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1 Fundamentals 

Introduction 

This book is intended for people who plan to use computers for 
sound processing. Present users range from engineers and physicists 
concerned with speech and acoustics to musicians and phoneticians 
concerned with sound synthesis and speech production and perception. 
The widely varied technical and mathematical background of this 
audience makes it hard to select a technical level for this presentation. 
Some experience with a computer language such as F0RTRAN will be 
assumed, though it could be obtained at the time this material is studied. 

Occasionally a satisfactory explanation of some point requires 
mathematics at the level of a graduate curriculum in electrical engineer
ing. These mathematical sections have been quarantined and marked 
with an asterisk. Although the mathematical material adds essential 
understanding of sound processing, the rest of the book is intended to 
be comprehensible without it. The implications of the mathematics are 
usually given in elementary terms in other sections. Also, Appendix B 
lists the main relationships required for mathematical background. 

Chapter I covers some fundamentals that are basic to all computer 
sound processing-the representation of sounds as numbers, the under
lying processes of sampling and quantizing a sound wave, the approxi
mations and errors that are inherent in sampling and quantizing, the 
operation of digital-to-analog and analog-to-digital converters, the 
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construction of smoothing filters, the storage and manipulation of 
sound waves in numerical form, and, last, an introductory look at the 
computer programming for sound processing which is the central 
subject of the rest of the book. 

Numerical Representation of Functions of Time 

Sound can be considered as a changing or time-varying pressure in the 
air. Its subjective characteristics, how it" sounds," depend on the specific 
way the pressure varies. For example, a tone with a definite pitch A 
above middle C has a periodic pressure variation that repeats itself 440 
times each second. A constant pressure is heard as silence. 

Since the essence of the sound depends on the nature of the variations 
in pressure, we will describe a sound wave by a pressure function pet). 
The p stands for pressure, the t for time, and the parentheses indicate 
that pressure is a function of time; in other words, pressure changes as 
time goes on. The term pet) will represent the pressure function of time 
or, more briefly, the pressure function. 

One way to describe pressure functions is to draw a picture or graph 
showing how they vary with time. Two simple examples are shown in 
Fig. 1. Figure la shows a constant pressure heard as silence. Figure Ib 
shows a sinusoidal variation that repeats itself each 1/500 second. Thus 
the pitch will be slightly below C (524 Hz). The time scale is labeled in 
thousandths of a second. The variations are very rapid compared with 
the times in which we schedule our lives. The pressure wave cannot be 
described as a single quantity or number. Its whole history must be 
drawn, and there is an infinite variety of ways in which it can change 
from millisecond to millisecond. 

The pressure is shown increasing or decreasing around zero pressure. 
Actually the variations are around the pressure of the atmosphere, about 
15 pounds per square inch. However, atmospheric pressure is essentially 
constant and produces no sound. The variations are small compared to 
the atmospheric pressure: A very loud sound would change from 15 to 
15.001 pounds per square inch. The minuteness of this variation 
indicates the great sensitivity of our ears. 

All sounds have a pressure function and any sound can be produced 
by generating its pressure function. Thus if we can develop a pressure 
source capable of producing any pressure function, it will be capable of 
producing any sound, including speech, music, and noise. A digital 
computer, plus a program, plus a digital-to-analog converter, plus a 
loudspeaker come close to meeting this capability. 
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Fig. 1. Simple pressure 
functions: (a) silence; (b) 
500-Hz sinusoid. 

In the past most sounds have originated from the vibrations and 
movements of natural objects-human vocal cords, violin strings, 
colliding automobiles. The nature of these sounds is determined by and 
limited by the particular objects. However, in the last 50 years the 
loudspeaker has been developed as a general sound source. It produces 
a pressure function by means of the vibrations of a paper cone actuated 
by a coil of wire in a magnetic field. The movement of the cone as a 
function of time, and hence the resulting pressure function, are deter
mined by the electric voltage (as a function of time) applied to the coil. 

Loudspeakers are not perfect: they distort all sounds slightly, and some 
sounds are hard to produce. However, the almost universal range of 
sounds they generate in a satisfactory way is demonstrated by the range 
of sounds that can be played on phonograph records and on radios. 
Loudspeakers are sound sources of almost unlimited richness and 
potential. 

To drive a loudspeaker and produce a desired pressure function, an 
electric voltage function of time must be applied to its coil. Exchanging 
the problem of generating a pressure function for generating a voltage 
function might seem to offer little gain. However, very versatile methods 
exist for producing electric functions. 
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One popular method of generating a great variety of voltage functions 
is the phonograph record. The minute wiggles in the grooves on the 
record are converted into a motion function of the needle on the pickup. 
The wiggles are a space function, but this space function is convert¢ to 
a time function by the turntable, which moves the groove past the 
needle at a particular speed. The motion function of the needle is 
converted to a voltage function in one of a number of well-known ways. 
The voltage, after amplification, is applied to the loudspeaker. 

The value of the phonograph as a source of voltage functions is that 
a wiggle of almost any shape can be cut in the groove. If one had a 
minute chisel, grooves for new sounds could be cut by hand. However, 
the computer can accomplish an equivalent result by a much easier 
process. 

Sampling and Quantizing 

The pressure functions that we hear as sound are generated by 
applying the corresponding voltage functions to a loudspeaker. How 
can voltage functions be produced from the numbers in a computer? 
The process is shown in Fig. 2. Numbers stored in the computer 
memory are successively transferred to a digital-to-analog converter. 

.. 
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Fig. 2. Computer-to-pressure conversion. 
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F or each number the converter generates a pulse of voltage whose 
amplitude equals the number. These pulses are shown on the graph in 
the lower part of Fig. 2. The square corners of the pulses are smoothed 
with a filter (low-pass filter) to produce the smooth voltage function 
drawn through the pulses in Fig. 2. This voltage, supplied to the 
loudspeaker, produces the desired pressure wave. 

We will discuss later the electrical details of the digital-to-analog 
converter and the smoothing filter, and analyze the errors quantita
tively. Here we would like to give some physical intuition about the 
process. From inspection of Fig. 2, it seems evident that a great variety 
of time functions can be generated from the right numbers. Each number 
simply gives the value of the function at one instant in time. Practically, 
the computer can produce any set of numbers and hence any time 
function. However, some functions are more difficult to produce than 
others, and certain approximations are involved in producing any 
function. It is important to understand the nature of these approxima
tions in order to use the computer as an effective sound source. Sampling 
and quantizing are the two approximations involved in representing a 
continuous function by a set of numbers. 

A continuous function of time can change at every instant in time. 
The numbers, by contrast, are ·converted to pulses which are constant 
for a given duration, called the pulse width or sampling time. In Fig. 2, 
there are 10 pulses each millisecond, so the sampling time is 1/10,000 
sec. It is often convenient to talk about the sampling rate that is 
l/(sampling time). Thus a sampling time of 1/10,000 sec corresponds to 
a rate of 10,000 samples per second. 

Intuitively it seems that, if we make the sampling time very small, the 
pulses will be a good approximation to the continuous function as 
illustrated in Fig. 3a, and if we make the sampling time large, as in 
Fig. 3b, we will get a poor approximation. Of course, the approximation 
depends on the function too. More pulses are needed to approximate a 
rapidly changing function than a slowly changing one. The rapidly 
changing function is best thought of as having higher frequencies than 
the slowly changing function. Thus a higher sampling rate, and hence 
more pulses, and hence more numbers, will be required to approximate 
high-bandwidth (hi fi) sound than low-fidelity sound. 

Mathematically it has been shown that R pulses per second are 
needed to approximate perfectly a function with a bandwidth R/2 
cycles per second. Thus, to approximate a high-fidelity sound with a 
bandwidth of 15,000 Hz, we require 30,000 samples per second, or a 
sampling time of 1/30,000 sec. 
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Pressure 

(0 ) 

Pressure 

(b) 

Time 

Time 

Fig. 3. Example of 
various sampling rates: 
(a) high sampling 
rate ; (b) low sampling 
rate. 

We can now begin to appreciate the huge task facing the computer. 
For each second of high-fidelity sound, it must supply 30,000 numbers 
to the digital-to-analog converter. Indeed, it must put out numbers 
steadily at a rate of 30,000 per second. Modern computers are capable 
of this performance, but only if they are expertly used. We can also 
begin to appreciate the inherent complexity of pressure functions 
producing sound. We said such a pressure could not be described by 
one number; now it is clear that a few minutes of sound require 
millions of numbers. 

The second approximation is called quantizing. The numbers in 
computers contain only a certain number of digits. The numbers in the 
Fig. 2 computer have only two digits. Thus, for example, all the pulse 
amplitudes between 12.5 and 13.5 must be represented by the number 
13. Of course we could build a larger computer that could handle 
three-digit numbers. This machine could represent 12.5 exactly. How
ever, it would have to approximate all the amplitudes between 12.45 
and 12.55 by 12.5. Furthermore, the more digits, the more expensive 
will be the computer. 
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The quantizing errors are closely equivalent to the noise and distor
tion that are produced by phonographs, tape recorders, amplifiers, and 
indeed all sound-generating equipment. Their magnitude can be 
estimated in terms of signal-to~noise ratios or percentage distortions. 
The approximate signal-to-noise ratio inherent in a given number of 
digits equals 

Maximum number expressible with the digits 
Maximum error in representing any number 

For example, with two-decimal digits, the maximum number is 99 and 
the maximum error is .5. The signal-to-noise ratio is 

~~ ~ 200 or 46 dB 

Three-decimal digits would correspond to a signal-to-noise ratio of 
999/.5, or 66 dB. This ratio is as good as very high-quality audio 
equipment. Three-decimal digits would be a very small number of 
digits for most computers; hence quantizing errors are not critical. 
Sampling rate, by contrast, is often critical. 

Most computers use binary rather than decimal numbers. The same 
method can be used to estimate quantizing errors. For example, 
10-digit binary numbers can express the decimal integers from 0 to 
1023. Hence the equivalent signal-to-noise ratio is 1023/.5, or about 
66 dB. Typically, 10- to 12-binary-digit numbers are used for sound 
generation. 

The limit to the quantizing errors is usually the digital-to-analog 
converter rather than the computer. Computers with an accuracy of 
12 to 36 digits or more are standard. Converters with accuracy beyond 
12 digits are difficult to make. Twelve digits would correspond to a 
signal-to-noise ratio of 78 dB. Although this ratio may seem more than 
sufficient, its quantizing noise is occasionally objectionable when very 
soft sounds are generated, or when a peculiar interaction arises between 
sounds and noise. Thus it seems prudent to use at least 12 digits. 

Foldover Errors 

The generation of voltage functions from quantized samples is a 
practical, powerful, and useful method when coupled to modern com
puters. Most of this book is concerned with applications of this method. 
In order to use the method, its errors and limitations must be under
stood and avoided. A mathematical analysis of the errors is given later 
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in this chapter. Since the quantizing noise is similar to noise in other 
apparatus, it usually causes no unexpected trouble. However, sampling 
produces a frequency distortion called fo/dover, which can generate 
surprising and unwanted frequencies. Because of foldover's insidious 
nature, we will present an intuitive discussion here, in addition to an 
analysis later. 

The limitations of sampling in reproducing waveforms that contain 
very high frequencies can be illustrated graphically. Figure 4a shows the 
sampling of a periodic sequence of short pulses. We see that only one 
out of the four pulses shown overlaps a sampling time, and hence in the 
figure all samples but one are zero in amplitude. The sampling of the 
regular sequence of pulses produces samples spaced much farther apart 
in time than the pulses are. 

Figure 4b is another illustration of the defects of sampling. Here 
sampling of a square wave produces pairs of positive samples separated 
by single negative samples. 

Thus sampling a waveform can produce samples that represent the 

Voltage function 

...Jl n'--_--'n ..... __ fL..... 
Sampling times 

I I I 
Sample pulses 

~--------------------~. Time 

(a) 

Voltage function 

Hllrill LJ LJ LJ L-
Sampling times 

I I I 
Somple pulses 

Time 

(b) 

Fig. 4. (a) Sampling a 
function that has 
narrow pulses; (b) 
sampling a square
wave function. 
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waveform poorly. This happens when the voltage function has fre
quencies higher than Rj2 Hz, where R is the sampling rate. This is the 
case for the voltage functions and sampling rates shown in Fig. 4. 

When the voltage function contains frequencies higher than Rj2 Hz, 
these higher frequencies are reduced, and the resulting sound is heard 
somewhere in the range 0 to Rj2 Hz. For example, if the sampling rate 
is 30,000 Hz and we generate samples of a sine wave at a frequency of 
25,000 Hz 

sin (27T·25,000·t) 

the resulting voltage function out of the low-pass filter (smoothing 
filter, Fig. 2) will be a sine wave at 5000 Hz 

sin (27T' 5000· t) 

More generally, if we generate samples of a sine wave at F Hz, where F 
is greater than Rj2, the resulting frequency will be 

FroId = R - F 

The frequency F is reflected or folded by the sampling frequency; hence 
the term foldover. 

Why does fold over occur? Some physical feeling is suggested by 
Fig. 5. Here we have diagrammed the example discussed above, of a 
25,000-Hz sine wave sampled at 30,000 Hz. The samples of the 25,000-
Hz wave are shown as points, and the actual numbers are 

1, .5, - .5, -1, - .5, .5, 1, .5, ... 

::;1 

GI 

rT
samPling time-33~fLsec 

(Sampling rate = 30.000Hz) 
sin (217"'25.000 t) 

~0~~-+-+'~~~~~+-~-4~~~~~~ 
GI Time in 
0. microseconds 

-I 

sin (217"·5000t ) 

Samples (I •. 5.-.5.-1.-.5 •. 5.1.···) 

Fig. 5. Example of high-frequency (25,000 Hz) and foldover frequency 
(5000 Hz) resulting from low sampling rate (30,000 Hz). 



10 CHAPTER ONE 

A 5000-Hz sine wave is also shown, and it also passes through the same 
sample points. In other words, the 5000-Hz wave will have the identical 
samples and therefore the identical numbers as the 25,000-Hz wave. 
When the pulses produced by these numbers are put into the low-pass 
filter, a 5000-Hz wave will come out, because the low-pass filter passes 
low frequencies and attenuates high frequencies. 

The essential point in the example is the identity of the samples of the 
25,000-Hz and 5000-Hz waves. Hence from the samples there is no way 
to distinguish between these frequencies. No computer program or 
electric filter or other device can separate identical objects. For practical 
purposes, the digital-to-analog converter and smoothing filter will 
always be designed to interpret the samples as a 5000-Hz wave, that is, a 
wave between 0 and Rj2 Hz. Thus one must be willing to accept this 
frequency in the sound, or one must avoid generating samples of a 
25,000-Hz wave (in general, a wave with frequencies greater than 
Rj2 Hz). 

The example chosen was simple in order that the graph could be 
easily seen and the numbers easily computed. But the relation 
FfOId = R - F holds for sine waves generally. More complex periodic 
waves can be decomposed into individual harmonics and the foldover 
frequency calculated separately for each harmonic. 

Foldover also occurs from mUltiples of the sampling rate. Com
ponents of ± R ± F, ± 2R ± F, ± 3R ± F, etc., are produced by the 
digital-to-analog converter. However, in most cases only R - F is 
troublesome. 

We will next illustrate the sound of fold over with two examples. 
Suppose a sine wave with continuously increasing frequency (glissando) 
is sampled. What will be heard? As the frequency increases from 0 to 
15,000 Hz, an increasing frequency going from 0 to 15,000 Hz will be 
heard. But as the frequency increases from 15,000 to 30,000 Hz, a 
decreasing frequency (30,000 - F) will be heard, going from 15,000 to 
o Hz. This is usually a shock! If we persist in raising the frequency and 
proceed from 30,000 to 45,000 Hz, the resulting sound will go upward 
from 0 to 15,000 Hz (- 30,000 + F). 

If we generate a complex tone with a high pitch and many harmonics, 
the higher harmonics will fold over and appear at unwanted frequencies. 
For example, the fifth harmonic of a 3000-Hz tone will occur at 15,000 
Hz. That is the highest frequency that is not folded at a 30,000-Hz 
sampling rate. The sixth harmonic (18,000 Hz) will be generated at 
12,000 Hz and thus add to the fourth harmonic. The ninth harmonic 
(27,000 Hz) will appear at the fundamental frequency, 3000 Hz. 
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In this example the fundamental frequency is a divisor of the sampling 
rate. In this case the folded higher harmonics fall at exactly the fre
quencies of the lower-frequency harmonics, thus producing a slight 
distortion of the spectrum shape. Such distortion is seldom objection
able. However, the sampling rate is not usually an exact multiple of the 
fundamental frequency, and the folded harmonics will not fall on lower 
harmonics. For a tone whose fundamental is 3100 Hz, the sixth har
monic (18,600 Hz) will fall at 11,400 Hz between the third harmonic 
(9300 Hz) and the fourth harmonic (12,400 Hz). At the least, the tone 
quality will be much changed. At the worst, dissonance that resembles 
intermodulation distortion will be generated. 

The practical conclusion from this discussion of foldover is: avoid 
generating samples of waveforms whose frequencies are higher than 
half the sampling rate. 

*Mathematical Analysis of Sampling 

We will present a version of the sampling theorem in this section to 
show that frequency-limited functions can be represented by a sequence 
of numbers, and to show what errors are made by sampling functions 
that are not strictly frequency limited. The main result is: functions 
containing frequencies between 0 and R/2 can be exactly represented by 
R samples per second. The sampling of functions that are not frequency 
limited produces fold over errors whose magnitude can be calculated. 
Also errors introduced by the smoothing filter can be calculated. 
Quantizing errors will not be considered: each sample will be assumed 
to be exactly represented by a number with infinite decimal places. 

Figure 6 presents a block diagram of a sampling and desampling 
process which we will use to analyze sampling. A time function 

.------, 
( ) Sampler 

p t (aoolog-
digital 

converter) 

p (iT) i ="', -1,0,1",' 

Impulse 
modulator 

zIt) Amplifier 
(gain T) 

T·z(f) Smoothing pll(t) 
filter 
F(w) 

Fig. 6. Conceptual block diagram of sampling-desampling process. 

p(t), -00 < t < 00, is sampled. The analog-to-digital converter produces 
a sequence of numbers p(iT), i = ... , -1,0, 1,2, ... , equal to p(t) at 
the sampling times iT. The sampling interval is T, and the sampling 
rate R = liT. 
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The desampling process consists of an "impulse" modulator, an 
amplifier, and a smoothing filter. The output of the modulator is a 
sequence of impulses z(t) whose areas are respectively proportional to 
p(iT). Thus 

+00 

z(t) = L 8(t - iT) p(iT) (1) 
i= - 00 

where 8(t) is a unit impulse at time t = O. In actual practice, the impulse 
modulator is well approximated by a pulse modulator producing 
pulses of finite width. The impulses are smoothed by an ideal low-pass 
filter, having unity gain from 0 to R/2 Hz and zero gain above R/2 Hz. 
Such a filter is unrealizable but can be well approximated by filters 
that can be constructed. 

The output of the smoothing filter p*(t) should equal or closely 
approximate pet). The essential result is simply that, for any frequency
limited pet), pet) = p*(t). This result not only establishes that any 
frequency-limited function can be generated from samples but also 
gives a recipe for sampling any frequency-limited function. Thus a basis 
is built for both sampling and desampling. Although one frequently 
works with only sampling (for sound analysis) or only desampling 
(for sound synthesis), the complete sampling-desampling process is 
conceptually necessary to establish the validity and accuracy of either 
process. 

In addition to being frequency limited, pet) must satisfy certain 
additional requirements of a more subtle mathematical nature. In 
general we will ignore these qualifications here, with apologies to the 
mathematicians. Functions obtained from sound waves satisfy these 
qualifications. 

The function pet) can be expressed as the inverse Fourier transform 

1 f+OO pet) = - P(w)ejwt dw 27T _ 00 
(2) 

where the spectrum ofp(t) is pew). Ifp(t) is frequency limited to half the 
sampling rate R, then pew) = 0 for Iwl ~ -1Wo where Wo = 27TR. A 

P(w) 

r:h 
o 
w rod Isec 

.. 
Fig. 7. Typical frequency
limited spectrum . 
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sketch of such a pew) is shown in Fig. 7. The output of the impulse 
modulator may be written as the product 

z(t) = m(t)· pet) 

where met) is a sequence of unit impulses at the sampling rate 

+00 

met} = L 8(t - iT) 
1= -00 

as shown in Fig. 8. The spectrum M(w) of met) can be formally 

m(tl 

... t t i t t t 
Fig. 8 . Sampling im-
pulses . .. 

-2T -T 0 T 2T 3T 
t sec 

represented 1 as a sequence of impulses in the frequency domain 

2 +00 

M(w) =.; L 8(w - nwo) 
n= -00 

(3) 

as shown in Fig. 9. 

T t 
o W·o 

w rod/sec 

Fig. 9. Spectrum of sampling impulses. 

1 This spectrum may be formally derived from the Fourier series analysis of 
met), which yields 

1 2 ex> 

met) = T + T n~l cos nWot 

The spectrum of cos nWot is 

1T[a(W - nwo) + a(w + nwo)] 

Hence the spectrum of met) may be computed as the sum of spectrums of cos nWot 
terms 
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Using the convolution theorem, the spectrum Z(w) of z(t) may be 
written in terms of M( w) and P( w) as the integral 

I f+oo 
Z(w) = 27T _ 00 M(o:)P(w - 0:) do: 

Substituting the series for M( w) 

1 +00 f+oo 
Z( w) = T n h 00 _ 00 B( 0: - nwo)P( w - 0:) do: 

which, because of the nature of the impulse function, simplifies to 

1 + 00 

Z(w) = T L pew - nwo) 
n= - 00 

(4) 

(5) 

The spectrum P*(w) of the output p*(t) is Z(w) times the product of the 
amplification T and the transfer function F( w) of the smoothing filter 

+00 

P*(w) = F(w) L pew - nwo) (6) 
n= - 00 

Equation 6 is the basic result and holds for both frequency-limited and 
frequency-nonlimited P(w),s. It says that P*(w) contains the sum of 
pew) spectra which have been shifted by nwo. Let us examine P*(w) 
for the frequency-limited case. 

Figure 10 shows a sketch of T· Z( w) for the P( w) shown in Fig. 7. 
Since P( w) = ° for I w I ~ wo/2, the sum of shifted P( w) spectra gives 

Ideal smoothing- filter 
transfer function 

w rad/sec 

Fig. 10. Spectrum of T·Z(w) and smoothing-filter transfer function with 
frequency-limited function. 

copies of the pew) spectra centered at ... , -Wo, 0, we' 2wo, ... rad/sec. 
If the smoothing transfer function F( w) is such that F( w) = 1 for 
Iwl < wo/2, and F(w) = ° for Iwl ~ wo/2 as shown in Fig. 10, then 
P*(w) is simply the center hump ofT·Z{w). Geometrically it is easy to 
see that P*(w) = pew) and therefore that pet) = p*(t). 
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Under these same conditions, Eq. 6 reduces to 

P*(w) = pew) (7) 

The required conditions for Eq. 7 to hold are again 

pew) = 0 for Iwl 2:: wo/2, and F(w) = 1 for Iwl < wo/2 

F(w) = 0 for Iwl 2:: wo/2 

Thus we have established our main claim and shown how a faithful 
replication of any frequency-limited function can be generated from 
samples. 

What errors are produced if pew) is not frequency-limited? Figure 11 
shows such a case. P( w) is nonzero until w equals .9wo. The summation 

w rod/sec 

Fig. 11. Spectrum of T·Z(w) with function having a too wide frequency 
spectrum. 

specified by Eq. 5 causes the tail (P( w), wo/2 < w < wo) to add energy 
to Z( w) in the frequency region 0 < w < wo/2. The tail is said to be 
folded around wo/2, and hence the distortion is called foldover. Energy 
in P( w) at frequencies w appears in P*( w) at frequencies Wo - w. This 
distortion is produced by the terms P( w - wo) and P( w + wo) in 
Eq. 5. If pew) contains even higher frequencies, distortions with 
frequency shifts of 2wo - w will be introduced by the P( w - 2wo) and 
pew + 2wo) terms, and so forth. 

In addition to fold over, errors are also introduced by the smoothing 
filter. The transfer function F(w) is one term in Eq. 6. Realizable filters 
cannot achieve the ideal transfer function of unity for Iwl < wo/2 and 
zero for Iwl 2:: wo/2. A typical function is sketched in Fig. 11. Two 
types of errors are caused. Departures of the amplitude from unity for 
I w I < wo/2 distort P*( w) within the band of interest and produce 
in-band distortion. These distortions are typical of errors in other 
electronic equipment and are often measured in decibels of departure 
from unity or "flatness." Flatness within ± I dB is typical and easy to 
produce. 
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Departures of the amplitude from zero for I wi;::: wo/2 add high
frequency energy to P*(w). For example, if F(wo) # 0, a tone with a 
pitch equal to the sampling frequency will be heard. Gains as small as 
1/100 or 1/1000 are not hard to achieve for Iwl ;::: wo/2. In many cases 
the ear is not sensitive to the high frequencies and hence they are not 
objectionable. At a sampling rate of 30,000 Hz, all high-frequency 
distortions are at frequencies greater than 15,000 Hz and hence are 
almost inaudible. 

One other limitation of realizable filters must be taken into account. 
They require a certain frequency band to change gain from unity to 
zero. In Fig. 11, the transition occurs between We and wo/2. Large 
distortions occur in this band; therefore it cannot contain useful 
components in P*( w). We is effectively an upper limit for the usable 
frequency of P*(w), which is less than the theoretical maximum wo/2. 
Typically We = .8wo/2. 

The spectrum P*(w) and hence p*(t) can be computed from Eq. 6 for 
any smoothing filter F(w) and any pew). Thus the error pet) - p*(t) can 
be computed. The calculation is complicated and is usually not worth 
carrying out. Instead, either a physical feeling for the error is obtained 
from a sketch such as Fig. 11 or bounds are computed for the error. 

*Alternative Analysis of Sampling 2 

In sampling, we measure the amplitude of some voltage function 
pet), making the measurement R times per second. This sequence of R 
measurements per second constitutes the samples of the waveform pet). 

The process of successive measurements of the amplitude of pet) can 
be carried out as shown in Fig. 12 by multiplying pet) by a succession of 
R equally spaced impulses per second, each with unit area. Thus the 
area (voltage times time) of each sample will be unity times the voltage 

Voltage 
funct ion 
p (t) 

Impulses 
at rate R 
per second 

Fig. 12. Sampling-desampling process. 

2 Suggested by J. R. Pierce. This analysis is briefer than the preceding one and 
may be easier to understand. 
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of pet) at the time of sampling. The number in the computer represents 
this area and is proportional to it. 

We will disclose the consequences of such sampling by c~rrying out 
the multiplication in the frequency domain. The function pet) will be 
represented by its Fourier transform 

pet) = LOO A(f) cos [27Tft - <p(f)] df 

Here A(f) is the amplitude of the voltage spectrum at the frequency f, 
and <p(f) is the corresponding phase. 

The voltage V s of the R unit-area impulses per second is 

Vs = R( I + n~l 2 cos 27TnRt) 

In the process of multiplication, each spectral component of V s 

interacts with the spectrum of pet) to produce a new spectrum. The dc 
component of Vs produces simply pet) mUltiplied by R. Each other 
spectral component of V s produces a pair of sidebands lying about its 
frequency, nwo (wo = 27TR). To see this, note that by elementary 
trigonometry 

(2R cos 27TnRt) cos [27Tf - <p(f)] 

= R{cos [27T(nR - f)t + <p(f)] + cos [27T(nR + f)t - <p(f)]} 

Thus if we plot the amplitude voltage spectrum of the sampled wave, 
that is, of the samples, it appears as shown in Fig. l3. We see that if 

Spectrum 

R·A(fl R·A (f-R) R·A(f-2R) ,,------', /" .. -----.... , ,---, , ~ ,;(~ 
"A, '" .... 

RI2 R 312R 2R 

Frequency (Hz) 

Fig. 13. Amplitude spectrum of sampled function. 

pet) contains frequencies higher than R/2, that is, if A(f) is not zero for 
f larger than R/2, the sideband lying below the sampling rate R will 
fall partly within the frequency range from 0 to R/2. The higher 
frequencies of pet) will have been folded over into the frequency range 
from 0 to R/2. 
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Let us return to Fig. 12, which illustrates the sampling process. Here 
we show the sampler (multiplier) followed by an amplifier of gain l/R 
and a smoothing filter whose purpose is to remove frequencies above 
R/2 Hz. 

Suppose first that pet) contains no frequencies above R/2, and second 
that the smoothing filter has zero loss for all frequencies below R/2 
and infinite loss for all frequencies above R/2. Then from the preceding 
analysis the output of the system should be exactly pet). 

That ideal performance can fail in two ways. 
The voltage function pet) may contain frequencies higher than R/2. 

In that case, folded-over frequencies will appear in the frequency range 
o to R/2, even though the smoothing filter is ideal. 

The voltage function pet) may contain no frequencies higher than 
R/2, but the smoothing filter may pass frequencies higher than R/2. 
In that case, some folded-over frequencies above R/2 Hz will pass 
through the smoothing filter. 

In practice, we cannot make ideal smoothing filters. Rather, we count 
on using frequencies only up to some cutoff frequency fc, which is some
what less than R/2, and try to make the smoothing filter loss increase 
rapidly enough with frequency above fc so that it passes little energy of 
frequency above R/2. 

Bounding Sampling Errors 

In most cases of practical interest, only four parameters describing 
the input spectrum P( w) and the filter transfer function F( w) need be 
considered to characterize the sampling errors adequately. These 
parameters are shown in Fig. 14. 

The input spectrum (Fig. 14a) has been normalized to have unity 
maximum magnitude. The maximum magnitude for w ;::: wo/~ is m. 
The fold over error is characterized by the ratio m/l.O or simply m. 
This number characterizes only the first foldover due to P( w - wo) 
and neglects higher folds on the assumption that P( w) decreases rapidly 
at higher frequencies. 

Allowable values for m are not well known. Values of 2 or 3 percent 
correspond to intermodulation distortions in much electronic equip
ment. If the frequency at which the m peak occurs is near wo/2, large 
values can be tolerated because the folded energy will be generated at 
high frequencies (near wo/2). By contrast, if the peak occurs near wo, the 
folded energy will appear at low frequencies and may be prominent and 
objectionable. 
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1.0 

m 
W 

0 Wo 

(a) 

\F{w)1 

1.0 

-~I-C 

b 

0 We woll wQ 

(b) 

Fig. 14. Constants for bounding the error of the sampling process: (a) 
spectrum of signal; (b) transfer function of :filter. 

In trying to estimate whether the foldover of a given function pet) 
will be objectionable, a mental comparison of pet) with certain known 
waveforms may be useful. Figure 15 shows four waveforms-periodic 
impulses, a square wave, a triangular wave, and a sine wave. 

The impulse function (Fig. lSa) has harmonics that do not decrease 
in amplitude; that is to say, the amplitude of the higher harmonics is 
the same as that of the fundamental. Such a function has prominent and 
usually objectionable foldover at any pitch. That behavior is typical of 
any function containing sharp pUlses. 

Figure lSb shows a square wave. Its harmonics decrease in amplitude 
as 1jfrequency or 6 dB per octave. The square wave is usually good at 
low pitches (pitch less than 200 Hz for a sampling rate of 10,000 Hz). 
That behavior is typical for functions with sudden discontinuities. 

Figure ISc shows a triangular wave. Its harmonics decrease as 
Ij(frequency)2 or 12 dB per octave. It can usually be reproduced at 
pitches up to 1000 Hz with a 10,000-Hz sampling rate. It is typical of 
continuous functions with discontinuous derivatives. 
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Fig. 15. Examples of p(t) 
functions with differing 
foldover. 

To control the foldover of a very high-pitched function, pet) may be 
formed from a sum of sine waves (Fig. 15d). In this way, foldover can be 
completely eliminated simply by having no components above wo/2. 
The number of components must be changed at different pitches, which 
is an inconvenience. 

Figure 14 shows the filter transfer function F(w). It has been normal
ized to be approximately unity at low frequencies. The filter can be 
specified to deviate from unity gain by no more than c at low frequencies 
(w ::::; we) and to have a maximum gain (leakage) b at high frequencies 
W ~ wo/2. The sharpness of frequency cutoff is measured by (wo/2) - We' 

The usable frequency range is from ° to We; hence We should approach 
wo/2. 

Filter design and construction is a highly developed art. Typical 
values that are easy to obtain in specially designed filters are c = .1 
{l dB in-band deviation), b = 1/1000 (60 dB out-of-band attenuation) 
and We = .8wo/2. General purpose filters or adjustable filters are not as 
good but are more convenient to buy and use. It is always desirable to 
have a flat in-band filter (c small). The importance of the out-of-band 
attenuation depends on the sampling rate. At low rates (10,000 Hz), 
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out-of-band energy from 5000 Hz to 10,000 Hz must be carefully 
removed. At high rates (30,000 Hz), the out-of-band energy is above 
15,000 Hz and hence is almost inaudible. Hence some sloppiness in the 
high-frequency filter performance is often tolerable. Note that such 
leniency does not apply to the high-frequency parts of pew). Here, high 
frequency energy folds and appears at low and prominent frequencies. 

*Sample and Hold Analysis 

The desampling process that we have analyzed assumed that impulses 
or very narrow pulses were put into the smoothing filter. In actual 
operation, wide pulses are usually used. A typical case is sketched in 
Fig. 3b, where the pulse width is 80 percent of the sampling time T. 
The gain of the desampling process is proportional to the pulse width, 
hence the advantage of wide pulses. However, a small distortion which 
we will now analyze is thus introduced in the spectrum of P*(w). The 
distortion amounts to 4 dB in the worst case and is usually insignificant. 

The holding process can be represented by introducing a filter 
between the impulse modulator and amplifier in Fig. 6. The impulse 
response of the filter h(t) is as shown in Fig. 16. Each impulse from the 

t sec 
w rad Isec 

(0 ) (b) 

Fig. 16. Sample and hold circuit: (a) impulse response; (b) frequency 
function for D = T. 

modulator is held for D seconds, thus producing a finite pulse. The 
transfer function H( w) of this filter can be written 

H(w) = CD ! e- jwt dt 
Jo D 

The amplitude of the impulse response is taken as liD to normalize the 
low frequency gain of H( w) to unity. Carrying out the integration, 
H( w) is evaluated as 

H( ) = -jwD/2. sin wD/2 
w e wD/2 
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The maximum value of D is the full sampling time D = T. The 
magnitude of H(w) for D = T is plotted in Fig. l6b. The maximum 
distortion in P*( w) introduced by H( w) occurs at w = wo/2 and is 2/7T 
or about 4 dB. The distortion decreases rapidly at lower frequencies. 
If D = T /2, the maximum distortion which again occurs at w = wo/2 
is only .9 or 1 dB. 

*Analysis of Quantizing Errors 

Quantizing errors are similar to noise in conventional electronic 
equipment. The two most important characteristics of noise are its 
magnitude and its frequency spectrum. We will derive an estimate of 
these for quantizing errors. 

These errors are shown graphically in Fig. 17. A pressure wave pet) 
is sketched in Fig. 17a with a much enlarged ordinate, so that the 

2 

0 
-I 0 2 3 4 5 6 

(0 ) 
Time in 

"l 
T units 

I 
I I I r o I 

1 I -1/2 
-I 0 2 3 4 5 

(b) 

Fig. 17. Quantizing process: (a) function being quantized; (b) quantizing 
error. 

quantizing levels 0, 1, and 2 are clear. The exact values p(iT) of pet) 
at the sampling times are indicated by open circles. The analog-to
digital converter approximates these by the nearest quantizing level 
shown by the black dots pq(iT). The difference ei where 

e1 = p(iT) - pq(iT) (8) 

is the quantizing error. 
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A sketch of the error is shown in Fig. 17b. The maximu!Jl magnitude 
of the error is -!- because of the nature of the analog-to-digital converter. 
F or this analysis, we will assume that each ei is a random variable 
uniformly distributed over the range --!- to +-!-. We will also assume 
that ei's at different sampling times are uncorrelated, that is, that 
E<eiej) = ° for i =I j. The notation E< ) denotes expectation taken by 
an appropriate average. 

These two assumptions are reasonable for pet) functions resulting 
from almost all sound waves. They are the only assumptions that lead 
to a simple estimate of the error. They neglect possible correlation 
between pet) and the error. This correlation has been noticed in one 
circumstance. DUring silent intervals, pet) = 0, and ei is constant. The 
spectral energy of the quantizing error will be entirely at zero frequency 
and thus inaudible. During nonsilent periods, the energy of ei will be 
distributed across the audible spectrum. In this way the apparent noise 
seems to fluctuate with the signal, disappearing during silent intervals. 
This behavior contrasts with a normal tape recorder, in which back
ground noise (tape hiss) is most prominent during silent intervals. For 
many listeners, the quantizing noise is less objectionable than an 
equivalent amount of tape hiss, because it tends to be masked by the 
signal when it is present. 

We will now continue with the error analysis. Without quantizing 
errors the output of the sampIing-desampling process shown in Fig. 6 
can be written 

00 

p*(t) = T L p(iT)f(t - iT) 
i= - 00 

where f(t) is the impulse response of the smoothing filter and is related 
to the filter frequency function by 

1 f+oo f(t) = - F(w)ejwt dw 21T _ 00 

If the quantized samples pq(iT) are used as input to the impulse modu
lator, then the output p:(t) is 

p:(t) = T ~ pq(iT)f(t - iT) 
i= - 00 

The quantizing error eq(t) in the output is simply the difference 
p*(t) - p:(t) and thus can be written 

00 

eit) = T L {p(iT) - pq(iT)}f(t - iT) (9) 
i= - 00 
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which by Eq. 8 becomes 
00 

eq(t) = T 2: eif(t - iT) 
i= - 00 

The correlation function of eq(t) is by definition 

. pq( T) = E(eq(t)eq(t + T» 

Substituting Eq. 9 into the definition of pq( T), and taking advantage of 
the noncorrelated et's (E( eiej) = 0 for i = j), the correlation function 
simplifies to 

, piT) = e2 ·T f-+: f(t)f(t + T)dt 

where ~ is the mean-square quantizing error 

e2 = E(eiei) 

The energy spectrum of the quantizing error is by definition the 
transform of the correlation function 

1 f+ 00 . <I>q(w) = 27T _ 00 pq( T)e- Jwr dT 

and is 

(10) 

where F( w) indicates the conjugate of the frequency function of the 
filter. 

For ei uniformly distributed from -t to +t 

- It e2 = x2 dx = l-2 
-t 

For the ideal smoothing filter, F(w) = 1 for Iwl < wa/2 and F(w) = 0 
for Iwl ~ wa/2, the energy in <I>q(w) is uniformly distributed over the 
frequency band - wa/2 to wa/2. The mean-square quantizing error 

eit)2 = f:: <l>iw) dw (II) 

= - e2 dw fWO/2 T-

- wo/2 27T 

(12) 
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The spectrum of the quantizing error can be computed from Eq. 10 
and the meari-square error from Eq. 11 or Eq. 12. Thus we have 
completed our evaluation of quantizing error. 

In order to compute the signal-to-quantizing-noise ratio, it is neces
sary to specify the signal. For example, if the signal is a sinusoid that 
occupies the entire range of quantizing levels (full-scale signal), it can 
be written 

N/2 sin wt 

where N is the maximum number expressible with digits. The mean
square signal is N 2/8, and the ratio, rms signal to rms quantizing noise, 
is 

Earlier in the chapter we approximated this ratio as simply N/.5, which 
is reasonable in view of the assumptions made in the analysis. 

In general, the rough considerations of quantizing errors discussed in 
the section on Sampling and Quantizing, are sufficient to control 
quantizing errors. A more precise analysis can be done, as outlined 
here, but is seldom worthwhile or necessary. 

Digital-to-Analog and Analog-to-Digital Converters 

Conversion between numbers in a computer and analog voltages is an 
essential step in sound processing. Happily, it is conceptually simple 
and practically easy to accomplish. A variety of commercial equipment 
can be purchased. Complete converters come as a unit, or they can be 
assembled from printed circuit cards sold by many computer companies. 
The commercial units and the assembly techniques are described in 
detail by their manufacturers; we will not reproduce this material, but 
simply explain the way they work and point out some of the errors and 
limitations. 

Figure 18 shows the essential parts of a simple digital-to-analog 
converter. A binary number can be expanded as the sum of its digits 
times an appropriate power of 2. Thus, for example, 

At the input to the converter, the five digits that make up the number 
are represented by the voltages on five lines going to the switch controls 
S4' .. So. A "I" is represented by a positive voltage and "0" by a 
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'~----~~~~----~ Digital input 

1/2n 

I/lsn 

Analog 
output 

Fig. 18. Simple digital-to-analog converter. 

negative voltage. The switch controls close their attached switch if they 
have a positive input and open it with a negative input. 

The resistor network embodies the sum given above. The resistors 
are chosen to be inversely proportional to powers of 2. If Fi is a 
switching function that is 0 if Si is open, and 1 if Si is closed, then 

I = ER{F4·l6 + F3 ·8 + F2 ·4 + F1 ·2 + Fo·l} 

Thus I is the analog equivalent of the digital input. The constant of 
proportionality is determined by the reference voltage ER • The current
to-voltage amplifier generates an output voltage Eo which is proportional 
to I. 

In an actual converter, the switches would be transistors, the switch 
controls would be flip-flop registers, the current-to-voltage amplifier 
would be an operational amplifier, and the resistors would have values 
measured in thousands of ohms. Higher accuracy and more digits are 
obtained simply by adding more switches and resistors. Thus an 
actual converter is not much more complicated than the simple device 
we have described. 

An analog-to-digital converter is more complicated. Most involve a 
digital-to-analog converter plus a feedback mechanism, The exact 
operation differs for different converters, but one widely used pro
cedure is sketched in Fig. 19. The digital-to-analog converter that it 
contains can be made in the way that has been described. The compli
cated part is the programmer, which is effectively a small computer. A 
conversion is made in a sequence of steps. The analog voltage to be 
converted is applied to the analog input terminal. The programmer 
initially sets all the digits S4' .. So equal to zero. Digit S4 is set to "1 " 
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Fig. 19. Analog-to-digital converter. 

as a trial. The resulting voltage E2 from the digital-to-analog converter 
is compared with the input E1 • If E2 ~ Eb then S4 remains "1." If 
E2 > Eb S4 is reset to "0." The programmer carries out the same 
process with S3' .. So. After five cycles involving five decisions from the 
comparer, S4' .. So is the digital equivalent of the analog input. 

What are the limitations on speed and accuracy of converters? 
Usually speed is no problem with sound signals where sampling rates 
need be no faster than 40,000 Hz. The basic limitation on speed is the 
time for an electronic switch So - S4 to close, and for the transient 
voltages produced by the switching to disappear. Switches that settle in 
less than a microsecond are easy to build; hence sampling rates 
approaching 1 MHz are routine for digital .. to-analog converters. 
Faster converters, up to 10 MHz, have been built using special circuits. 

The analog-to-digital converter, as we have described it, is inherently 
n times slower than a digital-to-analog converter, where n is the number 
of digits. This limitation arises from the n sequential decisions involved 
in converting a single number, each decision requiring a digital-to-analog 
conversion. Thus, for example, a ten-digit converter with a I-flS 
digital-to-analog part would have a maximum speed of 100 KHz. 

One insidious error is inherent in the switching transients of a digital
to-analog converter. If all the switches do not operate at exactly the 
same speed, large errors will occur briefly during the change from certain 
digits to adjacent digits. For example, in going from 0111 to 1000 the 
analog output should change only one unit. However, all the digits 
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change state. If the most significant digit is slightly faster than the other 
digits, the actual sequence will be 0111 1111 1000. The analog output 
resulting from the correct and erroneous sequence is shown in Fig. 20. 
It is clear that a large error is made momentarily. The error is difficult 
to observe because it depends on the signal, that is, it depends on 
transitions between particular levels, and it occurs very briefly. 

Analog output 

16 1111 

8 ~ JL 
0111 0111 

O~-------------------------------------'Time 

Fig. 20. Switching speed errors in digital-to-analog converter. 

The error can be avoided in two ways. The switches can be carefully 
adjusted to have the same operating speed. A good commercial con
verter is usually satisfactory in this respect, whereas converters 
assembled from computer cards may need adjustment. Secondly, a 

Digitol-to
analog 

converter 

o ~--t----t--t----... 

On 
Off 

Time 

Fig. 21. Sampling switch to remove switching-speed errors. 
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sampling switch may be installed after the converter in order to gate 
out the error pulses. Figure 21 shows the connection and a graph of the 
operating waveforms. 

Other errors in converters are fairly obvious. The quantizing error 
due to the finite number of digits has already been discussed. Fourteen 
is the maximum number of binary digits routinely available in com
mercial converters; 12 digits are often used for sound. 

The resistors in the network attached to the switches must be accurate, 
particularly the small resistors. The tolerances can be maintained so that 
the maximum resistor error is much less than the least significant digit. 

Other errors are essentially standard signal-to-noise problems in
herent in all amplifiers and electronic equipment. With proper design, 
these can be kept insignificant in sound processing. 

Smoothing-Filter Design 

Filter design and construction is a highly developed science and art. 
Satisfactory smoothing filters can be either built or purchased. They can 
be of special design or of a standard type, or they can be variable with 
knob-controlled cutoff frequency. Consulting a filter expert is the best 
way to get just the right filter for a particular application. However, we 
will give instructions for building one smoothing filter that has been 
used for several years and is not too complicated. 

The filter transfer function and circuit are shown on Fig. 22.3 The 
ver~ion shown is intended for a 20-KHz sampling rate. It has less than 
1 dB loss over the band 0 to 8 KHz. It has 60 dB or greater loss for all 
frequencies above 10KHz. The filter is not corrected for phase and will 
distort the waveform of some signals. The phase change is less than that 
introduced by any tape recorder and is almost always inaudible. 

In constructing the filter, the components should be adjusted to be 
within 1 percent of the values shown. An impedance bridge is used for 
the adjustment. Capacitors can be adjusted by obtaining one that is 
just under the desired value and adding a small capacitor in parallel. 
Inductors can be adjusted by obtaining an inductor just larger than the 
desired value and unwinding a few turns of wire. High-Q inductors of 
good quality should be used, for example, those with torodial or ferrite 
cores. The resistors are part of the source and load impedances and are 
usually not built into the filter. 

3 This filter was designed by F. C. Dunbar of the Bell Telephone Laboratories, 
Murray Hill, New Jersey. 
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Fig. 22. Smoothing-filter circuit and transfer function. The filter has a 
dc gain of 1-, which is not shown on the curve. Element values in KO, H, 
and (1.f. 

Filters for other sampling rates can be built from this design by 
changing the values of the inductors and capacitors according to the 
equations 

C' = C· 20,000/fs 

L' = L·20,OOO/fs 

where C and L stand for the element values in the original design, C' 
and L' stand for the element values in the frequency-scaled design, and 
fs is the new sampling rate. For example, a 10-KHz sampling rate is 
accommodated by doubling all inductors and capacitors. 

As is shown on the circuit, the filter is designed to be driven by a 
5-KG source impedance and to drive a 5-KG load. These impedances 
are not critical. The source impedance may vary from 2 KG to 5 KG, 
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and the load impedance may vary from 5 KO to 100 KO without 
seriously changing the transfer function. 

A filter can be constructed in a day with about $50 worth of parts. It 
is reasonably insensitive to the minor vicissitudes of a filter's life and has 
generally provided satisfactory performance. 

Digital Data Storage and Retrieval for Sound 

The nature of samples of sound waves requires some special con
sideration which will be developed here. A small amount of sound is 
represented by very many numbers. For example, one minute of sound 
sampled at 30 KHz produces 1,800,000 samples. When making either 
an analog-to-digital or a digital-to-analog conversion, the samples must 
be converted at an absolutely uniform rate! Variations in sampling 
rate are equivalent to flutter or wow in an ordinary tape recorder and 
are both audible and objectionable. 

The number of samples is greater than the magnetic core memory of 
most computers; hence the samples must be stored in some bulk 
storage device. Fortunately since the samples are stored and retrieved 
in sequence, a digital magnetic tape is ideal. 4 However, most digital 
tapes do not store data continuously, but rather in groups called 
records. In order to send the samples to the converter at a uniform rate, 
a small core memory or buffer must be inserted between the tape and 
the converter. 

A typical digital tape is t-inch wide and 2400 ft long, and records 
data on six tracks at a density of 800 digits per inch. Thus 400 12-bit 
sound samples can be recorded on each inch. Allowing 10 percent of the 
tape for record gaps, the entire tape will hold 107 samples or 300 sec of 
sound sampled at 30,000 Hz. This is a practical if not large quantity. 

The grouping of data into records is illustrated in Fig. 23. The record 
gaps provide space to start and stop the tape. The record and playback 

L~~~ ~ LRecord gap 

Record of data 

Fig. 23. Sample of 
digital magnetic 
tape showing 
record gaps. 

heads are initially positioned at the first record gap. The tape is started, 
one record of data is transmitted, and the tape is stopped with the 

4 Magnetic disk recording is also possible but has little advantage over tape 
since the sound samples are in such an orderly sequence. 
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record-playback heads at the next record gap. The tape is kept in 
motion through an entire record, since reading is unreliable during 
starting and stopping. 

The minimum length of the record gap is determined by the tape 
speed and the rapidity with which it is started and stopped. A i-inch 
gap and starting and stopping times of 3 to 5 msec are typical. 

The maximum data rate from the tape is simply the tape speed times 
the density of samples per inch. Thus typical speeds ranging from 60 
inches per second to 150 inches per second and a density of 400 samples 
per inch correspond to maximum data rates of 24,000 Hz to 60,000 Hz. 
Achievable rates are slightly less than these maxima because of time 
spent starting and stopping. 

The control mechanism to start and stop a digital tape recorder, to 
store the digital samples, and to transmit them to a converter at a 
uniform rate is unfortunately complicated and expensive. A simple 
schematic diagram is shown in Fig. 24. The digital tape transmits a 

Start-stop 
Put out a 
sample 

Digital-
to- Analog 

analog output 
converter 

Sampling-rate 
oscillator 

Fig. 24. Digital-tape control for sound. 

record of data to the buffer memory. The buffer is a core memory 
controlled so that the output samples will be in the same sequence as 
were the samples put into it. It has sufficient flexibility so that its output 
and input can be interleaved in any order. The sampling rate is, and 
should be, controlled by a single oscillator, which can easily be set to any 
desired sampling rate. Each cycle from the oscillator causes the buffer 
to deliver another sample to the converter and the converter to output 
the sample. The control circuits keep track of the number of samples in 
the buffer memory and start the tape recorder before it is empty. 

The size of the buffer memory is determined by the record length of 
the tape data. If any sampling rate from zero up to nearly the tape data 
rate is to be accommodated, then a buffer longer than one record is 
necessary. A length equal to two records simplifies the control circuits. 
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The design must take consideration of these facts: larger buffers cost 
more, longer records yield higher maximum rates because of fewer 
record gaps, the tape must be started soon enough to avoid emptying the 
buffer at the highest sampling rate, the buffer must be large enough 
never to overfill at the lowest sampling rate. A design is a proper com
promise between these factors. Although we have only discussed a 
digital-to-analog conversion system, the analog-to-digital process 
requires the same buffer and works in a basically similar manner. 

The digital tape controller that we have described is rather expensive 
and complicated to build. Often the computer itself makes a more 
attractive tape controller. A schematic diagram is shown in Fig. 25. 

External 
data 

connection 

Computer 
plus 

program 

Digital
to- analog 

.... +-----4-..... converter 

Sampling- rate 
oscillator 

Fig. 25. Computer as tape control for sound. 

In order to function in this way, the computer must have an external 
data connection which will deliver samples to a converter under the 
control of an external oscillator. Most recent computers can be obtained 
with this feature. The digital tape transport can be one normally 
associated with the computer, the computer's core memory serves as 
buffer, and functions of the control circuits are accomplished by a 
suitable program. Thus the same machine that synthesizes or analyzes 
the sound can also communicate directly in sound with the external 
world. 

Fundamental Programming Problems for Sound Synthesis 

In the preceding material we have described a powerful and flexible 
technology for sound processing by computer. The remaining ingredient 
is the computer programs that activate this technology; but that is a 
large ingredient. Most of the rest of this book can be considered as 
descriptions of some of these programs. Sound processing can be 
divided into sound analysis and sound synthesis. So far, no universal 
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programs for analysis have been developed. Rather, many different pro
grams have been written for particular tasks. For synthesis, one 
program, which developed through five stages, Music I-Music V, has 
proved generally useful. Hence we will present here the fundamental 
considerations that led to Music V, and in the next chapters details 
intended to teach a user of Music V. However, the material should be of 
value not only to users of Music V, but to anyone writing a sound
synthesis program. 

The two fundamental problems in sound synthesis are (1) the vast 
amount of data needed to specify a pressure function-hence the 
necessity of a very fast and efficient computer program-and (2) the 
need for a simple, powerful language in which to describe a complex 
sequence of sounds. Our solution to these problems involves three 
principles: (1) stored functions to speed computation, (2) unit-generator 
building blocks for sound-synthesizing instruments to provide great 
flexibility, and (3) the note concept for describing sound sequences. Let 
us next consider sound synthesis from the computer's and the 
composer's standpoints to see the importance of these principles. 

To specify a pressure function at a sampling rate of 30 KHz, one 
number is needed every 33 fLsec. That speed strains even the fastest 
computers. A useful measure of computation is the time scale, which is 
defined as 

TO I _ time to compute samples of a sound 
lme sca e = duration of the sound 

Various possibilities exist at various time scales. If the time scale is 
equal to 1 or less, a digital-to-analog converter can be attached directly 
to the computer and sound can be synthesized in real time. This allows 
improvising on the computer, hearing the sound as one pushes the 
computer keys in the same way that one hears sound from a piano. 
Fast current computers add two numbers in about 3 fLsec and multiply 
two numbers in about 30 fLsec. Hence the computations for each 
sample for real-time synthesis must be few indeed. However, real-time 
synthesis is a powerful way of adjusting sound parameters to achieve 
a particular timbre or effect. In addition, it allows the computer to be 
used as a performing instrument. Hence it is an important objective. 

Time scales greater than 1 necessitate recording the samples on a 
digital magnetic tape, rewinding the tape, and playing the tape through 
the converter. A delay equal to or greater than the sound duration is 
inherent in the process. Time scales from 1 to 50 are eminently usable. 
At 50, a delay of an hour is needed to compute one minute of sound. 
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An hour seems long if you personally are waiting for the computer; it is 
nothing if you are at home sleeping while the night shift runs the 
problem. At a scale of 50, 1600 fJ-sec are available to compute each 
sample. Fifty multiplications or several hundred additions can be 
carried out in that time. Although much can be done, that number of 
computations does not represent a copious supply, and it must be used 
effectively. 

Time scales from 50 to 1000 become so time consuming and expensive 
that even the most reckless experimenter pauses to consider whether 
the value of his sounds justifies the time and money. At a scale of 
1000,20 minutes of computer time are needed for each second of sound. 
It must be a remarkable second to make this effort seem worth while. 

One way of speeding the effective computation is to store samples in 
the computer memory, when possible, and to read these samples from 
memory rather than recompute them. Reading from memory is rapid. 
The process works only for samples or factors of samples that are 
repetitive. Fortunately, many sounds have highly repetitive com
ponents. For example, an oscillator repeats the same waveform each 
cycle. The shape of a cycle~s wave may be very complicated, but once it 
is computed and stored, it can be read out as rapidly as any simple 
function. Many other factors can be reduced to repetitive stored 
functions. 

The cost of stored functions is memory space. In Music V a typical 
function is stored as 512 samples, and the largest part of the memory 
is used for storing functions. The cost is more than justified by the time 
saved. 

We have considered sound synthesis from the position of the 
computer and it has led us to stored functions. Now let us look from 
the composer's standpoint. He would like to have a very powerful and 
flexible language in which he can specify any sequence of sounds. At 
the same time he would like a very simple language in which much can 
be said in a few words, that is, one in which much sound can be 
described with little work. The most powerful and universal possibility 
would be to write each of the millions of samples of the pressure wave 
directly. This is unthinkable. At the other extreme, the computer 
could operate like a piano, producing one and only one sound each time 
one of 88 numbers was inserted. This would be an expensive way to 
build a piano. The unit-generator building blocks make it possible for 
the composer to have the best of both of these extremes. 

With unit generators the composer can construct, with a simple 
procedure, his own sound-synthesizing program. In Music V it is called 
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the orchestra, and it contains a number of different subprograms 
called instruments. The unit generators perform functions that ex
perience has shown to be useful. For example, there are oscillators, 
adders, noise generators, and attack generators. Many unit generators 
perform conceptually similar functions to standard electronic equipment 
used for electronic sound synthesis. 

In a given instrument the composer can connect as many or as few 
unit generators together as he desires. Thus he can literally take any 
position he chooses between the impossible freedom of writing indi
vidual pressure-function samples and the straightjacket of the computer 
piano. In this way, in unit-generator building blocks, we have given the 
composer almost ultimate flexibility to choose the environment in 
which to work. The price is the work he must do in constructing the 
instruments in his orchestra. However, the language with which the unit 
generators are assembled is so elegant that this cost is insignificant. 

The final principle for specifying sound sequences is the note concept. 
Sound exists as a continuous function of time starting at the beginning 
of a piece and extending to the end. We have chosen, for practical 
reasons, to chop this continuous sound into discrete pieces, called 
notes, each of which has a starting time and a duration time. This 
division is admittedly a restriction on the generality of sound synthesis, 
but one we are not brave enough to avoid. Needless to add, notes have 
been around for some time. 

The note concept interacts with the instrument in a straightforward 
way. The instruments are designed to "play" notes. At the starting 
time of each note, a set of instructions is given to the instrument, and it 
is turned on for the duration of the note. No further information is given 
to the instrument during the course of the note; the complexity of the 
instrument determines the complexity of the sound of the note. 

The instructions for the instrument for each note are written on a 
score by the composer (or by the composer's program if he wishes to 
delegate this task to the computer). Hence, the complexity and length 
of the instructions, multiplied by the number of notes, determines the 
amount of work the composer must do. In general, complicated instru
ments require more instructions, but they may be able to play longer 
and more interesting notes. Within the limitations of these conflicting 
factors, the composer must create an environment in which he is 
willing to work. 

The note concept also includes the idea of voices, which have their 
usual musical meaning. In Music V instruments can play any number of 
notes at the same time. The program adds all voices and puts out the 
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combined sound. The addition is simple for the computer. Furthermore, 
it automatically synchronizes all voices. Each note has a starting time. 
The computer arranges all notes in a composition into the proper time 
sequence, and thus the composer can write the score in any order he 
chooses. In this way the tyranny of time, which so harasses the per
forming musician, is almost completely eliminated by the computer. 

The fundamentals of stored functions, unit generators, and notes 
have been given general consideration here. Details of their use in the 
Music V program appear frequently in the following chapters. 

Overview of Sound-Synthesis Program-Music V 

Next we discuss the over-all operation of the Music V program, both 
as an example of a sound-synthesis program and as an introduction to 
the more detailed material that follows. 

An outline of the program is shown in Fig. 26. Programs change; the 
description given here is the program as it was created in 1967-1968. 

Score 
Pass I: 

composer 
sequence 

Pass II 
time 

sequence 

Pass m 
sound 

generation 

Sound 
samples 

Fig. 26. Outline of sound-synthesis program. 

It ran on a General Electric 635 computer but was programmed almost 
entirely in F0R TRAN IV to simplify its transposition to other machines. 
F or concreteness, we will speak of this specific historical program. 
However, most of what we shall say applies to other computers. Also, 
the basic program has been modified in many ways for special purposes, 
such as adding another input section to accommodate graphical scores. 
These will be described later. 

The composer speaks to the computer through a score that contains 
not only the notes to be played but also descriptions of the instruments 
on which they will be played. 

The orchestra description specifies each instrument in the orchestra 
in terms of the type of each unit generator in it and how the unit 
generators are interconnected or related. Types of unit generators
oscillators, adders, random sources-are straightforward. Many 
interconnections are possible. For example, the outputs of two oscil
lators can be added to produce a more complex tone, or one oscillator 
can control the frequency of a second oscillator to produce a vibrato. 
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Inherent in the description of each instrument are the input parameters 
needed to run it. For example, if the instrument is to play notes of 
differing pitches, one input parameter must specify pitch. If vibrato is 
to have a controllable rate, a parameter must specify this rate. These 
parameters must eventually be supplied by the score. 

Different instruments must be uniquely designated. This is done 
simply by numbering them. Thus the program will have instruments 
1, 2, 3, and so forth, and the score will request a note to be played by an 
instrument number. 

The sound synthesis is divided into three sections for both conceptual 
and computational reasons. Pass I reads the score written by the 
composer. It may contain note ·cards requesting the synthesis of a 
specific note, instruction cards which cause Pass I to produce note cards, 
and cards to set functions and parameters in Passes I, II, and III. Each 
note card must contain an instrument number, the starting time of the 
note, and the duration of the note. All other quantities on the card 
depend entirely on what input parameters the composer has specified 
in his instrument. 

If notes are to be played, the score must also contain cards defining 
instruments. These also contain the time at which the instrument is to 
be defined. It is possible to redefine an instrument part way through the 
composition, thus changing the timbre. 

Pass I reads and processes the score in the sequence in which the 
composer has written it. Note cards written by the composer are simply 
sent directly to Pass II. Instruction cards may cause subroutines in 
Pass I to generate or compose note cards which are then sent to Pass II. 
Thus, most of the composing power of the program resides in Pass I. 

The note cards written by either the composer or Pass I can be written 
in any time sequence; this gives great flexibility. Furthermore, notes for 
different voices can be intermixed in any order. 

In Pass II all note cards are sorted into increasing time sequence to 
prepare for sound generation. Parameters on the note cards may be 
modified by F0RTRAN subroutines. For example, the frequency ratio 
between two voices at a given time can conveniently be adjusted because 
all voices are in proper time sequence. Metronome markings to acceler
ate or retard the time scale are convenient to apply in Pass II. However, 
once the notes are ordered for time, new notes cannot be added without 
destroying the ordering. Hence, new note cards cannot be generated in 
Pass II. 

Pass III reads the note cards after they have been time otdered by 
Pass II. At the beginning of each note, the parameters from the note 
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card are inserted into the appropriate instrument and the instrument is 
turned on for the duration of the note. 

To summarize, the complete program with three passes, stored 
functions, unit generators, and instruments was evolved over several 
years. It is not a unique way of synthesizing sound samples; other 
equivalent programs could be written. However, it does provide great 
speed and great flexibility by the careful use of a general compiling 
language (F0RTRAN) plus certain machine language subroutines. 

Annotated References by Subject 

Sound in General 
P. M. Morse, Vibration and Sound (McGraw-Hill, New York, 1948). A mathe

matical, technical book written from the physicist's standpoint. 
C. A. Taylor, The Physics of Musical Sounds (English Underwriters Press, London, 

1965). A less technical book than Morse's; still from the physicist's standpoint. 
Sampling, Foldover Errors, etc. 
J. R. Ragazzini and G. F. Franklin, Sampled-Data Control Systems (McGraw-Hill, 

New York, 1958). The first chapters treat sampling and desampling in general 
and are not limited to control systems. 

Quantizing Errors 
W. R. Bennett, "Spectra of Quantized Signals," Bell Sys. Tech. J. 27, 446 (1948) 

The fundamental analysis of quantizing errors. ' 
Ana log-Digital Conversion 
B. W. Stephenson, Analog-Digital Conversion Handbook (Digital Equipment 

Corporation, Maynard, Mass., 1964). A combined catalog and instruction 
book for making digital circuits from plug-in components (manufactured 
by the Digital Equipment Corp.). 

Note: Several companies manufacture analog-digital conversion equipment. 
These may change from year to year. Currently, the Texas Instrument 
Company and the Raytheon Company make satisfactory apparatus for 
sound processing. 

Filter Design 
M. E. Van Valkenburg, Introduction to Modern Network Synthesis (John Wiley & 

Sons, New York, 1960). A good presentation of some of the many details of 
network synthesis from the standpoint of the electrical engineer. 

Digital Data Storage and Retrieval 
E. E. David, Jr., M. V. Mathews, and H. S. McDonald, "Description and Results 

of Experiments with Speech Using Digital Computer Simulation," Proceed
ings of 1958 National Electronics Conference, pp. 766-775. 

E. E. David, Jr., M. V. Mathews, and H. S. McDonald, "A High-Speed Data 
Translator for Computer Simulation of Speech and Television Devices," 
Proceedings of I.R.E. Western Joint Computer Conference, pp. 354-357 
(1959). 

These articles describe some of the first equipment for computer sound processing. 
The equipment is obsolete, but the principles are valid and important. 

Fundamental Programming Problem 
M. V. Mathews, "An Acoustic Compiler for Music and Psychological Stimuli," 

Bell Sys. Tech. J. 40, 677-694 (May 1961). 
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M. V. Mathews, "The Digital Computer as a Musical Instrument," Science 142, 
553-557 (November 1963). 

J. R. Pierce, M. V. Mathews, and J. C. Risset, "Further Experiments on the Use of 
the Computer in Connection with Music," Gravesaner Blatter, No. 27/28, 
92-97 (November 1965). 

These are the original papers that trace the development of the current sound
synthesizing program. 

Problems for Chapter 1 

Numerical Representations of Functions of Time 
1. Sketch pressure functions that 

(a) Are periodic with a period of 1 millisecond (msec) 
(b) Have a fundamental pitch of 600 Hz 
(c) Have energy only at 500 Hz 
(d) Have energy at 500 Hz and 750 Hz (what is the period of this 

function ?) 
(e) Have energy only at zero frequency 
(f) Have no perceivable periodicity 

2. On the same sheet of paper, draw three functions that are periodic 
with periods of (a) 10 msec, (b) 5 msec, and (c) 1 msec. What are the pitches 
of these functions? 

3. Desample the following sequences of numbers. Draw a graph of the 
pulses from a sample-and-hold desampling circuit. Assume a 50-percent 
duty factor for the pulses. Pass a smooth waveform through the pulses in a 
manner in which you imagine a smoothing filter would operate 

(a) 0,3,5,7,10,13,15,17,20,22,25,28,30,24,20,15,10,6,0, -4, -7, 
-9, -10, -10, -9, -7,0 

(b) 0, 7, 10, 7, 0, -7, -10, -7, 0 
(c) 10, -10, 10, -10, 10, -10, 10, -10 (for case c draw at least two 

possible smooth waveforms; which one would be passed by a low-pass 
filter having a cutoff frequency appropriate to the sampling rate?) 

Time (msec) 

4. Sample and quantize 2 msec of the waveform shown above at a 
sampling rate of 

(a) 1000 Hz (b) 2000 Hz (c) 5000 Hz 
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(d) Which sampling rate seems "visually" sufficient to characterize the 
waveform? 

(e) Assume the wave has energy at only two frequencies; what are these 
frequencies? 

(f) What is the minimum faithful sampling rate according to the sampling 
theorem? 

(g) What is the period and pitch of the wave? 

Sampling 
5. A waveform p(t) where 

p(t) = 100 sine (27T·2100·t) + 50 sine (27T·4200·t) 
+ 33 sine (27T' 6300· t) + 25 sine (27T' 8400· t) 
+ 20 sine (27T·I0,500·t) + 17 sine (27T·12,600·t) 
+ 14 sine (27T·14,700·t) + 12 sine (27T·16,800·t) 
+ 11 sine (27T·18,900·t) + 10 sine (27T·21,000·t) 

is subjected to a sampling and desampling process as shown in Fig. 6. 
The sampling rate is 19 kHz. The desampled output is p*(t). 

(a) What is the highest frequency component that can be faithfully 
reproduced in p*(t) at this sampling rate? Call this component and all 
lower components the desired components. Give the amplitudes and 
frequencies of components of p*(t) with 

(b) no smoothing filter 
(c) a filter with the frequency function 
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(d) Also give the amplitudes and frequencies of the components of p(t). 
(e) What is the lowest frequency component in p(t)? What is p(t)'s 

period? What is its pitch? 
(f) What is the lowest frequency component in p*(t) with no smoothing 

filter? What is p*(t)'s period? 
(g) How much are the desired components in p*(t) changed by the 

filter? Which desired component is most changed? 
(h) Which distortion components in the "range of perception" (0-15 

kHz) are reduced by the filter? Which are relatively unaffected? 
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(i) What distortion components that are folded about 38 kHz fall in the 
range of perception? 

(j) With no filter, what is the maximum frequency that can be reproduced 
without causing a distortion component in the range of perception? 

(k) With the filter, what is the maximum frequency that can be repro
duced without causing a distortion component in the range of perception 
(assume filter has infinite attenuation for frequencies greater than 9 kHz)? 

6. Samples at a 20-kHz rate are computed for the waveform 

f( ) . [2 (60,000. t) ] t = sme 1T • 30 . t 

. [2 (30,000(20 - t») t] + sme 1T. 30 . 

The sound is desampled with an impulse desampler and no filter. Describe 
the amplitudes and frequencies of the components that fall within the 
range of perception (0 to 15 kHz); t goes from 0 to 30 sec. 

Analog-Digital Conversion 
7. Calculate the tolerance on the resistors in the digital-to-analog 

converter shown in Fig. 18 so that the maximum error due to anyone 
resistor is to of one quantizing level. Give tolerance in terms of both 
absolute accuracy and percent accuracy. Which resistor must have the best 
percent accuracy? 

Smoothing Filter Design 

is 
8. Frequency scale the filter shown in Fig. 22 so that the cutoff frequency 

(a) 15 kHz corresponding to a sampling frequency of 30 kHz; 
(b) 3 kHz corresponding to a sampling frequency of 6 kHz. 

Digital Data Storage and Retrieval 
9. Suppose that you have a digital tape with data recorded at 400 samples 

per inch and a tape speed of 100 inches per second. The record gaps are 
1 inch long; the tape takes 6 msec to stop after reading the last sample in a 
record and 10 msec to start (time from start signal to reading of first sample 
in record). 

(a) Calculate the maximum data rate for record lengths of 100, 500, 
2500, and 10,000 samples. 

(b) Calculate the minimum buffer size for each record length to accom
modate data rates for 0 up to the maximum. 

For safety, design the control so the buffer will never have less than 50 
samples and will always have 50 or more empty cells. 

(c) At what number of samples in the buffer should the tape start signal 
be given? 



2 A Sequence of Tutorial Examples 
of Sound Generation 

Introduction 

This chapter is intended to provide a training course in the use of 
Music V by discussing a series of examples ranging from simple to 
complex sound synthesis. It is written from the point of view of the 
user of Music V. Details of operation of the programs will be suppressed 
as much as possible. These can be found in Chapter 3. Because the 
programs will not be described here, many of the conventions of the 
computer score will seem arbitrary and must be temporarily accepted 
on faith. 

For concreteness we will also arbitrarily assume values for certain 
parameters of the program, for example, a sampling rate of R = 
20,000 Hz. Other parameters will be introduced as required. For the 
student's benefit, the parameters of the training orchestra are listed at 
the beginning of the problems for Chapter 2. 

The material assumes that the student has a working knowledge of 
F0R TRAN programming. The programming examples will be written 
in F0R TRAN IV. It is also assumed that the student understands the 
general functioning of a computer-arithmetic, memory, input-output, 
and program. If necessary, these skills can be learned from books cited 
in the references at the end of Chapter 2. 

This chapter is intended as training material and not as a reference 

43 
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manual for Music V. Reference material is organized and presented in 
Chapter 3. 

The Simplest Orchestra 

By way of introduction, an elementary orchestra and score are shown 
in Fig. 27. We shall start by describing the material and then explain 
the details of its operation. Figure 27a shows the conventional score of 
the few notes that will be synthesized. Figure 27b shows the block 
diagram of the simulated instrument that will play the score. It consists 
solely of an oscillator and an output box. The oscillator has two inputs; 
the amplitude of the output equals P5; the frequency is proportional to 
P6. The waveform of the oscillation is determined by stored function 
F2, which is sketched in Fig. 27c. 

The records in the computer score, Fig. 27d have been numbered for 
reference in this discussion. Each record has a sequence of entries 
designated PI, P2, P3, etc. In the training orchestra, up to 30 entries 
(PI-P30) may be used. The entries are separated either by blank spaces 
or by a comma. Each record is terminated by a semicolon. A record may 
extend over several lines ; conversely, several records may be put on one 
line. 

Records 1 through 4 define, for the computer, the instrument shown 
in Fig. 27b. INS 0 I ; says that, at time 0 in the composition, instrument 
1 will be defined. 0SC P5 P6 B2 F2 P30 ; says that the first unit generator 
in the instrument will be an oscillator, will have inputs P5 and P6, 
will use function F2 for its waveform, will store its output in 1-0 block 
B2, and will use P30 for temporary storage (which we will discuss'later). 
0UT B2 Bl; says to take the samples in 1-0 block B2 and add them to 
the contents of block BI in preparation for outputting these samples. 
END; terminates the instrument definition. 

Record 5 defines the function F2 (Fig. 27c) and causes it to be 
generated and stored in the computer memory assigned to F2. 

Notes 1 through 11 in the score are generated by records 6 through 
16, respectively. In each of the records PI (N0T) says the purpose of 
the record is to play a note. P2 gives the starting time of the note 
measured in seconds from the beginning of the composition. P3 (1) 
gives the instrument number on which the note will be played. P4 gives 
the duration of the note in seconds. Durations of staccato notes are 
written to produce more silence between successive notes than the 
corresponding silence for the legato notes. P5 gives the amplitude of 
the note as required by the instrument. In the training orchestra, ampli
tude can vary over the range 0 to 2047. Amplitudes are varied to 
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IJoe! pj l:~ J J 1;.1 J tr ~ ~-~-======= ===-
(a) 

F2 

1 INS 0 1 ; 
2 0SC P5 P6 B2 F2 P30 ; 
3 0UT B2 Bl ; 
4 END; 

(c) 

511 

45 

P5 P6 

~c 
F2 

82 

~UT 

(b) 

5 GEN 0 1 2 0 0 .999 50 .999 205 - .999 306 - .999 461 0 511 ; 
6 N0T 0 1 .50 125 8.45 ; 
7 N0T .75 1 .17 250 8.45 ; 
8 N0T 1.00 1 .50 500 8.45 ; 
9 N0T 1.75 1 .17 1000 8.93 ; 

10 N0T 2.00 1 .95 2000 10.04 ; 
11 N0T 3.00 1 .95 1000 8.45 ; 
12 N0T 4.00 1 .50 500 8.93 ; 
13 N0T 4.75 1 .17 500 8.93 ; 
14 N0T 5.00 1 .50 700 8.93 ; 
15 N0T 5.75 1 .17 1000 13.39 ; 
16 N0T 6.00 1 1.95 2000 12.65 ; 
17 TER 8.00 ; 

(d) 

Fig. 27. Elementary orchestra and score: (a) conventional score; (b) 
instrument block diagram; (c) waveform; (d) computer score. 
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correspond to the dynamic markings on the conventional score. P6 
equals .02555 times the frequency of the note in cycles per second 
(hertz). The proportionality constant .02555 will be explained below. 
Record 17 terminates the composition at 8 sec. 

Simple Unit Generators to Output, Add, and Multiply 

Having introduced a simple orchestra and score from the user's 
standpoint, we will now describe in more detail the operation of a few 
simple unit generators. Although they are simple, these are the most 
frequently used building blocks for all instruments. 

As we showed in Chapter 1, the acoustic output wave is produced by 
passing a sequence of numbers (samples) so, Sb .•• , S1 through a digital
to-analog converter and driving a loudspeaker with the analog voltage 
from the converter. The first sample So is the amplitude of the acoustic 
wave at the beginning of the composition at t = 0, where t is time. The 
second sample S1 is the amplitUde one sampling time later. We shall 
assume a sampling rate of 20,000 Hz for the training orchestra; hence 
S1 is put out at t = 1/20,000 sec. S40,000 is the amplitude at t = 2 sec. 
It is quite possible, though seldom useful, to specify the sample that 
controls the amplitude of the acoustic output at any 1/20,000 sec 
throughout the entire composition. 

The purpose of the portions of the Music V program called "instru
ments" is to calculate all the S1 samples. For example, if a note is to be 
played from 3 sec to 4 sec in the composition, samples S60,000 through 
sao,ooo must be computed. The nature of S60,000 through sao,ooo deter
mines the characteristics of the sound-its pitch, loudness, timbre, 
everything. The nature of the samples is, in turn, determined by the 
particular unit generators that are put together to form the instrument 
and by the numbers on the data records that control these generators. 

A problem that must be solved by Music V is to keep track of time 
so as to "turn on" a given instrument program at the sample at which 
its note should begin, and to "turn off" the instrument at the sample at 
which its note shOUld end. The starting sample is computed simply by 
multiplying the starting time of the note given in P2 by the sampling 
rate. The terminating time is P2 plus the duration P4, and the ter
minating sample number is the sampling rate times the terminating 
time. Because of the universal necessity for this control of time, P2 and 
P4 must always be used for starting time and duration in all records 
which specify notes. 

A second problem facing Music V is to combine the numbers from all 
instruments that are playing simultaneously at a given time. The 
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digital-to-analog conversion process demands that the samples be 
output in sequence, Sl followed by S2, followed by S3, and so forth. Thus 
the contribution of all instruments to a sample must be computed 
simultaneously. A way to accomplish this end, which has been used in 
earlier programs, is to calculate one number from each active instru
ment, combine these numbers (by addition), output the sample, and 
then proceed to the next sample. Music V operates in essentially this 
way, but for additional efficiency it calculates a block of numbers from. 
each instrument instead of a single number. These blocks, called 1-0 
blocks, are one of the fundamental data storage units in the program. 

I-@ Blocks 
1-0 blocks are short for unit generator input-output blocks. They 

can be used as storage locations for either inputs or outputs for unit 
generators, hence the designation input-output blocks. Blocks are 
designated B 1 through B lOin the training orchestra. Block B I has the 
special function of storing the numbers that will be sent to the digital
to-analog converter. All other blocks are equivalent in mono. (In 
stereo, blocks BI and B2 are both reserved for output.) 

The size of the block is a parameter of the orchestra. In the training 
orchestra, it has been set at 512. The maximum size of numbers in the 
I -0 blocks is another program parameter. In the training orchestra it 
has been set at ± 2047 which is appropriate for a I2-bit digital-to-analog 
converter. 

AD2 Generator 
The simplest generator is the two-input adder, AD2. Its function is to 

combine two numbers by addition. It has two inputs and one output 
as shown in Fig. 28a. The equation of operation is 

where 11 and 12 are the two inputs, 0 is the output, and i is the index of 
samples that starts at 0 at time t = O. We must quickly add that this 
equation is computed only for those samples during which the 
instrument with AD2 is playing a note. 

In the score, AD2 is put in an instrument by a statement such as 

AD2 B2 B4 B3 ; 

This example says: take the numbers stored in block B2, add them to 
those stored in block B4, and put the sum in block B3. The relation 
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Fig. 28. Four simple unit generators: (a) AD2; (b) 0UT; (c) MLT; 
(d) 0SC. 

between sample index i and the numbers in a given block at a given time 
need not worry the user; it is treated automatically by the program. 

AD3 and AD4 also exist and form a sum of three and four inputs, 
respectively. The score statement evoking AD4 would be 

AD4 B2 B3 B4 B5 B6 ; 

where B2 through B5 are inputs and B6 the output. 

@UT Generator 
The 0UT generator takes the numbers from an instrument and 

places them in the special 1-0 block BI for subsequent outputting 
through the digital-to:-analog converter. 0UT also combines the 
numbers with any other instrument simultaneously being played. 0UT 
is diagrammed in Fig. 28b. It is shown with one input. The output to 
B I is not shown; it always goes to this block. The equation of operation 
is in F0RTRAN-like nptation 

Acoustic output! = acoustic output! + II! 
This equation says: I I is added to anything previously in the acoustic 
output block; by this simple means any number of instruments may be 
combined. The operation of addition is perfectly equivalent to the 
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way in which sound waves of several real instruments combine in the 
air. 

In the score 0UT is evoked by a statement such as 

0UT B2 B1; 

where B2 is the block containing the input, and B1 is the special block 
for acoustic output. 

MLT Generator 
The ML T generator multiplies two numbers together in a manner 

exactly analogous to the addition done by AD2. It is diagrammed in 
Fig. 28c. The equation of operation is 

0 1 = 111 .121 

where 11 and 12 are the two inputs and 0 is the output. In the score 

MLT B2 B3 B4; 

associates II with B2, 12 with B3, and 0 with B4. In general, the order 
of listing generator descriptions on the score is: inputs, outputs, special· 
parameters. 

@sc Generator 1 

By far the most important generator is the oscillator 0SC. It is the 
most frequently used and the most difficult to understand of the simple 
generators. Its importance is based on the prominence of oscillations in 
musical sounds and on its nature as a source of numbers. The generators 
previously described modify or output numbers that have been created 
elsewhere; 0SC is one of the few units that actually produce numbers. 

The diagram of 0SC is presented in Fig. 28d. As will be shown, 
three quantities determine the output 0: 11 controls the amplitude of the 
oscillation; 12 controls the frequency; and Fm a stored function, is the 
waveform. Fn is exactly one cycle of the 0SC output; the purpose of 
the 0SC can be looked upon as repeating Fn at the desired frequency 
and amplitude. 

Fn may be thought of as a continuous function of time, but in the 
computer it must be represented by a block of samples. In the training 
orchestra each function is represented by 512 samples. Figure 29 shows 
an example of a stored function F3. The waveform is, a square wave 
with slightly slanted sides. The 512 points, F3(k) k = O ... 511, are 

1 Also see Chapter 3, Section 6, for a basic discussion of 0SC. 
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F3(0) = 0 
F3(l) = .2 
F3(2) = .4 
F3(3) = .6 
F3(4) = .8 
F3(5) = 1.0 
F3(6) = 1.0 

F3(250) = 1.0 
F3(251) = 1.0 
F3(252) = .8 
F3(253) = .6 
F3(254) = .4 
F3(255) = .2 
F3(256) = 0 
F3(257) = -.2 
F3(258) = -.4 
F3(259) = -.6 
F3(260) = -.8 
F3(261) = - 1.0 
F3(262) = - 1.0 

F3(505) = -1.0 
F3(506) = - 1.0 
F3(507) = -.8 
F3(508) = -.6 
F3(509) = -.4 
F3(510) = -.2 
F3(51l) = 0 

Fig. 29. Function stored as 512 samples. 

indicated as dots on the function. Actually only 511 numbers are 
independent since F3(O) = F3(511). The 512 numbers representing the 
function are listed below the function. These numbers are actually 
stored in 512 locations in the computer memory. The programs that 
calculate and store the numbers are called GEN routines and will be 
discussed later. 

One may ask, why go to all the trouble of having a GEN program 
compute and store numbers and then have the 0SC program modify 
and repeat these numbers? Why not, instead, have the GEN programs 
repeatedly calculate exactly the desired numbers? The reason, the 
importance of which cannot be overemphasized, is efficiency. 0SC is a 
very fast number repeater. The GEN programs-must be flexible and, 
hence, they are in comparison very slow. 

By denoting a function F3, we imply that several stored functions are 
possible. In the training orchestra 10 functions, designated Fl through 
FlO, are available. 
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The simplest 0SC program would simply repeat the 511 numbers in 
F3, one after the other: F3(0), F3(l), ... , F3(511), F3(1), .... This 
would produce an oscillation whose peak amplitude would be 1 and 
whose frequency would be 20,000/511 = 39.14 Hz. That frequency is 
too low for most purposes. By repeating every other sample, F3(1), 
F3(3), ... , F3(511), F3(2), ... , one could produce a higher frequency, 
78.28 Hz. In general, by repeating every nth sample of F3, one obtains 
a frequency of 

20,000 H ----sfl.n z 

F3 is stored as samples, as is the output of 0SC: the process carried 
out by 0SC can be thought of as resampling F3 to obtain a desired 
frequency. A simple resampling that puts out every nth sample of F3 
can produce only frequencies that are multiples of 39.14 Hz. Clearly 
these offer too limited a choice of frequencies. 

The actual algorithm used in 0SC, which overcomes these limitations, 
is 

S1+ 1 = Sl + 121 

0 1 = Ill' Fn([Sl]MOd 511) 

where 

i is the index of acoustic output samples; 
Sl is a running sum which increases by 121 for each successive value 

of i; Sl is usually set to zero at the beginning of each note; 
[StlMOd 511 is [Sl - n· 511] where n is selected so that [SdMOd 511 

always falls between 0 and 511; 
IIi is the amplitude input that multiplies the amplitude of Fn; 
12i is the frequency controlling input; and 
0 1 is the output. 

The operation of 0SC can be understood geometrically by referring 
to Fig. 30. Sl is a ramp function whose slope is 12 units per sample of 
acoustic output. [Sl]MOd 511 is the sawtooth function which is reset to 
zero each time Sl equals a multiple of 511. With a slope of 12, exactly 
511/12 samples are required for Sl to reach 511; hence the period of 
[Si]MOd 511 is exactly 511/12 samples. At a sampling rate of 20,000 Hz, 
the frequency of [Sl]MOd 511 is 

F _ 20,000·12 
req - 511 
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\.----,,----' Samples of acoustic output 
IDl 
12 

Fig. 30. Operation of 0SC. 

This is the fundamental relation between the frequency of 0SC and 12. 
I t can be written 

Freq = 39.4·12 

or in case we want to solve for 12 for a given frequency 

12 = .02555· freq 

M ore generally, 

NF f 12 = -' req 
R 

where NF is the length of a stored function (NF = number of 
samples - 1) and R is the acoustic sampling rate. 

[Si]Mod 511 has the desired frequency but the wrong waveform-a 
simple triangle. [StlMod is used to scan F n as specified by the second 
0SC equation. The scanning process is equivalent to projecting samples 
of [Si]MOd 511 to the left in Fig. 30 and sa~pling Fn as indicated. This 
process, along with a multiplication by 11, gives an output of the desired 
frequency, amplitude, and waveform. 

Although [StlMod 511 lies between 0 and 511, it will not, in general, 
take integer values. Since Fn(k) is sampled and stored only for integer 
values of k, some accommodation must be made. The simplest 0SC 
algorithm truncates [SdMOd 511 to the next smaller integer value. More 
complex 0SC routines interpolate Fn(k) between successive k's. 
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In the score 0SC would be called by a statement such as 

0SC P5 P6 B2 F2 P30 ; 

where P5 is the amplitude input, P6 the frequency input, B2 the 1-0 
block for output, F2 the stored function, and P30 is a vacant-note 
parameter location for storing the sum S1. One of the note record 
parameters must be reserved for S1. Since the initial value of S1 is zero, 
the parameter need not be written; unwritten parameters are always set 
to zero at the beginning of each note. 

Examples of Simple Instruments 

Having now discussed the four simplest and most important 
generators, let us look at some examples of instruments constructed of 
these generators. For each instrument we will show the score cards 
which define the instrument and play a note or two. The instruments 
will require two or more stored functions. Although the GEN score 
cards that generate these functions are shown here we will postpone 
until later a detailed discussion of the GEN routines. 

We will also postpone discussion of the conversion function which 
greatly simplifies writing scores of the notes. Consequently, our scores 
will be somewhat labored and should not be considered typical. 

Instrument with Attack and Decay 
The simplest instrument shown in Fig. 27 produces sounds by turning 

an 0SC on and off suddenly. The sudden transients might be heard as 
unwanted clicks. An instrument is shown in Fig. 31a with an envelope 
that gradually increases the sound amplitude at the beginning of the 
note and decreases the amplitude at the end. 

The upper 0SC generates the desired envelope which forms the 
amplitude input for the lower 0SC. Fl, the waveform function for the 
upper 0SC, is the desired envelope as sketched in Fig. 31 b. The 0SC 
is used in a degenerate mode in that its frequency will be set at the value 
that permits it to go through exactly one cycle of oscillation during the 
note being played. Usually this is a very low frequency; however, unlike 
real oscillators, computer-simulated oscillators can produce low 
frequencies with ease and precision. The frequency-control equation for 
0SC is 

511 
P6 = 20,000· freq 
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FI 

P5 P6 P7 I~ 1 I 

o 20 491 511 

F2 

0 

(0 ) 
-I 

1 INS 0 1 ; 
2 0SC P5 P6 B2 Fl P30 ; 
3 0SC B2 P7 B2 F2 P29 ; 
4 0UT B2 Bl ; 
5 END; 

(b) 

(c) 

6 GEN 0 1 1 0 0 .99 20 .99 491 0 511 

J =60 , 
1 J 

(d) 

7 GEN 0 1 2 0 0 .99 50 .99 205 -.99 306 -.99 461 0 511 
8 N0T 0 1 2 1000 .0128 6.70 ; 
9 N0T 2 1 1 1000 .0256 8.44 ; 

10 TER 3 ; 

(e) 

FI FI 

(f) (g) 

Fig. 31. Instrument with attack and decay: (a) block diagram; (b) envelope 
function; (c) waveform function; (d) conventional score; (e) computer 
score; (f) pianolike envelope; (g) brasslike envelope. 
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If we wish exactly one cycle of oscillation per note, 

1 
Freq = note duration 

or 

P6 = 511 
20,000 x note duration 

.02555 
note duration 

Thus, for the first note, whose duration is 2 sec, P6 equals .0128 (line 8 
of score) and for the second note, whose duration is 1 sec, P6 equals 
.0256. 

The envelope does much more than eliminate clicks. It is as important 
in the determination of timbre as the waveform. The attack time is 
especially important; percussive instruments have very short times 
(1 or 2 msec), stringed instruments having long times (50-200 msec). 
In addition, envelopes can have other shapes: the triangular shape shown 
as an alternate envelope on Fig. 31 f is typical of a piano, and the envelope 
with initial overshoot in Fig. 31g is typical of a brass instrument. 

The score, Fig. 31e, is similar to the score in Fig. 27. A few points 
should be mentioned. The instrument is named "1 " and is referred to 
as "1" in P3 of the N0T cards. 1-0 block B2 is used for both the input 
and output of the lower 0SC. This is permissible since all the unit 
generators read their inputs before storing their outputs. However, as 
will be pointed out later, an 1-0 block must not be used for two 
different purposes at the same time. The upper 0SC uses P30 to store its 
Si; the lower 0SC uses P29. In general, since the S/s of different 
0SC's are different, they must be kept in different locations. 

Record 6 causes the generation of the envelope function by evoking 
G ENI ; its operation is the same as in Fig. 27. The envelopes produced 
by an 0SC have the unfortunate characteristic that the whole envelope 
stretches and shrinks with the duration of the note. Thus the attack 
time and the decay time are proportional to duration; the second note 
in the score will have half the attack time of the first note. Usually this 
variation is undesirable since it changes the timbre of the note. Special 
attack and decay generators, which avoid this problem, will be taken 
up later. 

Adding Vibrato 
Vibrato, which we will define as a variation in pitch, adds much 

interest to tone color. In Fig. 32a 0SC #2 and AD2 have been appended 
to the simple attack and decay instrument to provide vibrato. They 



P5 P6 P7 P8 P9 

F3 

J = 60 , 
1 J 

(b) 

1 INS 0 2 ; 
2 0SC P5 P6 B2 Fl P30 ; 
3 0SC P8 P9 B3 F3 P29 ; 
4 AD2 P7 B3 B3 ; 
5 0SC B2 B3 B2 F2 P28 ; 
6 0UT B2 Bl ; 
7 END; 

(0) 

F3 

0 , 

8 GEN 0 1 1 0 0 .99 20 .99 491 0 511 ; 

511 

J = 60 

0 j 
.,. .,. Glis 

(c) 

9 GEN 0 1 200 .99 50 .99 205 -.99 306 -.99 461 0 511 ; 
10 GEN 0 2 3 1 1 ; 
11 N0T 0 2 2 1000 .0128 6.70 .067 .205 ; 
12 N0T 2 2 1 1000 .0256 8.44 .084 .205 ; 
13 TER 3 ; 

10' GEN 0 1 3 0 0 .999 511 ; 
11' N0T 0 2 2 1000 .0128 6.70 4.55 .0128 ; 
12' N0T 2 2 1 1000 .0256 11.25 0 .0256 ; 

(d) 

Fig. 32. Instruments with vibrato or glissando: (a) block diagram; (b) F3 
and score for vibrato; (c) F3 and score for glissando; (d) computer score. 

56 
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provide a time-varying frequency control to 0SC #3, thus producing a 
frequency variation in its output. This illustrates that the frequency 
control of an 0SC does not have to remain constant over a note, but can 
change in any desired way. P7 controls the average pitch. PS determines 
the maximum variation in pitch. P9 determines the rate of variations, 
which for typical instruments might be 4 to 8 changes per second. 
The wave shape F3 of 0SC #2 determines the way in which frequency 
changes with time. The exact shape is usually not critical and a sine 
wave, as shown, is usually satisfactory. 

In the first score card, Fig. 32d, the instrument is named "2" and 
referred to as such in the P3 fields of the N0T records. An additional 
I -0 block B3 is required by the instrument. Block B2 must hold the 
output of 0SC #1 until 0SC #3 has used it as amplitude input. Conse
quently, 0SC #2 and AD2 has to use B3 to hold the frequency input for 
0SC #3. However, after 0SC #3 has completed its computation, both 
B2 and B3 are available for other uses; in this case B2 was used to hold 
the output of 0SC #3. 

The order of computation is the order in which generators are 
written in the score. It is essential to maintain the right order. In the 
example, 0SC #1 must be written ahead of 0SC #3 since it provides an 
input to 0SC #3. 0SC #2 must be written ahead of AD2, and AD2 must 
be ahead of 0SC #3 for the same reason. 0SC #1 could be in any order 
with respect to 0SC #2 and AD2. 

The two GEN1 functions (records Sand 9) are the same as before. 
Record 10 calls upon GEN2 to provide a sine wave for F3. P2 = 0 says 
to compute F3 at t = 0 with respect to the acoustic output. P3 = 2 says 
to call upon GEN2; P4 = 3 says to compute F3; P5 = 1 says to com
pute the fundamental with amplitude of 1; P6 = 1 says that there is 
only one harmonic (i.e., the fundamental). 

In note records 11 and 12, P7, PS, and P9 concern pitch and hence are 
of special interest. The rest of the parameters are the same as in Fig. 
31. P7 determines average pitch. Thus for the first note C262 

P7 = 262 x .02555 = 6.70 

PS is set equal to 1 % of P7 so that the maximum frequency deviation 
will be 1 % of the center frequency. Thus the frequency will change from 
259.4 Hz to 264.6 Hz. A 1 % vibrato is quite large; i% is more typical 
of actual players. However, there is much individual variation in 
vibrato. P9 determines the number of complete cycles of change per 
second, which we have set at S. Thus 

P9 = S x .02555 = .205 
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With a change in F3, and the meaning of P7, P8, and P9, the same 
instrument can also be used for glissando. An F3 consisting of a 
straight" interpolating" function appropriate for glissando is shown in 
Fig. 32c. P9 now becomes 

P9 = .0255 
duration of note 

and causes 0SC #2 to produce one cycle per note (the same as 0SC #1). 
P7 is set at 

P7 = .0255 x initial note frequency 

and P8 at 

P8 = .0255 x (final note frequency - initial note frequency) 

The action of AD2 and 0SC #2 with F3 is such that at the beginning of 
the note B3 will contain .0255 x initial note frequency, and at the end 
of the note it will contain .0255 x final note frequency. 

Substitution of cards 10', 11', and 12' into the score in place of 
cards 10, 11, and 12 will produce the glissando sample shown. Note 
that for the second note (A44o), which has a constant frequency, P8 
is equal to 0 since the initial and final frequencies are the same. P6 and 
P9 have the same values, and hence P9 could be eliminated if the 
instrument were redefined. 

The glissando obtained in this way has a linear change of frequency in 
hertz. This means that the musical intervals will change faster at the 
beginning of the slide than at the end. Although a linear change of 
musical intervals might be preferable, this glissando has been much 
used and seems perfectly satisfactory. During most slides, listeners are 
insensitive to the precise time course of the pitch. 

Instrument with Swell and Diminuendo 
In the glissando instrument, 0SC #2 and AD2 form a linear inter

polating unit which generates a frequency control that goes from initial 
to final frequency. If we apply the interpolating unit to the amplitude 
control on an 0SC, we can obtain a continuously changing amplitude 
for crescendos and decrescendos. An instrument with this feature is 
shown in Fig. 33. 

In order to simplify the score, we have complicated the interpolater 
with an extra oscillator 0SC #2. The glissando instrument req.uired 
writing the initial frequency in P7 and the (final-initial) frequency in 
P8. The swelling instrument is arranged so the initial amplitude is 
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P5 P7 P6 P7 P8 

#1 

1 INS 0 3 ; 
2 0SC P5 P7 B2 F3 P30 ; 
3 0SC P6 P7 B3 F4 P29 ; 
4 AD2 B2 B3 B2 ; 
5 0SC B2 P8 B2 F2 VI ; 
6 0UT B2 Bl ; 
7 END; 
8 GEN 0 1 3 .999 0 0 511 ; 
9 GEN 0 1 4 0 0 .999 511 ; 

'~ 
o 511 

'k:::J 
o 511 

10 GEN 0 1 200 .99 50 .99 205 -.99 306 -.99 461 0 511 ; 
11 N0T 0 3 2 0 2000 .0128 6.70 ; 
12 N0T 2 3 1 2000 0 .0256 6.70 ; 
13 TER 3 ; 

Fig. 33. Instrument with swell and diminuendo. 

written in P5 and the final amplitude in P6. 0SC #1 and 0SC #2 both 
generate one cycle per note of waveforms F3 and F4, respectively. F3 
goes linearly from 1 to 0 over the course of a note and is multiplied by 
the initial amplitude in 0SC #1. Similarly, F4 goes from 0 to 1 and is 
multiplied by the final amplitude. Thus the output of AD2 will proceed 
linearly from the initial amplitude to the final amplitude. 

Records 11 and 12 in the score play what amounts to a single note 
made up of two notes tied together. The first note swells from 0 to 
maximum amplitude, the second decays back to zero. Amplitude 
controls in P5 and P6 are obvious. P7 is set to produce one cycle per 
note in both 0SC #1 and 0SC #2. 
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One peculiarity is introduced by the structure and use of the instru
ment. We want the two notes to blend into each other with no break 
between notes. To achieve this, we have omitted the usual attack and 
decay 0SC. However, the waveform 0SC #3 must also produce a 
continuous output over the juncture. If we were to store the sum for the 
0SC in an unused note parameter (P30, for example), it would be reset 
to zero at the beginning of each note, a sudden change of phase between 
notes would result, and a click might be introduced. To avoid this 
transient, the sum is stored in variable VI. The training orchestra 
provides space for 200 variables, denoted VI through V200. These 
variables may be changed by either the instruments or the score, but 
they are not reset at the beginning of a note. Consequently, storing the 
sum of 0SC #3 in VI assures that it will never be reset and that the 
oscillator will proceed continuously between all notes. However, this 
instrument will be limited to playing only one voice. 

There are many other uses for variables, as we will see in the next 
example. 

Instrument that Varies Waveform with Amplitude 
We conclude these examples of simple instruments with a not-so

simple one. It has been shown that one of the factors that contribute 
interest to the timbre of real instruments is a change in spectrum with the 
intensity of the sound. Usually the loud sounds have more high
frequency components than the soft sounds. Figure 34 shows an 
instrument that is able to change spectrum with amplitude. 

The instrument is an elaboration of the swell and diminuendo 
instrument shown in Fig. 33, and it uses the same parameters on the 
note records. 0SC #1, 0SC #2, and AD2 #1 form a linear interpolation 
unit with P5 as the initial amplitude and P6 the final amplitude. These 
inputs range from 0 to 1 with 1 as the maximum output. We will call the 
instantaneous amplitude Ampl' Ampl is stored in block B2. MLT #1 
and AD2 compute B3 according to the relation 

B3 = 1 - Ampl = Amp2 

Oscillator 0SC #4 is controlled by Ampl' and 0SC #5 by Amp2' Thus 
when Ampl is 0, Amp2 is equal to 1, and all the output comes from 
0SC #5; when Ampl is 1, Amp2 is equal to 0, and all output comes 
from 0SC #4. At intermediate values of Ampb intermediate portions of 
output come from 0SC #5 and 0SC #4. In this way the waveform of 
F2 in 0SC #5 controls the spectrum at low amplitudes, and the wave
form of FI in 0SC #6 controls at high amplitudes. 
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P5 P7 P6 P7 

#1 

82 

#4 

1 INS 0 4 ; 
2 0SC P5 P7 B2 F3 P30 ; 
3 0SC P6 P7 B3 F4 P29 ; 
4 AD2 B2 B3 B2 ; 
5 MLT B2 VI B3 ; 
6 AD2 B3 V2 B3 ; 
7 MLT P8 V3 B4 ; 
8 0SC B4 V 4 B4 F5 P28 ; 
9 AD2 P8 B4 B4 ; 

10 AD2 B4 V5 B5 ; 
11 0SC B3 B5 B5 F2 V7 ; 
12 0SC B2 B4 B4,Fl V8 ; 
13 MLT B2 B4 B4 ; 
14 MLT B4 V6 B4 ; 
15 0UT B4 Bl ; 
16 END; 

P8 V3(01) V4{,2) 

FI 

Fb-
F2 

~ 

Fig. 34. Instrument that varies waveform with amplitude. 
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The amplitude of the sum of 0SC #4 and 0SC #5 is relatively 
independent of Ampl' The normal dependence is restored by MLT #3. 
The output of MLT #3 ranges from -1 to + 1; MLT #4 increases this 
range to -2047 to +2047, the normal amplitude range. 

Frequency control of 0SC #4 and 0SC #5 is a vibrato circuit plus 
AD2 #4, which makes 0SC #5 4 Hz higher in frequency than 0SC #4. 
A slight divergence adds richness to the tone. The amplitude of the 
vibrato is automatically set at 1 % of the center frequency of the tone 
by ML T #2. This is an expensive way of controlling amplitude, and 
better ways will be discussed when C0NVT functions are considered. 
The frequency of vibrato is set at about 6 Hz by V 4. 

The instrument requires six constants as inputs. These are stored in 
VI through V6: VI = -1, V2 = 1, V3 = .01, V4 = .2, V5 = .105, 
and V6 = 2047. The record that stores these constants is 

SV3 0 1 -1 1 .01 .2 .105 2047; 

PI and P2 say to set variables in Pass III at time O. P3 says to start with 
variable 1 and continue with 2, 3, etc., to the end of the data. P4-P9 
give the six numbers to be set in VI-V6. New variables can be set at 
any time, as previously set variables can be changed, with other SV3 
cards. Times of settings and changes are all controlled by P2. 

We will not write a score for this instrument since, except for setting 
variables, little new is involved. A reasonable choice for Fl and F2 is 
sketched in Fig. 34. The harmonics of Fl decrease at about 6 dB per 
octave; those of F2 at 12 dB per octave. Thus the instrument is likely to 
have higher-frequency energy at high output amplitudes. Other more 
interesting examples of F 1 and F2 could be devised. 

C0NVT Function to Process Note Parameters 

Scores for the instruments thus far discussed contain many affronts 
to a lazy composer, and all composers should be as lazy as possible 
when writing scores. For example, computing the frequency control of 
an oscillator as 

12 = .02555 x frequency in hertz 

is a tedious process. Instead, one would like to write the notes of a 
scale directly, such as the numbers 0-11 for a 12-tone scale. 

A F0R TRAN routine named C0NVT is called at the end of Pass II; 
it can apply the full power of F0R TRAN to convert the note parameters 
as written by the composer into a new set of parameters, which are the 
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inputs to the instruments. As will be clear from the examples below, 
the nature of C0NVT depends on the instruments used with it. Conse
quently, no universal C0NVT program is or can be supplied with 
Music V; instead the composer must write his own for each orchestra 
he defines. Let us explore the possibilities with the simple attack and 
decay instrument designed in Fig. 31. 

We shall assume that the composer would like to write frequency 
directly in hertz and would like to write amplitude on a decibel scale 
rather than on a linear scale. Furthermore, the note duration is already 
written in P4; it is an indignity to have to write P6 (= .02555/duration). 
Hence we will assume that the composer will write 

P5 = amplitude of note in decibels with 66 dB corresponding to a 
maximum amplitude of 2000 

P6 = frequency of note in hertz 

With these inputs C0NVT must compute 2 

P5 = 10.0**(P5/20.0) 
P7 = 511.0 * P6/(sampling rate) 

and 

P6 = 511.0/CP4 * sampling rate) 

A program to achieve these conversions is given below along with 
annotated comments. 

Text 

SUBR0UTINE C0NVT 
C0MM0N IP, P, G 
DIMENSI0N IP(10), P(100), G(1000) 
IF (P(1) - 1.0) 102, 100, 102 

100 IF (P(3) - 1.0) 102, 101, 102 
101 P(5) = 10.0 ** (P(5)/20.0) 

P(7) = 511.0 * P(6)/G(4) 
P(6) = 511.0/(P(4) * G(4» 
IP(1) = 7 

102 RETURN 
END 

Notes 

Notes 

2 
3 
4 

5 

1. The data-record parameters PI-PI00 have been placed by Pass II 
in P(1)-P(I00). The IP array contains some pertinent fixed-point 

2 Equations relating to programs will usually be written in a F0RTRAN-like 
notation. 
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constants; in particular, IP(1) = number of parameters in the data 
record. G is a general memory array for Pass II. 

2. This statement checks to see whether the data record pertains to a 
note (rather than a GEN or something else). The numerical 
equivalent of N0T is 1. Chapter 3, Section 3 lists the numerical 
equivalent of all the operation codes. 

3. This statement checks to see whether instrument #1 is referred to by 
the N0T record. Other instruments would usually require other 
C0NVT functions. 

4. These statements perform the desired conversions. The sampling 
rate is always kept in variable G(4). Thus in calculating P(6) and 
P(7) we have divided by G(4) rather than by the number 20,000. 
This is desirable because sampling rate is often changed and, if 
C0NVT always refers to G( 4) to obtain the current rate, it will not 
have to be reassembled with each change of rate. Instead only G(4) 
need be modified, and this is a simple change which we will discuss 
shortly. 

5. C0NVT has added one parameter P(7); thus the word count IP(1) 
must be changed to 7. The possibility of generating additional 
parameters with C@NVT is most important and attractive since the 
composer does not have to write these parameters. In addition, Pass 
I and Pass II do not have to process and sort these additions, which 
increases efficiency. 

With this C0NVT function the score lines to play the two notes on 
Fig. 3ld (equivalent to lines 8 and 9 on Fig. 3lc) are 

N0T 0 1 2 60 262 ; 
N0T 2 I 1 60 330 ; 

Now let us construct a somewhat more complicated C0NVT func
tion for instrument 2 in Fig. 32. We will again use P5 as amplitude in 
decibels. Frequency will be specified in terms of an octave, and a 
l2-tone note within the octave by P6 and P7, P6 giving the octave and 
P7 the step within the octave. Thus, for example 

Note P6 

-1 
-1 
-1 

P7 

o 
1 
2 
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-1 
o 
o 

11 
o 
1 

o 

The vibrato controls will be eliminated from the N0T record. In
stead, we will assign two Pass II variables, G(50) to control the percent 
frequency variation and G(51) the rate of vibrato. 

The equations which must be programmed into C0NVT are 

Frequency = 262.0 * (2 ** (P6 + P7/12.O)) 
P5 = 10.0 ** (P5/20.0) 
P6 = 511.0/(P4 * sampling rate) 
P7 = 511.0 * frequency/sampling rate 
P8 = 511.0 * frequency * G(50)/(sampling rate * 100) 
P9 = 511.0 * G(51)/sampling rate 

Most of the equations are self-explanatory. The note frequency is com
puted in hertz from the logarithmic scales embodied in P6 and P7 by 
the first relation. The factor 100 is put in the denominator of P8 
because G(50) is a percentage. 

Vibrato control is a good example of the use of Pass II memory in a 
composition. Except for the first few variables, numbers in the G array 
may be used for any purpose desired by the composer. Numbers are 
placed in the array by an SV2 record, which is analogous to the SV3 
record that was previously used to set a Pass III variable. Thus 

SV2 0 50 .5 6 ; 
would set G(50) = .5 and G(51) = 6 at t = O. 

The program to carry out the computations follows. 

SUBR0UTINE C0NVT 
C0MM0N IP, P, G 

Text 

DIMENSI0N IP(10), P(100), G(1000) 
IF (P(1) - 1.0) 102, 100, 102 

100 IF (P(3) - 2.0) 102, 101, 102 
101 P(5) = 10.0 ** (P(5)j20.0) 

P(7) = 511.0 * 262.0 * (2.0 ** (P(6) + P(7)j12.0))jG(4) 
P(6) = 511.0j(P(4) * G(4)) 

Notes 

P(8) = P(7) * G(50)j100.0 2 
P(9) = G(51) * 511.0jG(4) 3 
IP(2) = 9 

102 RETURN 
END 
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Notes 
1. This statement calculates frequency, multiples it by the appropriate 

constant of proportionality, and stores it in P(7). 
2. This statement computes the maximum vibrato deviation. The 

properly scaled frequency is already available in P(7) and hence must 
only be multiplied by G(50)/100.0. 

3. This statement sets the rate of vibrato. The constant of propor
tionality, 51 1.0/G(4) , is the same as any other 0SC frequency 
control. G( 51) will be the vibrato frequency in hertz. 

A score for this instrument to replace lines 11 and 12 on Fig. 32 is 

SV2 0 50 1 6; 
N0T 0 2 2 60 0 0 ; 
N0T 2 2 1 60 0 4 ; 

Once G(50) and G(5I) are set, any number of notes may be written 
with the same vibrato. On the other hand, the vibrato constants may be 
changed at any time by a subsequent SV2 record. For example, the 
deviation could be reduced and the rate increased at t = 15 sec by the 
record 

SV2 15 50 .5 8 ; 

One may ask, why use Pass II variables in C0NVT rather than Pass 
III variables or Pass I variables which also exist? The answer is, 
C0NVT is a Pass II subroutine and can only make use of information 
available in Pass II. 

A final example of a C0NVT subroutine will provide a convenient 
score language for the glissando instrument in Fig. 32. As shown, the 
initial frequency of a note must be written in P7 and the (final - initial) 
frequency in P8. We shall eliminate the arithmetic to calculate 
(final - initial). Instead the score card will have 

P5 = amplitude in decibels 

and 

P6 = final frequency in hertz 

The initial frequency of each note will be defined as the final frequency 
of the preceding note. The initial frequency of the first note will be read 
into the program with an SV2 card into G( 50). 

In order to use this simple form the program must remember the 
final frequency of each note. G(50) will also be used for this purpose. 

The program to achieve these objectives follows. 
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Text 

SUBR0UTINE C0NVT 
C0MM0N IP, P, G 
DIMENSION IP (10), P(100), G(1000) 
IF (P(1) - 1.0) 102, 100, 102 

100 IF (P(3) - 2.0) 102, 101, 102 
101 P(5) = 10.0 ** (P(5)j20.0) 

P(7) = G(50) * 511.0jG(4) 
P(8) = (P(6) - G(50» * 511.0jG(4) 
G(50) = P(6) 
P(6) = 511.0/(P(4) * G(4» 
P(9) = P(6) 
IP(2) = 9 

102 RETURN 
END 

Notes 

Notes 

1 
2 
3 
4 

1. This statement sets the initial frequency, which was stored in 
G(50). 

2. This statement computes the (final - initial) frequency. 
3. This statement stores the final frequency in G(50) to become the 

initial frequency of the next note. 
4. This and the following statement set the frequency inputs of 0SC #1 

and #2 to 1 cycle per note. 

Figure 35 shows a brief score for the instrument. Only the N0T 
cards and the SV2 cards are shown. Record 1 sets the initial frequency 

~ l, J I , 
/ .... 

/ " / 
/ 

Glis 

1 SV2 0 50 262 ; 
2 N0T 0 2 2 60 440 ; 
3 N0T 2 2 1 60 330 ; 
4 N0T 3 2 1 60 330 ; 
5 SV2 4.5 50 440 ; 
6 N0T 5 2 1 60 400 ; 
7 N0T 6 2 2 60 262 ; 

Glis 

Fig. 35. Score for glissando instrument using a C0NVT subroutine. 
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to 262 Hz. Records 2,3, and 4 generate an initial glissando. An arbitrary 
choice is made. The frequency slide is completed at t = 3, and the third 
note is held at E 330. Record 5 resets the initial frequency to 440 for the 
beginning of the second glissando. The change is done at t = 4.5 in the 
middle of a rest and hence is inaudible. A different arbitrary choice for 
glissando is made for the last two notes. During the first note 
(5 < t < 6), the frequency changes from 440 to 400. During the second 
note (6 < t < 8) the frequency shift continues from 400 to 262. 

The flexibility of one method for obtaining frequency slides has been 
demonstrated. The use of Pass II variables as a memory for the C0NVT 
subroutine is important. Powerful logic may be programmed in this 
way. 

Additional Unit Generators-RAN, ENV, FLT 

Next to be discussed are the generator of random signals RAN, the 
band-pass filter FLT, and the envelope generator ENV. Although a 
few other generators exist and one can easily design his own generators, 
the three described here plus the stereo output box are sufficient for 
most purposes. 

Random Signal Gen era tor-RAN 
RAN is a source of random signals with controlled amplitude and 

spectrum. The spectrum is low pass and contains energy from zero 
frequency to a cutoff frequency determined by one of the inputs (12). 
(As will be shown later, RAN may be combined with an oscillator to 
obtain a band-pass signal.) 

The diagram of RAN is shown in Fig. 36a. 11 controls the amplitude 
of 0; 12 controls its bandwidth. The equation of operation is 

0 i = IIi· R i (l21) 

where Ri(l21) is a low-pass random function whose amplitude varies 
from - 1 to + 1 and whose cutoff frequency is approximately 
(R·I2)/I024 where R is the sampling rate. The amplitude of 0 1 varies 
from - IIi to IIi. The approximate spectrum of 0 is shown in Fig. 36b. 
The cutoff frequency is not abrupt, and there are lobes of energy above 
(R·I2)/I024 Hz. Neither does the main passband have a flat top. Even 
with these deficiencies, the generator is very useful. 

The key to RAN is the generation of the random function R i . This is 
obtained by generating a sequence of independent random numbers Nh 
which are uniformly distributed over the interval - 1 to + 1. These 
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o 1024 Hz 

(b) 

o 

(el 

Fig. 36. Random generator-RAN: (a) block diagram; (b) spectrum of 0; 
(c) medium-frequency random function; (d) high-frequency random 
function; (e) low-frequency random function. 

numbers are connected by straight lines to form the continuous func
tions shown in Fig. 36c. R1 consists of samples of the line function, the 
sampling interval being chosen so that 512/121 sampling intervals fall 
between each N1 (512/121 does not need to be an integer). The algorithm 
for sampling the line function is similar to the sum in 0SC. 

A medium-frequency function with 12 ~ 128 is shown in Fig. 36c. 
It wiggles at a moderate rate and at R = 20,000 Hz would have a 
cutoff of about 2500 Hz. 

A high-frequency function with 12 ~ 256 and a cutoff of 5000 Hz is 
shown in Fig. 36d. The N1 independent random numbers occur more 
frequently here, giving the function a more jagged appearance and a 
higher-frequency spectrum. The maximum useful value of 12 is 512. 
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This will produce an independent number for each sample and will 
achieve a cutoff of Rj2, which is the highest frequency representable by 
R samples per second. 

A low-frequency function with I2i ~ 64 and a cutoff of 1250 Hz is 
shown in Fig. 36e. It is clearly the smoothest of the three functions. 

A score record to evoke RAN is 

RAN P5 P6 B2 P30 P29 P28 ; 

where P5 is the 11 input, P6 the 12 input, B2 the output; P30 is an unused 
note parameter for the storage of the sum; and P29 and P28 are two 
other temporary storage locations. 

P5 PEi P8 P7 P5 PEi P7 P8 P9 

82 

(a) 

(a) INS 0 I 

FI 

P 
F~ 

0SC P5 P6 B2 
FI P30 ; 

RAN B2 P8 B2 
P29 P27 P26 ; 

0SC B2 P7 B2 
F2 P28 ; 

0UT B2 BI ; 
END; 

(b) 

(b) INS 0 2 ; 
0SC P5 P6 B2 

FI P30 ; 
RAN P8 P9 B3 

P29 P27 P26 ; 
AD2 P7 B3 B3 ; 
0SC B2 B3 B2 

F2 P28 ; 
0UT B2 BI 
END; 

P5 PEi P7 P8 VI P9 V2 

82 

( c) 

(c) INS 0 3 ; 
0SC P5 P6 B2 

FI P30 ; 
0SC P8 VI B3 

F3 P29 ; 
RAN P9 V2 B4 

P28 P26 P25 ; 
AD3 P7 B3 B4 B3 ; 
0SC B2 B3 B2 

F2 P27 ; 
0UT B2 BI ; 
END; 

Fig. 37. Examples of instruments with random generator: (a) amplitude
modulated band-pass noise; (b) frequency-modulated band-pass noise; 
(c) periodic plus random vibrato. 
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Three useful instruments involving RAN are shown in Fig. 37. 
Instrument 1 produces a band-pass noise by amplitude modulation of an 
0SC with RAN. Both the center frequency and the width of the pass
band are controlled by note parameters, P7 determining the center 
frequency and P8 the width. 

The top 0SC produces the initial attack and decay with function Fl. 
The bottom 0SC has a sinusoidal waveform F2, and without RAN it 
would produce a single-frequency sinusoid at R·P7/511 Hz. By virtue 
of the multiplication inherent in the amplitude input to 0SC, the 
sinusoid is multiplied by the output of RAN. Thus the output of RAN 
is modulated by the sinusoid and according to the convolution theorem 
(Appendix B) the band-pass spectrum sketched in Fig. 38 is achieved. 

Spectrum of RAN output 

_......::::::IL...-I.~----rz::::::o..-..... Frequency 

1~24' P8 Hz 

5~2' P8 Hz 

Frequency 

Fig. 38. Spectrum of instrument that generates amplitude-modulated 
band-pass noise. 

The modulation can be looked upon as shifting the (low-pass) spectrum 
of RAN and centering it about the frequency of 0SC. 

If F2 is a complex wave with harmonics, the modulation will generate 
a replica of the RAN spectrum centered about each harmonic, or a 
multiple-band noise. Because the auditory effect is usually muddy and 
unpleasant, most instruments use a sinusoidal F2. 

The center frequency of the passband is simply the frequency of 
0SC-R·P7j511. The bandwidth is two times the cutoff frequency of 
RAN or R·P8j512. The factor 2 comes from the negative frequencies 
in the RAN spectrum which are shifted into positive frequencies by the 
modulation. The C0NVT function appropriate to this operation is 

511 
P7 = If . center frequency 

and 
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P8 = 512. bandwidth 
R 

It is often desirable to make the bandwidth a fixed percentage of the 
center frequency. This corresponds to a fixed musical interval about the 
center frequency. The C0NVT equation is simply 

P8 = k·P7 

and P8 must not be written in the score. 
Very narrow bands of noise can be generated by small values of P8. 

In fact, for P8 = 0, a zero bandwidth or pure sinusoid is produced. 
Narrow-band noises produced by amplitude modulation reveal the 
way in which they are generated; they sound like a sinusoid with a 
fluctuating amplitude. This sound is often not what the composer 
desires or expects from such noises; however, it is an essential 
characteristic of amplitude modulation and cannot be avoided with this 
instrument. 

INS 2 (Fig. 37b) generates frequency-modulated noise with a band
pass spectrum. The center frequency of the band is again controlled by 
P7 as P7· R/511. The rest of the characteristics of the spectrum are not 
as easy to estimate as in the case of the amplitude modulated noise. 
P8· R/511 is the maximum instantaneous deviation of frequency of 
0SC. Frequency-modulation theory says that the width of the noise 
band will be somewhat greater than 2· P8 . R/511. For most purposes 
2· P8 . R/511 is a useful estimate of bandwidth. 

P9 determines the rate at which the frequency of 0SC deviates. Its 
effect on the spectrum is hard to compute precisely. Experience has 
indicated that in order to produce" smooth" sounding noise, P9 should 
be about five times P8. C0NVT is a convenient place to set both P8 and 
P9. 

At very small bandwidths, INS 2 sounds like a sine wave with a small 
random variation in frequency. 

INS 3 (Fig. 37c) shows an excellent vibrato circuit devised by J. C. 
Tenney. The frequency variation contains a periodic component supplied 
by 0SC #2 and a random component supplied by RAN. A useful set of 
parameters is 

P8 = P9 = .0075 * P7 

to give i-percent periodic and i-percent random variation 

VI = 8 * 511/R 
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for an 8-Hz periodic vibration rate and 

V2 = 16 * 511/R 

for a 16-Hz random bandwidth. The random bandwidth tends to be 
substantially greater than the periodic frequency. 

Envelope Generator-ENV 
The use of 0SC as an envelope generator is satisfactory in some 

applications, but it makes the attack and decay times proportional to 
the total note duration. Important aspects of timbre depend on the 
absolute attack time. With 0SC, these will change from long notes to 
short notes. The difference may be enough to give the impression of 
two different kinds of instruments. 

A special generator ENV has been programmed to sweep away this 
limitation. It allows separate control of attack time, steady-state dura
tion, and decay time. In order for ENV to be effective, a special 
C0NVT function must be written for ENV. The computations in 
C0NVT are at least as complex as those in ENV. 

An instrument using ENV is illustrated in Fig. 39. ENV has four 
inputs II-14 and requires one function. II determines the amplitude of 
the output, and 12, 13, and 14 the attack time, the steady-state time, and 
the decay time, respectively. The function Fl is divided into four equal 
sections, the first determining the shape of the attack, the second the 
shape of the steady state, and the third the shape of the decay. The last 
section is not used and should be zero to allow for any round-off error 
involved in scanning the first three parts. 

The output 0 1 may be written 

0 1 = IIi * function (scanned according to 11, 12, and 13) 

The first quarter of the function is scanned at a rate of 12 locations per 
sample, the second quarter at a rate of 13 locations per sample, and the 
third quarter at a rate of 14 locations per sample. Consequently, 

, C0NVT should compute 

12 = 128 
attack time * sampling rate 

13 = 128 
steady-state time * sampling rate 

and 

14 = 128 
decay time * sampling rate 
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P5 P9 PIO PII P7 P8 VI 

F3 

fv-
I I 

Per 
FI 

1 INS 0 4 
2 ENV P5 Fl B2 P9 PlO P11 P30 ; 
3 0SC P8 VI B3 F3 P29 ; 
4 AD2 P7 B3 B3 ; 
5 0SC B2 B3 B2 F2 P28 ; 
6 0UT B2 Bl ; 
7 END; 

, J = 300 

j 
. ~ 
J. T J 

-e-

5/1 

8 GEN 0 1 1 0 0 96 1 128 .7 150 1 175 .6 200 1 225 .7 256 1 
320 .3 384 0 511 0 ; 

9 SV2 0 50 .050 .100 ; 
10 SV3 0 1 .15 ; 
11 N0T 0 4 .1 54 349 ; 
12 N0T.2 4 .1 54 392 ; 
13 N0T.5 4 .13 54 440 ; 
14 N0T.6 4 .2 54 349 ; 
15 N0T 0 4 .8 54 262 ; 

Fig. 39. Envelope generator ENV for attack and decay. Instrument #4. 

The attack time AT and decay time DT will in general be constants. 
C0NVT calculates the steady-state time SS as the duration PC 4) 
minus the attack and decay times 

SS = PC 4) - AT - DT 
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Thus the steady-state time varies with duration. For short notes there 
may be no steady state, and the attack and decay times may have to be 
shortened so that their sum does not exceed the duration. All this must 
be done by C0NVT. 

The data record to evoke ENV is 

ENV II, F, 0, 12, 13, 14, S ; 

S is a sum that must be assigned temporary storage in some unused note 
parameter. 

In the example shown in Fig. 39, Pass II variables V50 and V5I 
contain the attack and decay times, respectively. These are set with the 
SV2 record. The vibrato rate is kept in Pass III VI and is set with SV3 
record. The attack and decay function FI is computed with GEN1. The 
attack portion has a slight overshoot for added sharpness. The steady
state portion has two cycles of quaver. The decay portion has two line 
segments to approximate an exponential. 

The N0T records contain amplitude in decibels in P5 and the 
frequency in hertz in P6. 

The instrument requires inputs P5 and P7 through PI1, as shown on 
the diagram. The C0NVT program to compute these inputs from the 
N0T record is listed and annotated below. 

Text 

SUBR0UTINE C0NVT 
C0MM0N IP, P, G 
DIMENSI0N IP(10), P(100), G(1000) 
IF (P(l) - 1.0) 105, 100, 105 

100 IF (P(3) - 4.0) 105, 101, 105 
101 COR = 1.0 

SS = P(2) - G(50) - G(5l) 
IF (SS) 102, 103, 103 

102 C0R = P(4)/(G(50) + G(5l) 
P(10) = 128. 
G0 T0 104 

103 P(10) = 128./(G(4) * SS) 
104 P(9) = 128./(G(4) * G(50) * COR) 

P(ll) = 128./(G(4) * G(5l) * COR) 
P(5) = 10.0 ** (P(5)/20.0) 
P(7) = 511.0 * P(6)/G(4) 
P(8) = .0075 * P(7) 
IP(l) = 11 

105 RETURN 
END 

Notes 

1 

2 
3 

4 
5 

6 
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Notes 
1. C0R will correct attack and decay times for short notes where the 

steady state does not exist. 
2. Checks to see if steady state time SS is positive. 
3. Steady state is negative. C0R is set to reduce attack and decay times 

proportionally so that 

AT + DT = duration 
P(10) is set at 128 so that steady-state time will equal one sample, 
which is the minimum possible steady state. 

4. Computation of P(10) for positive steady-state times. 
5. Computation of P(9) and P(ll) for either positive or zero steady

state times. C0R will be less than 1 for zero steady-state times. 
6. The usual computation of amplitude and frequency control. Vibrato 

amplitude is set at i percent of center frequency. 

The N0T records (11-15) play the five notes sketched on the staff. 
Two additional capabilities of the program are inherent in these records. 
Instrument #4 is used to play up to three voices simultaneously. The 
second voice is a sustained C262 • The third voice occurs because the 
slurred notes overlap slightly, with the note from record 6 extending into 
the beginning of the note from record 7. Pass III can play multiple 
simultaneous voices on any instrument. As many as 30 voices can be 
played in the training orchestra. 

The score records are not written in ascending sequence of action 
times, in that the C262 is written last and starts at t = 0. The order of 
these records is immaterial, since they will be sorted into the proper 
ascending sequence of action times in Pass II. 

Filter-FLT 
One of the more difficult sound-processing operations is filtering. A 

unit generator that operates as a band-pass filter is shown in Fig. 40. 
The filter may be used to introduce formants or energy peaks at specified 
frequencies into sound waves. Such formants are characteristic of many 
instruments. 

The filter is calculated by means of a difference equation. In terms of 
the diagram shown in Fig. 40, the equation is 

0 1 = III + 121·0i - 1 - 131·0i - 2 

11 is the input to the filter, 0 the output, and 12 and 13 determine the 
frequency and bandwidth of the passband. 

More specifically, the difference equation approximates a 2-pole 
filter with a pole pair at - D ± j F Hz on the complex frequency plane 
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Fig. 40. Band-pass filter-FLT. (a) Diagram: 12 = 2e- 2nD/R cos 21TF/R; 
I3 = e- 4nD/R ; (b) poles in complex plane; (c) curve of gain vs. frequency. 

as shown in Fig. 40. The approximate gain of the filter is also shown as a 
function of frequency in Fig. 40, where the peak occurs at F Hz and the 
bandwidth at the half-power points is 2D Hz. The approximation holds 
for F» D. 12 and I3 are determined as functions of F and D by the 
relations 

12 = 2 e- 2nD/R cos 27TF /R 

and 
I3 = e- 4 :n:D/R 

where R is the sampling rate. C0NVT may be conveniently used to 
compute 12 and 13 from F and D. 
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The main problem in using the filter is obtaining a reasonable ampli
tude of output. The dc gain Go is given by the equation 

1 
Go = 1 - 12 + 13 

and the peak gain is approximately 

F 
G p = G O '

2D 
for F» D 

Both gains may be either less than or much greater than unity, depend
ing on F and D. Narrow bandwidths produce high peak gains. 

The amplitude of the output depends both on the amplitude of the 
input and on its frequency composition. A sinusoid near frequency F 
will be multiplied by Gp • A low-frequency sinusoid will be multiplied 
by Go. A complex signal must be decomposed into individual har
monics, the gain for each harmonic computed separately, and the 
resulting amplified harmonics reassembled at the output. This process is 
usually impractical, and one approximates the gain as something between 
Go and G p • Often the approximation is poor and it is necessary to 
adjust the amplitudes and recompute the samples to avoid overloading 
or underloading the output. For this reason filters should be used 
sparingly. 

The score record for FL T is 

FLT 11, 0, 12, 13, Ph P j 

where Pi and P j are two unused note parameters in which 0 i -1 and 
0 1 _ 1 are stored. 

Composing Subroutines-PLF 

Our tutorial discussion of what might be called the basics of sound 
generation is now complete. We are ready to take up compositional 
subroutines that will permit the generation of note parameters by the 
computer. These are some of the most interesting but difficult directions 
in which computer sound generation can be developed. Advanced 
applications point toward complete pieces composed by computer. 
However, long before these goals are achieved, PLF subroutines will be 
useful in saving the human composer from much routine work. 

So far, for each note to be played, the composer has had to write a 
line of score starting with N0T.... PLF subroutines will now be 
developed which write these N0T records. Furthermore, one score 
record that evokes a PLF subroutine can generate many N0T's. 
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Although PLF programs can do other things besides compute N0T 
records, these records are of overriding importance and are the reason 
for creating PLF's. Moreover, Pass I itself is justified because it serves 
to contain the PLF subroutines. 

Let us develop an example to demonstrate and teach the possibilities 
and practices of PLF programs. The example will allow storing a group 
of N notes in Pass I memory. A call to a PLF1, which we shall write, 
will insert these N notes anywhere in a composition and modify the 
notes by an arbitrary frequency shift, by an arbitrary tempo shift, and 
by specifying the instrument on which they will be played. 

Figure 41 illustrates the use of PLFI. The first four score records 
store the four-note pattern in Pass I variable storage, using variables 
10 through 43. Like the other passes, Pass I has a general storage array 
D(2000), which contains 2000 locations in the training orchestra. The 

, J J J J 
~> 

(a) 

7 

I I 
5 6 

1 SVI 0 10 0 1 52 0 ; 
2 SVI 0 20 1 1 56 .167 ; 
3 SVI 0 30 2 1 60 .333 ; 
4 SVI 0 40 3 1 56 0 ; 
5 PLF 0 1 10 40 0 1 .583 4 ; 
6 PLF 0 1 10 40 4 1 .750 4 ; 
7 PLF 0 1 10 40 4 1 1.167 5 ; 
8 PLF 0 1 10 40 8 .5 .417 4 ; 
9 PLF 0 1 10 10 10 2 .583 4 ; 

(c) 

(b) 

LJ 
8 9 

Fig. 41. PLF note-generating example: (a) pattern; (b) conventional score; 
(c) computer score. 
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PLFI routine will assume that a note is described by four numbers 

Starting time in seconds 
Duration in seconds 
Amplitude in decibels 
Frequency in logarithmic units 

in four successive D locations. Successive notes in a pattern will be 
separated by 10 locations in D, so that the first note goes into D(10), 
the second into D(20), etc., as is accomplished by the SVI records. 

The logarithmic frequency scale is introduced here. The composer 
will write scale numbers which are related to frequency by the equation 

S I - I (freqUency in hertZ) 
ca e - Og2 262.0 

This is probably the most useful scale for compositional algorithms. 
Middle C262 is 0, C512 is + 1, etc.; the even-tempered half step is an 
increment of /2. Thus 

C262 = 0 
C# = .083 
D = .167 

D# = .250 
E = .333 
F = .417 
G = .583 

G# = .667 
A = .750 

A# = .833 
B = .917 

C512 = 1.000 

The even-tempered standard musical intervals are 

half step = /2 = .083 
full step = -i = .167 

minor third = 1; = .250 
major third = t = .333 

fourth = !-2 = .417 
fifth = 122 = .583 

Frequency transposition can be done simply by adding a constant to 
the scale steps of a pattern. Multiplication corresponds to increasing or 
decreasing the size of the i1ntervals in a pattern. Scales other than 
12-tone can be represented with equal facility. The logarithmic scale is 
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so powerful and appropriate that we will use it almost exclusively from 
here on. 

In Fig. 41 score records 5 through 9 evoke the PLF subroutine that 
is to be presented. The P fields in these records have the following 
significance. 

PI calls a PLF subroutine 
P2 is not used since action time has no importance in Pass I 
P3 identifies the subroutine number (PLFl) 
P4 gives the D location of the first note in the pattern 
P5 gives the D location of the last note in the pattern 
P6 gives the time in seconds at which the pattern should begin 
P7 gives the duration scaling of the pattern; .5 = play at double 

speed; 2 = play at half speed 
P8 gives the logarithmic interval to shift the frequency of the 

pattern. For example, P8 = .583 corresponds to shifting the 
theme up by a fifth 

P9 gives the instrument number on which the pattern should be 
played 

PI through P3 have the same significance for all PLF routines. The 
rest of the P's depend entirely on the particular subroutine to be written. 

The conventional score for the notes produced by records 5 through 9 
is shown in Fig. 41 with the notes coming from a given record identified. 
Record 5 produces the first four notes in which the pattern is shifted up 
by a fifth. Records 6 and 7 produce two copies of the pattern playing in 
fourths. The upper voice is played on instrument 5 which is assumed to 
yield a staccato timbre. RecoId 8 plays the pattern at double speed. 
Record 9 plays the first note of the pattern at half speed. 

In order to write a PLF program we will have to know something of 
the operation of Pass I. It reads the score records in the order in which 
they appear in the score. The SVI records cause data to be stored in the 
D(2000) memory. A N0T record would simply cause the record to be 
sent on to Pass II. This is accomplished by placing the N0T data in the 
P(lOO) array and calling a communication routine WRITE 1 , which 
writes out the P array on a file that will later be read by Pass II. For 
bookkeeping purposes, the number of parameters in the record is kept 
in another Pass I location IP(l) and is automatically written out by 
WRITEl. The function of the PLF routine is to generate N0T records 
and to write them out exactly as Pass I would have done with a record 
in the score. 
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How is the PLF routine brought into action? When Pass I reads a 
PLF score record it calls a subroutine PLFn, in which n is in P3. 
The rest of the data on the score record is in the P array where it can 
be used by the subroutine. 

The annotated PLFI routine to perform the computations we have 
described follows. 

Text 

SUBR0UTINE PLFI 
C0MM0N IP, P, D 
DIMENSI0N IP(10), P(100), D(2000) 
NS = P(4) 
NE = P(5) 
TS = P(6) 
DS = P(7) 
FS = P(8) 
IP(1) = 6 
P(1) = 1.0 
P(3) = P(9) 
D0 100 I = NS, NE, 10 
P(2) = TS + DS * D(I) 
P(4) = DS * D(I + 1) 
P(5) = D(I + 2) 
P(6) = (2.0 ** (D(I + 3) + FS» * 262.0 
CALL WRITE1(10) 

100 C0NTINUE 
RETURN 
END 

Notes 

Notes 

2 

3 
4 
5 
6 
7 
8 
9 

10 
11 

1. This C0MM0N and DIMENSI0N statement locates the three 
essential arrays, IP, P, and D for PLFI. The Pass I definition of 
these arrays must agree with the definition in the subroutine. 

2. These statements take parameters P4-P8 from the PLF data record 
and store them in the PLF subroutine. Since the P(100) array will 
be used to output N0T records, the PLF parameters must be 
removed from it. 

3. The word count of the N0T records is set at 6. We will assume that 
we are generating notes for an instrument of a type shown in Fig. 
39. The six fields are 

PI N0T 
P2 Action time in seconds 
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P3 Instrument number 
P4 Duration in seconds 
PS Amplitude in decibels 
P6 Note frequency in hertz 

4. The programs convert all alphabetical symbols into numerical 
equivalents in the initial reading routine in Pass I. All subsequent 
processing is done on the numbers. The equivalence of N0T is 
1.0, which is set by this statement. 

5. This statement sets the instrument number into P(3). P(l) and P(3) 
are constant for all the notes in the pattern and hence can be set 
once at the beginning. 

6. This D0 loop is executed once for each N0T in the pattern. The 
storage of the pattern in the D array is inherently defined by the 
loop, the first note beginning at D(NS), the last note beginning at 
D(NE), the notes being 10 locations apart. 

7. This statement computes the starting time of the note as the PLF 
time shift TS, plus the duration scale DS, times the starting time 
relative to the beginning of the pattern D(I). 

8. This statement computes the scaled duration of the note. 
9. This statement transfers the amplitude of the note from the pattern 

to the P(100) array. No modification of amplitude is necessary. 
10. This statement adds the frequency transposition FS to the pattern 

frequency D(I + 3), and converts the sum from a logarithmic to a 
linear frequency scale in hertz. 

11. This statement calls for writing out the completed N0T record. 

In this example it is already possible to see many labor-saving 
advantages in PLF. Although the pattern is atypically short, 17 notes 
are produced by only five data records, far fewer than are needed to 
write a separate N0T record for each note. 

Next let us discuss a slightly more complicated and considerably more 
interesting PLF routine. It takes the product of two themes, in a sense. 
Each note in the first theme is replaced by the entire second theme. 
The second theme is scaled for duration; its total duration exactly 
equals the duration of the note it replaces. The log frequencies of the 
second theme are increased by the log frequencies of the replaced note, 
so that the second theme is centered about each note of the first theme. 
Amplitudes are similarly treated. The process is reminiscent of some 
"theme and development" styles. The second theme can be considered 
an ornament applied to the first theme. 
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An example is shown in Fig. 42, where the first theme, the second 
theme, and the product are written in musical notation. Typically, theme 
2 is short and compact in frequency range. However, this is not a 
requirement. We could also form the product 

Theme 2 x theme I 

Our multiplication algorithm is not commutative, and 

Theme 1 x theme 2 =1= theme 2 x theme 1 

, ,1.1 I J i ,j 

(0 ) ( b) 

, JJ £J D In ill }. .f.Jll.8 JrJ iJ I 

1 SVI 0 10 0 2 50 .417 ; 
2 SVI 0 20 2 2 53 .750 ; 
3 SVI 0 30 4 1.5 56 .583 ; 
4 SVI 0 40 5.5 .5 59 .167 ; 
5 SVI 0 50 6 2 62 .417 ; 
6 SVI 0 60 0 1.08 4 0 ; 
7 SVI 0 70 1.5 .375 2 .167 ; 
8 SVI 0 80 2 .75 0 - .083 ; 
9 SVI 0 90 3 .75 - 2 0; 

(c) 

10 PLF 0 2 10 50 60 90 0 4 ; 

(d) 

Fig. 42. Multiplication of two themes: (a) theme 1 times (b) theme 2 gives 
(c) product via PLF2; (d) computer score. 

The score for the example is also shown in Fig. 42. Lines 1-5 define 
theme 1, lines 6-9 define theme 2, and line 10 calls PLF2 to generate the 
product. The calling sequence is 

P4 D location of first note of first theme 
P5 D location of last note of first theme 
P6 D location of first note of second theme 
P7 D location of last note of second theme 
P8 Starting time of product theme 
P9 Instrument number 
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We will assume that the D array arrangement and the instrument are 
the same as were used for PLFI. 

The annotated F0R TRAN program follows. 

Text 

SUBR0UTINE PLF2 
C0MM0N IP, P, D 
DIMENSI0N IP(10), P(100), D(2000) 
NBI = P(4) 
NEI = P(5) 
NB2 = P(6) 
NE2 = P(7) 
TS = P(8) 
IP(1) = 6 
P(1) = 1.0 
P(3) = P(9) 
D0 101 I = NB1, NE1, 10 
START = TS + D(I) 
DS = D(I + 1)/(D(NE2) + D(NE2 + 1» 
D0 100 J = NB2, NE2, 10 
P(2) = START + DS * D(J) 
P(4) = DS * D(J + 1) 
P(5) = D(J + 2) + D(I + 2) 
P(6) = (2.0 ** (D(J + 3) + D(I + 3)) * 262.0 
CALL WRITE1(10) 

100 C0NTINUE 
101 C0NTINUE 

RETURN 
END 

Notes 

Notes 

2 
3 

2 
4 

1. This group of statements moves the PLF parameters from the P(100) 
array into the subroutine and sets the unchanging parts of the N0T 
parameters in P(lOO) in preparation for writing N0T records. 

2. The program contains two nested D0 loops. The outer loop is 
executed once for each note in theme 1, the inner D0 cycles for each 
note in theme 2. 

3. These two statements compute the starting time shift and the 
duration scaling for a repetition of theme 2. START is the beginning 
time of a note in theme 1. DS is computed so that the last note in 
theme 2 will end at the ending time of the note in theme 1. 

4. This and the following three statements compute the starting times, 
durations, amplitudes, and frequencies for the notes in theme 2 



86 CHAPTER TWO 

which are replacing a single note in theme 1. Amplitudes in decibels 
and frequencies on a logarithmic scale are simply added. Frequencies 
are converted to hertz. 

These two examples give only a slight indication of the range of 
objectives that may be programmed with PLF routines. The routines 
are not limited to generating N0T records. They may also be used to 
manipulate the information stored in the D array of Pass I. A powerful 
appli.:~ation is a set of PLF routines, each of which effects a different 
transform on a set of notes stored in the D array. Since the result of 
each transform must be in the same form as its input, several trans
forms may be successively applied. Finally, a last PLF writes out the 
N0T records. A composition using these subroutines would consist of 
the description of some thematic material, plus a long sequence of PLF 
calls to manipulate this material. 

The PLF routines provide one of the most exciting areas for further 
development in the entire Music V structure. Not only do they promise 
the most interesting possibilities, but they also offer the greatest 
challenges to the composer's creativity. 

Compositional Functions 

The note-generating subroutines that have just been demonstrated 
can be greatly strengthened by defining information in certain ways 
which we call compositional functions. Compositional functions can be 
used to provide a new language to describe sounds, called a graphic 
score. Although graphic scores can be used to represent the notes in a 
conventional score, the notation is completely different. It is more 
powerful in the sense that many sounds that are impossible to notate 
conventionally can be readily described by a graphic score. Moreover, 
in the synthesis of sounds, the graphic scores can be "read" easily by 
note-generating subroutines. This section can only lay the foundation 
for graphic scores, but further information is given in the references. 

A compositional function is a function defined over an entire section 
of a composition. It is used to control some always present parameter 
such as loudness or tempo. Compositional functions should not be 
confused with the stored function used to describe waveshape or 
envelope. The stored functions are generated, stored, and used in 
Pass III. Compositional functions are described and used in the first 
two passes. Both their mode of description and their use differ from 
those of stored functions. 
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Metronome Function 
Let us start by considering the metronome function which is built 

into Pass II and can be evoked if desired. So far, the starting times and 
durations of notes have been written in numbers which were interpreted 
as seconds. Thus a note 

N0T 2 4 I 54 .167 ; 

starts at 2 sec from the beginning of the section and lasts for 1 sec. 
With a metronome function, P2 and P4 are interpreted in beats; the 
note starts at the beginning of the second beat of the section and lasts 
for one beat. The relation between beats and seconds is given by the 
metronome function, which is in standard metronome marking of beats 
per minute. Thus, for example, if the metronome function is 180, the 
note would start i sec from the beginning of the section and would last 
i sec. 

The metronome function need not be constant, but can change 
abruptly or gradually during a section to introduce accelerandos or 
retards. The operation can be illustrated by an example shown in 
Fig. 43. 

The conventional score for 14 quarter notes lasting 14 beats is shown 
at the top, together with tempo marking. The N0T cards to encode this 
are as follows. 

N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 
N0T 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

.8 

60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

o 
.167 
.333 
o 
o 
.167 
.333 
.417 
.583 
.750 
.917 
.583 
.583 
.750 

The metronome function is evoked and is stored in Pass II variable 
storage by the records 

SV2 0 50 0 60 4 60 8 120 11.9 120 12 30 14 30 
SV2 0 2 50 ; 
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J =60 Accelerando J = 120 J =30 
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....... --
Time in seconds 

(c) 

---

Fig. 43. Metronome function: (a) music score; (b) metronome marking 
function; (c) graphic score. 

The first record describes the function, and P4 gives the initial abscissa 
(0), P5 the ordinate at that abscissa (60), P6 the next abscissa (4), P7 
the next ordinate (60), etc. The abscissa is in beats and the ordinate in 
metronome marking-beats per minute. Successive points on the 
function are connected by straight lines, as shown in Fig. 43. As many 
segments as desired may be used by putting more points into the SV2 
function. The abscissa points need not be uniformly arranged. 

The second record tells the Pass II program that a metronome function 
is being used and that it starts in variable 50, that is to say, in G(50). 

The graphic score in Fig. 43 shows the notes resulting from the 
metronome function being applied to the score. The pitch of each note, 
plotted against the time it occurs, is shown by the horizontal bars. 
Pitch is given on a logarithmic scale, 0 = middle C, + 1 = C512• Time 
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is in seconds. Such a graphic score has proved to be an effective way of 
displaying many computer note sequences. 

The first four notes, at a tempo of 60, occupy the first 4 sec. The 
second measure is played at an increasing tempo from 4 to 6.5 sec. The 
third measure at a tempo of 120 lasts from 6.5 to 8.5 sec. The last two 
notes, at a tempo of 30, go from 10 to 14 sec. 

The computation relating metronome function to a note's starting 
time and duration consists in sampling the metronome function at the 
beginning of the note. These sampling points are indicated by ticks on 
the function. Thus the sixth note has a tempo value of 75. The duration 
and starting time of the note are defined as 

Duration = P4 x li sec 

= .8 x ~% = .64 sec 

and 
Starting time = starting time of previous note 

+ (P2 of note - P2 of previous note)· ~% 

= 4 + (5 - 4) .~% = 4.8 sec 

Because the metronome function for the 13th note is sampled at 12 
beats, its value is 30, and a rather long silence occurs between the 12th 
and 13th notes. Such a silence is inherent in the algorithm. It is seldom 
objectionable; also such large changes in tempo seldom occur. 

If several voices are playing simultaneously, the same metronome 
function is applied to all. 

Metronome functions have proved to be powerful tools for inserting 
acce1erandos and ritardandos. Without them, the calculation of starting 
times and durations of gradually changing note sequences can be very 
tedious. In addition, they enable the composer to write in terms of 
conveniently defined beats, rather than seconds, which often turn out 
to be unwieldy decimals. 

A Note-Generating Subroutine and Graphic Score 
The metronome function is built into Pass II. Let us now write a 

subroutine PLF3, which will generate a voice from a complete, if 
elementary, graphic score. A sample score is shown in Fig. 44. Four 
functions are used to describe the voice-duration, duty factor, pitch, 
and amplitude. All are functions of time, which in this example goes 
from ° to 13 sec. 

The duration function in Fig. 44a gives the time from the beginning 
of one note to the beginning of the following note. The first note starts 
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Fig. 44. Graphic score and resulting notes: (a) duration; (b) duty factor; 
(c) pitch; and (d) amplitude. 

at t = 0, where the value of the duration function is .5 sec. The second 
note starts at.5 sec, where the value of the duration function is.8 sec; the 
third note starts at 1.3 sec (1.3 = .5 + .8), and so on. In other words, 
the duration function is sampled at the beginning of each note to obtain 
the interval to the beginning of the next note. The actual sampling times 
are shown as dots along the abscissa of Fig. 44a. Although there are 
more advanced ways of representing durations graphically, this 
representation is easy to program and is useful for a number of 
purposes. 

The rhythm is represented by the duration function. The' style of 
playing-legato or staccato-is represented by the duty-factor function, 
Fig. 44b, which gives the proportion of the interval between the starting 
times of successive notes that is occupied by sound. The first note has a 
duty factor of .5. Its length will be .25 sec (.5 duty factor x .5-sec 
interval to start of the second note). A duty factor of .25 produces an 
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exceedingly staccato note sequence. A duty factor of 1 produces a 
smooth legato. A duty factor greater than 1 causes overlap of successive 
notes. Like the duration function, the duty-factor function is sampled. 
The duty factor for each note is the value of the duty-factor function at 
the starting time of the note. Duty-factor function will be somewhat 
arbitrarily used for one other purpose. A negative duty factor will 
indicate a rest-the note will be omitted entirely. 

The pitch and amplitude functions, Fig. 44c and d, are also sampled 
at the starting time of each note to obtain pitch and amplitude. Pitch is 
written in our logarithm scale, C262 = 0, CS12 = 1, etc. Amplitude 
is written in decibels. A graphic representation of the actual notes that 
are generated are shown as horizontal bars superimposed on the pitch 
and amplitude functions. Pitches can be read from the pitch scale, 
amplitudes from the amplitude scale, durations and starting times from 
the beginning and ending times of either the pitch or amplitude bars. 
Because of the sampling process, the left end of each bar starts on the 
pitch or amplitude function. 

The functions shown graphically in Fig. 44 must be represented 
numerically in the computer memory in Pass I. The convention that 
represented the metronome function will again be employed; successive 
breakpoints will be given by their abscissa and ordinate values. The 
data will be stored in the Pass I D(2000) array by SVI cards. Thus the 
duration, duty factor, pitch, and amplitude functions in Fig. 44 are 
described by the following four records 

Duration: 
Duty factor: 

Pitch: 
Amplitude: 

SVI 0 50 0 .5 3 2 4 .3 8 1 12 .5 13 .5 
SVI 0 65 0 .5 3 .5 4 1 6.7 1 7 - .25 8 - .25 

8.3 1 13 1 ; 
SVI 0 85 0 0 3 1 7.5 -1 13 0 
SVI 0 95 0 40 7.5 60 13 40 ; 

The functions start in D(50). The amount of memory occupied by a 
function depends on the number of breakpoints. Successive functions 
have been arbitrarily spaced by sufficient multiples of five so as not to 
overlap. 

A F0R TRAN function C0N has been provided to read the graphic 
functions. The statement 

Z = C0N(D, N, T) 

sets Z equal to the value, at time T, of the function that starts at D(N). 



92 CHAPTER TWO 

Thus, for example, 

Z = C0N (D, 95, 3.0) 

would set Z equal to 48, which is the value of the amplitude function at 
3 sec. The values are computed by interpolating a straight line between 
the breakpoints that surround T (0 and 7.5 in the specific example). 
C0N must search the D array to find these breakpoints. It is essential 
not to ask for values of the function outside the range of breakpoints 
that have been defined. Otherwise C0N may never terminate its 
search. 

We can now write a subroutine PLF3 to generate notes from graphic 
scores. The data record to call this routine is 

PLF 0 3 TS END NA NP NDR NDF IN ; 

where TS is a time shift giving the starting time of the sequence of notes 
to be produced by PLF3; END is the duration of the sequence; 
NA, NP, NDR, and NDF give the starting points in the D array of the 
amplitude, pitch, duration, and duty-factor functions, respectively. 
IN gives the instrument number. 

An example to produce the notes shown in Fig. 44 is: 

PLF 0 3 0 13 95 85 50 65 4 ; 

We shall assume that the program writes out records in the f6rm (which 
has been used frequently) 

N0T TS IN D AMP PITCH ; 

where AMP and PITCH are in decibels and log units. 
The annotated PLF3 subroutine follows. 

Text 

SUBR0UTINE PLF3 
C0MM0N IP, P, D 
DIMENSI0N IP(10), P(100), D(2000) 
TS = P(4) 
END = P(5) 
NA = P(6) 
NP = P(7) 
NDR = P(8) 
NDF = P(9) 
P(1) = 1.0 
P(3) = P(10) 
IP(1) = 6 
T = 0.0 

Notes 

2 

3 
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100 DR = C0N(D, NDR, T) 4 
IF(T + DR - END) 101, 101, 104 5 

101 P(2) = T + TS 6 
P(4) = DR * C0N(D, NDF, T) 7 
IF(P(4)) 103, 103, 102 8 

102 P(5) = C0N(D, NA, T) 9 
P(6) = C0N(D, NP, T) 
CALL WRITE1(10) 

103 T = T + DR 10 
G0 T0 100 11 

104 RETURN 
END 

Notes 
1. These statements extract the essential information for the PLF3 

from the P array. 
2. These statements set the constant parts of the P array in preparation 

for writing out N0T records, and they set the word count. 
3. T is the starting time of the next note to be generated (not including 

the time shift TS). It is set initially at zero and computed as a 
running variable and is increased by the interval between successive 
notes after each note is generated. T is also the variable used to 
specify abscissa values in C0N. 

4. DR is the interval between successive notes as obtained by C0N 
from the duration function. 

5. This statement checks to see whether the starting time of the next 
note is greater than the ending time, END. If so, the current note is 
not generated and PLF3 is terminated. 

6. The time shift TS is added to T to obtain the starting time of the 
note. 

7. The duration of the note is computed as the interval times the duty 
factor. 

8. This statement checks for a rest. If the duration is zero or negative, 
owing to a zero or negative duty factor, no N0T is written out and 
the program proceeds to the next note. 

9. These statements compute the rest of the N0T parameters and 
write out the N0T record. 

10. This statement adds T to the starting time of the next note. 
11. This statement transfers control in order to generate the next note. 

Several features of the operation of PLF3 may be pointed out in 
Fig. 44. The first four notes are staccato, having large silences between 
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notes. The next six notes are legato, with no silent intervals between 
notes. Two possible notes have been omitted to form a rest. 

In terms of the number of notes generated, PLF3 is very efficient. 
One PLF3 call produced 16 notes. It could just as well have produced 
1600. In contrast to conventional scores, the notation for duration has 
the advantage that a second's worth of fast notes requires no more 
effort to describe than a second's worth of slow notes. Also ritardandos 
and accelerandos are easy to describe by lines with increasing or 
decreasing slopes, as illustrated from 4 to 8 and from 8 to l3 sec. Such 
tempo changes can have striking acoustical effect. 

Pass n Subroutines-PLS Pitch-Quantizing Example 

To complete the discussion of N0T-generating subroutines and 
note-manipulating subroutines, we will write one second-pass sub
routine. Pass II routines cannot be used to generate additional notes 
since all the N0T records have been carefully sorted in increasing order 
of action times, and the addition of more N0T records would disrupt 
the ordering. However, PLS routines can change the values of note 
parameters (except action times). Since notes of all voices are sorted 
together, it is convenient for PLS to embody relations involving several 
voices at a particular time. For example, PLS could well be used to 
adjust the pitch intervals between voices. 

We will not attempt quite as complicated an example as interval 
control. Instead we will control the pitches of a single voice so that they 
fall exactly on the steps of a previously specified scale. Such a process 
makes sense when applied to the output of the PLF3 routine that was 
presented in the preceding section. The pitches so generated are samples 
of a continuous pitch function and can fall anywhere. Sometimes it is 
desirable to limit the possible pitches to a prespecified set or scale. The 
scale need not correspond to any known or standard musical scale, 
such as ajust scale or a 12-tone scale. An octave can be divided into any 
number of intervals; the intervals can be even tempered (equal) or 
unequal in size. 

Figure 45 gives an example of the output of the routine to be written. 
It is applied to the notes generated by the PLF3 program. The pitch 
function and notes from Fig. 44 have been redrawn in Fig. 45. For the 
scale the octave is divided into five equal intervals, as shown in Fig. 45. 
Since pitch is in logarithmic units, these units correspond to equal 
musical intervals. The PLS routine will adjust the pitches of the notes 
generated by PLS to the closest scale step. The pitches generated by 
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Fig. 45. Pitch quantizing by a PLS routine. 

PLF are shown as solid horizontal bars, and the adjusted pitches are 
shown as dashed bars. The adjustment may be either up or down, 
depending on which scale step is closest. The process of adjustment is 
called pitch quantizing. 

Note that the first and sixth notes happened to fall exactly on a 
scale step and require no quantizing. Also the last two pairs of notes 
become pairs of repeated notes as a result of quantizing. Quantizing 
tends to produce repeated notes if the scale steps are large and the change 
in pitch between successive notes is small. 

In order to write a PLS routine, it is necessary to understand a few 
details of the operation of Pass II. All the data records in a section are 
read into a large array D(10,000), 10,000 locations long in the training 
orchestra. An array 1(1000) is computed by sorting so that 

1(1) = the address in D of the beginning of "first" data record 
where "first" means smallest action time 

1(2) = the address in D of the beginning of "second" data 
record 

etc. 
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For example if the thirteenth data record is 

N0T 19 2 4 60 .167 ; 

and is stored starting at D(109), then 

and 

1(13) = 109 

D(109) = 6 (Word count) 
D(IlO) = 1 (N0T == 1) 
D(IlI) = 19 
D(112) = 2 
D(1l3) = 4 
D(II4) = 60 
D(1l5) = .167 

After 1(1000) is computed, the program goes through the data 
records in order of increasing action times, executing any PLS routines, 
storing any SV2 data in the G(1000) Pass II data array, and writing out 
N0T records with the aid of the C0NVT subroutine. 

A PLS function can modify any N0T records with action times 
greater than the action time of the PLS function. It cannot affect N0T 
records with action times less than the PLS function, since these will 
already have been written before PLS is executed. The Pass II memory 
G(1000) will contain the numbers from any SV2 cards with action 
times less than the action time on the PLS function; it will not contain 
any data from SV2 cards whose action times are greater than on the 
PLS function. 

The scale will be stored in Pass II memory by a SV2 statement giving 
the number of steps in the scale, followed by the pitches of these steps. 
Thus the scale used in Fig. 45 is inserted in the memory by the record 

SV20 100 11 -1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1 ; 

These data will go into G memory at time O. 
The PLS 1 function will be called at action time 0 by the statement 

PLS 0 1 100; 

where P3 = 1 indicates PLS 1 and the 100 gives the starting point of the 
scale in the G array. 

An annotated program to carry out the pitch quantizing follows. 
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Text Notes 

SUBR0UTINE PLS1 
C0MM0N IP, P, G, I, T, D 1 
DIMENSI0N IP(10), P(100), G(1000), 1(1000), 

T(1000), D(10,OOO) 
Il = IP(2) 2 
IN = IP(3) 3 
NQ = D(1l + 4) 4 
NB = NQ + 1 
NL = NQ + IFIX(G(NQ)) 
D0 103 J = 1, IN 5 
ID = I(J) 
IF(D(lD + 1) - 1.0) 103, 100, 103 6 

100 FREQ = D(ID + 6) 7 
MIN = 1,000,000.0 8 
D0 102 K = NB, NL 
IF(ABS(FREQ - G(K)) - MIN) 101, 102, 102 

101 MIN = ABS(FREQ - G(K) 
QFREQ = G(K) 

102 C0NTINUE 
D(lD + 6) = QFREQ 9 

103 C0NTINUE 
RETURN 
END 

Notes 
1. This common statement and the subsequent dimension statement 

describe the main data arrays in Pass II and must agree with the 
corresponding statements in the Pass II main program. IP gives 
certain miscellaneous constants, P is the communication array 
from which data records are read and written, G is general variable 
storage, I indexes the D array in action-time order, T contains 
action times and is primarily used in the sorting process, D contains 
the data records. 

2. When PLS is called, IP(2) contains the address in the D array at 
which the PLS data record is located. In this case if 

IP(2) = 27 

then 

D(27) = 4 (Word count) 
D(2S) = 10 (PLS == 10) 
D(29) = 0 
D(30) = 1 
D(3l) = 100 
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3. IP(3) contains the number of data records in D. The main D0 
loop in the PLS routine will examine I(J) for J = 1 to IP(3). 

4. This and the subsequent two statements determine NB and NL as 
the first and last locations of the scale description in the G array. A 
D0 loop will test these locations. 

5. The main D0100p examines all data statements in order of ascending 
action times. ID in the sub seq uent statement is the D address of the 
data statement. 

6. This statement checks to see if the data statement is a N0T record. 
If not, it is skipped; if so, the pitch variable P6 is quantized. 

7. FREQ is set equal to the pitch P6. 
8. This and the subsequent statements to 102 determine the scale step 

that is closest to FREQ. MIN is initially set to a very large value. 
The absolute value of (FREQ - each scale step) is compared with 
MIN and if it is smaller than MIN, MIN is reset to that value. In this 
way MIN ends being the smallest interval and QFREQ ends being 
the closest frequency. 

9. This statement resets the pitch D(ID + 6) to the closest scale step. 

The PLS routines tend to be both longer and logically more compli
cated than the PLF routines. The steps in the example just discussed are 
typical. Actually, they were not all necessary for the problem at hand. 
The pitches could have been quantized by the PLF routine as they were 
generated. Even if the quantizing were done in Pass II, it would not 
have been necessary to go through the D array in order of action times. 
However, for slightly more complicated operations, such as quantizing 
the intervals between voices, all the Pass II steps are essential. 

Another simplification in the program consists in writing out the 
scale for all the octaves in which it is to be used. In many cases, only 
one octave is written out; the actual pitches are translated to this 
octave before being quantized; and the quantized pitches are translated 
back to their original octave. The possibilities open to the composer 
are almost endless. 

Interactions Between Instruments 

The final process to be considered in this chapter involves interactions 
between instruments. The desirability for such interactions arises from 
the limitations of the "note concept," which defines sounds as having 
starting and ending times. Sometimes it is desirable to produce con
tinuous sounds that change from time to time in controlled ways. As 
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we shall show, this can be done by using the output of an instrument as 
an input to another instrument. The first instrument is degenerate in the 
sense that it produces no acoustic output. Instead it plays a series of 
notes that generate a long and frequently changing modulation function 
for the second instrument. The second instrument may play only a 
single long note whose sound is varied by the parameter supplied by 
the first instrument. 

A typical and important use of interactions is amplitUde control to 
produce swells and diminuendos as notated on the conventional score 
in Fig. 46. Such a modulation is unwieldy to program with the apparatus 
previously described. Although we can draw continuous amplitude 
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Fig. 46. Interconnected instruments for amplitude and glissando control: 
(a) musical score; (b) block diagrams of instruments; (c) continuous control 
functions. 
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functions, as is done in Fig. 44, these are sampled at the beginning of 
each note and that amplitude is held constant for the duration of the 
note; this effect is clearly not the desired objective of Fig. 46. Further
more, since the inputs to instruments are set at the beginning of each 
note, the sampling effect is hard to avoid. In Fig. 46a, measures 4 and 
5 also call for a combination of glissando with amplitude variation. The 
last measure applies a continuously changing amplitude control to a 
sequence of notes. As an example of interacting instruments, we shall 
produce these effects. 

The apparatus for interactions is the input-output blocks BI-BIO, 
which are shared by all instruments. The output of instrument A may be 
left in a block for subsequent use by instrument B. This requires that A 
be computed before B. Pass III computes the instruments in order of 
their numbers, 3 any that are #1 first, then any that are #2, and so forth. 
Hence by making A a lower numbered instrument than B, the proper 
order can be guaranteed. An additional requirement is that the block 
used for communication cannot be used for other purposes which 
would overwrite the output of A before B uses it. Also, in contrast to 
most instruments, A can generate only one voice at a time. 

A special unit generator LSG, which rapidly computes functions 
formed from straight-line segments, is useful in instruments that 
generate control functions. Two such generators are used for instru
ments I and 2 in Fig. 46 to produce amplitude- and frequency-control 
signals, respectively. The operation of LSG is simply 

111 = 111 + 121 

0 1 = III 

or in other words 11 is incremented by 12 for each sample and 0 is 
equal to 11. Because only addition is involved, the process is rapid. 11 
will be set to a desired initial value and 12 to the slope of a linear 
function that starts at I I. I I and 12 can be reset at any time, thus 
changing the value of 0 and the slope abruptly. In instrument #1, Pass 
III variables 3 and 4 are used for 11 and 12. These will be set with SV3 
records which are generated by a Pass I subroutine PLF4 to achieve a 
particular amplitude-control function. Instrument #2 produces the 
same effect for pitch. The outputs of instruments 1 and 2 are put in 
blocks B2 and B3 where they form inputs to instrument 3. 

Instrument 3 is a modification of the envelope instrument which was 

3 As of February 21, 1968, this feature was not yet programmed in Music V. 
However, it seems both desirable and easy to insert. 
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developed in Fig. 39, and it uses the C0NVT function for that instru
ment. The additional amplitude function B2 is multiplied by the normal 
amplitude input P5. The continuous amplitude-control function is 
written in decibels (as shown in Fig. 46c) , and B2 is the exponential 
transformation 

B2 = 10 ** (Continuous ami~itude functiOn) 

Thus, the decibels of the normal amplitude function and the continuous 
function are additive. If the continuous function is 10 dB and the normal 
function is 50 dB, the resulting sound will be at 60 dB. 

The normal frequency input P7 is mUltiplied by the additional 
frequency-control function B3. The continuous pitch function (also 
shown in Fig. 46c) will be written in our standard logarithmic scale, and 
B3 will be the exponential transformation 

B3 = 2 ** continuous pitch function 

Thus a continuous pitch function of 0 produces no change in pitch, a 
continuous pitch function of 1 produces a one-octave upward shift, and 
so forth. The computation of V3-V6 to achieve both the exponential 
conversions and the proper increments will be done by a PLF 4 
subroutine. 

Input VI specifies the proportion of frequency shift in the vibrato, 
proportionality being controlled by a multiplier. Such Pass III multi
plication is essential rather than multiplication by the C0NVT function, 
because frequency can vary over a note. 

The annotated PLF4 program is given below. The pitch and ampli
tude functions will be stored as Pass I variables in the usual notation. 
The functions shown in Fig. 46c are stored by the statements 

SV1 0 50 0 0 4 20 8 0 12 20 19.99 0 20 20 24 0 ; 
SVI 0 70 0 .583 12 .583 14 1.167 16 .333 19.99 .583 20 0 

240; 

The calling record for PLF4 is 

PLF 0 4 TS END FA FP ; 

where TS is the starting time of the control functions, END is the 
duration of the control functions, FA is the starting variable of the 
amplitude function, and FP is the starting variable of the pitch function. 
For the example 

PLF 0 4 0 24 50 70 ; 

is the specific calling record. 
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PLF4 generates a sequence of SV3 records to form the inputs to 
instruments 1 and 2, and generates two N0T records to activate these 
instruments from 0 to 24 sec. 

Text Notes 

SUBR0UTINE PLF4 
C0MM0N IP, P, D 
DIMENSION IP(10), P(100), D(2000) 
TS = P(4) 
END = P(5) 
NA = P(6) 
NP = P(7) 
1= NA 2 
IP(1) = 5 
P(l) = 4.0 
P(3) = 3.0 

100 P(4) = 10.0 ** (D(I + 1)/20.0) 3 
P(5) = (10.0 ** (D(I + 3)/20.0) - P(4»/«D(I + 2) 

- D(I» * D(4» 
P(2) = TS + D(I) 4 
CALL WRITE 1 (1 0) 
IF (D(I + 2) - END) 101, 102, 102 5 

101 1=1+2 6 
G0 T0 100 

102 1= NP 
P(3) = 5.0 

103 P(4) = 2.0 ** D(I + 1) 
P(5) = «2.0 ** D(I + 3) - P(4»/«D(1 + 2) 

- D(I» * D(4» 
P(2) = TS + D(I) 
CALL WRITEl(10) 
IF(D(1 + 2) - END) 104, 105, 105 

104 1=1+2 
G0 T0 103 

105 IP(1) = 4 8 
P(1) = 1.0 
P(2) = TS 
P(3) = 1.0 
P(4) = END 
CALL WRITE1(10) 
P(3) = 2.0 
CALL WRITE1(10) 
RETURN 
END 
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Notes 
1. These statements extract the essential information for PLF4 from 

the P array. 
2. These statements prepare to write SV3 records for V3 and V 4. 

P(I) is 4 for SV3. P(3) = 3.0 designates V3 as the first variable. 
One pair of V3 and V 4 values will be written for each segment of the 
amplitude function. I = NA will set the initial value of the equations 
starting at 100 for the first segment. 

3. This and the subsequent line calculate the initial value and slope for 
the first segment. The slope is in units per sample. D( 4) is the 
sampling rate. 

4. The time of the SV3 card is the beginning time of the first segment 
plus TS. 

5. This statement terminates the amplitude function at the end of the 
current segment if D(I + 2) ~ END. 

6. I is incremented by 2 and control is transferred to 100 to continue 
with the next segment. 

7. These statements write out SV3 records for variables 5 and 6 to 
produce the pitch control. The process is exactly analogous to 
amplitude control. 

8. The rest of the program writes out two N0T records 

N0T TS 1 END 
N0T TS 2 END 

that play two notes on instruments 1 and 2 which start at TS and 
have duration END. 

The score records to produce the Fig. 46 output are given below. The 
definition of the instruments and the Pass III stored functions are 
omitted since they are completely standard. 

SVI 0 50 0 0 4 20 8 0 12 20 19.99 0 20 20 24 0 ; 
SVI 0 70 0 .583 12 .583 14 1.167 16 .333 19.99 .583 20 0 

240; 
PLF 0 4 0 24 50 70 ; 
N0T 0 3 11.8 40 262 ; 
N0T 12 3 7.8 40 262 ; 
N0T 20 3 .8 40 392 ; 
N0T 21 3 .8 40 349 ; 
N0T 22 3 .8 40 330 ; 
N0T 23 3 .8 40 294 ; 
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Fig. 47. Graphic score with continuous changes in amplitude and pitch. 

The graphic score of the resulting sound is shown in Fig. 47. Beginnings 
and ends of individual notes are indicated by short vertical bars on the 
amplitude and pitch curves. An attack or decay will be produced by the 
envelope generator at these times. Amplitude and pitch changes occur 
continuously and independently of note boundaries. 

Parting Exhortations to the Student 

The tutorial examples are now complete. However, the student's 
task-harnessing the computer to his objectives-has just begun. A 
mere reading of the examples is not sufficient to master their content. 
The examples are a far from complete description of the Music V 
program; the Music V program as written will produce only a fraction 
of the wanted and achievable computer sounds. 

Programming skills come only with practice. The problems accom
panying this chapter provide some possibilities for practice. Their 
solution by the student is greatly recommended. If limited time forces a 
choice between reading the chapter and working the problems, working 
the problems is to be preferred. 

Most of the problems are based on the material given in the chapter. 
In some cases, more details about the Music V program must be 
obtained. These can be found in the Music V Handbook which 
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forms the next part of this book. The handbook is intended to be a 
complete description of the program, arranged and indexed for 
references. Information about Music V that has been given in this 
chapter is also presented in the handbook, and is usually easier to find 
there. The student should become accustomed to answering his 
questions from the handbook as soon as possible. 

Although it is not necessary to read the entire handbook to make use 
of its information, anyone who plans to make extensive use of Music V 
should read the sections describing the operations of the various parts 
of the programs. Detailed block diagrams as well as verbal descrip
tions of operations are included. Reading the handbook is a helpful 
preparation for reading the programs themselves. 

Music V is written almost entirely in F0RTRAN. Consequently, it is 
practical to read the programs and understand their operation. Such 
understanding is essential if major modifications of the programs are to 
be made. The advanced user will want to make such modifications; 
Music V was written with this objective in mind. Hence the student's 
final teacher, and the final arbiter of questions about the operation of 
Music V, is the programs. Such is the nature of computer programs. 

Annotated References by Subject 

Computers in General 
J. Bernstein, The Analytical Engine (Random House, New York, 1964). A non

mathematical and elementary introduction to computers and what they 
can do. 

A. Hassitt, Computer Programming and Computer Systems (Academic Press, 
New York, 1967). A discussion of programming from an elementary to an 
advanced viewpoint. 

Fortran Programming 
S. C. Plumb, Introduction to Fortran (McGraw-Hili, New York, 1964). 
E. I. Organick, Fortran IV Primer (Addison-Wesley, Reading, Mass., 1966). 
S. V. Pollack, A Guide to Fortran IV (Columbia University Press, New York, 

1965). 
These are three self-instructional texts that teach Fortran. 

Graphic Scores 
M. V. Mathews and L. Rosler, "Graphic Scores," Perspectives of New Music 6, 

No.2 (1968). A detailed article illustrating one technique for composing 
with the aid of a computer. 

Problems for Chapter 2 

Parameters of Training Orchestra 
Sampling rate-20,OOO Hz 
Function block length-512 
Number of functions-IO 
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Range of functions- - 1 < F < + 1 
1-0 block length-512 
Number of 1-0 blocks-l0 
Range of unit generator inputs and outputs- - 2047 to + 2047 
Maximum number of note parameters-30 
Number of Pass III variables-200 
Maximum number of voices-30 
Pass II G array length-l 000 
Pass I D array length-2000 

Even-Tempered Scale 
Frequency Logarithmic 

Note in hertz pitch 

C 262 0 
C# 277 .083 
D 294 .167 
D# 311 .250 
E 330 .333 
F 349 .417 
F# 370 .500 
G 392 .583 
G# 415 .667 
A 440 .750 
A# 466 .833 
B 494 .917 

Introductory Score- Writing Problem 
1. Using the orchestra defined in Fig. 27 write the computer score for the 

following conventional score. 

120 ri t (J 100) 

e 

p mf f 

Assume that in amplitude, p ~ 50, mf ~ 150, and f ~ 500. Assume that 
staccato notes sound for .5 the nominal time occupied by the note (for 
example, a staccato quarter note at a tempo of 120 would sound for .25 
sec). Legato notes sound for .8 of their nominal time, and slurred notes for 
1.1 of their nominal time. (Remember that a Music V instrument can play 
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more than one note at a time. The limit in the training orchestra is 30 
simultaneous voices.) 

Simple Unit Generators 
2. Write out the samples Fn(j) j = o ... 511 for the following stored 

functions. To shorten your answers, use ... to indicate a sequence of 
identical samples. 

(a) F4, a symmetrical square wave with amplitude + 1 or - 1 

+1 

-I 

(b) F5, a triple pulse wave as shown 

o 
(c) F6, a sine wave of peak amplitude 1 (write only the first 20 samples) 

(d) F7, an attack function with shape 

1 
o 5 

3. For an oscillator with 

11 = 500 
12 = 50.35 

and a function FI 

\ 
506 511 
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o 500 511 

calculate S1, [Sl]MOd 511, F([SI]MOd 511) 

and 0 1 for i = 0 ... 15 

Assume [SI]MOd 511 is rounded to the next lower integer in looking up values 
of Fl. Calculate the truncation error in 0 1 due to rounding for i = o ... 15. 

4. Instrument 1 consists of only one oscillator 

0SC P5 P6 B2 F4 P30 ; 

where F4 is the symmetrical square wave defined in problem 2a. Write the 
samples B2(l) ... B2(20) generated by the following notes 

(a) N0T 0 1 .001 1000 250 ; 
(b) N0T .002 1 .001 1000 50 ; 
(c) N0T .004 1 .001 500 128.3 ; 
(d) N0T .006 1 .001 1000 600 ; 
(e) The numerical frequency of the last note is 

600 
511 ·20,000 = 23,500 Hz 

This frequency is much greater than half the sampling rate. What is the 
apparent period of B2(1) ... B2(20)? This period (about 6 samples) results 
from foldover. 

5. Instrument 1 shown in Fig. 27 uses the symmetrical square wave of 
problem 2a for its stored function. Write the output samples So, Sb ... , 
S60,OOO resulting from the following score. Abbreviate your answer by 
designating blocks of zero samples by ... 

N0T 0 1 .0005 1000 60 ; 
N0T .5 1 .0006 500 200 ; 
N0T 1 1 .0002 100 10 ; 
N0T 2 1 .001 500 70 ; 
N0T 2.0002 1 .0004 500 100 

6. Instrument 2 shown below uses F4 function of problem 2a. It plays 
the note 

N0T 0 2 .001 500 80 3 100 ; 

Plot the samples 

B2(1) ... B2(20) 
B3(1) ... B3(20) 
B4(l) ... B4(20) 
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P5 P6 P7 P8 

Instrument 2 

Simple Instruments 
7. Score the instrument diagrammed here. 

(a) What do P5, P6, and P7 control? 
(b) What is the % vibrato? 
(c) <Jo amplitude variation? 
(d) What is the rate of vibrato? 
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(e) Write score records for Fl, an attack and decay function; F2, a 
vibrato function; and F3, a modified square-wave waveform. 

(f) Write the score for the following passage 

J ~----J' .r J I J j J I J. 
8. Diagram, score, and write functions and a note for. an instrument 

that has attack and decay in amplitude and a frequency attack. The 
frequency of each note should start 10% low and rise linearly to the final 
frequency of the note within the first 1070 of the note's duration. 

9. Diagram and score an instrument with attack and decay in amplitude, 
with vibrato, and with attack and decay on the vibrato. 

10. Diagram an instrument that uses four 0SC's to change the wave
form of a note as a function of both amplitude and frequency. The com
position of the output waveform should be 

A·[{1000 - f}{(1 - A)0SC1 + A·0SC2 } 

+ {f}{(1 - A)0SC3 + A·0SC4}] 

where A is an amplitude control going from 0 to 1 and f is frequency in 
hertz. 

CfJNVT Functions 
11. Write a C0NVT function for the instrument shown in Fig. 32 which 

will process a note record of the form 

N0T T 2 D A F ; 

where A is amplitude in decibels and F is frequency in hertz. V50 is the 
proportion of vibrato. For each N0T record, C0NVT should write out 
three records to produce a three-note chord, the highest voice having a 
frequency of A Hz, the middle voice A/2 Hz, and the lowest voice A/4 Hz. 

12. Write a C0NVT function for the instrument shown in Fig. 33 which 
reads a N0T record of the form 

N0T T 3 D Al A 2 •• • An Freq 

where A1 ... An is a sequence of amplitudes in decibels and Freq is frequency 
in hertz. The C0NVT function outputs n + 1 successive notes of equal 
duration, whose total duration is D. The first note starts at amplitude 0 
(linear scale) and ends at A1(dB), the second goes from Al to A2 , ••• , the 
last goes from An(dB) to 0 (linear scale). 

Additional Unit Generators 
13. Design an instrument with an amplitude-modulated band-pass noise 

having a bandwidth equal to t the center frequency of the noise band, and 
a noise band whose center frequency changes linearly from an initial to a 
final frequency during each note. 
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14. Design an instrument having a random amplitude variation of 
± 50'70 of the average amplitude and a low-pass spectrum going from 0 to 
15 Hz. 

15. Design an instrument producing a band-pass noise by both frequency 
and amplitude modulation. Have the center frequency of the noise band 
controlled by P7 and the (bandwidth/center frequency) ratio by P8. 

16. Write a C0NVT function for the instrument shown in Fig. 39 
which will generate notes with an attack time of .1 sec and a decay time of 
.2 sec, provided the note duration is greater than .3 sec. The steady-state 
time should be (duration - .3) sec. For notes of duration between .2 and 
.3 sec, the attack time should be .1 sec and the decay time (duration - .1) 
sec. Any durations less than .2 sec should be increased to .2 sec. 

17. Compute 12 and 13 for filters with a center frequency of 500 Hz and 
bandwidths of 2 Hz, 10 Hz, 50 Hz, and 260 Hz. What is the dc gain of these 
filters? What is the peak frequency gain? What is the maximum input 
signal that will not cause the output to exceed 2048 ? 

Composing Subroutines 
18. Write a set of PLF routines that will process note data in Pass 1 

memory. Assume that the note data are stored in the Pass I D array in the 
manner used for the Fig. 41 example, and that notes will be written for the 
instrument shown in Fig. 39. Write the following subroutines: 

(a) PLFI rewrites n notes in the D array, multiplying all logarithmic pitch 
intervals by S, adding a constant K to the logarithmic pitch intervals, and 
changing the tempo by a factor T. 

(b) PLF2 substitutes a new note for note n in the array. 
(c) PLF3 makes a copy of n notes starting at D(m) and stores the copied 

notes at D(p), overwriting anything that was previously at D(p). 
(d) PLF4 divides each of n notes starting at D(m) into k notes of equal 

length whose total duration equals that of the note they replace. The new 
notes are written starting at D(p). 

(e) PLF5 writes N0T records for n notes starting at D(m). The starting 
times of all notes are shifted by T sec. 

Use these subroutines to compute a composition. 

Graphic Scores 
19. Write a subroutine PLFI that will generate pitch and amplitude 

functions as the computed functions 

Pitch(t) = f1(t) * f2(t) + f3 (t) * f4(t) 
Amplitude(t) = f5(t) * f6(t) + f7(t) * fs(t) 

where f1(t) through fs(t) are functions stored in the D array. Compute the 
starting and stopping times of notes as the positive-going zero crossings and 
the negative-going zero crossings, respectively, of a function 

Notes(t) = fg(t) * f10(t) + (1 - fg(t)) * f12(t) 
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where fg(t) , flO(t) , f12(t) are stored in the D array. Let f1o(t) and f12(t) 
correspond to the rhythmic sequence of two well-known melodies. What 
notes will be generated when fg(t) = 1 ?; when fg(t) = O?; when fg(t) has 
some intermediate value? Follow the general procedures used in the Fig. 
44 example. 

Pitch Quantizing 
20. Write PLS1, a pitch-quantizing routine which will quantize a voice 

for instrument 1 into the closest note in the C major scale. Assume that 
voices for instruments 2 and 3 produce notes in synchrony with instrument 
1. Adjust these voices to harmonize instrument 1 according to the following 
rules. 

(a) Harmonize C and E with the chord CEG. 
(b) Harmonize F and A with the chord FAC. 
(c) Harmonize Band D with GBD. 
(d) Harmonize G with CEG if it starts on a multiple of four beats and 

with GED if it starts on any other beat. 

Use a minimum adjustment of the other voices to achieve these chords. 

Interconnected Instruments 
21. Define an orchestra and an appropriate C0NVT function so that 

the output of an instrument is the sum of two 0SC's, the proportion of 
each being determined by two separate instruments 11 and I2. The propor
tion will change continuously and frequently during the course of the notes 
to add interest to the sound quality. Use LSG unit generators and follow 
the general procedures of the Fig. 46 example. 
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3 Music V Manual 

1. Introduction 

This chapter contains a detailed description of the operation and 
structure of the Music V program. It provides reference material for 
users of Music V and source material for those who desire intimate 
knowledge of a sound-generating program in order to write their 
own. 

Music V is the direct descendant of Music IV, a program that was 
widely used for five years and has been described in the literature. 1 

Music V had to be rewritten to change from a second to a third genera
tion computer (the IBM 7094 to the GE 645). However, in the process 
certain improvements were made, especially changes that made the 
program more easily adapted to other computers. It may be helpful to 

'list these changes for the benefit of users of Music IV. 

Principal Differences between Music IV and Music V 
1. Music V is written almost entirely in F0RTRAN IV; it is much 

easier to use on a wide variety of computers. In addition, the F0R TRAN 
programs have been written so as to be easily modifiable to accommo
date the different memory sizes and different word lengths of various 
computers. 

1 See Annotated References at end of chapter. 
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Despite being written in F0RTRAN, Music V is potentially as fast 
as Music IV. This potentiality can be achieved by writing the inner 
loops for certain computations (the unit generators) in basic machine 
language. Such programs are, of course, specific to a given computer, 
but at most only a few hundred instructions are involved. 

F0R TRAN unit generators can be intermixed with basic machine
language generators. Initially, the program can be operated entirely 
with F0RTRAN generators. Gradually, the most frequently used 
generators can be coded in machine language. Exotic and infrequently 
used generators may remain in F0RTRAN at little cost. New generators 
can easily be added in F0RTRAN. 

2. Instruments are defined as part of the score rather than in a 
separate program. (In Music IV the orchestra was assembled by the 
BE F AP assembly program.) In this way the entire composition-notes 
and timbres-is specified in a single document, the score. In addition, 
instruments may be redefined or changed at any point in the score. 

3. A given instrument may play any number of voices simultaneously. 
Only one instrument of a given type need be defined; the composer no 
longer need worry about losing notes that overlap in time on an 
instrument. Unit generators are also mUltiply used; only one copy of 
each type of generator is in the memory; memory is thus conserved. 

4. A free-field format for score cards is used. Successive fields are 
separated by one or more blanks or by commas. Mnemonics are used 
to denote operation codes and unit-generator types. This form of score 
is easier both to write and to read than the Music IV fixed-field score. 

The score is interpreted by a completely separate subroutine READ I 
and the output is entirely in numerical form. Therefore, it is possible 
to change the form of the score simply by replacing the READ I 
routine. Moreover, since all subsequent parts of the program are strictly 
numerical, a maximum of machine independence is achieved in the 
F0RTRAN programs. 

Overview of Music V 
A block diagram of the over-all operation of the programs is shown 

in Fig. 48. The main programs, the principal subroutines, the flow of 
control, and the flow of data are indicated. The few basic machine
language programs are especially marked. 

Pass I causes the score to be read by the READ I subroutine. The 
score may be thought of as a sequence of data cards prepared by the 
user, although the actual medium could also be a computer-connected 
typewriter, a graphic computer, or a data file. 
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F(IlRTRAN IV Machine-language 
subroutine subroutine 

Fig. 48. Block diagram of Music V operation. 

Cards are processed by Pass I in the order in which they occur in the 
score. Data are grouped into data statements which are terminated by a 
semicolon; a data statement need not correspond to a single card. The 
first field of the data statement specifies an operation code, and the 
second field specifies an action time when the operation is to be done. 
This time is measured from the beginning of each section of the music. 
The other fields may vary depending on the particular operation code. 
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The total number of fields may vary; no more than necessary need be 
used. 

The principal operations are to 

(1) Cause a note to be played 
(2) Define an instrument 
(3) Store data in Pass I, II, or III memory 
(4) Call a subroutine in Pass I or II 
(5) Generate and store a function in Pass III 
(6) Terminate a section or a composition. 

Pass I calls several subroutines. The function of the READ and 
ERR0R subroutines are obvious. The PLF subroutines are note
processing and generating routines which the composer has the option 
to provide if he wishes to make use of this possibility. M0VR and 
M0VL are two short machine-language routines that move a character 
to the right and left end, respectively, of the computer word. These are 
two of the few essential machine-language routines that must be 
provided. 

Data statements are sent to Pass II via a data file recorded on disk 
or tape. Each statement is still labeled with an action time in the second 
field. The principal function of Pass II is to sort the data statements 
into ascending order of action times. (In Pass I, action times need not 
be ordered; in Pass III a strictly ascending order is required.) The 
sorting is carried out by two subroutines, S0RTFL and S0RT. These 
are provided as F0RTRAN IV routines; however, the sorting process 
can be substantially speeded by writing or obtaining machine language 
versions. Sorting programs are quite generally available. 

After sorting the data statements for time, Pass II (optionally) applies 
a metronome function to distort the time scale. Subroutine C0N is 
used to read the metronome markings which are stored in the Pass II 
memory. Gradual accelerandos and ritardandos are possible, as well as 
sudden changes in tempo. 

User-provided subroutines, called PLS subroutines, may be 
optionally supplied and applied to the data records after time sorting. 

Just before each data statement is sent to Pass III, a C0NVT sub
routine operates on all its fields. C0NVT must be supplied by the user; 
it replaces all the CVT routines in Music IV. For example, it is often 
given the job of converting frequency notation from some humanly 
simple scale like 12 tones-I ... 12-to the proper input numbers for 
oscillator frequency control. Inputs for attack and decay generators are 
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conveniently computed here. Frequently, C0NVT adds parameters to 
the data statement. 

The actual acoustic samples are computed in Pass III. The unit 
generators are encoded in SAMGEN (in basic machine language) and 
F0RSAM (in F0RTRAN IV). The Pass III program organizes these 
unit generators into instruments and plays the instruments as specified 
by the score. In addition, the GEN routines may be called upon to 
compute functions that are stored in the Pass III memory and are 
referred to by unit generators (e.g., 0SC). 

Data statements which are the input of Pass III have action times 
written in their second field; these action times are now monotonically 
ordered; they determine the times at which all processing and generating 
in Pass III are performed. 

Almost all information in Pass III is stored in one large array called 
1. It contains instrument definitions, parameters of notes currently 
being played, stored functions (from GEN routines), input-output 
blocks for unit generators, and certain other data. The size of I can be 
adjusted to a particular machine by an appropriate dimension 
statement. 

Various other essential parameters-such as the length of a stored 
function, the number of stored functions, the length and number of 
input-output blocks, the maximum number of simultaneously sounding 
voices-will change with different computers and compositions. These 
parameters have been assembled into the IP array, which is compiled 
by a BL0CK DATA subprogram. Hence the parameters can be easily 
changed. 

The usual unit generators and GEN functions use fixed-point arith
metic and store their results in the I array. (It would not be difficult to 
use floating-point routines instead, or to use both.) However, the routines 
do not produce F0R TRAN integers. Instead, F0R TRAN fixed-point 
numbers are multiplied by 2n

, which in effect puts their decimal points 
n places from the right end of the memory words. Values of 2n for unit 
generators and for GEN functions are also compiled into the IP array. 
These values can be changed to accommodate different lengths of 
memory word. 

Output samples are written on a digital output tape by a combina
tion of SAM0UT and FR0UT subroutines. These are inherently 
machine-language operations, and there is no way to avoid so writing 
them. However, they can be brief and demand little programming time. 

Chapter 3, which presents the Music V manual, is organized in the 
same manner as the program; it starts with a discussion of Pass I and 
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its subroutines and then proceeds to the other passes. The actual 
F0R TRAN programs are, of course, the ultimate and best description 
of Music V; they should be read along with the manual. 

2. Description of Pass I 

The purpose of Pass I is to read the input data (score) and translate 
it into a form acceptable to the subsequent passes. The operation is 
diagrammed in Fig. 49. 

Fig. 49. Pass I. 
statement 

The interpretive input routine READ! (and READO, which is used 
to read the first record) is written in F0RTRAN IV. It is designed for a 
computer with a word length of 36 bits. It requires two user-supplied 
subroutines (M0VL, M0VR) to be written in machine language for 
purposes of character shifting. Minor modifications to READO and 
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READ I are necessary for computers of different word length and for 
different modes of input (see Section 7 for details). 

The input data comprise a series of data statements punched in free 
format in columns I through 72 of cards. A data statement need not 
correspond to a single card. 

A data statement begins with an operation code and is terminated by 
a semicolon. Other fields of information in the statement are separated 
by blanks (any number) or commas. Null fields, i.e., those denoted by 
successive commas, are assumed to have the value O. With the exception 
of statements used in instrument definitions (see Section 4), the fields 
of a data statement are referred to as P fields since they load sequentially 
into the P array located in C0MM0N storage in Pass I. 2 The operation 
code, written as a three-letter mnemonic (see Section 3) is converted to a 
numerical equivalent and goes into pel); the second field, containing 
an action time that specifies when the operation corresponding to the 
code is to be performed, goes into P(2). The other fields are interpreted 
according to the specifications of the various operation codes. If a 
field other than the OP code is written as an asterisk (*), the value 
stored in the corresponding position of the P array will be the value 
previously stored there. This feature can be employed to advantage 
when parameters remain constant over a sequence of data statements. 

The input data are terminated with the data statement having the 
operation code of TER. Failure to provide this statement will result in 
an error comment. 

The input program makes certain checks on the data statements and 
when errors are detected the value of IP(2), located in C0MM0N 
storage, is set to 1. Since this location is initially 0, Pass I can verify at 
its conclusion whether or not errors have been detected and, if so, the 
run is terminated without proceeding to Pass II. Termination is accom
plished by calling a nonexistent subroutine named HARVEY. 

As the data cards are read, they are printed, and any error comments 
are printed out after the offending statement. Data statements begin
ning with operation code C0M result only in printing and are not 
processed further. Such statements may be used to annotate the input 
data with comments. 

In addition to establishing the appropriate values in the P fields, 
READ 1 counts the number of P fields in the data statement and sets 
IP(1) (in C0MM0N storage) to this count. Pass I is then a1)le to process 
the data statement as is required by the operation code and to write 

2 C0MM0N storage in Pass I is arranged according to the statement, 
C0MM0N IP(10), P(100), D(2000) 
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out the translated statement as N, (P(I), I = 1, N), where N = IP(1), 
to be read by Pass II. 

Pass I contains a data array D(2000) which may be used for general 
storage and may in particular contain data for the PLF subroutines. 
SVI and SIA data statements load the D array. (SVI 0 10 100; would set 
D(10) = 100.) The following D variables have special significance. 

D( 4) = Sampling rate 

D(S) = Stereo-mono flag 

D(S} = 1 for stereo 

D(S) = 0 for mono 

3. Operation Codes and Corresponding Data Statements 

The operation codes are listed in the following table. 

Numerical 
Value Mnemonic 

1 N0T 
2 INS 
3 GEN 
4 SV3 
5 SEC 
6 TER 
7 SVI 
8 SV2 
9 PLF 

10 PLS 
11 S13 
12 SIA 
13a C0M 

Purpose 

Play note 
Define instrument 
Generate function 
Set variable in Pass III 
End section 
Terminate piece 
Set variable in Pass I 
Set variable in Pass II 
Execute subroutine in Pass I 
Execute subroutine in Pass II 
Set integer in Pass III 
Set integer in all passes 
Print comment 

a This code number is used only by READ 1. A data statement beginning with 
C0M is printed but is not processed further. 

Remarks 
1. Only the first three characters of the operation code mnemonic 

are scanned; thus a user may write N0TE, INSTRUMENT, GEN
ERATE, SECTI0N, TERMINATE, or C0MMENT in place of the 
three-letter codes if he prefers. 

2. Integer-valued P fields may be written with or without decimal 
points. 
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3. Null fields, those denoted by successive commas, are assumed to 
be O. 

4. Fields specified as * are assumed to have the value previously 
stored there. This feature provides continuation over a sequence of 
data statements. 

Description of Data Statements 
Each statement begins with the mnemonic operation code (at least 

three letters). The second field must contain the time at which the 
operation is to be performed. Therefore the descriptions that follow the 
specifications will begin with the third field. All statements are 
terminated by a semicolon. 

1. N0T -Play note 
P(3) Number of instrument on which note is to be played 
P( 4) Duration of note (in beats) 
P( 5). .. As desired by instrument referred to in P(3) 

2. INS-Define instrument 
P(3) Number of instrument being defined 

3. GEN-Generate a function 
P(3) Number of generating subroutine (see Section 25) 
P( 4) Number of function to be generated 
P(5). .. As required by generating subroutine 

4. SV3-Set variable( s) in Pass III, starting with variable N 
P(3) Number of first variable to set = N 
P( 4) Value of variable N 
P( 5) Value of variable N + 1 
P(6) ... (Number of variables to be set is automatically deter-

mined by the word count.) 
5. SEC-End section and reset time scale to zero 
6. TER-Terminate piece at specified time relative to last section 
7. SVI-Set variable(s) in Pass I, starting with variable N 

P(3) Number of first variable to set = N 
P(4) Value of variable N 
P(5) Value of variable N + 1 
P(6) ... (Number of variables to be set is determined by the 

word count.) 
8. SV2-Set variable in Pass II 

Fields are as in SVI 
9. PLF-Execute subroutine in Pass I 

P(3) Number of subroutine: 1, 2, 3, 4, or 5 
P( 4). .. As required by subroutine referred to in P(3) 
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10. PLS-Execute subroutine in Pass II 
Fields are as in PLF 

11. SI3-Set integer(s) in Pass III, starting with integer N 
P(3) Number of first integer to be set = N 
P(4) Value of integer N 
P( 5) Value of integer N + 1 
P(6) ... (Number of integers to be set is determined by the 

word count.) 
12. SIA-Set integer(s) in all passes 

P(3) Number of first integer to be set = N 
P(4) Value of integer N 
P( 5) Value of integer N + 1 
P(6) ... (Number of integers to be set is determined by the 

word count.) 

4. Definition of Instruments 

An instrument definition begins with the data statement" INS t n ; " 
where t specifies the time at which instrument n is to be defined. 
Subsequent data statements indicate the unit generators used in the 
instrument and their associated parameters. The data statement 
" END;" terminates the definition. 

The unit generators that are recognized by name (i.e., three-letter 
mnemonic) by READI follow. 

Type 
Name Parameters Number Purpose 

0UT II,0 ; 1 Monophonic output 
0SC II, 12, 0, F, S ; 2 Oscillator 
AD2 II, 12, 0 ; 3 Two-input adder 
RAN II, 12, 0, S, T1, T2 ; 4 Random function generator 
ENV 11, F, 0, A, SS, D, S ; 5 Envelope generator 
STR II, 12, 0 ; 6 Stereophonic output 
AD3 II, 12, 13, 0 ; 7 Three-input adder 
AD4 11, 12, 13, 14, 0 ; 8 Four-input adder 
MLT II, 12, 0 ; 9 Multiplier 
FLT II, 12, 13, 0 ; 10 Filter 
RAH 11, 12, 0, S, T ; 11 Random and hold function 

generator 
SET II; 102 Set new function 

See Section 5 for a more complete description of the unit generators. 
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Data statements that specify unit generators may begin with the 
three-letter mnemonic name or with the type number. READ1 recog
nizes the 12 types listed in the table above by name,3 and makes a 
check on the proper number of parameters. If, for example, four or 
six parameters are listed for 0SC, which requires five parameters, an 
error condition will result, causing the job to terminate at the conclusion 
of Pass I after all input cards have been scanned. Since unit generators 
may be labeled by type number as well as name, it is possible to add 
units to the subroutines F0RSAM (coded in F0RTRAN IV) or 
SAMGEN (coded in basic machine language) used in Pass III without 
the need for modifying READ1. Data statements referring to these new 
units by type number will be accepted by READ 1, but no check will be 
made for proper number of parameters. 

The notation for these parameters used on the data statement is as 
follows: 

Pn refers to nth P field on note card 
Vn refers to nth location in variable storage of Pass III 
Fn refers to nth stored function 
Bn refers to nth 1-0 block used by units 

For example, instrument No.3 would be defined at t = 10 by the 
following data statements: 

INS 10 3 ; 
0SC P5 P6 B2 F1 P30 ; 
AD2 P7 VI B3 ; 
0SC B2 B3 B2 F2 P29 ; 
0UT B2 B1; 
END; 

READ 1 translates each mnemonic data statement into an all-numerical 
data statement as follows: 

(1) In all data statements, PI contains 2, the numerical equivalent 
of INS, and P2 contains the action time (10 in the example). 

(2) P3 contains the instrument number (3) in the first data statement. 
(3) In the second through the last data statements, P3-Pn contains 

the numerical equivalent of the mnemonic data statement fields 
Pl ... P1ast, respectively. The name equivalents for the unit 
generators are their type numbers listed above. The equivalents 
of the P's, V's, etc., are as follows: 

3 The "named" generators change frequently. The table describes the state of 
affairs in April 1968 at Bell Laboratories. 
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Pm~m 1 ::;; m :::;; 100 
Vn~100 + n 
Fp ~ -(100 + p) 
Bq ~ - q 1 ::;; q ::;; 100 

The equivalents are unique because only 100 P's and 100 B's are 
allowed. P's are represented by positive numbers from 1 to 100, 
V's by positive numbers greater than 100, B's by negative numbers 
from -1 to -100, and F's by negative numbers from -101 to 
-00. 

(4) The last mnemonic data statement, END, has only two fields, 
PI = 2 and P2 = action time. It is recognized in Pass III by its 
word count of 2; this terminates the instrument definition. 

The example is translated into the following numerical data 
statements: 

2 10 3 ; 
2 10 2 5 6 - 2 - 101 30 ; 
2 10 3 7 101 -3 ; 
2 10 2 - 2 - 3 -:.- 2 - 102 29 ; 
2 10 1 -2 -1 ; 
2 10 ; 

All passes of the program operate exclusively on the numerical state
ments; all mnemonics are translated by READ 1. 

5. Unit Generators 

fJUT: Output Unit (Numerical equivalent = 1) 
Diagram: 

I 

6 
Data statement: 0UT, I, 0 ; 
Operation: This unit generator adds the specified input into the specified 
output block thus combining it with any other instrument that con
currently uses the output block. 0 1 = 0 1 + 11 where i denotes the ith 
sample. 
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Example: One of the simplest P5 P6 

instruments is defined as 
INS, 0,1; 
0SC,P5,P6,B2,FI,P20; 
0UT, B2, BI; 
END; 

BI is often used as the output block. The location of the output block 
must be compiled into IP(lO) (see Section 17). 

@SC: Oscillator (Numerical equivalent = 2) 
Diagram: I I 12 

¥ 
f/) 

Data statement: 0SC, II, 12, 0, Fj, S; 
Operation: The oscillator generates functions and oscillations according 
to 

0 i = IIi· Fj([Sd mod function length in samples) 

and 

Si+ 1 = Si + 121 
So = initial value of sum 

where 0 1 is output, III is amplitude, Fj is a (stored) function, Sl is the 
sum, 121 (increment) determines the frequency of oscillation, and i 
indexes the samples. 

The frequency of the oscillation is 

F 
_ sampling rate x 12 

requency - f . I h . I unctIOn engt In samp es 

The length of the function in samples is equal to IP( 6) - 1. n 
(which = IP(6)) samples of each function are stored. The first and 
nth samples represent the same point on the function and must have 
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the same value. Hence the function is periodic with period n - I 
sample times. One note parameter P n must be reserved for the sum. 
The value of this parameter on the data statement determines the 
initial value of the sum So. Usually n is selected to be one of the last 
locations in note parameter storage; if P n is not written on the note 
card (cf. Section 4) Pn is automatically set to zero at the beginning of 
each note. 

Example: The example for the output box is also appropriate for the 
oscillator. FI determines the wave shape. P5 is the amplitude. P6 
determines the frequency. Specifically 

F 
_ P6 x sampling rate 

requency - f . I h . I unctIOn engt In samp es 

See Chapter 2, section on 0SC Generator, and Chapter 3, Section 6, 
for more details about 0SC. 

AD2, AD3, AD4: Two-, Three-, and Four-Input Adders (Numerical 
equivalent = 3; AD3 = 7; AD4 = 8) 
Diagram: I I I2 

Data statement: AD2, I I, 12, 0 ; 
Operation: Output is generated according to 

0 1 = 111 + 121 

The other adding units (AD3 and AD4) work in a manner analogous 
to AD2. 

Example: None. 

RAN: Random Function Generator (Numerical equivalent = 4) 
Diagram: II 12 

RAN 
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Data statement: RAN, 11, 12, 0, S, Tl, T2; 
Operation: Output is generated according to 

0 1 = 111* Ri(I21) 

RAN generates a low-pass random function whose peak amplitude 
is 111 and whose cutoff frequency is controlled by 121 and is approxi
mately 

B f'V sampling rate. 121 
f'V 2 512 

More specifically, Rl is a function, varying from -1 to + I, obtained 
by sampling the line segments that connect independent random 
numbers, N1• There are 512/12 samples between each pair of independent 
random numbers (see Fig. 50). The Nt's are uniformly distributed from 
-1 to + 1. 

+1 

o ~~-~-----::l~t-------+---'--- Samples 

-I 

etc. 

Fig. 50. Random function. 

S, Tl, and T2 are temporary storage locations which are normally 
kept in note-parameter locations. S holds a sum equivalent to the 0SC 
sum. Tl holds Ni- 1 and T2 holds Nl - Ni- 1 where Ni- 1 and Ni are 
the last two independent random numbers. 

Example: A typical instrument to P7 

produce a band-pass noise: 
INS, 0, 1; 
RAN, P5, P6, B2, P30, P28, P27 ; 
0SC, B2,P7,B2, Fl,P29; 
0UT, B2, BI; 
END; 
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Function F1 is assumed to be a sine wave. By means of the modula
tion inherent in the multiplication of the left oscillator input, B2 will 
contain samples of a band-pass noise whose center frequency is 

P7 x sampling rate 
function length 

and whose bandwidth is 

P6 x sampling rate 
512 

The peak amplitude is P5. 

ENV: Envelope Generator (Numerical equivalent = 5) 
Diagram: II 12 13 14 

Data statement: ENV, II, F j , 0, 12, 13, 14, S; 
Operation: This unit scans a function F j at a variable rate to produce an 
attack, steady-state, and decay amplitude envelope on a note. 

0 i = IIi * F j (scanned according to 12, 13, and 14) 

The first quarter of F j gives the attack shape, the second quarter of F j 

gives the steady state, the third quarter of F j gives the decay shape, the 
fourth quarter is unused and should be zero. 

Specifically, the sections of F j and the scanning rates are shown in 
Fig. 51. 

Scanning rates: 

~. 
I2lacations/somple 13 loc.lsam. 14 loc.lsam. 

~I~I~I 
I I I 
I I I 

I I : 
I I I 

i : : 
At tack ~ Steody state-':_ Decoy I 

o 1/4 FL 1/2 FL 3/4 FL FL 

Fig. 51. Envelope function. FL = function length in samples. 



MUSIC V MANUAL 131 

In a typical use 

12 = function length in samples 
4· attack time· sampling rate 

13 = function length in samples 
4· steady-state time· sampling rate 

14 = function length in samples 
4· decay time· sampling rate 

S is a temporary storage location (note parameter) to store a sum 
similar to the sum in 0SC. 

Example: The principal use is 
to generate envelopes 
for notes. 
INS, 0, 1; 
ENV, P5, FI, B2, P6, P7, P8, P20; 
0SC,B2,P9,B2,F2,PI9; 
0UT, B2, BI; 
END; 

P5 P6 P7 P8 P9 

P6, P7, and P8 determine attack, steady state, and decay times, respec
tively. P5 determines the maximum amplitude. P9 determines the 
frequency. FI determines the envelope and F2 the oscillator waveshape. 
Typically P6, P7, and P8 are computed by an elaborate C0NVT 
function (see Chapter 2, section on Additional Unit Generators, ENV). 

STR: Stereophonic Output Box (Numerical equivalent = 6) 
Diagram: 

Data statement: STR, 11, 12, 0; 
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Operation: This unit puts alternate samples from II and 12 into 0 

0 21 = IIi 
0 21+1 = I2i 

This arrangement is suitable for a stereophonic output conversion. 
The stereophonic output requires an output block length equal to 

two input-output block lengths. Typically Bl and B2 are set aside for 
output storage. 

Example: Two instruments are defined 
which are identical except 
that one uses the left 
channel and the other the 
right. 
INS, 0, I; 
0SC, P5, P6, B3, FI, P20; 
STR, B3, VI, BI ; 
END; 
INS, 0, 2; 
0SC,P5,P6,B3,FI, P20; 
STR, VI, B3, BI ; 
END; 

P5 P6 P5 P6 

Vi 

VI is assumed to be zero. Note that blocks BI and B2 have been reserved 
for output. 

In another example, a single instrument produces sound in both 
right and left channels. 

P5 P6 P7 P8 INS,O, I; 
0SC,P5,P6,B3,FI,P20; 
0SC,P7,P8,B4, F2,P21; 
STR, B3, B4, BI ; 
END; 

RAH: Random and Hold Function Generator (Numerical equivalent = 
11) 
Diagram: 
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Data statement: RAH, 11, 12, 0, S, T; 
Operation: Output is generated according to 

0 i = IIi X Rn(I2i) 

where Rn(I2i) is a succession of independent random numbers which 
change every 512/12 samples. Thus this generator holds each random 
number for 512/12 samples. Rn(12i) is uniformly distributed from -1 
to + 1. 

+1 RI ..... 
R2 ..... 

• • ~3 •• 
-1 

... .. 
5ii samples 

Sand T are temporary storage locations which are normally kept in 
note parameter locations. S holds a sum equivalent to the 0SC sum· 
T holds the current'Ri • 

Example: A typical instrument 
to produce a succession 
of random pitches: 
INS, 0, 1 ; 
RAH, P7, P8, B2, P20, P19 ; 
AD2, P6, B2, B2 ; 
0SC,P5, B2,B2, F1,P18; 
0UT, B2, B1; 
END; 

P5 P6 P7 P8 

Function F1 can be any desired waveform. P7 should be at most equal 
to P6. The pitch frequency will assume a succession of random values 
between the frequencies 

and 

(P6 - P7) x sampling rate 
function length 
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(P6 + P7) x sampling rate 
function length 

A new value of the pitch frequency is generated every 512/P8 samples. 

SET: Set New Function Number in Unit Generator (Numerical 
equivalent = 102) 
Diagram: 

I I 

~ 
Data statement: SET, II ; 
Operation: SET enables changing the function number in an 0SC or 
ENV unit generator by specifying the new function number as a note 
parameter. 

In the instrument definition, SET must be just ahead of the unit 
generator on which it is to act; the input specifies in which P field of the 
note card the new function number is to appear. If this P field is given a 
negative or zero value, no change is effected; if it is given a positive 
integer value, this value is the new function number. 

Example: INS, 0, 1 ; 
SET,P7; 
0SC,P5,P6,B2,Fl,P20; 
0UT, B2, Bl; 
END; 

With this instrument definition, all three of the following note cards 

N0T, 0, 1, 1, 1000, 50, 0; 
N0T, 1, 1, 1, 1000, 50, 1 ; 
N0T, 2, 1, 1, 1000,50, -2; 

will leave function #1 in 0SC, whereas the note card 

N0T, 3, 1, 1, 1000, 50, 2; 

replaces function #1 by function #2 in 0SC. 

6. Special Discussion of esc Unit Generator 4 

Probably the most basic and important unit generator used by 
Music V is the oscillator. Since the oscillator utilizes most of the basic 

4 This discussion of 0SC was provided by S. C. Johnson. 



MUSIC V MANUAL 135 

principles of Music V, a detailed description of its operation should 
prove useful in the design and implementation of additional unit 
generators. 

The oscillator is a unit generator, meaning that it is a "device" that 
is useful in building "instruments." This device is simulated by a 
general computational algorithm which can produce any periodic 
function at any frequency or amplitude. This algorithm should be 
quite efficient, since it must compute 10,000-20,000 numbers for each 
second of sound. 

Efficiency and generality are gained through the use of stored 
functions. The values of a stored function need be computed only once 
(by a GEN subroutine in Music V) and then may be referred to by any 
unit generator. By making the functions interchangeable among unit 
generators, we need keep only one copy of any function used and one 
copy of any unit generator in the computer memory. 

The mathematical algorithm for simulating an oscillator is described 
by the equation 

and 

Si+l = S1 + Ii 
where 

0 1 = the ith output sample 
Ai = the ith amplitude input 
Ii = the ith increment input (controls frequency) 
F = a stored function (controls waveshape) 
Si = the ith sum of increments 

FL = the length of the stored function (in samples) 

Assume for a moment that the stored function is a representation of 
a sine wave occupying 101 computer locations, F(O), F(2), ... , F(100) . 

+1 •••••• • 
• • • • • • • • • 

O~~----------~·'--------------.~I~--
• • I 

• • I 
• • I 

• • I 
• • I . ... . : -I 

etc FUOO) 
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The value of F(O) is sin (0/100 * 27T), F(1) is sin (1/100 * 27T), F(2) is 
sin (2/100 * 27T), etc. Since ° :::; Isin xl :::; 1.0, we may multiply the 
values of the function by any amplitude A to produce output samples 
in the desired range, 0 :::; 1011 :::; A. 

How does the oscillator reproduce this sine wave at any frequency? 
Assume that we have fixed the sampling rate at 10,000 samples per 
second. This means that the digital-to-analog converter will convert 
10,000 samples into sound every second, and each sample number we 
output represents 1/10,000 second of sound. If we multiply the stored 
function shown above by an appropriate amplitude and output it 
directly, then each period of the wave will contain 100 samples, and 
it will be heard 10,000flOO or 100 times per second. This corresponds 
to a frequency of 100 Hz. Since the sampling rate is fixed, to double the 
frequency of the sound we must halve the number of samples per period 
of the wave. We do this simply by referring to every other value of the 
stored function. . , .. 

• ' I • , : l •• 
• I I I • 

, I I I • 
·1 I I I •• 

• 1 ~I I I. 
1(=2) • • • • 

• • • • 
• 

• • • 

Thus the output samples will be given by the relations 

0(1) = F(O) * A (s = 0) 
0(2) = F(2) * A (s = 2) 
0(3) = F( 4) * A (s = 4) 

etc. 

I 

• 

The output wave then has 50 samples per period and is heard at 
10,000/50 or 200 Hz. To obtain the output 0 1 in this case, the inde
pendent variable in the function F(s) is incremented by 2 each time the 
function is referred to. If the increment used was 4, we would output 
100/4 = 25 samples per period, or a sine wave of 10,000/25 or 400 Hz. 
In general then 

. sampling rate 
Frequency III hertz = I . d samp es per peno 

and 
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S 1 . d function length 
amp es per peno = increment 

therefore, 

F . h t _ sampling rate * increment 
requency III er z - f . 1 h unctIOn engt 

and 

I t (. 1) function length * frequency in hertz 
ncremen III samp es = 1. 

samp Illg rate 

Modulus arithmetic is used in conjunction with the cumulative sum 
of increments S1 in order to achieve periodicity in the references to the 
stored function. 

A final point concerns the sum of increments. Assuming a function 
length and sampling rate as above, the increment necessary to produce 
a 150-Hz tone I is (100 * 150)/10,000 or 1.5. Obviously any continuous 
function will have a value at S = 1.5, but we cannot directly talk about 
the I.5th computer location of stored function F. Three approaches to 
this problem have been used: truncation, rounding, and interpolation. 
The fastest method is truncation, where the greatest integer [S] con
tained in the sum of increments is used as the S value. This is easily 
accomplished with fixed-point computer arithmetic, but may lead to 
some distortion of the output (see the table below). In the rounding 
method, we round the sum of increments to the nearest integer and use 
this as the S value. Although this takes a little more computation, it 
leads to better results. 

In the interpolation method, the sum of increments is truncated to 
obtain a function value as in the truncation method. This function 
value is then corrected by linear interpolation: if y is the function value 
at F([S]), y' is the function value at F([S] + 1), and h is the amount by 
which the sum of increments exceeds [S] (= s - [S], or the fractional 
part), then the corrected value of the function is y + (y' - y)h. This 
method takes the most computer time but in practice produces the 
greatest accuracy. It can also effect a saving of memory space in the 
computer, since, as is shown in the table below, treating a stored 
function of 512 locations with truncation produces a greater distortion 
of the output than using interpolation on a function only 32 locations 
long. 
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The table shows the results of computing 500 values of sine x, using 
various methods and stored function lengths. The table entries are the 
percentage rms error. 

Function Length Truncation Rounding Interpolation 

32 7.9 4.0 0.3 
64 3.8 1.9 0.06 

128 1.7 1.1 0.02 
256 0.9 0.5 0.004 
512 0.5 0.2 0.001 

1024 0.24 0.12 0.0002 

In general, rounding is about twice as accurate as truncation, and 
doubling the length of the stored function doubles the accuracy for 
both the truncation and rounding. Doubling the function length 
quadruples the accuracy for the interpolation method, however. Which 
method is used will depend on the availability of computer time versus 
memory space in a particular installation of Music V. 

The distortion level of the oscillator depends on the function length 
and the particular numeral process used. It also depends on the 
particular increment used: distortion occurs only when the increment 
is not an integer. Finally, it depends on the wave shape used: the dis
tortion level will increase when the slope of the stored function is steep 
at the point considered. 

How much this distortion alters the quality of the sound is hard to 
predict; a function with steep slope should be expected to be more 
distorted than a sine wave, and yet in many cases the distortion will be 
more audible with sine waves than with complex waveforms. For 
instance, the synthesis of a frequency-modulated sine wave with the 
following parameters: 

Function length = 512 samples 
Sampling rate = 10,000 Hz 
Frequency deviation = 3 % (of fundamental frequency) 
Vibrato rate = 25/0 (of fundamental frequency) 

produces a clearly distorted sound when truncation is used, and an 
acceptable sound when interpolation is used. But if the sine wave is 
replaced by a complex tone with harmonies decreasing at 6 dB or 12 dB 
per octave, there is almost no audible difference between sounds 
synthesized with truncation and those synthesized with interpolation. 
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7. Input-Output Routines for Pass I and Pass II 

Input/or Pass I: READO and READ1 
The interpretative input routine for Pass I is a F0R TRAN IV sub

routine named READI. It has an additional entry point called READO 
used for reading the first record. The program, as supplied with Music V, 
is designed for a 36-bit word machine and accepts input data punched in 
the free format in columns 1 through 72 of cards, as has been described 
in Section 3. 

READO reads an initial record into the input buffer ICAR (equivalent 
to CARD). The characters are stored one per computer word and are 
shifted to the right end of the word by the M0VR subroutine. (M0VR 
is one of the machine-language routines necessary for Music V.) 

The operation of READ1, the main program, is diagrammed in 
Fig. 52. After writing out a record to set Music V to stereo or mono 
(which will be discussed below), the program (at 10)-> scans to the end 
of the first data statement marked by ";". If necessary, more input 
records are read. 

The characters are organized (at 21) into fields with exactly one blank 
character separating successive fields. The organized data are stored in 
IBCD and are printed out. The first field is compared with all possible 
mnemonics that may be written in it. If a match is found, the numerical 
equivalent of the mnemonic is found and one of a number of branches 
(at 29) is taken depending on the value of the first field. 

If no match is found for the first field (at 40), it is taken to be a 
number if the data statement is inside an instrument definition. Other
wise, an error comment is made and the statement is rejected. 

The remaining fields on the data statement are converted to numerical 
form by one of several sections of the program (218, 201-210, 100, 
300-1200, 200, 217, 220, and 30) depending on what the first field is 
and whether the data statement is part of an instrument definition. 

All score records have a mnemonic operation code as the first field 
and an action time as a second field except the second through the last 
cards in an instrument definition. In an instrument definition, such as 
the one given below 

INS, Action time, Inst No; 
0SC,P5, P6, B2, FI,P20; 
0UT, B2, BI; 
END: 

5 The numbers cited in the descriptions of programs refer to statement numbers 
in the F0RTRAN program. These numbers are also shown in the block diagrams. 
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the operation code and action time appear only on the first data record. 
READI takes the operation code (= 2) and the action time from the 
first data record and stores these in P(1) and P(2) in all subsequent 
records connected with instrument definition. The value of P(3) is the 
type number of the unit, and the remaining fields are interpreted and 
converted to floating point and stored starting in P( 4). Word (i.e., field) 
count for the statement is established in IP(I). 

The conversion from BCD to floating point is done by a subroutine 
(at 70) which finds the position of the decimal point in the field of 
characters (or supplies it at the end if missing) and then multiplies the 
characters, which are expressed as integers, by the appropriate power of 
10 and sums over all characters in the field. 

Any errors that are detected cause an error comment to be printed 
below the printout of the data statement in which the error occurred. 
In cases other than that of an incorrect operation code, the entire 
statement is scanned so that all errors will be detected. Incorrect 
operation codes, however, prevent proper interpretation of the remain
ing fields in the data statement. When errors occur, a flag is set in 
C0MM0N storage (namely IP(2) is set to 1) so that Pass I may ter
minate the job at its conclusion. Furthermore, when errors are de
tected, the data statement is not returned to Pass I but control returns 
to the entry point of READ 1 to obtain the next data statement. 

It will be noted that the input array for the card data is named CARD 
which is (F0RTRAN) equivalent to ICAR. Also, IBCD is equivalent 
to BCD. This equivalence is necessary because the characters when read 
in with format Al require a floating-point designation. However, for 
purposes of comparison, the data must be regarded as in integer form. 
Hence, the characters must be right adjusted (moved to the right and 
of the computer word). Similarly, when the organized data statement is 
to be printed out, it must be put back into left-adjusted form so that it 
may be printed out in Al format. Consequently, this routine uses two 
subroutines, which must be written in machine language and, therefore, 
supplied by the user. READI (and REA DO) makes the following calls: 

CALL M0VR (CARD, NC) 
CALL M0VL (CARD, NC) 

The characters stored in NC consecutive locations of CARD are 
right (left) adjusted and replaced in the same locations. Calls to M0VR 
are found after the two "read" statements, and the" print" statement 
is preceded by a call to M0VL and followed by a call to M0VR. 
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READ 1 inspects the output unit generators (0UT or STR) in the 
instruments, and if a change from monophonic to stereophonic opera
tion or vice versa is made, it writes out an appropriate stereo or mono 
control record at the end of the instrument definition. The record is 

SIA TA 8 (0 (= mono») . 
1 (= stereo) , 

The action time TA is the same as the action time for the instrument 
definition. Inspection is done by the first statement in READ 1. END 
equals 1 at the end of an instrument definition and equals 0 otherwise. 
SNA8 equals 1 if the mono-stereo mode is changed and equals 0 
otherwise. STER = 0 if the last out box is 0UT, and STER = 1 if 
the box is STR. Music V is assumed initially to be in the monaural 
mode. 

If the program is to be run on a machine of different word length, 
the F0RTRAN DATA statements for arrays IBC, IVT, and L0P 
must be changed. These contain right-adjusted BCD characters for the 
break characters used in delimiting the input, the parameter types P, 
V, F, and B used in specifying unit generators, and the characters used 
in the three-letter mnemonic names for operation codes. In a 36-bit 
machine such data are entered as 6HOOOOOX, in a 24-bit machine as 
4HOOOX. If the input data are to be read in from any medium other 
than cards, the two "READ" statements at 15 and under READO 
need to be changed as required. The number of characters obtained by 
executing a "READ" command is a variable NC, established in this 
version of the program as 72. The arrays that hold these data have been 
dimensioned to accept a maximum value of NC equal to 128. 

The break characters delimiting the fields of input data are the 
blank, comma, and semicolon; NBC, the number of break characters, 
is equal to 3. (If typewriter input is to be substituted, an additional 
break character may be needed equal to the carriage return.) 

The most frequent change in READ 1 is the addition of other OP 
codes or unit-generator names. The following steps will accomplish 
this change: 

(1) Add the three-character mnemonic to the end of the L0P array. 
(The size of the L0P array mayor may not need to be increased, 
the word count on the L0P DATA statement must be increased.) 

(2) Increase N0PS by 1. 
(3) Put another branch at the end of the G0 T0 at 29. 
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(4) Write appropriate code for the branch. The code for branches 
201-210 or 300-1200 will usually serve as a model. 

A few of the variables in the program are 

NUMU Normally equals O. It is set to 1 to disable checking the 
number of fields in a unit generator. 

NPW The number of fields expected in a unit generator, not 
counting the name. For example, AD3 PI P2 P3 B1 ; 
would have NPW = 4. 

L Scanning index for the IBCD array. It normally points 
to the character just ahead of the next field to be pro
cessed. L is changed by many parts of the program, 
including the BCD to floating-point converter. 

I Scanning index for the ICAR array. 
J Scanning index to store characters in the IBCD array. 

Output for Pass I: WRITE] 
The number of fields in a data statement is established by READ 1 

and stored in IP(l) located in C0MM0N. The fields of the data state
ment have been interpreted and the P array appropriately filled by 
READ 1. Thus after Pass I has properly processed the data statement, 
it may call WRITE1 to write the data statement on tape or disc so as to 
be available to Pass II. The call from Pass I is as follows: 

CALL WRITE 1 (10) 

WRITE1 sets N = IP(l) and writes the list N, (P(I), I = 1, N) onto 
data file 10 in binary format. 

Input for Pass II: READ2 
Pass II calls upon subroutine READ2 with the call CALL READ2 

(10) to read N, (P(I), I = 1, N) from data file 10 and establish 
IP(l) = N. 

Debug READO and READ] 
For testing purposes, an all-F0RTRAN score-reading program is 

provided to replace READO and READ 1. The program reads an all
numerical score. Each data statement has the following information: 

N P(l) P(2) ... peN) 

where N is the word count and the .subsequent fields destined for the 
first N locations of the P array. 
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The calling sequences are the same as those of READO and READ I, 
namely 

CALL REA DO 

and 

CALL READI 

Debug READO does nothing. 
Debug READ 1 reads one statement into the P array according to the 

F0R TRAN statement 

READI, K, (P(J), J = I, K) 

where the format statement 1 is 

1 F0RMAT(l6, IIF6.0/(12F6.0)) 

Thus twelve numbers are read from the first 72 columns of each card. 

8. PLF Subroutines 

A data statement of the type 

PLF 0 n D4 D5 ... Dm ; 

will cause the following call to take place during Pass I at the time the 
data statement is read 

CALL PLFn 

where n is some integer between 1 and 5. PLFn is a subroutine which 
must be supplied by the user. These subroutines can perform any 
function desired by the user. Usually they will generate data statements 
for Pass II or manipulate Pass I memory (the D(2000) array). 

The information of the data statement PLF, 0, n, D4, ... , Dm will be 
placed in the P(100) array in P(1) - P(m) at the time PLFn is called. 

The P, D, and IP arrays are kept in common storage and hence are 
available to the PLFn routine. The dimension and common statements 
in the PLF routine and in Pass I must, of course, agree. For examples 
and a further discussion of PLF subroutines, see Chapter 2, section on 
Composing Subroutines-PLF. 

9. General Error Subroutine 

A general-purpose ERR0R subroutine is used by all three passes. A 
statement 

CALL ERR0R(N) 
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will cause the following comment to be printed 

ERR0R 0F TYPE N 

where N is an integer. 
The meaning of N is as follows 

Pass I errors 
Nonexistent OP code on data statement 
Nonexistent PLF subroutine called 

(i.e., in call PLFn , n < 1, or n > 5) 

Pass II errors 
Too many notes in section, D or I array full 
Incorrect OP code in Pass II 
Incorrect OP code in Pass II 
Nonexistent PLS subroutine called 

(i.e., in call PLSn , n < 1, or n > 5) 

Pass III errors 
Incorrect OP code in Pass III 

Code is < 1 or > 12 
Too many voices simultaneously playing a 

Too many voices simultaneously playing 

N 

10 
11 

20 
21 
22 
23 

2 
3 

a The maximum number of voices must be equal to or less than the number of 
note parameter blocks (see Section 16). 

In addition to these error comments, the READ 1 will print error 
comments if it detects errors in or cannot interpret any data statements. 
These comments are described in Section 7. 

10. Description of Pass II 

Pass II performs three general functions: 

(1) Sorting the data records obtained from Pass I into forward 
chronological order according to starting times, 

(2) Applying special conversions to some of the input data records 
by calling the user-supplied C0NVT subroutine, and 

(3) Applying the metronomic time-scaling operations to starting 
times and durations. 

After completing these functions, Pass II writes its output onto data 
file 11 for subsequent use by Pass III (if desired, a Pass II report is 
printed, see WRITE2 below). The entire operation may be diagrammed 
as shown in Fig. 53. 
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no 

Initialize 
section 

Read section 
of data CALL READ2 

CALL S0RT 

CALL WRITE2 ---+ CALL CONVT 

Fig. 53. Pass II block diagram 
-Music v. 

Pass II maintains the following arrays in unlabeled common storage 

C0MM0N IP(IO), P(lOO), G(IOOO), 1(1000), T(lOOO), D(IO,OOO) 

After setting certain variables (standard sampling rate, size of D and 1 
arrays, and number of OP codes) to their initial values, Pass II calls on 
READ2(lO). READ2 then reads information from data file 10 accord
ing to the format: (K, P(I), I = I, K). The value of K is stored into 
IP(l). This call is repeated until an entire section has been read in and 
the data statements are accumulated in the D array. The 1 array is used 
to hold subscripts that point to the beginning of each data record in the 
D array. The T array is used to hold the action time of each data 
statement P(2). After an entire section has been read in, Pass II sorts the 
T array into ascending numerical order by calling S0RTFL and S0RT 
(S0RTFL is merely an initialization routine which informs the sort
program package that floating-point numbers are about to be sorted). 
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It also sorts the I array (pointers) as a passive list on T, so that after 
S0R T has been called this point list has been rearranged according to 
the starting times of the data statements. 

Each data statement is then accessed from the D array according to 
the order specified by the I pointers (chronological order of action 
times). Each data statement is inspected to see: 

(1) If the OP code is 8 or 12 (SV2 and SIA, respectively), then the 
variable list (i.e., P(4) through P(4 + n)) is stored into the G 
array starting at G (P(3)). 

(2) If the OP code is 10 (PLS), then a call to PLSn is generated, where 
n is the number stored in P(3). 

(3) If the OP code is 7 or 9 (SVI and PLF, respectively), an error 
message is printed (error of type 22). This error is not fatal, 
however, and Pass II merely ignores the offending instruction. 

(4) If the OP code is 1, 2, 3, 4, 5, 6, 11, 12 (N0T, INS, GEN, SV3, 
SEC, TER, SI3, SIA), the subroutine WRITE2(ll) is called. 
This subroutine applies the optional metronome time-scaling 
operations, prints the optional Pass II report, calls the subroutine 
C0NVT to modify any note parameters, and writes out a record 
on data file 11 for subsequent use as input to Pass III. 

The record is written according to statements 

K = IP(l) 
WRITE(11), K, (P(J), J = 1, K) 

K, which is kept in IP( 1), is the word count. Data are in the 
P(lOO) array. Details of the operations done by WRITE2 are 
discussed in Section 11. 

After a section has been processed, the next section is read. The 
section-reading sequence is terminated by a TER card via a flag lEND 
which is set to 1 when TER is encountered. lEND is checked after each 
section is processed. 

The error comments produced by Pass II are printed by ERR0R and 
are discussed in Section 9. 

Pass II contains a general-purpose memory, G(lOOO), which is 
primarily used by the PLS subroutines and by the C0NVT function. 
Blocks of locations starting at G(n) may be set with a SV2 AT n x ... ; 
record. The setting occurs at the action time, AT, relative to the other 
data records. 

Certain locations in the G array have special functions: 
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G(1) Flag controlling Pass II report (= 0, print report; = 1, 
suppress report) 

G(2) Time-scaling flag (G(2) = ° for no time scaling; G(2) = n 
for time scaling where metronome function starts at G(n)) 

G(4) Sampling rate 
G(5) Starting beat of note 
G(6) Duration of note in beats 
G(8) Stereo-mono flag (= 0, mono; = 1, stereo) 

The IP array contains certain other parameters: 

IP(I) Word count for current record in P array 
IP(2) Location in D array of beginning of data statement that is 

currently calling a PLS subroutine 
IP(3) Number of data statements in the D array 

11. WRITE2 

Pass II calls WRITE2(1l) in order to: 

(1) Invoke the optional metronome operations described below 
(2) Produce the optional Pass II report on the printer 
(3) Call C0NVT to modify data record parameters 
(4) Write (N, P(I), J = 1, N) on data file 11 for subsequent use by 

Pass III 

In order to utilize the metronome operations available in Pass II, a 
nonzero value must be stored in the array location G(2). This value is 
the beginning subscript in the G array of a tempo function such as the 
one shown in Fig. 54. This is a function constructed of any number of 
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-5 180 
c .= 
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~ ~ 6 Mo(=60) 
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M4 (=160) 
M

5
(=126) 

O~ __ ~~ ____________ ~ ____ ~~~ 

Bo BI B2 
(=0) (=10) (=15) 

Time (In beats) -+ 

Fig. 54. Tempo function. 

line segments. It is stored, beginning at G(G(2)), as an arbitrary-length 
list of number pairs, Bo (= 0), Mo, B1 , M1 , B2 , M 2, ••. , Bm Mn where 
Mi is the standard metronome marking (in beats per minute) at beat 
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Bi of the composition. See Chapter 2, section on Compositional 
Functions, for additional discussion. 

WRITE2 uses the F0RTRAN function C0N(G, I, T) (see Section 
12) to calculate the value at beat T of the function which is stored at 
G(I). WRITE2 then converts P(2), the starting time, and P( 4), the 
duration,6 from beats to seconds according to the following two 
relationships: 

Ti = Ti- 1 + (Bi - Bi- 1)· (F~~i)) 
where 

and 

Ti is current time in seconds, which replaces the value in P(2) 
Bi is current beat number, the value found in P(2) 
F(Bi) is the value of the tempo function at beat Bi and 
Ti - 1 and Bi - 1 are the time and beat of the previous data record 

Di = Li· (F~~i)) 
where 

Di is the duration in seconds 
Ll is the duration of note in beats and 
F(Bi ) is as above 

The tempo function itself may be placed into the G array via an 
SV2 instruction. The function shown in Fig. 54, for example, could be 
placed in the G array beginning at G(30) by the data records: 

SV2, 0, 2, 30 ; 
SV2, 0, 30, 0, 60, 10, 60, 15, 120, 45, 40, 56, 160, 63, 126 

These metronome operations can be turned off at any time by setting 
G(2) at 0. If the metronome operations are so turned off, P(2) and P( 4) 
are not affected by WRITE2 and are assumed to be in seconds. 

The Pass II report is printed automatically by WRITE2 if G(l) = 0. 
The Pass II report may be suppressed by setting G(l) # ° with an SV2 
instruction (e.g., SV2, 0, 1, 1 ;). It consists of each data statement 
printed in order of ascending action times. Each data statement is 
shown exactly as it is presented to Pass III (if the data statements do 

6 Durations are given on N0T cards only. P(4) is affected if and only if P(1) = 1 
(playa note). 
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not exceed 10 fields, they are printed one per line; longer data state
ments are continued on next line). In addition, if the metronome func
tion is in use, P(2) and P(4) will have been converted into seconds, and 
the original values of these parameters (in beats) are printed to the 
right of each print line. 

WRITE2 calls C0NVT immediately before it returns. G(5) and G(6) 
contain the original values of P(2) and P( 4) if metronomic scaling was 
used. 

12. C0N-Function Evaluator for Line-Segment Functions 

C0N evaluates functions formed from a sequence of line segments. 
These functions are useful for representing compositional functions 
such as the metronomic marking. C0N is used by the time-scaling 
routines in Pass II. It may also be used by PLF and PLS subroutines. 

C0N can be evoked by a statement such as 

Y = C0N(G, I, T) 

which will set Y equal to the value at time T of the function stored at 
G(I). 

C0N expects to find a pair list in the G array beginning at subscript 
J. The form of the list is Xl, Y h X2 , .•• , Xm Y n, where Xi and Yi are the 
abscissa and ordinate values for the breakpoints of the function. As 
many breakpoints as desired may be used. Breakpoints do not need to 
be equally spaced along the abscissa. If T falls between two breakpoints 
(as it usually does), C0N computes Y as a linear interpolation between 
the adjacent breakpoints. 

As an example, the function shown in Fig. 55 would be stored 
starting at G(30) in Pass II by the statement 

SV2 0 30 0 1 10 12 20 1 ; 

Its value at 13 would be obtained by 

Y = C0N(G, 30, 13) = 8.7 

13. S0RT AND S0RTFL 

S0R T and S0R TFL are two utility routines in the Bell Laboratories 
utility library on the GE645 computer. They are called by Pass II when 
it arranges the data statements in chronological order according to 
action times. 
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Fig. 55. Linear interpolation between two breakpoints. 

S0RTFL is an initializing routine called to specify that floating-point 
numbers are to be sorted. The calling sequence for S0RTFL used in 
Pass II is simply 

CALL S0RTFL 

The calling sequence used in Pass II for the sort routine is 

CALL S0RT (T(l), T(2), IN, I) 

where T(l) and T(2) are the first two words on a list that will be sorted 
into monotonic increasing order, IN is the number of words to be sorted, 
and I is the location of the first word of a second list which will be 
rearranged in exactly the same manner as the T list. 

In Pass II, T contains action times for data statements and I contains 
pointers to where the data statements begin in the D array. After sorting, 
the pointers in the I array will have been so rearranged that successive 
pointers point to data statements in the D array in their proper 
chronological sequence. 

If two entries in the T array are equal, S0RT will not interchange 
their order. The preservation of order is essential for the data statements 
that define an instrument. All these have the same action time, but their 
order must be maintained. 

14. PLS Routines 

A data statement of the type 

PLS AT n D4 D5 ... Dm ; 

causes Pass II to execute the statement 

CALL PLSn 
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where n is some integer between I and 5. The call is carried out at action 
time AT relative to the processing of other data statements in Pass II. 
PLSn is a subroutine that must be supplied by the user. It can perform 
any desired function, but a typical use would be to change a note 
parameter, such as pitch, according to some composing rule. For more 
information on the use of PLS routines, see the tutorial examples in 
Chapter 2. 

The data statement PLS AT n D4 . . . is stored in numerical form in 
the Pass II D(10,000) array at the time the call to PLSn takes place. 
The arrangement is 

D(M) = word count 
D(M + I) = 10 (the numerical equivalent of PLS) 
D(M + 2) = AT 
etc. 
M = IP(2) 

Thus, for example, in order to find D5 from the data statement, PLS 
must look up M at IP(2) and then look in G(M + 6). Such a roundabout 
procedure is necessary because of the sorting. 

The dimension and common statements in Pass II and PLSn must, 
of course, be identical. 

15. C0NVT -Convert Subroutine 

This subroutine is caned by WRITE2 immediately before each data 
statement is written out to be used as input by Pass III. It must be 
supplied by the user and replaces CVT functions in Music IV. Special 
conversion of input parameters are possible, such as converting a 
frequency given in cycles per second to an appropriate increment, 
conversion of a special amplitude notation to a form acceptable to 
Pass III, and so forth. Attack, steady-state, and decay times may be 
converted to correct increments for driving the ENV generator. 

The necessary F0R TRAN C0MM0N statement is 

C0MM0N IP(IO), P(lOO), G(IOOO) 

C0NVT is called by the statement 

CALL C0NVT 

At this time the parameters for the data statement are in the P array, 
and the number of parameters is in IP(1). G(5) and G(6) contain the 
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starting time and duration in beats, if the metronomic scaling has been 
used. 

C0NVT may perform complicated logical functions. It may increase 
or decrease the number of parameters, changing IP(1) accordingly. 
For more information, see the tutorial examples described in Chapter 2. 

16. Description of Pass ill 

Pass III reads a sequence of data statements that have been ordered 
according to increasing action times, and it executes the operations 
specified by these data statements. The principal operations are defining 
instruments and playing notes. In addition, functions, variables, and 
numbers may be computed and stored in the Pass III memory for 
subsequent use in playing notes. 

As mentioned in the introduction, most of the data in Pass III are 
stored in a large linear array 1. Included are instrument definitions, 
input-output blocks for unit generators, functions, note parameters. 

The size of the various parts of I will vary greatly, depending both on 
the specific computer being used and on the composition being played. 
Consequently the structure of I is described in the IP data array, which 
may be easily changed. Details are given in Section 17. 

Over-all Operation 
The over-all operation of Pass III is diagrammed in Fig. 56. The 

program is started by reading a few constants from IP, including the 
sampling rate IP(3) and the scale factor for variables IP(12). 

A section is started by resetting the "played to" time T(l) to zero, 
since time is measured from the beginning of each section. 

The main loop of Pass III consists simply of reading a data statement 
into the P array. As in previous passes, the P array is used exclusively 
for reading and processing data statements. The operation code always 
appears in pel) and the action time in P(2). Samples of the acoustic 
output are generated until the" played to" time equals the action time. 
Then the operation code is interpreted and executed. The next data 
statement is then read and processed. 

Instrument Definitions 
If the operation code defines an instrument, the definition is entered 

in the I array starting with the first empty location in the table for 
instrument definitions. The location of the beginning of this instrument 
definition is recorded in the location table for instrument definitions. 
Different instruments are designated by being numbered. 
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Fig. 56. Block diagram of main loop-Pass III. 
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An instrument definition consists of a list of the various types of unit 
generators used by the instrument, together with the inputs, outputs, 
and functions for these units. Inputs and outputs can be note parameters 
obtained for each note from a data statement, variables that are single 
numbers stored more or less permanently in the I array, or input-output 
blocks. These blocks are used for intercommunication between unit 
generators. Instrument definitions continue unchanged from one 
section to the next-unless they are redefined, in which case the latest 
definition applies. 

Note Playing 
If the operation code specifies a note to be played, the data from the 

P array are moved into the first unused block of locations in the note-
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parameter storage area. Unused note-parameter blocks have -I in 
their first location; otherwise this location contains the instrument 
number. To scale amplitudes the P(2) ---* Pen) parameters are multiplied 
by IP(12) before storage in the note-parameter block (see paragraph on 
scale factors, p. 157). The number of note-parameter blocks determines 
the maximum number of voices that may be played simultaneously. 

The termination time of the note is entered into the first unused 
location of the TI array, and the I array subscript of the note param
eters is entered in the corresponding location of the ITI array. Un
used locations in TI are marked with the number 1000000.0. TI and 
ITI are used to control the synthesis of samples of the acoustic 
waveform. 

Play to Action Time 
The most intricate part of Pass III consists in generating acoustic 

samples until the "played to" time T(I) equals the action time P(2) of 
the current data statement. In the process, any notes terminating before 
P(2) are turned off at their proper termination times. Several steps are 
involved. This part of the program is diagrammed in Fig. 57. 

The action time P(2) is put in the current "play-to" objective T(2). 
The TI array that contains the terminating times of the instruments 
currently playing is searched for the minimum termination time 
TMIN. If TMIN < T(2), acoustic samples are generated until T(1) = 
TMIN, TMIN is removed from TI, and the whole process is repeated. 
If TMIN > T(2), samples are generated until T(1) = T(2) and control 
is returned to the operation-code interpreter (F0R TRAN statement 
200). If TI is or becomes empty, a rest is generated until T(l) = T(2). 
The algorithm just described starts at F0R TRAN statement 244 as 
indicated in Fig. 58. 

The playing routines start at statement 260. The number of samples 
to be generated ISAM is computed as the product of the sampling rate 
1(4) times the time to be currently generated T(3) - T(1). T(3) is the 
current objective for T(I). Sample generation proceeds by blocks. The 
length of the block is the minimum of (I) the length of a unit-generator 
input-output block, or (2) the number of samples remaining in ISAM. 
For each block of samples the program scans all note-parameter blocks 
(statement 268). For each voice that is turned on (first note parameter I: 
-I) the program scans the instrument definition specified by the first 
note parameter (statement 271). Each unit generator specified in the 
instrument definition is called in the order in which it occurs in the 
definition. Either SAMGEN or F0RSAM is called, depending on 
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Fig. 57. Expansion of complicated parts of Pass III: (a) expansion of 
"play to action time," block 244; (b) expansion of "play samples to T(3)," 
block 260. 

whether the unit-generator number is an integer less than or greater 
than 100.5. 

After all unit generators in all instruments have produced a block of 
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samples, the block is outputted with SAM0UT (statement 265). 
Another block is generated until ISAM is reduced to zero. 

Function Generation 
Some unit generators, in particular oscillators, use stored functions. 

These are computed and stored by F0RTRAN subroutines GENI, 
GEN2, . .. which may be supplied by the user. Existing GENn func
tions for computing straight-line functions and sums of sinusoids are 
described in Section 25. Upon reading a data statement that requests 
function generation, Pass III calls upon the requested function. Space 
to hold the functions is provided in the I array. 

Scale Factors 
Because F0RTRAN stores only integers in fixed-point arrays such 

as I, variables that are inputs to unit generators are multiplied by 
IP(12), which is set equal to 2n. This is equivalent to putting the decimal 
point n places from the right end of the memory word. For a machine 
with a 36-bit word, n is typically 18. Likewise functions are multiplied 
by IP(15) which is typically set to 235 - 1 in a 36-bit machine. 

Variable and Number Storage 
The operation codes SV3, SI3, and SIA cause numbers and variables 

to be stored in the I array. Variable number 1 is stored at 1(101), 
number 2 at 1(102), etc. The appropriate P field is multiplied by the 
scale factor IP(12) before storing. Thus I(m) equals IP(12) * Pen). 

Integers are stored starting with integer 1 at 1(1), integer 2 at 1(2), etc. 
In general, these numbers are used to control the program. The follow
ing locations in I have special uses 

1(4) Sampling rate 
1(7) Master random number 
1(8) Mono-stereo control. 1(8) = 0 for monophonic output, 

1(8) = 1 for stereophonic 

These may be changed as desired. Otherwise 1(1) through 1(20) are 
reserved for program control and should not be changed. The SI3 and 
SIA operations do not use a scale factor. 

Multiple-Use Instruments and Unit Generators 
The structure of Pass III has been designed so that the same block of 

code embodying a unit generator is used in all instruments. Furthermore 
the same instrument can simultaneously (in the sense of time of the 
acoustic wave) produce many voices. This requires that no data specific 
to a given instrument or voice can be stored in the unit-generator code. 
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Note-parameter blocks in the I array are kept intact for the duration of 
a note. Hence certain quantities that must be continuous throughout 
the note, particularly SUM in the oscillator, should be kept in the 
note-parameter block. 

Input-output blocks for unit generators must not be incorrectly 
overwritten inside an instrument. The same block may be used as 
input and output to a given unit generator, since the input is read before 
the output is written. However, a block cannot be used simultaneous1y 
for two different purposes, for example, as two inputs to a unit generator. 
That is, it should be kept in mind that an input-output block may 
contain only one set of values at a time (see Fig. 58). 

(a) 
( b) 

Fig. 58. Examples of (a) an incorrect and (b) a correct input-output block. 

17. I and IP Data Arrays in Pass III 

Most of the data in Pass III are kept in a large one-dimensional 
array I(n). Included are instrument definitions, note parameters, 
functions, unit-generator input-output blocks, and a few other miscel
laneous data. Except for a few fixed locations which will be listed below, 
the data arrangement is flexible and is determined by parameters 
compiled into the IP(n) parameter table. IP contains the main Pass III 
constants which may change from time to time or from one computer 
to another-constants such as the number and size of the functions, 
scale factors for variables and functions, the sample value equal to zero 
pressure in the acoustic output wave, etc. 

The I array is usually structured as shown in the diagram below. 
Values stored in IP give the subscripts in I(n) at which various quantities 
are stored. 
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} 

Integers, variables, and special parameters 
Variable n is located at I(n + 100) 
Integer n is located at I(n) 

} 

Functions (produced by GEN subroutines) 
Function n begins at 

I(lP(2) + (n - I) * IP(6)) 

} 

Input-output blocks for unit generators 
Block n begins at 

I(IP(13) + (n - 1) * IP(l4)) 

} Note parameters 

} 

Location table for instrument definitions 
The definition of instrument n begins at 

I(I(lP(5) + n)) 

} Instrument definition table 

For example if IP(2) = 1000, functions will start at 1(1000). 
Certain special parameters in I have fixed locations and a particular 

meaning, as follows 

I(1) Number of words on the current data statement in the P(n) 
array 

1(2) Subscript of first empty location in instrument definitions 
1(3) Subscript of note parameters for the note currently being 

played 
1(4) Sampling rate 
1(5) Number of samples to synthesize in the current group 
1(6) Subscript of starting location in the instrument definition 

for the unit generator currently being played 
1(7) Master random number 
1(8) Monophonic-stereophonic signal 

1(8) = 0 for monophonic; 1(8) = 1 for stereophonic 
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Any location in the I array may be set by an SV3, SI3, or SIA 
operation. In the set-variable operation the scale factor for variables is 
used so that 

I(n) = IP(l2)· P(m) 

whereas for integers no scale factor is involved 

I(n) = P(m) 

The following constants are compiled into the IP(n) array. The array 
is constructed by a BL0CK DATA subprogram and is stored in labeled 
C0MM0N memory, labeled P ARM. 

IP(I) 
IP(2) 
IP(3) 
IP(4) 
IP(5) 

IP(6) 
IP(7) 
IP(8) 
IP(9) 

IP(lO) 

IP(lI) 

Number of operation codes in Pass III 
Beginning subscript of functions 
Standard (default) sampling rate 
Beginning subscript of instrument definitions 
Beginning subscript of location table for instrument 
definitions 
Length of a function 
Beginning subscript of blocks of note-parameter storage 
Length of a block of note-parameter storage 
Number of blocks of note parameters (equals the maxi
mum number of voices that can play simultaneously) 
Subscript of unit-generator input-output block which is 
reserved for storage of samples of the acoustic output 
waveform. SAM0UT puts out samples from this block 
Sound zero. This is integer with decimal point at right end 
of the word 

IP(l2) Scale factor for unit-generator variables (input-outputs, 
etc.) 

IP(l3) Subscript of beginning of unit-generator input-output 
blocks 

IP(I4) Length of a unit-generator input-output block 
IP(l5) Scale factor for functions 

18. Note Parameters 

The word count and parameters PI through Pn are read by Pass III 
from a data statement on the input file and are initially put into 1(1) 
and into the P array. If PI = 1 == N0T, the parameters must be moved 
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to a vacant block of note-parameter storage because other data state
ments will be read into the P array before the N0T is completed. Note
parameter blocks start at I(n) (n = IP(7)), each block is IP(8) locations 
long, and IP(9) blocks are available. 

A block contains the following arrangement of the information 

I(n) = P3 (the instrument number) 
I(n + 1) = P2 * IP(l2) 
I(n + 2) = P3 * IP(l2) 

I(n + m + 1) = Pm * IP(12) 

All subsequent locations to end of block are filled out with zeros. All 
locations are in fixed-point format. All locations except the first are 
scaled by the IP(12) scale factor. The first location I(n) contains the 
instrument number, unscaled. If a block is empty, I(n) contains -1. 

When a unit generator is called to calculate part of a note, 1(3) = n 
is set to the first location of the note-parameter block for that note. 
Consequently note parameter Pk may be found at I(n + k - 1). 

19. Instrument Definition 

An instrument in Pass III is defined by a sequence of data statements, 
which are read from the input medium. The description is stored in the 
I(n) array in the instrument definition table. 

The format of the input data statements in Pass III is in the following 
table. 

Word 
Record # Count P(l) P(2) P(3) 

1 3 2 Action time Inst No 
2 n 2 Action time Unit type D 1 .•• Dn - 3 

3 n 2 Action time Unit type D 1 •.. 

last 2 2 Action time 

The description is terminated by a two-word statement. The quantities 
Di specify the various inputs and outputs to the unit generators. 

If Di < -100, then JDiJ - 100 is a function number 
If -100 :::; Di < 0, then JDiJ is the number of a unit-generator 

input-output block 
If 1 :::; Di :::; 100, then Di is a note-parameter number 
If 100 < Db then Di - 100 is a variable number 
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The mnemonic form of instrument definition as written on the score 
and read by READ 1 has already been described in Section 4. Examples 
are given in Section 5. 

The instrument definition is stored starting in I(n) where n = 

1(IP(5) + Inst number). Instrument definitions are stored in successive 
locations in I(n) according to their action times. The first unused 
location in the instrument definition table is kept in 1(2). An instrument 
with a given number may be redefined at any action time. The new 
definition will be used subsequently. However, no " garbage collection" 
is done and the old definition will continue to occupy space in I(n). 

The format of the description in I(n) is as follows: 

I(n) 
I(n + 1) 

S1 ) 

~~. 
Sn 
I(m) 

/. 

Type of first unit generator in instrument 
Pointer to second unit-generator description = m 

Subscripts and parameters pertaining to first unit 
generator 

Type of second unit generator 
Pointer to third unit generator 

I(r) 0 Terminates description of instrument 

The S/s that specify inputs, outputs, and functions for the unit 
generators have the following meaning: 

If SI < 0, then / SI/ is the subscript in I which specifies the beginning 
of a function or of a unit generator input-output block. 

If 1 ::::; SI ::::; 262,144, then SI is the number of a note-card parameter. 
If 262, 144 < Sh then SI - 262,144 is the subscript in I of a variable. 

The number of the variable is SI - 262,144 - 100. 

20. F0RSAM 

F0RSAM is a subroutine that contains unit generators written in 
F0R TRAN. These may be used either sepa,rately or together with 
SAMGEN which contains unit generators written in basic machine 
language. 

F0RSAM is called in Pass III by the statement 

CALL F0RSAM 

The call causes F0RSAM to compute NSAM (= 1(5» samples of the 
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output of unit generator, type J (J is given in the instrument descrip
tion). Unit-generator types in F0RSAM are numbered 101 and up in 
order to differentiate them from SAMGEN unit generators, which are 
numbered 1 through 100. 

The block diagram of the program is shown in Fig. 59. 

Common 
initialization 

af addresses 
and parameters 

Fig. 59. Block diagram of 
F0RSAM program. 

Computation can be made in either fixed or floating-point arithmetic. 
Usually the scale-factor variables, IP(12) and IP(15), will be necessary 
to scale the results. 

A listing of a small F0RSAM program with only one unit generator 
is shown below. The initializing routines in the program accommodate 
other unit generators which can be added to the program simply by 
extending the G0 T0 at 205 and writing the unit-generator code. 

The dimension statement includes three arrays from Pass III, I, P, 
and IP, and two other arrays, Land M, which are used to address the 
unit-generator inputs and outputs. Land M are computed by the 
initialization procedure. 

Specifically, the jth input or output will be found at I(m) where 
m = L(j). M indicates whether an input or output is a single number 
(note parameter or variable) or a block of numbers (function or 1-0 
block). If M(j) = 0, the jth input is a single number; if M(j) = 1, the 
jth input is a block. For blocks, L(j) gives the subscript of the first 
number in the block. Inputs and outputs are sequentially numbered. 
Thus in the data statement 

0SC P5 P6 B2 Fl S ; 

P5 is the first, P6 the second, B2 the third, Fl the fourth, and S the 
fifth. For more convenient referencing, an equivalence is set up so that 
L(i) == Li and M(i) == Mi. 
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SUBROUTINLFOHSAM 
DIMENSIONI(15000),P(100),IP(20),L(8),M(8) 
COMMONI,P/PARM/IP 
LQUIVALENCE(Ml,M(I»,(M2,M(2»,(M3,M(3»,(M4,M(4»,(M5,M(5»,(M6,M 

1(0», 0i07,~H7», (Ma,tJI(B», (L1,L(!», (L2,L(2», (L3,L(3», (L4,L(4», ( 
2L5,L(5) ), (L6,Ub) ) , (L 7, U7) ) , (LB,·L (8) ) 

C COMMON INITIALIZATION OF GENERATOHS 
N1=I(6) +2 
N2=I (N1-1>-1 
U0204J1=IJI , N2 
J£=J1-~J1 + 1 
IF(I(Jl»200,201,201 

200 L(J2)=-!(Jl) 
M(J2)=1 
GOT02U4 

201 M(J2)=0 
IF(I(J1)-262144)202,~02,203 

202 L(J2)=I(Jl)+1(3)-1 
GOT0204 

203 L(J2)=I(Jl)-262144 
204 CONTINUE 

NSA",1=I (5) 
N3=I (lH-2) 
WGEN= N3 -100 

20~ 60TO(101,30G,300),N0EN 
C UNIT GENERATOR 101- INTERPOLATING OSCILLATOR 

101 SFU=IP(12) 
SFF=IP(15) 
SFUI=l./SFU 
SFFI=l./SFF 
SFUFI=SFU/SFF 
SUM=FLOAT(I(L5»*SFUI 
IF(Ml)21U,210,211 

210 AMP=FLOAT(I(Ll»*SFUI 
211 IF(M2)212,212,213 
212 FREQ=FLOAT(I(L2»*SFUI 
213 XNFUN=IP(6)-1 

D0223J3=1,NSAM 
J4=INT<SUM) +L4 
FRAC=SUM-AINT(SUM) 

216 Fl=FLOAT(I(J4» 
F2=FLOAT(I(J4+1» 

217 F3=Fl+(F2-Fl)*FRAC 
IF(M2)21b,218,219 

218 SUM=SUM+FREQ 
60T0220 

219 J4=L2+J3-1 
SUM=SUM+FLOAT(I(J4»*SFUI 

220 IF(SUM-XNFUN)215,214,214 
214 SUM=SUM-XNFUN 
215 J5=L3+J3-1 

IF(M1)221,221,222 
221 I(J5)=IFIX(AMP*F3*SFUFI) 

60T0223 
222 J6=L1+J3-1 

I(J5)=IFIX(FLOAT(I(J6»*F3*SFFI) 
223 CONTINUE 

I(L~)=IFIX(SUM*SFU) 
300 RETURN 

E.ND 

The number of samples to be generated is put in NSAM. Most of the 
unit generators will operate with a loop such as D0 223 J3 = 1, 
NSAM. 

In the computations performed by the unit generator, it is necessary 
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to test to see whether an input is a single number or an 1-0 block. If 
Mj = 0, the jth input need only be obtained once from I(Lj). If the jth 
input is an 1-0 block (M j = 1), then each value is obtained with the 
help of the main D0 index J3. For example, the third input is located at 
1(15) where 

J5 = J3 + L3 - 1 

The particular unit generator is an oscillator that interpolates between 
adjacent values of the function (see Section 6 for discussion of why 
interpolation is useful). Computations are carried out in floating-point 
arithmetic. Since the input data are fixed-point numbers, they must be 
floated and scaled by appropriate constants. Scale factors for 1-0 
blocks and for functions are given in IP(12) and IP(15), respectively. 
The necessary scaling constants are computed at 101. 

21. SAMGEN 

SAMGEN is one of the few basic machine language programs in 
Music V. Consequently it must be written specifically for the particular 
machine on which it is to be used. The Bell Laboratories program is 
written in GMAP for a General Electric 635 computer. A few com
ments about the program may be of use in designing programs for 
other machines. 

SAMGEN includes the unit generators of type numbers less than 
100. The computation of the actual acoustic samples, which is the 
preponderance of the computation in Music V, is done by SAMGEN. 

The general form of SAMGEN is shown in Fig. 60. 
SAMGEN is written in such a way that one procedure can be used to 

set the parameters in all of its unit generators. This procedure accesses 
the I array in common storage during Pass III in order to find out 

1(3) the subscript in the I array of the note parameters for the 
note being played 

] (5) the number of samples to generate and 
](6) the subscript in the I array for the instrument definition table 

of the unit generator being played. 

The procedure then reads through the instrument description for the 
unit generator being played. (See instrument description, Section 19.) 

For each unit generator, the procedure expects a certain number of 
inputs CSt's) in a certain order, e.g., if unit type = 2 (oscillator), then 



166 CHAPTER THREE 

I ni tialize unit 
gene rotor 
being played 

Fig. 60. Block diagram of SAMGEN program. 

Sl = amplitude, S2 = frequency, S3 = output, S4 = function, and 
S5 = sum. It then sets addresses in the specified unit generator accord
ing to the following conventions: 

If Si < 0, then I Sil is the subscript in the I array of the beginning 
of a function or of unit-generator 1-0 block. 

If 0 < Si < 262,144, then Si is the number of a note parameter. 
Note parameter Px is located at 1(1(3) + x-I). (See Section 
18 for more information on note-parameter storage.) 

If Si > 262,144, then Si - 262,144 is the subscript in the I array 
ofa variable: variable x is located at I(x + 100). 

After the addresses are initialized, SAMGEN transfers control to the 
specified unit generator, which generates the number of samples 
specified in 1(5). 

The calling sequence is 

CALL SAMGEN 

Almost all information is supplied by the I array which is located in 
unlabeled common storage according to the statement 

C0MM0N I 

SAMGEN uses no subroutines. 
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22. SAM0UT 

SAM0UT is another GMAP subroutine called by Pass III which 
(1) scales samples which are ready to be output, and (2) calls FR0UT 
to output these samples onto magnetic tape. Samples (S1) are scaled 
according to 

SI = SI/218 + 2048 

The calling sequence is 

CALL SAM0UT (IARRAY, N) 

where IARRA Y = address of first sample to be output, and N is the 
number of samples to be output. 

Other routines used by SAM0UT are 

FR0UT4 

No common storage is used. 

23. SAM0UT for Debugging 

This version of SAM0UT (cf. Section 22) is provided for debugging 
purposes only. It is called by Pass III with the call 

CALL SAM0UT (IARRA Y, N) 

in order to print out N samples starting from location IARRA Y. It 
must perform the same de scaling operations as the normal SAM0UT, 
i.e., 

samplel = (sample1/218) + 2048 

This version of SAM0UT is written in F0R TRAN and will print the 
sample values in any convenient format. It is recommended that in 
using this version of SAM0UT one should be careful of excessive 
output since it is easy to ask for a very large number of acoustic 
samples. 

24. Acoustic-Sample Output Program: FR0UT 

The subroutine package FR0UT is called by both Pass III and 
SAM0UT in order to write the actual acoustic samples generated by 
Music Vanta magnetic tape. FR0UT is coded in assembly language 
rather than F0RTRAN (1) for efficiency and (2) because it must write 
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special physical records onto tape in a form suitable for digital-to
analog conversion. This is usually not possible in a compiler language 
such as F0RTRAN. 

The exact form of FR0UT will depend on the particular machine 
configuration of a computer installation. It is therefore necessary that 
this program be written by an experienced programmer at any compllter 
installation that desires to run Music V. 

There follows a general description of the FR0UT programs written 
at Bell Telephone Laboratories for use with the General Electric 
GE645 computer. It should act only as a model for such a program 
written for another machine. 

Basically FR0UT simply takes sample values that are produced by 
Music V, packs several samples into one computer word, and writes 
them onto magnetic tape in a form suitable for digital-to-analog 
conversion. 

At BTL, the digital-to-analog converters operate with 12-bit samples. 
Since the GE645 computer is a 36-bit word-length machine, FR0UT 
packs the acoustic samples three per word. 

One packed computer word is of the form 

I 36 bits I 

aaaaaaaaaaaab bbbbbbbbbb bcccccccccccc 
L sample 1--1 L sample 2-' L sample 3.J 

Since the maximum integer value that can be represented in 12 bits is 
409510, FR0UT screens the sample values it receives from Music V to 
be sure that it falls in the range 0 to 4095. Should any samples to be 
written by FR0UT be outside this range, they are clipped to 0 and 4095. 

Pass III first calls FR0UTO during its initializing sequence with the 
call 

CALL FR0UTO (66,167) 

where 66 is a file code (i.e., a logical file name of the tape file onto 
which packed acoustic samples are to be written), and 167 is the record 
length in 36-bit words to be written onto this tape (samples per tape 
record = 3 x words per tape record). 

Whenever Music V has produced some samples that are ready to be 
output, subroutine SAM0UT is called by Pass III, which in turn calls 
FR0UT with the call 

CALL FR0UT4 (lA, N) 

which writes N samples onto tape starting from the location IA. 
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At the end of the composition, Pass ITT calls FR0UT with the call 

CALL FR0UT3 

FR0UT3 completes the output buffer, if it was only partially filled, 
with zero-voltage samples, empties this last buffer onto tape, and 
writes an end-of-file mark. 

Packing of samples can be accomplished by machine-language 
shifting instructions and buffering. Acoustic sample tapes typically are 
unlabeled and unblocked, and use fixed-length records. 

FR0UT3 prints a statement giving the number of samples out of 
range in the file which has just been terminated. 

25. GEN-Pass III Function-Generating Subroutines 

GENI 
GENI is a F0RTRAN subroutine to generate functions composed of 

segments of straight lines. The calling sequence is 

CALL GENI 

Data are supplied by the Pen), I(n), and IP(n) arrays. The jth function 
Fj(i) is generated according to the form shown in the diagram below. 

'. TM 

~ 
I I 
I I 
I I 
I I 

Linear interpolation is used to generate the function between M 
points which are specified by the user. Thus between any two abscissa 
points Nm and Nm+ 1 the function points are computed according to the 
relation 

The number of corners M is arbitrary and is determined by the word 
count 1(1). M = (1(1) - 4)/2. 
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In general the user will set NI = 0 and NM = IP(6) - 1, so that the 
number of points in the function equals IP(6). 

The parameters of the function are arranged as follows: 

P(1) 

3 

P(2) 

Action 
time 

P(3) P(4) P(5) P(6) P(7) P(8) 

Function TIN 1 

No (j) 

The function is stored starting in I(n) where n = IP(2) + (j - 1) * 
IP(6) and is scaled by IP(15) so that, for example, len) = Tl * IP(15). 

GEN2 
GEN2 is a F0RTRAN subroutine to generate a function composed 

of sums of sinusoids. The calling sequence is 

CALL GEN2 

Data are supplied by the Pen), I(n), and IP(n) arrays. 
The jth function Fli) is generated according to the relation 

F;(i) ~ (amp normaIiZer)t~, Ak sin ;~\ 
M 2k"} + k ~ Bk cos P -=- \ i = O ... P - 1 

P (= IP(6» is the number of samples in a function. 
The parameters for the function are arranged as follows: 

P(1) P(2) P(3) P(4) P(5) P( -) P( -) 

3 Action 
time 

2 Function Al ±N 
No (j) 

The number of sine terms is INI. If N is positive, amp normalizer 
is computed so max I Fli) I = .99999. If N is negative, amp normalizer 
= .99999. The number of cosine terms M is computed from N and the 
word count 1(1). M = I{l) - N - 5. 

The number of samples in the function is IP(6). 
The function is stored s~arting in I(n), and is scaled by IP(5) 

len) = IP(15) * Fj(O), etc. 

where n = IP(2) + (j - 1) * IP(6). 
Thefirst and last samples of the function are equal, Fj(O) = Fj(P - I), 

thus the period in samples is P - 1. 
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GEN3 
General description: 

GEN3 is a F0RTRAN subroutine which generates a stored function 
according to a list of integers of arbitrary length. These integers specify 
the relative amplitude at equally spaced points along a continuous 
periodic function. The first and last points are considered to be the 
same when the function is used periodically (e.g., by an oscillator). 
Calling sequence: 

CALL GEN3 

Other routines used by GEN3 : 

none 
Data statement: 

GEN, action time, 3, stored function number, PI, P2 , •.. , Pnj 

Examples: 
The following P/s will generate the functions shown below. 

(1) 0, 1,-1 
will generate 

(2) 0, 8, 10, 8, 0, 
-8, -10,0: 

(3) -1000, 0: 

o~----------------------~-------

O~--------------~r-------------4 

o~------------------------~~~-
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26. Data Input for Pass ill-DATA 

Subroutine DATA is called by Pass III with the call 

CALL DATA 

This causes one data statement to be read from file 11 into the P array 
in C0MM0N storage according to 

READ (11) K, (P(J), J = 1, K) 

I(I) is set equal to K (word count). 

Annotated References by Subject 

Music IV Program 
M. V. Mathews, "The Digital Computer as a Musical Instrument," Science, 

142, 553-557 (November 1963). A semitechnical description of Music IV 
with some discussion of applications. This is a good introductory article. 

M. V. Mathews, "An AcoustIc Compiler for Music and Psychological Stimuli," 
Bell Sys. Tech. J. 40, 677-694 (May 1961). A technical description of an 
early version of a sound generating program. This is the first complete 
published description. 

J. R. Pierce, M. V. Mathews, and J. C. Risset, "Further Experiments on the Use of 
the Computer in Connection with Music," Gravesaner Blatter, No. 27/28, 
92-97 (November 1965). A semitechnical description emphasizing applica
tions of Music IV. This is a good follow-up for the paper in Science. 

J. C. Tenney, "Sound Generation by Means of a Digital Computer," J. Music 
Theory, 7, 25-70 (1963). A discussion of Music IV as seen by a composer 
using the program. The article contains many details and is a good introduc
tion for a musician. 



Appendix A Psychoacoustics 
and Music 

J. R. Pierce 
and M. V. Mathews 

Although the technology of electronic and computer sound generation 
has given us new tools of almost unlimited power for making new 
sounds, it has also created a new problem-the need to understand the 
psychoacoustics of musical perception. Sounds produced by conven
tional instruments are so well known that composers can proceed with 
the intuitions they have developed from long experience. However, no 
such intuitions exist for new sounds. Instead, the composer must 
understand the relation between the physical sound wave and how it is 
perceived by a hearer. Psychoacoustics addresses this question and 
hence has become an essential knowledge for the modern composer. 

With some exceptions (Helmholtz, 1863; Plomp, 1966) original 
scientific work in psychoacoustics has not been directed chiefly at 
musical problems. Thus we must draw on a variety of sources in 
seeking to understand musical phenomena, and we may often wish that 
investigators had had music in mind. 

Loudness 

The perceived loudness of a sound depends on many factors in 
addition to its intensity. For example, in order for a pure tone or 
sinusoid at 100 Hz to be heard, its sound intensity must be 1000 times 
greater than that of a pure tone at 3000 Hz. For most of the musical 

173 
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range the perceived loudness increases as the 0.6 power of the sound 
pressure (Stevens, 1961). The perceived loudness increases more slowly 
with sound pressure for 3000-Hz tones than it does for very low fre
quencies, say, 100 Hz; and in the 'uncomfortably loud range, tones of 
equal power are about equally loud. This means that as we turn the 
volume control up or down, the balance of loudness among frequency 
components changes slightly. 

Masking and Threshold Shifts 

A tone or a noise masks or renders us incapable of hearing a less 
powerful tone. A tone has a strong masking effect for tones of higher 
frequency and a weaker masking effect for tones of lower frequency. 
The frequency range of masking is greater for loud tones than for soft 
tones. Thus we would expect that in a musical composition some 
sounds might be masked and unheard when the volume is set high, 
whereas they would be unmasked and heard when the volume is low. 

Masking can be considered as a raising of the level at which tones 
become audible. Some rise in the threshold persists for i sec or longer 
after a loud tone (Licklider, 1951), but the aftereffect of a loud tone on 
hearing is much less than that of a bright light on seeing. 

Limens or Just Noticeable Differences 

Limens or jnd's of loudness and frequency have been carefully 
measured. They are surprisingly small. However, there is evidence that 
the limens are much smaller than the frequency or loudness differences 
that can be detected in complicated listening tasks, which are more akin 
to music (Plomp, 1966, p. 19). Very small differences in frequency (less 
than a half tone) and loudness can be detected in successive tones that 
are not too short. 

Pitch 

The pitch of a complex tone is often thought of as that of its lowest 
partial. However, experiments made with repetitions of various patterns 
of pulses (Flanagan and Guttman, 1960) and with complex tones in 
which the upper partials are harmonics of a frequency higher than the 
fundamental (Plomp, 1967) show that, although the fundamental 
dominates at higher frequencies, the repetition rate of the tone or of its 
higher partials dominates at lower frequencies. The pitch of a tone may 
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be highly uncertain by one or more octaves; thus Shepard produced a 
circle of 12 tones, which when cyclically repeated give the impression of 
always rising in pitch, with no break (Shepard, 1964). Tones with 
inharmonic partials, including gongs, bells, and tones specially syn
thesized by computers (Mathews, 1963; Pierce, 1966) may produce a 
sensation of pitch; a tune can be played on them. But the pitch may not 
be the first partial; for example, the hum tone of a bell is not the pitch 
to which the bell is tuned. 

Quality or Timbre of Steady Tones 

The sound quality or timbre of steady tones depends on the partials. 
Although partials up to the sixth (and sometimes higher) can be heard 
individually by careful listening, we tend rather to hear an over-all 
effect of the partials through the timbre of the tone. A pure tone or 
sinusoid is thin. A combination of octave partials is bright. A tone with 
a large number of harmonic partials is harsh or buzzy (Pierce, 1966). 
In general, the timbre appears to be dissonant or unpleasant if two strong 
partials fall within a critical bandwidth, which is about 100 Hz below 
600 Hz and about a fifth of an octave above 600 Hz (Plomp, 1966). 

The timbre of a sound is strongly affected by resonances in the vocal 
tract or in musical instruments. These resonances strengthen the 
partials near the resonant frequencies. Three important formants or 
ranges of strengthened frequency are produced by the vocal tract; they 
give the qualities to vowel sounds which are identifiable independent of 
pitch. 

Transient Phenomena 

Textbooks give harmonic analyses of the sounds of various musical 
instruments, but if we synthesize a steady tone according to such a 
formula it sounds little like the actual instrument. Steady synthesized 
vowels do not sound like speech if their duration is long. 

Temporal changes such as attack, decay, vibrato, and tremolo, 
whether regular or irregular, have a strong effect on sound quality. A 
rapid attack followed by a gradual decay gives a plucked quality to any 
waveform. Also, the rate at which various partials rise with time and 
the difference in the relative intensity of partials with loudness are 
essential to the quality of the sound (Risset, 1965). Indeed it is at least 
in part the difference in relative intensity of partials that enables us to 
tell a loud passage from a soft passage regardless of the setting of the 
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volume control. This clue is lost in electronic music if the tones employed 
have a constant relative strength of partials, independent of volume. 

The "warmth" of the piano tone has been shown to be due to the 
fact that the upper partials are not quite harmonically related to the 
fundamental (Fletcher et at., 1962). 

Consonance 

Observers with normal hearing but without musical training find 
pairs of pure tones consonant if the frequencies are separated by more 
than the critical bandwidth (Plomp, 1966), or if the frequencies coincide 
or are within a few hertz of one another (in this case beats are heard). 
Pairs of tones are most dissonant when they are about a quarter of a 
critical bandwidth apart. For frequencies above 600 Hz, this is about a 
twentieth of an octave. 

Excluding bells, gongs, and drums, the partials of musical instruments 
are nearly harmonic. When this is so, for certain ratios of the frequencies 
of fundamentals, the partials of two tones either coincide or are well 
separated. These ratios of fundamentals are 2:1 (the octave), 3:2 (the 
fifth), 4:3 (the fourth), 5:4 (the major third), and 6:5 (the minor third). 
Normal observers find pairs of tones with these ratios of fundamentals 
to be more pleasant, and intervening ratios less pleasant (Plomp, 1966). 

Musical consonance and dissonance depend on many factors in 
addition to frequencies of partials. For example, unlike nonmusicians, 
classically trained musicians describe pairs of pure tones with these 
simple numerical ratios of frequency as consonant and intervening 
ratios as dissonant. The only reasonable explanation is that trained 
musicians are able to recognize familiar intervals and have learned to 
think of these intervals only as consonant. 

Plomp (1966) has pointed out that, in order for complex tones to 
attain a given degree of consonance, low tones must be separated by a 
larger fraction of an octave than high tones, and he has observed that 
composers follow this principle. 

If the partials of a tone are regularly arranged but not harmonic, the 
ratios of frequencies of the fundamental (or first partial) that lead to 

, consonance are not the conventional ones (Pierce, 1966). 

Combination Tones 

When we listen to a pure tone of frequency f1 and another tone of 
somewhat higher frequency f2' we hear a combination tone of lower 
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frequency 2f1 - f2' even at low sound levels (Goldstein, 1967). At 
much higher sound levels, around 100,000 times or more the power at 
threshold, it is possible to hear faint frequencies 2f1, 2f2, f1 + f2' 
f2 - fb etc. Combination tones are due to nonlinearities in the hearing 
mechanism. They can contribute to dissonance and to beats. 

Reverberation 

Reverberation is important to musical quality; music recorded in 
an organ loft sounds like a bad electronic organ. The reverberation for 
speech should be as short as possible; for music about 2 sec is effective. 
Music sounds dry in a hall designed for speech. Reverberation is not the 
only effect in architectural acoustics. Our understanding of architectural 
acoustics is far from satisfactory (Schroeder, 1966). 

The Choir Effect 

Many voices or many instruments do not sound like one voice or one 
instrument. Some experiments by the writers show that a choir effect 
cannot be attained by random tremolo or vibrato. It must be due to 
irregular changes in over-all waveform, caused by beating or head 
motions, or by. differences in attack. 

Direction and Distance 

We can experience a sidedness to sound by wearing headphones fed 
from two microphones, but the sound seems to be inside our head. 
We experience externalization of the sound-as coming from a par
ticular direction-only when we allow head movements in a sound field. 
Although we cannot detect the direction of the source of a sinusoidal 
tone in a reverberant room, we can detect the direction by the onset of 
such a tone, and we can detect the direction of clicks and other changing 
sounds. The first arrival of the sound dominates later reverberant 
arrivals in our sensing of the direction of the source; this is called the 
precedence effect (Wallach, Newman, and Rosenzweig, 1949). We can 
detect vertical angle of arrival, although no one is sure how this is done. 
We can also sense the distance of a source in a reverberant room; this 
sensation must depend on some comparison of the direct arrival and the 
reverberant sound (Gardner, 1967). 

Memory and Overlearning. 

Most memory experiments are not done with musical sounds, but 
many are relevant to music. 
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Miller (1956) found that subjects can remember a sequence of from 
5 to 9 randomly chosen digits, letters, or words. On the other hand, a 
good bridge player can remember every card that has been played in 
an entire game. Our ability to deal with stimuli depends on their 
familiarity or "meaning" to us. This familiarity comes about through 
overlearning. Overlearning has been insufficiently investigated because, 
although it is common in life, it is very difficult to achieve in the 
laboratory. 

The phonemes of a language are overlearned. A subject can readily 
distinguish the phonemes of his own tongue, but not those of another. 
He can distinguish dialects of his own language, but not those of a 
foreign tongue. He can understand his native language in a noisy place 
better than he can understand a foreign language even though he is 
expert in it. 

Conventional elements and structures in music are undoubtedly 
overlearned. Much of our appreciation of harmony, much of our ability 
to remember conventional tunes (Mozart, Haydn, and some other 
musicians could remember compositions heard only once) must 
depend on overlearning, just as our ability to use and remember 
language does. Performance with unfamiliar material is much poorer. 

Psychological Distance; Scaling 

Some psychological stimuli have the same pattern of similarity for 
all people. Color is one. The psychological distance between stimuli 
such as colors can be obtained by computer analysis of data expressing 
either the confusions that subjects make among pairs of stimuli or the 
numbers that they assign to the pairs to express their judgments of 
similarity. This kind of analysis is called multidimensional scaling. The 
stimuli may appear in a psychological space of one dimension (loudness 
does), two dimensions (color does) or three (vowels do) or more 
dimensions. Psychological distance is dependent on, but not propor
tional to, physical parameters. Thus red and violet light are of all colors 
the farthest apart in wavelength, and yet they look more alike-they 
are closer together psychologically-than the "intermediate" colors 
orange and blue. 

Unhappily, multidimensional scaling is just beginning to be applied 
in the field of music (Levelt et al., 1966). Further results might be 
enlightening. For instance, we is nearly you said backwards, and yet we 
perceive no similarity between the sounds of the two words. Is the 
retrograde of a phrase psychologically similar to the phrase, or is 
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retrograde (in the words of Tovey) for the eye only? Transpositions 
certainly are psychologically close, but what about augmentations and 
inversions? What about changes in rhythm? What about manipulations 
of the tone row? 
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Appendix B Mathematics 

In the body of this text an effort has been made to minimize the number 
and difficulty of mathematical expressions. In certain places some 
computations characteristic of signal theory must be done. This 
appendix lists the relations that are required by the text. No proofs are 
given, and the conditions under which the relations are true are not 
spelled out. They hold in a useful (and widely used way) for almost all 
real signals. We apologize for the strong MIT and EE accent in the 
mathematical language. If one has something to say, it is better to 
speak with an accent than to remain silent. 

Fourier Series 

A "not too discontinuous" function f(x) with period T can be 
represented almost everywhere by the series 

ao 277" 4rr 
f(x) = "2 + al cos y x + a2 cos y x + ... 

b . 277" b' 4rr + lSlnyX+ 2SlnyX+'" 

where 

2 fT 217-i 
at = T J 0 f(x) cos T dx 
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and 

2 r . 27Ti bi = if 0 f(x) sm T dx 

Fourier Transform 

A "not too discontinuous" function f(x) for which the integral of 
f2(X) exists may be transformed and inverse transformed according to 
the relations 

f
+OO 

pew) = -00 p(t)e- Joot dt 

1 f+oo pet) = - P(w)eJoot dw 27T _ 00 

pew) is called the Fourier transform of pet); pew) is also called the 
amplitude spectrum of pet). 

Input-Output Relations for Time-Invariant Linear Systems 

The output oCt) of a time-invariant linear system due to an input 
i(t) may be written 

f
+OO 

oCt) = _ 00 i(t - x)h(x) dx 

where hex) is called the impulse response of the system. For realizable 
systems, hex) = 0 for x < O. The transform of hex) is called the 
transfer function H( w) of the linear system and is written 

f
+OO 

H(w) = _ 00 h(t)e- Jrot dt 

The Fourier transform of the output O(w) and the Fourier transform 
of the input I( w) are related by the simple equation 

O(w) = H(w)I(w) 

Convolution Theorem 

The three time functions, x(t), yet), and z(t), have as their respective 
Fourier transforms X(w), Yew), and Z(w). If z is the product of x and y 

z(t) = x(t)· yet} 
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then 

1 J+ 00 Z(w) = 27T _ 00 X(a)Y(w - a) da 

If Z is the product of X and Y 

Z(w) = X(w). Yew) 

then 

J
+OO 

z(t) = _ 00 x(a)y(t - a) da 

Definition of Unit Impulse 

The unit impulse Set) can be considered the limit 

Set) = lim 1 e -t2
/2u

2 

u->O V27Ta 

I t is zero everywhere except at t = 0, but its integral is unity 

J
+OO 

_ 00 S( t) d t = 1 

Spectrum of Cos wot 

Although the integral of cos2 wot does not exist, and hence cos wot 
does not have a legitimate Fourier transform, the transform pew) can 
be usefully defined as 

pew) = 7T[S(W - wo) + sew + wo)] 

Note in particular that the inverse transform 

= cos wot 

Autocorrelation Function and Power Spectrum 

If pet) is an ergodic random function, then an autocorr~lation 
function cp( T) may be defined by the relation 

cp(T) = J~~ 2~ f~T p(t)p(t + T) dt 
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More generally 

cp( 1") = E<p(t)p(t + 1") 

where E< ) is defined in some way that makes sense for the random 
function pet). The power spectrum <I>(w) is the Fourier transform of 
cp( 1"). Thus 

1 f+oo <I>(w) = - cp( 1")e- jOlt dt 
27T _ 00 

cp(1") = s:: <I>(w)ejw
• d1" 

Note that the 2~ factor is in the transform rather than the inverse 

transform. 

Random Functions and Linear Systems 

H(w) is the transfer function of a linear system having an input i(t) 
and an output oCt). Let <l>i(W) and <l>o(w) be the power spectra of the 
input and output, respectively; then 

<l>o(w) = I H(w) I 2 <l>i(W) 

Mean-Square Function 

If pet) is a random function with autocorrelation function cp( 1") and 
power spectrum <1>( w), then 

f
+OO 

E<p(t)2) = cp(O) = _ 00 <I>(w) dw 
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Digital data storage, 31 
Digital-tape control for sound 

recording, 32 
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Direction perception, 177 
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Duration function, 90 
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End section, SEC, 123 
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ERR~ codes, table of, 145 
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FLT: filter, 76 
Fn,125 
Foldover errors, 7, 15, 19 
F0RSAM 

block diagram, 163 
operation of, 162 

F0RTRAN, 43 
Fourier series, 180 
Fourier transform, 181 
Frequency-limited function, 12 
Frequency scale, logarithmic, 80 
FR0UT, operation of, 167 
FR0UTO, 168 
FRfOVT3, 169 
FR0UT4,168 
Function evaluator, C0N,150 

G array, Pass II, 66, 146, 148 
GEN program for stored functions 

data statement, 123 
use in Pass III, 157 
use of, 50 

GEN1, operation of, 169 
GEN2, operation of, 170 
GEN3, operation of, 171 
Glissando, simple instrument with, 58 
Graphic score, 89 

HARVEY, 121 

I array 
Pass II, 95, 146 
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I used by READ1, 143 
IBC,142 
IBCD,139 
ICAR,139 
Impulse modulator, 12 
Input-output blocks, correct use of, 

158 
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INS, define instrument, 123 
Instrument with attack and decay, 53 
Instrument definition 

operation of in Pass III, 161 
table, 162 
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definition of, 124 
interactions between, 98 
multiple use, 157 

1-0 blocks, 47 
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Pass I, 81, 121 
Pass II, 63, 148 
Pass III, 119, 160 

IP (12), 157 
IP (15), 157 
ISAM,157 
ITI array, 155 
IVT,142 

J in READl, 143 
Just noticeable differences, 174 

Lin READl, 143 
Limens, 174 
Linear systems with random inputs, 

183 
L0P,142 
Loudness, 173 
LSG, line-segment generator, 100 

Magnetic tape, digital, 31 
Masking, 174 
Mean-square function, 183 
Memory and overlearning, 177 
Metronome function 

example, 87 
operation of, 148 

MLT generator, tutorial discussion, 49 
M0VL, operation of, 141 
M0VR, operation of, 141 
Music I-Music V 

general description, 34 
references, 172 

Music V 
comparison with Music IV, 115 
general operation of, 116 
overviewof,37 

NBC, number of break characters, 142 
N0T, play note, 123 
Note concept, 34, 36 
Note-parameter storage blocks, 154, 

155, 160 
Note playing, operation of, 154 
NPW, 143 
NSAM, 162, 164 
Numerical representation of functions 

of time, 2 
NUMU, 143 

OP codes 
adding more, 142 
table of, 122 



Orchestra, elementary example, 44 
0SC generator 

description, 127 
distortions in, 13 8 
with interpolation, 138 
with rounding, 138 
special discussion, 134 
with truncation, 138 
tutorial discussion, 49 

0UT generator 
description, 126 
tutorial discussion, 48 

P array 
Pass I, 81, 121 
Pass II, 63 

PARM,160 
Pass I 

block diagram, 120 
C0MM0N statement, 121 
description, 120 
general operation, 116 

Pass I subroutines, 118 
Pass II 

block diagram, 146 
C0MM0N statement, 146 
description, 145 
G array, 148 
general operation, 118 
IP array, 148 
report, 149 

Pass II subroutines, PLS, 94 
Pass III 

block diagrams 154, 156 
description, 153 
general operation, 119 

Pitch, 174 
Pitch function, 91 
Pitch-quantizing example, 94 
Play note, N0T, 123 
Play-to-action time, 155 
PLF, execute subroutine in Pass I, 123 

general operation, 144 
score record, 82 
use as composing subroutine, 78 
use to multiply melodies, 83 
use with graphic score, 89 

PLS, execute subroutine in Pass II, 124 
operation of, 151 
tutorial example, 94 

Pn, 125 
Power spectrum, 182 
Pressure function p (t), 2 
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Psychoacoustics 
importance, 173 
references, 179 

Psychological distance, 178 

Quantizing, 5 
Quantizing errors 

basic equations for, 24 
definition, 7 
mathematical analysis, 22 

RAH: random and hold generator, 132 
RAN: random function generator 

description, 128 
tutorial discussion, 68 
use for band-pass noise, 70 
use for vibrato, 70 

Random and hold generator: RAH, 
132 

READ,U8 
READO 

debug, 143 
operation of, 139 

READ 1 
block diagram of, 140 
debug, 143 
operation of, 139 
stereo-mono control, 142 

READ2,143 
Realizable filters, errors in, 15 
Real-time synthesis, 34 
Report, Pass II, 149 
Reverberation, 177 

SAMGEN 
block diagram, 166 
operation of, 165 

SAM0UT for debugging, 167 
operation of, 167 

Sample and hold analysis, 21 
Samples of acoustic waveform, Si!, 46 
Sampling 

alternative analysis, 16 
basic equation, 14 
definition, 4 
error bounds, 18 
errors, 15 
mathematical analysis, 11 

Sampling interval, T, 11 
Sampling rate, R, 5, 11 
Sampling switch for digital-to-analog 

converters, 29 
Scale factors, 157 
Scaling, 178 
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Score, elementary example, 44 
Score statements, description of, 117 
SEC, end section, 123 
SET: set new function number, 134 
Set integer in all passes, SIA, 124 
Set integer in Pass III, SI3, 124 
Set new function number: SET, 134 
Set variable in Pass I, SVl, 123 
Set variable in Pass II, SV2, 123 
Set variable in Pass III, SV3, 123 
SIA, set integer in all passes, 124 
SI3, set integer in Pass III, 124 
Signal-to-noise ratio from quantizing, 

7 
Smoothing filter 

design of, 29 
use of, 4 

SNA8,142 
S0RT, 146, 150 
S0RTFL, 146, 150 
Sound-processing fundamentals 

problems, 40 
references, 39 

Sound-synthesis programming, 
fundamentals of, 33 

Spectrum of sampling impulses, 13 
Starting time of note, P2, 46 
Steady-state time, 75 
STER,142 
Stereophonic output box: STR, 131 
Stored function, 34,49, 50, 135 
STR: stereophonic output box, 131 
Subroutine in Pass I, PLF, 123 
Subroutine in Pass II, PLS, 124 
SVl, set variable in Pass I, 123 
SV2, set variable in Pass II, 123 
SV3, set variable in Pass III, 123, 157 
Swell and diminuendo, simple 

instrument with, 58 
Swells, instrument for, 99 

T array, Pass II, 146 
T(1), 153, 155 
T(2), 155 
T(3), 155 
Tempo function, 148 
TER, terminate piece, 123 
Threshold shifts, 174 
TI array, 155 
Timbre of steady tones, 175 
Time-invariant linear systems, 181 
Time scale, 34 
TMIN,155 
Training orchestra, parameters, 105 
Tremolo, 175 
Tutorial examples 

problems, 106 
references, 105 

Unit generator 
description of, 34 
list of, 124 
simple, 46 

Unit impulse, definition of, 182 

Variables 
in Pass I, 81 
in Pass II, 66 
in Pass III, 60 

Vibrato 
simple instrument with, 55 
in tone quality, 175 
using RAN, 70 

Vn,125 
Voices 

combining, 46 
definition, 36 

Voltage function of time, 3 

Word size, changing, 142 
WRITEl,143 
WRITE2,148 


