BASF Aktiengesellschaft

BASF 6138

MINI DISK DRIVE

Specification

Mannheim, April 1983 VID/WMS

Spec.Nr. 80307-058 Rev. 01 Pages: 20

CONTENTS

1. P	roduct Outline	. 1
1-1	Feature	. 1
1-2	Specifications	. 1
2. I	nterface	. 4
2-1	Signal Interface	. 4
2-2	Table of Connector Used	. 5
2-3	Input/Output Interface	. 6
2-4	Timing Chart	10
2-5	Multiple Drive Connection System	13
3. D	escription of Functions	14
3-1	Overall Block Diagram	14
3-2	Circuit Block Diagram	14
3-3	Jumper Functions	14
3-4	Arrangement of Jumper Pins	15
4. D	imension Specifications	16
4-1	Installation Method	16
4-2	Exterior of Unit	17
5. H	andling Mini Floppy Disks	18
6. F	ormat Example	19

1. Product Outline

1-1 Feature

This MDD employs a high performance direct-drive spindle motor, resulting in stability of media rotation and also freedom from maintenance due to the elimination of a driving belt. It also employs a high-speed stepping motor and steel belt drive system, permitting speedier seek-access by the head, and making for improved track positioning accuracy.

1-2 Specifications

1-2-1 Performance

			MDD221
Recording	density	per diskette	1M byte
		per track	6.25K byte
Data trạn	sfer speed		250K bit/sec
Access	Track-to-t	cack shift time	3ms MAX
time	Seek settli	ing time	20ms MAX
	Average acc	cess time	95ms
	Head load w	vaiting time	25ms MAX
	Media rotat	ing speed	300 rpm
	Average rot	ation waiting time	100ms
	Spindle mot	or starting time	1S MAX
Recording	density (i	Inner periphery)	5922 BPI
Number of	of tracks		160
Modulatio	n system		FM/MFM
Recommend	ed media		BASF FlexyDisk 5.25"-2/96

Note 1: The waiting time during seek is the track-to-track shift time + seek settling time.

Note 2: The average access time is the average track-totrack shift time + seek settling time.

1-2-2 Boundary Conditions

Operating ambient temperature	5 — 45°C
Temperature during transport	-40 — 62°C
Storage temperature	-22 - 55°C
Relative humidity	20% to 80% (max, wet bulb temperature 29°C, free of dew formation)

1-2-3 Power Source

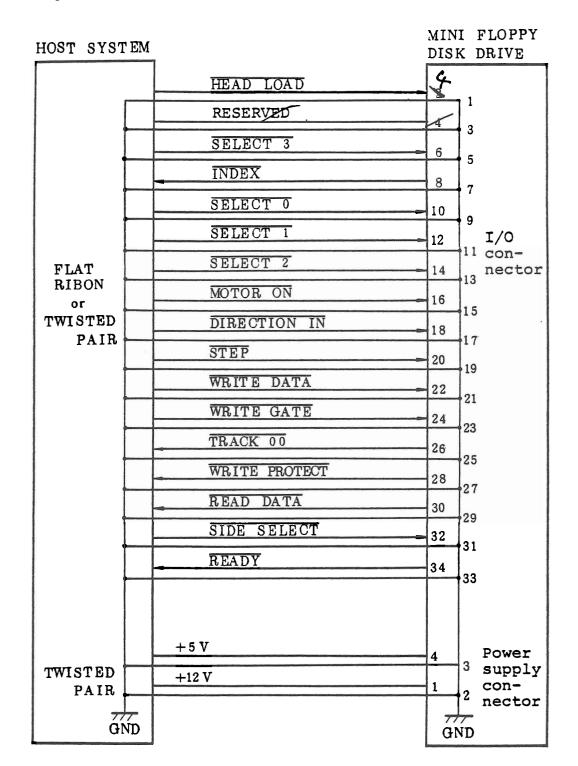
+5V • ±5%	TYP 0.8A
ripple 50 mVp-p and below	MAX 1.0A
+12V • ±5%	TYP 0.8A
ripple 100 mVp-p and below	MAX 1.7A

1-2-4 Machine Dimensions

Width	146 mm
Height	33.5 mm
Depth	221 mm
Weight	1.2 kg

* For details, refer to dimension specifications.

1-2-5 Vibration and Shock


Vibration during operation	lG (5 - 100Hz) X, Y, and Z directions
Vibration during transportation	3G (5 - 100Hz) X, Y, and Z directions (in packed condition)
Shock during transportation	Shall satisfy all specifica- tions when dropped from a height of 100cm in packed condition (in all directions, one corner, three ridgelines, and six planes)

1-2-6 Reliability

MTBF	10,000 POH
MTTR	30 minutes
Unit life	5 years
Soft read error	10 ⁻⁹ bits
Hard read error	10 ^{- 12} bits
Seek error	10 ⁻⁶ seek operations

2. Interface

2-1 Signal Interface

2-2 Table of Connector Used

Figs. 2-1 and 2-2 are simplified drawings of the connector used on the interface of the MDD. Suitable mating connectors are shown in the table below.

Signal connector	Scotchflex ribbon connector	3463-0000 3463-0001
	Yamaichi connector	FDS-34-12 #1 FDS-34-12 #2
Power supply	AMP (housing)	1-480424-0
connector	AMP (pin)	170148-2 (AWG18 - 24)
	AMP (pin)	170121-4 (AWG14 - 20)

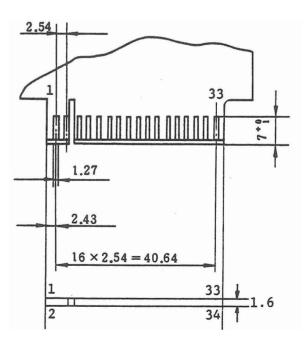
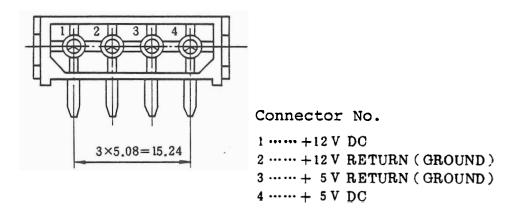
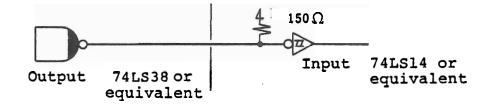


Fig. 2-1 Signal connector




Fig. 2-2 Power supply connector

2-3 Input/Output Interface

2-3-1 Recommended Input/Output Interface

Negative logic

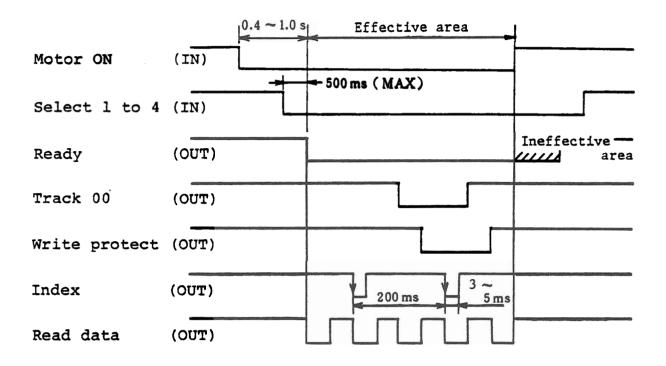
Logic	0	0.0	-	0.4V	(active)
Logic	1	2.5		5.25V	(inactive)

2-3-2 Input Signal Name

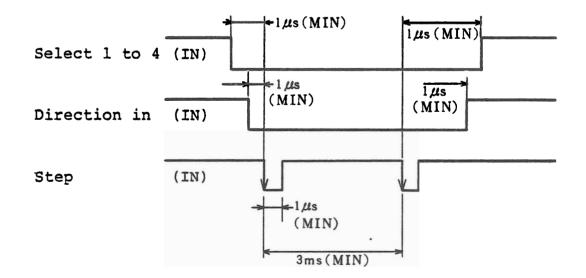
Signal name	Content
Select l to 4	It is possible to connect up a maximum of four MDD units in a daisy chain. Set the drive select condition by means of the drive jumper pin. (All units are set to drive select 1 before they leave the factory.) When the select signal of the set drive becomes low level, the drive will go into an active condition.
Motor ON	When this signal becomes low level, the drive motor will rotate. The motor signal alone is not gated by the select signal.
Direction in	When this signal is high level, the head will shift to the outer periphery under the step signal. When it is low level, it will shift to the inner periphery.
Step	This signal is a pulse signal. The head will shift in the direction of the 'direction in' signal under the leading edge (fall) of this pulse. When the write gate is on, internally it goes into an inhibit condition.
Write gate	When this signal is low level, information is registered in the media in accordance with the signal of the write data. Also, the write gate signal functions to cause tunnel erase to take place inside the drive, hence neither side select nor step head unload will take place until 1.2 ms after the write gate has closed.

Signal name	Content
Write data	This signal is a pulse signal. Under the leading edge of the pulse (fall), the data will be inverted and information will be registered in the media. Transfer data only when the write gate is low level.
Head load	When this signal becomes low, the head will be loaded. It is also possible to perform head loading by means of the drive selector signal, irrespective of the head load signal. During head load, the indicator LED becomes red and the button is interlocked. For details, see the jumper specifications.
Side selector	This signal is used to select a particular head on a drive employing a double sided head. When it is high level, head 0 is selected, and when it is low level, head 1 is selected.
Ready	After the motor goes on and the media reaches a constant speed of rotation, this signal will go on (low level). After a lapse of 1 second from when the motor goes on, the ready signal is confirmed and R/W operation commences. Then, the indica- tion LED becomes green.
Track 00	This signal is on (low level) when the head is at track 00.

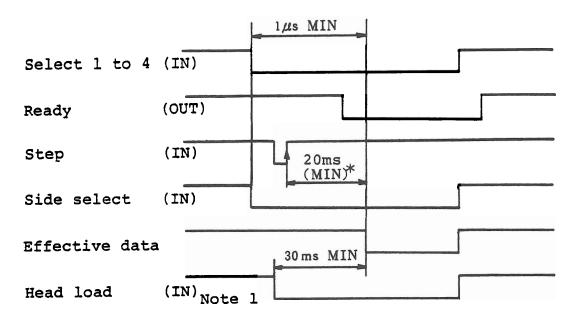
Signal name	Content
Index	This signal goes on (low level) when the index hole of the media is detected. This signal is a 3 to 5 ms pulse signal. The leading edge (fall) of the pulse indicates the commencement of the track/sector. When the media is not inserted, this signal will remain low level.
Read data	This is a readout signal for magnetic inver- sion on the media. It is a pulse signal, the leading edge (fall) of which is effective.
Write protect	This signal becomes low level when a write- protected media is inserted. Simultaneously, write will be inhibited inside the drive. Write protect takes place by covering the notch in the disk jacket by an opaque label.

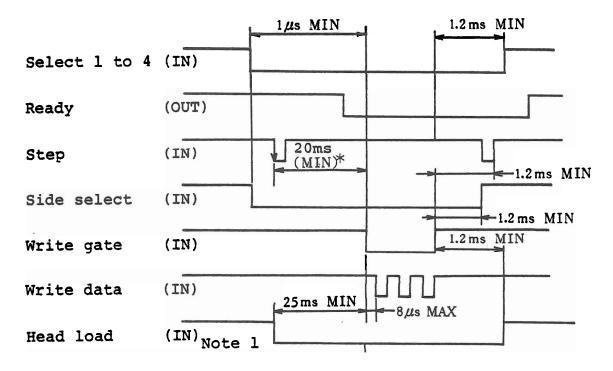

* All output signals are gated by the drive select signal.

- 9 -

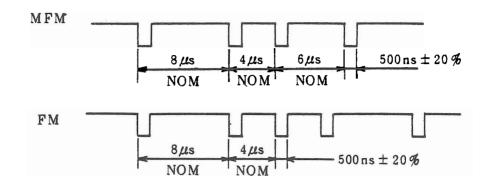

.

2-4 Timing Chart

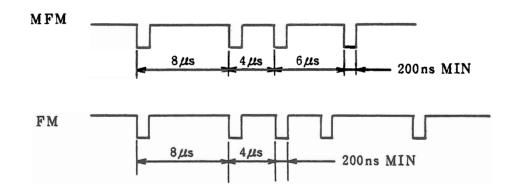

2-4-1 Ready Signal Timing


2-4-2 Step Signal Timing

2-4-3 Readout Timing



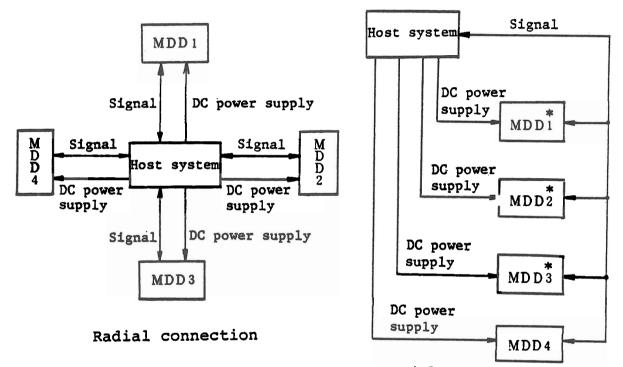
2-4-4 Write Timing



Note 1: The necessary head load waiting time is 25ms from the commencement of actual head loading. (For example, 25ms from 'select on' when head loading by 'select' signal.)

2-4-5 Read Data (OUT)

2-4-6 Write Data (IN)



Use a write clock accuracy of ± 0.5 % (4µs ± 20 ns). Normally, write pre-compensation is not necessary. If it is necessary on account of the system, use it only from the center track in the peripheral direction.

2-5 Multiple Drive Connection System

When connecting several MDD units to a host system, either a radial connecting method or a daisy chain connecting method is used.

When using the daisy chain connecting method, it is necessary to remove all pull-up resistors (resistor arrays) except that on the last MDD unit.

* Remove resistor arrays. Daisy chain connection

3. Description of Functions

3-1 Overall Block Diagram

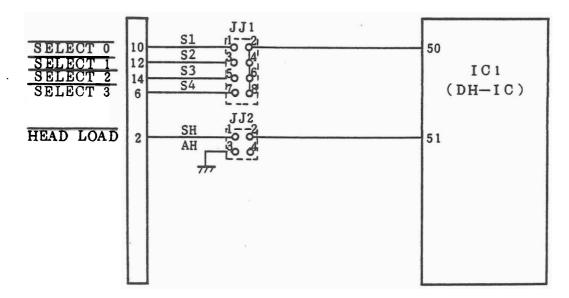
The main components of the MDD are a spindle motor (DD motor), stepping motor, head assembly, main PCB, and other drive components.

3-2 Circuit Block Diagram

Apart from the control circuit of the spindle motor, the entire MDD circuit is on the main PCB.

3-3 Jumper Functions

Table 3-1 shows the jumper selection for the MDD. The way in which the jumpers are set at the factory is indicated on the unit.

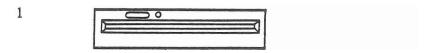

If the unit is returned for repair, etc., we will redeliver it with the jumpers set to the initial factory specifications.

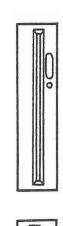
Set the jumpers according to whether drive select is to be performed using select '1' or '2', and also whether head loading is to be performed by means of a head load signal or during ready.

Function	Content	JJl				JJ2	
		Sl	S2	S 3	S4	SH	АН
	Jumper mode at factory before shipment	0	x	x	x	o	x
Drive select	Drive select 1 " 2 " 3 " 4	0 X X X	x o x x				
Head load selection	Head loading takes place under head loading signal					o	x
	Head loading takes place during drive select					x	o

Table 3-1 Jumper selection table

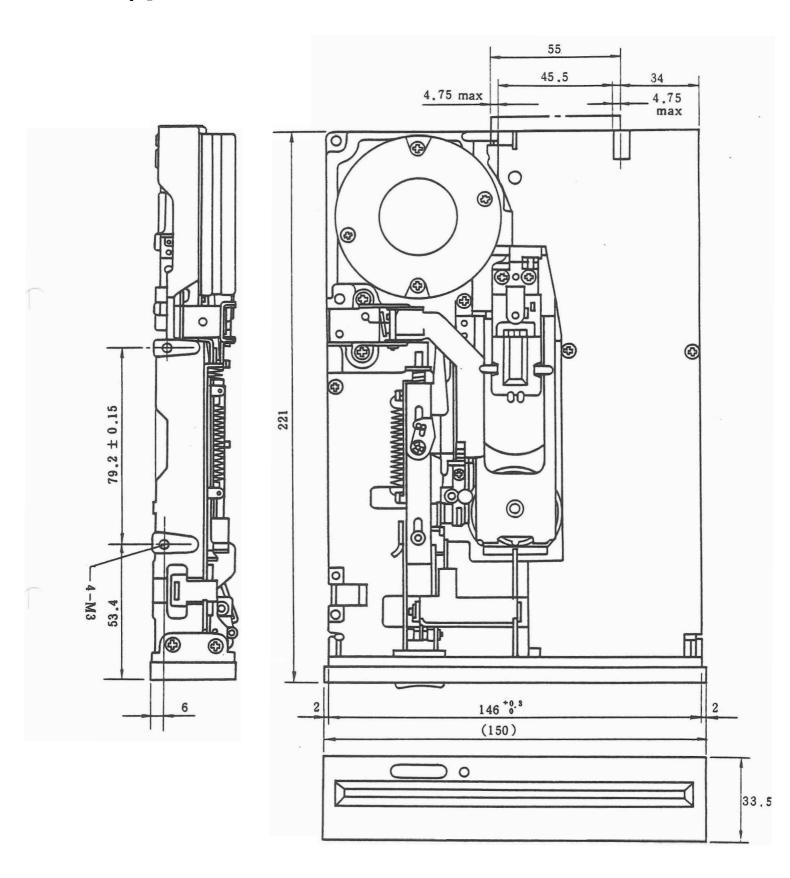
3-4 Arrangement of Jumper Pins


- 4. Dimension Specifications
- 4-1 Installation Method

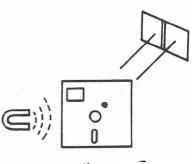

Install the MDD according to the method shown below.

- (1) Installation with PCB at top
- (2) Installation with PCB at right
- (3) Installation with PCB at left

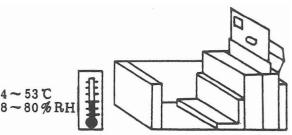
2


3

* When using the unit near a CRT, printer, or other source of noise, it is recommended that a shield be used.


4-2 Exterior of Unit

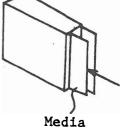
5. Handling Mini Floppy Disks


The following are the precautions to be observed when handling mini floppy disks.

[Unsatisfactory]

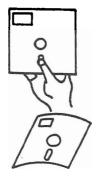
- o Do not expose disks to direct sunlight or place them near a source of heat.
- o Do not place disks in a place which is subject to the influence of a magnetic field.
- o Do not expose disks to cigarette smoke.
- o Do not put clips or rubber bands on
- o Do not write directly on disks using a pen or pencil.
- o Do not touch the recording face of disks (oblong hole portion).
- o Do not bend or fold disks.




- o Store disks in a clean environment at suitable temperature and humidity.
- o When not using a disk, insert it in an envelope, then insert the envelope in a specialpurpose case, and store it vertically.

o Paste labels on disks after writing on them first.




o Before using a disk, it is recommended that it be left for a suitable time in the same environment as the drive in order to acclimatize ít.

o Completely insert the media to the back of the drive before closing the door.

- - disks.

6. Format Example

The format of the soft selector used with the MDD is shown in the table below.

Format examples for F.M. 16-sector format and M.F.M. 16sector format are shown in Fig. 6-1.

	FM:/MFM	Sector fo	rmat	Data amous	nt/sector	Data amount/track			
Conformance	FM	16	ctors	128	bytes	2048	bytes		
		9	,	256	"	2304	"		
		5	"	512		2560	#		
to ISO	MFM	16		256		4096	11		
		9	//	512	"	4608	"		
		5	"	1024	"	5120	<i>n</i> .		
	FM	15		1 28	"	1920	"		
		8	//	256	n	2048	π		
Conformance		4		512		2048	n		
to IBM	MFM	16		256	n	4096	n		
		8	#	512		4096	n		
		4	#	1024	Ħ	4096	n		

					,			$ \begin{array}{r} 101 \times 2 - 6 \times \\ = 202 - 36 \\ = 166 \end{array} $	1			1	
		Track GAP		101×(MOM) FF		Track QAP		266×(MOM) 4 E			Track GAP		154×(MOM) 4 E
to ISO)	2~16. Sector	~~~	~~	~~~	e to ISO)		~	<u></u>	conformance to IBM)				
Format example 1 (FM, 16 sectors, 128 bytes, conformance to ISO)		Data GAP	٥	27×(MOM) FF	conformance	Da ta GAP		54×(MOM) 4 E	sectors, 256 bytes, Includes missing pu	ılse		ication	
			ORC	2 X X X		Data	CRC	2× ××		Track number Head number Sector number Sector lens specification Cyclic Redundancy Check			
	1st. Sector	Data	ta Data Field (CRO	128×	256 bytes,		Data Field	256×					
		Da	Data Mark	X 1 X 0 *FB/F8	sectors, 25		Data Mark	× 3× 1× A1 FB			Sector Oyclic Re		
			Da	6 X 0 0			D	12 × 00	15	*	I: HD: S:	SL: CRC	
		I D GAP		11× FF	1, 16	I D GAP		22 × 4 E	Format example 3 (MFM,		0		
			CRC	2× ××	Format example 2 (MFM,		CRC	2 × × ×					
		Sector ID	ID Field	ID Field 1× 1× 1× 1× 1× T HD S SL		Sector ID	ID Field	1×1×1×1×THDSSL		ex GAP BK	150× 4 E		
		SecI	ID Mark			Sec I	ID Mark	I× I FE				1× FC	
				1 × • F E				3 × *A 1				1 × •C2	
F			ID	6 X 0 0	FO		ID	12× 0 0			Index MARK		12× 00
		Index GAP		16× FF		Index QAP		32× 4 E			Index QAP		80× 4 E
				•••••••••••••••									MFM

<16

6 – 1

- 20 -