATTING

,

" " "
Program

10.2
INORM

,

" " "
Image Normalization, or I-normalization is
the process of converting a string having a
given printed image into a unique represen
tation for that image. Thus, the string

'0·/' and '/.0' when printed, will have identical printed
images, viz. '~'. Also, the image produced by 'X-' is the
same as the image produced by simply 'X' implying that over
struck blanks may be dropped in I-normalization. The reason
for I-normal form is to be able to determine equality of prin
ted images based on the characters used to produce the images.
In addition, we would also like to scan a string which
produces an image to determine whether a subimage appears
within it. For example, suppose, in a time-sharing system, a
programmer had typed in the phrase:

fl ••• such a string is called a QQID!Qluted .IQE~."

and he wishes to change something in the string. Most time
sharing systems have editors in which one can specify a sub
string to be searched for and a replacement to be made, so
that the user could say in effect

change 'rope' to 'string'

Assuming that USCORE is not being used and that no normaliza
tion exists, the above substitution request could result in
the string

fI.~. such a string is called a £2Ilvoluted string."

since 'rope' has fewer characters than istring', the under
lining is no longer correct. To compensate, we may request
the editor to

change 'rop~ ____ ' to 'string~ _____ '

We may obtain the desired result, but then again we may not.
If, in the original, we had typed 'rope' before underscoring
'convoluted' this particular string sequence would not be
found. Moreover, if we had typed the period before under
scoring 'rope' we also could not make the indicated replace
ment. If, in the latter case, we made so simple a request as

change '.' to "

we might obtain

This state of affairs can be quite frustrating, especially
when repeated attempts to make replacements result in failure.
Image normalization will permit us to escape from this
malaise.

______ ~p;r~o~g;ram 10.2 - INORM Page 199

Earlier we mentioned that
prelude to I-normalization.
result.

B-normalization is a necessary
That this is true is a deriveable

By an imag~ we mean a configuration of printing on paper,
character high and 0 or more characters wide. We may speak of
concatenating images just as we concatenate strings. Let the
image I be produced by each of the set of strings 51' S2' •••
where the sequence goes on indefinitely because there is no
limit to the number of backspaced blanks that can be added
without changing the image. Let N(S) be the function which
converts a string to its I-normal form. If NCS) is working as
it should then N(Sl)' N(S2)' ••• will all produce the same
string. Hence we can meaningfully speak of N(I) where I is an
image. The value of N(I) will be NCS) where S is any of the
strings which produce I. If, for example, N('O-/') happens to
be '/-0', we may say that N('0') equals '/-0'.

Our intended purpose is to be able to scan a given image I for
a subimage I' by scanning N(I) for N(I'). This implies that

that is, the function must be homomorphic (with respect to
concatenation of images). This is important because it means
that the function N() is completely specified by a knowledge
of N(I) where I ranges through all single print-position
images. (See Chapter 3 for a further discussion of homomorphic
functions.)

The notion of normal form implies that the thing considered
'normal' is actually a member of the class it represents. That
is, if 51' S2' ••• is the set of strings corresponding to
image I then

N(I) = Sn

for some n. If, moreover, we make the normal form irredundant
in the sense that no characters can be removed without
changing the image, we are left with the conclusion that the
normal form of, for example, the overstruck combination ~ can
either be 'A-_' or '_-A', but nothing else. Hence, the mapping
of a single position must be of the form

where n ~ 1. This observation coupled with the fact that N()
must be homomorphic implies that a string in I-normal form
must also be in B-normal form.

The order of striking is unimportant in the final image
produced. For example can the reader determine which character
struck first in the set of overstrikes below?

The answer (although not obvious) is that the slash appeared
first at positions 1, 2 and 4.

The question of which images ~re distinguishable is an impor
tant one but, unfortunately, 1S one which depends on the
equipment used and, to a certain extent, on the discriminating
powers of the individual. Will, for example, a character
overstruck with itself produce a" different image than if it
were not so overstruck. Is, for example, 'A' different from
'A'? We will hold that it is and that use can be made of the
resulting boldface. However, not all media are like printers
in this respect. The all-or-none characteristic of cathode
ray displays may prohibit this assumption. Also, some time
shared editors (eg. Saltzer [1964]) have been known to nor
malize away bold face.

Another source of ambiguity is that different overstruck com
binations can resemble each other. For example

+ + +
were produced respectively by the combinations

'.J -r' '1_' ,+,

Though they can be distinguished when compared, they may not
be so distinguishable if viewed in isolation.

Another issue is the non-printable character. As mentioned
earlier (Chapter 2), most of the 256 EBCDIC characters are
non-printing. TO be consistent with the previous notions of
image identity, each of these should be converted to blank.
This we will not do for 2 reasons. Experience has shown that
use can be made of a character that prints blank but which
really isn't a blank for the purpose of line breaking and pad
ding (so-called hard blanks). Also, the notiop of nonprinting
character is device dependent. The subscripts (such as 'I')
are non-printing on most printers (and most devices) but
should not be converted to blank each time they appear in
text. A program is usually not dedicated to a particular
device and in fact may be in simultaneous communication with
2 different devices. In such cases, the notion of non-printing
character, loses its significance.

As a result of these considerations, we will assume a string
SI of overstruck characters can be gistinquish~g from a string
S2 if and only if

ORI:ER (DIFF (S I' I '» ORDER (DIFF(S2'I I»~

(See Progs. 3.10 and 3.1). This leads to the following defini
tion. A string is in I=D2;mal form if

(1) it is in B-normal form, and

(2) for every sequence of the form

Program 10.2 - INORM Page 201

where n>1, the characters are in alphabetic order and contain
no blanks.

A string can be I-normalized by placing it in B-normal form,
removing overstruck blanks, and alphabetizing overstruck
characters as is shown below.

INORM(S) will return the Image Normalization of the string
S. L-__ ~

+

DEFINE('INORM(S)C,CC,S1,K')

Initialize patterns. PR_POS will find a print position
containing backspaces.

PR_POS POS (0) ARB
ARBNO(BSPACE LEN(1») • CC

S 1 (LEN (1) BSPACE LEN (1)
(NOTANY(BSPACE) I RPOS(O» • C

: (INORM_END)

Entry Point: If no B5PACE's are present, return im
mediately. otherwise B-normalize 5 before going further.

INORM 5
5

IF_B5PACE
BNORM (5)

r------------~---,
, Look for a print position involving BSPACE. If none are
, left, return. otherwise, ORDER the overstruck characters. ,
I NCRM_LOOP

5
CC
CC

PR P05 C
= -DIFF(CC,B5~ACE ' ')

I DENT (CC,NULL) .,

: F (INORM_RET)

CC
INORM

BLEND (ORDER (CC), DUPL (BSPACE, SIZE (CC) - 1)
INORM 51 CC : (INORM_LOOP)

Common return point.

INCRM_RET I NORM
INORM_END

Names referenced
12Y-.INORM:-----

* indicates name is

INORM 5

~s~
BNORM
IF_E5PACE
ORDER
BLEND
DIFF
B5PACE *
referenced

..

!Yl2~
Function
Pattern
Function
Function
Function
Character

: (RETURN)

Where defined
Program 10.1
Program 10.1
Program 3.1
Program 3.7
Program 3.10

in the initialization section.

____ C;h~a~p~t~e~r~1~0~ __ ~PARAGRAPH FORMATTING

Here, as in BNORM, we adopt the'view that while it is eSSen
tial to handle the case of no backspace characters rapidly, we
c'an take our time with strings in which they are presentlO In
particular, if no special characters exist in the argument S,
control passes to INORM_RET where an exit is made. It seems
as if an unnecessary concatenation is performed at INORM_RET
but the system is smart enough to return the other argument if
one of there is null.

If the assumption that BSPACE's are rare is invalid there are
several ways of increasing its speed. One method would be to
rewrite PR POS so that BREAK is used rather than ARB to search
for a BSPACE. The writing of PR_POS is complicated by the fact
that BREAK carries one further than where one might like to be
but this can be handled by failing and alternating. See Exer
cise 8.5.

Another method of speedup works on the fact that the great
majority of overstruck positions have only 2 characters at
that position. Handling of this as a special case can avoid
the call to ORDER,most of the time.

f t

I' Program 'I Given a paragraph stored as one long string,
11 10.3 " we will need a function to separate the
" LINE II paragraph into lines. LINE(CW) will return
, , the next cluster of words which will just
fit within a column width of size CW. To initialize LINE a
call is made to LINE_INIT(P) where P is the paragraph to be
decomposed. When LINE(CW) fails no more characters remain.
Thus

LINE_INIT('A QUICK BROWN FOX JUMPED OVER THE LAZY DOG.')
L OUTPUT "'" LINE(10) "'" : S (L)

will print

'A QUICK'
'BROWN FOX'
'JUMPED'
'OVER THE'
'LAZY DOG.'

If the global variable JUSTIFY is given the value 1 then the
right margin is justified. Thus if

JUSTIFY = 1

had been executed prior to the calls to LINE(10) the values
printed would have been:

'A QUICK'
'BRCMN FOX'

---------------- Program 10.3 - LINE

'JUMPED'
'OVER THE'
'LAZY DOG.'

____ Pa~ 203

Here, JUSTIFY. serves as a switch and follows the same conven
tions as SNOBOL4 keyword switches (i.e. an integer not equal
to 0 is on; an integer equal to 0 or null is off). No attempt
is made to justify the last line or a line in which no spaces
appear.

In general, justifying text of small line widths suffers from
the possibility of words exceeding the column width and single
word-lines (such as 'JUMPED') not meeting it. These ill ef
fects diminish in significance as the column width increases.
Hyphenation (Program 10.7) also helps in this regard to
produce a document with less white area.

Breaking a line at a suitable break point must seem like sheer
simplicity. If the column width is CW, then go out to that
position + 1 and start marching backward until a blank is
found. This should be our breakpoint. But this doesn't always
work for several reasons. It won't work if we allow the pos
sibility of USCORE's and BSPACE's. Consider the example

'A ~QUICK BRO+/wN~ FO-/X'

If the column width is 15, the first 3 words will easily fit
within a column, but the above algorithm will pick up only the
first two. This is because the spacing of a string may be less
than its size.

Another reason that we cannot use the simple algorithm is that
a string may be reduced in size by contracting certain sub
strings such as converting double blanks to single blanks.
Such a condensation will, in general, be preferable than ad
ding a large number of blanks into the line. In order that
this technique be effective we must include in our considera
tion enough of the paragraph in order to take advantage of any
conceivable condensation.

A third reason has to do with hyphenation.
gorithms are not very good unless the
hyphenated is available.

Hyphenation al
entire word to be

In all of these cases we need to have sufficient context in
order to make an intelligent decision-aS-to hoW-~break a
line.

Another difficulty has to do with the assumption that all
blanks separate words. Consider the string

'A QUICK BROW--/ N FOX'

Here a blank is used to get over the 'W' and not to end a
word. But we may convert the string to B-normal form to obtain

'A QUICK BRO-/w- N FOX'

From any string we may safely remove either of the combina
tions '-' or '.' without changing the image printed.
Moreover, by making such deletions from the B-normal form we
will remove all overstruck blanks. Any remaining blanks will
be regarded as-true word separators.

There are cases when a user does not wish to have a blank
treated as a word separator. (There are some examples of this
in the preceding paragraph.) In such instances the user of
the system may inject into his text so-called hard blanks.
These are any nonprintable character other than blank. As an
example, the 0-8-2 punch provides the 029 keypunch user with
such a hard blank. For input devices which do not have a spe
cial key for this purpose, the system can provide a special
character which will be appropriately converted.

The contractions which should be permitted in a line of text
will vary with the application, taste and perhaps with the
column width. Almost certainly, we should be permitted the
freedom to convert the two blanks which normally separate
sentences into one blank. Often we may condense strings of
the form

punctuation-mark blank

by removing the blank. For example

'A quick, brown, angry fox ••••

could also be rendered

'A quick,brown,angry fox'

We can associate with each string S a minimum printing width
MINP(S) which is equal to SPACING(S') where S· equals S after
all allowable contractions have been made. Then

MINP(S) S SPACING(S) S SIZE(S)

We define a ~~yral break pOint as the SIZE of a prefix which
ends in a nonblank which immediately precedes a blank. Thus,
the natural break points of .

'A llquick, brown, angry fox~ jumped

are

9 16 22 27 34

Associated with each breakpoint is a spacing.
example, the spacings are:

8 15 21 26 32

For the above

Program 10.3 - LINE Page 205

Clearly, if a spacing exists such that it exactly equals CW,
there is no problem. SUfficient context is defined as the
break-point associated with the smallest spacing equal to or
greater than CW. Denote this break-point B2 and denote its
predecessor Bl • Denote the associated spacings (or widths) WI
and W2• Then

Denote the associated prefixes Xl and X2 • Then

SIZE (Xl) Bl
SIZE(X2) B2

without hyphenation we have 2 choices, either to expand Xl by
inserting blanks or to squeeze X2• We will assume that the
aesthetic liability (termed Ugly Factor (UF) in the program)
associated with inserting a blank is equal to that associated
with removing a blank (exercises will explore other less sim
plistic possibilities). Hence we seek the minimum of

W2 - CW and CW - WI

Of course, if it is not physically possible to shrink X2 to
size, we must use Xl.

If hyphenation is available, we consider each hyphenation
point in turp and seek to minimize the contraction or expan
sion necessary. Also we add an additional cost (of 1) for the
aesthetic loss due to hyphenation.

The algorithm to obtain sufficient context (B2) is simply to
look at break-points at CW, CW+1, CW+2, etc. and keep looping
until a spacing is found greater than or equal to cw. Since
the spacing is less than or equal to the break-point, no
break-point below CW is needed. To find a break-point at cw,
however, it is necessary to look for blanks beginning at CW-1.

LINE(CW) will return the next line of a paragraph passed
to LINE_INIT(). The column width is CW characters. LINE
will fail when no more lines remain. If HYPHENATE is non
zero, words will be hyphenated. If JUSTIFY is nonzero the
lines will be right-justified (padded with blanks). L-__--J

DEFINE (' LINE (CW) B,B2, TRY ,X2 ,W,W2, T,RWORD,UF, UP1, ,
+ 'K,H,HYPHEN')

HYPHENATE 1
JUSTIFY = 1

DEFINE('LINE_INIT(P)T')
&ALPHABET LEN(1). HARD_BLANK

r---,
, Entry pOint for initialization: B-norma1ize the paragraph

, and remove any overstruck blanks from P.

LINE_INIT P IF BSPACE : F (LINE_I 1)
BNORM(P) P

LINE 12 P BSPACE , , = : S (LINE_I 2)
LINE:I3 P , , BSPACE : S (LINE_I 3)

Replace leading blanks (if any)' by 'hard blanks' (i. e.
blanks not subject to reduction or expansion). Append a
blank to make scanning easier. U_SAVED contains an under
score if there was an unterminating underscoring left oyer
from the last line.

LINE_I 1 P POS(O) SPAN(' ') iT = DUPL(HARD_BLANK,T)
P SAVED = P' ,
U:SAVE:D = : (RETURN)

LINE_INIT_END

Initialize patterns for LINE.

SUFFICIENT CONTEXT.X2 - (LEN (*TRY) BREAK('· I» . X2
+ iB2 SPANC' ') iTRY

FIND.RWORD.T = iT BREAKC I ') • RWORD SPAN(' ') iT
EXTRACT.LINE = LEN (*B) • LINE (SPAN(' ') , NULL)
IF_USCORE = BREAK (USCORE)

Entry point proper: Obtain sufficient context (B2, X2).
If a sufficient context does not exist, go to LINE_SMALL.
Keep looping back until a sufficient context is obtained
or is determined not to exist. If the spacing, W2, exactly
equals CW, this is the desired breakpoint, B.

LINE
LINE_1

TRY CW - 1
P SAVED SUFFICIENT CONTEXT.X2
W2 SPACING (X2) -
GE (W2, CW)
B EQ(W2,CW) B2

:F (LINE_SMALL)

:F (LINE_ 1)
:S (LINE_2)

Find the last word RWORD in reversed form from X2.From
the breakpoint T, compute a tentative breakpoint B (this
is actually B1) and a tentative ugly factor UF (the amount
by which X2 must be expanded).

REVERSECX2) FIND. RWORD.T
B B2 - T
UF CW - SPACINGCSUBSTR(X2,1,B»

r---
Starting with no hyphenation (K=O) and looping for
increasing degrees of hyphenation , determine a) if the
line will fit and b) if the cost of padding plus hyphena
tion (UF1) is less than the lowest so far achieved. W is
the spacing of the reduced line.

Program 10.3 - LINE Page 207

K 0
LE(MINP(X2) - K + SIZE(HYPHEN), CW) :F(LINE~4)
W = W2 - K + SIZE(HYPHEN)
UF1 cw - W
UF1 LT(UF1,0) -UF1
UF1 = UF1 + SIZE(HYPHEN)
GE(UF1,UF) :S(LINE_4)
B = B2 - K
UF = UF1
H HYPHEN

LINE_4
+

K NE(HYPHENATE,O) HYPHENATE(RWORD,K + 1)
: S (LINE_3)

Enter here with B set to break point and with H set to
null or I_I

P_SAVED
LINE
LINE

EXTRACT. LINE =
LINE H
NE(JUSTIFY,O) PAD (LINE, OW)

If an odd number of USCORE characters appear in LINE, set
the value of U_SAVED to USCORE to be tacked onto the next
line.

LINE_USCORE
LINE
LINE
U_SAVED
LINE =

U_SAVED LINE
IF_USCORE :F(RETURN)

DUPL(USCORE, REMDR(COUNT(LINE,USCORE) ,2)
LINE U_SAVED : (RETURN)

Entering here means that whatever remains is small enough
to fit in a line. If nothing remains, FAIL.

IDENT(P_SAVED, NULL) : S (FRETURN)
LINE TRIM (P_SAVED)
P_SAVED : (LINE_ USCORE)

Names referenced ~~~ !Y12.§ Wh~re defined
gy_~INE.l REVERSE Function Program 3.6

PAD Function Program 10.4
SUBSTR Function Program 3.9
MINP Function Program 10.6
BNORM Function Program 10. 1
IF_BSPACE Pattern Program 10.1
HYPHENATE Function Program 10.7
USCORE * Character
BSPACE Character

* indicates name is referenced in the initialization section.

Egge 208 __ ~C~h~a~p~t_e~r~1_0~ __ ~P~A~RA ___ G=R,APH FORMATTING

.-- ,
" .Prograro " PAD (S,CWl will add or delete blanks from the
" 10.4 " string S as necessary to adjust the spacipg
'I PAD " of S to equal CW. When blanks are added they
I I are not always added from the same direc-
tion. Otherwise the process would tend to produce more white
area on one side as opposed to the other. White areas running
vertically down the page are termed riY§~ and large bodies of
white areas are termed lak~. It is good formatting practice
to prevent rivers and lakes from forming.

The writing of PAD is greatly simplified by the assumption
that S is B-normalized and contains no overstruck blanks (a
fact assured by the activity in LINE_INI~. This implies that
every blank separates 2 balanced substrings and so blanks may
be inserted without causing misalignment of overstruck
characters.

PAD (S,CW) will add or delete blanks to the string S to
make it conform to a column width of cw.

DEFINE('PAD(S,CW)I,K,T,N')

This pattern looks for the first blank which is not in a
sequence of initial blanks.

INTERIOR_BK = «SPAN(' ') , NULL) FENCE BREAK(' '» • T
': (PAD_END)

Entry point: Determine the number of blanks (N) to be ad
ded. Branch to PAD_REDUCE if N S o.

PAD N
PAD

CW - SPACING(S)
LE(N,O) S : S (PAD_REDUCE)

First insert a blank at a statement separator if any

S
N
PAD

N - 1
EQ(N .. O) S

:F(PAD_1)

:S (RETURN)

PAD_RT is a flag to indicate whether padding should begin
from the right (=1) or from the left (=0).

PAD_1 S EQ (PAD_RT, 1) REVERSE (S)

Inner loop: Remove a prefix from S at an internal blank.
Place it onto PAD with an extra blank. Keep looping until
N is reduced to o.

S INTERIOR_BK
PAD PAD T ' •
N N - 1 GT (N, 1)

Falling through indicates completion.

:F (PAD_AGAIN)

: S (PAD_LOOP)

Append S; reverse

Program 10.5 - SPACING ____________ ~~~09

if necessary; change flag for next time; and return.

PAD_DONE
PAD S
EQ(PAD_RT,l) REVERSE (PAD)

1 - PAD_RT : (RETURN)

Here if no more holes remain. If PAD is null at this point
return; there are no holes. Otherwise restore PAD and S.

PAD_AGAIN I DENT (PAD) : S (PAD_DONE)

: (PAD_LOOP)
S PAD S
PAD

r---,
, Here to remove N characters.

N
PAD

Names referenced
~=PADJ:-----

];BilQgue

LT (N, 0) N + , ,

Name
SPACING
REVERSE

:F(RETURN)
: (PAD_REDUCE)

!Yl2~
Function
Function

Where defined
Programlo:-S
Program 3.6

The design of PAD was based on the assumption that N is small
compared with the size of S and indeed that N does not usually
exceed the number of blanks in S. If this were not the case
then a more efficient procedure would be to make one pass
through to determine the number of blanks in S~ compute the
number of blanks to be inserted and, in this way, accomplish
the insertion in 2 passes.

The method given saves the initial pass of counting the number
of blanks in S and is very much more efficient when 0, 1 or 2
blanks are to be inserted in S.

r- i

'I Program 'I
" 10.5 "
I , SPACING "
'- I

SPACING(S) will determine the spacing of the
st~ing S. If S has been B-normalized this
will yield the number of print positions oc
cupied by the string.

r---,
I SPACING(S) will return the spacing of the string S.
I

DEFINE ('SPACING (S) ')
IF_OVERSTRIKE BREAK(ESPACE USCORE)

If no special characters exist, just return the number of
characters in S.

~sg~--'..lJL,.....-;..;. _____ Chapt~:.r--:.10;:....;.. __ --:P:.:..A==RA=GRAPH FORHA:.:.T,;:..T,:.:I::.,:N:;,;G; ____ _

SPACING SPACING = SIZE (S)
S IF_OVERST~IKE : F(RETURN)

otherwise deduct 2 for each backspace and one for each
underscore.

SPACING =

Names referenced
~_.§PACING:---

SPACING - 2 * COUNT (S,BSPACE)
COUNT (S,USCORE) : (RETURN)

~~
COUNT
BSPACE *
USCORE *

lY12~
Function
Character
Character

Where defined
-program3.4

* indicates name is referenced in the initialization section.

];pilogue

The two calls to COUNT do not render the most efficient coding
but the convenience and the fact that overstrike characters
are relatively rare suggests its use •.

,
, , Program " MINP(S) will return the minimum number of

print positions needed to print the string
S.

II 10.6 "
" MINP "

DEFINE ('MINP (S) T')

Entry point: if JUSTIFY is 0, the contraction points are
ignored. Just return SPACING in this case.

MINP' MINP SPACING(S)
EQ(JUSTIFY, 0) :S(RETURN)

Reduce MINP by one for each contraction point found.

MINP = MINP - COUNT(S,' ')

Names referenced
~y:MINP: ---

Name
SPACING
COUNT
JUSTIFY

1Y12~
Function
Function
Global Flag

: (RETURN)

Where defined
Program 10.5
Program 3.4

_______ P~.rogram 10.7 - HYPHENATE Page 211

, i

, , Program , , Hyphenation, while not strictly necessary,
'f 10.7 I' serves to eliminate rivers and lakes in
'I HYPHENATE " documents with right edge allignment. This
, , is particulary true with small column
widths in which the same amount of expansion is concentrated
in relatively few gaps. An exact algorithm for hyphenating
words does not exist short of storing large numbers of special
cases. In the extreme, a complete dictionary could be stored
but such a massive amount of information would have to be
placed on secondary storage since it would be uneconomical, if
not impractical, to store the dictionary in high-speed
storage. But'secondary storage is unsuitable to this problem
since accesses must be made frequently (almost once per line).

The algorithm we will present will not depend on dictionary
methods other than that a relatively small number of suffixes
must be stored. Its error rate is low but not zero. For
tunately, no great tragedy befalls if an occasional word is
mishyphenated. In the last analysis it becomes a balance of
aesthetics. How many lakes and rivers are worth how many
mishyphenated words.

Perhaps the simplest published hyphenation algorithm appears
in Rich and stone [1965]. The basic method involves examining
pairs of letters out of context and deciding whether this pair
is or is not suitable for hyphenation. This algorithm turns
out to be too weak (not enough break points are discovered) if
too few letter pairs are permitted, or too erroneous
(producing a break at a non-syllable boundary) if too many
letter pairs are dubbed as breakable. Letter pairs do not
hyphenate uniformly enough to be used as a sole guide for
hyphenation.

The program given here is based on an algorithm developed by
M.R. (Molly) Wagner [1971] for incorporation in a text format
ting program called Roff [McIlroy 1971]. Wagner extended Rich
and Stone's work to include an examination of suffixes before
looking for letter pairs and also greatly reduced the number
of letter pairs considered breakable. With these improvements,
the error rate has been reduced .to the neighborhood of 11 and
the number of hyphenation points found, while far from total,
is nonetheless satisfactory. This book uses the hyphenation
algorithm described, with the proviso that the user can over
ride the automatic hyphenation of specific words. Very few
overrides were required.

Most hyphenations found are by suffix removal. Three.distinct
kinds of suffixes are defined. A hYEhenating suffix is one
before which one can hyphenate. For example 'less' and 'ness'
are both hyphenating suffixes. If 'carelessness' is to be
hyphenated with room for only 6 characters the 'ness' is
stripped off first. There are still too many characters and
so the 'less' is stripped off. The word is then hyphenated as
'care-' on one line followed by 'lessness' on the next. An
inhibiting~ffix is one which is not hyphenated and,

Page 212 Chapter 10 PARAGRAPH FORMATTING

moreover, upon encountering one, the suffix hunt is given up
and letter-pair (or digram) testing ensues. For example, ling'
is an inhibiting .suffix. If it is detected as in 'winning'
the suffix is stripped and digram testing begins with the
double-n. This digram is breakable so that the word is
hyphenated 'win-ning'. Also, an inhibiting suffix will ab
solutely prohibit hyphenating at a point where digrams might
indicate that hyphenation is allowed. Otherwise 'else' might
be hyphenated 'el-se'. A ~~2l suffix is one which is not
hyphenatable but, unlike the inhibiting suffix, does not
Signal the start of digram testing. More suffix removal can
take place. For example 'es' is a neutral suffix. In
'harnesses' the 'es' is stripped and a further suffix search
yields 'ness' as a hyphenating suffix. The word can therefore
be hyphenated as 'har-nesses'.

~he second phase ~s digram testing. Here we find the in
teresting phenomenon that most letter-pairs are considered
hyphenatable whereas most pairs of letters that actually ap
pear within English text a're not. For example, every digram
of the form consonant-vowel is non-separal::le unless the
consonant is 'x'. Also every digram of the form vowel
consonant is non-separable unless the consonant is 'qt. But
these pairs so predominate in English that it is not hard to
find words in which no breakable digram appears; 'hyphenate'
itself is one such word.

Finally, we insist on at least one vowel before and after the
break. This is so that we do not hyphenate words like 'bless'
which only appear to have a hyphenating suffix, or words like
'returns' which would otherwise be hyphenated 'retur-ns'. Also
we do not hyphenate words with strange characters in them
other than certain leading and trailing punctuation and an
initial capital. otherwise, paragraphs like this and the last
two might prove awkward to decipher.

-,
. HYPHENATE (RWORD,MIN) will indicate where within the rever- I
sed word (RWORD) a hyphenation point can be found. MIN I
indicates the number of characters by which the word must I
be diminished in order that the line may include this I
word. A global variable, HYPhEN, will be set to '-I if a I
hyphen must be added to the word. HYPHENATE will fail if I
no hyphenation point is found. As an example, HYPHENATE (I
'ni?tbo',3) will just succeed and return a value of 4. I
HYPHEN will be set to 1_,. The 2nd argument may be ~ 0 in I
which case the first nontrivial byphenation will be found. I

DEFINE('HYPHENA~E(RWORD,MIN)K,C,L')

-,
Initialize suffix matching patterns. Construct 3 patterns I
INHIB SUFF, NEUT SUFF, and hYPH SUFF corresponding to the I
3 types of suffixes mentioned in-the text. They will be I
applied to a reversed version of the word to be I
hyphenated. I

.J

Program 10.1 - HYPHENATE Page 213

INHIB_SUFF = OR (UPLO(EALREV ('ED, (GLSV)E, (GQ)UE,ING,EST,'»)
NEUT_SUFF = OR(UPLO(BALREV('(AI)BLE,LY,S,ES,' »)

+ , ANY (, • ; , : 1) ')
HYPH SUFF OR(UPLO(BALREV(

+ 'TURE,(CGST)IVE,(CDMNT)IAL,FUL,(CGST)IAN,'
+ '(CGST)ION,SHIP,(LN)ESS,(CGST)IOOS,(CDGLMNTV)ENT,' »)

DIGRAMS is a string representing all letter pairs which
are regarded as breakable. Thus 'xa' is a breakable pair.
'i' stands for the set of vowels (aeiou) and ,~, stands
for complementation. Hence '~(i)B' means that all
consonants followed by a 'b' are breakable; also '~(iNS)C'
means that any vowel, 's' or 'n', when followed by a 'c'
is NOT breakable.

DIGRAMS =
+ 'XA,~(i)B,~(iNS)C,~(iR)D,XE,~(i)F,~(iN)G,~(~CGPSTW)H,XI,'
+ 1~(~)J,~(iCLNS)K,~(iBCFGPTY)L,~(~Y)M,~(iGKSY)N,(AX)O,'
+ '~(iSY)P,~(S)Q,(JKLMNRSVXZ)R,~(~KLNWY)S,~(iFHSY)T,XU,1
+ '~(~)V,~(~S)W,~(i)X,(QWxy)y,~(iC)Z'

Convert ~ to vowels, and find complement if ~ is present. L--__ ~

HYPH D1
HYPH::D2
+

DIGRAMS
DIGRAMS

. ~.
,~, BAL

'AEIOU' :S(HYPH_D1)
T '(' DIFF(UPPERS_,T) ')'

: S (HYPH_D2)

Convert to lower case and reverse to make scanning easier.
Then prepare a table (DIGRAM_TBL) of all those br~akable
digrams.

DIGRAMS BALREV(UPLO(DIGRAMS »
DIGRAM_TBL = TABLE (30)
DIGRAMS LEN(1). C

(' (' BREAK (') ') • CC ')'
(, " , RPOS (0))

DIGRAM_TBL<C> ANY (CC)

LEN (1) • CC)
: F (HYPH_D4)
: (HYPH_D3)

HYPH PAT is the chief·hyphenat,ing pattern combining all
prevIous patterns into one. It will look for a break at
least MIN spaces from the back of the string and will set
K to equal the break point.

HYPH PAT = HYPH SUFF ~K (*GT(K,MIN) , FENCE *HYPH_PAT)
+ 'NEUT_SUFF FENCE *HYPH_PAT
+ I (INHIB_SUFF I NULL) FENCE ARB LEN(1) $ C iK
+ *GT(K,MIN) *DIGRAM_TBL<C>

Other miscellaneous patterns follow.

TRUE_WORD POS (0) (ANY (I. ;) , :11) , NULL)
+ SPAN(LOWERS_ '-') (ANY(UPPERS_ 'C') I NULL) RPOSCO)

FIRST_VOWEL = BREAK (UPLO('AEIOU'» LEN(1) iL
FOLLOWING_VOWEL = POS(O) TAB (*K) BREAK(UPLO('AEIOUY'»

: (HYPHENATE_END)

Page 214 ChS12:!:er 10

Entry point: Check to see if a normal word is there. Set
MIN to be at least beyond the first vowel.

HYPHENATE
RWORD
RWORD
RWORD
MIN =

I_I

FIRST_VOWEL
LT(MIN,L) L

:F (FRETURN)
: S (HYPH_1)
: F (FRETURN)

Scan for a hyphenation point; check for following vowels.
Insist on more than ,one character preceding the hyphena
tion point.

RWORD HYPH PAT
RWORD FOLLOWING_VOWEL
LE(SIZE(RWORD) - K,1)

Return K and set HYPHEN to a 1_'

HYPHENATE K
HYPHEN 1- I

:F(FRETURN)
: F (FRETURN)
: S (FRETURN)

: (RETURN)

If the word already contains a hyphen, this is the only
point at which it may be hyphenated.

HYPH_ 1 HYPHEN
RWORD I_I ~K *GT(K,MIN)
HYPHENATE - K - 1

HYPHENATE_END

Names referenced
bi-SYPHENATE:--- ~s~

BA1REV *
OR *
UPLO *
DIFF *
UPPERS *

:F (FRETURN)
: (FETURN)

~~ Where defined
Function Program 3.8
Function Program 8.9
Function Program 2.1
Function Program 3.10
string Program 2.1

* indicates name is referenced in the initialization section.

~il.Q.9Ye

The coding of HYPHENATE was based on the desire to make it
easy to see and modify the suffixes and letter pairs on which
the algorithm is built, but at the same time to produce an ef
ficient subroutine. The suffixes and digrams have therefore
been transformed by the initialization section from a viewable
format to a swiftly runnable one. The result of the pre
computing is a single pattern (HYPH_PAT) used to scan the word
in reverse until a hyphenation point is found in which case
the variable K is set or is not found in which case the pat
tern fails. Suffix testing and removal are done by essentially
OR'ing the various suffixes together with an appropriate
degree of sophistication as contributed by the function OR
(Program 8.9). OR contributes to efficiency by consolidating
strings beginning with the same first character.

_~ _______________ frogram 10.8 - IMAGE Pa~~

Digrams are done a little differently. One could have taken
the OR of all breakable digrams to produce a pattern of the
form

• a' ANY (•••) , • b' ANY (•••) • c' ANY (•••) , •••

This would require 26 tests for each character within the WORD
to be hyphenated until a break point was found. A more direct
approach is a variant on the pattern

LEN(1) $ C *DIGRAM_TBL<C>

where the search through 26 alternates is replaced by the
lookup in the table. Since the look-up·is done by hash coding
it can and is accomplished faster than ORing.

But it is interesting to note that it is not a gr~at deal
faster. Evaluating an unevaluated expression requ1res suf
ficient time that the tradeoff in speed occurs at about 10
alternands. If the pattern were intelligent enough not to take
alternatives after once finding a character it would avoid
some needless testing and the average number of trials would
be 13, not 26. MOreover, if the sequence of characters is ar
ranged in order of the frequency of their appearance in
English, we may expect to wait on the average of perhaps only
6 alternands. This suggests a pattern of the form

• e' FENCE ANY (•••) , • t' FENCE ANY (•••)

This pattern is slightly more awkward to use since it will
succeed or fail at the first character position. It must be
moved against the subject string by explicit programmer com
mands. Since the speedup of this approach cannot be great (if
even positive) we leave its encoding as an exercise.

,

" " "
Prograro

10.8
IMAGE

i

" " "
Printing a line which contains backspace
characters is not easy using a standard line
printer. In fact, it is not immediately
clear how we can even package this activity.

We certainly would like to focus all print line extraction in
to a single function. But what is this function to return?
If the function were to go ahead and prin~ the line, complete
with overstrikes, we would not have a very flexible function.
Since we have no idea of the use that is to be made of the
line it would be rather poor practice to commit ourselves in
advance to any particular disposition. We could return a
linked list of lines, one for each overstrike or a string of
consecutive lines (assuming we know the line width these could
be later separated) but these 2 methods imply the necessity of
disentangling the strings once they were brought back, a
process easily enough done but just as soon avoided if
possible. Rather than return all the lines at once we will
have IMAGE return just one particular line, the line numbered
I. This will help us in 2 ways. Not only will it be easier

to use in the normal case, but it will provide us with random
access to certain levels of lines. Ifr for example r we inter
pret the 3rd overstrike as actually a superscriptr we could
print that line first before going on to the others.

IMAGE (SrI) will return the Ith overstruck image of the B
normalized string S; for 1=1 the line proper is returned, for
1=2, the set of first overstrikes is returned, for I=3 r the
set of 2nd overstrikes, etc. For 1=0 the underscoring of sec
tions set off by USCORE's is returned. If IMAGE(SrI) does not
exist for some Ir the function will fail. Note that for 1=1
the function never fails.

For example r let

S = 'THE liQUICK BRo-/WN1f FO-/X'

then

IMAGE(S,O)
IMAGE(Sr 1)
IMAGE (S,2)
IMAGE (S,3)

= -------= 'THE QUICK BROWN FOX'
= / /'

fails

Printing a line reduces to the follow~ng program. First we
associate OVER with a format which insures overstriking.
(PRINTER is a variable designating the printer unit, is
installation dependentr and must be given by the user.) the
width of the .printer is assumed to be 132.

OUTPUT (.OVER,PRINTER, , (1H+,132A1) ')
OUTPUT IMAGE (LINE, 1)
I 1

LOOP I 1+1
OVER IMAGE (LINE,I) : S (LOOP)
OVER = IMAGE (LINE,O)

Note that nothing is printed in a statement in which IMAGE
fails.

Even this activity, however simple and straightforward, can be
avoided if we had the ability to return a data object having
more dimensions that the singly dimensioned string. such data
objects exist; for example an extended version of SNOBOL4,
called SNOBOL4B (Gimpel 1972], has a 3-dimensional aggregate
of characters as a special datatype (called a block). The
system which produced this text was written in SNOBOL4B. In
this system not only does a function return an overstruck line
as a value but there exists a function called TYPSET which
returns an entire paragraph complete with overstriking.

frogram 10.8 - IMAGE

IMAGE (S,I) will return the Ith print line associated with
the string S. It will fail if there is no Ith line. S is
assumed to be B-normalized.

DEFINE('IMAGE(S,I)C,BU,T,T1')
IF_OVERSTRIKE = BREAK(BSPACE USCORE)
IF_ESPACE BREAK (BSPACE)
IF_USCORE = BREAK (USCORE)

Entry pcint:
value of I.

Fan out to various locations depending on

IMAGE LE (I, 0)
GT(I,1)

:S(IMAGE_USCORE)
: S (IMAGE_BSPACE)

I = 1: Ignore USCORE's, BSPACE's and characters following
BSPACE's.

IMAGE S
IMAGE IF_OVERSTRIKE :F (RETURN)

IMAGE_1
+

IMAGE BREAK (BSPACE USCOF.E) • T
(USCOFE t LEN(2» T :S(IMAGE_1)F(FETURN)

For line 0 come here. Make fast scan for USCORE failing
if none exists. EU will be a convenient abbreviation for
BREAK(USCORE). Replace all up to the first USCORE by
blank. Replace material between USCORE's by '_'s.

IMAGE_USCORE
S IF_USCORE : F (FRETURN)
BU BREAK (USCORE)

IMAGE_UL

+

S BU
IMAGE

S BU
IMAGE

T USC ORE (BU T1 USCORE , REM • T1)
IMAGE DUPL(' ',SPACING(T»

=
DUPL (, _ ' , SPACING (T 1))

IMAGE DUPL(' ',SPACING(S»
: S (IMAGE_UL)
: (RETURN)

For I > 1 come here.
puted for level I.

Set up pattern PAT.C specially com-

IMAGE_BSPACE S IF BSPACE
BSPACE LEN(1) • C

I - 1 GT (1,2)

:F(FRETURN)
PAT.C

IMAGE_B1 I
PAT.C BSPACE LEN(1) PAT.C

: F (IMAGE_B2)
: (IMAGE_B 1)

See if an Ith overstruck character exists. Set it to C if
it does.

S P~S (0)

IMAGE

BREAKX(BSPACE) • T PAT.C
: F (IMAGE_B3)

IMAGE DUPL(' ',SP1\CING(T) - 1) C

Now remove any remaining BSPACE's. If the right neighbor

Pa~ 218 Chapter. 10 PARAGRAPH FORMATTING

does not exist we are free to return.

S
+

POS (0) ARBNO(BSPACE LEN (1))NOTANY (BSPACE) • C = C
:S(IMAGE_B2)F(RETURN)

The clue to whether any characters at level I exists is
found in IMAGE. If it is still null no Ith level charac
ters have been found.

IMAGE_B3

IMAGE_END

I DENT (IMAGE, NULL) : S (FRETURN).
IMAGE = IMAGE DUPL(' ',SPACING(S» : (RETURN)

Ngm§!L~efe~nced
by IMAGE:

Ng~
BSPACE *
US CORE *
SPACING
BREAI<X

!YE§ Wh~re defined
Character
Character
Function Program 10.5
Function Program 8.2

* indicates name is referenced in the initialization section.

11
1111111111111111111111111 EXERCISES 111111111111111111111111
11

,
, Exercise 10.1

exist.

r-.---------------,
, Exercise 10.2 L-______________ ~

normalized.

Modify BNORM so that it fails if a B
normalized version of the string does not

Prove that if SI and S2 are B-normalized
then the concatenation s, S2 is B-

Exercise 10.3 The text says that in order to have an in-
version in the print position numbers we

must have at least one double BSPACE. Intuitively this is ob
vious. Can you prove it1

,
, Exercise 10.4 Prove that step (ii) of the BNORM algorithm

(Prog. 10.1) preserves the property of
being right-balanced.

i i
, Exercise 10.5, Suppose string 5, prints the image
L- string ,S2. prints the image 1 2 •

pattern-matching statement to determine whether the
is a subimage of II.

II and
Write a

image I2

____ -=Exercises for chapter 10 Page ~ll

Exercise 10.6
L-______________ ~

r--------------~

Modify INORM to process separately the case
of a single overstrike.

, Exercise 10.7 Rewrite PR_POS (in INORM, Prog. 10.2) to
use BFEAK rather than ARB to find a BSPACE.

Assume the string to be matched is B-normalized.

i
, Exercise 10.8 (a) How would the definition of

distinguishable change if overstrikes of
the same character are not regarded as different?

(b) How would the definition change if all nonprintable
characters were regarded as blank? Assume the nonprintables
including blank are contained in the string NONP. Also do not
make the assumption in (a).

(c) How would INORM be modified in each instance

r----- •
, Exercise 10.9 I (a) Modify LINE so that the cost (UF) of

compressing a line be two per char, while
the cost of adding a blank and hyphenating remain at 1 (re
quires modifying one statement) • (b) Modify LINE so that the
cost (per char) of compressing a line is UF_C, the cost of
padding is UF_P and the cost of hyphenating is OF_H.

r-----------------
, Exercise 10.10 Modify PAD (Prog. 10.4) and MINP (Prog.
L-- 10.6) so that any blank following a spe-
cial character can be squeezed out. An example of a set of
special characters is ',):(;'.

,.-- i

, Exercise 10.11 , L-----__________ ~ What is the value of HYPHENATE(RWORD, K)
for K = 2, 4, 6, 8 where

(al RWORD

(b) FWOFD

REVEFSE('investment')

REVEFSE('co-operation')

Exercise 10.12 Modify HYPHENATE so that it will use not
L- only ,-, as a break character but any of a
set of characters in the string BRC. Slash (/), for example,
might be such a character to be broken in phrases such as
, input/output' •

,
, Exercise 10.13 Modify the hyphenation algorithm so that

digrams are tested in the order of the
frequency of letters in English ('etoanirshdlcwumfygpbvkxqjz')
and such that testing at a particular position ceases when the
letter is found.

Es~~ ________ Chapt~e;r~1~0 ____ ~P~A~RA~G.RAPH FORMATTING

Exercise 10.14 Modify HYPHENATE so that any word
consisting entirely of upper case letters

will also be hyphenated.

, ,
, Exercise 10.15, (a) Write a function PRIMAGE(S) which will
L- ' print the image of the B-normalized string
S. (b) Given 2 strings, S1 and S2 use PRIMAGE to print them
on the same line with S1 beginning in column 10 and S2 begin
ning in column 60 (assume the spacing of S1 is less than 50).

, i

, Exercise 10.16, Using PRIMAGE() of the above exercise,
print the B-normalized strings S1 and S2

on the same line. That is, overstrike one on the other.

Exercise 10.11 Playboy magazine, for reasons best known
to itself, wishes the lead page of the

Playboy pictorial to be laid out in a 'coke bottle' shape.
Assume the line widths, ranging from a maximum of 36 to a
minimum of 22 are contained in a string (LENGTHS) separated by
commas. Assume the lead paragraph is in a variable P. Assume
a page width of 60 with the column centered in the page. Using
the function PRIMAGE from Exercise 10.15 write the SNOBOL4
program to satisfy Playboy's request.

, ,
, Exercise 10.18, Suppose that the 3rd overstrike represents
~----------------~, superscripting and the 2nd overstrike
represents subscripting so that

'A -1 = 2 - -N'

prints as

N
A 2

1

Using IMAGE, print such an object.

r- ,
, Exercise 10.19, Print a string with exponentiation such as
, ---J

'A**(M+1) = B**N + C**M'

in such a way that parenthesis (if any) are stripped from the
exponential and the exponents are superscripted such as

M+1
A

N M
B + C

. _______ Page 221

Assume that the string contains no BSPACE's and whenever '**'
appears it means superscript the following character unless a
'(I appears in which case the parenthetical expression is
superscripted. Assume that the superscript does not itself
have superscripting. (Hint: this can be done in four state
ments using IMAGE and BNORM).

i
, Exercise 10.20 L---____________ ~ Extend the previous exercise to handle ar

bitrarily nested exponentiation.

C HAP T ERE LEV E N

r--,

L,

" II
r'L, MPI.EMENTATION
L-...I

AND
.---,
L..-, ,-J

" -II i

" I MIN G I
u

RESOLUTION ••••••••••••• 11.1

TIMER •••••••••••••••••• 11.2

SYSTEM 11.3

TIMEGC 11.4

LPROG •••••••••••••••••• 11.5

FPROFILE

TPROFILE

11.6

11.7

______ S.v=m=bo=l Tables

~ ,.,1 ne of the reasons for writing in a higher level
" II language is to free oneself from the entanglements of
" " individual bits and the sometimes sordid details of the
'~I particular machine on which one is running. A price is
L--J normally paid for this in terms of time and/or space
efficiency of the resulting program but one is presumably wil
ling to pay this price if the savings in programming time are
compensative. Then why, the reader may ask, should we bother
about timing and implementation since the former we have
agreed is relatively unimportant and the latter represents
detail from which we wish to escape? The answer is that al
though most programs are small and can (and should) be written
without regard for the time they consume, most large programs
come to grips with the efficiency question sooner or later.
Large programs may exceed critical storage bounds or they may
consume so much time that their utility is in question. Some
knowledge of timing is useful not only to improve the speed of
an existing program but to estimate the cost of running
programs not yet written. It may well be that a program writ
ten in SNOBOL4 will be too slow or inefficient for a given
application and it will ~e helpful to learn this before it is
written.

Describing a system as large as an implementation of the
SNOBOL4 language can neither be easy nor quick. To make mat
ters even more difficult there are several SNOBOL4 processors.
There is the orioinal MAcro ImplementatioN of SNOBOL4
(Griswold" 1972] which we refer to as MAINBOL, there is a com
piler versiop for the IBM 360/370 called SPITBOL [Dewar 1971]
and a small fast interpreter for the PDP-10 called SITBOL
{Gimpel 1972, 1973a]. In addition, the macros of MAINBOL have
been expanded to run on several different machines including
the IBM 360/370, CDC 6000, Honeywell 635, Univac 1108 and the
PDP-10. The process of macro expansion for yet newer machines
continues at this writing with unabated ferver so that this
list is not, and is not intended to be, exhaustive.

The primary purpose behind SPITBOL was speed and' the resulting
system is 7-8 times faster than MAINBOL. SITBOL's chief
concern was storage and the system is less than one-third the
size of MAINBOL. In spite of the differences in design goals,
the implementations of these systems are fairly similar.

IIII ymbol Tables A symbol table is programmer jargon for
a table of information that can be

referenced on a name basis (the symbol). For exam
ple, a telephone directory can be regarded as a sym
bol table of sorts where the symbol is a person's
name and the information to be looked up is his tel

I r.------------~
IIII ,

I I
IIII ,

phone number (and possibly other information such as his
address). In principle, a symbol table could be implemented
as a long list and a search could be made by comparing a given
symbol with everyone on the list. This is obviously too
inefficient to be practical. In the telephone directory, the

~.9..§-=-2.:.2 4 _____ ---""'Chapter 11 Implemen!ation and Timi.~n~g ______ _

symbols are arranged alphabetically to permit rapid searching.
In general, a symbol table is organized in such a way as to
avoid a lengthy linear search.

A common method of implementing a symbol table is by means of
a hashing technique, illustrated in Figure 11.1. The Hash
Array is a fixed-length array of pointers to symbol table
~tries. Each symbol table entry contains the name of the
symbol (for comparison purposes), information associated with
the symbol and a pointer to the n~xt symbol table entry (if
any). Hence, each pointer in the Hash Array may be regarded
as heading a list of symbol table entries.

When a symbol such as ALPHA is looked up or entered into the
table, a so-called hash number is computed from the characters
,I ALPHA' which is a number between 0 and L-l where L is the
length of the Hash Array. This hash number is used to
reference into the Hash Array and hence it designates a list
of symbol table entries. If a symbol table entry for ALPHA is
in the table, it must be in this list. Thus the time to locate
ALPHA in the table is reduced by a factor equal to 1/L but is
increased by the time needed to compute a hash number.

The hash number must be reproducible so that given the charac
ters 'ALPHA' the same hash number is always produced, but the
method for computing the hash is otherwise arbitrary as its
name would suggest. It should provide a good mix so that all
locations in the Hash Array (sometimes called buckets) are
referenced with approximately equal probability. Also the
computation should be quick. For example, one may take the
first 4 characters exclusive-OR'ed with the last 4 characters
and divide by the length L of the array. The remainder is
usually an acceptable hash number. Note that the hash number
does not uniquely represent the symbol. In Figure 11.1 both
ALPHA and GAMMA have the same hash number.

symbol tables are very important; they form the heart of vir
tually every assembler, compiler and interpreter. A symbol
table provides the link ~etween an external name (symbol) and
an internal block of information about that symbol. One need
merely reflect on the telephone directory example to see the
importance of this. Names in a program remain fairly stable
even though they may translate into different internal ad
dresses from run-to-run just as people normally retain their
names even though they may be associated with different
telephone numbers over the course of their lifetime.

For SNOBOL4 implementations, the information typically
retained in the symbol table entry for, say, ALPHA is the
value of the natural variable ALPHA, a pointer to function in
formation if ALPHA is a function and a pOinter to an internal
code location if ALPHA is a label. Also, if ALPHA is a keyword
(it is not) information may be present to indicate its value.

For interpreters with the power of SNOBOL4, the symbol table
is especially important; it remains in core during execution

S~mbol Tables _____ Page_ill

Hash Array
i

0 ,
~ ,
I

2 I
I , * i , ,
I I,
~ I , ~

I i

1 ,
I 1 , 1
~ I , *-1 i

I 1
I GAMMA 1
I 1 , ~

I
I
I ,
I , * i 0
I ,
1 , ALPHA
I I
I ~

I
I
I

L-1,
I

0

13ETA

rigyrL1.hl

A symbol table containing three symbols ALPHA,
BETA, and GAMMA.

______ ~C~h~a=p~t~e;r __ 1~1~----Implementation and Timing ____ __

and there are language features which depend on this. For ex
ample, indirect referencing, such as:

A = 'ABC'

$A 11

requires that 'ABC' be looked up in the table so that the sym
bol table entry associated with 'ABC' (also called a va~iable
block) can be plugged. The indirect goto is another example
of where the symbol table is queried at run-time. As another
example:

OPSYN('ALPHA', 'SIZE')

results in a copy of the function field of the variable block
for SIZE into the function field of ALPHA. Conventional
languages such as PL/I and Fortran do not retain a symbol
table at run-time and hence cannot provide these capabilities.

Whereas each of the SNOBOL4 processors retains a symbol table
to house symbols required for an associative lookup, MAINBOL
uses the symbol table for yet another purpose, viz. to store
strings. All data strings are stored as symbols table entries.
A certain economy of concept is thereby achieved at the ex
pense of significant inefficiencies in string handling. For
example, TRIM (INPUT) in MAINBOL will read a record, hash it
into the symbol table and call TRIM which deletes trailing
blanks and hashes the remainder into the symbol table. All
such hashing is avoided in other processors.

{~ile interpreters generally retain the symbol table, com
pilers generally do not. Since it requires a volitional act
for an interpreter to expel the symbol table and a VOlitional
act for a compiler to produce it along with working code, the
correlation seems to be the result of inertia rather than
reflecting any essential relationship. In fact, exceptions do
occur. SOme compilers produce a symbol table optionally for
debugging while some interpreters optionally expel the symbol
table for efficiency.

r-------------------------,
III

I
I
I
I

ypes of Compilers A compiler, in the most general
sense of the term, will translate a

program written in some language into some inter
mediate form which can be executed or interpreted by
some other program. If the intermediate form can be
executed directly, the processor is called a com

piler, in the narrow sense of the term. Otherwise it is called
an interpreter.

One of the most important questions that can be asked'about an
irrplementation is the form of intermediate code. Into what
form, for example, will

Types of Compilers Page 227

ALPHA * BETA + GAMMA

be compiled. Different implementations of the same language
may answer this question in different ways. The layman often
believes that all SNOBOL interpreters leave the string intact
to be interpreted anew each time the expression is evaluated.
This is a kind of interpretation called pure interpretation
and since the compiler has zero work to do, we will call the
compiler a type-O compiler. sqme languages are implemented as
pure interpreters (such as GPM, Program 18.8) but SNOBOL4 is
not one of them.

A £vpe-1 compiler will convert indivisible syntactic units
(called tokens) into pointers into the symbol table. For ex
ample, the expression above will be converted into

-> ALPHA

-> BETA

_> +(2)

-> GAMMA

where --> ALPHA is a pOinter to the symbol table entry for
ALPHA, where --> *(2) is a pointer to the symbol table entry
for binary *, etc. LISP [McCarthy, 1960] is an example of a
language which employs a type-1 compiler.

The searching for, and the conversion of, tokens into symbol
table pointers is called !exicgl analy§i~. Most compilers more
sophisticated than type-1 nevertheless precede other proces
sing with a lexical analysis.

A ~~1 compiler will rearrange the pointers into a form more
suitable for execution. This can either be a Polish prefix
representation in which the functions precede the arguments or
a polish suffix representation in which the function pointers
follow the arguments. Each form is illustrated in Figure 11.2.

Most interpreters operate on type-2 code. In particular,
MAINBOL uses Polish prefix and SITBOL uses Polish suffix.
Polish prefix is slower but more flexible than Polish suffix.
It is slower because with prefix code the function is encoun
tered first. When the function gets control it calls the
interpreter to obtain its arguments. This call is necessarily
recursive and hence slow. In Polish suffix the function is
called after the arguments have been evaluated; there is no
need for recursion. But Polish prefix is more flexible because
certain operators can decide that they do not want to play the
same game as other operators. Unary *, for example, does not
evaluate its argument but merely returns a pOinter to it to be

Chapter-11- - Implementation and Timing

-> +(2) -> ALPHA

-> *(2) -> BETA

-> ALPHA -> *(2)

-> BETA ~> GAMMA

-> GAMMA -.-> +(2)

(a) (b)

Iigure 11.2

The result of a type-2 compilation of the expres
sion ALPHA * BETA + GAMMA ~ay be (~ polish prefix
or (b) Polish suffix.

evaluated at some later time. In Polish suffix, unary * can't
decide this on its own but needs the co-operation of the com
piler. This leads to other problems. For example, unary *
cannot be redefined at run-time.

The types 0-2 compilers are regarded as interpreters because
the output (intermediate code) is not capable of being ex
ecuted directly by machine. A type-3 compiler will produce
code which can actually be executed. The above expression
becomes:

PUSH
PUSH
CALL
PUSH
CALL

-> ALPHA
-> BETA
_> *(2)

-> GAMMA
_> +(2)

where each function finds its arguments on the stack and
replaces them with the result of its computation. For ef
ficiency purposes, registers can be used instead of the stack
except for very deeply nested expressions.

A !~4 compile~ is one which produces optimal (or near
optimal) machine code. The above expression is reduced to:

LOAD
MOLT
ADD

-> ALPHA
-> BETA
-> GAMMA

Most true compilers are combinations of type-3 and type-4. For
example, Fortran I/O routines and trigonometric functions are
handled with type-3 calls whereas infix operators (+ * /)
and some arithmetic functions such as MAX and ABS are executed
in-line in a type-4 manner. SPITBOL is almost entirely Type-3.

__________________ ~F~I:o~atin~Storaqe Page 229

The only operation it does in-line is assignment. The reason
that, for example, in-line addition can't be done is. because
variables are typeless and the compiler has no way of knowing
whether A + B is floating pOint addition, fixed point or mixed
mode. Assignment, on the other hand, even for strings and ar
rays, is comparatively simple since only a pOinter and a
datatype need be copied.

It should be evident that as the sophistication of the com
piler increases (increasing type numbers) the spe~d of com
pilation decreases, the speed of execution increases and the
flexibility of the run-time system decreases. For example,
the type-2 rearrangement of operators is done so that
operators will be where they are needed when it comes time to
execute. This is faster but less flexible since it means that
it is practically impossible to change the precedence of
operators at run-time in a type-2 system; an irrevocable deci
sion is made at compile-time.

IIII
I
III
I
I

1
loating storage I ·The lack of declarations in SNOBOL4
• (E.g., S is a string whose maximum
I length is 1000) implies that storage is not preal
I located for variables but rather is allocated on
I demand. When storage is no longer in use it is freed

~----~, automatically by a so-called garbage collection
process.

In SPITBOL, SITBOL and MAINBOL the storage allocation scheme
1S basically the same. Allocating storage is ultra-simple.
When a chunk of storage is needed it is taken from the begin
ning of a free region and the pointer to the free region is
updated. When no free storage is left, the garbage collector
is called. The first step of collection is a marking process
in which all accessible blocks are marked as such. This· is
similar in spirit to the function VISIT (Prog. 5.10) and in
SITBOL and SPITBOL it is actually implemented in the same way.
Once the accessible blocks have been identified, they are
moved together so that further allocations can be performed.
Before the movement, any pointer pOinting into or to a
floating block must be adjusted. The term floating is used as
it seems to correctly connote the relative ease by which the
blocks may be moved about. The incorrect care and feeding of
floating addresses while implementing a system such as SNOBOL4
has led to many an implementation disaster. A useful rule of
thumb is that one such error will lead to a day's worth of
debugging sometime in the future.

It is interesting to note that the predecessor toSNOBOL4,viz.
SNOBOL3, implemented its marking phase by means of a use
count. Every time a variable's value is changed under such a
system, the use-count on the new object would be augmented and
the use-count on the old would be decremented. Marking
consists of looking for nonzero use-counts. Where strings are
the only datatype, as in SNOBOL3, this is not a bad scheme.
If one can have structures pointing to other structures,

~s~230 _____ Chapter 11 Implementation and Timing

however, the scheme suffers from the prospect that two struc
tures pointing to each other may be inaccessible from the rest
of the world and yet have nonzerg, use-counts.

The method of implementing the garbage collector in SPITBOL
and later copied over into SITBOL was especially clever. After
visiting nodes in the manner of the function VISIT, the pOin
ters are left in their reverse direction. This leads to a fast
pointer adjustment phase as all the floating addresses which
had been pointing to a floating block are then hung off the
block in a linked list. The MAINBOL processor uses a more
conventional marking phase using recursion much in the manner
of COPYL (Prog. 5.8). Also the use of macros produced a slower
system. The result is that the garbage collectors of SPITBOL
and SITBOL are much faster than SNOBOL4 •

•• • • I I
.1.1
I I

natomy of a Processor This section attempts to
describe how a SNOBOL4 proces

sor is organized and which parts of it are exercised
most frequently during the course of executing a
program. While such an analysis is application and
implementation dependent, certain valid conclusions

can nonetheless be drawn concerning the running of arbitrary
programs against such systems.

Most SNOBOL implementations tend to be implemented as one
large assembly program and it is often difficult to breakdown
the resource utilization into different functional compart
ments. The SITBOL implementation is an exception. It consists
of 20 separately-assembled files segregated according to func
tion as indicated in Table 11.1. Each section is designated
with a two or three-letter mnemonic as well as an indication
of space occupied as a percentage of the whole. The approx
imate number of instructions in each section can be computed
by multiplying the percentage by the total number of words
(9300) •

The 15.51 figure for I/O in Table 11.1 is surprisingly high.
It includes code to read and analyze the command string, set
up memory, provide a fairly rich collection of system
facilities and interpret special i/o formats and make suitable
conversions. The space devoted to the interpreter is padded
by calls to produce run statistics at job termination plus a
message interpreter. Hence the 7.31 figure is larger than what
would normally be considered strictly necessary for the inter
pretation of Polish suffix. Also required in interpretation
is all that machinery necessary to provide the correct number
of arguments to functions, to evaluate arguments (convert
variables such as A to the value of A, or convert INPUT to
the next string read, etc.), and to interpret goto's and react
correctly to failure.

The compiler consists of a lexical analyzer (LEX) which makes
calls on the symbo: table manager (SYM) to convert source
tokens to pointers into the symbol table which it feeds back

· ______ .~An~a_t_o~rnY_2!_S_E~ocessor Page 231

Table 11.1 The Decomposition of SITBOL. Regions are
named by a short (2 or 3 letter) mnemonic. The Size is
based on the number of words of assembled code and is
given as a percentage of the total. The overall size
was 9300 (36-bit) words. The storage considered is pure
storage and does not include space for stacks, symbol
tables, code blocks, etc.

Name Size (I)

10
INT
GC
SYN
LEX
SYM
STR
SMR
PG

PL

NUM
CVT
ARY
KW
TBL

OFF
DFD
ERR
TRC
DATA

15.5
1.3
3.1
4.1
4.4
1.9
6.1
2.1
5.1

1.9

2.1
4.4
2.0
2.0
2.9

3.5
1.8
2.0
1.5
1.1

Description

I/O and system interface
Interpreter
Garbage Collector
Syntactic Analyzer
Lexical Analyzer
Symbol table manager
String handler
Streaming (character set searching)
Patterns Global (pattern building and

the scanner)
Patterns Local (built-in functions

and primitives)
Numeric functions
Datatype conversions (string (==) numeric)
Arrays (allocation & referencing)
Keywords
Tables (allocation, referencing and

conversion)
Defined functions
Defined Datatypes
Error handling
Tracing
Assembled in strings, character sets, etc.

to the syntactic analyzer (SYN). LEX makes calls on the
streamer (SMR) to search for one of a set of characters. Thus
the entire compiler represents 18.5. of the system with the
syntactic analyzer only 41. This is surprising in view of the
great attention devoted to syntactic analysis in the litera
ture. The symbol table manager is bloated by an internal sym
bol table of approximately 450 words (4.81) and a number of

. symbol table related functions such as CLEAR() and OPSYN().
The actual machinery for locating and installing names into
the symbol table is actually quite small.

The relatively large quantity, 1.91, of code for PL (Patterns
Local) is attributable to the relatively large number of
built-in patterns such as POS(n), BREAK(S), BAL, etc.

The SITBOL system has a profiling capability which indicates
where the system.is spending its time. one can obtain a user
oriented histogram (via statement numbers) or a system
oriented one (via absolute addresses). This, coupled with the

E~~-=2~3~2 ______ ~C~h~a~p~t~e~r~1~1~

pbysical segregation previously described makes it fairly eafPY
to determine the percentage of time devoted to each subaQ~
tivity. Table 11.2 summarizes the results of running the
profiler for 6 typical string applications. The last colg~n
indicates a composite figure obtained rather arbitrarily by
averaging the other 6 figures.

lable ~l Shows the percentage of time spent in 1
various regions of SITBOL for a variety of string- 1
processing problems. 1

---1 1 Region 1 L6 Fenum TPST Pre Sort Refm 1 Comp 1
----------t---------------------------------------t--------

IO 3.0 4.5 2.9 20.7 11.8 7.1
INT 27.0 18.1 30.2 38.8 73.6 33.8 36.9
GC 40.2 34.8 20.1 20.1 4.2 19.9
SYN
LEX
SYM
STR
SMR
PG
PL
NUM
CVT
ARY
KW
'IBL
OFF
OFD
ERR
'IRC
DATA

.2
13.8
1.0
4.9
2.3

• 1
.8

.2
6.0

.2

.3

.2
26.3
1.6
7.2
4.2

1.8

1.0

.5

13.3
7.0
8.1
7.6
1.7
.8

.2
7.8

.3

5.4
1.14
2.8
3.1

.5
1.4

4.3
1.5

.3

.9
9.8

1.7
2.9

3.2
4.3

2.9

27.1
2.3
5.7
1.5
1. 1
1.3

10.1

.2

.1
15.9
2.3
4.8
3.1
.8

1.5
.2

.2
5.2
1.0

.7

L6 is a compiler. Renum renumbers the statement labels of
Fortran programs. TPST (Typeset) is a program to format
paragraphs and uses functions virtually identical to those in
dicated in Chapter 10. Pre is a pre-processor for Fortran
which inserts common areas at the beginning of subprograms and
does minor data massaging. Sort is a linked-list sort of a
kind identical to Prog. 13.3. Refm reads a file with mixed
tabs and blanks separating 4 fields and writes out the file
with columns alligned using tabs as needed. With one exception
(Sort) all programs were complete programs so that time spent
in I/O and other necessary but unrelated activity would be
included in the timing statistics. Not included as is
evidenced from the data itself is the time spent co~piling.

The composite figure indicates the rather striking fact that
over one-third of the time is spent in the interpreter. Most
of this time would drop to nil if SITBOL had been a compiler.

However a .compiler version of SITBOL would almost certainly be
larger by close to the percentage of time saved so that the
cost (measured in core-seconds) would be the same. The impor
tant issue is that the interpretive time is not larger than it
is. substantial amounts of time are going to other things such
as garbage collection (20~), string processing (15~), pattern
matching (FG, PL and SMR, 101) and IO (71). It is only in ap
plications such as Sort which use few of the facilities of the
language (no storage allocation, no pattern matching) that the
interpreter time is really excessive. Thus semantically rich
processors such as SNOBOL4 have two reasons for being written
as interpreters. The semantical richness is easier to write
and there is not that much being lost.

Comparing individual columns it may be seen that the pre
processor Pre spends relatively large amounts of time doing
I/O because it has virtually no work to do on most lines read.
The relatively low figure of 18% interpreter use in the For
tran renumbering program is probably do to the heavy use of
concatenation and pattern matching and the rest of the data
bears this out. TPST spends by far more time in SMR than do
the other routines and this is because it is continually scan
ning for USCOREs and BSPACEs as was pointed out in Chapter 10.
The PDP-l0 has no automatic scan instruction like the IBM 360
but nonetheless even in this exagerated use of the BREAK func~
tion, relatively little time (7%) is spent streaming. The DFF
entry indicates the amount of time spent in function calls and
is relatively small even for heavily recursive applications
such as Sort. The amount of time spent in this category had
more to do with th~ structuredness of the program. TPSET, as
a look at Chapter 10 would reveal, is well-modularized and a
certain price must be paid, but the cost is not excessive. It
is somewhat surprising that areas such as numerics, conver
sions, tables, arrays, defined-datatypes, and keywords
represent so little of the total time (3.7'). Even, for exam
ple, when the defined datatypes are used rather heavily as in
sort, the amount of time spent in DFD is relatively small
(4.31) •

How do these figures compare with the correspo~ding figures
for MAINBOL and SPITBOL? Since SPITBOL is type-3, the time
spent in INT would be reduced substantially and, to a first
approximation, all other activities would experience a propor
tional increase (just to make up the 100'). The Garbage Col
lection time would be reduced somewhat because SITBOL,
operating in a time-sharing environment, deliberately keeps a
'low profile' to keep a relatively good priority. This results
in garbage collections every 1500 words or so which is quite
frequent compared with batch-oriented systems such as SPITBOL.
The STR (String Handling) area would also be reduced in
SPITBOL because the IBM 360 is a byte-orented machine with
certain built-in string operations. The result is that SPITBOL
should be more nearly balanced in its overall profile with
much of its time being spent in pattern matching, defined
functions, IO and garbage collection. This, however, will
depend considerably on the application. MAINBOL has an inter-

::.p.;:;;a.;jlg..;;:;e--=2..;;:;3 . ..;4 ___;;:C~h=a,l2.ter 11 Implementation and Timinq _____ __

considerably on the application. MAINBOL has an interpretive
loop about twice as slow as SITBOL and has a much slower gar
bage collection, pattern matcher and I/O~ Since overall
program time goes up by more than a factor of 2, the time
spent in the interpreter for MAINBOL would actually decrease
(to say 25"). 10, GC, PL., PG and SMR times would increase
whereas other times would likely remain roughly the same.

• i
II Program II To accumulate his own timing statistics,
II 11.1 II the programmer will make calls on the
II RESOLUTION II built-in function TIME () • The val ue
, , returned is not uniformly increasing, but
rather rises in steps which are sometimes rather large. On
many systems the step size, called the resolution, is one
sixtieth of a second which is fairly large as many things can
happen during this time period. It is essential to know or be
able to compute this resolution to obtain accurate timings.
Fortunately, this is rather easily done.

OEFINEC'RESOLUTION()T') :CRESOLUTION_END)

Entry point: Initialize T to the current. time. Then
repeat.edly set. RESOLUTION to the difference between the
current. time and this initial time. When it goes posit.ive,
the smallest resolution is obtained.

RESOLUTION
RESOLUTION_1

RESOLUTION_END

Epilogue

T = TlME()
RESOLUTICN = TIME() - T
GT(RESOLUTION,O) :S(RETURN)F(RESOLUTION_1)

Since TIME() returns an integer in milliseconds, it is
possible that the resolution may be off by as r,uch as a mil
lisecond. For example, on the IBM 310 Mod 165 the interval
timer resolution is 3.3 and RESOLUTION returns 3 two-thirds of
the time and 4 one-third of the time. In such cases,
RESOLUTION could be modified t.o return a constant known value.
But it should be remarked that. only an apprOximate value for
the resolution is ever needed. Exercise 11.6 explores another
possibility for improving the behavior of RESOLUTION.

. ,
I I Program I I
II 11.2 II
II TIMER II
t ,

The timer routine shown below will time a
stat.ement (or statements) passed to it as
arguments. Thus

TIMER (, A = B + C ')

will determine how much t.ime is required to execute the given
assignment st.atement and will print appropriate statistics.

Erogram 11 ~ 2 - TIMER Page 235

If more than one statement is to be timed they should be
separated by semicolons.

To time a statement it is placed in a loop and executed for
several times longer than the resolution of the clock. In
order to deduct the time required to increment a counter and
test, the loop is executed twice, once with the statement in
and once with it out.

Entry Point: On first call. fall through. When TIMER is
called recursively. N_ is nonzero and control passes to
TIMER_N.

TIMER EQ (N_. 0)

starting with 10 executions. double the number until the
difference between the times required to execute and not
execute the given statement is 20 ticks of the clock.

N_ 10
TIMER_1 T_ = TIMER(' ;' S_.N_) - TIMER(,N_} :F(FRETURN)

N_ = LT(T_,20 * RESOLUTION(» N_ * 2 :S(TIMER_1)

Now print the results. L-__ ~

T_ = CONVERT (T_, 'REAL'}
OUTPUT
OUTPUT = 'THE STATEMENT'
OUTPUT = S_
OUTPUT 'REQUIRED' (T_ / N_) , MILLISECONDS +/- 10'"

+ , TO EXECUTE IN' SYSTEM () : (RETURN)

Here if N_ is nonzero. Prepare a string C_ which will be
compiled and executed and will contain the statement to be
measured together with a control loop.

COLLECT () TIMER

S • • •
+ 1 LT(I~.' N_ ')

TIME () - TIMER
I

TIME () .. ,

: S (TIMER_ 3) ; ,
: (RETURN) ,

Compile the string and, if successful, execute it. L--__ ~

Names referenced
!?y -TIMER: -----

Name
SYSTEM
RESOI.UTION

: S<C_>F (FRETURN)

!Y.l2~
Function
Function

Where defined
Program 11.3
Program 11.1

____ -=Chapter~1_1 _____ ~I_mp~l~.e=m~e=n~~Qn and Timing

Note that the temporaries and arguments are given 'funny'
names, i.e. ending with the underscore (_) character. This is
to avoid conflict with variables in the statement being timed.

i

" " "
Program

11.3
SYSTEM

,
It

" "
SYSTEM() is a function which will attempt to
determine which of the various SNOBOL4
processors it is running under. For example,
under SPITBOL, SYSTEM () will return

'SPITBOLI. The function is not easy to write because if there
is a difference between any two processors this may be
regarded as a deficiency and may get fixed sometime in the fu
ture rendering the function we're about to write invalid.

One of the main differences between the various systems is in
functions and/or keywords implemented. Unhappily, one cannot
test directly for the existence of such functions or keywords
so knowing about such differences does us no good.

SYSTEM() was used to identify which irr-plementation was being
measured by TIMER and is provided more for its intrinsic in
terest than its necessity.

DEFINE (, SYSTEM () K')

Entry point:
processors.

First separate out MAINBOL from the
Only MAINBOL regards .X as a string.

other

SYSTEM IDENT(DATATYPE(.X), 'STRING')

Falling through implies MAINBOL. Now separate out the
various systems on the basis of the SIZE of &ALPHABET. The
Honeywell 635 uses a 9-bit code. IBM equipment uses an
8-bit character while the PDP-10 uses 7-bit ASCII.

K SIZE (&ALPHABET)
SYSTEM EQ (K, 512) 'HONEYWELL MAINBOL' :8 (RETURN)
SYSTEM EQ (K, 256) 'IBM MAINBOL' :. S (SYSTEM_ 1)
SYSTEM EQ(K,128) 'PDP-10 MAINBOL' :S(RETUR~

Both CDC and UNIVAC MAINBOL's use 6-bit codes. We can
distinguish between these two systems by the order of
characters in &ALPHABET. Only CDC contains () as adjacent
characters. L-__ ~

SYSTEM
&ALPHABET
SYSTEM

'CDC MAINBOr.'
, 0 '
'UNIVAC MAINBOL'

: S (SYSTEM_ 1)
: (RETURN)

r----------------·---,
, Here to test if the system also contains blocks. The
I operator sharp (#) will have a lower precedence than blank
I if the blocks extension is available. If the value of T is
, 1 (5 + 5) then we're in pure MAINBOL. Otherwise we've got

Anatomy of a SNOBO~4 Statement

I blocks. ,
SYSTEM_1 OPSYN('OLD_SHARP',"',2)

OPSYN (, • ' , '+ , , 2)
T 1 5 t 5
OPSYN('t','OLD_SHARP',2)
EQ (T, 110)

SYSTEM SYSTEM • WITH BLOCKS'
:S (RETURN)
: (RETURN)

Here if not MAINBOL. FASBOL has an unorthodox SUBSTR func
tion.

SYSTEM 2

+
- SYSTEM = DIFFER(SUBSTR('ABC',2,1),'B') 'FASBOL'

:S (RETURN)

SITBOL, running on the PDP-10, can easily be distinguished
from the IBM SPITBOL by the size of &ALPHABET.

SYSTEM = EQ(SIZE(&ALPHABET),128) 'SITBOL'
SYSTEM = 'SPITBOL'

: S (RETURN)
: (RETURN)

SYSTEM_END

.ID2iloque

The above function is obviously incomplete as it does not
include all machines for which MAINBOL has been expanded. If
your favorite processor is not among the group you are
encouraged to modify the program to include it.

II natomy of a SNOBOL4 Statement In this section we
wil.l study the time

requirements of SNOBOL4 statements. Such an analysis
may at first blush seem rather difficult because in
a language as rich as SNOBOL 4 there is 'so much
going on'. But just the reverse is the case. For

I I ~I------------------------------~ I I,
IIII ,
I I I

example, Table 11.3 shows the times required to execute in
SPITBOL and MAINBOL a sequence of four statements in ascending
order of complexity. TIMER, Program 11.2, was used to time
these statements and is responsible for other similar timing
figures given in this section. All times in this section were
made (or normalized to) an IBM 360 Mod 65. For possible com
parison with other processors, some representative instruction
times are given in Table 11.4.

In Table 11.3, we see that the null statement (statements
which do nothing) consume relatively little time; i.e. state
ment overhead is relatively small. Assignment is fairly fast
since, for all datatypes, it is merely a descriptor (two
32-bit words) copy. But the most notable thing about Table
11.3 is that there is a linear relationship of time with the
number of arithmetic operators.

This relationship is more nearly linear in an interpreter or
type 3 system because the·various operations are 'packaged'

~ementation and Timin9-____ __

Isble_11.3 Time in milliseconds required to
execute a sequence of arithmetic assignment
statements.

i

1
1
1

---1
Statement SPITBOL MAINBOL 1

---1
A .0012 .02 1
A 11 .004 .10 1
A I + J .009 .30 I
A I + J + R .015 .50 1
A = I + J + J(+ L .021 .70 ,

more so than in a type-4 compiler. In a type-4 system, code
optimization techniques render more interaction between opera
tions of the ·same expression so that the time of a· statement
is not simply the sum of the times of the component
operations.

Measuring the time of an operation which does not generate
storage is fairly straightforward as the direct measurement by
TIMER may be used. If the operation generates storage which
must later be collected, an additional increment of time
should be charged to such an operation. We will see later how
this can be done.

Arithmetic Table 11.5 shows the time required for arithmetic
operations. In MAINBOL the time is dominated by overhead so
that all operations, even exponentiation, take pretty much the
same time (about .2 milliseconds). This even includes the case
where one of the operands must be converted to string or real.

Table-1~! Selected instruction times for the IBM
360/65. (N is the number of characters involved in a
multiple-character operation.)

,
I
I
1

---1 operation Time I
1 (microseconds) ,
--~----~----------I

Load (1 word) .95 1
store (1 word) .93 ,
Add (storage-to-register) 1.65 I
Floating add (storage-to-register) 1.68,
Multiply (storage-to-reg.) 4.45 1
Divide (storage into reg.) 9.00 I
Compare (reg. with storage) 1.40 1
Branch 1.10 1
MVC (storage-to-storage move) 3 + .3N t
CLC (storage-to-storage compare) 2.9 + .3N I
TRT (SPAN & BREAK) 4. 1 + 1.2N ,
TR (REPLACE) 1.9 + 1.8N I

. ,

Anatomy of a SNOBOL4 statement_ Page 239

In SPITBOL, as may be expected, the overhead has been reduced
to the point where variations in the natural execution times
do show up·in the time for the overall operations. Thus, in
teger division (.019) is longer than integer multiplication
(.014) which in turn is longer than addition (.001) which
reflect differenc~s in the absolute times to perform these
instructions (.009, .005, and .001 respectively).

Table 11.5 Time in milliseconds to carry out selec
tedarithmetic operations in SPITBOL and MAINBOL on
the IBM 360/65.

Data Type operation Da.ta Type SPITBOL MAINBOL

integer + integer .007 .2
integer integer .007 .2
integer * integer .014 .2
integer / integer .019 .2
integer ** integer .039 .2
integer REMDR integer .035 .18
integer + real .061 .2
real + integer .067 .2
real + real .016 .2
integer + string (2) .084 .22

Table 11.5 shows a ratio of improvement of SPITBOL over
MAINBOL which varies from about 25:1 in the case of integer
arithmetic to about 2.5:1 in the case of addition with one ar
gument a string. This is because, in the latter case, the time
is dominated by the conversion, and this MAINBOL does within a
single macro, so that the SPITBOL approach grants no
advantage.

Flow of Control Various operations associated with flow of
control-are-given in Table 11.6. These figures should be suf
ficient to predict the time of simple looping control
instructions.

For example, the standard method of implementing a loop in
SNOBOL4 is some variant of

N = 0
LOOP N N + 1 LT(N,100) :F (LOOP_OUT)

: (LOOP)

which will execute the inner part of the loop 100 times. The
statement labeled loop will be executed 100 times before
failing. Predicates such as LT() will return the null string
when they succeed as this is the least flagrant value they can

Page 240 Chapter 11 Implementation and Timing

Table 11.6 show.s time in milliseconds· of flow-of
control type operations for SPITBOL and MAINBOL.

,
1
I

-I
1 Operation SPITBOL MAINBOL 1
1-----------------------------·-------------------------I
I GT,LT,EQ,LE,GE,NE .02 .2 t
~ IDENT, DIFFER .02 .2 I
I LGT .05 .35 I
I Null Concatenation .02 .2 I
I Label Goto .027 .17 I
I Code Goto .037 .20 I
1 Function call (N = I
I • of args and temps) .09+. 012N .40+. 03N I
, .J

return. Concatenation treats null as a special case simply
returning the other value and hence is very fast.

The time to execute the statement labeled LOOP can be obtained
by adding the times for assignment, addition, LT() and null
concatenat~on which yields .70 for MAINBOL and .051 for
SPITBOL.' To this should be added the time to execute a label
goto which brings the total control overhead to .87 and .078
milliseconds respectively.

The time to execute a goto is influenced slightly by whether
its a fail goto or a success goto, and the actual configura
tion of the goto portion of the statement. The figure given
in Table 11.6 is simply an estimate usable mainly because the
transfer of control consumes, normally, a very small portion
of the total time. The total time required by a function is
found by adding the function overhead time, given in Table
11.6 to the time required to execute the function's state
ments. The time of a RETURN (or FRETURN) is atsorbed in the
function overhead.

Miscellany Table 11.7 contains a miscellaneous collection of
times for a number of different operations. Some of the opera
tions generate storage which will lengthen subsequent garbage
collections but the times given do not reflect this cost (see
the Epilogue of TIMEGC, Prog. 11.4). It is interesting to note
that with the indirect reference (unary $) the time required
by SPITBOL and MAINBOL are almost the same. Because MAINBOL
hashes all data strings it does not have to hash for indirect
reference. SPITBOL does, but the hashing does not take as long
as MAINBOL's interpretive loop. Eattern Ma~ching Theexecu
tion of a pattern matching statement consists of five distinct
parts: subject evaluation, pattern evaluation (pattern
building), pattern matChing proper (scanning), object evalua
tion and replacement. Not all of these' operations need be
present. The time to execute such a statement is the sum of
the times of its component parts. The subject and object
evaluation are in the same category as ordinary expression
evaluation. The replacement operation is approximately equiva-

__________ --bnatomy of a SNOBOL" Statement ____ Page 241

Table 11~1 shows timings of miscellaneous opera
tions. N, where indicated, is the number of charac
ters involved in the operation. Times do not include
garbage collection overhead.

Operation

concatenation
SIZE
DUPL (of a single char)
$ (indirect reference)
PROTOTYPE
A(I>
A(I,J>
ARRAY(N)
CODE(' X = Y + Z : (LA) ')
EVAL('LGT(S1,S2) ')

SPITBOL

.05+.0005N

.023

.045+.0003N

.09

.016
.• 03
.07
.06+.03N
1.53
1.2

MAINBOL

.35+.0005N

.13

.6+.027N

.12

.13

.30

.45

.7+.03N
3.7
3.1

lent in time to two concatenations and is given in Table
11.10.

The time required to build a pattern is, to a first approxima
tion, proportional to its size. Table 11.8 contains some
representative times for the construction of patterns.
Variables A, Band AB are used rather than constants 'A', 'B'
and tAB' because SPITBOL precomputes any constant-valued ex
pression such as 'A' "B'. As indicated in the table, the
time is measured in the absence of garbage collection. As we
will see, garbage coll~ction will approximately double this
figure.

lSble 11~ indicates timings (in milliseconds) of
selected pattern-building operations. Times do not
include that attributable to garbage collection.

Pattern expression

A I B
(A I B) . X
(A , B) . X (A , B)

BREAK (A)
BREAK (AB)
BREAK (AB) . X
BREAK (AB) . X LEN (1)

. Y

No. of
SPITBOL MAINBOL Primitives

.167 .80 2

.466 1.1 4
1.16 2.7 8

.07 .36 1

.12 .36 1

.41 .93 4

.57 1.78 5

where: A = 'A', B = 'B', AB = 'AB'

Impl~mentation and Tim~i~n~q~ ____ _

To a first approximation the time required for pattern mat
ching proper (scanning) is some fixed overhead given by Table
11.10 plus the total attributable to individual primitive
matches (and failures) as given by Table 11.9. Thus the pat
tern match below

S = DUPL(tAt, 100)
S ('At, 'B') 'C'

will have approximately 3N primitive matches, N successful
matches by 'A', and N failures each by 'B' and 'ct. Table 11.9
indicates that in SPITBOL it requires .04 milliseconds per
string primitive resulting in a total time of 12 milliseoonds
plus overhead.

Tabl~1L2 Primitive matching time in Milliseconds
per Character for selected primitives. N indicates
the number of characters matched for multi
character operations.

Primitive

String
RPOS(N)
LEN eN)
POS (N)
NOTANY (S)
NOTANY(*S)
SPAN(S)
BREAK (S)

SPITBOL

.040

.020

.020

.020

.028

.071
.040+ o0014N
.040+.0014N

MAINBOL

.18

.20

.20

.20

.24

.42
.25+.0014N
.25+.0014N

!able_~lQ Other rr.iscellaneous timings associated
with pattern matching. Times are in milliseconds and
are approximate.

i ,
I ,

---1
Operation SPITBOL MAINBOL,

--~-I
Matching Overhead .09 .5 I
Replacement .082+.0005N .42+.0005N,
Pure String scanning Rate .0014 .04 ,

(per character) I
ARBNO, per iteration .010 .26 I
GBAL .043+.017N .22+.033N I

I

The reader is cautioned that this analysis is approximate. The
time required to scan (P1 , P2) will be less than the sum of

Anatomy of a SNOBOL4 statem_e_n_t ____________ ~P2~_~43

the separate scanning times. Also failure will be slightly
different than success. If differences on the order of 20% or
so are significant the reader is urged to make his own timing
tests of time-critical statements.

The reader should also note that pattern matching heuristics
play a significant role in affecting the overall time. Thus
the pattern

POS (143) 'CAT'

will result in two primitive matches in SITBOL AND SPITBOL
because of the POS heuristic (see Chapter 1) but will require
145 primitive matches in MAINBOL (aSSuming the subject is long
enough). Also, the futility heuristic can greatly reduce the
number of primitives matched.

When the pattern is a simple string, SPITBOL and MAINBOL treat
it as a special case resulting in a faster scan as indicated
in Table 11.10. IfARBNO appears in a pattern, then to the
time required for all primitive matchings must be added the
sum of all ARBNO extents multiplied by the given weighting
factor given in Table 11.10. BAL, as indicated in Chapter 1,
is implemented by the repeated use of a primitive GBAL which
matches the shortest nontrivial balanced string. Thus BAL will
match the string '(XXXX)' with one application of the primi
tive GBAL and will match 'XXXXXX' with 6 applications of GBAL.
Hence it requires much less time to match the former than it
does the latter. For example, in MAINBOL, it requires .22 +
(.033) (6) MSEC. to match '(XXXX)' whereas it requires (.22) (6)

MSEC. to match 'XXXXXX'.

I/O Timing When INPUT is mentioned in the source program, a
line is read. How long does it take? This has no easy answer.
Clearly different devices require different times. Even if we
restrict our attention to one device, such as the disk, the
issue is compounded by a host of factors. As a rough rule of
thumb the total time required to move the ann of a disk drive
into position (seek time) and wait for the information to come
under the read heads (latency) plus the amount of time to ac
tually read is, to grossly simplify, in the order of 100 mil
liseconds. This figure is not normally charged directly to
the user since the operating system can direct the cpu to do
other things during the interim. This represents an extra
ordinarily complex situation not made less so cy a"variety of
charging algorithms and scheduling philosophies. A rule of
thumb is that the effective cost is equivalent to half the
elapsed time. Hence, for disk, one may assume 50 milliseconds
per transmission. Since the time of transmission is relatively
independent of the amount transmitted it pays to transmit more
than one line at a time. Hence, lines are transroitted in what
is called a block. The number of lines per block is called
the blocking factor. Typical blocking factors for efficient
disk I/O is on the order of 100 which converts the effective
transmission time to .5 milliseconds per line.

Page 244 C~h;a~p_t_e;r __ 1_1 _____ 1mplementation and Timi,~n~g __ __

To this we must add the processing time to extract a given
line from a buffer. Th~s again will require rule of thumb
estimates. In MAINBOL a rather slow Fortran conversion routine
causes an I/O operation to require 5 milliseconds per line
(IBM 360 Mod 65). Hence if the file is properly blocked, I/O
times are dominated by this figure. In SPITBOL, Fortran I/O
is sidestepped and the required processing takes about half a
millisecond. Hence, in SPITBOL, an I/O reference requires a
total of approximately one millisecond.

r i 'I Program I' The following program will permit the caller
" 11.4 " to time a 'typical' garbage collect.
,t TIMEGC 11 Strings, array elements and programmer
• defined datatypes are strewn about in rather
chaotic fashion and a call is made to clean some of it up. An
argument to TIMEGC can be given which will alter the amount
and somewhat the type of litter. The caller may experiment
with other values of this number as well as with different
kinds of allocation to see if the garbage collect time
significantly varies.

OEFINE('TIMEGC(N)I,S,A,L,T,K,FREED')
DATA ('LINK (VALUE, NEXT) ') : (TIMEGC_END)

Entry point and top of loop.
garbage collect.

Free everything and issue a

TIMEGC I = S = A = L =
COLLECT()
N = IDENT (N) 25
A = ARRAY (N)

Allocation loop: For each I from 1 through N allocate ap
proximately one length-SO string, assign a length I string
to A<I> and add one element to the linked-list L.

TIMEGC_ 1 I = I + 1
$1 DUPL(' ',78) I
A<I> = DUPL (, * , , I)
L = LINK (NULL, L)
GE (I,N) :F (TIMEGC_ 1)

Determine the storage rema1n1ng. Then loosen about half of
it and issue a garbage collect. Determine how much was
collected and how long it took to make the collection.

STREM
TIMEGC 2

- $1
I =
'I'
FREED
TIMEGC
K =

= COLLECT()

A<l:> L NEXT (L)
I - 2 GT(I,2)
TIME()
= FREED + (COLLEC~ 0 - STREM)

TlMEGC + (TIME() - T)
K + 1

Program 11. 4 =~GC _______ ..;... __ Page~

If not significantly more
clock, go back for more.
statistics.

than the resolution of the
Otherwise produce some

L--__ _

LT(TIMEGC,50 * RESOLUTION(» :S(TIMEGC)
OUTPUT
OUTPUT = 'IN' SYSTEM() , , K ' GARBAGE COLLECTS'

+ REQUIRED A TOTAL OF ' TIMEGC ' MILLISECONDS TO FREE '
+ FREED ' STORAGE UNITS. '

TIMEGC = CONVERT (TIMEGC, 'REAL')
OUTPUT = 'THIS AVERAGES TO ' (TIMEGC / K) 'MSEC. PER'

+ , GARBAGE COLLECT AND ' (TIMEGC / FREED) , MSEC. PER'
+ , STORAGE UNIT.' : (RETURN)
TIMEGC_END

Names referenced
~i_l'!MEGC:i----

~~
RESOLUTION

!~
Function

Where defined
Program 11:1

TIMEGC(N) was called for various values of N and the results
are given in Table 11.11.

i
~able 11.11 Data obtained by calling TIMEGC with a ,
variety of arguments. I

--1
'§~1 MAINBOL I

I
Ave GC Storage Time Ave GC Storage Time,

N Time ColI. per byte Time ColI. per byte,
I (MSEC) per GC (Mcrsec) I (MSEC) per GC (Mcrsee) , ----t---------------------------t----------------'----------

50, 17 3.4K 5.0 ,98 5.8K 17.0
100, 27 8.1K 3.3 ,105 13.5K 8.9
150, 41 14.0K 2.9 ,144 21.6K 6.7
200, 51 21.3K 2.4 I 196 31.5K 6.3
250 I 77 30. OK 2.6 I 220 42.6K 5.2
300 I 104 39.4K 2.6 ,224 55.0K 4.1
350 I 138 50. OK 2.8 ,256 68. 4K 3.9
u 0 0, 183 62.4 K 2. 9' I 304 83 .3K 3.5
450, 210 76.0K 2.8 I 343 100 K 3.5 L-__________________ ----------______________________________ ~

As might be expected, the time to garbage collect is a func
tion of how many allocated objects are lying about in core.
For small collections, SPITBOL has a clear advantage over
MAINBOL; but this advantage curiously diminishes as the col
lections become larger. (This anomaly has yet to be
explained.) Also, as collections get larger, the time required
per byte collected seems to converge to about three

Esse 2~ _____ £hapter 11 Impl.ementation and Timing

microseconds. This figure is not absolute since garbage col
lections in which very little storage as a fraction of the
whole is retrieved can require much more than this. Neverthe
less, it serves as a useful rule of thumb for estimating the
garbage collection overhead attributable to an operation that
allocates storage. For example Table 11.1 indicates the time
for concatenation to be .05+.0005N milliseconds in SPITBOL.
To this we must add a factor attributable to later garbage
collection. In SPITBOL, a string requires 6 + N bytes of
storage as indicated in Table 11.12. Using a figure of 3
microseconds per byte, the real cost of concatenation is .068
+ .0035Nmilliseconds •

• ,
I

Table 11.12 shows the amount of storage required for a
variety o~datatypes. storage is given in bytes.

1---,
I Datatype , SPITBOL , MAINBOL I
I-----------------------------------t------------t-----------1 I String (N is no. of chars.) 6 + N 32 + N ,
I I
I Variable (N is number I
, of characters in name, 38 + N 32 + N I
I I
1 Patterns (N is no. of primitives, I
, A is no. of ANY, NOTANY's, I
I B is no. of BREAK & SPAN's., 16 + 16N + I
, figure is approximate) 32A + 256B 8 + 32N I
I I
I Arrays (N is no. of elements and 1
I D is no. of dimensions) 20+8N+8D 16+8N+16D I
I 1
I Prog. Defined Data Object 1
1 (N is no. of fields) 8 + 8N 8 + 8N t
I 1
I Table (E is no. of items in 1
, the table and I is the initial 1
, first argument to the TABLE I
, function) 12+24E+4I 8+16E 1
I-----------------------------------t------------t-----------1 I • If the argument to BREAK or SPAN is only one character, I
, no additional storage is required (B is 0). I , ,

____________ ~P~rogram 11,6 - FPROFILE

1.1
I
I

• •

he I nner Loop It is characteristic of many programs
that approximately 90% of the time is

spent in 101 of the program. This is true of SNOBOL4
itself and it tends to be true of programs written in
the language. Whether or not the topology of the
program merits the epithet, the point or points

within the program where most of the time is spent is called
the 'inner loop'. While the SITBOL system has an automatic
method for determining which statements are responsible for
the most time, most SNOBOL4 systems do not. There do exist,
however, certain tracing tools which may be used to examine a
program's behaviour and extract at least approximate timing
information.

• i 'I Program I' LPROG() will return the length (i.e. the
" 11.5 'I number of statements) in the SNOBOL4 program
I , LPROG , , in which it is called. LPROG will actually
• • cause one more statement to be compiled at
run-time so that its repeated use will return slightly dif
ferent values. If new code is compiled in the interim, the
value returned by LPROG will be augmented by the number of new
statements

DEFINE('LPROG() ')

Entry point: Compile a statement and return 1 less .than
its statement number.

LPROG
LPROG_END

~ilogue

: <CODE (' LPROG &STNO : (RETURN) ,) >

LPROG has intrinsic interest of its own as well as being a
useful, if not essential, tool in constructing an array to
record a program's profile (as we shall see) •

,

" " "
Program

11.6
FPROFILE

i

" " I'

FPROFILE is a program which determines the
number of times each statement is executed
in the program in which it is embedded.
This is called the frequency profile of the

program. T.he statistics gathering begins when the initializa
tion section of FPROFILE is executed and tracing is turned on.
Hence FPROFILE is normally placed before the program to be
monitored but must be placed after the LPROG function which it
calls during initialization. For each statement executed after
tracing has been established, FPROFILE is called and a tabula
tIon is made in an array (FP_ARY). At any given time during
the course of execution, statement number N will have been ex
ecuted FP_ARY<N> times.

Chapter 11 Implementation and Timing ____ __

DEFINE (, FPROFILE () ')

Allocate an array to gather statistics and set up tracing
on the keyword &STCOUNT.

FP_ARY ARRAY(LPROG(»
TRACE (.STCOUNT, 'KEYWORD',,'FPROFILE')
&TRACE = 1000000 : (FPROFILE_END)

Entry point of FPROFILE (called at each executable
statement).

FPFOFILE FP_ARY<&LASTNO>
FPROFILE_END

FP_ARY<&LASTNO> + 1 : (RETURN)

Names referenced ~~ !y~~ Wh~~e defined
~Y_!EROFI1E: LPROG * Function Program 11.5
* indicates name is referenced in the initialization section.

r--------------"
'I Program , ,

" 11.1 "
" TPROFILE "

A time profile of a program indicates the
relative time spent in each statement. In
a language like SNOBOL4, where there is a
relatively high variation in the time re

quired to execute any given statement, a time profile is much
more desirable than a frequency profile.

TPFOFILE, a modification of FPROFILE, allocates to the state
ment just executed the difference between the current time and
the last previous time. Unhappily, the time required to gather
the statistic may be ,,3 large or even larger than the time
being measured. However it is likely to be more valuable an
indicator than FPROFILE and in many cases can give a sur
prisingly accurate time, profile.

DEFINE('TPROFILE()S,T')

Set up tracing. Times are tabulated in TP_ARY. TPROFILE
will be called at the start of each statement to be ex
ecuted.

TP_ARY ARRAY(LPROG(»
TRACE(.STCOUNT,'REYWORD',,'TPROFILE')
&TFACE 1000000 : (TPROFILE_END)

r---,
Entry peint: Save the statement number (S) of the state
ment about to be executed and quickly obtain the time (T).
Augment TP_ARY according to the last interrupted state
ment.

TPROFILE S &LASTNO
T TIME ()

TP_ARY<LAST_STNO> = TP_ARY<LAST STNO> + T - LAST_TIME
LAST_STNC S

TIME () : (RETURN)
TPFOFILE_END

~.~L!:efe~gg ~ I~12~ Where def~
~~_IFROFI~E: LPROG * Function Program 11.5
* indicates name is referenced in the initialization section.

ID2iloqug

To test the two profiling programs, the function BNORM (Prog.
10.1) was used. It was passed a string of approximately 120
characters containing 10 BSPACEs and two USCOREs. To average
out noise effects, BNORM was called 250 times. The results of
applying FPROFILE and TPROFILE to the program are shown in
Figure 11.3.

The data was collected on the SITBOL system so that a
comparison could be made with a 'true' time profile as
provided by a built-in facility. Figure 11.4 shows the results
of turning on the built-in profiler. As might be expected,
the times are a little higher for TPROFILE than they are truly
since each statement executed is accredited with a little of
the overhead used to gather the statistic. But the results
are surprisingly close due to the relatively small amount of
time required to execute a simple assignment statement.

For running TPFOFILE on SPITBOL it is imperative to obtain the
TIME() before &LASTNO because the latter represents a rela
tively slow operation. Exercise 11.11 provides a method of
dOing this.

111??11111???111111?1111?1111111111111111111111111111111111111
1111111111111111111111?1? EXERCISES 111111111111111111111111
111111111111111111111?111111?111111111111111111111111111111111

,.--, i

I Exercise 11.1 I Which of the following linguistic
facilities require a run-time symbol table1

(a) Pattern Matching
(b) a Sort facility
(c) Run-time compilation
(d) Redefinition of functions
(e) Go to a label whose name is computed
(f) call a function whose name is computed
(g) Linked-list operations

I i
I Exercise 11.2 I Each method below for computing hash num-

bers has at least one flaw. Indicate
whether it is too time-consuming (T), does not provide a good
spread (8) or is not repeatable (R). More than one letter
might be applicable. Assume each character is an 8-bit qode

Page

3000

2000

1000

0

48.0

40.0

32.0

24.0

16.0

8.0

0

250 £hapter 11 Implementatign and Timing ___

-I
I 2500
I r--1 , I I

-I I-I
I 1 I
11250 1250 , I
1,.--, r--1 1 1

-II-I I-I 750 750 750 1-1750 750 750 750

" 1 I 1500 ,--, r--1 r--1 I I ,--, r--1 ,---, r--1

" 1 I 1,---,1 " " " " " " " I
I I 1 0 I " " " " I I " " " " I

- II I II II I I II II II I I II I I I

6 7 8 9 10 11 12 13 14 15 16 17
-I

I
I 41.4
I r--1

-I I-I
1 I 1
I I 1
I I ,

-I I-I
I I ,
I I ,
I I 1

-I I-I
I 1 1
1 1 ,
1 1 I

-I I-I
1 1 1
I 10.1 1 1
I r--1 I I 7.5

-I I-I 6.7 f·-I r--1
13.9 1 I r--11 1 4.7 3.2 , I
I r--1 1 I 1.6 2.8 1.97 f " f 2.9 ,.--, r---, 1 1

" I 0 I 1 r---, r--o r--1 , " 1,.--,1 " " 1
_II I I I I II I I I I I I II I I II I I I

6 7 8 9 10 11 12 13 14 15 1.6 17

figur!L.11d

The result of applying FPROFILE (above) and
TPROFILE (below) to 250 calls to the BNORM func
tion. The numbers below the bars refer to state
ment numbers in BNORM. Times are in seconds.

0

18

0

18

Exercises for chapter 11 p~~~~

40.0 -f
I 36.5
I r--1 , f f

32.0 -I I-I
I f I
I I I
I I I

24.0 -. I-I
I I I
I I I
I f I

16.0 -f I-I

8.0

0

I f I , I , , 7.3 , 1
-I r---1 I-I

I I 13.7 4.9 I 1
11.52 I I r--1 r--1 I I 1.2 2.5 1. 1 2.2
1 r--1 0 I WI 1.87 .15 I WI I ~ r--1 r--1 r--1
' , I I II I II II II II I I

6 7 8 9 10 11 12 13 14 15 16 17

F igur !iL .. ll.:.!

The histogram above shows the 'true' time profile
of the program run to produce the histograms in
Figure 11.3. Times are given in seconds.

I
0

18

which represents some integer between 0 and 255.
length of the Hash Array.

L is the

(a) Multiply all the characters together ignoring overflows.
Then divide by L and use the remainder.

(b) Divide the size of the string by L and use the remainder.

(c) Let.L be 256 and choose simply the first character as the
hash number.

(d)· Let L be 256 and Exclusive-OR all the
together.

characters

(e) Add the size of the string to the last previous hash num
ber and divide by L, using the remainder.

(f) Use the machine address of the first character of the
string.

r---------------~
I Exercise 11.3 As indicated in the text, compilers can be

ranked from Type 0 to Type 4. Each increase
compilation complexity brings about a decrease in run-time

,
in

flexibility. What type of compiler is requir;d to implement
each of the following language features 1n a reasonably
straightforward way. For example, if your answer is Type 2,
then all compilers of Type 2 and lower should have no special
difficulty implementing the feature. By type 3 assume that
the decision to push a value or a pOinter to a variable is
made at compile time.

(a) Run-time modification of operator precedence

(b) A Sort function.

(c) Redefinition of SNOBOL4 functions

(d) Redefinition of SNOEOL4 operators

(e) Run-time ~odification of the meanings of characters
(E.g., hereinafter R is an operator).

(f) Declarationless variables

(g) Recursive functions

(h) Run-time trace requests on variables

(i) Run-time macros (hereafter all strings in the text of the
program of the form X shall be regarded as string Y).

Exercise 11.4 Which of the following facilities are more
likely to be associated with a floating

form of storage management and which with fixed storage?

(a) Declaring a variable to be string and giving it a maximum
length.

(b) Arrays containing arbitrary and mixed datatypes.

(c) Garbage Collection.

(d) Functions which return arrays.

(e) String assignment implemented via copying.

f
, Exercise 11.5 Give an example of a statement which if

timed using T!MER would result in an in-
finite loop.

Exercise 11.6 Modify RESOLUTION (Prog. 11.1) so that it
averages ten attempts to obtain the resolu

Make sure the computation is done once and not at each tion.
call.

____ -=Exercises for chapter 11 Page 253

Exercise 11.7 One can define the factorial of n (normally
written n!) as follows:

F

F_END

DEFINE (• F (N) .)
F = LE (N, 1) 1
F N + F(N - 1)

: (F_END)
:S (RETURN)
: (RETURN)

Estimate the time required (in SPITBOL) to compute F(1), F(2)
and F(n) for arbitrary n. Compare the time required for this
recursive program with the following iterative version of the
factorial function.

,

DEFINE ('F(N)')
F = 1
F = GT(N,1) F. N
N = N - 1

: (F_END)

:F(RETURN)
: (F _ 1)

I Exercise 11.8 You are writing a pre-processor in SNOBOL4
L- which will examine each line of a source
statement for the occurence of a special character (say I).
If the special character is there, the program will do
something interesting. Otherwise it copies the line intact.
write an 'inner loop' that does nothing but read and write and
check for/the existence of the special character. Assuming
the lines containing the special character are relatively
rare, the speed of processing approximates the speed of the
inner loop. Compute the speed of your pre-processor in state
ments per roinute operating in SPITBOL. Assume I/O time is one
millisecond per line.

r----------------I Exercise 11.9 Since error and trace messages are given in
terms of SNOBOL4 statement numbers it is

helpful to have a method of producing such numbers for state
mentscompiled via the CODE function. Redefine the CODE func
tion in an upward compatible way so that in addition to
compiling code it sets the global variable CODENO to the num
ber of the statement (or first statement of a sequence) being
compiled. (Hint: Look at the LPROG function and use the fact
that SNOBOL4 assigns statement numbers sequentially without
breaks. Only two statements are required in the body of the
function.)

,
I Exercise 11.10 Modify LPROG (Prog. 11.5) so that it will

always return the value it returned when
it was first called. (Hint: This can be done by the insertion
of 5 characters.)

g~~~ _____ £hapt~_l1-__ - __ Implementation ang TimiDS-_____ _

Exercise 11.11 TPROFILE (Prog. 11.7) attempts to obtain
the TIME() as quickly as possible but is

torn by the fact that the first statement executed must cap
ture the SLASTNO. Suggest how TPROFILE can be improved so that
the TIME() is captured as quickly as possible in the first
statement without losing the value of &LASTNO.

C HAP T E R TWELVE

.----, 'r-1 , ,,--. ,
, ,.---I

" u
E R M UTA T ION S

PERMUTATION •••••••••••• 12.1

PERM ••••••••••••••••••• 1.2.2

PERMS •••••••••••••••••• 12.3

REORDER •••••••••••••••• 12.4

LPERM 12.5

IP •••••••••••••••••• ~ •• 12.6

Page 256

r-----1

L..-, r-'
II

" I J
u

here are nl ways of rearranging (or permutinq) n ob
jects arid these are referred to as permutations. FJr
example, there are 3J (=6) ways of permutinq the 3
characters of the string 'ABC' as follows

~BC

~CB

BAC
BCA
CAB
CBA

There is a body of literature on the subject of permutations
[Algorithms. 1968, p. 829] owing, perhaps, more to the value
of studying permutations as a computational exercise rather
than for strictly utilitarian reasons. Yet, the study of
techniques employed to solve this problem is undoubtedly use
ful in discovering techniques for solving more practical
problems.

Permutation routines are subject to a variety of different
ground rules. The object to be permuted may be an array. a
lrst or a string. The array may be an array of integers
{1.2 ••••• n} or an arbitrary array. The permutation may be
lexicographic; in the case of strings this would imply that
the permutations are produced in alphabetic order. In general.
if the Objects to be permuted can be compared relative to each
other ('well-ordered' in mathematical parlance) a lex
icographic order is defined on the permutation. and some
algorithms are constrained to produce the permutations in this
order. Sometines the objects to be permuted contain duplicates
such as the characters of 'MISSISSIPPI' and the permutation
program is required to produce only those permutations which
are truly distinct. These are sometimes known as flpermutations
with repetitions" or, as we will call them, reorderings.
Finally. the permutation wanted may be a purely random one and
the algorithm for doing that is included in the section on
Stochastic strings.

r---------------------------,
I IIII ERMUTATION RECORDS We wil~ speak in this section of
I I I. permuting n+1 objects. This may
I IIII I seen more awkward than speaking of permuting n ob
I I I jects but it will have the advantage of making our
I I I notation simpler. rhe number of permutations of n+1
, • objects is (n+1)! and the reasoning is as follows.
Assume that the objects are selected one at a time in an ar
bitrary sequence to be placed in some permutation. The first
object drawn can be placed in only one way. The second object
drawn can be placed to the left or the right of the first ob
ject; the 3rd object can be placed to the left, between. or to
the right of the previous 2 objects. In general, the ith ob
ject can be placed in any of i different positions and a lit
tle reflection will reveal that each position will lead to a

___ pa~251

a different permutation. Moreover, every permutation can be
obtained by this means. Hence, the total number of permuta
tions can be obtained "by multiplying all these combinations
which yields the result (n~1)!.

This reasoning leads naturally into the idea of a E~!mYtatiQn
~~g which is important computationally, because most al
gorithms depend on some form of this record to record past
history. Let

be a sequence of integers obeying the following inequalities

o S it S 1
o S i2 S 2

o S in S n

For example:

o 2 4 2

is a permutation record for n = 5. A permutation record of
length n can be thought of as representing a permutation of
n+ 1 objects as follows: the first object is placed down". The
second object is placed to the left or right of the first ob
ject depending on whether it is a 0 or a 1. This process is
continued until the (n+1)st object is placed in the position
indicated by in.

For some applications it is convenient to speak of the "Ith
permutation" of n+1 objects where I ranges from 0 to Cn+1) !-1.
The integer I can be related to a permutation record as
follows:

I (12. 1)

Such an I will be called the permutation number of the given
record. The permutation record may be regarded as a represen
tation in the factorial number system of the permutation num
ber (Knuth, Vol.2, 175 and Pager, 1970]. For example, let it
i2 i3 = 1 0 2. Then

I + O(2!) + 2(3!)
+ 0 + 12 = 13

Thus every permutation record yields some permutation number.
But is that number unique, or will two different records lead
to the same number? We will show that not only is there a
unique record for each number but that the record is easily
reconstructed. First, note that 2 divides every term on the
right hand side of (12.1) except the first so that

·.f2~._8 __ _ . ___ Chapter 12 Permutations

i 1 REMDR(I,2)

To determine the remaining n-1 elements of the permutation
record, set II (I - il)/2 so that

II i2 + i3 (3!/2) + ••• + in (n!/2)

In this equation, each term is divisible by 3 except the first
so that

This process of division and remaindering can be repeated un
til all coefficients have been obtained. Hence, given a number
I, the permutation record can be deduced.

r i
I I Program I I PERMUTATION (S,I) will return the Ith
II 12.1 " permutation of the string S where I is a
I' PERMUTATION I I permutation number as defined above. If
I I I is 0 then the permutation is equal to
8 itself. If I ~ N! where N = SIZE(S), then PERMUTATION will
fail. Note that we can obtain all permutations of a given
string in this way provided N!-1 S the maximum integer. On
the IBM 360, with a maximum integer of 2 31 -1, this amounts to
the restriction that NS12. This seems rather severe and Exer
cise 12.11 suggests a remedy. Note that if one were cycling
through each permutation of a set of objects one would be bet
ter advised to use a routine specially designed for that pur
pose (such as PERM, Program 12.2) •

• . ,PERMUTATION (S, I) will return the Ith permutation of the
, string S.

DEFINE ('PERMUTATION (S,I) RADIX,T,S1,N')
: (PERMUTATION_END)

Entry point and top of loop: If I is 0 or drops to 0 as a
result of repeated division, return the value remaining in
8 and the characters already accumulated in PERMUTATION.

PERMUTATION
PERMUTATION EQ(I,O) PERMUTATION S :S(RETURN)

otherwise remove the next character of 8 (calling it T)
and insert it into the position determined by the next
value (N) of the permutation record. If no T could be
found then fail because this means I was too big.

S LEN(1). T : F (FRETURN)
RADIX RADIX + 1
N REMDF(I,RADIX)
PERMUTATION RTAB(N). 81 81 T

________ ~P~r~o~gIam 12.2 - PERM Page 259

I = I / RADIX : (PERMUTATION)
PERMUTATION_END

~:eilogy~

Characters are inserted one at a time into the string
PERMUTATION in a position depending on the value of the per
mutation record. The value indicates a number of characters
from the right because in this way a 0 permutation and only a
o will result in an identity operation.

PERMUTATION is not well suited for arrays (as it stands)
because insertion of an object into an array (while neighbors
are moved apart) is not a natural operation. Instead of in
terpreting each element of the permutation record as an inser
tion point, each value can be regarded as an interchange
distance, as follows. Interchange A<2>'and A(1) according to
the value of it. That is, interchange

A<2> and A<2-i 1 >

Then interchange A(3) with A<3-i 2 >. Continue in this way until
A(n+1> and A<n+1-in> are. interchanged.

Can al'l permutations be obtained in this way? By a bit of
backward reasoning we can conclude that they can. From the
position in the permuted array of the last element of the
original array one can determine the value of in. Hence the
scene as it existed prior to the last interchange can be
reconstructed.' Continuing in this way, the entire permutation
record can be reconstructed. That means that every different
permutation record gives rise to a different permutation. But
there are n+1! permutation records and hence all permutations
must be obtainable.

, i

" Program " Although the function PERMUTATION can yield
" 12.2 'I a particular one of a class of permutations,
I' PERM II it is not particularly well suited for cy
L-- 'cling through all permutations of a given
set of elements. This is because each permutation is generated
freshly. It is more efficient to continually modify the last
permutation to obtain the next. Trotter [1962] produced a
scheme in which only one interchange per call was necessary to
obtain each permutation. His method is basically as follows.
Imagine the objects to be permuted to be arranged from left to
right and numbered from 1 to n. Interchange objects 1 and 2
to produce a new permutation. Then interchange objects 2 and
3, 3 and 4, etc. In this way the object which had been on the
left will swing in daisy chain fashion over to the right. When
it reaches the right side it stops, the n-1 objects to its
left are permuted once and, on subsequent calls, the last ele
ment is daisy-chained back from right to left. When it reaches
the left, the other elements are again permuted and the
process repeats. One needs a permutation record of sorts to

Rsge 260 . ___ Chapter 12 Permutations

record this movement and this is done as follows. It contains
the position of the 1st element among the other (n-l) ele
ments. 12 holds the position of the 2nd element among the
other (n-2) elements, etc. (A separate array can hold ±1 to
denote direction of movement.) This system has the nice
property that most permutations are done by a single test,
increment, and interchange. The programming can be simplified
by the use of recursion (not originally given by Trotter)
without significantly adding to the time (see Exercise 12.12).

PERM (A) uses Trotter's algorithm to cycle through every per
mutation of a singly dimensioned array with lower bound 1. The
first time PERM is called the array is not modified but
initialization is made. The initial value of A is regarded as
the first permutation. on subsequent calls, the argument to
PERM (presumably the same array) is permuted. Finally, when
no more permutations remain, PERM will fail and reset itself
to its initial state awaiting a new array.

r-.--~
,PERM(A) will permute the elements of the array A, failing
I when no more permutations remain. A is assumed to have at
, least 2 elements. L--__ -J

DEFINE (, PERM (A) I, 'PERM_ INIT')

PERM_INIT is the entry point on the first call to PERM.
First obtain the size of A (by converting prototype to in
teger) and retain it for future reference in the global
variable SIZE_A.

+PROTOTYPE(A)

Set up arrays to indicate location and direction of move
ment of elements. Initialize location arrays to 1 because
every element starts in 1st position relative to rema1n1ng
members. Initialize direction array to 1 to indicate
rightward movement. -1 indicates leftward movement.

LOC_ELEMENT
DIR_ELEMENT

= ARRAY ('0: ,
ARRAY (' 0:'

SIZE_A - 2, 1)
SIZE_A - 2, 1)

Redefine the entry point. All outside calls will have one
argument so that I and OFFSET will initially have the
value null. When PERM is called recursively I and OFFSET
are given different values. I represents the item to be
permuted and OFFSET represents the extent to which the
subpermuta~ion of elements I, I + 1, ••• , N - 1 is offset
from the overall permutation.

DEFINE('PERM(A,I,OFFSET)RL,D,LIMIT,AL') : (RETURN)

Steady state entry point: Determine the relative location
(RL) of t.he Ith element in the subarray and the direction
(D) in which it is moving. Also determine the LIMIT of
travel in this direction. If the limit has been reached,

__________ frQ9X~m 12.3 - PE~R~M;S _____ , Page 261

go to PERM_ 1.

PERM RL LOC ELEMENT<I> :F(FRETURN)
D DIR_ELEMENT<I>
LIMIT EQ(D,1) SIZE_A - I
LIMIT EQ (D, -1) 1
EQ(LIMIT, RL) :S(PERM_1)

Determine the absolute location (AL) of the Ith element,
swap elements, update location vector, and return.

AL RL + OFFSET
SWAP(.A<AL>, .A<AL + D»
LOC_ELEMENT<I> RL + D : (RETURN)

Reverse the direction of rr-ovement of the Ith element.
Determine the OFFSET of the subpermutation and attempt to
make the permutation; if success return; otherwise, reset
entry point and fail.

DIR ELEMENT<I> -D
OFFSET = EQ(D,1) OFFSET + 1
PERM (A, I + 1, OFFSET) :S(RETURN)
DEFINE (I PERM (A) I, IPERM_INITI) : (FRETURN)

Names referenced
!?LPERM.;.

Name
SWAP

1Y~
Function

Where defined
program3:1'4

The program is written recursively because this i~ the way the
algorithm is described,' and because the inefficiencies of
recursion will not manifest themselves in substantially slower
programs. A difficulty involved in specifying the function
recursively was that the recursive call is to permute an array
which does,not exist in isolation but only as p.art of a larger
array_ Hence, we must give additional information such as the
OFFSET of the start of the array with respect to the larger
array and I, the level of the item to be moved. The OFFSET
and level have been defined in such a way that the outer call
should be made with these values equal to O. Hence if the user
ignores them which he is instructed to do and passes only one
argument, the array, he will get the correct results.

,
II

" "
Program

12.3
PERMS.

i

II
II , ,

Although PERM can be modified to permute
strings, we here seek an algorithm
specifically intended for use with the
string data type in hopes of obtaining

something simpler if not more efficient. As we recall from
Chapter 3, a permutation can be regarded as a positional
transformation and hence can be programmed to run rapidly via
the REPLACE function. Thus if peS) is a permutation of the

,fgge 2,,;;.6,;2 ___ _ ~C~h~a~p~t~e"r __ .~1~2 ________ Permutation~s~ ________________ __

st~ing 5 and if X is the first n characters from &ALPHABET
where n is the size of 5, then

REPLACE(P(X), x, 5)

will be equal to P(5). The difficulty, it would seem, is that
in order to obtain P(5) we need construct the permutation
first. But this difficulty can be surmounted by the following
consideration. Let

REPLACE(P(X), X, 5)
REPLACE (P (X), X, 5,)
REPLACE(P(X), X, S2)

etc. Each consecutive permutation is obtained by permuting
according to P the last previously obtained permutation. It
is customary to denote the compounding of permutations in this
way by product notation and the repeated application of the
same permutation therefore is denoted by exponential notation
as:

5, P (5)
52 PP(S) = P2(~
53 = p3 (5)

etc. One interesting question is: does there exist a permuta
tion P for which its various powers cycle through all the per
mutations. This question is answered by group theory. The
set of permutations of n objects can be regarded as the ele
ments of a group (of cardinality n!) where the group operation
is the "multiplication" described above. The question becomes,
is the Permutation group of n elements cyclic? The answer is
readily given as no (see, for example, Zassenhaus [1958]),
but we can produce almost as good a result by obtaining a
small set of basic permutations, from which we can produce all
the others.

In what follows we will speak of rota~ing the first k charac
ters of a string one place or simply ~g~in~the first k
character~ to mean the transformation:

5 LEN (1) • C LEN (K -1) • S 1 = s 1 C

In words, the first k characters are picked up, rotated once
to the left and set down again. Thus, rotating the first 3
characters of 'ROTATE' yields 'OTRATE'. Rotating the first k
characters of a string is a positional transformation and can
be done at high speed provided appropriate REPLACE arguments
have been set up in advance. Let R(k) denote the operation of
rotating the first k characters of a string. Then R(n) will
rotate all the characters, and R(1) will do nothing. All per
mutations of a string can be obtained by a suitable combina
tion of R(i) 's as follows.

To produce the first permutation apply R(n). To obtain the·
2nd apply R(n) again. Upon applying R(n) for the nth time, we

____________ Prog~!!L_.1~=~B~ __________ Pag~L£63

will have produced the original string which of course we can
not return. At this point we apply R(n-1) and return the
resulting strjng. On subsequent calls R(n) is applied until
the nth time thereafter at which point R(n-1) is again ap
plied. Upon n-1 repetitions of this sequence of events we will
have returned to the starting point at which time we apply
R(n-2). So the sequence continues until, at last, there emer
ges an attempt to apply F(1). R(1) is a 'no-opt and this is
the signal that all permutations have been produced. A per
mutation record is used to record the number of applications
of each type of rotation.

The idea of obtaining the sequence of permutations by a
suitable number of rotations was suggested by Peck and Schrack
(1962] and suffered from the fact that Trotter's algorithm
(which appeared later) produced a superior result for arrays.
But in the case of strings, rotations can be programmed to be
as efficient as interchanges. Since the computational backdrop
is simpler for the Peck and Schrack algorithm we will use it
to write PERMS. We have come full cycle on this one.

+

PERMS(S) will permute the characters of the string S. S
is assumed to be at least 2 characters long and no greater
than the size of &ALPHABET. The argument S should be the
string which had been returned by PERMS on the last call.
When no more permutations remain, PERMS will fail.

DEFINE ('PERMS (S) T,N,C,K' " PERMS_INIT')

Initialization entry point: N_R<I> will record the number
of applications of R(I). FIRST_OP is an array such that
REPLACE(FIRST_OP<I>, SECOND_OP, S) will be equivalent to
applying R(I) to S.

N SIZE(S)
N_R ARRAY (' 2:' N, 0)
&ALPHABET LEN (N) • SECOND OP : F (ERROR)
FIRST_OP AFRAY('2:' N, SECOND_OP)
K N +
K K - 1
FIRST_OP<K> LEN(1). S1 TAB(K) • S2 S2 S1

:S (PERMS_I 1)
DEFINE (• PERMS (S) I, K')
PERMS S : (RETURN)

Steady state entry pOint: Initialize K to the size of the
string.

PERMS K SIZE(S)
r---,
I Apply R(K); failure implies that K=1 in which case we
, branch to PERMS_' • . ,L-__ ~

~2~ 264

PERMS_1
S

____________ ~C,hapter ,~1=2 ____ ~Permutations

Bump N_R<K>; if this number equals 0 mod K we have come
full cycle; decrement K and repeat. Otherwise return S.

N_R<K> = N_R<K> + 1
K = EQ(REMDR(N_R<K>, K), 0) K - 1 : S (PERMS _ 1)
PERMS S : (RETURN)

If K is 1 no more permutations remain.
PERMS for next set of permutations.

Fail but ready

PERMS_2 DEFINE('PERMS(S)T,N,S1,82','PERMS_INIT')
PERMS_END

r- ,

: (FRETURN)

I' Program I' We define a ~eordering of a string 8 as a
I' 12.4 " permutation which produces a new string. For
" REORDER " example, the string 'AAB' has 6 permutations
L- • but only 3 are distinct (determined by the
position of 'B') and so has only 3 reorderings. Reorderings
are usually more significant than permutations in string
processing where repeated elements are more common than in,
say, arrays of numbers. I

REORDER (S,OS) will produce a reordering of the characters of
the string 8 where OS is an ordered version of the string 8.
REORDER can be used to cycle through every different string
composed of the characters of a given string, starting with
the ordered string 08. It will FAIL when no more strings
remain. Thus, using Program 3.1, ORDER, to order the string 8
we can print every reordering of Sby the statements

LOOP

OS
OUTPUT
OUTPUT

ORDER(S)
= 08

REORDER(OUTPUT, OS) :S (LOOP)

Note that in the above, the previously generated string is
used as the next input.

It so happens that ORDER(S) will place the characters of S in
alphabetic order. It is not necessary to be so strict. In
fact, all that is necessary is that the ordered string contain
like characters in adjacent positions. Thus if the string is
'MISSISSIPPI', then 'SSSSIIIIPPM' will be a suitably ordered
version.

The number of reorderings of a string can be substantially
less than the number of permutations. Let N be the length of
a string shaving n different characters. Let there be kl
instances of the first character, k2 instances of the second,
etc. Then the number of reorderings is

______________ Program 12.4 - REORDER Page 265

N!

kl! k2! ••• k n !

For 'MISSISSIPPI' the number of reorderings is

11!
= 34650

4! 4! 2!

It would take about 48 pages to print all the reorderings of
'MISSISSIPPI'. To print the permutations would require about
50,000 pages.

REORDER (S,OS) is used to produce the next permutation
(with repetitions) of the string S. 08 is an ordered ver
sion of the string S. It is called recursively.

DEFINE('REORDER(S,ORDERED_S)C,FRONT,S1,LAST,D,OS')
: (REORDER_END)

Entry Point: Obtain in C the last character of ORDERED S.
If no such character exists, S must be the null string.
Since this has no reordering, we fail.

REORDER RTAB(1) LEN(1) • C : F (FRETURN)

Then work any character of type C toward the front of s.
First remove the characters of type C (if any) that al
ready are at the front of S.

S (SPAN (C) I NULL) FRONT =
Look for an i~terior C
predecessor, grouping in
tained previously in FRONT.
found, go to REORDER_1.

and interchange it with its
with C all the characters ob

If an interior C cannot be

S AF.B
REORDER

S1 LEN(1) • D C
81 FRONT CDS

: F (REORDER_ 1)
: (RETURN)

If all characters of type C have been worked toward the
front, control flows to REORDER 1. Here we recursively
obtain a new sub-ordering and put all the characters of
type C on the back end.

REORDER_' ORDERED S
REORDEP-

REORDER_END

BREAK (C) • OS
REORDER (S,OS) FRONT :S(RETURN)F(FRETURN)

We normally make concessions to the aim of providing the sim
plest possible calling sequence, feeling that simplicity and
convenience are two of the most desirable qualities that a

____________ ~C~h~a~p.ter 1=2~ __ ~Perrout~ti_o~n~s~ __ . ________ __

program have. strictly speaking r the second argument to
second argument can be
first. But in the in
the second argument is

REORDER is unnecessary inasmuch as the
reconstructed unambiguously from the
terest of avoiding gross inefficiences
made mandatory.

,

" " "
Program

12.5
LPERM

i

" " "
As we have stated earlier, some applications
require permutations to be lexically
ordered. This added restriction complicates
the problem of permuting slightly; several

solutions have been proposed. One by Shen [1963] has been
found (Ord-Smith 1967] to be the "best and fastest" of a num
ber of lexical permutation algorithms. It operates as follows.
Obviously the first permutation is the string in lowest al
phabetical orderr i.e. the one produced by ORDER. The next
permutation is obtained by interchanging the last 2 charac
ters. It is also clear that the last permutation will be the
one in reversed lexical ordering as shown below:

ABCDEF
ABCDFE

FEDCBA

TO obtain the next higher lexical ordering we find the smal
lest sized suffix that can be increased lexically. This is
done by scanning from right to left looking for a character
smaller than the previous character. This we call the pivotal
£hs~~. All characters to its left must remain unchanged.
The character moved in (from the right) to take the place of
the pivotal character must be the next higher character to the
right of the pivotal character. This is called the xeplacement
£haracter. All other characters in the suffix must be placed
into the lowest lexical state. This is most easily done by
interchanging the pivotal character with its replacement and
reversing all characters other than the replacement. An exam
ple of this operation is shown in Figure 12.1.

LPERM(S) will return the reordering of S next higher in lex
ical order. It uses the Shen algorithm modified for SNOBOL4.
If no lexically greater permutation exists for S, LPERM will
fail. to obtain all reorderings of a string the previously
returned string must be passed as argument; the initial argu
ment must equal ORDERCS).

,t LPERM(S) returns the next reordering in lexicographic
I order of the string S.

DEFINEC'LPERM(S)P,T,XrR,Y,HIGHS')

__ -=-P.:r,09.l:g!!L.1b.L - LPERtL _______ _

B

B

pivot ,
c F

replacement ,
E D A

interchange

D F E C A

<------------
reverse

------------>
D A C E F

FigurUl..:..1

Page 267

An example illustrating the method used by LPERM
to obtain the next permutation in lexical order.

Find the alphabetically highest character.

&ALPHABET RTAB(1) LEN(1). HIGH_CHAR
: (LPERM_END)

Entry point: Reverse the string to make scanning from the
back end easier. Also place dummy character onto end so
that unevaluated expressions work. L---__ ~

LPERM s REVERSE (f:) HIGH_ CHAR

Look for pivot character (P). If none can be found the
argument was in its highest lexical state. We therefore
fail.

S LEN (1) $ T LEN (1) $ P *LGT (T,P) : F (FRETURN)

Search &ALPHABET for ~he set of all characters > P. Call
them HIGHS. Then search S for the replacement character
(R) • L--__ ~

+

&ALPHABET BREAK(P) LEN(1)
S BREAK (HIGHS) • X LEN(1)

REVERSE(X P Y) R

REM • HIGHS
• R BREAK (P) • Y LEN(1)

Reverse the entire string back, remove the dummy character
and return.

Eage 268 ______ ~CbSEter 1_2 ____ ~P_ermu~ations

LPERM
LPERM

LPERM_END

REVERSE (S)
HIGH_CHAR : (RETURN)

Names referenced
12LLPERM:

];~iloque

Name
REVERSE

!n!~
Function

Where defined
Program 3.6

The most single interesting part of LPERM, from the implemen
tation point of view is the search for the pivot element. Here
a search is made for 2 consecutive characters such that the
first is lexically greater than tfie second. This is done using
dynamic assignment (the binary $ operator) and an unevaluated
expression (*LGT(,». To make this work under the normal
quick-scan mode, a character had to be appended to S. This is
because the scanner assumes that *LGT will match at least one
character (which it does not) and would prematurely fail
without testing if no more characters remained. The character
appended (viz. HIGH_CHAR) was chosen in such a way that the
algorithm will work whether or not the one-character assump
tion is made.

r- i

" Program " A ~rmutation vector is a sequence i, i2 •••
" 12.6 I' in containing one each of the numbers
I , IP , I {1 ,2, ••• ,n}. If P is a permutation vector

(in the form of an array) then AI(A,P),
where AI is Prog. 4.6, will return an array in which the ele
ments of A have been permuted according to P. That is, the
element in position P<i> will be moved to position i. Let

B AI (A,P)

If P is a permutation vector there must be another permutation
vector Q such that A = AI(B,~. Q is called the inverse of P.
One description of Q is as follows

Q<j> = k if and only if P<k> = j
This suggests that Q can be created as follows

Q
SEQ ('

COPY(P)
Q<P<K» = K', .K)

(SEQ is defined in Prog. 4.3). For very large arrays we may
find that it is necessary, or at least highly desirable, to
invert the permutation vector in place and thus avoid the
creation of addi tional stora"ge. One way to do this is to
recognize that every permutation consists of a sequence of cy
cles. Thus, the permutation vector (5,3,1,6,2,4,1) will have
cycles as indicated in Figure 12.2.

Program 12.6 - IP

i i , "I 1 i I , i

I , , , , , , , , ,
<1> <2> <3> <4> <5> <6> <7>

,.--, ,.--, ,.--, ,----, ,.--, ,----, r----'1 , 5 , , 3 I I 1 I I 6 , I 2 , I 4 I , 7 ,
L----J L----J L----J '----' '----' L---J L----J

... ... A-
I

Figur.~L.1bl

Figure 12.2 is drawn by directing an arrow from box i to box
p<i>. For example P<1> is 5 so that an arrow is drawn from
the first box to the fifth. A permutation vector has the
property that each box will have exactly one such arrow direc
ted in and one directed out. From this it follows that each
arrow will form part of a closed loop and that the entire
graph is a collection of non-intersecting closed loops. Thus,
permutations can be completely characterized by their loops.
The vector of Figure 12.2, for example, can be described as:

(5,2,3, 1) (6,4) (7)

The inverse permutation can be obtained by reversing all ar
rows. This is most conveniently done by reversing all the
arrows in a given loop much in the manner used to reverse a
list (REVL, Prog. 5.3). when elements in a given loop are
reversed they are made negative to indicate their reversal.

IP(P) will invert a permutation vector contained in the
array P. No additional storage is consumed.

DEFINE('IP(P)M,PM,K,PK,PPK')

Entry point and outer loop: Bump M by 1 looking for a non
negative value in P<M>. Such a value indicates the start
of a cycle. Array elements already inverted are denoted
by negative values. When M runs out, we are done.

IP M
IP
P<M>

M + 1
..... P<M> P

= LT(P<M>,O) -P<M>
:S (RETURN)
: S (IP)

If PM M then we have a trivial cycle. Go back. Other
wise, we let K sequence through the cycle starting at M. L-__ ~

EQ(P<M>,M) :S (IP)
K M PK P<M>

Page 270 Chapter 12 P§rmutations

Go through loop setting P<P<K» = -K. Care must be taken
to save the value of P(P(K» before it is overwritten. The
loop terminates when we arrive back at M.

IP_END

Epilogue

PPI< = P(PK)
P(PI<) = -I<
I< = PK
PK = PPI<
EQ (PK,M)
P(PK) = K

: F (IP _LOOP)
: (IP)

IP has been adapted for SNOBOL4 from an algorithm by Medlock
[1965] and Boonstra (1965]. See also Knuth [Vol. 1, 175] for
another inverse permutation algorithm.

??11??11???1????????????
??????1?????????????????? EXERCISES ????1?????1???????11?1??
????????????????1??????1?????1??????????1??????11??????1????1?

i •
, Exercise 12.1 , L-______________ ~

mutation records).

Exercise 12.2

(c) 13, (d) 26.

i

Give the permutation numbers for the
records below (provided they are valid per-

a) (0 1 2 1)
b) (1 2 1 0)
c) (0 1 2 3)
d) (1 3 2 4)
e) (0 0 0 1)

Compute the permutation record of the fol
lowing permutation numbers: (a) 6, (b) 3,

I Exercise 12.3 Write a SNOBOL4 program to convert a per-
mutation record in V to a permutation num-

ber I. Assume the record is a string containing numbers
separated by commas as in '1,2,1,3,'.

, i

, Exercise 12.4 I Define the sum of 2 permutation records as
the permutation record of the sum of the

associated permutation numbers. write a SNOBOL4 program to
determine the sum of 2 such records. Assume the records are
in the form indicated by the previous exercise.

________________ E=x==e~r=c~i=s~es for chapt~r 12 , ___ -::.P.:a~71

Exercise 12.5

Exercise 12.6

Prove that the permutation
(1,2,3, ••• ,n-1) is n!-1.

number of

The permutation number can alternatively be
defined as

I = it (nt/U) + i z (nl/2!) + ••• + in(n!/n!)

Devise an algorithm to extract the record given I. ,

r- i

I Exercise 12.7 I On the first time through the loop of
PERMUTATION what will be the values as

signed to RADIX, N, S1 and 11

r- i

I Exercise 12.8, What is the associated permutation record
~--------------~ of I and what value is returned by
PERMUTATION('ABC', I) as I ranges from 0 through 51

Exercise 12.9

Exercise 12.10

Let S be a string of 6 characters. Obtain
the reverse of S by a call to PERMUTATION.

Rewrite PERMUTATION to operate on arrays.

Exercise 12.11 In the call to PERMUTATION, one may escape
the problem of limited arithmetic preci

sion by denoting the permutation number as one long string as
in

PERMUTATION(S, '32564117246785')

Assuming that the length of a string is no greater than the
largest integer what statements within PERMUATION would have
to pe modified to permit these extended integers? modify them!

i i
I Exercise 12.12, Let C(n) be the average number of calls to
I , PERM (both external and internal) per per
mutation of an array of n elements. For example, if PERM were
non-recursive, C(n) would be 1.

(a) write an expression for C(n) in terms of C(n-1).

(b) Assuming that C(1) = 1, use a) to compute C(2), C(3) and
C (4) •

(c) Prove that if C(n) < C(n-1) then C(n+1) < C(n).

Page 2"12 Chapter 12 Permu5:ations

(d) On .the basis of (a), (b) and (c) what value does C (n) ap
proach as n approaches infinity?

(e) What conclusions can you draw with respect to the use of
recursion to program PERM.

Exercise 12.13 PERM can be extended to handle the special
case of arrays of length 1 by the inser

tion of a single instruction. What is the instruction and
where should it be placed?

r-----------------~
, Exercise 12.14 what error in PERM will arise if its argu

ment is an array with only one element?

Exercise 12.15 PERM may be modified to permute a global
string (say G_S) rather than an array by

changing only two statements (in addition to perhaps adding
temporary variables). What are they and suggest modifications.

Exercise 12.16 Modify PERMS so that if it is called with
the null string it will be reset.

Exercise 12.17 In using PERMS to permute the string
'LEMON', let us denote 'LEMON' itself as

the Oth permutation. The next value returned is called the
first permutation, etc. What number permutation is (a) 'MELON'
and (b) 'EMLON'?

r-
I Exercise 12.18
L-----__________ ~

'LEMON' to 'MELON'.

r- -,

Give the smallest sequence of k-rotations
(denoted R(k» to permute the characters

I Exercise 12.19 I How can REORDER be modified so that it re
~--------------~, quires only one argument. Assume that the
first string given is in alphabetic order (as returned from
the ORDER function).

, ,
, Exercise 12.20, write a function REORDERING (S,I) which
L-- will return the Ith reordering of the
string S. That is REORDERING(S,O) will return ORDER(S), etc.
Pattern the function after PERMUTATION(S,I). Do not merely
call REORDER I times as this would be grossly inefficient.
Hint: the number of ways of interspersing K identical charac
ters into the n+1 positions of a string of length n is given
by the binomial coefficient:

. ______ . ____ -=Exercises for chapter 12 Page 273

r-----------------

n+k
C

k

(n+k) 1
=

nl kl

, Exercise 12.21 will the function LPERM (Prog. 12.5)
produce all permutations or all

reorderings of a string with repeated characters? Why?

Exercise 12.22 Permutation vectors may be regarded as
elements of a group under what operation?

Exercise 12.23 Let I be the identity permuation of n ele-
ments. That is I = {1, 2, ••• ,n}. Let P

be an arbitrary permutation vector and Q be its inverse. What
is the value of (a) AI(P,I), (b) AI(I,P), (c) IP(I), and (d)
AI(P,Q)?

CHAPTER THIRTEEN

..----,
I r-1'
" II " " ,L..J ,

~

BSORT

HSORT

LSORT

MSORT

..----, 'r-1 ,
I L..J I
1"--'

"" u u

r----1

'--, r--'

" II

" u

CONl'ENTS

...•.•.•..........

..................

..................

..................

n n
'I" I
II'"
II 'I
II II
u u

13.1

13.2

13.3

13.4

FRSORT ••••••••••••••••• 13.5

TSORT

SSORT

13.6

13.7

INSERT ••••••••••••••••• 13.8

LINEARIZE •••••••••••••• 13.9

INSERTB 13.10

__ Chapter .1L - SOR.:.T.:I.:.:N~G:.-. ___ _

.---,
Ir--J orting on a digital computer covers a wealth of ap
I~ plications, can involve a variety of data structures
L-o I and devices, and has been met with a host of tech
,---J I niques. Sorting has been widely used in business
~J applications where payrolls, accounts, inventories and
lists of all kinds must be sorted by name, number, address,
etc. But, in addition, many other data processing applications
find a need for sorting. Examples include comfiler writing
where symbols are sorted in alphabetic order, in computational
linguistics where dictionaries, indexes and ccncordances are
prepared, and in systems programming where libraries are al
phabetized for rafid searching. When the items to be sorted
can fit entirely in core storage, the process is called
!nternal--2Qrtinq. When secondary storage is required, it is
called external sortinq. This chapter is concerned with in
ternal sorting methods only. External sorting is generally
only done when the amount of data to be sorted is large. Under
these circumstances, SNOEOLq is not the ideal language for ef
ficiency reasons.

~he aggregate of things to be sorted internally may be an
array, a list, a string, a tree or a table. The ordering may
be on the basis of numerical value, lexicographic value or
number of occurrences and the ordering may be forward or
reverse. A routine may be required to actually sort an array
or merely return an array of indices that could then be ap
plied to one or more arrays. For these reasons and others to
follow there is no one universal sort routine. Rather, each
situation tends to be special and tends to require a sort
tailored for the application.

~he distribution of the input items may not be very uniform.
There may, in fact, be strong correlations present in the to
te-sorted aggregate which, if taken into account, could im
frove the sorting time. Not all algorithms are equally adept
at taking advantage of an almost-ordered input array. With
some algorithms, almost-ordered data can actually adversely
affect sorting time.

Another factor associated with the distribution which can in
fluence the choice of sorting algorithm is the degree to which
there is repetition in the data to be sorted. For example, in
the preparation of a book index or a word concordance, the
number of repeated items is high. ~here are sorting techniques
~hich work quite well in such circumstances and their use can
reduce sorting times substantially for this kind of problem.

~he sorting situation is somewhat infl~enced by the nature and
amount of so-called passiv~ information which must undergo the
same permutation as the input array, but which does not par
ticipate in the determination of the new order. For example,
if we are sorting the fayroll by location we presumably want
to bring along with the location other passive information
such as name, payroll number, salary, etc. Such ancillary in
formation may take many forms. The passive information may

Pag~ 276 ____________ Ch~a~p.ter 13 SORT;IN~G~ ____________ __

appear in a separate array. Or the active informatioq may be
embedded in the passive information as for example when card
image strings are to be sorted on the basis of certain
columns. Or the passive and active information may appear as
fields of programmer-defined data objects. The way in which a
sorting method handles equal items may be crucial in certain
applications where passive information is present.

The reason that sorting is done at all is usually to
facilitate later lookup by either man or machine. Imagine the
difficulty one would have if all the names in the telephone
book were scrambled chaotically. To search the telephone book
for an entry we would have to make what is called a linear
search comparing each name one after the other until the
desired entry was found. The time requir.ed would be, on the
average, the time to make .n/2 comparisons, where n is the num
ber of items in the book. On the other hand, if the book is
alphabetized we can do a so-called binary search. We can look
at the middle item and decide whether the desired name occurs
after or befo~e this middle item. Regardless of the outcome
of this initial test, we can again probe the middle element in
the segment known to contain the name and, in such a way, nar
row the search by half at each comparison. The number of com
parisons in this latter case is log2n. When n is large the
difference between log2n and n/2 is truly impressive. For n
equal to 10000, log2n is only 13 whereas n/2 is 5000.

An appreciation of the difference between a quantity which
grows linearly (such as n/2) and a quantity which grows
logarithmically is needed to understand the significance of
some sorting methods and some formulas expressing their com
putational requirements. To further underscore the distinction
between linear and logarithmic growth, the latter quantity
grows only as fast as the number of digits needed to express
the former. Thus log2n not merely grows more slowly than n
but becomes extremely sluggish as n grow's large.

As we have outlined here, there is a rich variety in the kinds
of sorts that one might be called upon to make. We will not
try to give a complete and exhaustive $et of programs which
could handle every conceivable situation. We will, rather,
present a few general methods, and give a few specific exam
ples and hope that either these, or suitable modifications of
them, will serve any given sorting need.

More complete sources of information on sorting are available.
Flores [1969] and Knuth (Vol. 3] have written books on the
subject. An entire CACM issue has been devoted to sorting
[Sorting Issue, 1963]. An excellent early summary of sorting
techniques is given by Friend (1956]. A recent bibliography
is given in Lorin [1971].

Sorting methods generally subdivide into two categores, inter
nal and external. The internal sorts are subdivided again into
two categories, comparison sorts and distributive sorts.
Generally speaking, comparison sorts sort on the basis of

COMPARISON SORTS Page 277

pairwise comparisons between elements. Distributive sorts are
anything else.

IIII
I
I
I .'.1

OMPARISON SORTS A comparison sort works by succes
sively comparing pairs of items to

be sorted. The values of the items are irrelevant
other than as to how they compare with each other.
Thus, a comparison sort will operate in precisely
the same way if one is sorting strings or numerical

values. Indeed, a comparison sort can be used effectively to
sort data objects of any kind provided an operation can be
written which compares the two items.

Before considering the various methods of sorting it will be
well to obtain some idea of the basic computational neces
sities involved in a comparison sort. If we assume that every
permutation of the input array is equally likely, then we can
use an information-theory argument to determine a lower bound
on the average number of comparisons needed. There are n! ways
of permuting n objects. Therefore the input array (of length
n) can be thought of as encoding a message containing log2n!
bits. Since one comparison yields one bit of information and
since in order to sort we need complete information concerning
the permutation, we may loosely conclude that at least 10Q2n!
comparisons are needed on the average. Using stirling's ap
proximation formula [Knuth, VOI.1, p.46] we obtain

.5
(appr.) = 10g2(2 PI

n+.5 -n
n e)

1.33 + n log2n + .5 log2n - 1.43 n

(appr.) n (log2n - 1.43)

Moreover, for large. n (say n > 1000)

log2n! (appr.)

The information theory argument may be made rigorous by the
following line of reasoning. Suppose we wanted to communicate
to a distant location the contents of a permutation vector P.
If F has n elements and if all permutations are equally likely
then this will require log2n! bits (on the average). That this
is true is intuitively plausible. For a more general and
rigorous treatment of the subject consult any textbook on in
formation theory. For example, see Reza (1961], p.148. This
granted, assume that we have a comparison sorting algorithm
(Algorithm S) which uses a predicate COMPARE (X,Y) to obtain
information about the array it is sorting. But no other in
formation about the value of the elements of the array are
available to S. If we allow Algorithm S to sort P it will
transform P into I, the identity permutation vector 1,2, ••• ,n.
Now at a distant location set up Algorithm S to sort the ele
ments of I using the comparison bits tapped from the sorting
of P. This setup is shown in Figure 13.1. The result of this

~ge 278 Chapter 13 ______ S~O_R=T,_I=N=G ______________ __

is that I is transformed into the inverse of P so that we have
effectively transmitted, P: since the information transmitted
must be at least log 2 n! bits on the average we know that we
must have at least 10g 2 n! comparisons on the average.

Communication
i Link i

1 ,
,.---, 1 ..--, I
I I I I I I
I '-I X , I-I X , 1-1-, i I A I '-1-, i i : l-
I P I. I L-1 I t I I , . I L-I I : 1
I I. I I COMPARE 1-+. I ,1 • I I COMPARE I L-f , I. '-I I I I , . I-I I
I '-I y , , 'Y I I-I y , ,
'----J 1 '----J I

I Algorithm S I Algorithm S , I
I I

An information theoretic argument for showing that
sorting requires log 2n! comparisons.

,
'Y

It is important to understand what the formula says. It does
not say that we must necessarily make this many comparisons in
any given instance. We must, rather, make this many com
parisons on the average if the permutations are equally
likely. From this observation we can deduce that if the number
of comparisons which are to be made is independent of the
distribution and only dependent on n (the number of items)
then the method must make ~_least 10g2 n! comparisons if it
is to work for all possible distributions.

There are four principal kinds of comparison sorts:

Interchange
Merging
Selection
Insertion

_________________ Program 13.1 - BSORT Page 279

I NTERCHANGE SORTING Given an array, the elements of the
• array can be pair-wise interchanged
I until the elements are sorted. This has the advantage
I that no additional storage need be allocated. Moreover
I no other sort type has this property. But every inter-
~ change sort has some flaw which makes it unacceptable
for some applications.

•
" " 11

Prograro
13. 1
BSORT

i

" " II

The simplest kind of interchange sort which
is of any interest is the so-called bubble
sort. In the bubble sort the first and
second items are compared; if they are out

of order they are interchanged. This sorts the first 2 items.
To sort the first K items assuming the first K-1 items are
sorted we 'bubble' the Kth item down through the sorted list
of R-1 ,items searching for its correct insertion point. This
takes an average of approx. K/2 comparisons to insert the Kth
item and approximately N(N/4) comparisons to sort N items.
This is really too many, yet the popularity of the bubble sort
persists. This is due to several factors. The bubble sort is
easy to program and understand. Also for small N the figure
N(N/4) is not much greater than N 10g2 N. Hence the the bubble
sort is reasonably fast for N = 25 or so. But as the number
of items increases the bubble sort departs severely from the
ideal. At N = 100, the bubble sort requires 4 times as many
comparisons. For N = 1000 the ratio is 25.

Sorting routines, like the bubble sort, whose comparisons are
dominated by the factor N2 are called quadratic. Sorting al
gorithms which obey an N log2N law or differ by a propor
tionality constant are called logarithmic. Though inefficient
for large N, a quadratic sort can be more efficient than a
logarithmic sort for small values of N (less than 10 or so).
For this reason a logarithmic sort may use a quadratic sort as

, a utility routine for the purpose of handling small arrays.

For medium values of N the bubble sort can save time if the
array is almost sorted to begin with. The bubble sort, more
than most, takes advantage of any pre-existing order in the
array.

BSORT(A,I,N) will sort (via a Bubble sort) in ascending
lexical order the strings in the subarray A<I>, A<I + 1>,
••• , A<N>. CAUTION: Bubble sorts may be time consuming
for large arrays.

DEFINE('BSORT(A,I,N)J,K,V')

Entry point: J will hold the index of the item to be
'bubbled.

BSORT J I

.f.S~ 280 ___ Ch~a=p_t_e~r __ 1~3 _____ S0RT~I~N~G ______ . ____ __

r---
I outer loop: Loop on J. V is the value of the bubble.

BSOR'I_1 J
K =
V =

J + 1
J
A<J>

LT(J,N) :F(RETURN)

Inner loop: Loop on K. We bubble down into the lower
portion of the array looking for a place to insert V.

K = K - 1
A(K + 1> =
A<K + 1> =

GT (K,I)
U;T (A<K>, V)
V

A(K>
:F(BSORT_RO)
: S (BSORT_2)
: (BSORT_1)

On runout, plunk bubble into bottom and go back to outer
loop.

BSORT RO A(I>
BSORT:END

r-·---------"
, I Program I I
" 13.2 "
" HSORT I'

V : (BSORT_ 1)

An interchange sort which is logarithmic
ratqer than quadratic is one introduced by
Hoare [1961] and improved by Hoare [1962]
and Scowen [1965]. It is frequently called

QUICKSORT. The basic idea is to interchange the elements of
the array until they are partitioned into two groups, A and B,
such that

(i) Each element in group A lies lower (i.e. has lower index)
than every element in group B.

(ii) Every element in group A S every element in group B.

Note that A and B need not be equal in siz~. If groups A and
B are then sorted separately the entire ar~ay will be sorted.
The sort routine therefore consists of partitioning the array
followed by two recursive calls to sort the partitions.

One method of pa·rtitioning is to pick the middle element and
use this as a criterion to separate the lows from the highs.
The elements of lOWer index are examined one by one for an
element that is ~ th~s criterion. The elements of higher index
are searched from the top down to determine if any are S this
criterion. When found the elements are interchanged and the
search goes on. Eventually the two pointers cross at which
point the partitioning is completed.

For each partition there are approximately n comparisons where
n is the size of the array to be partitioned. Hence the number
of comparisons is n times the average depth of the recursion.
Ideally this is log2n. Hence, ideally the number of com
parisons approaches n log2n. But this ideal is reached only
if the criterion is always chosen so that it partitions the
array in half. For randomly chosen criterion the figure for
the number of comparisons is approximately 1.4 n log2n [Hoare

Progrsm 13.2 - HSORT Page 281

1962]. This factor of 1.4 also shows up in the analysis of
one of the insertion sorts. (See Exercise 13.13).

HSORT is not particularly fast for arrays with a small number
of items. Ideally, when the array is small, BSORT should be
called. This is explored in an exercise.

The algorithm given here differs somewhat from Hoare [1961]
and is such as to reduce the size of the program at the ex
pense of a small increase in running time.

HSORT(A,I,N) will sort the strings in array A<I>, A<I +
1>, ••• , A<N> in ascending sequence. HSORT calls itself
recursively.

DEFINE('HSORT(A,I,N)J,K,CRITERION')

Entry point: If more than 2 items remain skip. If only 1
item is to be sorted, just return.

HSORT GT(N - I, 1)
GE (I, N)

: S (HSORT_LARGE)
: S (RETURN)

(LGT(A<I>, A<N» SWAP(.A<I>, .A<N») : (RETURN)

Obtain CRITERION to be used for partioning array into 2
groups.

HSORT_LARGE
CRITERION A< (I + N) / 2>

r---,
I J will move through the array from the bottom looking for
, an element ~ CRITERION. K will move through the array from
, the top looking for an element S CRITERION.

J I -
K = N +

HSORT_UP J J +
,LGT(CRITERION, A<J»

HSORT_DOWN K K - 1
,LGT (A<K>, CR ITERION)

:F(HSORT_UP)

: F (HSORT_DOWN)

If J is still < K, interchange and go back.

(LT(J,K) SWAP(.A<J>, .A<K») : S (HSORT_ UP)
r---,

otherwise, we are done partitioning the elements. K will
serve as a convenient dividing line. sorting will be ac
complished by sorting the 2 subarrays. Might as well use
ESORT to do this.

HSORT (A, I, K)
HSORT (A, K + 1, N) : (RETURN)

Page 282

Names referenced
~Y_H.2QBT:

~piloque

Chapter 13

~~
SWAP

SORTING

~
Function

Where defined
Program 3.14

A difficulty with the Hoare sort is the possibility that equal
items will not retain their relative order. In the subroutine
given, this makes no diffe~ence since such an inversion will
be undetectable by the user. But in sorting structures, for
example, this property could prove to be a critical defect.

I I ERGING Merg~ng is not strictly a sorting technique.
II II ~.----~ It ~s a technique whereby two sorted ag
e I I I gregates can be combined into one sorted aggregate
I I I by the simple process of selecting and incrementing
I I, the aggregate showing the current least value. But,

merging may be converted into a sorting technique
in the following way. Let the final sorted aggregate of length
n be the result of merging two sorted aggregates of length
n/2. Let each of these be the result of merging two aggregates
of length n/4, etc. Ultimately we reach a pOint at which the
aggregates have length 1 and can be regarded as being sorted.
The merged sort is quite efficient and approaches the
theoretical lower limit on the number of comparisons needed.

. ,
" Program I I The aggregate merged in the merge sort can 'I 13.3 I' be any collection of information accessible 'I LSORT I' in serial fashion and hence it is a favorite
, , way of sorting such serial aggregates as
files and lists. LSORT will sort a linked-list in ascending
sequence according to the value contained in the VALUE field.
If HEAD is the head of the linked list then LSORT(HEAD) will
sort the list and return the new head. LSORT does not allocate
new storage; it just rearranges pointers.

LSORT will sort a linked list L using a merge sort. The
caller may specify the name of the value field, the next
field and the predicate. Default names are VALUE, NEXT
and LGT.

DEFINE{'LSORT(L,VFLD,NFLD,PRED)L1,L2,PTR')

LSORT uses the auxiliary function LSORTA which is called
recursively.

DEFINE ('LSORTA(N) I')

Entry point for LSORT: Give default names. Then make the
fields used in the program synonomous with these.

____________ Progrsm 13.3 - LSORT ______ . __ ~~ 283

LSORT VFLD = IDENT(VFLD)
NFLD = IDENT(NFLD)
PRED IDENT(PRED)
OPSYN ('VFLD', VFLD)
OPSYN ('NFLD', NFLD)
OPSYN (, PRED ',. PRED)

'VALUE'
'NEXT'
'LGT'

Calling LSORTA with an argument of 0 will sort the entire
list.

LSORT LSORTA(O) : (RETURN)

r--, Entry pOint for LSORTA: LSORTA(m where N is a power of 2
, will return a sorted list comprised of the first N links
,of the list L (or all of the list if fewer than N links
,remain). The variable L is treated as global and is al
I tered. If N is 0 the entire list will be sorted and
, returned. ,
LSORTA IDENT(L) : S (FRETURN)

Remove exactly one link from the head of the list. If N =
1, then we return immediately.

LSORTA = L
L = NFLD(L)
NFLD(1.S0RTA) =
I = 1
EO (N, I) : S (RETURN)

otherwise our list is not sufficiently long. Let us obtain
another list of length I and merge the two. If L is null,
we are done.

L2 = LSORTA (I) :F (RETURN)
L1 LSORTA

Merging begins here. PTR will point to the receptacle
which will receive the next item. Flow goes to LSORT_L1
if the next item is to come from list L1i otherwise, flow
falls through.

LSORT_C
PTR = .LSORTA
PRED(VFLD(L1),VFLD(L2»

Choose L2; update PTR and L2i loop unless runnout in
which case the entire 1.1 list is appended.

$PTR L2
PTR = .NFLD(L2)
L2 = NFLD (L2)
IDENT (L2)
$PTR L1

: F (LSORT_C)
: (LSORT_DONE)

r-'--, Choose L1; similar comments as above apply. ,

Pa~.~8..:.4 __ _ SORTING

$PTR L1
PTR • NFLD (L 1)
L1 NFLD (L 1)
IDENT(L1) :F(LSORT_C)
$PTR L2

Our list (beginning at LSORTA) is now twice as long as it
was. Record this in I and loop back to see if this
suffices.

LSOR'I'_DONE
LSORT_END

I

i i

I * 2 : (LSORT_ 1)

I I Program " The function MSORT is a sort based on the
II 13.4 II merging principle. A call to MSORT requires
I I MSORT I , only one argument, the array of strings to
L- be sorted. It assumes the array has a lower
bound of 1 and obtains the upper bound by a call to the
prototype function.

MSORT(A) will not sort the array A but will return an array of
integers (i.e. a permutation vector) which can then be applied
to the array A and any passive array by using AI (Prog. 4.6).
Thus if A is an array of names and ~f B is an array of (as-
sociated) salaries then '

I
A =
B

MSORT(A)
AI (A, I)
AI (B, I)

will sort A and B according to alphabetic order of A. MSORT
will sort numerical items if a second argument denoting the
comparison predicate is given. Thus

I = MSORT(B, 'GT')
B Al(E,I)
A = AI (A, I)

will sort the two lists by salary (in increasing order). More
exactly, an element X in the array B which appears before an
element y will be placed after this element if and only if the
predicate GT(X,y) holds.

The coding of MSORT is based on the sorting algorithm designed
for APL as described by Woodrum [1969]. He defines the notion
of a chain of subscripts as follows. Let P be an array of in
tegers. Then, for any integer K we have the sequence of
integers (called a chain)

K, P(K>, P(P(K», •••

We will assume the sequence terminates by the appearance of a
o subscript which will cause failure in the reference. In the
cited paper, the sequence terminates by two consecutive equal

__________ -frogram 1.h,!L~RT. ___ . __ ...; ______ .::.P..;;;a~_285

subscripts. Such a sequence of integers can represent a list
of elements of the array A as

A<K>, A<P<K», A<P<P<K»>,

Whereas it seems to be always necessary to allocate fresh
storage in order to do a merge sort, the method of chaining
permits us to merge without allocating any more storage than
needed to contain the permutation vector. The behavior of
MSORT is such as to form increasingly longer chains represen
ting sorted lists of elements of A.

MSORT(A,OP) uses a merge sort to return an array
dices which can then be used to sort the array A.
the operation to be used to indicate ordering.

DEFINE('MSORT(A,OP)U,P,I,K,SAVE,AI,AJ')

of in
OP is

CHAIN is an auxiliary function called by MSORT to chain
the indices in the global array P<L>, ••• , P<U>. It
returns the top of the chain. It calls itself recursively.

DEFINE('CHAIN(L,U)I,J,MIDDLE,K')
: (MSORT_END)

CHAIN entry point: If the number of items to be sorted is
1, just return the index.

CHAIN CHAIN EQ(L, U) L :S (RETURN)

otherwise split the array into 2 parts, and chain each
part separately.

MIDDLE = (L + U) / 2
I CHAIN(L, MIDDLE)
J CHAIN(MIDDLE + 1,U)

Now merge the 2 chains. The value to be returned will be
either I or J depending upon which should come first. This
is determined by the function CHAINOP which must be
defined by the caller.

CHAIN
AI =
AJ
CHAIN

I
A<I>
A<J>

CHAINOP(A<I>,A<J» J

K will point to the last element in the chain being built.
Then branch to increment one or the other of the 2
indices.

K CHAIN
EQ (K, I)

Page 286 Chapte~r~1~3 ____ -=S~O~R=T=I~N~G __ _

Come here to make all subsequent comparisons.

CHAIN_COMP CHAINOP(AI,AJ)
,
, The I-chain has won; Place I on the chain and update the
, last-element pOinter. ,

P(K) = I
K = I

Obtain next element from I chain and go back for a com
parison; if no more elements are left, fall through,
concatenate the remainder of the J chain and return.

I =
AI =
P(K)

P<I)
A(I)

= J
: S (CHAIN_COMP)
: (RETURN)

The following code is analogous to the code above; J and I
have been interchanged.

P(K)
K =
J
AJ =
P<K)

= J
J
P(J)

A(J>
I

: S (CHAIN_ COMP)
: (RETURN)

Entry point for MSORT: Obtain comparison expression. Then
allocate a p"ermutation vector (P) and form a chain.

MSORT OP = I DENT (OP) 'LGT'
OPSYN (' CHAINOP' ,OP)
U = + PROTOTYPE (A)
P = ARRAY(U)
I = CHAIN (1,U)

convert chain ty replacing in P(I) the value K where
A(P(I» is the Kth element of the sort.

MSORT_1 K =
SAVE
P(I)
I =

K + 1
= P(I)

K
SAVE

:F (MSORT_2)

: (MSORT_1)

We now have the inverse of a permutation vector.
it and return it.

Invert

MSOR'I';...2

MSORT_END

IP(P)
MSORT

Names referenced
~MSORT: --

P

!YE~
Function

: (RETURN)

Where defined
Program 12':-6

___________ -=S=E=LECTION SORTIN=G~ __

Merge sorting is quite fast. It not merely betters the figure
of n 10g 2 n comparisons (but of course not less than 10g2 n!)
but will take advantage of any pre-ordering that exists in the
data. Its popularity for sorting arrays has been inhibited by
the necessity of allocating additional storage.

• , ,
" "

Program
13.5

FRSOFT

,

" " "
A frequency sort on a string will return a
string where the characters have been sorted
on the basis of the number of occurrences in
the string. Each character will appear at

most once in the returned string. For example,
FRSOPT ('MISSISSIPPI ') will return 'ISPM'.

This is an example of a sorting application which makes use of
a passive array of information (the characters) while sorting
on an array of numbers. It also serves to demonstrate the use
of MSORT.

FRSOR~(S) will do a frequency sort on the characters of
the string S. The most frequent character will appear
first in the string returned.

DEFINE('FRSORT(S)SC,C,N,I')

Entry point: Obtain in the array C the set of characters
of which S is composed. Then allocate an array N to hold
the number of occurrences in S of the corresponding
characters of C.

FRSORT C =
N
SEQ('

CRACK (SKIM (S))
ARRAY(PROTOTYPE(C»

N<I> = COUNT (S,C<I» , , .I)

Sort the indices of N and apply these indices to the array
C. Then convert the array to a string.

FRSORT = STRINGOUT(AI(C,MSORT(N,'LT'»)
FRSORT_END

Names referenced
!2Y:~FSOB1.i. -- ~

SFIM
COUNT
AI
MSORT
STRINGOUT
CRACK
SEQ

IY:eg
Function
Function
Function
Function
Function
Function
Function

: (RETURN)

Where defined
program3:11
Program 3.4
Program 4.6
Program 13.4
Program 4.2
Program 4.1
Program 4.3

Chapte;: 13 SORT;I~N~G ________________ _

IIII ELECTION SORTING In selection sorting the least ele
ment of the input aggregate is

selected and is placed into the output aggregate.
This element can be chosen in the straightforward
w~y of making one pass through the array to deter
m1ne the least element. When an element is chosen,

I i~--------------~
I'll I

I ,
1111,

its position can be filled with a special marker to avoid
selecting that element in the future. To select the least
element in this way requires n-1 comparisons and hence this
form of selection sort requires a total of n(n-1) comparisons.
This is unfortunately far more than the theoretical minimum of
n 10g2n.

But selection sorting can be continually refined until this
lower limit is approached. For example, the n items can be
subdivided into SQRT(n) groups of SQRT(n) items each. Assume
that for each group a least item is known. Then a selection
consists of first selecting the least of these least items.
Then only the selected candidate's group must be searched for
a least item to recompose the original situation. This kind
of selection will be called order-2 selection and requires

1/2
2 (n -1)

comparisons for each item obtained. We may decompose our array
into a group of groups of groups and so have order-3 selec
tion. Assuming each group has the same number of members (the
cube root of n) then a selection would require

1/3
3 (n -1)

comparisons. For a level k hierarchy we would need

1/k
k Cn -1)

comparisons per item. This value monotonically decreases as k
increases and so it pays to make k a~ large as possible. In
the limit the hierarchy becomes a binary tree. The 'winner'
of each subgroup 'plays' the 'winner' of the adjacent subgroup
to determine the winner of the group. etc. This method of
sorting has the suggestive name tournament sort. The number
of levels k becomes 10g2 n and plugging this value in for k we
obtain .

log2 n (2 - 1) = log2n

comparisons per extraction which is close to the theoretical
limit.

i

II
II
II

Program
13.6
TSORT

i

II

" "
TSORT stands for Tournament sort; it also
stands for Table sort since it can be used
to sort tables as well as one- and two
dimensional arrays. The method by which

tournament winners are recorded is by an auxiliary array of
subscripts. Consider a typical tournament where the winner is
decided by lexical 'ordering (first in alphabetical order
wins). The playoff of such a tournament is shown in Figure
13.2.

Array A

JIM 1 ---,
1- 2 ---,

BETH 2 -.I I
1- 2 ---,

CHUCK 3 ---, I I
1- 3 -.I I

MAUREEN 4 -.I ,
1- 2

KATE 5 ---, I
1- 6 ---, ,

BILL 6 --J 1 ,
1- 6 -.I

REE 7 ---, ,
1- a -.I

JOHN a -.I

Figure 13.2

Here, subscripts, rather than actual values, are used to
denote players in the tournament. Assume that the number of
players N in the tournament is a power of 2. Then the tourna
ment can be recorded in an array T of length 2 * N - 1. For
example the above tournament is represented as:

2 3 4 5 6 7 a 9 10 11 12 13 14 15

Array T 226 236 a 2 ? 4 567 a
~ ___________________ , L' ______________________ ~

Playoff results Base ~f tournament

Here the elements T<a> through T<15> (in general, T<N> through
T<2 * N - 1» hold the base of the tournament. The rest of
array T is filled in as follows. To determine which subscript
(of array A) should be placed into T<I>, a playoff is arranged
between T<I * 2> and T<I * 2 + 1>. This method of recording

Page 290 ________ Chapte~_- SORTING

the tournament is adopted from a tree-sorting algorithm by
Floyd [1964], and can generally be used to encode a balanced
binary tree. T<I> has sons T<I * 2> and T<I * 2 + 1> and has
father T<I / 2>.

The value found in T<1> is the subscript in A of the overall
tournament winner. To find the runner-up, the winner is
'disqualified' by assigning a zero subscript into his original
slot. This is found by adding N - 1 to the subscript in A.
Thus if A<2> is the winner, T<2 + N 1> is set to 0 to
produce: .

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Array T 226 236 8 1 0 3 4 567 8

A series of events is then run to resolve the outcome of games
in which only he was involved. This is done as follows. The
element T<9> was used in the battle to determine T<9 / 2> =
T<4>. Hence we recornpare T<2 * 4> and T<2 * 4 + 1>. .The
resulting element T<4> is used to compute the new entry in
T<4 / 2> = T<2>. This proceeds for Logz N steps until T<1> is
determined. In our example, this produces:

2 3 4 5 6 7 8 9 10 11 12. 13 14 15

Array T 6 3 6 3 6 8 1 0 3 4 5 6 7 8

The new winner, indicated by T<1>, is 6 which refers to 'BILL'
in the original array A. This process is repeated until the
winning index is a zero.

~SORT(A,F,P) will use a tournament sort to sort the ele
ments of the array or table A according to predicate P. P
may be absent in which case the assumed predicate is LGT.
A may be singly-dimensioned in which case F, if nonnull,
will indicate the field of a programmer-defined datatype
on which the sort is based. A may also be a table or a
doubly dimensioned array. In these cases, F may be an in
teger indicating the column on which to sort. If F is
null, it is taken to be 1. ~he array A is not modified; a
new array is allocated and returned.

DEFINE('TSORT(A,F,P)I,J,X,N,TS,T,P_I_J,K,II,W')

r---~
PLAYOFF(K) is a utility routine used by TSORT to determine
the winner of T<K * 2> and T<K * 2 + 1> and to modify T<K>
accordingly. It will fail if K is < 1. The array T con
tains subscripts; some of these are 0 indicating open
slots.

PLAYOFF
DEFINE ('PLAYOFF (K) ')
LT (K, 1)

: (PLAYOFF_END)
:S(FRETURN)

____________ Program 13.6 - TSORT

I = T(:K. 2)
J = T(:K. 2 + 1)
LE (1,0)
LE (J, 0)
EVAL (P _I_J)

______ Page 291

PLF I T(K) I

:F (PLF_J)
:F(PLF_I)
:S (PLF_J)
: S (PLF_I)
:5 (PLF_J)
: (RETURN)
: (RETURN) PLF:J T(:K) = J

PLAYOFF_END

• , TS will compute a tournament size needed for N elements;
I i. e. the smallest power of 2 ~ N.

DEFINE ('TS (N) ')
TS = 1
TS = LT(TS,N) TS. 2

: (TS_END)

:S(TS_1)F(RETURN)

: (TSORT_END)

r---~ I ~SORT entry point: Coropute the size of the tournament
,(TS). Allocate the tournament array (T) and the array to
I be returned. ,
TSOFT A CONVERT (A, 'ARRAY')

+

TSORT ARRAY(PROTOTYPE(A»
N = PROTOTYPE (A)
N BFEA:K(',') . N : F (TSORT_ 1)
F = IDENT (F) 1
TS = TS (N)
T = ARRAY(TS - 1 + N)

Initialize base of the tournament.

I = 1+1
T(TS - 1 + I) = I

Obtain comparison expression.

P IDENT(P) 'LGT'
X = F '(A(I»,' F '(A(J»'
X = IDENT (DATATYPE (F) , 'INTEGER')

'A(I,' F '>,A(J,' F ')'
P_I_J = CONVERT(P' (' X I)', 'EXPRESSION')

Now run a complete tournament determining an absolute win
ner (in T(1)).

K TS
R R - 1
PLAYOFF (:K)

Transfer the winning structure to TSORT. For a one
dimensional array, this is simple. For a two-dimensional
array, we must go through a loop.

II = II + 1
W = T<1)

~ge 292 ______ ~C~h~a~p~t~e~r~.1~3~ ____ ;S;OR~,!ING

+

.EQ (W, 0) : S (RETURN)
TSORT(II DIFFER (DATATYPE (F) ,'INTEGER'» = A<W>

:S(TSORT_7)
J 0
J J + 1
TSORT<II,J> = A<W,J>

'Disqualify' the winner.
was involved.

Replay all matches in which he

'ISORT_7

TSORT_5

TSORT_END

EEilQgY~

R TS - 1 + W
T(K> 0
K K"/2
PLAYOFF(K)

The tournament sort as given uses a near minimum number of
comparisons but unfortunately allocates two additional arrays.
For sorting structures, strings or two-dimensional arrays, the
additional allocation is probably not harmful since it will be
small compared to the storage already allocated. Minimum core
sorting of arrays such as HSORT (Prog. 13.2) and Treesort 3
[Floyd 1964] have the unfortunate property of inverting equal
elements and this, we will see, can be bad for sorting arrays
of structures. other minimum storage sorting algorithms such
as BSORT (Prog. 13.1) and one by Shell [1959] have the
property of not being minimum time. There appears to be, at
this writing, no minimum-core sorting algorithm (i.e. an in
place sort) which is minimum time and inversion free.

I NSERTION SORTING In an insertion sort the next
I available--eIement to be sorted is
I placed in the correct relative position in the output
I aggregate. This requires that the number of elements
I in the output aggregate be adjustable and suggests the
~ use of a list, a string or a tree. A simple-minded
insertion sort will compare the next item on the input list
with each item in sequence on the output list until the cor
rect place is found at which point an insertion is made. This
would require, on the average, n/4 comparisons for each inser
ted item. This is too many for large n. But for small n,
where time is not an issue, this simple scheme has the advan
tage of providing a very Simple sort.

,

" , I

"
Program

13.7
SSORT

,
II
II
II

SSORT(SS,S) is a string sort (or short sort
or simple sort). The string S is inserted
into a string of strings (separated by com
mas) in SSe The augmented list is returned

as value.
being read

For example, if the items in the input stream are
in and are to be sorted one may execute

Program 13.8 -.INSERT

LOOP LIST = SSORT(LIST, TRIM(INPUT» : S (LOOP)

If the input contained the names 'PAT', 'JOE', 'TOM' then the
resulting LIST wou1~ contain ',JOE,PAT,TOM,'. Note that
leading and trailing commas form part of the resulting string.

DEFINE (, SSORT (S SORT, S) T')
SS_PAT = ',' (BREAK(', ') $ T *LGT(T,S) I RPOS(O» • T

SSORT

SSORT_END

];12il.QgY~

SSORT
SSORT = , , ,

, " S
S ','

, ,. T
: (SSORT_END)
:S (RETURN)
: (RETURN)

SSORT was written to be as short and as convenient as
possible. Its major failing i~ that it is slow. Not only is
it a quadratic sort, but the data structure holding the sorted
items is not the most conducive to high speed insertion. On
the other hand, many if not most sort applications require
only something 'quick and dirty' and for such applications
SSORT is recommended since it is not only easy to type but it
saves on program space •

•
" " "

Program
13.8

INSERT

,
II

" II

The insertion sort, like the other sorts,
can be refined to the point where it becomes
a logarithmic sort. To find the correct
position of the ith element we ought to com

pare it with the middle item. If it is > than this middle item
it is compared with the middle item in the upper half, and so
forth. Thus, to insert the ith item requires approximately
10g2i comparisons. The total number becomes (approximately)

10921 + 10922 + ••• + 10g2n

which is the theoretical lower limit.

This sounds attractive, but how does one find the middle ele
ment in each of these lists. The middle element of an array
(or subsection of an array) can be easily computed but an ar
ray is not adjustable and its use would prove awkward in an
insertion sort. That is, although the sort would prove
logarithmic with respect to compares it would be quadratic
with respect to moves. A list, on the other hand, is ad
justable and an element can easily be inserted within it, but
the central element is not easily found. The solution is to
use a tree as the receiving data aggregate.

For example, assume that the follOWing strings are to be
inserted.

NOW IS THE TIME FOR ALL GOOD MEN

SORT=I~N~G~ ________ __

If these strings are inserted into a binary tree, the result
is depicted in Figure 13.3.

, ,
r-----I* NOW *1----, , , , ,
~ ~

I , • , '* IS *'---.. i THE *' • , , , , , 1
~ 'Y ~

i ,

.----, * FOR *'---, MEN TIME , , , ,
~ ~

ALL GOOD

Figure 13.1

The first string is associated with the root node. The second
string is lexicographically less than the first and so is as
sociated with the left branch of the binary tree. Each
additional string is compared with the node and successive
descendents until an opening in the tree is found at which
pOint the string is inserted. A trace through the tree will
readily indicate the nature of this process.

INSERT (T,S) will insert the string S into the tree T and
return the modified tree. If T is null a root node is
created and returned.

DEFINE('INSERT(T,S) V')
r---~ , BTNODE is the datatype of a single node of a binary tree.
I

DATA ('BTNODE (VALUE, NO,LSON,RSON) .) : (INSERT_END)

r---~ Entry point: If T is null, return immediately with a fresh
node. Else we prepare to return T and go on to modify it.
Get VALUE(T) out for fast and easy reference. If S equals
value, increment count by 1 and return.

INSERT INSER'l'
INSER'!

IDENT (T) BTNODE (S, 1)
T

: S(RETURN)

Program 13.10 - INSERTB _________ ~~_ru

v =
NO(T)

VALUE(T)
IDENT(S,V) NO(T) + :S (RETURN)

If S > value, insert S into right half of tree; otherwise
into left half.

RSON(T)
LSON(T)

INSERT_END

.EEilogy~

= LGT(S,V) INSERT(RSON(T) ,S) :S(RETURN)
INSERT (LSON (T), S) : (RETURN)

Note that we do not create separate nodes for duplicate items
but record a count in a field of the node. This saves on
storage if the percentage of duplicate items is 201 or so. It
also saves on compute time, especially if there are many

. ~uplicate items. For this reason, the binary insertion sort
1S ideal for preparing a word concordance which is a word
frequency analysis of a piece of text.

i ,

I I Program , I
II 13.9 " I' LINEARIZE , ,
, I

node of the tree.

LINEARIZE(T) will linearize a binary tree
of the kind used in INSERT (Program 13.8).
The tree will be strung via its right
sons. The value returned will be the first

If T is null, LINEARIZE will fail.

DEFINE('LINEARIZE(T) .) : (LINEARIZE_END)

Entry point:

LINEARIZE IDENT (T) : S (FRETURN)

Linearize the left side and attach on node T (LAST_NAME is
a global variable set to equal the name of the last link
on the chain).

LINEARIZE = IDENT(LSON(T» T
LINEARIZE LINEARIZE(LSON(T»
SLAST_NAME T

Now linearize the right-hand side.

LIN_' RSON(T)
LAST NAME

LINEARIZE_END -

• i

LINEARIZE(RSON(T»
• RSON (T)

:S (LIN_1)

:S(RETURN)
: (RETURN)

t , Program I "

I' 13.10 ff
, I INSERTS "

With some sorting procedures, an almost
sorted input will serve to decrease sortinq
time. The speedup is most pronounced with
the bubble sort but pre-ordering will

favorably affect
tree insertion

the merge and Hoare sort as well. with the
sort we have the reverse phenomenon. If the

SORTIN_G __________ ~--

elements inserted are already in alphabetic order the number
of comparisons to insert the Ith element is I-1, the worst
case. The logarithmic sort becomes a quadratic sort. Per
versely, if the elements are initially in reverse alphabetic
order, we also achieve the worst case of I-1 comparisons for
the Ith element.

But the insertion sort can be modified slightly to not only
avoid the inefficiences of almost-ordered data but t'o actually
take advantage of any ordering that exists. The trick is to
grow the tree backward! that is, the last node to be inserted
should become the root of the tree.

For example, if the sequence of strings is

NOW IS THE TIME FOR ALL GOOD

the tree grown backward becomes as shown in Figure 13.4. A
rough rule for growing the tree backward is the following.
Draw an imaginary line down the middle of the tree separating
all nodes < the new root from all nodes > than it. Any path
broken by such a line should be 'short circuited' so that all
pointers from any node are directed to nodes in the same half
of the tree. As an example, the result of adding the string
'MEN' to the diagram in Figure 13.4 is shown in Figure 13.5.

. ,
r'------I. GOOD .,--~,
1 1
• •

i
ALL .f---, ,

•
FOR

,
r---f*TIME
f • ,

i~---------------I* THE ,
•

•
IS *' . ,

•
NOW

Figure 13.4

. .

ProgrAm 13.10 - INSERTB

I i , f* MEN *1 i

1 , .. ,
, , ,

• '* GOOD *1 , 1 , , 1 .. I .. , I ,
ALL *1 i

, , 1 * TIME
1 1 , .. , ..

1 I
FOR , , , * THE , , .. I

I
IS ,

I ..
NOW

Ii9:m:U1.:.2

INSERTBCT,S) will insert the string S into the backward~
growing binary tree T. The root of the returned tree will
contain S •

DEFINEC'INSERTB(T,S)V')
DATAC'BTNODECVALUE,NO,LSON,RSON) i)

: (INSERTB_END)

Entry point: The first part is similar to INSERT. Com
ments there are appropriate here.

INSERTB INSERTS = IDENTCT) BTNODECS,1)
V = VALUECT)

:S (RETURN)

:S(RETURN) NOCT) = IDENT(S,~ NO(T) + 1

If S > value, insert S into the right half of the tree.
The root node of the returned tree will have a VALUE of S
and will become the root node of the tree we will be
returning.

LGT (S,V)
INSERTB

:F CIN5ERTB_L)
INSERTB CR50N (T), 5)

Include the rest of T under the left side of this new
root.

______ ~C=hseter 1=3 ____ ~S~O~~R~T~I~N~G~ ________ _

RSON(T) LSON(INSER~B)

LSON(INSERTB) = T : (RETURN)

Do an analogous thing for the opposite side. ~ ____________________________ ~ ____ ~_________________________---J
INSERTB_L INSERTB = INSERTB(LSON(T), S)

LSON(T) = RSON(INSERTB)
RSON(INSERTB) = T : (RETURN)

INSER'l'B_END

III
I I
I I
I I
III

ISTRIBOTIVE SORTS So far, every sort we've presen
ted was a comparative sort. There

are other kinds, however, and these we can all lump
together in a category called distributive. In a
distributive sort, each item to be sorted is placed

~-----~ in a position with respect to the other items ac-
cording to same parameter of that item. This has the attrac~
tive feature of not being binary and thereby cne can better
the n 10g2n limitation. For example, if one is sorting real
numbers, uniformly distributed between 0 and 1, an excellent
teChnique is to begin distributing the items one at a time in
to the receiving array in approximately their final position
depending only on their value. Unless one is lucky, collisions
will begin to occur as the receiving array is filling up, but
the time to patch up such discrepancies is assumed 1:0 be saall
compared with the time saved by the almost-one-pass nature of
the sort. The effectiveness of such a sort is highly data
dependent, however, and for this reason is not very popular.

A more familiar distributive sort is the radix sort. This is
the sort used on mechanical sorters which distribute cards in
to bins. Assuming n cards are to be sorted on a field con
taining k characters, a distribution over the !~st
significant character is made first. The clum~s are gathered
together and passed through the machine again,' this time on
the next least significant character. After k passes, the en
tire deck is sorted. The number of operations is n k rather
than n 10g2n because each operation involves pitching a card
into one of several bins and such an operation yields more in
formation than a binary choice.

We do not have space to describe a SNOBOL4 rendition of the
radix sort but happily refer the reader to the original SNOBOL
article (Farber, et al 196U] where it appeared as an example.

11?11111?1111111111?1?11111?1111111?11??111111??1111?111111111
1111111111111111111111111 EXERCISES 111111111?11111111?11111
1111111111111111111?1111111111111111?11?1?111111111111111?1111

Exercise 13.1 What two instructions constitute the inner
loop of BSORT1 can the reader recommend a

slightly faster version1

Exercises for chapter 13

Exercise 13.2

ways less than N
infinite loop •

Prove that in HSORT the value of K when the
recursive call HSORT(A,I,K) is made is al
thereby removing the possibility of an

• I Exercise 13.3 Write a non-recursive version of HSORT
using PUSH and POP (Programs 5.5 and 5.6).

Hint: This can be done by modifying 2 go-to fields and adding
5 very simple instructions in place of the 2 recursive calls.

Exercise 13.4 Given 3 items to sort, what is the average
L- number of comparisons required by BSORT and
by HSORT. Note, as a consequence, that BSORT will actually be
faster than HSORT for small ar~ays. Estimate the crossover
point at which the number of comparisons are the same. Then
modify HSORT so that it calls BSORT for arrays smaller than
this. (The estimate may be made on analytical or empirical
grounds.)

,
f Exercise 13.5 The elements of an array A are to be sorted

numerically in ascending sequence but all
numbers within a certain range R of each other are to be
regarded as numerically equal and are to retain their relative
ordering. Using MSORT, define an appropriate predicate and
sort A accordingly.

, ,
f Exercise 13.6, Assume we wish to sort an array of strings,

A, alphabetically as defined by the
predicate AGT (Prog. '3.13) • We could call MSORT(A, 'AGT').
What is a more efficient procedure?

Exercise 13.7 Both MSORT(A, 'LT') and MSORT(A,
be used to sort A in decreasing

order. The difference Qetween the two is in the
elements are treated. Which should be used so that
tive order of equal items is retained.

'LE') can
numerical
way equal
the rela-

Exercise 13.8 SSORT can be speeded up considerably by the
following technique. Represent a binary

tree as a string by the following method. The null string is
the null tree. A tree with root R is represented as:

(LSON) R (RSON)

where LSON is the string representation of the left son of the
tree and RSON is the representation of the right son. Then
BAL can be used to rapidly scan for an insertion point. A tree
is built up much in the manner of INSERT. Rewrite SSORT so
that the string returned is this tree.

Chapter 13 SORTING

Exercise 13.9 The body of SSORT (Prog. 13.7) need only be
one statement. Modify the pattern SS_PAT

so that the :S(RETURN) can be changed to : (RETURN) and the
second statement deleted entirely.

Exercise 13.10 One can enhance the speed of INSERT by
periodically balancing the tree. write a

functionTREEBAL(N) which will balance a tree beginning at
node N and return the root of the balanced tree. The use of
LINEARIZE to write this function is optional.

r
Exercise 13.11 Modify LINEARIZE so that the LSON fields

are cleared.

Exercise 13.12 Modify LINEARIZE so that it counts the
number of nodes in the tree. Assume some

global variable exists (say ~ which is initially O.

r----------------~
I Exercise 13.13 The average number of comparisons of a

logarithmic insertion sort was estimated
in the text to be log2n! This average would be achievable by
INSERT only if the tree is always kept perfectly balanced. But
for random data this will not be the case and the expected
degree of unbalance can be computed.

a) Determine the average number of comparisons required by
the tree-insertion sort. Assume that every input permutation
is equally likely and that no two items are identical.

b) As n approaches infinity, what is the ratio between this
number an n 10g2n.

r
, Exercise 13.14

and b) INSERTB?

What does the tree resemble when the fol
lowing strings are placed into a) INSERT

A QUICK BROWN FOX JUMPED OVER THE LAZY DOG

C HAP T E R F 0 U R TEE N

~ n n n n r----1 ,.-----, r--1 ..-, n n
, r--' II , I "'" I ... , L..-, ~ .., ,.-, , , "II , " " II'" " u " " " " ""I , .--' " " " " " n " " " " " 'I

" 1'-' , " " 1'-' , "
.... .., , L-II II " u

..--, , .----'
1 '--,
, r--'

" U

'----I U U '----I U L-.I L--..I U U

n n

" II

" II

" " 1'-' I
L..-..I

n n ,---, r----'1 r---, ,---,

"'I'
, ,--, , '-, .--' .., 1 ... 1

1 "~'I "
u

" " II " " 'I " " " " II " " "
I L-..I ,

"
.... .., ,'-' ,

u L..I L--..I U ~ L--..I

DEXP 14.1

DEXTERN •••••••••••••••• 14.2

~ACE ••••••••••••••••• 14.3

INSULATE

REDEFINE

PHYSICAL

14.4

14.5

14.6

STATEF ••••••••••••••••• 14.7

STACK •••••••••••••••••• 14.8

n n ,---,
'I" 1 1r--..1

, I'" , L-..,

" " L-.., I

" "
r--' ,

L..I U '----'

Es.9L1QL _____ Chapter 14 -=-~!ON FUNCTI.;:;.O.:;N_S __ _

r-----1
L.-, r-l he function definition facility in SNOBOL4 is somewhat

, , unorthodox. In conventional languages, a function (or
, , its equivalent) is defined at compile time. Thus, its
I I entry point, number and type of arguments, tem
U poraries, etc. are fixed for the duration of the

program. In SNOBOL4, these are governed by arguments to the
DEFINE function. Since these arguments can be the product of
an arbitrary computation, and since the DEFINE function can be
called at any time, the function-defining facility is extra
ordinarily flexible. This section shows several examples of
how this flexibility can be harnessed to produce more ef
ficient, better structured and more powerful programs.

,
'I Program " DEXP(proto) permits functions to be easily

defined in terms of simple, one-line expres
sions. For example: " 14.1 "

II DEXP "

DEXP(tAVE(X,y) = (X + Y) / 2.0')

will define the function AVE(X,Y) to be equal to half the sum
of X and Y. It thus mimics the Fortran arithmetic function
facility. It is, however, much more powerful, since any se
quence of statements separated by semicolons may be used to
specify a function. In fact, arbitrary functions may be
defined in this way.

DEFINE (tDEXP(PROTO) NAME,ARGS')

Entry point~ First remove leading blanks, just in case.
Next obtain the name of the new function (NAME) and its
argument list (ARGS), removing the latter.

DEXP PROTO
PROTO

PCS (0) SPAN (' ') =
BREAK('(') • NAME BAL. ARGS = NAME

Create code which will be the body of the new function.
Then DEFINF it.

CODE (NAME
DEFINE (NAME

DEXP_END

" PROTO
ARGS)

, :S(RETURN)F(FRETURN)')
: (RETURN)

Care must be taken in the use of DEXP. If the last statement
of a sequence fails, the entire function might inadvertently
fail. This can be cured by placing a semi-colon after the last
statement (null statements always succeed). For example, we
can define SIGN (X) which returns +1 if X > 1 and -1 if X < 1
and null if X = 0 as:

DEXP (' SIGN (X) = GT (X, 0) 1 SIGN LT (X, 0) -1 ;')

________ PrQqram_14.2 - DEXTERN Page 303

,
" " "

Program
14.2

D'EXTERN

,

" " "
One of the most frequent requests that
SNOBOL 4 users make is for more space. If
lack of main storage is due to the size of
the program, then this next function, or

some variant of it, can be used to obtain more core. The
function DEXTERN (Define EXTERNal function) will allow for the
dynamic loading of SNOBOL4-coded functions. The arguments to
DEXTERN (proto, label) are identical to those of the built-in
DEFINE function. DEXTERN will create a small provisional
function body for each such function. This will cause the
first call on that function to result in the function being
loaded from an external file, compiled and executed. Subse
quent calls go straight into ex~cution with no overhead.

,DEFINE('DEXTERN(PROTO,LBL)NAME')
DEFINE ('LOADEX (LEL)PAT,X,CODE')
LIB_ Some Library File Designator : (DEXTERN_END)

Entry point for DEXTERN. Determine the label (LBL) and
compile code which serves as the function body until the
first call. Then define the function.

DEXTERN PROTO IDENT(LEL) BREAK(' (') • LBL
CODE (LBL ," LOADEX ('" LBL "') : (" LBL tI)")

DEFINE(PROTO, LBL) : (RETURN)

Entry point for LOADEX(LBL). LOADEX will load an external
segment of code beginning with label LBL and ending with
LBL_END.

LOADEX REWIND (LIB_)
INPUT(.LIB_FILE, LIB~

Loop to look for function

PA'! POS (0) LBL
= LIB_FILE

PAT

(' • , RPOS (0))
LOADEX_ 1 CODE

CODE
:F(ERROR)
: F (LOADEX_ 1)

Loop to process statements. Note conventional continuation
and comment characters.

PAT
LOADEX_2 X

X
X
X

= POS(O) LBL '_END'
= LIB_FILE

PAT
POS (0) ANY (, *- ,)

, ;' X
X POS (0) , ; , ANY (' • + t)
CODE = CODE X

Now code it up and return.

LOADEX_3 CODE (CODE)
DEXT'EF,N_END

(' , , RPOS(O»

= t ,

: F (LOADEX_ 3)
: S (LOADEX_ 3)
: S (LOADEX_2)

: (RETURN)

Page 304

liEilogu~

One reason for the DE XTER N function is
Frequently-used subroutines need not be copied
program but may be kept in a file which serves as
In this way several programs may share a common
may be assured of up-to-date copies.

convenience.
into a given

a library.
library and

Another reason for DEXTERN is that it permits the running of
many large programs which would otherwise not fit into core.
Most large programs have significant portions that are infre
quently used and it is extremely rare 'to encounter an applica
tion which requires all the facilities of the large program.

The text processing system used to write this book is a good
example of this. There are approximately 1200 statements in
the main program and approximately 1500 in an external
library. Each chapter of the book may be processed within
prime-shift limits since no chapter uses all the facilities of
the text processor. However, the entire book requires an
evening run.

It is not necessary to dynamically load source programs on a
per-function basis. See Exercise 14.5.

, i

" Program I' One advantage of decomposing a large program
I' 14.3 I' into functions is that the values passed to
'I FTRACE I I a function and the value returned can be
L- easily monitored by means of the &FTRACE
switch. Unfortunately, only strings, reals and integers are
printed explicitly. Other data objects such as patterns r ar
rays, tables, etc. result in only the datatype being printed
(with possibly an identification number as in SITBOL). This
deficiency can be corrected by the programmer, however r by
using the available trace facilities. In particular

TRACE(NAME, 'CALL', r FNAME)

will cause the function named FNAME to be invoked when the
function named NAME is called. FNAME can determine sufficient
information about the called function (such as its arguments
via the ARGS function) to produce an elaborate display of any
aggregate passed as argument. The second argument to TRACE
can be the string 'RETURN' which can enable a similar function
to display the returned value.

One weakness of the scheme is that unlike the &FTRACE switch
which affects all function calls, the TRACE function requires
two explicit calls for each function traced. The FTRACE func
tion defined here is designed to automate this process. It is
simply placed once in the program before all functions which
are to be traced. FTRACE will redefine the DEFINE function
and thereby sieze control at each function definition. The

________ ~g:rarn 14.4 - INSULATE _____________ pa~2Q.2

functions actually called to do the tracing (FTR_CALL and
FTR_TRC) are left as exercises.

DEFINE ('FTRACE (PROTO, LABEL) NAME')
OPSYN('DEFINE. "'DEFINE')
OPSYN('DEFINE','FTFACE')
&TRACE 10000 : (FTRACE_END)

Entry point: Define the function, issue the trace requests
and return.

FTRACE DEFINE. (PROTO, LABEL)
PROTO BREAK('(I). NAME

FTRACE_END

TRACE (NAME, 'CALL', , 'FTR_CALL',
TRACE (NAME, IRETURNI, , IFTR_RET')

r---------------.

: (RETURN)

I I Program I ,
II 14.4 , I
'I INSULATE "

This routine can protect other routines
from possible malfunction owing to an unan
ticipated modification of some global
variable or keyword. As written, protection

from modification of the &ANCHOR keyword is obtained, but this
protection could be extended to include other keywords and
glotal variables as well.

While it is held in these pages that modification of the
&ANCHOR keyword is seldom warranted and is inconsistent with a
general functional scheme of decomposing and structuring a
large program, it is nonetheless true that occasionally one
encounters two separately written sections of code that in
teract with each other and that depend on opposite values for
the &ANCHOR keyword. For example, if routines in this book
were called from a main program which assumed anchored mode,
then pandemonium would he the general result.

To rectify the situation short of recoding one or the other of
the two ill-fitting sections one may insert the INSULATE
function.

INSULATE will cause each function following it to trap to
INS_CAIJL () when called and to INS_RET () on return. This
requires redefining DEFINE to point to INSULATE.

DEFINE('INSULATE(PROTO,LABEL)NAMEI)
DEFINE ('INS_CALL () I)
DEFINE ('INS_RET () I)
OPSYN(IDEFINE.I, IDEFINEI)
OPSYNC'DEFINE', 'INSULATE')
&TRACE 100000 : (INSULATE_END)

Entry point for INSULATE.
tracing.

Define the function and set up

E2.ge 3.;:.0.;:.6 __ _ . FUNCllmLEYN£!l°N_S _____ _

INSULATE PROTO BREAK(' (') • NAME
DEFINE. (PROTO, LABEL)
TRACE (NAME, 'CALL'" 'INS_CALL')
TRACE(NAME, 'RETURN' " 'INS_RET')

The two routines.

~Ei!Qque

PUSH (&ANCHOR) &ANCHOR = o
&ANCHOR = POP C)

Nam~
PUSH
POP

!Y~
Function
Function

: (RETURN)

: (RETURN)
: (RETURN)

i

I·

Where defined
Program 5.5
Program 5.6

Note that when a routine is called and INS_CALL gains control
it calls the routine POP(). If tracing were on, at this point,
POP would presumably be traced sending control to INS_CALL
again; an infinite loop would be the sad result. But the
&TFACE switch is conveniently turned ·off at this point and
restored on return. As Dickman and Jensen (the original im
~lementors .of the SNOBOL4 trace facili~y) put it, the 'stout
of heart' can turn tracing on after the function receives
control •

.-- ,
I' Program I I
" 14.5 " 'I REDEFINE "
, I

SNOBOL4 has the ability to redefine built
in operators and functions. Thus we may
write'

OPSYN (, +' , , • , ,2)

indicating that the binary operator ,+, is made equivalent to
binary'.'. All additions thereafter become multiplications.
OPSYN can be used for named functions as well as operators and
user-defined functions as well as built-ins.

While the basic facility exists, we are here concerned with
its proper and effective use as a programming tool. Undoub
tedly it has already occurred to the reader that he can play
'fool the counselor' with an OPSYN as above~ Let us assume,
however, that we are above such pranks. A semi-legitimate use
of redefining an existing facility is as follows. Being un
familiar with the language, and in particular unaware of the
built-in function REPLACE, a programmer writes a user-defined
function REPLACE as part of a larger program. Subsequently he
learns of this built-in facility and wants to use it. He may
write

Program 14,5 - REDEFINE Page 307

before defining REPLACE and use REP() to obtain the built-in
facility.

This use is only semi-legitimate for if the program is to have
a long life, he would be better off redefining his original
function, even if more painful, than in redefining a built-in.

Redefining a built-in is normally only justifiable as a design
objective if one is writing a facility designed to be upward
compatible with an existing one. For example, one may redefine
the operator ,+,. to sum arrays, complex numbers or physical
quantities but in that case it should treat conventional ob
jects (integers, reals, strings) as it did prior to the
redefinition.

REDEFINE (OP, PROTO, LABEL) is intended to make such upward com
patible extensions. The first argument is an operator to be
redefined, or, if a function is redefined the first argument
is null. The name of this function can be taken from the
second argument which is the function prototype normally given
to DEFINE.

DEFINE('REDEFINE(OP,DEF,LBL)NAME,N,FLAG')
: (REDEFINE_END)

Entry pOint: Extract the function's name (NAME) and aeter
mine the number of arguments (N = 1 or 2).

REDEFINE DEF BREAK (' (') . NAME
N = 1

, , But if , about an

N = IDENT(FLAG, , , ')

the first argument
operator (OP) at all

N . = IDENT (OP)
OP = IDENT(O~ NAME
OPSYN(NAME '.', OP, N)
DEFINE (DEF, LBL)
OPSYN(OP, NAME, N)

REDEFINE_END

ID;?ilogue

' (' BR EAK (,) , ,) LEN (1) . FLAG

2

is null, we are not talking
but a named function.

: (RETURN)

In order to avoid defining away the built-in facility ir
retrievably, REDEFINE will OPSYN to it a created name formed
by appending a period to the function's name. For example,

REDEFINE('+', 'SUM(X,Y) I')

will cause SUM.() to be defined and equivalenced to the old
binary + while binary + will now be equivalenced to SUM().

REDEFINE can substantially
range of built-in operators.
ample as in the next program.

simplify the task of extending a
This is best illustrated by ex-

r---------------~,
I , Program , I

" 14.6 " I' PHYSICAL , ,

Chapter 14 FUNCTION FUNCTIQNS ____ __

To illustrate the redefinition facility and
to create a possibly useful extension to
SNOBOL4 we will define the four fundamental
operators of arithmetic to operate on

'physical' quantities. For example, a quantity such as four
meters divided by a quantity such as two seconds produces a
speed of two meters-per-second. N9rmally, physical quantities
are represented by some combination of units of length, mass,
time and charge. We will illustrate our system with the near
standard MKS system (Meters-Kilograms-Seconds-Coulombs) but it
should be obvious that any other system can be employed.
Indeed, the subroutines, as written, depend in no way on our
particular universe; any type and number of physical quan
tities may be employed (up to the size of SALPHABET) •

Physical quantities will be represented by a programmer
defined data type defined as

DATA('PHYS(VAL,NUM,DEN)')

where VAL is the numerical value, NUM is the numerator of the
units field and DEN is the denominator. Units are represented
by single letters. For example, 3.5 meters/second2 may be
represented as:

PHYS(3.5, 'M', 'sst)

DATA ('PHYE (VAL, NUM,DEN) ')

r---~
I The following operators and one function are redefined.
l

REDEFINE('-', 'MINUS(X)')
REDEFINE('+', 'SUM (X,Y) ')
REDEFINE('-', 'DIFF(X,Y) ')
REDEFINE('*', 'MULT(X,y) ')
REDEFINE('/', 'DIV(X,y) ')
REDEFINE (, , EQ (X, Y) ')

NORM (X) will normalize a physical quantity, meaning that
we obtain a unique specification for comparison purposes.
This is done by sorting the physical units and canceling
common factors across the division bar. L--__ ~

DEFINE ('NORM (X) C')
NORM X DIFFER(DATATYPE(X), 'PHYS')

NORM X
DEN (X) ORDER(DEN(X»
NUM(X) ORDER (NUM(X»

NORM_' IDENT(DEN(X»

NORM_END
r-

NUM (X) ANY (DEN (X» • C
CEN(X) C

: (NORM_END)
PHYS (X)

:S (RETURN)
: F (F.ETURN)
: (NORM_')

I XY{) will normalize the two arguments of an arithmetic
• operation (assumed to be X and Y). As an added bonus, XY()

_________ froqram 1q.6 - PHYSIC:.:.:A:.:L:-.-__ . __ _

will return success only if neither argument is a physical
quantity (in which case the old operation can be applied).

DEFINE (' XY () ')
XY (DIFFER (DATATYPE (X) r • PHYS')

: (XY_END)

: S (RETURN)
: (FRETURN)

+ DIFFER(DATATYPE(Y)r 'PHYS'»
X NORM (X) Y NORM (Y)

: (PHYSICAL_END)

• , The definitions of the separate functions are now greatly
, simplified because of the utilities written above

MINUS

SUM

DIFF

MULT

+

DIV

+

MINUS XY 0 MINUS. (X)
MINUS = PHYS(-VAL(X)rNUM(X)rDEN(X»

: S (RETURN)
: (RETURN)

SUM
SUM

XY () SUM. (Xr Y) : S (RETURN)
PHYS(VAL(X) + VAL(Y). NUM(X) r DEN(X» : (RETURN)

DIFF = X + -Y : (RETURN)

MULT XY() MULT. (Xr Y) :S(RETURN)
MULT PHYS (VAL (X) * VAL(Y) r NUM (X) NUM(Y)r

DEN (X) DEN (Y» : (RETURN)

DIV XYO DIV. (X r Y) : S (RETURN)
DIV = PHYS (VAL (X) / VAL(Y)r NUM (X) DEN (Y) r

DEN (X) NUM(Y» : (RETURN)

EQ XY () : F (EQ_ 1)
EQ. (Xr Y) : S (RETURN) F (FRETURN)

EQ_1 (EQ(VAL(X)rVAL(Y» IDENT(NUM(X)rNUM(Y»
+ IDENT (DEN (X) r DEN (Y))) : S (RETURN) F (FRETURN)
PHYSICAL_END

Names referenced
bVPHYsICAL:--

Name ~~ Where defined
REDEFINE * Function program-1Q.S-
ORDER Function Program 3.1

* indicates name is referenced in the initialization section.

As an example of the use of physical arithmetic r we may
assiqn:

MET. PHYS (1 r 'M')
SEC. PHYS(1 r 'S')
KG. PHYS(1 r 'R')

and from now on we need not so much as employ the PHYS(, func
tional form as it will be called implicitly. Thus a Newton is
a Met.2/sec. 2 so we write:

NEWT. (MET. * MET.) / (SECc * SEC.)

______ C~h;aE,ter 14 _=--FUNCTION _F~UN=-C_TI=-O~N_S ________ __

and a Joule is a Newton-Meter:

JL. NEWT. * MET.

Though we are using an MKS system as a base for our physical
quantities, we can specify any given problem and perform all
calculations in thoroughly colloquial units. For example, we
can express foot, mile and acre as:

IN.
FT.
MI.
ACRE

=
=
=

MET. / 39.4
12 * IN.
5280 * FT.
(MI. * MI.) / 640

We may then express computations entirely in the new units.
For example, to print the acreage of a plot of ground 200' by
250' we write:

OUTPUT VAL(200 * FT. * 250 * FT. / ACRE) • ACRES'

We may even dispense with the asterisk between 200 and FT. but
this is left as an exercise.

"11 • • • IIII

o-routines and state functions The notion of co
routine is of in

terest from several standpoints. In theoretical
circles, it is as worshiped a programming practice
as the goto is deplored. However, this theoretical
enthusiasm does not carryover to the practical

world. Practical programmers shun co-routines to a greater
extent than they embrace goto·s. Nonetheless, techniques for
the construction of well-formed programs are not very well
developed nor understood at this writing and.study of the co
routine protocol is warranted merely for the light it can shed
on this other, more general, issue.

As remarked by Knuth [Vol. 1, p. 191J, small examples of co
routines do not seem to exist and so we must construct a
somewhat elaborate situation merely to demonstrate what it is.
The best example seems to be one furnished by a compiler. As
we have discussed previously (Chapter 11), a compiler is fre
quently decomposed into lexical analysis and syntactic
analysis. The purpose of lexical analysis is to decompose a
string into a sequence of discrete non-decomposible objects
frequently represented by pointers into a symbol table. Thus,
the portion of SNOBOL4 program:

(ALPHA + BETA GAMMA)

will be analyzed by the lexical analyzer into seven compo
nents, i.e., left parenthesis, ALPHA, binary plus, BETA,
binary blank, GAMMA and right parenthesis. It may be seen from
this example that the output of the lexical analyzer is not
determined completely from the characters which appear before
it on the input stream but is also based on characters which

have previously been processed. Thus, if the last token passed
back had been a binary operator, then a blank preceding an
identifier (such as BETA) is ignored, but if the last token
had been an identifier (or constant, right parenthesis, etc.)
then the blank preceding another identifier is interpreted as
an operator.

The lexical analyzer can most naturally be described by state
transitions. For example, after having processed a left paren
thesis, the lexical analyzer is in the same state as after it
has processed a binary operator. Also, after having processed
a right parenthesis it is in the same state it is in when it
has processed an identifier. Though this simple example only
depicts two such states there are in fact several others.

states are most naturally represented by a location within the
program which is currently being executed. Now this presents
an anomaly if, as frequently happens, the syntactic analyzer
calls the lexical analyzer for each token. This is because
called functions do not normally 'remember' their state but
rather begin each computation afresh from some fixed entry
point.

We may at this point wonder if we had not got things backward.
Maybe the lexical analyzer should call the syntactic analyzer
each time it wants to dispose of one of its tokens. But then
the shoe is on the other foot. The state of the syntactic
analyzer is also best recorded by means of a location.

This dilemma is resolved by a co-routine linkage. The jump
and-set-link instruction, common in most machines, can jump to
a location and simultaneously set a register to the current
location. By means of this instruction the lexical analyzer,
when it wishes to return to the syntactic analyzer, can jump
to a common return point which can save the contents of this
register and use this as the start up point when the lexical
analyzer is reentered. From the point of view of the lexical
analyzer, it is like calling the syntactic analyzer. Actually,
a little section of code is needed to make it seem as though
each is calling the other in an entirely symmetric way.

We may at this point step back and wonder why the need for co
routines is not felt more frequently than it is. certainly it
cannot be the inappropriateness of modeling computational
behavior by state transitions as this is very common. The
answer must lie in the fact that few functions require shifts
in entry point to operate effectively. A shift in entry point
implies that the next computation will depend on the ones
which went before; that is, the function is non-homomorphic.*

Non-homomorphic transformations are frequently homomorphic if
the units are made large enough. Thus, lexical analysis, when

*Recall from Chapter 3 that a homomorphic string transforma
tion T is one such that T(St S2) = T(S,) T(S2).

Pagg 312 __ -=C:h~a.~p~t_er=-~1._4 _____ FUNCTION FUNCTIONS ________ __

considered on a token .basis, is non-homomorphic but is
homomorphic on a per-statement basis. This is, in fact, one
of the advantages of a string language (or a list language).
Entire sequences may be ported across functional boundaries
which may then be aligned with the natural decomposition of a
problem into homomorphic transformations.

Such decompositions alone, however, are not sufficient, neces
sarily, to reduce the complexity of large practical problems
simply because the natural homomorphic transformation may be
considerably complex (as is the case with a compiler). This,
incidentally, is why simple co-routine examples don't exist.
Simple examples tend to be homomorphic or at least expressible
as simple homomorphic transformations.

As stated above, the conventional co-routine protocol requires
a jump-and-set-link instruction. No such facility exists in
SNOEOL4 nor can one be programmed. The main reason for this
is that in order for a statement to be pointed to, it must
have a label; the 'pOinter' is a string (identical to the
label) and goto's are permitted by indirection (unary S). The
&STNO and &LASTNO keywords provide statement numbers which
could be quite useful in this regard except for the fact that
these numbers are entirely descriptive. No mechanism exists
for going to a statement with some given number.

In any event, it is not clear that a direct translation from
assembly language is the form most useful to the SNOBOL4
programmer. It is, in fact, more likely that we would want
something closer to the normal function mechanism in which ar
guments are passed, values returned and temporaries saved.
This is provided by the state function •

•
II

" "
Program

14.7
STATEF

,
I'
" "

A state function is one
point (its -state) is
return. In particular,
the next entry point is

then the goto should take·the form

whose next entry
determined by the

in our rendition, if
to be label ENT~Y_2,

Returning from a state function is done only by calling
RET (label) •

A state function is defined by a call to STATEF. It must
not execute a RETURN but must pass control back via a call
to RET (NEXT) where NEXT is the next entry point.

DEFINE ('STATEF(PROTO,LBL)NEWL')
DEFINE ('RET (NEXT)NAME') : (STATEF _END)

,
Entry point for STATEF. Determine the nominal entry point I
(LBL) for the state function. Then create a new label ,

________ ' __ ~P~r~o~g~r~a=m~1,!~= STACK Page 313

, (NLBL) which will serve as the real entry point for the
I function. ,
STATEF PROTO I DENT (LBL) BREAK(' (') • LBL

NLBL LBL '_ENTRY'
DEFINE(PROTO, NLBL)

r--,
I At this entry point we push our name' so that upon return
, we know what function we were in.

CODE (NLBL "PUSH ('" NLBL "') : ($" NLBL ") II)

$NLBL LBL : (RETURN)

Entry pOint for RET: Get the name pushed on entry. Assign
our argument (NEXT) to this name so that we know where to
come back to next time. Then indicate a return.

RET NAME
$ NAME
RET =

STATEF_END

POP 0
= NEXT

• RETURN

Names referenced
l2Y_§TATEF:

~~'
PUSH
POP

..EPilogue

!Y12~
Function
Function

: (NRETURN)

, Where defined
Program5:5

Program 5.6

An example of the use of STATEF is given in Exercise 14.18.

, ,
'I Program " The functions PUSH, POP and TOP (Progs. 5.5,
" 14.8 II 5.6 and 5.7) are fine if you only need one
, I STACK , , stack. Wha t should one do if one requires
L- ' more than one stack? We could provide an
optional second argument to designate which of several stacks
are intended. For example, PUSH(V,N) ,could push an item V on
to a stack designated by N. The ?rinciple disadvantage of this
approach is that it produces code which lacks clarity. Another
disadvantage is that an extra instruction must be executed in
a rather simple function resulting in inefficiencies. To cor
rect these de~iciencies" we will incorporate the name of the
stack into the name of the function. For example, PUSHA(V)
will push onto stack A the value V. In general any string may
take the place of 'A' as a stack designator.

To automate the process of creating the stack functions, we
will write a function STACK(suffix). STACK will define three
stack-manipulation functions, POPsuffix, PUSHsuffix, and
TOPsuffix. For example, STACK ('A') will define the three
functions, PUSHA(V), POPA() and TOPA().

Page 314 Chapter 14 .FUNCTION FUNCTION=S ___ .

DEFINE('STACK(SUF)S')
DATA ('LINK(VALUE,NEXT) ')

Entry pOint: Assign to S a long string equal to the code
we have to create except that the string 'SUFi is used
where the suffix will eventually be placed.

STACK S =
+ 'PUSHSUF STACK_SUF = LINK(V,STACK_SUF) · , · + PUSHSUF = • VALUE (STACK_SUF) : (NRETURN) i'
+ 'POPSUF IDENT(STACK_SUF) :S(FRETURN);'
+ POPSUF = VALUE (STACK_SUF) · , •
+ STACK_SUF = NEXT(STACK_SUF) : (RETURN) i '
+ 'TOPSUF IDENT(STACK_SUF) :S(FRETURN);'
+ TOPSUF = • VALUE (STACK_SUF) : (NRETURN)i'

Now we create the required code and define functions. L-__ ~

CODE (REPL (S, 'SUF' , SUF))
DEFINE (, PUSH' SUF '(V) ')
DEFINE ('POP' SUF' 0')
DEFINE ('TOP' SUF' ()')

STACK_END

Names referenced
~ STACK:-----

ID2iIQgm1

~~
REPL

!YE~
Function

: (RETURN)

where defined
Program 3.15

Note the use of the REPL function to create code. It is
possible to avoid the use of REPL by a judicious concatenation
of string constants and variables (try it) but it is im
possible to avoid going mad in the process.

11
1111111111111111111111111 EXERCISES 111111111111111111111111
11

r- ,
, Exercise 14.1 , If we attempted to define MAX(X,Y) by means
, of:

DEXP('MAX(X,Y) = x; MAX = GT(Y,X) Y')

we would experience a difficulty. (a) What is it1 (b) What
simple change in this call will correct things1

i Exercise 14.2 i Modify DEXP (Prog. 14.1) so that iden
tifiers following the argument list are

regarded as function temporaries (requires modifying one
statement).

Exercises for chapter 14

Exercise 14.3 The encoding of LOADEX (in Prog. 14.2) as-
sumes no syntax error in the external code.

Modify LOADEX so that if the external code contains a syntax
error it will print out the code and establish a function body
which will always fail.

Exercise 14.4 Rewrite DEXTERN so that it operates by
tracing. That is, on first call of the in

dicated function, a routine is called which loads the function
(you may use LOADEX to simplify matters). Be sure to issue a
STOPTR after loading the function.

Exercise 14.5 A particulary long program consists of sec-
tions labeled L1, L2, ••• , L100. Not all

of these sections are in use in any given run. But, depending
on the data, any section could be reached. Using LOADEX, how
could you replace these sections with something smaller?

Exercise 14.6 Encode FTR CALL and FTR_TRC to trace func
tions as required by FTRACE (Prog. 14.3).

Exercise 14.7 Should the definition of FTR CALL and
L- FTR RET precede or follow the definition of
FTRACE or does it not make any difference?

Exercise 14.8 Modify INSULATE (Prog. 14.4) so that it
doesn't depend on TRACE to obtain control

on calls or returns.

Exercise 14.9

Exercise 1".10

How could INSULATE be used to guard against
modifications of the ARB variable?

Define a complex number by the structure

DATA ('CCMPLEX(R,I) ')

where R is the real part and I is the irraginary part. With
the help of REDEFINE (Frog. 14.5) extend the binary operators
+, -, *, / and the binary functions GT, GE, LE, LT, EQ, NE to
operate on complex numbers if on~ or coth of the arguments are
complex. To simplify things, write a generalized argument
processing function which will succeed if both arguments are
~ot complex and will otherwise fail, converting any non
complex argument to complex.

Pag~.-:3~1~6 ________ , __ -=C~h~a~p~t~e~r~1~q~, ,FUNCTION FUNCTIONS

Exercise 14.11 Assuming that the binary arithmetic
operators have been redefined to operate

on COMPLEX quantities as in the previous exercise, can the
PHYSICAL package also be used with the VAL fieid a possibly
complex quantity? Said another way, what trouble spots are
there in compounding redefinitions along the lines suggested?

r-----------------, Exercise 14.12 , Redefine the arithmetic operators to
operate on identically-dimensioned arrays.

Exercise 1q.13 Ordinarily a function such as F() cannot
set the variable F as a side effect since

the value of F is saved at the call and restored on return.
Strange as it seems, however, a technique exists to do
precisely that. In particular, it is possible that F(X) will
assign the v'alue of X to the variable F. Define such an F.

f
, Exercise 14.14 Generalize the previous exercise. That

is, define a function DEF(NAME) such that,
for example, DEF('F') will establish F(X) as equivalent to:

F = X

Exercise 14.15 Rewrite STATEF (Prog. 1q.1) such that on a
return via the call RET(LABEL) the func

'tion DEFINE is called with LABEL the new entry point.

i ,

, Exercise 14.16 I In the epilogue to PHYSICAL (Prog. 1q.6)
, , we expressed the quantity 200 FT. with an
intervening asterisk (denoting multiplication). This could
have been avoided by redefining concatenation (a purifying
experience). What four statements need be added to PHYSICAL
so that concatenation as well as multiplication form the
~roduct of physical units. (Hints: Be cautious of a circular
definition, i.e. using concatenation to define concatenation,
unless the recursion stops. Don't worry about the various
predicate uses of concatenation since your program won't get
control if one of the items to be concatenated fails.)

,
, Exercise 14.17 L--______________ _ Add an FRET (NEXT) function to provide an

FRETURN facility to STATEF (Prog. 1q.7).

Exercise 14.18 Draw a state transition table for a lex-
ical analysis of SNOBOL4 expre~ions

(i.e., assume no labels, no pattern matching, no goto-fields,
just expressions) as follows. For each state and each token
(left parenthesis, identifier, number, operator, etc.) direct

, ____ -=Exer~ises for chapter 1! ___ _ Page 311

an arrow to the next state and indicate what, if anything, is
to be returned. Implement this as a state function.

Exercise 14.19 Write a function FUNCTION(NAME) that will
succeed returning the null string if NAME

is the name of a programmer-defined function. otherwise it
should fail. Hint: the definition of function should appear
before every other function. For extra credit, any name
OPSYN'ed to some other name should also be regarded as a
programmer-defined function.

n n
"'II
11"1

" " " II u u

CHA PTE R FI F TEE N

n n

" " " " " " I L-J I
L---.J

n n
"'/1 ,
, 1'/1 ,

" " II " u u

,.--,
I..., I
1 L-J 1
1"-'
tI"
u u

COMB ••••••••••••••••••• 15.1

DECOMB ••••••••••••••••• 15.2

INFINYP •••••••••••••••• 15.3

FLOOR •••••••••••••••••• 15.4

CEIL

SQRT

TRIG

ARC

LOG ~

15.5

15.6

15.7

15.8

15.9

RAISE •••••••••••••••••• 15.10

Program 15.1 - COMB

r---1
, r---' ven special-purpose programming languages require
, L-, arithmetic. The original SNOBOL contained the five 'r--I arithmetic operators (+, -, /, *, **) which operated
, '--, only on strings (that resembled integers) within a
~ limited form of expression (eg. no parentheses).
SNOBOL 3 allowed more freedom (e.g., parenthetical groupings
were permitted) in forming expressions but retained the string
format for representing integers. SNOBOL 4 broke with the
tradition of the single datatype and introduced both INTEGER
and REAL as separate types. Moreover, it represented these
objects internally as machine integers and reals (i.e.
floating point numbers) respectively. Hence, a study of
SNCBOL4 numbers, in contrast to previous SNOBOL's, is very
much a study of how they are represented on most machines.

MOst machines for which SNOBOL4 has been implemented are
binary machines representing integers in base-two notation.
In every case known to the author, the negatives are represen
ted in two's complement form. This is the binary equivalent
of representing, say, -2 by a number of the form 999 ••• 99998.
Hence, the range of integers is usually

W-1 W-1 (15.1)
(-2 , 2 - 1]

where W is the number of bits in the field allowed for in
tegers. Usually, W is the word size of the machine. For
example, on the IBM 360/370 implementation of both SNOBOL4 and
SPITBOL, the range of integers is [-231 , 2 31 -1].

The first several programs offer some examples of integer
manipulation, 'the last of which (INFINIP) being aimed at over
coming the restrictions imposed by a finite word size.

, i

, , Program "
, , 15.1 , ,

" COMB 'I L ______ --'

The function COMB(N,M) will return the num
ber of combinations of N things taken M at a
time, usually written in 'over' notation as
shown and defined below:

r ,
N!

COMB (N,M)
IN,
, I
, M ,

(15.2)
(N-M)! H!

L ..

where N ~ M ~ O. By convention Ot = 1. For N < M the value
of COMB, by convention, is O. COMB (N,M) may also be regarded
as the coefficient of X ** M in the expansion of (X + Y) ** N
and is therefore called thp. binomial coefficient. It is il
lustrated by the easily remembered Pascal's triangle:

n~ 320 ___________ Chapter 15

1 1
2

3 3
.1 4 6 4

5 10 10 5

in which N corresponds to the row (starting with 0) and M cor
responds to the position within the row (starting with 0).
NOte that each term may be found by adding the two elements .
immediately above it. Hence we have a simple recursive method
for computing COMB(N,M). A slightly more efficient method is
used below which is based on the identity:

provided M > o.

r ,

IN' , ,
, M I
L ...

=

r ,
N , N-1 , , , (15.3)
M IM-1 ,

L ...

COMB(~,M) returns the number of combinations of N things
taken M at a time.

DEFINE('COMB(N,M)')
COMB cOMB = EQ(M,O) 1

COMB = COMB(N - 1,M - 1) * N / M
COMB_END

~Eiloqu~

: (COMB_END)
: S (RETURN)
: (RETURN)

Note that we do not write COMB in terms of factorials as this
may needlessly result in integer overflow during the calcula
tion of intermediate results. An alternative approach is to
write COMB iteratively and is to be recommended if time is an
issue. This is left as Exercise 15.1. A rather bizarre method
for computing COMB relies on pattern matching. This too is
left as an exercise.

i ,

I' Program 'I We have seen several methods of representing
II 15.2 " numbers, the Roman, system. the positional
" DECOMB II number systems (BASEB and BASE10, Progs. 2.4
, , and 2.5) and the factorial number system
(PERMUTATION, Prog.12.1 and its prologue). The combinatorial
DYm~er system is yet another number system where a sequence of
integers can be used to represent a presumably larger integer.
Given a fixed number n called the !!2m~, one can represent ~n.Y
positive integer K by a vector Kn, ••• , Kz , Kl such that

r , r , r ,
I Kn I I K2 I I Kl I

K , , + + , I + I I (15.4) , n , , 2 , , ,
L .J L .J L .J

Moreover, if we add the restriction that:

Rn > ... > K2 > Kl ~ 0 (15.5)

the representation is unique. The values Kn, ••• , K2 , Kl are
called coget§ (as opposed to digits). The combinatorial number
system can be used to find a uniformly distributed evaluation
of poker hands (POKEV, Prog. 17.6) and this relies mainly on
the fact that coget.s are monotonically decreasing.

To see that the representation is unique (for a fixed nome)
note that if the cogets assume their least value (Kl=O, K2 =1,
••• , Kn=n-1) we obtain K=O. Next, we assert that if the cogets
assume their largest value with Kn=M, then K will be incremen
ted by exactly one if Kn is increased by one (to M+1) and all
other cogets.are made as low as possible. That is:

r , r , r , r , , M , , M-1 , I M-n+1 I , M+1 , , , + ., , + ... + I I + 1 I , , n , , n-1 , , , I n I
L .J L .J L .J L .J

That this is true follows from the rule of forming Pascal's
triangle, viz.

r , r , r , , M+ 1 , , M I I M , , , , I + , , (15.6) , n I I n I I n-1 ,
L .J L .J L .J

The second of the two terms on the right is decomposed ac-
cording to this formula and this is continued until the ' 1 ' is
reached.

Finally note that increasing Kl by 1 increases K by 1. From
these three observations, it follows that all integers are
representable and that their representation is unique.

DECOMB(S) will regard S as a sequence of cogets, i.e. a number
in the combinatorial number system, and will return its cor
responding integer value. Cogets are represented as characters
from an alphabet (COMB_ALPHA) much as we have previously done
with positional representations.

Page 322 Chapter 15 NUMB=E_R;S ______________ __

r---~----~ t DECOMB(S) returns the decimal number equivalent of the ar-
t gument S regarded as a representation in the combinatorial
I number system. ,

DEFINEC'DECOMB(S)T')
COMB ALPHA 'O·123456189ABCDEFGHIJKLMNOP'

- : (DECOMB_END)
DECOMB S LEN(1) • T = :F(RETURN)

COMB_ALPHA ~K T :F(FRETURN)
DECOMB = DECOMB + COMB(K,SIZE(S) + 1) : (DECOMB)

DECOMB_END

Nam~
COMB

!Y~
Function

Wheruefined
Program 15.1

For additional information concerning the combinatorial number
system see Lehmer [1964] or Whitehead (1913] •

• ,
tt

" "
Program

15.3
INFINIP " II

It

INFINIP is a package of infinite precision
arithmetic (i.e. integer) functions. Large
integers are represented by strings of
digits and so the size of integers permitted

is not quite infinite but is limited by the maximum length of
strings. This is generally quite large so that for all intents
and purposes the precision may be regarded as infinite.

INFINIP redefines virtually all arithmetic operators to handle
large integers in an upward compatible way. This facilitates
their use, and makes them plug-in-able to rQutines that have
already been written using conventional facilities. It also
serves to make the algorithms themselves clearer, since they
are written, in part, recursively.

INFINIP has applications
.wall-paper. For example,
restrictions encountered
BASE10, Progs. 2.4 and
(PERMUTATION, Prog. 12.1)_.

in addition to generating numerical
it can alleviate some rather severe
in base conversions (BASEB and

2.5) and permutation generation

OUr basic operating philosophy in writing INFINIP was not
speed. A linked-list approach would probably have b~
considerably faster. OUr main goal was to produce a legible
and flexible package that could serve (a) to produce the ef
fect and (b) as a kind of extended precision laboratory in
which different algorithms could be tested. Techniques used
to implement infinite-precision arithmetic can also be found
in Knuth (Vol. 2], Blum [1965], and Collins [1966].

Program 15.3 - INFINIP Page 323

INFINIP - an infinite (just about) prec1s1on arithmetic
package. The following operators and built-in functions
are redefined.

REDEFINE('-I,'MINUS(X)Y')
REDEFINE (, I GT (X, Y) ')
REDEFINE (, , EQ ex, Y) ,)
REDEFINE (, I GE (X, Y) ,)
REDEFINE (, 'NE (X, Y) ')
REDEFINE (" LT (X, Y) ')
REDEFINE (, 'LT (X, Y) ')
REDEFINE (, , L E (X, Y) ')
REDEFINE('-','DIFF(X,Y) ')
REDEFINE('+','SUM(X,Y)X1,X2,Y1,Y2,K')
REDEFINE('*','MULT(X,Y)X1,X2,K')
REDEFINE('/','DIV(X,Y)Xl,X2,Y1,Y2,T,T1,T2,KX,KY')
REDEFINE (,'REMDR(X,Y) ')

Pattern definitions:

SIGN_OFF
LDG_ZEROS
NO_DIGITS

utility functions

POS (0) ,_.

BR EAK (, 1 23456189 ') , RTAB (1)
8

DEFINE ('SMALL() ')
DEFINE ('SPLIT (NAME, PAT) ') : (INFINIP_END)

SMALL() will succeed if X and Yare small integers defined
strategically as integers whose sum or difference will not
cause overflow. Tactically, they are defined as numbers
whose digits do not exceed NO_DIGITS.

SMALL
+

(LE. (SIZE(X) ,NO_DIGITS)
LE. (SIZE(y),NO_DIGITS» :S(RETURN)F(FRETURN)

SPLIT (NAME,PAT) will split the named string into two
parts, NAME1 and Nk~E2 (after removing leading zeros). It
returns the amount of the split measured from the right.
The split is determined by the incoming pattern (PAT); if
this is null the split is approximately half. L-__ ~

SPLIT PAT IDENT(PAT) LEN (SIZE ($NAME) / 2)
$NAME (PAT' ") • $ (NAME 1) CDSPLIT (SPAN (10 I) , I)

+ REM • $ (NAME 2)
SPLIT SIZE(~NAME) - SPLIT : (RETURN)

Unary minus - Remember, REDEFINE establishes MINUS. as the
old MINUS built-in.

MINUS MINUS
MINUS
MINUS
MINUS

SMALL() MINUS. (X)
X
SIGN_OFF
I_I X

:S (RETURN)

: S(RETURN)
: (RETURN)

Page 324 ______________ ~C=h,apter~15~ ___ NUMB=ER~S~ __ _

The predicates - They assume integers in normal form (i.e.
no leading zeros).

GT SMALL () :F (GT_ 1)
GT. (X, Y) :S(RETURN)F(FRETURN)

GT_ X SIGN_OFF :F (GT_2)
Y SIGN_OFF :F (FRETURN)
SWAP (. X,. Y)

GT_2 Y SIGN OFF :S (RETURN)
LGT(LPAD(X,SIZE(Y) ,'0'),

+ LPAD(Y,SIZE(X),'O'» :S (RETURN) F (FRETURN)

EQ SMALL () :F (EQ_ 1)
EQ. (X, Y) :S(RETURN)F(FRETURN)

EQ_l IDENT (X, Y) :S(RETURN)F(FRETURN)

GE -. (-.GT (X, y) ... EQ (X, Y)) :S(RETURN)F(FRETURN)
NE EQ (X, Y) :S(FRETURN)F(RETURN)
LT GE (X, Y) :S(FRETURN)F(RETURN)
LE GT (X, Y) :S(FRETURN) F (RETURN) ,
, DIFF (X, Y) Let SOM (X, y) handle it.

DIFF DIFF X + -y : (RETURN) ,
, SUM (X,Y) There are essentially two cases: plus plus
, and plus minus. We first reduce to cases.

SOM SOM SMALL () SOM. (X, Y)
SUM = LT(X,O) -(-X + -Y)
Y SIGN_OFF =

: S (RETURN)
:S (RETURN)
: S (SUM_1)

Here is plus plus. Simply divide and conquer.

(LT (X, Y) SWAP (. X,. Y»
R = SPLIT (. X)
Y = Y + X2
SPLIT(.Y,RTAB(R»
SOM (Y1 + Xl) LPAD(Y2,K,'0') : (RETURN)

Here is plus minus.
complement of Y.

Make sure X ~ Y. Then add the 10's
L---__ --J

SUM_' SUM
Y
SUM
SUM

= GT (Y , X) - (Y - X) :S (RETURN)
= LPAD (Y, S IZ E (X) , '0')

X + 1 + REPLACE(Y,'0123456789','9876543210')
'1' LDG_ZEROS REM. SUM : (RETURN)

MULT(X,y) Multiply is fairly simply written especially
if we concentrate on reducing the size of one argument at
a time. Note that the test for small size is somewhat
different here.

MULT
+

MOLT LE(SIZE(X) + SIZE(Y),NO_DIGITS)
MOLT. (X,Y) :S(RETURN)

MULT
MULT
(GT (Y,X)

MULT

LT(X,O) -x * -Y
LT (Y, 0) - (X * -Y)

SWAP (• X, • Y))
EQ (Y, 0) 0

K
MULT
MULT

SPLIT (.X)
(Y * X,) DUPL (• 0 • , K)

MULT + X2 * Y

: S (RETURN)
: S (RETURN)

: (RETURN)

DIV(X,Y) First we handle negative arguments much as we
did with multiply. The next part, more than any other
section requires 'some explanation. Imagine a long division
operation with two (rather large) digits Y1, Y2 being
divided into two other large digits X1, X2. The trial
divisor T1 (on top of the line) is multiplied by the
divisor Y and subtracted from the left end of X to produce
error term T. This term is then divided by Y to obtain a
final adjustment.

'--
DIV DIV SMALL 0 DIV. (X ,Y) : S (RETURN)

DIV LT (X,O) - (-X / Y) :S (RETURN)
DIV LT(Y,O) - (X / -Y) :S (RETURN)
DIV GT (Y,X) 0 :S (RETURN,
KY SPLIT(.y,LEN(NO_DIGITS / 2) , REM)
KX SPLIT(.X,LEN(NO_DIGITS»
T1 X1 / Y1
T2 DUPL (• 0 ., KX - KY)
T X «T' * Y) T2)
DIV T1 T2
T = LT (T, 0) T + 1 - y
DIV DIV + (T / Y) : (RETURN)

And last but not least, REMDR.

REMDR REMDR
INFINIP_END

X (X / Y) * Y : (RETURN)

Names referenced
~y-INFINIR~ ----

~~~ 
~EDEFINE 

IY~ 
Function 

Where defined 
program-14:S-

'WII 
I I 
IIII 
, I 

" " 

SWAP 
LPAD 

Function 
Function 

Program 3.14 
Program 3.2 

EALs and Mixed Mode REALs consist of three fields, 
a sign bit, the ~~EQngn~ (or 

characteristic) and the mantissaD The exponent in
dicates the extent that in--assumed £2§§ must be 
raised whereas the mantissa represents the most 
significan~ bits of the number. In symbols~ 

NUMBER 
exponent 

rrantissa * base 

REALs, of course~ vastly increase the range of numbers 
representable at the sacrifice of precision. While the par
·ticular details of represent-ing floating point numbers differ 



Page 326 

from machine to machine, there are none-the-less a few general 
practices which most machine manufacturers adhere to: . 

The three fields of a floating point number are arranged in 
their order of significance and adjusted so that comparison of 
two quantities can be made using the same arithmetic com
E~~st2~--s~~eger~. This places the sign bit in the first 
position, followed by the exponent and then the mantissa. To 
facilitate comparisons, the exponent is represented in so
called ~~~-notatiQU with the most negative exponent 
represented as 00 ••• 0 and the highest as 11 ••• 1. Also, toe 
mantissa is normalized to produce, for any given number, a 
unique exponent, again, so that the comparison can be carried 
out. The mantissa is normalized by shifting it to the left 
and decreasing the exponent until further shifting destroys 
information. The mantissa is generally assumed to represent a 
fraction just less than 1. with a binary base, the lead digit 
of the normalized number is always 1 and so represents redun
dant information. It can, and actually has been, omitted on 
at least one machine (the PDP-11). By convention, a floating 
point 0 is represented as an all-O word. On the PDP-11 it is 
the only bit pattern not otherwise used. 

The IBM 360 uses a base of 16 and hence the normalization 
process may not produce, in the mantissa, a leading bit of 1. 
Rather, the leading four bits must contain a 1. For this 
reason, numbers whose leading hexadecimal digit is low (such 
as 1 or 2) cannot be represented very accurately (the error as 
a fraction of the number is relatively large) and hence the 
need exists on the' 360, more than on most other machines, for 
double and quadruple precision. 

We will speak (loosely) of the ~ange of REAL numbers and by 
this we will mean roughly the extremes of values the REALs can 
achieve. These can be very high, very low or very negative 
and are governed almost solely by the base and the maximum ex
ponent. We will speak of the precision P as meaning the binary 
precision given generally as: 

P M Log2 B 

where M is the size of the mantissa in bits (including in
visible bits) and B is the base of the exponent. Approx
imately, the preC1S10n is the negative log (to the base 2) of 
the relative error of a number due to the finite resolution of 
the representation. 

It should be noted that integers up to 2**M, or so, can be 
represented exactly as REALs and that operations such as plus, 
minus and multiply are exact provided no intermediate results 
exceed this limit. 

The rules governing mixed expressions in SNOBOL4 are similar 
to those in Fortran. If the two operands of a binary arith
metic operator (other than **) or a binary comparator (GE, EQ, 



Programs 15.4 & 15.5_- FLOOR & CEIL ____ P=a~.211 

etc.) have different types (one INTEGER and the other REAL) 
then the integer is converted to REAL before the operation 
proceeds. SPITBOL contains a DREAL type (double precision) 
and if one of the arguments to such an operation is DREAL then 
the other is converted if necessary to DREAL. 

One important difference with Fortran (or PL/I for that mat
ter) is that the types are not declared but are contained as 
part of the value. This means that it is possible to write a 
routine which can accept either type as argument and return a 
correct result. For example, assuming we wish to write a 
routine RECIP(X) which will return the reciprocal of the num
ber X, we can simply write: 

RECIP RECIP 1.0 / X : (RETURN) 

This routine will operate correctly ~lether the argument is 
INTEGER, REAL, or DREAL. 

i i 
, , Programs , , 
" 15.4 S 15.5 " 
" FLOOR & CEIL " . , 
the integer conversion 

F100R (X) is defined as the largest in
teger not greater than X. CEIL (X) is 
the smallest integer not less than X. 
They are both related (nonlinearly) to 
facility which truncates toward zero. 

DEXP('CEIL(X) = -FLOOR(-X) ') 

DEFINE ('FLOOR (X) ') 
FLOOR FLOOR CONVERT (X, 'INTEGER') 

GE (X,O) 
FLOOR NE(X,FLOOR) FLOOR - 1 

FLOOR_END 

Names referenced 
~-:noORcEIL:--

Name 
DEXP 

!l!12!:l 
Function 

: (FLOOR_END) 

:S (RETURN) 
: (RETURN) 

Where defined 
prograini''ii:''1 

FLOOR and CEIL, in addition to illustrating how 
CONVERT(,'INTEGER') behaves, are of interest in their own 
right. Below, let N be an integer and let X be a real. Then: 

N ~ CEIL (X) 
N < CEIL(X) 
N S FLOOR (X) 
N > FLOOR (X) 

<==> 
<==> 
<==> 
<==> 

N ~ X 
N < X 
N S X 
N > X 

(15.7) 

These identities can be used to solve some interesting integer 
inequalities in a straightforward fashion. (See Exercise 
15.9.) 



Page 328 Chapter 15 NUMBERS __ _ 

III 
I 
I 
I 
I 

A transcendental function 
is one that cannot be writ

ten (finitely) using the four fundamental-operations 
of addition, subtraction, multiplication and divi
sion. Examples include the sine and other 

ranscendental Functions 

~----~ trigonometric functions, logarithms, etc. These may 
be represented as an infinite series (power series, Taylor 
series) of terms involving X**n where n = 0, 1, 2, ••• and X 
is the argument. This represents a readily available com
putational method which is often the best' technique if the 
precision of the machine is unknown; i.e. if the computation 
is to be machine-independent or if it is to be equally valid 
for single and double precision. 

Where the precision is known, a much more efficient technique 
is the so-called Chebyshev interpolation method. Since most 
libraries are written for a specific machine, this method is 
widely used and a little knowledge is helpful if only for the 
purpose of pirating existing code. Let us assume that we wish 
to approximate the function f(x) with an nth degree polynomial 
p(x) and, moreover, suppose that we wish p(x) to be the best 
such approximation in the so-called mini=ID~ sense. That is, 
the maximum deviation from f(x) in some fixed range should be 
a minimum for all polynomials of that degree. We can im
mediately deduce a property that p(x) must have. Suppose some 
polynomial q(x) existed which had the same degree as p(x) and 
had the same lead coefficent of x**n and was such that the er
ror of this approximation, f(x) - q(x), varied from a maximum 
of +M to a minimum of -M back to +M, to -M, etc. suppose that 
there are exactly n+1 'such maxima. Such polynomials can always 
be constructed, as we will see. Now suppose that q(x) is not 
as good an approximation as P(x). Then each of the local max
ima are greater deviations than the largest deviation of f (x) 
- p(x). That means that 

(f(x) - p(x» - (f(x) - q(x» q (x) - p(x) 

must oscillate back and forth across the abscissa; this means 
that there are n solutions to an (n-1) degree equation. This 
is impossible and hence we conclude that q(x) had to be at 
least as good in the mini-max sense as p(x). This is quite 
startling in view of the fact that no assumptions at all about 
the magnitude of M were made. polynomials which oscillate 
about the axis n times over a given interval are derived from 
the oscillatory nature of the sine wave and are known as 
Chebyshev polynomials. We have no time or space to pursue this 
fascinating topic in greater detail but we may recommend Fox 
and Parker [1968] or Hastings [1955] for further reading. 

The result of a Chebyshev approximation is a polynomial of the 
form 

2 n (15.8) 
C + Ct X + Cz X + ••• + Cn X 



_______________ Transcendental Fu~n~c~t~i~o~n~s= _____ __ 

which is actually computed as: 

C + X * (C 1 + X * (C 2 ••• ) ) 

to minimize operations. 

It is interesting to note that approximations of this kind can 
be found by an adaptive process in which successive approxima
tions converge to the desired polynomial. Fox and Parker 
[1968, p.74] describe such a procedure originally due to 
Novodvorskii and Pinsker. Hence it would be possible to write 
a SNOBOL4 program to produce coefficents automatically for any 
given function, range and desired accuracy. 

For a known function and a fixed precision, the Chebyshev in
terpolation coefficients can usually be looked up. Hastings 
[1955] is an excellent source. If unavailable, Handbook [NBS] 
should be adequate. For any specific machine, there has 
probably been some work done towards constructing a 
mathematical library, and such sources, if they exist, can 
often provide routines carefully tailored for a specific en
vironment. One excellent source for the IBM 360 is IBM (360f]. 

The functions to follow are machine independent programs for 
computing many of the common transcendental functions. The 
results returned should be as precise as the arguments given. 
with the exception that OREAL precision in some cases may not 
obtain merely because one or more internal constants have less 
than OREAL precision. This difficulty is easily overcome and 
some exercises explore such modifications. 

One problem that arises in writing machine-independent al
gorithms is determining the proper accuracy. For example, 
suppose we wish to compute the sum of the series: 

SUM X + X2 + X3 + (15.9) 

where 0 < X < 1/2. Ignore for the moment that the sum of the 
series is 1/(1-X) and suppose that we wish to calculate the 
same result in brute force fashion. How do we know when to 
stop adding new terms? We might think of setting up a 
PRECISION variable (adjusted for each machine) such that when 
the terms of the series fall below the quantity PRECISION * 
SUM, where SUM is the partial sum so far computed, we quit. 
This method has the disadvantage of being machine-dependent 
and does not give double precision results if X is OREAL. 
Hence we will avoid this method and employ a scheme to let the 
machine tell us when to quit. This will have the happy 
property of adapting to any machine and any precision. Our 
test is~ in effect: 

EQ(SUM , SUM + X ** n) 

which means that in order to add X**n to our number we have to 
shift it so far to the right that all its ." tits are lost. 
This is implemented by saving the old value of SUM in a tem-



Pag,g 330 

porary (T) and comparing, updating and branching all in the 
same statement at the base of the loop. The following state
ments compute the SUM of (15.9) according to this method. 

T 0 
SUM 0 
TERM = 1.0 

LOOP TERM = TERM * X 
SUM = SUM + TERM 
T NE(SUM, T) SUM :S (LOOP) 

The reader is cautioned that this stopping test is not equiva
lent to: 

EQ(TERM,O) 

If continually multiplied by X, TERM will ultimately become 0 
(or raise machine underflow which many SNOBOL4's regard as an 
error) but not before it falls below the range of small num
bers (a. typical value is 2- t28) whereas to be negligible in 
the computation it need merely be below X * 2-25 or so. Hence, 
even if underflow were not raised, the test would be quite 
inefficient. 

r- , 
II Program 'I SQRT(Y) will return the square root of the 
II 15.6 'I REAL number Y. The returned precision will 
I I SQRT , I equal the precision of Y. The algorithm used 
I I is an excellent example of Newton~~od 
for solving implicit equations, which goes as follows. Suppose 
we wish to solve the equation: 

f (x) = 0 

for x, and suppose further that, given x, we can compute f(x) 
and the derivative f·(x). starting with an estimate, Xl' for 
x, we can compute f(Xt). Since this is supposed to be zero, 
we can estimate how far we are off by dividing this number by 
the slope f' (Xt). We can then modify Xt to obtain a new, and 
closer, estimate X2 according to the formula: 

X2 

with the new estimate, a new error and slope are calculated 
and the process is repeated until the desired accuracy is ob
tained. In many cases, the computation converges rapidly to a 
correct solution. The rate of convergence and the question of 
convergence are decided by algebra for any particular case. 
To determine if the desired accuracy has been reached, we will 
wait until 



r , , f (xn) I 
EQI Xn xn I , fl (xn) I 

L .J 

As previously stated, this will adapt to any machine and any 
argument. 

To obtain the initial estimate, Xl' we draw a line tangent to 
the curve, x = y2 at the point (1,1). This curve, y = (x+1)/2, 
yields an estimate of the square root which is good for x 
close to 1, but quite poor for very large or very small values 
of x. While Newton's. method will eventually converge on the 
correct value, the error is reduced by only a factor of 2 for 
large errors; this contrasts with a factor of 2/e for small 
errors (See Exercise 15.11). Hence, for efficiency purposes, 
the numbers are brought into an acceptable range by (a) inver
ting, (b) dividing by 4096, and (c) dividing by 16. Powers of 
two are used for range reduction, as opposed to powers of 10, 
as these operations can be done exactly on a binary machine. 
On the IBM 360/370, the exponent is a power of 16 (for this 
reason, it is sometimes regarded as a hexadecimal machine) and 
hence, powers of 16 are used where possicle. 

DEFINE(ISQRT(Y)T,ERR,SLOPE') 

Entry point: Range .reduction and initialization. 

SQRT LT (Y,O) 
EQ (y,O) 
SQRT = LT(y,0.05) 
SQRT GT(Y,4096) 
SQRT = GT (Y, 16) 
SQRT = (Y + 1.) / 
T SQRT 

1. / SQRT (1. / Y) 
SQRT(Y / 4096.) * 64. 
SQRT(Y / 16.) * 4. 
2. 

:S(FRETURN) 
:S (RETURN) 
: S(RETURN) 
:S (RETURN) 
: S (RETURN) 

Successively increase the precision of our estimate 

SQR'I_ 1 ERR = 
SLOPE 
SQRT 
T = 

SQRT_END 

~ilogu~ 

SQRT * SQRT - Y 
2. * SQRT 
SQRT - (ERR / SLOPE) 
LT(SQRT,T) SQRT :S(SQRT_1)F(RETURN) 

The speed of SQRT can be increased (by about 30%) by an al
gebraic condensation of the inner loop. This is left as an 
exercise. 



~ge 332 

r----------.t 
" Program I' 
'I 15.7 11 
I' TRIG I' 

____ ~C=h~ter 15 ____ ~N~UM~B::E~R~S __ _ 

By elementary trigonometry, if we can obtain 
anyone of the six trigonometric functions, 
viz. sine, cosine, tangent, cotangent, 
secant or cosecant, we can obtain them all. 

Cotangent, secant and cosecant are merely reciprocals of tan
gent, cosine and sine respectively and are therefore not 
represented as functions here. Tangent and cosine are given 
in terms of the sine. 

The algorithm for sine is from Beeler, et al (1972, p. 75] and 
relies on the following trigonometric identity: 

sin A 3 sin (A/3) - 4 sin3(A/3) 

The identity is normally given .as . sin 3A and we speak of 
'triple-angle' formulas. Collections of such identities are 
available in many handbooks such as Handbook'[CR] and Handbook 
[NBS]. This formula is a recursive formula for obtaining the 
sine of an angle in terms of a smaller angle. If the angle 
ever becomes small enough we can say it equals itself (the 
angle is presumed to be given in radians and we assume the 
reader knows that one radian is 57.30 or 180/PI degrees). 
Again, the issue of when to terminate arises and this is done 
when s~btracting off 4*sin3 (A/3) does not modify 3*sin(A/3). 
But this test must be made befQ~ sin(A/3) is called or else 
we will have an infinite recursive plunge. Hence we do the 
test on A/3. If equality obtains for A/3 it must also obtain 
for the slightly smaller value sin(A/3). Thus the algorithm 
terminates when 4* (A/3) 3 is insignificant compared with 
3*(A/3), or, equivalently, when 4*A2 is insignificant compared 
with 27. with 25 bits of precision, for example, this happens 
if A is 2-12 or so. Since A decreases by thirds, we will re
quire eight recursive calls or so before the function is 
evaluated. This will depend somewhat on the original argument. 
By using other identities, the amount of recursion required 
can be considerably reduced. See Exercise 15.12. 

DEFINE ( , SIN (A) K' ) 
DEFINE ('SIN. (A) ') 
PI. 3.14159265358979 

Entry point: reduce range to [0, 2 PI.) L-______________________________________________________________ ~ 

SIN SIN 
SIN 
K 
SIN 

LT(A,O) -SIN (-A) :S(RETURN) 
LT (A, 2 * PI.) SIN. (A) : S (RETURN) 
CONVERT(A / (2 * PI.) , 'INTEGER') 
SIN. (A - K * 2 * PI.) . : (RETURN) 

Test and return or plunge recursively and adjust. 

SIN. SIN. 
A 
SIN. 

EQ(27., 27. - 4 * A * A) A 
SIN. (A / 3.) 

A * (3 - 4 * A * A) 

:S (RETURN) 

: (RETURN) 



Program 15.8 - ARC Page 333 

Standard identities yield other trigonometric functions. 

DEXP (' COS (A) 
DEXP ( 'TAN (A) 

Names referenced 
liLTRIG: ----

ID2ilogy~ 

= SORT(1 - SIN(A) ** 2)') 
SIN (A) / COS (A) .) 

!i2!!!~ 
SQRT 
DEXP 

!Y~ 
Function 
Function 

Where defined 
program15.6 
Program 14.1 

The reason for the separate recursive routine (SIN.) is to 
save time (no need for range checking after its done 
originally) and space on the recursive stack (no need to con
tinually push K). 

. , 
II Program II The functions ASIN(X), ACOS(X) and ATAN(X) 
II 15.8 I I will return respectively the arc sine, arc 
I I ARC II cosine and arc tangent in radians. As was 
L- the case with the trig functions, a no nob-
vious computation is required for one of the functions, and 
standard trig identities produce the other two. Since. we al
ready have sine and cosine we could use Newton's method to 
compute the arcs. Alternatively, we could invert the recursive 
procedure used to compute the sine. For variety, however, we 
will leave these options as exercises and consider yet another 
method for producing a machine-independent computation of the 
arcs. 

A power series expansion for arc sine X is [Handbook, NBS, p. 
81 ]: 

X + + + + ••• (15.10) 
2*3 

While this series converges for all ,XI < ·1, convergence is 
slow if X is near one. For X < 0.5, however, the convergence 
rate is quite acceptable requiring at most about P/2 terms 
where P is the precision in bits. 

A power series expansion for arc cos(1-Z) [Handbook, NBS, p. 
81] is 

r , 
.5 , Z (1) (3) Z2 (1) (3) (5) Z3 I 

(2 Z) I 1 + + + + ••• I 
I ql (3) q2(5) (2!) 4 3 (1)3! I 
L ... 

This series converges more rapidly in the worst case that the 
previous one. It makes use of the fact that the parabolic 



_pa~q~e~3~3~4 _________________ ~C~h~a~p~t:~e=r __ l~5~. ______ NUMBERS 

the sine curve. The power series expansion is actually for 
the deviation between the two. After range reduction, the 
worst case value is Z = 1 and convergence may be expected in 
about P - Lo92 P steps. Hence, we will define the arcs in terms 
of the power series for arc cosine. 

The two methods actually complement each other and together 
can provide a method of keeping the number of iterations below 
P/2. This is left as Exercise 15.16. 

DEFINE ('ACOS (X) K,TERM,T') 
PI. = 3.14159265358979 : (ACOS_END) 

Entry point: Reduce the range to consider only quantities 
in the first quadrant. 

ACOS ACOS = LT(X,O) PI. - ACOS(-X) :S(RETURN) 

Initialize for the loop starting with label ACOS_1. 
is a power series for arc cosine. 

, 
This I 

I ~~~_________________________________________________________-J 

ACOS 
TERM 
X 
K 

ACOS_1 TERM 
ACOS 
K 

ACOS_END 

T 
ACOS 

= 
= 

1.0 
1.0 
1.0 - X 
1 
TERM * (2 * K - 1) 
ACOS + TERM / (2 
K + 1 
NE(ACOS,T) ACOS 
SQRT(2 * X} * ACOS 

* X / (4 * K) 
* K + 1} 

:S (ACOS_ 1) 
: (RETURN) 

-, 
Arc sine and arc tangent are defined in terms of arc I 
cosine. J 

DEXP('ASIN(X) = (PI. / 2) - ACOS(X) '} 
DEXP (. ATAN (X) = ACOS ( 1. / SQRT (1 + X * X» ;' 

+ • ATAN L~(X,O) -ATAN ; ') 

Names referenced 
by ARC: 

• I I Program I I 
II 15.9 II 
II LOG II , . 
tain a log to an 

Nam~ 
SQRT 
DEXP 

1YQ~ 
Funct~on 

Function 

Where defined 
PrOgram15.'"6 
Program 14.1 

LOG (X,B) will return the log of X to the 
base B. If B is null (or absent), the 
natural log is returned. Given a method of 
obtaining logs to some base B, one can ob-

arbitrary base B1 by the identity: 

LOG(X,B1} LOG (X,B) / LOG(B1,B} 

and so the problem reduces to finding logs to so~e base B. 



Program 15.9 - LOG 

If one were coding in assembly language, a natural choice on a 
binary machine would be base 2. !his is because the exponent 
part of the real number is the integer part (actually the 
floor plus one) of the logarithm and is available with no com
putation. Moreover, the fractional part of the logarithm can 
also be plucked out of the exponent after successive squarings 
of the mantissa in a method described by Gasper in Beeler 
[1972, p.76]. 

Unfortunately, SNOBOL4 cannot generally 'get at' the exponent 
of a floating point number (except for SITBOL) • An integer 
approximation to the base 10 logarithm can be found by coun
ting the number of characters in a string representation of 
the number. Thus SIZE (CONVERT (X, 'INTEGER'» returns the 
ceiling of LOG10 X. If X is larger than the largest integer, 
however, it must be divided down. One can translate Gosper's 
method to operate on a decimal machine (which is what we have 
at this point) by raising the remainder to the 10th power for 
each succeeding digit. This is the method actually used • 

..- --, 
I LOG(X,B) will return the logarithm of X to the base B. I 
I LOG (X) will return the natural logarithm of X. I 

+ 

.. 

LN_l0 = 2.3025850929940456840 
DEXP (' LOG (X, B) NE (B, 0) CLOG (X) / CLOG (B) ;' 

LOG EQ(B,O) CLOG (X) * LN_l0 

CLOG will return the common log (base 10) of X. 

DEFINE ('CLOG (X) FACTOR,T,K') 

. , . 

Entry point: FACTOR is initialized to 1.0 with a precision 
equal to the precision of the argurr.ent X. Here we handle 
fractional cases (negative logs) in the event that either 
the original number was below 1.0 or the number X goes 
fractional as a result of the division at CLOG_4. 

-J 

-, 
I 

L-----______________________________________________________ ___ 

CLOG X X * 1.0 
FACTOR X / X 

CLOG_l X LT (X, 1) 1 / X :F (CLOG_;) 
FACTOR -FACTOR 

r-------------------------------------------------------------------, 
Here's the main loop. We determine the number of digits I 
(minus one) to the left of the decirral (K), which we may I 
regard as a crude approximation of the log. Reduce the I 
log of X by this much by dividing by 10 ** K. Then find I 
the log of this reduced quantity. I 

L----- -J 

CLOG_2 EQ (X. 1.0) : S (RETURN) 
K = SIZE (CONVERT (X. 'INTEGER'» - 1 : F (CLOG_ 4) 
EQ(K.O) . :S(CLOG_3) 
CLOG CLOG + K * FACTOR 
T NE (CLCG. T) CLOG :F(RETURN) 
X X / 10. ** K 



Page 336 NUMBERS 

CLOG_3 FACTOR FACTOR / 10. 
X = X ** 10 : (CLOG_1) 

If X is larger than the largest integer, we come here. 

10 CLOG_4 K = 
X 
CLOG 

CLOG_END 

X / 10. ** K 

Names referenced 
!2:y_LOG: ----

Epilogue 

CLOG + K * FACTOR 

Name 
DEXP !Y~ 

Function 
where defined 
program14:1 

Since the characteristic of a number to the base 10 can be ob
tained by inspection, the method above is suitable for com
puting logorithms on the four-function desk calculator. The 
reader is invited to try a few ex~mples for himself. 

Another method for computing log is the power series: 

In 1+x x - x 2/2 + x3/3 - x4/4 + ••• (15.11) 

To use this power series one must reduce large x until they 
come close to O. This can be done in part by the SIZE method. 
To bring x yet closer to 0, the identity: 

can be used. 

• 
II 
II 
II 

Program 
15.10 
RAISE 

, 
II 

" II 

LOG (X) 2 * LOG (SQRT (X) ) 

RAISE (X,Y) will raise X to the power Y. This 
function is entirely redundant if the second 
operand of the ** operator is permitted to 
be REAL. It is not in many versions of the 

language and so RAISE must be included in our set. Indeed, 
its presence may suggest alternative methods for computing 
some of our functions (certainly SQRT) • 

If one can raise some number, Z, to an arbitrary power, one 
can then define RAISE(X,Y) as: 

RAISE(Z, LOG(X,Z) * ~ 
The number we will choose as Z is the base of the natural logs 
(normally designated e) and a special function EXP(X) will 
return e raised to the xth power; EXP is normally called the 
exponential function. 

EXP(X) can be written as a Taylor series: 

1 + X + X2/2! + X3/3! + ••• 



Exercises for chaE!;~.2-. ________ ~~--1n 

which converges rapidly for X S 1. For X > 1, we simply obtain 
the integer part (the floor) I and use the rule: 

X X-I I 
e e * e 

DEXP ('RAISE (X,Y) = EXP(Y * LOG (X» ') 

DEFINE('EXP(X)TERM,K,T') 
NAT_BASE = 2.718281828459045 

Entry point for EXP. Reduce the range to [0,1]. 

EXP EXP 
R = 
EXP 

LT (X, 0) 1. / EXP (-X) 
GT(X,1) CONVERT (X, 'INTEGER') 

EXP (X - R) * NAT_BASE ** K 

:S(RETURN) 
:F(EXP_1) 
: (RETURN) 

Initialize for the power series which is summed in the 
loop headed by EXP_2. 

EXP 1 
EXP:2 

TERM = 
EXP 
K = 
TERM = 
T = 

N~ refe~~g 
12L.RAISE: 

1. 
EXP + TERM 
K + 1. 
TERM * X / K 
NE(T,EXP) EXP 

Nam~ 
LOG 
DEXP 

:S(EXP_2)F(RETURN) 

!Y~ 
Function 
Function 

Wh~e defined 
Program 15.9 
Program 14.1 

11111111111111111111111111111111111111111111111111111111111111 
1111111111111111111111111 EXERCISES 111111111111111111111111 
11111111111111111111111111111111111111111111111111111111111111 

r , 
, Exercise 15.1 , Rewrite COMB (Prog. 15.1) so that it com
L- putes iteratively. Do not separately com
pute numerator and denominator as this may result in an 
unnecessary overflow. Also do not divide numbers that are not 
divisible • 

• , Exercise 1"5.2 A rather unusual method for computing some 
L- combinatorial functions was shown to' the 
author by Dennis Allen. It uses pattern matching to count 
combinations. The pattern matcher will undergo a number of 
attempts to match and this can be used (in fullscan mode) to 
compute (however inefficiently) some combinatorial functions. 
For example, let INC(.N) increment the variable N by 1. Then, 

&FULLSCAN 1 
N 0 
S LEN(1) *INC(.N) FAIL 



Pa~ 338 ________________ ~C=h_a~pter 1.~5~---~N~U~MB:E=R~S 

will count the number of characters in the string S. 
COMB (N,M) so that it computes the function this way. 

Rewrite 

Exercise 15.3 What is the maximum number representable in 
the combinatorial number system with nome N 

where SiZE(COMB_ALPHA) = L. 

Exercise 15.4 Write a function COMBDE(K,N) which converts 
integer K into a representation in the com

binatorial number system with nome N. If there are insufficent 
characters in COMB_ALPHA, COMBDE should fail. 

i 

Exercise 15.5 I Since SPITBOL does not allow redefinition 
of operators, the -INFINIP package (Prog. 

15.3) must be modified to run under that processor. (a) What, 
for example, would DIFF look like under such a modification? 
(b) How many statements in DIV would require modification? 

Exercise 15.6 Augment the INFINIP package by adding the 
** operator. Do llQ! multiply out the in

dicated number of times but use the rule: 

N 
X 

(N/2) *2 
X * 

REMDR(N,2} 
X 

(15.12) 

Exercise 15.7 In the DIV procedure of the INFINIP 
L- package, a better estimate of the trial 
quotient can be obtained by making the first digit of Y higher 
(better to be 9 than 1). This can be done by multiplying both 

X and Y by the same quantity. See Knuth (Vol. 2, p. 235]. 
Implement a scheme to make sure that the first digit of Y is 
at least 5 (requires only one additional statement if SllBSTR 
(Prog. 3.9) is used). 

• i 

I Exercise 15.8 I Write a function ROUND (X) which will return 
the nearest integer to X (on ties, pick 

either). This requires three statements. 

Exercise 15.9 Let X, Y and Z be positive real numbers. 
For what values of X will 

FLOOR (Y / X) Z 

Using the relationships in (15.7) and the fact that 

N > M <==> N ~ M + 1 

for all integer Nand M, give a step-by-step proof of your 
answer. 



r-----------------, 
, Exercise 15.10 

SQRT_1 by one. 

, 
, Exercise 15.11 L---______________ ~ 

X2. That is 

To improve the speed of SQRT (Prog. 15.6), 
replace the three statements at label 

Let e represent the error of an approxima
tion ~ to the square root of the quantity 

e x 

One iteration of Newton's method produces a new error. (al 
Derive a formula which yields the new error E in terms of the 
old error e. (b) Assuming an initial error of 0.1, how many 
iterations will produce an error less that 10-20 ? 

Exercise 15.12 Given the formula for sine 3A, deduce a 
formula for sine 9A. Recode the SIN 

routine of TRIG (Prog. 15.7) accordingly. Can the same stop
ping criterion be used? 

Exercise 15.13 If the second statement of SIN. () had 
been: 

A = SIN. (A / 3) 

a bug would have been introduced. For which values of argument 
A would SIN (A) then yield an incorrect value? 

r-- i 

, Exercise 15.14, Compute ASIN(X) using SIN(A), COS (A) and 
L-________________ ~, Newton's method in a manner similar to 
SQRT. Use X as the original estimate of ASIN(X). 

r------------------
, Exercise 15.15 To express arc sine recursively, one may 

use a half-angle (or fractional angle) 
formula in order to reduce the range. One such is: 

SIN(A / 2) = SQRT«1 - SQRT(1 - SIN2A» / 2) 

Ca) Express ASIN(X) in terms of ASIN(X / 2). (b) If one were 
to use the recursive formula to implement ASIN(X), what stop
ping criterion 'would one use? 

Exercise 15.16 Using the power series of (15.10), modify 
ACOS as suggested in the text. 

Exercise 15.17 In LOG (Prog. 15.9) we depend on being 
able to convert REALs to INTEGERs for all 

reals in the range (0, M). That is, we suppose that the max-



Page 340 Chapter 15 NUMBERS 

imum integer is greater than M. What is M? (Hint: the answer 
is not 101 0 .) 

• I Exercise 15.18 It is not strictly necessary to insert 
numeric constants into the ~rograms TRIG, 

ARC, LOG and RAISE. Rather, they may be computed by ap
propriate calls on the defined routines. Modify the routines 
so that they compute the constants. 

. , 
I Exercise 15.19 I Assume you are writing an assembler and 

must construct a real number in its 
machine form for a binary machine with 27 bits of precision. 
Given other functions in the book (Chapter two), this reduces 
to the following problem: given a non-zero real number X, find 
the exponent N and integer I such that 2 26 ~ I < 227 and 

USing LOG 
statements. 

x 
N 

(approx. ) 2 * 
I 

27 
2 

(Prog. 15.9), N 
What are they? 

and I can be computed in three 

Exercise 15.20 In order to make the random number 
generator (RANDOM, Prog. 16.1) go back

ward, we need to be able to find the inverse of a multiplier. 
That is, we need to solve for X in: 

X * R 

This can be done by noting that: 

M-2 
X = R 

(Mod M) 

(Mod M) 

Assuming that M-2 multiplications may be too time-consuming, 
work out a method whereby only 2*Log 2 (M-2) multi~lications are 
required • 

• I Exercise 15.21 If RAISE (Prog. 15.10) is used in SPITBOL 
and if a DREAL argument is given to the 

function EXP, the returned value will be OREAL but will not 
have OREAL accuracy. Why? How can one correct this deficiency 
and still return a Single-precision result if a REAL is given 
as argument? (Hint: the answer requires modifying one 
statement. ) 



C HAP T E R S I X TEE N 

,---, .--, ,---, r----1 n n ~ r--'1 .--, ,.--, ,---, , .---' '--, .--' ,.-, , 1,-11 " " 
,.-, I , ,.-J '--, .--' L,r' I ,...., , 

P---, " " " " 
u ,'-' I " II I '--t " II II u 

L--., , 

" " " " n I...., I 11..-1 , '--t , " " II n 
.--' I " ,'-' , ,1-1, " " 

, ,...., , ,.-J , 

" .... L, ,1-11 
l...--.I u '-----I '----J U L.J U U L--.J U L--J L..-J 

,.---, ,---, ,.--, ,.--, n n ,.---, ,---, 
, ,..-J '--, r--' ,.-, , "'r 'I" , I ,.--J , .---' 
, L.-.w " ,'-' 1 " , I'" It,...., , L--., 

L--., 1 " "'-' II " 'I " L, , L..-., , 

.---' I " "" 
,...,.., II " ,'-' , .---' 1 

L..-J U U L.J L--J U U L..-J '----J 

CONTENTS 

RANDOM ••••••••••••••••• 16.1 

RA.~M ••••••••••••••••••• 16.2 

RPERMUTE ••••••••••••••• 16.3 

ONEWAY ••••••••••••••••• 16.4 

RCHAR 16.5 

RWORD 16.6 

RSELECT •••••••••••••••• 16.7 

RSENTENCE ••••••••••• '. •• 16.8 

RPOEM •••••••••••••••••• 16.9 

RSEASON •••••••••••••••• 16.10 

RSTORY 16.11 

L------. _________________________________ ~ 



,.---, 
,~ tochastic or random strings have many applications 
''---1 within the computing sphere of activity. Some exotic 
'---11 uses include poetry, choreography, play and brand-name 
~I generation, cryptographic and linguistic analysis, and 
L--J even police-patrol scheduling [Aberg 1914]. Simulations 
and game-playing also make critical use of the computer's 
ability to generate near random sequences. More mundane ap
plications include algorithm testing and timing. 

Digital computers have the power to produce prodigious quan
tities of what appear to be randoro strings and/or random 
numbers. However, if pressed to define precisely what is meant 
by the term 'random' one must be careful. For example, Table 
16.1 contains two groups of 'random' English words. One group 
was formed by selecting words at random from a novel. The 
other grou~ was formed by selecting dictionary entries at ran
dom. It should be immediately evident which source produced 
which group. Yet both groups have at least some claim to being 
called 'random English words' • 

• , 
I 
I 
I 
1 

Table 16.1 One of the groups of words 
shown-~elow was obtained by randomly 
selecting from entries in a dictionary 
and the other by selecting words from a 
novel. Is it obvious which is which? 

1--------------------------------------------
I Source A Source B 
1--------------------------------------------
I your dialectition 
I a Jemappes 
I the profligate 
I and disenfranchise 
I Hell opaque 
I 

TO make the notion of randomness more precise we speak of a 
§~~!~~ac~ containing a possibly infinite collection of 
things. A ~nd2ID-selectiQD is a selection of a single item 
from the sample space with the proviso that all items have an 
equal chance for selection. In the example above, one sample 
space was the set of dictionary entries which approximates the 
set of distinct words of the English language. The other sam
ple space was the set of words in a novel which approximates 
the totality of all words actually used to communicate thought 
using the English language. Note that a sample space may have 
repeated items such as the novel or they may all be distinct 
as in the dictionary case. Note too that a sample space may 
be completely unstructured as in the two examples given. This 
may be contrasted with a sample space obtained by five tosses 
o! a coin in which the sample space is a well-structured set 



________________ Program 1~= RA~ _______________ Page_143 

containing 32 combinations, each describable by a sequence of 
five binary digits. 

, , 
" Program 
I , 16.1 

II Random strings are constructed from random 
I' numbers and so this is what we must obtain 
I I first. RANDOM(N), where N is a positive in-" RANDOM 

the sample 
were called 

teger, will return a 'random' number from 
space {1, 2, ••• , N}. For example, if RANDOM(3) 

10 times the sequence produced could be: 

3 3 2 3 2 3 

If the argument N is 0, the number returned will be of type 
REAL chosen from the sample space [0,1) which is the interval 
on the real line from 0 [inclusive] to 1 (exclusive).* Calls 
to RANDOM with different arguments may be intermixed without 
adversely affecting the generating process. 

Since the numbers are produced by a deterministic process they 
are not truly random but only apparently random. It is con
ventional to term such processes pseud2=~ndom. Pseudo-random 
sequences have the very convenient property of being 
repeatable. This can be important in debugging or in studying 
certain effects in greater detail. If one wishes to obtain a 
different sequence one can set the variable RAN_VAR to some 
other value in the range {1, 2, ••• , 414970}. For game 
playing, it is sometimes necessary to initialize the random 
number generator to a value which is indeed unpredictable. For 
such purposes one can use the clock. 

RANDOM(N) will return an integer uniformly distributed on 
1,2, ••• ,N. If N=O, it will return a real uniformly 
distributed in the interval [0,1). 

DEFINE ('RANDOM(N) ') 
RAN_VAR 1 

The REAL is produced in any case. If an integer is wanted, 
the REAL is multiplied by the proper range. Note that 
CONVERT Truncates rather than rounds. 

RANDOM 
RAN_VAR 
RANDOM 
RANDOM 

REMDR(RAN VAR * 4676, 414971) 
RAN VAR /-414971. 
NE(N,O) CONVERT(RANDOM * N,'INTEGER') + 1 

: (RETURN) 

*Actually, this is a slight fiction. The number of reals 
representable by the machine is finite, whereas the number of 
reals in the interval is (uncountably) infinite. The intent 
i p to approximate this interval. 



, ___ ~Chapter 16 =-STOCHASTIC STRINGS 

RANDOM(N) belongs to a class of generators called the 
congruential type first proposed by Lehmer [1?51]. Given some 
integer R in the range 0 S R S M where M 1S some integer 
called the modulus, the next value of R (which we denote by 
R') is obtained by the computation 

RI = F * A (Mod M) 

or, in SNOBOL4 notation 

R' = REMDR (R * A, M) 

where A is some positive integer called the multipli~. The 
numbers will begin to repeat themselves after a certain period 
governed by F, A and M. For example, if M=10, A=7 and R=3 
(thoroughly impractical values) the sequence of R's becomes 

3 793 793 

repeating themselves every four numbers (the period is said to 
be four). A random real number in the interval is then ob
tained by dividing R by M. 

The congruential method is extremely important historically 
because the operation 

F' REMDR (R * A, M) 

can be accomplished with one multiply instruction where M is 
the natural modulus of the machine (For example on the IBM 360 
the natural modulus is 2 31 ). Use of the natural modulus is 
attractive from an efficiency standpoint but is machine depen
dent and can't be used in SNOBOL4 anyway because the computa
tion will be regarded as an error (arithmetic overflow). 

The sequence of R's will consist only of integers relatively 
prime to M. This means that a period equal to M where M is a 
natural modulus is impossible. A way around this is to use 
the so-called mixed congruential generator first proposed by 
Greenberger [1961J in which the formula 

R I F * A + C (Mod M) 

is used. For correctly chosen values of A and C, the R's will 
range through every number in the set {O, 1, ••• , M-1}. 

Another method of obtaining long periods is to use a prime 
modulus. If M is prime, then for certain values of A the 
generator: 

R' R * A (Mod M) 

will cause the R's to cycle through every integer in the range 
{1, 2, ••• , M-1]. Such an A is called a primitive element of 



Page 345 

the field of integers modulo M (see for example, Barnard and 
Child [1955], p. 438). 

The prime-primitive pair must be such that the A*R never over
flows the machine. If the maximum integer is, for example, 
231 -1 (as it is for most 32-bit machines), then it will be 
sufficient that A*M < 231. A list of prime-primitive pairs is 
given in Table 16.2 together with an indication of the number 
of bits of arithmetic required to avoid overflow. The choice 
of prime-primitive pair for the function RANDOM was based on 
the observation that most SNOBOL4's can represent all positive 
integers below 231. 

r----------------------------------------------------------------~, 
1~bl~~~ This table provides prime-primitive pairs and 1 
an upper bound in terms of a power of 2. 1 

------------------------------------------------------------1 
Smallest Smallest 1 

Prime Primitive Power Prime Primitive Power 1 
Modulus Element of 2 Modulus Element of 2 , 

M P > M*P ,M P > M*P 1 
------------------------------t------------------------------

127 12 211 10657 735 223 
127 29 212 10657 824 224 
211 35 2 13 4409 4035 225 
211 41 214 19423 3088 226 
491 59 215 10657 7367 227 
491 84 216 24281 9713 228 

1103 117 217 29443 13300 229 
1103 156 2 18 39971 20411 230 
1223 421 219 414971 467~ 2 31 
1987 451 220 532333 8705 233 
1987 1017 221 1299709 16322 235 
2741 1148 222 1798963 160658 239 L--________________________________________________________________ ~ 

One might suppose that there existed a single, simple test for 
randomness which could be applied to some psuedo-generator to 
determine a coefficient of randomness. Unfortunately, no such 
single test exists. It is interesting to note that if one had 
a test to determine whether a sequence was truly random that 
test could be used to produce, by elimination, a truly random 
sequence. We would then have a contradiction in terms, since 
an algorithrric process can never produce truly random numbers. 
Rather than a single, all-powerful test for randomness, there 
exists many tests each oriented toward detecting violations of 
important characteristics of random behavior. Knuth [Vol. 2] 
and Canavos (1967] describe a number of such tests. Those 
outlined here are from Canavos and have actually been applied 
to the generators mentioned in this chapter. 



Pag§_~ ____ .-£hapter 16 

The most common test seems to be the bins test and seeks to 
answer the most obvious question: Is each-of the B ~integers 
from RANDOM (B) equally likely? RANDOM (B) is called succes
sively N times where B is the number of bins. The number of 
numbers appearing in each bin should average out to N/B. But 
the distribution over the bins cannot be expected to be per
fectly flat or one would suspect nonrandom behavior. One can 
measure the extent to which the distribution deviates from 
perfection and the deviation proper for a random generator is 
given by the so-called Chi-squared distribution. The number 
of bins r Br is selected sO'as to mpximize the power of the 
test and depends upon the number of samples taken. For exam
pIer for N = 1000r the number of bins suggested is 50. 

Another popular test· for randomness is the £orrelation test 
which determines whether numbers a given fixed distance apart 
are correlated. For exampler in the Canavos series r correla
tion is tested for distances of 1 through 8. The extent to 
which the numbe!:'s are correlated in any given sequence can be 
calculated. Random generators would tend to produce zero cor
relation in the long runr. but in the short run they are expec
ted to produce a small correlation. Observed correlations 
above or below this level are suspicious. 

When RANDOM (2) is called repeatedlYr the binary sequence 
produced can be considered to be like the head-tail sequence 
produced by flipping a coin. Questions one might ask are: Is 
heads just as likely as tails? This is answered by the bins 
test. Another question is: will heads follow heads as often 
as it follows tails? This is answered by the correlation test. 
A classic coin-tossing question not answered by these tests is 
the following: If R heads in a row are· produced, is the next 
toss more likely to be a head or a tail? One might fear that 
an artificial system of producing random numbers might be too 
'round' and not produce enough long sequences or be too 
'angular' and produce too many. Such questions are settled by 
the so-called ~n~~. A run is a sequence of heads bounded 
on both sides by a tailor a sequence of tails bounded by 
heads. The number of runs of' length 1, 2, 3, ••• is measured 
and the resulting distribution should close to that obtained 
from a random distribution. Like the bin test, the chi-square 
formula is used to determine if the distribution is 'too good' 
or 'too bad' 

Q~ber Generators 

It is frequently useful to know of other genrators so that if 
the results of one generator or type of generator becomes 
suspectr another may be plugged in. The following extremely 
portable generator was suggested by Rruskal [1969]. 

R' R * 125 (Mod 2 13) 

The one multiplication by 125 can be replaced by three mul
. tiplications by 5 so that provided the machine can contain 5 * 



Program 16.2 - RAMM Page 341 

213 as an integer. the computation can be done without over
flow. Unfortunately the period is short. 

Another method is to Construct a random number generator 
according to a recipe suggested by Knuth [Vol. 2. p. 155-156]. 
One such generator is: 

R' R * 3141 + 110795 (Mod 524288 = 21~ 
Another approach is to use a standard generator with multiple 
precision arithmetic. One generator endorsed by Coveyou and 
Macpherson (1967] (they do not endorse many) is: 

R' R * 25214903917 (Mod 235 = 34359738368) 

To perform the arithmetic within SNOBOL4 on the IBM 360. three 
integers are needed to contain the multiplication. This will 
slow the computation and increase the complexity of the 
program but the random numbers should be quite random. 

• • 
II Program II There are techniques for combining random 
II 16.2 I I number generators to produce degrees of ran
I I RAMM I I domness higher than either operati ng alone. 
, , One method. proposed by MacLaren and Mar-
saglia (1965] is to let one random generator shuffle the out
put of a second random generator. 'Ihis is done in RAL4M(N) 
below which will behave like RANDOM(N) except that its 
statistics will be better. It uses a Knuth generator to shuf-
fle the output of RANDOM. ' 

DEFINE('RAMM(N)K') 
r-----------------------------------------------------------------, 

The following two OPSYN's make the subroutine plug-in-able I 
to any routine already using RANDOM. I 

OPSYN (' RANDOM. '. 'RANDOM') 
OPSYN ( • RANDOM' , 'RAMM' ) 

r-----------------------------------------------------------------, 
Initialize the RAMM array (RAMM_A) with random numbers ob- I 
tained from RANDOM.(). I 

1=0 
RAMM_A 
RAMM A<I> 
I - I + 1 

ARRA Y ( , 0 : 99 ' ) 
RANDOM. (0) :F (RAMM_END) 

: (RAMIvl_1) 
--, 

Entry point: Select an element K of RAMM A at random. I 
Return this value and fill up the entry with a new RANDOM I 
value. I 

RAMM RAM_VAR REMDR(RAM_VAR * 3141 + 110795. 524288) 
K CONVERT«RAM_VAR / 524288.) * 100. 'INTEGER') 
RAMM = RAMM A<K> 
RAMM_A<K> -RANDOM. (0) 



Page 348 

RAMM 

Chapter 16 STOCHASTIC STRINGS 

NE(N,O) CONVERT(RAMM * N, 'INTEGER') + 1 
: (RETURN) 

Names referenced Name I~ Where defined 
!2Y FAMM: --- RANDOM * Function program1'6':-r-
* indicates name is referenced in the initialization section. 

, , 
II Program II 
II 16.3 II 
I , RPERMUTE " 

tion of the string 

A natural application of a random number 
generator is to produce random permuta
tions. This is easy to do in SNOBOL4. 
RPERMUTE(S) will return a random permuta
S. 

DEFINE('RPERMUTE(S)T') : (RPERMUTE_END) 
RPERMUTE S LEN (1) • T : F (RETURN) 

RPERMUTE POS(RANDOM(SIZE(RPERMUTE) + 1) - 1) 
= T : (FPERMUTE) 

Names referenced ~~~ 
RANDOM 

!Yl2~ 
Function 

where defined 
PrOgram16:T !?Y -FPERMUT~-

• 
" " " 

Program 
16.4 

ON EWAY 

, 

" " " 
A one-way cipher is a notion of Needham 
first introduced in published form by Wilkes 
[ 1972]. The function ONEWAY(S) where S is 
some string will return a string the same 

size as S having the property that it would be computationa!.ly 
prohibitive to compute S or some other value S' such that: 

ONEWAY(S) = ONEWAY(S') 

That is, even knowing ~yerYihinq about ONEWAY to the extent of 
having a listing of ONEWAY in front of you, it is still im
practical to compute the original argument from the output 
obtained. . 

One-way ciphers are used in password protection schemes as 
follows. A user types in his password S. The system applies 
ONEWAY(S) to obtain a cipher C. C is then looked up in a 
table. If a match is found the user is identified and ap
propriate privileges are assumed. This protects against 
accidental or malicious revelation of the table's contents. 
That is, if one, or even all, such ciphers were revealed it 
would not help a thief. He must know the original password or 
any password that would yield the same cipher as the original, 
but this he presumably cannot obtain. 

without such a protection scheme, the collection of passwords 
is always in jeopardy. In one instance, the message of the 
day for a time-sharing system that will go nameless became, 
quite by accident, the list of passwords. As one wag put it, 



, ______ ~P.=r~o~g~r~a~m 16.4 = ONEWAY Page 349 

the most confidential file in the system suddenly became the 
most public file. 

Other applications of ONEWAY are indicated in the chapter on 
games. 

ONEWAY(S) will return a one-way cipher of the alphabetic 
string S. 

DEFINE ('ONEWAY (S)A,SIZE,C,K,SB') 

Entry point: Initialize the random number generator (by 
setting RAN_VAR) and set the alphabet A. The length of A 
must be a power (PWR) of 2. 

ONE~AY RAN VAR 1 
A 'ABCDEFGHIJKLMNOPQRSTUVWXYZ012345, 
PWR = 5 

NOw, for each character (C) within(S) determine its posi
tion (K) in the alphabet (A). Obtain K's binary equivalent 
and append it to the growing string of bits, SB. Also, 
use K to modify the 'seed' of the random generator. 

ONEWAY_l S LEN(1) • C = 
A (DK C 
SB = SB LPAD(BASEB(K,2) ,PWR,'O') 

:F (ONEWAY_2) 
:F (ERROR) 

RAN_VAR = REMDR(RAN_VAR * 2 ** PWR + K, 414971) 
: (ONEWAY_l) 

Now we replace each '0' by a '01' and each '1' by a '10', 
randomly-permute the string, and extract the first half of 
it. 

ONEWAY_2 
RPERMUTE(BLEND(SE,FEPLACE(SB,'Ol',' 10'») 

+ LEN(SIZE(SB» • SB 

Now repack the string from its 1-0 form into something 
more amenable. 

ONE WAY 3 
- sa LEN (PWR) • S = 

A POS(BASE10(S,2» LEN(l). C 
ONEWAY ONEWAY C 

ONEWAY_END 

Names referenced 
!2Y-O~.:. 

~~ 
LPAD 
BASEB 
RPERMUTE 
BASE10 
BLEND 

~ 
Function 
Function 
Function 
Function 
Function 

:F (RETURN) 

: (ONEWAY_3) 

Where defined Program3:2--
Program 2.4 
Program 16.3 
Program 2.5 
Program 3.7 



Page.~3~5~0 __ . ___________ C~h~a_p~t __ e;r __ 1~6~ STOCHASTIC STRINGS 

];Eilogue 

How difficult is it to break the cipher? No one knows. There 
is no guarantee that someone will not come up with an al
gorithm to quickly find the inverse of ONEWAY, it is just not 
very likely. 

Essentially the initial argument regarded as a bit string is 
both used to 'seed' a random generator and is permuted by the 
generator. The straightforward way of cracking the cipher is 
to assume a final value for the generator and work RPERMUTE in 
reverse by running RANDOM in reverse. If the results are found 
to agree, the cipher is cracked. This points up a weakness of 
ONEWAY as presented here. We normally wish the number of 
guesses required to be of the order of the number of combina
tions of the original string. If this were the case, longer 
passwords would prove to be more difficult to discover. But 
the number of different modes of operation for RANDOM are 
relatively small (414910). Hence, if added security is wanted, 
a generator with a lon~er cycle time (such as RAMM) should be 
used. Even so, the computation required to permute a half 
million strings in the manner indicated is sufficiently for
midable that the writer is confidant that no one will discover 
the original string used to produce: 

'BFDDGL' 

Of course, other techniques can be used to produce one-way 
ciphers. See Evans, et al [1974] and purdy [1974]. 

II Program II RCHAR(CONTEXT) will return a random charac
" 16.5 I' ter. The intended sample space is the set 
t, RCHAR , , of all characters following the CONTEXT 

provided as argument. For example, 
RCHAR('BR') will return 'A' much more frequently than, say, 
'B' because 'A' is much more likely to follow the characters 
'BR' • 

In order to write RCHAR we could pump it full of statistical 
information concerning the English language. A more flexible 
(and easier) approach is to let the user supply his own 
language sample (called the corpus) and use pattern matching 
to search for a likely subsequent character. In this way we 
do not limit ourselves to English nor, indeed, even to natural 
languages. 

To obtain a likely successor to, say, 'BR' within a language 
corpus, we may look up each occurrence of 'BR' and choose ran
domly from among each successor. Another aporoach is, starting 
at some random point within the string, to scan for the first 
occurrence of 'BR' and then return the character which fol
lows. This latter technique is much faster than_ the former, 
but will produce statistically incorrect resuits. Thus, if 
the corpus is 1000 characters long, and if 'BR' occurs three 



times in positions 500, 510 and 910, then the random probe and 
forward scan would mean that the 500 or the 910 would be 
picked up relatively frequently, but that the 510 would have 
an extremely small chance of being selected. 

A compromise between these two choices is to scan the string 
for the first K instances of the CON~EX~ and to choose a ran
dom character from among the K characters which followed. This 
greatly reduces the time required to process CONTEXT's which 
occur frequently, such as RCHARC'E'), while maintaining good 
statistics for other kinds of CON~EX~'s. The encoding of RCHAR 
given below will use a compromising value for K of 2. 

-----------------------------------------, 
RCBAR will return a random character following the CONTEXT I 
given as argument. If none such exists, RCHAR will fail. I 

DEFINE ('RCHARCCONTEXT) BX,C,P,N,RC1') 
-, 

Initialization: Read into R_CORPUS the language corpus on I 
which the statistical characteristics of ReHAR will be I 
based. I -.J 

RCHAF_1 X TRIM (INPUT) 
IDENI' (X, 'END') 
R_CORPUS R_CORPUS X ' • 

: F (RCHAR_END) 
: S (RCHAR_END) 
: (RCHAR_ 1) 

-, 
Entry point: Prepare in P a pattern suitable for scanning I 
the text beginning at cursor position N looking for I 
CONTEXT. BREAKX is used to make the scan rapid. I ~_______________________________________________________________-.J 

RCHAR CONTEXT LEN(l) • C :F(RCBAR_2) 
BX BREAKX (C) 

RCHAR_2 P POS(O) TAB(*N) EX mN CONTEXT LEN(l) • RCHAR 
r-------------------------------------------------------------- -, 

the context. I I Pick up the first random character fitting 
I Scanning begins at some arbitrary point N. I L-----_______________________________________________________ ___ 

-.J 
N RANDOM(SIZE(R_CORPUS» - 1 
R CORPUS P : S (RCHAR_3) 
N- 0 
R_CORPUS P :F(FRETURN) 

Here to pick up the next adjacent random character. 
first is saved in RC1. 

N 
RC1 

N + 
BCHAR 

R CORPUS P 
N- 0 
R_CORPUS p 

Here to select from between these two. 

: S (RCHAR_ 4) 

RCHAI<_ 4 RCHAR = EQ (RANDOM (2) ,1) RC 1 : (RETURN) 
ReBAR_END 

-, 
The I 

I 
.J 

-, 
I -.J 



Pag~ 352 

Names referenced 
!2y RC!ffiR: 

,.--------" 
, , Program I' 
I' 16.6 ff 'I RWORD " 

Nam~ 
RANDOM 
BREAKX 

I~E~ 
Function 
Function 

Where defined 
program16:T 
Program 8.2 

RWORD is an obvious application of RCHAR. 
RWORD(K) will return a random word with 
characteristics similar to other words in 
the given corpus. K is a small whole number 

indicating the extent to which context is used in forming the 
result. That is, the next character chosen depends on at most 
the last K characters already chosen. selection begins with 
RWORD 'seeded' with a blank. 

Table 16.3 Below is a list of random names 
produced by RWORD(K) from a list of 700 names 
(R_CORPUS in RCHAR). Words chosen were in the range 
of 5 10 characters' but were otherwise not pre
selected. 

K = 0 K = 1 K = 2 K = 3 

Rnztn Faundobr Joher Alton 
Eebfer Einakicl Thelmsti Vigan 
Uoaer Kolin Gringtock Young 
Earlho Fssmched Clouth Rosen 
Meeofr Paubin Mcdorg Haekstra 
Asnegrmnmh Mormer Jordawm Repsherty 
Ckwaig Feymet Paudelly Haekstraun 
Kninhaaf Madicos Franic walton 
Agajfoope Halitun Cloobs Bartoliti 
Hfhclunc Mchoskyr Panscher Thatchek 
Usirollbh Ralmrollan Thaman Caseyman 
EEdhmeucc Ffrrr Mowski Walker 
Lasdctn Linestz Spaglema Lopiparo 
Ghsiafee Reawstz Loobs Shallisi 
Riesl Gelilar Eiter Ruscher 

Table 16.3 contains a number of random words generated by 
RWORD when RWORD was given a corpus of 700 surnames culled 
from an addressing list. One can see clearly the effects of 
increasing K as well as the influence of the type of corpus 
chosen. The names for K=2, for example, would be quite accep
table in outer galactic society. RWORD, using a different 
corpus, could be used for brand-name generation. The name 
EXXON was purportedly chosen in this way_ 



___________ ~rogg!!!_1.§. 7 - -B.§];!&£1: ________ ~age 353 

DEFINEC'RWORD(K) CONTEXT') 

Entry point: Initialize RWORD with a blank. 

RWORD RWORD -= , , 
r-
, Use the last K characters of RWORD (or all of RWORD if it 
, fails to contain K characters) as context for the next 
, character. , 
RWORD_1 CONTEXT = RWORD 

RWORD RTAB(K) REM. CONTEXT 
C RCHAR (CONTEXT) 
RWORD DIFFER(C,' ') RWORD C 

:F(RETURN) 
: S (RWORD_1) 

Falling through means we encountered a blank. Remove the 
initial blank from RWORD. If RWORD is null, try again. 

RWORD ' , 
I DENT (RWORD) 

RWORD_END 
:S (RWORD) FCRETURN) 

Names referenced 
!2i::EWOBD: ----

, i 

Nam~ 
RCHAR 

TYI2~ 
Function 

Where defined 
program 16.5 

I' Program 'I RSELEC'I' will make a random selection of one 
" 16.7 'I of a sequence of strings passed to RSELECT 
'I RSELECT I I as argument. The first character is taken 
, , to be a break character (BC) separating 
strings in the sequence. Thus, RSELECT(',AIBIGICAT') will 
return each of 'A', 'BIG' and 'CAT' with probability one
third. An optional integer weight enclosed in sharp signs may 
be placed at the beginning of any alternation. Thus, 

RSELECT ("AI '3tBIGICAT') 

will select 'BIG' three times out of five. 

RSELECT will be used as a utility routine by several programs 
which follow. 

DEFINE('RSELECT(S)WT,WTS,ALT,CODE,I,CODE,SSAVED,BC') 
RSEL_TBL TABLE() : (RSELECT_END) 

Entry point: All previously-seen arguments had been placed 
in a table (RSEL_TBL) together with code to be executed. 
In this case we simply execute the code. 

RSELECT CODE = RSEL TBL<S> 
DIFFER (CODE;NULL) :S<CODE> 

...--------------------------------------------------------------, 
I If S had not been seen before, we fall through here. We 
I first save the string (SSAVED) and determine the break 
I character (BC). For each alternate (ALT), its weight (WT) 



.STOCHASTIC STRINGS 

is determined and added to a subtotal (WTS). CODE is 
produced which will assign the alternative to RSELECT if 
the numbers are right. 

SSAVED = 
S LEN( 1) 

S 
BC = :F(RETURN) 

RSEI.ECT_1 

+ 

WT 
S 
S 
WTS 
CODE 

S 

1 
POS (0) ••• BFEAK (. ") • WT • ,. 
(BREAK (Be) I REM) • ALT 

= 

= W'l'S + WT 
= CODE' 

BC 

RSELECT 
QUOTE (ALT) 

LE(I,' wrs .) • 
: $ (JtETU·RN) • 

: S (RSELECT_ 1) 

Falling through means we're done. We simply prefix the 
code to assiCfn a random number to I, fill the table and 
try again. L--______________________________________________________________ ~ 

CODE = I = RANDOM(' WTS ') • CODE 
S SSAVED 
FSEL_TBL<S> = CODE (CODE) :S (RSELECT) F (ERROR) 

RSELECT_END 

~S!!!~ 
QUOTE 
RANDOM 

nE·~ 
Function 
Function 

Where defined 
Program 3.16 
Program 16.1 

An interesting implementation aspect of RSELECT is that it 
compiles code the first time through for any given argument. 
This makes sense for a random generator since it may be called 
many times with the same argument and compiling code, as shown 
here, greatly increases the speed of subsequent calls. 
Moreover, the program is not made very much more complicated 
because of this; in fact, the construction of CODE actually 
saves a second pass over the string and in this sense serves 
to produce a more simple program. If space is a greater 
consideration than time, See Exercise 16.5. 

, . 
'I Program " RSENTENCE(ARG) will generate and return a 
" 16.8 "random sentence according to a grammatical 
" RSENTENCE " description read in during initialization. 
L- , The argument ARG represents a string pos
sibly containinq syntactic variables which are expanded 
according to the grammar. As a simple example, let the input 
be 

<SENT>: =the <NOUN> <VERB> the <NOUN> 
<NOUN>: =boyimanfdogl<NOUN> who <VERB>s the <NOUN> 
<VERB>: =bite,walk,petllicklsmack 
END 



Page 355 

Then a call such as RSENTENCE('<SENT).') will generate, among 
an infinite number of sentences, 

the dog bites the man. 
the man walks the dog. 
the man who walks the dog who licks the boy smacks the boy 

who bites the dog. 

Identifiers in pOinted brackets (here shown in uppercase for 
ease of distinction) are termed §yntactic vs~iables. Alter
nates are separated by vertical bar (1). Though these special 
characters may not appear within the text it is not difficult 
to provide an escape convention so that they can be (See Exer
cise 16.9). 

When a syntactic variable is ~QSDdeg it is replaced by one of 
its alternates randomly and this alternate may in turn contain 
other syntactic variables which are also expanded. This 
process may never halt (see the Epilogue). 

The meta-language used for describing the grammar is the so
called Backus Normal Form (BNF) which is also referred to as 
Backus-Naur Form since the form is not normal (is not unique) 
and since Naur was a cohort of Backus. The meta-language is a 
bit awkward (the first four meta-characters are redundant 
provided syntactic variables do not contain ='s) but has the 
convenient property of being commonly understood. 

Another feature of RSENTENCE is that an expression in paren
theses is treated as a SNOBOL4 expression. It is evaluated 
and inserted into the text stream. Also, an identifier between 
='s is expanded like a syntactic variable but will also have 
the side-effect of assigning the result of the expansion to 
the indicated variable. Thus 

<THING)::=roseltreelturkey 
<SENT1)::= A =THING= is a (THING) is a (THING). 
<SENT2)::= The word '=THING=' has (SIZE(THING» letters. 

will produce for <SENT1): 

A rose is a rose is a rose. 

with probability one-third. An example of <SENT2) is 

The word 'turkey' has 6 letters. 

other miscellaneous features of the program are as follows. 
Continuation is represented by a line not beginning with a 
'<'. Weights can be associated with alternation using the #n# 
notation of RSELECT. 

One application of RSENTENCE is test-data generation for com
pilers and other processors expecting stylized input (an early 
version of RSENTENCE was used to find bugs in SNOBOL4 itself). 
Another application is in producing nonrepetitive messages in 



.f~~~L ____ Chapter .~1..::6:.--__ STOCHASTIC STRINGS 

an interactive environment. For example, in game playing, a 
variety of sarcastic remarks can provoke an otherwise 
apathetic player into a competitive state. RSENTENCE has been 
used in the production of prospective topics for a discussion 
group. While not all topics randomly generated are directly 
usable, they are often sufficiently suggestive and suf
ficiently numerous that random generation followed by a cul
ling process, such as the previously described brand-name 
selection, becomes an effective technique. 

Yngve [1962a] suggests that such programs coupled with a full 
and valid grammar, solve one aspect of the problem of machine 
translation, viz. the target-Iangu~ge generation end. One must 
realize, however, that RSENTENCE, by itself, is limited almost 
exclusively to context-free generations and hence to very 
restrictive grammars. TO aid in the machine translation study, 
RSENTENCE must be considerably enhanced. One such enhancement, 
suggested by Yngve is given in Exercise 16.8. It must also be 
realized that it is not merely sufficient to generate sen
tences having a variety of syntactic constructs, one must 
actually be able to perform transformations from one form into 
another. This is considered more fully in RSTORY (Prog. 
16.11) • 

DEFINE ('RSENTENCE (STACK) VAR,EXP, S,TEXT') 

Pattern initialization: 

SYN. VAR = POS (0) ,<, ARB. VAR ,>, 
SNOBAL.EXP = POS(O) '(' BAL(' «»', "" ""') • EXP ')' 
ASGN.VAR POS(O) '=' ARB. VAR '=' 
LITERAL. TEXT BREAK('<=(') • TEXT 

Read in the grammar and enter the alternative lists into a 
table (RSENT_TBL). L-______________________________________________________________ --J 

RSENT TBL TABLE() 
SS TRIM (INPUT) 
S TRIM (INPUT) 
S POS(O) ('<' , 'END' RPOS(O» 
SS SS S 
SS ,<, ARB. NM '>::=' 
RSENT_TBL<NM> 'I' SS 
IDENT (S, 'END') 
SS S 

: S (RSI_2) 
: (RSI_1) 

:S(RSENTENCE_END) 
: (RSI_ 1) 

Entry point: The string named STACK will contain all not
yet processed information. The string S will contain the 
random sentence being formed. We examine the STACK for a 
syntactic variable, a SNOBOL4 expression in parenthesis, 
an assignment operation enclosed in ='s, or, if none of 
these, arbitrary text. 

RSENTENCE 
STACK SYN.VAR FSELECT(RSENT_TBL<VAR» :S(RSENTENCE) 



STACK SNOBAL.EXP = 
S = S EVAL (EXP) 

RSENT_1 STACK ASGN.VAR 
$VAR = RSENTENCE('<' VAR '>') 
S = S $VAR 

RSENT_2 STACK LITERAL. TEXT 
S S TEXT 

RSENT 3 RSENTENCE S STACK 
RSENTENCE_END 

Page 351 

F (RSENT_1) 
( RSENTENCE) 
F (RSENT_2) 

: (RSENTENCE) 
: F (RSENT_3) 
: (RSENTENCE) 
: (RETURN) 

~2~ I~E~ Where defined 
BAl * Function Program 8.3 
RSELECT Function Program 16.1 

* indicates name is referenced in the initialization section. 

A curiosity of sentence generators such as RSENTENCE is that 
it is possible to write a grammar with a chance of looping 
forever. Fohl [1961] gives the following examples: 

<S1>::= A I B <S1> 
<S2>::= A I <S2> A <S2> , <S2> B <S2) 
<S3)::='2t A , <S3> A <S3) , <S3) B <S3) 

Whereas <S1> will always halt, <S2> has only a probability of 
1/2 of halting (unlike normal loops, the program will not ac
tually run forever because storage requirements will 
ultimately be exceeded; in practice, however, the program will 
22E~ to be looping because the storage growth rate is 
small). <S3) represents a 'fixed-up' version of <S2) which, 
like <S1>, will halt with probability 1. 

The analysis of this phenomenon is based on the notion of ran
dom walks with ruin and is treated in detail by Feller [1951]. 
Let a particle on each step move either to the left or to the 
right. Let it move to the left with probability p and to the 
right with probability q so that p+q = 1. Let P be the 
probability of moving one step to the left; ever. Then P**n 
is the probability of ever moving n steps to the left. Hence 

P P + q p2 

This equation has exactly two solutions, viz. P = 1 and P = 
p/q. CUriously, the correct . choice does not seem to be 
deducible by a simple argument. It happens to be 1 if P ~ q 
and is p/q if p ~ q. The dividing line of p = q = 1/2 is of 
interest in that the walk is certain to ultimately reach any 
point but the expected waiting time is infinite. 

In the examples above, <S2> loops because, effectively, q = 
2/3 and p = 1/3. On the other hand <S3> has p = 1/2 and Q 
1/2 and so the probability of halting is 1 (but just barely). 
In <S1>, we may throw out any alternation that leads to the 
same state so that, effectively, p = 1 and q = O. 



.. 

Page 358 

r 
II Program 
I t 16.9 

" RPOEM 
L 

example, if 

I 

II 

" 
" 

I 

the 

__ ~C~h~a~p~t~e~~r~1~6~ ____ S~T~O~C=HA=STIC STRINGS 

one use (one hesitates to say application) 
of RSENTENCE is in poetry generation (See 
Milic [1970, 1971] for a general discussion 
of this topic and other references). For 

following were the input to RSENTENCE: 

<PROP>::=action,durationlhungerlfeelinglactivitYlmovementl 
motion, notion ,endurance I tenderness lageltaste, bounty I go odness 
<GEN>::=timelnaturelagelwisdom,warlpeace,powerlenergylearthl 
lovelbeautylcharitylfaithlhopelthoughtlstrength,nightl 
pietylheartllandlevil 
<SPEC)::=flowerltreeldovelstarlcloudltwigIPondldoglgoatI 
muffinlpetallwagon wheellgateltrapllarklravenldro~ldishlspoonl 
spark Ibonelbrain I tooth I face Irake Ishovellbookl coverlwhis tIe 
<PREP).: : =on I up f over I uhder Iwithin I beside f of I in 
<TVERB>::=reverelworshiplunderstandlbeseechlcontrcllprovokel 
heal I pursue Istrengthentbecomelkililarouselbecalmiensna re 
<IVERB>::=singltalklrunlaspireltwiddlelthinklgurglelponderl 
wiggle t bend I simmer I bask I break I tumble, dance,whistlel squaw k 
<ADJ)::=gentlelfraillhappy,sorrowfullmournfullgaYlrustyI 
frolicking twanton Ilustful Itimidl pensivel timorous, moody 
<AUX)::=maylcanlshalllshouldlmusttdoth 
<NOUN)::=a <ADJ) <SPEC>la <SPEC> of <GEN>lthe <PROP> of a 

<SPEC>,the <SPEC) <PREP> <NOUN>,<GEN> <PREP> <GEN>,<GEN>'s 
<PROP>I<ADJ> <GEN)lthe <PROP> of <GEN> 

<RPOEM>::=A =ADJ= =SPEC= <AUX> <IVERB> <PREP> =NOUN=/And <AUX> 
<TVERB> <NOUN)./But <NOUN> <TVERB>s <NOUN>/While (NOUN) 
<TVERB>s the (ADJ) (SPEC)./ 

END 

The first four calls to RSENTENCEC'<RPOEM>') (with RAN_VAR set 
to 1) produces: 

-, 
A lustful twig can twiddle up the tenderness of a spoon 
And can kill the motion of wisdom. 

I 

But the brain beside gay power heals the action of earth 
While the tenderness of a spoon heals the lustful twig. 

I 
I , 

A happy muffin shall bask under earth of night 
And can ensnare the pond up charity of earth. 
But the activity of charity strengthens sorrowful faith 
While earth of night beseechs the happy muffin. 

A wanton gate may gurgle under the gate of the age of a 
And should worship a gay shovel. 
But frail wisdom ensnares the endurance of night 
While the gate of the age of a star pursues the wanton 

A moody cloud shall ponder over the motion of a shovel 
And should beseech the goodness of beauty. 
But war over nature worships a wanton goat 

I , 
I 
I 
I 
I 

star, , 
I 

gate. , , , 
I 

While the motion of a shovel strengthens the moody cloud. 
I 
I 



Program 16.9 - RPOEM 

where the lines are broken at slashes. Notice that an effort 
was made to produce sentences which would be syntactically 
correct and also have some semantic soundness. For example, 
there are thr€e types of nouns, GENeral, SPECific and 
PROPerty. One of the noun phrases is <PROP> of <SPEC>, i.e. a 
property of a specific thing, but <SPEC> of <PROP> is not 
allowed. 

One reason that the random generation of poems has been 
popular is that context-free generators produce very little 
semantic connectivity between words. Since the poet is granted 
license to break such rules we naturally interpret text in 
which such rules are broken as poetry. As Milic [1970] has 
observed, we readily " ••• accept metaphor as an alternative to 
calling a sentence nonsensical. II Hence, in generating random 
text it is much easier to randomly generate 'poetry' than 
prose just as it is easier to randomly generate 'abstract art' 
than good pictures. One conceivable application of random 
poetry is as an initial exercise in a poetry-appreciation 
course. The exercise of explaining the 'meanings' of some of 
the computer renderings can be a mind-expanding experience. 

RSENTENCE may, as we will see, be also used for story genera
tion. There are, however, definite limitations in this direc
tion. Mendoza [1968] describes one effort to improve somewhat 
on the semantic soundness of the generated sentences. Essen
tially his method applied weights to different noun-verb com
binations so that a squirrel would munch and crunch with a 
greater likelihood than crawl and swim. This technique 
produced sentences which were internally sound but which had 
very little relation to other sentences. Hence, when Mendoza 
read sets of such sentences to his children as stories, the 
children complained because the stories never got anywhere. 

USing a vocabulary heavily sprinkled with chemical terms, Men
doza reported on attempts to pass off randomly-generated sen
tences in a chemistry examination. It is perhaps a plus for 
higher education that the teacher not only did not give a high 
grade to the computer but actually stormed into the Director's 
office shouting "Who the hell is this man -why did we ever ad
mit him?" Perhaps what is of interest in these stories is that 
the individuals involved did not see the computer behind the 
gibberish but accepted it as very bad human products. This is 
an advance of sorts. The problem of providing inter-sentence 
connectivity is a challenging one and will be considered after 
taking up the next topic. 



STOCHASTIC STRINGS 

r------------------~ 
I IIII IMULATION The computer may be used to simulate real 
I I events and, in so doing, may determine the 
,1111 outcome of certain strategies or actions far less 
, I expensively and more quickly than by concocting the 
,,111 event physically. Simulation is used where' the 
L- events to be predicted are not amenable to 
mathematical analysis but where the underlying stochastic 
structure is well-established. Simulations are used in busi
ness where transport networks, factories and shops, trading 
centers, etc. may be analyzed, in the study of warfare, 
cities, traffic, demography, biological adaptation and many 
other large and complex situations. Simulations are sometimes 
referred to as Monte Carlo techniques, but this latter term is 
more likely to be reserved for more mathematically-oriented 
situations. As a crude example, the area under a curve can be 
approximated by generating random number pairs (See Exercise 
16.13) and testing to see if they fall above or below the 
curve of interest. Other areas where simulations can be used 
is in game-playing, sports and gambling. For a specific 
simulation we choose the game of baseball. 

, 

" " " 
Program 

16.10 
RSEASON 

, 

" " " 
The function RSEASON(NG) is intended to 
simulate a random season of baseball. The 
number of games is given by the argument NG. 
The value returned is the number of runs 

scored in the simulation. The simulation is governed by 
statistics read in at initialization time. One example of in
put that could be given is shown in Table 16.4. 

T2£1~1&~ Shows the line-up and statistics 
for the 1927 New York Yankees. Source is BB 
[1969]. Only the data shown in lower center 
was actually input to RSEASON. 

Name ,AB H DB TR HR BB, BA 
-----------t-----------------------------t--------

Combs ,648,231,36,23, 6, 62 I .356 
Koenig , 526,150,20,11, 3, 25 I .285 
Ruth ,540, 192, 29, 8, 60, 138 , .356 
Gehrig , 584, 218, 52, 18, 47, 109 , .374 
Meusel , 516,174,47, 9, 8, 45 , .337 
Lazzeri , 570, 176, 29, 8, 18, 69 , .309 
Dugan ,387, 104, 24, 3, 2, 27 , .269 
Collins , 251, 69, 9, 3, 7, 54 , .275 
Pitcher , 500, 50, 5, 1, 2, 10 , .100 

Table 16.4 shows the lineup and statistics of the 1927 New 
York Yankees, perhaps the most powerful hitting aggregation in 



the history of baseball. The statistics given for the pitcher 
are not those of any given player but are an estimated com
posite of the entire pitching staff. 

The program is in a sense the simplest possible simulation 
since only offensive data are given for only one team. A per
fect simulation would perhaps require that every blade of 
grass be taken into account and is completely out of the ques
tion from the standpoint of human effort let alone the fact 
that baseball records, complete as they are, do not show all 
such minutiae. Between these extremes, the pitcher on the 
defensive team and to a lesser extent the fielders do affect 
the performance of the offensive team as a whole and may 
peculiarly effect individual hitters. l-\nother weakness of the 
simulation is that every player's performance is independent 
of his previous performances and, more severely, of the game 
situation. Some players are considered 'clutch hitters' and 
pitchers tend to 'bear down' on hitters in tight situations. 
All of these factors are worth a study of their own to anyone 
interested in a serious simulation of the game. We will be 
content with exploring the principles of simulation. As it 
stands, however, RSEASON could be used to determine the gross 
effects due to line-up changes and permutations in order to 
determine optimal line-ups or to evaluate trades, the effect 
of pinch hitters, etc. 

DEFINE ('RSEASON(GAMES) INNING,RUNS,BASES,OUTS,K') 

A structure, RECORD, is defined to contain the statistics 
of one player. STATS is an array, filled during the 
initialization period with statistics of the players in 
the simulated lineup. 

DATA('RECORD(AB,H,DB,TR,HR,BB) ') 
STATS ARRAY (9) 
I 0 
I = I + 1 
STATS<I> = EVAL ( 'RECORD (' INPUT t).) : S (RS_INIT) 

: (RSEASON_END) 

Entry point and outer loop: Control returns here after 
each complete game. Control arrives at RS_1 for each new 
inning. BASES will contain the men on base in the form of 
a string and OUTS is an integer recording the number of 
outs. 

RSEASON GAMES = GT(GAMES,O) GAMES - 1 
BATTER = 0 

RS_1 OUTS = 0 
BASES = 

:F (RETURN) 

Here for each new batter. His statistics are obtained in 
s. A random number K is obtained based on his total at
bats. The variable ADV is set according to how his per
formance would advance runners from bases 0, 1, 2, and 3. 
The" actual advancement is done at RS_4. An exception is 



Cha12ter 16 .STOCHASTIC STRINGS 

the walk (EB) in which advancement is context sensitive 
and so must be treated as a special case a~ RS_BB. 

BATTER EQ(BATTER r 9) o 
EATTER BATTER + 1 
S = STATS<BATTER> 
K RANOOM(AB(S) + 
ADV = GT(KrAB(S}) 
OUTS = GT(KrH(S» 
ADV LE(KrHR(S» 
ADV LE(KrHF(S) + 

BB (S.) ) 
• 1223' 
OUTS + 
'RRRR' 
TR (S) ) '3RRR' 

ADV LE(KrHR(S) + TR (S) + DB (S» '23RR' 

: S (RS_BB) 
:S (RS_OUT) 
: S (RS_4) 
:S(F.S_4) 
:S (RS_4) 

ADV '12FR' 
BASES REPLACE (BASES Or '0123'r ADV) : (RS_2) 
BASES ' 3 2 1 ' = , 4 21 ' 
BASES '21' '31' : (RS_ 4) 

If there are not three outs r determine the number of RUNS 
scored this inning by scanning BASES. Add to total 
(RSEASON). Then check to see if we've completed 9 INNINGS. 

RS_OUT EQ(OUTS r 3) 
o 
SPAN ('R ') iRUNS 

RSEASON + RUNS 
:S(RS_l) 

RUNS 
BASES 
RSEASON 
INNING 
INNING 

INNING + 1 LT(INNING r9) 
o : (RSEASON) 

RSEASON_END 

Names referenced 
!?y:=RSEASON,i --

~~ 
RANDOM 

IY12~ 
Function 

One of the most important aspects of a simulation is how to 
interpret the numbers. For exampler to simulate a season we 
may call RSEASON(154) and find that 978 runs were scored. But 
repeated calls to RSEASON(154) will produce slightly different 
numbers. An actual sequence obtained was: 

978 1013 1068 1004 886 999 1053 1039 

These eight numbers average to 1005. In general r the more 
numbers we obtain the closer these numbers approach some 
limiting value. since computation can be expensive and time
consumingr we may well ask how far we must pursue the 
statistic-gathering before the average settles down to 
something reasonable. Said another waYr how can we estimate 
the error of such a computed average? 

Let M be the mean of n numbers Xl X2 ••• Xn • That is 

M (Xl + X2 + ••• + Xn) / n (16.1) 

It is well known [Feller 1957] that if the Xl' X2 , ••• rXn are 
independent then no matter what their distribution (assuming 
their means and variances are not infinite)r their sum S 



approaches a Gaussian distribution whose 
(or standard error) E can easily be 
formula: 

Page 363 

standard deviation 
estimated from the 

E2 = (X t - M) 2 + (X2 - M) 2 + ••• + (Xn - M) 2 (16.2) 

The sum S will be in error by about E. Moreover, we may be 
951 confident that S is within ± 2E from the average value. 
Hence we may with the saroe confidence (95%) expect that the 
asymptotic average will te in the range: 

S/n ± 2E/n 

As an example, given the previous 8 numbers, we obtain 

E2 729 + 64 + 3969 + 1 + 14161 + 36 + 2304 + 1156 
= 22420 

E 150 
S/n ± 2E/n 1005 ± 37.5 

For long sequences of numbers, (16.2) is not in the most con
venient form, since the mean M is not available until the last 
number Xn is seen. Rewriting (16.2) using (16.1) we obtain: 

E2 (16.3) 

Note that E2 varies roughly as n and so E/n varies inversely 
as the square root of n. Hence in order to reduce our range 
of error by a factor of R we must gather K2 times as many 
statistics. Hence, precision is e~pensive and, for this 
reason, simulations are used only when analytical techniques 
are not available. 

To determine the effect of modifying the batting order, 
RSEASON(154) was called 45 times with the lineup as indicated 
in Table 16.4 and 45 times with Ruth and the pitcher inter
changed. In the first case the average runs scored per season 
was 1009 ±14 where 14 is the 95' confidence interval. In the 
second case the average was 971.5 ±14. The experiment clearly 
shows the efficiency of the given lineup over the postulated 
one. 

One curiosity remains however. The number of runs the Yankees 
actually scored that season was 975. This in spite of the fact 
that pinch hitters, clutch hitting, extra-inning games, errors 
and better pitcher-hitting than .100 would have made the ac
tual figure higher than the simulated figure. On the other 
hand, the Yanks won 110 games that year. If say 70 were won 
at home then they missed one inning out of twenty which would 
account for 50 runs. Almost certainly, good clutch pitching, 
if not choke hitting, could account for the rest .. 



, i 

II Program 'I As indicated by Mendoza (Epilogue to RPOEM, 
" 16.11 " Prog. 16.9) sequences of sentences which 
, , RSTORY , , bear Ii ttle coherence one to the other are 
, , not particulary interesting even to children 
let alone the flabergasted professor. At first sight, the 
ability to produce an actual story may seem quite beyond the 
state of the computer art. However, it is not essentially 
difficult to supply the desired connectivity by using some un
derlying simulation to form a developing plot and use the ran
dom sentence generator to supply verbal "suguring·. This is 
amply illustrated by the baseball simulation (RSEASON) which 
would be quite easy to modify to produce a 'meat and potatoes' 
narration such as: n ••• Ruth makes out, Gehrig hits single, 
Meusel makes out, End of inning, no runs ••• It, etc. For the 
purpose of story-generation, descriptive phrases, chosen at 
random could further embellish the tale adding needed color 
(See Exercise 16.16). 

For the generation of stories which may appeal to children, a 
child's game may be simulated. There are many games on the 
market in which tokens moving over a board carry the child 
through a sequence of adventures often with a competitive ele
ment thrown in which would make the story interesting. Board 
games, such as Monopoly, have been programmed and most 
children's games are considerably less complicated than this. 

One method of producing random stories which only vary weakly 
from each other is to locally perturb certain variables of a 
given pre-concocted story. There are children'S books on the 
market which utilize this principle in producing personalized 
books. In addition to using this principle, RSTORY, below, 
attempts to utilize a collection of semantically rich (or at 
least richer) information of the form <agent> <adversely 
operates upon> <agent>. RSTORY draws upon these relationships 
in order to produce a simple 'actor-action' chain which this 
classic children's story requires. 

Process phrases - We assume that RSENTENCE has read in all 
syntactic variable definitions. All phrases are of the 
form SUBJECT VERB OBJECT. For each object expressed or 
ireplied in a phrase, we make an entry in the table ACTIONS 
which will contain the subject and object. 

ACTIONS TABLE() 
BB = BREAK ( , , ) 
SB = SPAN (' ') 

READ_PHRASE 

READ_PH 1 

X TRIM (INPUT) 
IDENT (X, 'END ') 
X (BB SB BB) • SUBJ_VERB SB 
OBJS OBJS' , ' 

OBJS POS(O) ,<, ARB VAR ,>, 
OBJS P~S (0) t , ' 

: F (BEGIN_STORY) 
:S(BEGIN_STORY) 

REM • OBJS 

RSENT TBL<VAR> 
: S(READ_PH1) 



CBJS BREAK('I'). OBJ 'I' :F(READ_PHRASE) 
ACTIONS<OBJ> ~ ACTIONS<OBJ> 'I' SUBJ VERB 

-: (READ_PH 1) 
.---------------------------------------------------------------, 
,The story's setting and the principal characters are in-
I troduced here. 

BEGIN_STORY RSTORY RSENTENCE('<OPENING>') 
LIST ' PET" won't jump over the" BARRIER 
LAST PET 
&MAXLNGTH 30000 

Find a new agent; we will try t.en t.imes to produce a verb 
and an agent that we haven't seen before. L-____________________________________________________________ ~ 

NEW_AGENT 
TRY 0 

RETRY TRY TRY + 1 LT(TRY,10) :F(REQUEST) 
ALTS ACTIONS<LAST> 
RSENTENCE(RSELECT(ALTS» BB. SUBJ SB REM. VERB 
RSTORY , , SUBJ ' , : S (RETRY) 
RS'IORY , , VERB ' , : S (RETRY) 

Here the refusal is added to the story as well as descrip
tive text relating to finding a new agent and making a 
request. L-____________________________________________________________ ~ 

REQUEST RSTORY 
LIST 
LAST 

RSTORY RSENTENCE (' <REFUSAL>' ) 
, , SUBJ " won't" VERB' the' LAST ", 
SUEJ 

" LIST 

If the agent complies freely with the request, control 
falls through the next test and the story is essentially 
over. 

FIN1 
FIN2 

LT(SIZE(LIST), 175) :S(NEW_AGENT) 
LIST "won't" "began to" : S (FIN1) 
LIST ' , , "; the" : S (FIN2) 
RSTORY RSTORY RSENTENCE('<PERSUADED>') 

Now output the story. 

OUT RSTORY (LEN (50) BB) • OUTPUT SB :S (OUT) 
OUTPUT RSTORY 

Below find the input data to the program. The first half 
(up to END) is processed by RSENTENCE. Following this we 
find the phrases on which the story is based. 

END 
<OPENING>::=<TIME> there was a =CHAR= who went to <PLACE> and 
bought a =PET=. On the way home they came upon a =BARRIER= 
which the (PET) was afraid to cross. The (CHAR) said "(PET), 
(PET), jump over the (BARRIER) or I won't get home tonight." 

<TIME>::=Once upon a timelOncelLong ago in a small village I 
In days gone by in a little town by the river 



Pagg-1§_6 ______ Chap!~_1L_=___STOCHam:!~IRINGS ____ _ 

<PLACE>::=marketia pet storela super marketltownlthe city 
<BARRIER>::=fenceiditchifallen treellarge rocklstreamlbrook 
<PET>::=doglcatiparrotiPony . 
<REFUSAL>::= But the (LAST) would not. The (CHAR) 

<EXCURSION> and she met a (SUBJ). She said, "(SUBJ), (SUBJ), 
(VERB) (LAST), (LIST) and I shan't get home tonight." 

<EXCURSION>::=went down the pathlwent over a hililwent by 
<OBJECT> and then <EXCURSION>Iwent toward <OBJECT> I 

went over hill and dalelwent near <OBJECT>Iwent on the road to 
<OBJECT>Iwent for (RANDOM (20) + 1) miles 

<OBJECT>::=the <COLOR> <THING> 
<COLOR>::=whitelblueiredlyellowigreYlblackldarklgreenlorange 
<THING>::=mill,tavern,churchlschoollhouselmeadow,rocklbarn 
<PERSUADED>::= The (SUB~ knew the (CHAR) and, in fact, 
had been saved by her from a wild <WILD_AN>. So the (LIST) 
and the (CHAR) got home that night. 

<CHAR>::=little old woman I little old ladYlkind grandmother, 
kind old auntllittle girl dressed in redlretired seamstress I 
nice old ladyilittle girl green 
<DOM_AN>::=cowlpigihorseisheeplchicken 
<WILD_AN>::=lionlgiraffeitigericamellostrichlrhinoceros 
<ANIMAL>::=<DOM AN>I<WILD AN>I<PET> 
<HUMAN>::=farmerlgirllPoIIceman'hunter,mantboy 
<A>::=<HUMAN>I<ANIMAL> 
<CUT>::=cutlsliceisniplslash 
<CU~TER>::=knifeiscissoriswordidagger 
<BEE>::=beelwasPIhorse-fly 
<HURT>::=bitelfrighteniscareikickieat 
END 
<ANIMAL> <HURT> <HUMAN> 
<CUTTER> <CUT> <A> 
<A> break <CUTTER> 
water drown <A> 
<A> drink water 
fire burn <A> 
smoke suffocate <A> 
<BEE> sting <A> 
<A> swat <BEE> 
wind blow-out fire 
wind disperse smoke 
smoke pollute wind 
smoke smother fire 
<HUMAN> disperse smoke 
<A> spill liquor 
liquor intoxicate <A> 
<HUMAN> slay <WILD_AN> 
<WILD_AN> eat <HUMAN> 
END 

Names r.eferenced 
~_B§TORY':' ---

Name 
RSENTENCE 

I.Y~ 
Function 

Where defined 
Program 16.8 



Program 16.11 - RSTORY ______________ ~~ 367 

];I2ilogu~ 

One example of a story produced by the program (untouched by 
human hands) is: 

Long ago in a small villaqe there was a little old 
lady who went to a pet store and bought a cat. On 
the way home they came upon a ditch which the cat was 
afraid to cross. The little old lady said "cat, cat, 
jump over the ditch or I won't get home tonight." 
Eut the cat would not. The little old lady went over 
hill and dale and she met a water. She said, "water, 
water, drown cat, cat won't jump over the ditch and 
I shan't get home tonight." But the water would not. 
The little old lady went on the road to the red school 
and she met a man. She said, "man, man, drink water, 
water won't drown the cat, cat won't jump over the 
ditch and I shan't get home tonight." But the man 
would not. The little old lady went toward the blue 
church and she met a lion. She said, "lion, lion, 
eat man, man won't drink the water, water won't drown 
the cat, cat won't jump over the ditch and I shan't 
get home tonight." But the lion would not. The little 
old lady went toward the yellow rock and she met a 
smoke. She said, "smoke, smoke, suffocate lion, lion 
won't eat the man, man won't drink the water, water 
won't drown the cat, cat won't jump over the ditch 
and I shan't get home tonight." But the smoke would 
not. The little old lady went toward the blue house 
and she met a girl. She said, "girl, girl, disperse 
smoke, smoke won't suffocate the lion, lion won't 
eat the man., man won't drink the water, water won't 
drown the cat, cat won't jump over the ditch and 
I shan't get home tonight." The girl knew the little 
old lady and, in fact, had been saved by her from a 
wild ostrich. So the girl began to disperse the smoke; 
the smoke began to suffocate the lion; the lion began 
to eat the man; the man began to drink the water; 
the water began to drown the cat; the cat began 
to jump over the ditch and the little old lady got 
home that night. 

The reader will note that the story tends to be repetitious 
which is somewhat the point since small tots have a penchant 
for this sort of thing. 

In order to extend the robustness of the given program (where 
robustness is defined as the degree to which the stories vary) 
one may, of course, extend the vocabulary. One of the limita
tions so encountered, is the necessity within English to 
observe certain grammatical niceties such as using 'she' to 
refer to a woman. This single fact, incidently, is the reason 
that the principal character in the story has feminine gender. 
To include any gender, one would at least need a function 
PRONOUN(W) which will return the third person singular per
sonal pronoun for any word given as argument. While this task 



Pa~ 36.;;,.8 __ _ ChaQter 16 .STOCHASTIC STRINGS 

is not formidable (with a limited vocabulary) a complete set 
of grammatical transformations which would include, for exam
ple, present tense to past and future, active voice to pas
sive, indicative mood to subjunctive, singular to ?lural, 
represents a considerarle undertaking. Thus, with story 
generation, as opposed to mere sentence generation we come to 
grips with much more severe syntactic problems. 

The semantic difficulties involved in considerably extending 
the robustness of the story generator are also of interest. 
It should be clear that the vocabulary section of RSTORY can 
be completely overhauled to produce stories in such diverse 
settings as the wild west, interplanetary travel, the Jurassic 
period (dinosaur days), etc. A weakness of the system is that 
one could not place the union of all such information into the 
story since, for example, the <excursion> variable might 
produce "the cowboy drove his spaceship past the red 
pterodactyl." We should want to at least draw actors and ac
tions into the story on a logical, though perhaps 
probabilistic, basis. The problem seems somewhat similar to 
the Analogy Problem [Tuggle 1973] in which a program attempts 
to fill in the blank in a sentence of the form 

A is to B as C is to 

Here, a sufficiently rich data base makes such problems trac
table. Returning to our story, if CHAR is our principal 
character and we wish her (him) to travel we may say: 

"cowboy is to horse as CHAR is to " 

in order to find an appropriate means of transport. We can 
see a bit of this in the specialized data section of RSTORY 
(the second set of data) which sets forth relations between 
individuals and specialized groups to obtain greater realism 
at the expense of robustness. These relations are, of course, 
all of a certain kind, viz. of the form <agent> <affects> 
<agent>. Increasing the kinds of relations is essentially what 
is required to solve the Analogy Problem. Thus, RSTORY may be 
augmented by the possibility of having one or more of the 
chain of agents wander off (after having been lined up) in a 
manner consistent with the agent (water roight evaporate, fire 
burn out, lion be distracted by game, etc). This would add 
al,1other dimensi.on to the story. 

On a deeper level, one may wonder whether it is possible for 
the computer to play a greater role in the formation of the 
plot and deciding on the 'point' of the story. Would computer
generated stories ~lways remain in the entertainment category 
or could they serve some useful function such as describing 
some complex event within, say, an operating system? The ques
tion of randomly generated stories is currently a topic of 
considerable interest. See AI FORUM [1974] for a vigorous 
discussion and several other references. Also Knuth [Vol. 2] 
describes a random western which was used as the basis for a 
television film. 



Exercises for chsEt~~ ___ _ ____ ..;.P-=a~~ 

11111111111111111111111111111111111111111111111111111111111111 
1111111111111111111111111 EXERCISES 11111111111111111"1111111 
11111111111111111111111111111111111111111111111111111111117117 

Exercise 16.1 RANDOM (0) has a distribution which is 
L-- uniform over the interval (0,1). It is 
sometimes required to have other kinds of distributions. 
Define the dist~ibution functiQn (sometimes called the cumula
tive distribution function) D(X) of a random number generator 
R() as the function 

D (X) Prob { R () < X } 

For example, the distibution function assocated with the 
uniform distribution slopes between 0 and 1 in the range (0,1) 
and is 0 below and 1 above this rannge. Given an arbitrary 
distribution function D(), write the random generator R() in 
terms of the uniform generator RANDOM() and the inverse of 
D(), call it ID(), which is presumed to exist • 

.--- , 
, Exercise 16.2 , Suppose that a program requires random num

bers between 0 and 1 in such a way that x 
is x/y times more likely to occur as y. Thus 1/2 is twice as 
likely to occur as 1/4. Write the distribution function D() 
for the generator. Write a program to produce the random num
bers (functions in the ARITHMETIC chapter can be used). 

Exercise 16.3 Let a deck of cards be represented by 52 
separate characters, say: 

DECK lab ••• zAB ••• Z' 

In one statement, deal out four 5-card poker hands to players 
P1, P2, P3 and P4. (Any function(s) in this chapter may be 
used. ) 

r---------------~ 
, Exercise 16.4 A well-known game is to find, for a given 

telephone number, a sequence of letters 
which (1) when dialed will produce the same number and (2) are 
a pronouncable sequence. For example, 233-6874 can perhaps 
more easily be remembered as 'BEDMUSH' or 'ADDNURI'. The cor
respondence is: 

2 ABC 
~3 DEF 

4 GHI 
5 JI<L 

(1's and O's create problems). 

6 MNO 
7 PRS 
8 TUV 
9 WXY 



Page 370 Chapter 16 STOCHASTI£ STRINGS 

Write a function RPHONE to accept a telephone number and 
return a random sequence of letters associated in the above 
sense with the number. The sequence should bear some 
similai~ty to English; to do this, use RCBAR for probable next 
characters. 

Exercise 16.5 

rather than time? 

What single statement can be 
that RSELECT (Prog. 16.7) 

modified so 
saves space 

Exercise 16.6 Augment the assignment interpreter in 
RSENTENCE so that the variable assigned in

to need not also be the name of the syntactic variable expan
ded. One way to do this is to let 

=var/s= 

be interpreted as: 

var RSENTENCE(s) 

Exercise 16.7 If the argument to RSENTENCE is not well 
formed, the function can loop. Give an ex

ample of a string which will have this effect. What modifica
tion to RSENTENCE can correct this? (Requires the addition of 
six characters and a blank). 

Exercise 16.8 This exercise is based on a suggestion by 
Yngve { 1962]. In the input to RSENTENCE 

let /text/ indicate that the result of evaluating text (via 
RSENTENCE(text» is to be placed in the stack after the next 
item. An item is defined as either a syntactic unit or a se
quenceof non-blanks. Thus 

<SENT>::= <NOUN> <VERB-PHRASE> <NOUN> 
<VERB-PHRASE>::=<VERB>/ <ADVERB>/ 

can result in " He called her up". 
gestion into RSTENTENCE. 

i I 

Incorporate Yngve's sug-

1 Exercise 16.9 I In RSENTENCE, there are several characters 
which can't be used directly within alter

natives because they have some meta-meaning (such as <>1 etc.) 
Define an 'escape' convention so that any special character 
can be incorporated in the final text. Implement your scheme 
(hint: this can be implemented by modifying one Fattern) • 

r----------------, 
Exercise 16.10 

greater than 01 

For which of 
will <S> have 

the following definitions 
a probability of looping 



Exercises for £hapt~_l& _______________ Page 371 

(a) <S>::=AI<S>AI<S><S>A 
(b) <S>::=t2tAI<S>AI<S><S>AI<S><S><S>A 
(c) <S>: : =AI <T><T> 

<T>::=BI<S>C 

Exercise 16.11 What is the probability that 

<S>::=AI<S>A<S>B<S> 

as input to RSENTENCE will halt? 

i 
I Exercise 16.12 The 'one-arm bandits' of gambling fame 

(also known as slot machines) have three 
windows in which one of 20 pictures can appear as follows 
[Spencer 1968]: 

Symbol I Wheel 1 I Wheel 2 , Wheel 3 
------------------t-------~---t-----------t-----------

cherry (C) , 4 I 6 , 0 
Orange (0) I 5 , 4 I 7 
Bell (E) I 4 I 6 I 5 
Lemon (L) I 3 I 2 I 4 
watermelon (W), 3 I 1 I 3 
Bar (B) ,1, 1 I 1 

Payoffs are as follows: 

C - - 3 
C C - 5 
o 0 B 6 
E E 0 8 
L L L 10 

W W B 15 
o 0 0 18 
W W W 20 
B B B 200 

Identify the sample space. Determine the total input to the 
machine and the total return if each item in the sample space 
is hit once and only once. What percentage of total bets is 
taken by the machine? write a program to simulate the slot 
machine (can be done in as few as 10 statements using SUBSTR 
(Prog. 3.9) and RANDOM). 

,--- , 
, Exercise 16.13 I (a) Write a program to compute the area 
L- under the curve Y X2 on the interval 
[0,1) by Monte Carlo techniques. Print out this area every 
100 samples so that you can observe the rate at which the 
answer converges to its correct value (1/3). (Hint: this re
quires a total of three statements). (b) Compute the 95~ con
fidence interval after N trials and compare this figure with 
the experimental results. 



r----------------, 
, Exercise 16.14 To speed up the previous exercise, DUPL 

and CODE can be used so that the inner 
loop of three s~atements is reduced effectively to one. How 
can this be done? 

Exercise 16.15 Modify RSEASON (Prog. 16.10) so that with 
probability E a batsman will advance to 

first by means of an error where otherwise he would simply 
have made an out. All other runners should advance one base. 

• i 
, Exercise 16.16, Write a program called RGAME which will 
L-- behave like FSEASON except that RSENTENCE 
is used to supply running commentary of the events which 
transpire. Include names of players in the input data. Make 
your game colorful. Don't have a player merely make an out, 
have him hit a sharp drive to center which is speared by the 
centerfielder. . 

, 
, Exercise 16.17 Sagasti and Page [1970] describe an effort 
, to program and actually stage a computer-
generated dance routine. The stage is ~ivided up into 13 areas 
roughly as shown in Figure 16. 1 

A 

E F 

J 

B 

G 

i , 
1 , 
, 

C 

L 

figure 16.1 

D 

H I 

M 

The decomposition of the stage to produce a.random 
dance. 

A dancer is permitted to move from one circle to an adjacent 
one; for example, in Figure 16.1 a dancer at F can move to any 



of A, B, E, G, J, or K; of course, the dancer may also remain 
at the same position. Dancers may exit and enter at random 
times but only" to or from what may be called terminal nodes. 
For the exercise, let E, J, K, L, M and I be the terminals. 
Also, no two dancers may occupy the same spot at the same 
time. 

Implement a program to produce a random dance with the ad
ditional constraint that there be left-right symmetry. That 
is, for example, if a dancer moves from A to B then another 
dancer must move from D to C. To allow movement into the cen
ter position, create a new position Y which is offstage cen
ter. If a dancer at R goes to G then the dancer at L must go 
to Y, etc. Also, permit dancers at G and Y to change places. 
Denote offstage left as position X and offstage right as posi
tion Z. The output of the program should be a list of instruc
tions for each of eight dancers. 

Be careful! Sagasti and Page describe their initial efforts as 
resulting in "pandemonium on stage" until a slower tempo was 
found. They also described one dancer as "mildly bitter" being 
forced to leave early. 

. , 
I Exercise 16.18 I Change the story given by RSTORY to one 

involving a space motif. Use RWORD to 
provide stange-sounding names of people and planets. 



CHAPTER 

r----"1 

t r-1' 
" " I'--If 'r-1 t U u 

S EVE N TEE N 

n n 
"'/t I 
If '/1 I 

" " " " u u 

PHRASE ••••••••••••••••• 11.1 

QUEST 

STONE 

11.2 

11.3 

TICTACTOE •••••••••••••• 11.4 

CARDPAK •••••••••••••••• 11.5 

POKEV 

POKER 

17.6 

17.1 



Chapter-.!_7 _=-GAM~_S __________ Pa~15 

r----1 
Ir--~ ames are artificial environments frequently abstracted 
11r-, from reality intended to amuse and/or exercise the 
II L, I cranium. The computer (and computer programmers) are 
ILJI quite proficient at simulating such abstractions, much 
L---~ more so than the reality backdrop, so .that there has 
for a long time been a happy marriage between computers and 
game playing (frequently to the chagrin of management intent 
on putting the high-priced piece of equipment to better use 
than amusing its high-priced employees) • As the cost of com
~utation diminishes, however, the recreational or game-playing 
applications of digitial computers may be expected to 
increase, and surely any survey of SNOBOL4 applications would 
not be complete were it to ignore this area entirely. The 
computer is, after all, the ultimate game if not the ultimate 
player • 

We almost, but not quite, include under the heading of games, 
attempts to make the computer behave (i.e. converse) like a 
human. weizenbaum (1966] made a notacle attempt in this direc
tion with his program ELIZA. ELIZA will converse with the user 
in a form characteristic of a script given to it as data. The 
most familiar and popular script makes ELIZA behave like a 
psychiatrist. Though ELIZA was originally written in Fortran, 
Duquet (1970] has written a 'dramatically shorter' version in 
SNOBOL4. In SNOBOL4, the program is actually smaller than the 
psychiatrist script (two pages versus four). While we do not 
include the program here, we note in passing that dialogue is 
a necessary aspect of most games and a snappy dialogue can add 
an appeal to an otherwise not-too-exciting game. We will 
return to this issue later. 

For good or ill, many games have been programmed on the com
puter. At a nearby PDP-10 time-sharing computer there exist 
twenty-some games including Chess, GO, Black Jack, Go-Moku, 
Monopoly, Tick-tack-toe (two and three dimenSions), Nim and 
games based on football, golf and Startrek to mention only 
those names that are immediately recognizable. There are many 
other games which have been, or will be, written for a digital 
computer; see Spencer (1968], Eall (1962] and especially Ahl 
[1913]. 

A game may be concealed or open. In an open game, such as 
Chess or Checkers, all information concern1ng the state of the 
game is available to both players. In concealed games, such 
as in many card games or in penny matching, each player may 
have information unavailable to the other. This is clearly 
the case if one is holding cards unseen by one's opponent. 
With penny matching, the concealed information is the player's 
strategy. In a concealed game, the player must play in such a 
way as not to reveal his hidden information and therefore the 
techniques and analysis are quite different from the open 
game. 

In concealed games, there seems to be a problem involving 
player and computer credibility which does not exist with the 



Chapter 17 GAMES 

open game. Consider the game of penny-matching in which both 
players choose a side of a penny; one player wins (the other 
player's penny) if there is a match; otherwise the other 
player wins. With a computer there is a problem. If the com
puter goes first, there is the possibility that the player 
will cheat. If the player goes first, he may suspect the 
machine of cheating. Hagelbarger [195p] built a penny-matching 
mgchine, called SEER which 'solved' this problem by the human 
saying aloud his choice of head or tail and the machine 
(sensitive only to soun~ would indicate its choice whereupon 
the player would ,tell the machine, by ~ push button, who won. 
The machine can't cheat under these circumstances but the 
human certainly can. A counter was wired up to accumulate 
total wins and losses for the machine. Though the machine won 
most of its games, the results are clouded by the fact that 
some players would deliberately lie to the machine to see how 
it would operate in stressful situations. 

One solution to the concealment problem lay in the use ?f a 
one-way cipher (See ONEWAY, Frog. 16.4). Recall that g1ven 
the returned value of ONEWAY(S) it is impractical to compute 
the original S or, indeed, any S which would yield the same 
returned value. Hence the computer can choose a random string 
R (possibly based on the clock) and then call ONEWAY(R 'H') if 
it chooses a head or call ONEWAY(R 'T') if it chooses a tail. 
The computer prints the returned value. Then the player plays. 
The machine then reveals its move together with R. The player 
can check, if he cares to, whether the previously printed 
value corresponds to the given value of R. Spot-checking a 
machine for fraudulent behavior should, in this way, be fairly 
easy. 

A one-way cipher can also be used to make sure that a computer 
is giving you a fair deal. See Exercise 17.1. 

!2~i§iQn T~J~~isio~aphs 

A decision tree exists, at least conceptually, for any 
discrete' open game. The top node, or root of the tree, 
represents the decision node of the first player and has a 
branch descending down for each possible choice of the first 
player on his first move. Each such branch descends to a node 
representing the decision node of the second player, etc. An 
actual decision tree is produced for a simple version of the 
stone game (see Figure 17.1). 

Decision trees grow exponentially and hence tend to be large. 
A complete decision tree for the game of Tick-tack-toe is for
bidding enough. One for the game of Chess is so large as to 
be meaningless. For example, at 10. moves per play and for 70 
plays, the number of nodes in the tree exceeds the number of 
atoms in the earth. 

It is more convenient to think of an open game as a collection 
of states where each move carries the play to a different 



state. There are terminal states which end the game and in
dicate a winner for one of the players. If every different 
move sequence leqds to a different state, then the decision 
tree is equivalent to the decision graph. But in many games, 
the number of different states is far fewer than the number of 
nodes in the decision tree and the problem becomes amenable 
with a graph even though it appears to be impossible with a 
tree. 

One of the appeals of the decision tree is that it leads 
conceptually to a solution by means of the ID~D~~ process. 
The first player (A) selects that node which will maximize the 
outcome for him assuming that the second player will respond 
with the move that will minimize the output for A assuming 
that the first player responds with the move ••• , etc. This 
strategy may be carried over ,to the decision graph as follows. 
Label all terminal states as +1 if a victory for the first 
player and -1 if a loss and 0 if a tie. Find a state that is 
directed only to terminal states. If it is a move by A, mark 
it with the maximum of the values of all states reachable from 
it. If it is a move by player B, mark it with the least such 
value. Each state will be thus marked with the value of the 
state to l;>layer A (assuming both players play optimally). If 
there is no state which is directed' only to states already 
marked, then the game is not well-formed as it contains loops 
(or, what is equivalent, infinite paths) • 

It will clearly be impossible to present a large number of in
tricate game-playing programs in this section. One complete 
chess program could perhaps occupy the better part of this 
book. What we can do is present a few games illustrative of 
their type and also give some commonly useful functions. 

, i 

ff Program " For many computer-game players it is neces-I' 17.1 " sary to provide a carrot and a stick; other-
" PHRASE , , wise, they will simply lose interest and 
, , quit. For the carrot we will issue a random 
compliment and, for the stick, ,we will generate an insult. 
These are illustrated by the two functions PRAISE() and 
INSULT() • There is also a function to mark time called 
LETMESEE(). Using RSEN~ENCE (Prog. 16.8) the dialogue is al
ways fresh and lively. 

RSENTENCE (' <PRAISE>') tI) 
RSENTENCE ( '<INSULT>') ") 

DEXP ("PRAISE 0 
DEXP (" INSULT 0 = 
DEXP ("LETMESEE 0 = RSENTENCE('<LETMESEE>')") 

Names referenced 
~i=~§RA~E~------

~s~ 
DEXP 
RSENTENCE 

The input for RSENTENCE is: 

IY~ 
Function 
Function 

Where defined 
Program 14.1 
Program 16.8 



Chapter 1.7 GAMES 

<GOOD>::=excellentiwonderfullniceicarefullimpeccableishrewd, 
cleverlnifty,goodlsroartlskillfullcunninglwittylfinel 
splendidlelegantlt5'very <GOOD>, bright I brainy, brilliant I sharp I 
keeninimble-wittedlslickislYlastutelpenetrating 
<LETMESEE>::=<THOUGHT>t<MUMBLE>I<MUMBLE> <THOUGHT> I <THOUGHT> 

<MUMBLE> 
<MUMBLE>::=HmmmlAhhIWell WelliGoshiGeelORIOh maniLet's seel 
wait a minute,InterestinglwowlWoweelYipeslZoweelWhooshi 
t5#<MUMBLE> <MUMBLE>It6t<MUMBLE> ••• 
<THOUGHT>::=<LETME> <CONSIDER> <THIS> 
<LETME>::=I think I'lillet melI need time tOII'm going to 
have to 

<CONSIDER>::=considericontemplatetmull overlt4t<THINK> about 
<THINR>::=thinkiseeicogitateimeditate 
<THIS>::=thisithis onelthe situationlthis problemlthis here 
<P1>::=maneuver,strategemitacticiplaYImove 
<P2>::=performancelgameleffort 
<P3>::=playtstrategy 
<P13>::=<P1>sl<P3> 
<P23>::=<P2>I<P3> 
<P123>::=<P1>sl<P2>,<P3> 
<PRAISE>::=<THANRS> for the game, <NICEGAME> 
<THANKS>::=ThanksiThank youlThank you very much 
<NICEGAME>::=I admired the <GOOD> <P123> on your partl 
that was <GOOD> <P3> on your part, your <P1.>s were quite 

<GOOD>Iit was a pleasure to play against one so <GOOD>,I 
enjoyed your <GOOD> <P123>tI enjoyed particularly that last 
<GOOD> <P1> 

<STUPID>::=stuoid,durnb,blundering,thick-headedisad, 
thick-skulledfsilly,ludicrous,witlessiPoor,ponderousi 
brainlesslfoolishlbunglinglheavy-handed,gracelesslclumsy 
<FCOL>::=foolldoltiidiotioafiblockhead,chumPIassimoron,ninny, 
nincompooPIchumplduncetbonehead,fatheadlirnbecileljerklbaboon 
<INSULT>: : =You <STUPID> <FOOL> I I have never seen such <STUPI.D> 

<P13>IYour <STUPID> <P23> befits a <STUPID> <FOOL>, 
Your <STUPID> <P1>s indicate that you are a <STUPID> 

<FOOL>IA <STUPID> <FOOL> is not so <STUPID> as you I 
Your <P23>.marks you as a <STUPID> <FOOL>tYour <P1>s are 
less than <GOOD> 

END 

While random sentence generation has been around for quite 
some time, it generally comes in the form of a program which 
prints something. It is then neither obvious nor easy to har
ness the sentence generation for other than demonstrating the 
effect. It was for this reason that RSENTENCE was written as 
a function. 

Some sample phrases are: 

"~hanks for the game, that was nice strategy on your part" 
"You dumb idiot" 
"Interesting Hmmm ••• " 
"I'm going to have to consider this" 



Program 17.2 =-QYESL ___ _ Page 379 

"I have never seen such thick-headed strategems" 
"Thank you for the game, your plays were quite shrewd" 

It should be obvious which phrases were respectively returned 
by INSULT(), PRAISE() and LETMESEE(). 

i , 

II Program I I QUEST is intended to save some of the 
II 17.2 II routine problems and house-keeping chores 
" QUEST I' associated with a dialogue system. For ex-
I I ample, all game routines will request num-
bers and/or strings from the player. The system must then 
check if these arguments are valid and, if not, indicate what 
is expected. If valid, the argument must be interpreted or 
assigned to a variable and an appropriate branch must be 
taken. Certainly, none of th~se chores are difficult to do, 
but it will be more convenient to. combine them into one 
routine. For example, 

QUEST('HOw much do you wish to bet?/BET(1 ••• 10) I (DROP) DR') 
+ : S ($LABEL) 

will print the message: . 

How much do you wish to bet? 

(i.e. all characters up to the slash) and then either accept 
an integer in the range 1 ••• 10 and assign it to BET or accept 
the literal input DROP and transfer to label DR. The transfer 
is accomplished by having QUEST assign the string 'DR'to the 
global variable LABEL; if such an assignment is made, the 
RETURN exit is taken; otherwise the FRETURN exit is taken. In 
this way, the actual transfer takes place outside the function 
as shown. 

In general, the string following the slash is called the QUEST 
~2tt~ and is a sequence of descriptors separated by bars. 
Each descriptor is of the form: 

variable (values) label 

The variable, if any, is assigned the value (if accepted) and 
the label is assigned as described above. Values may be of 
the form: 

number ••• number 

or some string constant, or the string ARB implying that any 
string of characters will be accepted. 

If the user types something that doesn't match, an error mes
sage (including a random insult) is given. Using the above 
example, the message (among other things) that will be typed 

. is: 



Pa~ 380 Chapter 17 GAM~_S _______________ __ 

The correct form is: 1 ••• 10,DROP 

In general, the message will contain the QUEST pattern with 
labels, variables and parentheses stripped off. 

As a final bonus, if the user ever types question mark (1), a 
friendly reminder of the correct form is given. 

DEFINE ('QUEST (QS) QP,QPA,QN,QVP,QL,QLOW,QHI,QI') 

First define a utility function QUESTP(QS,QP) which will 
analyze the argument string QS according to the QUEST pat
tern given by QP. It will fail if no match is found. 

DEFINE('QUESTP(QS,QP)QP1,QS1') : (QUESTP _END) 

Entry point: Break on an alternative and if one is found 
call QUESTP recursively. 

QUESTP QP BREAK("'). QP1 '" 
QUESTP (QS,QP1) 

:F (QUESTP_ 1) 
:S (RETURN) F(QUESTP) 

In QP we now have a single QUEST descriptor. Obtain the 
variable name (QN), the label name (QL) and the value pat
tern (QVP). 

QUESTP_1 QP 
QN 
QP 

BREAK (' (') • QN '(' 
IDENT (QN) 'QDUMMY ' 

BREAK (') ') .QVP ')' 

: F (FRETURN) 

REM • QL 
r-------------------------------------------------------------, 
I If QS matches the value pattern, branch to QUESTP 3 for 
I the assignment. convert QS if necessary to the-proper 
I type. 
I 

QUESTP_2 

IDENT(QVP, 'ARB') :S (QUESTP_3) 
QVP ARB. QLOW REM. QHI :S(QUESTP 2) 
IDENT{QS,QVP) :S(QUESTP_3)F(FRETURN) 

QLOW ~INTEGER(QLOW) EVAL(QLOW) 
QHI ~INTEGER(QHI) EVAL(QHI) 

QS = CONVERT (QS, 'INTEGER') 
(LE(QLOW,QS) LE(QS,QHI» 

: F (FRETURN) 
:1" (FRETURN) 

QUESTP 3 $QN QS 
- LABEL DIFFER (QL) QL : (RETURN) 

QUFSTP_END 

Define a pattern (QUEST. QPA) which will extract from a 
QUEST descriptor, the inner QUEST pattern. ID.V will match 
an identifier assigning it to V. 

NEUT BFEAK ( , , () ') 
QUEST.QPA NEUT '(' NEUT. QPA ')' (NEUT I REM) 
A = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
ID.V (ANY (A) (SPAN{A '0123456789_.') I It» . V 

: (QUEST_END) 

Entry point: After printing the message, interpret the 



Program 17.3 - STO~_E _________________ Page_381 

I input. Errors are processed at QUEST_'. 

QUEST LABEL 
QS BREAK(·/·). OUTPUT '/. REM. QP 
QI TRIM (INPUT) ; OUTPUT QI 
QP ID.V· ••• • EVAL(V) ••••• :S(QUEST_1) 
QP ••••• ID.V • EVAL(V) :S(QUEST_2) 
(DIFFER(QI,'?') QUESTP(QI,QP» :F(QUEST_3) 
DIFFEF(LABEL) :S(RETURN)F(FRETURN) 

Extract and print the pattern and also indicate our 
feelings. 

QP QUEST.QPA = QPA :S(QUEST_3) 
OUTPUT DIFFER(QI,'?') 

+ RSENTENCE('Bad input, you <STUPID> <FOOL>') 
OUTPUT = 'The correct form is' QP : (QUEST) 

Names referenced Nam~ 
STUPID 
FOOL 

!YE~ 
Syntactic variable 
Syntactic variable 

Where defined 
Program 17.1 
Program 17.1 

~i=QUE§T:-------

I 

II Program II Let there be N stones in a pile (where N is 
II 17.3 'I odd) and let each player take, on each move, 
II STONE 'I either 1, 2, , or K stones from the 
L- pile. When the pile is exhausted, the player 
with an odd number of stones wins. For example, if N=5 and 
K=2 we have a very simple game for which we can portray a com
plete decision tree as shown in Figure 17.1. 

By applying the previously described minimax procedure (or by 
using common sense) the tree indicates a victory for the first 
player, A. If the rules of the game are changed to make the 
winner the one with even parity, the game is victory for B, no 
matter what A does on the first move. 

The decision tree algorithm can be employed if the ·tree is 
sufficiently small but becomes quite impractical as soon ,as 
the game becomes nontrivial. To see this, let us fix K=2 and 
let N vary. The number of branches, EeN), in the tree is given 
by the formula: • 

E(N) 2 + E(N - 1) + E(N - 2) 

which is immediately evident from the figure. While it may be 
an interesting exercise to solve this recurrence relation our 
purpose is served by simply noting that: 

E(N) > 2 * E(N - 2) 

so that 

E(N) > 2 ** (N/2) 



r,------(1,,2,2)----0,3,2 , 
r, ----Ie 2,,2, 1] 
I I 

r,------(3,1,1) • ... ------0,2,3 
I I 
I ·~-----[1,3,,1r___0,,3,2 , 

r------,[ 4 , 1 , 0 ] ------Ie 1, 2" 2 ]----0" 2 " 3 , , , , , 
(5,,0,,0) , 

, I 
,-' ------ (2,1,2) , 

""-------0,3,,2 

I r,------(1,,2,2)----0,3,,2 
I , 
·~-----[3,2"O) r,--------0,,4,,1 , , 

... ' ----(2,2,1) , 
'-----,[ 1 , 3" 1 ]----0, 3, 2 

The decision tree for the stone game with N=5 and 
K=2. Player A goes first. At each node, three 
numbers indicate the number of stones left in the 
pot, the number of stones in A's possession and 
the number of stones in B's possession. Parens 
indicate a decision node for ~, brackets indicate 
a decision node for B. 

which implies that E(N) is exponential. 

The decision graph on the other hand is quite well-behaved 
especially if we combine all nodes with the same parities for 
the two players. That is" for a given number of stones in the 
pot" we can group all nodes together such that the player 
about to pick has an even parity. In this way the number of 
nodes is only 2N and the number of branches is bounded by 2NK. 
Figure 17.2 indicates (within the limits of our artistry) the 
decision graph for the stone game (with K=2 and N=5). 

From the decision graph it is an easy matter for a program to 
£Qmpute an optimal strategy for a game of any N and any K and 
for either victory parity. A 2 X N decision array is allocated 
which corresponds to the nodes of Figure 17.2. The rest is a 
simple matter of using the QUEST routine. 



_Program 17.3 - STONE ---------- Page 

Od.cLParity ~n Pari:tv 

, , , 
,..--1 Pot=5 f Pot=5 1--, 
1 I I , , 
1 I , 1 
I I I 1 
I .. .. , , , , , , Pot=4 ,--, r--' Pot=4 , , , I , , , I , 
I , , I , , , , , 

i 
, , , , 

'->1 Pot=3 ~> <--I Pot=3 ,<-' , , , , , , , 
, I , , , , , .. , , .. 1 , , , , , Pot=2 '---> <----' Pot=2 1 , 1 , , 
1 , i 1 
1 1 1 , , 

i 
, , 

• 
, 

'->1 Pot=1 ~> <--I Pot=1 ,<~ , I 
, 

1 , , , 
I 1 , I .. 1 , .. 

1 I 
Pot=O '---> <----' Pot=O 

E!9Y!:~ 17 • 2 

A 'decision graph for the stone game with ~=2 and 
N=5. The nodes on the left are associated with 
Odd parity and those on the right with even 
parity. parity refers to the parity of the player 
about to move. 

383 

The function SOA (NSTONES, PARITY, MAX) will create a Deci
sion Array for the Stone game for a given number of stones 
(NSTONES). PARITY (0 or 1) indicates which parity wins 
and MAX indicates the maximum number of stones that may be 
taken per step. 

DEFINE('SDA(NSTONES,PARITY,MAX)A,I,OPAR,P,J') 
: (SDA_END) 



GAMES 

i 

Allocate and initialize the array (SDA). SDA<N,P> in- I 
dicates what to do if there are N stones left and you've I 
got parity P. If there is no right decision, an 'L' for I 
lose is given. t 

SOA SDA ARRAY('O:' NSTONES ',0:1' , 'L') 
SOA<O,PARITY> = 'W' 

For each stone (I) and for each parity (P), determine the 
strategy by finding which move (J) will end in a losing 
situation for the opponent. 

SOA - 1 I I + LT (I, NSTONES) :F (RETURN) 
P -1 

SDA_2 p P + 1 LT (P, 1) : F (SDA_ 1) 
OPAR FEMDR(NSTONES - I - P, 2) 
J = 0 

SDA_3 J J + 1 LT(J,MAX) :F(SDA_2) 
I DENT (SDA<I - J, OPAR>, 'L' ) : F (SDA_3) 
SDA<I,P> J : (SDA_2) 

SDA_END 

Main routine: The rules of the game follow the END label 
and are optionally printed (no sense boring the expert, he 
may be you). The rest of the program should be self
evident and will be given without further comment. 

, 

QUEST('DO you want the rules?/(NO)NEWGI (YES)') :S($LABEL) 
STONE_1 OUTPUT INPUT : S (STONE_1) 
NEWG QUEST('NO. of stones (odd) = /NSTONES(1 ••• 1000) ') 

EQ (REI~DR (NSTONES; 2) ,0) : S (NEWG) 
QUEST ("Winner's Parity (0 ••• 1) = /P (0 ••• 1) If) 
QUEST("Maximum Take = /MAX(2 ••• 1000) If) 

OLDG NS . NSTONES 
MAXA' -= MAX 
A SDA(NS,P,MAX) 
HIM 0 
ME 0 

HIS_TURN 
'OUTPUT 'There are ' NS ' stones in the pile.' 

TOTALIZE 

MAXA GT(MAXA,NS) NS 
QUEST('How many do you want? /K(1 ••• MAXA) ') 
NS NS - K HIM = HiM + K 
EQ (NS, 0) :S(TOTALIZE) 

K A<NS,REMDR(ME,2) > 
K = IDENT(K,'L') 1 
NS NS - K 
ME ME + K 
OUTPUT LETMESEE() 
S K ' stones.' 
S EQ (K, 1) 'just one.' 
OUTPUT = "I think I'll take" 
EQ (NS, 0) 

S 
:F (HIS_TURN) 



____ ~Pro~am 17.3 - STONE Page 385 

OUTPUT = 'You have ' HIM' stones and I have ' ME ' stones' 
EQ (REMOR (HIM,2) ,P) :S(HE_WINS) 
OUTPUT 'That means I win' 
OUTPUT INSULT() : (CHANGE) 

OUTPUT = 'That means you win' 
OUTPUT PRAISE() 

CHANGE 
QUEST('Would you like to change the game? /' 

+ , (YES) NEWG I (NO) OLOG') : ($LABEL) 
END 

Names referenced 
~LSTONE: ----

~sm!~ 
QUEST 
PHRASE 

!YB~ 
Function 
Package 

Where defined 
program 17.2 
Program 17.1 

I~ is necessary to be as complete as possible in the proces
s1ng of input information when the user of the system is 
someone other than the person who wrote the program. This is 
especially true here where presumably the user is the playful 
sort anyway. This was the reason for the creation of the 
variable MAXA whose purpose is to limit the value of the 
selection to the maximum of the stated limit and the pile. 

An example of a typical session with the STONE game is shown 
below. Underlined sections indicate the machine's responses. 

I!Q-Y2!L~L:the rul~§l NO 
No. of stone~_1Qdd)-= 13 
~inner'.§J?arij;L.J.Q~~-= 0 
Maximum Take = 3 
Th~re 1.LstQ~_i!L:tb~pile. 
H~_msn~ you want? 3 
~et_me contemplate this one 
I think I'll take 2 stones. 
Tbere-are-a-Stones-In~~ile. 
H~msny-do you want? 1 
Q!L!~es ••• Gee Yipes I need time to se~_abou:t_:thiLQ~ 
I think I'll take 3 stones. 
!here are 4 s!;ones in the.J2ile. 
H~msny-gQJQ:g~ntl 3 
Ahh •• '. ~w 
I :!;hinh I '"1.L tak~~:g§.L.Qn~ 
You have 7 stones and I have 6 stones 
That means I win 
jQ~dumb ID~neuvers indicate thai-Ygy~~~ 

thick-skulled moron 
~QYld you 1 ike to chang~ th~IDe? 1 
Bad inp~YQu brainles§_nin!!Y 



• i 
, , Program , , 

I' 11.4 " 
" TICTACTOE l' 
teresting enough 
techniques. 

Chapter1 __ 1 ___ GAME§ _________ _ 

The reader is presumed familiar with the 
game of Tick-tack-toe whose popularity is 
itself a puzzle since it is hard to do 
anything but tie. Nonetheless, it is in-

to illustrate several game-playing 

A complete decision tree for the game has nine possible 
choices for the first move, eight for the second, seven for 
the third, etc. Hence there are 9! (= 362,888) branches in 
the decision tree. Using SNOBOL4 and spending 10 milliseconds 
on each branch, one must spend 10 minutes of machine time to 
analyze the game, which is a bit much. When one considers the 
decision graph, however, there are only 39 = 19,683 possible 
boards and not every board is reachable by the rules of the 
game. Thus, there is a great deal of folding back. 

The pure tree-searching algorithm is actually quite simple 
since one need only know how to make a move and how to detect 
victory. That is, assume we write a routine, TTTV, to deter
mine the value of a board to, say, Player X (i.e. the one who 
marks XiS in squares as opposed to O's) and another routine 
TTTM, which determines an optimal move for X. An arbitrary 
board is given to TTTV which first tests whether a winning 
combination exists. If so, the value of the board is self
evident. If not, it asks TTTM for the best move for player x. 
Upon getting it, TTTV evaluates the board from the point of 
view of player o. It does this by interchanging O's and XiS 

and calling itself recursively. It the~ returns the negative 
of the number so returned. The coding of TTM is even simpler. 
TTTM simply tries each move and asks TTTV to evaluate it (from 
the standpoint of player Ole This is not super efficient but 
it works. 

An algorithm based on the decision graph, on the other hand, 
may at first sight appear to be much more complicated re
quiring a complete graph description of the game. But we can 
let the computer do most of our graph-building as follows. 
Record each new state (new board position) that we come to in 
a table allocated for that purpose, and record with the table 
the move made. At each new situation, the table is consulted 
to see whether we've been there before. 

While these techniques are suitable for Tick-tack-toe, the 
search times become impractical for more complicated open 
games such as Chess and Checkers. To a first approximation, 
these games can be played with a truncated decision tree which 
means that the tree is searched to a limited depth and only a 
limited number of alternative moves at each level are 
considered. Samuel [1963] describes a Checker-playing program 
which also stores boards as in the decision graph algorithm. 
This permits the program to learn as it continues to play. 
Note that storing a particular state helps not only when 
returning to that state but in resolving the value of all 
states which can reach the remembered state. In the game of 



Program 17.4 - TICTACTOE Page 387 

Checkers the number of states that need be remembered can be 
reduced by considering all symmetries of a given board posi
tion. This is fully illustrated with the game of ~ick-tack
toe. Thus if the proper response to: 

o 

x 

o 

is remembered 
to be: 

then we should not have to recompute if 

o 

x 

o 

is encountered. 

o x 

x 

o 

Assume that boards are represented as strings, so for example 
the last board above is represented as: 

o X 0 

We can permute such a string very efficiently using positional 
transformations. But how many symmetries are there? Figure 
17.3 below illustrates the eight symmetries of the two
dimensional Tick-tack-toe board. 

0 0 X 

X X 

X 0 0 

0 0 X 

X X 

X 0 0 

Figure 17.3 

The eight symmetries of the Tick-tack-toe board. 

A method for producing these symmetries is found by noting 
that the upper four are 900 clockwise rotations of each other 
as ar~ the bottom four. The first of the bottom group is found 
by flipping one of the top group completely over so that we 



Page 388 c~er17 GAM=E;S __ _ 

are looking at its underside. 
tions we are able, with the help 
produce all eight. 

Thus, with two basic permuta
of a little counting, to 

It is not always easy to determine the number of symmetries 
for some arbitrary board game. A method that may prove helpful 
is to consider the number of equivalent serializations of the 
points of the board. For example, we can serialize the points 
of Tick-tack-toe in the order indicated in the diagram below: 

2 3 

4 5 6 

7 8 9 

An equivalent serialization would require that we begin at 
some corner (there are 4) and that we proceed along some edge 
(given the corner, there are 2 possibilities) and sweep the 
square one line at a time until all points have been touched. 
There are therefore 8 in all~ 

Whereas before we could count approximately 20,000 different 
Tick-tack-toe boards, there are far fewer if we take into ac
count symmetries. Unfortunately, if we wanted to determine 
exactly how many we could not simply divide 20,000 by 8 to ob
tain 2,500 as this would not allow for the fact that some 
boards rotate or flip into themselves. Though 2500 is a good 
lower bound, to find the exact number one must use Polya's 
theory of counting. See for example Harrison [1965]. We will 
be content with ,letting the program do the counting. 

In what follows we will define the functions TTTV and TTTM for 
the game of Tick-tack-toe. Given these funCtions, it should 
be an easy matter to write a complete program to play the game 
with a human opponent. Also, the program will play other games 
on the 3X3 board by simply changing the definition of losing 
pattern (LOS_PAT). It will play other o-X games on different 
size boards by changing the definition of equivalent board 
(the function NEXTBD) as well as LOS_PAT. These are left as 
exercises. 

TTTM remembers board positions by storing them in the table 
TTT. This table can be initialized with boards which block 
opponent victory (increasing efficiency) or with boards in
dicating heuristic plays or standard openings. These options, 
too, are explored in the exercises. 

We first define a utility routine which cycles through all 
the boards equivalent to a given Tic-tac-toe board. It 
expects as argument the last board returned. NEXTBD can 
always be initialized by setting NEXT_N to o. 

DEFINE ( , NEXTBD (B) .) 



__________ Proq~s!!L17. L=-Im~~ ______ _ Page 389 

Entry point: The first REPLACE is a clockwise rotation 
(done each time) .• The second REPLACE is a flip (done every 
four times). 

NEX'IBD NEXT_N 
NEXT_N 
NEXTBD 
NEXTBD 

EQ(NEXT_N,8) :S(FRETURN) 
NEXT N + 1 

= REPLACE('741852963',' 123456789',B) 
EQ(REMDR(NEXT_N,4» 
REPLACE('321654987','123456789',B) +. 

: (RETURN) 
NEXTBD_END 

TTTV(B) will determine the value of the board E to player 
X given that it is his move. It is presumed that he does 
not yet have a winning combination. 

DEFINE('TTTV(BOARD)') 
LOS_PAT = POS (0) ('000' , '0' LEN (3) '0' LEN (3) '0' 

+ , LEN ( 3) , 000' ) 

TTTV 

BOARD 
BOARD 

o 
-1 

NEXTBD (BOARD) 
LOS_PAT 

TTTV 0 

:F (TTTV~2) 
:S(RETURN)F(TTTV_1) 

TTTV = -TTTV (REPLACE (TTTM (BOARD) ,'XO','OX'» : (RETURN) 
TTTV_END 

T'ITM will find the best move that player X can make on the 
given board. It first checks to determine whether it or 
any board similar to it was processed before. Old boards 
are kept in the table TTT. TTTM actually returns the new 
game state. L---________________________________________________________ ~ 

TTTM 

DEFINE ('TTTM(BOARD)T,N,MAX,V') 
TTT = TABLE () 

NEXT_N 
MAX -2 
BOARD ' , 

o 

TTTM_ 1 EOARD NEXTBD (BOARD) 
TTTM TTT(BOARD> 

:F (FRETURN) 
:F (TTTM_2) 

DIFFER (TTTM) :S(RETURN)F(TTTM_1) 
TTTM_2 BOARD (TAB(N) ARE) • T ' , aN = T 'X' :F(TTTM_4) 

V = -TTTV(REPLACE(BOARD,'OX','XO'» 
MAX = GT(V,MAX) V 
TTTM BOARD 

TTTM_3 BOARD POSeN - 1) LEN(1) , , 
TTTM_4 TTT(BOARD> TTTM 
TTTM_END 

: (TTTM_2) 
: (RETURN) 



Page 390 Chapter 17 GAMES 

IIII arne Theory In concealed ganes. we have the added 
complexity that our strategy may tip off 

our opponent to our disadvantage. In any of the 
varieties of the game of poker. for example. aggres
sive betting may scare off an opponent who might 
otherwise stick and, in this way. fail to seduce him 

I .r----------~ 
I II I 
I I I 
IIII I 

into betting more of his funds in a losing cause. It therefore 
pays to vary one's strategy and either not always bet aggres
sively with a good hand or bet aggressively with a bad hand 
occasionally (the so-called bluff). Many people feel that 
behavior such as bluffing is incom~atible with machine play. 
But as we will see, machines can do very well in a game such 
as poker and in fact can play truly optimal strategies. 

B 
I II 

I 1 -2 

A 

II -2 4 

Figure 17.4 

A two-person zero-sum game 

Let us take a hypothetical situation shown in Figure 17.4. 
There are two players. A and B. each with two possible moves. 
I and II. Each selects a move (unbeknownst to the other) and 
the matrix indicates how much B should pay A for each of the 
four possible outcomes. If the amount indicated is negative 
then the transfer of funds is in the direction from A to B. 
The game is called zero-sum because whatever one player wins 
the other lose s; a si tua t.ion which does not always exist in 
real life when. for example. a nuclear holocaust could be 
disastrous for both sides. 

How should A play the game? If he tries for the big payoff of 
4 by always selecting move II. B will catch on eventually and 
begin playing move I exclusively. Then A.seeing that he is 
losing 2 on each turn will begin selecting move I until B cat
ches on to that. Clearly both sides must play a so-called 
mix~~§ira~ wherein their selection of I and II is un
predictable. Neither player should base their move on a 
strictly deterministic basis as this strategy may be uncovered 
by the opponent and exploited. This conclusion is perhaps in
tuitively implausible but one need only reflect on the penny-



Page 391 

matching game to see the importance of not developing easily 
detectable patterns of play. 

, i 

11 Program liAs a fairly complicated example of a game
" 17.5 " theoretic approach, we will present a 
" CARDPAR 'I program which will play an optimal game of 
L-_______ , poker. Prior to presenting the game we will 
establish certain utility functions which may be useful not 
only in other forms of poker but perhaps in other card games 
as well. 

An important initial consideration is the choice of data 
representation. How should a card be represented? In SNOBOL4, 
with its wealth of string operations, a natural choice is a 
single character. We will represent the 52 cards of the deck 
by the letters of the alphabet: 

'ABCDEFGHIJRLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' 

The assumed ordering is: 

(2C 3C ••• AC) (20 3D .' •• AD) (2H 3H ••• AH) (2S 3S ••• AS) 

In principle, any 52 characters could have been used such as 
the first 52 characters of &ALPHABET. In practice, debugging 
is easier if one uses printable characters. 

DEFINE ('RHAND(R,FLAG) ') 
DEFINE('SUITS(H) '} 
DEFINE ( 'VALS (H) ') 
DEFINE ('DISPLAY (H) VALS,SUITS,V,S') 

Initialization of constant strings. 

FULL DECR 
+ 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJRLMNOPQRSTUVWXYZ' 

ALL VALS ' ABCDEFGHIJRLM' 
JUsT_VALS DUPL(ALL_VALS,4) 
JUST_SUITS = DUPL('C',13) DUPL('D',13) DUPL('H',13) 

+ DUPL('S',13) 
: (CARDPAR_END) 

i 
RHAND(R,FLAG) will return a random hand with K cards in , 
it. If FLAG is nonnull, the deck will be reshuffled. If I 
an insufficient number of cards remain, RHAND will fail. 1 

RHAND RANDOM_DECK 
RANDOM_DECK 

= DIFFER (FLAG) 
LEN(R) • RHAND 

RPERMUTE(FULL_DECK) 
= :F(FRETURN)S(RETURN) 

SUITS (H) will return just the suits for the hand H. 

, 

L-_______ ~ _________________________________________________ ~ 

SUI'IS SUITS = REPLACE(H,FULL_DECK,JUST_SUITS) : (RETURN) 



VALS(H) will return just the values of the hand H. L-______________________________________________________________ ~ 

VALS : (RETURN) 
r-----------------------------------------------------------------, 
, DISPLAY (H) will return a string representing the hand H in 
I a form consistent with conventional representations. , 
DISPLAY VALS = REPLACE(VALS(H) ,ALL_VALS,'23456189TJQKA') 

SUITS SUITS (H) 
DISPLAY_1 

VALS LEN(1). V :F(RETURN) 
V = IDENT (V, • T .) , 1 0 • 
SUITS LEN(1) • S 
DISPLAY DISPLAY V S ' • : (DISPLAY_1) 

CARDPAK_END 

Names referenced 
~-CARnPAK:---

r , 

Name 
RPERMUTE 
ORDER 

!Y~ 
Function 
Function 

Where defined 
program16:3 
Program 3.1 

" Program I' As a prelude to finding an optimal strategy 
" 11.6 " of a game of poker we will write a function 
, I POKEV I' POKEV(HAND) which will evaluate a poker hand 
1..-. ______ ..... (5 cards) producing a number (very nearly) 
uniformly distributed in the range (0,1) and monotonically 
increasing with the strength of the hand. Thus, hand H1 is 
stronger than H2 if POKEV(H1) > POKEV(H2). The constraint that 
the numbers be uniformly distributed is very important to the 
successful operation of the optimal POKER-playing program. 
That is, the percentage of times that a hand H will be such 
that POKEV(H) < X must be X or close to it. This is perhaps 
the trickiest part of the program. 

To begin with we find, via pattern matching, which of the 
several categories the hand falls into, eg. bust, pair, two
pair, three-of-a-kind (trips), etc. We set an array (POKEV_A) 
to contain probabilities that such hands are dealt. The 
probabilities can be computed or looked up in a source such as 
Epstein [1967]. We then need to resolve the question of where 
a given hand falls with respect to all other hands in its 
category (the variable FRACTION). This may be done crudely by 
regarding the values of th~ hand, sorted in descending order, 
as a number in a base-13 radix system. Unfortunately (as the 
author learned by experience) the result is too inaccurate to 
lead to optimal play. Consider for example, bust hands. Few 
hands would have a lead value of 10 or less and no hands would 
have a lead value of 6 or less. Hence no hands would evaluate 
to .15 or less, a severe distortion. 

A solution is to consider the hand as representing a number in 
the combinatorial number system (see DECOMB, Prog. 15.2). This 
system has the property that the digits descend, just as re-



quired. Were it not for straights, the representation for bust 
hands would be exact. 

For hands such as pairs, trips, two-pairs, fours, and full
houses we take the most significant designator (one or two 
cards) as a base-13 number and combine this with the remaining 
cards in a mixed residue fashion to obtain a final evaluation. 

PR 

DEFINE('POREV(H)VALS,SUITS,V,W') 

Define patterns to detect major poker categories 

STRAIGHT_SEQ = REVERSE (ALL_VALS) SUBSTR (ALL_VALS,13, 1) 
PAIR.V LEN(1) $ V *V 
TRIPS.V PAIR.V *v 
FOURS.V TRIPS.V *v 
FLUSH. V FOURS.V *V 

i 
The following array gives the probability that a hand will , 
fall within or lower than the indicated level. 0 is a, 
bust, 1 is a pair, etc. , 

POKEY A 
POKEV-A<O> 
POKEV:::A<1> 
POKEY A<2> 
POKEV-A<3> 
POKEV:::A<4> 
POKEY A<5> 
POKEV-A<6> 
POKEV-A<7> 
POKEV:A<8> 

ARRAY ( ,- 1 : 8 ' ) 
0.501 
0.924 
0.971 
0.9924 

= 0.9963 
0.9983 
0.99974 
0.999985 
1.0 

PR(L,PREFIX) is a utility function used by POKEY to com
pute the actual evaluation of the poker hand, assign it to 
POKEY and return. L is the level of the hand as in the 
above array. PREFIX is the secondary evaluation parameter 
and consists of zero, one or two cards (e.g., the 6 of 
trip 6's). For further resolution, the variable VALS con
tains the rest of the values in order of siqnificance. 
These are regarded as a cOmbinatorial representation of 
some number. 

DEFINE('PR(L,PREFIX)COMBS,FRACTION,A') : (POKEV_END) 

COMBS COMB(13,SIZE(VALS» 
EASEB_ALPHA ALL_VALS 
COME ALPHA ALL VALS 
FRACTION = (BASE10(PREFIX,13) * COMBS + DECOMB(VALS» 

, 

+ / (13. ** SIZE (PREFIX) * COMBS) 
A POREV A 
POKEY A<L - 1> + (A<L> - A<L - 1» * FRACTION 
PH • RETURN : (NRETURN) 

,.--_._-----------------------------, 
I Entry point for POKEV. Thanks to PR, our job reduces to a 



Page 394 C~er 17 _GAMES 

simple matter of pattern matching. 

POREV VALS REVERSE(ORDER(VALS(H») 
SUITS = SUITS (H) 
STRAIGHT_SEQ VALS 
SUITS FLUSH. V 

POREV_3 
SUITS 
VALS 
VALS 
VALS 
W = V 
VALS 

POREV_5 
VALS 
W 'V 
VALS 

POREV_END 

Names referenced 
~-POREV: ---

i , 

FLUSH. V 
PAIR. V 
FOURS. V 
TRIPS.V 

PAIR. V 

PAIR.V = 
PAIR.V 

Na~ 
ORDER 
ROTATER 
REVERSE 
COMB 
BASE10 
CA~DPAR 

DECOMB 

ROTATER (VALS,-l) :F (P01<EV _3) 
:S (PR (8» F (PR (4» 

: S (PR (5» 
:F(PR(O» 
: S (PR (7, V) ) 
.: F (POREV_5) 

:S(PR(6,W V»F(PR(3,W)) 

:S(PR(2,W V»F(PR(l,W» 

IYE~ 
Function 
Function 
Function 
Function 
Function 
Package 
Function 

Where defined 
Program 3.1 
Program 3.5 
Program 3.6 
Program 15.1 
Program 2.5 
Program 17.5 
Program 15.2 

,t Program ,t As the reader may be aware, there are many 
" 17.7 " forms of the game of poker; Draw, Stud (5 
" PORER " and 7 cards), Baseball, Blind, etc. There 
L- • may be wild cards and there may be any num-
ber of players. We will pick the simplest game, viz. cold-hand 
five-card poker between two players with nothing wild. This 
choice is dictated by the simple fact that it is the only 
poker game that has been fully analyzed [Cutler 1975] and for 
which an optimal strategy exists. The reader may obtain ad
ditional references to the analysis of this game from Cutler's 
paper or from a cited bibliography, Findler [1972]. 

In cold-hand poker, each player enters an sn!~ into the pot 
and is dealt a hand (best thought of as a number in the range 
(0,1» and the players take turns betting, checking, calling, 
raising and folding. Briefly, checking and betting are done 
when the pot contains equal contributions from both players 
(such as at the start or after a check). Calling, raising and 
folding are done when it is up to one of the players to 
equalize the pot. If he does not, he folds, forfeiting his 
right to the pot. If he calls, there is a showdown. A raise 
is a call followed by a bet. The set of possibilities are 
shown in Figure 17.5 where the first player is designated X 
and the second is Y. Note that Check-raises are not permitted. 



Program 11.7 - POKER 

Call 
A-
I 

Call 
.1 
I 

r---1 ~ 

Page 395 

r-------Bet---->I Y I----Raise---->I X I----Raise----> ••• 
L--J '---' , 

'Y 
Fold 

I 
'Y 

Fold 

r---1 r---, 

'-----Check-->t Y I----Bet-->t X I-->Call 
L--J '---' 

I 
'Y 

Check 

Figure 11.5 

I 
'Y 

Check 

The allowable bet sequences of cold-hand poker. 

In the game given by cutler, the value for all bets is the 
current value of the pot. The value of a raise is found by 
decomposing the raise into a call followed by a bet. We will 
extend the game somewhat by allowing the player to set the 
value of the bet (before-hand) to any fraction of the pot. 
Whereas all poker games require some limit, most games do per
mit players to bet any amount up to this limit. It has been 
conjectured that any bet short of the limit is suboptimal so 
that it might be reasonable to allow the player to make sub
maximal bets. But then the strategy, particularly when to 
fold, would have to be changed. 

The derivation of the optimal strategy is beyond the scope of 
the current discussion. TO obtain a flavor for the an~lysis, 
consider only the case where the first player, X, may cheo.k or 
bet and the second player, Y, either calls or folds. Since 
Y's move ends the game, he has nothing to conceal from X and 
so he plays a pure strategy of calling on all good bands 
(anything above a certain value called the call line) and fol
ding on poor hands (anything else) • Now consider XiS situa
tion. On very strong hands, X has nothing to lose by betting. 
On his average hands he has very much to lose if he bet~ s.ince 
he would have to square off against Y's better hands. On the 
other hand, if he has an absolutely rotten hand, his only hope 
of winning is to bluff Y. Though he stands to lose mOre if 
caught bluffinq, his expectation, it can be shown, is larger 
than if he stood the certain loss of a showdown with Y. The 
pattern of this sim~le situation holds in all the more complex 
cases, viz. a bet on all hands above a certain level and a 
bluff on all hands below a certain level. Also the bluff must 



Page 3~9~6 ____ __ ____ ~~er 11--=_ GAM=E_S ____ __ 

be in a fixed ratio R of the percentage of legitimate bets 
where R depends on the bet limit. 

We list here for convenience, various parameters used by the 
poker program. 

L = bet limit as' a percentage of the pot. 

R = the bluff ratio (L / (1 + L» 

A the initial betting line for player X. X bets on hands 
greater than this. He checks on hands worse, except that 
on his lowest (1 - A) * R hands he bluffs. 

B = the call line for player X after the sequence Check-Bet. 
Below this line he folds. He has no other options. See 
Figure 17.5. 

C = the betting line for player Y after X checks. Below this 
line, player Y calls except for the lower R * (1 - C) 
hands which he bluffs. 

D = The call line for player Y after X bets. Above this 
line, he will call (except for the very good hands which 
he bets) and below this level he will fold (except for 
the bluffs). 

The astute reader will note that the game can go on in
definitely whereas we have provided parameters for only a 
finite number of situations. The parameters ALPHA and BETA 
below serve, to bridge the gap between the finite and the in
finite as they provide rules for extrapolating out to the Nth 
raise. 

ALPHA = the ~ise __ -2~~i2n factor. Given that the 
opponent's best strategy is to raise with his best P 
hands, then our best strategy is to respond by raising 
on our best P * ALPHA hands. Note that the raise at
tenuation factor for a round trip is ALPHA2 and this 
factor is actually used in the program. 

BETA = the lion factor. Given that my optimal strategy is to 
bet Cor raise) in the upper P hands, then, if my oppo
nent responds by raising, I will fold below the BETA * 
P line (unless I'm bluffing). (1 - BETA is sometimes 
called the chicken factor.) 

The function ABCDR(L) will set the global variables A, B, 
C, D and R as well as the parameters ALPHA and BETA. It 
is assisted in this by the functions ALPHA(L) and BETA(L) 
which compute ALPHA and BETA respectively. 

DEFINE('ABCDR(L)THETA,PHI,TAU,TTR') 
DEFINE C 'ALPHA(L) T') 



Program 11.1 -_~~1L ________ ~~_391 

DEFINE ('BETA(L)T') 

BETA T + 2 * L 
BETA - (T ** 2) + 2 * T + 1 + (T - 1) * 

+ SQRT(T ** 2 + 6 * T + 1) 
BETA BETA / (2 * T ** 2) : (RETURN) 

Entry point for ABCDR: 

ABClJR ALPHA = ALPHA (t.) 
BETA BETA (L) 
PHI L / (1 + 2 * L) 
THETA 1 - PHI 
TAU = 1 + 2 * L 
R L / (1 + L) 
TTR TAU * THETA / R 
A -1 + 2 * PHI + ALPHA + TTR * (4 * PHI + 2 * ALPHA) 
A A / (TAU * THETA + ALPHA + TTR * (2 * ALPHA + 1» 
B 4 * PHI + 2 * ALPHA - (2 * ALPHA + 1) * A 
C 2 * PHI + ALPHA - A * ALPHA 
D R * (1 + ALPHA) - R * ALPHA 

: (RETURN) 

BET(} will compute the amount which can be bet with a 
given limit L. 

DEFINE (' BET () ') : (BET_END) 
BET BET CONVERT(POT * L, 'INTEGER') 

BET GT(BET,HIM) HIM 
GT(BET,O) :S(RETURN)F(FRETURN) 

Now for the POKER program proper. Given the mnemonic 
labels, the use of QUEST, and the discussion in the text, 
comments are virtually unnecessary. The request for the 
lucky number is simply a device to warm up our random num
ber generator so that identical hands will not always be 
dealt. 

+ 
PLOOP 
INIT 

OUTPUT = 'Welcome to Cold-hand poker' 
QUEST ('would you like to know the rules? /' 
, (YES) I (NO) INIT') : S ($LABEL) 
OUTPUT INPUT :S(PLOOP) 

QUEST('What is your lucky number today?/RAN_VAR(1 ••• 1000}') 
HIM RANDOM (100) + 20 



OUTPUT "We'll start you off with" HIM" chips" 
NEWP QUEST('Bet limit (I of pot) = /L(10 ••• 1000) ') 

L = L / 100. 
ABCDR(L) 

ANTE QUEST("What's the ante? /ANTE(1 ••• HIM) It) 
START GT(ANTE,HIM) :S(ANTE) 

POT = 2 * ANTE 
HIM = HIM - ANTE 
OUTPUT = 'with a ' ANTE • chip ante the pot has ' 

+ POT " chips' 
HX = 
X = 
HY = 
Y = 
OUTPUT 

RHAND (5,1) 
POKEV(HX) 
RHAND(5) 
POJ(EV (HY) 

'You are dealt' DISPLAY (HX) 

RAISE (1 - A) * ALPHA 
CALL = 1 - D 
QUEST('Would you like to bet(B) or check(-)? /' 

+ '(B)HE_BETSI (-) HE_CHECKS') :S(SLABEL) 

HE CHECKS OUTPUT = LETMESEE() 
- (LE «1 - C) * R, Y) LT (Y,C» 

+ 

I_RAISE 

+ 

BET BET 0 : F (CANT_BET) 
POT = POT + BET 
OUTPUT = "I guess I'll bet" BET " chips." 
QUEST('How about you, call(C) or fold(F)? /' 

, (C) , (F) I_WIN') : S (SLABEL) 

POT = POT + BET 
HIM HIM - BET 

OUTPUT = "I'll check too" 

: (COMPARE) 

: (COMPARE) 

BET 
POT = 
HIM 
OUTPUT 
OUTPUT 
GT(y,1 
GT (Y, 1 
LT(y,R 

OUTPUT 
POT = 
BET 
OUTPUT 
POT 

BET 0 
POT + BET 
HIM - BET 
= 'You bet ' 
= LETMESEE 0 

- RAISE) 
- CALL) 
* RAISE) 

~ F (CANT_BET) 

BET' chips.' 

: S (I_RAISE) 
:S (I_CALL) 

:S(I_RAISE)F(I_FOLD) 

= "I'll see your " BET " chips" 
POT + BET 
PET 0 :F (CANT_BET) 

" and raise you " BET 
POT + BET 

QUEST('You must now raise(R), call(C) or fold (F) /' 
, (R) , (C) HE_CALLS, (F) I_WIN') :S (SLABEL) 

OUTPUT 
HIM = 
POT 
CALL 

= 'You call my • BET • chips and' 
HIM - BET 
POT + BET 

RAISE * BETA 



_______ Program 17,1 - POKER Page 399 

RAISE RAISE * ALPHA * ALPHA : (HE_BETS) 

OUTPUT 'OK, I call' 
POT POT + BET : (COMPARE) 

CANT_BET OUTPUT = 'Since you have no money left we ' 
+ 'have to stop here' 

COMPARE OUTPUT = "~et's see, I have" DISPLAY(HY) 
GT (X, Y) : S (HE_WINS) 

I_WIN OUTPUT = 'I guess I take all ' POT ' chips in the pot' 
OUTPUT = INSULT () : (SUMMARY) 

OUTPUT 'I fold' 
HIM = HIM + POT 

OUTPUT 
OUTPUT 

= 'You win the ' POT ' chips in the pot' 
PR.AIS E () : (SUMMARY) 

SUMMARY OUTPUT 'You now have ' HIM ' chips' 
OUTPUT = EQ(HIM,O) 'SO Long' :S(END) 
QUEST('Same game (S) or new parameters (N)? /' 

+ , (S) START, (N) NEWP') : ($~.BEL) 
END 

Names referenced 
12y~OKER: 

~g~ 
QUEST 
SQRT 
POKEV 
CARDPAK 

!~ 
Function 
Function 
Function 
Package 

Where defined 
Program 11.2 
Program 15.6 
Proqram 17.6 
Program 11.5 

The following session was actually obtained using the above 
poker program. As usual, underscored items indicate responses 
by the machine. 

~~!£Q~_~old-b.s!lQ..ES2k~ 
~Qulg-you like to know the rules? nope 
~2g_!nQY~ou stupid dunce 
The correct form is YE8'NO 
~ou1~!L!!ke to know the rylesl NO 
~hat~our lucky number today? 177 
~~'11 start YQY off with 120 chip§ 
Bet limit (I of oot) = 100 
What's the ante? 10 
~ith_~O chi~ ante the pot has 20 chip§ 
You are dealt 7D 4C 8D 6D AD 
~gu1g-YQy_Iike-1Q_be~~r check(-)? -
I need time to meditate about this problem 
I'll check too 
b~t~s see, I have 10D 98 2D ~~ 
XQg win the 20 chips in the pot 
Thank you very-much for the game, I enjQyed your b~~l~i!~ 

~ffort 



~~_o ________ --£hapter 11 GAMES 

Same game (21-Qr new paramete~Nl1 S 
!dith L..1!Lchip ante :th~l2Qt has 1~p§ 
You are dealt 9D 6D JD 5S 2H 
~ould-you like to be:t1~ or check{-)1 E 
You bet 20 chi~ 
interesting •••••• I think III cogita:t~~QQy~_this_ 
QlSL-L..£,2ll 
~~t's see, I have JS 8D KC 5H 5D 
!~§§_! take all 60 chips in th~g! 
Xg~ heayy-h~nded performance befits a silly-~ 

Not all games are this brief. With lower betting limits, op
timal play calls for generally more betting. The most complex 
bidding sequence resulted with a bet limit of 10% of the pot. 
The player was dealt two-pair and bet ruthlessly. The machine 
also bet heavily raising three times before calling. The 
machine had a full house. In general, however, the machine is 
very conservative and most bidding sequences are quite short. 

The use of the 'lucky number' ruse to initialize the random 
number generator is common but entirely unnecessary if one has 
the time-of-day available to him. The time of day is actually 
available in many SNOBOL's, though not in the original. 

Though the reader may be expected to understand most of the 
routines in this book, the equations used in the function 
ABCDR to compute these parameters are probably not in this 
category. At this writing, this is their only appearance in 
print. 

11111111111111111111111111111111111111111111111??1111111111111 
1111111111111111111111111 EXERCISES 111111111?11111111111111 
11111111111111111111111111111111111111111111111111111111111111 

Exercise 11.1 Assume a machine and a player would like to 
play cards. If the player shuffles and 

deals, the machine may be cheated. If the machine randomly 
generates hands, the player could be cheated. How can a one
way cipher be used to ensure a fair dea11 

Exercise 17.2 Assume one had a program to play penny-
L-- matching such that the program attempted to 
find patterns in the play of the opponent. Assume that there 
were no randomizing component in the program but that it was 
strictly deterministic. Is there a strategy which will beat 
such a program1 

i 

, Exercise 11.3 Categorize and describe the decision graph 
for the following game. Player A places 

$10 in the pot and player B places $1 in the pot. First it 1S 
player A's turn and he can bet $1 whereupon B must call or 



____ -=Exercises for chapte~-1_7 _____________ ~~gg~ 

fold. If B folds, A takes the pot. If he calls, he matches 
A's $1 and it remains A's turn. The procedure continues until 
A choses not to bet whereupon they rolla die. 1 or 2 is vic
tory for B; 3, 4, 5 or 6 is victory for A. 

Exercise 17.4 Write a function PHRASE(LIST) where LIST is 
a list of names separated by commas which 

will, for each name NM in the list, (1) define a function by 
that name and (2) compile code so that the function returns 
RSENTENCE('<NM>'). In this way, for example, 

PHRASE('INSULT,PRAISE,LETMESEE') 

could take the place of the function definitions given in 
Prog. 17.1. 

, 
, Exercise 17.5 Some variables cannot be used in a QUEST 

descriptor (Prog. 11.~. Give a simple rule 
to prospective QUEST users so that they may avoid any dif
ficulties. How would you modify QUEST so that a diagnostic 
can be given. 

, 
, Exercise 11.6 One of the reasons that QUEST was written 
L-- with a separate utility function QUESTP was 
so that it could be easily modified to handle extensions of 
the following kind. Extend QUEST so that several arguments 
may be supplied separated by commas. QUEST patterns are then 
any combination of QUEST descriptors jOined by the operators 
comma(,) and alternation (I) with comma having higher 
precedence. Also allow parenthesis in such expressions. 

r----------------, 
, Exercise 11.1 Extend QUEST so that it accepts, in addi-

tion to number ranges, letter ranges of the 
form (C 1-C 2 ) where C1 and C2 are single characters. 

I • 

I Exercise 11.8, The game of NIM is such that there are four 
piles of 1, 3, 5, and 7 stones. Each player 

may take any number, including all, of anyone pile. He must 
take at least one stone, however. The person forced to remove 
the last stone loses. There is an optimal strategy for NIM 
which guarantees a win for the first player which is based on 
converting the numbers to binary and exclusive-ORing on a 
digit-by-digit basis. There are also optimal strategies if 
the game is extended to selecting from any K piles; one then 
uses a K+1 system; see Ball [1962]. 

But the game can easily be perturbed so that the optimal 
strategies can't be used. Examples include placing a limit on 
the number of stones or requiring that an even number be fol
lowed by an odd. Of course, such rule changes do not 
invalidate a decision graph approach. For these reasons, if 



Page 40=2 ___ _ Chapter 17 GAM=E~S ________________ __ 

not for the sheer joy of dOing so, write a function NDA(S) 
which will prepare and return a NIM decision array. S will be 
a string of initial-pile numbers such as '1,3,5,7'. Assume 
the one-pile no-limit restriction on betting. 

i • 
, Exercise 17.9 I Modify the function SOA (of STONE (Prog. 

17.3» so that the variable MAX designates 
a list of possible moves separated by commas. For example, 
MAX = '1,3,5' means that 1, 3 or 5 stones may be selected. 

Exercise 17.10 Amaze your friends with this one. Modify 
STONE so that the player can insert, in 

place of the parity, a predicate peN) which will determine 
whether or not the player (opposing the machine) wins. Thus: 

EO (REMOR (N, 2» 

as the predicate peN) indicates that the player will win if he 
has an even number of stones. Also 

(GF (N, 5) LE (N, 10) ) 

indicates that the player will win if' his total is within the 
range (5,10). 

r-----------------, 
, Exercise 17.11 How many symmetries are there to the 4X4X4 

Tick-tack-toe game (i.e. classic 3-D 
Tick-tack-toe)? How about a 3X3X3 board? 

• , Exercise 17.12 Modify TTTM and TTTV and rewrite NEXTBO 
for the follOWing game. The board is 

3X3X3, moves are like Tick-tack-toe and a winning pattern is: 

x X 

x X 

on any of the 6 sides or in any of the 3 slices parallel to a 
side through the middle or in any of the 6 slices through the 
diagonal. 

i 

I Exercise 17.13 Consider a three-dimensional cube, 3X3X3 
with one corner subcube removed leaving 

~xactly 26 subcubes. How many symmetries of this cube are 
there? 



Page 403 

r 
, Exercise 11.14 with the help of QUEST and a nice board-

printout function, complete the Tick-tack
toe game (Prog. 11.4). 

, i 
, Exercise 11.15, One way of speeding up TICTACTOE is to not 

look further when a move is found which 
results in victory. Implement this (Hint: it requires adding 
one instruction to TTTM.) 

r-----------------~ 
, Exercise 17.16 To play 3D Tick-tack-toe on a 4X4X4 board, 
, one needs to limit somehow the depth of 
search. If the depth of search is limited, one needs a 
heuristic for evaluating a board. Use the following scheme. 
Assume that it is xes move. For every X find the lines passing 
through it not already blocked by an o. If it stands by itself 
in a line add 1. If it stands with another add 3. If it 
stands with two others, add 10000 or some other such large 
number as this would imply victory. Do a similar evaluation 
for 0 and subtract the two amounts. Modify TTTV to use this 
evaluation whenever the global variable FNCLEVEL reaches the 
value of the keyword &FNCLEVEL. The global variable is of 
course set by the main program. 

Exercise 17.17 Let H be a hand of cards as in CARDPAK. 
Suppose we wish to sort the cards in the 

order of increasing value (ignoring suits). How could the 
function ORDER be modified to accomplish this? 

Exercise 11.18 Modify the CARDPAK functions so that they 
are operative with a pinochle deck (48 

cards, Ace-9 (twice) of each suit) • 

• , Exercise 11.19 A bridge hand is evaluated for high-card 
points by assigning 4, 3, 2, 1 points 

respectively to the A, K, Q, J. In two statements, randomly 
shuffle and deal a hand, and determine and print its value. 
You may use COUNT (Prog. 3.4). 

Exercise 11.20 Modify POKEV (Prog. 17.6) so that it 
evaluates a three-card poker hand. Note 

that straights and flushes do not count extra but that a 
straight-flush counts higher than either a pair or trips. Use 
the values 0.83, 0.Q55, and 0.978 as the probabilities of get
ting a bust, a pair or lower, and three-of-a-kind or lower 
respectively. 



Page 404 GAM=E_S __ 

Exercise 11.21 If we were playing with three decks, so 
that duplicate and triplicate cards could 

actually be obtained in a single hand, POKEV would no longer 
be monotonic. Why? How would you "modify POKEV so that it 
would work with any number of decks? 

r-----------------~ 
, Exercise .17.22 write a function POKUNVAL which will be an 

approximate inverse of POKEV. That is, 
given a real number in the range (0,1), POKEV(POKUNVAL(X» 
should approximate x. 

Exercise 17.23 POKEV is not especially uniform over the 
range of hands categorized as two-pairs. 

Fix up POKEV so that it regards (W V) as a number in a com
binatorial number system rather than in a radix system. 

, 
Exercise 17.24, Assuming that both ~layers are playing op-

L-________________ ~I timally, label the branches of the flow-
chart for cold-hand poker (Figure 17.5) with comparisons of 
the values of their hands against expressions involving the 
parameters A, B, C, etc. MOdify POKER so that it plays an op
timal game for x, rather than Y. 

Exercise 17.25 If we were not concerned with losing op-
L- timal behavior, we could, by adding just 
on~ statement to POKER (Prog. 11.7), permit the player to bet 
any amount up to the maximum allowed. Give an example of such 
a statement and indicate where it should be placed. 



r---1 
I,..., I 

" It ,L-J , 
,,..., I 
u u 

C HAP T E R E I G H TEE N 

SSE M B L E R S 

OMPILERS 

AND 

n n 
IIVI' 

1 "/" 

" " " " u u 
A C R 0 S 

ASM ..................... 18. 1· 

L_ONE •••••••••••••••••• 18.2 

BLANKS ••••••••••••••••• 18.3 

POL •••••••••••••••••••• 18.4 

TREE ••••••••••••••••••• 18.5 

TR ••••••••••••••••••••• 18.6 

TUPLE •••••••••••••••••• 18.7 

GPM •••••••••••••••••••• 18.8 



Assemblers, compilers and Macros 

.-----, 
L-, r-' he development of the stored-program machine is 

, I thought to be of importance because it allows a 
, I program to modify itself. Today, index registers ob
I I viate the necessity for a program to be self-modifying 
U so that the practice is not only considered non-

important (witness the growth of pure procedure) but is 
considered harmful as an obscuring practice. The real and 
lasting significance of stored program is that it allows 
programs to produce other programs (if most machines still had 
plug-board control, the output of a 'compiler' would have to 
be a wired-up plug-board or a wiring diagram and a congenial 
and dextrous computation staff). 

It is therefore no coincidence that assemblers began appearing 
at about the time of the first installations of stored-program 
machines (circa 1950) and compilers (originally called 
automatic coders) and interpreters began to be developed 
shortly thereafter. This marked for the first time in the 
history of mankind the development of artificial languages; 
languages which would be literally and unfailingly obeyed by a 
mechanical servant; languages whose constructs and convolu
tions are subject only to the requirement that a translation 
algorithm be written for the language. Alas, this turns out 
to be one of the major obstacles to creating languages' which 
are powerful and congenial, since it is no simple task to 
describe how to convert an arbitrary language into efficient 
code. This not only makes it difficult to implement large 
languages efficiently, but also makes it difficult to formally 
describe a large language. 

This chapter is devoted primarily to the task of describing 
ho~ language translators of one kind or another can be written 
uS1ng the SNOBOL4 language. Compiling and assembling are 
primarily string processing activities and so it is not sur
prising that SNOBOL4 should be particulary helpful along these 
lines. But actually it is by no means obvious how to employ 
the powerful pattern matching operations to parse languages. 
In fact, Griswold (1974, p. 11] says that "patterns derived 
from grammars are of little use in such (i.e., parsing] 
problems." We will show, on the contrary, that we can almost 
directly map a formal grammar into a parsing pattern and that 
SNOBOL4 patterns are particularly applicable to the parsing 
task. 

Traditionally, SNOBOL processors have had a tendency to be big 
and slow and for this reason applications have tended to hover 
about the periphery of linguistic translation in such chores 
as bootstrapping, pre-processing, macro pre-passes and in 
general software which has a small user population and high 
development costs. But the more recent implementations of 
SNOBOL 4 (viz. SPITBOL, SITBOL and FASBOL) have greatly exten
ded the practical application of SNOBOL4 while the great 
proliferation of languages and ~achines has extended the need 
for such applications. Also, SNOBOL4 has often been used to 
teach compiler-writing because it simplifies the task suf-



Chapter 18 

Machine M is a word-addressable machine with 32 bits per 
word. All instructions have the format: 

OP-codle AC X A 

Bits 0-7 8-11 12-15 16-31 

There are sixteen general purpose registers which can 
serve both as accumulators for arithmetic and as index 
registers for address modification. The AC (accumulator) 
and X (index register) fields are four bits for the pur
pose of specifying one of these sixteen registers. The 
maximum number of words for the machine is 216 so that the 
A (address) field can specify absolutely any address in 
the machine. The effective address, E, for any instruction 
is the sum of the index register (X) plus the value of the 
A field. We will refer to the contents of location E as 
C(E). If E is less than 16, a register is the assumed 
location. If the X field is 0, no indexing is assumed. 
Thus, Reg. 0 cannot be used as an index register. In the 
description of OP-codes which follow, AC will refer to the 
accumulator referenced by the AC field. 

Mnemonic Code 
(Hex) 

LOAD 21 
STORE 22 
ADD 31 
SUB 32 
MUL 33 
DIV 34 
FADD 71 
FSUB 12 
FMUL 73 
FDIV 74 
LOAD A 2A 
LOADN 2F 
BR AO 
BRGT A1 
BRLT A2 
BREQ A3 
BRNE A4 
BRGE A5 
BRLE A6 

Instruction 

Load C (E) into AC 
Store AC into location E 
Integer add C (E) to AC 
Integer subtract C(E) from AC 
Multiply C (E) to AC (Overflow 
Integer divide C(E) into AC 
Floating add C(E) to AC 
Floating subtract C(E) from AC 
Floating multiply C(E) to AC 
Floating divide C (E) into AC 
Load effective address E into 
Load -C(E) into AC 
Branch to location E 
Branch to E if AC is > 0 
Branch to E if AC is < 0 
Branch to E if AC is 0 
Branch to E if AC is '* 0 
Branch to E if AC is ~ 0 
Branch to E if AC is ~ 0 

!:igur~-1J1~l 

A description of machine M. 

lost) 

AC 



Assemblers, Compile~s and ~~£~_s __ _ 

ficiently to allow the student to complete a compiler in a 
term. By using SNOBOL4 many of the by-now routine tasks of 
lexical and syntactic analysis are quite easily accomplished 
permitting attention to be focused on more difficult aspects 
of the translation task. 

Since we will be involved in this 
compiling it will be helpful to 
The machine whose in.struction set 
will be referred to as machine M. 
pIe machine throughout. 

i I 

chapter with assembling and 
fix on a particular machine. 
is described in Figure 18.1 
It will be used as an exam-

" " " 
Program 

18. 1 
ASM " " " 

ASM is an assembler for machine M. Each word 
of the machine can be represented by 32 bits 
or 8 hexadecimal digits or, if &ALPHABET has 
size 256, 4 characters. We will presume that 

our assembler is only required to punch hexadecimal digits on 
cards, one word per card. Other output formats are rather 
easily obtained using conversions from Chapter 2. Our assembly 
language will consist of instructions in the following format: 

Label Op AC,A (X) comment 

The four fields indicated are separated by blanks. Absence of 
a label is denoted by a blank in column 1. If AC (and/or the 
comma) is missing, 0 is assumed. If the • (X)' is missing, 0 
is assumed. The comment may be missing; if the Op field is 
present, the operand (3rd) field must also be present. If the 
Op field is missing, no instruction is generated; thus -labels 
may appear on separate lines. The Op field may ·contain any 
Mnemonic shown in Figure 18.1. 

perhaps the most important single observation one can make 
about an assembler is that it is inherently a two-pass system. 
This is because it is impossible to assert a maximum length 
for the sequence: 

STORE ALPHA 

ALPHA 

Hence addresses such as ALPHA are resolved in the first pass 
based on their location; instructions are translated on the 
second pass. 

The essence of assembling is associative look-up. There are 
two distinct reasons for this. It is (by definition) easier 
to remember a mnemonic such as 'LOAD' than an op-code such as 
• 21 '. But aside from this it'- is necessary to have symbols 
(such as ALPHA in the above sequence) whose meaning is 
resistant to perturbations of the program (such as insertions 
or deletions of instructions). The associative lookup is nor-



~ram 18.1 - ASM _____ ~~_.!!09 

mally accomplished in most assemblers with the help of some 
form of symbol table as described in Chapter 11. In SNOBOL4, 
we will use the TABLE datatype to serve this purpose. 

This is a simple assembler for the machine M (Figure 1). 
First we initialize a table (OPS) with the operators and 
their codes. 

LIST 'LOAD 21,STORE 22,ADD 31,FADD 71,SUB 32,' 
+ 'FSUB 72,MUL 33,FMUL 73,DIV 34,FDIV 14,LOADA 2A,LOADN 2F,' 
+ 'BR AO,BRGT A1,BRLT A2,BREQ A3,BRNE A4,BRGE A5,BRLE A6,' 

OPS = 
OPS_INIT LIST 

TABLE 0 
BREAK (' ') • OP , , BREAK(',') • CODE 

:F (INIT 1) 
. , , 

+ 
OPS<OP) CODE : (OPS_INIT) 

Initialization for Pass 1. SYMS is a table to hold user 
symbols. LOC is our location counter. We assume I/O unit 
no. 10 is available for scratch storage. 

INIT1 SYMS 
LABEL.L 

TABLE 0 
BREAK ( I • ) • L SPAN ( , ') 

LOC 0 
OUTPUT (.DISK, 10) 

Loop for pass 1. Evaluate all symbols. 

PASS1 X INPUT" : F (INIT2) 
DISK = X 
X LABEL.L = 
SYMS<L DIFFER(L» BASEB(LOC,16) 
LOC = DIFFER (X) LOC + 1 

Initialization for pass 2: set up 
(P.OP.AC.A.X) to crack fields. 

: (PASS1) 

a big pattern 

INIT2 REWIND (10) 
DETACH (. DISK) 
INPUT (. DISK, 10) 

+ 
+ 
+ 
+ 
+ 

NO_OP = POS(O) BREAK(' ') SPAN(' ') RPOS(O) 
P.OP.AC.A.X NULL $ OP $ AC $ A S X NULL. CAUSE 
POS(O) BREAK(' ') SPAN(' ') 
BREAK ( , , ) • OP SPAN (' , ) 
(BREAK ( , " ) • AC ' , ' , NULL) 

BR EAK (' ( ') • A 
(' (' BREAK ( ') ') • X ')' NULL) 

We define a generalized convert-symbol routine (CVTSYM) 
which converts a symbol according to a given symbol table 
(TABLE) producing a hex string of length LENGTH. TYPE in
dicates the type of symbol for diagnostic purposes. CAUSE 
is a global error-bearing variable which is printed on the 
listing. 'Uf' means undefined symbol in field f. 'Lf' 



Assemblers. Compilers and Macros 

means length of field f is too long. 

DEFINE('CVTSYM(SYM,TABLE,LENGTH,TYPE)') : (CVTSYM_END) 
CVTSYM SYM = INTEGER (SYM) BASEB (SYM, 16) : S (CVTSYM_') 

CVTSYM_' 

SYM TABLE<SYM> 
CAUSE I DENT (SYM,NULL) 'U' TYPE' , 

SYM = LPAD(SYM,LENGTH,'O') 
CVTSYM = LE(SIZE(SYM),. LENGTH) SYM :S(RETURN) 
CAUSE = CAUSE 'L' TYPE ' • 
SYM = : (CVTSYM_ 1) 

CVTSYM_END 
i 
, We now go into the pass 2 loop. We tentatively set our 
, error indicator (CAUSE) to syntax error (S). 
I 

PASS2 CAUSE 
LINE = 
LINE 
LINE 
OP = 
AC 
X = 
A 
PUNCH 
OUTPUT 

+ 
PASS2A OUTPUT 
END 

's ' 
DISK , , 

NO_OP 
P.OP.AC.A.X 
CVTSYM(OP,OPS,2,'O') 
CVTSYM(AC,SYMS,1,'R') 
CVTSYM(X, SYMS, 1, 'X') 
CVTSYM(A, SYMS, 4, , A' ) 

OP AC X A 
= RPAD (CAUSE, 15) OP , 

LINE 
= DUPL(' ',32) LINE 

: F (END) 
: S (PASS2A) 

, AC ' , X ' , A 
: (PASS2) 

: (PASS2) 

Names referenced ~.§l 
RPAD 
BASEB 

1Y12~ 
Function 

Where defined 
Program 3.3 
Program 2.4 

lrl-iSM:----
Function 

Note that when an error occurs an instruction is generated in 
any case with one or more fields zeroed. This is so that sym
bols that are resolved by the assembler will have their cor
rect value and that an assembly with one or two small errors 
may nonetheless be a valid assembly for debug purposes. 

The assembler is a very primitive one lacking many 'bells and 
whistles' of a commercial product. Extensions such as data 
generation statements, expressions, relocatability, psuedo
ops, conditional assembly and multiple-location counters can 
be added, however, without a major overhaul of the program 
structure. For a more detailed discussion of assembler im
plementation, see Donovan [1972]. 



________________ f2roEiling usin9-ENOBOL4 __________ __ Psge 411 

III. 
I 
I 
I 
'1'1 

ompiling using SNOBOL4 There has been much written 
on the subject of compilation 

and parsing in the past several years. Much of this 
writing is theoretical and most is devoted to a 
thorough analysis of parsing; i.e., the decomposi
tion of an input into its linguistic components. For 

example, the recognition that the source language string: 

A = BETA + C * DELTA 

is of the form: 

VARIABLE = EXPRESSION 

and that EXPRESSION is of the form TERM 1 + TERM2 and that 
TERM2 is of the form FACTOR * FACTOR, may be regarded as 
~~ing the original string. parsing is an essential component 
in the translation not only of computer languages but of 
natural languages as well. 

It has long been recognized, however, that parsing comprises 
only a portion of the compilation process and not the dom~nant 
portion by any means. This is especially true in SNOBOL4 where 
pattern matching makes parsing quite automatic, as we will 
see. On the other hand, techniques for generating efficient 
object code from a fully parsed statement are not well under
stood and are often embedded in compiler listings and nowhere 
else. Some of these methods have been distilled into English 
and can be found in Gries (1971], Donovan [1972], Graham 
[1975] and McClure [1972]. 

We have introduced in a previous chapter the BNF (Backus Nor
mal FOrm) for representing sets of strings or languages. As 
an example, the grammar shown in Figure 18.2 can be used to 
define a simple language which we will refer to as Lt. Lt 
contains only assignment statements, the four fundamental 
(binary) arithmetic operations, and negation. Identifiers· 
within pointed brackets are designated §~acti~riabl~. 

<IDEN>::=<LETTER>,<IDEN><LETTER>I<IDEN><DIGIT> 
<INTEGER>::=<DIGIT>I<INTEGER><DIGIT> 
<PRIMARY>::=<IDEN>I<INTEGER>I «E» 
<FACTOR>::=<PRlMARY>,-<PRIMARY> 
<TERM>::=<~ERM>*<FACTOR>I<TERM>/<FACTOR>I<FACTOR> 
<E>::=<E>+<TERM>,<E>-<TERM>I<TERM> 
<STMT>::=<IDEN>=<E> 

ligur.!L .. m .. ~.1 
A BNF description for the language Lt. 



Page 412 

We will assume that the reader is already acquainted with BNF. 
H~ has undoubtedly been exposed to this or similar notation 
when -learning the constructs accepted by a programming 
language or indeed any other linguistic system such as an 
operating system command language or an editor's command 
language. This notation can be directly mapped into SNOBOL4 
patterns so that any syntactic variable is associated with 
some pattern. In fact Exercise 18.9 invites you to write a 
program to carry out this translation automatically. 

One difficulty with a BNF description is that languages that 
it is used to describe are typically not context free. Thus 

A (3) 17 

mayor may not be valid in Fortran depending on declarations 
for A. Pure BNF cannot be used to decide the issue. such 
context dependencies are generally treated by the addition of 
a symbol table, with appropriate insertions and checks; in 
this way the language can be treated as context free, even 
though it is in fact not. Dynamic function evaluation can be 
used in SNOBOL4 to make these checks. Thus, for example, if 
the function ATFST(X) will test to see if its argument is an 
array and if 10 is a pattern to match identifiers, then 

ID $ X *ATEST(X) 

will match only array identifiers. The function ATEST() can 
be written using symbol tables as were needed in ASM. Routines 
such as A7EST() are often erroneously referred to as semantic 
routines. They are not, for their purpose is to extend a con
text free formalism to handle context sensitive situations. 
It would be more correct to use the term §yntactic routine for 
any routine used to decide syntax. We will reserve the term 
semantic routine for routines which have a side-effect other than recognitIon such as code production or error-message 
generation. 

The semantics of a language described using BNF, i. e. the 
meaning of the various linguistic constructs, are seldom 
defined formally. For the language Lt , for example, we may 
say that all arithmetic operations represent operations on in
tegers of a precision equal to that of the target machine. 
Most readers, especially those already exposed to Fortran-like 
languages, will then understand the meaning of Lt. While this 
is true of a simple algetraic language it may not be true if 
the language is neither algebraic nor simple. Formal systems 
to describe semantics are of two kinds, concrete and 
theoretical. A concrete system is one which has been subject 
to the rigors of machine implementation; a theoretical system 
is one which purportedly could be, but which for some reason 
has not. Concrete systems (listings) are messy; theoretical 
systems are at least buggy and at worst severely distorted. 
The answer to this dilemma may lay in the development of 
compiler-compilers which compile inefficiently and produce 
inefficient code but which yield sufficiently simple listings 



____________ EX'0gram 18. 2 - =L:....-.;O.::.;N~E~ __ ____ ..u~-1!.u 

that they may be understood. Much of this chapter is dedicated 
to the ultimate fullfillment of this pious hope. 

r- , 
" Program ,I. L_ONE is a compiler for the language L t 'I 18.2 " (Figure 18.2). The output is in the form of 
" L_ONE " assembly language (accepted by ASM) ~or 
~------------~I machine M (Figure 18.1). The implementation 
of L_ONE is based on a method of employing §~mantic routines 
during a pattern match, a technique suggested to the author by 
M. J. Rochkind (Bell Laboratories, Raritan River, N.J.). This 
method is based on the observation that a routine invoked to 
generate code (as opposed to one used to supplement the match 
as given above in the case of ATEST) is best done using con
ditional assignment. This defers any code production until 
after the match thus guarding against premature production. 
For example, consider the pattern 

P1 • *AO P2 • *BO P3 • *c () (18.1) 

If P1 and P2 match, then A() and B() are called. If P1 match
es and P2 fails but P3 matches, then only C() is called. A() 
is not called in this case because backup on failure removes 
the conditional assignment as was fully described in Chapter 
7. This is, of course, exactly what we want and will greatly 
reduce the complexity of a compiler written in SNOBOL4. The 
reduction in complexity is worth the fact that we are using 
conditional assignment in a way completely unintended by the 
originators of the language. Functions called in this way are 
supposed to be returning names and receiving values; they do, 
but the names are dummy names and the values assigned are 
irrelevant. 

It will be more convenient to have only one semantic routine, 
viz. s_Cname), where name is the name of a routine. Thus, 
instead of writing 

P1 • *A() 

we will write 

But this is a bit messy, so we will write a routine S(name) to 
return NULL. *S_(name) so that we may write 

P1 SC'A') 

to achieve the same effect with a cleaner appearance. The 
above pattern (18. 1) is then written: 

P1 S(IA') P2 S(IB') P3 S C' C') 

Finally, we can scan and push an element all in the same pat
tern by the construction: 



Assemblers,_Compilers and Macros 

PAT • *PUSH () 

where PAT matches the string pushed (See PUSH, Prog. 5.5). The 
semantic routines produce code by popping the stack for the 
location of the previous result, producing code to compute a 
new result, and pushing onto the stack the location of the new 
result. 

The program L_ONE will compile statements of LI into as
sembly language for machine M. In the semantic routines 
below, there is a label S_op for each operation OPe 

DEFINE('S(NAME) ') 
DEFINE (' S_ (NAME) T') : (S_END) 

S S EVAL ("NULL • *S_ (It' NAME IV ') tt) : (RETURN) 
S_ S_ • DUMMY : ($ (' S_' NAME» 

S_NEG OU'IPUT , 
LOADN • POpe) 

OUTPUT = , STORE ' PUSH (TEMP () ) : (NRETURN) 

S_ADD -S SUB -S MOL '- .- ;S_DIV 
T POP () 
OU'IPUT ' LOAD ' POP() 
OUTPUT , , NAME , , T 
OUTPUT = , STORE ' PUSH (TEMP () ) : (NRETURN) 

S_ASGN OUTPUT ' LOAD ' POPO 
OUTPUT , STORE ' POP 0 : (NRETURN) 

S_END 

+ 

+ 

The follOWing patterns will match the syntactic variables 
of the language LI and call the appropriate semantic 
routines. 

LET 
DIGITS 
IDEN 
IN'IEGER 
PRIMARY 
FACTOR 
TERM 

E 

STMT 

'ABCDEFGHIJRLMNOPQRSTUVWXYZ' 
'0123456789' 

(ANY (LET) (SPAN (LET DIGITS) I "» • *PUSH () 
SPAN (DIGITS) • *PUSH () 
IDEN , INTEGER I '(' *E 

PRIMARY I ,-, PRIMARY 
*TERM '*' FACTOR SC'MUL') 
*TERM '/' FACTOR S('DIV') 

*E '+' TERM SC'ADD') , 

') , 
S (' NEG') 

I 
I FACTOR 

*E ,-, TERM S('SUB') , TERM 
POS(O) IDEN '=' *E S('ASGN') RPOS(O) 

TEMP() is always ready to provide us with a new temporary 
location. L--____________________________________________________________ ~ 

DEFINE ( , TEMP () ') 
TEMP TEMP_NO TEMP_NO + 1 

TEMP 'TEMP' TEMP_NO 
TEMP_END 

: (TEMP_END) 

: (RETURN) 



' ________ ~P~,artitionin~~mpile~ ___________ Page 415 

The main program is essentially a single pattern match. 

READ S TRIM (INPUT) 
REMOVE_BLANKS S" 

o TEMP NO 
S STMT 
OUTPUT '*** ERROR IN ' S 

END 

Names referenced .Qy:r: ONE: --
!:!~~ 
PUSE 
POP 

As a simple example r the input 

will produce the output 

LOAD 
MUL 
STORE 
LOAD 
SUB 
STORE 
LOAD 
STORE 

C 
D 
TEMP1 
B 
TEMP 1 
TEMP2 
TEMP2 
A 

TYp~ 
Function 
Function 

:F (END) 
:S(REMOVE_BLANKS) 

: S (READ) 
: (READ) 

Where defined 
program5:5 
Program 5.6 

The resulting code is clearly non-optimal but it gets the job 
done. There are numerous extensions that one can incorporate 
into L_ONE to produce more efficient code and to provide more 
features. Some of these have been left as exercises. 

The reader should not be misled by the simplicity with which 
L_CNE was written into believing that full-fledged compilers 
for complete languages can be had cheaply. In general r the 
complexity of a compiler will grow nonlinearly with the in
troduction of new features. The world is full of compiler
compilers that look good for toy languages but which don't 
quite stand up to the hammering of a full scale language such 
aS r for example r PL/I. The mere fact that declarations in PL/I 
can follow use is enough to discourage the one-pass approach 
used in L_ONE. For big compilingr we must step back a bit and 
proceed in stages. 

IIII 
I I 
"II 
I 
I 

artitioning the compiler A compiler is generally 
decomposed into ·lexical 

analysis, syntactic analysis, code optimization and 
code generation. The latter two are often inter
twined in more than two passes for good reasons, as 
we shall see later. The first two of these phases 

is indicated in Figure 18.3. 



Ca) 

Cb) 

(c) 

ALPHA BETA + GAMMA ** 2 

, i ..----, r--"1 r---1 , , r--"1 r---1 

,ALPHA" = "BETA" + "GAMMA" ** " 2 , 
, , L----I '----' L---J ' , l-.---J L---J 

~ 

~-----, = ,------~ 

ALPHA 

L-..J 

r--I r-------, + ,------~ 
L---J 

BETA 
r--"1 

~------I ** 1------, 
l-.---J 

i 

GAMMA I 
"-------.I 

.-----. 
I 2 , 
L---.I 

A lexical analysis (b) and a syntactic analysis 
(c) of an input string (a). 

Lexical analysis decomposes the source string into indivisible 
tokens (or atoms). These tokens are, of course, not literally 
indivisible since they are, after all, comoosed of characters, 
but they are indivisible in the sense that no further decom
position has any meaning with respect to compilation. Thus, 
the meaning of 'ALPHA' is not a. composition (homomorphism) of 
the meanings of its individual characters (though its sound 
may be). On the other hand, the meaning of 'ALPHA + BETA' can 
be interpreted as a composition of the meanings of the three 
tokens 'ALPHA', '+' and 'BETA'. The distinction is very much 
like the distinction bet'Ween morpheme and phoneme in the study 
of natural languages. It is actually a kind of mixed radix 
system whereby a relatively small number of different symbols 
(letters or phonemes) is used to compose a fairly large (but 
finite) number of different notions (words or morphemes). 
Sentences are then built from the words. Evidently there are 
more ideas than sounds. 

When SNOBOL4 is used to compile a programming language, no 
distinct lexical pass is required. On the other hand, the in
put may have to be massaged (pre-processed). In L_ONE this 
amounted to removing blanks. In a real language such as For
tran, blank removal is not nearly so simple as we will see 
(BLANKS, Prog. 18.3). In PL/I the pre-processing may consist 



_______________ Eartitionin~~_2Qmpil~~ _____________ Page 417 

of the extraction of the next statement (see PLI.STMT, Prog. 
8.10) and the removal of comments. Redundant blank removal is 
not nearly so necessary for PLII as it is for Fortran (since 
identifiers cannot be split in PL/I). 

The result of a syntactic analysis is the tree structure shown 
in Figure 18.3. This tree structure may be represented in any 
of a variety of ways, most commonly as a linked structure. In 
SNOBOL4 the tree is perhaps best represented as a string in 
Polish prefix form (as described in Chapter 9) because pattern 
matching may then be exploited to effect desired transforma
tions. 

It is convenient to separate out that portion of a compiler 
which is machine-dependent simply to avoid duplication of ef
fort if the same compiler is needed for a different target 
machine. The tree structure of Figure 18.3 is clearly machine 
independent, and code generation is clearly machine-dependent. 
What of code optimization? 

According to McClure [1972], the two most effective means of 
code optimization are common subexpression removal (from ad
dress calculations) and register allocation. An example of 
the first is the removal of the common subscript calculation 
in: 

A (I, J) A(I,J) + 1 

Removal of common subexpressions is machine independent and 
can be effected by transformations applied to the tree struc
ture. On the other hand, register allocation is clearly 
machine dependent and must be done at some later stage. 

It is very common to have some intermediate machine
independent form between the tree structure and the resulting 
code. This is to push the machine independence as far as 
possible. Hence the intermediate form is a kind of least com
mon multiple of all machine languages. The original macro 
implementation of SNOBOL4 was actually written in such a 
language. The most extensive (or perhaps intensive would be a 
better word) of this kind known to the author is being 
developed by Robert Dewar (Ill. Inst. of Tech., Chi., Ill.) in 
connection with a machine-independent implementation of 
SPITBOL. Dewar's motivation is to produce a macro language 
which will lose little to efficiency when expanded on a given 
machine. 

One of the more common intermediate forms is the four-tuple. 
Four-tuples consist of an operation followed by two operands 
followed by a destination all separated from each other by a 
convenient break character such as a comma. For. example; 

ADD,L1,L2,L3 



Page 418 Chapter 18 Assemblers, compilers and Macros 

would mean add the contents of L1 and L2 and store the result 
into L3. We will assume that the locations can be indexed by 
other locations. For example: 

MUL,A(TEMP2),TEMP3,TEMP4 

would reference as the first argument the location A offset by 
the current value of TEMP2. This could te rendered in machine 
M code as: 

LOAD 
LOAD 
MUL 
STORE 

1,TEMP2 
A(1) 
TEMP3 
TEMP 4 

An optimized version of this code may not actually contain the 
initial LOAD or the STORE. This will depend on the origin of 
TEMP2 and the destination of TEMP4. 

Hence we may decompose a large processor into the following 
phases (as opposed to passes since several phases may actually 
go on in the same pass). 

, 

" " " 

1. Pre-process sing 
2. Syntactic analysis 
3. Tree transformations and global optimization 
4. Intermediate language production 
5. Final expansion and detailed optimization 

Program 
18.3 

BLANKS " " " 
The function BLANKS is an example of pre
processing that may be required when com
piling a full language. BLANKS(S) will 
remove blanks from a Fortran statement 

provided as argument. We assume a function such as FORTREAD 
(Prog. 9.2) is available to read in a statement and handle 
continuation. Removing blanks sounds simple but is complicated 
by the fact that blanks within string literals may not be 
removed. A string literal in ANSI Fortran has the form 

nH<n-characters) (eg. 3 HCAT) 

String literals may only appear in FORMAT and CALL statements. 
But we cannot simply go looking for this pattern in such 
stateroents because the indicated pattern may appear as part of 
an identifier (which may also be an argument of a subroutine 
call). For example: 

CALL ALPHA (A 1H) 

contains no literal. Hence we must ignore such sequences which 
follow alphabetics. Another problem is that blanks may be in
terspersed in and around the length indicator. For example: 

2 HABCDEFGHIJKL 



Page !ll 

is a valid literal. This makes it difficult (but, as we will 
see, not impossible) to write a single pattern to match a 
literal. 

If we depart from the relatively rarified air of the ANSI 
standard and enter the domain of a practical compiler, we 
encounter more problems. IBM's OS/360 Fortran [IBM 360j] is 
typical of many Fortrans and so we will assume this to be our 
source language. with respect to blank removal, this Fortran 
has the following additional properties: 

(1) A literal may be designated by the sequence' 'as 
well as by the nH<n-character> sequence. 

(2) Function calls (as well as subroutine calls) may con
tain literals. 

(3) The READ and WRITE statements may be direct access in 
which case they have the form: 

crond(f ' exp ••• 

where cmnd is READ or WRITE, where f is an integer or 
an identifier designating a file and where exp is an 
arbitrary expression designating a record number. 

Now (2) implies that all arithmetic expressions (including the 
exp portion of (3» can potentially contain literals. 
Therefore READ and WRITE statements must be handled specially. 
A logical IF statement has the form: 

IF ( exp ) stmt 

Here we must check to see if stmt is a READ or WRITE statement 
but our check is complicated by thp. fact that in order to find 
strnt we must determine where exp ends. To do this we must 
maintain a parenthesis count ignoring parentheses that are 
within literals. This can be done by recursion in a manner 
reminiscent of the BAL function (Prog. 8.3). 

We might say a word at this point as to why we wish to go 
through so much trouble to remove blanks. For one thing, the 
blank removal process can be used not only for compiling but 
for many other kinds of pre-processing, data laundry, etc. 
that require pattern matching of Fortran programs. Hence it 
saves duplication of effort if it can be done once and for 
all. Another reason is that keywords, identifiers and many 
other non-decomposible units can have blanks interspersed 
within them (however improbable that may be) which will prove 
difficult to pattern match. For example, the keyword READ may 
be written as 'R EA 0'; to match this we may write: 

OPTB 
READ 

SPAN ( I I ) I NULL 
IR' OPTB IE' OPTB 'A' OPTB '0' 

but this is as troublesome as it is inefficient. 



BLANKS(S) will return the result of removing blanks from a 
Fortran statement provided in S. BLANKS(S) will operate 
correctly for OS/360 Fortran [IBM 360g]. The statement is 
presumed to have had its label removed by previous 
processing. 

DEFINE (,' BLANKS (S) IF, KW, STMT, 10') 

Q "'" 
ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
NUM '0123456189' 

i 
FEAL will match a string balanced with respect to paren- 1 
theses but will ignore parentheses within literals. We I' 
will use backup-free scanning (i.e. the ARBNO(P FENCE) 1 
construct) as established in Chapter 6. 1 , 

BLINT ANY (NUM) (SPAN (NUM ' ') , NULL) 
F.LIT = BLINT $ N 'H' LEN(*DIFF(N,' '» • LIT 

+ Q BREAK (Q) • LIT Q 
ITEM 1 = F.LIT , SPAN(") , SPAN(ALPHA NUM ' ') 

+ , LEN (1) 

BL 

+ 

SEARCH.LIT = POS(O) ARBNO(ITEM1 FENCE) • TEMP F.LIT 
ITEM2 = '(' *FBAL ')' , ITEM 1 
FBAL ARBNO(ITEM2 FENCE) 

The function BL (S) wi 11 remove all bla'nks from S except 
those in literals. 

DEFINE ( , BL (S) LIT, TEMP' ) 
S SEARCH. LIT 
BL BL DIFF(TEMP,' ') ",,, LIT "'" 
BL BL DIFF (S,' ') 

Define some patterns to scan 
critical keywords. 

statements 

: (BL_END) 
: F (BL_1) 
: (BL) 
: (RETURN) 

containing 

KWORD.KW 
IF.STMT 
IO.STMT 

POS(O) SPAN (ALPHA , (') • KW 

BREAK(ALPH~ NOM) 

P~S (0) ( 'IF (' FBAL ')') • IF REM. STMT 
POS(O) «'READ" 'WRITE') '(' 

SPAN(ALPHA NUM ' '» • 10 Q REM. STMT 
: (BLANKS_END) 

Entry point for BLANKS(S); First remove blanks from the 
keyword to test statement type. 

BLANKS S KWORD.KW DIFF (KW,' ') 
BLANKS S 
BLANKS IF.STMT 
BLANKS IO.STMT 

BL (IF) BLANKS (STMT) : S (RETURN) 

BLANKS BL (S) 
DIFF (10,' ') "'" BL (STMT) : S (RETURN) 

: (RETURN) 
BLANKS_END 

Names referenced 
~i BLAN~§~------

~ID!!§ 
DIFF 

IYI2§ 
Function 

Where defined 
Program 3. 10 



______ , ______ P~~~ 

r- 1 

" Program " The method of invoking semantic routines 
" 18.4 " used in the coding of L_ONE is general 
, , POL , , enough but not sufficiently convenient for 
L- I very large languages of, say, PL/I size. To 
see this, consider the tree decomposition of a language state
ment as shown in Figure 18.3. By means of S() a function may 
be called before and after each node of the tree with the se
quence of calls being made in left-to-right order. Moreover, 
every leaf of the tree may be pushed and these pushes are in
terspersed between calls also in a left-to-right fashion. We 
could hardly ask for anything better, or could we? 

The reader will find, if he does the exercises involving ex
tensions to L_ONE, that he will be forced to push and pop many 
different items in order to preserve quantities from the start 
of a syntactic unit across to its termination. For example, 
to produce code for IF<E>THEN<S> we must create a conditional 
branch across the THEN-clause. For this we will need to create 
a label which will be used in two places, before and after the 
<S>. Since <S> may be arbitrary including another IF<E>THEN<S> 
sequence the label cannot be assigned to a variable but must 
be pushed and popped. Now if the functional relationship fol
lowed the structural relationship we would regard IFTHEN as a 
single node of a tree with two arguments <E> and <S>. The 
IFTHEN function would call the functions for <E> and <S> to 
obtain translations. This will prove to be more natural. The 
temporary-variable facility built into the function mechanism 
can be used instead of stacks and a somewhat cleaner implemen
tation results. In order to achieve a functional relationship 
conforming to the structural relationship the source string is 
converted into a tree form; our tree will be polish prefix. 

To obtain a slightly richer language to illustrate the conver
sion process, we define an upward compatible superset of Ll 
called Lz • This is defined in Figure 18.4. Unlike LI , we must 
allow blanks as separators (not shown in the BNF) but we do 
not permit blanks within identifiers and numbers. This is much 
like the PL/I convention whereas Ll followed the Fortran 
convention. 

The form of polish prefix for any non-leaf (a node containing 
at least one descendent) is: 

operator:n,operand t ,operana2 ,···,operandn 

where each operand is itself a valid tree. The operator may 
not contain either of the two special characters colon or com
ma. For a leaf, the :n is absent and, of course, there are no 
operands. Thus: 

A + B * C becomes +:2,A,*:2,B,C 
and 

A * (-B) becomes *:2,A,-:1,B 



F2ge 422 Ch~ter 18 Assembler§L~omRilers and Mac~r~o~s __ _ 

r---------------------------------------------------------------, 
<ELIST>::=<E>,<ELIST>,<E> 
<REF>::=<IDEN> «ELIST» 
<PRIMARY>::=<IDEN>,<INTEGER>I «E»,<REF> 
<FACTOR>: : =<PRIMAF.Y> ,-<PRIMARY> 
<TERM>::=<TERM>*<FACTOR>t<TERM>-<FACTOR>t<FACTOR> 
<E>::=<E>+<TERM>I<E>-<TERM>t<TERM> 
<RELOP> is one of ' > ' , < ' , <= , , >= , , = • , -.= , 
<BOOL>::=<E><RELOP><E> 
<IFSTMT>::=IF<BOOL>THEN<STMT>ELSE<STMT>IIF<BOOL>THEN<STMT> 
<VAR>::=<IDEN>I<REF> 
<ASGNSTMT>::=<VAR>=<E> 
<STMT>::=<IFSTMT>I<ASG~STMT> 

Figure 18.4 

The language L2 - The definitions for <I DEN> and 
<INTEGER> are the same as for L, (Figure 18.2). 

This seems ugly but it will be easy to produce, scan and 
expand. 

A functional form such as A(B,C,D) will translate into: 

REF:2,A,OOMMA:2,B,COMMA:2,C,D 

No distinction is made, at least initially, between an array 
and a function since declarations may follow first use. Note 
that the argument list is a sequence of 2-ary functions rather 
than a single n-ary. This form is easier to produce and just 
as easy to scan. 

To transform infix to prefix, we will use the conditional in
vocation of semantic routines as in L_ONE. Only two routines 
need be defined; CPUSH(STR) will conditionally push the string 
STR onto the stack (conditional upon the pattern being a part 
of an overall successful match). CPUSH(STR) actually returns: 

NULL. *S_('CPUSH', STR) 

where S_() is now written expecting an extra argument. The 
other routine is POLeN) which causes ~+1 items on the stack to 
be popped and replaced by one larger itero, viz. 

OP:N,AP.G1 ,ARG 2 , ••• ,ARGn 

The operator is assumed to be the second last item on the 
stack. N is at least 1. 

Once the machinery of POLeN) and CPUSH(STR) have been set up, 
very large languages can be compiled with no additional seman
tic routines except error messages and routines to handle 
declarations. These we ignore for simplicity. We will il-



Page 423 

lustrate the method by writing a pattern which will transform 
sentences of L2 into polish prefix. 

This program illustrates how to convert L2 into polish 
prefix using special semantic routines, viz. POLeN) and 
CPUSH(S) for the purpose. We first define the semantic 
routines. 

DEXP("POL(N) = S('POL',N)") 
DEXP ("CPUSH (ARG) = S (' CPUSH' , ARG) It) 
DEFINE('S(NAME,ARG) ') 
DEFINE ('S_(NAME,ARG)T1 ,T2') : (S_END) 

S S = EVAL ("NULL • *S_ (' II NAME "','" ARG "') ") : (RETURN) 

S • DUMMY 
T2 POFO 

: ($ (' S_' NAME)) 

T 1 POP () ':' ARG ',' 
(EQ (ARG, 1) PUSH (T1 T2» 

ARG ARG - 1 
T 2 = POP () ',' T 2 

S_CPUSH PUSH(ARG) 
S_END 

: S (NRETURN) 

: (S_POL1) 

: (NRETURN) 

We now write our patterns. Interspersed blanks are handled 
, by placing an optional blank pattern at the end of each 
, pattern primitive. Patterns formed from other patterns 
, then need not worry about blanks. L-__________________________________________________________ ~ 

AL = 'ABCDEFGHIJRLMNOPQRSTUVWY.YZ' 
NU = '0123QS6789' 
BL = SPAN(' ') I NULL 
IDEN = (ANY (AL) (SPAN(AL NU) I "» • *PUSH () BL 
INTEGER = SPAN CO, 0123QS6789') • *PUSH 0 BL 
ADDOP = ANY('+-') • *PUSH() BL 
MULOP = ANY('*/') • *PUSH() BL 
RELOP = (ANY('=<>') , ANYC'-.><') ,=,0) • *PUSHO BL 
LP = 'C' BL 
RP = ')' BL 
ELIST = *E C',' BL CPUSHC'COMMA') *ELIST POL(2) I') 
REF = IDEN LP CPUSH('REF') ELIST RP POL(2) 
PRIMARY = IDEN , INTEGER , LP *E RP , REF 
FACTOR = PRIMARY, '_I • *PUSH() BL PRIMARY POL(1) 
TERM = *TERM MULOP FACTOR POL(2) , FACTOR 
E = *E ADDOP TERM POL (2) , TERM 
BOOL = *E RELOP *E POL(2) 
IFSTMT = 'IF' BL BOOL 'THEN' BL 

+ (*STMT 'ELSE' BL CPUSH('IFELSE') *STMT POL(3) , 
+ CPUSHC'IFTHEN') *STMT POL(2) ) 

ASGNSTMT = (IDEN , REF) '=' • *PUSH() BL *E POL(2) 
STMT = IFSTMT , ASGNSTMT 



Names referenced 
Qy-POL1, ----

Assemblers, ComRilers and Macros 

Name 
DEXP * 
PUSH 
POP 

!YE~ Where defined 
Function program-'~ 
Function Program 5.5 
Function Program 5.6 

* indicates name is referenced in the initialization section. 

For example, if ~e execute: 

'IF A(I) > 6 THEN I 2' STMT 
OUTPUT POP 0 

we will print: 

IFTHEN:2,):2,REF:2,A,I,6,=:2,I,2 

, 

" " If 

Program 
18.5 
TREE 

, 
tI 
It 
II 

with a statement cast as Polish prefix we 
may enter the optional tree-adjustment phase 
in which the tree is scanned looking for 
patterns which may be pruned, modified or 

rearranged. There are several reasons for doing this, some of 
which are listed below: 

1. To insert explicit conversions (for mixed mode arith
metic, array references, etc.). 

2. To remove ambiguities (such as floating versus integer 
addition, binary versus unary minus, function 
references versus array references). 

3. Code optimization such as common ~ubexpression removal 
or such as replacing <VAR) = <VAR> + 1 by a single 
operator. 

Other usesJor the tree adjustment phase will occur to the 
writer of a'practical compiler. An important point to note is 
that the scan is generally easier to apply to the tree than to 
any other form because it is quite easy to specify a pattern 
to match a tree. The following function, TREE(P,N), will 
return a pattern that will do precisely that. For example, 

TREE('+',2) $ OUTPUT FAIL 

is a pattern that will scan for and print all binary sums in 
polish prefix form. 



TREE (P,N) will match a tree in Polish prefix form whose 
node value matches the pattern P and where N is the number 
of b~anches. The tree is assumed to be a non-leaf. If N 
is 0, then an arbitrary number of nodes (up to some max
imum) is implied. 

DEFINE ('TREE (P,N) ') 
ARE_TREE TREE (BREAK (' : , '» , BREAK (' : , ') ',' 

: (TREE_END) 
TREE EQ(N,O) P 

+ 
TREE 
+ (TREE (,1) , TREE (, 2) , TREE (, 3) , TREE (, 4» 
+ 

TREE 
TREE_ N 

TREE 
TREE_END 

~ilogu~ 

P ':'N',' 
N - 1 GT (N, 0) 

TREE *ARB_TREE 

:S (RETURN) 

:F (RETURN) 
: (TREE_1) 

The alert reader will note that the pattern requires a ter
minating ','. Thus, to use TREE on the Polish notation 
described above would require appending a comma to the total 
string. It may also be necessary to prepend a comma. For ex
ample, ARB_TREE is a variable which was set as a side-effect 
of initializing TREE to equal a pattern which will match an 
arbitrary tree. Then: 

POLISH 
POLISH 

, . , , , , 
POLISH ',' 

ARB_TREE $ T ARB *T 

will scan the polish for a pair of identical expressions. (For 
this pattern match to work it will be necessary to use 
FULLSCAN mode; in QUICKSCAN mode, ARB indicates futility as 
was discussed in Chapter 7). Several examples of the use of 
TREE have been left as exercises. 

i i 

" Program" Given a statement in Polish prefix, we can 
, , 18.6 , , generally produce compiled code by recursive 
" TR 'I invocation of a single translate function. 
L- We will not produce code directly but will 
create four-tuples as described previously. The set of accep
table 4-tuples is indicated in Figure 18.5. 

certain semantic ambiguities in the description of L2 need be 
resolved before TR can be written. Floating point as well as 
integer arithmetic will te permitted. We assume that iden
tifiers beginning with ANY('IJKLMN') are integer; all others 
are real (floating point). Mixed-mode arithmetic is not per
mitted. . The functional forms specified in the syntax of L2 
refer to array references; function calls are not permitted 
(but are left as an exercise). Finally, for simplicity, array 
references are assumed to be one-dimensional. The extension 
to multi-dimensioned arrays is relatively straightforward 



Page 426 Chapter 18 Assemblers. compilers and Macros 

, 
I 

4-tuple Description I 
I 1 
1--------------------------------------------------------
I 
I ADO,arg1,arg2,arg3 Place arg1 plus 

arq2 into arq 3 1 

Seven similar operations 
for SUB, MUL, DIV, FADO, 
FSUB, FMUL and FDIV. 

ASGN,arg1"arg3 

MNS,arg1"arg3 

BR",arq3 

BRGT,arg1,arg2,arg3 

Five similar operations 
for BFGE, BREQ, BRNE, 
BRLT and BRLE 

LBL,arg1 

Move the quantity from 
arg1 to arg3. 

Store -arg1 into arq3 

branch to arg 3 

Branch to arg3 if 
arg1 is greater than arg2. 

Insert a label here 

,-----------~--------------------------------------------, 
I 
1 
t 

argn is of the form ID or 10(10) where 10 is 
an identifier. 

1--------------------------------------------------------I 
t I 
, If identifiers are of the form TEMPn they are I 
I considered volatile; i. e., they may be destroyed I 
I after first use. I 
I I 
I , 

Figure 18.5 

The tuple language. 



Program 18.6 - TR Page 421 

given the standard multiplier technique [Gries 1911, Sect. 
8.4] but is beyond the scope of the present discussion. 

~R() will return a translation of a polish string con
tained in the global variable POLISH which is modified 
(and reduced to null) in the process. A trailing comma is 
appended to the Polish string to permit easier pattern 
matching. The translation is in the form of 4-tuples 
separated by '//'. The language is L2 • 

DEFINE('TR(ARG)OP,N,P,T,ID,L1,L2') 

Pattern definitions: ITREE will match an integer tree. 
R~REE will match a real tree. 

ITREE ANY('+-*") ':' ANY('12') I,' *ITREE 
+ ANY ('IJKLMN') BREAK ( ',: ') ',' , 'REF:2,' *ITREE 

RTREE ANY('+-*") ':' ANY('12') I,' *RTREE I 
+ NOTANY('IJKLMN') BREAK(',:') ',' , 'REF:2,' *RTREE 

: (TR_END) 

Entry point: if an operator, fan out; otherwise push the 
leaf. 

TR POLISH POS (0) BREAK ( , : , , ) . OP ':' BREAK (' ,.) . N 
+ • , , = : S ($ ('TR_' OP» 

POLISH BREAK (' , ') . *PUSH () • • = : (RETURN) , 

Arithmetic operators. L---__________________________________________________________ ~ 

TR_ + ;TR_ - ;TR_ * ;TR_' 
TR = EQ (N, 1) TR () 'MNS,' POP () ',,' PUSH (TEMP (» , , " 

+ : S (RETURN) 

+ 

'+ADD-SUB*MULIDIV' OP 
POlISH POS(O) ITREE 
OP 'F' OP 
T = TR() 
P = POP() 
TR = T TR() OP ',' P I,' 

-Array references 

LEN (3) • OP 

POP() , , , 

:S(TR_1) 

PUSH (TEMP () , , " 
: (RETURN) 

TR_REF POLISH BREAK(',') • ID ',' = 
TR = TRO 
TOP 0 ' (' 
PUSH(ID '(' POPO .) ') 

TR_REF1 T TEMP C) 
TR TR 'ASGN,' POpe) I,,' T .," 
PUSH(ID 'C' T ') ') 

:S (TR_REF1) 
: (RETURN) 

: (RETURN) 

Relations are handled here. Note that '=' has been trans
lated by the TR_IF ••• processor to 'EQ' to avoid ambiguity 
with assignment. An argument, ARG, contains the fail 
label. Success implies a no-oPe Hence we need the com-



, plement of the given operation. 

;TR_>= ;TR_< ;TR_<= ;TR_~= ;TR EQ 
'EQNE ~=EQ <GE >LE <=GT >=LT' OP LEN (2) • OP 
T = TRO 
P = POPO 
TR T TR () , BR' OP ',' P ',' POP () ',' ARG '/ / ' 

+ : (RETURN) 

Assignment 

TR TR() TR () 'ASGN,' POP() ',,' POP() '//' 

The IF's 

TR IFTHEN 
TR:IFELSE L 1 = LAB EL () 

POLISH POS(O) '=:2' 'EQ:2' 
TR TR(L1) TR() 
TR = EQ(N,2) TR 'LBL,' L1 '//' 
L2 LABEL() 
TR TR 'BF",' L2 '//' 

'LBL,.' L1 '//' TRO 'LBL,.' L2 '//' 

i 
I LABEL(} is like TEMP(}. 

DEFINE ('LABEL() ') 
LABEL LABEL NO = LABEL NO + 1 

LABEL- 'LBL.' LABEL_NO 
LABEL_END 

Names referenced 
QY TR:-------

, , 

~~~ 
PUSH
POP
TOP
TEMP

Tn?~
Function
Function
Function
Subfunction

: (RETURN)

:S (RETURN)

: (RETURN)

: (LABEL_END)

: (RETURN)

Where defined
Program 5.5
Program 5.6
Program 5.7
Program 18.2

'I Program 'I TUPLE (OP,.ARG1,ARG2,.ARG3) will expand a
'I 18.7 I' 4-tuple (as described in Figure 18.5) into
" TUPLE " reasonably optimized machine code. It does
~------------~, this by being 'aware' at all times of the
state of the registers and allocates and frees registers ac
cording to a primitive priority scheme. For example,. the
tuples produced (by POL and TR) for the two statements:

x X + 1
IF X > Y THEN X = X + A(I+1) + Z

are shown in Figure 18.6 together with the instructions
generated by TUPLE. Note that spurious LOAD's and STORE's
which were present in L_ONE are gone. TUPLE assumes that any

________ ~P=rogram 18.7 - TUPLE Page 429

temporary variable (of the form TEMPn) is only referenced once
and is not used across statement boundaries.

FADD,X,1,TEMP1 LOAD 1,X
FADD 1, =1

ASGN ,TEMP 1" X STORE 1, X

BRLE,X,Y,LBL.1 SUB 1, Y
BRLE 1, LBL. 1

ADD, I, 1 , TEMP 2 LOAD " I ADD 1, =1

FADD,X,A(TEMP2),TEMP3 LOAD 2,X
FA DO 2,A(1)

FADD,TEMP3,Z,TEMP4 FADD 2,Z

ASGN,TEMP4"X STORE 2,X

I.BL,LBL.1 LBL.1

Figur~...1Jh§

The tuples produced by TR (on the left)
corresponding code generated by TUPLE
right) for the statement sequence: X = X
IF X > Y THEN X = X + A(I+1) + Z.

and the
(on the
+ 1

The register allocation schemes used in actual compilers seem
to be 'always messy'. TUPLE was written in a highly structured
top-down fashion to avoid this. Note that the higher level
routines have no notion 'at all of what the data structure to
associate registers with locations looks like. only low-level,
caretaker routines, know this. This is an example of
'information hiding' as advocated by Parnas [1972].

DEFINE('TUPLE(OP,ARG1,ARG2,ARG3)R') : (TUPLE_END)
TUPLE

;TU_FADD ;TU_SUB ;TU_FSUB
;TU_FMUL ;TU_DIV ;TU_FDIV
R LOAD (ARG 1)
OUTPUT " OP , , R
DEASSOC (R)
STORE CR, AFG3)

TU_ASGN R LOAD (AFG1)
STORE (R,ARG3)

• • ,

: ($ ('TU_' OP»

ADDR(ARG2)

: (PETURN)

: (RETURN)

Page 430 Chapter 18 Ass~mblers, Compilers and Macros

TU_MNS R = REG()
OUTPUT • LOADN • R ',' AD DR (ARG1)
STORE (R, ARG3)

TU_BR ARG3 = INDEX (ARG3)
OUTPUT ! BR' ARG 3

.: (RETURN)

: (RETURN)

TU_BRGT ;TU_BRGE ;TU_BRLT ;TU_BRLE ;TU_BREQ ;TU_BRNE
R = LOAD (ARG1)
OUTPUT = • SUB • R ',' ADDR(ARG2)
FREE(R)
OUTPUT " OP , , R ',' ARG3 : (RETURN)

TU_LBL OUTPUT
REG LIST

TUPLE_END -,

ARG1 . , , : (RETURN)

, LOAD(LOC) will load the indicated location (if not already
, loaded) into a register an~ return the register.

DEFINE ('LOAD (LOC) ')
LOAD LOAD ISREG(LOC)

LOC = ADDR(LOC)
LOAD = REG ()
ASSOC(LOC,LOAD)
OUTPUT ' LOAD ' LOAD ',' LOC

LOAD_END ,

: (LOAD_END)
:S(RETURN)

: (RETURN)

, STORE (REG,LOC) is a generalized store operation storing a
,given register REG into a given location LOC updating the
,. register assignment list. ,

DEFINE (, STORE (REG, LOC) ')
STORE LOC INDEX (LOC)

FREE (REG)
ASSOC (LOC, REG)
LOC TEMP LOC
OUTPUT = -, STORE' REG ',' LOC

STORE_END

:S (RETURN)
: (RETURN)

i
ADDR(LOC) will return a usable address designating the,
possibly subscripted location LOC. The address returned ,
will be a register number if LOC is contained in a,
register. If LOC is subscripted, a register number ,
replaces the subscript. If LOC is a constant, the symbol ,
'=' is prepended. I

ADDR
DEFINE('ADDR(LOC)')
ADDR = LOC
ADDR = INDEX (ADDR)
ADDR = ISREG(ADDR) :S(RETURN)
ADDR POS(O) SPAN('0123456789') RPOS(O) =

'=' ADDR : (RETURN)

,

________________ -f!2qram 18,7 - TUPLE

INDEX (LOC) will load the subscript (if any) of the given
location into a register and return the same expression
wit.h the index replaced by a constant.,

DEFINE (, INDEX (LOC) S')
INDEX INDEX LOC

: (INDEX_END)

'(' LOAD (S) : (RETURN) INDEX '(, BREAK (') ') • S
INDEX_END

The following five functions are low-level basic routines
used to associate registers with locations. A string of
register-location pairs is kept in the order of increasing
priority in REG_LIST. If a register is associated with a
location then the value normally found at that location
will be in the register. Also, if the location is a tem
porary, the location will not contain that value; other
wise the location will also contain the value.

DEFINE (, REG () LOC')
DEFINE('FREE(REG) ')
DEFINE ('ISREG(LOC) ')
DEFINE ('ASSOC(LOC,REG) ')
DEFINE ('DEASSOC (REG) ')

NO_REGS = 16
REG LIST
TEMP_LOC

, , ,
POS(O) 'TEMP' SPAN('0123456789') RPOS(O)

: (REG_END)

REGe) will return an available register. If all registers
are associated with locations, it will free up the
register with the lowest priority.

REG REG LT(REG,NO_REGS) REG + 1 :F (REG_1)
REG LIST '(I REG ') , : F (RETURN) S (REG)

REG 1 REG:LIST , , , BREAR(' (') • LOC ' (, -+ EREAR(') ') REG ')' , , ,
LOC TEMP_LOC :F(RETURN)
OUTPUT = , STORE ' REG , , , LOC : (RETURN)

FREE (REG) will free a register for other associations.

FREE , , , BREAK (. (') '(' REG ')' = : (RETURN)
r---,
,ISREG(LOC) is a predicate which will determine if LOC is
I currently associated with a register. If so it will boost
I its priority.
I

ISFEG
+

REG_LIST I,' LOC 1(' BREAR(')') , ISREG I)' =
: F (FRETURN)

REG_LIST = REG_LIST LOC' (' ISREG I),' : (RETURN)

~SSOC(LOC,REG) will associate an unsubscripted location
with a register.

Page 432

Assoe

Chapter 18 Assemblers, Compilers and Macros

Loe '('
REG_LIST = REG_LIST LOC' (' REG '),'

: S (RETURN)
: (RETURN)

I
DEASSOC (REG) will remove any association a register h~s ,.
with a location but will not free the register. ,

DEAssoe
+
REG_END

~l?ilogu~

,
REG_LIST ',' BREAK (' (') '(' REG ')' =

, r (' REG ') I : (RETURN)

Note that a distinction is made between a register which is
free and one which is merely disassociated. This distinction
is necessary because whe.n a register is about to be stored it
is not yet free (for use as an index register for example) and
yet it may unrelated to any given variable. Note also that
although a register could theoretically be associated with two
different location (such as after A = B)r TUPLE allows only
one such association.

No distinction is made between fixed and floating pOint
operands of the relational operators. We are here assuming
that floating numbers operate on the same equality scale as
integers (a common case).

, i.

I , Program I' A macro system is basically a method whereby
" 18.8 " the user of the system may define and employ
It GPM It abbreviations. GPM stands for General Pur-
l- pose Macro processor and was developed' by
Strachey [1965]. GPM is general purpose in two ways; it can
be employed as a preprocessor for an arbitrary language and it
can produce arbitrary string computations.

Macros first grew into prominence with the development of as
semblers. Initially they were mere abbreviations for instruc
tion sequences but soon grew more sophisticated with the
introduction of arguments r conditional assembly instructions r
repeat and sequencing facilities. Macros were able to define
other macros and redefine themselves. McIlroy (1960] describes
many of these techniques.

It was soon realized that a complete computational facility
could be implemented relatively easily based on little more
than the ability to define a macro and GPM was one of the
first complete languages to be based on a macro system. But
whereas GPM is completer as we shall see later, one must al
most stand on one's computational head to perform certain com
mon operations (e.g., see Exers. 18.25 and 18.21).

We will write GPM as a function GPM(S) which will return a
translation of string S. If S does not contain either of the
two special characters '.' or ,<,, it will be returned intact.
A sequence of the form:

______________ ~P_r_o~gram 18.8 - GPM Page 433

tname, arg., arg2' ••• , argn;

is considered to be a macro call. Macro calls within the
string S will be replaced by an-evaruation. Every macro call
~tu£O~ a string (which is possibly null). This returned
string is again passed through GPM by a recursive call to ob
tain the macro's evaluation.

The built-in macro DEF allows macros to be defined.

'DEF,name,pr;

will define a macro by the given name and associate it with a
prototype pre It returns the null string. For example,

tDEF,M,STRING;

will define a macro M whose prototype is 'STRING'.
called as in:

tM;

the value returned is 'STFING'. Hence:

GPM('tDEF,M,STRING;xtM;y')

will return 'xSTRINGy'.

When M is

In some respects, the DEF function may be thought of as as
signing a string to a name. But a macro may also have argu
ments which may be embedded within the prototype. The position
of the first, second, third, etc. argument is indicated by the
position of the symbols &1, &2, &3, etc. Thus:

tDEF,SQUARE,&1*&1;

defines the macro SQUARE with one argument. The macro call:

tSQUARE,(X+Y) ;

returns '~+Y)*(x+Y) '. within the argument list of a macro
call there may be other macro calls and these are evaluated to
obtain the actual arguments. For example,

tSQUARE,iM;Y;

returns 'STRINGY*STRINGY'. The,macro call may be suppressed
by surrounding a string with pointed brackets. Thus
GPM('AA<t>AA') returns 'AAtAA'. Pointed brackets are stipped
off ,in pairs. Thus, GPM('A<B<C>D>E') returns 'AB<C>DE'. Poin
ted brackets may be used to defer evaluation of macro calls
until some later time. Thus

tDEF,A,<tM;>;

Assemblers, Compilers and Macros

will associate with A the prototype 'iM;'. When A is called
as in #A; the returned string is evaluated leading to a call
on 'Mi which returns 'STRING'.

Were the returned values merely substituted for the macro call
without again being evaluated, th~ macro system we have
described so far would only be useful as, a system of forming
abbreviations. But by the simple act of reevaluating the re
turned value, we obtain a general purpose computational
language, a language capable of expressing anything com
putable. This is a remarkable fact. To see that this is so,
consider defining a conditional macro #COND,X,y,Z; which
evaluates to Z if X equals Y and evaluates to null otherwise.
On the one hand, if-the returned string were not reevaluated
it would be impossible to write COND (should it be written as
the null string or as &3 1) and hence GPM would not be com
pletely general. On the other hand, a conditional allows one
to simulate a Turing machine and hence perform arbitrary com
putations. To see this reflect that a state-transition table
(as in a Turir.g machine) may be implemented as a collection of
conditionals (one for every combination of states and inputs).

We may write 'COND,X,y,Z; as:

#DEF,COND,<'DEF,<&1>,;tDEF,<&2>,<&3>i'<&1>;>i

In the above, the first argument is defined as a macro which
evaluates to null. The second argument is also defined as a
macro and this definition overrides the first if and only if
the first two arguments are equal (a macro name need not be an
identifier but may be any string of symbols). Finally, the
macro named by the first argument is called. The returned
value is the third argum~~t if the second definition overrode
the first. Programming in this language is opaque but is per
fectly general. If the argument to GPM is not well-formed,
meaning that if a '" is not followed by a corresponding 'i'
or that a ,<, is not followed by a corresponding '>', GPM will
fail. This fact can be used to apply GPM to a program without
reading it into main storage in its entirety. Only a suf
ficient amount of it need be read to enable GPM to succeed.
said another way, if GPM(S1) succeeds then GPM(S1) GPM(S2)
equals GPM(S1 52).

There is one point in which the implementation given departs
from official GPM as defined by Strachey. Macro definitions
here are global and not local to the evaluation of a specific
macro. Assume the following definition occurs.

tDEF,X,Initialization <tDEF,X,Action; 'X; >i

In our system, tx; will evaluate to 'Initialization Action'
on the first call and to 'Action' on all subsequent calls.
This is because the macro X redefines itself. In Strachey's
system the macro definitions are pushed so that when return is
made to the outer level the original definitions remain in
tact. Hence a macro could not redefine itself. There are

________________ prQg~~~~~_ Page 435

advantages and disadvantages to both. As a computation tool,
strachey's system is perhaps superior since macro names can
serve as temporary variables. For a practical macro processor,
however, it is better to have global macro names.

+

DEFINE('GPM(S)PREFIX,BOD,ARG,NAME,N,PUSH_POP')

Initialization section for GPM: FORB_CH (forbidden charac
ter) is assigned a character not permitted in the source
string. GPM_BAL is assigned a pattern which will match a
string balanced in the GPM sense. Note that although <>
and '; both serve as a kind of parenthesis they are not
symmetric.

&ALPHABET
MAC_TBL
ITEM =

LFN(1) • FORP._CH
= TABLE()
,<, BAL('<>') ,>, I 'I' *GPM BAL
I NOT ANY (, < t ') BREAK (, < I>; , ,)
= ARBNO (ITEM)

, . ,
•

This is the basic pattern used to process strings. PREFIX
is the string up to a macro call or a < ••• > literal. BOD
will be either the literal body or the result of
evaluating the macro

GET.PREFIX.BOD = POS(O) BREAK('<I') • PREFIX FENCE
+ (' <, BAL (,<> ') • BOD ,>, I
+ 'I' GPM_BAL • NAME. *PROC('NAME')
+ ARBNO(',- GPM BAL. ARG • *PROCC'ARG'»
+ ';' • *PROC ('MEND'» I
+ REM • PREFIX NULL. BOD : (GPM_END)

Entry pOint:

GPM IDENT(S)
S GET. PREFIX. BOD
GPM GPM PREFIX BOD

:S (RETURN)
: F (FRETURN)
: (GPM)

The routine PROC will process macro names (at PNAME) macro
arguments (at PARG), and macro terminations (at PMEND).

PROC

PNAME

PARG

PMEND

DEFINE ('PROC (TYPE) ')
PROC • DUMMY

NAME GPM(NAME)
N 0
PUSH_POP =
PUSH (NAME)

PUSH (GPM (ARG))
N = N + 1

BOD = IDENT(NAME,'DEF') POpe)
MAC_TBL<POP(» = BOD
BOD

: (PROC_END)
: ($ (, P , TYPE»

: (NRETURN)

: (NRETURN)

: F (PMEND_2)

: (NRETURN)

__ ~C~h~a~p~t~e~r"-1~8~ _____ A~s~s~~e=mb;:l~e:r~s~, compilers and Macros

PMEND 2 BOD
PMEND=:1 BOD

REPLACE(MAC_TBL<NAME>,'&',FORB_CH)
FORB_CH N TOP () : S (PMEND_1)
N - 1 N =

POP 0
BOD = GPM(BOD)

PROC_END

Names referenced Ey GPM: ----

• indicates name is

Name BAL-.
PUSH
POP

referenced

: S (PMEND_ 1)
: (NRETURN)

IYE~ Where defined
Function Program 8.3
Function Program 5.5
Function Program 5.6

in the initialization section.

1111?11111?11111111111111111111111111111111??111111111?1111111
1111?1111??11111111111111 EXERCISES 111?11111111111111?11111
??1?111111111?1??11111?11111?111111111111?1???11?11111?1111111

Exercise 18.1 Suggest a method (or methods) whereby the
OPS and SYMS tables of ASM (Prog. 18.1) can

be made smaller at the expense of time. Implement one of your
plans •

• , Exercise 18.2 Add expressions to ASM (binary +, -, • and
/ and unary -) by modifying the semantic

routines of L ONE for the purpose. Let the period (.) mean
the current address •

• , Exercise 18.3 Assuming there are eight bits per charac-
L- ter, how would you modify ASM to output (on
the PUNCH file) a 32-bit word as four characters.

r----------------
, Exercise 18.4 Modify ASH to allow symbols of the form

=<constant>. For example, =37 implies the
address of the constant 31. (This convention was actually as
sumed by TUPLE, Prog. 18.1.) Be sure to avoid generating
duplicate constants. All such literals should be placed after
the last instruction of the program being assembled.

i i
, Exercise 18.5, What character is not permitted in the ar-

gument to S(name), the semantic subfunction
of L_ONE, Prog. 18.2? How can S(name) be modified to avoid
this restriction?

i ,

I Exercise 18.6 I Augment Language Ll (Figure 18.2)
lowing subscripted expressions.

L_ONE accordingly.

by al
Modify

______________ -E~g~£i§~§_I2!_£~er 1_8 ______________ ~~_!11

Exercise 18.7 Identifiers seen by L_ONE are passed on to
L- the assembler untouched. This is not always
desirable. Modify L_ONE so that each identifier is replaced
by a unique 'internal' name •

• , Exercise 18.8 Extend L ONE to handle real arithmetic. An
identifier is assumed to be integer or real

(floating point) depending on whether or not it begins with
one of the letters 'IJKLMN'. Allow mixed expressions both in
binary operations and across an assignment. Assume two ad
ditional instructions for machine M, viz. CIR which converts
from integer to real (loading into the target register) and
CRI which converts' from real to integer.

r----------------,
, Exercise 18.9 Write a program which will read in a BNF

grammar and produce for each syntactic
variable <v> a pattern named V that will match it. Assume
there are no extraneous blanks. (This requires about eight
instructions.)

• , Exercise 18.10 It has been observed that well over half
of all Fortran programs appearing on

listings dumped into a certain trash can contain no interior
blanks. Use this observation to improve the speed of blanks.

r-----------------~
, Exercise 18.11 If BLINT (a pattern in BLANKS, Prog. 18.3)
~--------------~., is simplified to SPAN(NUM ' ') then BLANKS
will operate incorrectly in some cases. Furnish such a case.

r-----------------~
, Exercise 18.12 A squemish programmer, wishing to avoid

left-recursion writes, for the definition
of E (a pattern in POL, Prog. 18.4):

E TERM ADDOP *E POL (2) TERM

What error has been introduced? Give an example of a statement
which would yield incorrect results •

• , Exercise 18.13

the sequence:

r
, Exercise 18.14

is:

Modify POL so that a null statement is al
lowed. This would permit, for example,

IF A=1 THEN ELSE X = 2

Modify POL, Prog. 18.4, to allow IF
THEN •••. ELSE type ~~~ssiQD§. An example

Page 438 Chapter 18 Assemblers. Compilers and Macros

A = IF A > 0 THEN 1 ELSE -1

Transform this syntax into Polish using a 3-ary operator
called ElF (Expression IF).

Exercise 18.15 This exercise indicates how error messaqes
may be incorporated into POL(). write a

function DNF(S1,S2) (Did Not Follow) which will form the
message:

A v~lid ••• S1 ••• was encountered but
this was not followed by a valid ••• S2

This is to be appended onto a glotal error message string
(MESSAGE) which is printed if the st.atement cannot be matched.
Usinq DNF, modify the patterns of POL, Prog. 18.4, to issue
error messages in the following cases: (1) an expression
doesn't follow an '=' in assignment, (2) a Boolean doesn't
follow an IF, (3) a statement doesn't follow a 'THEN', (4) a
primary doesn't follow a unary minus, (5) an expression
doesn't follow a '('.

Exercise 18.16 This exercise indicates how SNOBOL4 pat-
tern matching can te used on the inter

mediate form to achieve a degree of roachine-independent code
optimization. Scan a Polish string (as output by POL, but with
a trailing comma) for a pattern which resulted from an assign
ment of the form

<VAR> = <VAR> + <E>

where <VAR> is the same (possibly subscripted) variable.
Transform this into the 2-ary form:

AUG:2,<VAR>,<E>

Do the same for an assignment in which the <E> is the first
operand.

,
, Exercise 18.17

leaves.

write a pattern to match an arbitrary tree
with no upp~r lirr.it on the number of

Exercise 18.18 Modify ~REE to accept N additional arqu-
ments, NAME1, NAME2, ••• , NAMEn which are

to be associated with the various leaves of the tree. Thus

TREE (• + " 2, • NAME 1, • NAME2)

will return, in effect,

'+:2' ARB_TREE • NAME1

To do this exercise, you must assume some maximum N(already
assumed anyway in the coding of TREE). For extra credit, make
your program entirely dependent on the parameter MAX_N.

Exercise 18.19 In POL, Prog 18.4, argument lists were
compiled into ~ Polish notation having the

form:

COMMA:2,argl,COMMA:2,argz,COMMA:2

Use pattern matching to convert this into the form:

Exercise 18.20 Modify TR, Prog. 18.6, to handle mixed ex-
pressions, both in the binary arithmetic

operations and relations and across assignments. Assume tuples

CVTIR,Arg",Arg3
CVTRI,Argt"Arg3

exist to convert from integer to real and real to integer
respectively.

,
, Exercise 18.21 The following exercise extends TR (prog.

18.6) to include functions. Assume that
the tuples required for output for the function reference:

are

ARG,Arg l
ARG,Arg z

ARG,Argn
CALL,FUNC"RES

where RES is the location in which the result is deposited.
Assume that the function ATEST(1D) exists which is a predicate
to determine whether 1D is an array. If ID is not an array,
it must be a function.

r-----------------,
Exercise 18.22 I Modify L_ONE to call TUPLE rather than

producing unoptimized code.

Exercise 18.23 TUPLE (Prog. 18.7) is stupid in not op-
timizing the case where the 2nd argument

is already in a register and the first argument is not and the
operation is (F)ADD or (F)MUL. Modify TUPLE to handle this.

Page 440 Chapter 18 Assemblers. compilers and Macros

Exercise 18.24 The action taken by TUPLE for a label is
rather ruthless (removing all previous

register associations). For labels generated as a result of
!F processing, only those symbols need by disassociated that
are actually modified by one of the clauses. Write a routine
that will scan the output of TR to determine which symbols are
modified and arrange to have only these disassociated when
IF-type labels are encountered.

Exercise 18.25 The following formula from Strachey [1965]
defines a macro S with one argument.

tDEF,S,<11,2,3,4,5,6,7,8,9,10,IDEF,1,<&>&1;;>;

What is the result of (a) IS,2; (b) #S,5;
does S do?

(c) In words, what

Exercise 18.26 Modify ASM so that it uses GPM as a macro
L- processor. Allow macro prototypes to con-
tain more than one line. This can be done by encoding line
boundaries as a special character sequence.

Exercise 18.27 It is sometimes required to build up a
large string at assembly time. Write a

macro ICS,S; (Concatenate string) such that when IS; is called
all the strings so far passed to cs will be returned
concatenated together.

,..---,
,~,

II "
" II fl-II
I....--J

n

" It

" , '---,
'----'

n n

" " II II

" " ,L-J I
L--.I

~ r--1
'--, r-' .., r'

" II
II " II r' ..,
U '---J

,..---,
I~I

II "
" It , L-II
'----I

FOR ODD-NUMBERED EXERCISES

n n ,..---,

"'" t r--' "'" ,'---,
" 'I '---11
II If r--' 1
u u '----'

==,======
====================== Solutions

for
Chapter 2

=====================
====================== =====================
====================== =====================
==

~1 The body of the function UP(ARG) is
UP UP REPLACE (ARG,LOWERS_,UPPERS_,

2.3
L
+

1.:.1

P (POS (0) (SPAN (' " , ") I '. '). T
ANY (UPPERS_) • C T UPLO(C)

P UPLO (P)

SIZE(BASEB(K,2»
SIZE(BASEB(R,n»

: (RETURN)

:S (L)

DEFINE ('V (ARG) B,S,E,F') : (V_END)
V B = BASEB(BASE10(ARG,16),2)

B LEN(1). S LEN(10) • E REM. F
V = (-1) •• S CONVERT (BASE 1 0 (F,2) ,'REAL') •

+ 2 •• (BASE 10 (E, 2) - 1045)
: (RETURN)

2.9 Those involving built-in numerical operators: EQ, REMDR,
/;-. and + (four statements in all).

2.11 Initialize H with '01234561'; then replace all 16's by
8's and replace all HEX's by OCT's.

Page 442 SQtUTICN§

week) is equal to the DAY of the first, s·econd or third of the
following mont.h, the day is invalid.

2.15 M = CEIL«(5 • t> - 150) / 153.) (see the chapter on
arithmetic for an a~lysis of this); then take the number of
days and subtra~t off 31+28 (or 31+29 ina leap year); if this
number is negative, add the number of days in the year (365 or
366) • Use the formula above to deterRtin.e M. 'fhen REMDR (M +
2, 12) + 1 is the month.

2.11 Insert a test and branch at the entry point of SPELL and
insert a section of eGSe labeled SPElL_LONG asfo,llows:

SPELL LE (SIZE (N) ,6)

SPEI.L_LONG
SPELL
SPELL
SPELL
SPELl,.
SPELL
SPELL
SP'ELL
SPEtt.
SPELL
SPELL

N RTA.B(6). M =
= SPELL(M)

• SEPT' 'OCI'
'SEXT' = 'SEP'!'
'QUINT' = 'SEX'!'
• QUADR' 'QUINT'
'TR' = 'QUADR'
• 13' -= 'TR'
• M' ... 'B'
= SF'ELL • MII.LION'
= NE(N, Ql SPELL"

: F (SPELL LONG)

SJlELL{N) : (RE'IURN)

'tctDtEFtGG'AtB' TA13(N) NO'l'ANY(··.·) • N<1l'E
+ 'I'AIB(N - 1) tEN(',. N()'I'E

==
==============~=======
======================
=='::=========-::;.=========

Solutions
for

Chapter 3

=====================
========~============
========:=========.====

========================~================~====================

~ RPAD(S,N,C) = REVERSE(LPAD(REVERSE(S).N,C)

3.3 CENTER(S,N,C) = FPAD(LPA.D(S, (N - SIZE(S» / 2,C. ,N,C)

~ (a) REPLACE('CXCB','BBCD',S);

.h1 (a)
DEFINE('TPOS(S,H,W)K,C')

TPOS S POS (K) LEN (1) • C
TPOS ;:: TPOS C
K = K + W

TPOS_ 1 GE (SIZE (TPOS),H *W)
K = REMDR(K,W) + 1

TPOS_ENO

(b)

(b) 4

&ALPHAJ3ET LEN(H • W) • 51
S2 TPOS (51)

: (TPOS_END)
: F ('IPOS_ 1)

(TPOS)
S(RETURN)
(TPOS)

Solutions for Chap~_4 ______________ ~~_!!1

DEFINE (, ENCODE (S) T ')
&ALPHABET LEN(H * W) • S1
PS1 TPOS(S1,H,W)

ENCCDE S LEN(~ * W) • T
ENCODE ENCODE REPLACE(PS1, S1, T)

ENCODE_1
S = S DUPL(':', H * W - SIZE(S»
ENCODE ENCODE REPLACE(PS1,S1,S)
ENCODE DIFF(ENCODEI ':')

ENCODE_END

: (ENCODE_END)
:F(ENCODE_1)
: (ENCODE)

: (RETURN)

~2 Do a positional transformation to obtain the odd charac
ters in the string (H1). Then do a similar transformation to
obtain the even characters (H2). Transliterate H1 so that
digit k goes to the (16 * k)th character of &ALPHABET. Trans
literate H2 so that digit K goes to the Kth character. Then
OR the resulting strings •.

~11 '00112233445566778899'

~11 IDENT(SKIM(S),S)

1.:.1.2 (a)
REVERSE (REPLACE (TRIM (REPLACE (REVERSE(S) ,'0',' '»,' ','0'»
(b) +S

1.:.11 SWAP, SWAP_ARG1 and SWAP_AHG2

~1~ a-ht, b-ht, d-h

~11 (X Y) x • Y Y. X

====================:========:========================:=~=====
======================
======================
======================

Solutions
for

Chapter 4

=====================
=====================
=====================

==

~1 M = CRACK('JAN.,FEB.,MARCH,APRIL, ••• ·, ',')

!.:.1 (a) opposite pairs are swapped twice resulting in a
mutual cancellation. A remains unchanged, I is set to N + 1.

(b) SEQ(' J = N + 1 - I ; (GT(J,I) SWAP(.A<I>,.A<J») ',.1)

4.5 SEQ(" A<I> POS(O) NOTANY('M') ", .1)

~1 It is equivalent to AOPA(A1,' " A2)

4.9 STHINGOUT (AOPA (CRACK (X) " " CRACK (Y))

~11 A<FIND(A,'~LGT'»

!.13 A practical version of the following function would use
'funny' names for temporaries and parameters.

page 444 SOtUTICNS

DO

!.a..12

DE,FINE('OO(S,N.L,U,I) ')
S = CODE(S' : (00_1)')
SiN = L
SN= fiN + I
LE ($N, U)

DEtINE('PUSH(A,E)')
PUSH PUSH = A

A<l> = A<l> + 1
PUSH_1A<A<1» = E

A = CATA (A, A)
PUSH = A

PUSH_END

: (DO_END)
: F (FRETURN)

:<S)

: S<S>F (RETURN)

: S (liiETURN',

: (PllSH_1)

===========~~===

======================
==============-=======
======================

Solut.ions
for

Chapt.er 5

=====================
=====================
=====================

=================,=======================-======================

CRACK
DEFINE (' CRACK (5 ,B) N, V, PAT')
IDENT (13, NU1L)
S RTAB (1) B ABOR'I, REM • S
PAT = BREAK (B) • V LEN (1)

SPAT =
SN = I.INt< (. V)
N = • NEXT (SN)

CRACK_1
CRACK_END

PAT = IEN(l) • V

5.3 (a)

: (CRACK_END)
: S (CRACI<_ 1)

= S B

:F(RETURN)

: (CRACK_2)
: (CRACK_2)

IDENT(PUSH_POP) :S(FRETURN)
NM = .PUSH POP

FIRST_l NM = DIFFER(NEXT(SNM» .NEX~($NM) :S(FIRST_1)
FIRST = VALtJE($NM)
$NM : (RETURN)

(b) ase a doubly-linked list. as in Ex. 5.2.

5.5 No modificat.ion t.o REVL is required.

DEFINE (' IFFLD (N, S) I, F')
IFFLD F FIEtD(DATATYPE(S),I + 1)

I = DIFFER (F,N) I + 1
IFFLD_END

: (I FFLD_END)
: F (FRE'l'URN)

: S (IFFLD) F (RETURN)

5.9 (1) Insert t.he four charact.ers ',NEW' behind 'MARK' in
. t.he DATA function. (2) Use t.he const.ant 2 rather t.han 1 in
FIELD. (3) The t.hird st.at.ement. aft.er VISIT_1 should read:

FLO (SON, I) = GT (•••) NE" (GS) : S (VISIT_1)

Solutions for Chapter 1

(4) Change VISIT_2 to:
VISIT 2 NEW (SON) = COPY(SON) seN = NEW(SON)
(5) 'Ret.urn the copied configuration by modifying VISIT_.3 to:
VISIT_3 VISIT = IDENT(FA~HE~) SON :S(RETURN)

==
======================
==================~===
======================

Solutions
for

Chapter 6

========:==:::====:==
=====================

==================2==============================:============
~ a-F, b-T, c-F, d4 F, e-T, f-T, g-F, h-T, i-T, j-T.

6.3 The canonical forre is 'BED' I 'BEeS' , 'BEAD' I 'BEADS'
'RED' , 'REDS' I 'READ' , 'READS'. The pattern is not monic.

6.5 a-Y, b-N, c-Y, d-Y, e-Y, f-Y, g~Y, h-Y, i-N, j-N.

§.J.. NULL I NULL I NUI,L I NULL I NULL I

W (LZ+3L+2}/2

6.11 "'2**L

6.11 a-Y, b-N, c-N, d-N, e-Y, f-N, q-Y, h-Y •

.§..J.2 'a) (0, 2] b) [0, 2, 4, 4] c) 2**K

6.17 ARBNO('AA' , 'A') will match all even-length sequences
of A's before matching odd sequences.

6.19 PI = FENCE 'ABC', P z = FENCE 'XYZ'.

a) RPOS (<1) , BREAK (5) SUCCEED
b) ANY{S)
c) ANY (S) I BREAK (S) ANY (S) SUCCEED
d) POS(N) SUCCEED I TAB(N)
e) P = TAB(N) I RTAE(N) TAB(N) SUCCEED, RTAB(N) X

==============================~===============================

======================
===================~==

======================

solutions
for

Chapter 7

=====================
=====================
=====================

==
1.a..1
BREAKP
BREAKP.1

C CURSOR
SUBJEC~ POS(CURSOR) ANY(ARG(NODE»
CURSOR GE(CURSCR, LENGTH) C
CURSOR CURSO~ + 1

:S (S)
:S (F)

Full credit if LF is used instead of F;
: (BREAKP. 1)

half credit if MF is
are inverted, take 3/4 used. If the pattern match and test

credit.

Page 446 ------------~U!!Q~--

~~ (a) 2 ** N (b) (4 ** N + 2) / 3

7.2 To form a loop of alternates by alternation or a loop of
subsequents by concatenation would require that the loop go
through the root of the second argument since this is the only
kind of arrow added by these operations. But since the second
argument does not impinge on the ~irst, no loop can be formed.
If a loop was formed via ARBNO(P) it must go through P. But
it could not be a loop of alternates since only solid arrows
are added out of P and it could not be a loop of subsequents
because only a dotted arrow enters P.

1~1 a-9, b-20, c-40, d-14, e-1, f-7

~2 a-Yes, b-Yes, c-NO, d-Yes

~11 Design TAB(N) . as
and an alternate TAB2.
restores it and fails.

a compound consisting of a node TAB1
TAB1 pushes the futility flag, TAB 2

7.13
ARBN1 PUSH (FUTILITY)

FUTILITY 1 : (S)
ARBN2 FUTILITY = EQ(FUTILITY,1) EQ(SFULLSCAN,O) POpe) :S(LF)

POpe) : (S)

7.15 Create a compound similar to Figure 7.8 with NOT1, NOT1B
and NOT2 in place of VA1, VAB1 and VA2 and with no VAB2. NOT1,
like VA1, pushes a nonnegative value onto Stack Alpha. NOT2
changes this to a negative value and fails. NOT1B (NOT 1 on
Backup) pops the value and succeeds or fails depending on
whether the value is positive or negative.

L.l1 Call the root node r. Then
OCr) O(s) , LEN(1) D(r)

Since OCr) is supposed to equal ARB O(s) ,
this trial value into the right hand
manipulation we obtain

ARB D (s) I LEN (1) 0 (a)
which does not equal th~ trial value.

7.19
SCAN

S

IOENT (ALT (NODE))
PUSH (NODE) PUSH (CURSOR)
NODE = ALT(NODE)

NODE SUBS (NODE)
IOENT(NODE)

I 0 (a)
O(a) we may plug
side and after some

o (a)

: ($PROG (NODE))

: (SCAN)

:S(RETURN)F(SCAN)

F CUBSOR = POP ()
IDENT (NODE)

NODE = POP ()
:S(FRETURN)F($PROG(NODE»

==
======================
======================
======================

solutions
for

Chapter 8

=====================
=====================
=====================

==c===========

8.1 ARBNO(NOTANY(S» RPOS(O) I BREAK(S)

8.3 Replace calls to BREAK by calls to BREAKREM.

8.5 3,4,5,6

8.7 When NAME is converted to expression the result is not
EVAL'ed as an identifier but as a concatentation.

8.9 NULL

8.11 IF(P) = NOT(NOT(P»

8.13 In the fourth line fOllowing LIKE_l add a third alterna
tive to produce:

LIKE LIKE , Tl T2 , Tl LEN (1) T2

~1~ either parenthesis

8.11
QLIT = Q BREAK(Q) Q
CMNT = '/*' ARBNO(NOT('*/') LEN(1» '*/'
ELEM = QLIT , CMNT , NOT(Q I '/*') LEN(1) BREAK('/;' Q)
PLI.STMT = PCS (0) (ARENO (ELEM) '; ') • STMT

DEFINE('NAME(NO)D,X')
NAME NO LEN(l) • D

'2ABC3DEF4GHI5JKL6MN07PRS8TUV9WXYOZZZ1***'
NAME = NAME ANY (X)

: (NAME_END)
:F (RETURN)

OLEN (3) • X
: (NAME)

NAME_END

==
======================
======================
======================

solutions
for

Chapter 9

=====================
=====================
=====================

==

DEFINE('READ(P) ')
READ LT(NF_INPTJT,O)

READ POP ()
READ INPUT

READ_1 READ P
PUSH (READ)

READ_2 NF_INPUT NF_INPUT - 1
READ_END

: (READ..;.END)
: S (FRETURN)
: S (READ_l)
:F(READ_2)
: S(RETURN)
: (FRETURN)
: (READ)

Page 448 SOLUTIONS

9.3 The following will remove blanks except within string
literals as defined in the exercise. To handle 'real' Fortran
we must be·a bit more sophisticated. See BLANKS, Prog. 18.3.

Before returning, execute the following code.
can (and perhaps should be) defined out of line.

Q ~ "'" QQ = ''''
The patterns

QLIT = Q BREAK(Q) Q I QQ BREAK(QQ) QQ
HOL = SPAN('0123456789') S N 'H' LEN (*N)
PAT POS(O) ARB. T1 NULL. T2

+ (SPAN (' ') I (QLIT I HOL) • T2)
FORTREAD LEN (6) • T =

FORTREAD_2 FORTREAD PAT = :F (FORTREAD_3)
: (FORTREAD _ 2)
: (RETURN)

T. T T1 T2
FORTFEAD = T FORTREAD

The above will not handle the rare case that the integer
prec~ding the H in a holerith literal contains interspersed
blanks. This can be handled as follows (take extra c~edit if
you did this):

HOL SPAN('0123456789 ') $ N 'H' LEN (*DIFF(N,, I»~

9.5 The following rendition of ASMREAD assumes that the READ
routine removes comments.

DEFINE('ASMREAD()A,T')
CONTINUE = TAB (71) • T NOTANY(' ')
,CONTINUE 16 DUPL(' ',16) CONTINUE
ORDINARY TAB (71) • T
ORDINARY16 DUPL(' -,16) ORDINARY : (ASMREAD_END)

ASMREAD A = READ (CONTINUE) T
ASMREAD = READ (ORDINARY) T

ASM_1 A = READ (CONTINUE16) A T
A READ (ORDINARY16) A T
ASMREAD A

ASMREAD_END

:S (ASM_1)
:S (RETURN) F(FRETURN)

:S (ASM_1)
:F(RETURN)
: (RETURN)

9.7 (a) S POS(C - 1) LEN(L) • A = LPAD(TRIM(A) ,L)

(b) To convert XiS in S to number pairs write:

LOOP

DONE

S BREAK('X') ~K SPAN('X') • X ~L
PAIRS = PAIRS '(' N + K ','
N N + L

The rest is straightforward •

.2~.2 (a)

:F(DONE)
SIZE (X) ') ,

:/(LOOP)

PEEL.K2. POS(O) TAB(*K1.) (ANY (AFTER) ~K2.
+ LEN(1) FASTEAL(,'''' "''', BEFORE AFTER)
+ (~K2. ANY (BEFORE) I ANY (AFTER) ~K2.)
+ I REM ~K2.)

(b) Make AFTER, BEFORE and C temporaries to PEEL. Define
PEEL.K2. with unevaluated expressions *AFTER and *BEFORE in
place of AFTER and BEFORE respectively. Replace the branch to

§olutions for Chapter 10 Page 449

PEE~ 1 in the first statement of PEEL to PEEL 3; also change
the branch to ERROR by a branch to PEEL_3. PEEL_3 is defined
a$;
PE'SL_ 3 K1. = 0 , : ,) >, BEFORE LEN (1) . C :F (ERROR)

BEFORE J3EFORE C
'= , «' AFTER LEN(1) . C
AFTER = AFTER C : (PEEL~ 1)

NONID = NOTANY('ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456189_.')
L 1 X = SNOREAD () : F (END)
L2 X (NONID ARBNO (f _. f» • N 'ALPHA (f
+ N 'ALPHANUMERIC (' : S (L2)

SNOPUT (X) : (L 1)
END

==
=====================
=====================
=====================

Soiutions
for

Chapter 10

=====================
=====================
=====================

==

10.1 In the line after BNORM_1 change the go-to field to
:(FRETURN)S(RETURN) and in the line labeled BNORM_UNB change
the go-to field to : (FRETURN).

lQ~ If there is an inversion then the spacing between the
two characters must be ~ -2. But no string can have a spacing
this negative unless it contained a double BSPACE.

NB NOTANY (BSPACE)
INORM(S,) (POS(O) , NB) I NORM (Sz) (NB I RPOS(O»

1~1
PR_POS POS (0) Q)N BREAK (BSPACE) Q)N FAIL

+ POS(O) *NE(N,O) TAB(*(N - 1» • S1
+ (LEN (1) ARBNO(BSPACE LEN (1» • C1
+ (NOTANY (BSPACE) I RPOS (0» • C

1Q~2 (a) Change the line OF1 = LT(UF1,0) -UF1
to UF1 = LT(UF1,O) (-2 * UF1)

(b) Modify
UF1 CW - W
UF1 LT(UF1,0) -OF1
UF1 UF1 + SIZE(HYPHEm

to
UF1 UF_P * (CW - W)
UF1 LT(UF1.0) - (UF_C * (UF1 / UF_P»
UF1 UF1 + UF_H * SIZE(HYPHEN

Page 450

10. 13
Replace
by

Replace
by

ReplacE
by

SOLUTI,~O~N~S ________ __

(a) (b)
k = I value HYPHEN , value HYPHEN

-------t-------------------,------------------
2 ,4 ,9 null
4 , 8 I 9 null
6 ,8 ,9 null
8 I fails not set, 9 null

DIGRAMS
DIGRAMS

·XA, (m)B,
·XE, {CbFHSY)T

DIGRAM_TBL TAELE(30)
DIGRAM_PAT = AEOFT

DIGRAM~TBL<C> ANY (CC)
DIGRAM_PAT C FENCE ANY (CC)

In the pattern HYPH_PA~:
Replace FENCE ARB tEN(l) t C •••
by CbK ABCRT

Replace
by

HYPH_2

HYPH_3

RWORD HYPH PA~
K = K .. 1 tT(I<,SIZE{RWORD) - 1)
RWORD TAB(K - 1) DIGRAM_PAT

10 • .12 (a)

PRIMAGE

DEFINE('PRIMAGE(S) I')
OUTPUT(.OVER ••••)

OUTPUT
OVER
I

IMAGE (5, 1)
IMAGE (5,0)

: F (FI<ETURN)

:5 (HYPH_3)
:F{FRETURN)
:F (HYPH_2)

PRIMAGE_

PRIMAG~END

OVER
I + 1
IMAGE(S,I + 1) :S{PRIMAGE_1)F(RETURN)

(b) 51 = BNOR M (51) ; 52 = BNOFM (S 2)
PRIMAGE (DUPL(' ',9) 51 DUPL(' ',50 - SPACING(Sl)) 52)

P BNORM (P)
LINE_INIT (F)

LOOP LENGTHS EREAK (' , ') • cw ' , , : F (DONE)
PR IMAGE (DUFL (' ., (60 ,- CW) / 2) tINE (CW)) : (LOOP)

10 • .11
L S • **' (' (' EAL • I< ')' I tEN (1) • K)
+ DUPL{' " SIZE (K» DUFI (B5PACE, 5IZE{K» K .. : S (L)

S BNORM (S)

solutions for c~er 1_2 _______________ ~g~21

OUTPUT
OUTPUT

IMAGE (S,2)
IMAGE (S, 1)

=====================~==
~====================
=====================
=====================

solutions
for

Chapter 11

=====================
=====================
=====================

==

11~1 a-No, b-NO, c-Yes, d-Yes, e-Yes, f-Yes, g-NO

11~~ a-1, b-3, c-3, d-2, e-O, f-3, g-4, h-2, i-O

0'

11.7 Recursive: F(1) = .164, F(n) = .140n + .006
Iterative: F(1) = .126, F(n) = .096n + .030

OPSYN (• CODE. • , • CODE •)
DEFINE ('CODE (S) .)

CODE :<CODE.(' CODENO = SSTNO + 1
: (CODE_END)
: (CODE_ 1) ,) >
: (RETURN) CODE 1 CODE = CODE.(S)

CODE: END

11~ write a routine CAPTURE(T1,S1) which is called by
TPROFILE upon entry as CAPTURE(TIME(), SLASTNO)

==~~~~~~~~~~========
===================== =======-~~=.=.~~~=======

=====================
Solutions

for
Chapter 12

=======~~~~~~~~======

===================== ==========.=.=.=.=.=.======
==.=.=.=.==.=.==.~~~===

1l~ (a-e) 38,11,86,-,24

LOOP

... ,
Note
keep

1~~1

1£:.2

RADIX = 0
I 0
FACTOR = 1
V BREAR (', ') • V1 LEN(1) =
RADIX = RADIX + 1
FACTOR = FACTOR * RADIX
I = V1 * FACTOR + I

Add 1 to the number associated with the ;e~QJ'~ 1, 2r 3,
n-1 to obtain

1 + 1*1 + 2*2! + 3*3! + ••• + (n-1)*(n~')!
that k! + k*k! (k+1)! so tllat the f~,,§t. two terms
collapsing until only one term is left, viz~ n'
1,0,null string, I

PERMUTATION(S, 6 * 5 * 4 * 3 * 2 - 1)

Page 452 SOLUTICNS

12.11 (a) The statements which need rrodification are:

N REMDR(I,RADIX)
I = I / RADIX

(b) Perform 'short division' on the string. The function
below will divide a string by an integer and return the
quotient. R is a global variable set to equal the remainder.

DIVIDE
DIVIDE_1

DEFINE('DIVIDE(S,I) ')
R
S ;LEN (1) • T =
R = R T
DIVIDE DIVIDE
R = REMDR(R, I)

(R / I)

So the two statements may be replaced with:
I = DIVIDE(I,RADIX)
N R

12.13 After PERM_INIT insert the statement:

(EQ (SIZE_A, 1) DEFINE (' FERM (A) ',' PERM_F'»

1b.n
Change:
To:

Change:

+PROTO"IYPE(A)
SIZE (G_S)

SWAP (.A<AL>, .A<AL + D»

: (DIVIDE_END)

:F (RETURN)

: (DIVIDE_ 1)

:S (RETURN)

To: G_S POStAL + D - 1) LEN (2) • T = REVERSE(T)

11..J1 (a) 100, (b) 20

1b.1.2 (1) At the entry point, put in an explicit check for
~he null string in order to break recursion. (2) Obtain C
from &ALPHABET as follows:

REVERSE (&ALPHABET) ANY(S) • C
(3) Remove the statement at REORDER_1 and shift the label to
the next statement. (4) Remove the second parameter fro~ the
function definiticn and from the recursive call.

12.21 All reorderings. The function has no roemory so that if
it produced, say, 'ABBC' twice, as it would have to do if it
produced all permutations of 'ABBC', then it would never
produce anything else.

12.23 (a) P, (b) P, (c) I, (d) I.

solutions for Chapter 14 Pa~ 453

==
=====================
=====================
=======~=============

solutions
for

Chapter 13

=====================
=====================
=====================

==

11~1 The 2 instructions starting with BSORT_2 constitute the
inner loop. An improvement is to add an instruction

V1 = A<K>
and use V1 in place of A<K> in two places. This saves one ar
ray reference but adds an assignment statement; it is faster
but just barely.

11~1 Replace the two RETURN's
replace the two calls to HSORT

by transfers to HSORT X. Then
by the following instructions:

PUSH (1) PUSH (K)
I K + 1

HSORT_X N = POpe)
I POPO

: (HSORT)
:F(RETURN)
: (HSORT)

11~~

GRTH
GRTE_END

DEFINE('GRTH(X,Y) ')
GT(X, Y + R) :S(RETURN)F(FRETURN)

I MSORT (A, 'GRTH')
A AI (A,I)

11~1 MSORT(A, 'LT')

jl~~ Add one more alternand:
SS_PAT ••• , RPOS(O) • T

13.11 Add the statement LSON(T) NULL before LIN_1.

.1l~.n (a)
(b) 2 In 2

2(n+1) (1/2 + 1/3 + ••• + 1/(n+1)) - 2n
= 1.38

==
=====================
=====================
=====================

solutions
for

Chapter 14

=====================
=====================
=====================

==

~~1 (a) MAX (X,Y) will fail if X < Y.
(;) to the argument.

~) Append a semicolon

1~~1 Change the: (RETURN) to :S(RETURN) and add the following
two statements:

OUTPUT = CODE
CODE (LBL :(FRETURN)') : (RETURN)

f2~ .. 454 SOLUTIONS

<Definition of LOADEX function>
: (START)

L 1 LOADEX (. L 1 .) : (L 1)
L2 LOAD EX (. L2 .) : (L2)

.
L100
START

LOADEX (, L 100 ') : (L100)

14.1 Makes no difference.

ll~ Replace
PUSH (&ANCHOR)

by
PUSH (ARB)

&ANCHOR = 0

ARB = &ARB ARB

&ANCHOR = POP 0

POP()

14.11 The names used by both packages to name identical
operations must not. be the same. Thus
RFDEF1:NE (. +' " CSUM (X,Y) ') would be OK for complex sum, but not
REDEFINE (' +'.' SUM (X, Y) ') •

DEFINE (, F. (X) ')
OPSYN (• F' , 'F. ')

F. F = X
F_END

.1!:..1.2

CAT

REDEFIN! (, " • CAT (X. Y) ')

CAT = ~XY() X * Y
CAT = CAT. (X,Y)

OPSYN('OPSYN.','OPSYN')
DEFINE ('OPSYN (NAME 1 , NAME2) ')
OPSYN('DEFINE.','DEFINE')
DEFINE. ('DEFINE(PROTO,LBL)NM')
DEFINE ('FUNCTION (NAME) ')

: (F_END)
: (RETURN)

:S (RETURN)
: (RETURN)

FUNC_LIST = ·,OPSYN.,OPSYN,DEFINE,'

DEFINE PROTO BREAK(' (.) • NM

FUNCTION

OPSYN

FUNC LIST = FUNC LIST NM ','
DEFINE. (PROTO,LBL)-

',' NAME , , ,
FUNC LIST = FUNC LIST NAME1
OPSyN. (NAME1,NAME2)

, , ,

FUNCTION_END

: (FUNCTION_END)

: (RETURN)

: S (RETURN) F (FRETURN)

: (RETURN)

Solutions for Ch~ter ~1~6 __ __

==
====:=====:==========
=====================
=====================

Solutions
for

Chapter 15

=====================
=====================
=====================

==

OEFINE('COMB(N,M)R')
COMB COMB 1
COMB_ EQ (K,M)

K = K + 1
COMB = COMB * «N - M) + R) / R

COMB_END

15. 3 COMB (L, N) - 1 '

: (COMB_END)

: S (RETURN)

: (CCMB_1)

1.2.:...2 (a) DIFF OIFF = SUM(X,MINUS(Y) : (RETURN) (b) 5

15.7 Before the first of the SPLITs insert
OIV = LE(SUBS~R(Y,1,1), 5) X * 2 / Y * 2

15.~ X > Y / (CEIL(Z) + 1)

15.11 (a) E = e 2 / 2(e + 1) (b) 5

15.13 A = 1, 2, 4, 5 (integers).

15.15 (a)
ASIN(X) = 2 * ASIN(SQRT«1 - SQRT(1 - X2» / 2»

(b) the same as the stopping criterion for SIN (A)

15.11 10 5

15.12
N ,CONVERT(LOG(X,2), 'INTEGER') + 1
X = X / (2 ** N)
I = CONVERT(X * 2 ** 27, 'INTEGER')

15.21 The difficulty is that NAT_EASE is single precision.
Replace the second occurrence of NAT_EASE by EXP(X / X).

==
=====================
=====================
=====================

Solutions
for

Cha};:ter 16

=====================
=====================
=====================

==

~1 R() = ID(RANDCM(O»

16.3 Let HA = LEN(5). ~hen the follcwing statement will ex
ecute the deal.

RPERMUTE(DECK) HA. P1 HA. P2 HA. P3 HA. P4

E~56 SOLUTIONS

16.5 The last one. Instead of assigning CODE(CODE) to a
tabler simply go to it. The first two statements could also
be eliminated.

12~1 In general, any string not containing a balancing right
bracket to a left bracket will cause looping. One example is
I (I. The cure is to prefix the pattern LEN(1) to LITERAL.TEXT.

1§~2 Let ~C be equivalent to
Thus II is equivalent to
Implementation is simple:

C where C is
I and ~~ is

some character.
equivalent to ~.

LITERAL. TEXT = POS(O)
+ BREAK (I < = (~ I)

1%1 LEN(1) • TEXT
• TEXT

12~ The probability P must satisfy the equation: 2P = 1 +
P3. The solutions to ·this equation are 1r .616 r and -1.62.
The value 1 is unsuitable because the situation is clearly·
worse than the case where it just barely halts. -1.62 is not
a probability. Hence r by eliminationr P = .616

16.13 (a)
LOap- N = N + 1

NUM = LT(RANDOM(),RANDOM() ** 2} NOM + 1.0
OUTPUT = EQ(REMDR(Nr 100) ,0) N I: ' (NUM / N) : (LOOP)

(b) ± .94/SQRT(N)

16.12 Replace the rule that begins 'OUTS = GT(' by simply the
predicate +'0 obtain the statement:

GT(K,H(S» :S(RS_OUT)
Then at RS OUT insert:
RS_OUT ADV-= LT(RANDOM() rE) '123R' :S(RS_4)

OUTS OUTS + 1

16.17 In the program which follows r FORMAT will format a
s~ring for output; MIRIM will return the mirror image of any
gl.ven sequence of positions and RSTEP will move half the
dancers one random step forward making sure no conflicts ,occur
among the dancers or their mirror images.

DEFINE ('FORMAT(S)C')
FORMAT S LEN(1) • C

FORMAT FORMAT C
FORMAT_END

DEFINE ('MIRIM(POS) ')

: (FORMA:I'_END)
:F (RETURN)
: (FORMAT)

MIRIH MIRIM = REPLACE(PCS,IABCDEFGHIJKLMXYZl r
'DCBAIHYFEHLRJZGX') : (RETURN)

DEFINE ('RSTEP(CPOS) P,NPSrNP')
NEXT_POS IA(AEEF)B(ABCF)E(AEFJX)F(ABEFJK)J(EJFKX)'

+ 'K(JFKXGL) X(EJXK)Y (KYL) I
NEXT_POS NEXT_PCS MIRIM(NEXT_POS) : (RSTEP_END)

RSTEP CPOS LEN(1). P
NEXT~POS P '(' ARB. NPS ')'
NPS = RPERMUTE (NPS)

RSTEP_' NPS LEN(1) • NP =

:F(RETURN)

: F (FRETURN)

____________ -=S~o~l~u~t~i~o.ns for Cbapter 11 ______________ Page~21

'XZ' NP
(RSTEP MIRIM(RSTEP»

RSTEP 2 RSTEP = RSTEP NP
RSTEP:END

NP

OUTPUT = FORMAT('1234567S')
POS = 'XXXX' '

LOOP OUTPUT FORMAT (POS MIRIM(POS»
POS = RSTEP(POS)
N = LT(N,100) N + 1

END

: S (RSTEP _2)
: S (RSTEP_1)
: (RSTEP)

:S (LOOP)

==
=====================
=====================
=====================

solutions
for

Chapter 17

=====================
=====================
=====================

==

1~1 Assume for the moment that ONEWAY maps integers to in
tegers. The machine obtains a random number N1 and prints
ONEWAY(N1). The player thinks of a number N2 and types it in.
The machine initializes a random number generator with the sum
N1 + N2. After the hand·is completely over and before the
start of a new deal, the machine prints out N1 which enables
the player to check on the machine's honesty.

17.3 The game is ill-formed. From a decision graph stand
point there are an infinitude of nodes and every terminal
state is avoided by A whose best interests lie in prolonging
the game until B's wallet is exhausted.

17.5 Variables which can't be used are those indicated as
temporary. They all begin with 'Q' so that programs using
QUEST should avoid them. As a precaution to their forgetting,
one can insert

QN POS (0) 'Q' : S (ERROR)
after label QUESTP_1.

11~1 After the check for ' ••• ' insert:
QVP POS(O) LEN(1). QC1 '_I LEN(1) • QC2 RPOS(O)

+ :FCQUESTP_4)
&ALPHABET BREAK (QC1) BREAK (QS) :F(FRETURN)

REVERSE (&ALPHAPET) BREAK (QC2) BREAK (QS) :F(FRETURN)
EQ(SIZE(QS),1) :S(QUESTP_3)F(FRETURN)

QUESTP_4

11~ Replace J = 0 by LIST
J J + 1 LT(J,MAX)

by

MAX. Replace:

LIST BREAK (,) • J , , (LEN (1) REM) • J
As a matter of aesthetics, the name 'MAX' could be changed.

11.11 For both cases, 8 X 3 X 2 = 48

17.13 3 X 2 = 6

Page 458 SOLUTIONS

17.12 Add: EQ(V,1) :S(TTTM_4) immediately before TTTM_3.

~ Replace &ALPHABET by ORO_ALPHA which is defined as:

FULL_DECK LEN(13). SA LEN(13). SB
+ LEN(13) • se LEN (13) • SO

ORO_ALPHA = E1ENC(BIENO(SA~SE),BLENr:(SC,SI:»

17.19
LOOP

+

H = VALS(FHANO(13,1»
OUTPUT = 4 * COUNT(H,'M')

2 * COUNT (H, '1<')
+ 3 * CCUNT(H,'L')
+ COUNT (H, • J .) : (LOOP)

17.21 The problem lies with the FLUSH test. It should
properly go after the test for a full house. Thus 2H 2H 2H 3H
3H should be interpreted as a full house. The initial ~airs
test was inserted for speed. This cculd be left out, sim
plifying the result.

17.23 Setting VALS = W V and doing a : (PR(2» is good enough
for a uniform distibution but won't distinguish between hands
that contain the same pairs but differ in only the fifth card.
Hence, replace the W V in the call to PR by the expression:

EASEB(CONVERT«CONVEFT(DECOMB(W V),'REAL') / COMB(13,2»
+ • 13 ** 2, 'INTEGER'), 13)

After HE BETS insert:
QUEST('HOW much? /BET(1 ••• BET) ')

==
=====================
=====================
=====================

St,lutions
for

Cha~ter 18

=====================
=====================
==~==================

==

18.1 One method is to insert integers rather than strings in
to the table. Thus, instead of inserting '2F', insert
BASE10('2F',16). Another, perhaps extreme, method is to com
bine all elements of a table into a long string and use pat
tern matching to extract an element.

18.3 PUNCH CH(OP AC X A) (Using Prog. 2.7).

~ The single quote (') cannot be used. The solution is tQ
use the QUOTE function (Prog. 3.16).

18.7 Assuming CRNAME() returns a unique 'created nane:
IOTBL = TABLE()

IDEN 5 (' 10')

T POP 0
(OJFFER(IDTBL(T» PUSH(IOTBL(T»)
IOTBL(T> CFNAME()
PUSH (IDTBL(T»

: S (NRE'IURN)

: (NRETURN)

solutions for Chapter 18 Page '-59

18·2
Q ", ..

L2 X INPU'!' :F<CODE(S , ; : (DONE) ') >
X ,<, BREAK (' >') . K ,>, = K
X ' : : =' , = , Q

L X ,<, BREAK (' >') . K ,> ' Q ,
*' K , , Q : SeLl

X REPLACE(X,"','<') Q
L1 X ,<, Q , , , Q : S (1. 1)

S S X I • , : (1.2) ,
DONE

18.11 ALPHA(H) would be converted to ALPHA(").

NLSTMT
STMT

II • *PUSH() E1.
IFSTMT , ASGNSTMT I N1.STMT

18.15 Writinq DNF is obvious. We th~n replace *E of ASGNSTMT by-
(*E I *DNFf'assignment o~erator (=) " 'EXPRESSION')

Replace the BOOL of IFSTM7 by
(BOOL , *DNF('IF keyword', 'relation'»

etc.

18. 17 ATPEE = BREAK (, : , ,) (, , I ,

*EVAL(DUPL('*A~REE ',N»)
I : ' SPAN (' 0123456789') $ N

+ ',I
18.19
HERE POLISH 'COMMA:' SPANC I 0123456789') • N
+ ARB_TREE. T 'CCMMA:2' = 'COMMA:' (N + 1)

I I ,
T : S (HERE)

18.21 At TR_REF, after extracting the ID, a~ply the predicate
ATEST(ID). If this fails, branch to TR_FREF defined as
follows.

TR_FREF POLISH POS (0) 'COMMA:2,' :,F (TR_FREF1)
TR = 71< 7R () 'ARG,' FOFO '//' : (TF_FREF)

TR_FREF1 TR = TR TRO '.ARG,' FOP() '//'
TR 7R 'CALL, I ID , , PUSH (TE~P (»

;TU_MUL ;TU_FADD ;TU_F~UL

ISREG (ARG 1)
R ISREG (ARG2)
OUTPUT I. OP , • R
DEASSOC(R)
STORE CR, ARG3)

;TU_DIV ;TU_FSUB ;7U_FCIV

: (FE7UFN)

• I ,

:S (TU_SUB)
: F (TU SUE)

.Ar;D~(ARG1)

: (RETURN)

'//'

18.25 (a) 3, (b) 6, (cl Returns the successor of a number.

18.27 'DEF,CS,<#DEF,S,#S;'1>;

i

• I
I

I ,
•

APPENDIX

r---'1

1r-11
II II
I &.-oJ I
1,.-, I
u u

Cross-refe~nce Listing of Functions

Is
Proqram Nwnber References referenced

by
-~--

AGT 3.13 UPLO
AI 4.6 SEQ FRSORT
AOPA 4.4 SEQ

ARC 15.8 SQRT
DEXP

ASM 18.1 BASEB
RPAD

ASM360 8.11

BAL 8.3 PEEL
RSENTENCE
GPM

BALREV 3.8 REVERSE OR
HYPHENATE

BASEB 2.4 ON EWAY
ASM

BASEl 0 2.5 CH
ONEWAY
POI<EV

BCD_EBCDIC 2.2
.BLANI<S 18.3 DIFF

BLEND 3.7 HEX
LEXGT
I NORM
ONEWAY

Cross-reference of functions _______ fggg.Jl.§!

i

Is 1
Program Number References referenced 1

by 1
---1

BNORM

BREAKX

BRKREM
BSORT

CARDPAK

CATA
CEIL
CH

COMB

COPYL

COUNT

CRACK
DAY
DECOMB

DEXP

10.1

8.2

8. 1
13. 1

17.5

4.8
15.5
2.7

15.1

5.8

3.4

4.1
2.8·

15.2

14. 1

DEXTERN 14.2

REVERSE

DIFF

RPER...\sUTE
ORDER

SEQ
DEXP
BASE10

BREAK X

COUNT

COMB

I NORM
LINE

COUNT
REPL
IMAGE
RCHAR

POKEV
POKER

DECOMB
POKEV

CRACK
SPACING
MINP
FRSORT

FRSORT

POKEV

CEIL
TRIG
ARC
LOG
RAISE
PHRASE
POL

I
1
1
I
1
I

page 462

DIFF

FASTBAL
FINO '
FLD
FORTPUT
FLOOR
FORTREAD
FPROFILE

FRSORT

FTRACE

GFM

HEX
HSORT

HYPHENATE

IMAGE

INFINIP

___ .:.:A,~nQiX.-A;:. ________ , _____ _

References

3.10

8.4
4.5
5.9
9.8 PUT

15.4
9.2 READ

11.6 LPROG

13.5 SKIM
COUNT
AI
MSORT
STRINGOUT
CRACK
SEQ

14.3

18.8 BAL
PUSH
POP

2.6 BLEND
13.2 SWAP

10.7 BALREV
OR I

UPLO
DIFF

10.8 SPACING
BREAKX

15.3 REDEFINE
SWAP
LPAD

Is
referenced
bv

SKIM
LEXGT
aRKREM
!NORM
HYPHENATE
BLANKS

SNOREAD

VISIT

LINE

Cross-reference of functions _____ Page_! 63

,.--
I Is
I Program Number References referenced
I by

I NORM 10.2 BNORM
ORDER
BLEND
DIFF

INSERT 13.8
INSERTB 13.10

INSULATE 14.4 PUSH
POP

IP 12.6 MSORT

L_ONE 18.2 PUSH TR
POP

LAST 5.4

LEXGT 3.12 BLEND
UPLO
DIFF

LIKE 8.8

LINE 10.3 REVERSE
PAD
SUBSTR
MINP
BNORM
HYPHENATE

LINEARIZE 13.9
LOG 15.9 DEXP RAISE

LPAD 3.2 PUT
ON EWAY
INFINIP

LPERM 12.5 REVERSE

LPROG 11.5 FPROFILE
TPROFILE

L-----

Page 'H54 ~nli~ A

Is
Program Number References referenced

by

LSORT 13.3
MDY 2.9
MFREAD 9.6

MINP 10.6 SPACING LINE
COUNT

MSORT 13.4 IP FRSORT

NOT 8.5 PUSH
POP

ONCE 8.6

ONEWAY 16.4 LPAD
BASEB
RPERMUTE
BASE10
BLEND

OR 8.9 BALREV HYPHENATE

ORDER 3.1 INORM
CARDPAK
POKEV
PHYSICAL

PAD 10.4 SPACING LINE
REVERSE

PARAGRAPH 9.3 READ
PEEL 9.9 BAL SNOPUT
PERM 12.2 SWAP
PERMS 12.3
PERMUTATION 12.1

PHRASE 16.1 DEXP STON.E
RSENTENCE QUEST

PHYSICAL 14.6 REDEFINE
ORDER

PLI.STMT 8.10

_______ cross-reference of functiQn§ ________ f29~-!.22

Page 466 Appendix A

I

I Is
I Program Number References referenced
I by I
I------------------~---------------------------~-------
I
I
I
I
I
I
I
I

RANDOM

ReBAR

READ

READL
READRL

REDEFINE

REORDER

REPL

RESOLUTION

REVERSE

REVL
ROMAN
ROTATER

RPAD

RPERMUTE

16.1

16.5

9.1

5.1
5.2

.14.5

12.4

3.15

11.1

3.6

5.3
2.3
3.5

3.3

16.3

RANDOM
BREAKX

BREAKX

RANDOM

RAMM
RPERMUTE
ReBAR
RSELECT
RSEASON

RWORD

FORTREAD
PARAGRAPH
SNOREAD
TREEREAD

INFINIP
PHYSICAL

QUOTE
STACK

TIMER
TIMEGC

BALRFN
BNORM
LINE
PAD
LPERM
POKEV

POKEV

PUT
ASM

ONEWAY
CARDPAK

Cross-reference of functions _________ E~~_~67

•
I Is
I Proqram Number References referenced
I by

----------------------~------------------------------

RPOEM 16.9
RSEASON 16.10 RANDOM

RSELECT 16.7 QUOTE RSENTENCE
RANOOM

RSENTENCE 16.8 BAL RSTORY
RSELECT PHRASE

RSTORY 16. 11 RSENTENCE
RWORD 16.6 RCHAR

SCAN 7.1 PUSH
POP

SEQ 4.3 AOPA
AI
TRUNC
CATA
FRSORT

SKIM 3.11 DIFF FRSORT

SNOPUT 9.10 PUT
PEEL

SNOREAD 9.4 READ
FASTBAL

SPACING 10.5 COUNT PAD
MINP
IMAGE

SPELL 2.10

SQRT 15.6 TRIG
ARC
POKER

SSOR'r 13.7
STACK 14.8 REPL

STATEF 14.7 PUSH
POP

A.p:.ag;:a,.e;::,· _4.61&,;1:..' ______ ---.---:Ap~·D;.:e:~n4A1·~iIllll4:_:111At_ ____________ _

PrOtfram NW1I!ber

STONE 17.3

STRIMGGUT 4.2
SUBSTR 3.9

S., 3.14

SYST$M 11.3
TEST 8.7
TICTACTOE 17.4
TIMEGC 11.4

TIMER 11.2

TOP 5.7
TNGFlLE 11.1

TR 18.6

TREE H~.5
TREEREAD 9.5

TRIG 15.7

TRUNe 4.7
TSORT 13.6
TUPLE 18.7
UPLO 2.1
VISIT 5.10

References.

QUEST
PHRASE

R.ESOLUTION

SYSTEM
RESOLUTION

LPROG

PUSH
POP
TOP
L_ONE

READ

SQRT
DEXP

SEQ

FLO

Is
referenced
by

FRSORT
LINE

HSORT
PUN
INFINIP

TIMER

TR

HYPHENATE

r---1
1,-, I
I L-:.I I

"'--' If"
u L.I

r---1 ,----, '''--' ,..--, ,----, n "
I r--' I r--' I r--' 1,-,' 'r--' " , "
It-., It-., It.-, IL..II ,....., "'"
I ,-.J I .--' I,-.J I"....J I,-.J I I 'I
I '----,,, I '--, " , , I L..-., " "
L--.J U u u u U

,.----, ,.---,
1,-,1 I~
II U ,t-.,

" n 1.--' Ii-I I 1'---,
'-----' '-----'

Aberg, G. (1974] Computer program to add 'true randomness'
into police patrol schedules. Computers & People, 23:1,
42-43.

Abrahams, P.W. [1974] Improving the control structure of
SNOBOL4. Sig. Not., 9:5, 10-12.

ACM Forum [1974-1975] CACM, 17:9, 541-542 and CACM, 18:1,
63-64.

ACM Algorithm Letters (1966] CACM, 9:4, 243, and CACM, 9:9,
653-654.

Ahl, D.H. [1973] .1Q.LBA2!~mpUi:~L§gm~. Software
Distribution center, Digital Equip. Corp., Maynard, Mass.

~ho, A.V., J.E. Hopcroft and J.D. Ullman (1974] !b~ Design
and Analysis of Computer Alqorithm§. Addison-Wesley,
Reading, Mass.

Algorithms (1968] Index by subject to algorithms, 1960-1968.
CACM, 11:12, 827-830.

Alt, F.L. [1972] Archaeology of computers. CACM, 15:7,
693-6·94.

AI Forum (19'74] Sigart Newsletter, No. 45, ACM, New York,
3-5.

[ASCII] American standard Code for Information Interchange.
CACM, 6:8 (Aug. 1963), 422-426.

Ball, w.w. [1962] Math~ti~!-E~£~gti2n§_S!!g_~§§gY§.
Revised by H. Coxeter, Macmillan, N.Y.

Barnard S. and J. Child [1955] Hiqhe~_~!q~Q!S. MacMillan,
London.

Pa~~l~ _____________________ ~~~n£~ __________________ __

BB [1969] Baseball Encyclopedia. Macmillan, New York.

Beeler, M., F.W. Gosper and F. Schroeppel [1972] HAKMEM, A.I.
Memo 239, AI Laboratory, MIT, Cambridge, Mass.

Blum, B.I. (1965] An extended arithmetic package. CACM, 8:5,
318-320.

Boonstra, B.H. [1965] Inverse permutation. A1g 250, CACM,
8:2, 104.

Canavos, G. [1967] A comparative analysis of two concepts in
the generation of uniform pseudo-random numbers.
Proceedings of the 22nd National Conference of the ACM,
485-502.

Collins, G.E. [1966] PM, a system for polynomial manipula
tion. CACM, 9:8, 578-589.

Crissman, P. [1962] £~Prog~gmm~..M2!!!!a1. Continually
updated from 1962-1967, MIT, Project MAC, Cambridge, Mass.

Coveyou, ·F.R. and R.D. MacPherson (1967] Fourier analysis of
uniform random number generators. JACM, 14:1, 100-119.

Cutler, W.H. [1975] An optimal strategy for pot-limit Poker.
To be published, Am. Math. Monthly.

de Bruijn, N.G. (1946] A combinatorial problem. Neder. Aked.
Wetensch., 49, 758-764.

Dewar, R.B.K. [1971] SPYTBOL Version 2.0. Document S4D23,
Illinois Institute of Tech., Chicago, Ill.

Dijkstra, E.W.'[1968] Goto statement considered harmful.
Letter to the editor, CACM, 11:3, 147-148.

Dimsdale B. and H.M. Markowitz [1964] A description of the
SIMSCRIPT language. IBM Systems Journal, 3:1, 57-67.

Donovan, J.J. [1972] §yst~f~Qg~ing. McGraw Hill, N.Y.

Dunn, R. [1973] SNOBOL4 as a language for bootstrapping a
compiler. Sig. Not., 8:5, 28-32.

Duquet, F.T. (1970] Eliza in SNOBOL4. Sigp1an Notices, 5:12,
ACM, New York, 50-59.

Edmonds, J. and E.L. Johnson [1973] Matching, Euler tours and
the Chinese postman. Math. Prog., 5:1, 88-124.

______________________ Feferences

Evans, A., W. Kantrowitz and E. Weiss [1974] A user
authentication scheme not requiring secrecy in the
computer. CACM, 17:8, 437-442.

Farber, D.J., F.E. Griswold and I.P. Polonsky [1964] SNOBOL,
a string manipulation lanquage. JACM, 11:1, 21-30.

------- [1966] The SNOBOL3 programming language. BSTJ,
XLV: 6, 895-944.

Feigenbaum, E.A. and J. Feldman [1963] Computers and Thought.
McGraw-Hill, N.Y.

Feller, W. (1957] An Introduction to Probability The~and
Its Applications. John ~iley, N. Y.

Findler, N.V., et al (1972] Studies on decision making using
the game of Poker. IFIP Congress '71, Freiman (Ed.),
North-Holland, Amsterdam, 1448-1459.

Floyd, R.W. (1964] Treesort3. Alg 245, CACM, 7:12, 701.

Flores, I. [1969] Com~uter Sorting. Prentice-Hall, Englewood
Cliffs, N.J.

Fox, L. and I.B. Parker (1968] Cheby§hev Polynoroials in ~
Numerical Analysis. Oxford Univ. Press, London.

Friend, E.H. [1956] Sorting on electronic computer systems.
JACM, 3:3, 134-168.

Freiburghouse, R.A. (1969] The Multics PL/I compiler. AFIPS,
FJCC, 35, 187-199.

Gimpel, J.F. [1971] The theory and irrplementation of pattern
matching in SNOBOL4 and other programming languages.
SNOBOL4 Document S4024, Bell J.aboratories, Holmdel, N.J.

Gimpel, J.F. [1972] A design for SNOBOL4 for the PDP-10.
Document 84029, Bell Laboratories, Holmdel, N.J.

Gimpel, J.F. [1972al Blocks - A new datatype for SNOBOL4.
CACM, 15:6, 438-447.

Gimpel, J .F. [1973] A theory of discrete patterns and their
implementation in SNOBOL4. CACM, 16:2, 91-100.

Gimpel, J.F. (1973a] SITBOL - Version 3.0. Document S4D30b,
Bell Laboratories, Holmdel, N.J.

Gimpel, J.F. (1974] Some highlights of the SrTBOL language
ext.ensions to SNOBOL4. Sig. Not .. , 9:10, 11-20.

Goetz, M.A. [1965] Internal and tape sorting using the
replacement selection scheme. CACM, 6:5, 201:206.

Page 472 ________ =References

Good, I.J. [1946] Normal recurring decimals. J. London Math.
Soc., 21, 169-172.

Graham, R.M. [1975] ~,!;;inciEles of_.§y§!~_P~og'!;;s!IDIDing. John
Wiley, N.Y.

Greenberger, M. [1961] Notes on a new pseudorandom number
generator. JACM, 8:2, 163-167.

Gries, D. (1971] Compil~~§yY£!ioILfO~_]2igitS!l_Comput~g.
Wiley, N.Y.

Griswold, R.E., J.F. Poage and I.P. Polonsky [1971] The
SNOBOL4 Programming Langys~. Second Edition,
Prentice-Hall, Englewood Cliffs, N.J.

Griswold, R. E. [1972] Ihe MS£!:2-I!!'l21e~S!ti0!Lof SN~.
Freeman, Chicago.

Griswold, R.E. [1974] Suggested revisions and additions to
the syntax and control mechanisms of SNOBOL4. Sig. Not.,
9:2, 7-23.

Griswold, R.E. [1974a] .§!:ring_and_LiS:LPrQ£~§ing-1!L§!:!OBQl!.
Prenctice-Hall, Englewood Cliffs, N.J.

Hagelbarger, D.W. (1956] SEER - a sequence extrapolating
robot. IRE - Trans on Elec Comp, EC-5:1, 1-7.

Hammersley, J.M. and D.C. Handscomb [1964] MOn!~~g,!;;lo
Methog§. Methuen & Co., London.

Hamming, R. (1962) IDAmerical Methods .!QL2cienti§~and
~gineer~. ~cGraw Hill, New York.

Hanson, D.R. [1973] Correspondence to the Editor. Sig. Not.,
8:8, 3-8.

Handbook [CR] Handbook of Chemistry and Physi£§. The
Chemical Rubber Publ. Co., Cleveland, Ohio.

Handbook [NBS] Hsngbook of Ma!hematicS!l-EYDctiQ!!'§. Ed. by M.
Abramowitz and I. Stegun, National Bureau of Standards,
u.S. Government Printing Office, June, 1964.

Harrison, M.C. [1971] Implementation of the substring test by
hashing. CACM, 14:12, 777-779.

Harrison, M.A. [1965] I~rodu£tiQ!L!Q_Swi!ching gng-Ay:!::gmats!
~y. McGraw-Hill, N.Y.

Hastings, C. [1955] ~ID2.t:Qximg!i2ns fo,!;; Digital CQmputer§.
Princeton Univ. Press, Princeton, N. J.

Hays, D.G. [1967] Computational Lingui§ti£§. American
Elsevier, New York.

______________________ E~fe~n£~2 ______________________ f~~_!73

Higman, B. [1967] lL£2!!lE2~tiy:~._.etugy_gLf!:9g!:~!!!IDi!lg
Langua~2. American Elsevier, New York.

Hoare, C.A.R. (1961] QUICKSORT and PARTITION. Algs 63 and
64, CACM, 4:7, 321.

Hoare, C.A.R. [1962] QUICKSORT. British Computer Journal,
5;1, 10-15.

IBM [1965] sortin~T~£hniQllg§. Form C20-1639, IPM Data
processing Division, White Plains, New York.

IBM [360a] IB]LSystem/360-frincig.!'§2_.Q!-.!2Q~ratign. Form
A22-6821-6, IBM System Reference Library, Jan. 13, 1967.

IBM [360b] IBM .§y2:t~/360~rating_§y.§te!!!L_~ss~mble!:
b~ngga~. File No. S360-21, Order No. GC28-6514-7, IBM
Systems Reference Library, Dec. 1970.

IBM [360c] I~M Syst~/360-.!2J2§ratin~ysteIDL JotLCon:t!:ol
Langua~. Form C28-6539, IBM Systems Reference Library.

IBM [360d] IBM_2Y~/360-110d.§l 6.2_fYnctignal
~haracteristics. Form A22-6884-1, IBM Systems Reference
Library.

IBM [360f] Fortg!LIV _Lib~y_SubQrog!:~ID2. Form C28-6596,
IBM Systems Reference Library, Oct, 1968.

IBM [360g] Iill:L§yst~l160 and_§y.§temLl1~!:QRTE~rLIY-1~Qll~~.
File No. S360-25, Order No. GC28-6515-8, IBM Systems
Reference Library, Dec. 1971.

Irwin, L. [1961] Implementing phrase structure productions in
PL/I. CACM, 10:7, 424.

Knuth, D. E. [Vol. 1] Th~ArL.Qf COIDI?!!!;~Lfro~H:2mrning_=-Fu!t:
da!!!~al Algorithm2. Addison-wesley, 1968.

Knuth, D. E. [Vol. 2] Th~ArLQ!~omp!!~~Lfrog!:amrning_=
Semin~~i£~l A!gQrithms. Addison-Wesley, 1969.

:Knuth, D.E. [Vol. 3] The Ar:t_Qf ComE!!!;~Lf!:Qqg!J!!!!in~=-So!:::
ti~nd S~!:ching. Addison-Wesley, 1913.

Knuth, D.E. (1971] An empirical study of Fortran programs.
Software Practice & EXp., 1:2, 105-133.

Knuth, D.E. [1972] Ancient Babylonian algorithms. CACM,
15:7, 671-677.

Kruskal, J. [1969] Extremely portable random number
generator. CACM, 12:2, 93:94.

Lawson, H.W. [1967]
358-367.

References

PL/I list processing. CACM, 10:6,

Lee, C.Y., D.C. Leagus, H.M. Vellenzer,I.P. ,Polonsky, L.P.
White and R.E. Griswold [1962] A language for symbolic
communication. Bell Laboratories, Murray Hill, N.J.

Lehmer, D.H. [1951] Mathematical methods in large scale com
puting units. Ann Comp Lab, Harvard Univ, 26, 141-146.

Lehmer, D.H. [1964] The machine tools of cOmbinatorics. in
Applied Combinatorial Mathematics, E. Beckenback (Ed.),
Wiley, N.Y.

Lorin, H. [1971] A.guided bibliography to sorting. IBM
System J; 10:3, 244-254.

Luce, R.D. and H. Raiffa (1958] Gam~_2nd_be£i§!QD§. Wiley,
N.Y.

Lukasiewicz, J. (1951] ~isl:otle's .§:t!.Qgi§l:ic FrQ!!!_the §l:2!!9::
pOint of Modern FQ~al-1Qgic. Clavendon Press, Oxford
England.

Maclaren, M.D. and G. Marsaglia [1965] uniform random number
generators. J~CM, 12:1, 83-89.

Madnick, S.E. (1967] String processing techniques. CACM,
10:7, 420-424.

Markov, A.A. [1954] TheorL2!~2!:itbm§. Academy of
Sciences of the USSR, Moscow, Document TT 60-51085,
National Tech Inf Services, springfield, Va.

Marsaglia, G. and T.A. Bray [1968] One-line random number
generators and their use in combinations. CACM, 11:11,
757-759.

McCarthy, J. [1960] Recursive functions of symbolic expres
sionsand their computation by machine. CACM, 3:4,
184-195.

McClure, R. [1972] An appraisal of compiler technology.
spring Joint Comp. Conf., AFIPS, 1-9.

McIlroy, M.D. [1960] Macro instruction extensions of compiler
languages. CACM, 3:4, 214-220.

McIlroy, M.D. [1971] Roff. Internal memorandum, Bell
-Laboratories, Murray Hill, N.J.

Medlock, C.W. [1965] Inverse Permutations. Remark on Alg
250, CACM, 8:11, 670.

Mendoza, E. (1968] in Computer poems and texts. in
Cyberneti£_serendipity, Londom, 53-62.

Milic, L.T. [1970] The possible usefulness of poetry genera
tion. Internal report, Dept. of English, Cleveland St.
Univ.

Milic, L.T. [1971] The RETURNER poetry program. Internal
report, Dept. of English, Cleveland St. Univ.

Moore, F. [1974] PCC Games. People's Computer Co., 1921
Menalto Ave., Menlo Park, Calif.

Morley, S.G. [1956] The Ancient M~~. Third Ed., Revised by
w. Brainerd, Stanford Univ. Press, Stanford, Calif., p
256.

Newell, A., and J.C. Shaw [1957] Progranming the logic theory
machine. Proceedings of the western Joint computer Con
ference, 1957, I.R.E., N.Y., 1957, 230-240.

Newell, A., .Ed. [1967] 1nfo~s~ion P!:2£§§iDg_1Sngy~~=y
~anY~l. Prentice-Hall, Englewood Cliffs, N.J.

Ord-Smith, R.J. [1967] Remarks on: Algorithm 87, CACM, 10:1,
452.

Pager, D. [1970] A number system for the permutations. C~CM,
13:3, 193.

Parnas, D.L. [1972] On the criterion to be used in decom
posing systems into modules. CACM, 15:12, 1053-1058.

Peck, J.E.L. and G.F. Schrack [1962] Permute. Alg 86, CACM,
5:4, 208.

Pohl, I. [1967] Phrase structure productions in PL/I. CACM,
10:12, 757.

Purdy, G.B. [1974] A high-security log-in procedure. CACM,
17:8, 442-445.

Reed, S.L. [1967] TEXT360. Share Document 360D29.5.002.

Reza, F.M. [1961] ~!L!utrodY£tion~2-.IDfo!:!!!~~ion Theory.
McGraw Hill, N.Y.

Rich, F.P. and A.G. Stone [1965] Method for hyphenating at
the end of a printed line. CACM, 8:7, 444-445.

Sagasti, F. and W. Page [1970] Computer choreography. Com
puter studies, III:1, 46-49.

Saltzer, J. [circa 1964] TYPSET. Computer program, CTSS,
Project MAC, MIT, Cambridge, Mass.

samuel, A.L. [1959] Some studies in machine learning using
the game of checkers. IBM Journal of R&D, 3 (July),
211-229. Also in Feigenbaum and Feldman [1963] •

Paq~ 416

Santos, P. [1911] FASBOL, A SNOBOL4 Compiler. Memo No.
ERL-M314, Electronic Research Lab., UnivG of Calif.,
Berkeley.

Scowan, R.S. [1965] QUICKERSORT. Alg 211, CACM, 8:11,
669-610.

Shell, D.L. [1959] A high speed sorting procedure. CACM,
3:1, 30-32.

Shell, D.L. [1911] Optimizing the polYlilhase sort. CACM,
14:11, 113-119.

Shen, M.K. [19.63] Generation of permutations in lex
icographical order. Alg 202, CACM, 6:9, 517.

Smith, L.D. [1955] cr~RtoqraehY. Dover.

sorting Issue [1963] CACM, 6:5.

Spencer, D. [1968] ~~2laYin~it!'L£2.mJ2]!!~.!h Spartan, N. Y.

strachey, C. [1965] A general purpose macro generator. Comp.
Journal, 8, 225-241.

Tantzen, R. [1963] Conversions between calendar date and
Julian day number. Alg 199, CACM, 6:8, 444.

Tou, J.T. (Ed.) [1969] Proceedings of the Third symposium on
Computer and Information Sciences. Academic Press, 1911.

Trotter, H.F. [1962] PERM. Alg 115, CACM, 5:8, 435.

Tuggle, 'F.D., et al [1973] Computer solution of verbal
analogy problems. Computer studies, IV:2, 97-111.

Von Hagen, V.W. [1960] !:?Qrl9-Qf the Ma~a. Mentor, 199.

wagner, M.R. [1911] The search for a simple hyphenation
scheme. Internal Memorandum, Bell Laboratories, Murray
Hill, N.J., June 29.

weizenbaum, J. [1966] ELIZA--a computer program for the study
of natural language communication between man and machine.
CACM, 9: 1 (Jan), 36-45.

Whitehead, E.G. Jr. [1973] £Qmbine!2!:.!eL~lgorithms. Courant
Institute Lecture Notes, New York Univ., N.Y.

Wilkes, M. V. [1912] Iim~Shs!:.!lliLComE'y!.!.!_§Y$tems. American
Elsevier, N. Y'.

Woodrum, L.J. [1969] Internal sorting with minimal comparing.
IBM Syst J, 8:3, 189-203.

______________________ Ref~ce~------_______________ _i~ll

Yngve, V.H. (1962] COMI'!' as an IF Languaqe. CACM, 5:1,
19-28.

Ynqve, V.H. [1962al Random generaticn of Enqlish Sentences.
1961_Inte~D21iQnal_Ccnf~~~D£~_2f_~achin£_1~nsla1igll-~ng
bQ~li~2-1angygge Analysi§, London, Vol. I, 66-80.

Yngve, V.H. (197 4] COMI'!'. in Encyclc~edia of Computer
Science ana Technoloqy, J. Belzer, A.G. Holzman and A.
Kent (Eds.), Marcel Dekker, New York, in press.

Yngve, V.H. [1975] Introducticn 10 Hy!@n Lingu.isti~. Notes
from a book in proqress.

Zassenhaus. H.J. [19581 Th~_'Iheo~£! GrouE§. Chelsea, New
York, p 16.

Aberg, G.: 342
ABORT: 104

..--, n n r--1

t, r-' "'" 'r-1, " ""'"'' " """" r-' t, " " ,L-J..I
L..-J U U L..-J

abort symbol: 104
ABORT, difficulty with: 17
Abrahams, P.W.: 15
ACOS: 333, 339
acreage: 310
active information: 276
AGT: 55
Ahl, D.H.: 375
Aho, A.V.: 2
AI: 75, 284
AI FORUM: 368
ALGOL: 183
algorithm: 2
Allen, D.: 337
allocation of registers: 429
ALPHABET: 24, 30, 31, 54
Alt, F.L.: 4
alternate pattern: 123
alternation: 102
analogy problem: 368
anatomy of a processor: 230
anatomy of a SNOBOL4 state-

ment: 237
ANCHOR: 19, 305
AOPA: 72, 77
APL: 18, 72
ARB: 103, 131
ARB_TREE: 425
ARBNO

definition: 107, 143
implementation: 135, 143
,negative: 119

ARC: 333, 340
arithmetic in SNOBOL4: 319
arithmetic timings: 237
array: 293

functions: 63
representation: 66
,sorting an: 279, 280, 284

arrays

,initialization of: 76
,permutation of: 259
,truncation of: 75

ASCII: 24
ASIN: 333
ASM: 408, 436, 440
ASM360: 147, 159
assembler: 224

for machine M: 408
source, processing: 159

assignment timings: 237
associated linear pattern:

109, 119
associated nonlinear pattern:

109
ATAN: 333
average, error of: 362

B-normal form: 192, 204
B-normalization: 191, 192,

208-9, 218
backup-free scanning: 108,

119, 159
Backus Normal Form: 355, 411
BAL function: 148, 151, 163
BAL pattern: 134, 142, 243
balanced

(by spacing): 192
binary tree: 290'
on the left: 191
on the right: 192
string, parenthetically:

134, 149
,right-: 218

Ball, w.w.: 375, 401
BALREV: 51
base copversions: 21
base of a real number: 325
BASEB: 21, 38, 322
baseball lineup: 360
BASE10: 27, 38, 322
BB: 360

______________ lndex _________________ Pa~_'!ll

BCD: 25
BCD EBCDIC: 25, 46, 61
Beeler, M.: 335
binary

search: 216
tree: 294
tree, balanced: 290

binomial coefficient: 319
bins test: 346
BLANKS: 411, 418, 436
blanks, ambiguous use of: 16
BLEND: 31, 50, 58, 11
block: 216
block structure: 14
Blum, B.l.: 322
BNF: 355, 411, 436
BNOFM: 191, 218, 249
Boesch, F.: viii
boldface: 200
Boonstra, B.H.: 210
Bosack, L.: viii
brand-name generation: 352,

356
BREAK 44: 4.3
break-point

determination: 182
of a paragraph: 203
,natural: 204

BREAKX: 43, 148, 151, 162,
. 162, 165
British system (of illions):

39
BRKREM: 141, 162
BRKXREM: 162
Brophy, F.: viii
BSORT: 219, 292, 298
BSPACE: 189, 233
bubble sort: 219
buckets: 224

calendar, Gregorian: 32
Canavos, G.: 344
cancellative, left: 111
cancellative, right: 111
canonical form of patterns:

106 -
CAROPAK: 391, 403
caretaker routine: 429
CATA: 16
CEIL: 327
CENTER: 58
CH: 3 1, 59, 61
chain: 284
character

,pivotal: 266
,position: 192

,random: 350
,replacement: 266

Chebyshev approximation: 328
Chebyshev polynomials: 328
Checker-playing program: 386
Chen, s.: viii
chess: 316
chi-square formula: 346
children'S game: 364
Churchill: 11
cipher: 59

,one-way: 348, 316, 400
,transpositional: 59

co-routines: 310
COBOL: 116
CODE: 312
code

creation: 314
optimization, machine

dependent: 425
optimization, machine-

independent: 438
CODENO: 253
cogets: 321
collection, garbage: 93, 229
Collins, G.E.: 322
COMB: 319, 331
combinatorial number system:

320
combinatorial pattern mat-

ching: 331
COMIT: 6, 1
comparison sorting: 276, 271
compiler: 224

,partitioning of a: 415
,phases of a: 418
,tree adjustment phase of

a: 424
,type-O: 221
,type-1: 221
,type-2: 227
,type-3: 228
,type-4: 228

compilers, types of: 226, 251
compiling

in SNOBOL4: 411
using pattern matching: 406
,error messages in: 438

complex numbers: 315
compound patterns: 131
concatenation of patterns:

103
concealed game: 315
concordance, word: 295
concrete formal systems: 412
confidence interval, 95~: 363

configurations: 80
,copying of: 98
,isomorphism of: 98

control structures: 12
conversions: 22
convertinq from infix to

polish prefix: 421
COpy function: 66
copying of configurations: 98
COPYL: 90, 97, 230
correlation test: 346
COUNT: 43, 57, 219, 403
Coveyou, R.R.: 347
CR: 332
CRACK: 69, 76, 97
cursor: 101

position: 101
, post- : 101
,pre-: 101

Cutler, W.H.: 394

dance, random: 372
DAY: 32, 39
decision

graph: 377
graph for the stone game:

381
tree: 376
tree for the stone game:

381
tree for tick-tack-toe: 386

DECOMB: 320, 392
decomposition of a rule: 162
derived pattern: 126, 143,

144
descriptor: 66
Dewar, B.: viii
Dewar, R.B.K.: 11, 223, 417
DEXP: 302, 314
DEXTERN: 303, 315
Dickman: 305
DIFF: 52
digram: 212
Dijkstra, E.W.: 17
Dimsdale, E.: 169
DISPLAY: 97
distinguishability, of

strings: 200
distribution function: 369
distributive sorting: 276,

298
DIV: 338
DO-loop: 71, 78
Donovan, J.J.: 410, 411
DREAL: 321, 340
DUMP convention: 21

Index

Dunn, R.: 12
Duquet, R.T.: 315
Dwyer, T.: viii
dynamic loading of programs:

303

EBCDIC: 24, 25, 200
Edmonds, J.: 3
ELIZA: 375
English letter frequency:

165, 219
ENIAC: 4
Epstein, R.A.: 392
equality of patterns: 102
ERROR label: 21
error messages in compiling:

438
estimation of error: 362
Euler: 3
Evans, A.: 350
excess notation: 326
EXP: 336, 340
exponent': 325
exponentiation: 220
extended sequence: 104, 111
external sorting: 275
EXXON: 352

factorial number system: 251
Farber, D.J.: 1
FASBOL: 11, 148, 406
FASTBAL: 151, 163, 181
Feller, w.: 351, 362
FENCE: 105
FENCE, difficulty with: 11
FIND: 13, 17
Findler, N.V.: 394
finite patterns: 104
FIRST: 163
fixed storage: 252
FLD: 92
floating point number: 38
floating storage: 229, 252
FLOOR: 321, 338
FLOORCEIL: 327
Flores, I.: 276
flow-of-control timings~ 240
Floyd, R.W.: 292
foibles of SNOBOL4: 11
formatting, paragraph: 232
FORTPUT: 181
Fortran: 5, 18, 60, 169, 181,

183, 327, 375, 416, 436
Fortran, OS/360: 419
FORTREAD: 168, 185
four-tuple: 417

________________________ -Inde~ ________________________ faqe~~

four-tuples: 426
Fox, L.: 329
FP'ROFILE: 247
frequency

profile: 247
sort: 287
English letter: 165, 219

Friend, E.H.: 276
FRSORT: 287
FTR~CE: 174, 304
FULLSCAN: 13, 19, 127
function

definition: 15
definition facility in

SNOBOL4: 302
functions: 301
predicate: 316
, sine: 332

functions, trigonometric: 332
futility: 13
FUTILITY flag: 133, 142
futility heuristic: 127, t43&

243

game
theory: 390
,children's: 364
,concealed: 375
,open: 315
,random: 312
,zero-sum: 390

games: 374
garbage coltection: 93, 229
garbage collection timing:

244
Gaussian distribution: 363
GBAL primitive: 134, 243
Gimpel, J.F.: 11, 15, 216,

223
Gosper, R.W.: 335
goto controversy: 18
GPM: 432, 440
Graham, R.M.: 411
graph, decision: 377
Greenberger, M.: 344
Gregorian calendar: 32
Gries, D.: 411, 421
Griswold, R.: viii
Griswold, R.E.: 2, 10, 12,

223, 406
Guthrey, kS.: viii

Hagelbarger, D.W.: 316
hand evaluation for poker:

392
Hanson, D.: viii

Hanson, D. R.: 12
hard blanks: 204
Harrison, M.A.: 388
Harrison, M.C.: 9
hash number: 249
hashing: 224
Hastings, c.: 328, 329
heuristic

,futility: 127, 143, 243
,length-checking: 121
,POS: 243
,recursive reduction: 115,

131, 138
, start-up: 127

heuristics: 127
,obtrusive: 127
,unobtrusive: 127

HEX: 30, 38, 46, 61
high-level, language.: 223
history stack: 135, 149
Hoare, C.A.R.: 280
homomorphic: 199
homomorphism: 46, 61, 311,

416
hop-around convention: 20
HSORT: 280, 292, 299
HYPHENATE: 151, 211, 219
hyphenating suffix: 211

I-normalization: 198
I/O timing: 243
IBM

1403: 30
360: 9, 10, 11, 23, 25, 30,

223, 258, 319, 331
360 timings: 231
1090: 1

IBM360a: 23, 25
IBM360b: 156, 185
IBM360c: 186
IBM360f: 329
IBM360j: 419
idempotent pattern: 116
identity permutation: 213
IF: 163
IFFLD: 91
ima ge : 199, :2 1 5
Image normalization: 198
implementation of patterns:

121
implementation, recursive

pattern: 131
implicit alternative: 102
implicit alternatives: 148
INCREMENT: 78
INFINIP: 322, 338

Page 482

infinite patterns: 104
information theory: 277
inhibiting suffix: 211
initialization of arrays: 76
initialization section: 20
INORM: 191, 219
INPUT/OUTPUT: 166
INPUT/OUTPUT, difficulty

with: 15
INSERT: 293, 300
INSEFTB: 295, 300
insertion sorting: 292
INSULATE: 305, 315
interchange sorting: 279
internal sorting: 275, 276
interpreter: 224
interpreter, pure: 227
inverse, permutation: 258,

269
inversion of equal elements:

282
IPL: 5
isomorphism of configura

tions: 98

JCL: 182
JCLREAD: 186
Jensen: 305
Johnson, E.L.: 3
JUSTIFY flag: 202

k-transforroation: 47
Knuth, D.E.: 2, 257, 270,

276, 277, 310, 322, 338,
344, 347, 368

Kruskal, J.: 346

L _ ONE: 89 , 4 1 3 , 42', 4 36, 439
L2 : 421
L 1 : 411, 436
L6: 232
lake: 208, 21'
language

clutter: 17
,high-level: 223
,tuple: 426

LAST: 87, 97
last element of a list: 87
LBOUNDS: 78
leading O's: 60
Lee, C.Y.: 6
left

cancellative: '17
recursion: 114, 436
zero: 116

Lehmer, D.H.: 322

Index

length failure: 127
length-checking heuristic:

127
Lewart, kC.: viii
LEXGT: 54
lexical

analysis: 227, 415
analyzer: 311
comparison: 60
ordering: 54

LGT: 54, 155
LIKE: 156, 163
LINE: 202, 219
linear pattern, associated:

109
linear search: 276
LINEARIZE: 295, 300
lines of a paragraph: 202
lineup, baseball: 360
LISP: 6, 175, 227
list: 293
List processing: 79
list

,last element of a: 87
,reversing a: 87
,sorting a: 282

lists, reading of: 86
LOADEX: 303, 315
LOG: 334, 339, 340
logarithmic growth: 276
logarithmic sorting: 279
Lorin, H.: 276
LPAD: 43, 57
LPERM: 266
LPROG: 247, 253
LSORT: 232, 282

machine M: 407
machine M, assembler for: 408
machine-dependent code op-

timization: 425
machine-independent code

optimization: 438
MacLaren, M.D.: ~47
MacPherson, R.D.: 347
macro call: 433
macro system: 432
Madnick, S.E.: 8
MAINBOL: 10, 223, 226, 229,

233, 237
mantissa: 325
marking phase: 93
Markov languages: 6
Markowitz, H.M.: 169
Marsaqlia, G.: 347
MAX: 314

______________ -I~ _______________ Page 483

Mayan Indians: 27, 37
McCarthy, J.: 6, 227
McClure, R.: 411, 417
McIlroy, M.D.: 211, 432
MDY: 34, 39
mean: 362
Medlock, c.w.: 270
Mendoza, E.: 359, 364
merge sorting: 282
MFREAD: 178
Milic, L.T.: 358, 359
minimax process for game

playing: 377
MKS system: 308
modulus: 344

,natural: 344
,prime: 344

monic pattern: 106
Monte Carlo technique: 371
Morley, S.G.: 32
morpheme: 416
MSORT: 284, 299
Multi-file reading: 178
multiplier: 344
musical scale: 40

name-list stack: 136
natural break-point: 204
natural modulus: 344
NBS: 329, 332
Needham: 348
negative ARBNO: 119
neutral suffix: 212
New York Yankees: 360
Newton's method: 330, 339
nil pattern: 131
Nim: 401
Noll, J.C.: viii
nome: 320
nonlinear pattern, as-

sociated: 109
nonlinear patterns: 104
normal form, B-: 192, 204
normalization

,B-: 191, 192, 208-9, 218
,I-: 198
, Image: 198

NOT: 11 2, 1 5 3
Novodvorskii: 329
number system, combinatorial:

320
number system, positional: 27

obtrusive heuristics: 127
ONCE: 154, 163

one-character assumption: 13,
131, 139, 155, 258

one-way cipher: 348, 376, 400
ONE pos: 194-196
ONEWAY: 348, 376
OPA: 77
open game: 375
optimal poker strategy: 394
OR: 59, 157, 164, 214
Ord-Smith, R.J.: 266
ORDER: 42, 403
OS/360: 34

assembler: 156
assembly language: 185
Fortran: 419

overstriking: 190

PAD: 208, 219
Page, W.:372
Pager, D.: 257
PARAGRAPH: 170, 185
paragraph formatting: 188,

232
paragraph, lines of a: 202
parenthetically balanced

string: 134, 149
Parker, I.B.: 328, 329
Parnas, D.L.: 429
parsing: 411
partitioning of a compiler:

415
Pascal's triangle: 319
passive sorting information:

275
password protection: 348
path diagram: 124, 140
pattern

building: 13
matching a tree: 438
matching, combinatorial:

337
matching, compiling using:

406
matching, difficulties in:

12
Pattern Theory: 99
pattern-building timings: 241
pattern-matching timings: 242
pattern/152, SNOARG: 151
pattern

,alternate: 123
,associated linear: 119
,definition of: 101
,derived: 126
,idempotent: 116
,monic: 106

Page 484

,nil: 131
,root of a: 123
,subsequent: 123
,varying: 102

?atterns
,canonical form of: 106
,compound: 131
,concatenation of: 103
,equality of: 102
,finite: 104'
,infinite: 104
,nonlinear: 104
,primitive: 122
,recursive: 112, 144
,representation of: 140

PDP-10: 223, 233, 375
Peck, J.E.L.: 262
PEEL: 182, 186, 187
penny-matching: 376
PERM: 258, 259, 271, 272
PERMS: 261, 272
permutation: 50, 258, 271,

277, 320, 322
inverse: 258, 269
number: 257, 270, 271
of arrays: 259
of strings: 261
record: 256, 270
vector: 258, 273, 277, 284
,identity: 273

permutations: 255
phases of a compiler: 418
phoneme: 416
PHRASE: 377, 401
PHYSICAL: 308, 316
physical arithmetic: 308
piglatin: 47
Pinsker: 329
pivotal character: 266
PL/I: 9, 52, 72,. 159, 176,

183, 327, 415~ 417, 421
comment: 153
comments: 109

Playboy: 220 .
PLI.STMT: 159, 164
plug boards: 4
Pohl, I.: 357
POKER: 394, 404
poker strategy, optimal: 394
poker, hand evaluation for:

392
POKEV: 392, 403, 404
POL: 421, 436, 438, 439
polish

notation: 122, 175
prefix: 227, 417

IndE~ _______________________ _

prefix, converting from in
fix to: 421

prefix, form of: 421
suffix: 227, 228, 230

polonsky, I.: viii
polynomials, Chebyshev: 328
POP: 89, 97, 299, 305, 313
portable generator: 346
POS heuristic: 243
position character: 192
position number: 192
positional number system: 27,

37
po;:;itional transformation:

47, 58, 261, 262
post-cursor: 101
pre-cursor: 101
pre-processing stage: 189
precedence anomolies: 17
PRECISION: 329
prefix: 191
PRIMAGE: 220
prime modulus: 344
prime-primitive pairs: 344
primitive

element: 344
matches: 141
patterns: 122

processing assembler source:
159

processor, anatomy of a: 230
profile, frequency: 247
profile, time: 231, 232, 248
program library: 304
programs: 2
programs, dynamic loading of:

303
PROTOTYPE function: 66
pseudo-random: 343
Purdy, G.B.: 350
pure interpreter: 227
PUSH: 78, 89, 97, 299, 313,

414
PUT: 180

quadratic sort: 296
quadratic sorting: 279
QUEST: 379, 401, 403
quick and dirty sort: 292
QUICKSCAN: 114, 127
QUOTE: 57 , 61, 62

radix sort: 298
RAISE: 336, 340
RAMM: 347, 347
RANDOM: 340, 343, 369, 371

random e j.'\ r II (1 £ r :~ y"JO .:. ,.] ,
character:(j~150~ J:?.i" I,,·\
compliment~~l f37~J')J c:',t !.:'. ",'

dancf.elE 3~jl~h3.1:v::=:)f) b:';('d.,,::'te

game':S: 1372) l::t2'.r.. ~H.'~:\ri I?, , . "::.f, j' ;:~
insult: ~ ~ no .i.J:X:~J:,·,"i·;.:,j-~,
names: CBlS2 : 8 [TO ,c+ ::)fW .• :', j;:-

poetry: 358i)tE ,,::.:,r ::·''!'.iT'
selection: 342'i"\~·: ':Z,i\' ·:,:t;;"
sentence: 354
stories: 364
string: 353
strings: 342
word: 352

range of real numbers: 326
RCHAR: 350, 370
READ: 167, 1~8, 185
reading of lists: 86
reading, Multi-file: 178'
READL: 86
READRL: 86
real numbers: 325
recursion stack: 149
recursion, left: 114
recursive

pattern implementation: 137
pattern, returning a: 150
patterns: 112, 144
reduction heuristic: 115,

131, 138
REDEFINE: 305
redefining functions: 95
redefinition of operators and

functions in SNOBOL4: 305
registers, allocation of: 429
removing blanks from Fortran:

418
REORDER: 264, 272
reordering: 256, 264
REPL: 56, 314
REPLACE function: 25
replacement character: 266
representation

of a tree: 417
of patterns: 140
of strings: 42
of structures: 80-85
of trees: 174
,array: 66

RESOLUTION: 234, 252
returning a recursive pat-

tern: 150
REVERSE: 45, 57
reversing a list: 8~
REVL: 269
Reza, F.M.: 277

Rf1'i:~, '\ ~';!P. ,S:Q 11'~~, ~ju(·;'lr ,~,

right cQ~eel~~~ive:
i='fi~ht::;'~a{l~fit~a~':\;i\18
river: 208, 211 .
Rochk i hd~ M~ ~ r "d'l i
Rochkind, M.J.e~~13 :~J0q0~
Roff: 211 ; .. '1].'

ROMA!l: :l:25~:rn6.t~;;i:~'
root of a pattern: 123\'f
root of tree: 173
ROTATER: 43, 51
ROUND: 338
routine, caretaker: 429
RPAD: 43, 57
RPERMUTE: 348
RPHONE: 370
RPOEM: 358
RSEASON: 360, 372
RSELECT: 57, 353, 370
RSENTENCE: 354, 311
RSTORY: 364, 373
rule, decomposition of a: 162
runs test: 346
RWORD: 352

s-vacancy: 123
sagasti, F.: 372
Saltzer, J.: 200
Samberg, L.: viii
sample space: 342
Samuel, A.L.: 386
Santos, P.: 11
SCAN: 126
scanning: 107
scanning, backup-free: 108
Schrack, G.F.: 262
SCL: 6
scowen, R.S.: 280
search, binary: 276
search, linear: 276
SEER: 376
selection sorting: 286
semantic routine: 412, 436
SEQ: 71, 76, 77, 258
set of strings model: 100
set operations: 52, 60
Shell sort: 292
shen, M.K.: 266
short sort: 292
Siegel, M.: 46
SIGN: 302
simple sort: 292
SIMSCRIPl': 169
simulation: 360
SIN: 339
sine function: 332

SITBOL: 11, 12U§2, ~1Yc,qJ, ,~~~5i
22,U 2~QYi:jJi.ni9MRj~ 3rft?.i:~

SITEOL, dee~IDP~§~~~§D.6~f~rl~Bi
SKIM: 53, 60 tt~ ,80~ :~9vi~
SNOARG patten.~15~1'J 1611ixrf:::>05!
SNOBOL3: 7ita29.~.M ,orrixrf:::>o5!
SNOBOL4: 237 n ~ :llo5I

_statement, anatemY20f:~OR
237E~r :rr~933sa n 10 300~

,arithmetie-in: 319
,compiling in: 411
,function definition

facility in: 302
,redefinition of operators

and functions in: 305
SNOBOL4B: 216
SNOPUT: 187
SNOREAD: 171, 187
sort

,frequency: 287
,quadratic: 296
,quick and dirty: 292
,radix: 298
, Shell: 292
, short: 292
,simple: 292
,tournament: 286, 289

sorting: 274
a list: 282
an array: 279, 280, 284
an array of structures: 289
,comparison: 276, 277
,distributive: 27 6, 298
,external: 275
,insertion: 292
,interchange: 279
,internal: 275, 276
,logarithmic: 279
,merge: 282
,quadratic: 219
,selection: 286
,table: 289

space, more of: 303
spacing: 191, 209
SPANULL: 162
SPELL: 35, 39
Spencer, D.: 371, 375
SPITBOL: 11, 12, 52, 148,

223, 228, 229, 233, 237,
253, 319, 327, 338, 406,
417 .

SQRT: 330, 339
SSORT: 292, 299, 300
STACK function: 313
stack

operations: 89

., his-tory: 135, 149 mofHls~

,name-list:0~@6:~9~~s~sd~
,recursion;r~4~3rr9milqrno~

standard deviati~£3P9brrsb
start-up heuristics\~2;9m£~
state function: ~ :3Iuarri
state functions: ~ :a9msrr
STA.TEF: 312, 31682£ :y~_:t90q
stirl ing: 277, Jl s:: • ""r- :. ... - - .. "' --

stochastic strings: 341
STONE: 381, 402
stone game, decision graph

for the: 381
stone game, decision tree for

th~: 381
Stone, A.G.: 211
Stone, D.: viii
storage requirments: 246
store1~program machines: 406
strachey, C.: 432, 440
string

functions: 41
representation: 42
transformation: 46, 311
,random: 353

STRINGOUT: 70, 77
strings

,permutation of: 261
,random: 342
,stochastic: 341

structure: 80
structured programming: 3, 17
structures, representation

of: 80-85
structures, sorting an array

of: 289
subject: 101
subscripting: 220
subsequent pattern: 123
SUBSTR: 52, 140, 371
sufficient context: 203, 205
suffix: '191, 266

,hyphenating: 211
, inhibiting: 211
,neutral: 212

superscripting: 220
SWAP: 56, 61, 184·
symbol table: 223, 249
symmmetries of the cube: 402
syntactic

analysis: 415
ana lyzer: 311
routine: 412
variable: 355, 411

SYSTEM: 236
system, factorial number: 257

TAB (*R) : 29
table datatype: 90
table sorting: 289
Tantzen, R.: 33
Taylor series: 336
telephone: 276

directory: 223
information: 164
number: 369

TEST: 155
test

,bins: 346
,correlation: 346
,runs: 346

text formatting: 189
theoretical formal systems:

412
tick-tack-toe: 376, 386, 402

,decision tree for: 386
,3D: 403

TICTACTOE: 386, 403
time profile: 231, 232, 248
TIMEGC: 244
TIMER: 234, 252
timing, garbage collection:

244
timing, I/O: 243
timings

,arithmetic: 237
,assignment: 237
,flow-of-control: 240
,IBM 360: 237
,pattern-building: 241
,pattern-matching: 242

token: 227, 416
TOP: 89, 313
tournament sort: 286, 289
TPROFILE: 248, 253
TR: 425, 439
transcendental functions: 328
transformation

,k-: 47
,positional: 47, 58, 261,

262
, string: 46 , 3 11

transliteration: 46, 61
transmitter: 127
transpositional cipher: 59
tree: 173, 424, 438

adjustment phase of a com-
piler: 424

,binary: 294
,decision: 376
,pattern matching a: 438
,representation of a: 417
, root of: 173

TREEBAL: 300
TREEREAD: 173, 185
trees, representation of: 174
TRIG: 340
trigonometric functions: 332
Trotter, H.F.: 259
TRT: 9
TRUNC: 75, 77
truncation of arrays: 75
TSORT: 289
Tuggle, F.D.: 368
TUPLE: 428, 439, 440
tuple language: 426
two's complement: 319
type-O compiler: 227
type-1 compiler: 227
type-2 compiler: 227
type-3 compiler: 228
type-4 compiler: 228
types of compilers: 226, 251

UBOUNDS: 78
ugly factor: 205
underscoring: 190
unevaluated expressions: 137
unobtrusive heuristics: 127
UPLO: 23, 36, 46, 61
USCORE: 189, 233
use-count: 229

vacancy, s-: 123
Variable association: 135
varying pattern: 102
VISIT: 90, 92, 97
Von Hagen, V.W.: 27
Von Neumann machine: 5

Wagner, M.R.: 211
Walsh, J.: viii
Weizenbaum, J.: 375
whitehead, E.G. Jr.: 322
wilkes, M.V.: 348
Woodrum, L.J.: 284
word concordance: 295

Yankees, New York: 360
Yngve, V.H.: 356, 370

Zassenhaus, H.J.: 262
zero-sum game: 390
zero, left: 116

About the Author

James F. Gimpel received his B.S. in Electrical Engineering
from Drexel University in 1961, and his Ph.D. in Electrical
Engineering from Princeton University in 1965. He spent 15
years as a member of the technical staff of Bell Laboratories.
He is responsible for the Blocks extension to SNOBOL4 and
has implemented SITBOL, a full version of the SNOBOL4
language for the PDP-lO.

Since leaving Bell, Dr. Gimpel has worked for Sperry Cor
poration at Blue Bell, Pa. in their Software Research Depart
ment and has been an Associate Professor in the Department
of Computer Science and Electrical Engineering at Lehigh
University, where he is still an adjunct professor.

Dr. Gimpel is currently president of Gimpel Software, a
firm in Collegeville, Pa. specializing in programming tools for
microcomputers. This work includes extending the joys of
interpretive execution to languages not traditionally
in terpreted, such as C.

MORE FROM CATSPAW

Catspaw can supply books, software, and hardware of interest
to the SNOBOL4 and text processing community. Write or call
for a current catalog and pricing.

Of general interest:
SNOBOL4+. Catspaw's complete implementation of Macro
SNOBOL4 for the IBM-PC and all MS-DOS computers. In
cludes many extensions for the personal computer environ
ment, symbolic debugger, distributable run-time package, and
over 60 files of sample programs and functions. With 240-page
tutorial and reference manual. .. $95.00
Gimpel Program Diskette. MS-DOS format diskette containing
all program material from this volume. Over 90,000 bytes of
programs, functions, and da ta .. $15.00
Rebus. Preprocessor for a SNOBOL4-like language with
modern control structures. Runs on any MS-DOS machine;
reads Rebus programs and produces SNOBOL4 output.
Diskette contains translator and documentation $15.00
68K Spitbol. Catspaw's implementation of Macro Spitbol for
the Motorola 68000 microprocessor family. Available first
quarter 1987. .
Proximity Technology. PC-compatible expansion board provid
ing fuzzy (inexact) pattern matching at hardware speeds. With
application programs and developer's toolkit $490.00

Catspaw also stocks many SNOBOL4 books, including:
Computers in Linguistics, Butler, 1985
SNOBOL Programming for the Humanities, Hockey, 1985
String and List Processing in SNOBOL4, Griswold, 1975
The Programmer's Introduction to SNOBOL, Maurer, 1976
The SNOBOL4 Programming Language, Griswold, et aI., 1971

Catspaw, Inc.
P.O. Box 1123

Salida, Colora.do 81201
U.S.A.

Telephone: 303/539-3884

Algorithms in SNOBOL4
Here is a collection of programs written in the SNOBOL4

language, illustrating how commonly encountered program
ming problems can be solved by using it. Emphasizing good
programming practice, it presents examples that show how to
achieve good style and structure. Readers already acquainted
with the language find insight into the implementation of
SNOBOL4, including many standard techniques recast in a
SNOBOL4 environment. The book was prepared entirely by a .
computer and all its programs were extensively tested . . 1

Contents: Preliminaries; Conversions; Basic String 'A,

Functions; Basic Array Functions; Basic List Processing; .>
Pattern Theory; Pattern Matching Implementation; Pattern
Construction; Input / Output; Paragraph Formatting; Imple
mentation nnd Timing; Permutations; Sorting; Function
Functions; Numbers; Stochastic Strings; Games; Assemblers,
Compilers and Macros; Solutions to Odd-Numbered Exercises;
A ppendix; References; Index.

Algorithm descriptions are exceptionally clear and
complete, certainly the best effort in this area thus far. The
writing is so well done that almost no SNOBOL knowledge is
needed to translate the algorithms into other programming
languages, thus making the often ingenious techniques a vail
able ev'en where the SNOBOL languages are not. Highly
recommended wherever computer programming is taught.

-- Choice

