
Bolt Beranek and Newman Inc.

Technical Information Report No. 99

The ARPANET Pluribus IMP Program
Volume I: Introduction, the IMP Algorithm, the STAGE System

May 1978

Prepared for: .
Defense Communications Agency

·Bolt Beranek and Newman Inc.

Technical Information Report No. 99

THE ARPANET PLURIBUS IMP PROGRAM

Volume I

Introduction, The IMP Algorithm, The STAGE System

May 1978

5 /7 8 Bolt Beranek and Newman Inc.

Volume I

TABLE OF CONTENTS

Chapter 1 Introduction

Chapter 2 The IMP
2.1 The IMP Algorithm: Introduction and Overview

2.1.1 IMPs and Hosts
2.1.2 Network Flow Control
2.1.3 End to End Communications

2.1.3.1 Error Recovery
2.1.3.2 Raw Packets

2.1.4 IMP to IMP Communication
2.1.5 Routing
2. 1.6 IMP Reliability
2.1.7 Timeout

2.2 Organization of Major Modules
2.2.1 Modem Input/Output
2.2.2 Host Input/Output
2.2.3 TASK

2.2.3. 1 Store-and-Forward
2.2.3.2 FORUS

2.2.4 Routing Algorithm
2.2.5 Background Hosts

2.2.s.1 Background Host 5
2.2.s.2 Background Host 6
2.2.5.3 Background Host 7
2.2.s.4 Background Host 9

2.2.6 Fake Hosts
2.2.6.l Fake Host 0: Local Terminal
2.2.6.2 Fake Host 1: DDT
2.2.6.3 Fake Host 2: Packet Core
2.2.6.4 Fake Host 3: Statistics and Discard

2.2.7 Very Distant Hosts
2.2.8 Reliability Mechanisms

2.2.8.1 Buffer Reliability
2.2.8.2 Counters
2.2.8.3 Crossed or Looped Queues

Chapter 3 The STAGE System
3.1 Introduction and Overview
3.2 Interconnection of STAGE Modules

i

1

4
9

13
15
16
20
21
21
25
25
29
29
30
34
38
38
39
43
46
46
47
48
49
49
50
50
51
51
52
52
53
54
55

57
57
58

5/78 Bolt Beranek and Newman Inc.

3.2.1 Sequencing the STAGE Modules
3.2.2 Interprocessor Control and Strip Timing
3.2.3 Consensus Words
3.2.4 FIXIT Words •

3.3 Data Bases
3.3.1 Page Types
3.3.2 Page Format

3.4 Interrupt Routines
3.4.1 QUIT
3.4.2 ILLOP •
3.4.3 JIFFY •

•

l.4.4 Remote Power Failure Interrupt
3.4.5 Paper Tape Reader (PTR)

3.5 Individual Stages

•

..

3.5.1 Stage LK -- Local Kernel Checksum
3.5.2 Stage MD -- Memory Discovery

•

3.5.2.1 Stage MD Part 1: Memory Test
3.5.2.2 Stage MD Part 2: Page Map Consensus

3.5.3 Stage RK Reliability Kernel Discovery
3.5.4 Stage BD Common Bus Discovery
3.5.5 Stage CD Coupler and Processor Discovery
3.5.6 Stage RC Reliability Page Checksum
3.5.7 Stage LC Local Memory Checksum
3.5.8 Stage MC Common Memory Checksum
3.5.9 Stage MM Common Memory Management
3.5.10 Stage ID -- I/O Device Discovery
3.5.11 Stage AR -- Application Reliability Dispatch

3.6 BLT Block Transfer •
3.7 Packet Reload

ii

58
58
59
60
61
61
62
65
65
66
67
67
67
68
68
69
70
72
72
73
74
75
75
75
76
79
80
81
83

5/7 8 Bolt Beranek and Newman Inc.

Foreword
Chapter 4

4. 1 DDT

Volume II

Table of Contents

The Debugging System DDT
Command Summaries
Addresses, Opening and Closing
Type Out Modes • •
Other Type Out Commarids
Type In •

• •

•

• •

• •

4. 1. 1
4. 1. 2
4. 1. 3
4. 1. 4
4. 1. 5
4. 1. 6
4. 1. 7

Address Spaces
Control • • •
IMP Version Features • • •

4.1.8 Miscellaneous Commands
4.2 Control Structure of DDT
4.3 Protection, Override

• • •
•

4.4 Debugging Environment of DDT •
4.5 Debugging Mode • • • •

Chapter 5 Detailed Program Descriptions •
5.1 Stage System •

5.1.1 Stage LK Local Kernel Checks
5.1.2 Stage MD Common Memory Discovery
5.1.3 Stage RK Reliability Page Kernel Check
5.1.4 Stage BD Common Bus Discovery •
5.1.5 Stage CD Bus Coupler Discovery
5.1.6 Stage RC Reliability Page Check
5.1.7 Stage LC Local Page Checksum
5.1.8 Stage MC Common Memory Checksums
5.1.9 Stage MM Common Memory Management
5.1.10 Stage ID - I/O Interfaces Discovery
5.1.11 Stage AR - Application-dependent Checks
5.1.12 Block Transfer •
5.1.13 Quit Handler •
5.1.14 Illegal Instruction Interrupt Handler
5.1.15 Level 1 Interrupt Handler
5.1.16 Level 4 Interrupt Handler

5.2 IMP System Central Dispatch •
5.3 Modem to IMP •
5.4 IMP to Modem • • •
5.5 Host to IMP • • • •
5.6 IMP to Host • • • •

iii

•

•

•

• •
•

•
•

• •

•

•

vii

1
2
2
3
4
5
6
7
8
9
9

10
11
13

15
16
19
20
22
24
26
28
29
30
32
34
35
37
39
41
43
44
46
48
51
53
56

5/78 Bolt Beranek and Newman Inc.

• 5.7 Task ••••••
·5.7.1 Task For Us •
5.7.2 Back Hosts: •

5.7.2.1 Back Host 5
5.7.2.2 Back Host 6
5.7.2.3 Back Host 7
5.7.2.4 Back Host 9

•

5.8 Routing • •
5.·9 Fake Hosts • •

.. •
• •
•
• •

• •
•

• •
• •

• • • •
• • • •
• • • •
• • • •
• •
• • • •
• • • •
• • • •
• • • •

5. 9. 1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.9.1

TTY Fake Host to IMP • • •
TTY Fake IMP to Host ••
DDT Fake Host to IMP •••
DDT Fake IMP to Host • • •
Packet Core Fake Host to IMP
Packet Core Fake IMP to Host
Statistics Fake Host to IMP

•
•
•
•
•

•
•
•
•
•
•
•

•
5.9.8 Discard Fake IMP to Host ••

5.10 Very Distant Host (VDH) Interface

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• •
• •
• • •
• •
• • •
• • •
• •

• •
• • •

• •
•

5.10.1
5.10.2
5.10.3
5.10.4
s.10.s
5.10.6

VDH Line
VDH Exit
Modem to

Initialization Subroutine
Routines ••
VDH Coroutine

•
•

• •
• •

VDH to Host-code Coroutine • •
Host-code to VDH Coroutine
VDH to Modem Coroutine ••

•
•

•
•

5.11 Timeout • • • • • • • • • • •
Host Timeout ••
Back Host Timeout

5.11.1
5.11.2
5.11.3 Slow

•
•
. . .
• •

• • •
• • •

5.11.3.1
5.11.3.2
5.11.3.3
s.11.3.4
5.11.3.5
5.11.3.6
5.11.3.1
5.11.3.5
5.11.3.9
5.11.3.10
5.11.3.11
5.11.3.12
5.11.3.13
5.11.3.14
5.11.3.15
5.11.3.16
5.11.3.11

Timeout •
Teletype Buffer Check
Reassembly Block Check
Host Access Checksum

•

•

•
•
•
•

Line State Timeout ••••
IMP to Host Software Check
Central Dispatch Check ••
Transaction Block Timeout
Real Host Ready Line Check
Routing Timeout • •

Incomplete Message Timeout
Routing Software Check •
Buffer Counters Check
Allocate Count Check
Modem Queue Check
Buffer Timeout •
Trace Buffer Check
Age Message Blocks

iv

•
• •

•
•

• •
•

•
• •
• •

• •
• •
•
• •
•
• •
• •
• •
• •

• •
• •
• •

•
• •

• •
•

•
• •
• •
• •
• •
• •
• •

•

• • • •
• • • •
• • • •
• • • •
• • • •
• • . ..
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •
• • • •
• • • •
• • • •
• • •
• • • •
• • • •
• • • •
• • • •
• • . . .
• • • •
• • •
• • • •
• • • •
• • • •

• • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • ..
• • • •
• • • •
• • •
• • • •

• • •
• • • •

•
• •

•

• •
•

•
•

• •
• •

•
•

•

• •
•
•
•

• •
•

• •
•

• •
•
•
•

•
• •
• •
• •

•
•
•
•
•

• •
•
• •
•
• •
•
• •
• •

•
•
•

•

•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

59
61
66
67
69
71
73
75
77
78
79
80
81
82
84
86
88
89
91
92
94
96
97
98

100
102
103
104
105
106
107
108
110
111
112
114
115
117
118
119
121
122
124
126
127

I"

5/7 8 Bolt Beranek and Newman Inc.

s.11.3.18 IMP-going-down Message Check • 129
s.11.3.19 Statistics Check • • 130
5.ll.3.20 Restart Buffer Check • • 131
5.ll.3.21 Fake Host Software Check • 132
5.11.3.22 Back Host Software Check • 133
5.11.3.23 Trouble Report Checks • • 134
5.ll.3.24 Light Display Check • 135
5.11.3.25 Nice Stop Check . • • 136

5. 12 Initialization 138
5.12.1 Buffer Initialization • • 142
5.12.2 DDT Page Initial iza.tion • • 143

5. 13 Configuration • • 145
5.14 Misc el laneo us Routines • • • 147

5. 14. 1 Packet Core Reload • • • • • • 147
5.14.2 Block Transfer Polling Process • 149
5.14.3 Restart Process • • • • • • • 150
5. 14. 4 DDT Polling Process • • 151
5.14.5 Teletype Handler Polling Process • • • • 152
5.14.6 Display Process • • • 153

Chapter 6 Data Formats • • • • • • • • 155
6. 1 Old-style Leader Format • • • • • • • 155
6.2 New-style Leader Format • • • • • • 156
6.3 Buffer Format • • • • • • • • • 158
6.4 Basic Packet Structure • • 159

6. 4. 1 Packet Type 0 Formats • • • 161
6.4.1.1 Packet format for Type 0' Codes 0-3 162
6.4.1.2 Type o, codes 4-7 • 163
6.4.1.3 Type 0, sub type 3: Uncontrolled packet 164

6.4.2 Type 1 Packet Formats • • • 165
6.4.2.1 Packet type 1 ' codes 8' A, c, D, E and F 166
6.4.2.2 Packet type 1, code 9 • 167

6.4.3 Packet type 2: Routing and null 168
6.4.4 Packet Type 3 . • • 170

6.4.4.1 Demand reload • • • • • 170
6.4.4.2 Reload request • • • • 170
6.4.4.3 Packet core • • 171

6.4.4.3.1 Data for SETUP message • • 172
6.4.4.3.2 Data for CORE message • • • 173

6.5 Modem Parameter Blocks • • • 174
6.6 Host Parameter Blocks • • • • • • 177
6.7 Back Host Parameter Blocks • • 180
6.8 Fake Host Parameter Blocks • • • • • 181
6.9 Very Distant Host (VDH) Parameter Blocks • 183
6.10 Transmit Message Block Table 185

v

5/78 Bolt Beranek and Newman Inc.

6.11 Receive Message Block Table
6.12 Transaction Block Table

• •

6.12.1 Reserved Transaction Block Format

• • •
•

6.12.2 Outstanding Message Transaction Block Format •
6.12.3 Control Message Transaction Block Format •

6.13 Reassembly Block Table • • ••
6.14 Routing Tables • • •

vi

•

•

187
189
189
190
191
192
194

5/7 8 Bolt Beranek and Newman Inc.

Volume I

Table of Figures

Figure 1) Network Message Flow 5
Figure 2) Network Protocols 6
Figure 3) Packet Flow and Processing . . . 10
Figure 4) Basic Loop in HI . . . 17
Figure 5) Format of a Packet 24
Figure 6) Reliability Software 27
Figure 7) States of Module HI 35
Figure 8) States of FOR US 40
Figure 9) Consensus Words 60
Figure 10) Organization of Common Memory 77

vii

5/78 Bolt Beranek and Newman Inc.

Volume I

Table of Tables

Table 1) Half-count Values for Various Line Speeds

viii

• • • • • 3 3

5/7 8

Table 1)
Table 2)
Table 3)

Bolt Beranek and Newman Inc.

Volume II

Table of Tables

DDT Error Type-Outs. • • • • • • • • 10
Simulated Processor Registers. • ••••• • 12
Debugging Mode Halt Type-Outs ••••••• • 14

ix

5/78

Chapter 1
Introduction

Page 1

During the past decade, the technology of packet-switching
has come into increasing use in the design and construction of
computer networks. Networks using this technology are generally
characterized by:

1. A subnetwork of communications processors to which the
host computers are connected.

2. A high degree of connectivity among the communications
processors forming the nodes of this subnetwork.

3. The division of messages into packets, typically 1000
bits in length, by the communications processor to which
the originating host is connected.

4. The dynamic routing of packets to the
communications processor for reassembly and
the host to which the message is addressed.

destination
delivery to

The pioneering, largest, and most advanced of these networks
is the ARPANET(!) whose approximately 60 nodes currently net over
120 host computers; it has been in operation since 1969. Its
basic technology has been adopted by computer networks in
government and industry, both here and abroad, e.g., AUTODIN II,
CTNE, CYCLADES, DATAPAC, DDX, EIN, EPSS, NPL, TELENET, TRANSPAC.

Some networks, e.g., EDN, COINS, PLATFORM, PWIN, use the
same (or substantially the same) equipment and terminology as the
ARPANET, including the communications processor which, for these
networks, is called the Interface Message Processor (IMP). Two
kinds of !MPs are in use: the Honeywell H-316(2) and the Bolt
Beranek and Newman (BBN) Pluribus.(3)

(1) "Selected Bibliography and
ARPANET," Becker and Hayes, Inc.,
NTIS AD-A026900.

Index to Publications
Los Angeles, California,

about
1976.

(2) F.E. Heart, et al., "The Interface Message Processor for the
ARPA Computer Network," AFIPS Conference Proceedings, Vol. 36,
1970, PP• 551-567.
(3) F.E. Heart, et al., "A New Minicomputer/Multiprocessor for
the ARPA Network," AFIPS Conference Proceedings, Vol. 42, 1973,
PP• 529-537.

5/78 Page 2

The message packet processing functions performed by a
Pluribus IMP are the same as those of a H-316 IMP, but there are
significant differences in the manner in which their programs are
designed and implemented. These differences are dictated by the
architectural differences between the two types of computers.
The H-316 is a single-processor, interrupt-driven machine while
the Pluribus is a multiprocessor which uses parallel processing
and a priority ordered Pseudo Interrupt Device (PID) to control
the sequence of execution of all program tasks and the servicing
of I/O devices to achieve real-time response.

The Pluribus consists of processors, memory modules, I/O
devices, buses over which these communicate, and bus couplers to
interconnect the individual buses. Within this framework, a wide
variety of systems can be configured, ranging from small
single-bus machines to large multibus systems with tens of
processors, up to 1024K bytes of main memory, and many diverse
I/O devices. All Pluribus processors are functionally
equivalent; any processor can perform any system task and
control any device.

The principal responsibility for maintaining reliability in
the Pluribus is placed on its software. The Pluribus hardware
was designed to provide an appropriate vehicle for the software
reliability mechanism. When hardware errors are detected, the
software exploits the redundancy of the hardware by constructing
a new logical system configuration which excludes the failing
resource, using redundant counterparts in its place. A small
hierarchical operating system called STAGE(4) coordinates the
software reliability mechanisms involved.

The H-316 IMP program has been documented in BBN Technical
Information Report No. 89, The Interface Message Processor
Program, March 1977 (periodically updated). The purpose of the
present report is to document the Pluribus IMP program. The
report is divided into two volumes. Volume I contains, in
addition to this introduction, descriptions of the IMP and STAGE
system programs; the debugging system DDT, detailed program
descriptions, and data formats are included in Volume II. A
general familiarity with packet switching and with the Pluribus
architecture, e.g., as described in Pluribus Document 2, System
Handbook, (BBN Report No. 2930), will be helpful in using and
understanding the present report. Unless otherwise stated, all

(4) J.G. Robinson and E. s. Roberts, "Software Fault-Tolerance in
the Pluribus," AFIPS Conference Proceedings, Vol. 47, June 1978.

5/7 8

numbers are decimal;
are followed by a"!".

Page 3

where hexadecimal numbers are used, they

As a final note, it is pointed out that some networks, e.g.,
Platform, use Pluribus IMPs with memory and I/O devices on the
same bus, called an M/I bus. The Pluribus program treats these
buses as if they were separate I/O and memory buses. In line
with this approach, the discussion in the body of this document
is functionally oriented and the reader should keep in mind that,
for machines with M/I buses, all references to memory or I/O
buses actually refer to the memory or I/O space of the M/I bus.
The single instance involving a routine that deals specifically
with the M/I bus structure is discussed in Section 3.5 (Stage
CD).

S/7 8

Chapter 2
The IMP

Page 4

This chapter describes the algorithms that the IMP uses in
performing its functions as a network communications processor.
The flow of messages through the network is illustrated in Figure
1. The host sends the IMP a message up to 8063 bits long,
preceded by a leader which specifies its destination. The source
IMP accepts the message in packets up to 1008 bits long. Each
packet has a header to allow for the transmission from IMP to
IMP.(S) Figure 1 demonstrates how message 1 is transferred from
IMP to IMP in three packets, numbered 1-1, 1-2, and 1-3. When a
packet is successfully received at each IMP, an acknowledgement
or ack is sent back to the previous IMP. Inter-IMP acks are
shown returning for each packet. Finally the message arrives at
the destination IMP where it is reassembled: that is, the
packets are recombined into the original message. The message is
sent to the destination host and a Ready for Next Message (RFNM)
is sent back to the source host. A RFNM is a unique, one-packet
message and it is acknowledged at each IMP to IMP hop on its
return path.

As shown
involved in
in different

in Figure 2, several layers of nested protocols are
transmitting a message between application programs

hosts, as follows:

1.

2.

3.

4.

5.

Host-to-Host.
hosts.

Protocols between source and

Host/IMP. Protocols between a host and its

Subnetwork. Protocols between IMPs.

End-to-End. Protocols between source and
IMPs.

IMP- to- IMP. Protocols be tween adjacent I MPs
store-and-forward nodes.

destination

1 ocal IMP.

destination

serving as

(5) Note the distinction between the leader, which app~ars at the
beginning of a message as it passes between a host and an IMP,
and a header, which appears in front of a packet in an IMP or in
transit between IMPs.

w
<.!)
<[
en
en
w
~

IMP
B

PACKET PACKET

RFNM 1

MESSAGES

IMP
c

• VARIABLE LENGTH UP TO
8095 BITS

• TRANSPARENT BINARY
PACKET

• VARIABLE LENGTH UP TO
1008 BITS

• PLUS HEADER, CHECK BITS
AND FRAMING BITS

Figure 1. Network Message Flow

IMP
D

HOSTE

3:: ,.,,
(/)
(/)

e; ,.,,
-

U1 -........
CXl

1-d
Ill

OQ
(1)

V1

HOST-TO-HOST PROTOCOLS

HOST/IMP (1a22) PROTOCOLS

SOURCE
HOST
T-

Zf
£1
~I
.u I NCP
:J I
~I
<I

:::.-:·:·:-:-:-:--...:«·!-:·:·:·:-:·:·:·:·:·:·:·:·:<·:·:·:·:-:e:-:-:•:•:•:•:•:•:•:•:•:~·:•:;:•:•:•:•:;:.:•:•:·:·:•:·:•:·:•:•:·:·:·:·:·!·!·!·!•!•!•!•!•!•!•!•!•!•!•!•!•!•!•:-:·:·:·:·:-:·:·:·:·:·::.:·:·:·:·:·:·:·:·:-!•!-!•!•!-!·~!·:--:-:·:<·!·!<$.

I SUBNETWORK PROTOCOLS I
~ ~
t I
• END-TO-END PROTOCOLS I
I I
I • I IMP-TO-IMP PROTOCOLS I
j~l IMP IMP IMP IMP . ~j~
~ ~ ·:·: I r :-:·
::~ H I I TASK TASK TASK TASK I I H ;~
I I . I ~
• I I - •
~ ~
~ ~
I ~
~ ~
~ I
~-:·:·:·:;;.:;:;:;:i;.:;:;:;:;:o:o:o:;;o:-:-:-:·:o:-"..:-:·:-:·:«o:-:~:·:;:.:;:;:;:;:«-:;:;:.;:.;:;:;:o:.;:;:•:o:·:-:-::-:-:•:•:·:o:;:;:•:•:-:•:·:•:•:0:•:0:•:7.-:·:•:;:.:·:•:•:•:•:;:;:;:;:;:;:v;;:;:;:;:;:v;;;;:;:;:;;v:;;;;;;;;;:;:;;i~

Figure 2. Network Protocols

DESTINATION
HOST

,l z
I o
I -
I ~

NCP I !::!
I ...J

I ~
I<

lJ1 -.......
00

'"d
Ill

(IQ

II>

Cj\

5/78 Page 7

The highest level of protocol in the network is the
host-to-host protocol governing the transmission of messages from
a source to a destination host. A message originating in a
host's application program is passed to that host's Network
Control Program (NCP) which performs all communication between
its host and the network. The host-to-host protocols are
implemented in the NCP. They establish the rules by which the
conversation between the source and destination hosts will be
held. This permits two architecturally different hosts to
communicate.

The next protocol level is the host/IMP protocols which
enables the host's NCP to pass a message on to the local IMP.
This is accomplished by following the so-called "1822" protocol
described in BBN Report No. 1822, "Specifications for the
Interconnection of a Host and an IMP." That document defines the
hardware interface between a host and an IMP and specifies the
protocol to be followed in transmitting messages between them.
The host's NCP casts the message into the proper format and
precedes it by a leader which specifies such data as the
destination host's network address, the message's priority, etc.
It then takes the appropriate hardware actions to transmit the
leader and message to the IMP. At some subsequent time, the IMP
to which the receiving host is connected receives the message and
passes it to the host through its own 1822 interface.

The remaining lower protocols are implemented
IMPs ·of the subnetwork and no longer concern the
hosts. This is indicated in Figure 2 by the shaded

between the
participating
box.

The next protocol level is the end-to-end message protocol.
The source IMP receives the message through the 1822 interface
and passes it to the host-to-IMP (HI) module. The information
from the leader is stored in a transaction block, a data area
reserved for the purpose, and the leader is examined to determine
the addressee. For data to flow in the network, a conversation
must be initiated with the destination IMP unless such a
conversation already exists. A series of protocol messages is
transmitted back and forth between the source IMP and the
destination IMP, resulting in a transmit message (TM) block in
the source IMP and a receive message (RM) block in the
destination IMP. When each IMP knows of the existence and
identity of the relevant block in the other, the conversation has
been initiated. Note that "conversation" is a technical term
referring to a one-way transmission of data. Although control
messages pass in both directions in a conversation, data move in
one direction only. (A two-way exchange between hosts actually

5/78 Page 8

involves two conversations in the IMP subnetwork.) Once a
conversation has been initiated, it may be used for many
messages; it is terminated automatically by the IMP subnetwork
when it falls into disuse.

Having initiated the conversation, the host-to-IMP module
(HI) in the source IMP breaks the message into packets up to 1008
bits long and invokes the basic store-and-forward module TASK to
send each packet to the destination IMP. TASK is called upon to
transmit only one packet at a time. Once the message has been
received at the destination IMP, the module TASK in the
destination IMP invokes the IMP-to-host module (IR) to transmit
the message to the destination host. Notice that this level of
discussion starts with a message received in the IMP through HI
which is passed off to TASK in that IMP, and that TASK in the
destination IMP passes the message through IR to the receiving
host. All processing just described takes place even if both
hosts are connected to the same IMP.

The next level of discussion involves the transmission of a
single packet from one IMP to another. TASK is invoked by
handing it a packet which it is to move towards its ultimate
destination. Such packets may arise from either of two sources:
from HI as just described, or from an adjacent IMP. The effect
is the same in either case.

When an IMP receives a packet, that packet is either
addressed to a host connected to this IMP or to a host connected
to some other IMP. In the latter case TASK must determine the
next leg of the packet's route. Each IMP has several
communication links connecting it to adjacent IMPs, and TASK must
determine which of these links is the best one to the
destination, given the present state of the network. The routing
algorithm gathers data about the current status of network
traffic and transmits these data periodically from one IMP to
another. The results of this data gathering operation are used
to create tables which TASK can interrogate to determine, for any
given destination IMP, the best line over which to transmit the
packet. Since routing messages are received periodically by each
IMP, successive packets of a message may be transmitted via
different routes, leading to the possibility that the packets are
received at the destination IMP out of order. (New routing
information may reveal a less busy route, so that a subsequent
packet may travel more rapidly than an earlier one.) For this
reason, the IMP algorithms are designed to reassemble the packets
of a multi-packet message in the proper order.

5/78 Page 9

Having determined the line over which to transmit the
packet, TASK then transmits it to an adjacent IMP (which may or
may not be the destination IMP). TASK in that IMP goes through
an identical process. This process continues until the packet
arrives at the destination IMP, at which time TASK passes it to
the module FORUS which performs the necessary reassembly of the
packets into a message. FORUS also insures that messages are
passed to the host in proper order.

A final protocol is the low-level IMP-to-IMP protocol, which
governs usage of the communication links between !MPs. Each
physical link between IMPs i~ divided (by the software) into up
to 128 logical channels, so that up to 128 packets at a time may
be in transit in each direction between each pair of IMPs. The
channel concept permits each IMP to initiate transmission of
subsequent packets over a link before receiving acknowledgement
of the successful transmission of the first. Note the
distinction between the end-to-end protocol and the low-level
IMP-to-IMP protocol. The former is concerned with the concept of
the conversation, the latter with chanriels.

2.1 The IMP Algorithm: Introduction and Overview

The data flow through the IMP is
schematic drawing of packet processing.
are described below.

shown in Figure 3, a
The processing programs

The host-to-IMP routine (HI, shown in the lower left corner
of the figure) handles messages being transmitted into the IMP
from a local host. The routine first accepts the leader to
construct a header that is prefixed to each packet of the
message. It then accepts the first packet and, if no allocation
of space exists for the destination IMP, constructs a request for
buffer allocation which it places on TASK's queue. A
single-packet message is placed directly on the task queue
regardless of allocation status and a copy is held in the
transaction block until either a RFNM or allocation is returned.
A returned RFNM causes the packet to be released (since the
message has been received), while a returned allocation for the
single-packet message causes retransmission by TASK. Requests
for multi-packet allocation are sent without actual message data.
The request is recorded at the destination IMP and an allocation
message is returned by a background process as soon as space is
available. A returned allocation causes HI to place the first
packet with header on TASK's queue. Input of the rest of the
message is then accepted from the host. HI also verifies the

,,. -, reassembly-:<- - ·
To I I-H ', logic '\ -- Host

HOSTS\ out -i \',::, I
--f'T•-r7

\ J'- ,,.,1 I
' RFNMs ~'_/

Teletype

RFNM I
I
I
I

--....
"N--1' FROM -- * I-"\

Task \ '(IMODEM
' .J/ \acknowledged ' - I

\ packets~ 1
/\duplicate receive,

f {ackets acksl

----- free I ;:r-
/~~-TTY f'-..

receive
allocate

logic
I pc1ckets

/ replies

Cl>----\--, I
\ 1 transmit I

I Debug
\ Trace
\ Parameters

·Stat is tics
, Discard

' '
\

'

requests

I '~ACKGROUNll •
single pack~'- j /ICrequest I 1

messages_ _
_,. ----, ,- . -

I , I '

local

TASK ,-. -
'_._

FROM , ===t--- \ packets
HOSTS \ H--I ~ c.-=.-~::::} ~ 14 i Task

'--~--7' , / request 8 *
multi-packet_/ r I

messages transmit Lallocates
allocate logic

l lacks I
S/F I I I

Routing/ I I
/ I I

./ I I
I I
I I
I
I ,,. J.

I) '\
I I \ TO
L-\--- 'MODEM

' I--M I__/

D QUEUE Q DERIVED •CHOICE
PACKET

I'-

\ ..) ROUTINE *THE SAME QUEUE

Figure 3. Packet Flow and Processing

\J1 --...!
00

'i:I
Ill

l)Q

ro

......
0

5/78 Page 11

message format.
connected to the

The routine is reentrant and services all hosts
IMP.

The modem-to-IMP routine (M2I, shown in the upper right
corner of the figure) handles inputs from the modems through
which the IMP is connected to the communication links. This
routine first sets up a new input buffer, previously obtained
from the free list. (That is, M2I performs double buffering.)
If a buffer cannot be obtained, the received packet is not
acknowledged and the buffer is reused immediately to read in the
next packet. The discarded packet is retransmitted later by the
distant IMP as soon as a timer runs out. M2I processes returning
acknowledgements for previously transmitted packets and either
releases the packets to the free list or signals their subsequent
release to the IMP-to-modem routine. M2I then places the buffer
on the end of TASK's queue.

TASK uses the header information to direct packets to their
proper destination. It routes packets from the task queue either
to a local host queue or onto an output modem determined from the
routing tables. If the packet is for non-local delivery, TASK
determines whether sufficient store-and-forward buffer space is
available. If not, buffers from modem lines are flushed and no
subsequent acknowledgement is returned by I2M. (Normally, an
acknowledgement is returned with the next outgoing packet over
that modem line.) Packets from hosts which cannot get
store-and-forward space are freed by TASK and requeued at a later
time by HI.

If a packet from a modem line is addressed for local
delivery, its message number is checked to see whether a
duplicate packet has been received. Each IMP maintains for each
connection a window of contiguous message numbers which it will
accept from the other end of the connection. Packets with
out-of-range numbers are considered duplicates and are discarded.
The receipt of a RFNM for the oldest message at the source IMP
permits the window to be moved up by one number.

Replies such
transaction blocks.
host.

as RFNMs or Dead Host messages are placed in
TASK then pokes IH to initiate output to the

Message packets for local delivery are linked together with
other packets of the same message number in a reassembly block.
When a message is completely reassembled, the leading packet is
linked to the appropriate host output queue for processing by IH.

5/7 8 Page 12

Incoming routing messages are processed by the routing
program with high priority so that outgoing routing messages and
the routing directory immediately reflect any new information
received. M2I generates I-heard-you messages to indicate to the
neighbor receipt of the routing message.

The IMP-to-modem routine (I2M) transmits successive packets from
the modem output queues and sends piggybacked acknowledgements
for packets correctly received by M2I and accepted by TASK.

The IMP-to-host routine (IH) passes messages to local hosts and
informs a background process when a RFNM should be returned to
the source host.

A fake host is a program in the IMP which acts like a real host
in many ways, including being the source or destination of
network traffic. The four fake hosts are:

1. Fake Host 0--The terminal connected to the Pluribus IMP.

2. Fake Host 1--The debugging process DDT.

3. Fake Host 2--The packet core process used to reload part
of the memory should it be found to be incorrect.

4. Fake Host 3--Used for miscellaneous purposes such as
reports to the NCC, message generation, etc.

Selected hosts and IMPs, particularly the Network Control Center
(NCC), find it necessary or useful to communicate with one or
more of these fake hosts.

The TTY fake host assembles characters from the terminal
into network messages and decodes network messages into
characters for the terminal. TTY's default message
("crosspatch") destination is the DDT fake host at its own IMP.
It can, however, be connected to any other IMP terminal, any
other IMP's DDT fake host, or to any host program with compatible
format.

DDT permits the operational program and its data to be
inspected and changed. Although its normal message source is the
TTY fake host at its own IMP, DDT responds to a message of the
correct format from any source. This program is normally
inhibited from changing the operational IMP program; NCC
intervention is required to activate the program's full power.

5/78 Page 13

The STATISTICS fake host collects measurements about network
operation and periodically transmits them to a designated host.
This program sends but does not receive messages.

The PACKET CORE fake host loads and dumps portions of its
own IMP's memory, or acts as an intermediary in loading and
dumping portions of the memory belonging to a neighbor who is
unable to communicate via the normal IMP-to-IMP protocol. The
PACKET CORE facility allows for dissimilar machines to coexist as
IMPs on the network; reloading and diagnostic dumping of a
malfunctioning IMP can be done without the requirement that one
of its neighbors be of the same machine type.

Background Hosts. These are modules which are run periodically
and search the IMP's data bases for certain tasks to perform.
They send connection protocol messages, incomplete transmission
messages, allocations, and RFNMs, as well as returning GIVEBACKs
closing unused connections. The background hosts run in a
slightly different manner than the fake hosts in that they do not
simulate the host/IMP channel hardware~ They do not go through
the host/IMP code at all, but put their messages directly on the
task queue. Nonetheless, the principle is the same.

2.1.1 IMPs and Hosts

The software interface between an IMP and a host will now be
defined; the details of the hardware interface are to be found
in BBN Report No. 1822. Each IMP serves hosts whose cable
distances from the IMP are less than 2000 feet. A modem channel
must be used for greater distances; this latter type of host
connection is termed a Very Distant Host (VDH) and is also
discussed in BBN Report No. 1822.

Connecting an IMP to a wide variety of different local hosts
requires a hardware interface, some part of which must be custom
tailored to each host. The interface is therefore partitioned so
that a standard portion can be built into the IMP which is
identical for all hosts, while a special portion of the interface
is unique to each host. The interface is designed to allow
messages to flow in both directions at once; a bit-serial
interface is used.

The host interface operates asynchronously, each data bit
being passed across the interface via a four-way
Ready-for-Next-Bit/There's-Your-Bit handshake procedure. This
technique permits the bit rate to adjust to the rate of the

5/78 Page 14

slower member of the pair and allows necessary interruptions when
words must be stored into or retrieved from memory.

A message from a host consists of a leader followed by data
bits. The leader format was changed in late 1976 to accommodate
more than 63 !MPs in the network and more than 4 hosts per IMP.
Since some hosts have yet to be reprogrammed for the new format,
the !MPs support either format although all internal processing
in the IMP assumes new format. Any leader in old format is
translated to new format immediately upon receipt by HI, and the
format is changed just before transmission of a message by IH to
a host using old format.

The format of the message leader provides a 16-bit field for
IMP numbers, so that in principle there can be as many as 2**16
IMPS. In practice, other restrictions limit the !MPs to being
numbered between 1 and 67.(6) Host numbers are in an 8-bit field
and may range from 0 to 255. Because of storage limitations, 26
(including fake hosts) is the maximum possible number of hosts.
Four of these host numbers are reserved permanently for fake
hosts, numbered 252 through 255, as follows:

252 local terminal
253 DDT, the debugging process
254 packet core
255 statistics, message generation/discard

The software for the fake host simulates 1822 hardware.

Messages intended for dead hosts (which are not the same as
dead !MPs) cannot be delivered; they require special handling to
avoid indefinite circulation in the network and spurious arrival
at a later time. Such messages are purged from the network at
the destination IMP. A host computer is notified about a dead
host only when it attempts to send a message to it.

(6) IMP number 0 is not usable because of certain conventions in
message fields, and 67 is the maximum number of fields
transmittable in certain parts of routing information.

5/78 Page 15

2.1.2 Network Flow Control

A major hazard in a message-switching network is congestion,
which can arise either from system failures or from peak traffic
flow. Congestion typically occurs when a destination IMP becomes
flooded with ineoming messages for one or more of its hosts. If
the flow of messages to this destination is not regulated, the
congestion backs up into the network, affecting other IMPs and
degrading or even completely clogging the communication service.
To avoid this problem, the IMPs incorporate a quenching scheme
that limits the flow of messages to a given destination before
congestion begins to occur.

This quenching scheme requires that buffer space be
allocated where it will be needed before a message may enter the
system. If buffering is provided in the source IMP, one can
optimize for low delay transmissions; while if the buffering is
provided at the destination IMP, one can optimize for high
bandwidth transmissions. To be consistent with the goal of a
balanced communications system, the approach used utilizes some
buffer storage at both the source and the destination as well as
a request mechanism from source IMP to destination IMP.

Specifically, no multi-packet message is allowed to enter
the network until enough storage for the message has been
allocated at the destination IMP. As soon as the source IMP
realizes that a message is multi-packet, it sends a control
message to the destination IMP requesting that reassembly storage
be reserved at the destination for this message. It does not
take in further packets from the host until it receives an
allocation message in reply.(7) The destination IMP queues the
request and sends the allocation message to the source IMP when
enough reassembly storage is free; at this point the source IMP
accepts the (rest of the) message from the host and starts to
send it to the destination.\

Effective bandwidth is maximized for sequences of long
messages by permitting all but the first message to bypass the
request mechanism. When the message itself arrives at the
destination and the destination IMP is about to return the Ready
For Next Message (RFNM), the destination IMP waits until it has

(7) This is not completely accurate, since the double buffering
scheme employed in HI permits two packets to be read in while
waiting for the allocation. In the usual case, the allocation
arives before the host interface must be blocked.

5/78

adequate buffer and
multi-packet message
onto the RFNM. If the
RFNM wit~ its next

Page 16

reassembly space for an additional
and then piggybacks a storage allocation
source host is prompt in answering the
message, an allocation is ready and the

message can be transmitted at once. If the source host delays
too long, or if the data transfer is complete, the source IMP
returns the unused allocation to the destination. With this
mechanism, the inter-message delay has been minimized and the
hosts can obtain the full bandwidth of the network.

The delay for a short message has been minimized by
transmitting it to the destination immediately upon its receipt
from the host, retaining a copy in the source IMP. If there is
space at the destination, the message is accepted at once and
passed on to a host and a RFNM is returned, the source IMP
discarding the message when it receives the RFNM. If there is
not enough space, the destination IMP discards the message and
queues within itself a request for allocation. (Effectively, it
treats it as a request for space.) When space becomes available,
the source IMP is notified that the message may now be
retransmitted. Thus, there is no setup delay at all in the vast
majority of cases in which storage is available at the
destination.

These mechanisms make the IMP network fairly insensitive to
unresponsive hosts, since holding the source host to a
transmission rate equal to the reception rate of the destination
host prevents clogging the network with messages. Further,
reassembly lockup is prevented because the destination IMP never
has to turn away a multi-packet message destined for one of its
hosts; reassembly storage has been allocated for each such
message prior to its entry into the network.

2.1.3 End to End Communications

To communicate, both source and destination IMPs must
establish a record of the connection between them. This simplex
connection, consisting of a Transmit Message (TM) block at the
source, and a corresponding Receive Message (RM) block at the
destination, is created and later removed using a special
protocol which detects duplicate or missing messages. Each
message transmitted as part of a conversation contains the index
of the relevant block (TM or RM) at the far end. The connection
is disallowed if the host/host access control mechanism does not
permit that host pair to communicate.

5/7 8 Page 17

Every IMP maintains for each of its hosts a pair of Host
Access Control (HAC) words in which each of the 16 bits
represents one of sixteen logical subnetworks. The bits in one
word signify membership in, and in the other word signify
permission to communicate with, the subnetworks. A pair of hosts
may communicate with each other only if they are members of the
same logical subnetwork or if one is allowed to communicate with
hosts in a subnetwork of which the other is a member.

A conversation is a one-way message path from a source IMP
to a destination IMP, where "one-way" means that data are
transmitted in only one direction although control messages move
in both directions. The basic control loop in HI that deals with
conversations is shown in Figure 4. After going through some

initiate conversation

request allocation
(or have it)

I
I
I

<-----

send packets ---------

Figure 4
Basic Loop in HI

1
I
I
I

initial protocol to set up the conversation, the two remaining
steps are to request an allocation and to send packets. The
action of requesting an allocate can be by-passed in the event
that an allocation is available. (It may have been provided on
the RFNM returned for the previous message.)

The message sent to the remote IMP to initiate a
conversation is GETABLOCK, which asks that an RM block be set up.
The receiving IMP replies either GOTABLOCK or CANT, depending

5/78 Page 18

upon whether or not there is an available RM block which it can
allocate for this conversation. If it finds such a block, then a
conversation has beett successfully initiated.

For each conversation, an independent message number
sequence is maintained by each of the two participating !MPs,
the originating IMP maintaining it in the TM block and the
destination IMP in the RM block. The counter is incremented by
one for each message sent over the conversation. The
transmitting IMP assigns the message numbers in sequence, and the
receiving IMP uses the same message number as part of the
acknowledgement. Since it is an inherent property of the
store-and-forward protocol that messages may arrive at the
destination out of order, a window of eight messages is
maintained, and the reassembly process is willing to accept any
message within that window. (FORUS assures that messages are
delivered to the host in proper order.) As it receives a message
and acknowledges it to the source (by a RFNM), the transmitting
IMP moves the window up past each successfully acknowledged
message. The end-to-end protocol permits up to eight messages
per conversation to be in the network at any time, thus allowing
a host to send messages rapidly accross the network despite
delays in returning RFNMs. If a host tries to get ahead by more
than eight messages, the transmitting IMP blocks it. Messages
arriving at a destination IMP with message numbers outside of the
current window or with message numbers already marked as received
are duplicates to be discarded. The message number concept
serves two purposes: it orders the messages for delivery to the
destination host, and it provides for the detection of duplicate
and missing messages. The message number is internal to the IMP
subnetwork and invisible to the hosts.

A sequence control system based on a single
source/destination connection, however, does not permit priority
traffic to go ahead of other traffic. More generally, a host may
wish to request special treatment for a message; thus, a
separate connection is created for each "handling type."
Currently, there are two possible handling types: regular (for
high bandwidth) and priority (for low delay).

When a request for an allocate comes in to an IMP with an
associated message number, that message number should be in
an idle state. (If the message number is busy, the allocation is
a duplicate and is discarded.) FORUS puts this conversation in
the state "need an allocate."

5/78 Page 19

When an allocate is returned, it goes into the TM block.
That is, a record is made in the TM block of the amount of space
allocated. The originating host is blocked until the allocate is
returned. When the source IMP receives the allocate, it starts
to send packets. Because of the double buffering in the
host-to-IMP interface, the source host may have already sent two
packets. However, the IMP cannot receive more than that and does
not attempt to do so until it has received word from the
destination IMP that the storage allocation is available. It is
for this reason that it is important that allocation processing
be expedited; therefore, the destination IMP is willing to wait
for up to half a second to be .able to piggyback the allocation on
a RFNM for a previous multi-packet message.

At the destination IMP, the packets are collected as they
are received. The reassembly block contains a pointer to the
first packet received, and each successive packet is threaded
onto this packet list in the proper order for the message. Thus
duplicate packets can be discarded as soon as they are received
when the attempt to thread them onto the list reveals an already
received packet with the same packet number. If a packet is
lost, the source IMP sends an Incomplete Query message after
30-45 seconds.

Special processing is provided for single packet messages so
that they can be transmitted expeditiously. Upon receiving a
single packet message from the host, HI transmits it to the
destination IMP as a request for an allocation of one block but
also retains a copy in the transaction block. However, all of
the data accompanies this request for allocation. The
destination IMP attempts to find a buffer for the data and (if it
is not the next message to go to the host) a reassembly block.
If it is able to find both, then the message is complete; it is
sent to the destination host and a RFNM is returned. If there is
no available buffer and reassembly block, the message is treated
as if it were merely a request for an allocation and the data
that accompanied it is discarded. Eventually a reassembly block
and a buffer are allocated and an allocation of one is sent to
the source IMP.

5/78 Page 20

2.1.3.1 Error Recovery

Since
unreliable
detect and
algorithm
if packets
techniques

packets· are sent between IMPs via potentially
communication links, procedures have been developed to
account for a lost packet or message. The IMP
takes various steps to continue smooth operation even
or protocol messages are lost in transit. Some of the
employed are presented in this section.

The source IMP keeps track of all messages for which a RFNM
has not yet been received, and the destination IMP keeps track of
the replies it either has yet to send or has already sent. When
the RFNM is not received for too long (about 30-45 seconds), the
source IMP sends an "Incomplete Query" protocol message (using
the same message numberJ to the destination, a messa~e which
inquires in effect, "What is the status of this message number?"
If the destination has already received that message (that is, if
the acknowledgement was lost in the n'etwork), then a duplicate
acknowledgement is sent. If some part of the message was lost in
transmission, the destination replies, "I've just received an
incomplete message." This reply includes enough details about
the error so that appropriate corrective action can be taken. At
the very least, the originating host can be informed that the
message was lost in transit. The source IMP continues inquiring
until it receives a response. This technique generally insures
that the source and destination IMPs keep their message number
sequences synchronized and that any allocated .space is released
should a message become lost in the subnetwork because of a
machine or communication line failure.

A conversation is terminated either after a prolonged period
of inactivity, or after a somewhat shorter period of inactivity
coupled with the need for the message block by some other
connection, or by the need to resynchronize a message number
sequence that has been broken. The special termination protocol
can be initiated by either the source or the destination in the
first two of the cases mentioned above, or by the source in the
third case upon the receipt of an "out of range" response to an
Incomplete Query. Upon closing a conversation, both source and
destination IMPs release all resources held or allocated for that
conversation.

5/78 Page 21

2.1.3.2 Raw Packets

The network provides a facility outside of the normal
host/host connection mechanism for sending and receiving "raw
packets." These messages are identified by a special host-IMP
and IMP-host code and bypass the connection mechanism. They are
routed normally through the subnetwork, but no sequencing, error
control, reassembly, or storage allocation is performed. Thus,
they may arrive out of order at the destination host, some
packets may be missing or duplicated, or packets may be thrown
away by the subnetwork if insufficient resources are available to
handle them. No RFNMs or other messages are sent back to the
source host about such raw packets. Since there is no flow
control, a host can overload the net with raw packets and cause
it to fail; therefore, a special privilege bit (in the host
access word) is required for a host to be permitted to send them.

2. 1.4 IMP to IMP Communication

The preceding section dealt
sending messages from a source IMP
lower level is the IMP-to-IMP
individual packets from one IMP to
discussed.

with the end-to-end protocol of
to a destination IMP. At a
protocol involved in sending
another. This protocol is now

The mode of operation in connection with IMP-to-IMP
transmission of packets is as follows: when a packet is
transmitted from one IMP to ~nother, the sending IMP retains a
copy. W'hen the IMP at the other end of the link has successfully
received the packet, it acknowledges it to the sender. On
receipt of that acknowledgement, the sender is able to release
the buffer space in which the packet copy is held. If an
acknowledgement is not received in time, the sending IMP merely
retransmits the packet. The exact length of time an IMP will
wait before retransmission depends on the type of line being used
(land vs. satellite) as well as the bandwidth of the link (low
speed vs. high speed).

A simple acknowledgement discipline applies to a channel,(8)
a connection between one IMP and another. Over each channel,
each packet is assigned a gender as being either even or odd;

(8) "Channel" is a technical term;
found later in this section.

a full definition will be

5/78 Page 22

associated with each packet is a single bit which specifies the
packet's gender. For a channel from IMP A to IMP B, every data
packet or null sent back from B to A contains an acknowledgement
(ACK) field specifying for each channel the gender of the last
packet received from A. It is this field which provides the
acknowledgement required by the IMP-to-IMP protocol. For
example, after a packet of gender even has been transmitted from
A to B, the ACK field in each packet sent back from B to A is
examined. When that field shows that the channel status is even,
then IMP A knows that the packet has been received correctly and
that it is able to discard its copy and to transmit additional
packets over the channel. The next packet it transmits then has
gender odd, and again the acknowledgement is detected when the
ACK field in any packet from B to A indicates that the gender of
the channel is odd. Note that loss of a packet along with its
associated ACK bits causes no harm other than a slight delay
until the sender notes the acknowledgement, since the gender
status is repeated in the next packet.

The purpose of multiple channels is to reduce the total
delay in transmission over links with long delay, such as
satellite links. Multiple channels allow an IMP to begin
transmission of a second packet over a given link before it has
received acknowledgement of the first one, with up to 128 packets
in transit at any instant as already described. The number of
channels available is dependent on the particular link and is
contained in the MAXCHN word of each modem parameter block. On
links with very long transit times it is appropriate to have
large numbers of channels. The Pluribus IMP software supports
eight channels on terrestrial links and up to 128 channels on
satellite links.

Each physical link connecting one IMP to another is divided
into 8 to 128 logical channels, and each packet sent over the
link is assigned a channel number. Each packet transmitted has a
channel field which identifies its channel number and has in
addition a gender bit which specifies whether the packet is even
or odd. Additionally, the ACK field is piggybacked onto every
packet transmitted (other than routing) between IMPs. Thus IMP A
is sending messages on each of up to 128 channels to IMP B, and
each packet from B to A contains an ACK field specifying the
gender of the last packet successfully received from A on each of
the eight channels. At any particular instant, there can be
between 0 and 127 packets pending receipt between any two IMPs in
either direction. (This count of packets waiting is used in the
routing algorithm as a measure of link activity, as described in
section 2.2.4.) Since the algorithm in the 316 IMPs limits the

5/78 Page 23

maximum number of channels to 8 (16 with a special configuration
option), more than 16 channels may be used only on links between
two Pluribus !MPs.

Each packet is individually routed from IMP to IMP through
the network toward the destination. At each IMP along the way,
the transmitting hardware generates initial and terminal framing
characters and hardware checksum. digits that are shipped with the
packet and are used for error detection by the receiving hardware
of the next IMP. The format of a packet on an inter-IMP channel
is shown in Figure S.

Errors in transmission can affect a packet by destroying the
framing and/or by modifying the data content. If the framing is
disturbed in any way, the packet either is not recognized or is
rejected by the receiver. In addition, the check digits provide
protection against errors that affect only the data. The check
digits can datect all patterns of four or fewer errors occurring
within a packet, and any single error burst of a length less than
twenty-four bits. An overwhelming majo.rity of all other possible
er~ors (all but about one in 2**24) is also detected. Thus, the
mean time between undetected errors in the subnet should be on
the order of years.

The network is designed to be largely invulnerable to
circuit or IMP failure as well as to outages for maintenance.
Special status and test procedures are employed to help cope with
various failures. In the normal course of events the IMP program
transmits "hellos" (routing messages) periodically to each of its
neighbors. The acknowledgement for a "hello" packet is a null
packet in which the I-heard-you (IHY) bit is set.

A dead link is detected by the sustained absence
{approximately 3.2 sec) of !HY messages on that link. No new
packets are routed onto a dead link, and any packets awaiting
transmission are rerouted. Routing tables throughout the network
are gradually adjusted to reflect the loss. Receipt of
consecutive !HY packets for about 30 seconds is required before a
dead lin~s defined to be alive once again. Section 2.2.1
contains fuirther details.

A dead link may reflect trouble either in the communication
facilities or in the neighboring IMP. Normal link errors caused
by dropouts, impulse noise, or other similar conditions usually
do not result in a dead link, because such errors typically last
only a few milliseconds and only occasionally as long as a few
tenths of a second. Therefore, it is expected that a link is
defined as dead only when serious trouble conditions occur.

14 ALL OF THESE BYTES------...

S S S D

------· y y y L
N N N E

GO INTO COMPUTING
THE TRANSMITTED CRC

TEXT BYTE WITH 8 BIT
CODE EQUIVALENT TO
Asen CHARACTER OLE

~
S~ DD ~D T TEXT BYTES--- L L ---TEXT BYTES L
X E E E

t
EXTRA OLE INSERTED BY
TRANSMITTING HARDWARE I
REMOVED BY RECEIVING
HARDWARE

NORMAL COMPLETION

[

INTERRUPT TO PROGRAM

24 BIT BEGINNING OF · ·
CRC ENSUING MESSAGE

f A l -----

E C C C S S D S~
T C C C Y Y L T TEXT---
X 123NNEX

L._....,

t
MINIMUM 2 SYN
INTER-MESSAGE
INTERVAL

Figure 5. Format of a Packet

\J; -" 00

l"d
lb

(IQ

Cl>

I'.)

.i:-

5/78 Page 25

2.1.5 Routing

The purpose of the routing algorithm is to gather the
necessary data so that TASK can readily direct each pa~ket to its
destination along a path for which the total estimated transit
time is minimized. This selection is made by a fast and simple
table lookup procedure. For each possible destination, an entry
in the table designates the appropriate next leg. The values of
these entries reflect line or IMP trouble, traffic congestion,
and current local subnet ~onnectivity. This routing table is
updated periodically by the routing algorithm, as described
below.

Each IMP estimates the delay it expects a packet to
encounter in reaching every possible destination IMP over each of
its output links. It selects the minimum delay estimate for each
destination and periodically passes these estimates to its
immediate neighbors in a ''routing message." Each IMP then
constructs its own routing table by combining its neighbors'
estimates with its own estimates of the delay to each neighbor.
The former is in the received routing message; the latter is
based upon both queue lengths and the recent performance of the
connecting communication circuit. For each destination, the
table is then made to specify that selected output link for which
the sum of the estimated delay to the neighbor plus the
neighbor's delay to the destination is smallest.

Finally, the !MPs perform the routing computation on an
incremental basis as each routing message is received. This
strategy assures that the routing message output on a given link
is as up-to-date as possible. The routing messages carry serial
numbers to permit the !MPs to detect that a new set of routing
data has arrived which is then used, with the current data, to
form the next routing message.

2.1.6 IMP Reliability

The Pluribus IMP system includes software whose purpose is
to maintain IMP reliability. This software must be contrasted
with the STAGE system described in Chapter 3 which serves a
different purpose. STAGE is independent of the application and
serves to insure that the hardware is working properly. The
reliability part of the IMP attempts to insure that certain
things have not gone wrong with the application. The IMP
reliability package assumes that the STAGE system is working

5/78 Page 26

properly and that the required hardware is available and working
correctly. Figure 6 shows the relationship between the three
major components of the Pluribus software.

The components of the IMP program dedicated to improving
reliability have two main functions. First, the software is
built to be as invulnerable as possible to hardware failures.
Se~ond, the software isolates and reports what failures it can
detect to the NCC. With intermittent failures, it is important
to keep the IMP program running and to diagnose the problem
rather than letting the IMP go down for long periods to run
special hardware diagnostics.

The discussion that follows describes the three major types
of reliability mechanisms used.

1. Checks are made in line in the code to detect events
"that can't possibly happen" and to take sensible actions
when they do. For example, the routine that frees a
buffer objects if its caller does not own the buffer.

2. Checks are performed by background hosts (as well as by
other routines) which are poked periodically by TIMEOUT.

3. So-called "watchdog" timers are used to insure that the
time between su~cessive occurrences of an event is not
excessive. Although details vary depending on the
application, a typical technique is to set a timer
positive whenever the associated event occurs. A
background process decrements the timer periodically,
complaining if it ever reachee zero.

In all three cases above, the action on detecting an error is to
rectify the situation as much as possible, given the amount of
context available. Also, a message is sent to the NCC reporting
the occurrence. See section 2.2.8 for further details;

The !MPs use the technique of software checksums on all
transmissions to detect errors in packets, protecting the
integrity of the data and isolating hardware failures. The
end-to-end software checksum on packets operates as follows:

A checksum is computed at the source IMP for each packet
as it is received from the source host.

The checksum is verified at each intermediate IMP as it
is received over the circuit from the previous IMP.

5/78 Page 27

APPLICATION DEPENDENT APPLICATION INDEPENDENT
I
I

PERIODIC ACTIVATION OF

ALL APPLICATION PROCESSES
I .

I
I

INITIALIZATION

QUITs
ILLEGAL OPERATIONS
60 Hz INTERRUPT
POWER FAIL INTERRUPT
POWER RESTART INTERRUPT

PERIODIC
ACTIVATION

Figure 6. Reliability Software

5/78 Page 28

If the checksum is in error, the packet is discarded, and
the previous IMP retransmits the packet when it does not
receive an acknowledgement.

To cut the number of checks in half, the previous IMP
verifies the checksum of a packet only when it must be
retransmitted and not before the original transmission.
If a checksum error is found, an intra-IMP failure has
been detected and the packet is lost. If not, the
original transmission was lost .due to an inter-IMP
failure, circuit error, or was simply refused by the
adjacent IMP. The previous IMP holds a good copy of the
packet, which it then retransmits.

After the packet has successfully traversed several
intermediate !MPs, it arrives at the destination IMP.
The checksum is verified just before the packet is sent
to the host.

This technique provides a checksum from the source IMP to the
destination IMP on each packet, with no gaps in time when the
packet is unchecked. Further, the length of each packet is
verified as part of the checksumming operation. Any errors are
reported to the NCC in full, with a copy of the packet in
question. This method helps to make the !MPs reliable and
fault-tolerant, and it provides a maximum of diagnostic
information for use in fault isolation.

When an IMP has received and acknowledged a packet and fails
before it is able to transmit the packet to the next IMP, the
message is lost to the network and cannot be recovered; the
receipt of the acknowledgement by the previous IMP has caused the
release of the only copy of the packei. The source IMP informs
the originating host that something went wrong with the message
when it checks why no RFNM has been received, but recovery is
possible only if effected by the originating host.

It is possible that a packet is received, sent on to the
next IMP, but has not yet been acknowledged when the IMP goes
down. In that case the sending IMP never receives an
acknowledgement and ultimately retransmits the packet. However,
it retransmits it via a different route so that the destination
IMP may receive two copies of that packet. The algorithms are
designed so that such duplication is detected and the second copy
of the packet is discarded.

5/78 Page 29

2.1.7 Timeout

Both the application program and the STAGE system require
that certain items be checked periodically. A variety of timeout
mechanisms are used to insure that such checks are performed.

The Pluribus real-time clock (RTC) provides the system's
basic timing mechanism as well as a common time reference for all
processors. The RTC generates a distinct PID level every 25.6
milliseconds; the routine invoked as a result is called the fast
timeout strip. Some of TIMEOUT's responsibilities include
checking for the correct operation of each RTC in dual-RTC
machines, poking all modem output routines and fake host
processes, and maintaining line state timers.

Every 128 milliseconds (5 clock ticks) TIMEOUT insures that
certain other routines be performed. These "medium" timeout
functions include maintaining the host interface hardware
watchdog timers.

The slow timeout PID is poked by TIMEOUT every 640
milliseconds (25 clock ticks). Slow timeout is responsible for
polling various routines which perform timing functions,
reliability checks, and other assorted checks. Slow timeout
polls these routines by scanning each common memory code page.
The timeout table on each page, if any, lists the addresses of
routines to be polled every slow timeout period. Slow timeout
continues to poke itself until it has completed a pass through
all the routines contained in the timeout table.

2.2 Organization of Major Modules

Section 2.1 presented the various algorithms of the IMP in
overview form; the present section describes the IMP's major
modules in greater detail.

Section 2.2.1 addresses modem input/output, the modules that
interface the IMP to the communication lines that lead to other
IMPs. Module M2I interfaces a modem to the IMP, and module I2M

, interfaces the IMP to a modem.

The IMP's software interface to the host is implemented in
two modules, module HI which interfaces from the host to the IMP,
and module IH which interfaces from the IMP to a host. These are
discussed in section 2.2.2.

5/78 Page 30

Section 2.2.3 presents TASK, the routine that provides
packets to the low level IMP-to-IMP protocol. TASK receives
inputs from, and directs its output to, local hosts and modems.
The host software communicates with the hosts through the 1822
interface, and communicates with TASK through the TASK queues.
TASK in turn communicates with the store-and-forward routines
described previously. The communication in all cases consists of
both data and control flow.

An overview of the
section 2.1.5; section
operation.

routing algorithm
2.2.4 contains the

was presented in
details of its

Background hosts are host-like modules that run periodically
to perform tasks not conveniently performed elsewhere; they are
described in section 2.2.5.

Fake hosts are also host-like modules, but they communicate
with other hosts while background hosts are invisible from
outside the IMP. The fake hosts include the local terminal, a
diagnostic debugger, a module capable of loading the IMP's core
should it be damaged, and a module that gathers statistics and
performs certain other tasks. They are discussed in section
2.2.6.

Section 2.2.7 discusses Very Distant Hosts which are used
when the cable distance between a host and an IMP is greater than
2000 feet.

Finally, section 2.2.8 addresses IMP reliability issues.

2.2.1 Modem Input/Output

This section presents first the modem-to-IMP module M2I and
the IMP-to-modem module I2M, and then discusses the strategy for·
determining the status of a link between IMPs. The data and
attributes concerning any given modem are contained in an
associated modem parameter block shared by both M2I and I2M
which resides on the variables page. Each entry in the data base
M2PBLK is a pointer to the parameter block for that modem.

M2I. The module that receives packets from the modem and passes
them to the IMP is called M2I. The I/O device on Pluribus pokes
M2I's PID whenever a packet has been received. Additionally, M2I
is poked every 25.6 milliseconds. The following activities are
performed by M2I:

5/78

1.

2.

Page 31

Assuming the current input has completed, input from the
modem is started to a new buffer, using a double
buffering scheme. This new buffer has been allocated as
described in step 4 below.

A check is made for hardware errors. Any
error or checksum failure is detected here.
are tabulated as a measure of the quality of

transmission
Such errors

the link.

3. A check is made to insure that the length of the packet
is greater than the minimum (5 words) and is not greater
than the maximum (71 w~rds). If this check fails, a
problem has been detected. Such an error might be caused
by a loss of character sync in the modem interface.

4. Another buffer is obtained from the buffer pool. This
buffer is used (see step 1 above) as the buffer to fill
after completion of the next packet.

5. A software checksum is calculated. If this is incorrect,
the packet is known to be in error.

6. If the packet contains an ACK field, this field is saved.

7. A dispatch is made on the packet type, as follows.
Packet types 0 and 1 (data packets and control messages)
are placed on the TASK queue. Type 2 packets (routing
messages) are placed on the routing queue, unless they
are null in which case they are discarded. (Such packets
serve the special purpose of carrying ACKs and IHYs.)
Packets of type 3 are packet reload messages and are
placed on the packet core queue.

8. In all cases, on completion of the processing of packets
to the TASK queue, as well as the packets which are null,
the acknowledgements are processed.

I2M. The IMP-to-modem output module I2M has the job of
transmitting assembled packets through the modem interface to an
adjacent IMP. It is awakened by the hardware on completion of
sending a packet, awakened by the software whenever a packet is
found in TASK to be sent to the modem, and poked every 25.6
milliseconds. Its work is done as follows:

1. I2M determines whether the modem hardware is currently in
use. If so, processing for this module is completed
since it cannot do anything if the hardware is busy.

5/78

2.

3.

A check is made for hardware errors.
occurred, it.is reported.

The next action depends on the type of the
has just been transmitted over the modem.
performed as follows:

Page 32

If one has

packet which
A dispatch is

Routing Packet - A use count for the routing buffer
is decremented.

Data Packet - If the flush switch is set, the packet
last sent has been acknowledged while in transit and
the buffer is freed. Otherwise the packet is saved
on SENTQ for possible retransmission.

Null Packet - Certain timing actions are taken.

4. The algorithm determines the next packet to be sent. The
order of importance (from most important to least
important) is as follows: packet core messages and
reload demands, routing packets, null packets which are
sometimes required for sending an IHY or for sending ACKs
when there is no data packet to carry them,
retransmission of packets previously sent but
unacknowledged for MRTIME*lOO microseconds, and new data
packets with priority data packets ahead of non-priority
data packets. After selecting a packet, I2M sends it.

The above processing is performed by I2M on each entry.

Link Up/Down Status. Links between IMPs have failures which must
be detected and compensated for by the software. There are four
possible states of a link: up, down, up but not very reliable,
or looped. The first consideration is whether the link is up or
down and how both ends of the link can be in agreement about its
status.

To be considered up, a link must be useful for transmission
in both directions. It is therefore important that the link-up
protocol insure that the IMPs at both ends of the link agree on
the link's status. When a link is up, each IMP from time to time
sends a "hello" message which is replied to with an "I heard you"
(IHY) message. These packets must be exchanged periodically or
link trouble is suspected. The "hello" message is a routing
message, and the "I heard you" message is a null packet sent in
reply.

5/78 Page 33

When a link is down, each IMP spends a certain period of
time in a link hold-down state in which it refuses to transmit
anything at all over the link, thus insuring that the IMP at the
other end also sees link trouble. (Certain modem failures can
leave the link operable in one direction but not the other, and
it is important that such links not be used at all~) It then
enters a "coming up" state in which a protocol is used to bring
up the link. The IMP sends "hello" messages and looks for IHY
messages. When enough of these have been successfully
transmitted and received, the IMP declares the link up and goes
ahead and uses it. If the mechanism for bringing the link up
fails, the IMP returns to the link hold-down state for an
appropriate period.

If while the link is up there occurs an extended period
without IHY messages, the IMP declares the link as going down and
stops using it, immediately entering the hold-down state.

The algorithm for bringing a link up is based on an 8-bit
state counter (LSTATE). At the beginning of the coming up phase,
the state counter is set to a ''half-count" value H. Table 1
shows the values of H for various· line speeds U!?ed • The : IMP

Speed (kb s) H

4.8 16
1.2 16
9.6 16

48 64
50 64

120 64

Table 1
Half-count Values for Various Line Speeds

starts to send out "hello" messages. Each time it receives an
IHY message, it decreases the counter by 1. If the "hello"
message is not acknowledged, it increases the counter by 1. If
the counter ever gets to twice its H value, the IMP declares the
link dead and sets the counter to 128. This is the hold-down
state and the IMP stays in that state until the counter reaches
141, (i.e., the line has been down for about 8 seconds), at which

5/7 8 Page 34

time it reverts to H. If IHY messages are received and the
counter gets reduced. to 4, it is left at 4 which is the "link up"
state. If IHY messages are missed, the counter is decreased by
1. If the counter passes 0, the link is then declared as being
down and the state is set to 129.

This algorithm insures that a link cannot be declared up
unless both IMPs believe in it. A failure of transmission in
either direction causes the link to be declared dead. It is the
link hold-down state that guarantees this effect. For any line
that has gone down, all pending packets are rerouted by
resubmitting them to TASK. Any routes that were using this line
are marked for maximum hops or delay, and hold-down is entered so
that the "bad news" about this line will propagate to other IMPs
in the network.

The IMPs determination of a missed IHY message (the basis
for the above counting mechanism) is dependent upon a basic clock
cycle. For a 50 kilobit land line the cycle is the slow TIMEOUT,
640 milliseconds. A three~second cycle is used for a 9.6 kilobit
link. The algorithm is set for each link at the indicated clock
rate.

2.2.2 Host Input/Output

This section presents the two modules that provide
communication between the IMP and its local hosts. Module HI
provides communication from a host to the lMP, and IH from an lMP
to a host. The data concerning a given host are kept in a single
host parameter block. Each host parameter block contains a
variable FAKE which has four states: real host, fake host,
background host, or VDH. The parameter block for a real host is
a 56-word structure shared by HI and IH. Most of the entries in
this block are variables reflecting some aspect of the state of
the connection to the host. The host parameter block also
contains about 10 words of temporary storage. A single data base
in the IMP called H2PBLK contains an entry for each host; the
entry being a pointer to the parameter block for that host. All
host parameter blocks reside on the variables page.

HI. In Figure 7, State Wis a state in which the IMP is waiting
for a leader. The hardware has been initialized to read data
from the host interface into a transaction block. This state may
persist for arbitrarily long periods of time, since the host may
not be generating net traffic. It is for this reason that
transaction blocks do not time out as do other kinds of buffers.

5/78

WAIT FOR LEADER

S INITIATE CONVERSATION
i-----i~ WITH RE-MOTE IMP

READ FIRST PACKET

ONLY 1 PACKET LONG?

YES

SEND IT,
KEEP A COPY

NO

REQUEST ALLOCATE

SEND PACKET i....----

MORE?

DISCARD NO YES

READ PACKET

Figure 7. States of Module HI

Page 35

5/78 Page 36

If the source host's parameter block indicates that the host uses
old leader format, HI makes the conversion to new format.

A transmit message block (TM block) is a block of data in
the IMP which keeps track of the status of a given conversation
or message stream. There is in the receiving IMP a receive
message block (RM block) which records the status of that same
conversation from the receiver's point of view.

State S is entered when the hardware signals that the leader
has been read into the transaction block. (The host interface is
blocked as soon as this has happened.) Upon examination of the
leader, HI uses the subroutine MESGET to initiate a conversation.
MESGET sets up a TM block at the source host, and sends a message
to the destination host requesting that the conversation be
initiated. The destination host then sets up a RM block. When
the RM block has been acknowledged, MESGET gets a message number,
cycling through 256 possible numbers. It may enter a wait state
until a free message number is available. Normally, the
conversation is already open and MESGET simply returns the next
available message number.

Each packet sent from the source IMP to the destination IMP
holds a pointer to the RM block at the destination, and each
acknowledgement from the destination to the source contains a
pointer to the TM block at the source. The pointer is an 8-bit
index indicating which RM block or TM block is referred to. The
receiver of a message always verifies that the block pointed to
is appropriate for the message by checking the consistency of the
identity of the IMP at the far end.

The method for sending a multipacket message is presented
first, since the one packet message is a special case and is
discussed in section 2.2.3. The system proceeds as follows:

1. It must be determined whether or not the destination IMP
has space to receive the message. In some circumstances
(explained in 4 below), the IMP already knows that such
space is available. If not, HI sends a message to the
destination IMP requesting space for an eight-packet
message. The same TM and RM blocks are used but a new
transaction block is needed as well as a new message
number. The IMP must then wait until it receives the
allocation.

2. Upon receipt of the allocation, the packets of the
message are sent out sequentially.

5/78

3.

4.

Page 37

After all packets of the message are received at the
destination IMP, the message is acknowledged with a RFNM.
The RFNM is generally accompanied by an allocate of space
for another eight-packet message, providing the
destination IMP has space for it.

If the source IMP receives a multipacket message soon
enough from the host, it can be sent immediately using
the allocate that was sent with the last RFNM.

S. If no new traffic comes from the host within a suitable
period, the source IMP gives back the allocation with the
GIVEBACK protocol message.

State D is entered to throw away the rest of the message if
something has gone wrong. A single junk buffer is maintained in
the IMP into which any hardware device can be directed to send
its data. As no routine ever looks at this buffer, it can in
fact be simultaneously a destination for more than one hardware
device. This serves as a place to put incoming data which is
known to be invalid.

If the IMP is unable to transmit a message to the
destination or the message is lost in any way, the host is
notified with a suitable IMP-host protocol message. If the
leader in a message from the host to the IMP is invalid or has
other problems, the host is notified immediately.

IR. The IMP-to-host routine IR takes messages from its input
queue and sends each message to the appropriate host. It
maintains a regular queue RQ as well as a priority queue PQ. IH
sends to the host, in the order named, control messages (such as
RFNM, destination dead, etc.), messages from the priority queue
as long as there are any, and messages from the regular queue.
Ordering of messages is not an issue since FORUS insures that
messages appear on IH's queue in the proper order. IR changes
the status of the message as recorded in the RM block to reflect
either that the message has been transmitted successfully to the
host or that for some reason the transmission failed, as for
example if the host is dead. Having detected this change,
Background Host 5 (as described in section 2.2.S.l) then sends
to the transmitting IMP the appropriate RFNM, RFNM with Allocate,
or other relevant control message.

The other task performed by
format if necessary. If the
parameter block) as using old

old leader
(in the host

IR makes the

IR is conversion to
host is marked
leader format,

5/7 8 Page 38

conversion just before sending the packet to the host. If the
originating host is connected to an IMP with number greater than
63, or if that host's number on its IMP exceeds 3, then it is not
possible to incorporate these data in the old leader format (the
fields are not wide enough) and the two hosts cannot communicate.
IH discards the message and returns the appropriate protocol
message to the originator. This function is normally performed
at connection SETUP time (i.e., GETABLOCK, GOTABLOCK).

2.2.3 TASK

Each packet received in the IMP from another IMP (or host)
is dispatched to TASK, the central routine that decides what to
do with it. There are two possibilities: either the packet is
for a host at this IMP (FORDS), or it is to be stored and
f-0rwarded to another IMP (S/F).

Moving a packet towards its destination requires placing the
buffer holding it on TASK's input queue, a queue of buffers
waiting to be processed. Each buffer is self-contained in that
the buffer header contains the data which tell TASK what to do.
The input to TASK originates either from a modem or from one of
the local hosts. Similarly, the destination is either a modem or
a local host. The code in TASK which prepares a buffer for a
local host is called FORDS. (~odule IH also does part of this
work.) S/F is that part of TASK that implements the packet
switching aspect of the IMP. The next two subsections describe
TASK. Section 2.2.3.1 describes TASK's basic loop and presents
the details of the store-and-forwarding operation; section
2.2.3.2 describes the FORDS part of TASK that handles packets for
a local IMP.

The
buffers
follows:

Store-and-Forward

store-and-forward operation of TASK is to process
one at a time as they are found on the input queue, as

1. The top packet is taken from the queue of packets waiting
to be processed and TASK's PID is poked again so TASK
will continue to run.

2. The destination of the
the local IMP, the
(See the next section
processing continues.

packet is examined. If it is for
FORDS module is entered directly.

for further details.) Otherwise,

5/78 Page 39

3. The routing tables are examined to determine over which
link (i.e., which modem) to send the packet. If no route
is found, the destination IMP is dead; the packet is
ACKed, flushed, and a trap is recorded. If there is
inadequate store-and-forward buffer space, the packet is
flushed; it will be retransmitted later by the source
IMP. The channel tables for that modem are now examined.
Packets which cannot be transmitted because of no
available channel are placed on a separate auxiliary TASK
queue which is periodically placed at the beginning of
the TASK queue in anticipation of a channel becoming
available later. In this way the packet is retried about
five times as often as the source retransmits it.

4. The current packet has now been successfully received (in
that the program is able to send it on to the next IMP)
and must therefore be acknowledged. If the source of the
packet is a local host, it is acknowledged by setting the
TSKFOK flag in the host's parameter block. If the packet
arrived from another IMP, the acknowledgement protocol is
followed. Details are provided in section 2.1.4.

5. The packet is queued onto the relevant modem for output,
either on a priority or a regular queue.

6. The proper modem output process is poked.

2.2.3.2 FORUS

The FORUS discussion which follows is keyed to the labels on
the blocks in Figure 8.

In block W the code looks at the packet header to determine
which RM or TM block is referred to. A brief check on the
validity of the block is made to insure that it deals with a
conversation with the IMP which originated the current packet.
If this validity check is not passed, block G is entered. This
need not indicate an error, since the GETABLOCK packet of
necessity does not have an a•sociated RM block. If this packet
is in fact GETABLOCK, then the proper GOTABLOCK reply is
constructed. If not, then it is possible that the remote IMP is
sending some sort of protocol query packet. If this is the case,
an appropriate reply is constructed; if not, the current packet
is merely discarded.

5/78 Page 40

FOR US

CHECK TM & RM BLOCKS

OK?

Yes No

LOCK THE BLOCK G i--....i GETABLOCK? y Construct
es__...Reply

PARTIAL PROCESS

DISPATCH ON
PACKET TYPE

•
• •
•

No

INCOMPLETE ~Yes___.Construct
QUERY? Reply

No

DISCARD
PACKET

Figure 8. States of FORUS

5/78 Page 41

Continuing with the successful processing of a correct
packet, block L is entered. The TM or RM block is locked and
then certain preliminary processing is performed which is common
to several of the possible packet types. Finally, the program
dispatches on the packet type to an appropriate routine. The
packet types are as follows:

DATA PACKET. If the packet is part of a multi-packet message, it
is expected and there is guaranteed to be adequate buffer space
for it. FORUS searches for a reassembly block that is
associated with (points to) the RM block. It is this reassembly
block which in turn provides the mechanism for storing the
buffer. When all of the packets of a message have arrived, FORUS
looks at the RM block. If this message is the next one to be
sent to the host, it is put immediately on !H's input queue and
the reassembly block is released. FORUS then looks to see if
there is another complete message waiting to be sent to the host.
If the present message is not the next one, indicating that an
earlier message has not yet been received in its entirety, then
the present message is merely left waiting until its turn
arrives. Messages must be sent to the destination host in the
same order they were emitted by the sending host.

REQUEST FOR ALLOCATION. If the allocation is for a multi-packet
message, flags are set up which are looked at later by Background
Host 5. Since the actual allocation is performed by this
background host, FORUS is finished. If the request for allocate
is for a one-packet message, the data have been transmitted as
part of the request for allocation. If the IMP has room, it
queues the message for the destination host and replies with a
RFNM. If there is no space available, flags are set to inform
Background Host 5 of the request. The data are discarded.

GIVEBACK.
block for
returned.

This serves to giveback an allocation. A reassembly
this conversation is freed and the allocated buffers

When the source has detected a failure once
has been assigned, it is necessary to free
FORUS tells the destination to free up any

this message and an Incomplete Reply is

INCOMPLETE MESSAGE.
the message number
that message number.
pending fragment for
queued.

INCOMPLETE QUERY. This is an attempt to find out what happened
to a message number that has not been acknowledged. If the
message number in question is out of range, an Out-of-Range reply
is sent. In the case where the message number is within the last

5/78 Page 42

eight messages and the reply state is idle, a duplicate reply is
sent. If the
sent. When the
FORUS performs
reply state for

rep1y state is not idle, an Out-of-Range reply is
message number is in the current message window,

a cleanup of reassembly resources and marks the
an Incomplete Reply.

GETABLOCK. Although the flow chart of Figure 8 suggests that box
G intercepts this kind of message, this is not always the case.
If the block number field in the GETABLOCK message happened to
refer to a block which passed the relevant validity checks,
control would have passed to block L as opposed to block G as
previously described. Nothing bad has transpired and the
dispatch in this case is to block G.

RESET. This resets a block that is no longer in use; a RESET
REPLY is sent immediately.

RFNM. This indicates the successful receipt of the current
message. The transmit message number is marked complete. If it
was a real data message, FORUS queues a RFNM control message for
the host.

RFNM WITH ALLOCATE. If this was sent upon receipt of the last
packet of a multi-packet message, it indicates that the
destination has adequate resources (eight buffers and a
reassembly block) to receive another multi-packet message and
contains an allocate. If it is the reply to a single-packet
Request for Allocation, the saved copy of the message is
retrieved and sent. If it was a real data message, FORUS queues
a RFNM control message for the host.

DESTINATION DEAD. This indicates that the host addressed
receive the message. The message is thrown away. If
real data message, FORUS queues a RFNM control message
host.

cannot
it was a
for the

INCOMPLETE REPLY. This is a reply to an Incomplete Query or
Incomplete Message. It indicates that the message was not
successfully delivered and why. The condition codes in the
transaction block are adjusted accordingly. If it was a real
data message, FORUS queues a RFNM control message for the host.

OUT-OF-RANGE. This indicates a bad message number in reply to an
Incomplete Query. A RESET message is sent immediately.

GOTABLOCK. This is a reply to the GETABLOCK message. The TM
block state is appropriately modified to open the conversation.

5/78 Page 43

A sub-case GOTNOBLOCK, which is indicated by status bits in the
header, results in the local host being notified of the dead
destination.

RESET REQUEST. This is the destination IMP's way to initiate a
reset of a conversation. It is sent under certain timeout
circumstances, as described in section 2.1.3.1. The source IMP
may ignore the request if the conversation has just become active
again.

RESET REPLY.
RESET. It
conversation
block idle.

This is the destination IMP's way of replying to a
indicates that it has reset its end of the

and freed the RM block. FORDS can now mark the TM

2.2.4 Routing Algorithm

The routing algorithm is identical in both the Pluribus and
316 IMPs. It is necessary that both use identical algorithms
since they exchange routing information and no IMP knows the
machine type of its neighbor.

The basic algorithm, as implemented by the Pluribus IMP,
consists of a strip; each execution of the strip processes one
entry of a routing message. The strip may be poked by M2I upon
receipt of a routing message, slow TIMEOUT every 640
milliseconds, or itself when there are more entries of the
routing message to process. A state word indicates whether or
not a routing message is currently being processed. When the
strip is entered, it proceeds as follows:

1. The routing lock is locked.

2. If there are additional entries to be processed for the
current routing message, the routing strip pokes itself.
If there are no more entries to be processed, the routing
message queue is examined. If it is empty, there are no
further incoming routing messages to deal with and the
strip constructs the IMP's new routing message to be
sent; if it is not empty, the top message from the
routing queue is taken off and that message is marked as
the current routing message to process. The counter of
entries is initialized to the first entry of the routing
message.

5/78

3.

s.

6.

Page 44

The current routing message requires processing, so the
next IMP n~mber in the routing table to be processed is
noted. The PID level for this process is poked.

The routing lock (set in step 1) is unlocked so that
another processor (if available) can start executing this
same strip.

The delay and hop calculation for this IMP are calculated
as described below. The routing calculation for each
node is independent of that for all others, so several
processors may be executing this phase of the operation
in parallel.

The routing table is locked, the answers calculated above
are stored, and the routing table is unlocked.

The routing table consists of three entries for every IMP in
the network. The first entry is a count of the number of links
on the shortest path from this IMP to that one. This is one
greater than the number of intermediate !MPs through which a
message must pass to reach the destination. The second field is
the so-called "delay'' field. This is an approximate measure of
the delay a packet can expect when traveling through the network
to the destination. The third entry specifies the modem which
should be used to transmit a packet to the destination IMP.

Each IMP periodically sends to each of its neighbors a copy
of its routing table. It therefore follows that each IMP
periodically receives a copy of the routing data as perceived by
each of its neighbors. In this way, any change in the network's
situation is gradually propagated throughout the entire network.

It should be noted that only the first two of the three
routing table entries mentioned above are actually transmitted,
since only the number of hops to the destination and the delay
expected are of interest. (Modem information is unique to each
IMP.) On receipt of a routing packet, the following processing
is performed for each IMP in the network; i.e., for each line of
the routing table.

1. The IMP's count of the minimum hops to the destination is
compared with the count received in the routing packet.
If the IMP's count is less than the
received-count-plus-1, no change is made; if it is
greater, the IMP concludes that the sending IMP knows a
better way to the destination and sets its new count to

5/78

the received-count-plus-!. On
calculation, the IMP's count
route to the destination.

Page 45

completion of this
represents the shortest

2. The received delay value is examined. The IMP calculates
N, such that N = 4 + the local delay on the link to the
sending IMP. (The local delay is the number of channels,
between 0 and 127, currently in use between the IMP and
the sending IMP.) If the IMP's delay entry is less than
N, no change is made to the routing table; otherwise, N
becomes the new delay. At the conclusion of this
calculation, the table entry for delay to the relevant
IMP is the shortest expected delay.

3. If the delay value was decreased by entering the value N
based on the routing message just received, the IMP
updates the table of modem links to use. This insures
that for this destination, the IMP will use the link over
which it has just received the routing message.

When an IMP notes that a link goes down (see section 2.2.1),
it is unable to tell whether it is the link or the IMP at the far
end that has failed. In either case, it reacts by setting both
the minimum hop length and the delay time to very large values in
the routing table for the IMP at the other end of the link.

Difficulty arises because information about an IMP or a
link going down propagates extremely slowly through the network,
and there can be very bad effects while the message is
propagating. Through use of a technique called "hold-down" as
previously described in section 2.2.1, the !MPs delay the route
changeover process for a few seconds and in this way permit a
faster and smoother cutover. When the best route is about to
change, the IMP first makes sure that the neighboring !MPs know
that the old route has gone bad before it attempts to change;
this strategy prevents the adjacent !MPs from slowing down the
process by transmitting old information.

Each IMP measures the bandwidth and loading of each of the
circuits to which it is connected, sending routing
proportionately more often on faster links. Thus, the percentage
of link bandwidth used for routing varies between 3% and 15%,
approximately, as a function of link use.

If dead links eliminate all routes between two !MPs, the
!MPs are said to be disconnected and each discards messages
destined for the other. As disconnected !MPs cannot be rapidly

S/78 Page 4 6

detected from the delay estimates that arrive from neighboring
IMPs, the hop cou~t is maintained as well. If this count ever
exceeds the maximum expected number of network nodes, the
destination IMP is assumed to be unreachable and therefore
disconnected.

2.2.s Background Hosts

Certain IMP activities relating to end-to-end message
processing must be performed periodically. When control messages
require reserving resources, or timing out idle resources, TASK
itself cannot perform the function. The background ho•ts were
created for these resource-reserving and freeing functions.

A background host is a process, complete with PID levels,
which runs periodically, examining some data base. When
necessary, it generates an appropriate message for transmission
over the network. The use of background hosts makes it possible
for the originating processes, which are not in a position for
one reason or another to generate a message, to be able to
arrange internal software states so that the message will
ultimately be sent. Since the background hosts are only
originators of messages and never destinations, they do not have
host numbers in the local IMP. Each background host is poked by
fast TIMEOUT every 2S.6 milliseconds, and some are poked more
often as needed by routines which have work for them.

Each background host has a parameter block which is very
similar to a real host parameter block but about half the size.
A background host uses its host parameter block to communicate
with an IMP in a manner similar to the HI software. The
background host simulates the host-to-IMP part of the 1822
interface.

The individual background hosts are now described.

2.2.s.1 Background Host S

BACKS is the background process that sends RFNMs, allocates,
Destination Deads, and Incomplete Replies. BACKS scans all of
the RM blocks continuously, starting one after the last block
serviced (for fairness). If it finds an RM block whose state is
"need an allocation of 8," it looks to see if eight buffers are
available. It also gets a reassembly block for the message. If
one is available, and the eight buffers are available, it sends
the requested allocate.

5/78 Page 47

If BACKS finds an RM block whos~ state is ''need an allocate
of l," it attempts to find one buffer and a reassembly block and
sends an allocate-!. This state can only occur if a one-packet
request was received and the IMP did not have space to accept the
message at that time (as described in section 2.1.2).

BACKS also sends RFNMs for messages whose packets have all
arrived. If space is available and the message was a
multi-packet message, BACKS instead sends a RFNM with Allocate.

Upon receipt of an Incomplete Query or an Incomplete
Message, BACKS responds with an Incomplete Reply which indicates
that the message was not successfully delivered and the reason
why. In addition, BACKS is capable of sending a Destination Dead
which indicates that the destination host is unable to receive
the message. In this case, the undeliverable message is thrown
away.

If BACKS is processing a Request for Allocation and the
space required is not available, it waits one-half second in an
attempt to get the space. It does this by going to sleep,
knowing that it will be reawakened by TIMEOUT every 2S.6
milliseconds. After a half second it gives up and proceeds to
the next RM block. It is appropriate for BACKS to make such a
strong attempt to supply the allocate, since the originating host
at the source IMP is blocked by the host-to-IMP interface.

BACKS operates by making up a message in its own work area.
It then gets a buffer (waiting as long as necessary for one), and
uses that buffer to send the message.

2.2.s.2 Background Host 6

If a packet or a RFNM gets lost in the network, there is an
outstanding message number and BACK7 can never free the
conversation; the transmitting host is prohibited from
proceeding ahead by more than seven additional message numbers
(see section 2.1.J). BACK6 solves this problem by scanning
through all of the- TM blocks, looking at the incomplete timer.
This timer is held off by any progress on message numbers. If
the timer reaches zero, BACK6 locates the relevant transaction
block and sends an Incomplete Query message. This message, which
is accompanied by all data relevant to the conversation, asks the
destination IMP what it knows about this message number. If the
destination has received that message, it sends a duplicate
response. If the message is only partially received, a packet

5/78 Page 48

has been lost and, therefore, the message is lost. The
destination IMP sends an Incomplete Reply and the message number
is then considered complete.

2.2.5.3 Background Host 7

BACK7 computes AGE ''clips" beyond which to reset RM and TM
blocks, based on how many free blocks there are left (i.e., how
busy the IMP is in terms of the number of active conversations).
RESETS (for TM blocks) or RESET REQUESTs (for RM blocks) are sent
for any blocks that have reached the corresponding clip.

BACK7 proceeds by first scanning all the TM blocks, counting
blocks which are free or in the process of being reset, and
computing the associated age clips accordingly. It then scans
through all of the TM blocks a second time. A consistency check
is made on each TM block to see if it looks broken. The AGE
field is examined to determine whether the block is old enough to
discard. If the conversation appears to be quiescent (the TM
block has reached its clip), a RESET is sent to the destination.
The destination IMP then frees the relevant RM block and responds
with a RESET REPLY. The source IMP can then free the TM block.
This reset protocol is never entered if there are outstanding
message numbers or message numbers to be returned.

BACK7 then scans all of the RM blocks to determine the AGE
clips in terms of received conversations.

It makes a second scan of all the RM blocks to see which
ones are too old. For each such conversation, it sends a "let's
terminate" message (RESET REQUEST) to the source IMP. At that
IMP, FORUS sets the AGE of the associated TM block to be very
high, so that BACK7 on the source IMP will ultimately initiate
the freeing operation described above.

If no more RESETs or RESET REQUESTs need to be sent, BACK7
waits 640 milliseconds before trying again (since this is how
often the TM or RM blocks can be aged).

5/78 Page 49

2.2.s.4 Background Host 9

When a conversation has ended, it is necessary to perform
certain clean up operations and free all blocks no longer needed.

BACK9 scans all of the TM blocks. Each TM block has an AGE
field as described in the previous section which is set to 4
whenever the block is used. A timer increments AGE in a
non-linear fashion, at a slower rate as it gets older. A value
of AGE that is too high is an indication that the conversation
has lapsed into disuse. If, upon examining AGE, BACK9 determines
that the TM block is too old, all the buffers are given back.

BACK9 must free storage allocation held by the source IMP if
they are no longer needed. An allocate timer in the TM block
runs out in 250 milliseconds but is held off by use of the
allocate by a host. BACK9 sends a GIVEBACK when three or more
allocates are being held no matter the state of the timer. This
can happen if the transmitting IMP has started the transmission
of several multi-packet messages before the acknowledgement of
the first one is received, since each of these multi-packet
messages can produce a RFNM with Allocate. When three allocates
accumulate in the transmitting IMP, it sends a GIVEBACK to the
destination IMP.

Each GIVEBACK has a message number and its reply is a RFNM
without an allocate. When the destination IMP receives a
GIVEBACK, it releases the relevant reassembly block and the
buffers.

2.2.6 Fake Hosts

The IMP contains within itself certain "fake hosts,"
software modules which simulate many of the functions of real
hosts in that they accept or produce messages through simulated
1822 interfaces. Each fake host consists of two processes; one
for IMP-to-host messages and one for host-to-IMP messages.

Communication with fake hosts is very similar to
communication with a real host. Each fake host has an 8-word
block in memory formatted very much like the I/O block for a real
host hardware interface. The difference, of course, is that
writing into a hardware I/O block causes the I/O hardware to take
some action, whereas writing into a fake host's block has no
immediate effect. Thus a program which wants a fake host to do
something must first write into the fake host's communicatons
block and then poke the relevant PID.

5/7 8 Page 50

The fake hosts are referred to as Fake Hosts 0 through 3.
In net traffic they are addressed as hosts 252 to 255, the
largest host numbers available in the 8-bit host field. These
fake host numbers and their functions are the same in both the
Pluribus and 316 IMPs for compatibility of operation over the
network.

The four fake hosts are now described.

2.2.6.1 Fake Host 0: Local Terminal

Fake Host 0 (host 252) is responsible for communications
between the IMP and the teletype (or other terminal) connected to
the IMP. Characters are taken from the teletype input buffer,
passed through the fake host interface, and sent as messages (one
character per message) to the current crosspatch destination.
Messages destined for the TTY fake host are accepted one word at
a time by the fake host interface. Characters are then passed in
order, 8 bits at a time, to the teletype handler to be output on
the IMP's terminal.

If a semicolon is read, the fake host uses a separate leader
and sends characters as a single message until a second semicolon
is read (so-called "semicolon message"). When the IMP is
initialized, or if a NUL (code 80!, CTL-@) is typed and sent, the
crosspatch destination is reset to be the debugging process DDT
(Fake Host 1 in the same IMP).

2.2.6.2 Fake Host 1: DDT

Fake Host 1 (host 253) is the diagnostic debugger DDT.
Messages to Fake Host 1 are interpreted by DDT as debugging
instructions. The DDT fake host-to-IMP process accepts
characters from the DDT process and sends them to the originator
of the last message to DDT from the network. Characters are sent
as a single message until terminated by semicolons, which the DDT
fake IMP to host process sends through DDT. This ensures that a
multi-character response to a single DDT command is sent to the
proper source. Conversely, DDT fake's IMP-to-host process reads
messages from the network and passes them to DDT. As each
message terminates, it sends a semicolon which, after DDT echoes
it back, will cause the DDT fake host-to-IMP process to send a
message. The normal mode of operation is for Fake Hosts 0 and 1
to be crosspatched so that typing on the console terminal
controls DDT.

5/7 8 Page 51

Fake Host 2: Packet Core

Fake Host 2 (host 254) is the source and destination for
packet core transmissions. Its IMP-to-host process accepts
packets which control the loading and dumping of core areas
within the IMP. When converted to special packet core messages,
they may be sent to a specified malfunctioning neighbor IMP.

Upon receiving packet core packets that have arrived from a
neighbor IMP, the fake host-to-IMP process sends them as messages
into the network. In addition, it checks the block transfer
state to see if packet core is active in its own IMP and if so,
gets a free buffer and polls the process that constructs packet
core messages from the IMP.

See also section 3.7 on packet reload.

2.2.6.4 Fake Host 3: Statistics and Discard

Fake Host 3 (host 255) provides the
the IMP:

following services to

1. Periodic reports are provided to the NCC. Such reports

2.

must occur every minute to keep the NCC convinced that
the site is still alive. The NCC host reports to the NCC
operators excessive delay between such messages.

The IMP originates system throughput
them to the NCC.

reports and sends

3. Messages for discard. Fake Host 3 originates messages
whose destination is Fake Host 3 within the same IMP. On
receipt of such a message, a RFNM is returned and it is
the receipt of this RFNM by Fake Host 3 which holds off
the watch-dog timer since this is convincing evidence
that most of the software paths within the IMP are
working. Excessive time lapse without receipt of such a
message is an indication that something is wrong within
the IMP. Fake Host 3 is also frequently the destination
for a message generator, and a real host is permitted to
send to discard if it wishes.

4. Message generation occurs for measurements and debugging.
The length, frequency, and destination address of these
messages can be controlled as operator supplied
parameters.

5/78 Page 52

5. Certain diagnostic IMP and queue data are reported
periodically to the NCC.

6. The TLOG process sends certain detailed reports
periodically to the NCC. These include snapshots when
anomalies are detected and data about the Pluribus
hardware configuration.

Except for function 4, all of the above functions are run
continually. The frequency and nature of the reporting are
controlled by parameters which can be changed dynamically (after
initialization).

2.2.7 Very Distant Hosts

In instances where a host is located more than 2000 feet
from the IMP, connection is made by means of the standard modem
interface hardware normally used for IMP-to-IMP communication.
BBN Report No. 1822 contains a detailed description of the
protocol used for this type of interface.

Briefly, the method used to assure successful IMP-to-host
transfers is similar to that used for the IMP-to-IMP channels.
Logical channels are used as described in section 2.1.4, although
in this case only two channels are employed and the order of
transmission is important. Therefore, both the host and the IMP
software must be aware of packets. For example, assume packet A
is transmitted from an IMP on channel O, and packet B is then
transmitted on channel 1. If an error were detected in packet A,
but not B, no ACK would be returned for A. The host would retain
packet B until A is retransmitted to it and received
successfully, thus insuring delivery of the packets to its own
processes in order A-B.

2.2.8 Reliability Mechanisms

Certain of the reliability mechanisms mentioned in
section 2.1.6 are described in greater detail in this section.
Addressed are buffers, counters, and crossed or looped queues.

5/78 Page 53

2.2.s.1 Buffer Reliability

A major part of the IMP reliability system is buffer
reliability since buffers serve such, an important function in
the IMP. Packets are collected in buffers and placed on
appropriate queues. An important design principle is that the
data in a buffer are never copied from one place to another. For
example, a message received from a host in HI is read directly
into a buffer by the I/O ha~dware. A pointer to that buffer is
then placed on the queue to TASK. Subsequently, the hardware
will be directed to output the contents of the buffer to a modem
interface. The data are never moved around in memory; what is
moved is a pointer to the data.

A queue of buffers is a linked list of pointers. The
pointers are not kept in the buffers themselves but in a single
vector on the second variables page. (The purpose of doing this
is to preclude the need to change map registers while progressing
through a queue, since the buffer in general resides on a
different page from the variables.) An entry in a queue of
buffers in the IMP, as for example the queue of ~uffers waiting
for processing by TASK, is a word which contains the index in
various tables of the data describing that buffer. The vector
POINT contains the addresses of each buffer in the usual packed
format for loading into map registers. (The left 7 bits contain
the map setting of the buffer's memory page to be loaded directly
into a map register and the right~most 9 bits when shifted left 4
contain the offset of the buffer in the page.) A parallel table
to POINT is the table CHAIN. Each entry in CHAIN indicates
either the end of a chain or the index of another buffer, as just
described.

There are three more parallel tables, WHERE, FLUSHD, and
CHAN, whose contents are dependent on which queue contains the
buffer. They, like the CHAIN words, are other data associated
with the buffer but kept on the second variables page to be
readily available.

A buffer itself consists of 80 words. The first 8 are
header information, the next 63 words are the data itself, the
next word is unused, and the last 8 words are other variables
associated with the buffer. One of these words points to the end
of the real data in the buffer.

The vector WHERE is bit coded and contains use bits for each
buffer. There is a use bit associated with each of the twelve
possible buffer users, such as M2I, HI, etc. In some cases more

5/78 Page 54

than one use bit is on. A use bit being on indicates that the
particular module has associated itself with that buffer. If a
buffer is on the free list, all use bits are o. There is also a
4-bit count field which indexes a vector of buffer accounting
variables.

A new buffer ii obtained by calling the subroutine FREGET,
with two parameters. One parameter is a word containing the use
bits to be stored into WHERE, and the other parameter is a COUNT.
The subroutine FLUSH is called with a pointer to a buffer to
return it to the free list. It also takes a use bit as a
parameter, and issues a trap if the buffer in question does not
have that use bit turned on. FLUSH turns the specified bit off.
If no other bits are on for that buffer, the buffer is
re-threaded onto the free list, the count specified by the WHERE
vector is decremented, and FLUSHD is set to be non-zero. The
presence of other bits indicates that one or more other routines
is associated in some way with that buffer; in this case the
buffer is not freed and FLUSH just returns.

The FLUSHD field is used for finding lost buffers. FLUSHD
is set non-zero each time a buffer is freed. A periodic process
looks at each buffer every two minutes and sets FLUSHD to zero
for all buffers except those on the free list. If it finds a
buffer zero after two minutes have passed, it assumes that the
buffer has been lost and arbitrarily puts it on the free list.
Any buffers chained after it are left hanging, to be picked up
later by this same mechanism if they are truly lost.

2.2.a.2 Counters

To prevent various kinds of lockup, a counter mechanism has
been devised to insure that certain processes are always able to
get buffers, no matter how busy the IMP is. Associated with each
process, or collection of allied processes, is a count of the
number of buffers guaranteed to that process. Also, a counter is
maintained of how many buffers that process has allocated to it
at any instant. If a process needs a buffer and the number of
buffers currently allocated to it is less than its guaranteed
count, it immediately gets a buffer. (The algorithm insures that
in such a case the buffer is available.) If it already has more
buffers than its guarantee, it is given a buffer only if there
are enough remaining in the overflow pool of available buffers.
There are buffers in the overflow pool only when the number of
buffers in the free list exceeds the number required to meet all
guarantees. The size of the overflow pool is equal to this

5/78

excess. The IMP will continue to operate even if
always empty.

Page 55

this pool is

These guarantee values are recalculated from time to time
during the operation of the system. Some counts change at times,
as for example when a host or a modem line comes up or down.

It is important that the- system maintain a count of the
number of buffers owned by each process. If the software
cooperates, this is not difficult. However, when the buffer
reliability code (discussed in the preceding section) forcibly
places a buffer onto the free list; it is an indication that
something has gone wrong and all the counts must be properly
adjusted. Since buffers are continually being shuffled around,
it is impossible to stop all use of buffers and scan them to
determine which ones are in use and by whom. The reliability
code therefore maintains the usage counts while the system is
running.

The reliability code first initializes a new estimate of all
the counters and new minimum guarantees based on the current
state of hosts, modems, etc. It then scans all of the buffers,
calculating all of the counts from the WHERE words. This takes
several strip times and counts may be chariging. Next it
calculates the error between the counts stored in the system and
the counts which it just determined. A new error is calculated
to be 3/4 of the old error plus 1/4 of the new error. Should the
new error represent more than one buffer, the corresponding
system count is adjusted and the accumulated error is set to
zero. This algorithm effects an exponential smoothing of the
system counts towards their proper values.

2.2.8.3 Crossed or Looped Queues

Two serious problems which might arise are the appearance of
a buffer on more than one queue and a loop in a queue. When a
module (such as TASK or IH) takes the next buffer from its input
queue, it makes several checks. One of these is to insure that
the buffer is owned by this process, i.e., it has the correct
ownership bit set. If not, the buffer is ignored and the queue
it came from is made empty. This mechanism detects joined queues
and breaks a loop in a queue, since ultimately a process finds
(as its input) a buffer which it is not supposed to own.

When a bad buffer is detected in this way, it and the
buffers to which it is chained are ignored since they are found

5/78 Page 56

in the two-minute timeout and returned to the free list if no one
else points to them. The variable FREE points to the head of the
free list and FREEND points to the last buffer on it. A buffer
that is being freed is tacked on to the end of the free list,
thus guaranteeing that all buffers are used over a period of
time. Since buffers on the free list have no use bits set, the
free list is scanned periodically to validate its structure.

5/78

Chapter 3
The STAGE System

Page 57

The STAGE system consists of a set of eleven modules
(stages) that allow each processor to determine the status and
current configuration of the Pluribus hardware. The first
section in this chapter presents an overview of the STAGE system,
next the data bases are described, and then the individual stages
are presented in detail. Finally, two sections address the Block
Transfer routine (BLT) and the Packet Reload mechanism.

3.1 Introduction and Overview

STAGE's basic purpose is to insure that the required
hardware is available to the application program. To the extent
that more hardware becomes available, STAGE discovers it and
makes it known to the application program. In the event of a
failure causing certain hardware resources to disappear, STAGE
discovers that fact and reconfigures as necessary.

The STAGE system is run in each processor under two quite
different circumstances. First, STAGE is run at startup time
and at any point at which a sufficiently serious failure
condition arises to make it necessary for a processor to restart
the checklist operation. Generally, each stage assumes the
successful execution of all preceding stages and application
programs cannot be run until all stages have been completed.
Second, even in a smoothly running system, each processor checks
the time as part of the dispatch loop and schedules STAGE at
regular intervals.

Thus, at startup time, the STAGE system serves as an
initialization mechanism whose function is to find out what
resources are available and to make them known to the
application. STAGE is also run as a low-priority task in the
running system to determine whether anything has changed or gone
wrong.

The hardware configuration may appear different when viewed
from different processors, since many processor or bus failures
may only affect certain processors or specific processor-resource
pairs. To handle this possibility, the STAGE system must also
maintain "consensus" information that insures that the processors
interact when attempting to determine the machine configuration
before taking unilateral action.

5/78 Page 58

3.2 Interconnection of STAGE Modules

Throughout the operation of each of the STAGE modules there
are a number of common routines and data structures that handle
the sequencing of the various stages, interprocessor control and
strip-time discipline, and the management of consensus checking
and vote-taking. This section describes a number of the
structures and routines that affect the operation of the entire
STAGE system rather than being specific to an individual module.

3.2.1 Sequencing the STAGE Modules

The operation of STAGE for each processor is controlled by a
variable local to each processor called WDIS. WDIS is used to
inhibit certain stages from running and keep track of the
progress of STAGE. Each stage is assigned a bit position (Stage
LK is bit 0, and so forth), and the system may only run
individual STAGE modules if the corresponding bit in word WDIS is
a O. Thus, at restart time, WDIS is set to -2 (FFFE!) to
indicate that only Stage LK may run at that point. As each stage
successfully runs to completion, it clears the next bit in WDIS
to allow the STAGE processing to proceed. If some stage
discovers trouble at some point, it can force the processor to
hang in a particular stage by setting the bits for all future
stages and waiting until the offending condition is cleared or
until enough processors have run this stage to agree on a course
of action. Two routines are provided for the STAGE modules to
perform these functions: SOKAY enables the next stage while SBAD
forces the processor to hang in the current stage. SOKAY
initializes the next dispatch if it actually turns off a bit.
The actual stage in progress for a processor is contained in the
variable WSTAGE, which need not be the highest stage enabled by
WDIS.

3.2.2 Interprocessor Control and Strip Timing

In order to break up the operation of stage into strip-sized
chunks, STAGE contains its own scheduler routine which operates
in much the same manner as the main PID-driven LOOP code. Since
the STAGE system does not discover the PIDs until Stage BD, an
alternative mechanism is required, which is coded as WSLEEP. At
the completion of each stage, the stage routine terminates by
calling WSLEEP which (1) checks to see if the system is runnable
(all stages are enabled in WDIS) and, if so, returns to the main
loop, and (2) if Stage RC is enabled (but not the system), calls
the Block Transfer (BLT) process. Unlike the main loop, WSLEEP
preserves the current stage of the computation by saving all

5/78 Page 59

registers in a special register block for each stage local to the
processor, so that computation for the STAGE system will proceed
from where it left off whenever the STAGE system is reentered.
If the system is not enabled, control flows into SJ6, and the
STAGE system continues to run. Ordinarily, the next stage
indicated by the previous pass through the STAGE loop is run at
this point. If the next stage is disabled, the last-called stage
is called again (and perhaps BLT), although a timer is maintained
to restart Stage LK to insure that all stages are scheduled from
time to time. Thus, when the processor is verifying its
environment, its attention is concentrated on the highest-level
stage that is enabled, although other stages will not be totally
neglected.

There are a number of entry points to the STAGE system from
the rest of the system. In particular, the main loop enters
STAGE at SJ6 when the timer for running STAGE has elapsed. In
the case of most error conditions, the entry point WST is used,
which is generally called with a JSB R4,WST. Register R4 is
saved in the variable UWST and serves as an indication of why
STAGE was restarted.

3.2.3 Consensus Words

To prevent one processor from taking unilateral action which
may turn out to be wrong, most stages operate under the control
of a consensus which keeps track of the identity of all
processors participating in the decisions. For each decision to
be made, the processors in the consensus then cast their votes
into a FIXIT word in common memory and action depends on the
joint decision (either unanimity or majority vote may be
required, depending on circumstances). The consensus for each
stage is maintained on either the special communications page
which is determined during Stage MD and is updated as part of the
standard exit from STAGE (WSLEEP), or on the reliability kernel
page (Stage RK). All stages except LK make use of consensus
decisions.

5/78 Page 60

The consensus itself consists of three words in memory as
shown below in Figure 9.

+----------------------+
! smoothed consensus

+----------------------+
next consensus

+----------------------+
time for next update !

+----------------------+

Figure 9
Consensus Words

Each processor is assigned one bit position in the consensus
word which indicates that the processor is participating if the
given bit is on. The smoothed consensus word is used as the
basis for all decisions made with respect to a particular
consensus, while the next consensus word is used to compute any
change in the consensus membership. Periodically (as the timer
in the third word of the consensus elapses) the next consensus is
copied into the smoothed consensus word and the next consensus
word is set to the bit of the active processor. To join a
consensus, a processor IORs its bit into the next consensus word.
Since more than one processor may try to update this
simultaneously, the next consensus is in fact used as a lock
(note that the word should never be zero, since it was set to at
least the bit corresponding to the processor that last updated
the smoothed consensus). The processor must thus continue to IOR
its bit at least as often as the update rate.

3.2.4 FIXIT Words

The FIXIT words are handled in a similar manner. Whenever a
processor decides that some corrective action is required for a
resource, it may call one of two STAGE subroutines, SFIXIT or
SFXBAD, with respect to the particular FIXIT word. If SFIXIT is
called and the FIXIT word (relative to the smoothed consensus
word) gives that processor the authority to make the change, then
the action is taken. Otherwise, SFIXIT includes this processor's
bit in the FIXIT word. Note that the processor who acquires
authority does not place its bit into the FIXIT word; this
implicitly gives it a lock on the corrective action routine. If

5/78 Page 61

the SFXBAD routine is called, it disables the following stages
(via SBAD) and performs SFIXIT. Two additional routines are
provided to manipulate the FIXIT words, SCLEAR and SCLROK.
SCLEAR removes the active processor's bit from the FIXIT word and
SCLROK clears the processor's bit as well as enabling the next
stage (see SOKAY).

3.3 Data Bases

All memory in the Pluribus is divided into two 4K-word
pages. An important aspect of STAGE's operation is maintenance
of the pages of common memory that hold the code and data for the
application program and for STAGE. The next section describes
the data that are stored at the bottom of every memory.

3.3.1 Page Types

There are five kinds of pages in a Pluribus IMP. Each
application requires pages of types 1 and 2, and the application
cannot run unless the required number of such pages is available.
Since both kinds are required, the issue of order of importance
between these two is not relevant. Otherwise, the page types are
presented in the order of decreasing importance. The five page
types are as follows:

1. Code ~· A code page contains code to be run; it is
checksummed and never altered. (That is, all the code is
pure procedure.) In some cases, part of the page is used
for variables local to the code on that page, in which
case only the code part is checksummed.

2. Required variables. These pages contain variables which
are used by the application. The important distinction
between a code page and a required variables page is that
the latter can be created from scratch, while a copy of
the code is required in order to recreate a code page.

3. Desired variables ~· Such a page is of some use to
the application in that although the application runs
better with the page, it is nonetheless able to run
without it. If adequate memory is available, it is used
for desired variables in preference to spare code pages,

5/78 Page 62

since this strategy helps all the time while spare code
pages are of assistance only in recovering more rapidly
in case of certain failures.

4. Spare code ~· A spare code page contains an extra
copy of a code page. To the extent that there is enough
memory, STA~E attempts to keep an extra copy of each code
page so that the code can be recreated from the spare
copy should it be destroyed. Equivalently, a smashed
spare copy can be recreated from the code page.

5. Optional variables. Some applications desire optional
variable pages for purposes such as extra buffers. To
the extent that space is available, such pages are
allocated. For example, an application requiring buffer
space presumably runs more efficiently if extra buffers
are allocated above the minimum.

The communications page is the lowest numbered page which can be
seen by all operable processors. It holds all consensus data and
various other data required by the earliest stages.

3.3.2 Page Format

Not all of the words on each page are available for
application program use, the first 192 (CO!) words being reserved
for use by STAGE. For convenience, page addresses are referred
to in the following discussion as if they were referenced through
map 0 and thus have addresses from 4000! through 5FFF!.
Addresses 4000! through 40BF! are reserved for system use as
described below. Each is preceded by the name which it has in
the code.

SMDBUC This is a bucket into which a store may be freely made.
Stage MD uses it to write into to see if the page
exists. (Writing into a non-existent page results in a
QUIT.)

WMLOCK This word is used as a lock by Stage MD. It
interlocks the next few words which are used for a
memory test. It is necessary to insure that not more
than one processor at a time is testing a given page.

SMDBLK This block of 8 bytes is the place into which the
memory test is performed in Stage MD.

5/78 Page 63

SLFPTR This is a pointer to this page. It is maintained by
the STAGE system and used by application programs to
determine the contents of map registers 0, 1, or 2.
Thft technique is described at the end of this section.

SLFLK This word is a locked copy of the previous word, with 2
in the rightmost bits. It is used with the mechanism
described at the ~nd of this section to determine the
contents of map 3.

COMPTR This is the page number of
page.

the current communication

COMTST This timer word is used in a special way as a consensus
in Stage MD for repairing COMPTR if it has an improper
value. See the description of Stage MD.

The words discussed above are used on every page in the system;
the next few words are used only on the communication page.
However, since any page may, without warning, become the
communication page, space for these words is reserved on every
page. These variables are maintained and kept up to date on the
communication page only.

SYTIME This is the system time and is updated every 25.6
milliseconds. The updating is performed while the
application is running by fast TIMEOUT. During system
startup time, STAGE updates it by monitoring the
reading from the real time clock (RTC).

SEGCON This is a 3-word consensus area for Stage MD,

SEGFIX This is the FIXIT word for Stage MD.

MEMSEG This block of words contains
pages. The table is

the bit table of existing
created and checked for

MEMTOT

correctness in Stage MD.

This contains the total number of pages
available; it is maintained by Stage MD.

of memory

STGCON This block of 3 words is used
Stage RK.

for the consensus for

STGFIX This is the FIXIT word for Stage RK.

5/78 Page 64

COMREL This is the address of the page in common memory
containing reliability code.

The following words are used by every page and constitute its own
housekeeping area.

CKSFIX This is the FIXIT word
processors which want
page.

for Stage MC and indicates
to fix the checksum for this

INTIME This is the initialization timer held by TIMEOUT. Its
use is dependent on the page type and the application.

CKSUM This is the page's checksum.

TLIMIT This is the upper limit for checksumming. It is the
address of the first location which does not
participate in the checksum. TLIMIT itself is the
first word to checksum.

PGINIT This is the address of the initialization routine for
this page, or zero if none exists.

TOPNTR This is a pointer to the configuration/timeout table,
or zero if there is no table.

TYPE4K This is the page type of this page,
described in section 3.3.1.

the types being

This completes the description of variables appearing on every
page. All succeeding words are available to the application
program.

The words SLFPTR and SLFLK are used to determine the
contents of map registers since it is a property of the Pluribus
hardware that map registers cannot be read. The convention is
that every page has in location SLFPTR the value that must be
loaded into a map register to address that page. (This location
is maintained by Stage MD.) Thus the processor may deduce the
map contents by reading that location through the map.

This simple mechanism cannot be used safely to read map 3,
since attempting to do so clears the word to zero. The processor
could restore the location to its previous value on the next
instruction, but another processor might happen to access the
word while it is incorrectly zero. Therefore, SLFLK is
maintained in the same format as SLFPTR but with an extra bit

5/7 8 Page 65

(the "2" bit) at the right end of the word. (That bit is ignored
if loaded into a map register.) The usual lock discipline is
used, accessing the word repeatedly until it is non-zero, and the
value read is immediately stored back into the location. The
purpose of the extra bit is to insure that the proper value is
non-zero, since otherwise page zero would have zero in SLFLK.

3.4 Interrupt Routines

Although interrupts are not used in Pluribus in dealing with
input/output, they are nonetheless a necessary part of the
operation. A block of cells at the bottom of local memory
contains a data block for each of the six possible interrupt
types. This block specifies the destination transfer location
when the interrupt takes place and also provides room in which
the hardware stores certain status information at the time of the
interrupt, such as the contents of relevant registers. The five
interrupt types (the sixth is not used) are QUIT, ILLOP, the
clock interrupt JIFFY, the remote power failure interrupt, and
the paper tape reader (PTR); these five are now discussed.

3.4.1 QUIT

A QUIT is an event triggered by Pluribus hardware for
various reasons. If a processor attempts to access a memory
location which does not exist, a QUIT is generated. If the
memory location is not recognized by any of the bus coupler units
on the processor bus, the QUIT is generated by the arbiter. If
one of the bus coupler units recognizes the address but the
memory bus is unable to return a valid content, then the arbiter
for that bus generates the QUIT. In any case, the QUIT is
generated by an attempt to access an address that does not exist
in the available memory as seen by the processor. QUITs are also
generated by the I/O system for certain relevant events. It is
possible that a QUIT may occur while in the QUIT handler; this
is an indication that something is seriously amiss. Since the
QUIT interrupt cannot be suppressed, the QUIT handler very early
sets a flag saying "I am in QUIT handler." This flag is cleared
at the end of processing a QUIT. If another QUIT takes place
while this flag is set, the effect is as for any unexpected QUIT.

A QUIT that occurs unexpectedly is an indication of a
problem in the system and causes STAGE to be restarted. However,
in many important cases QUITs can be anticipated; for example,
since the code which checks to see what memory can be seen by a
processor encounters a QUIT each time it accesses a non-existent

5/78 Page 66

page, it must be prepared to handle such QUITs. The mechanism
used is as follows: By convention, any instruction which is
likely to encounter a QUIT has a certain special instruction
immediately following it, one unlikely to occur accidentally.
The QUIT handler checks on entry to see if that special
instruction appears immediately after the instruction that caused
the QUIT. If so, it assumes that the QUIT was anticipated. The
special instruction used is a NOP (no operation) with an address
to which the QUIT handler transfers in the event that a QUIT
takes place. (If there is no QUIT, the NOP is merely executed by
the processor with no effect.) This mechanism effectively gives
the programmer the ability to do a "load register and transfer in
case of QUIT" command. It should be noted that this is an
expensive command to execute if the QUIT does in fact take place,
because the entire interrupt mechanism is invoked. The macro
QUTPAT is used in the coding to generate this ~i~ ~tern.

3.4.2 ILLOP

The second interrupt type is for an illegal .£.E_eration code,
referred to as ILLOP. In general, such an interrupt is an
indication of a trap. In many places in the application program
(and also in STAGE) the programmer wishes a simple way to report
that something seriously wrong has occurred. The Pluribus
hardware traps any instruction of the form(9) EXXX! or FXXX! as
an ILLOP. The ILLOP interrupt handler checks for such a word,
treating it as an indication of the XXX! trap and reporting its
occurrence to the NCC. For traps of the form EXXX!, there is
merely a report that the trap has occurred, while reports of
FXXX! traps include also the contents of certain relevant
registers. (This latter is used by maintenance personnel to
gather information about hard-to-track-down bugs in the hardware
or software.) The interrupt handler records the trap data in a
special place in local memory, and Stage AR copies those data to
common memory. It is then sent to NCC by Fake Host 3. As a
special case, if the debugging mode is enabled, the instruction
FADE! is treated by the ILLOP handler as a desire to stop the
Pluribus. A switch is set so that each processor stops as soon
as it returns to LOOP.

(9) The following numbers are hexadecimal, with "X" standing for
any hex digit; as previously noted,"!" is used to denote that a
number is hexadecimal.

5/78 Page 67

3.4.3 JIFFY

The Pluribus is interrupted 60 times per second by the 60
Hertz clock interrupt (the JIFFY interrupt). This interrupt is
used to check that certain events are continuing to occur. In
particular, the processor checks on JIFFY interrupt to determine
if it is stuck awaiting a lock or stuck in some other loop. A
loop is indicated by the failure of the processor to enter STAGE
for longer than about 150 milliseconds. If the loop is caused by
a stuck interlock, which the JIFFY interrupt handler determines
by examining the pattern of instructions being executed, the lock
is arbitrarily cleared. Otherwise, STAGE is restarted. Either
action is reported with a trap. The same interrupt level is also
used for a local power failure and for power restoring. The
Pluribus power supplies are built so that the processor is given
a warning a few milliseconds before the power actually leaves the
buses, time enough for an orderly shutdown. When power is
restored, a distinct interrupt is given so that the processor can
again start up cleanly.

3.4.4 Remote Power Failure Interrupt

The fourth interrupt occurs in case of a remote power
failure such as a failure on a memory or I/O bus, and also if the
attention button on the operator's console is depressed. The
effect of the former is an orderly shutdown of the processor (as
for a local power failure) and that of the latter is to report
(trap) an unexpected interrupt.

3.4.5 Paper Tape Reader (PTR)

When the paper tape loading code in DDT has been triggered,
DDT enables interrupts from the paper tape reader. The interrupt
handler enters incoming characters into a ring buffer in common
memory. If the buffer fills, the interrupt for the paper tape
reader is disabled until DDT can run and remove some of the
characters from the buffer. At all other times, paper tape
reader interrupts are inhibited and the handler is never entered.

5/78 Page 68

3.5 Individual Stages

STAGE consists of eleven modules. Each module in the
sequence examines an increasingly more complicated aspect of the
system configuration, so that the STAGE processing begins by
verifying the basic _local state and then moves outward to check
additional resources until the entire system has been examined.
Each STAGE module depends on the successful completion of.
previous checklist procedures for correct operation, and the
system must insure that no STAGE module is run until the earlier
stages have been successfully completed.

The individual stages are now described in turn.
executed at system startup time in the order presented
identified by a two-letter mnemonic as follows:

LK local kernel checksum
MD ~emory £iscovery
RK £eliability ~ernel discovery
BD common lus £iscovery
CD £0Upler and processor £iscovery
RC £eliability page £hecksum
LC local memory £hecksum
MC common ~emory £hecksum
MM common memory management
ID ~/O device £is~overy
AR ~pplication £eliability dispatch

3.5.1 Stage LK -- Local Kernel Checksum

They are
and are

Stage LK is run by a single processor and assumes only local
memory. That is, it makes no assumption that there are other
processors, any common memory, or any I/O. Its purpose is to
initialize the processor and perform certain other tasks, and to
be sure that the STAGE code in local memory is correct. Its
actions are as follows:

1. Set the local interrupt vectors and enable interrupts.
The code insures that the interrupt vectors have proper
values and then executes the appropriate instructions to
enable the interrupts. This action enables the power
failure, restore, and JIFFY interrupts. (The QUIT and
ILLOP interrupts cannot be disabled.) Since the JIFFY
interrupt is enabled, locks encountered in succeeding
stages which are held locked are properly cleared. (See
section 3.4.)

5/7 8

2.

3.

Discover the console.
require a console, it
exists. In particular,

Page 6 9

Although the system does not
takes advantage of one if it

certain values (such as
status) are displayed in the processor, host, and modem

address and data lights.

Checksum the local kernel. This includes the code for
Stage LK and the next two stages, as well as all code
used in interrupt handlers and several shared
subroutines. Once this area has been checksummed and
found correct, it is safe for this stage to continue, for
interrupts to take place, and for the next two stages to
be run. None of these assumptions can be made until this
checksum has taken place. If the checksum is bad, the
processor halts and waits for another processor to fix
things up and restart it.

4. Find a real-time clock (RTC). Once this is discovered,
the variable SYTIME can be kept up to date and consensus
for the later stages may be maintained.

On successful conclusion of this stage,
interrupts work correctly and are enabled,
code in local memory has the correct checksum.

it is known that
and that the stage

3. 5. 2 Stage MD -- Memory Discovery

Now that it has been established that the local processor is
operational, that the STAGE code in that processor's local
memory is correct, and that the interrupt handling is assumed to
be usable, the next task is to discover what common memory
exists. This stage takes place in two major steps. First, the
code examines common memory and attempts to determine what is
there. Each page is looked at and certain consistency checks are
performed on that page. Also, the communication page is located.
The second major step is to compare the results of the first step
with those of the other processors, using the usual consensus
mechanism. At the completion of this stage, it has been
established that this processor sees at least the same memory
that is seen by the rest of the system. If the processor sees
extra memory, it tries to update the common memory table.

5/78 Page 70

3.s.2.1 Stage MD Part 1: Memory Test

The memory test consists of looking at all possible pages in
the address space. Although the Pluribus address space includes
pages 0 through 127, an assembly parameter is used to establish a
smaller, more realistic upper limit to save time. This limit is
63 in the IMP. The memory test is performed in steps as follows:

1. Store into word SMDBUC of the page. If
the page does not exist and is skipped;
looking at other parts of the page.

a QUIT occurs,
if not, continue

2. Lock the test area. Since it is important that not more
than one processor at a time be performing the memory
test, lock word WMLOCK is used. Note that if this lock
word (or any other lock used by STAGE) happens to be
initially zero (i.e., locked) at system startup time, the
JIFFY interrupt handler detects that the processor is
hung on this lock and ultimately clears it.

3. Store patterns. This tests the memory to see if various
patterns of l's and O's can be stored and retrieved
correctly. The block of memory at SMDBLK is used.

4. Check the locking operation. A load-and-clear reference
(through map 3) is performed, and a check is made that
the result is zero; if not, the memory is unusable.

s.

6.

Check that the self-pointer word SLFLK contains
proper value. If it is incorrect, it is repaired.
this point the lock set in step 2 is cleared.

the
At

Establish the communication page.
discussed below.

The method used is

The communication page, the lowest numbered page that can be
seen by all processors, is used by STAGE for communicating
between the processors. An important item of communication is
the consensus, in which all processors must agree on some action.
The communication page provides the place to store consensus
data. Stage MD has the task of getting all processors to agree
on which page is to be the communication page. This requires
unanimous agreement of all processors, but there is not yet an
agreed upon place where the processors can record their views on
the matter. Thus the following method is used.

5/78

The main loop in Stage MD
some upper limit, examining
encounters which passes memory
that processor's candidate for

Page 71

is to look from page 0 through
each page. The first page it

test steps 1 through 5 above is
the communication page.

Every page in the Pluribus has a word called COMPTR which
contains in its left 7 bits the address of the communication
page. There is additionally-a word COMTST on each page which is
used to establish, by a type of consensus, just which page is to
be used for communication. This is achieved by assigning each
processor its own bit in COMTST in the same format as the FIXIT
word. A processor running MD which concludes that the value of
COMPTR on a given page is correct sets the entire COMTST word on
that page to zero. A processor concluding that COMPTR is
incorrect sets its bit in COMTST to 1 and then waits one minute.
If at the end of that time the bit is still 1 (i.e., no other
processor running Stage MD has set COMTST to zero), it sets its
bit to zero and changes COMPTR to what it determines to be the
communication page. If, during the one minute waiting period,
another processor running Stage MD agrees with the existing value
in COMPTR, it will set COMTST to zero and the waiting processor
will never get the chance to make the change. In this case, the
waiting processor proceeds no further in STAGE and is unavailable
to run the application since it cannot agree with other
processors on where to communicate.

Once all of these tests have succeeded for an individual
page, the proper bit for that page is set in the MYSEGS table.
This table is contained in local memory and reflects all common
memory pages visible to the local processor. Further, the
processor sets the COMPTR word of all pages to the page which it
determines to be the communications page. If other processors
are running, then the COMPTR words reflect the value agreed on by
all processors.

At the completion of part 1 of Stage MD, MYSEGS contains the
bit map of all pages which the current processor can see, and the
normal consensus mechanism can now be used.

5/78 Page 72

3.5.2.2 Stage MD Part 2: Page Map Consensus

STAGE maintains on the communication page a data base called
MEMSEG which is a bit map of the pages that are available on the
system. This last part of Stage MD is a comparison of MYSEGS
with MEMSEG. If they disagree, the consensus and FIXIT
mechanism is used to set MEMSEG to the value of MYSEGS. As noted
above, it is now possible to use a consensus because processors
agree on the communication page.

At the end of Stage MD, all running processors agree on
which common memory pages exist and may be used, as well as on
which page is to be used for communication.

3.5.3 Stage RK -- Reliability Kernel Discovery

This stage and the two previous stages run in local memory,
since up until this point it is not yet known where in common
memory anything can be found. The purpose of Stage RK is to find
that page in common memory (known as the reliability page) which
contains the code for the next three stages, a code referred to
as the reliability kernel. Once it has been found, succeeding
stages can be run from it in common memory. As local memory is a
precious commodity and in short supply, it is mostly reserved
for frequently executed application code. Since STAGE is not
executed very often during the running of the application, it is
desirable to store as little of it as possible in local memory.
Of course, some of it must be in local memory since certain parts
of STAGE run before common memory is discovered.

There is one other important aspect of Stage RK. Once the
reliability kernel has been located, it is known that the
necessary code to perform a reload exists and is correct. If at
any point thereafter it is determined that parts of the code are
incorrect (i.e., have an incorrect checksum) or that needed code
(or other data) are not available, it is possible to get a good
copy of that code or data. The code is obtained through a packet
reload whereby pieces of code are obtained from elsewhere in the
network. The assumption is that after Stage RK has run
successfully, it is possible to do a reload, since the code
needed to perform the reload is contained in the reliability
kernel which is now known to be correct.

Stage RK looks through all of the pages of common memory to
locate the reliability kernel. This page is recognized in two
ways. While the system is running, the word COMREL on the

5/78 Page 73

communication page points to the reliability page. In addition,
the reliability page has the password ACE! .(10) While the system
is running, Stage RK need merely look at the page pointed to by
COMREL to be sure that it has the proper password. During system
initialization time, however, Stage RK looks at all pages in
memory to find one containing the proper password. When it is
found, two checksum operati~ns are performed on the reliability
page. First, STAGE RK determines the checksum for just that
part of the page containing the reliability kernel, and then it
performs the usual checksum operation on the whole page. The
reliability kernel code is usable if just its own checksum is
correct, although of course it is preferable if the entire page
checksum is correct. If the reliability kernel checksum is not
correct, the system can proceed no further. If it is correct and
the page checksum is not correct, COMREL is set with a 1 in the
least significant bit to indicate to subsequent code (Stage RC)
that the page must be reloaded.

On completion of Stage RK, all processors have agreed on the
location of the reliability page. The consensus mechanism is
used to do a FIXIT on COMREL to be sure that it is correct and
that all agree. From this point on, STAGE can run from common
memory.

3.5.4 Stage BD -- Common Bus Discovery

This stage discovers the memory and I/O busses that exist in
the hardware. It proceeds as follows:

1. Initialize storage. The STAGE variables which are

2.

maintained in the high addresses of the reliability page
are checked for consistency (via a software watchdog
timer) and initialized if necessary.

Scan the variables area for QUITs, reinitializing
necessary.

if

3. Discover the buses. First all memory buses are deduced
from the data stored in MEMSEG. Then all I/O buses are
discovered. A check is made for the existence of PIDs
and RTCs.

(10) The password is a particular word in the checksummed part of
a code page. The reliability page has ACE! in that word, a
pattern which does not correspond to any reasonable Pluribus
instruction.

5/78 Page 74

4. If no PIDs exist, the processor reenters STAGE from the
beginning (Stage LK).

5. Us~ng the consensus mechanism, the results
are stored in the single word USEBUS
leftmost bits represent RTCs and the
represent buses.

3.5.5 Stage CD -- Coupler and Processor Discovery

of Stage BD
in which the

rightmost bits

This stage discovers processor and I/O bus couplers.

A coupler appearing on all I/O buses is assumed to be a
processor. Its proper backwards bus coupler (BBC) password is
determined from configuration tables in the reliability kernel.
The code tries to set this BBC state into nne of the I/O
couplers. If this results in a QUIT, the processor's own coupler
has been found. Note that M/I to M/I bus couplers must not
appear in I/O space (but instead in memory space) on the target
bus to avoid possible interference with processor discovery.
Consensus agreement is obtained for the COUBUS and IOCTAB tables
which are filled out as couplers are found.

Since M/I to M/I bus couplers appear in memory (as opposed
to 1/0) address space, they will not interfere with processor bus
discovery. Once this stage has completed and reached consensus,
the Block Transfer and Packet Reload routines will be polled.
Under consensus agreement, this stage fills the following tables:

COUTAB is the list of processor couplers. This is the list
of processor names also, since coupler addresses are assigned in
the Pluribus according to the physical location of the bus.

COUBUS tabulates, for each
common buses it appears on. This
proper amputation status. IOCTAB
M/I to M/I buses have been found,
connect.

processor bus, which of the
information is used to maintain
tabulates what I/O to memory or
and to which memory buses they

the results are
two bits are
to each of two

Finally, as processors are discovered,
tabulated in PROCEX. This is a bit table, where
assigned for each bus in COUTAB, corresponding
possible processors per processor bus.

5/78 Page 75

3.5.6 Stage RC -- Reliability Page Checksum

This stage insures that the checksum on the reliability page
is correct by checking the checksum calculated previously by
Stage RK and stored in COMREL. If the checksum is found to be
incorrect, all following stages are disabled and an attempt is
made to reload the reliability page.

3.5.7 Stage LC -- Local Memory Checksum

This stage checks that the checksum for all of the code in
local memory is correct. Recall that Stage LK performs a
checksum in local memory, but that check is only for the part of
local memory used for STAGE. The STAGE system can run
successfully even if part of local memory is broken, providing
that the broken part is not needed for running STAGE. Stage LC
now checks all of local memory.

Stage LC uses the usual checksumming mechanism to compute
the checksum of local memory up to the limit specified in HOTLIM.
It then uses the consensus mechanism but with an interpretation
differing from that normally used. A processor sets its FIXIT
bit for this stage to indicate that its own local checksum is
incorrect. If all processors have an incorrect local checksum,
the last one to discover this fact initiates the fix as usual for
a consensus. The fix in this case is to use Packet Reload to
reload local memory from elsewhere in the network. In the more
likely situation where at least one processor has correct local
memory, the bad processors hang in Stage LC. Later, in Stage AR,
the local memory of these processors is refreshed by a correctly
running processor.

3.5.8 Stage MC -- Common Memory Checksum

This stage checks each page in common memory. First, a
specified part of each page is checksummed. If a processor finds
the checksum to be incorrect, it indicates this by setting its
processor bit in the FIXIT word of that page. If there is a
consensus that that page has an incorrect checksum, the page type
is set to -1, the page limits for checksumming are set to include
only up to the type word, and the checksum is changed to the
correct value for an empty page. The effect is that the page
appears to be free.

5/7 8 Page 76

The checksummed area on a common page is, in many cases,
only a small part of the page, and the next step is to look at
the rest of the page for QUITs. If a QUIT occurs, the word
causing it is set to zero and then read back to see if it really
is zero, thus clearing parity errors in memory. If a QUIT occurs
for any word in the page, that page is marked for subsequent
reinitialization. If the zeroing and rereading process fails,
the processor stops using the page involved.

3.5.9 Stage MM -- Common Memory Management

This stage establishes that the necessary pages are in
common memory. It insures that each required page for the
application is in common memory and is in the proper place. It
was noted in section 3.3.1 that there are five kinds of pages:
code pages, required variables, desired variables, spares, and
optional variables, in order of decreasing importance. Stage MM
attempts to place code pages and spare code pages on different
memory buses, so that the failure of the memory bus containing
the code does not stop the application. Further, it is desirable
that variables pages be on a different memory bus from code pages
so as to minimize memory contention. For this reason, Stage MM
~orks from both ends of memory. Code pages are loaded at the low
end (small addresses) of memory, and the upper portion of memory
contains (from high addresses to lower ones and in the order
named) required variables, spare code pages, desired variables,
and optional variables. If any space remains between the top and
bottom of allocated memory, such pages are marked as being free
pages. Figure 10 shows the different page types as they reside
in Pluribus common memory.

Stage MM looks at the bit table which indicates which pages
in common memory are available. It maintains two pointers, one
to the lowest numbered free page and the other to the highest
numbered free page. As a specified page type is moved to its
proper place, these two pointers are adjusted accordingly. While
this stage operates, it is building up a data base called LMAP,
stored in local memory. LMAP shows the location of every page
type in common memory. On completion, the stage checks that LMAP
is in agreement with CMAP, the corresponding data base in common
memory.

LMAP and CMAP have identical formats. There is an entry for
each page type, and the page type serves as the index into LM~
The entry in LMAP contains the value to be loaded into a map
register in order to address the page. During program execution,

5/78 Page 77

.
High Addresses

REQUIRED VARIABLES

SPARE CODE

DESIRED VARIABLES
OPTIONAL VARIABLES (IF ANY)

F R E E

C O D E

Low Addresses

Figure 10. Organization of Common Memory

5/78 Page 78

the application program uses LMAP to load map register. The sole
purpose of CMAP is to provide a means by which STAGE can insure
that all processors have the same picture of common memory.

A common subroutine is used to perform the processing for
all five page types. The requirements for each of the five page
types are described in the order in which the processing takes
place in Stage MM.

1. Code pages. Code pages are placed into the low end of
memory. If the necessary code page can be found, it is
copied into the proper place. If not, the corresponding
spare code page is searched for and, if found, copied
into the proper place. Otherwise, a reload is required.

2. Required variables. Required variables are loaded
starting at the top of the memory. If they are not in
the proper place but found elsewhere, they are moved;
otherwise, initialization is required.

3. Spares. Spare pages are loaded only after it has been
determined whether or not there would be enough room left
for the desired variables. ·If not, preference is given
to the desired variables and no spare pages are

'allocated. If enough space exists for both spares and
desired variables, the relevant pages for the spares are
either moved into place or copied from the code pages.

4. Desired and optional variables. These variables are
loaded from the top, following the spare code pages (if
spares exist) or following the required variables (if no
spare code pages exist). They are either moved from
where they exist or are created and initialized. Desired
variables actually appear in the optional variables part
of LMAP.

S. Any pages which are as yet unallocated are marked as free
pages, with page type -1.

As mentioned above, a single subroutine does the work for
all five page types. It has two parameters, the page type for
which it is looking and the place where it is to be put. The
latter is an indication of which of the two pointers into the
available page table to use, the one counting down from the top
of memory or the one counting up from the bottom of the memory.
The subroutine does its work as follows: It first checks that
there is room for more pages by determining whether the two

5/78 Page 79

pointers have met. If the pointers have met (i.e., no more
available memory exists) it asks whether enough pages have been
allocated. That is, have all of the code pages and required
variables been allocated. If so, the rest of LMAP and CMAP are
filled with -1 and Stage MM is done. If the required pages have
not been filled, the stage fails and a bit is set in the FIXIT
word; there is not enough memory to run the system. If the
place where the page is to go"does not exist (i.e., that page is
not in the available memory), the subroutine merely increments
the place and returns. It is called again to try the next page.

The routine then looks to see if the page already at the
given place has the proper type; this is the normal situation.
However, if that check fails, the stage first looks in
unallocated memory (the space between the two pointers) to find
one of three things: a page of the correct type, a spare copy of
a page of the correct type, or a free page (one of type -1). It
then performs the appropriate copy operation (under consensus) to
insure that the proper page is in the proper place. The JIFFY
interrupt is suppressed to minimize execution time. Part of the
copying operation is to change the page type (if necessary) of
the final copy, for example if a spare code page is copied to
make a code page. Since the page type is part of the checksummed
area, both the page type and the checksum must be changed
simultaneously. Another part of the copy operation is a simple
memory test in which each word stored into the destination is
read back and checked for accuracy. Since the code which copies
the reliability page also resides on that page, care must be
taken to move this code correctly. Finally, the move never takes
place while BLT is in operation because Packet Reload may be
attempting to reload the page in question.

3.5.10 Stage ID -- I/O Device Discovery

This stage looks through I/O space to determine which I/O
devices exist. Although Pluribus hardware permits up to 768 I/O
devices, this stage is constrained by assembly parameters to look
at only 64 of them to save processor time. It looks at 4 windows
into I/O space, each consisting of 16 consecutive I/O blocks.
Each window is identified by one word which gives the address of
the first device in the window and another word which indicates
which of the devices starting at that location actually exist.
Stage ID accomplishes the device discovery by reading the first
word of the I/O block for each of its 64 possible devices. If
there is no QUIT, it assumes that the device exists. It also
insures that there is a PID for each window.

5/78 Page 80

Stage ID reports its failure in a FIXIT word, to indicate
that the view of I/O space which it has differs from that
maintained in the USEIO data base on the communication page.
However, this stage differs from all others in using majority
logic rather than unanimous consent to decide when to perform
the repair. When a processor detects a variance between its view
of I/O space and that in USEIO, instead of checking to see if it
is the last processor to detect this flaw, it merely adds 1 (for
itself) to the number of bits already in the FIXIT word. If that
sum exceeds one-half the number of l's in the smoothed consensus
word, it realizes that a majority of the processors has detected
a problem and performs the proper fix in USEIO. If not, the
processor puts its own bit into the FIXIT word for a consensus.

3.5.11 Stage AR -- Application Reliability Dispatch

This is the final stage before running the application
program and is the stage that performs certain final checks to
insure that all is ready. In particular, it is able to perform
certain tasks required by the application. It proceeds as
follows:

1. Recall that in Stage LC, which checksums local memory, if
only one or two processors have bad memory they remain
hung in that stage. The FIXIT word for Stage LC is now
looked at. Any bit in that word indicates a processor
whose local memory is incorrect. If any such exists, BLT
is invoked to copy a correct version into the local
memory of the complaining processor(s).

2. If any processors are halted, BLT is used to attempt
start them.

to

3. The initialization routine on each page is polled and
executed. Word PGINIT in the system part of each page
contains either zero or the address of an initialization
routine. This initialization routine, a closed
subroutine, examines certain data in memory and checks
for correctness. In the case of application code pages,
this routine checks certain parts of the application,
thus giving the application package a chance to have
STAGE. perform certain checks for it. Failures reported
by these initialization routines are indicated by a FIXIT
bit, and the usual consensus mechanism is used. The
action in the event that all processors agree is to
return to the application routine to perform the required
initialization.

5/78 Page 81

4. In the event that the processor is an even processor, it
determines whether or not the 60 Hertz clock is running.
If not, it executes a trap.

S. The effect of any trap in the Pluribus IMP is to store
certain information in local memory of the processor.
This part of Stage AR causes that trap information, if
non-zero, to be copied into a buffer in common memory for
eventual transmission to the NCC. Finally, SOKAY is
called to enable the application program.

6. Certain local hardware failures are noted by traps:

a. Nonworking JIFFY.

b. Successful QUIT retries.

c. RTC read errors.

3.6 BLT -- Block Transfer

A special part of the STAGE system is a module called BLT, a
routine used to move blocks of data from one place to another.
BLT deals with three problems:

Some of the moves take up to several seconds of processor
time, much too long for a single strip. BLT must break
periodically as dictated by the timing requirements of
the application.

Moving data into the local memory of another processor
requires backwards bus coupling.

When a part of memory is missing, BLT is able to reload
it from an external medium (a neighbor IMP or the NCC).

Because of these considerations, BLT is the single routine used
to move blocks from one place to another.

When any STAGE code wishes to move something from one place
in memory to another, it first determines that BLT is not in use.
If BLT is free, it sets up the parameters for the move and then
goes about its business. WSLEEP dispatches to BLT periodically
just as it dispatches to any stage. Whenever BLT is entered, it
looks in its parameter block to see what it should be doing. If
it finds nothing, it returns to WSLEEP. If it finds a task, it

5/78 Page 82

moves blocks of data of an amount appropriate to the maximum
strip time dictated by the application. Having done so, it
adjusts the parameter block appropriately and then returns to
WSLEEP. This process is repeated until the task is completed.

The part of STAGE which initiates the call for BLT may well
be able to go on about its business. If at a certain point it
cannot proceed until the move is complete, it returns to WSLEEP.
Every time the stage is re-entered by the normal dispatch, it
checks to see if BLT has completed.

BLT operates by being given a source and a destination. It
first copies the data to be moved from the source to a buffer
area in BLT, and then copies it from the buffer area to the
destination. BLT has a state word with three possible values:
free, source, and destination. Thus BLT always knows what it is
doing by looking at its state word, and users of BLT can
determine from that state word whether or not BLT is free.

BLT is controlled by four values. These are the type of the
source, the type of the destination, the address, and the length.
The type of the source or destination specifies whether it is
local memory, common memory, or external. The address is always
the same for both source and destination. The length is the
number of bytes to be transferred. In addition, if the source or
destination is local memory, there is an associated mask word.
The mask specifies which are the relevant processors. If the
source is local memory, the mask specifies which processors may
be used as the source of the data. Then when BLT is running in
one of those processors, that processor does the work. If the
buddy of one of the processors is running BLT, it is the buddy
that does the work. Otherwise, another processor uses backwards
bus coupling to fetch the required data. If the destination is
to be local memory, the mask specifies which processors are to be
loaded. Each time BLT loads one of these processors, it removes
its bit from the destination mask.

An attempt to copy from external (i.e., a reload) is
sometimes interrupted to take a dump. That is, if the system
decides that a part of local memory must be reloaded; something
external to the reload mechanism (such as the NCC) may elect to
take a dump first of some or all of the Pluribus memory before
reloading. Thus the transfer from external to Pluribus memory is
trapped and a copy operation from Pluribus memory to external is
performed first, followed by the originally requested reload.

5/78 Page 83

Recall that Stage AR is used to reload local core in a
processor and to start it if necessary. This latter task
(starting a processor) is signaled to BLT by a special bit in its
state word. If the bit is set, BLT starts the processor at the
beginning of the STAGE system. BLT is used because it
incorporates the necessary BBC code.

BLT is aware of checksum~ed areas. When it copies into such
an area and a special state bit is set, it takes the necessary
steps to change the checksum. It does this in such a way that
any stage simultaneously checksumming that area does not get into
difficulties.

Additionally, BLT is used by packet core in the IMP for
patching a word from the NCC.

3.7 Packet Reload

If a page of memory in the Pluribus IMP is found (in Stage
MM) to be defective, an attempt is made to make a repair. If
possible, the repair is made using only the resources available
in the IMP itself. For example, if a checksum error is found on
a code page and there is a spare copy of that page, the latter is
copied. Similarly, an error on a variables page is repaired by
reinitializing the page and restarting the IMP. In some cases,
however, the IMP is unable to effect the repair itself and
requires outside help. In the usual case, the outside help is a
copy of the missing code or data sent from elsewhere on the
network. The Packet Reload module is the sender or recipient of
such transmissions.

The Packet Reload mechanism
follows:

involves three processes, as

The IMP with a problem uses Packet Reload to obtain the
necessary information from the network. Providing Stage
BD has run correctly, Packet Reload may be run.
Essentially, the IMP sends out a special protocol message
stating what part of memory it wants and the type of the
IMP (316 or Pluribus) that it is. It then awaits receipt
of the requested data.

An IMP elsewhere supplies the data. When an IMP receives
a reload request from another IMP of the same type, the
Packet Reload module generates the proper data for
transmission.

5/7 8 Page 84

There are possible intermediate IMPs between the one with
the problem and the one with the data. These might be
IMPs of the other type not capable of supplying the
requested data. For example, a 316 IMP cannot supply
reload data for a Pluribus IMP, but it can pass the
request on to a neighbor until it reaches an IMP which
can help. Similarly, a Pluribus IMP passes through
itself reload requests for a 316 IMP.

A special protocol is used for moving a portion of core
memory from one IMP to another over the network. A sending or
receiving process is implemented as Fake Host 2 which is the
recipient and generator of all Packet Reload messages.

There are only two message types in the Packet Reload
protocol. One type is SETUP, which sets up internal variables
that determine whether the process is sending or receiving, the
location and size of the core transfer, and the network address
of the foreign opposite process. The other message type is CORE,
which contains one or more segments of a core image. A Packet
Reload process which is idle is unlocked and neither sending nor
receiving. An idle process accepts any CORE or SETUP message
with the proper machine type.

If a process accepts a "SETUP send" message, it locks to the
foreign process specified in the SETUP data and begins to send
core segments at a rate specified by the send/receive flag in the
SETUP. After the last segment is sent, it resets to the idle
state. A process that is sending only accepts messages from the
foreign process to which it is locked, and these may be either
SETUP or CORE messages.

If a process accepts a "SETUP receive" message, it also
locks to the foreign process, and waits for CORE messages. When
a CORE message that completes the specified core transfer is
received, the process is reset to the idle state. A process
that is receiving only accepts messages from the foreign process
to which it is locked, and these may either be any SETUP, or a
CORE message with a start address equal to the address next
expected by the process. If the address is too low (i.e., some
previously received segment), the message is ignored. If it is
too high (i.e. some segment was missed), a "SETUP send" message
is sent to the foreign process, specifying the current address
required. A "SETUP send" is also sent when no messages have been
received for some time and the process is reset to the idle state
after a much longer period when no messages are received.

