
RECOMP II USERS' PROGRAM NO. 1034

PROGRAM TITLE: SIGNAL CORPS RECOlVLP AffiEBRAIC TRAI~SLATOR - SALT

PROGRAM CLASSIFICATION: Executive and Control

AUTHOR: T. J. Tobias
U. S. Army SiL'llal Engineering Agency
Arlington Hall Station
Arlington, Virginia

PURPOSE: The Signal Corps RECOI1P Algebraic Translator (SALT) is
a two pass compiler system which translates from algebraic
statements into a SCRAP assembly language program. This
program may then be assembled by use of the SCRAP processor.
The SALT processor will accept fifteen (15) different state­
ment formats. These allo,w for the necessary input/output
operations, control functions, and processing functions.

DATE: January 1960

Published by

RECOMP Users' Lib~a~

at

AU'l'ONET rcs INDUSTRIAL PRODUCTS

A DIVISION OF NCJRTH Al'flERICAN AV lA'l' I ON , INC.
3584 Wilshire Blvd., Los Angeles 5, Calif.

SIGNAL CORPS ru~COHP AWEBRAIC TRANSLATOR
by

T. J. TOBIAS, u •. S. ARlff SIGNAL ENGINEERING AGENCY

INTRODUCTION: The Signal Corps RECOI1P Algebraic '1.'ranslator (SALT) is
a two pass compiler system which translates from algebraic statements
into a SCRAP assembly language program. This program may then be
assembled by use of the SCRAP processor. The SALT processor will
accept fifteen (15) differer.t statement formats. Tllese allow for the
necessary input/output operations, control functions, and processing
functions.

DESCRIP'fION:

1. The ~ALT language contains four (4) types of statements as
follows:

a. ARITIll-1ETIC STATEI'lENTS

b. Il~PUT/uUTPUT STATEHENTS

c • Cul~TROL STATEHENTS

d. SPECIFIC1~TION S'rATF.J!IENTS

These statements are constructed from a set of key words in the format
prescribed for the particular statement. In general, the statements
have the following form:

tag, KEY\lORD data S or,

KEYWORD data S

For most types of statements, the use of a tag or statement number is
optional. The specification statements and a few of the control statements
are not tagged.

2. BASIC STATEMENT ELEf.1ENTS: In addition to the key words, state­
ments are constructed from the following basic elements:

a. IDlli~TIFIERS: An identifier is an alphabetic word consisting
of from one (1) to eight (8) alphabetic characters (A-Z).
The single letter "c" should not be used. For some purposes
the identifier is restricted to seven (7) characters in
length. These abbreviated id.entifiers represent the name
of a function, the name of an array, or the name of a
subscript.

b. VARIABLE: The name of a variable may be any identifier

which is not the name of a function. For example:

ALPHA

x

DATA

c. FUNCTIONS: A function has the following form, I(E),
where I is an abbreviated identifier which has been
reserved as the name of a function and E is an expression.
:ti'or example:

SIN(E)

ARC'l'AH(E)

INTEGER(E)

SQHT(E)

d. NUI''il~SRS: Ii number consists of the digits 0-9 and the
decimal point It... . In SALT, a number may contain no
more than fifteen (15) symbols, including the decimal
point, and neither the integer nor the fractional part
may contain more than eleven (11) digits. For example:

1

2.0

.57

109.03~6

e. SUBSCRIPTED VARIABLES: A subscripted· variable may have
one of the two foilowing forms:

V(K) or,

v(r,J),
where V is the name of an array and I,J, and K are either

. numbers or variables •. Examples of subscripted variables
are as"'fol1ows:

2

MATRIX (Rm~, C OLUIvlN)

TABLE (ITEM)

LIST(17,N)

VECTOR(21,3)

~(9)

The following form is also permissible:

LIST(23.752)

14ATRIX(7 .013, 0,22)

However, since subscripts are inherently integer valued,
the fractional parts will be disregarded so that the
previous two examples would be interpreted as:

LIST(23) and,

MATRIX(7,0)

It shoud be noted that MATRIX(7,O) falls outside the
defined area of the array which is named ~~TRIX.

f. EXPRESSIONS: AIl expression is the basic element of an
arithmetic statement. An expression is defined as
follows:

(1) A variable, a subscripted variable, a function, or a
number is an expression.

(2) If X and Yare expressions and the expression Y does
not begin with either "+11 or It_It, then ,the following
are also expressions:

+Y

-Y

X+y

X-Y

(y)

(X)

(+y)

(-y)

xjy

X&Y

X'Y

3

(multiplication)

(exponentiation)

Examples of expressions are as follows:

BETA&(X'3) + 2Y.019 - SI1~(ALPHA)

(l'IATRIX(I,J)/ 13) &(ARCTAN(1.770)) - Y' (LOG(X/J»)

A&X'2+l3&X +C

(A+Z) / (N-I) - SQRT(2&A)

3. STAT~1ENTS: The permissible SALT statements are as follows:

a. INPUT/OUTPUT STATEl1ENTS:

(1) READ The READ statement has the following format:

tag, READ variable $

where the variable may be subscripted. For example:

01, READ X $

READ NATRIX (I,J) $

INPUT, READ TABLE(12, 1) $

READ TABLE(ITEH, 7) $

23, READ DATA $

(2) PRINT The PRINT statement has essentially the same
form as the READ statement as follows:

tag, PRINT variable $

where, as in the case of the READ statement, the
variable may be subscripted. For example:

07, PRINT CUBEROOT $

PRINT rJU\.TRIX(P ,Q) $

(3) CXP The CXP statement is used as a check point during
program test. It will cause the contents of the A and
R registers to be printed as a floating point decimal
number. The contents of A and R will not be disturbed.
The statement has the following format:

tag, CXP$

4

For example:

45, CXP $

CXJ:> $

b. ARITHIJfETIC STATEr'lENTS: In general, ..tlliITID'lETIC statements
have the following form:

tag, variable: expression $

Examples of ARITHHETIC statements are· as follows:

05, X: X-I $

LIST(A,B) : SQRT(LIST(1,19))+ 10 & ALPHA $

C(jMP, EL~NENT(5) : ELF.JfiENT(5)/:BJLEHENT(J) + 21.776 $

GROUP : GROUP + 1 $

An ARITHHgTIC statement may contain any expression that
is permissible under the rules outlined in the definition
of an expression.

c. CONTROL STATENENTS:

(1) GO TO: The GO TO statement causes an unconditional
change of control to the named statement. In general,
the GO TO statement has the following form:

tag, GO TO label $ or

tag, GOTO label $

For example:

12, GO TO 09 $

G<Yl'O ANY?1ACE $

ENDOFAA, GO TO 17 $

(2) IF: The IF statements will cause a conditional change
of control depending on the value of an expression or
the setting of a sense switch. The IF statements
have the following form:

tag, IF(expression) minus, zero, plus $

tag, IF(SENSE n) on, off $

5

For example:

23, IF(X- 0.12) 01, INPUT, 17 S

IF(X'2 + SIN(ALPHA) - GAMMA) 21, 02, OUT $

AN~OUT, IF(SENSE C) 23, ENDOFB $

(3) DO: The DO statement is used to control iteration
loops. The controlled variable may bea subscript
or a variable. The DO statement has the following
form:

tag, DO label FOR index start (delta) limit 9
For example:

55, DO 56 FOR X 1(1) 10 9

DO MOVE 1'OR K 1(1) ~1 ~

DO 01 FOR Y P(Q)R $

Examples of the use of DO statements is contained
in paragraph 4.

(4) STOP: The STOP statement represents a dynamic end
of a program. This statement has the following form:

tag, STOP $

For example:

99, STOP$

ENDOFIT, STOP $

STOP $

(5) CONTINUE: The CONTINUE·statement is a dummy statement
which generates no object code. The primary use of
this statement is as the last statement of a DO range.
This statement has the following form: .

tag, COUT1:NUE ~

(6) RETURN: rrhe RETURN statement marks the dynamic end
of a subroutine. It is usually paired witn a ROUTINE
statement. The RETURN statement has the following
form:

6

tag, RETURN name $,

where the field "name" is the tag used at the
beginning of the subroutine. For example:

ROUTINECUBEROOT $

(subroutine)
•

81, RETURN CUBEROOT $

RlJUTINE XYZ $

• (subroutine)
•

RETURN XYZ $

(7) END: The END s ta temen t marks the end of the data
to be assembled. This statement is not tagged. It
has only the following form:

END $

(8) PAUSE: The PAUSE statement will cause a SCRAP PAUSE
to be punched on paper tape. This statement is not
tagged. It has only the following form:

PAUSE $

(9) ENTER SCRAP: 'l'he EW11ER SCRAP statement will cause
the SALT processor to allow the input of SCRAP
coding. This statement has only the following form:

ENTER SCRAP $

The processing of SALT statements may be continued by
use of the location "GOTOSALT" in the SCRAP coding.
The SALT processor will then process. SALT statements.

d. SPECIFICA'rIlJN ~'l'ATEI>lliNTS:

(1) ROUTINE: '~he routine statement marks-· the dynamic
beginning of a subroutine. This statement is not
tagged. It has the following form:

HGurrD~E name $.

where, "name" is the name of the subroutine. This

7

statement will cause the construction of only the
simplest type of subroutine calling sequence and.
onlly one exit. Examples of the .use of the RGUTINE
statement have been given under the discussion of
the RETUillJ statement.

(2) AH}{J~:y: The 1i.HHAY statement must be given for each
subscripted variable. This statement will reserve
the necessary storage area for the array and will
construct the appropriated constants needed for
the processing of subscripted variables. .in
general, the ARF~Y statements have the following
form:

ARRAY name (items) S or

ARkAY name (rows, columns) $

The dimensions of the array must be numeric data.
For example:

ARfuI.Y Hi~THIX (10,10) S

AHR.4.Y TAELE (5,8) S

ARRltY LI8T (25) $

4. USE u~' DO 3'l'ltTEfolf.nTS: The DO statements require that certain
rules be followed so that proper indexing will occur. The three rules
which must be observed are as follows:

a. If a DO statement.is contained in the range of another
DU statement, all statements in the range of the second
DO ~ust be contained in the range of the first DO
statement. ¥or example:

DO DO
r--!

DO

DO

I;
C

DO

-'- e::.
DO

I
HOT P~~R.f'/IITTrJD PERMITTED

8

b. No transfer of control is permitted into the range of
DO from outside the range of the DO statement.

DO ~
i~o

N Orr PEl?J>HTTED

DO
'l'~"-~'-'

r-~
"-~i,)
Do"~

I~-~
_, L)!
PERMITTFm -+

c. The last statement in the range of a DO may not be an
IF or a GOTO statement. In such cases the COl~TINUE
statement is used as dummy. For example, the following
is a Table Look-up Operation for a table containing
100 items:

DO 20 FOR K 1(1) 100 DO 20 FOR K 1 (1) 100 $

20, IF (LIST(K) - ARG) ?0,21,20$' IF (LIST(K) - ARG) 20,21,20 S

21, 20, CuNTIHUE $

21,

NUT PERMITTED PEHHITTED

5. OPERATION: The SALT statements are entered into the SALT
processor from the RECO~W typewriter in the format prescribed in
paragraph 3. The SALT processor translates each statement as it
occurs and punches the interpretation of the statement in SCRAP
language into paper tape. The translated program may then be
assembled by the SCRAP assembly program. The program to be compiled
may, in addition, contain SCRAP language coding. These lines of
coding are not processed but are copied directly into paper tape.
The SALT processor performs a check for correct statement construction.
In those statements which contain expressions, the expression is
examined to determine if it is properly constructed. Such SCP~
coding as may be entered is also edited for proper construction.'

SUMHARY: The SALT processor is a two pass compiler sys tem which
will translate algebraic statements into SCRAP assembly language.

9

The SCI~P language program may then be assembled into a final object
program. The Sl~T language contains fifteen (15) statements which
will allow for the expression of many numerical processes and which
will provide a convenient and rapid means of translation from a problem
language into machine coding.

10

01, RESULT (DATA'2 - l)&(SQRT(ALPHA - GAMMA/DELTA)) + 10TA $

01, STOP $

END $

LOCATION COMMAND ADDRESS LOCATION COMMAND ADDRESS

ORG +0500 ORG +0500 L05000
LINE 01 FCA GAMMA LINE 01 FCA GAMMA

FDV DELTA FDV DELTA +3005120+0505140
FST STOREO) FST STORE01
FCA ALPHA FCA ALPHA +3505160+3005200
FSB STORE01 FSB STORE01

i FST STOREO) FST STORE01 +0605160+3505160
FSQ STOREO) FSQ STORE01
FST STOREO) FST STOREO) +4405160+3505160
FCA DATA FCA DATA I~
FMP DATA FMP DATA +3005220+0705220

I~ FSB (+ 1) FSB FLOCNOl
FMP STORE01 FMP STOREO) +0605100+0705160
FAD IOTA FAD IOTA i FST RESULT FST RESULT +0405240+3505260

LINE 02 HALT C LINE 02 HALT C
END SL +J705070+4000000

FLOCN01 +1 FLOCN01 DECIMAL (+ 1) +4000000-0000000
+0000000-0000001

END

LINE 01 +0000000-0005000 LINE 01 +0000000-0005000
GAMMA -0000000-0000000 GAMMA +0000000-0005120
DELTA -0000000-0000000 DELTA +0000000-0005 140
STORE 01 -0000000-0000000 STORE01 +0000000-0005 160
ALPHA -0000000-0000000 ALPHA +0000000-0005200
DATA -0000000-0000000 DATA +0000000-0005220
IOTA -0000000-0000000 IOTA +0000000-0005240
RESULT -0000000-0000000 RESULT +0000000-0005260
LINE 02 +0000000-0005070 LINE 02 +0000000-0005070
FLOCNO) +0000000-0005 100 FLOCNOl +0000000-0005 100
ENDTABLE +0000000-0005 120 ENDTABLE +0000000-0005300

END FIRST PASS

PROGRAM TITLE:

RECOMP II USERS I PROGRAM NO. 1034

APPENDIX 1

SIGNAL CORPS RECOMP AWEBRAIC TRANSLATOR - SALT
OPERATING INSTRUCTIONS

PROGRAM CLASSIFICATION: Executive and Control

AUTHOR:

PURPOSE:

DATE:

T. J. Tobias
U. S. Army Signal Engineering Agency
Arlington Hall Station
Arlington, Virginia

The S~ processor accepts statements which are typed
from the RECOMP typewriter and translates these into
SCRAP symbolic instructions which are then punched into
paper tape. This document contains the information
concerning the following:

a. Operating Procedure

b. Permissible Functions

c. Restrictions and Error Halts

February, 1960

Q.,/

SIGNAL CORPS RECOHP ALGEBRAIC TRANSLATOR, SALT

OPERATING INSTRUCTIONS

1. GENERAL: The SALT processor accepts statements which are tJ~ed from the
RECOMP typewriter and translates these into SC~P symbolic instructions which
are then punched into paper tape. This document contains the information
concerning the following:

a. Operating Procedure

b. Permissible Functions

c. Restrictions and Error Halts

2. OPERATING PROCEDURE: The SALT program accepts input from the RECOIvIP typewriter
and produces SCRAP instructions of paper tape. The SALT processor checks for
correct statement construction and "C,rhen SCRAP coding is entered the identical
checks are made as are performed by the SCRAP processor. The operating
procedure for SALT is as folloHs:

a. Initial Operations:

(1) Load SALT program tape.

(2) Set typelITiter margin at 10; tabs at 20, 29, and 32.

(3) Depress START 1 to begin.

b. Typing STATEMENTS:

(1) Type each statement being careful to insure that each
number or name is terminated by a space, figures shift, letters shift,
or carriage return. These four functions serve as end of field marks. The
symbols +, -, &, /, (,), I, :, $, " are indi vidually recognized "C·rhen they
are the first symbol of a new field but not Hhen contained

within a field. For example, .oo&?ATA~))+~ALPHA~+.· •• is correct.

F L F S However, ••• S137.2)S or SOl,p are not correct, since in each case the

numeric field has not been terminated properly. The following "Cvould be

F F F LF S F
correct: 8137.2S) or S137.28S) or Olp' or OIS' •

Typing extra spaces, letters or figures shifts, or carriage returns is
permitted. The Tab function is also permitted.

3.

SALT OPERATING INSTRUCTIONS (Cont.)

(2) Each statement is terminated by use of the $,code. It
serves as an "enter" function. If format errors are detected in statement
before the $, the 'hTord "ER..11.0R" will be typed. The line must be re-entered
correctly.

(3) If an error is discovered while typing,the statement may
be deleted by striking the blank, 02, key next to the "1vI" key. The
statement must be re-typed.

(4) If an output error is caused by typing too quickly, this
condition may be corrected by depressing

(a) Error Reset, then

(b) START 1, and then

(c) Re-type the line

. (5) Entering of SCRAP coding is accomplished in the same manner
as specified in the SCRAP Operating Instructions.

c. Termination: The end of the program must be signified by use of
the statement, END $.

PERHISSIBLE FUNCTIONS: The SALT processor contains
functions in locations 2300 - 2327. This provides
Three of the function names, SQRT, EXP, LN must be
for the other functions may be changed if desired.
program contains the following list of functions:

SQRT LOG.TEN

INTEGER LOGE

SIN LOG

COS LN

TAN ABS

ARCTAN EXP

~ttCSIN TENPOW

A-llCCOS TWOPOW

LOGTIiO

a list of permissible
space for 23 functions.
included. The names

The standard SALT

The list must be terminated by a minus zero vTord and the function names
may not exceed seven characters in length.

2

SALT OPERATING INSTRUCTIONS (Cont.)

The calling sequence for the subroutine is indicated by the name of the
function as the op co d.e in the SCRAP coding. For example,

The SALT input; 07, DATA: SIN (ALPHA) $

lvould generate

LINE 07 FCA ALPHA

SIN

FST DATA

as SCRAP coding. The exact calling sequence must be generated by the
SCRAP assembly program 1n th the name of the function, flSIN", serving
as the name of the macro instruction. If the sine routine is in· location
0100.0 and if the argument is provided to it in A,R and the sine of the
argument is produced in A,R, then the SCRAP assembly program must
substitute a TRA 0100 for the SIN line of coding. Thus producing as a
result of the first pass:

LINE 07 FCA ALPHA

TRA 0100

FST DATA

The SALT processor assumes that all of the function subroutines will have
the following standard calling sequence and specification:

a. Functions must be of only one argument and produce only one
result.

b. Argument and result will be in floating point.

c. Function subroutine, I, 1-Till produce I(H") in the A and R, .. There
the argument, W, was in A and R at subroutine entry.

d. Calling sequence:
FeA L(W)~(-

TRA L(I)

+1 RETURN

C(A,R) = W

C(A,R) = I(W)
~~May be any series of operations which leaves W in A and R.

This coding is provided by SALT except when instructions are
inputed in SCRAP language.

3

SALT OPERATING INSTRUCTIONS (CONT.)

e. When subroutine calls are automatically compiled, it is most
convenient if nerror" conditions are resolved, if possible, within the
routine without error returns. HQ'tvever error returns may be compiled if
provided in the SCRAP macro-instruction definition of the calling sequence.

4. RESTRITIONS AND ERROR HALTS:

a. An error in the construction of a statement ld11 be indicated by the
printing of the word, ERROR.

b. Incorrect construction of an arithmetic statement will produce the
two words, PAIR ERROR.

c. vfuen an error is detected, the statement is erased and the SALT
processor returns to the beginning of statement mode.

d. The only restriction on statement construction, other than those
imposed by format, is that no statement may exceed 128 elements, an
element being a name, a number, or a symbol. This condition may only
occur for a statement containing an arithmetic expression. If the
maximum is exceeded the word ERROR will be printed.

4

