
r---------,
I I
) Snobo 14 I
, I
L---_______ --'

A Computer Proqramming Language

for the Humanities

Rohart Gaskins, Jr.

Laura Gould

nnlversit.y of California

S P r i. n g, 1 q i 2

Co!>vr.iqht l'r"2 by Pobert r;a~ki.n5, ,lr., ann t..a 11ra Gould
All ~iqhts ~cs~rved

Nothing amuses more harmlessly than
computation, and nothing is oftener
applicable to real husiness or
spp.cnlative inquiries. ~ thousann
stories which the iqnorant tell, an~
believe, die away at once when the
CONputist ~akes them in his qrip.

Samuel Johnson,
Letter to Sophia Thrale
(at Bath), July 2l.~. 1783

CONT~NTS

(Notp: the starred sections ar.e not yet available 4/1/721

Preface ••• vi1

1A. Computer Programming in Snobol ,
Devising a Proqram 1
writing a Snobol ?ro1ram T@.xt U
Tnput and Out.put 5
Execution of a Snobol Program 6

* 1 B. Compu tp.r A ppl ica tions fJsing Snohol
21. Assignment •••••••••••••••••••••••••••••••••••••• R

LitAral values A
Variables q
Assignment Rule~ 10
Thp Null Value 11
The Special variable OUTPU"" 12
~he Spe~ial Variable INPnT 1]
Other Forms of Input and nutout 14
Procp.fiurp.~ 1'~

The 'rp.TMO Procennre 15
The SIZ B 0 Proccclurc 16
Operators 1 n
The Concatenation operator '1
The ~rithmptic np~rator3 1q
A ComplAte Snobol Program ~ext 20

*2B. Rx~mples and APplications ~ ••••••••••••••••••••••

3A. The Flow of Control ••••••••••••••••••••••••••••• 21
T .. abels 21
(; 0- t.o ' s 22
The Sppcial Trans~er ~Nn 23
Failt1r~ of thp Pulp 24
Failurp of I~PU~ 24
Evaluation nules 25
Test Proceaures 26
Thp. Test Procedut'p.s IDEN'T' () an~ DIFFER 0 26
The 'T'e s t Pr oc (?(In re L~1' () 2 '7
Arith~etic ~0St Procp~ut'es 28
Test Proce~ures within Assignment Rulps 2A
Loopr.: 2G
T .. oops ControlleC1 by nata Contiitions 30
Loops Controlle~ hy counts 31

*38. Exa~ples and Applic~tions ••••••• ~ •••••• ~ ••••••••

4A. Pattern Matching ••••••••••••••.•••••••••••••••••• 33
·The Pattern Matching Rule 33
'T'he Fepl~c~ment Rl1le 14
~hA Alternation Operator lS
The Pat tprn Procedures ~ NY () and NOTA NY 0 36
The Conditional 'ssignment Operator 38
Concatenation of Patterns 3q
The Immediate Assiqnm~nt Operator 40
The Pattern Procedur~s SPAN 0 and B,REAK 0 41
"rhe Pattern 'Procefjure LEN () 42
'T'he ~ NC H OR 0 Proced u re 43
The Pattern Procedures TAB () and R'1'AB 0 44
't'he Fa t tern Proced ures POS () and RPOS 0 46
The pat tern T>rocednre A RRNO 0 46
Assigninq Patterns to Variables 4q
~he Deferred Bvaluation Operator 50
The Special Pattern VariahleR ARB an~ REM S?
A Program to Illustrate pattern-"atching 53

*4B. Exampl~s and Applications
5A. Indirect Referon~inq •••••••••••••••••••••••••••• 5S

The Tn~ir0ct Pef~rencinq Opprator SS
The Oppranct of t.he In(lirect "~Coreneing

Operator S7
A Proqram to Produce a Character Count sq
Concatenation within the Operand 60
~ Proqram to Produce a Frequency Table 6~

A Proqram to Produce a ~ord count 6~

Indirect Referencing within the Go-to 61

*58. Examples an~ Applications •••••••••••••••••••••••

f'A. ProgrammeL-~efi ned Procedures ••••.••••••••••••••• 70
Defininq a Procerlure 70
The DEF INP. 0 Procedure '72
Procedurp Rodi~s 74
'rh~ Returns RETfJ~N, NPETURN, and FRE"rtJRN 75
Procedure Calls 1fi
The Passinq of Arqum~nts 17
A~ditional Internal Variables 78
References to ~xternal Vari~bles 80
~i~e-effects of Procedure~ Aij
Levels of Tnternal Var.iables 81
'rhe Use of N~F.'!'n"RN to Return a Variahle qO
The APPLYO Procedure 92
tYsinq a Library of Procedures 94

*68. Examples and Applications •••••••••••••••••••••••

7A. Arrays ••••••••••••••••••••••• ~ •••••••••••••••••• 'OO
Creating an Array 100
Array Items an~ Ttem References 101
Comp~rison with Indir~ct Referencinq 102
~ulti-dimensional Arrays 103
Th~ 1\PRAY{) proc~nnre 104
Selecto!:s 106
Failure of an Item Reference 106
Special prohlems Concerning Item References 107
The ITP.MO rrocedurp. 108
The PROTO~YPF.() Procedure '10
The 'rYPEO Procedur.e '1'
Procennre to ~etllrn a Selector. 113
Procedure to Tnterchange Two Arrays 114
The Nam~ operator 116
Forrninq all selectors of an Arr.ay 118
Proceoure to Return the "Next" Selector 120
Proc~c1llrc to neturn a Copy of any Array 122

,*1B. Examples and Applications •••••••••••••••••••••••

*8A. Programmer-defineo Data structur.es •••••••• , ••••••

*8B. F.xamplps and Applications ••••• ~ •••••••••••••••••

Appennixes

A. Summary ofPrp~efined Proce~ures ••••••••••••••••• 121
I. Proqram Procedures 127

A. '!e st Procer! ures 1 27
B. Result Procedures 128
c. na t.a Proced ares 1 30

TI. System Proce~ures 1~S

A. neclarations 1j5
R. Access to Sy~tp.m Tnform~tion 116
C. Requests for ~ystem Actions 143
D.Input/Output Proce~ur-es 146

B. Summary of predefine~ Pattern Variables •••••••• ~.150
ARB C\n~ RF~ 1£)0
BJ\L 1')0
PAIL 150
A an ~T 1 S1
FRNCE 1'31

c. Summary of Operators ••••••••••••••••••••••••••••• 153

D. Summary of Proce~ure ~xecution ••••••••••••••••••• 154

*F! • Tit ePa t. t p [' n -M i\ t chi n q ~ 1 go r it h m

*F. Summary of Snobol Arithmetic •••.•••• 0 •••••••••••••

*G. ~ummary of Input/Output ~Procedure~ •••••••••••••••

H. Program Text n~presentation •••••••••••••••••••••• 1SS
statement Format 155
Continuation Cards 155
Comment Ca~ds 1~6
Listing Control Cards1S6
Extended Syn~ax of Snohol statements 156

I. Chaiacter Set Representations •••••••••••••••••••• 158

J. Syntax of Prbqram Texts •••••••• s.o ••••• ~ ••••••••• '61

K. Summary of Compile-time Error Messages ••••••••••• 166

L. Summary of Fxecution-time Error Messages ••••• ~ ••• 161

M. Non-standard Fe~tures of Berkeley Snobol .••••••••• 112
I. Features which are Handle~ Oiffer0ntly 113

Proce~ ure~ 173
Ope ra tor s 1 74
Keywords '75
Datatypes 175
System Transfers 115
Out. pu t. 17')
Program Fepresentation 176
The Program Listing 177

II. Features Ahsent from the ~erkeley Version 177
Proced tires 171
Operat.ors 179
Keyworiis· 17q
Pattern Variables ,~,

Datatypes1H1
Pattern Matching 181
A ri th m.etic18'
output 1 B 1

III. Features not Present in the Hell Version 1R2
. Procedures 18/.

In~ex ••••••••••••••••••••••••••••• 0 ••••••••••••••••• 183

PREPl\CE

Edmund Fuller has described hearing an interview in
which Edwarrl R. Murrow asked Mickey Spillane how he could
bring hims~lf to pander to the public taste by writinq the
kind of hooks he ilid; Spillane's lUl\1ino\l~ reply, accordinq
to Fuller, \Tas: "r write the kino of books I want to rea.d
and can't fl.nd."

We, with much the same motivation, hav~ written this
d.escription of snobolL~, a computer proqrrlmming languagE' for
the humanities. Our own traininq and interest is in the
stuny of language and literature, and so the examples rlr1(1

exercises are directe~ particularly toward the ma~hin0

man i p \l 1 il t i 0 11 0 f 1. i n 9 u is tic d a t a and 1 i t era r y t. P. :c t: s • P, v C' II S () ,

the a,escription ShOllld be useful to ~tudents of many
disciplines, since t.he first part of each cha ptf»r pr.esE-~nts
'feature~ of the language in a generalize~ yay, anrt thp
particular examples in the second part of each chapter hav~
heen chosen to exhibit principles and techniques which can
e as i 1. y be apr 1 i (~ d t 0 V'-" t: b a lor. s y n1 b 0 1 i c d a t a ina wi (j era n q (:»

of h1Jmanistic and social science applications ..

This pr~sentation of ~noho14 is pRrticularly ~csiqn0~
for membprs of th<3. Hniversity of California'commllnit.y who
ha ve no pre v ious 1<no wledge 0 f com pn t:~rs ot" COli! pn t.p \
programmi.ng. It describes a oial?ct of the lanll1(lCf0 for
Control Data Corporation 6000 series machines, implernent0~
at t.he Rerkelev Compnter Centp.r hy Paul ~1c.Jones anr1 Ch(-}r.lp~

Simonyi; Mre McJones has review~~ our work as it has
progressed, and has ma~e many helpful suqgestions.

It is intended that this manual will be expan~e~ to
provi~e a comFlete description of thp. ~nobo14 lanryuaqe and
of various rclate~ facilities available nt the qerkel~y
Cern pn ter Cen tar wh ich are of in t.f'r.est to S no bo 1 tl sers. t\T e
woul0 naturally be please~ to r~c~ive suqqestions for
impr.ov0rnents and additions from reader.s. We hope that fp.w
mistakes r~nlain, even in t.his preliminary version, but each
of us blames the other for any that may be found.

,

1A. COMPUTER PROGRAMMING IN ~NOBOL

Snobol is a programming lanqu~qe, one of many such
artificial lanquages which may be used to convey
instructions to a computer. Most compnters may be instructe~
in a wide variety of programming lanquaqes; these lanq1.laqes
differ from one another, as ~o natural languages, hy having
different vocabularies and syntactic structures~ ~oro

imrortantly, however, they differ in the range of concepts
which they are capable of expressing.

Different programminq languages have been develope~ for
~ifferent kinds of prohlems or probl~m areas. Some have he~n
deviRed primarily for descrihinq ·qGn~ral numpric or
alg0braic problems, others for descrihinq the structure of
busine~s records ~nd files, still others for highly ~:;peciri.c
purfoses such as control1inq machine tools, simulatinq
economic systems, or making computer-generated movi~s.
Snobol is distinguishect hy very powerful and q0nsral
cap~bilities for mallirulatinq str.!.nq!l of characters f maKlnrr
it Farticular.ly convonient for \-lorking with data [rom uLei~.S
such as linguistics, literature, verbal behavior, and th~

humanities iH general., it is also very useful for eKpressiuq
sop histica t eel non- n U mer ic problems in the field of com p' .• to r
science.

Q.f.Yi§!ll.g_iL.PrQ.9.!:i!!!!!.. A description of how a comput0r is
to q 0 abo U t. sol v in gap 1: 0 b 1 e m con sis t 5 0 f ali s t. 0 f t ask ~:; 0 L

actions to be performed. A specification in somB progcamming
langunge which describes such a series of tasks complptely
is c a 11 e d a tf pro g [' a m t ext." Be f. or e apt:' 0 g ram t ext c· a n b e
written, the task which it is to dpscrihe must be clearly
understood. If, for example, a task has been expresse~ in
Ellglish as "find all vowels in a word,n the followinq
guc~tions must te resolved before the programming of the
task in som~ programming lanquaqe can be undertaken:

(1)
(2)
(3)

four.d?

what is a vowel?
what is a word?
what should be done with the vowels which are

The answers might be as follows:

(1) one of the characters A,E,r,O, or U
(2) a s t r in g 0 f c h Cl r act e r s t 0 be pr 0 v i d (~d d s d a tat 0

the Frcgra m
(3) count them and then print the total

1A. Computer Programming in Snobol 2

Given thes~ clarifications, one can then translate the
unriqorous English sentence "find all vowels in a word" into
a rigorous step-by-step description of what must b~ done;
this step-by~step description can then be translated again
into a series of statements in an appropriate programming
language. The intermediate translation may exist only in the
mind of the programmer, as is often the case if the. task is
a simple one, or may be recorded in some fashion so that it
may be considered for correctriess.

One of the best ways of recording a step-by-step
description is to write down a series of numbered statements
specifying ~xactly what is to be done. These statements are
still in English, but a much more detailed and careful
English than that of the original problem. The statements
diffe~ from the sentences of a natural language paraqraph in
that they are net intended to be processed. onl-y once or in
the order in which they arA presented; hence, the statements
are numbered so that the order in which they are to be
·processed, often· repeatedly, may be specified. A set of
numbered statements describing how to count all the vowels
in a series of words and to print the counts might. look as
follows:

S'!ART
(1) Get the next word; if no more words, STOP.
(2) Pt'int t.hat word.
(3} Set the tally to zero.
(4) Get the next character of this word; if no more

characters remain, go to (7); otherwise go to the next
statement.

(5) Determine whether or not this character is an
A~!,I,O, or U; if it is not, go back to (4): otherwise qo tp
the next statement.

(6) Add one to the t.ally which is keeping track of the
number of vowels in this word; go back to (4).

(1) Print the value of the tally, which now represents
the total number of vowels in the word. Go back to (1) and
attempt to get another word.

Note that this program descriFtion has been augmented
to count the vo~els in any numbpr of words, one after
another, and to print the counts s~parately. It would not he
useful to write a program to count the vowels in a single
word only, as the counting could be accomplished by hand
much faster than the progt'am could he written. (Ho"Hever, foI:'
more complicated tasks, a program can often be written much
more ~asily than the task can be performed even once by
hand; th~t such a program could then be u3cd again might
well be of seccndary importance.)

1A. Computer Programming in Snohol 3

Another method of recording a step-by-step description
is to use what is called a "flow chart. et In a ·flow chart' the
specification of what is to be done next, or the "flow of
control," is indicated by means of lines and arrows rather
than by phrases of t.he form "go back to (1). tt A flow c;!o.rt
equivalent to the numbered statements just provided might
look as follows:

S'IART
1
1<----· ,

(1) V

,.-------,
I get next lFail
, word. 1-----> strop L-________ .1

)Succeed
1

(2) V

r- ,
! Frint the I
I wor d I 1.-________ .1

(3) V

1---------.,
I set tally 1
, to zer.o t
l.-_ .J ,

I <------.-------.------------,
I <--------.--, I

(.) v (5) IFail (6) I
r-----' r-------, r-------.,
I get next I Succeed I test' for ISucceed I add on~ I
1 character 1------->1 A,E,I,O,U 1-------->1 to tally J
'--_______ .J L .I l. _____ .J

IFail
J

(7) V

r--------,
1 print I
I value of I
I tally I l.-________ .J

---, , , ,
I
J
1 ,
i
I
I
J

1 ,
I
J ,
1
I ,
I ,
1
I ,
J ,
I
I
I
1
1
I ,

.J

1A. Computer Programming in Snobol

Wtillil_!!_.§n2.h.Q.1-R'!.Qgl:i!.!!!_~.!h Now that a detaileo
method for ~ol~ing the problem is cle~rly understood, it may
be translated" into a' set of statements' in the' Snobol
1~n9uage. Seven Snobol statements are provided below, bnA
for each of the numbered English sentencas, or;
equivalently, one for each box' of the flo~ chart~ These
statements are provided here to illustrate the close
correspondence between the Snobol statements and the step
by-step description, to give some indication of the
appearance of a programming language, and to pOint out some
features of the Snobol language in particular; a'C6mpletA
discussion of the meaning of these statements must be
deferred to later chapters of the text. (comments, beginninq
with asterisks, have ;been inserted for spacing and to
explain the ptirpose of ~be statement~.)

* STEP , : REA); IN THE NEXT WORD - If NO MORE WORDS, STOP

* READ WO~D = T R I !1 (IN PUT) · F (END) ·
*
* StEP 2: PRINT THE WOFD JUST READ IN

* OUTPUT .- WORD

*
* STEP 3: SET 'IHE TAl.tY TO ZERO

* TALLY = 0

* * S'EP 4: GET THE NEXT CHARACTER CF THIS WORD - IF NO MORE
,. CHARACTERS, PRINT THE VOWEL COUNT FOR THISWORH

* GETCHAR WORD LEN(1) • CHAR = NULt · · F(PRINT)

* * STEP 5: SEE IF THIS CHARACTER IS A VOWEL - IF NOT,
* GO BACK AND GET NEXT CHARACTER

* CHAR

*
ANY('AEIOO') F (GETeHA R)

* StEP 6: CHARACTER IS A VOWEL ~ ADD ONE TO THE T~LLY

*
* * S'IEP 1:

* ,.
PRINT

* END

TALLY TALLY + 1 · · (GETCHAR)

PRINT NUMBER OF VOWELS AND RETURN TO
REAr IN THE NEXT WOED

OUTPUT : TALLY · · (READ)

1A. Computer Programming in Snobol

Each Snobol statement consists of three basic parts,
any of which may be absent. These parts are called the
label, the rule, and the go-to. The label is th~ first part
and serves to identify the statement (as did the numbers in
the English description above); the rule is the middle part
and Efecifies some action to be performed; ·the go-to is the
last part and indicates which statement is to be considered
next by provirling its label in parenthesis. (The F withi n
the first three go-to's ahove indicates that the go-to is to
be taken only if the action specified by the rule preceding
it fails; otherwise control is sent to the next statement of
the series.)

I!!Ell!._£.nd_£QI.2.ll.!.:.. Before the stat.-ements of a progra m
text can be used to instruct a computer, they must first be
~ut in what is called "machine-readable fOLm." For instance,
they must be punched on cards to be read into the compu~er's
memory v~a a card reader, or typed in on a t~let7pe
connected to the computer. The data to he manipulat.ed, snch
as the words whose vowels are to be counted, are seldom
explicitly provided within a proqram text, but arp prepared
separately and must also be put in machine-readable form
before they can be accessed.

The Snobol language provides facilities for readinq in
un its 0 f d at a , c a 11 € d tI r e c or d s , " and for w r 1. tin g 0 U i: tho
results of manipulating this data. rrhese are callp.C1 "input"
and "output" facili·ties. The first statement of th~ progra.m
text above indicates that some input is nee~ed; in
particular, it specifies that an in~efinite number of wor~s,
one at a time, aLe to be read from a ufile" of dat.a which
must be supplied with the program. The secon1 statement
specifies that some output is to be produced; in particular,
that the word just read in is to be printefl at. t.he beginninq
of a new line of printer paper. The last statement specifies
that the nnmber of vowels feuna within that word is to be
printed on t.he followinq line.

If the file of data to be used as input for the program
text above were the following list of WOLds

HIPFOPCTAMUS
HIPFOS
HIPFOSJDEPOS
HIPPCSPONGI1\
HIFfC'rIGRINE
HIPFO'TCfI1Y
HIFfOTnAGINE
HIPFC'!RAGHS

1A. Computer Programming in ~nobol .

then the output produced by ·t,he progra'm would he the list

HIPPOPOTAMUS
5
RIPFCS
2
HIPFCSIDEROS
5
HIFPOSFONGI~.

5
HIFFCTIG RINE
5
HIPFOTCMY
3
HIPFOTBAGINE

.5
HIPI:OTBAGUS
4

6

Results from executing a program may be printed on
paper for personal perusal, written on magnetic storage
media, or punched on cards. Since the last two are machine
readable as veIl as machine-writeable, the output may he
used again, without modification, as input data to be
further processed by still another program.

~~£Yiion_2f a_~n2bQl_~!~g£~~~ It is not enough for a
computer to have available to it both a program text and
scm€ data in machine-readable form; it must also have
available to it a lttranslator n or t1system'· t.oprocess the
language in which the program text has been- written. A
comFuter may have available any number of languaqe
processors and hence may be able to ~understand" any number
of languages. A processor itself consists of a program,
written in some programming language (often in a language
that is basic and unique to a particular computer, but
possihly in Snotol). The data which such a system will use
is a program text in the lan~uag~ for which it-is the
processor.

The Snobcl system described here consists of two
separate parts called the "compiler" and the "interpreter."
The compiler uses a Snotol program text as its data, reading
in the statements one at a time in the sequential order in
which they . appear. It print sand n umbers each sta to me nt to
be inSFected later by the programmer and tests the st~tement
to determine whether or n6t it is syntactically 'correct,
that is, whether or not it conforms t~ all the rules
governing th~ pro,?er structure of a ~nobol statem~nt. (1'his'
process is analogouc to parsing a natural language sentence
for grammatical correctness.)

1A. Ccrnputer Programming in Snobol 7

If a state'ment is well-formen, it, is converted by thE'
compiler into a repres~ntation ("Code H) suitable for later
processing by the interpreter; if it is not well-formed, it
is flagged as being syntactically incorrect. All statements
of the program text are processed, even if incorrect on~s
occcr, so that all syntactic errors are found. The
programmer can locate the incorrect statements hy inspecting
the proqram listing; he can then correct them and once again
sub~it his program t~xt as data for the compiler to process.

If no compile-time errors occur, the message SUCCESSFUL
COMPII.A'TION is written at the enn of the proqram list.i.ng.
The interpreter then starts processing, using the convprte~
statements of the program text ~s its data; the enti,rp spt
of converted statements represpntinq a proqram text is
ca lIed a or proqra m. " The interpreter execu tes the proqra 1\1,

causing the computer to perform whatever task has been
described. It starts by executing the first statement of thp
program and then proceeds to process th~ conv8rt~~

statements in the order specified by the go-to's, readinq
input from a data file and producing out out whenever
requEsted. Execution continues until the task is finishe~
(as siqnifieo here by the END s{.atement) or until ~ n
execution-time error (such as a reguest to multiply 'CAT' hy
, C 1\ '[A 1. 0 GO) c c cur s • I f t his hap pen s , t h ~ pro 9 ram f!1 ere a n
insrect the error mes~age printed by the interpreter and can
attempt t.o dE~t.ermine his mistake. He can then mndify thp
program text and submit it ence again to the joint ptocessps
cf ccmpilation and execution.

8

,2A. ASSIGNKF.NT

A Snobol program text consists, of a sequence of
statements in the Snobol ,language. These statements a['~
com~iled to produce a series of instructions to the
computer, causing it to store data in its memory, to perform
operations on this data, and to preserve the results for
human inspection and/or for further processing by machine.
1he data to be manipulated is usually stored externally to
the program and is read in by the program a~ it is needed. A
few data values, however, are often written directly in the
program' t~xt itself. These values may be of several
different types, hut are most often simply strings of
charac:ters.

Lit~!~L!glue..§.:. Strings are sequences of charact~rs
which may be of any length and may be composed of any
characters in the computer's character set (see Appendix I) •
strings whose characters are written directly in the program
text are called string literals and are designated by heinq
delimited by either single or double quotes; a string
consistinq of the five Enqlish vowels may be written in a
snotol program text as either

'AElOU' or nAEIOtJ"

with exactly the same effect. This permits a string literal
to contain whichever quote mark is not being used as the
delimiter without confusion. For example,

ULADYoCHATTERlEY'SIlLOVER"

is a string of 23 characters, while

• nAY! .. 0 HE 13 SAID r:I .B R I E FLY. t

is a string of 22 charact~rs.
(reFresented here by the symbol
other ch~racters in string literals.

Notice that spaces
c) are treated ~ike any

strings consisting of nothinq hut digits with perhaps
an initial plus siqn or minus sign are called numeric
strings and are of datatype Integer; all other strings are
of datatype String. Those strings which are of datatype
Integer, and which do not have an initial sign, may he
represented in the program text with or without surroundinq
qU9tes. If quotes are not used, as in

669 7449 o 23

2A. Assignment 9

then these numeric strings are called integer literals. When
an integer literal is stored in th0. memory, any leading
zeIces it may hav~ had are removed; that.is, the inteqpr is
stored in a "canonical" form. (The canonical form of zero is
the single character 0.) Thus 00023 and 23 and '23' all have
identical representat.ions in the rnelnOL'Y. Leading zeroes may
be preserved fer non-numeric applications by representinq
integers in the program text as string literals containinq
leading zeroes. For example, '00023' woul~ be stored as a
five-character string, while '23' woul~ he stored as a two
character string. String literals are always stored within
the ccmputerCs memory exactly as they are represented in the
program, while inteqer literals are always stored in
cancnical form. In what follows, the term string will he
used to include objects of datatype Integer as veIl as
ObjEcts of data type String.

!~£i~~l~~~ Once a value of any datatype is store~
within the computpr's memory, some method must be provideR
fer referring to it so that it may b~ used repeatedly
thrcuqhout the program. Each value is stored hy being
assigned to a variable, which serves as a reference, or
poitter, to the value. Every variable has a name, and any
non-null string of charact.ers may be us~d as the Jlame of a
variable. That is, the name of a variable may be of any
length and may be ccmposed of any characters of the
character set·. Those names which hegin with a letter an~
consist of ~n arbitrarily lonq sequence of lettprs~ ~igits,

and perioits are said to be in "identifier form" and may be
written directly in the program text. Thus

RHYMF.1 VOWELS UNSUCCESSFUL.COGNATES P.v.c

are all valid representations of variables in program texts
sinCE they are all identifiers, while

1RHYME •• VOWELS '!EST/3 p-v-c

are not, since the first two don't hegin with a letter, and
the last two contain impermissible characters.

string literal~, inteqer literals, and variables thus
have Ieprespntations in a program text ~hich allow thpm to
be easily differentiated from one another: strinq lit~rals
begin with a quote (and must enr1 wi.th a quote as w011),
inteqAr literals begin with a digit, and names of variables
begin with a lptter. (Other ways of repr~senting vari~bles,
and particularly variablp.s whose names are not in the form
of identifi0~s, ar.p. rlir-iC\lSSen i.n Chapter') anr1 Chapt.cr 7.)·

2A." Assignment" 10

j§§.ig!l!!~!!!_B!!!~.2,:, The most fundamental kind of rule in
the Snobol language is the assignment rule which is used to
assign a value to a variable. ,he variable is usually
represented by an identifier and the value can be a string
or an Integer or may he of any other datatype (Real,
Pattern, Array, etc.). For example, the assignment rule

VOWELS = 'AEIOU'

specifies that the five~character string AElon is to he
stoIed in the memory as the value of the variable named
VOWELS. Similarly

COUNT = 47

sp€cifi~s that the integer 41 is to be stored as the value
of the variable named COUNT.

In general, an assignment rule has the meaning: let the
variable represented cn the left side of the equals siqn
refer to the value specified on the right side of the equals
sign. (It is ohvious that the equals sign does not have its
usual arithmetic meaning in an assignment rule; it is being
used as an "assignment sign.")

An assignment rule may have a variable name on its
right side, rather than a literal. when a variable occurs on
the right, it is used to refer to its value. Thus the
sequence of rules

ALEPH ':
ALPHA' =
LETTERS =

'ABCDEFGHIJKL~NOPQBSTUVWXYZ'

ALEPH
ALEPH

specifies that the variable ALEPH is to hav~ as its value
the 26-character string of the alphabet, that the variable
ALP Ii A 1 i s t 0 h a ve as its val U 9 the cur ron t "1ft 1 u e () fAt. F. PH,
Rnd $0 forth. In nn aa~1qnm~nt rlJlo, whHn t.he namn of ,,\
variable oecurs on the left of the dssiqnment siqn it stands
for the variable~ when the name of a variable occurs on the
right, it stands for the value of that variable.

The relation betveen a variable an~ its value need not
be a per.manent one. Usually a variable is ass:lqned a variety
of different values in the course of executinq a sinqle
prcgram(hence the term "variablen).A vari.able" named WORD,
for example, miqht be assiqned as its successive valuen each
n~w wcrd encountered in a group of ~ata, thus changing its
vaYue 10,000 times for a text 10,000 ~ords in length. Each
time a value is assigned, to a variable, the previous value

2A. Assignment 1 1

of the variable is lost; thus the value of a variable is
always the one most recently assigned.

l!l~_Ji.!!!l_!glug!.. All variables, before they have heen
assigned any ct hnrvalue, start out with the "empty" or null
value. After a variable has been assigned a non-null value,
it may be qiven the null valup. a~ain by executinq an
assiqnment rule with a null value cn the right side, such as

VOWELS =

The null value may also be represented by an "empty"
literal, one with no characters in it, as in

VOWELS = "
or

VOWELS = "n

or by a variable which has a null value, such as

VOWELS = N ULI.
or

VOWELS = ANYTHING

if the vari~hles NULL an~ ANYTHTNG have null values when thp
rules ar~ ex~cnted. (In all examples which follow, wherev~r.
the variable NULL occurs it is assume~ by convention to have
a null value.)

The null value is a special entity in Snohol, ~istinct
from all other values, and has a variety of important uses
in the 1anquaqe. Notice particularly that it i;,
distinguished from the strings space and zero. Thus

VOWELS :: '0'

VOWELS = '0 t
and

VOWELS :: 0

are each assiqnments which give the variable name~ VOWELS a
non-ntill valup; the first value is of datatype String, while
the last two are of datatype Integ~r. Although the null
value is a distinct value, it is not qiven a speciHl
datatype; by convention the null value is of datatYP0
Integer. "{'hIlS the general term string, \-thiGh inclu{les
objects of ~atatype string as well as of datatype Integer,
inclu~es also th~ null value unless specifipd otherwise.

2A. Assignment 12

Ib~_~.Ef£.!gl Vari~b!!L_Q!!!g!!.!.!. Once values have been
stoted within the computer's memory, they may be printed 6ut
hy assigning them to the special variable OUTPUT. This
variable differs from others in having the follQwing special
pro~erty: whehever the variable OUTPUT is assigned' a string
as its value, that value is transmitted to a file to be
printed on a line printer whicbis attached to the computer.
Each execution of a rule in which OUTPUT is assigned such a
value results in the printing of a new line of information
(a record). For example, execution of either

OUTPUT = 'A£IOU'
or

OUTPUT = VOWELS

(if the current value of the variable VOWELS is the string
AEIOD} would cause the five letters AEIOU to be ,printed at
the left margin of the next available line of the output
paper.

If OUTPUT is assigned a null value, as in

OU't'PU!
or

OUTPUT = NULL

the result is a null record, which ap~ears as a blank line
cn the output paper.

OUTPUT may be assigned a string of any length as its
value, but only the first 132 characters, the number of
characters available per line on a printer, will be printed.
The entire string, however, remains the value of OUTPUT.and
may thus be assigned as the value of other variables as
well. The v ar iable OUTPUT, like any other variahle, rna y be
used on either side of an assignment rule, as in the
sequence

OUTPU'I
OD'l"PU'T
COpy =

= VOWELS
= OUTFUT

OUTPU'!

whose execution ~ould result in the two lines of output

~F.ICn

AElrn

Note that although the special variable OUTPUT l.S
invclved in all three [u1es, no pri~tinq is produced by thp
third because it does not specify that OUTPUT is to be

21\. Assignment 1 J

assigned a value; rather, the value of OUTPUT, which at the
time the rule is executed is thA string AElon, is assignpd
to the variable COPY.

!he_~£Q£i~l-Y££l~Qlf_!~RQ!~ D~ta may be read into the
computer's memory by the use of the special variable INPUT,
which differs from other variables in that it has the
fcl1cwing propert.y: whenever the value of the variahle INPTJ'r
is needed for thp. execution of a statement, INPU~ acquirp~

for its value the next record of the input file. For
examrle, in the assignment rule

LINE -= INPUT

the value of INPU1" is needed, so it Cdn be assigned as the
valJe of LINE: LINE rec~ives. as its value the string of
characters in the next input recor~.

It is important to recoqnize thut the value of INPUT
cannot be saved or used without assigning it to another
variablp in the same rule in which it is read. The next use
of INPTlT will' refer, not to it.s present valne, but to the
H(:\xt recorn of the iiata. Thus the sp-quence

LINE1
LINF.2

J NPtJ'r
I NPlJ'r

assigns two successive recor~s to the two variables LINP1
and LTIH~2.

!his exarople illustrates an important difference
between t. he variables INPUT an{f OU'l'PUT: I"'lPfJT tiisplays i t.s
special property (to acgllir p the next record of an input
file as valu~) every time its value is neeclp.d, but. not whpn
it is assigned a value; OUTPUT displays its special property
(to write a record on an output file) every time it is
assigneii a value, but not whp.n its value is needed. Thus the
last value assigned to OUTPUT is always available for
assignment to another variable.

The special variables INPUT and OUTPUT may both be us~ii
in a single rule, as in

OUTPUT -= lNPUT

Execution of
data record
execution of
li~ting of
Chapter 3).

this rule will cause the characters of the next
to be printed by the line printer. R~peatpd

S 11 C h a r u 1 e co ul (1 be use (1 torn a k'1 apr i n t (.) ~
an entire group of data (as \~ill hp. shown in

2A. Assignment' 14

The value of INPUT is always 80 ~haracters long, a
convention adopted sinc~ that is the width of a card and of
lines sent from many" remote terminals. If the rec6rd beinq
read actually has more than 80 characters, the excess is
ignored; if it has fewer than 80 characters, spaces are
added at the end to fill out the full lengt h.Executing t,he
rule

VOWELS = INPUT

where the next data record bas the five vowel ~haracters
starting in the first position, causes the vari~hle VOWELS
to be assig,ed a string conSisting of the 5 characters AErou
followed by 75 spaces.

Qth~~_Form.LQf_.IJ!.E.!!.L21l.1.-Q1!ll!!i.:. The input to a Snobol
program may exist in the form of punched cards or it may be
stored on a disk file or on magnetic tape. The output from a
program may be printed on paper, punched on cards, or
,written on a disk file or on magnetic tape. Snobol provides
the special variable INPUT for ~eading cards and the special
variable OUTPUT for producing printed paper, but provides no
other special variables for dealing with the othAr input and
output devices listed above. If the programmer wishes to use
these other media, he must cause a variable to be associated
with a file for input or output, and then use that variahl~
much as INPUT and OUTPUT are used within his program.
M~thods of associating program variables with input and
output files are described in Appendix A, section II.D.

g£Q~Q~~§~ The sroall amount of Snobol so far presente~
allows one to enter data into the computer's memory (pithcr
by writing it directly in the prcigram text in the ,form of
string and integer literals or by using the special vafiabie
INPUT) and then to print it out (using the ~pecial variable
OUTPUT). However, it is seldom the case that the output is
to be the same as the input; that is, some manipulation of
the data is usually necessary before the'desired re!=)ults Ci\n

be obtained. One way df manipulating the data is to invoke
what is termed a procedure. Many procedures to perf0rm
common tasks are already predefined in the Snobol language;
a summary of all the predefined procedures which arc
available may be found in ~ppen~ix A. Resides using these
predefined procedures, programmers may define their own
procedures and add them to the language within their own
programs (see Chapter 6).

A procndure is invoked, or called, by writinq r\

procei\IJre reference consisting of the name of the proc~{turf'
followed directly by its argument list enclosed within

2A. Assignment , 5

parentheses., ThIs means that the Snobol system is to perfor-Ul
the action of the procedure, using its one or more arguments
as data, and is to return the r~sult of carrying out the
action as the value of the procedure call.

1.h£-!.EI!111_~rQ££1l!!~.!.. The 'lse of the special variable
INPUT almost alway~ results in strings which have spaces at
the end of them. Since these spaces are often not wanted, a
TR! M () proc~d ure is provided by Snobol which accepts an y
expr~ssion whose value is a string as its single argument;
the procedure returns as its value the same string bu~ with
all trailing spaces removed. Thus those 15 unwanted spaces
which occur in the value of VOWELS when the rule

VOWELS = INPUT

is executed may be trimmed off by using the rule

VOWELS = TRIM(INPUT)

instead. This would give VOWELS the five-character value
AEICU.

When the rule

VOWEL S = TRI M (TNPU'Il
)

is executed, t.he eighty-character value of INPU'l' (t h0. next
record) is obtain~d, the trailing spaces are removed from it
by t. h e T RIM () pro c e d u r e , and t h ~ s h 0 r ten P. d st r in q i s
returned as the value to be assigne~ to the variablp VOW~LS.

Althouqh the TnrM () procecltlre is most oft.en uset~ to
trim the value of INPOT, it may be used to r~turn th~
tri[med value of any string given as its argumpnt. Por
examfle, in the rule

TEXT1 = T~IM(TEXT2)

the call to the TRlr~ () procedure returns the trimmed version
of the Rtring which is the value of TEXT2, to be assigned to
the variable TEXT1~ Th~ value of !~XT2 remains unchanged:
that i~, it still contains any. trailing spaces it had when
the rule was executed. To trim TEXT2 one could use the rul~

TP.XT2 = TRIM (TEXT2)

Note that although variables and procedures may have
the aarne names, there is no confusion in their us~ in
proqram texts, since pr.ocedur.e nam~s are always followe~

·2A. Assignment 16

immediately by' an open parenthesis preceding the argument
1 is t. Th tl son e ~---w-r-l:'1-. ~t eo-c---

TRIM = TRIMlTEXT)

to assign to the variable TRIM the trimmed value of TEXT.

~~IZ~ll_f~Q£ed\1~~ The length of any string may be
determined by . a SIZE 0 procedure, which accepts any
expression whose value is a string as its argument; the
procedure returns as its value an integer which is the
number of characters in that string. That is, executing

LENGTH1 = SIZE (VOWELS)

would assign to LENGTH1 the integer value 5, while executing

LENGTH2 = SIZE (INPUT)

would assign to L!NGTH2 tho
argument of SIZ.r~ () is a
integer value zero.

integer value 80. When the
null value, the result is the

The length of the trimmed value
determined by using the procedures
together. This may be done by using the
two different assignment rules, such as

SAVE = TRIM(INPUT)
LENGTH = SIZE (S.l\VE)

of INPUT may be
TRIM () and SIZE ()
two procedures in

or, if the value of INPUT were not to be saved but only its
length, by comhiriing both proc~dures in a single assignment
rule, such as

LENGTH = SIZE(TRIM(INPU~»

Here the arqument of a procedure reference is still .another
procedure reference; clearly, these nested procedure calls
must be processe~ from' the inside out, since the argument of
SIZ EO is not know n until TRIM () has returned the resul t of
its work. As this example shows, an argument of a prbcedure
reference may be any ~xpression which produces a value the
procedure is able to accept •

.Q~!g.iQI.2.!. Data may also be manipulated by means of a
nu~ber of different operators provi~ed within the ~nohol
1 a n g u a q e. l-~ a c hop era tor s p e c i fie s . t hat so meso r t 0 f
opera~ion is to be performed on its operand(s). Operators
having a single operand are termed un~ry operators~

2A. Assignment '1

operators having two operands are termed binary operators.
often the same symbol is usen in program texts to indicate
both a unary operator an~ a binary operator with differAnt,
perhaps completely unr.elated, meanings. The meanings are
easily differcnti~ted, however, since a unary operator must
always directly precede its operand with no intervening
hlank; a binary operator must always he bounded by blanks. A
summary of all the operators available in Snohol may he
found in App~ndix c.

1.h~_~2!l£i!..tg!lst:ti£.!l_Q£g£!!i2!!. One of the most frequAntly
used operators is the concatenation operator. When thp
operands of this binary operator ar~ strings, it sp~cifips

that the two strings are to be concatenated together, i.e.,
that the second strinq is to be appended directly to the
first. The symbol for this binary operator, since it occurs
so often,. is simply a single blank (which requires,
therefore, no furth0r blanks to separate it from its
operands). For example, the assignment rule

ALPHA = VOWELS CONSONANTS 'YW'

contains two concatenation operators and specifip.s that thp
variable ALPHA is to be assiqnpd a string built up hy takinq
the val u e 0 f V 0 \~ EL S , foIl (Hi e d by the va Ilfe 0 f C 0 ~~ SON ANT S ,
fcl1owe~ hy the two characters YW. If the variab10s VOWELS
and CONSONANTS have previously been assigned the exppct~~

values, then tho variable ALPHA will be assigned th~ valu~
of all the charact:".ers of the alphahet, in the indiclltc(l
order. The values of VOWELS and CONSONANTS are in no way
ch anqed by the execu tio n of this rule; 1i ke wise, S\l b!":H:~ql1E' n t
chang(~s in their values can in no way affect the v(\l\l~ of
ALPHA, which will chan1e only when another rule specifyinq
an assignment to ALPHA is executerl.

The variable appearing to the left of the assiqnment
sign may be usc~ within a concateftation on the right as
well, as in the rllle

VO~ELS = VOWELS 'YW'

This rule appends the characters YW to the string which is
the cur.rent value of VOWELS and then assigns this resultinq
string as the new value of the variable VOWELS. The old
value of VOWELS is thereby lost.

Rules of this for.m are often used to collect succe~sivp
characters in an increasingly long string. Fx~cution of the
rule

2A. Assignment' 1A

LIST = LIST NEWCHAR

would ca Use wha fever new character is the value of N EWCHA R
to be ~ppended to those already referred toby the variable
LIST, and ,the re-assignment to the variable LIST of this
longer string. If LIST had a null valu~, as it easily might
the first time the rule was 'executed, then it would simply
be assigned the same value as that of NEWCRAR; the
concatenation would indeed take place as specified but there
would be no evidence that it had occurred since the null
value contributes no characters to the string.

Note that no spaces are generated by the concatenation
process itself. That is, the new characters are appended to
the list in the example above in a contiguous fashion with
no intervening spaces. If spaces are desired in the result
of a concatenation, they must themselves be concatenate~
into the string, as in the s'equence

OUTPUT = 'AcROSE'
OU'rpUT = OUTPUT' t1ISa' OUTPUT • or So' OUTI?U'l'

whose execution will pI'oduce the following output:

A BCSE
A ROSE IS A'ROSE IS A ROSE

More complicated Snobol expressions may be operands of
the concatenation operator; for example, the TRIM()
procedure may be used to produce a heading, as in

OUTPUT = '******0' TRIM (INPUT) '0******'
01:

HEAD = TRI M (IN FOT) 'Il 'TR I 11 (I~NPUT) 'a' TR 1M (INPUT)

This last rule specifies that the next, three data records
are to be read, their trailing spaces (if any) trimmed off,
and a single space placed between the trimmed corrtent of
successive records. The resulting string is then assigned to
the variable HEAD by which it may be referenced in other
statements of the program.

If an integer literal is involvad in a concatenation,
it contributes the string of digits representing its numeric
value. Thus

SUBST = VOWELS 0046
and

SUBST = VOWELS '46'

2A. Assignment 1 9

produce the same string as the new value of SUBST, namely
AEICU46.

!h£_A[iih~Qii£_QE~!~tor~~ Four binary operators are
provi(leo witilin Snobol fol:' doing the four basic arithmetic
operations of addition, subtraction, multiplication, and
division. The symbols used to represent these operators in
the program text are as follows:

addition +
subtraction
multiplication *
rlivision /

Since these are binar.y operators, they must al ways hc:::
bqunded by blanks.

The assig~ment rules

ANSHEH =
1\ NST~EF =
A NS WJ~ R ::

669 + 521
«1\ {- 8) - (C * (-D))) I E
(SU~i' / STJM2) + 3

would all assign an inteqer value to the variable ANSWER,
provideCl the variabll::'s t.O the right of th(~ assi.gnment siejns
all 1: e fer t () va] tJ e s 0 fda tat y p e I n t e 9 e r \l hen the rll 1 e s a r p

ex€cut.erl.

Repeated executions of rules of the form

COUNT = COUNT + 1

are often used to count the number of times a given event
occurs. These rules are in some ways analogous to ones of
the form

LIST LI~T NEWCHAR

which cause a new character to be appended to the value of
LIST; here a new integer, one larger than its predecessor,
becclTles the value of COUNT. If COUNT had a null value when.
the rule was executed, it would acquire the value 1 since
the null value is considered equal to zero when it is an
operand of an ~r.ithm~tic operator.

the operan~s of arithmetic operators must always he
numeric; that is, they must be any expressions whose values
are i n t.eg(;~t:s, rea 1 numbers (n 11 mbers con tain in g decima 1
poi n t s) ,or it u 11. R E.: a 1 n u m b e r san:1 i n t e g e r s , howe ve r , may
not cccur together within the same arithmetic expression

.2A" Assignment 20

(i.e., mixed mode arithmetic is not allowed). Further
infcrmation On Snobol arithmetic, including facts about real
numters, conversion of integers into real numbers and real
numbers into strings, trunc~tion on division, etc., may be
found in Appendix *F.

!_~.Q.m.Elg.!~ __ ~nQ.bol_-R!.Qg!:ll __ I~!!~ Given below is a
cOIDFlete program text which makes use of only a few of thp.
features of the snobol language already described: it
emFloys only assignment, concatenation, and the special
variable OUTPUT; since all data is provided within the
program text, the special variable rNPUT is not neede~.
Comments have been inserted in the program text before some
statements to indicate· their purpose; a comment is
distinguished by h~.ving an asterisk (*) as its first
character. Instructions for representing program texts on
punched cards may be found in Appendix H.

* PROGRAM TO PRIN~ A PARTICULAR DESIGN INVOLVIN~ FISH
* SET UP THE B~SIC COMPONENTS

LT = f <,
GT ::: • >,
BL4 = ennon'
BL10 = BL4 BL4 '00'

* * BUILD FISH WHICH SWIM LEFT, SWIM RIGHT, AND MATE
LFISH = LT GT LT
~FISH ::: GT 1T GT
M~ISH = LFISH GT

* * 8UILD LONGEF STRINGS COMPOSED OF DIFFERENT KINDS OF FISH
tSWTM = LFISH BtU tFISH Bt4 LFISH BL4 tFISH Bt4
RSWIM = RFISH Bt4 RFISff BL4 RFISH Bt4 RFI~H BL4
MSWIM = MFISH BL10 MPISH EL10 KFISH BL10 MFISH
SCHOOL = RSWTM LgWIM

* * PRODUCE FOOR LINES OF OUTPUT
OUTPUT = RSWTM RSWIM
OUTPUT = LSWIM LSWIM

·OUTPUT ::: SCHOOL
OUTPUT = MSWTM

END

output from this program is the design shown below.

><>
<>~
><>
<><>

><>
<><
><>

><>
<><
><>
<><>

><>
<><
><>

><>
<><
<><
<><>

><>
<><
<><

><>
<><
<><
<><>

><>
<><
<><

21

3A. THE FLOW OF CONTROL

The statements which make up a Snobol program are
seldom designed to he executed in the order in which they
are wiitten in the program text. Instead, certain sngments
of the program, consisting of one or more statements each,
are intended to he ~xecuted repeate~ly until 50mp

terninating condition is encountered. This condition may he
that a certain pattern of characters has occurred in the
data, that the data group is exhausted, that the segment has
been execute~ a certain number of times, etc. Once th0
tertrinating condition has been met, t.hen repeated execution
of another such segment, or "loop," may begin. "hp choice of
the particular segment to be executed can be made dependent
on certain features of the nata being processell, so the usC'
of the same program with different data will often r~sult in
the execution of a diff~rent set ofstatcments from within
the program.. The actual orner in which the stC'.t.ements of (l

program are executed is called thp. "flow of control."

The flow of control is specified by means of labels
which are given to statements for purposes of reference, an~
tv weans of go-tots which indicate the statement to h0
executed next by making reference to its label. Th~ label of
a statement is written to the left of its rule, and the go
to is written to the right, as in

ASSlf;N VOWELS = 'APIOUo (NEXT)

Here the label of the statement is ASSIGN, the rul~
specifies an assignment, and the go-to specifies that the
next statement to he executed after this a~siqnrnent takes
place is the one labelled NBX~. If the go-to part of a
statement is absent, it is understood that control flows hy
default to the following statement of the program.

1ab~1.2,:, Any statement may be given a l:\bel so thrlt it
may be referred to by other statements of the p~oqram, or
sim~ly by the programmer for his own convenience. A lahel
must always be an identifier and should be chosen so as to
be mnemonically useftil. Care rou~t be taken when givina
statements labels to see t.hat the same label does not OCCIlI:"

twice within a single program, or a ~ompile-time error will
occur.

Labels are di5tinguishe~ from the namps of variables in
a Snobol statement by their position. A label, it prpsent,
must always start in the first character position of ~

statement and must he separated from the rule, if present,

3A. The Flow of Control 22

by eneor more hlanks; if a statement is not labelled, the
rule must begin with a blank. Eecause they are distinguishe~
by position, labels and ~ariable names of the same form may
be used freely together without confusion, as in

VOWELS VOWELS = VOWELS 'YW'

which is a statement labelled VOWELS, whose rule specifies
that the variable named VOWELS is to have the characters YW
concatenated to its value.

It is sometimes convenient to write a statement which
con~ists solely of a label, as ~n

READ

since this makes subsections of the program text easy to
locate a nd makes modifications simpler.

~Q=iQ!..§":' The presence of a go-to within a stat.ement is
signalled by the occurrence of a colon which serves as an
eXFlicit separator between the go-to and any other part of
the statement which may have preceded it. Following the
colon (which may optionally be bounded by one or. more
blanks) thn information as to which statement is to he
executed next is provided by writing the label of that
statement within parentheses. For instance, thb statement

. . (TEST)

consists of a go-to only (it has ne label and no rulR) and
specifies that the next statement to be ex~cuted is the on~
lcibell€d TEST.

Usually a go-to follows a rule, as in the statement

VO\iE"LS = TRI~(INPUT) . .. (TEST)

which specifies that after the assiqnment is p~rformed, the
next statem~nt t6 be exeduted is'the one labelled T~ST.

The form of the go-tots just shown is calle~
unccnditional, because execution of the statement in which
they occur will always cause a transfer of control to the
statement lahelled TEST. More commonly, qo-to's are
conditional upon the possihle failure of the rule which
precedes them in the same statement. This. causes a choice,
or branch, to occur in the flow of control and allows th0
data to determine which path through the program will bp.

3A. The Flow of Control 23

followed next. (Ways in which rules may fail will be
indicated presently.)

Conditional go-tots are written like unconditional qo
to's, with the ad~ition of a prefixed P (for failure) or S
(for success). rhe statement

1:ES'I LINE = INPUT

specifies that control
latelled WRITE only if
Similarly, the statement

TEST LINE -= INPUT

· · F (WRITE)

be transferred to
the rule LINE =

the statement
INPU~ fails.

S (READ)

specifies a transf~r to the statement labelled READ Ynl£~~
the rule fails (i. e., if it succeeds). In eithc-r statemput.,
if the condition for transfer is not met, control will pass
by aefa~lt to the next statement of the program. Thus a
conditional go-to always embodies b0th a success an~ a
fa i lure t r~. nsfer, eve nth onq h one of ~:.hem may be ex pr(:~ss0 r1
implicitly rather than explicitly. Roth a success and a
failure transfer may be written explicitly in a single
statement as in

TEST LINE = INPUT · · F (URITP') S {REJ\D)

~ince both cases are provided for explicitly, control will
never pass to the followinq statement ~y default. The orrler
of the success ann failure transfers is immat.erial and thp
space between them is optional; the only important
requirement is that no blank may intervene betwAen an F or
an S and its following open parenthesis.

!.h~_~.E~£i~l_!I9.n§f~L.El!Q..!. A go-t.o specifying a t.ransfer
to END is used to terminate execution of a program. This
transfer has a special system definition, and const.itutes a
request to t.he Snobol system to stop executinq. fI)JY number
of statements in a program may contain go-to's specifyinq
transfers to END, and the first su.ch transfp.r to be t.ak0n
ends execution of the proqram.

An alternative way of terminating execution is to
execute the statement which stanrls last in the proqram t8Xt,
without taking a transfer from it back to some othpr
statement of thp. proq'Cnm.

Ther(~ is no r0~·;trict.ion aqainst. llsing P.NO as the lab(~l

o fan y s tat C' men t. () f t h (' pro q ram t c ~ t , but 1 f t. h i[) i s (1 0 n 0

its special systpm definition is lost. Th~ conv~ntion

3A. The Flow of Control 24

adopted here is to terminate every program t~xt with a
statement consisting solely of the label

END

A transfer to END causes this last statement to be 'executed
and the flow of control continues on to the next statement;
since there is no next ~tatement, the program terminates ann
the effect is the same as if the system definition of END
had not been overridden.

l~il~~~~i_!hg_EY1~~ Failure of the rule is not an
error and does not cause execution of the program to cease.
Rather, it is usen to direct the flow of control and to
prevent the rule which has failed from continuing execution.
When a rule fails, control is sent immediately to the go~to
part of the statement. so no further processing of the rule
is undertaken; in particular, the assignment specified by an
assignment rule does not occur. If the statement in which
the failure occurs has no go-to, control passes by default
to the next statement of the program; if the go-to is
conditional (as would usually be the case) the failu~p
transfer, expressed explicitly or~implicitly, is taken; if
the go-to is unconditional, this unconditional transfer is
used.

!~i.lu~Q!_il!'£!!l.:.. There are a variety of \fays in ",hich
a rule can fail. Of the rules presented so far, however,
only those ~hich call for the reading of data those in
which the value of IN PUT is needed -- have any pos sibili t. y
of failing. such a rule will fail when an end-of-qroup
reccrd is read, i.e., when there are no ~nre data records in
the group to become the new value cf INPUT. The ability to
test for an end-of-group mark, and to direct the flow of
c6ntrol if it is encountered, makes it possible to specify
that serna process is to be performed on all the records of a
data group without having to specify how many records that
might be. For example, all the r@cords of a data qroup, no
matter how many there are, may be printed by executing the
following very simple complete program text.

REAr
END

OUTPUT = INPUT : S (READ)

Every time the statement labelled READ is executed,
INPUT acquires the value of the next data record. If that
value is not an end-of-group matk, it is assi~ned to the
variable OUTPUT and hence printed. Since the rule has not
failed, control is sent hack to ~EAD and the process is
performed again. This single statement, a on~-5tatement

3A. The Flow of Control

loop, will be executed repeatedly until the en~-of-group
mark is encountered, causing the rule to fail. In this ca5C
the assignm0nt will not take place and the value of OU'T'PtJ'T'
will remain unchangedc Control will th~n flow by d~fault to
the statement labelled END, terminating the proqram.

More than one data qroup may be processed by a sinqle
program since the reading of an end-of-group mark does not
prevent fur~her reading of data. The following program text
prints two data qroupsT the first in single-space~ format
(as above) ann the second in douhle-spaced format (with a
blank line following each record). It prints a message at
the end of the first gronp.·

READ1 OUTPUT -= INPUT · S (REAJ)1) · OUTPUT .::;; fENDnOFnGROUPoONE. '
REAC2 OUTPUT _.- INPUT · F (END) ·

OU'1'PH '!' = NULL · (REJ\D2) · END

T h ~ 0 n e - s tat (~ me n t 100 pIa be 11 e d REA D 1 f ail s '.If he n I N PUT
acquir:es t.he value of the first t?nd-of-group marK, hut thp
n ext use 0 fIN P 11 T (i nth e t \<1 ()- S ttl t e men t. loop s taL ';:. i n qat
READ2l causes it. to acqnire the value of the first. dat.C1
record in the ~t~con(l qro1lp. F.v{:~nt.ually a. failure of TNPurr
will occur in this statement as well, when a second en~-of
group roark is read, sending control to END and thus
terninating the program •

.E~!11y.~ti.Ql!_E~11~.§.:. 1\ ru Ie in a prog ram te xt co ns is tin q
of a single €xpr-ession only is called an evaluation r111e.
The statpment

INPUT · · F (DONE)

conEists of an evaluation rule ana a go-to. When sHch a
statement is executed, the single expression of th~ rule is
evaluated, often causing success or failure of the rule to
be oetermined; then the go-to part of the statement, if any,
is rrecessed. ~he statement aboye indicates that a record is
to he read from the input file, and a transfer taken to DONB
if that record is an end-af-group mark. No provision is made
for preserving the ~ata which is =ead, but there are some
apflications in which the data is not needed. The two
complete program texts helow provi~e examples of such
apr1ications: the first is a proqram to count the number of
r e cor. d sin a g r 0 \l pan c1 t e p r i n t t he res u 1 t; the s (~C 0 n 11
prints evp.ry other data .record in a group, st.artinq with the
seccnd r.ecord.

3A. The Flow of Control 26

* FROGRAM TO COUNT THE NUMBER OF RECORDS IN A GROOP
READ INPUT : F(DONE)

COUNT = COUNT + 1 (READ)
DONE OUTPUT = COUNT 'oRECOanS'
END

* PROGRAM TO PRINT EVERY OTHER RECORD STARTING WITH THE 2N"
REAr INPUT : F (END)

OUTPUT = INPUT : S(READ)
END

Evaluation rules are commonly used to direct the flow
of control through failure of the rule; they can also be
used to cause a variable to have a special input or output
asscciation attached to it, to define a new procedure, etc.,
in ways to b~ described later; in these caSes failure of the
rule is not involved.

1~2!-g£Q£~QY£~~~ Failure of the rule may also be caused
by the failure of a procedure call which occurs within the
rule. Snobol provides nine predefined procedures, called
test procedures, which are used primarily to direct the flow
of control. Each test procedure accepts two arguments and
tests to see whether or not some specified relation, such as
equalitYr holds between them. If the test succeeds, the t~5t
procedure returns the null value and execution of the rule
continues. If the test fails, the rule of which it is a part
fails as well and control is sent immediatply to the qo-to
part of the statement where the failure transfer will be
taken.

l!!.~_I~.!_.R!Q£!Hl1!!!l§_IQ~l!Ill_!.!.nQ._] I F.E~.Ell.!. I D EN T (, and
DIFFER() may have arguments of any datatype; they are used
to determine whet.her or not the values of their argum~nts
are identical. In order to be identical, two values must be

. of the same datatype; if both arguments are of datatype
string or hath of datatype Integer, than they are tested for
character f6r character identity. Note that the null value
is ng! identical to zero, since zero is r.epresented by a
single character, even though the null value is consi.dere~
equal to zero when used in arithmetic op~rations. IDENT()
and DIFFER () perform ex'actly the same test but return
opposite results: IDENT() fails if its two arguments are not
identical, while DIFFER() fails if its two arqumcnts ~t~
identical. Thus the following statements are equival~nt:

IDENTtSTRING1,STRING2)
DIfFER (STf<ING1, STRING2)

.
S (SAMl~)
F(SAME)

.3A. The Flow of Control 27

Spaces, of' course, must be considered as any other
character in the data, so if the rules

STRING' = • KINGcLEA R'
and

gTRING2 = 'KINGoLEARo'

had just been executed, the rule with IDENT() above would
fail while the rule with DIFFER() would not.

tt is often important, for reasons which vill be
indicated presently, to know whether or not a given variable
has a null value. This can be determined by the execution of

IDENT (STRI NG, • .)
or

DIFF!R(STRING,NULL}

: . 5 (F. M PT Y)

· · F (EM PTY)

or something similar. Since any missing argument of a
procedure reference is assumed to be null, the simplest (if
not perhaps the clearest) way to write the above statement
1.S in th~form

IDENT (STRT NG) · · S{EMPTY)

I.h~_Te§.t_~rQ£~.d'y.!:g_1Q!jl.!. LGT () compa res two st ri nqs to
determine whet.her or not the first is "Lexicographically
Greater Than" the second that is, whether the first
!Ql1g~~ the second in alphabetical order. Por example, the
sequence

STR1 = 'ABB'
STR2 -= • ABC'
LGT (STR2, STR 1) · · 5 (WRITE)

will send control to WElTE since AEC alphabetizes after ABA.

The string values being compared may be of any. length
and may be composed of any characters; the "alphabetic
order" of non-alphabetic characters is determined by the
order of the computer's character set (see Appendix I).
Althouqh the character "space" has special significance in
most written lanquaqes, it is treated as any other character
by the computer, so its relative position within the
character set must be taken into account when alphabetizing
material containing spaces.

If either of the values being compared by LGT 0 is not
a str~ng, an execution-time error will result.

·3A. The Flow of Control 28

Ari.thmgti£:"'_!Q.§L_Er2.£!!Q!!}2s!~.!. The r.emaining six
predefined test procedures compare two numeric values for
the following arithmetic relationships:

.e~g~ t~lll!.Q.n.§hiE

EQ (.X, Y) X equal to Y
NE (X, Y) X not equal to y
I.T(X,Y) X less than Y
LE(X,Y) X less than or equal to y

GT(X,Y) X qreater than y
GE (X, Y) X greater than or equal to Y

All these procedures fail if the indicated relationship does
not held.

EQ 0 and NE 0 are very similar to IDENT o and DIFFER () ,
except that here arithmetic identity, rather than character
for character identity, is required. Thus EQ(23,'.Q0023')
will not fail since both arguments have the numeric value of
23, while IDENT(23,'+00023') ,!ill fail since char:act.er for
character identity cannot be found between two strings of
different lengths. The expression EQ{NULL,O) succeeds since
the null value and zero are arithmetically identical~

If either argument of an arithmetic test procedure has
a non-numeric value, an execution-time error results.

I~!-RI.Q£~.9.1!L:Q§_wiihin_A§§is.n.J!~n1_.B.!!!£.~.!. Any number of
references to test 'procedures may be embedded within the
riqht-hand side of an assignment rule where they are used
not only to direct the flow of control but also to determine
whether or not the assignment is to be executed. For
exam~le, the statement

STRING1 = IDEN~(STRING1,NULL) STRING2 . . 'P (SKIP)

specifies that STRING1 is to be given the value of ~TRTNG2
only if STRING1 has a null value when the rule is executed.
If i tis no n - n u 11, t.h en the IDE N T () p [' oc e d u r e wi 11 s i q n a 1
failure, sending control, to SKIP b€fore the assignment takes
place, so the value of STRING1 will remain unchanged.

Several arithmetic test procedures may he use~ in
conjunct.ion with onE~ another to specify a ranq(? of
acceptable values. The following rule for example~ allows
the printinq of a record having from 2 to 10 characters
only.

3A. The Flow of Control 29

OUTPUT = GE (SIZE (REC) ,2) LE (SIZE (REe) , 10) RF.C

If either of the test procedures signals failure, no output
is produced.

The following single statement. employs two .references
to test procedures to sp~cify that a transfer is to be taken
to LOOP2 if the value of N is either 0 or 1; if' N has
neither value, then whatever value it has is increased by 1
and control flows by default to the next statement.

N -= DIFFER (N, 0) DIFFER (N, 1) N + 1 . . F' (LOOP2)

The desired condition here is that the value of N be
either 0 or 1, so there is no need to differentiate the two
cases. However, it is often necessary to know which part of
the rule has signalled failure and to take different
transfers accordingly. Consider, for instance, the pr.oblem
of giving STRI~G, if it is null, the value of the next data
record. The statement

STRING tDENT (STRING) TRI M (INPUT) F (5 KIP)

will send contrel to the statement labelled SKIP if STRTNG
is non-null but also if an end-of-qroup recor~ is
encountered, makinq nc differentiation between the two
cases. Different transfers will usually be ne~dedfor these
two situations, so in thi5 case it will be necessary to
express the process in two statements, each havinq a failuLe
tr.ansfer, such as the following:

NEXT = TRIM(!NPUT)
STRING = IDENT(STRING) NEXT

· · · ·
F (DON'P.)
F (SKIP)

The placement of a reference to a test procedure within
the right side of an assiqnment rule implies that the value
which the procedure returns is.to be concatenated with any
other right-si~e values before assignment occurs. All test
procedures return null values, so the result of such
concatenation is never visible; the null valtie concatenated
with any other value leaves that value unchanged.

,
12~~~ Any useful proqram will contain at least one

(and usually many) loops which are to he executHd rnpeate~.ly
until some terminating condition is encountered. Th~~~ loops
may consist of any number of statements (they are typically
lenger than the onp. anrl two-statement loops which have bep.n
the only examr1es pr~s~nted so far), and may overlap or he
nested within one another. The terminating condition may be
that an end-ot-group record is re~d (as in tho earlier

3A. The Flow of Control 30

examples)., that some other feature of the 'data is
encountered, or that the loop has been entered a certain
num ber of times. Every time a loop is en tered it is
necessary to perform some test, often with the use of a,test
procedure, to determine whether or not the terminating
condition has been met; if it has, control is sent out of
the loop to some other. part of the program. If the test is
accidentally omitted, or set up wronqly, then there may he
no way to leave the loop and the set of statements of which
it is composed will be executed repeatedly until the program
is terminated by the computer's operating system. When this
happens, the program is said to be in an "infinite" loop.

1Q.Q.E§.-£ 0 n t !.Qll~.L.!2.I_ni\!n __ ~Qn.1i!i2.n§.~ Th e t er mi na tin g
condition for a loop may be that a record of a certain form
is encountered in the data. If this record is an end-of
group mark, then the test for its existence can be made by
simrly providing a failure transfer on a statement in which
the value of INPUT is needed. However, it is often useful to
'dividfi the data into "subgroups," each of which is
terminated by a record having a special pattern of
characters, such as one consisting of asterisks as the first
six characters, followed by spaces. If each subgroup is to
be processed separately, then a test must be made for this
special siqnal each time a record is read, and a transfer
taken accordingly.

IDENT() or DIPFER() can be used to make this kind of
test. For example, the following program segment reads an~
prints all data records until one with asteriSKS as the
first six characters and no other non-space characters is
encountered; when that record is read, ·control is sent to
STARS which may be the initial statement of another loop.

RE~D RECORD = TRI'M (IN PUT)
IDENT(RECORD,'******')
OUTPUT = RECORD

· · · · · ·
F (ERRO'B)
S (STARS)

(READ)

Note that ptovision is made for the possibility that a
record consisting of six initial asterisks will not be found
in the group, i.e., that the program is processing th~ wrong
data. This con~ition may be treated by transferring to a
statement labelled ERROR when an end-of-group mark is rea~.
Here an appropriate error mes$age may be written and control
sent either to END or to some other part of the proqram,
depen~inq on the sort of tasks which still remain to be
done. If such an ~rror exit were net provided there might he
no i n die a t ion fro m the pro 9 ram' t hat il n y t h in q was w (' 0 ng , a n rl
it might attempt th~ pro~essing of many groups of erroneous
data. In any event, the program has entered an infinite loop

3A. The Flow of Control 31

since it is persistently seeking a terminating condition
which will never be found.

12QE~~Qn!!ol!£n_£1_£Q~~12~ Arithmetic test procerlure~
are often used to control the number of times that a loop is
to be entered before control is sent to som~ other part of a
program; that is, the terminatin~ condition for such a loop
will be that it has been executed a given number of times.
Using the EOO procedure, for example, one may write a loop
to print S data records, and th~n qo on to the rest of the
pro 9 ram. (r f t. her ear e 1 e sst han 5 re cor it s to be rea (1 ,
centrol is sent to EFROE where an appropriate error messaqe
can te printed.)

LOOP OUTPU'r -= INPUT
COUNT = COUNT
F,Q (COtJNT, 5)

A si'milar loop may
procedure ann emhedding
rule, as follows:

1 .. 00l? OUTPUT = INPUT

+ ,
be written
it within

· ·
· ·

by
the

· ·

F (ERROR)

F (LOOP)

using the LT ()
second assignmen t

COUNT = LT(COUNT,l!) COUNT + 1 :
F (ERROR)
S (LOOP)

In this segment it has been necessary to use 4 as the
test value rather than 5 since t.he procednr(? call is
executed hffQ££ the value of COUNT is increm~nted, rather
than after as in the earlier example. In both segments,
COUNT is assumed to have the null value when thp segment is
executed for the first time.

Information as to the number of times that sornethin~ is
to b~ done may be found on a data record or computed durinq
the course of execution, rather than being written directly
into the program text. For example, the following segment
would cause the LOCP to be entere1 as many times as th~r.e
were characters in each data record that it was processing.

READ RF.CORD = TRI M (IN PUT) · F (ENDDATA) ·
N -= SIZE (FECOBD)

LOOP N = NE(N,O) N - , · P (FE AD) · [series of statements to process record)
· (1.00 P) ·

Here the test has b~en placed at the heginning of th~
loop instead of at the end, and the counting has been rlon~
hy subt.raction r.ather than by ar1dition. It miqht seem
clearer and more intuitive to perform the prOC0SS first an~
to test for. the terminating condition aft0rward~ (as in thp

3A. The Flow of Control 32

two previous examples). .For instance, t~e program te.xt

REAt RECORD = TRI M (INPUT) · F (ENDDATA) · N = SIZE (RECORD)
LOOP (series of statements to process record]

N = NE(N,1) N - 1 · S (LOOP) F (READ) ·
might seem to be equivalent to the one given above, in thp
sense cf al~ays producing the same ~esulto An examination of
the case of a one-character record shows that the program
apFears to work properly. In this case it would perform th~
pr<kess once, find that N was equal to 1 and then leave t.he
loop correctly by transferring to READ and reading in the
next record. .

The difference between the two programs becomes
apparent when one attempts to process a record consisting
solely o~ spaces which when trimmed becomes null. Th~
program which tests before processing will handle records of
size zero appropriately by failing the first time the loop
is entered and returning immediately to read the next
record. The program which processe~ first and then tests
wi11 pet-t()!:"m the process once (erroneously) and then will
test to see whether the value of N is equal to 1. Since it
is 'Z'HJ:O, the value of N will be decrnased by 1 to become -1,
and cG\ntro 1 wi 11 be sent back into the loop so the process
will be performed again. Henceforth the value of N will
never equal 1, but a series of constantly decreasinq
negative numbers~ The terminating condi~ion will thus never
be ~et ana the program has entered an infinite loop.

33

4A. PATTERN MATCHING

The process of searching a string of characters to
determine whether or not it contains one of a specified set
of strinqs is called pattern matching. The pattern heing
sought may be something very particular, such as a certain
character or a certain number of characters, or it may be
something moch more general , such as one of a choice of
characters or all characters preceding one of a choice of
characters. Like calls to test procedures, pattern matches
either succeed or fail, causing the rules in which they
occur to succeed or fail as well. Thus pattern matching may
be used to direct the flow of control.

l~f~a!!~~n=nfti~hing_Rgl~~ The pattern-matching rule
,consists of two main parts: ,the string reference, whos~
value is to be searched, and the pattern. These t~o parts
must be ~eparated in the program text by one or more blanks.
The very simple pattern·rnatching statement

VOWELS 'E' : S(YES)

specifies that the current value of VOWELS is to be searche~
for an instance of the character E, an~ that a tr~nsfer is
to be taken to the statement labelled YES if the search is
succ~~sful. If the search fails, then control will flow hy
default to the next statement of the program. qhether th~

search succeeds or fails, the value of VOWELS is in no way
affected.

Th~ pattern part may be in the form of a variahle,
rather than a literal, and may have a value consisting of
more than one character. For example, the sequence .

PAT ~ 'IOU'
VOWELS PA~ . . S(YES)

specifies a s~arch through the value of VOWEL~ for the
three-character string IOU. This pattern match will succeen
(if VOWELS has the value AEIOn) with the third, fourth, and
fifth characters of the string reference being matcited, and
control will be sent to YES.

The search for the pattern always begins with the first
character of the strinq reference and continue~ throuqh th0
rest of the string from left to riqht until ~ither a m~tcll
is found or all char~ct~rs have heen tested. Note that if
the first statement above had read

.4A. Pattern Matching

PAT 'OTJ!'

the search would have failed. The characters OUI are
present within the str~ng re~erence, but not
indicated order.

34

indeerl
in the

The string reference part of a pattern-matching rule
may he ariy expre~sion which gives a string when evaluat~d.
Thus executing the statement

TRIM (TEXT) 'aTHEo' · · S (YES)

will cause the expression TRIM (TEXT) to be evaluated, ann
its value to be searche~ for an instance of the word THE,
surrounded by spa~es. Similarly, tbe use of the variable
INPUT within the strinq reference will cause it to acquirp.
the value of the next datarecor(l, since this value will h~
needeo for the execution of the statement. A statement of
the form

TRIM(INPUT) 'uTHEa' : 5 (YES)

however, is not likely to be useful since (1) the value of
INPUT has not been assiqned to another variable and hencn
will be lost, and (2) no distinction is made between failur~
of INPUT and failure of the pattern match.

11H~_R~Ela~~1T!~!l.1-E.Yl~ The replacement rule specifies a
pattern which is to be sought in the string reference, ani!
alsc a replacement fat that part of the strinq which i~
matched by the pattern if the search is successful. For
example, the replacement statement

.'

WORD 'A' = • Y' · · S(P()UNDA)

specifies that the character A is to be sought within the
value of WORn and that the first A which is found, if any,
is to be replaced by i y~ This new string, with Y in place
of ~, is. stored within the memory and assigned to the
variable'WORD; the old value of WOBn is lost.

Note that the search succeeds, replacement occurs, and
control is sent to the go-to part of the st~tement as soon
as the first (leftmost) instance of the pattern is found, so
successive instances of the pattern remain unfound and
unaltered. In order to change, for Axample, all A's within a
st~inq reference to yes, one would write a loop of the form

SELF WORD 'A' ::' 'Y' .. · S(SEtF)

4A. Pattern Matching . :1 5

When this rule failed, any A's which had been within the
original value of WORD would all have heen changed to Y'sv
If WORn referred to the value SASS~PRAS when the loop was
first entered, its new value would be the string SYSSYFRYS.

!he replacement for a matched substring may be shorter
or longer than the string it replaces. Thus one rnay write ~
rule to replace a double vowel by a single one, as in

WORD 'EE' = 'E'

or a single vowel by a double one, as in

WORn 'E' = 'EE'

While it is perfectly safe to write'the first of these
replacement statements in a loop, so that all double (or
t r iF 1. e, etc.) E' s are red It ce d to a sin 9 1 e 1:~ , ex e Cll t i. on 0 f
the statement

SELF t~ORD , E' 'EE' · · S(SELF)

to make all single E's into double ones wilL send the
program into an infinite loop if the value of WORD contains
an E. Care must always be taken when writing replacGmcnt
statements in a loop to insure that the patt~rn is not
contained within its replacement, unless some terminatino
condition other than pattern match failure is u~ed.

Deletion of a matched patter.n may be accomplishe~ hy
providing a null value to the right of the assignm@nt sign.
Thus one may delete all E's from a string reference by
executing a statement of the form

DELETE WORn t E! :: NULL · · S (DELETE)

which will fail only when no E's remain within the value of
WORD.

The replacement rule, which is syntactically a
combination of a pattern-matching and an assignment rule, is
the last of the four types of rul~s in the Snobol languaqe.
If the rule part of a statement is non-null, it must call
for either an assignment, an evaluation, a pattern match, or.
~ rerlacement.

. !h~_Al!.~rn~iiQn_.Qr~r~iQ!!.. The alternation oper:ator, a
binary oporator rlesignated by th~ symhol I f is used to
specif.y alternatives within a r:at.tern. The pattern-matchinq
statement

4A. Pattern Matching

WORD • A ' 'E' . . S (YES)

36

specifies that the yalu~ of WORD is to be searched for
either anA or an E, and if either is found a transfer is to
be taken to YES.

More than cne alternation operator may be used within a
pattern, as in the statement

WORD 'A' I 'E' I 'I' I '0' I 'U' . . S (Y ES)

whicb will succeed if the valueo~ WORn contains any of the
five vowels. The search for a match proceeds as follows: the
first character of WORD is checked successively for being A,
R, I, 0, or U; if it is none of these the second character
,is checked beginning with the A alternatite,and so on. As
soon as anyone of the alternatives is found, transfer is
made to YES. The pattern matching fails only ~hen all
characters of WORD have been examined and no alternative of
the pattern has been found.

The alternatives may consist of any number of
chatacters, not just a single character as in the exampl~
above. One may search a line to determine whether or not it
contains one of a number of words, where a word is defined
as a sequence of characters surrounded by .spaces, by
emFloying a statement of the form

LINE '01\0' '0' WORD1'o' 1 '0' WORD2 to' : S{YES}

The values of WORD1 and WORD2 may be strings of any length.
An alternative way of writing this pattern is used in the
statement

LINE '0' ('A' I 'WORD1 1 WORD2) : S (YES)

Here, parentheses are necessary since the concatenation
operator takes precedence over the alternation operator: if
the parentheses were missing, the statement vould he
equivalent to

'0 A' I WORD 1 I WaR D 2 'a • : S (YES)

which is not what was intended.

1~Q_£~11£f~rQ£~1llr£§_!N!11_~nl_liQ!!ll!ll~ Snobol has a
number of predefined procedures for use sol~ly in
contructinq pattArns. The pattern procedures ANY() and
NOTANY 0 provide an effici.ent way of 'exprensing alternation,
where the alternatives are single characters only. The

.4A. Pattern Matching

pattexn-matching statement

WORD 'A' I 'E' I 'I' I '0' I IU" . . s tY ES) .

31

which employs four instances of the alternation operator may
be ~ritten instead as

WORD ANY('AEIOU')
or

WORD. ANY (VO~ELS)
or

WORD ANY(TRIM(INPUT»

· ·
· ·
· ·

5 (YES)

S (YRS)

S (YES)

(if both VOWELS and TRIM(INPUTl have the value AEIOU). ANY(l
accepts for its single argument any expression whose value
is a string, and returns a~ its value a pattern which will
match any single character of that string. Th~ pattern
returned by ANY(} contains only a single test for each
character of the argument string, no matter how many
instances of that character the string contains. That is,
the pattern returned, by ANY ('SAGAS') is equivalent to that
of '5' I 'A' I 'C;' •

The companion procedure to ANY() is
returns a pattern to match any sinqle
represented in its argu~ent. Thus

NOTANY() which
charact(-~t' .!121

WORD NOTANY('AEIOU') · · S (YE S)

will match the first tharacter within the value of WORD
which is not a vowel. This match will succeed if any
character of the complete character set, excp,pt A, E, I, 0,
or U, is found.

It is always better to use ANY() or NOTANY() where
single character alternatives are involved, but it will be
necessary to use the alternation operator for alternatives
of more than one character. Both methods of exprpssinq
alternat~on may be used together as in the statement

W 0 R D t Y W ' I t Y I ' I A NY (, A E IOU') . . S (GOOD)

The alternation operator and pattern procedures may he
used within rcplacem~nt rules as well as within pattern
matchinq rules. For example, the replacement r\ll~

WORD ANY('AETOU') = 'X'

specifics that the first vowel within the value of WORD is
to be replaced by an X; the rule

4A. Pattern Matching 3.8

WORD NOTANY('0123456789') = NUl.L

specifies that the first non-digit ~s to be deleted. Either
rule may be written in a loop to specify that all vowels arA
to te replaced by !'s

LOOF1 WORD ANY(fAEICU') = t X ' . . S(LOOP1)

or that all non-digits are to be deleted

LOOP2 WORD NOTANY ('0123456789') = NULL . . S (LOOP2)

.I.h~ __ £Qnii!!iQ.!H!! __ A~g!!J!lml:i __ QE~!:atQ!:.!.. It is ofte n
important when using a pattern which w~ll match anyone of a
number of strings to preserve the information as to " exactly
what has heen matched in the.sea~ch. This may be done by
assigning the matched substring as the value of a variable
with the conditional assignment operator, a binary operator
whose sy~bol is a period. The ~attern-matching statement

W 0 R D (• A W • I • A Y , I A NY (' AE X 0 U '» • S AV E : F (N 0)

specifies that the value of WORD is to be searched for 'the
alternatives, and that the" part of the strinq referenc~
which satisfies the pattern is to be assiqned to the
variable SAVE~ If the value of WORD does not contain ~ny of
these alternatives, then the match fails and no assignment
takes place, i.e., the value of S~VE r~mains unchanqe~.

(Note that these particular two-character alte,rnatives
must be expressed before the one-character alternatives;
once anA is found the rule succ@eds r so a search for AY or
AW would never be undertaken if they were not the first
~lt€rnatives to be tried.)

More than one conditional assignment ,operator may bR
used to assign the same value tocmore than one variable. The
statement

WORD ANY('AEIOUI) • SAVE1 • SAVE2 SAVE3 : F(NO)

as~igns the first vowel within the value of WORD to tho
variables SAVE1, SAVE2, and SAVE3.

If the variable OUTPUT is used, as in

tINE (WORD 1 i won02' I WORD 3) .• OUTPUT

the successful match will b~ printed~ The "us~ of parenth~sAs
is' necessary here since the condi tionalassignment operator

qA. Pattern Matching 39

assccia tes i ts'elf wi th the si ng Ie pa t tern elemp. n t
immediately to its left; if the parentheses were missing,
OUTPUT would be assiqned a value only if the value of WORD)
vas thp. pattern alternativ~ which caused the rul~ to
succeeiI. (If that is what is intended, of course, then the
parentheses should be omitted.)

The conditional assignment operator is useful within
replacement rules in which the matched pattern is to form
part of the r~pl~cement. If the first vowel found is to he
reduplicated, one may use a statement of the form

WOPD ANYC'AEIOU') • SAVE = SAVE SAVE . . Ii' (NOVOWEI.,

since the value assigned to SAVE is immediately available
for use on the right. side of the rul0.. If the pattern fails,
control is sent directly to the go-to part of the statement,
so no assignment can occur, either to SAVE or to WORD.

~Qn£~ten2!1~n_Qt_E~!!gfn2~ The concatenation operator
can he used with operands which are patterns, as well as
with strings. For example, in the statement

WORD ANY (' AEIOU') 'Y' = 'Y' . . P (NOVOWELY)

the operands of the concatenation operator are the pattern
values returned by a call to the ANYO procedure and the
string Y. The result. is a pattern which will match any vowel
which is followed by a Y; if this pattern is found it is to
be replace~ by a Y albne (i.e., the vowel is to be deleteJ).
If instead the Y were to he deleted, a statement of th~ form

W 0 R DAN Y (, A E! 0 U •) • S A'V E • Y' = S h V E . . F (VOWELY)

could be used. Here only a part of t.he matched patt~rn (t.he
first vowel directly pr.eceding a Y) is to be assigned to thp.
variable named SAVE. Note, howevAr, that the entire pattern
must be found before such assignment can occur.

It is often useful to assign the different Matche~
parts of a string reference to different variables. Por
examfle, a pattern to search for clusters of three
consonants, and to assign each consonant to a different
variable, is employed in the rule

WORD ANY (C) • C1 ANV (C) • C2 ANY eel • C3

(It is assumed he~e that the value of C is a string of
con~cnants.) rrhp. rat.t.p.rn in this rule is the concatenation
of three patt~rn elRments, each of which consists of a

4A. Pattern Matching 40

reference to ANY () and a conditional assignment.. The ·three
conEonant string may be assigned to the variable CCC as
well, by placing the entir~ Fattern within parentheses and
usi r.g one more condi tional as'signment opera tor, as follows:

WORD (A N Y (C) • C 1 ANY (C) • C 2 ANY (C) • C 3) • c c c

None of the variables viII acquire a new value unless th~
entire pattern is successfully matched.

~h~ __ Immg£1~i~_-!§~ignm~n! __ Q~~1Q!~ The- immediate
assignment operator is a binary operator whose symbol is a
dcllar sign ($). It is very similar to the conditional
assignment operator except that it causes the immediate
assiqnm~nt of any matched substring to a variable,. wh~thpr
the remaining elements of the pattern are matche~

successfully or not. Thus if the rule aboVe vere rewritten
as

WORD '(ANY (C) $ C, ANY (el$ C2 ANY (e) • C3) • CCC

"then C1 and C2 would acquire new values each time partial
matches occurred, but C3 and CCC would acquire new valup.s
only when a substring of three contiguous consonants ~as
found. Por example, if WORn had the value ADIEU then C1
would acquire the value D when the match was attempterl,
while the rest of the variables remained unchanged; if WORD
had the value CHATEAn then C1 would acquire the successive
values C, H, and T, and C2 would acqui.re t.he? value H, as
repeated (but unsuccessful) attempts were made to find the
pattern. Thus the immediate assignment operator may he
useful in determining how much of a pattern was successfully
matched before failure occurred.

Both the conditional and immediate ~ssignment operators
may be applied to the same pattern element, as in the rule

WORn ANY (VOWELS) $ SAVEl. SAVE2 IT'

which specifies a search for any vowel which is followed
directly by a T. (The order in which the immediate anrl
conditional assignment operators occur is immaterial.) If
the pattern match succeeds, then both SAVE1 and S~VE2 will
refer to t he same va lue, tha t cf the first vowel. enCOll ntere (1
which occurre~ directly b~fore a T. If WORD contain8d one or
mor.e vowels, hut not on~ occurrinq before a· T, th~n th~
mat.ch will fail and the value of ~1\VE2 will be unchanqen,
but SAVE1 would acquire as successive values all vowels
within the value of WORD which were encountered in the
attempts to find the pattern.

4A. Pattern Matching 41

The vaLiable OUTPU'I may be Hsed in conjunction with the
immediate .assiqnment operator to produce a printed trace of
the progress of the pattern-matchinq operation. for example,
if the variable OUTPUT 'Were written in place of SAVE1 above,
producing the rule '

WOHD ANY (VOWELS) $ OUTPU1: • SAVE2 • T'

and the value of WORDS was the string ECCLESIASTICAL, then
the following output would be produced:

'E
E
I

" I
A

When a transfer was taken to the next statement, the value
'of OUTPUT would be A and the value of 51\ VE2 would not hav~
heen,chanqed, since the pattern matc~ did not succeed •

.!ll~_R a t . .l~r!!-.fr:.9£~1l!!:!t.§_5~!.t!11_i!1!g_~Jl!:~!S.J.L!. S P1\ W () a n a
BREAK{) are procedures which match not just a sinql~
character but a string of characters of indefinite lenqth.
SPAN 0 returns a pattern which matches a string COT(tposp rl
solely of thA characters specified within its argum~nt. For
examFle, a string consisting of one or more vowels may he
specified by the pattern

s p ~. N (, A EI 0 U ')

BREAK() returns a pattern which matches a string ccmposp~ of
any characters '§!~£.P.! those specified in it.s argument.. 'J.'hns
a string consisting of anything hut vowels may be specified
by the pattern

BREAK (. AEIOU')

Both SPAN() and BHRAK() mu~t find a character from
their argument strings in erder to succeed. ~PAN() will
match that character along with any other acceptable
characters which are contigucu~~; BREAK{) will match
everythinq up to s1)ch a character, leavinq the tthreak
characte[''' itself unmatched.

Not.e that the pattern returned by BREAK () may match t.h~
null value, as in

4A. Pattern Matching 42

wanD
WORD

= 'IDLE'
ERE A K (' A EIOU') • SA VE

Here SAVE will be assigned the null value since BREAK()
matches all characters preceding the first vowel, or in this
case no characters. SPAN() can never match the null value
since it must ~atch at least ~ne of the characters of its
argument.

SPAN() and BRE~K() are often used together to. break
data into significant units, such as words. If a word is
defined as a string of characters terminated by any number
of spaces, periods, or commas, then the following program
segment can be used to assign to the variable WORD each new
word of the data.

READ
LOOP
+

LIUE :: TRIl1fINPUT) 'a' : P(DONE}
LINE BPEAK (' 0. ,.) • WORD SPAN ('0., .) = NULL

: F (READ)
[sequence of statements to process WORD]

: (LOOP)

Tn the replacement statement labelled LOOP t

BREAK('n.,') matches all c~aracters until a space, perio~,
or ccmma is encountered. The sequence of characters which
have been matched is assiqned to the variable WORD.
SPAN('o.,') will then match th~ character' which caused
BREAK(·c.,') to succeed, and any other spaces, periods, or
ccm~as which may be contiguous. This ~ntire pattern is then
replaced by the null value (removed from LINE), the value of
WORD is processed in s6me way, and control sent back into
the loop again. The replacement rule fails only when no more
wbrds remain to be processed and a new value for LINE is
read in. Note that a space has been concatenated to the
tri~medvalue of each data record to insure that
B REA K (In. , .) wi 11 be a b let 0 fin d a "b r ea k c h a r act er U at the
en d 0 f t he 1 as t wo r c1, and SPA N (t t1. , ') w ill h a v eat 1 ea s ton e
character to match.

lh£_£~t!~!n __ ££~QQ~~ __ LENll~ The patter.n proc@.dure
LEN 0 accepts any non-n@.gative integer arqument, and returns
a pattern to match as many characters as its argument
specifies. Thus LEN() matches strinqs of predictable lenqth
but unpre-dictable content, while BREl\KO and ~PAN() match
strings of predictable content but unpredictable length.

LEN () is useful between two pattern elempnt.s to STH~cify
the exact number of characters which must lie between them
for the match to succeed. Thus the search for four-character
strinqs within parentheses might be specified by th~

4A. Pattern Matching 43

statement

tINE '(' LEN (4) • INSIDE f)' F (OUT)

Note that the strings matched by the three concatenate~
pattern elem~nts must be contiguous for the match to
succeed. Thns the above rule does not mean "at least four
characters between parentheses" but "exactly four." If this
rule is successful, the fit"st string of four characters
found hetween parentheses will be assigned to the variable
INSIDE.

LEN() is often used at the beginning of patt~rns to
match an in i tial field of th·e da t.a, such as an
identification numb~r. The statement

LINE LEN (10) • IDNUMBER tIN (40) • DATA . . F(SHORT)

assigns ihe first 10 characters of LINE to the variable
IDNUMBER, and the next 40 characters to the variable DATA.
~he rule will fail only if LINE contains less than SO
cha.racter.s.

Statements of the,form

LINE LEN(10} • IDNHMJ1ER ,~, . . S (AL I'M E)

are often erroneously used to specify a search for lin~s
with A as the eleventh character. whil~ it is trup that all
such lines will he found by the above rule, many other lines
may be found as well. The rule will succeed if a string of
10 characters pr~ce~ing an A can be found anywhere within
the value of LINE, not necessarily in initial position.

Ihe_A~~llQB1L-£~~£g~~Q~ The ANCHORO procedure may be
used to uanchor" all searches so that they succeed only in
initial position. In anchored mode, if'a pattern does not
match heginninq with the first character of thp. strinq
reference, failure is recorded immediately and no furthe~
pattern searching occurs.

The normal, unanchored, mode of pattern matching can be
chanqed to anchored mode by executinq an evaluation rule of
the form

ANCHOR('ON')
or

ANCHOR('XXX')
or

ANCHOR (vnWET..S)

4A. Pattern Matching 41~

or any other rule in which the ANCHOR!) procedure is called
with a non-null argument. Executing the sequence

ANCHOR('ANCHORITE')
LINE LEN{10} • IDNUMBER 'AI . . S (At INE)

would cause a transfer to ALINE only when the eleventh
character of LINE was indeed an A.

The anchored mode remains in effect until another rule
is executed in which the ANCHOR() procedure is called with
an argument having a null value, such as

A NCROR ()
or

A NCHO R (NULL)

The 6riginal unanchored mode of pattern-matching is then
restored.

l.tQ_£i1iis!J:.n_Er.Qged.1!f~§_!A].1L~.nQ __ .E!AnlL!. The pa tter n
pr.ocedures TABO and FTAB() specify pattern matching not in
terms of character content or of length, hut in terms of
position within the string reference. Both TAB() and RTAE()
accept a single argument which must be a non-neqative
integer ana return a pattern to match all the characters up
to that position within the strinq reference, matchinq as
always from the left. The difference between TAD{) and
RTAB 0 is that they use opposite conventions for numh8rinq
the string positions (and thus for interpreting their
arguments): TAB() works in terms of numbers counted from the
left, RTAB 0 in terms of numbers counted from the r iqht, as
shown in the following charts:

For TAB 0,

£ h~.tn. c t. ~!~ 1 3 6 7
I t I I

2iring_£2§i!iQ~1 o 11 J 3 1611
I I 1 J 1 I J I I
c A M Y L 0 T

For RTABO ,

£.hfU:':i!~t!t!.:. 7 fi 3 1
I I I ,

§!Iing_£2Si!lQ~':' 1161 3 I 1 , 0
tit , I I 1 , I
c A M Y t OT

4A. Pattern Matchirig 45

Notice that although there is no zero-th character,
there is a zero-th string position -- just before the first
character or iust after the last one, depending on wh0thcc
TABO or RTAB() is heing used. This prev~nts confusion wh~n
thinkinq about. characters in terms of their st.rinq
Fositicns: TAB (2), "everything up to string position 2, If
matches the first two characters; RTAB (1), ttev~r.yt.hinq up to
string position 1 counting from the right," match~s all the
characters hut one. Although the arqument of RTAB() is an
integer to be used in counting from the right, this does ll2i

. imrly that pattern-matching is done from the riqht; pattern
matching always proceeds from the left.

TAB 0 and RTAB () may be lisen for breaking up strings
inte fixed fields; the rule

LINE TAB (15)- • ID TAB (70) • TEXT

assigns the first 15 characters of LINE to In, and the next
·55 characters (those remaining up to string position 10) to
TEX1. ~his is exactly equivalent to the rule

J.lINE LEN (1~) • !D LEN (S5) • TEXT

If the first field were of varying length, terminate~
by a EI;ace, then

LINE R RE A K (' [l t) • I D ' 0 • TAB (70) • T EX T

would assign everything up to thA first space to In, and all
characters after the space hut before string position 70 to
TEXT. Note that this is nQ! ~quivalent to

LINE BREAK('o') • ID '0' LEN(70) 0 TF.XT

in ~hich all characters up to th~ first space are assignp~
to the variable ID (as before) hut a full 70 charact~rs
following the space are assigned tc the variable TF.XT. TAB()
ooay match strings of varying length ending at a definite
string position, while LEN() will always match a definite
number of characters ending at varying string positions.

R!AB() can be used like TAB() f0r patterns in which the
string position tprminating the match is better expressed as
a count from the right rather than from the left. RTAB (0) is
particularly uSAful; it will always match evp.rything fLorn
the current position in a pattern search up to the ~nd of
the strinq - thA "remainder" of the string after any othp.r
pattern elements have been matchAd.

4A. Pattern Matching 46

Both TAB() and RTAB() can match the nullvalue~ "but if
either attempts to match up to a string position to the left
of one which has already been matched by a preceding pattern
element, or a string position which does not exist (because
the string is too short), the pattern match will fail.

1.b~_ Pat lsu;:!1..£.tQ£.2f!.1!!~1i_ p 0 llL!lllQ_~.!tED§'ll..:. The pat t. ern
procedures POSe) and RPOS() return 'patterns which ~atch no
characters at all (the null value); they match only thR
singie string positions specified by their single non
negative integer arguments. POSe) uses the numtering system
of TABO, RPOSO of RTABO. Their use is to restrict
successful matches by other pat.ter·n elentents to certain
Fositicns in string references; this provides a more
flexib~e form of "anchoring."

A pattern which beqins with POS(O} is anchored in the
usual way. The rule

LINE POS (0) '******'
will succeed only if the value of LINE contains ast~risks as
its first six characters. (The advant.age over turning on the
ANCHOR() procedure is that the restriction applies to this
single rule only.) Similarly, the rule

LINE POS (7) '******'
will succeed only if the value of LINE contains asterisks as
characters B through '3.

RPO~() permits the same, kind of anchoring, counting
from the right; the rule

LINE '******' RPOS CO}

will match only if the value of LINE ends with six
asterisks, and

LINF. POS (0) '******' R.PC~ (0)

will succeed only if the value of LINE is precisely a six
character string of asterisks. That is, the above pattern
match~ng rule is equivalent to the evaluation rule

IDENT(LINE,'******')

!~_.e.s.t.tg.!.n_£!.Q£!!.Q.Y1:~ __ .j.EIU!Qjl.!. AR BN 0 () is t he on I y -
pattern procedure which accepts a pattern as its argument.
It returns a pattern which will match zero or more

4A. Pattern ~atching 41

occurrences 'of the pattern given in its single argument.
Note that matching zero occurrences is the same as matching
the null va1ue~ since this is always the first choice for
the ARBNO()· procedure, ~ call to it always s~cceeds. ARnNO()
will natch as many occurrences of the specified pattern as
will cause th~ remainder of the pattern to succeed.

A string is a 'simple form of a pattern, so the argument
of AF.BNO() may be a sinqle character or characters. A
pattern to match zero or more A's may be specified as

ARDNO ('A')

This differs from

SPAN('A')

in that the SPANO procenure must always match at. least one
character, so t.he 'pattern 'which is the value of gPAN('A.')
matches .Qn~ or Iftore A"s instead.

1\ patt0rn 'o:hich will match any 'number of charactpcs,
including none, ~nGlosed within parenthese~. (rather t.han
e x act 1 y lJ ,or scm e 0 the r n u m h ~ r) can be s peG if i (~ d wit. h the
use (Jf ARRNO() as follows:

LINE '(tAR ,n N 0 (LEN (1)) INSIDE ')' : F(NOPfl.RE'N)

This pattern viII match strings of t.h~ form

()
(1)
(AB)
(XXX)

The null value or .the chara·cters within the parenthes(?s 'l;fill
be assigned to the variable INSIDE.

A mo~e complicated illustration of the Qse of 'AR~NO()
is provirl,ed by a consideration of the following set' of
sentences:

The dog ran.
'1' h e~ 0 1 c1 ti o,g ran.
Th~ old, gray dog ran. ~
Thp old, gray, barking dog ~an.

The silildri~y among these sAntences may be charactprized in
terms of some pattern'which woul~'~ucceed when appliQ~ to
any of them. Such a pattern may.be written with the use of

4A. Pattern Matching

ARBNC() as follows:

, T H Eo tAR B NO (B REA K (f 0, ,) LEN (1)) , nOGoR hN • '

When this pattern is applied to the first sentence, the
ARBNO() procedure match~s zero instances of its argument, or
the null value, since the literal strings within the pattern
acccunt for th~ entite sentence. In the second sentence,
ARBNO() matches one instance of its pattern, the string
OLDo. In the third sentence, ARBNO() cmatches three instances
of its pattern, the string OLD,oGRAYo. This is thre~
instances since BREAK() first matches everythinq up to the
comma, then up to the space following the comma, then up to
the space following GRAY. In the last sentence, ARRHO(}
matches five instances of its pattern, the string
OLD,oGR~Y,oBARKINGa. 1he pattern matching in the last
sentence occurs as follows:

(1) the opening literal matches to begin with and
-ARBNO 0 matches no instances of its pattern (or the null
value); but then the closing literal cannot. be matched, so
an instance of the ARRNO() pattern is sought with

(2) BR)~AK () rna t chi ng evet'ythi ng up to the com rna (t he
s tr: i n 9 Ot D), and LEN 0 mat chi n g the com III a; w h en t he fin a 1
literal cannot be matched, successive instances of thA
ARBNO(l pattern are trie~ with

(3) BREAK() matching everything up to the blank (the
null value) and LEN() matching the blank, then

(4) BREAK() matching everything up to the next comma
(the string GRAY) and LEN() matching the comma, then

(5) BREAK() matching everythinq up to the following
blank (again the null value) while LEN() matches the blank,
and finally

(6) BREAK 0 matching ,everything up to the; next blank
(t h est r in q B 1\ RK IN G) an d LEN () _ mat chi n 9 the hI an k. A t t his
point the final literal can be matche~ and the entire
pattern matching is completed.

These successive attempts by ARRNO () to match thp
numher of instances of its arqument which will cause the
remainder of the pattern to suc~eed could be observed by
using the immediate assignment operator in conjunction with
the variable OUTPUT as d-escrihed earlier.

4A. Pattern Matching 49

A~igni~g_~£~~t~£ll~ __ !Q __ Vari~hlg2~ Patterns may bo
assigned as the values of variables iust as stcings are
assigned as the values of variables. This may be done with
an assignment rule of the usual form t such as

PAT = 'IOO'
or

ID. PAT = LEN (1) • IDNUMEER LEN (40) • DATA
or

DOG = 'THEa' ARBNO(BREAK('o,') LEN(1» 'DOGnRAN .. '

The variable which refers to the pattern, rather than
the pattern itself, may then be used within the pattern part
of a rule as in

VOWElS PAT
or

LINE ID.PAT
or.

DOGLINF. DOG

. . S (YES)

: F (SHORT)

: F (NODOG)

When these statements are executed, the current values
of PAT, ID.PAT, and DOG are ohtained; thus the pattern
matching and the conditional assignment are performed
exactly as if the patterns themselves were expressed.

1he value of the variable PAT is of natatype strinq,
but it may be use1 as the p~ttern Fart of a pattern-matchinq
rule, as inoicated at. the very beginning of this chaptp.r,
since a strinq is a trivial form of a pattern. The values of
ID.rAT and DOG are of datatype Fattern, since they arp
concatenations of values of calls to procedures which return
patterns. Any expression contai~ing a reference to a pattern
proc~oure, an alternation operator, a connitional or
immediate assignment operator, or a deferred evaluation
operator (desccibed below), has a value of datatype Pattern.
The values of such expressions cannot be assigned to th~

special variable OUTPUT, since only strinqs can be printed.
(Ways of printing the value of an expression of datatype
Pattern are indicated in AFpen~i7. ~, section II.B, s.v.
"PRCTOTYPF. 0 rt.) The variablp.s ID. PAT and DOG ar.p. of cout'SP.
in no way restricted to havinq only Patterns as their.
values, but may be assiqned values of any data type in oth~r

Farts of the proqram.

If a pattern occurs within a rule which is to h~
execnte~ mor~ than cnce, or if thA same pattern occurs in
more than one rule, a consideratle incrpase in program
e f fie i en eye d n he 0 b t a in e d by ass i g n in g t h Q: pg t. t. er n a s t. h e
value of a variable. The us~' of a variable wi"ttlf'l'h thf.~ rul~

4A. Pattern Matching 50

mak~s it unnecessary to construct the pattern every time the
rule is executed.

When a pattern is assigned to a variable, as in the
rule

ALTPAT :: X I Y

any variables occurring within the pattern eX and Y above)
are evaluated when the assignment rule is executed. Thus if
X had as its value the string A and y the string B, thn
value of ALTPA1 after the above rule ha.d been executed would
be equivalent to 'A' I 'B' •

There are often applications, however, in which one
wants the variables of the pattern to be evaluated only when
the pattern is used in a pattern-matching rule, not when the
assignment occurs. For example, a loop to search the value
of gORD for one of two substrings, each to be read from the
input file, may be written as follows:

LOOP' x =
y :
WORn

TRI M (INPUT)
TRIM(INPUT)
x I Y

· ..
· " · ·

F (DONR)
F (ERRO~)
S (FOUN D) F (LaO P 1)

since the efficiency of the program can be increase1 hy
using a variable which refers to a pattern, rather than th~
pattern itself, one would like to be able to write the loop
as

AtTPAT -= X , Y
LOOP2 X -= TRI M (INPUT) " F (DONE) · Y = TRIM (INPUT) F (ERROR)

WORn ALTPAT · S (FOUND) F(LOOP2) ·
If this is done, however, the loop will not have the same
meaning as before.. The nev values of X and Y which are
acquired from the input file on each iteration of the loop
will not affect the value of ALTPAT; rather its value will
rem a i n u fic han qed a t 'A' 1 • R ' (1 f ~ an d B we ret he val u es 0 f
X ana· Y w hen the ass i 9 n III en toc cur red) .•

1 h e_De.f.e.r!ed ___ ~J!E.!~ t i.2.n ___ .Q.E~!2 to I.!. Th e de f er r ~ I~
evaluation operator, a unary operator whose symhol is an
asterisk (*), may be used within pattArns to take car~ of
the above situationn It may be written directly hcfor~ th0
name of a variable to indicate that its evaluation is to he
de~erred until its value is needed during a pattern-matchinq
operation. For instance, the as~ignment rule

4A. Pattern Matching 51

A L T PAT' = * X I * Y

may be used to indidate that both X and Yare variables
which are to be re-evaluated each time a pattern-matching
rule is ex~cuted in which ALTPAT is used within the pattern
part. Thus the sequence

LOCP3
ALTPAT. = *x 1 *y
X - TRIM(IN~UT)

Y .- TRIM (INPUT)
WOLD ALTPAT

· · · · · ·
F (DONE)
F (ERROR)
5 (FOUND) F(LOOP3)

will produce the same results as the LOOP' example above,
but more efficiently.

The unary * operator is also useful in patterns in
which the value of ene pattern element is dependent on thA
successful match of an earlier element of the same pattern.
Consi~er, for example, the problem of searching a wor~ to
detGrmine whether or not it contains two identical
contiguous vowels. This pattern may be expressed using the *
operator as

VO~l2PAT = llNY (VOWELS) $ V *V

Nhen this pattern is used, as in the statement

WOHD V0t+12PAT · · S (Y ES)

it specifies a search" through the value of WORD for any of
the five vowels, imme~iate assignment of the vowel foun~ to
the variable V, and then a search of the next character for
another instance of that same i6wRl.

A more general pattern in the same vein is one which
searches for two identical contiguous characters. This may
be expressetl as

. CH1\RPAT = LEN (1) $ CHAR *CHAR

and works as described above. Without the use of defpcred
evaluation, these patterns would be cumbersome to define.

The unary * opp.rator may hp. llsn1 only hpfore names of
v a r. i a b 10 S , n () t b (' f () [f) r (~ fer (~ rl<': pst. 0 P (\ t tor n p [' 0 C e (1 \l r. f\ ~ • l\ n
oxprfJssion compo!:;pd of a dp.fer['(~d evaluation opp.rat.or and a
variable name is of rlatatyp~ Pattern an~ so may b~ used only
where a pattern value is appr.cpriate; hence such ~n
eXFtession may not be used as the at'yument of any of t.hf~
pattern procedures except ARBNOt). Thp loop

.4A. Pattern Matching

LOOP4
ARDPAT' = '5' A'RBNO(*X)
X ~ TRIM(INFUTI

. WORD ARBPAT

• SAVE

· · · ·
, S t

F (DONE)
S (FOUND)

52

F(LOOP41

specifics a search through WORn for zero or more instances
of whatever string is specified on the next data record,
bounded by an S cn either side, and the assignment of thp
substring matched by ARBNO() to the variable SAVEo.lf the
search fails, another data record is read~ causing a
different pattern to be sought •

.!he2J2££i,g1"£~li~!:.n2S!!:!ahlg~_!B~_iill.d __ .R.B~.:. There are
six variables which have predefined patterns as their
values, assigned by the Snobol system; these are the only
six variables in snobol which do not have the null value
when execution of a program. beqins. The values of thes~
variables may be changed in ~ program by assigning them new
values in the usual way, but then of course the predefine~
values are lost. The six special pattern varia~les are ARB,
REM, EAL t FAIL, FENCE, and ABORT. Only ARB anJ REM will be
discussed here. (The remaining fonr pattern variables are
described in Appendix B.)

The variable ARB has as its predefined value a pattern
equivalent to ARBNO (tEN (1») -- that most arbitrary pattern
which will match the null value or any string of characters.
ARB, like ARBNO(LEN(1», matches the longest string of
characters left for it by surrounding pattArn elements; thus
the ~attern to match any parenthesized string could have
been written as .

LINE t (' ARB • IN SID E ') t · · F (NOPA REN)

Execution of this statement would cause the variable INSIOE
to t€ a~signed the zero or ~ore characters occurring between
a pair of parentheses.

The variable REM h~s as its predefined value a .p~ttern
which will match "all the remal.nl.ng (none-or-more)
characters." Another patt.ern equivalent to this is RTAB{O,.
For example" a statement to match all char-acters after ,the
sixth maybe written as

LINE LEN (6) REM. A6 · · F (NOTSI X)

Execution of this statement vill cause LFN(6) to match the
f i+,st six ch dracters in LINE and will ca use all remaini n q
characters to he assigned to th~ variable Afi. If the value
of LINE is exactly six charactArs lcng, ~he pattern match
will ~ucceed and the variable ~fi will be assigned the null

4A. Pattern Matching 53

value. If the value of LINE is less than six characters long
the pattern match will fail, A6 will not acquire a new value
and control will be sent to the statement labelled NOTSIX.

Since the predefined pattern values of both ARB ann REM
are equivalent to patterns ~hich may easily be writt~n in
other ways, APB an~ REM may be reqarded merely as convenient
predefined abbreviations for longer pattern specifications.

!_g!Qg£~~_!Q_Ill~1~~te p~t!~In=~~tch1ng~ The program
text provided helow rea~s an indefinitely long text which
has line numbers in the first six positions of each data
r€cor~, and wor~s occurring in frca form, but never hroken
acress records, in the rema1n1ng positions. A word is
definpd as a string of characters followe~ by a space or a
punctuation character. Any nurnter of spaces an~/or
punctuation characters may occur between words (and heforp
the first word on a card). The program looks for ~ords
within the text which begin and end with the same character
(one letter words exclu~ed). If such words are found, thay
are printed following the line number of the record in which
they occurred. Thus the two records

000001
000002

EFFICIENCY IS IMPORTANT BUT
El.EGANCE IS TO BE DES!REt

would produce the output

000002 ELEGANCE DESIRED

since the first line contains no words which beqin and end
wit h the s arne c h a r act e r, but the sec 0 nd 1 i nee 0 n t.a ins two ..
All patterns are assigned to variables for the sake of
efficiency.

* FFOGRAM TO FIND AND PRINT ALL WCRDS THAT
* BEGIN AND END WITH TH~ SAME CHARACTERS

* * SET UP THE PATTERNS NEEDED FOR THE pnOGR~M

*

*

PUNe =
WORD. PAT
ID.PA'l' =
SAME. PAT

'0.,:;'
- BREAK (PUNC) • WORD SPAN (PTTNC)

IJEN (6) • ID (SPAN (PUNC) , NfJLL)
= POS(O) I.EN(',.$ CH RTAB(1) *CH

* READ THE NEXT RFCCRD OF THE DATA - APPEND A SPACE
r,ETtINE LINE = TRIM (INPtJ"r) '0' : P (END)

* * 11 EM a v E InN U M rr8 n _. I r; Non E R FC 0 IH) 5 . 5 It 0 RT E R '1' It 1\ N f) C H l\ R S
LIN E I D. PAT = NUL L . : F (G E T LIN F.)

41. Pattern Matching 54

* GET T HE NEXT WORO - IF NO" MORE' WORDS, CONSIDER PR INTING
GE~WORD -LINE WORD.PAT = NULL : r(PRINT)

*
*
*

SEE IF THIS WORD HAS SAME FIRST AND LAST CHARS -
!REN GET THE NEXT WORD

IF NOT,

WORD SAME. PAT

*
. , . F (GRT~ORD)'

*~ORD TO BE PRINTED - APPEND IT TO THE OUTPUT LINE
OUT = OOT '0000' WORD : (GET-WORD)

* * PRINT VALUE OF OUT IF IT CONTAIR~ ANY WORDS
* PRECEDE THE WOR DS EY THE APPROPRI'ATE L1 NE NUMBE R
PRINT OUTPUT: DIFFEB(OUT,NULLl ID OUT: P(GE-TLINE)

* * IF NECESSARY, ASSIGN OUT A NULL V~LUE BEfORE PROCEEDING
OUT -= NUL L :, '(GET LIN F.)

END

SA. INnIRECT REFERENCING

The fact that a single variable may bp. used to refer to
a number of .different valu~s during the cotlt:'se of program
execution makes it possible to write a general rule which
can have the effect of many specific ones. For example, the
single rule

OUTPUT -= WORD

specifies' in general that the current value of the variable
named WORD is to be printed, whatever that value may be. If
the above rule is part of a loop in which WORD is being
assigned a new value every time the loop is entered, then
the rule sends different specific characters to the output
file every time it is executed. without this ability to
express a process in qeneral terms rather than in specific
ones, no useful programs could be ~ritten.

The ability to generalize is further extended in Snobol
by the use of indirect referencing. This operation allows
one to specify a variable without writing its name into the
program text; rather, one specifies a variable hy writing an
expression whose value is a variable. Just as WORD in the
rule above may refer to a numcer cf different values durinq
the course of program execution, so this expression
involving indirect referencing may refer to a number of
different variables during the course of the program, each
variable's value changing independently. In neither case do
the Epecific values need to be known when the program text
is written. Hence the use of indirect referencing allows
ancther level of generality to he introduced.

!h~-1n1i£~£i_Refergn~in~~~£~1£~~ Indirect referencing
is accomplished by means of the indirect referencing
operator, a unary operator whose symbol is a dollar siqn
($). ~his operator takes a sinqle string-valued operand (or
one of datatype Name as described in Chapter 7) and returns
as its value the variable named by that string. In the
simflest case, the operand is a literal as in the rule

OUTPUT : !'WORD'

which produces the same effect as

OUTPUT -= WORn

Both will cause the current value cf the variable WORD to b~
pritted since the variable return~rl by the $ operator above
is the one whose name is WORD. There is no advantage to

SA. Indirect Referencing. 56

using the $ operator. in this way, since it is simpler to
write ~ORD than to write $'WORD'.

However, there are many variables which cannot be
referred to by writing their names in program texts since
they consist of strings of characters which are not
identifiers. As indicated in Chapter 2,

1 RHYME •• VOWELS TEXT!3

are all the names of variables, but they are not valid
representat.ions of these vari.ables within a program text.
These variables may be represented with the use of the $
operator, since they are, respecti~ely, the values of the
eXFressions

$'1RHYME' $' •• VOWE1S· $fTEXT/3' $'P-V-C t

Although these expressions are useful in a way that $'WORD'
is not, they introduce no generality into the program since
each specifies a single, fixed, variable.

Generality is introduced when
operator is some string-valued
literal. Thus the rule

OUTPUT = SWORD

the operand of
expression other

the $
then a

can cause the values of different variables to he printed
when it is executed at different times, since the variable
whose value is to be printed depends on the current value of
WORt. If the rules

WORD = 'SASSAFRAS'
and

SAgSAFR~S = 'TREE'

have b~en executed, then execution of the rule

OUTPUT = $WORD

will cause the characters TREE to be printed. First WORD iz
evaluated to yield the string SASSAFRAS; then the $ opp.rator
returns the variable named by that strinq. Thus the effect
is as though

OUTPUT = $'SASSAFRAS'

or, equivalently,

SA. Indirect Referencing.

OUTPUT = SASSAFRAS

bad been executed.

Similarly, the rule

$VOWEL = $VOWEL + 1

can cause the value of many different variables to be
incremented by 1. If the value of VOWEL is the string A,
then the rule is equivalent to

$'A' = $'A' .. 1
or

A = 1\" 1

but if the value of VOWEL is a different vowel, say E for
example, then the rule is equivalent to

E = E" 1

instead. Thus executing the same rule at different times in
the program may result in incrementinq the value of
different variabl~s. A sinqle rule of this form could b~
~sed to count how many of each vowel occurred in a text.

(Notice that a variable returned by 'the indirect
referencing operator is treated in the execution of rules
exactly like a variable whose name is written in th~ program
text; variables occurring to the riqht of an assignment
sign, or within a pattern or a ~trinq referenc~, must ho
evaluated when the rule in which th~y occur is executed.,

!h~_QE~r~n2-2f-th~-Ingi~~£!_]ef~~n£ing __ 2E~~Q!~ The
operand of an indirect referencing operator may be an
expression of any complexity: the .only restriction is that
this expression yield a non-null string (or a Nam~ when it
is Evaluated. Thus the operand of a $ operator may itself
contain one or more $ operators (as in the expression
$$CURRENT), as lonq as the variable returnerl by each inner $
operator refers to a valua which is a string. These nested $
operators, like nested procedure calls, must be evaluated
frem the inside.out since the varia~le returned by an inner
$ iE needed to form the operand of an outer $. For example,
if t.he assignments

CtlRR'RNT -;: 'VOWEL'
and

VOWEL :: 'A'

SA. Indirect Referencing •. SA

have been executed, then the rule

$$CURRENT = $$CURRENT + 1

is equivalent to

A = A" 1

The evaluation of the rule involving double indirect
referencing proceeds as follows: first the value of CURREN~
is determined, providing the strinq VOWEL as the operand of
the inner $ operator and making the expression $$CURRFNT
equivalent to $$'VOWEL'; when the inner $ is applien to the
string VOwEL the varia.ble VOWEl.· is returneo, makinq
$$'VOWEL' equivalent to $VOWEL; the cuter $ is then applied,

.giving $'A', in turn equivalent·to A, as above. ~xamples of
how multiple indirect referencing can be useful are proviaed
by two p~ogram texts given at the end of this chaptero

Similarly, a reference to any procedure whi.ch returns a
string as its value may be used within the operand. ~s a
sirntle example, the rule

$SIZE (WORD) = $STZE (WORD) + 1

could be used in a leop, analogously to the rule

$VOWRL = $VO~EL + 1

above, to count how many words of each length occurred in a
text. If the current value of WORD at some point during
execution is the nine-character stri.ng SASSAFRAS, then the
above rule is equivalent to

$'9' = $'9' + 1

Thus the variable whose name is 1 wofild be assigned the
count of the one-character words, the varia.ble named 2 the
count of the two-character words, etc. Although the names of
these variables may not be written in the proqram text, thp
variables may be specified by means of indirect referp.ncinq,
since the $ operator may be applied to any string of
characters to return the variable named by that string.

The null value may not be used as the operan~ of the $
operator since the name of a variable must be at least onp
character lonq. It. is a common mistakp., however, to uSP. as
the operand of the $ operator a variable which at some tim~
during the course of execution will have a null value. such
an' error cannot occur in the example above, sin~e there is

.SA. Indirect Referencing. 59

no way for the operand to be null. If WORD has a null valu~v
then SIZE(WORD) returns the integer zero as its value. Hence
the count of all null values is referred to by the variable
whose nam~ is 04> (If WORD has a value which is not a string,
then an execution~time error will result when the SIZ~(l
procedure is called, before an attempt to apply the $
operator can be made.)

!_££Qg£~~_!Q_£IQg~££_s_~h~£~~!£!-£Qnni~ As an example
of the power of in~irect refer~ncinq, consider this simple
character-counting program, which prints out a table q1v1nQ
the number of times each letter occurred within a text.

* PROGRAM TO MAKE A CHARACTER COUNT
* SET UP CHARACTER-FINnING PATTERN

CHAR. P,\T = LEN C1} • CHAR

* * HE'D IN THE DATA
READ LINE = TRIM(INPUT)

*
F {OUT).

* FIND THE NEXT CHARACTER - r"SSIGN iT TO THE VARIABLE CH~.n

LOOP1 LINE CBA R. PAT = NULL F (RF.l\D)

* * ADD ONE TO 'TIlE COUNT FOR THAT CH]\H~CTER
INC $CHAR = $CHAR + , : (LOOP1)

* * SPECIFY THE ALPHABBT FOR RECOVEBTNG COUNTS
ODT ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

* * GET THE NEXT LETTER WHOSE COO NT 15 TO BE RECOVER~D

* ASSIGN IT TC THE VARI~BLE CHAR
LOOP2 ALPHA CHAR. PAT = NULL

*
· · F (EN D)

* IF LETTER DID NOT OCCUR, GIVE IT THE VALUE ZERO, NOT NULt

*
*
END

$CHAR = IDENT ($CH~.R ,NULL) 0

PRINT LETTER AND ITS COUNT
OUTPUT = CHAR 'aaoo' $CHAR · · (LOOP2l

Output from this program would be a list of the form

A 12q
D SA
C 32

an~ so on.

This proqram U5f:.~S the pattern which is the valuA. of
CHAR.PAT to assign each successive character of the text to

SA. Indirect Referencing. 60

the variable CHAR; indtrect referencing is then use~ to
return the variable named by that character. Dependinq on
which character has been found, the rule part of the
statement la~el1ed INC might be equivalent to

A : A + 1
or

B = B + 1
or

$',' ': 1) , , , + 1

or whatever.

When all the text has been read, printing of the counts
begins. This is done with the use of the variable ALPAA,
whose value is a string containing all the characters for
which counts are to be printed, given in the desired order.
(In this case, only letters have heen chosen., These
letters, on~ by one, are again assigned to the ~ariable CHAR
{although any other variable would have done as well) by
means of t.he CHAR. PA1: pattern. using indirect referencing,
the variable named by the character is tested to determine
whether or not it has a null value; if it is, null, then that
charact~r was never encountered in the, t~xt and so th~
v d ria b 1 e is 9 i ve nth e val u e z ere for 0 u t put P t! r po sa s. 'II h P.

output statement prints the value of CHAR (the character ~
the first time tha output loop is, entered) and the value of
$CHAR (in this case the value of the variable A, or 129).

This scheme for ,specifying the printing p~rmits the
programmer to choose the order of the output -~ alphabetical
order, rather than text orde'r - and to be selective: the
program causes counts to be" stored for all characterf'
(nulfbers, punctuation, spaces, etc.) , but only the counts
for the letters are recovered for Friritinq.

~.

£Qn~~1~n~1iQn_~il~in-_!~ __ QE~~g~ The' concatenation
operatcr is needed within'the operand of the indirect
referencing operator in applications in which, variables
having "succes$ive lt names are to be used. "Por example,
execution of a loop of the form

NLCCP N =N.+ 1
OUTPUT = TRIM(INPUTl
1) ('LIST' N) = OUTPUT

~1.LGONF.

· · · ·
F' (ALLGONE)

(NJ .. OOP)

will cause an entirf:' group of (lata to be read, printed, an(1
st ore i!, \IF i th .c;ucc~ss 1. ve record s he ing ass iqned as th e va lues
of the variables named LIST1, Lr'ST2, , $('LIST' N). When

SA. Indirect Referencing. 61

the loop terminates through failure of INPUT, the value of N
is an integer one greater than the number of lines of data
which have been rea~. Since these lin~s of data are now
stored in the memory they may be processed in some way, for
exaro~le subjected to pattern-matching and replacement, and
eventually printed out again in an altered form. The
followinq loop may be used to print out all the lines,
reversinq their line numbers in the output, so that the last
reccr~ read in is numbered 1, the next-to-Iast numbered 2,
etc., until the first record read in is numbered N-1~

MLOOP

DONE

M = N
M = GT(M,') M - ,
OUTPUT = N - M 'nooo'

: F (DON~)
$ (, t I ST ' t1) : (MLOOP)

In the above example, a single set of successivp.ly
named variables were being assiqned values (those WhOS0
names all begin with the characters LIST). This process can
"be rna d~ more g~neral if several sets of su ccessi ve 1y- nil med
variables are assigned values by the same program segment.
If, for example, a file contained intermixed records of
various types, each type distinquished by the first
character of th0 record, then the following segment of
program text \-Iou10. ca\lse each record to he assiqned to thp
variable named by the concatenation of its first character
(the type-code) and the number of records of that typP
enccuntered so far.

REAt RECORD = TRTM(INPUT)

* * tETERMINE TYPE-CODE OF RECORD
RECORD LRN (1) • CODE

• * ADD ONE TO CCUNT POP THIS TYPE
$CODE = $CODE + ,

*

· ·

· ·

F (DONE)

F (READ)

* STORE RECORD IN NEXT "SUCCESSIVE" VARIABLE OF ITS TYPE
$(CODE $CODE) = RECORD (READ)

DONE

The first record found beginning wibh an E woul~ become
the value of the variable named E1, for example, and th0
twenty-fifth record fonna hpqinning with a colon woul(l
beccme the value of the vat'iable nalnf~~ :2'1. If th~ distinc:t
type-codes are stored by the program as they are
encountered, then the records ha ve effect ively heen sorte~
in terms of their first characters, since t.he recorcis of
each type can now he found a~ the vnlu0~ of diff0rAnt S0tS
of succesRively-nampd variables.

SA. Indirect Referencing. 62

Variables havinq"successive" names are also useful in
printing data in tabular format, where a varying number of
spaces, or other characters such as dots or dashes, will be
needed to make the dat.a line up prop~rly. The variable named
10, for examplp¥ could be assignedtbe value of a single
space, while the variable named 20 would have the value ~f
twospaces r etc. In general, variables can be qiven names
which· i.ndicate their valnes, where the first part of the
name indicates the number of instances of some character,.
and the second part indicates the character in question.
Thus the variable named 52! would have as its value a string
of 52 XiS.

The short segment Of, program text below causes such
variables to be assigned appropriate values. The value of

.MAX is the largest number to be used as the first part of
any name and is the maximum length of any string to be
assigned as value; the value of CHAR is the particular
charactei to hE used as the second part of each name and is
tbe character of which all string values are to be composed.

FORMLOOP N = tT(N,MAX) N + 1 F (DONf!)
$ (N C H A R) ::: $ (N - 1 C H A R) C H A F. : (FORMI,OOP)

DONE

If MAX has the value 10 and CHAR has the value of a
single dash, then execution of the loop causes the set of
variables named 1-,2-, ••• ,10- to be assigned the respective
values -'--r ... '----------.

A program may begin by executing the FORMLOOP segment
repeatedly for each pair of values of CHAR and ~AX needed to
generate the strings which may be required for formattinq
within the remainder of the program. Then whenever, say, a
string of 42 spaces is nee~ed it may be represented by the
ex~ression $(42 'n'), and whenever 10 ppriods are neede~
they may be represented by the expression $ (10 '.'),
provided the FORMLOOP seqment has been executed when the
value of MAX was at least 42 an~ the value of CfiAR was a
space, and when thR value of M~X was at least 10 and the
value cf CHAR was a period. If an expression of this form is
written in which the numeric part .1ies outside the range
specifi~d (from 1 to the value of MnX) when th~ set of
variahles involved was given value, or in which the
character part is not a character which was the value of
CHAR when the PORMLCCP segment was executed, then thA null
value is likely to result; a variable will always he
returned from an expr~ssion of this form, hut not
necessarily one; to which a va,luc has 'been assigned.

5A. Indirect Referencing. 63

Concatenation within the operand is also u~eful as a
saf~guard against conflicts which occur when a variabla
returned by the $ operator turns out llnexper.t.e(11y to he the
same as one written directly in the program text as an
identifier, and used for some unrelated purpose. In the
character-counting example above, the writing of any one
character name within the prbgram te~t would have produced a
conflict of usage if that character had occurred within the
tAxt being processed. In that particular case, only
variables with one-character names could he returned so the
restriction could be made that no one-character names he
written in the program text. Often, however~ th~re is no way
of knowinq which variables will be returned by indir~ct
referencing. Consider the case of counting word~, rath0r
than characters, in a text; if the SHme scheme is cmploye~,

then Bach word of the text will be used as the name of a
variable, and there is often no restriction on which worrls
may occur, so a conflict in the use of variables is likely.

Such conflicts may be avoided by using concatenation
within the operand of the $ operator to produce a strinq
\vhich is not an identifier:; then the variable retllr:neil hy
applying thA $ operator to this strinq will necessarily hA
one whose name can never be written in thA proqram t~xt.
This has been donA in the formattinq example above hy always
us i r. 9 a. n u m be r a s the f.i r s t. par t 0 f the n a me, sot h (~ sell a !ll e ~;
are never in identifier form~ Sittilarly, if the expression
$('*' CHAR) were used in place of $CHAR. throuqhout the
character-counting program text above, the restriction
against the use of on~-character names within theproqram
text could he removed; the number of A's in the t~xt woul~

the n b (? re fer red t 0 h Y the v a ria b 1 e n a m e cl *.1\ r the n n m b e r. 0 f
Bls by *B, etc. The two complete rroqram t~xts which follow
in this chapter both rely on concatenation of this form to
insure against the po~sibility of. error due to conflict.

!_.R!..Q.9..I.2..!.!!_!2_£I2QJl£g_2_.Erg9.!!£.D£,Llablg.!. ThA usef ulne 55
of multiple in~irect referencing is illustrat0d in the
following program, which is similar to the charactcr
counting prO<1ram but. prodllcef' in!1tead a frequ~ncy t.abl('
specifying how reany letters failed to occur in the text, how
many occurred once, how many twice, etc. The proqram h0qins
in the same way as the character-counting program, hy usinq
a variahl~ nam~d hy a character to r~f~r to the numh0r of
times that ch,\rac:tct" OCC\H~r.cr1 wit.hin the t.pxt ... whp.tl all thp
text has lH:~en read in, t.he charact(~r counts t.hemSE~ lves a rn
us~d as the operands of the $ operator to return variahles
whose nam~s are O,1,2, ••• ,etc.: the values of th~sp.

variahl~s are increased by one for e~ch chdract~c which
occurred that many times within the tpxt.

. SA. Indirect Referencing. 64

Conc~tenation is used in this example to prevent the
conflict of variable usage which would occur if the text
contained any digits. If concatenation were not used and the
text contained, for example some 3's, then the variable
named 3 would be used in the first part of the program to
refer to the number of 3's occurring'in the text; in the
seccndpart, when the frequency table was being formed~ th~
variable named 3 would be used ~o refer to the number of
characters which occurred exactly three times in the text.
Since the . variable named 3 would then already have a valup.
indicating the numher of 3's in the t.ext, the frequency
table for 3 occurrences would be incorrect. (The proqram
would appear to run correctly and the only indication of
error might be an abnormally hiqhcount.) Thus concatenation
is used to return a variable whose name is 3* for the first
part cf the program: the frequency table for characters
occurring 3 times can then safely be made with a variable
whose name is simply 3.

* FROGRAM TO MAKE A FREQUENCY TABtE

*
READ
LOOP1

CHAR. PAT = tEN (1) • CHAR
LINE = TRIM(INPU~)

LINE CHAR. PAT = NULL
: . .

$(CHAR '*') .0;: $(CHAR '*') ... 1 :

*

F (Cli AR S)
F(READ)

(LOOP1)

* SPECIFY THE CHARACTERS WHOSE FREQU~NCIES ARE TO BE FOUND
CHARS ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LOOP2 ALPHA CHAR.PAT = NULL : F(PRINT)

'*
*
*

GIVE MAX THE VALUE OF THE LARGEST COUNT SO FAR FOuNn
MAX = GT($(CIIAR '.1) ,MAX) $ (CHAR '*')

01

* CHANGE ANY NULL VALnE TO ZERO
$(CHAR '.') = IDENT($(CHAR '*'l,NULL) 0

* * US! DOUBL! INDIRECT REFERENCING TO MAKE A COUNT OF COUNTS
F R E Q $ $ (C H A R '*') = $ $ (C H A R '*') ... 1 : (L 00 P 2) 0

* * PRINT THE FREQUENCY 'fABLE
PRINt COUNT = 0

* * IF NO LETTERS OCCOFRED COUNT TIMES, SKIP IT
LOOP3 IDENT($CQUNT,NULL) : S(SKIP)

OUTPUT = $COUNT'oLETTERSoOCCURRF.Do' COUNT 'oTIMES'

* * . INCRF.ASF.~ THE VALUE OF COUNT UNTIL THE MAXIMUM .IS PEACHED
SKI·P· COUNT = LT(CO[JNT,~lAX) CO·UNT + 1 : S (LOO~3)
END

5A. Indirect Referencing.

output from this program would be of the form

2 LETTF.RS OCCURRED 0 TIMES
4 LETTERS OCCURRED 1 TIMES
2 LETTERS OCCURRED U TIMES
7 LET'IFRS OCCHRRED 6 TIMES

61)

and so on. Such a table would have at most 26 entries; all
26 would be present only if each letter had a different
character count associated with it.

The statement labelled FREO uses double indirect
referencing to form variables from these character counts.
Its rule represents assiqnments of the form

$'0' = $'0' + 1
$'1' = $'1' + ,
~'2' = $'2' + 1

'The value a~signed to each of these variables is increased
by one every time a character is found which occurred that
many times in the text.

(Note that it is necessary to assign the value Z"ro
rather than the null value to variables representing
characters which did not appear in the teKt. If this wer0
not done, the rule part of the stat~~ent label1pd FR~O would
attempt to represent a rule of the form

$" = $" + 1

if the value of $(CHAR I.') was null, and an execution-tim~

errcr would result.)

!-R~Q~r a n_!Q_£L:.QQ.Y£~~_3.2£2._~glUll.!. As a fur t. her ex n ru pIe
of the use of both multiplp. inrlirect referencing ann
concatenation, consider the following word-counting proqram
which works on the same principle as th~ character-countinq
program; it uses each word as the name of a variable an~
increases the valne of that variable hy one whenever thp
word occurs within the text. The process of printinq out the
words once the counts have been formed, however, i~
necessarily more complicated than that of printinq a
character count. Whil~ it is possible to specify all thp
characters which may occur in a text, it is s~ldom possihle
to specify all the words. If counts are desired for only
certain words, then a list of those words can be supplind as
da ta to thp. program; but if a 11 word~ are to be COIl nt eo, or
all words except t.hose specified, then some record must he
kept by the proqram of all different words encountereo so

SA. ·Indirect Referencing. 66

they may be retrieve~.In this progra~, concatenation is
used to assign each new word to a variable whose nam~ is of
the form W/1, W/2, W/3, etc., so that ~11 words of the text
may be recovered for printing w1th the use of these
"succeGsive~ variables.

* PFOGRAM TO MAKE A WORD COUNT
* SET UP RORD-FINDING FAT~ERN

*
PUNe = • (]. , : ; •
WORD.PAT = BREAK(PUNC) • WORD SPAN(PONC)

* * READ TEXT AND FIND WeEDS
REAt LINE -= TRIM (INPUT) '0"
LOOP1 LINE WCRD.PAT = N~tL

*
* t:SE CONCATENATION IN FORMING THE

$ (S * c 'WORD) = $ (' *' WORD)

*
* TEST TO SEE WHETHER THIS IS A NEW

* IF NOT, RETURN TO lOOP1
EQ($('*' vI0RD) ,1)

· · · ·
t~ORD

.... 1

wORD

:

F (OUT)
F (READ)

COUNT

F (LOOP1)

*
* NEW WORD - ASSIGN IT TO A.V~RIABLE NAMED W/1, W/2, ETC.

N = N + 1
$('W/' N) .- WORD

*
· · (LOOP1)

* ~LL DATA HAS BEEN READ IN - PRINT WORD COUNT TABLE
OUT M = LT(~l,N) M + 1 : F·(END)

OUT PUT -- $ (' W / ' M) t t:1 0 t1 [] I $ (, '" I $ (, W / ' M))

END

The words are printe~
occurrence in the text.
text would be,

TO 2
BE 2
OR 1
NO'! 1

: (OUT)

in the order of their first
Output for a well-known six-word

In· the processing of this short text, the rule

$ (' * two HD) = $ (, *' WaR D) + 1

at different times is equivalenttc rules of the form

5A. Indirect Referencing.

$,*rro' =
$'*BE' =
$I*OR' =
$'*NOT' =

and the like, while

$ (, VI I' N)

is eguivalent to

$, ~~ /1 '
$' ~J /2 '
$'W/3'
$'W/4'

-=

=
=

when the first
out put st.a tement

OUTPUT =

is equivalent to

OUTPUT =
or

OUTPurr -
or

OUTPUT =

$'*TO' +
$'*BE' +
$'*ca' +

$'*NOT' +

the rule

= WORD

'TO'
'BE'
'OR'
'NOT'

line of

1
1
1
1

the out. put

$('W/' £1) 'aaoo' $ (' *.

$'W/1' '0000' $('*'

$'VlI" '00110' $'*TO'

'TOootlo2'

67

is pri nt ed, the

$('11/' M))

$1\1/1')

I.DQi!!!£..t_B~t~£~.n£1.!1£L.~ithiJ.L_!h~ __ ~:.t.2.:.. The in d i rec t
referencing operator may he useo within the go-to part of a
statement a~ well as within the rule. When the $ operat~r is
used within the go-to, it takes the string which is its
operand and returns the label which is that string. Thus the
go-tots

and

. . ·
· ·

($'READ')

(R EA D)

have the identical effect of causing a transfer to be taken
to the statement labelled RE~D.

(Note that the $ operator must appear inside the
parentheses rather than outsi~e, since the onl~ chara~ters
which may app~ar between the eclon and the open parpnthesis
of the go-to are an S or an 'F. 'T'hus t.he go-to: $ (' REAO')
is syntactically incorrect. tnner parentheses, such as
: .($(tnr:lt.D' N» ar-f) permi.ssible.)

SA. ·Indirect R~ferencing. 68

As before, the power of indirect referencing becomes
visible only when the operand consists of something besides
a literal. The statement

LINE LEN (6) • CODE · · S ($CODE)

illustrates the usefulness of the $ operator within the go
to. It causes the first six characters in the value of LINE,
if there ~re that many, to be assigned to the variable CODE,
and then, on success, transfers to the label specified by
those six characters. (The value of CODE which was obtainefl
in the rule part of the statement i~ immediately available
for use within the go-to.) The single gener.al go-to
: ($CODE) may thus represent a great many spec! tic go-to's,
one for each possible value of CODE. These values ~hich CODE
may acquire must all be in identifier form, since an
individual label must actually exist within the-program for
every possible transfer which is taken. (The indirnct
referencing operator may not he use(t in the label fi~ld, so
-there is no way of using a label which is not an
identifier.) If an attempt is made to transfer to a non
existent label, an execution-time error will result.

If the special variable INPUT occurs within a go-to in
which an indirect referencing operator is used, as in

EQ(X,Y) : S($(TRIM(INPUT»))

it is assigned as value the next data record, since this
string value is needed as the operand of the· $ oper.ator. If
the next data record had the characters NOUN as its first
four characters, followed by spaces, the go-to shown above
wbuld send control to the statement labelled NOUN if the
rule preceding the go-to succeeded. If INPUT fails, or any
other failure occurs in a go-to, then an execution-time
errcr results, since no information will be available as to
which statement is to be executed nAxt.

Concatenation is often used within the go-to to send
control to "succ~ssivet1 labels of the program. For example,
the statement

N :: SIZE (WORD) · · ($ (• R (J LEt N»

assigns to N the integer length of the value of WORD, an~
then transfprs cont.rol to a label specified by concatena.t:inq
the characters RULE and this integer; if WORD has as it~
value any one-chdracter string, a transfer wouli be tak~n to
the statemont labelled RULE'; if weRD has as value a two
character string, then control would be sent to RULE2, etc.

SA. Indirect Referencing.

(The statement.s startinq at RULE' would presumably specify
some process to be p~rformed on one-character words, whi.ch
would l:e different from the process at RUI.E2 for two
character ~ords, etc.) The same effect could be achieved by
writing

. . ($('RULE' SIZE(WORD»}

Note that some device such as the concatenation of an
alphabetic literal is necessary ~n the above example, sinc~
one may not write simply

or
: ($N)

. . ($SIZg (WORD))

. These go-tots would send control to labels of the form 1, 2f
J, etc., and such labels do not exist since they may not be
written in the program. Indirect referencing within the go
·to is often useful, but is more limited than indi~ect
referencinq within the rule: the string designatinq a label
must always he in identifier form and a corresponding label
must exist in the prog~am text in crder for the transfpr to
be taken; on the other hano, the strinq oesignatinq the name
of a variable may be composed of any characters, since any
string nam~s a variable, and there is no ne~~ for that
variable to have been used in any prior statement of the
program ..

70

6A. PROGR~MMER-DEFINFD PROCEDURES

In addition to supplying a nurober of useful predefined
procedurest Snohol provides a mechanism which allows a
program~er to define any procedure of his own choosing. This
perrrits th~ task which a program is to perform to he
expressed as a series of separate processes of varying
degrees of complexity, each of which is defined as a
procedure. The more complex procedures may consist mainly of
calls to simpler procedures which have been defined earlier;
many of these procedures, in turn, ~ill make use of th~
predefined procedures supplied by thf~ Snobol system. Onc(~

the necessary procedures have been wcitten~ the writing of a
program to perform some task is simplified since it can m~ke
reference to the h iqhest-level, rnos-t power fu 1 proc~dnres.

Program texts written in this. fashion are easier to writp
(an1 incidentally easier to read) becaUse their orqanization
reflects the structure of the process embodied in the
program.

]~ii!lillg __ ~_R£Q£~du.£Q.!. A definit10n of a new proce:1urp
requires tva parts: first, the name of the procedure being
defined and.the form of future references to that procedu~p
must be d(~clar8d to the Snobol system; socond, a d?"~scr.irtion

(in Snobol) of what the proc~~ure is to do must he provi~e~,
which will be executed each time t.he procecll1re is call(~d.

1he declaration of a programmpr-defincd procedure i~
acccmplished by execLlt.ing a predefined procedure, DF.FIN~ 0 ,
which in its simplest for:m has a sinqle arql1ment consisti.nq
of a string which is a sample r.eference to the procedure.
FOI instance

declares a new procedur~, REPEAl!' (), ~hich is def ined t.o ha Vp

two arguments, represented by the names N an~ OBJECT. The
description of what thp REPEA~() procedurp is to do can be
anything expressible in Snobol. If its purpose is to
concatenate some object to itself n times, this might he
expressed as follows.

TIEP'EAT N = GT(N,O) N- 1
REPEAT = REPEAT OBJEC~ . .

F (RET UR N)
(R EP EAT)

This section of proqram text, termed a "proc~dllr.~
body," is written in accordance with a numbpr of convention~)
which are the subject 0f the following sections of this
chaptp.T:. It is iclp.ntifie~ as th~ proce<1urc boriy for thp.
n E P E 1\ T () pro c H d u r (;~ by t. h P. label _ R J~ PEA", w hie h hast he sa rn (~

6A. Programmer-defined Procedures 71

form as the name of the procedure. The names ~ and OBJECT
are used both in' the declaration anrt in the procedure body
to represent the two arquments with which the REPEAT()
proce~ure will te called. ~he value of N indicat~s how many
times the valu~ of OBJECT is to be concatenated to its~lf to
for m t he val ue to be retu rned by thfj R EPEA T () proceo ure.

The first statement of the procedure body specifies
that the value of N is to be decremented by one if it is
still greater than zero; the second statempnt specifies that
the value of OBJEC~ is to be concatenated to the value of
REPEAT, initially null, every time N is successfully
decremented. When the value of N becomes zero, then the
desired number of concatenations have been performea and thp
failure transfer to RETURN is taken: this represents not any
fixed location in the program, but rather a request to th0
Snobol system to return to whatever statement contained the
call to the REP};l\T () procedur.e. 'rhe REPEAT() pr.oc~~d\lr.e
ret urn s a 5 its val u e the c 11 r r en t val u e 0 f the v a ria b 1 e n a m CHl

n E P FAT (a g a i n Ii it h t b e sam e for mas ttl e It a m e 0 f t h C"

procedure) when th(~ transfer to RE'TUt1N is taken.

Oncca the REPEA,rr 0 p:cocA(lure has been declared anCi <l

procE~ure body provided for it, then it may be invoked by a
prcc€~ure refer0nce anywhere in the program text. For
instance r one miqht write the assiqnment rule

OUTPUT = REPEAT(10,'X')

to ~pecify that a string of 10 X·s is to bl~ printe(l.

The REPE~T() proce~ure provides a simpler method of
pro due in g the va r yin q 1 eng t h 's t. r in 9 s n e p d (! rl for. for mat tin q
t han the sc hem e in vol vi n q in d ire c t ref ere n c i Il g d l~ S cr i b ed i n
Chapter 5. Here it is not necBssary to store values with a
set of successively-named variables in advance of their use
in croer- to insure that a st.r.ing of. the right length will he
available; rather the needed string is generatedhy the
procedure call. Usinq REPE~'l' 0, the alter-nate records of (\
data group may be printed in a two-coinron format, sttch that.
the first reccrd of a pair is print~d startin\f' in column 1
and thA second starting in a column which is the value of.N,
wit has u f fie i e n t. n n m b pro f the for m (l t tin 9 chaT act. e r w hie ~l
is the valu0 of CH printp.d in between. Tho following proryr.am
s e g rr e n t may b ~~ u S(~ ~ for t. hat pur: p () S I" ..

LOOP REC1 :::: TRIM (INPtl'!') .. F(DONF.) ..
REC? :::: 11 n I M (I N P lJ T) P (F.RRnR)
OtJTP:JT -. RP.C1 nr.PEJ,T ((N '. 1) S I Z I: (R r. C 1) , C It) REC2

+ . (LOOP) .

6A. Programmer-dAfined Procedures 12

since patt€rns may be concatenated to one another as
well as strings, the REPEAT() procedure may take a pattern
as its second argument and will then return a pattern as its
value. For example, the pattern-matching rule

WORD REPEAT(3,ANI(VOWELS» : ·s (YES3)

will succeed and send control to YES) if the value of WORD
contains at least three contiguous vowels.

Procedure names may be defin~d more than once in a
program anrl even the names of pred9fined procedures may he
redefined (although there is seldom any rAason for doinq
so). In each case, it is the most recent definition which
establishes the current meaning of the procedure name, an~

any preceding definition is lost.

Ih~ __ ~~EI!~ll __ RIQ£f1Y£~~ The prerlHfined procedurA
DEFINE() will accept two arguments, hath strings. The basic
ferm of t.he first argument consists of the namp. of the
proceduJ:e being np.fined followed 1:'y a parenthesizecl li~.;t. of
names of "formal variables" (or n~lJmmy variables n) which ar0
used in the pLaced ure hod y to re prt'-)sent the at'qn ment s "wi' i r. h
which the proce~ure will be called; in the exampl~ above,
DEFIWE ('REPEAT (N,013.JECT)·), the r[oGE:~dure R1-~PEA1' () ir;
declared with the two formal variables N and OBJECT.

Procedure names and names of formal variables may he
freely invented by the programmer, subject to the usual
restriction that they' be identifiers. They may be the sarnA
as names used elsewhere in the program text for other
purFoses, because all the names in the first argument of the
DEF TNt: () procedur.e are used· t ina specia 1 wa y: ~Then a
procedure is called, these names arp all ma~e to refer to
new variables, "int.ernal" to th~ procedure call, which are
distinct from the varia1:;les to which the names pr.eviously
referred; they will continu~ to refer to thesp internal
variables until a return from the ~rocedure call is made.
(~his mechanism will bp descrited in detail in followin1
sections'of this chapter.) "It t.urns out to be nS0ful to havp.
other names which are made to refer to internal variables
for the duration of each procedure call; these names of
additional internal variables, if used, are writt~n
imme(1iatp.ly following the closing pat'p.nthesi.s of th~ formal
va ria b 1 eli. s t. • A de fin i t. 1. 0 n 0 f a P n IN T () pro C G (1 \l r e, wit i c h
h~s thrp.o arldi .. tional int.ernal var.it1hles, cotlld he

D F. F I l~ F. (' P 11 ! NT (N, N 1\ ME) M" 1,.; , P')

The iriternal variables M, W, an~ p could th~n hR us~~ within

6A. Programmer-defined Procedures 13

the procedure budy where they might be assigned some valueR,
such as tallies, needed only during execution of thp
procedure call. Notice that the list of additional internal
variables is an extension of the string which is the first
argument; no embedded blanks are permitted in this string.
There is no limit to the number of formal variables and
additional internal variables with which a procedure may he
~eclar€d.

It is also possible to declare a procedure with no
formal variables, as in

DEFINE('BFCORDS()')

if the process which the procedure is to perform is not
dependent on an argument list. The RECORDS() procedure, for
examrle, might be used to count all recor~s in a group of
data read from the input fi1e$ Even though there is no
argument, the pair of empty parentheses must still appear,
both in the declaration and in every reference to the
procedure in a program text.

The second argument of the DEFINEO proce(!ure is a
string which is the label of a statement in the procedure
body which is to be executed first whenever the procedur~ is
called; this label is termed the "entry label. It If t.he
seccnd argument is null or missing (and thus null by
default), as it has b~en in all previous examples, the flntry
label is taken to have the same form as the procedure name.
Thus the declaration'

DEFINE('RECORDS()','FECORDS')
.1

would have precisely the same effect as the prece~ing
examrle, of defininq the entry label to be RECORDS.

Mor.e commonly, the second argumen t of DEPINE () is usen
to insure that the entry label for a procenurebody is
different from any label which may happen to appear
elsewher~ in the program text, since all the labels of a
program must be unique. Thus the convention may he adopt~1
of torming all entry lab~ls by preceding the name of the
procedure with the string PR.; the evaluation rule

DEFINE (t RECORDS ()',' FR. RECORDS')

de¢lares that the entry label for RECORDS() is the label
PR.RECORDS, and thR first stat~mpnt to he executed in the
procerlurf.~ body fat' t.he' RECORDS () rroC(-dUrR mnst bear tha t
label. (The labels of the other statements of a proce~urA

6A. Programreer-defined Procedures 14

body should also be protected from conflicts by adopting
scme similar conventions.)

The DEFINE() procedure itself returns the null value
when it is executed.

J:!Q~.Q!!~_~21i~§.:.. A DEFINE 0 procedure declares to thp.
Snobol. system the name of a programmer-defined procedure,
the names of its formal variables, additional internal
var.iables, and its entry label, tnt gives no indication of
its effect; that information is supplied by a procedure
body, which consists of a seri~s of Snohal ~tatements to he
executed wh~never the procedure is invoked. A procedure ho~y
may consist of any numbe~ of Snohol state~ents, one of which
(not necessarily the first) must have the label declared by
the DEFINE () as t.he entry label for this pr.oceilllt:'e. The
statements of a procedure body may he of any kind; they may
include procedure declarations and references to other
procedures, or even to the proce(!ure being nefined$ A
procedure whose hody contains a reference to itself is
termed a "recursive procedure"; exa~ples of recursivp
procedures may be found in Chapter 8~

The statements of a procedure body should he executed
only in response to a procedure c~ll, so procedure bodies
shculd be located within a Snobol ptoqram text in such a way
as to be outside·the flow of control of t.ho "main progr.am";
the main program consists of all statements except those of
procedure bodies.

The specification of a procedure's action is made
general rather than specific by using the names of the
formal variables within 'the d procedure body. In the
definition of the COUN~() procedure shown helow, the formal
variables PAT and LINE are used to represent the many
differp.nt arguments with which this procedure may be called
on different occasions.

DEFINE ('COUNT (PAT,LINE)
PR.CCUNT LINE PAT = NULL

COUNT = COUNT + 1
END .COUNT

, , , P n • CO UN T I) : (r~ N D. ·c 0 TJ NT)

. . F (RETURN)
(PR.COUNT)

The first statement of the procedure bo~y specifies
that the value of the second argument LINE is to be searched
for an instance of the first argument PAT; the secon~
st~tement of the proce~ure body increments the value of
COUNT each time d pattern is found an~ sends control back to
the first statement to institute anoth~r search. COUNT() is
thus ~enerally defined as a procedure which counts the

6A. Programmer-defined Procedures 1S

number of occurrences of some pattern ~ithin some string;
infcrmation as to what pattern and what string are to he
used will be supplied to the procedure body by the arguments
each time the procedure is called. (Notice ho\(the procedure
body has been removed from the flow of control of thfJ inc-tin
program by the unconditional transfer following its DEFINE()
statement ..)

!he internal variable named COUNT, rather than any
other variable, is assigned the r~sult because ot a
convention which exists for the returning of values: when a
success return from a procedure is taken, the last value
assignea wi~hin the procedure body to the variable whose
name is the same as that of the prccedure is returned as the
value cf t.he procedure call. If that ~aLiable, which is
t.errn(~n the "result variable," is assigned no vallle dnrinq
the execution of the procedure body, the null value is
ret.l.1t'n€d. A value of any datatype may be returned as tlH~

value of a procedure call •

.Ih~_E~.!Jll:l1§_B£!!J.!.E].I._B]]TQ]B.-«._~nLI]:g!l!f:li.!. Th e log i ca 1
end of ~ proce~ure body is signalled by a qo-to specifyinq a
tra l1sf.Pl: to RETURN (the staniia L\1 success return), to NHE1~nH N
(ancther success return, for returning a variable r~thec
than a valu~), or to FRETun~ (th~ failure r~turn). Thesf!
transfers have spec1al system definitions and constitute
requests to the Snobol system to return control to th0
stat.ement from which the procedure was callen. Any nnmbc:!.' of
statements in a proceiiure body may contain tran5fpr~ to
RE~UBN, NRETURN, or FR~TURN; the first such transfer to hp
executed ends execution of the procedure call. If either
success return (LU~TnRN or NRBrrURN) is execut.eii, the valuE~ of
the r@sult variable is returned as the value of th~
procedure call and execution of the calling statempnt.
resumes at the point of the call: if the failure return
FRE!URN is executed, no value is returned but control is
sent directly to the go-to of the callinq statement wher~
the failure transfer will b~ taken.

There is no rAstriction aqainst using RETUrN, NRE~ORN,
or FRETURN as the label of any statement within the proqrarn
text, but if this is rlone the special system aefinition of
that return is lost. Hence RETURN, NRETURN, and FRE':'fJRN must
not be used as labels wi.t.hin any proqram which employs th(~m
to ~eturn from a programmer-defined proce~ure, or RIse a
t ran s fer toR E 'I' n R N, for e x amp 1 e , f I' 0 map roc c: (1 u r e bo d y 'II i 11
send control not to the calling statement but to th~
statement lahellen nETURN.

6A. Ptcgrammer-defined Procedur~s 76

The example below presents ancther way to write the
COUNT{) procedure, in which the procedure body includes both
RET Ul~ Nand 1;' RET 0 R N t ran sf e r s • (An e x amp leo f apr 0 C e d u r e
which uses NBETURN may be found toward the end of this
chapter.) As before, the procedure is desigued to count the
number of occurrences of some pattern within some string;
here, however, if no instances of the pattern are foun~~ the
procedure does an FRETURN, causing failure of the rule from
which it was called, rather than returning the null valuc_

PR.CCUNT

OUT. COUNT
END.COUNT

DEFINE ('COUNT (PAT,LINE)', 'PR.COUNT') : (FND.COUNT)
LINE P~T = NutL : F(OUT.COUNT)
COUNT = CCUNT + 1 : (PR. COtJNT)
IDENT (COUNT, NULL) S (FRETURN) F (RETURN)

As in t he earl ier nef ini tion of COUNT 0, the count.ing
IOOf is executed until the pattern match fails. When this
hapfens, however, control is sent to the statement labelled
·OOT.COUNT which tests COUNT to see whether or not it has
been incremented. If it has not if the pattern match
failed on the first attempt -- then COUNT has a null value,
the test will sl1ccp.ed, and the procedure wi 11 do an F''Ry~rrtJi~N

causing ~ailure of the procedure call; if COUNT is non-null,
then the procedure will do a RETURN, returning the value of
COUNT as the value of the pr6cedure call. Often, as here, a
success transfer may lead to an FRETURN, and a failure
transfer to a RETURN.

NUMBERA = COUNT('A',RECORD) . . F{NONE)

is executed, the procedure call must be processed before the
assignroent can take place; hence, execution of the callinq
statement is temporarily suspended while the Snobol system
executes the procedure call.

To carry out the call, the ~nohol system begins by
taking several automatic actions. First the names in the
first argument of the DEFINE{) statement arp made to refpr
to new variables which are internal to this call of the
procedure. The procedure name now refers to th~ internal
result variable, and the formal variable names rpfpr to
internal formal variables~ Next the internal variables to
which thes0 naces now refer are assigned the values need~~
for the execution of this call: the rpsult variable (COnNT
in this case) is assigned the null value, the formal
variablen arc assigned the values of thAir co~respondinq
arguments (in this example, the formal variable P.~T is

6A. Prcgrammer~oefined Procedures. 77

assigned the character A and the for~al variable LINE is
assiqned the value of the variable RECORD). Since there is
no way to make reference to a vari~ble except by u~inq its
name, this means that the variables formerly referred to by
the names COUNT, PAT, and LINE are inaccessible during the
execution of this procedure call.

After this preparation is completed, control is spnt to
the entry lab~l and execution of the procedure body beginso
~he action of the procedure is carried out using th~ values
of the arquments provided to the procedure call~ since these
have just been assigned as the values of the formal
variables. The statements of the prccedure body are execute~
in the usual way, until a request for the system to do a
return is encountere~.

Any return automatically reverses the actions of t.he
preparation process: the names of the procedure and of the
for~al vari~bles are made to refer to the same variables
which they named iust before the procedure call ~as
executed, and thus the internal variables, havinq served
their purpose, become in turn inaccessible. The flow of
control ,=€verts t.O the calling stateMent. -- on a RETURN, to
the Foint of the procedure call; on an FRETURN, to the ga
to.

.T.h~-R~~fi§i.n.SL_Qf_~!gl!.m£..Q!'§.!. When a proced ure i~ invoke(l (I

the values of the arguments in the procedllre reference ar(~

said to be "passed" to become the values of t he forma 1
vari.ables. The values of the arguments ar.~ assiqn(~d to thCl
corrcsFonding formal variablp.s on a one-to-one, left-to
riqht basis. Any procedur~, predp.fined or proqramm~r
d~fined, may be called with more or fewer arquments then its
~efinition provides for. Missing arguments are taken to hav~
the null value; ~xtra arguments are evaluated before the
procedure call is executed, but are otherwise ignored.

In Snobol, all arguments are passed "by value"; that
is, the arquments are evaluated and the resultinq values are
passed to the procedure body. (In fact., the mechanism for
passinq arguments has the same effect as if a Snohol
assiqnment rule were execut~d, with the formal variable on
the left side and the argument on the right.) This method of
passing arguments assures that the values of variablps in
the argument.s are not affected by execution of the procedurn
call. For instance, in the call

NtlMBER}\ = COUNT (' A', RECORD) F(NONE)

it is the v~lue of the variahle R~cnRD which is passed a~

6A. Programmer-defined procedures 78

the value of the second ar9ument~ The procedure will use,
not the va ri a b 1. eRE COR D , . but 0 n 1 y the in t ern al for mal
variable LINE which has been assigned the value of RECORD at
the time of the call. !hus the value of RECORD is always the
same befor(~ and after a call of the COUN-r 0 procedure is
execut€d ..

The-, arquments used in a procedure refer.enc.e .may be an y
expre~sions having values which the procedure body will
handle properly. A call to COUNT() such as in the statement

NUMBERV = COUNT(ANY('~EIOU') ,RECORD) : F (NONE)

woul~ pass the pattern returned as the value of the
procedure call ANY('AEIOU') to he the value of the variable
PAT. Since PA~ is used in the pattern part of a statement, a
pattern value is appropriate and the number of vowels within
the value of RECORD will be returned as the value of this
c a 11 tot he CO U NT () pro CPo d u r e •

~'hile to,he fiL'st formal variable," P~T, may acquire
either a string or a pattern value, the second formal
variable, LINE, may acquire only a string as valu~, since it
is us~d within the procedure body as a string reference.
Execution of a proce~urc call of the form

NUMBERV = COUNT(RECORD,ANY('AEIOU'» : F (NONE)

(in which the programmer has presumably forgotten thp
correct order of the arguments) will pass the formal
variable LINE a pattern value; when the procedure body is
entered an execution-time error will result, since the first
field in a replacement rule cannot be a pattern.

Additional Internal Variables. The names of variables
which-are-to-be-intcrnaI-to-a-proc€dure call (in addition to
the result variable and any formal variable~) are also made
to refer to distinct internal variables at each procedur.e
call, thus making the variables previously referred to by
those names t~mporarily inaccessible; the names are restorp1
to their former significance when a return from th~

procedure call is taken. The internal variables which they
name are initially null at every call of the procedure just
like the result variabl~. There are thus two possihle
reasons for declaring ad~itional internal variables: to
prevent th~ir names from conflictinq with names used
elsewhere for other purposes, and to take advantage of the
autcmatic null i.nitialization at each call. Any number of
additicnal internal variables may be declared by writinq
their names in the first argument of a DEFINE' () procedure.

6A. Programmer-defined Procedures 79

As an example of the usefulness of additional intprnal
var ia bles, consider t he LONGER () proc~d u re which employ s
four of them. 1his procedure compares the two strings given
as the values of its first two arguments to det~rmine which
contains the lcnqer sequence of the citacac\..(:!rs spHcifieo by
the value of its third argument; it returns as its value the
string containing the longer sequence. If the size of th0
longest sequence in hoth strinqs is the same, then hy
convention the first string is returned as th3 value of th~
prccedure call; if neither string contains a character qiven
by the third argument, a transfer to FRETURN is taken
causing failure of the procedure call. Thus execution of the
assignment statement

OUTPUT = LONGER('HILARIOOS','TREACHEROUS',tAE!OU'}
+ : F (N 0 VOW E 1.)

would cause the string HILARIOUS to be printed since its
longest vowel sequence is longer than any vowel sequencf? in
the string TRE~CHEROUS.

nEFINE('LONGER(S',S2,SRQ)11,T2,S~VE,LONGEST',
+ , 1:" R • 1. 0 N G '£ B -) : (END. I, (HH'; F. R)
* MAKE COPIES OF THF ~wo STRINGS 10 BE COMPARED
PR.LONGER ~, - 51

'r2 = 52
* FIND THE LONGnST SEQUENCE IN THE FIRST gTRING
* ASSIGN ITS SIZE TO THE INTRRNJL VARr~BLE NAMED LONGEST
T 1 • LeN G E R '7' 1 SPA N (S E Q) • S 1\ V E = NUL L : F (1' 2 • L 0 ~'l C~ ~ R)

LONGES'1' = GT (SIZE (SAVE) f LONGFST) SIZE (SA VB)
+ : (T1.LONGER)
* SEE IF THERE IS A SEQUENCE IN THE SECOND STRING
*' WHICH IS LeNGER THAN THE LONGEST SEQ TN THE 1 ST STRIUG
* IF SO, ASSIGN THE SECOND STRING AS THE VALUE OF TH~

* RESULT VARIABLE ~ND RETURN
T2. LeNGER '1'2 SPAN (SEO) • Sl'.VE ::: NOLL : P (au'!'. LONGER)

LONGER = GT (SIZE (SAVE) , lONGEST) S2
+
* IF NO SEQUENCE WAS
* OTHERWI SF. FE1.'UR N
OUT. LONGER LOHGER =
+
END.LONGER

S (RE"rURN) F (T2. tONG F.R)
FOUND IN EITH~R STRING, FAIL
THE FIRSTSTFING AS VALUE Of THE CALL
DIFFER (SAVE, NULL) 51

: S(RETtJRN) F(FRETURN)

this procedure uses four additional internal variables
named T1, T2, S}\VE, and. LOiH-;EST. T1 a.nd T2 are ncoclpd
becanse the method used for d~termininq the lonqest vowol
sequence in S1 (ln~ ~7. fleletes (~ach vO'.-4pl riPqupnce which is
foun~. Since thA original strings must he prescrve~ to hp
returned as the value of thA procedure call, the replacement

.6A. Programmer-defined Procedures 80

statem~nts T1.tONGER and ~2.LONGER use the variables T1 an~
T2 rather than S1 and 52, allowing the values of .51 and 52
to remain unchanged. The internal variable SAVE is assigned
each vowel sequence which is found. The fact that SAVE is
given the null value initially allows the test in the
statement labelled OUT.LONGER to dete~mine whether or not
any vowel sequences have been found; if SAVE still has its
null value, then neither string contains avow.eland an
FRE1URN is taken. The internal variable LONGEST is use~ to
keep track of the size of th~ currently longest vowel
sequence as each is successively found within the first
string. When the determination of the size of the lonqest
sequence has been completed, this number is then compared
with ~he size of each vowel sequence as it is found in the
seccnd string until either a lonqet s~quence is found (in
which case the second string is returned as the value of the
procedure call) oc until all vowel sequences have been
considered (in which case either the first string is
returned or failure is signalled).

Since in this procedure body the intetnal variables T1
and T2 ar€ assiqncd the values of the arguments as soon as
the procedure body is entered, the only reason for declarinq
them to be internal is to prevent conflicts with other uses
of the names T1 and T2. The internal variables SAVE an~
LONGEST are similarly protected, but also take advantage of
the fact that th~y are initialized to null each time the
LONGEF(} procedure is called.

Note that the us~ of the additional internal variable
LONGEST is not really necessary since the result variable
LeNGER may be substituted for it wherever it occurs. Result
variables have exactly thp. properties of artditional int,ernal
variables until a success transfer is taken, so they are
otten assiqned temporary values which are needed durinq the
processing of a prOCEdure call. When the final value of a
call has been determined, it can then be assigned to the
result variable ann a return made to the statement in which
the procedure call occurren.

B~.fgt£.!l£2.§_t2_1:!.!.tfIll~1_Y~ri.~.Qlp..§~ The principle of a
programmec-defined Frccedure is that of a "sub-prog&:am,"
independent of the program with which it is used; it
receives valu0s throuqh its arquments, performs some pro~cs5
usinq those values, and.returns the result. If tempocary
values arp needed, the procedure assigns them to additional
internal variablps, so that it avoids changinq th~ values of.
any variables not internal to itself, i.e., those WhOSR
names. do not appear ~ithin the first argument of th~
DEFINE() statement for the proce~ure.

61-.. Prcgrammer-defilled Frocedures 81

Procp.dures written in such a way as to make' reference
to no values other than these of their internal variables
(or to literals within their own bod1es), and which assiqn
values only to their own internal variables, are desirable
for many reasons. They are easy tc move from proqram to
program sillce they wi.ll operate correctly regardless of
their environment, and they are easy to use because they can
influence that environment only through the result which
they return (incluclinq, of course, the possible "result" of
failinq) •

At the same time, there are sometimes good reasons for
relaxing this discipline, in pur~uit of the same goals for
which procedures are written in the first place: to make
programs easier to write and clearer to read. One example of
such a motivation has already ·como up in some of thp
examrles; in the procedure body fer the LOtGER() procedure,
fot example, the statement

T1.LCNG'PR T1 SPAN('AEIOU') SAVE = NULL: F(T2.LONGRR)

occurs. Here NOLL is the name cf a variable which is
external to the call of the LONGRR() procedure: since tho
name NOLL is not included in its declaration, it receives no
Bpecial treatment when this procedure is called; it
continu~s to refer to the same variable before, durinq, an~
after. a call to LeNGER (). Thus, if J.,ONGER 0 were t.o be
called from a program which had assigned some non-null valu0
to the variable named NULL, it would not work as intended.

In this case there are several ways to restore thQ
independence of the LONGER () proce111re; the i(1entif ier NOLI.
can be repla~ed in its hody by a literal null string (two
adjacent quotation marks), 0[' by nothinq, or the name NTlLt
can te declared as naming an additional internal variable
for L [) N G B R 0, t h usa s sur. in 9 t hat NUL I. wi 11 re f P. '(' to a
variable initialized to the null value' each timp. LONr,RR () is
called. For this procedure such precautions seem extreme,
but they miaht make sense if tONGER() were a much mor~
comrlicated procedure, and were intended for use hy people
ether than its Frogrammer.

As another motivation for making reference to external
variables, consider r} proqr~mmer-defi.ned test proccdut:'(\
which rlctermines whether or not th~ string given as its
argument is a palindr'Jme, that i.s, whether it reads tho satnc-!
f['cm left to right as from right to left. The complete
pr oqr fl m prose nt.eo below use s the PA LI N () proced u re to
perform this test. The program reads"all trimmed reccr~s of
a qroup of data but prints only.those which are palindromAs.

6A. Programmer-defined Procedures

* PALINDROME-FI~D1NG PROGRA~

* * SET UP pnTTERN NEFDRD BY THE PAIIN(l PROCEDURE
* ASSIGN IT 10 A MAIN-PROGRAM VARIABLE

P 1\ L. PAT . -: P 0 S (O) LEN (1) 1; C H R TAB (i). CAN D '" C H
DEPINE{'PALIN{CAND)CH', cPR. PALIN'): (END. PALIN)

* * IF CANDIDATE NOW CONSISTS OF 1 OR 0 CHARACTERS, SUCCEED
* OTHERWIS~ APPLY THE PATTERN AGAIN
PRePALIN LE{SIZE(CAND),1)

END. PALIN

* READ

CAN D P .~ L • PAT . .

RECORD = TRIM(INPUT)

: S(RETURN)
S (P R • P A L1 N) F (F RE TU R N)

. .
PRINT OUTPUT = PALIN(RECORD) RECORD:

F (END)
(READ)

.END

output from this program could he strings of the form

HANNAH
I
FOTeR

NOON
Sl\Gl\S

* 103595301
YREKAEAKERY
><> <><> <><

82

The PAtIN() procedure uses virtually the same pattern
as that shown at the end of Chapter 4 for finding wor~s with
i~entical first and last characters; the pattern is chanqe~
only by the re-assiqnment of the substrinq matched by
RTAE(1) to the variable named CAND. Thus, on each ite~ation
of the loop the string being searched is shortened by the
loss of its first and last characters;·a new set of first
and last characters is then testen for ioent.ity.Th~ loop is
execut€~ until either (1, the end characters being teste~
are found to be different, upon which an FRETURN is taken
signifying that the string is not a palindrome, or (2) the
size of the string is reduced to zero or one, in which case
a RETUEN is taken since this indicates that all characters
have ~een t~sted and that the strin1 is a palin~romp. Not~
that the rule in the statement labelled PR.PALTN will
sue c e e (1 i rn m e d i at ply i f the s i z e 0 f the a [' gum (~ n tis ~ i t h () ['
zero or on~r mpaninq that strinqs of one or no characters
are pal i n d rom e s by d e f in i t. ion. The PAL I N 0 P r () c e ~ u n~ ret. u t: n s
the null value on 5ucces~;, since t.he ·result varlablt-~ PALIN
is' not assigned a value within the procedure body.

6A. Programmer-defined Proct:~(1ur(~s

Here the pattern on \lhich Pfl.T,TN 0 relies is COHstrllcte~
once, in the st a tem~ n t. jus t a hove the DEP INF (), an d assign ~(l
to the variable P.1\L. PAT. The reason for doing this is clear:
since inte~nal variahles are intern~l to a single call of a
proc~dure and th0ir v~lucs never pe~~i~t b~t~ecn calls, if
P A I .. P A. T w e ~ e ~ (~c 1 a r <: d to bet h ~ n a m e 0 f ;1 n a rl nit ion t=\ 1
internal variahle of PAlIN () then the pat.tern assiqnmp.nt
would have to bo mov~d into the prccedure body, and thus th0
pat1-ern ~fo\lld havp to be ccnstructGd anew at each call of
the PA.1.IN () procec1ur(l. -- a 5ubstanti;tl amount of unnecessar.y
effel: t.

It 1. s t r net hat. P 1\ LIN () \<i i. i 1 r; 0 ~: W 0 r k p LOP E~ r 1 y i f t h ('
pro 9 ram c a 11 i n q i t. ina d v 0 r t. ant 1 y a ~-) s 1. g n sad iff (-~ re n t v (1 1 u e
tot he va ria b 1 t~ P A 1.. P 1\ 'T'. It 1:1 i q 11 t s C l~ Iii t hat t his kin d 0 f
error coul(l l:(~ avoided by .re~·!r.l.tinq P'-IT.IN 0 to accept tiH:
p t3. t. t \:' rna :-, Cl not h (~ t' a r- qUIll e nt, :r at i H~ r. "': 11 a n In (~ r f~ 1 Y us in q t b p

value of an extc!"Hal variabll':?; but that tur.ns ont. rlot to bp
true. }\ cal!. to SUC!I a re-\.;ri.ttcn P}\LIN (} procedure \\louici h0
sOIDPthing like

P 11 1.1 N (PO S (() LEN (l) f, C If RT A B (1) '. C 1\ ~'t~ * en , IUX: rHn))

!\ par: t. f 1: 0:'1 t h p bot h (\ 1: a f w r i. tin q t. h n i n v ;\ r i it n t r l~ t t (! ~: 1\) n
e v (~ L Y \.' r! r n \~ (~ nee t.:) P T\ L T 11 () I t h p n d t t (! r n i.~, one (.) a c;; \ i .. n hpj n q
con!::·tr\.lct.(~d at. each cdll or: PAtI!~() ~- in t.h(~ 0'ril.lt~:ition 0+:

the a r g U In e nt, rat h ;::~ r t han wit h i nth cpr 0 c.:: r1 u r p bod Y • 'f h 0

calli n q pro q r a 1'1 can a'l 0 i it t h ~ r 0 p E~ ~ t (1 d C'V n 1 u at i 011 0 f t h 0.

Pdt t () r n b y (~ x e cut i n <J the ass i 0 n w 0 n t s tat. P !l1 e n t

PAL.P.~T = POS(O) LEN(1) r, CH R'1'I\B(l} • CAND *CH

and thpn making refGrences to thp procedure in th~ form

P.~!'IN (PAt .. PAT, RECORD) .. . J;"' (NO PAL I !J~

Rut now, just as beior.E, the callinq progr.al'1 is respon~:;ihlp
for ass II r i n q t hat PAL. P 1\ :r has the c (') t'r ec t val u ~~ a t t. h i.~ tim 0.

of t.he call,. So the o['igin111 PALIN() proC(~dUr0 cannot hp
imp r 0 v P. rj \l po n i n t. h L-; Hay ran (1 h tl S t h E~ ;1. (i (1 i t i 0 Il a 1 I\I ~ r ito f
['equirinq only one (1r:qllm~~nt insto.-ul of two .. 'i'hp c()nc:lu;·~ion
t. c h e d r il w n i !:; t h il tap c1 t t p r n \l S e (1 b yap roc 0r 1 u r (~ m u ~-; t
pith",r. he (';('nstrllctp!l (It each procc rinr0 call, or (~ls(~ must
he <lS~-;iql}(\d i'\S thp V,]11l0 at ;1n 0xt('Irni1} 'Jr1riablp ~:;() th:\t: it
will l.),~ av 111 Lt 1.. 11' f(l1~ \lSf\ hy r p p(',ltc' l d pr<H~('!l\lr(~ (~dl1~1"

N () tic, I , h () \1/ P V I ' Y', II 0 W t h (' p,' t t- ('1" n w hie h 1. !'~ t h (. val \l (' n f'

the m,lin--I)J:oqr~\lll var'ic\blp rAI..p!\'f CdIlCr\\l!:if) a~;~.~i.qnmPJlt:; to
tht; j nt f'["n;\ 1 fOI'n.l,'1·! v,}!'i i1 hle nillnCr~ C,TI, NJ) J nIl tr) tit"
a (1 (1 i t i f) n <1} i n t: p rna 1. v a r i ~ h 1 {') . n (lITH~ d elf w i. t h i. nth 0. P 1\ L T N ()

6A. Programmer-defined Procedures 84

proced ure. The pa ttern PAL e. PAT calls for i mme~ ia t. ~
assignment to whatever variable is currently rp.ferred to by
the name CH, and conditional assiqnment to whatever variable
is currently r~ferred to by the name CAND -- it specifi~s
nothing about which variablestLose must be. If PAL~PAT is
used in a statement of the main proqram, then it will cause
assignments to the main-program Yatiables named CH and CA~p.
At a call of the PALIN() pro~edur€, though, those two names
are made to refer to differ~nt variables* internal to the
proceoure call; so if PAL.PAT is used (as above) in a
statement within the hody of PAtIN()" it will cause
assignments to the two variables internal to the call.

Side-effect.s of Procedllrf~s. "lust ·as there are sometimes
re as 0 ns--for.--making --r~fe-rence- tOt h e val u e 5 0 f ex: t e t" n a 1
variables, sd are there reasons for altering their values a~
well. A procedure call which alters the value of a variable
not in t e t= n a 1 tot he c all iss aid to h a ve a n sid e- C:-~ f f (~C t. "
This terminology exists because of the presumption that the
main effect of a procedure is to retul:n a value ot" to direct.
the flow of control; in fact, howevor, procedures at~ oft?n
written sololy for the purpose of producing side-effects.

One reason for defining a procedure which produces a
side-effect is to keep some sort of record of occurr~nces
inside and outside of procedure calls. For instance, the
COUNT() procedure presented earlier coul~ be chanqed so that
in addition to its former action of returning as its v~lue
the number of instances of some pattern within some strin~,
it also increments an external counter by that number. This
new version of COUNT(), TCOONT() * could be written as
follcws.

DEFINE ('TCOUWr (PA'T',L!NE) ',' PR.TCQUN'lq) (END.TCOHI~T)

P R • TeO U N T LIN EPA T = N U I.l : F (0 U T • T C OU NT)
TCOUNT = TCOlJNT + , : (PR.TCOO~")

OU'I.TCCUNT TALLY -- TALLY + TCOUNT ': (RETURN)
END~TCCUNT

Aside from the systematic replacement of COUNT by
TCOUNT, this proceonre d~fini tion is the same as t.ha. t. of tht?
first versi6n of COUNT(), ~xcept that before returning the
procedure increments the value of the external variable
TALlY by the value of the result variable. Since TALLY is
not an internal variable, its value can be increase~

thrcughouta-proqram over r~peated calls to TCOUNT{), an~
thus represent a total of the results 6f many invoc~tions of
th~t procedurp; for that matter, TALLY miqht ~lso he
incremcnte~ by other assignments iri the main program or hy
calls to other procedures as well.

611.. Prcqramm(~r-defiT!ed Frocedures B5

The inclusion of th~ side-~ffect involving TALLY
s pee j ali z est h ~ C () H NT () p t" 0 C e d u r 0 ~ and t h C~ ~:; am ern co r d co \'I 1 r1
be kept without recourse to side-eff~cts by keppinq the
tally entirely in the main program, a.s in the s0gm~nt

RESULT ==

TALT.J Y =
COUNT('A'fRECORD)

TJl.LLY .. RF.StlLrr

and so forth. But that requires that the tally-incrementinq
statempnt be written once for evnry reference to thp
procedure; if there are many references t.o COHN1'(} in a
program, thpn the whole t~xt can he short0n0~ consi~er~bly
by v,' r i tin q t 11 (~ s tat e men t ~l hie h inc l' (~ m 0. n t n 'T' r~ L L Y 0 i'l ce i. nth p

TCCrJNT () pr-oC€dUre body and permitting thp si.de-(~ffpct. to
occur.

Anothe= reason for changing the value of an extprnal
variable in a rroc0~ure .body is to takn advantJge of ~n

o \l t P \1 t ass 0 ('~ i i1 t ion \IT hie h t hat v <1 rid b 1 (~ rr. a y h a v (-~ • A S f< I P ()
proce rlur\? c~an l~A (1\~~finf.'(1, for nxa.ft'pip, h.) "skip" the nUITll)(~c

of line.:-~ spc~cifie'l hy i t.s a.rqU!:tRnt ~ly a~:;~.;j-Ilninq t. hp null
value rept:;:lt.p:]ly to thf? main-prorp::-I.:.11 V'arLlhl(~ namE?(1 nUTPdT.

D I F TN F. { , SKI P (N tH1) , , , r R .. SKI r V) :

PHo-SKIP N t1 M = G't' (l'HPi fI O) 11 TJ 1·1 - 1
OUTPUT = NULL

END.SKIP

If SKIP() is called in the sequence

OUTPUT
SI<IP en
OUTPUT

HE~D1

HEl\P2

(r. nD • S K T P)
F (H F'T' n P N)

(P R .. ~) t~ J P)

t.hen the firr::t ~:0d;1inq, thp. three empty linps, and thp
Sf: C (J n (1 h P il din q ;'1 I~ ~:I a 11 w r.' itt 0. n tot. h ~ S d m p f i 1 0. , the 0 n p.

vJith which the var':.able OTJTPUT is associuted, sincp ttlP
variabl(~ rp.f0rre1 to by thl~ nam0 OtJTPllT is tlH? Sarrlf~ hot- h
insioe and ont.sidp the p:-oce(iurp. 1:<111. Note that. SKTP (l
"IOU 1 cl. not ~J 0 r k a ~) i n t. (~ w1 0 d i f nUT r IJ rT.' w (' r (? d () c 1 i\ r P. (1 tor (~ f (~ r
t 0 it V a ria b 1 f:~ i [) t (~ r n ,1 1 t. 0 t. h (\ pre c; () cl \l r () c a 1.1 I' r; inc (\ t- h ("\
aSf.cciation i~ with the main-proqritm 'lo.ci..al)lp., not with tllP
namE 001·'PtJ'r ..

o \1 i h~ ('\ d iff p ['() n t m () t i v i~ t ion for sid () - p f fpc t·.:.; ~ r i ~.; p ~;

w h 0. nap roc e \1 u n·~ (\ 0 f' S n () t. h a v p i1 f i): (~ ,-i n a m (. 0 f (\ n (~x l c:~ [" n d 1
v <! ria h 1 (\ i nit s pro c e d \l r t"l h 0 ti y, h \l t r. a the red. ncb i\ n q c t. h (\
V i1 1 \) P S 0 f <1 .i f f () r (' n t. v d r i (\ b 1 e ~1 w hAn i tis C <11 ted \Ii it. h
ci iff: (' r 0 n t a 1:' q U :r c n t :; •

6A. Programmer-defined Procedures 80

One way to' do this is to define a procedure which has a
string as its argument and which uses indirect ref?rencing
within its procedure body to refer to an ext~rnal variable
named by that strinq, or by a string derived from it.
Consider the followinq STOTIE() procedure, whose purpose is
to store the string which is its first argument as the value
of cne of a set of successively-named variables; thp name of
the variable which is to be used is formed hy concatenatinq
the length of the string to be stored, th~pthe value of th~
second argument of STORE(), then the index numher .of th~
next available successively-name~ variable of the set. If
the prccedure reference

STOFE('CAT','LIST')

is written, for instance, and CAT is the first three-lett~r
word to be stored, then it will become the value of th~
variable named 3LIST1. If STORE() were called rApeatp~ly
with the string LIST as its second argument, then it would
store one-character strings as the values of the variables
11,IST1, 1LIST2, ••• , $(1 'LIST' N), two-character strings as
the values of 2I.IST1, 2I .. IST2, ••• , $ (2 'LIST' N), A!tc. The
STOBE() procedure further keeps track of the last used index
numter for each 'list' by storing these numbers as the
val u e S 0 f the v a ria b 1 e s 1 loA I S T, 2 LIS'!.', ••• , $ (N 'I. I ST '). Not. e
that all names formed by the s'rORE 0 procedure depend on the
value of its second argument, but all begin with a numher
and so are necessarily distinct from any names which may be
written in the p~oqram text.

The definition of the STOREe) procedure cou11 he

D E FIN E (, S TO R E (W 0 R 0 , N A ME) " , , F R ~ S TOR E ') :. (E N D. ST 0 n F,)

* * ADD ONE TO TH~ INDEX NUMBFR FOR TH!S SIZE WORD L!ST
PRe STORE $ (SIZE (WORn) NAME) = $ (SIZE (WORD) N1'6ME) + ,

* * S TOR E THE W 0 R D AS T'A E V A L U E 0 F 'I II E "r{E x T .. V A n I A BL E
. $ (SIZE (WORD) NAME $(SIZE (WanD) NAME» - WORn

+ : (RETURN)
END.STORB

S'IORE() is thus a procedure which always succeeds,
returninq the null valu~. Tts pur~osp is always to h~ve tho
side-effect of changing th~ value cf one of the grpat many
external variables whose names are dependent on th~ various
values of its sEcond argument.

6A. Prcgrammer-defined ?rocedures 87

levels of Tnt~rna]. Variah].~s. When a procedure call is
to use-varlable;i-oth~r-than-~t:·hos;;- i nternfll to it sel f , either
to refer to their values or to assiqn nc")w vall1~s t.o them,
then the paLticular relation betwc~n naces and variables at
a~y tim~ beccmes important. In ths preceding sections th~
exarnrles have ussumed that a proceduce was called from (\
main progL(;lffi,. and thlls fl11 nf\m~s eit.her referr(~a to
variables intern~l to the procedure call, or else to
variables f1.ssociated with the main program. Rnt the
sit u at ion 111 a y be rn 0 r e com pI i cat edt ha nth is, b ec a IJ s eon 0

proce~urc m~y be called and th~n it may call another
procer.ur.€:: if th0. second procedurp makes referencp to
variables other t.han its own int0rnal var-irth10s, thp
pos~iblity c~xist[.; that. it may use a name which r-cf()rs to onp
of the intern:11 vilriahl(~s of the procedure ~'hich called it i

r(1th~~r~ th(lr~ to a main-program variable external to hot.h of
them. Sometimes this is what was inten~p~ and sometim~5 not;
care must he taken to insuce that the names used hy
procedures ~ill always refer to the intended variables.

The nUff·bpr of set.s of internal variablf~s which hn ve
heccme t~mrorarily accessible at any point in time durinq
(~xl~cut.ion is termed the "lAvel" of execution. \~h(~n d. proqr.'am
b c q ins e x (~C' n tin q , i tis a t 1 Po vel z e r 0 a Ii d t h ~ oS t. at (! Til 0 n t s
pxc(';ut.(~(l at If'v(:l zero are the t.echnical elcfinition of th0
main proqram~ Ifi a statement of the main program calls a
procEdure, thE~ statemt!nts of that proC(~dUrf!'S body will he
ex e cut e d a t. 1. e VP. 1 0 n ~ : i f t. hat pI:' 0 C C c1 u r e c a 11 s a s C'C 0 n r1
prOC€rlllre bf'fo[,E r.et.uI."ning, then the statem0nts of th0
seccrdl prOC(~duLe's body will be (~xecllted at. level t.\,IO. WhPil
the second procedure does a return, the first proce~urp will
res u me ex pen t ion a tIe v ~ Ion e; w h (2' nit. r ~ t urn s, t h p mi·' i H

proqram will I."ASume execution at. level zero. It may t.hpn
call anotlH'I." procpd\lr(~ \"hich ',:i.ll execut.e at level one, an(l
so forth. A~y nnmbcr of levels m~y he attained: ther0 is no
level lower than zero, however, so any attempt to ~o a
ret.urn from a statement of the main program (caused hy
allcwinq contrel to flow into a procedure body by acci~ent
rather than t.hrollQh a procedure call) 'Jill causp C1n
execution-time error. Such an error can be causc~ by
neglecting to write an unconditional t.ransfer followin(~ d

DEFINE () procpdnre in any of the above examples.

At. diffcrpnt titr.es a procedure mfly be <:,xpcntecl at
c1iff0('c1nt level~, depending on the 10ngth of thp. chain of
calls hy which it was r()ached. 'T'he only chi1nqp in· (:~xp.cutinq

at diff~rent levels is in the variables to which names
refpr. A procedure pxecuting at It~vcl t.ltrep., for e.<ample,
\I j 1 1 b p ~ x e r: '1 tin q i n i\ n P. n vir c n m p n tin ~·r h i c h me s t n;~ III (~ s
[' 0 f 0. [' tom a .i n - p r oq (' (\ m v a r i i:1 b 1 e s , h \J t so In (~ n a m e s r (~ f (\ r t. ()

6A. programmer~d~fined Procedures 88

variables internal to whatever proc~dure call is at level
one, some names refer to variables internal to whatev~r
procedur~ call is at level two, and some names refer to its
own internal variables at level three. If this same
procedure is later called directly from'a statement of the
main program, then all names except those of its own
int ernal vari abIes wi 11 refer to main-program va riables.
This difference in environment must be considered to assure
that a procedure will refer to and assign values to the
intended external variables, no matt9r from what level it is
called and no matter which procedure (and thus what names of
internal variables) are at levels below it in any particular
chain of calls.

As an illustration of the same name referrinq in
different environments to variables at three different
levels, consider' an improved version of the PALIN()
procedure, PAtINO (), which would delete all spaces and
punctuation characters from its argument before testing it
'for being a Falindrome, thus allowing strings of the form
DOC, NOTR. I DISSENT. A "f'AST NEVER PREVENTS A FATNESS. I
DIE! ON COD to be accepted. In the complete proqram below
the nameCAND is used to refer to the trimmed record rea~
from the input file, to the formal variable of the PALIND(}
procedure, and to a formal variable of the DELETF.()
procedure which is called by the PALIND() procedure to
perform the deletion. Nevertheless, there is no possibility
of ,the name CAND referring to a variable at the wrong lev~l:
within the PALIND() procedure (in this example) it always
refers to an internal variable at level one, while within
the DEtETE() procedure it always refers to an internal
variable at level two. The level zero variable named CAND
canthus be referred to only by statements of the main
program.

DEFINE('PALIND(CAND)CR','PR.PALIND')

* * SET UP PATTERN NEEDED BY THE PAIIND() PROCEDURE
* ASSIGN IT ~o A MAIN~PROGRAM V~RIABLE

PAL.PAT = POS(O) LEN(1) $ CH RTAB(1) • CAND *CH
+ : (E~! D • P A! .. IN D)

* * CALL DELRTE() TO REMOVE SPACES AN~ PUNCTUATION FROM ARG
PR.PALIND CAND = DELETE(~NY('c.,:;'),CAND)

* * PFOCEED AS IN THE PAtIN() P~OCEDURE
LOOP.PAtINO LE (SIZE (CAND) ,1)

CAND PAI •• PAT
END.PAtIND

*

. . : S (R ETURN)
F (FRF.TURN) S (LOOP. PALIND)

6~. Prcgrammer-oefinerl Frocedures 89

DEFINF. (f DELETE (PAT ,CAND) ',' PRe DELETE')
+ : (END. DELBTE)

* * REMOVE ALL PATTERNS FROM THE CANDIDATE
PR.D!LE~E CAND PAT = NULL

DELETB = C-'\ND
· · · ·

S (PR. DELETE)
(RETURN)

F.ND.DELETE

* * M~!N PART OF PROGRAM

* * READ
READ
PRINT
END

ALL RECORDS EUT PRINT ONLY THE PALINDROMES
CAND = TRIM (INPUT) : FeEND)
OUTPUT = PALIND(Cl\ND) CAND : (READ)

In this program the two DEFINEO statements, t.he
assignment to PAL.PAT, the READ statement, the PRINT
statement, and the END statement constitute the compl~t.(:~

main program. These statements are executed .in the or~er
specified by the go~to's until an attempt is made to perform
the assignment in the PRINT statement; before this
assignment can occur, the value of the call to the PAtINO()
procedure must be obtaineil. This call causes the variahle
named C}\HD, inter-nill to l~vel one, to be assignp.fl t.he samp.
value as t.hp mnin-.program variabl~ CAND, t.hat, is, thp
candidate to be test0d, and a transfer t.o be taken to
PR.PALIND. Before the assignment specified in this statement
can l:e performed, howev0.r, a call to the OELETE() procAdur·c)
rnus t t~ processed. 'I his ca uses ~:he va r ia bl~ na med C)\ N n
internal to the level two call of CELETE() to be assigne~
the same value as that of the level one variable C~ND, the
strinq to he tested. Thts string is searchen repeatedly for
spaces and punctuation charatters and when all have heen
deleted the resulting, possibly shortened, strinq is
returne~ to the statement PR.PALIND where it is assiqned as
the new value of the level one variable CANn. The value of
this variable is then searchpd, perhap~ repeatedly, for thp.
PAL. PAT pattern; each time the search is successful, the
value of th~ level one variable CAND is shortened by t.h(~

los~ of its first and last characters. If the candidate is
ind€e~ a palin~romp, thon the final value of the level onn
variable CANn will hp a strinq of onp or zero charact~rs,

the r ~ LIN D () P co C (~ d II 'r e 1,1 i 11 t a k e the sue c e s s n) t u r Ii n n it
transfer hack to the statem~nt lahel1~d PRINT. Here the
valu(') of. the Ip.vpl zero variahle named CAND, the oriqin.1.1
R t r i n <J i1!1 i t· w c1 !~~ t' p a (~ fro m t la c 1. n p 11 t f i 1. c , i s p [: i n t (~ (1
wh~nev(~r PI\Ll Nn () ~;lIccP(-~(15.

61. Prcgrammer-defined Procedures

output from· this program could be ~trings su~h as

CIVIC
SUMS ARE NOT SET AS A 1EST ON ERASMUS.
ROTeR
DEIFIED
DENNIS AND EDNA SINNED.
****** ***** **** *** ** *

90

There are two different ways of classifying variables,
which are useful in different descriptions of procedures. On
the one hand_ there are main-progra~ variables, at level
zerc, as opposed to the internal variables at hiqher levels;
it is the level zero, or main-program, variables which have
the lasting values associated with all names, while internal
variables at all higher levels become accessible only
temporarily during procedure calls and are initialized anew
at each call. On the ether han~, from the viewpoint of
discussing any particular procedure call, the distinction is
"between names of internal variables which are always its
own,as opposed to external variables which may be diff~r~nt
variables 'when the procedure executes at different levels.

The important special case in which these two
descriptions ·are equivalent is for procedures executing at
level one; at level one, the external variables are all
main-program variabl~s. The fact that extetnal variables
cannot be guaranteed to be main-picqram variables at level
two and above without a painstaking check of the names of"
all internal variables through all possible chains of calls,
is one reason for avoiding unnecessary references to
e~ternal variables in proc~dure bodies.

~_~~~2!_liR~TURN_iQ~~!Y~n_g~!~iablg~ Any procedure
call ~hich returns anon-null string (or an object of
datatype Name) may occur<to the left of an assiqnment sign
as the operand of an indirect referencing operator. This was
indicated in Chapter 5 with the rule

$SIZE (WORD) = $SIZE (WOED) .. 1

and may be further illu.strated by the rule

$COUNT (ANY (VOWELS) , WORD) -= $COUNT (ANY (VOWELS) ,WORD) + ,

which adds one to the value of the variable named by the
number of vowels found within a word. As another example,
the statement

6A. Programmer-defined Procedures 91

$TRIN (INPUT) = I.INE1 F (DON F.)

assigns the value of LINE1 to the variable named hy th~
characters of the next trimmed data record, or caus~s an
execution-tima error if the trimmed record is null.

Programmer-defined procpdures can he writt0n specifi
cally for the purpose of returninq a string which will he
used as the operan~ of the $ operator to return a variable.
Consioer, for example, the prcblem of detGrmining the first
null-valued ·/ariable of the set LIST1, I.IST2, ••• , $(9LIST'
N), descrihed in Chapter ~, and then assigning that variable
the value of the next data reccr~. A procedure nampd
NEX'TNULT.O miqht be written to detertllinp the first n\111-
valued variable as follows.

D E r I N E (, N E X 'I' NUt. L (N A ~1 E) N' , , P R. N EX l' N n L 1.')
+ : (END. Nl~X7NnI.I.)
PR.~EXTNULL N = N + ,

NEXTNUIL = IDENT ($ (N~ME N) ,NULL) Nl\ME N
+ : S (EE'l'URN) F (PR. NEX'rNtJI .. L)
END.NEJ<TNULt

The Nl~X"NUlLO pl'ocec"iure cannct fail so it may be use:l
in a statement of the form

$NRXTNULL('LIST') = TRIM(INPUT) F(NODl\TA)

The procedure is called with a string-valued arqnm.f:'!nt
representing that part of the name which is common to all
the variables~ This string is concatenatert to the valup of
the variable N internal to the procednre call, and the $
operator is applied to thp rpsult cf this concatpnation to
return a variahle. If th~~ valu~ of this variable is null, (1

strinq representing the name of the variable is forme~ by
concatenation and assiqned as the v~lt1(~ of the rpsult
variable; this string is rp.tnrned as the value of the
proce~ure call where it is used as the operand of thp $
operator which returns the variable needed to perform the
assignment.

Since N is declared as int~rnal, it is assiqned thp
n u 11 val u P. ~ V pry t 1. m € t. heN EX" NUL 1 0 [H.- 0 C e d u [' P, is c a 11 0 (1 ,
hence the search for the "next." vaL; ahl~.) always heqins from
on0. If t.he search wp[,p t.o hpqin from thn valup qi.v()n N thc"
last t.ime t.he pr-oce(lt1["(? rpturne(l, i..f~ .. , from t. hf' last
varii\ble locat.ed, thpn N should net. be declarp(1 as int(.... ['nal
so that. it wO\lld retain' its value from onn procpdur0. cilll to
the next .•

6A. Prcgrammer-defined Procedures 92

A procedure can be caused to return a variable, rather
than a string which can .be used by the $ operator to return
a variable, with th~ use of the name return NRETUR~. This
return may be used only if the value of the result variable
is a string (or a Name);· it effectively applies the $
operator to the value of the result variable, causinq th~
variable named by that value to be returned as the value of
the procedure call. Using NRETURN, the NEXTNULL() procedure
may te written as follows. .

DEFINE('NEXTNULL(NAME}N','PR.NEXTNULL')
+ : (END. NEXTNULL)
PR.NEXTNULL N = N + 1

NEXTNULL = IDENT ($ (N AM! oN), NULL) NA ME N
+ : S (N R ET UR N) F (P R. N EX TN tTL L)

.END.NEXTNULL

This version of NEXTNULL() is exactly the same as its
predecessor except that NRETURN has been written instead of
RETUFN in the last statement of the procedure body, causinq
the variablp named by the string formed by concatenatinq the
value of NAME and N to be returned, rather than that strinq.
A reference to this new NEXTNOLL() procedure would have the
·form

NEXTNULt ('LIST t) -= TRY M (INPUT) : ·F(NODATA)

The $ operator is now not wanted before the procedure
reference since NRETURN has effecti,elyapplied it already.

NRETURN is provided for convenience only; its effect
,may always be obtained by using RETURN within the procedure
hody to return the name of a variable, and by placing a $
operator directly before the procedure reference. Further
examples of the use of ·NRETURN may be found in Cha pters -,
and 8.

Ih~_A~ljl __ f~2£~~~~~~ A procedure reference in a
program text is composed of a procedure name followed
dirEctly by an argument list enclosed within parentheses.
Although these arguments ~ay be represented by arbitrarily
com~lex expressions, which when evaluated yield appropriate
values, the procedure name may not be so represented but
must be an identifier.

There are some applications, however, in which the
programming would he much simplified if one could indicatp
qen~rally, rather than specifically, ,which procedur~ is to
be called. Consider, for example, a series of procedures
na~ed FIX1, FIX2, F113, etc., each one designed to "fix" a

,

6A. Programmer-defin~d Procedures

word of the 'indicateo length. 1\ procenure call somethinq
like $ (IFIX' SIZR(WORD)) (WORD) is what is npeden in orner to
call the appropriate procedure for any given worn, hut this
expcession is syntactically incorrect.

Assigning an expression representing the procedure name
to another variable, as in

TEMP = 'FIX' SIZE(WCRD)

and then applying the $ op~rator as in $TEMP(WORD) givps an
eXFression which is syntactically correct. hut does not
pro~uce the desired result; in this case the proce~u['e call
T E M P (\J 0 R D) is e val u a t. ed, and i t 5 val u e use rj a s t. he 0 pP. ran (1
of the $ Op~Ldtor. (Of course, if no procedure TBMP 0 W'prp

defined the most likely case -- an execution-time error
would result w~en it was called.)

A way of calling a procedure, in which the name of thp
proceoure to be' called is deterfilined at execution-time, i!)

provide~ by thp predefined p~ocedure APPLY() whose first
arqument may be any exprcssionwhi~h yields a string na~inq
the pro c ed. u ret 0 h f.! C a 11 ed, and who s e r (:~ m a i n i n q il. L~ <J U m p n t !.")

ar~; any expressions represent.ing the argument.s to h0
sUfr1ied to that procedure. APPLY 0 may he appli0ri to
predefined procedures as well as to prcgrammer-defin0d ones;
thus

wonD = APFLY('~RIM',INPUTl

is equivalent to

WORD = TRIM(INPUT)

and

OUTPUT -= APPLY('LONGEP',STRING1,STRING2,VOWEL~)

is equivalent to

OUTPUT ::: LONGER(STRING1,STRING2,VQWELS)

More usefully, the designation of the' appropriatp.
procedure from th0 set 'IX1, FIX2, FIX3, etc., coulrl be ma~e
with the evaluation rule

APPLY ('FIX' ST7,E (WanD) ,WOlin)

which is equivalent to the rule

6A. Prcgrammer~defined Frocedures 94'

FIX 3 (wono)

if WORD has a value three characters long. Similarly,
executing the statement

APPLY (IRIM (INPUT) ,ARG1,ARG2) . . F (ERROR)

calls the procedure whose name is specified on the next data
record, giving it the two argum~nts ~RG1 and ARG2.

The value roturned by APPLY() is the value returned by
the procedure which it calls, and APPLY 0 returns with
whatever return (RETURN, NRETURN, ot FRETURN) is used by
that procedure.

Note that APPLY() is defined to have a varying ra~her
than a fixed number of arguments, always one ~o~e than that
of the procedure specified in its first argument. However,
the usual rules about missing and extra arguments pertain:
,if the number of arguments beginning with the second exceeds
the number of formal variables s~ecified for the procedure
being called r the extra arguments are evaluated but
otherwise ignored; if there· are fewer arguments t.han formal
variables, each remaining formal variable is assigned the
null value.

Although the name of the procedure may be represented
by an expression of any complexity, that expression must
yield a string which is an identifier when evaluated. This
restriction comes about because all the names in the first
argument of t.he DEFINE () procedure must be identif iars; all
predefined procedur~s, of course, have names which are in
identifier form.

Qsing~_11Q~~£Y __ Q!--R£Q£~1Q!~~ Most tasks which a
program is to perform divide themselves naturally into a
series of smaller tasks, some of which are so basic as to be
repeated many times durinq the course of th~ program. If
each. basic part is written as a procedure, then the
organization of the proqram can be clearly seen; the body of
each procedore need occur within the program text only once,
but it may he referred to whenever it is needed. Once a
prccenure has been thoroughly tested, it may form part of
the programmer's "library" to be used, just. as the
predefined procedures are used, as a ~art of many different
programs.

The complete program text below' begins by providing, the
library of procedurps to which it ~ill refer; with th~
exception of the PRINT() procedure, these procedures have

95

all occurred earliec in this chapter with the sarnA
definitions. Aft~r the library comES the main program, which
consists larqcly of ~~ferences to these proc0du~es~ Thp
purpose of the proqram is to read data from the input filp,
i scI ate the we r c1.s , and s t. 0 1:' G t h € min "1 i s t s " a c co r din q t. ()
their ~izp. When all the words have heen rea~ in and stored,
the lists are printed, in erder. of increasing Hoed SiZ0,

with the words in each list in the order in which thpy were
encountered. In addition, each word of a list which is a
palindrome is underlined by printing a row of hyphens
beneath it on the succeeding line. At the end of each list,
numters are printed in~icating the number of words in the
list and ti,e numb€.~r. of palindromes; \then all the lists have
been printeo, the total numbflr of worrls and of palindromes
is also providp~.

The main prugram begins by determining the charact0rs
which are to be consi~ered as punctu~tion by reading th0m in
frcm the first rccord of t.he input rlata. It then procee(1s to
read each subsequent data record, which consists of word~
seFarated by sraces an1 punctuation and appearinq in no
fi X~ (1 fot'tI1a t., except th a t no W OLd is broken across il reco ['11 •

As Each word is fO\Jn0, the S'rORI~() procedure is invoK0 f1 +.0
st.ore the worrl in the list appropriate to its si"lp.. Hhen 011
the wcrds have been processed, the PRINTO pLocedur(~ is
called to print the lists, shortest words first, an~ to
unclerline each word which is a palindrome. 'rhp PRIHT ()
pro c e d u rei n ,r() k est he PAL T N 0 pro c e r1 t '. ret 0 (1 E~ t 0. [' In inc \01 h~! t h (' r
or not the h'ord is .:\ pa lindroIne, thp. REPEAT () procedure to
forrr an un1erline of the needed lcngt.h, (lnd the SKIP ()
procedure to pro<1uce blank linf's. The PHINT() pLoce(t'lrl~
counts the words an~ palindromps cc~urrinq in ~ach list hy
inc r E' til en tin q. the v n 1 u e S 0 f the in t cr n a 1 va ria h 10 S ~~ , u n (1 P I

printing t.hcir valups befcI:'e i.t returns. It. also a0.ds to th0
total count of words and palindrofOf-'s by i.ncrernl~ntinq Lhp
valu~s of the m~in-program variables WORDS anrl PALINS; thesA
values persist and increase throuqh successive calls to
PRINT().

* FROCEDUR~ TO CONCA!ENA~E A STPIN~ OR PATT~RN N TIMES

*
+
PR.J;EPF.J\'!'

END.REPEAT

*

DE FI N E (, REP EAT (N , 0 B J E C T) , , , P R. REP FAT')

N ~ GT(N,O) N - 1
REPEAT - nRPE~T OEJ~CT

: (END.RErr~A1')
P (RETURN)

(PH.REPFA1')

* 'rp, s '! P R OC E THJ R E l' 0 F T N n PAL I N D R 0 f'1 E S '(F NI LSI F ~ 0 or " P i\ r.. TN)

*
DEFINE (, PAll N (C 1\ N D)CH • , 'P R • PAtIN')

6A. Programmer-defined Procedures

* SFT OP P~TTERN NP~DED BY THE PAIIN() PROCEDURE
* ASSIGN IT TO A MAIN-PROGRAM VARIABLE

PAL. PAT = P~S (0) LEU (1) $ CH RTAB(1) .CAND *CH

96'

: . (E ND • P A I. IN)
* IF CANDIDATE NOV CONSISTS OF, 1bR 0 CHA~ACTERS, SUCCEED
* QTnFRWlSR APPLl THE PATTERN AGAIN
PRe PAlIN LE (STZE(CAND) ,1> : S (RETURN')

CANO FAL.PAT
FND.PALIN

.*

. . S (F R • P A'L IN) F { F R E TU B N)

* SIDE-EFFECT PRbcEDURE TO TO SKIP N LINES ON OUTPtiT FTLE

DE F' IN E (t SKI P (N U M) v , , P R. S K IF')
PR.SKIP N U ~'j == G T· (N U M , 0 l N U M - 1

OUTPflT = NULL
END.SKIP

*

· · · ·
. . (END. SKIP)

F (RETURN)
(PR. SKIP)

* SIDE-EFFECT PROCEDURE TO STORE WORDS IN LISTS BY SIZR

* DEFINE('STORE'(WORD,NAME)' ,·PR.STORE') : (END.STORE)

* * ADD ONE TO TflE INDEX NUMBER FOR THIS SIZE WORD LIST
P R • S TOR E $' (S I Z E (\i 0 R D)' N AM E) = $ (S I Z' E (W 0 R D) N A ME) .+ 1

* * 5'I OF E T H P, W 0 R D p~ S THE V 1\ 1, U E 0 F THE' ft N EX Tn V A R I]i. Bt E
$ {SIZE (WORD) NT\ME $ (SIZB (WORD) NAMF» = WORD

+ : (RETURN)
END.STORE

* PFOCEDUHB TO 'PRINT WORDS, UNDF.RIINE PALINS, KEEP COUNTS

* DEFINE('PRINT(N,NAME)M,W,F','PR.PRINT'l
+ .' : (END. P R IN T)
PR.PRTNT OUTPUT = 'LISTcOFo' N '-LETTERcWORDS'

SKIP(1)

* * ~EST FOR END OF LTST- IF NOT END, PRINT NEXT WORD
UP.PRINT M ~ IT(N,$(N' NAME» M +1 : F(DONE.PRINT)

OUTPUT = $ (N NAME M)

* * ADD ONE TO THE WORD COUNT FCR THIS SIZE
W = W + 1

* * UNDERLINF WORD IF IT'IS A PALINDROME
o U 'T PUT = PAL I N (0 U T PUT) REf E 1\ T (N,' - ') : F (UP. P R I NT)

*. * . ADD ONE TO THE PALINDROME COUNT FOR THIS SIZE
P = P + 1 : (UP.PRINT)

* * ALL wonns HAVE BEEN PRINTED - PRINT THE COUNTS

6A. Prcgrarnmer-defined Procedures

DONE. PRINT SKIP(',
OUTPUT = ~ 'onc' N '-lETTERoHORDS'
OUT PUT -= ! D F. N T (P , NUL L) , 0 rJ 0 tl ' N I - I. F. TT ~ R •

.. , D FA LIN D ROM F: ~ • S (H. P R IN "r)

OUTPUT - P '001l' N i-LE'rTERnPAtINDHO!'1ES'

* * ADD THESF. TOTALS
PALINS =

W.PFINT ~OrDS =
SKIP(2)

END.PRINT

TO THE COUNTS FOR ALL SIZES
PALINS .. P

~-lOnD5 .. w

* * MAIN PART· OF ,PROGRAM

*

· · (RETU RN)

* I NIT I A 1. I 7. 1~, BY OF.~. E n MIN I N G THE PUN CUT A T ION C H A R f\ C1 R R S
* AND FORMING A WORD-FINDING Pf\TTERN

PUN C = 'Il • T RIM (I N P U l') : F (ERR 0 R)
WOLD. PAT - BREAK (PUNe) • WORD SPAN (PlYNC)

f,:
, I * ,MAIN READ LOOP - GET THE NEXT RECORD

REAr RECORD = TRIM(INPUT) '0' · • F (LIST)

* REMOVE ANY INITIAL SPACES OR PUNCTU~TION
RECOnn· POS (0) SPAN (PtJNC) = NULL

* * GET THF NEX! WORn
NEX'IvJORD R~C()Rn WORD. PAT NULL

* * SAVF LENGTH OF LONG~ST WORD IN MAX

· · F(FEAD)

MAX = GT ,(SIZE (HORD) , MAX). SIZE (WORD)

* * ~TORE THE WORD IN T~ELIST FOR ITS SIZE
.'

STORE (WORD) (NEXTl-1()RD)

* * PRINT THE LISTS, SHORTEST ON~S FIRST
LIS! N = LT(N,MAX) N + 1

*
· · F(FIN~L)

* IF·THERE ARE wonDS OF LFNGTH N, PRINT TnRM
(DIFFER (T (N 'tIST') ,HULl.) PRINT(N, 'LIST'»)

+ : (LIST)

* * PRTNT SO~E FINAL STATISTICS, PREPARFD BY PRINT()
FINAL OUTPUT = • TOTA lnNTJMBERaOFnWOHI)So--n' HORns

OUT PUT = 'T 0 TAL rl N tJ M B ERn 0 F n P 1\ I. INn ~ 0 r. E ~ n --n t PAL TN:;
.. : (END)

* 'F!RROR
END

OUTPUT = 'NOoDATA'

97

6A. Prcgrammer-defined Procedures

If the input to this program were the question

DID 1HE NAME ADA REFER TO A VARIAELE AT LEVEL 1 OR lEVEL 2

then the output ~ouldbe as follb~s.

LIS! OF 1-LFTTEE WORDS

A

,
2

3 1-LETTER WORDS
3 1-IETTER PALINDROMES

LIST OF 2-LETTEB WORDS

TO
AT
OR

3 2-1ETTER WORns
o 2-LETTER PALINDROMES

LIST OF 3-LBTTER WORDS

DID

THE
ALA

3 3-LETTER WORDS
2 3-LETTER PALINDROMES

LIST OF 4-LETTER WORDS

NAME

, 4-LETTER WORnS
o 4-LETTER PALINDROMES

98'

6A. Proqrammer-~efined Procedures

LIS! OF 5-LETTER WORnS

REFER

LEVIl

LEVrL

3 5-LETTE~ WORDS
3 ~-LETTER pnlINDROMES

LIS! OF 8-LETTEF WORDS

VARTAELE

, 8-1ETT~H wePDS
o 8-lETTER PALINDROMES

TOT~l NDMBER OF wonns -- 14
~OTAL NUMBER OF PALIN~RUMES -- A

qq

100'

7A. ARRA YS

The programming of some problems can be greatly
sim~lified with the use of sets of successively-named
variables, such as those described in Chapters 5 and 6.
There, indirect referencing was used to refer to variables
with some set of names such as LtST1,LIST2, ••• ,$('LIST' N).
The variables couLd be thought of as forming a set because
their names were composed of two parts, where one part was
common to all names of the set and the other part varied;
the variables were said to be successively-named because the
varying part was an integer which differed by one for each
member of the set .. The notion that the variables with names
differing in this. way were logically associated was, of
course, simply a convention adopted by the prog~ammer. But
the idea of a set of variables associated together, with the
selection of anyone of them dependent on the value of an
arithmetic expression, is so useful that data structures of
this sor£ are predefined in Snotol, under the name tif
Arrays. An array is used very much like a set of variables
with successive names, except that the convention that the
v~riables constitute a set is net the programmer's alone,
but is shared by the Snobol system. Thus it is possible' to
treat the set of variables as a single aggregate in some
cases, and to make reference to specific variables in the
set on other occasions.

£~~21ing_~n_!!~g~~ An array is created by executing a
call to the predefined procedure ARRAY(). The ARRAY{)
procedure has a single string-valued argument, which in its
sim~lest form is used to specify the number of variables of
which the array is to be composed. For example, execution of
the rule

LIST = ARRAY('1000')

causes an array of 1000 variables to be created; this array
is returned as the value of the ARRAY() procedure and the
entire aggregate is assigned as the value of the variable
named LIST.

The variables forming an array are distinct from other
variables in that they do not have names which can be
written directly in program texts. Rather, they are usually
represented in a program text by expressions which are
comFosed of two parts: the first part consists of the name
of a variable whose value is the entire "family" of
var iahles th~·tt make up the array; the second part, called
the "selectrir," consists of at least one int~qer-valuijd
expression, called an index, enclosed within square brackets

1A. Arrays 10"

and immeiliately following the family part of t.he name.
Consecutive integer selectors are assigned to each variable
of the array and serve to select a particular varii'lble from
the set. Thus variable number three of the 1000-variable
array which is the value of LIST may.be referred to as
LIS1[1J.

When the rule

LIST:: ARRAY('1000')

is executed, the 1000 variables l.IST[1], LISrr[2 J, ,
LIST[1000] hecome available for use. Each of thp~~ variables
initially has the null value, like any other variable, wh0n
the array is created. !hese variables may acquire new values
by the usual means of assignment, as in the statements

and

LIST['] :: TR IM (T NPUT) . . F (DO~n~)

LIST[1) pas (0) SP1lN ('0 ') = NULl.

RECORD ANY (VOWELS) LIS'I(7]: F'(NOVO~IEL)

Althouqh all variables of an array are often assiqne~
values of the same datatype, there is no requirement that
this be done: some may be assiqne~ string~ as values, nn~
some Patterns, for instance; such a variahle may even ha~p
an Array as it.s valt1~, inc1tloinq t.he array of which it is
itself a memher. .

!!:!:gLTt.gJB2_~!lg_li~!!!_]~1£~nff§.!.. The variables forminq
an array are called "array items"; r.0ferenct~S to thpsp
variables in program texts, exrtessions of t.he form LIST[Nl,
are called "item references." It is impor.tant to rempmbpr.
that the variablps referred to by these item references ~o
not have name5 in the form of strinqs. That is, ~he strinq
LI51[1) is n2t th~ name of variable number one of th~ array
which is the value of LIST. For one thing, such a strinq
cannot he written in a program text to ~epresent a name
since it is not in identifier form. Nevertheless, eV0ry
strinq is the name of a variahle, so the strinq LTST[1] is
indeed the name of some variable, which may be ~eprcs0nt0~
in a program text as $'LIST[']'; however, this variable has
no intrinsic connection with any array~

The variables with strings as names arp all available
to, a proqramm~r when execution of a program begins, an~ arp
called "natural" variatles; in \.ontrast, varia.bles which i\["P

a r ray i te m s m u s t he c x P 1 i cit. 1 y c r Cut ~ n h y a c a 11 tot It (~
ARRAY () proce(lure, and in consequence are call('d "created"

7A. Arrays 102

variables. They have names which are not strings
necessarily, since every possible string: is 'the name of a
natural variable. If the name of a variable which is an
array item is needed (so that it may be passed as an
argument to a. procedure* for example), a special kind of
non-string Namemust.be generated by the use of the name
operator described toward the end of this chapter.

The family part of an item reference, LIST in the
example above, must always be an identifier and must refer
to a variable whose value is an array_ However, natural
variables whose names are not in identifier form, such as
the one represented by $(CHhR '.'), and created variables,
such as the ene. represented by tIST(3], may be assigned
arrays as values. Special methods, described later in this
chaFter, must then be used to form references to the items
of these arrays. Note that references to all items of an
array are always formed with the use of a single name, that
of a variable whose value i.s the array to which they belong.

£Qm~~i§Qn __ !ilh-_ln~ir~£1--Eff~r~u£iQg~ A set of
succ~ssively-named variables formed with the use of indirect
referencipg constitutes a sort of simulated array_ These
simulated arrays have some advantages over the predefined
array structures provided by Snobol.

When indirect referencing is used, it is not necessary
to specify in advance how many variables will belong to the
set. That is, in the loop

NtOOP N = N + ,
OUTPUT = TRI~(TNPUT)
$(tLISTt N) = OUTPUT

· · · ·
F (ALLGONF.)

(NLOOP)

the maximum value of N is determined only by the number of
data records read, which may vary with each use of the
program.

There is also no restriction that N be incremented only
by 1 -- any interval may be used, not necessarily the same
one cn each iteration of the loop. Thus the statement
latelled NLOOP above may read

NLOCP N = N + 2

or.

NLOOP N = N + SIZE ($ (' LIST' N)}

or whatever.

7A. Arrays 103

Further, there is no necessity to use numeric values at
all in forming the varyinq part of a name. For exa~ple, th0.
u s U cc e S 5 i vel y- n a me d " va ria b 1 e s L T S T ~ , L T S T R, ••• ;; }. T S 'r z
could he used by writ~ng the loop

LOOP

ALPHA : 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
CHARPAT = LP.N(1) a' CliAR
ALPHA CHARPAT = NULL
$('LIST' CHAR) : TRIM(INPUT) . .

F (DONF.l
S (LOOP)

For that matter, there is no need fot" th~ v3riahl0s of a
simulated array to have names which are obvioasly
"successive." 'rhus, the varyinq part of each name coulo he
forrr.€d from a list of words which' might have no obvious
relation to one another. nsinq a word as a ttscl\~ctot''' of a
simulated array item provides much more information than the
use cf an often arbitrary number. I.ast.ly, no difficulties
arise if .the "family" part of the names is not in irtE:ntiEi8r
forro.

On the other hand, thpre are some advantages to usinq
the Fredefined array 5tructur~. The principal one is that
the array items are recoqnized as heing relaterl hy thp
s no 1: () 1 s Y s t (~m , sot. hew h ole a 9 g r e qat p C (1 n b l~ ass i q w ~ (~ a!.; the
value cf a variable, passed as an arqument t.o a procennr0.,
and so forth .. Also, the variables which arp array it.em~j (lre
distinct from all other variables si~ce they do not have
names in the form of strinqs, so inadvertant conflicts of
variable usage are easily avoide~: anrl sometimes an itnM
reference in ~ program text gives a more intuitive pictur n

of the process beinq proqrammed than does an exprpssion
invclvinq indirect referencinq~

An array is a particularly useful data structur~ to
emFlcy when the numeric oeder of its iteu\s is signifiraat,
e~g •. , when the n-th item of scree list j.s npede~. For data
which does not leLd itself well to being processed in t0rms
of numeric orderinq, other types of data stru~tures are
protably more useful. ~'ays of creating ciata structHrF'S of
one's own choosing are indicated in th~ following chapter.

l1.ll1ti=Ql.!l!f!l§lgl@! __ ~!,:£~'yS. It. is often intnitivp.ly
useful to think of the items of an array as being arrange~
in reore than the single dimension of the LIST example above.
One miqht want, for examrle~ to simulat0 the mov~s on a
cheFshoard hy llsing (tn Rxf1 ar.r.ay which is t.h(~ valup of i\

va r. i a b 1 (.) n a me d B 0 l\ R n • S \J C hat W 0 - d i 111 (\ n s i () n t\ 1, 6 t~ - it- pm Ii. r r (] y
coul~ he created hy executinq th~ rule

.7A. Arrays 104'

BO~RD ':: ABHAY('8,S')

The first row of the.chessboard could then be represented by
giving values to the items referred to as BOARD(1,1],
BOARD(1.2], ••• , BO!RD[1,8). The Froqrammer is of course
free to decide which dimension is to be thought of as
indicating the rows and which as indicating the columns. If
he prefers the opposite convention, then the first row woul1
be the items BOARD[1,1], BOARD[2,1], ••• , BOARD(8,1].

Similarly, a three-dimensional tic-tac-toe board having
a 5x5 square on each of its three planes could be simulated
by using the array created by executing the rule

TIC3 :: ARRAY('5,5,3')

The central cell of this structure is the array item
TIC3(3,3,,2).

Although it is difficult to symbolize or conceptualize
arrays of more than three dimensions, they present no
programming problems. For each new dimension, another number
within the argument of the ARRAY() procedure is needed for
the creation of the array; similarly, another 'in~ex is
needed within the selector to form an appropriate reference
for any given array item. There are no limitations on the
number of dimensions which an array may have, or on the
number of items to be associated with each dimension.

Arrays of many dimensions ca~ be used to arrange data
elements which differ from one another along many numeric
scales. Each "dimension" is thought of as an "attribute,"
and a data element is assigne1 to a particular array item
according to the numeric value of all its attributes. The
data elements may then he accessed in an orderly manner
along each "di~ension" of the arrangement.

~--A.BllAY {LPrQced.!!£~.!. The predef ined procedure ARRAY ()
requires a single string-valued argument which pr6vides a
prot otype of the a rra y, . speci fy ing (implici tl y or
explicitly) the number of dimensions the array is to have
and the range of index numbers which may be used to select
items of this array in each dimension. Unless otherwise
specified, it is assumed that the indexing in each dimension
s~arts with 1. However, if the arrays described above as
heinq the values of trsT, BOARD, and TIC3 were to be indexed
from zero instead of from one,· but were still to have the
sa~e number of items as before, this could be specified by
executing the rules

7 A. A rra ys

LIST =
BOARD =
TIC) =

ARFAY (' 0: 999')
ARRl\Y('0:7,O:7')

ARRAY (' 0: 4,0:4,0:2')

1 () ')

The cclon within the argument is used to separate the lowpst
index number from the highest in~ex number for each
dimension; the comma. is used to separate the diffprent
dimensions from one another; no embedded blanks are
permitted.

Negative numbers may be used within the prototype of an
array, and consequently within the selectors of its items.
Execution of the rule

NEGARR = ARRAY(-50:-5)

creates a 46~element array whose items may he referred to ~s
NEGl'RF,[-50], NEGrtRR[-49], , NEGl\RRf-S]. (Note that tbe~.;~
references are arranged, as always, in ascen~ing arithmptic
·order.)

Information about the range of index numbers in each
dimension may be provided in term~ of any expr.essions ·which
give th~ desire~ numbers when evaluaterl. Thesp indlces may
be positive, negative, or zero, but thp upper hound for ~ny
dimension must always be greater than or. (~qnal to t.he
corresponding lower bouno; consequently an array must al'~'lYs
be ccmrosed of at least one item. Thus the rules

AR!H\Y1 = ATIRl\Y(SJZE(ROHD1) ',' SIZE(W()~n2»)
J\RHAY2 = ARnAY(M1 ':' N1 ',' M2 ':' N2)
ARRAY3 = ARRAY (A + B ',' C + D)

may each specify the creation of a twa-dimensional array, if
the expressions within the argument of each ~RRAY(}
procedure havp appropriate numeric values at the time thp
rules are executed.

Note that the commas and colons are placed within
quotes to indicate that they are literal characters to hR
concatenated into the·strinq being formed to provide th0
single argument. If the commas were not placed within
quotes, each comma would indicate the presence of another
argument for the ARRAY () procp.(lure; all arquments after th0
first would he evaluated but ctherwisp ignoce~, sin~e
ARRAY() requires only one arqument. Th~ array procedur0
returns as its value an array created to the specifications
of its arQnment. Thus thp varial:les nameii ARRAY1, 1\Hf{AY2,
and ARRAYl in the above ~xample would all be assign~d v~lur~
of datatype Array.

7A. Arrays 106

Selectors. Selectors may also consist of any
exprcssIons--;hich yield the desired index (or indices) when
eva 1 ua ted. 'l'h us

LIST[1]
LIST[A + B]
L IST(SIZE (TRIM(CA RD) J
LIST[SLIST[2]] "
I.IST(LI ST[I, !ST[2]]]

are all item references which may be used to refer to
variable number one of the array which is the value of LIST
if the expressions A + B and SIZE (TRIM (CARD)) and $LIST[2]
and LIST(LIST[2]] "all have the value 1 when the rules in
which the above expressions appear are executed.

Although the prototyp~ of the array is expressed as a
strinq, no~e that the selector of an item reference is not;
rather the expressicns representing the indices are
~eparated by commas, much like the arguments of a procedure
reference. ~hus BOARD[X,y] is an appropriate item reference
fo~ a two-dimensional array, while BOARD[X ',' Y), which
specifies a non-integer index, is not. An execution-time
errcr vill cccur if a non-integer results from the
evaluation of t~e index for any dimension, or if the number
of dirrensions indicated by the selector is not the same as
the number specified by the prototype for that" array.

P'ai!.!!I~QLg,n_I!~_Re~~gll£g.!. An attempt to evaluate an
item reference may fail, causing failure of the rule in
which the evaluation occurs. An item reference fails when
its family p~rt refers to a variable whose value is an
array, but its selector yields an index for any dimension
which falls outside the range specified by the prototype of
that array. Thus the rule

OUTPUT = tIST{ N) : F (DONE)

~il1 fail and send control to DONE for values of N which are
less than 1 or greater than" 1000 for the value of' LIST
described at the beginning of this chapter. The simple two
statement loop

LOCP N -= N + ,
OUTPUT = lIST[N 1 . . S'(LOOP) "F(DONE)

can therefote be used to print the values of all items of
the array referred toby LI5T (provided these values are all
strings). Here the fact that the item reference can cause
failure of the rtile eliminates the need for a statement of

7A. Arrays

the form

N = LT(N,1000) N + i . .. P (DONE)

10"7

t.o terminate
programming.
array cannot
since LIST
be pr.inted.)

the loo~ an~ so somewhat simplifies th~
(Note that the valu~5 of all the it~ms of an

he printed by a rule of the form OUTPUT = LIST,
has an array as its value, and only strinq~ can

Often reliance cn the failure of an item reference
rather than on t.he failure of some test proceiiut'e does not
s i m {: 1 i f y t h P pro gr a m min 9 and may 1 e ad to log i cal c rI:' 0 r s. For
examrle, the loop

FIll1 N -= N + 1
L I ST[N j - T RIM (I N P tJ T) . .. F (FULL)

'III i 11 fa i 1 and s € n d con t r a 1 toP U TJ I, (l) w hen the va 1 u e 0 f N
heccmes gr~ater than 1000 or (2) ~hen the data is exhauste~,
withont makinq the (often necessar.y) distinction betwnf~n thp
t \IT 0 cas e s. The file t t hat ani t em ref ere nee can c a 11 se fa i 1. n r (;~
oft her u 1 emu s tal W ii Y s b eo k e pt. in min (l top r ev ~ n t t. h 0

writing of rules which may fail for more than one rpason.

~f£~i£1_.£!2.Q1Q!lJ'§ __ ~Q!1£fIn..i!lg __ I..tQlL_~~.f~r.~n£~~!.. It 1S
possible to assiqn an array as the v~lue of a variahle whosp
n a me can not be rep re sen ted in i rl en t if i e r for m, e i t h (:~ r
because it contains impermissible characters¥ as in

$'1\/1' -= ARRAY('1000')

or bEcause it is a crea ted variable, as in

L JST[1] = ABRAY (' 1000 ')

or because it is ur.known, as in

$WORD -= ARRAY!' 1000')

Although each of the above rules creates an array of
1000 items and assigns it as the value of some variable as
in all previous examples, thp it~ms of thCS0 array~ may not
he [p.fcrreii to in t he usual manner, r.;ince ther:p i~--; (\
restriction that the family part of an item refcrpnce must
be a name in ioentifier form. 'T'hllS if on\~ attempts, (or th(~
first two cases above, to write rules of the form

$'A/1'(1) = 'IHIM(TNftJT)
and

7 A. Arr.ays 108

LIST[r][1] = TRIM (INPUT)

then compile-time errors result.

w.ri tinq, for the third case, the ,rule

$WORD[1] = TRIM(INPUT)

does ~6t result in a compile-tim~ error, but does not give
the desired result either. Here, the operand of the indirect
referencing operator is not the variable WORD, as is
desired# hut rather the item reference WOR~ 1]. The
evaluation of WORDf11 should cause an execution-time error,
since the variable WORD was intended as the operand of the
indirect referencing operator, and thus its value should be
a string or a Name, not an array.

All of these cases may be taken care of by simply
assigning each array to another var.iable, one whoset~me may
be Iepresented by an identifier. Each of the erroneous rules
presented before can thus be replaced by a pair of rules,
such as the following:

TEMP1 ==
TEMP1(1)

TEMP2 =
TEMP2(i]

TEMP3 =
TEMP3[1]

$' A/1 '
= TRIM(INPUT)

L!S![1]
= TRIM (INPUT)

$WORD
= 'IRIM (INPUT)

Note that as~igning an arr~y to a second variable does
not cause a new array to be created, but merely allows two
(or more) variables to have the same array as their values.

lh~ I't'B!I () Pro£~.9!:g.!. The ITEM () procedure prov ides
another method of referring to the items of an array when
the array has been assigned to a variable whose name cannot
be written in identifier form. The ITEM() procedure, like
the APPLY() procedure described in Cb~pter 6, has a varyinq
number of arguments, usually one more than ihe number of
dimensions of the ar~ay involved. 1he first argument must be
an expression whose value is an array; the remaininq
arguments may be any inteqer-valued expressions, usually one
fOt, each dimension cf the array, qiven in the appropriate
order. ITEM() r~turns as its valu~ (by NRETURN) the variable
specified by using its first argument to indicate a family
an~ its remaining arguments together to form a selector.
Thus the expression ITEM(LIST,1) is equtvalent to the

1A. Arrays

expression LI5T[1], an~ ITEM(BOARr,8,8) is equivalent to
EOARD[8,8]. More usefully, the rules

ITEM{S'A/1',1) = TRIM(INPUT)

ITEM(IIST[1],1) :: TFIM(INPOT)
and

ITr~M($WORD,1) = ~rRIM(INPUT)

could all be used in place of thA rules involving TEMP1,
TEMF/., ann TEMP3, above.

A procedure referen~e to I~EMO may he written wherever
an item reference may appear. Thus the rule

OUTPO~ = TTC3[X,y,Z)

may te written as

OUTPUT ': ITEM(TIC1,X,Y,Z)

with the same effect. ITEM 0 fails, in just the \'lay thf_t an
it e m ref e 1: en c e fa i 1 S fit t. h e in (l e x for allY c1 i. In P n s io n '11 it It i. n
the ~ e 1 ec to [' W hie his for m e d fa 11 son t !":i i (~ e the r i'\ n q (~
specified by the prototype of the array involve~.

Although the selector part of an item reference must
consist of a list of indices separated by commas, ~s in
TIC3[X~y,Zl, and may not be expressed as a concatpnated
string, as in TIC3[X ,,, Y ',' Z], th~ ITENt() procedure
allows the selector to be represented by either mptho~ an~
eve n by com h ina t ion s oft he t. W o. Pur t h ~! r m 0 [' (~, I T 8 M 0 (1 () {) ~~
nht require that the proper number of index expressions h0
present in its arqurnents. It uses only <15 many indic0s (1:;

are appropriate for the array given as its first argument;
it assumes the value zero for missing indices, And ~valuat0s
but ctherwise iqnores the expressions for extra indices.
Thus the number of argument.s with which I'I'F:M () rn~y be crtlled
can vary not only with the number of dimensions of the arr~y
being indexed but also with the choic0 of r0presentation for
each index. The four-argument call

I TF. M (T Ie 3 , X , 1 , Z)

has the same effect as eith0.r of the three-argument calls

ITEM(TIC3,X ',' Y,Z)
or

ITEM(TIC1,X,Y ',' Z)

7A. Arrays 110'

or the two-arqument call

ITEM(T!C3,X ',' Y f,' Z)

Each returns the item TIC3[X,y;'7.] as its value. The
importance of this feature is illustrated by an examplA at
the end of this chapter.

lhe_r.nQ..TQlygll.,{t._ P~.Q.G~.1.llrg.!. '!: he P.P01'OTVP T:' 0 proce<1 ur e
can accept as its single argument any exprpssion whose value
is cf datatypa Array, and return3 as 1tS value a stcing
giving the prototype of that array. This prot6type will he
the same as the one specified in the call to the ARRAY()
procedure which· caused the array to be created, except that
the lower bound for each dimensicn is always explicitly
ex~ressed, and the integers specifyinq the bounds are in
canonical form (a sign retained only for negative numbers,
leading zeroes suppressed, and zero represented by the
single character 0). Thus if the rules

BO.,,\ RD
"rIC1
LIST
NRGARR

=
=

=

A R R 1\ Y (t 0 8 , 08 ')
ARRAY (15,5,3 ')
rlRPliY (' 0: 999 1)

ARBAY('-50:+5')

have been executed, then execution of the rules

OUTPtJ1'
OUTPUT
OUTPUT
OUTPUT

=
=
=

PROTOTY·PE (BOAHI;1
PFO TOTYPE(TIC <3)
PRCTOTY FE (LIS T l
PROTOTYPE(NEGARR)

will cause the strings

1:8,':8
1 : 5 , 1 : 5, 1: J
O:9gQ
-50:S

to te printed. such strings may be investiqated with a
pattern-matching rule to determine the structure of the
array; this may be useful in cases where the dimensions hav~
not b € eng i v e n as 1 i t era 1 S 1,1 i t h i nth eAR ~ A Y () pro c e d u r f: ' s
argument, but have heen specifi~d by more complicated
expressions or supplied from thR data. For example, an array
could be created by executing the rule

BOXES -= AFRAY(DIM1 , , , rTM2)

Although the value of BOXFS appears to-he a two-dimensional

?A. Arrays , , ,

array, this is' not necessarily the caSfl since the values of
DIM1 and DIM2, perhaps acquire~ from the input file, may
contain any nu~ber of commas, each indicating anothpr
dimension. The number of dimensions of this ('\rray may bo
(1 e t e r min ed b y the f 0 11 0 wilt q s i In P 1 e pro q t" a m seq In (~ n t. W' h i G h
searches the string returned by PROTO'rYPE () to deter.mine how
many commas it contains; the number of dimensions is always
one more than the number of commas.

LOOP

DONE

STRING
STRTNG
COr~MA

DIMENS

= PRO'IOTYPE (BOX?S)
BREAK(',', ',' BE!1. STRING : F (DONE)

= COMMA + 1 : (LOOP)
= COMMr~ + ,

Th~ PROTOTYPE() procedure may also take a patt~rn or a
Name or a structure of programmer-·defincrl datat.ype as it.s
argl11flE!nt. A description of the use of. PROTOTYPEO with an
argument of one of these datatyp~s may be found in Appendix
A, section II.B.

lhQ_TrfBll_££Q£,§.9!!I2~. The 'rYPEO procedure is ()nc~ ~~hich
will accept any expression as its singlf?, arqnment. If thp
value cf its argument is of a predetined datatyp~, thn
proc€:cluL'(! returns as its value a st.ring specifyinq tlu~t.
aatatype; if the value is of a progrul!1mer-d(~finp(i. ,1atat~lP~,
the string DATA is returned. For example, pxecution of the
rule

OUTPUT = TYPE('SASSAFR~S')

will print STRING while execut.ion of the rule

OUTPUT = TYPE (ARB)

(if ARB still has its predefine~ vdlue)
PATTERN; the 'rule

w iII p La (1 u c e

OUT PUT = T Y P E (L I S T) t no 0 £l ' T Y P E (LIS 'r (1])

will print ARRAY followed by INTEGER~

TYPE() is often use~ to test whether or not 50m~
variahle has a value of the expected datatype before somp
proce~~5 is allowp.o to conti.nup.. Tt is particular.ly Il:;pflll

for tAstinq wll~th0[" V(\1\H~5 passc~d t.o the formdl varitiblc';.i of
a p['oC('1r1\1['0 il[(') of t be corr4~C't. (iilt.at Ipp, aB(l for. lIH;Hci.ilq
t I, a t a 1.1 val U ("!.3 a ~.; 5 i q ned too t J T P U 'r are 0 fila tat. y p {~ S t r. i n q 0 r
datatyp~ Inteqer.

7A. Arrays 112 .

The short loop presented earlier to print the values of
all items belonging to a specified array may be amended with
the use of the TYPE() procedure to first test the datatype
of each value and then to print only those of da~atype
Str.ing or Integer. ~his amended program segment uses
indirect referencing within the go-to to transfer to a label
representinq the type of the value being processed. If th~
value is of datatype string or Integer then the value is
printed; if it is of any other datatype, a message regarding
its type i.s printed. Tn either case, t.he val'le of the
selector is printed first so that the particular item whos~
value is being printed or described may be identified. The
PROTOTYPE{) procedure is used in the first. statement to
insl1r-e tha t a one-dimensional ar.ray is being processed, and
to determine the lower bound of this array.

* ~EST WHETHER ARRAY IS 1-DIMENSIONAL AND FIND LOWER BOUND
PROTOTYPE(LIST) BREAK(':') '" N ':'

+ 5 PAN (t - 0 1 2 3 4 56 7 8 9 .) R PO S (0) : F (ERR 0 R)

* * LeOp TO PRINt ALL VALD!S WHICH ARE STRINGS
* IF LIST[N] EXISTS, GO TO THE STAT2MENT LABELLED BY THE
* TYPE OF ITS VALUE

* LOOP

* STRING

LIST[N J

INTEGER OnTPUT = N '00'

REAL
PA1:TERN
ARRl\Y
NA~E

. . F (DONE) S ($TYPE (LIST[N)})

LIST[N] . . (INC)

CODE
DA'IA OUTPUT = N 'ocTHISoITEMoISaOFaTYPEc' ~YPE~IST[N])

* * INCREMENT INDEX TO GET NEXT ITEM
INC N = N + 1 . . (LOOP)

The labels provided in the program text (wl.th the
exception of leop and INC) are exactly the strings returned
by the TYPB() procedure. All have been mentioned except
CODE, which is described briefly in Appendix A, section
II.C. 1hese labels provide an exhaustive list of the strinq
values which TYPE(} can return.

The program text may appear strange because of the
numt~r of null rules~ Since the· statements labelled STRING
an~ INTEGER both need the same rule, it has been written
cnly . once in the second of these statements, the one
lacelted INTEGER. If control is sent to the statement

1A. Arrays 113

latelled STRING, it is sent on imm~diately to th~ statement
latelled INTBGER where the rule which calls for printing is
executed, since the statement labelled STRING has no rul~
and no go-to to be processed. Similarly, since thp
statements labelled REAL, P~TTEBN, ARRAY, NA~E, CODE, and
tAT A a 11 n e {~d the sam e r u 1 e , i tis w r itt en 0 n 1 yon ce in t h p

last of these statements, the one lab~lled DATA.

The evaluation rule LIST[N]
failure of the item reference
evaluation rule were omitted and
solely of the go-to

is
to
the

neederl in or der fot:'
be detecte~. If this
statement consisterl

. . ($TYPE (LI ST(N]))

t.hen there woulo be no way to terminate the loop gracefully,
and an execution-time error would result when the item
reference failed within the go-to b~cause the value of N
became too large.

grQ£~1QIf_!2_~~!nrn_~_S21~£iQ!~ There are a numher of
processes concerning arrays which it would be convenient to
express as programMer-defined procedures since they are so
frequently needed. For example, one often wants to know thp
selector associated with the first null-valued item of an
array so that this item may he gi.ven another value. Thp.
following SELF.CT 0 proc~dure fails if there are no nnl1-
valued items, or succeeds and returns the selector of thp
first null item as its value. It works for any 0"0-

dimensional array, and uses PRO~OTYPE() as before to test
that the array is one-dimensional and to find its lower
bound. The single argument of SELECT() may be any expression
whose value is an array.

DEFINE ('SELF-err (ARR1) N',' PR.~EL') : (END. SELECT)
* TEST WHF.1'HER FIRST ARGtlMFNT HAS AN 1\RRAY AS ITS V1\LflE
PH.SEL IDENT(TVPE(ARR1),'ARRAY') : F(SEL .. ER1)

'"
* 'I EST W II P, THE R A R RAY IS' - DIM ENS Ie N A LAN D FIN D LOW E R BO U N D

+

*

PROTOTYPE(ARR1) BREAK{':'). N ':'
S P 1\ N (,- 0 1 2 3 4 5 n 7 8 9 .) R PO S (0)

* 7ES7 WHP,THER THI~ IT~~ HAS A NUlL VALUE

. . F(SEL.ER2)

* RETURN ITS SELECTCR IF IT DOES
OU1.SFL SELECT = rnENT(ARR1(N1) N S(RETHRN)

* * ELSE INCREMENT INDEX TO LOOK AT THE NEXT ITEM
N = N + 1

*

11.. Arrays

* 'fEST WHETHE R. TRI S SE lECTOR IS OUTS IDE THE BOUNDS OF ARR A Y
* IF SO, THIS ARRAY CONTAINS NO NOLL-VALUED ITEMS

ARR1[N) : P(FRETURN) S(OfJT.SEL)

* * PRINT ERROR MESSAGES AND STOP
SEL.ER1 OUTPUT = 'ARGUMENToO~DSELECT()cNOTDANoARRAY'
.. : (END)
SE1.!R2 OUTPUT = 'ABRAYoPASSEDaISoNOTa1-DIMENSIONAL'
t : (END)
END. SElECT

When this procedure is used, as in the statements

Q :: SEL ECT (L 1ST)
LIST[Q] = WDED

or, equivalently,

LIST[SELECT (LIST)] = WORD

· ·

· ·

F (FULL)

F (FULL)

the procedure reference SELECT(LIST) causes the value of the
variable LIST to be assigned as the value of the formal
variable ARB1 int~rnal to the procedure call. If the value
of L1ST is an array, a~ i~ intended, this means that the two
variables LIST and APR1 have the same array as their values.
The first statement of the procedure body tests the value of
ARR1 to insure that it is indeed of datatype.· Array before
proceedinq; the second statement further tests that this
array is one-dimensional. If either test fails, an
appropriate error message is written and the procedure ends
execution of the program. If ARR1 has as value a one
dimensional array, then the lower bound of this array is
a~signed to the internal variable N. Then the evaluation
rule ARR1[NJ is executed; this refers to the same array item
as l!S'I[N] since ARR1 and LIST both have ·the same array as
value. This rule fails only when the value of N exceeds the
upper bound of the array, which occurs only when all items
of the array have already been considered. Hence if the rule
fails the array contains no null-valued items. ,and an FRETURN
is taken. If the rule ARR1[NJ does not fail then the value
of ARR1[N1 is tested to see whether or not it is null; if it
is null then the result variable SELECT is assigned the
value of N so that this value·is returned as the value of
the pIocedure call.

£!.2£~du~_!!Lln~!:~h~.n.g~-1li.Q_ ~rray§!.. There are somp.
procedures which need to be passed the name of the variable
whose value is an array, rather than the array which is the
value of that variable. Consider two variables named X and
Y; the value of X is a one-dimensional array of 10 items,

1A. Arrays 115

while the value of Y is a one-dimensional array of 100
items. The programmer wishes to cause the value of X to be
the 100-item array, and the value of y to be the 10-itpm
array. Before performinq this swap he wants to he sure that
X and Yare hoth one-oimensicnal arrays. This process may bl:-~
performed with the side-effAct procedure SW~P() which ~as
three arguments: the names of the twc variables whose values
are arrays, and the number of dimensions these arrays are
both to have. Each name is presented as a string which will
he Fassed to the procedure hody to he used as the operand of
the indirect referencinq opprator to return a variable; the
number of oimensions may be expressen as any n\lmeric-valup.(~

expression. The SW~P() procedure uses the REPE~f(l
Froce~ure, described at the beginning of Chapter 6, to huil~
a pattern which can be used to determine whether or not the
prototype of each array has the specified numbAr of
dimensions.

DEFINE('SWAP(A,B,N)rAT1,PAT2,TEMP' f 'PR.SWAP')
: (END. SWAP)

* * 'lEST flHETHEF TUE FIRST T~10 ~HGUMENTS ARE ARR~.Y-VAJ .. (JED
PR.SWAP IDENT('lYPE($A),'ARRAY') P(SWAP.ER1)

IDBNT(TYPE($B) ,'ARRAY') : l ' (SWAP.ER2)

* * 'rEST WHETHER BOTH ARRAYS ARE OF THE SPECIFIED DI~lFNSIOl~
* BUILD A PATTERN USING REPEAT() TO LOOK FOR THE RIGHT
* NUMBER OF COLONS WITHIN THE PROTO'rYPE

PAT' = BREAK(':I) I:'
P1\T2 = POS (0) REPEAT (PAT1, !~)

+ SPAN('-012345618Q') RPOS(O)

*
*
*

*

PROTOTYPE ($A) PAT2 : F(SWAP.ER3)
PROTOTYPE ($B) PAT2 : F(SWAP.EF4)

EOTH ARE ARRAYS OF THE
SWAP THEM AND RETURN

TEMP = $A
$A = $B
$B = TEMP

SPECIFIED DIMF.NSION

. . (RETURN)

* F~INT ERROR MESSAGES AND FAIL
SWAP.ER1 OUTPUT = 'FIRSToARGnMENToCFoSWAP()oNOTnANnARRAY'
... (FH E1'UR N)
SWAP. F.R? OUTPUT -= 'SP.CONDnJ\R~HMF;~ToOFllSW"P () nNOTnA NllARRl'.Y·
.. (F R E'r" n N)
5W"P.ERl OUTPUT -= 'FIRSTnARl1AYnNOTnOPnDTMf:NSIONn t N
.. (F'Hl~'rnRN)

SWAP. ER4 OUTPUT = 'SECONDoI\RHAYnNO'rnOPnDIMENSIONo' N
... (FRETURN)
FND.SWAP

7A. Arrays 116'

A call on this procedure to do the swapping of the
values of X and Y as described above could have the form

SWAP{'X','Y',1l . . F (ERROR)

Since the formal variables A and B never appear witbin
the procedure body except preceded by a $ operator, it woul~
seem at first that the call 5WAP(X,y,1) could be used
instead of the call SWAP(IX','Y',1) and all the indir~ct
referencing operators removed from the procedure body, sinc~

the expression .$'X· is indeed equivalent to X in all cases.
If this were done, however, the value of X would be used
wherever the formal variable -"A-occurred in the procedure
body. While the express ions TYPE (A) and PROTOT.YPE (A), where
A has as its value the same array that is the value of X,
will indeed work as desired, rules of the form A = Band
B = TEMPt will not produce the desired effect. Execution of
the rule A = B would cause the formal variable A to be
assigned the array which is the value of Y, and the rule
£ = TEMP would cause the formal variable B to be assignea
the ·array which is the value of X. 'rhus the va 1 ues of A and
B, ~hich are internal to the procedure call only, would he
swapped rather than the values of the external variables'X
and Y. In order to change the value of X, the string which
is its nallle JOust he passed and a rule of the form $A = $B
must be used, since the expression $A, in this' case, will
return the external variable X to which an assignment can
then be made.

11l,g_!!!!.m~ __ Q~!ftto,£.!. Since array items do not have
strings as names, problems arise when one tries to pass the
name of an array item to a procedure. If the 100-item array
described above had been assigned to the created variable
LIST[1] instead of to the natural variable Y, and its value
was to be swapped with that of the 10-item array which is
the value of X, then a call of the form

SWAP('X', 'LIST(1)', 1}

would not produce the desired effect since the string
LIST(1) is the name of a natural variable, and thus cannot
be the name of a created variable.

the prohlem of passing the name of a created variable
is solved with the use of the name operator, a unary
operator whose symbol is a period. This operator takes any
variable as its operand and returns as its value a special
Object of data type Name which is a name for that variable.
Thus the name of the created variable LIST[1] may be
represented as .LIST['], so a procedure call of the form

1A. l\rrays 1,7

SWAP ('X',. LIST[1),1)

would produce the desired effect.

If the operand of the name operator is a natural
variable, which thus has a string name like X for example,
then the Name .x provides still a different name by which to
refer to that variabl~. The two names always rpf~r to th0
same variable, and can be used interchanqeably. The
ap~lication of the $ operator to an opecand of oatatype Name
gives the same effect as its application to a strinq-valu0o
operand: the variable named by the operand is returne~. Thus
the call

S W A P (• X , • LIS T[1] , 1)

could be used as well. The only necessity for the use of th~
name operator arises when names of created variables must hR
passed to and from procedures. Note that objects of datatyp~
Name cannot be printed.

ls an example of an application in which a Name is to
be returned by a proce~ure, consider an amended version of
the SELECT() procedure, presented earlier in this chaptpr,
which wouln return t,he Nam~ of t.he first rtllll-value(l it.em of
an array rather than its select.or. This ampnded prOCI?(111r(~,
called STEP(), is presented helow; the entire procedure hody
is t}l e sam e as t hat 0 f S E LEe T () ex c e p t for the s ta t P in P n t
label1€~ OU~.STEP in which the r~sult variahle is assigned a
value of datatype Name.

* FFOCBDURE TO RETURN NAME OF PIRST NULL-VALUED ITEM

*
DEFINE ('STEP (ARR1) N', 'PRe S'!'EP')

*
. . (END.STEP)

* 1EST WHETHER FIRST ARGUMENT HAS AN ARRAY ~s ITS VALUF
PR.STEP IDEN"(TYPF;(ARR1),'ARRAY') : l"(STEP.ER1)

* * TEST WHETHER AgRAY IS 1-DIMENSICNAL AND FINn LOWER BOUND
PROTO'IYPE(ARR1} BRRAK(':') • Nt ••

+ SPAN ('-0'23456789') RPOS (0) : F (STEP. F.R2)

* * 'lEST WHE'lHER 'rHIS ITFM HAS A NUlL VALUE
* RFTURN THE NAME OF THIS t'!f.M IF IT DOF.S
OUT.STEP STF.P = IDENT(ARR1[N],NrJLL) .1\RR1[N] : f.l(RETURN)

* * ELSE INCREMENT INDEX TO LOOK AT NEXT ITEM
N = N + 1

•

7A. Arrays 118

• !EST WHETHER THIS SELECTOR IS OUTSIDE THE BOUNDS OF ARRAY
* IF SO, THIS ARRAY CONTAINS NO NULL-VALUED ITEMS

ARR1[N) : F (FRETURN) S (OUT. STEP)

* * PRINT ERROR ME~SAGES AND STOP
STEP.ER1 OUTPUT = 'ARGUMENToOFoFfND OoNOToANcARRAY' : (END)
STEP.ER2 OUTPUT = 'ARRAYcPASSEDaISoNOTo1-6IMRNSIONAL': (END)
END. STEP

The rule

$STEP (LIST) = WORn . . F (FULL)

may be used to assign the value of WORD to the first null
valued item of the array which i~ the value of LIST.
Execution will cease if the value of LIST is not a one
dimensional array (in which case an error message is
pri ute d). The proced ure ca.ll will fail if there are no nu 11-.
valued items remal.n~"ng within the array. If "t:he procedure
call succeeds it retu~ns the Name of the tirst null-valued
item; this Name is used as the operand of the $ operator
which returns the needed variable.

Alternatively, an NRETURN could be used to cause the
procedure to return a variable rather than an object of
datatype Name, but the name operatcr would still be needed
within the procedure body. If the statement labelled
CUt.ST~P were written as

OUT.STEP STEP = IDENT'(ARR1[N],NULL) .ARR1[N] : S(NRETURN)

then the procedure call would have the form

STEP(lIST) = WORD : F(FULL)

since the value returned by STEP() is the variable needed
for assignment,.

!Q~ming_~!1_2g1~ctQ~_Qf_~1!!~1~ Whenever the STEP(}
proc€dur~ is call~d, it always starts by investigating the
"first" item of a one-dimensional array, that is, the one
whose selector is formed by using the lower bound of the
array as its single index. The procedure continues to form
new selectors by adding one to the value of this index until
a null value is found, or until an attempt is made to
increase the index beyond the upper bound of the array; if
this happens, then every selector of the array has been
us~d. Since the STEP() procedure has been written to process
one-dimensional arrays only, the' method it uscs for
determining all selectors of an array is very simple. The

7A. Arrays 119

process of det.ermining' all selectors, becomes more
com~licated when an array is multi-dimension~l.

A general purpose ruethod which would work for an array
of any number of dimensions CQuld be described as follows.
start with a selector formed by using the lower boun~ of
each d'imAnsion as its index; this information may h~
obtained from the prototype of the (lrray. (For exarnplp., thfl
initial selector of'~ an array whose p~ototYPA is
0:2,1:10,1:10 is 0,1,1.) Suhsequent selec't.ors are forJlH~d hy
adding one to the index of the last (riqhtmost) dimension
until the upper bound for that dimension is reached (just as
for a one-~imensional array), while keepinq all other
indices constant. When the upper hound of the last in~ex is
reached, r~set that index to its lower hound and increment
the index of the penultimate dimension by one c ~or this
value of the npxt-to-the-l~st index, run throuqh all valups
of the last index again, r@setting when the upper boun1 is
reached. Repeat this proce~s for all values of thp
'penultimate dimension, then reset the this index to its
lower bou~d ana ~egin incrementing the inde~ of the
antipenultimate dimension, 'repeating the previously
describecl processes (0e each of its valups, {~tc. Proc(:~(~(,

until the index of, the first dim~nsion has reachad its upppr
bound; then, all selectors of t.he ar.ray ha.ve been formprt.

If the process just described is applied to a three
dimensional ar~ay whos~ prototype is 1:3,1:2,1:2, th0
following selectors will 'be formed in the indicate~
"nulIer-ic" order.

{1.J
(2.)
(3.)
(4.)

1 , " ,
1,1,2
1,2,1
1 .. 2, 2

(5.)
(6.)
(7.)
(8.,

2, 1 , 1
2,1, 2
2,'2,"
2,2,2

(9.)
(10.)
(1 1 • ,
(12. 1

3, 1, 1
1, ~ , 2
3, 2, ,
3,2,2

It is easily seen from this display that the rightmost
index does indeed vary most often, while the leftmost iadex
is never reset but goes through its range of values only
once. 'Ihe process could be deser-ibeo just as easily with the
leftmost increx varying most oft~n, but the order in "Thich
the particular selectors are formEd is immaterial sincp th0
same process ,may he tlsed whenp.ver all it.flms of an acray arp.
t,o be considered. 'rhus if all items are as~;iqned val1l0s hy
the met h 0 (1 i tl s t (Ie s c r i be dan c1 1 (1 t. e r t. h e s arne met. h 0 (1 is II S 0 c1
t.o print thf? values, then the values ~rill bf' pr,int.(~d in
whatever order th0Y were assigned. Since there ar~ many
applications in which all itp.ms of an array must h0.
considered, it is convenient to express this process in
terms of a procedure.

7A. Arrays' 120 '

Procedure to Return the "~ext" Selector. Presented
below -'is--a:-programRrer=defined-- froceaur:;;;--N~XT (), which
requires two strings as arguments: ~he first represents a
current selector and the second the prototype of the array
whose "next" selector isto be formed~ this selector ts
returned in t.he form of a string as' the value of the NEXT ()
procedure. Here "next" is used to mean the selector which
follows in the drder described in the precedinq section. The
NEXT() procedure fa~ls when there is no next selector, for
exa ro~le ,when the current selector passed 'as its argument is
the last in the order described ~bove.

* FBOCEDORE TO RETURN THE "NEXT" SELECTOR

*
DEFINE(tNBXT(SEL,PROT~INDEX,LB,UB'i'PR.NEXT')

* * PATTERN POR TEARING SELECTOB APART INTO ITS INDICES
* ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE SEL.PAT

S E L. PAT = (t, • I NULL) SPA N ('- 0 1 2 3 4 50 7 B 9 ') • INDEX
.+ RFOS (0)

* * PAT!EBN FOR TEARING PROTOTYPE AP~RT TO FIND LOWER AND
* UPPER BOUNDS
• ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE PROT. PAT

PROT.PAT -= C',' I NU.tL) SPJ\N('-0123U56789') • LB
+ ':' SPAN{'-0123456189') • UR RPOS(O) : (END.NEXT)

* * FIND RIGHTMCST INDEX OF THE SELECTOR STRING AND RE~OVE
* FAIL IF NO MORE INDICES TO BE FOUND
PR.NEXT SEL SBL.PAT = NULL : F(FRETURN)

* * FIND LOWER & UPPER BCUNDS FOR THIS DIMENSION
,PROTO PROT.PAT -= NULL

* * INCFEMENT INDEX IF IT IS LESS THAN THE UPPER BOUND
INDEX = LT (INDEX, UB) INDEX" 1 : F (RESET. NEXT)

* FORM NEXT' SELECTOR STRING BY CONCATENATION
NEXT -= IDENT(SEL,NULLl INDEX-',' NEXT : S(RET~NEXT)

NEXT - SEL I,' INDEX '.,' NEXT

* * REMOVE SPURIOUS FINAL COMMA PROM SELECTOR STRING
RE'!. NEXT NEXT • " RPOS (0) = NULL : (RETURN)'

* * FESET THIS INDEX ~O. ITS LOWER BCnND, CONCATENATE IT TO
* THE SELECTOR STRING BEING FORMED AND PROCEED TO WORK
* ON THE NEXT INDEX
RESET. NEXT

NEXT = LB '~. NEXT
END.NEXT·

. . (PR. NEXT)

7A. Arrays '21

Note that the NEX~() proce~ure returns a string as its
val u e • T h u s the s e 1 e c tor rep re sen ted by t it a t s t [' in g can not
he used within an item reference, where only a selector list
is appropriate, but may be use~ as the second argument of
the I'T'EM 0 procedure, as in the rule

OUTPUT = ITEM(lIST,NEXT(SELECT,PROTOTYPR(LIST))

where th~ value of SELECT is a strinq representinq the last
used selector. If the ITEM{) procedure were not ~efined to
accept a string as its second argument, it would not he
possihle to write a useful, general purpose NEX~O procedure
to ~ork on an array with any number of dimensions.

NEXT() was devised for the purpose of returning all
successive selectors of an array, each call to NEXT()
returning the next selector until a failure transfer is
executed. The loop shown below uses the Nr~XT () procefi nrc in
this way. The INI,. () procedure which precedes t. hf> loop
provides a string to be used as the initial value of SBLBCT;
INTT() takes a prototype as its argument and returns th~

n f ir:::;t U selector of an array descr. i bed by th at. prototy pe.

DEFINE('INIT(PROTO)LBPAT,LB','PR.INIT')

* * SET OP PATTERN TO FIND LOvlER BOUND FOR E~CH DIM'P.N~ION

* ASSIGN THIS PATTERN to THE MAIN-PROGRAM VARIABLE LB.P~T
LBPAT -= BREAK(':') • LB I:' (BREAK(t,') ',' I PEM)

+ : (END. I N IT)

* * USE THIS PATTERN TO FIND NEXT LOWER BOUND
PR.INIT PROTO LB. PAT = NULL : P(RET.INIT)

* * FORM INITIAL S~LECTOF STRING BY CONCATENATION
I NIT = IN! T ',' L 13 : (P R. I HIT)

* BEMOVE SPURICUS INITIAL COMMA AND RETURN
RET. IN I'!' INIT ',' -= NULl.. : (RETURN)
END.IN!T

* * LOOP TO PRIN'I
SRI. EeT

LOOP OUTPUT
SELECT

+

ALL SELECTORS Of lIST
= INIt{PROTOTYPE(LIST»
= ITEM(LIST,SELECT}
= NEXT(SBLECT,PRCTQTYPE(LIST»

: S(LOOr)

Since NEXT() is meant to be used in this an~ similar
ways, it has no special provision for dealing wit.h selector
strings passerl as the first argument which fall outsirle thn
ranqe of the array; such provisions coulrl bp added to makp
the procedure more generally useful.

1A. Arrays 122

.f!.Q~.eQ.lll~_.1!LB.~l.YI.!l_L COE.I_Q,f_gLU_A rr:g,!.:.. It is ofta n
necessary to make a copy of an array, r~ther than merAly
assigning the same.array as the value of' more th~ri one
vari~ble, so thai changes in th~ values of -the copy'can he
made without ~ffecting theo~iginal. To make a cop~ of an
array means to create a new array with the same prototype as
that of the. original, and to assiqn tO,each of its items th~
same value as that of the corresponding item in the oiiginal
array. The following CCPY () procedure returns as its value a
copy of an}' ,array::, it requires only Qne argument, which'may
be any expression who~e valrie is the array to be copied
this array may have any number of dimensions. The COPY()
procedure invokes,the INI~l) ~rocedureto form the initial
selector string, and th~ NEXT() proc~~ure to insure that all
items are consider~d and hence copied; both of these

,procedures a.re described in the preceding section. A call to
the toPY() procedure,fails, causing an error meBsage to be
prinb?d, .only if its argumen t is not 0 f data type Arr ay.

* PFOCEDURE TO RETURN A COpy OF lNY ARRAY

* DEFINE pCOPY(ARR1lSELECT,I?' ,'PR.COPY') : (END.COPY)

* * TEST WHETHER ARGUMENT IS AN ARRAY
p R ~ COP Y I D F NT (T Y I! E (A F R 1) , , A R RAY' 1 . . ' F(COPY.En,)

'" * CREATE A NEW ARRAY WITH PRdTOTYFE OF ARGUMENT
* AND ASSIGN IT AS THE VALUE OF THE RESULT VARIABLE

P = PROTOTYPE(ARR1)
COpy -= ARRAY (P)

* * CALL INIT(l TO RETURN THE FIRST SELECTOR OF THIS ARRAY
SELECT = INIT(P)

* * COpy VALUE OF NEXT ITEM OF ARRAY, USING ITEM{)
COpy.COPY
+ ITEM (COPY, SELECT,) = ITEM (AR R1, SELECT)

*
*
*

CALL NEXT() TO RETURN THE NEXT SELECTOR OF THIS ARRAY

+

IF NO NEXT SELECTOR, RETURN
SELECT = NEX~(SELECT,P) : S (COpy. COP Y)

F (RETURN)
COPY.ER1 OUTPUT
+

= 'ARGUMENToOFciCOPYoNOToANoARRAY'
: (FRE'l'URN)

END.COPY

123

A ppendi X· A .. SUMMARY OF PREDEFINED PROCEDUPE5

I. PRCGRAM PROCRDORES are used by the programmer as basic
operations in constructing proqrams.

1. General Comparison

IDEN1' (l
DIFFER()

2. String Comparison

LGT 0

3. Arithmetic Comparison

EO ()
»~ ()
G'i' ()
GE ()
I~ 'r ()
LE {)

1. Pattern Ccnstruction

A NY 0
NC1'ANY ()
SPAN ()
BHFAKO
LEN 0
'11 A B n
RTABO
pes 0
RPOS ()
A RBNO ()

2. string Operation

TRI M ()

A. Summary of Predefined Procedures

1. structure Creation

2. Field Selection

PARAM 0
FtF.ST ()
RESTO
LEFT ()
RIGHT 0
F' A ~ILY ()
SELECTO R ()

124

II. SYS'rEM PROCEDUHES are used to communicate inst ructions
and requests to the Snobol system.

1. Programmer-defined Prccedures

DEFINE 0

2. programmer-defined Datatypes

DATA ()

1. Attributes of Objects

SIZE ()
DATATY PE ()
TYPE()
PROTOTYPE ()

2. Execution Information

ALPHABET (J
DAlEO
CLOCK ()
'l'IME()
STCOUNT ()
S'ILIMIT ()

A. Summary of Predefined Procedures

MAXLNGTH ()
F NCLEV EL 0
Nf.XTVAR ()

1. Special Execution

ITFM ()
APPLY 0
IF ()

2. set Mode of Pattern-Matching

ANCHOR()

3. Datatype Conversion

CCNVEFTO
CODE ()

1. File Association

INPUT ()
OUTPUT ()
DETACHO

2. Requests for File Actions

ENDGROUP ()
REWIND ()
REM1\RK ()
FREEZE ()

3. ~ests of File position

EORLEVEL ()
Eor 0

125

A. Summary of Predefined Procedures 126

The foregoing classification scheme is intro~uced as an
aid to understanding the purpose and use of the various
predefined procedures; the particular classes differentiated
play no part in the definition of Snobol, and other
classifications could be devised. Notice that ffiOSt

pr.oqrammer-defined procedures declaren by' DEFINE()
constitute extensions of the classes of test procedures and
result procedures, and that those d~6lared by DATA{)
constitute extensions of t.he classes of structure creation
and field selection procedures.

In th~ descriptions which follow, each predefine~
procedure is shewn along with the kind of value required for
its argument(s) and the kind of value it rpturns. There are
no sy~tactic restrictions on the form of arguments; since
all arguments are passed Uby value" in Snobol procedure
calls, actual arguments may be written as arhitrarily
com~licated expressions. There are, however, semantic
restrictions on the values resulting from evaluation of
'act ual a rgumen t.s, de fined in terms of tlda ta types. nEver y
data object known to a Snobol proqram is of datatype strinq,
Integer, Pattern, Real, Array, Name, Code, or a programmer
defined datatype. Each procerlure is shown h~re with the
datatypes it will accept; a call of a procedure using an
argument with a wrong datatype will result'in an execution
time ~rror. ~ome procedures are described as accepting thA
non-datatYPG "structure"; these procedures ~illaccept an
argument of any programmer-defined datatype. Some procedures
are described as accepting the non-datatype "any"; these
procedures impose no restrictions cn their arguments. Som~
procedures are described with an empty argument list; these
procedures are defined to have no arguments.

There are two generalizations not specifically
mentioned in the descriptions: (1) a procedure which accepts
aP at t er n VI i 11 accept a string or an In t e q e r: (2) a
procedure which accepts a string will accept an Integer.

Any predefined procedure may te called with more or
fewer arguments than are shewn in its definition. Missinq
arguments are assumed to be the null value: extra arguments
are evaluated but otherwise ignored. The evaluation of extra
arguments rna y ha ve i mportan t consequences,. however; if the
evaluation involves the invocation of procedures which
produce side effects, for example, it will cause those side
effects to occur before the outer procedure call occurs, and
failure during any part of the evaluation of the arguments
will result in failure of the rule before the proce1ure call
cccurs. The extra arguments are iqnored only in the sense
that they are not passed to the procedure being called.

A. Summary of Predefined Procedures 127

I. PROGRAM PROCEDURES

IDEN'I (any,any) Returns: null value, or fails

DIFFER(any,any) Returns: null value, or fails

IDENT{) and DIPFER() are used to compare two arguments
of any dat.atype to see if t.hey are indistinguishahle to th0
S not 0 1 s Y s t E~ m -- e qui val e n t Fat t ern s t L U c t t1 rG S , the sam p

array, equal integers, identical character strings, or
whatever. IDENT() succeeds if its arguments are identical;
DIFFERO su~ceeds if its arguments are not id~ntical.

IDENT(PRU.PAT,TEST.PAT) . , DIFFER (WO RD, N HI.. L)

'LGT(String,string) Returns: null value, or fails

LGT 0 - a mnemonic for. Lexiccqraphically Greater ~han
compares two strings to see if they are "alphabnt.ically"

ordered, using as an alphabet the computer's character set
in its s·tan darn colla tinq se que nee. PI ot ice t ha t. the
arguments must be given in the reverse of the fiesirerl or1Gr;
the test is whether t.he first argument f2!lQ~§ the sccon~
argument.)

LGT(WORD,'lEMUEl'l . IGT (WOI1D,TES'r) ,

RQ(Integer,Int~ger) Returns: null value, or fa. il s
EQ (Real, Real) Returns: noll value, or fails

NE(Integer,Integer) Returns: n u11 valup., or fa il s
NE (Real, Real) Returns: null value, or fails

G1.(Integer,Integer) Returns: null value, or fails
GT (Real, Real) Returns: null value, or fa i1s

GE(Inteqer,Inteqer) Returns: null valu~, or fa ils
GE (Real, Real) Retu I'n s: null value, or fails

L1(Inteqer,Integer) Returns: null value, or fa ils
LT (Real, R~al) Returns: null value, or fa ils

tE(Inteqer,Inteqer) Returns: n ull vi'\lue, or fa ils
LE(Real,Real) Returns: null valu~, or fails

A. Summary of Predefined Procedures 128'

These arithmetic test procedures are used to compare
the first argument to the second argument to see if th~
relationship symbolized by the procedure name is true. The
two arquments must be of the same datatype.

EQ (ACNT, BeNT)
x -= LElX. 8)

ANY (String)

; LT (LINE, 5)
X + 1 . .

Returns: Patte-rn

F (OUT)

ANY() returns a pattern which will ~atch any single
character from its argument string.

ANY ('AEIOU') . , A NY (VOWELS)

Norr 1\NY (5 tr i ng) Returns: Pattern

'NOTANY{) returns a pattern which will match any single
character n2t app~aring in' its argument string.

NOTANY (V AEIOU') NOTANY (VOHELS)

SPAN(string} Returns: Pattern

SPAN() returns a pattern which will match the longest
continuous string of one or more charact.ers appearing in its
argument string.

SPA N (. A EI C U')

BRE~K(string)

.
'f SPAN(VOWELS) Co

•

Returns: Patt.ern

SPAN('MISSISSIPPT')

BREAK{) returns a pattern which will match the longest
continuous string of none or more characters not appearing
in its argufuent string~ that is, everything up to but not
including any character in ~ts argument.

B REA K (, A~ IOU I) .
t BREAK (VOWELS) ; BHEAK('MISSISSIPPI')

A. Summary of Predefined Procedures

LEN (Integer) Returns: Pattern

LFN() returns a pattern which will match any string, of
characters of the length giv~n hy its argument.

LEN (5)

TAB (I n te g~ r)

· • LEN('22') · • LEN(SIZE(VOWELS»

Returns: Pattern

1AB() returns a pattern which will match all thp
characters up to the string pcsition specified by its
argument. ('f'he convention for string numbering is that
string position 0 precedes the first character, strinq
position " is after the first chat"acter, and string position
n is after the n-th character.)

TAB (5) · •
RT A E (Integer)

T~B('22') · • 'IA 13 (COUNT)

RetuLns: Pattern

RTAB(l returns a pattern ~hich will match all thp
characters up to the string position specified hy its
argument. Its action is identical to TABO, matchinq strinq[;
cf characters from left to riqht; the only (\iffor(~n(,;Q
between them is the numbering convention used by th0
a r gum e n t • (R TAR () 's n u m bet:' i nq con v E? n t ion i s t h;i t s t r i n q
position 0 is after the last character, string position 1 is
before the last character, and strinq pOSition n is befo~e
the n-th character from the end of the strinq.)

R'IAB(5) RTAB ('22') RTAR(O)

POS (Integer) Returns: Pat.tern

POSO returns a pattern which will match only thp
string position specified by its argument; it matches no
characters at. all. (string positions follow the numherinCJ
convention of !AD(}.)

pes (Ol ; POS (5) P05 (' 22')

A. Summary of P~edefined Procedures 130 '

RPOS (Integer) Returns: Pattern

RPOS() returns a pattern which will match only the
str iog position s peel fierl by its a rqument; it rna. tc hes no
characters a t al1~ (string positions follov the numbering
convention of FTAB().)

RPOS (5)

ARBNO (PatterI)

.
• R pas (t 22') . , RPOS (CO UN!)

Return~: Pattern

ARBNO() returns a pattern which will match zero or more
occurrences of the pattern which is its argument.

ARENO (BREAK (' o. ,; I) LEN (11) .
t ARBNO(ANY{'AEIOU'»)

TRIM (String) Returns: string

TRIM() returns a string which is the same as its
argument, hut shorn of trailing blanks.

TRI M (WORD) .
• T RIM (I N PUT) TRIl1 (UNCLE.TOBY)

ARRAY (String) Returns: 1\rray

AFRAY () accepts as its single argnment a prototype
string specifying the number of nimensions wanted and the
upper and lower bounds for the index of each dimension.
ARRAY.('10,1!1') specifies a two-dimensional arr.ay wi.th
indices from one to ten and one to fifte~n.
~RR1\Y('O:60,-5:+5') specifies a two-dimensional array with
indices from zero to sixty and from minus five to plus five
(i.e., a sixty-one by eleven item array). All array items
are initialized to the null valQe. There is no limit on the
number of dimensions which may be specified for an array.

Since ARRAY() returns an object of datatype Array as
its value, it is used by writinq something like

LIST = ARRAY('O:60')

which' has the effect of creating a family of sixty-one

A. Summary of Predefined Procedures 131

variables, which may then be referr~~ to by the item
ref ere n c e s I, I S T [0], LIS T (,]". • • I tIS T [6 0].

PARAM (Pattern) Returns: Pattern, string, or Integer

PARAM() accepts as its argument only a pattern returne~
by cn~ of the ten predefined pattern procedures; it returns
the argument (parameter) with which one of those was calle~
to construct the pattern. If the rattern is one constructe~
by LEN (), P~S 0, RPOS (), TAB (), or R'T'AB 0, t.hen PARAM ()
returns an integer; if the pattern was constructed by 1\NY () ,
NOTT\NY (), SPAN (), or BREAK (), then PARAM 0 returns a strinq
of charactprs in their standard collating sequence (th0
sequence defined by AT.PHABET() 1. If the patV;)t:'Tl Has
conEtructed by ARRHO(), then PARA~() returns thp pattern
that was its argument, which may of course be of datatYP8
String or Integer in simple cases.

PIRS'! (Pattern) Returns: Pattern

FIRST() accepts as an argument a ,pattern constructe~ hy
an alternation or concatenation operator. It returns th0
first element of the pattern. Thu5 if

PAT = X Y Z

has teen executed, then

FIBST (PAT)

[~turns the pattern which is the value of thA expression
X Y, a concatenation. On the other hand, if

PAT = X (Y I Z)

has been executed, then

FIRST (PAT)

returns the pattern which is the value of X.

RES'I(Pattern) Returns: Pattern

REs'ro i~ t.hp. complement to l"IT>STO: it also accept~;
alt. er na t(~ cl 0 r. con cat en ate d pat t er n s as' a r q u m €:'n t s , a n rl
ret urn s a 11 b \l t the fir 5 t. e 1. c men t . 'T' h t: s , i f

A. Sum~ary of Predefined Procedur~~ 132'

PA~ = X y Z

bas been executed, then

RES T (r> 1\ Tl

returns the patt~rn which is the valqe of Z. If, however,

PAT '= X (Y" Z)

has b~en' executed, then

REST (PAT)

returns the pattern which is the value of Y
al tel: na'tion.

LEFT (Pat tern) Returns: "Pattern

z, an

LEFT() accepts as an argument a Pattern constructed hy
an immediate assign mentor conditional assignment operator;
it returns the pattern which is the left~hand op~rand of
that operator. Thus if'

PAT '= ANY (VOWELS) • V

has heen executed, then

LEFT (PAT)

returns the pattern which is the value of the expression
ANY (VOWELS) •

RIGH'! (Pattern)
RIGET (Name)

Retqrns: Name
Returns; Strinq

RIGHT() may have a pattern constructed by an assignment
operatcr, in which case it is the complement to LEPT(). For
instance, if

PAT =' ANY (VOWELS) $ V

has been executed, then

RIGHT (PAT)

returns the value of the expression '.V, the Name of the
variablp. v.

A. Summary of Pr.edefined Procedur.es 133

RIGHT() may also have as argum~nt a deferred evaluation
pattern, in which case it returns the Naroe of the operand of
the deferred evaluation operator. If

PAT = *v

has been executed, then

~IGHT tPAT)

returns the value df the expression .V, the Name of the
variableV.

Finally, . RIGHT () may have' as it.s argument the Name
(datatype Name) of a natural variable" in which case it
returns the String which is the other name of that variable.
(RIGHT () will not accept the Name cf a creat~d varia bl(~, nor
the String name of a natural varial::le.) Thus, th~value of
R!GHT (.V) is the string v;' the statements

PAT = ANY (VOWELS) $ V
OUTPUT = RIGHT(RIGHT(P~T)

will print .the character V. Since ohiects of datatype Name
cannot ,b~ printerl, it is the RIGH1'O . procedure which.
converts Names of natural variables into a form suitable for
assignment to OTJ'rpU'T. (To print Names of crea ted .va riabl(.;)~;,
see FA MI LY () and SEL ECT CR () below.),

F 1\ f1 I L Y (N am e) Returns: Array or structure

FAMILY(l accepts as argumeht the Name of a cr~atp~

variable (array item, or field of a programmer-~efined aata
str.uct.ure). It returns the obiect which is the family of
variables to which the Named variable belongs. If LIST has
been assign~d an array as value as in

LI5T = ARRAY('0:10')

and the rule

ELEMFNT = .I,IST(5)

has been executed (notice that the value of ELEMf.N1' is of
datatype N arne) , then

FAMILY (ELEMFN'I)

returns the Array which is the va Ine of LIST. Similarly ..

A. Summary of Predefined Procedur~s '34 .

after the statements

nAT~('NODE(LtINK,RLINK,INFO)')
, ~ E X'T = NOD E (~ , 1 C)) ,

ELEMENT = .INFO(NlX!)

have been e~"cuted, then

FAMILY (~LEM'PNT)

returns the object of datatype Nodo which is the' value of
NEX'!.

since FAMILY() returns the Array or structqre rath~r
than the Name of the variable whose value is the Array or
s t r. u c t U 1:' e, the val u e 0 f F A ~l it Y () iss u i ta b 1 e for u sa a s t h A

first argument of ITEM(), or a second argument of APPLY().

SELECTCR (Name) Returns: String

SEtECTOR{) is the oth~r half of F~~ILY(). It also
accepts as its argumeh~ the Nam~ cf a credted variable~ and
retu~ns a string which may be use~ to select that variable
in its family. For. A.rrays, SEtECTOR(} rp.tqrns a stri!HJ which
is a 1 ist of i niU.ces; for atr ucturp.s, SELECrOR () retu t'ns a
string naming a field selection proce.,~ure'~ The strinq
returned by SEtECTOR() is appropri~te for use as the first
ar.gument. of APPLY {), or. a seGond argQment of tTEM()" (Not~
that this last use takes advantage of the fact that I~E~()
will accept such a String of indices; only in the case of
one-dimensional Arrays may the value of a call to SEL~CTOR()
be used within square brackets in an item reference.)

A. Summary of Predefined Proc~dures 135

II. SYSTEM PROCEDURES

DEFINE(string,String) Returns: null value

The first argument of DFFINE() is a string consisting
of the name of the procedure being defined, followe~ by ~

pair of parentheses containing the names of the formal
variables (if any), which in turn are followen (\01 ithout a
comma) by the names of internal variables (if any). Thp
second argument is a strinq naming the "entry label" for thp.
procedure: if the second argument is null, the entry labpl
is assumed to have the same form as the name of thp
proce~ure being defined.

DEFINE('PRINT(N,NAME) M,W,f')
DE FINE (, RECORD S () , , , P R • R E C 0 H D g.)

tA'rA (Str:ing) Returns: null value

The DATA () declarat.ion has as i t.s argument a prototypr.:>
string consist.ing of the name of thp. <1atatype being dcfinp.r1,
followed by a parent hflS izen 1 ist of the na me s of t h~ fie'_rl ~.;

which an object of that datatype i~ to comprise (if ~ny).
The e f f e ct 0 f the D A '!' A () d P. cIa rat. i en is ton e fin Po (\I it h 0 U t.
un y DE fIN EO' s) a s true t u r e c rea t ion pro c <..~ 11 tl r. e for t. h ~
datatype, along with a field selecti0n procedure for each
field. Thus, after the declaration

DATA ('NODE (LLINK,RLINK,INFO)')

has heen executed, Node's may ~e created with statements of
the ferm

NEXT = NODE () ; CTJRRENT = NODE (NEXT", TRI M (I t-IPUT))

Fields of the created structure have values initializpn
according to the values of the corr0spon~inq ~rqumpnts of
the procedure call; null arguments produce null fiE'lds.

T~c variables which are fields of structures are
referred to by fiel~ refArences, consisting of a reference
to a field selection proce~ure with an argument of the
pror-cr datatype to specify thp., family; for t."h(~ example
above, by statements of the form

A. Summary of Predefined Procedures

LEFT ~ LLINK(CORRENT)
NAME = INFO(NEXT)
RtINK(CURRENT) = NEXT

136 .

The same field name may be tlSelj in definitions of more than
one datatype, since its interpretation is qoverned by the
datatype of the argument in any field reference. Notice,
however, that the names of structure creation procedures and
field selection proc€dur~s are drawn from the same set as
all other procedure names, so th~t (for instance) defining a
structure

DATA ('ENTRY (TYPE, SIZE, INFO) I}

will re-define the predefined procedures TYPE() and SIZE()
as' 'field selection procedures for objects of datat.ype Entry.

II.E

SIZE (string) Returns: Integer

SIZE() returns the integer length (the number of
cha racters) .of th~ stri ng vh ich is its argument.

SIZE (VOWELS)

D A T A If Y P E (a n y)

. • SIZE(TBIM(INPUT»

Returns: String

DATATYPE() returns the string of characters which is
the name of th~ datatype df its argument (predefined or
programmer-defined). It is used for controlling bcanching,
and can he used with IDENT{) to simUlate other test
procedures. To test whether COUN~ is an integer, write
IDEN~(DATATYPE(COUNT),'INTEGER') •

DATATYPE(COUNT) .
• :($ ('L' DATATYPE{VAL»)

TYPE(any) Returns: String

TYPE 0 returns the same resul t as DATATYI?E () for
objects of predefined datatypes, and the string DATA for
objects of programmer-defined datatypes. Thus, an exhaustive
li~ting of the strings returned by TYPE{) is:

STRING
ARRAY

INTEGER
NAME

REAL
CODE

PA'rTE RN
DAT 1\

A. Summary of Predefined Procedures

PROTOTYPE (Arra y)
PR01CTVPE(structure)
PROTOTYPE (Pattern)
PRO'IOTYPE(Name)

Returns: String
Ret u r. n 5 : S t ri n 9
Ret.urns: String
Returns: String

137

PROTOTYPE() returns as its value a strinq representinq
the system definition of t.he obj~ct which is the value of
its argument. Its operation is rath~r ~ifferent accordinq to
the datatype of its argument. In each case, the strinq
returnen is inten~~d to be convenient for investigation by
Snotol pattern-matching.

When the argument of PROTOTYPE() is an ohiect create~
by a call to the predefineo structure creation procednr0.
nRR~Y(), the string returned is the list of upper and lowpr
h 0 U n d S 0 fin die e s for the dim ens ion s -'- e sSP. n t. i a 11 y the sam 0.

as the argument given to the ARRAY () procedure, except that
lower bounos ar.e always explicitly ~resent, and e~ch integ0r
is in canonical form (no signs fer posit.ive numhers, no
'lea~ing zeroes). Thus, if the rule

.L I S T -- A R RAY (. 00 : 5 ,. .-, : + 3, 0 S t)

has teen executed, then

PROTOTYPE (LIST)

will return the 12-character strirtg 0:5,-1:3,1:5.

When the argument of PROTOTYPE() is an obiect of a
programmer-defined datatypeone created by a call to ~

programmer-defined structure creation procedure ~- t.hen the
string returne~ is that defining the datatype of the oblect.
This is the same as the string which was the arqument of th0
call to the OA'T A 0 procerlure wh.ich d0.clared the dat at ipe -
not the argument list of thp structure creation proc~cturp

which created the ob;ect (unlike the case for Arrays). Thus,
if the two stat~m~nt~

DATA('~ODE(LLINK,RLINK,INFO) ')
CURRENT = NODE(LAST,,'SCNNETo15')

have heen executed, the value cf CUF~ENT is an obiect of
datatypp No~e, with its LLINK() and INFO() fiel~~
initialized as shown and its RLINK () field nUll. rrhen th0
rule

PROTOTYPE(CURRENT)

would [0turn the 22-character strinq NODE(LLINK,RtINK,INPO).

A. Summary of Predefined Procedures 138

Por both arrays and data structures, the argument of
PRO'ICT'lPE() is an obj€ct which is a family of v'ariables, and
the result returned is a string which can be used to
determine all the valid selectors for members of that fa~ily
- items or fieliis, as the case may be. (The difference is
that for arrays this information is provided in the argument
to the pred(~fined structure crea tion procedure, for da t a,
structures this information is given in the declaration of
the datatype.) Tn the last example, for instance, one could
obtain the valries of the fields of the object named by
CURRENT by ohtaining its PROTOTYPE(), then searching with a
pattern between the parentheses to find the strings
delimited by commas, and using the strings located in this
way as the first argument of APPLY(} with CURRENT as the
seccnd argument.

This idea is extended to objects of datatype Pattern
and datatype Name, by observing that although objects of
these datatype~ are not families of variables, nevertheless
they may have an internal structure which a Snobol program,
may wish to investigate. A Pattern may be constructed of
many parts, fer instance~ and a Name may indicate a family
plus a selector. Por this reason, the different kinds of
Patterns and Names are provided with predefined system
~rctotypes, strings which contain substrings corresponding
to the names of the predefined field selection procedure~
(see section T.e of this aFpendix). Thus, the' structure of
Patterns and Names may be investigated in the same way as
that of programmer-defined data structures. The twenty-one
predefined prototypes fer patterns are given in the right
hand celumn of the following table.

~£ed€fined_E~!!~!n-Y~!i~£l~~

p = ARB · PROTCTYPE{P)-> ARB () • p = REM · PROTCTYPE(P)-> REM () l'

P -= EAt · PROTOTYPE (P) -~> BAL () •
p -= FENC~ · PROTCTYPE (P) -> FENCE () •
p = FAIL . PROTCTYPE(P)-> FAIL () • p = ABORT · 'PROTOTYPE{P)-> ABORT() l'

A. Summary of Predefined Procedures 139

~Q~fined_~ati~_~!~£~1Q!~~

p = LEN (6) · ,
P = FCS(6) · ,
P = FPCS (6)
P = TAB (6) · ,
P = FTAB (6)
P = ANY('AEIOfJ')
P = NO'rA NY (' AEIOU')
P -= SPAN (' :a.EIOU')
P = BREAK (' AEIOn') . ,
P = ARRNO(ANY(~AE!OU'»

P : 'A' I '0' I 'e'

P = 'A' ANY('AEIOU') 'C'

. ,

.
t

P = SPAN (' ~EIOU') • VOWELS
P = fREAK (. AEIOU') $ VOWELS

P = *VOWEL

PROTC1''fPE(P)-> tEN (PAR T\M)
PROTC'J'YPF (P)-> pas (PARA~)
pnOTCTYFE (P) -> RPOS (pJ\ nfiM)
PROTOTYPE(P)-> TAB (PART\M)
PROTC'rYPF (P) -> RTAB(PARAM)
PROTOTYPF. (P) --> T\NY(PARAM)
PROTCTYPE(P) -> NO'fANY (PAR~.M)
PRO'!'OTYPE(P)-> SPA N (P~ R!\ M)
PROTC'T'YPE(Pl-> BRRAf< (PARAM)
PROTC'T'YPF (P) -> AR13NO (P ARAM)

PROTCTYPE(P)-> ALT(FTRST,REST)

PROTCTYPE(P)-> CAT(FIRST,REST)

PROTCTYPE (P) -> PRD ('LEFT, RIGII1')
"; PROTOTYPE (P) -> nOL (LEFT, HTGH1')

PROTOTYPE (P) -> STAR (RI(atT)

Similarly, a Name may be the name of a natural variable
(One that is also named by a String), or one of th0 two
types of created variacles -- an Array item, or a field of a
data structure. There is a predefined prototype for each of
these:

VAR = .VOWELS
VA R = • LIS T(I , J]
V A R = • R LIN K (N 0 n E)

PROTOTYPE(VAR)-) INDIR~CT(RIGHr)
PROTOTYPF(VARl-> ITE~(FAMILy,SPLEC~On)

~ PROTOTYPE (VARl-> APPLY (SELECTOR ,FAMII,Y)

Notice that the Name of a natural variable, returnod hv
t.he name op~rator, is a suitable di.·qumpnt fol:' PROTOTYPEO;
the stl:'inq which names the same variable (in the pxamplp
abo ve , vow E L S) W 0 u 1 C'l c a use an ex e cut. ion - tim n e rr 0 r as d n
argument of PROTOTYPE().

A. Summary of Predefined Procedures 140

ALPHABET () Ret.urns: String

ALPHABET() returns the 63-character string which is the
5no1:ol character set in standard collating sequence (sep.
Api=Endix I).

ALPHA BET ()

DATE 0 Returns: String

DATE() returns a nine·character string representing the.
current date, in the form 02cJULc72. The abbreviations used
for the months are the first three letters of their names.

DATE ()

CLeCK () Returns: String

CLOCK() returns an eight-character string representing
the time of day at which the job is being run, in the form
19:03:57. Hours are counted from zero through twenty-three,
minutes and seconds from zero through fifty-nine.

CLOCK ()

TIME () Returns: Integer

TIME(} returns the elapsed central processor time for
the job, expressed as an integer number of milliseconds. By
subtracting the value of one call to TIME() from the value
of a later call, a programmer is able to determine the
amount of central processor time used by a particular part
of his program.

TIME ()

STCCUN'I () Returns: Integer

STCOnNT(l returns the count kept by the Snobol system
of the number of statements on· which execution is begun. Its
initial value is, of course, zero when a program starts
executing.

STCOUNT ()

A. Summary of Predefined Procedures 141

STLIMIT(Inteqer) Returns: Inteqer

S'ILIM!1'O is used to set the limit on the nUfIlher of
st a tements executed (t he va 1 ue of STCOUNT (l l. Its ini tia 1
value is 1,000,000; lower limits may L~ set by the
programmer by calling STLIMIT() with a non-null integer
argument. An execution-time error results if STLTMIT() is
exceeded.. If called with a null argument, STLI~1IT () rp.turns
its current value and remains unchange(} ..

s -r LIM I 'r (, 2 0 0 •) ..
• STLIMIT (5000) .

• STLI MI T ()

MAXLNGTH(Integer) Returns: Integer

MAXLNGTH() is used to set the limit on the length of
strings which may be formed, in characters. Its initial
value is 131,070; lover limits may be set by a programmer by
calling MAXLl1GTHO 'with a non-null integ~r arqum0nt .. l\n
'execution-time error will result if an attempt is made to
exceed this maximum length for strings. If called with a
null argument, MAXLNGTii () returns its current value and is
ullchanged.

MAXLNGTH('200')

FNctEVF.L ()

. , MAXLNGTH (SODO)

Returns: Integer

.
• MA XL NG 1'H 0

FNCLEVEL(} returns an integer value to in~icate th~
level of evaluation of np.sted or recursive proceri ur:-e ca.lls.
tts use is to providp a trace of the ~valuation for
d~bugging of program logic, or to preserve a record of th0
level cf evaluation causing a failure ~urinq execntion. (l\t.
an execution-time error, this information is displayed bV
the system's error message.)

REMAR K (TI ME ()

NEX'IVAR (Nf1mp.}
NFXTVI\R(String)

,--, FNCIEVEL() 'oDEEP')

Returns: Name
Returns: Name

NP.XTVAR() accepts as its argument the Name of a created
variable, or either the Name or String naminq a natural
vaciahle.

For created variables -- array itpms or field~ of datR
!; t r u ('" t u [' e s N ~~ X " VhF () ret urn s the n am C 0 f t h f~ "n (~ x t It

memter of the Silme family. For flrrays, namp.s of items ar(~

A. Summary of Predefined Procedur~s 142

returned in the order obtained by varying th~ rightmost
index most rapidly. For data structures, names of fields are
return€d in left to right order of their appearance in the
DATA{} declaration which defined the datatype.' In' both
cases, the order is cyclical~ the name of the "first" member
of a family (under this definition) being thQ value of
NEX'IVAR() applied to the name of the "last" member. Thus, if
the rule

LIST = ARRAY('O:2,O:2')

has been executed, the value of NEXTVAR(.LIST(O,O]) is the
name of the array item referred to as LIST[O,1], and the
value of NEXTVAR(.LIST[2,2]) is the name of the array item
referred to as LIST[O,O]. Similarly, if the rules

DATA (' NODE (tLl NK, RLINK, INFO) ')
CURREN,!, = NODE ()

'have been executed, the value of NEXTVAR(.LLINK(CURRENT)l is
the name of the field referred to as R1INK(CURRENT)~ and the
value of NEXTVAR (. INr'O (CURRENT» is the name of the field
referred to as LLINK(CURRENT}.

If a statement such as

NEXT = NEXTV~R(NEXT)

is written in a loop, then the names of all the members of
the family to which the value of NEXT belongs will be
returned in order; but unless the programmer checks to see
when he is back to where he started, the loop will be
ififinite. ,A suitable loop for going once through the fields
of a Node, then would be

SAVE = • LIINK (CURRENT)
NEXT = SAVE

LOOP (statements to process a field]
NEXT = NEXTVAR(NEXT)
IDENT(NEXT,SAVE) . F (LOOP) .

NEXTVAR{) is convenient for referring in turn to all
the variables of an array or a data structur~, but its
effect can be programmed in Snobol using PROTOTYPE(),
ITEM ()" and APPLY (). (See an example of this in, Cha pter 7.'

The more iroportant use of NF.XTVAHO arises from the
fact that it also treats the set of all natural variables as
a "f amily, I. an d thus when gi ven ,a Stri ng or a Name ,wltie h
names a natural variable, NEXTVAR() returns the name of

A. Summary of Predefine~ Procedures 143

another natural variable. Two important differences of
NEX!VAR() in this use should be noted. First, since there is
no defined order for the natural variables, their names are
returned in an order which is convenient for NEX1'V1\R () •
Second, NEXTVAR() cannot cycle throuqh the names of ~!1 th~
natural variables, since there ar~ an infinite numher of
them. Hence, it returns the names of a subset of the family
of natural variables which is certain to include at least
the names of all variables with ncn-null values, and may
also include the names of some variables with null values.
What is important is that by the time a full cycle has been
completed and the starting place reached again, the name of
every variable with a non-null value will have come up.
(When used with families of created vaiiables, by contr~st,
NEX~VAR() is guaranteed to cycle through the names of ever.y
variable in the family in turn, regardless of their values.)
Observe that the names returned by NEXTVAR() are suhject to
the usual interpretation of names. Tn particalar, if
NEXTVAR() is called repeatedly in a loop within the hody of
"a programmer-defined procedure, and some process is carrie1
out on the variahleg referenced by the names returned, then
the names of variables internal to procedure calls will
refer to those internal variables. The customary
interpretation of what variable a name r.efers to at any
point in the execution of a program is not affected hy
NEXTVA R 0 •

TI.e

ITEM(Array,string, ••• ,Strinq) Returns: variable, or fails

ITEM () provides a convenient way to write it~m
references for arrays chosen at execution-time, for arrays
which are the values of array items, or which involvo
variable numbers of dimensions. The first acgument of ITEM()
is an array, and the following arguments are either integers
or else lists of integers separated by commas. TTEM(}
constructs an item reference using the array which is its
first argument for the family and the proper number of
indices gathered from the remaining arquments to form thR
selector, ignoring extra indices and supplying null (zero)
for missinq ones. ITEM () NRFTffRNs the arrilY item so
referenced~ or FRETUnNs if any index of the selector excee~s
the bounds specified by the prctotype for the array. If TIC3
has been assigned the value

TIC3 = ARRAY('1:5,1:5,1:3')

A. Summary of Predefined Procedures

then equivalent ways of referring to its central'item are

TIC 3(3, 3 , 2 1
I TBM (TIC3, 3,2,2)
!TEM(TIC3~'3,3,2')
ITEM(TIC3,3,'3,2')

14 ~

APPIY(5tring,any, ••• ,any) Returns: any or variable, or fails

APPLY(} provides the only way to write procedure
references for procedures chosen at execution-time~ The
first argum~nt of APPLY 0 must be a string which names a
procedure; the Snobol system calls that procedure, using as
its arguments' the remaining argument$ of APPLY () anii

,observing the usual conventions for extra or missing
arguments. APPLY 0 returns the value returned by the
procedur~ it calls, using the same return (RETURN, NRETnRN,
or FFE'J'URN)~

If APPLY() is used to call a field selection procedure,
th~n its use is analogous to the use of ITEM() for item
references; the Snobol system forms a field reference usinq
the first argument as the selector and the second argument
for the family, and NRETURNS the field so selected.

FLD -= 'RLINK'
APPLY (FLD, CURRENT) = TRIM (INPUT)
RLINK (CURRENT) = APPLY ('TRIPP, INPUT)

IF () Returns: null value

IF() always succeeds. Since it is defined to have no
arguments, any arguments in a reference to 1F() are
evaluated but otherwise ignored. Thus if any part of that
evaluation fails, that failure causes failure of the rule.
If a reference to a procedure returning a non-null value is
written as an argument of an IF () procedure, the combination
will work like a test procedure. The same principle applies
to ether expressions returning values which can similarly be
converted into test procedures.

N = IF (ARR1[N+1)) N + 1 . . F (OUT)

A. Summary of Predefined Procedures 145

ANCHOR (any) Returns: null value

ANCHOR () works like a switch, distinql1ishi.ncr betwe0!'l
null and non-null arguments. Calling ANCHOR() with a nan
null arqum0nt turns on the anchored mode of patt~rn
matching; calling it again with a null argument restores thp
usual, unanchoren mane.

ANCHOR('ON') . .. ANCnOR(OFF) .
9 ANCHOR 0

CONVER'f (Int.eger)
CCNVER'I (strinq)
CCNVFR'T (Real)

Returns: Real
Returns: Real
Returns: String

CONVr.~RT () is useflll for creating and printi nq real
numbers. If its argument is of datatype Integer, the valu p

returned is the corresponding real number. The only
permissible String-valued argument is a string of ~iqits,
possibly inclurling an initial sign and possibly including a
decimal point; the returned value is the corresponding real
numher. If the argument is of datatype Real, the value
returned by CONVERT() is the numeral string representing thp
real numbe~ to twelve digits. CC~VERT() 15 d~fined for
integers and real numbers from abcut 10- 300 to dhout 10 30 °.

CON V F. H T (4 5) CON v F. R T (, - 5 7 • 6 q ") ; CON V E R1' (• • 75 •)
CONVERT (RE!\LNUMB) CCNVEBT(TRIM (INPTJT»

CODE (String) Returns: Co~e

CODE() accepts as its argu~ent a string which is a
Snobol program text; that is, a sequence of syntactically
correct Snobol statements (see the definition of thp
construct <program text) in the syntax~ Appen~ix J), an~

returns as its value the corresponding compiled Code; its
use, then, is to permit a pr.oqram to extend itself while it
is executing. All characters in the Snobol character set,
includinq space, have their customary significance in th~
argument to CODE(). statement separators are semicolons, but
no final semicolon is required in the strinq.

NULP = CODE('[OOP
+ • N = LT(N,X) N + ,

BLWOR~ . . "AU =
s (I..OOP)

. ,
t

F ($ (.. V' X)')

A. Summary of ~r,defined Procedures

110. ID~~!LQ~!E~!_£IQ~gYr~~

INPUT(String,String,Strinq) Returns: null value
INPU1(Name,string,String) Returns: null value

146'

INPUT() is used to associate a variable in a Snobol
program with an input file. 7he first argument is the name
of a variable to be used in the prog~am; the second argument
specifies a SCOPE fileset; the third argument specifies the
number of characters to be read from each record on the
file. (Excess characters are lost; missing characters are
filled out with spaces.) If the variable is already
asseciated with a file, it loses its previous association.
It is through INPUT() -- and OUTPU~() -- procedures that the
Snobcl program establishes contact with the files set up for
it by SCOPE.

INPUTC'READ','lNPUT','SO')
INPUT('LNGREADER','DISKSRT',600)
INPUT(.LIST[12],'TAPE1',TRIM(INPUT»
INPUT(.LLINK(NEX~) ,'INPILE',80)

QUTPUT(string,strinq,string) Returns: null value
OUTPUT (Name,string,string) Returns: null value

OUTPOT() is used analogously to INPUT() , 'to associate
variables in Snobol programs with SCOPE filesets which are
to be used for output: The first argument is the name of a
variable to be used in the Snobol program; the second
argument specifies a SCOPE fileset; the third argument is
the carriage centrol character which will be concatenated at
the head of every record written. (If omitted, none will be
concatenated.) If the variable is already associated with a
file, it loses its previous association.

OUTPUT('WRITE','OUTPUT','-')
OUTPUT('PAGE','DISKFIL',1)
QUTPOT(.LISTr13),'TAPE1',o')
OUTPUTC'PUNC9','pnNCH')
OUTPU!(.RLINK(NEXT) ,'CUTFILE')

A. Summary of Predefined Procedures

DETACH (String)
DETACH (Name)

Returns: null value
Returns: null valup.

DETACH{) is used to break the association between thp
variable named by its argument and any filcset. There is no
need to DETACH() an associated variable before qivinq it a
new as~ociation. (A variable may be associate~ with only on0
fileset at a time, but a fileset may have many variables
asscciated with it simultaneously.)

DE'r }I.en (' OUT PUT f)
D E~' 1\ C H (q~ R I T E f)

DE T 7\ C H (. LIS T [1 2)
DE~ACH(.RLIN~(NEXT))

ENrGBOUP(String,Integer) Returns: null value

END~ROUP(l writes a SCOPE end-ot-group mark on the
SCOPE fileset which is specified by its first argument. Thp
"level" associated wit.h the roark is specified by the second
argument, which must be an integer between 0 and 1S
inclusive. such a mark of any level will cause failure on
input if later read by a Snohol proqram.

ENDGROnp('TAPE20',Q) . , ENtGROUP('DISKFIL')

REWIND (String) Returns: null value

R E'~ IN D () per for m s a s tan dar d S COP Ere win" 0 n t.h eSC 0 P E
fileset specified by its argument. ~he fileset is positioned
at its heginning; if the last operation on this file was a
write, an end-af-group mark of level zero is writt~n befo~0
the file is rewound.

RF.WIND ('TAPE20') REWIND('CISKFILf)

., RE M1\ RK (String) Returns: null value

REMARK () is use~ to write the stt:inq which is its
arqument ont~ the special file which is the job loq. ObviollS
uses are to preserve messages about the course ofAxecution
asscciaterl with timing information, and to d~corate the
dayfiles.

RfMARK('ENTFRING FBEEZE TO ~AFF.20.f)

FFt<1ARK ('MOTflP.R IS DEAD. ')

A. Summary of Predefined Procedures 14A

FRFEZE (Str Ing) Returns: String

FREEZE() is a procedure which permits a programmer to
suspend execution of a compiled Snobol proqram, and then to
re-Ioad it and re-commence execution. The argument to
FREEZE() is a string which is the name of a SCOPE fileset.
When FREEZE() is encountered during execution, the Snohol
system writes out a copy of the entire field length of the
job onto the fileset specified by' the argument, and
execution is terminated. SCOPE then reads and carries out
the next control card. when SCOPE finally hits a control
card asking that the Snobol program be reloaded, it does so
and execution continues from the poin.t ·where' it was frozen ..

On a call in a program such· as FREEZE {tTAPE20 ", tIle
program is "frozen" onto SCOPE fileset TAPE20. Execution
begins again when a SCOPE control card is encountered of the
form LGO,TAPE20. There is no requirement, naturally, that a
frozen program be loaded and executed in the same joh in
which it was written out; it can perfectly well be saved on
a COMMON file, or on tape, or even punched out on cards.

It is a peculiarity of FREEZE ()that it returns for its
value the string which is its argument. This could be used
to Freserve a record of which of several FREEZE()'s had been
executed, hut FREEZE () is' customarily written where its
returned value .is not preserved.

FREEZF('DISKFIL')

EO! (String) Returns: null value, or fails

EOI(} tests whether the SCOPE fileset specified by its
argument is positioned at the en~-of-information on the
file. If so, the procedure succeeds and returns the null
value. If there is more information on the file, the
prccedure fails.

EOl (' TA PE20')

EORIEVEL(String)

. . S (OUT)

Returns: Integer, or fails

ECRtFVEL(l tests to see whether the SCOPE fileset named
by its argument 'is positioned at an end-of-group mark; if
SOt the level associated with the mark is returned as the
value of the procedure ca'li. (Such a mark is written by the
ENDGFOUP () procedure; the value. J:'p.turned by EORLEV'EL 0 is

A. Summary of Predefined Procedures 149

the second para'met er of the ENDG ROUP () which wrote t. he mar k,
o tc 15 inclusive.) If the fileset is positionc~ at end-of
infcrmation if the EOT () proc€dure would succeed - the
value returned by EORLEVEL() is -1.

As a practical matter, a fileset will only bp.
positioned at an end-of-group mark if the last reference to
a variable associated with that fileset failed: customarily,
then, a call to EOR1EVEt () would only he mane aft.er- a.
failure on input had occurred, to check the levp.I of - the
end-cf-group mark which caused the failure. If a call to
EOFIEV'BI,O is executed at any other time -- at any t.ime when
the fileset is not at an end-of-qroup mark -- the call to
EORIEVFL{) wi1.l itself fail.

EQ(EORLEVFJ.I('T~PE20') ,9)
LVL ; ECRLEVEL('DISKFIL')

. . S(NINE)

\

Appendix B. SUMMARY OF PREDEFINED PATTERN VARIABLES

'50

1here are precisely six va~iables initialized to a
value other than the null value when execution of a Snobol
program begins: the six natural variables named ARB, REM,
PAL, F~rt, ABORT and FENCE. Each of these has a pattern 'as
its i ni tial va lue, but except. for th is Init ia liza tic n'
receives no special treatment. Each· may be assigned any
value by a program, upon which its initial value ~s lost.
This makes no great difference fer ARB, REM, BAL, or FAIL,
but the value of ABORT is a pattern which cannot be
const.ructed in any other way by a Snobol program, and FENCE
can be constructed only with the use of ABORT.

!RB~nQ_B~l1.:. The patterns which are the in1 t.ial values
of ARB and REM are equivalent in effect to two commonly used
patterns which may be constructed by pattern pr6cedures. ARB
is equivalo.nt to the value of the expression ARBNO("LEN(1») :
'REM is eguiyalent to the value of the expression RTAB(O).
The Snobol system can and does distinguish between APS and
ARBNO(LEN(1», or between REM and RTAB(O); an IDENT()
comFarison of such a pair will fail, and PROTOTYPE() will
return different prototype strings for them. But the
performance of either member of a pair in a pattern-matching
statement is exactly the same.

1!AL~ BAL has as its initial value a pattern which
matches any non-null string of characters which is
"balanced" with respect to parentheses -- that is, which has
the same number of left and right parentheses, including
none, where each left parenthesis occurs before its matching
right parenthesis. A pattern equivalent to the initial value
of BAt can be constructed in Snobol, thus providing a
precise definition of its action:

BALEXP = NOTANY (' () 'l I '(' ARBNO (:~BALEXP) ')'
BAL = BALEXP ARENO(BALEXPl

Again, the system distinguishes between the ~redefined BAL
and the pattern constructed by the rules above, but the two
would perform in the same way in a pattern match.

!!lh FAIt has as its initial value a pattern which
matches !lQ strings (not even the null value), and which thus
always fails. This makes it the tteIllpty" pattern alternative

cne which may be present in any pattern without alterinq
the set of strings matched. The eXF~essions FAIL 1 LPAT and
LPA'I will match the same set cf strinqs, no matter wha1:
pattern is the value of LPAT. A pattern which would have the

B. Summary of Predefined Pattern Variahles 151

same effect could be constructed by the rule

FAIL = ANY (NULL)

One use for the empty pattern alternative is to
construct an alternated pattern from dat.a. For instance,
with the statements

PATlOOP
IN. PA!
IN. PAT

=
=

FAIL
IN.PAT 1 TRIM (INPUT) . . . S (PATLOOP)

Here the loop statement extends the alternatives of TN. PAT
hy one more each time it is successfully executed. If thp
data read were the first three letters of the Greek alphabet
spelled out on cards, followed by failure of INPU~, then the
resulting pattern would he equivalent to

IN.PAT = FAIL I 'ALPHA' I 'BETA' , 'GAMMA'

'which matches the same set of strings as does

IN.PAT = 'ALPHA' I 'BETA' I 'GAMMA'

Note that if IN.P~T had not been first assigned the value
FAIl, the resulting pattern would have been equivalent to

IN. PA T = NUL I I 'A L PH A ' I 'B IT A ' , t GAM M 1\ 1

which is rather different -- since it will match the null
value (as its first alternative, in fact), it will always
succeed.

~EORT.!.. ABORT has as it.s initial val\l~ a pattern which
cauees immediate failure of an entire pattern match wh~n it
is encountered. The usefulness of ABORT is that it permits a
pattern match to fail if something i§ found. For instance,

SH.PAT = LEN(10) ABORT I':'

is a pattern which will fail by ABORT if it is SRt to search
a string of ten or more characters; shorter strings it will
search for a colon. It will succeed, then, only on a strinq
of nine or fewer characters containing a colon. More
generally, patterns which have ~haracteri~tics E but not g
can oft.~n tin writ.tnn in t.hf1 form !l ~DOHT I I.! •

FENCE. Th~ ini.ti.al valup. of FENCE is a. pattern wht('~h
has "i:'he-following intpresting prop0.rty: when encount.or(~(' in
a pattern match it matches the null value, and then if th0
remainder of the pattern cannot be succesfully matche~ from

B. Summary of Predefined Pattern Variables 152

that point., the' match will fail. A pattern which would have
the same effect could be constructed by the rule

FENCE = NULL I ABORt

When FENCE is used as the first element of a pattern,
its effect. is like wri ting POS (0) ; . it "anchors" the pattern
so that it must match beginning with the first character.
When FENCE is used after other pattern elements, then its
effect is that of a conditional "anchor" applyinq only to
the remainder of the pattern, and only if the elements to
the left of FENCE· within its alternative have been
successfully matched.

'53

Appendix c. SUMMARY OF OPERATORS

Q.lli:.!~!~ .QEQr~.tiQn fr.g£§.gg!l£,g

unary * deferred evaluation 7 (h ighes t)
unary . name 7
unary $ indirect reference 7

binary . conditional assignment 6
binary $ immediate assignment 6

binary * multiplication 5
binary I divisicn 5

unary ... plus 4
unary - minus 4

binary + aodi t. ion .3
binary - subtraction 3

binary (] concatenation 2

binary alternation 1 (lowest)

154

Appen(l ix D. SUMMARY OF PFOCEDURE EXECUTION

When a call is ma~e to a programmer-defined procedure:
{1} the arguments aLe evaluated; (2) the variable name which
is the same as the procedure name is made to refer to an
internal "result variable": (3) the formal variable names
are made to refer to internal "formal variables": (4) any
additional names in the first argument of the DEFINE()
procedure Are made to refer to additional internal
variables: (5) the fermal variables are assigned the values
of their corresponding arguments; (6) the' result variable
and all additional internal variables are assigned the null
value; (7) control passes to the stat.ement of the procedure
body whose label is specified by the second argument of the

,DEF1NE () proc~dure (this may be eXFr(;ssed by default); (8)
execution of the statements of the procedure body continues
until a ~eturn transfer is executed.

When r.eturn is made from a procedure using RETURN: (1l
the last value assign~d to the result variable is returned
as the value of the pr~')cedure ca.ll; (2) the variables
previously referred to by the formal variable names, the
result variable name, and any additional internal variable
names, are restored; (3) execution of the calling statement
continues from the pOint of the procedure call.

When return is made from a procedure using NRETURN: the
variable ncmed by the last value assigned to the result
variable (which must be a string or a Name) is returned as
the value of the procedure call: the remaining actions are
the same as for RF.TURN.

When return is made from a procedure using PR~TfJRN: (1)
the variables previously referred to by the formal variable
names, the result variable name, and any additional internal
variable names are restored; (2) th~call fails, the rule
from which the call was made fails, and control is returned
to the go-to of the calling statement wher~ the failure
transfer will be taken.

155

Appenilix H. FROGRAM TEXT REPR~SENTATION

Each statement of a Snobol program is usually punche~

on a separate 80 column card. Only the first 72 columns,
however, may be used for the statement; the remaininq
columns may be used for purposes of identification. (For
example, sequence numbers may be puncherl there which woul~
allow you to put the deck hack in order, either by hand or
with a m~chanical sorter, if the cards should be
dis at' ran qed.) All columns of the card appear i nt h e printed
listing of the program when it is executed, hut 10 spaces
are provided between columns 72 and 73 to separate any
identification from the statement.

~!~t~m~ni_f2£m!!L If the label of a statement is
present it must be punched starting in colnmn 1. If t.he
label is absent and the rule is present, then column 1 must
be left empty and the rule may be punched beginning in
column 2 or beyonn. If the statement consists only of a ga
to, the colon introducing it may he punched in column 1.

Wherever a single blank occurs in a statem8nt, any
number of blanks would serve as well; wherever many blanks
cccur. a single blank would serve as well. Since all parts
of a statement may be absent, a totally blank card is
treated as a null statement.

the semicolon may he used as a delimiter between
statements, making it possible to punch more than one
statement per card. The semicolon signals the end of a
statement, so the column directly after the semicolon is
treateo as "column 1" of the following statement. For
example, fO\lr assiqnment sta'tement.s. may be puncher] on a
single card as follows:

ONE": 1; TWO = 2; THREE = 3;LAST FOUR = 4

Note that the final statement of the sequence has a label,
while the others no not. A semicolon is assumed at th~ enn
of a car~ which is not followed hy a continuation carrl.

££n!in~~li£n_£~f1~L More commcnly, a method is needen
for dealing with statements which arc too long rather than
too short. Statements which are toe lonq to fit on a sinqlp
card may b~ continupd onto as many carrls a~ necAssary. Thi~

is done by means of continuation cards, each of which has
either a plus sign or a perioa punchp~ in ~olumn 1,
indicating that its information is a continuation of
~hatever appearc~ on the for~goinq cdrrl. statpmpnts may h~
brokeri anywhere: a hlank is never assu~ed at thA br~ak.

H. Program Text Representation 156

£'£.!!!~.!!!_~2.·Ids.!. Commen ts may be introduced into the
program wi th ,the use of comment cards, which are
distinguished by having an asterisk in column 1, and any
other information in the remaining columns. Comment cards
may apfearanywhece within the program deck except directly
before a continuation card. Comments themselves may !!2! be
continued by placing a plus sign or a period in column 1.

listing-fQnt£ol_~~fQ~~ A card ~ith a minus sign in
column 1 is a listing control card, used to specify the
format of the listing which is produced by the compiler. The
word appearing after the minus sign specifies what is to be
done to the listing, as follows:

-SPACE Leave a blank line i~ the listing.

-EJECT Print the next statement of the compiler
listing at the top of a new page.

-UNLIST
text until
encountered.

-LIST

stop printing the statements of the
a listing control card specifying

,Resume printing the program text.

program
LIST is

Listing centrol cards, like comment cards, may appear
anywhere within the program deck except directly before a
continuation card.

]xtgn.1~Q_~.Y!lta x_Qf._~.!lobQL~tgt~B~lltS. In addi tion to
the forms used for them in example proqram texts, certain
language elements, hav~ alternat~ve representations.

Array Prototypes. Instead of colons in the argument of
the ARRAY(l procedure, slashes may be used. The rul~s

LIST = ARRAY('O:2,O:3')
and

,LIST = ARRAY('O/2,O/3')

would assign identically-dimensioned arrays as the value of
LISt. The PROTOTYPEO procedure returns colons in its
cancnical version of the prototype string, regardless of
which character was used in the argument of ARRAY().

Item References. Instead of
arbund the selector of an item
parentheses and adjacent slashes
LIS'I[~, 3) and LI ST (/2,3/) are
the same item reference.

left and riqht bracket~
reference, a combination of
may, be used. For example,
alternative ways of writing

H. Frogram Text. Representation '51

Go-to Parts. Rather than a colon to introduce a go-to
part, a slash may be used; but a slash used for this purpose
must not be followed by a blank. Thus,

VOWELS': TRI~(!NPUT) : F(ERROR)
and

VOWELS = TRIM (INPUT) IF (ERROR)

are equivalent statements.

Instead of left and
(used cnly in connection
parentheses and adjacent
the same way as for
sta temen ts,

right brackets in direct go-toWs
with objects of datatype Code), the
slashes notation may he used, in

item references. Thus, the two

RESULT = CCDE(TRIM(INPUT») : [RESULT]
and

RESULT = CODE(TRIM{INPUT» . (/RESULT I) .
are equi va lont , as .is

RESU'LT = CODE (TRIM (INPUT» I (/RESULT I)

Patt8rll Alternations. The alternation operator may he
written as tw6 adiacent slashes, bounde~ by blanks, in~tea~
of the usual single character. Thus, X I Y and, X II Y may he
written with the same effect.

String Literals. within string litprals,all characters
o the r t han the quo tat ion mar 1< (sin g 1 e 0 r do ubI e) be in gus p n
as the ~elimiter of that literal may be used freely. Thp
delimiter character may occur within the strinq only in
pairs, and each such pair will be taken to represent a
single instance of the character. For example, the rulps
c9ntaining a single string literal each

AWW = """AII'SoWELLII""
:ind

AWW = '''ALL' 'SoWELL'"

are equivalent to the rule containing a concatenation of
three string literals

AWW = ,uALL' ", .. 'SeWELL'"

Any cne of them would assiqn to AWW the 12-character string
" A t. 1 • S W E 14 L " •

158

Appendix I. CHARACTER SEt REPRESENTATIONS

The Snobol character set consists of sixty-three
characters: the capital letters A-Z,followed' by the digits
0-9, followed by the remaining characters in the order

+ - * / () $ = c , • :: [J : • .. 1 A " .". < > .~ ~ -. . •
This ordering of the sixty-three characters is called their
standard collating sequence. Fifty-four of these playa part
in the syntax of the lanquage (see Appen~ix J), and have
equivalents in the reference symbol set used to construct
program texts;. the remaining nine characters may occur only
in string literals or in data read frcm input file~

Program texts in examples are shown in symbols from the
reference set. For input each of these must be represented
by a punched card code produced on a keypunch (~ither model
026 or model 029); for output each will be represen tee} by a
'character on a line printer. Each symbol of the reference
set has a single card code, and a single printer
representation. Each card code and printer representation
corresponds to a sir.qle reference symbol, except for one
special case: the blank used to separate language elements
and the space character (0) used in literal data have thp.
same card code and printer representation, although they are
differentiated in the reference symbol set for' clarity.

The reference symbol set consists of the twenty-six
capital letters, the ten digits, and nineteen special
characters. Co~€S for the letters and digits are produced by
the keys marked with them on both an 026 or an 02Q keypunch,
arid all have the expected representation on a line printer.

The special characters in the reference symbol set are
shewn in the accompanying chart. On an 026 keypunch, ~odes
for the reference symbols are produced by keys marked with
the same symbols where they exist, but six symbols (:; "' [])
have no keys and so they must ~p. multiple-punched. (In

.. Snobol expressions-not, ohviously, in Ii t,eral data--these
six symbols may be avoided by using the extended syntax
described in Appendix H.) On an 029 keypunch, codes for all
bu t cne of the reference symhols (1) are produced by some
key, but most of the keys are marked ~ith different symbols.
On a line printer, all but three of the reference symbols
('"I) look like their counterparts in the reference set. The
final nine characters in the chart are those without
equivalent reference symbols.

I. Character set Representations 1S9

Snobol 026
symbol key

card
code

line printer
char(\cter

Snoho1
usage

029
key

==
= = 8-3 = assignment #

(equal)

• • 12-8- 3 condit. assiqn. , · (period) name, real 1 it.
----------------------.----.... ------------. ---_ ...

,

· ·
· •

, 0-8-3 ,
(comma,

list
separator

,

_----------"'---r-....... ~------------~----...;.
none

none , 2-8-7

· · (colon)

· •
(semicolon)

go-toes, arcay
prototypes

statement
terminator

· ·

--~-------~---

n

$

r

]

8-4 -I
(not equal)

str ing lit er al
delimiter

---------------~~~---------,.---
none 11-8- 5 t str inq lit ~r al

delimiter (11 parrow)

$ '1-8-3 $ indirect ref. , $
(clollar) immed. assiqn.

...,.......----...,..----- --..... ----......-.... ---------_.-
none 11-0 v alternation none

(logical or)

(0-8-4 (arg. I is ts , %
(left paren) expr. groupi ng

~----------------------
12-8-4) arg. lists, <

(r igh t pa re n) expr. qr:ou pi ng

none 8-7 (iter,l ref., "

(left bracket) direct go-t.o·s

none 0-8-2 J item ref., 0- 8 2
(right br acke t) direct go-tots

1 1 negative,
(minus) subtraction

---....... _----------------------..... ---------------_._-----
+ + 12 +

(plus)
positive,
addition

I. Character Set Representations 160 '

Snobol 026
symbol key

card
code

line printer
character

Snobol
usaqe

021)
key

==:~~~=~===~===============:=============~===~============~=

* *

/ /

blank space
bar

11-8-4 *
(asteri s)()

0-1 /
(slash)

blank

(s pace)

defer~ed eval., *
multiplication

division I

concatenation, space
separator bar

............... --....~ --.-.....-...-
c space blank

bar

none 0-8-6

(space)

-
(identi ty)

da1::a only spacp.
bar

------------------------data only >

-------------~----~~~~~~--------------------
none 0-.8-5 +

(r igh t arrow)
data only

---------------------------------none 0-8-7 A data only ?
(lcgical and)

non~~ 11-8-6 "- data only

(down arrow)

----------------- -------
none 12-0 < data only none

(less than)
--------.------~ ~-~-~~~----- --------

none 11-8-7 ') data only
(great.er than)

--..--- ----~
none 8-5 ~ data ,only ,

{less or equa 1)
~~-.....

none 12-8-5 ~ data only (
(greater cr equal)

none 12-8-6 data only +
(logical not)

Appendix J. SYNTAX OF PROGRAM TEXTS

1. <string literal> ::=
, <string format 1> '
" <string format 2> "

2. <digit strinq> ::=
<digit> ,
<digit string> <digit>

3. <integer literal> ::=
<digit string>

4. <real literal> ::=
<digit string> • 1
• <digit string> 1
<digit string> • <digit string>

5. <literal> ::=
<string literal> 1
<integer lite~al>
<real litp.l:al>

,6. <identifier) :~=
<letter> I
<identifier> <letter> I
<identifier> <digit> I
<identifier) •

7. <simple variable> ::=
<identifier>

8. (subscript list> ::=
(exprpssion> I
<subscript list> <,> <expression)

9. <array item reference> ::=
<simple variable> <[> <subscript list> <»

10. <procedure identifier> ::=
<identifier>

11. <arqumpnt list> ::=
<optional expresion) I
<argument list> <,> <optional expre~sion>

'6'

.J. Syntax of Program Texts

12. <procedure' reference> ::=
<procedure identifier) <C) <argument list) <»

13. <variable> ::=
<simple variable> I
$ <primary> I
<array item reference>
<procedure reference>

. 11~. <primary> ::=
<literal> I
<variable> I
• <variable> I
«> <expression> C»~

15. <factor> ::=
<p·riruary> J
(factor> <blank> ** <blank> <primary>

16. <multiplying operator) ::=
(blank> * <blank> 1
<blank> / <blank>

17. <term> .. -.. -
<factor> I
<term> <multiplying operator> <factor>

18. <adding operator> ::=
<blank> + <blank>
<blank> - <blank>

19. <sum>
<term) I
+ <term>
- <term) I
<sum> <adding operator> <term>

20. <concatenation> ::=
<sum> 1
<concatenation> <blank> <sum>

21. (expression> ::=
<concatenation>

22. <deferred pattern> ::=
* <variable>

162

J. Syntax of Program Texts

23. <pattern assignment operator)
<blank> $ <blank>
<blank> • <blank>

24. <pattern assignment) ::=

. ... -

<pattern primary> <pattern assignment operator>
<variable>

25. <pattern primary> ::=
<literal> I
<variable> ,
• <variable> ,
<deferred pattern) 1
<pattern assignment> I
«> <pattern expressicn> <»

26. <pattern factor> ::=
<pattern primary> I

16~

<pattern factor> <blank> ** <blank> <pattern primary>

21. <pattern term> ::=
<pattern factor> I
<pattern term> <multiplying operator) <pattern factor~

28. <patter.n sum> ::=
<pattern term> ,
+ <pattern term>
- <pattern term> I
<pattern sum> <adding operator) <pattern term>

2q. <pattern concatenation> ::=
<pa ttern sum> I
<pattern concatenation> <blank> <pattern sum>

30. <pattern alternation> :::
<pattern concatenation> 1
<pattern altAr-nation> <blank> <I> <blank>

<pattern concatenation)

31. <pattern expression) ::=
<pattern alternation>

32. (optional expression) ::=
<null> I
<pattern expression)

:3 3. <label> · .-· . -
<identiftcr>

, J. Syntax of Program !exts

34. <label part> ::=
<null> I

. <label,)

35. (right side> ::=
<=> <optional expression)

36. <rule part> ::=
<null> I
<blank> <primary>
<blank> <primary> <blank> <pattern expression) I
<blank> <variable> <right si~e> 1
<blank> <variable> <bla~k> <pattern expression>

37.

38.

<right side> .

<loc> ::= <location expression>
«> <label> <» I

.. -.. -

<go-to

<(> $ <primary> <» I
<[> <expression) <]>

part') .. -. . -
<null> 1
<:> <loc) 1
<:> S <loc> J
<:> F <loc> 1
<:) S <loc> <optional
<:> F <loc> <optional

blank>
blank>

39. <statement> ::=

F <loc>
S <loc>

<label p~rt> <rule part) <go-to part')

40. <program text> ::=
<statement> I
<program text> <;> <state'ment>

41 •

42.

43.

44.

<letter>

<digit>

<blank>

: : =
A I
N 1

::=
0 1

.it.. -

B t c I D
0 I p I Q

1 2 3

c I <blank> a

<optional blank>
<null> I
<blank>

. ... -

I E F G H
I R S T U

I 4 5 6 7

I J
V W

I 8 9

K L
X Y

16/~

M
Z

J. Syntax of Program Texts

45. <string format 1> ::=
<null> I
<string format 1> <class 1 character>

46. <class 1 charucter> ::=
<any character except "), I ,.

47. <string format 2) ::~
<null> ,
<string format 2> <class 2 char.acter>

48. <class 2 character> ::=
<any character except ,,>

49. < (> ::= ((optional blank>

50. <» ::~ <optional blank>)

51. <[> ::= [<opt.ionaI blank> I
(I <op~ional blank>

52. <]> ::: <optional blank>] I
<optional blank> I)

S3. <I> ::= <the character I> I II

tin

54. <:> ::= <optional tlank> : <optional blank> I
<optional blank> I

55. <,> ::= <optional blank> , <optional blank>

56. <=> ::~ <optional blank> = (ortional blank>

57. <;> .. -.. - <optional blank> ;

58. <null> ::=

16~

166

Appendix K. SUMMARY OF CCMPIIE-TIME ERROR MESSAGES

Each statement which is syntactically incorrect is
marked in the program listing by an up,arrow which is
printed ben~ath its statement number along with the message
ERRCR. It is planned that in the future a specific message
for each particular type of syntactic error will . be
provided. .

161

Appendix L. SUMMARY OF EXECUTION-!IME ERROR MESSAGES

When an error is detected during the execution of a
Snobol proqram, the Snobol inter~reter writes a message on
the output file and then ceases execution. The messaqe
ccn~ists of three parts: (1) the ident.ifying number ofthp.
statement beinq executed when the error was detected (each
statement of the proqrarn text is given a nUl1tbp.r by the
comFiler, and these numbers app~ar at the left of the
statements in the compiler listing of the program text); (2)
the level of procedure execution at the time the error was
detected (thQ same information which would be returned hy
t hepred ef i.ned procedur € FNC1EVEL ()): (3) one of the error
messages from the list below, specifying which of the fifty
two possible error.s was detected.

Some of the messages in the followinq list are self
eXFlanatorYa Notes have been added to many messages
am~lifying them, or explaining terminology which differs
'from that used in this description of Snobol, or
reccmmending page numbers and sections where further
information relevant to the interpretation of the message
can be found.

THE LEFT OPERAND FOR A PATTEBN MATCH MUST BE A STRING.

TEE RIGHT OPERAND FOR A PATTERN MATCH MUST BE A
PAT'IERN.

PATTERN MA~CH WITH REPLACEMEN! REQUIRES STRING-VALUED
RIGHT HAND SIDE.

TRA NS FER TO 1\ N UNDEFINED LA BEl. A go-to spec if i(~s a
transfer to a label which is not present in the program
te~t, and which is not RETURN, FRETURN, NRETURN, or END.

A FAILURE OCCURRED IN THE EVALUATION OF THE GO-TO
PAR!. Conditions which would cause failure in the rule
part of a statement cause an error in the go-to part (see
page 68) •

TYPE P.RROR IN GO-!O PART. Eit.her. the operan~ of an
indirect r~f~rAncing oper~tor in th~ qn-to is not a strinq
or a Name (8ee paqe (1), or else th~ value of' t.h~ ~~xpr0s~:;ion

in a direct qo-to is not an object of datatype Code.

FORBIDDEN 'OPERAND TYPE FOR ALTERNATION. Operan~s of
the alternation operator must be of datatype strinq,
Integer, or Pattern (see paqe 35).

L. Summary of Execution-time Error ~essages 168

TEE DATA T~PE USED MAY ONLY BE CONCATENATED WITH THE
NULL S!RING. ~trings, tnteger~, and Patterns may be
concatenated freely. An object of any other datatype may be
concatenated only with the null value.

T~E VALUE OF A VARIABLE IN A DEFERRED-tVALUATION
PAT'rF~N (UNARY *) MUST, BE A PT\'TTERN OR STRING. See the
description of th~ deferred evaluation operator, page so.

LEFT OPERAND FOR BINARY $ ANt • MOST BE A PATTERN.
See the descriptions of the immediate and conditional
assign~ent operators. pages 38 a~d 40.

INDIRECT REFERENCE TO 'THE NULL STRING. The operand of
the indirect referencing operato~ may not be the null value
(see page 57).

OPERAND FOR INDIRECTION MUST BE NAME OR STRING. The
operand of the indirect referencing operator must be a
string or a Name (see page 57).

NCN-INTEGEF STRING USED IN NUMERIC CON~P.XT. Only
strings of datatype Integer those consisting of an
optional sign followed by an optional string of digits
may be used where Integers are expected.

TYPE ERROR IN NUMERIC CONTEXT. An object of either
datatype Integer or Real was expected, but an object of some
other datatype occarr~d.

DIVISION BY ZERO WAS AT!EMPTED.

S!RING ARITHMETIC NO~ YET tMPIEMENTED. .Integers may
have values of magnitudes as large as 10130000, but the
arithmetic operations are defined only for integers of
magnitudes less than 10 10 • It is intended that the
arithmetic operations should be, extended to integers as
larqe as can be represented, by performing "string
arithmet~c" on the digit strings of which they are composed.

BEAL ARITHM~TTC OVERFLOW., A real number larger than
can te represented has been produced (about 10 300).

MIXED MODES (INTEGER, REAL) FeR ARITHMETTC OPERATION.
The operands of arithmetic operators (and the arguments of
predefined arithmetic t~st procedures) must be of th~ same
datatype. If operands. of different data types are to be
operated upon, one must first be converted (see the
d.escription of CONVERT() in Appendix' A, sect.ion II·.C).

L. Summary of Execution-time Error ~essages 169

WRONG PARAMETPR TYPE FOR STANDARD PROCEDURE. An
argument of a predefined procedure is of an incorrect
datatype. P~rmissible datatypes of arguments for all
pred~fined procedures are given in Appendix A.

ARGUMENT FOR LEN, POS, RPeS, TAB, OR RTAB MU~T BE IN
THE INTERVAL (0,2**17-1J. The integer arguments to these
five predefined pattern procedures must be non-negative, and
must he less than 131,072.

SYNTnX ERROR IN STRING TO BE COMPILED. An
string for the CODEO procedure is incorrect;
description of CODE() in App~ndix ~, section II.C,
Syntax of Program Texts in Appendix J.

argument
see the

and the

INCORRECT SYNTAX FOR STRING TO BE CONVERTED TO REAL.
See the description of CONVERTO in Appendix ~, section
II.C.

IMPROPER ARGUMENT FOR PSEUDO-PIELD FUNCTION (FIRST,
REST, LEFT, RIGHT, PhRAM, FAMILY, OR SF.LECTOR). Tnp.
arguments of the predefined field selection procedures
PAR 1\ M 0 , FIR S T () * RES'I 0, I. 'E F T () , RIG H T (), F 11 M TL Y (), and
SELECTOR() are guite specialized; sep the descriptions of
these procedures in Appendix A, section I.C.

CALL OF AN UNDEFINED PROCEDURE. The DEFINE()
declaration for a programmer-defined pr6ce~ure must he
executed b~fore it can ce invoked. (see paqe 12).

SYNTAX ERROR IN PROCEDURE pnOTotYPE. There is an
error in the form of the string which is the first argument
of the D EfIN E () procedure (see ·page72).

RETURN FROM LEVEL ZEno. A transfer to TIE'i'tlRN,
FRE1URN, or N~RTURN has been executed in a main proqram (see
page R 7) •

AN ~NBETURN- WAS EXPECTED FRO~ THE PROCEDURE CALLED.
A procedure call occurs where a variable is required, but
the procedure does nct return by NRF.TURN; see the
description of NRRTURN, page 90.

A PROCF.nUpF' RETURN1NG RY -NRETURN- MUST ~npPLY ANAMP.
J\ SIT S V 1\ 1.lJ r. • w Ito nap r. oce(' \l ro l' P. t. \l r n shy tH1 E'r (J n N, t h (\
'{alue of the r0~)ult vat::iabl(~ must hp. d. fitrinq or an ob1(~ct
of: datatype Name; s@.(~ the description of NRF.1'URN, page 90.

V 1\RI~BLE TO THE L EFT OF 1\ r DOES NOT CONTAIN AN
ARRAY. The valuA of the family part of an item referenc~

L. Summary of Execution-time Error Messages 170 .

is not of data type Array. See the description of item
references~page 101.

TOO .MANY SUBSCPIPTS IN AN ARRAY,REFERE~CE. There are
more index eXFrcssicns in th~ selector of ari item reference
than there are ~imensions defined for the f~mily beirtg
indexed. See pag~s 106 and10Q.

TOO FEW SUBSCRIPts IN AN ARRAY REFER~NCE. There are
fewer indexex~ressions in the selector of an item referenc~
than there are dimensions defined for the famil'y being
inde'Ked •. See pages :'06 and 109.

ILLEGAL
description

CHARACTER IN ARRAY PROTOTYPE.' See the
of the argument for the ARFAY() procedure, page

104. •

SYN~AX ERBORIW ARRAY PR010TYPE. See page 104.

LOWER BOUN~ GREATER THAN UPPER BOUND IN ARRAY
PRO'IO'lYPE. See page 104.

AN ARRAY BOUND WAS TOO LARGE. An expression for an
upper or lower bound in an Array prototype was greater in
magnitude than 131,071.

AN ARRAY DIMENSION W~S TOO LARGE. The difference
tet~een any pair of upper and lever bounds was greater in
magnitude than 131,071.

AN ARRAY MUST CONTAIN FEWER THAN 2**17 ELEMENTS. ~
prototype string for the ARHAY o procedure specifies an
array containing more than 131,071 items.

SYNTAX ERROR IN SELECTCR FOR ITEM(}.
des c r i pt. ion 0 f t h ~ IT EM () pro c e d u I' € , P age 1 08.

See the

SYNTAX ERROR IN DATA PROTOTYPE. See the description
of the argument of the DATA() procedure in Appendix A,
section II.A.

DUPLICATE·NAMES.IN DATA PROTOTYPE. Two fi~ld~ defined
for cbjects of a single ~atatype may not have the same name,
nor maya field name be the same as the data type
otherwise all the necessary procedures could not exist
simultaneously. Se,e the descriFtion of. D~_TA () in Appendix A,
sectio n II. r. .•

DATA CONS!PUCTOF
cr~ation procedures,

CANNOT SnprLY A NAME. structure
predefine~ or programmer-defined, do

L. Summary of Execution-time Error Messages 171

not return Names, but rather objects of data type Array or of
a prcgrammer-defined datatype, respectively.

THE PARAMETER FOR A PIELD
REFERENCE. The argument of
selection procedure was not an
defined datatype.

FUNCTION WAS NOT A DATA
a programmer-defined f1e11
object of a programmer-

NO gUCH FIELD IN THE REFERENCED DATA STRUCTURE. The
structure which is the arqument of a programmer-define~
field selection procedure does not contain a field
identified by that procedure name.

FILE SPECIFIED TO 110 PROCEDURE MUST BE CURRENTLY
ATTACHED. ~he filesRts named by the arguments of
ENDGROUP () " REWIND (), EORLEV'RL (), and. EOr 0 must bp.
currently associated with some variable (see Appendix A,
section II.D).

ILLEGAL FILENAME GIVEN"O I/O ASSOCIATION PROCF.DnnE.
A legal SCOPE fileset name is a'string of one to sevp.n
letters and digits, beginning with a letter (see Appendix A~
section II.D).

A1TEMPT TO READ PAST END-OF-INFORMATION. See thp
descriptions of F.ORLEVEL () and EOI () in A.ppendix A, section
II.D~

STRING TO BE DISPLAYED WAS LONGER THAN, 80 CHARACTEFS.
The string which is the argument to the REMARK() procedure
must contain 80 or fewer characters.

ONLY STRINGS MAY EE OUTPUT. A value of a datatype
other than String or Integer was assigned to a variable
which currently has an output association.

'tAr: M1\XTMtlM FIELD LENGTH HI'S BEEN' E){CF.EDED. The
pro 9 ram r e q 1.1 i r P. s m 0 res t", 0 rag e toe x Po cut e t han "a s re q U H S t c r1 •

THE MAXIMU~ STRING LENGTH HAS RREN EXCEEDED. See the
description of MAXLNGTH() in Appendix A, section II.D.

THE STATEMENT LIM!T HAS BErN EXCREDED. See thp
descriFtion of STLIMIT() in Appenrtix A, section IT..n.

CO "l PI L E R S T A C K 0 V E T1 P T. 0 W, S IMP 1. I F Y THE CON S ,.. R tJ err ION. A
storage arpa for int~rmediate results in the Snobol compil~r
has been exhausted. 'The statement. shonlo be rewI."it.t.p.n as two
or morA statements, since it contains too many l~vels of
nested par~ntheses.

,"

172

Appendix 'M. Non-standard Features of Berkeley Snobol

The initial design and implementationiof Snobol4 was
done at Bell Telephone Laboratories for IBM SYfitem 360
machines. The latest version of this implementati~~ is
descrited in !ht~ __ SNO.BQ1.!! ___ g£Q.9:£~l!!I!!i.!!g_~1~llSly'~.9.~ by, F.E.
Grisvo 11, \1. F • Poage, and I •. P. P,olonsky (spcond eil it ion,
Prentice-Hall, 191 1). This book contains many interesting
examples and should be of use to all serious Snobol
programmers, even those who are working with non-standard
implem~ntations for different machines.

The implementation described here was produced at the
Computer Center of the University of ·California at Berkeley
by Paul McJones and Charles Simonyi for CDC 6.000 series
machines. The language they implemented, which we shall call
the Berkeley version, is non-standard since it differs from
the Bel~ '/ersion in three basic ways: some featur~s of t,he
language are handled differently, some features are absent,
and seme new features not present in the Bell version are
prcivided. This appendix describes the differences between
the nell version anrl the Berkeley version, presentin~ the
information in terms of these three types of dif:ferellc~s •.. It
is prcvided to make this more comprehensible description.of
the Snobol language useful to those writing programs inth~
Bell version, and to specify 'which part.s of the Bell
documentation are useful for those wr~tingproqrams in the
Berkeley version of the language.

Quite apart ftom differences between the two' versions
of the Snobol language, there are some differences in
terminology between the documentation of Griswold~ Poaqe~
and Polonsky, and the present description. The pairs of
terms ,in the following table are equivalent, and represent
differences in the descriptions only, not in the language
v€r~icns described.

prirritive
defined,
functicn
precicate
value cf function name
fortral argument
localvariab1.e
functi~n pro~edure
entry point

preoeflneo
programmer-defined
procedure
t.est proc ed ure
value of result variable
formal variable
int~rnal variable
procedure'hody
en try label"

M. Non-standaid Features

explicit name
creat.ed name
implicit name
generated variable.
a 9 9 r e'g ate
referencing argument
arr.ay element
array reference
fie ld' fu nct ion
source program
statement component
subject (assignment)
subjf?ct (pattern match)
obj€ct
compilation error
program error

string name
Name
Name
indirect r~fp.rence

family
selector
array item
item reference
field selection procedure
program text
statement part
left side
string ref~rence
right sioe
compile-time 'error
execution-time error

171

g'!.Q££..1.l!L~1!..!. In the Bell version, it is an· execution
time error to call a predefined procedure with mor~
arguments than its definition prescribes; in the Berr.eley
version, extra arguments to all procedures are evaluated but
otherwise ignored.

since the character sets of IEM System 360 machines and
CDC 6000 series machines are ~ifferent, the- 1\LPHl\l.lg1' ()
procedure, which returns a string specifying the character
set in standard collating sequence, necessarily returns a
different string in the two versions. (This procedure exists
as a keyword in the Bell versien.,

Since the Bell system uses FORTRAN IV I/O, and the
Berkeley system does its own I/O, t.he INP!JT () and OUTPUT ()
prcc€~ures require quite different sorts of arguments.

The ARRAY() procedure has two arguments in the Rell
version, the second specifying an initial value to be
assigned to all items of an array. In the Rerkeley version,
the A R R AY () p roc e ~ 11 r e has one a r g 11 men t only; a 11 i t em sa r 0.

initialized to the null value.

since numeric strings are of datatyp~ Inteqer in thp
Rerkeley version, IDENT("',1) SUCCP8ds while in the Bell
v~J:'$ion it ff\iln. In the H(~ll version, patt.0cns (leo
conEidered identical only if they are indeed the sam~

M. Ncn-standard Featur.es 174 .

pattern. Thu!j

x = A I B
Y = A I B
IDENT (1, Y)

fails since two different copies of the pattern are being
ccmFared. In the Berkeley version this comparisonvould
stlcceeii, since patterns- with the same struc.ture are
con~idered identical. IDENT(~VAR,'VAR') fails in the
Berkeley version while it succeedg in Bell owinq to th~
different implementations of the Name operator (described in
the section on operators below).

The CODE() procedure in the flerkeley version does· not
allow labels to be redefined; consequently the labels of the
statements which are to be added to the program durinq
execution must be different from any existing labels of the
progra,m.

The Bell version provides more datatypes than does the
Berkeley version and much more flexibility about converting
from one datatype to another. In the Bell version, the
CONVER'I () procedure which is used for this purpose has t vo
arguments; the second argument specifies the data type to
which the first argument is to be converted. In the Berkeley
version .the CONVERT() procedure has only one ~rgument since·
only a limited kind of conversion is available. Tf the
single argument. of CONVERT {} is a numeral strinq or an
integer, it is converted into a real number; if the single
argument is a real number, it is converted into a string.

Q,E,g!:£!!2.t:§.:.
implemented as
II.C).

The interrogation operator (1) has been
the IF() procedure (see Appendix A, section

The unary operator * is called in the nell version the
unevaluated expression operator, an~ expressions introducerl
by it are of datatype Expiession. ~his operator is defined
more narrowly in the Berkeley version. It is called the
deferred evaluation cperator, and may be applied to simple
variables only; thus *EQ (X, Y) callses an execution-tim~

error. The datatype Expression is not defined in the
Berkeley versicn; expressions introduced by the deferred
evaluation operator are of datatype 'Pattern. Hen~e LEN(*V)
caus~s an execution~time error since the argument of LEN()
cannot be a Pattern.

In the Bell version when th~ name operator is applied
to a natural variable it returns an Object of datatype

M. Non-standard Features 175

String, but wh~n applied to a created variable it returns an
object of datatype Name. In the Eerkeley version, the name
operator always returns an object ef datatype Name.

In the Bell v'eLsion the multiplication operator. has
higher pr0cedence than the division operator; in the
Berkeley version the precedence is the same.

lS!11'!!Q.!.0 . .§.!. There are no keywords in the Berkeley version
(and hence no keyword operator). Some of the Bell keyworrls
assume the form of procedures; these are listed in the table
belcw.

&ALfHABET
&ANCnOF
&FNCLEVEL
&MAXLNGTH
&STCOONT
&STIIMIT

ALPHABET ()
ANCHOR 0
FNCLEVEL 0
MAxt.NGTH ()
STCOUNT 0
STLIM!T ()

These procedures are described in Appendix A, section II •

.Qi!t!!t1.E.£!!.!. In the Berkeley version, numeric stri.ngs arp
of datatype Integer. Numeric strings may have an initial
sign ~nd hence the single characters I.' and ._, in
isolation have the datatype Integer and have the value zero
when used in arithmeiic contexts. Corrpspondingly, the null
value is of datatype Tnt~qer. In the Bell version, the null
valuA is called the null strin~ and is of datatype string.

~.:i.§i~m_1!!!!l~.f£r§...:.. In the Rprkpley version, Pf.'J'tJHN,
FRETURN, NFETURN, and ENO are treaterl as system transf~rs,
having the same pre~efined meaninqs as in Bell. They may b~
used as any other labels in the program text, however, in
which case the special system meaning is lost.

QY.:!E!!!..!. Objects of. ~atatype ot.her t.han String or'
Integer cannot be printe~ in the Berkeley version, an~ an
attempt to print such a value results in an execution-tim~
~ r r 0 r • In t. h p He 1.1 ve r s ion a nat. t em p t top r in t sue h a val U G

results in the printinq of a string designating the datatyp~
of the value.

Aflfliqninq thn vari~ble OUTPn"r a Vf1]uP of more t.han 132
c h a rae t e r sin the 11 E' r k e l (~y V P. r s ion r Po ~. u 1 t. sin 0 n 1. y t. h A f i [' 5 t
1 .3 2 he i n q p r in t. e d (a s i 11 q 1 \;~ 1 i n e); i. n t It e B ~ 11 v f~ r s i () n , a !-1

many lines 85 neccs~ary are printerl.

M. Non-standard Features 176 '

£r.Qg£~.!!l-R~E!:~2~n!.2t.iQ.!l.!.. There are a number of small
differences in the way that prcqrams may be represented;
most ccnsist of extra' eptional features which 'havebeeri
added ~o th~ Berkeley version.

In the Berkeley version, the assignment siqn (=) nAe~
not te bound~~ by blanks~ Rimilarly, the colon introducinq a
go-to need not be'preceded by a blank~

In th~ Berkeley version, the quote sign used as a
literal delimiter may appear within-that literal in pairs;
each pair is then treated as representing a single quote.
Thus 'tON"T' may be used to represent the string DON'T~

In the Berkeley version, statements continued over line
boundaries may be beaken anywhere; a blank is never assume1
at the point of the break. Tn the nell versio:l, statements
may be broken only where a bl~nk is ~eguired.

In the Berkeley Version, r~al literals nee~ not begin
with digits (that is, they may begin with ~n initial decimal
fci nt) Cl

In the Berkeley version it is notnpcessary to
termi~lat(; a program text with' a statement 1abelled END as it.
is in the Bell version. The program may terminate by taking
a transfer to END, if no END label is present. END may he
used as a label in a program text in which case it then
loses its syste~significance, and a program containing an
END label can terminate only by running out of p~ogram text;
this is not an error as it is in Bell (see Chapter 3). In
the Berkeley version it is not possible to specify by use of
an END statement which statement of the program is to be
executed first; execution always begins with the first
statement of the program text.

Alternative characters may be used in the Berkp.ley
version to reFresent ~ome of those which must otherwise be
multiple punched on an 026 keypunch. Thus the go-to may be
intrcduc'ed by either a colon (:) or a slash (I). (If the
slash is used it must not be followed by any blanks as it
might then be indistinguishable from ~he binary ~ivision
operator.) The colon tised as a delimiter between the upper
and 'lewer bounds of an index in ferming the prototype of an
array may also te represented by a slash. The alternation
operator (1) may be represented by two slashes (/~ and th~
square brackets of an item reference may be represented bV
(/ for an open bracket and I) for a close bracket. The Bell
vp.rsion does not provide any of these particular options,
but 'has a different extended syntax to take advantage of

M. Non-standard Features 177

special characters a.ailable on the IBM 360; lower case
letters are also available.

The representation of latels is freer in the Bell
version than in the Berkeley ver~ion. In the Rell version a
label may consist of a letter or a digit followed by any
number of other characters from the entire chara.cter s~t.
except blank. In the Berkeley version a label must be an
identifier; that is, it must begin with a letter and consist
of nothing but letters, numbers, and periods.

!.!!'~_£J.:Q!.l!:2..m_1i§!i.ng~ In the Betkeley. version, columns
12 and 11 of the program text are separate~ hy tpn spa~es in
the output listing. The statement numbers always app~ar to
the left of the statements. Tn the Bell version the
statement numbers normally appear to the right of the
statements, hut it is possible to specify that they appear
to either the left or the right. This is done hy writinq the
terms LEFT or RIGHT following the listing directive LIST;

.the, default option is BIGHT. There is no way to specify that
the statements should be numbered to the right in th0
Berkeley version.

In the Berkeley version the listing directive SPACE has
been added to cause one blank line to appear in the listinq.

RIQ£Q~g!~§L The fcllowinq procedures are available in
the Hell version but not in the Berkeley version. Unless
otherwise indicated, their actions cannot be simulated.

ARG () r.eturns the name of the n-th argument in the
declaration of a programmer-defined procedur~.

BACKSPACE() backspaces a, file one logical record.

CLEAR(} caus~s all natural variables to he assignerl the
null val UP.. This procedure can be written in Berkel0.Y Snobol
using NEXTVr..R ().

CCLLP.CTO forces a storage reqeneration. (Not. needed
since storage regeneration occurs automatically.)

COpy 0 produces a copy of an array or a data strl1cturfl.
It can he written in Perkelpy Snohcl usinq ITEM () for array~
(see Cha ptcr 7), and APPLY () for data structures.

M. Non-standard Features 178'

DUMP() produces an unalphabetize~ li~t of all non-null
natural variables and ~heir values. It can be written in
Berkeley Snobol using NEXTVAR().

DUPL{) returns a string conslstinq of n dupli.cations of
one of its arguments., It is virtually the same as the
~rcgrammer-defined procedure REPEAT() given in Chapter 6.

EVAL(t returns the result of evaluating a string which
is a Snobol expressicn or an object of datatype Rxpression.

FIELD() returns the name of the n-th field in the
declarat~on of a programmer-defined datatype. It can be
written in Berkeley Snohol, becausE the Berk~ley PROTOTYPB()
procedure may be applied to structures (see App~ndix ~,

Section II.P).

INTEGER(} succeeds if its argument is an integer. It
can be easily written as

IDFNT (DATATYPE (ARG) " INTEGER')

(In the same way, any other test procedure for testinq
datatYFes may be written.)

LOhD() causes an external function to be loaded from
the litrary during execution.

'LOCAL 0 returns the name of the n--th local (internal)
var iab Ie of a prog ra ro'mer-def ined procedure.

OPSYN() allows the prograromer to specify synonyms for
procedures or operators. Thus the same procerlure may he
referred to by more than one name and the same' operator by
more than one symbol. In addition, operators and procedures
may be made synonymous; thus this procedure makes possible
the definition of new operators. ,

RRMDR() returns th~ integer remainder of dividing its
first a~gument by its second. This can he written in Snobol
as ~ programmer-defined ptocedure employing nothing but:.
a r-1 thmet ic ope ra tors.

REPLACE() returns a string in which every character of
one argument has been replaced by a corresponning character
of another argument. It can be- written as a programmer
d~fined procedure in Snobol.

~TOPTR() cancels the tracinq of the variable named by
its argument.

M. Ncn-standard Features

TABLE() creates a family of variables, similar to a
one-dimensional array except that individual variables may
be selected i~ terms of any data object, not just integers.
This datatype is not defined in the Berkeley version, but
table-like structures can be forme~ using indirect
referencing if the selector is a string~

TRACE() initiates tracing of the variahle named by its
a.rgument.

UNLOAD () causes the unloading of a.n ext~rna 1 library
functicn which is no longer needeo.

VALUE() h~s the same effect as the indirect referencinq
operator when applied to a Strin~ or a Name, hut if VALUE
has been defined to be a field of a structure, then it may
have an argument of that datatype as well.

Q..E.f.!.?!1.Q!:'§.:. The following opera·tors are not avai lable:

negation (..,)
cursor posi tion (~)

exponentiation (**)

The.negation operator fails if its operand succee~s,
and succeeds if its operand fails. (Its counterpart, the
interrogation operator (1), which always succeeds, has been
i mI lemen ted as the IF () procedure.)

The cursor position operator has a variable as its
operand and is used within the pattern part of a rule. The
variable is assigned, by immediate assignment, an integer
representing the position of the cursor when pattern
matching occurs. Thus

• ABC' • B • ~ P 0'1 NT E R

causes POINTER to be assigned successively the valuRs
o and 1.

!§Y~2~1§~ ~he Berkeley version of Snobol contains no
keywords. Some keywords have been iaplemented as predefined
~roc~dures, as indicated in Section t of this appendix; . the
remaininq keywords, listed below, c~nnot be simulate~,
although samet· i mas a s1 rni la r eff~ct rna ybe aqh i~ven t h rouq h
other means. Those whose values arp protcctpd (i. P.., cannot.
l::e changed rlirectly by the programlT'0r) are marked with an
asterisk.

~. Non-standard Features 180

&ABEND is used to specify whether or not a system cor o

tlumF is to be printedatpcogralntermination.

&ABORThas the- same value as that of ·the predefineii
pattern ABORT. (~')

&ARB has the same value as :t ha t. .of t.he . predefin(~d_
pattern ARB. (*l

&B~.L has the same value as that o-F 1. t.he pI:' edefine~
pattern BAL. (*)

gCODE can be assignAd an integer which will ~e returne~
to the op~rating system as the ~ser completion code at
program termination.

6DUMP is used to specify whether or not. a -(lump of thl?
natural variables is to be pr~nted at program termination.

g ERR LIM I'r has a val u e w hie h c en t ro 1 s the hand lin g 0 f
certain program errors.

8~RRTYPE acquires an inteqer co~e identifying th~ type
of any program error which may occur. (*)

& FA II, has the same value as that of the predefined
Fattern FA II.. (*)

&FE NeE has the same value as t.hat of thf":! predefinca
pat.tern FENCE. (*)

SFTRACE is used to sp~cify whether or not diagnostic
tracing information is to be' provided on calls to an·d
teturns from all programmer-deiined procedures.

&FULLSCAN is used to specify wheth~r or not the
ful1scan mode of pattern m~tchinq (.in which 'rio heuristics
are employed) is to be usen.

&INPUT is used to specify whether or not any input is
to cccur.

'&LAS'i'NO acquires as its value: an integ.er -specifyinq the
statement n urn her of the prev 10us statement executed. (*)

&CUTPUT is used to specify whether or not any output is
to occur.

M. Nen-stannard Features 181

SBEM has the same value as that of the predcfine~
pattern REM. (*)

&RTNTY?E acquires as value the string RETURN, FRETURN,
or NFETURN, depending on the type cf return made by the last
proqrammer-defined procedure which returned. (*)

&S!FCODNT acquires as value an integer specifyinq how
many statement.s have failed. (*)

&STNO ~cquires as value an integer specifying th~
statement number of the statement currently being executed.

ssnCCRED has the same value as that of the predefined
pattern SUCCFBD. (*)

&TRACE is used to specify whether or not tracing is to.
occur..

&TRIM 1S used to specify whether or not all trailing
blar.ks are to he trimmed on input.

E.~t!~r.!l __ 'yat'i~12.1~~.!. "!'hp. pr.ed~finE!d patt~t"n vdriahlp.
SUCCEED, which always matches the null value (and Yfhich h(\~
very limited practical application) is not available.

12£lillYl?£.§.!. The ·following dat.atypes do not exist in t.h~
Berkeley version:

Table (see the description of the T~BLE() procedure
above}

Expl:ession (see the o' descr iption
evaluation in section I of this appAndix)

of deferred

Exter.nal, which refers to external library functions
(see the description of the LOAD() and UNLOAD() procedures
abcve) •

£~i!~£n __ m21£h!ng~ There is no quickscan mode of .
patt.ern-mat.ching (a mode which makes Ug~ of heuristics).
This is the norrral mane in t·he Bell version, while fullscan
is the normal mode in the Berkeley Version.

AI!!hmQtlfL Mixed mo~e arithm~tic or comp~risons
(involvinq inte'lp.f.'s and r~al numbers) ar.e not p.~rmi.tted •

.Q!!.tllll.!..!.. Thp. var.iahlp PONCH has a predefined asnociation
\oJ i t h t. h P. P 11 n c h f i 1 e i nth f-! n ~ 11 ve r s i () n; t his is n ot t r UP. 0 f
the n~rkelAy vnrsion, but thp association can he mad~ hy

M~ Non-standard Feature~ 182

OUTPUT ('PUNCH',' PUNCH')

The Berkeley vprsion Gurrently provides no. compile-time
crIer messaq~s and no progiam stat~stics. As is indicated by
the foregoing, it' also provid~s no tr~cing facilities and no
dump.

E~Q£~~Q££§~ The following predefined procedures hav~
been added to the B~rkeley version; all are described mor~
fully in Appendix ~.

CLOCK () ret.urns the 24-hollr ti!ne of day (e. q •
. 17:00:59). (See Appendix 'A, section II.B.)

TYPEO returns the same rest!lt as DATATYT'E() for
objects of predefined ~atatypes, and the stcing OAT\ for all.
objects of programmer-defined datatypes. (See Appendix A,
secticn lI09.,

I~EM() has been made more flexible and m~re useful in
the Eerkel~y versicn than' it is in the Bell version. It is
described in detail in Chapter 7.

PFOTOTYPB(} has been significantly extended so that it
may be applie~ to structures, Patterns, and Na~es, as well
a.s tc Arrays. (See Appendix ,1.l., section II. B.)

A number of field selecticn procedures have heen ad1ed
for use in conjunction with the systems-defined u?rototypes"
of Patt~rns and Names .which are returned by t.he pnOTOTYp~ ()
proc€oure. The proceQul:'es PARAM 0, FIPSTO, T?EST{), LEFTO,
and RIGHT{) may he used to decompose Patterns into the
objects from which t.hpy wpr.e constructed .. A similar service
for Names is provided by th~ procedur~s RIGHT(), FAMILYO,
and S E 1 E C TOR (). {S e e A p pe n d i x A, s € C t ion T. C .)

NEXTVJ\R () returns the names of all members of any
fa~ily cyclically, treating the set of all non-null natural
variables as a flfamilY~'t (See Appendix 1 .. , section II.B.)

ABORT, 151

Addition, 19

ALPHABET (), 140

Alternation, 35

ANCHOR(), 43, 145

Anchored pattern
matching, 43, 46

ANY (), 3 6, 128

APPLY(), 92, 144

ARB, 52, 150

ARBNO(), 46, 130

Arithmetic operators, 153
addition, 19
division, 19
multiplication, 19
negative, 8
positive, 8
subtraction, 19

ARRAY(), 104, 130

Array
creation, 100
dimension, 103
index, 105
item reference, 101,

106
prototype, 110

Assignment
assignment rule, 10
conditional assignment,

38
immediate assignment,

40

Assignment rule, 10

INDEX

183

BAL, 150

Binary operators, 16, 153
addition, 19
alternation, 35
concatenation, 17
conditional assignment,

38
division, 19
immediate assignment, 40
multiplication, 19
subtraction, 19

BREAK() , 41, 128

Carriage control, 146

Character set representation,
158

CLOCK(), 140

CODE (), 145

Comment card, 156

Compilation
during execution, 145
of program text, 6

Compiler, 6

Compile-time error messages,
166

Concatenation, 17
with indirect referencing,

60
with null value, 29
within patterns, 39

Conditional assignment, 38

Conditional go-to, 23

. Continuation card, 155

Index

CONVERT(), 145

Created variuble, 101
array item, 101
name of, 116
structure field, 135

DATA(), 135

DATATYPE(), 136

, Datatypes, 126
array, 100
code, 145
int.eger, 8
name, 116
pattern, 49
prograromer-defined,

135
real, 19
string, 8

DATE(), 140

Declarations, 135
DATA(), 135
DEFINE{), 135

Deferred evaluation,

DEFINE{) , 72, 135

DETACH() , 147

DIFFER () ,. 26, .127

Division, 19

-EJECT, .156

END, 23

ENDGROUP(), 147

EOI(), 148

50

EORLEVEL(), 148

Entry label, 73

EQ (), 28 r 127

Error messages
compile-time, 166
execution-time, ·167

Evaluation rule, 25.

18~

Execution of programs, 6

Execution-time error
messages, 167

Extended syntax, 156

External variable, 80, 90

FAIL, 150

Failure
in pattern matching, 33
of input, 24
of item reference, 106
of procedure call, 26, 75
of the rule, 24

FAMILY(), 133'

Family, 100, 138, 141

FENCE, 151

Field, 135

Field selection procedure,
135

FIRST (), 131

~low of control, 21

FNCI,EVEL (), 141

Index

Formal variable, 72

FREEZE (), 148

FRETURN, 75

GE (), 28, 127

Go-to
condition3.l, 23
unconditional, 22
with indirect

referencing, 67

GT (), 28, 127

IDENT (), 26, 127

Identifier form, 9

IF(), 144

Immediate assignment, 40

Indirect referencing, 55

Infinite loop. See Loop,
infinite

INPUT, 13
failure of, 24

INPUT (), 146

Input/output procedures,
146

Integer, 8

Integer literal, 9

Internal variable, 72,
76, 78

Interpreter, 6

ITEM (), 108, 143

Item, 101

Item reference, 101

Label, 21

LE(), 28, 127

LEFT (), 132

LEN (), 42, 129

LGT (), 27, 127

-LIST, 156

185

Listing control card, 156

Loop, 29
infinite. See Infinite

loop

LT (), 28, 127

MAXLNGTH(), 141

Multiplication, 19

Name
of created variable, 101,

116
of natural variable, 9,

56, 101,116

Name operator, 116

NE(), 28, 127

Negative, 8

NEXTVAR(), 141

Index

NOTANY(), 36, 128

NRETURN, 75, 90, 118

Null value, 11

Numeric string, 8

Omitted argument, 77, 126

Operators, 16
summary of, 153

OUTPUT, 12

OUTPUT(}, 146

PARAM(}, 131

passing of arguments, 77

Pattern matching, 33

Pattern-matching rule, 33

POS (), 46, 129

Positive, 8

Precedence, 153

Predefined pattern
variables, 52, 150

Predefined procedures
summary of, 123
ALPHABET(), 140
ANCHOR() ,43, 145
ANY (), 3 6, 12 8
APPLY (), 92, 144
ARBNO (), 46, 130
ARRAY (), 10 4, 130·
BREAK (), 41, 128
CLOCK(), 140
CODE(), 145

CONVERT (), 145
DATA(), 135
DArl'ATYPE (), 136
DATE (), 140
DEFINE (), 72, 135
DETACH(), 147
DIFFER(), 26, 127·
ENDGROUP(), 147.
EOI (), 148
EORLEVEL(), 148
EQ (), 28, 127
FAMILY (), 133
FIRST (), 131
FNCLEVEL(), 141
FREEZE(), 148
GE (), 28, 127
GT (), 2 8, 127
IDENT (), 26, 127
IF (), 144
INPUT (), 146
ITEM (), 108, 143
LE (), 2 8, 127.
LEFT(), 132
LEN (), 4 2, 12 9
LGT () I 27, 127
LT (), 28, 127
MAXLNGTH(), 141
NE (), 2 8, 127
NEXTVAR(), 141
NOTANY(), 36, 128
OUTPUT (), 146
PAR,AM (), 131
POS () I 4 6, 12 9 .
PROTOTYPE(), 110, 137
REMARK(), 147
REST(), 131
REWIND(), 147
RIGHT () I 132
RPOS (), 46, 130
RTAB(), 44, 129
SELECTOR(), 134
SIZE (), 16, 136
SP fu.'J (), 41, 128
STCOUNT(), 140
STLIMIT(), 141
TAB () I 4 4, 12 9
TIME () I 140<
TRIM(), 15, 130
TYPE(), Ill, 136

186

Index

Procedure call, 14, 76
argument of, 77
failure of, 26, 75
level of, 87
recursive, 74
side effect of, 84
summary of execution

of, 154

Procedure definition, 70
DEFINE (), 72
entry label, 73
formal variable, 72
internal variable,

72,76,78
procedure body, 74
procedure name, 72
result variable, 75

Procedure reference, 14

Procedures, 14, 70
predefined, summary

of, 123
programmer-defined,

70

Program execution, 6

Program text
representation, 155

Programmer-defined
datatypes, 135

Programmer-defined
procedures, 70

DEFINE (), 72
entry label, 73
external variable,

80, 90
formal variable, 72
FRETURN, 75
internal variable,

72, 76, 78
NRETURN, 75, 90, 118
procedure body, 74

,procedure name, 72
recursive, 74

result variable, 75
RETURN, 75

187

returning a variable,
90

side-effect, 84
summary of execution

of, 154

PROTOTYPE() I 110, 137

Prototype
of array, 110
of name, 139
of pattern, 138
of structure, 137
predefined, 138

Quotation marks, 157

Real literal, ,145

Real number, 19

Recursive procedure call,
74

REM, 52, 150

REMARK{), 147

Replacement rule, 34

RES'J.1 (), 131

Result variable, 75

RETURN, 75

REWIND(), 147

RIGHT(), 132

RPOS (), 46, 130

RTAB (), 4 4, 129

Index

Rule
assignmer .. t, 10
evaluation, 25
pattern-matching, 33
replacement, 34

SELECTOR(), 134

Selector, 106

SIZE (), 16, 136

~SPACE, 156

SPAN(), 41, 128

Statement terminator, 155

STCOUNT() .. 140

STLIHIT(), 141

St.ring, 8

String literal, 8

String reference, 33

Subtraction, 19

Syntax
extended, 156
of program texts, 161

System transfers
END, 23

FRETURN, 75
NRETURN" 75, 90, 118
RETURN, 75

TAB (), 44, 129

188 '

Test procedures, 127
predefined, 26
programmer-defined, 81

TIME (), 140

TRlt-1. (), 15, 130

TYPE (), Ill, 136

Unanchored pattern matching,
44, 145

Unary operators, 16, l53
deferred evaluation, 50
indirect referencing, 55
name, 116
negative, 8
positive, 8

-UNLIST, 156

Variable, 9
created, 101, 116
external, 80, 90
internal, 72, 76, 78
natural, 9, 56, 101, 116

