RECOMP II USERS' PROGRAM NO, 1034

PROGRAM TITLE:
PROGRAM CLASSIFICATION:

AUTHOR:

PURPOSE

DATE:_

SIGNAL CORPS RECOMP ALGEBRAIC TRANSLATOR - SALT
Executive and Control

T, J. Tobias

U, S. Army Signal Zngineering Agency
Arlington Hall Station

Arlington, Virginia

The Signal Corps RECUMP Algebraic Translator (SALT) is

a two pass compiler system which translates from algebraic
statements into a SCRAP assembly language program., This
program may then be assembled by use of the SCRAP processor.
The SALT processor will accept fifteen (15) different state-
ment formats, These allow for the necessary input/output
operations, control functions, and processing functions.

January 1960

Published by

RECOMP Users' Library
' at
AUTONETICS INDUSTRIAL PRODUCTS

A DIVISICGN OF NORTH AMERICAN AVIATION, INC.
3584 Wilshire Blvd,, Los Angeles 5, Calif,

SIGNAL CORPS RECOMP ALGEBRAIC TRANSLATOR

by
T. J. TOBIAS, U..S. ARMY SIGNAL ENGINEERING AGENCY

INTRODUCTION: The Signal Corps RECOMP Algebraic Translator (SALT) is
a two pass compiler system which translates from algebraic statements
into a SCRAP assembly language program, This program may then be
assembled by use of the SCRAP processor. The SALT processor will
accept fifteen (15) different statement formats, These allow for the
necessary input/output operations, control functions, and processing
functions,

DESCRIPTION:

1, The SALT language contains four (4) types of statements as
follows:

a, ARITHMETIC STATEMENTS
b. IHPUT/CUTPUT STATEMENTS
c. CUNTROL STATEMENTS

d, SPECIFICATION STATEMENTS

These statements are constructed from a set of key words in the format
prescribed for the particular statement. In general, the statements
have the following form:

tag, KEYWORD data S or,
KEYWORD data S

For most types of statements, the.use of a tag or statement number is
optional, The specification statements and a few of the control statements
are not tagged.

2. BASIC STATEMENT ELEMENTS: In addition to the key words, state-
ments are constructed from the following basic elements:

a, IDENTIFIERS: An identifier is an alphabetic word consisting
of from one (1) to eight (8) alphabetic characters (A—Z).
The single letter "C" should not be used, For some purposes
the identifier is restricted to seven (7) characters in
length, These abbreviated identifiers represent the name
of a function, theé name of an array, or the name of a
subscript,

b, VARIABLE: The name of a variable may be any identifier

C.

d.

€,

which is not the name of a function., For example:

ALPHA

X

IMaTRIX

DATA
FUNCTIONS: 4 function has the following form, I(E),
where I is an abbreviated identifier which has been
reserved as the name of a function and E is an expression.
For example:

SIN(E)

ARCTAN(E)

INTEGER(E)

SQRT(E)
NUKEERS: A number consists of the digits 0-9 and the
decimal point "," ., In SALT, a nubmber may contain no
more than fifteen (15) symbols, including the decimal
point, and neither the integer nor the fractional part
may contain more than eleven (11) digits. For example:

1

2.0

0,0039

ST

1090336

 SUBSCRIPTED VARIABLES: A subscripted variable may have

one of the two following forms:
v(kK) or,

v(1,J),

where V is the name of an array and I,J, and K are either

' numbers or variables, Examples of subscripted variables

are as“follows:

f.

MATRIX(ROW, COLUMNN)

TABLE(ITEM)

LIST(17,M)

VECTOR(21,3)

4(9)
The following form is also permissible:

LIST(23,752)

MATRIX(7.013, 0,22)
However, since subscripts are inherently integer valued,
the fractional parts will be disregarded so that the
previous two examples would be interpreted as:

LIST(23) and,

MATRIX(7,0)

It shoud be noted that MATRIX(7,0) falls outside the
defined area of the array which is named MATRIX.

EXPRESSIONS: an expression is the basic element of an
arithmetic statement, Ain expression is defined as
follows:

(1) A variable, a subscripted variable, a function, or a
number is an expression,

(2) If X and Y are expressions and the expression Y does
not begin with either "+" or "-", then the following
are also expressions:

+Y (+Y)

=Y (-Y)

X+Y X/

X-Y X&Y (multiplication)
(Y) X'y (exponentiation)
(x)

3.

Examples of expressions are as follows:
BETA&(X®3) + 23%019 - SIN(ALPHA)
(MATRIX(I,J)/ 13) &(arCTaN(1,770)) - Y*(L0OG(X/J))
A&X ' 2+B&X +C

(a+2) / (N-1) - SQRT(2&4)

STATEMENTS ¢ The permissible SALT statements are as follows:

a. INPUT/OUTPUT STATEMENTS:

(1) READ The READ‘statement has the following format:
tag, READ variable $
where the variable may be subscripted, For example:
Ol, READX §
READ MATRIX (I,J) $
INPUT, READ TABLE(12, 1) $
READ TABLE(ITEM, 7) $
23, READ DATA $

(2) PRINT The PRINT statement has essentially the same
form as the READ statement as follows:

tag, PRINT variable S

where, as in the case of the READ statement, the
variable may be subscripted., For example:

07, PRINT CUBERCOT $
PRINT MATRIX(P,Q) $

(3) CXP The CXP statement is used as a check point during
program test, It will cause the contents of the A and
R registers to be printed as a floating point decimal
number, The contents of A and R will not be disturbed.
The statement has the following format:

 tag, CXP$

For example:
45, CXP S
CXP S

b. ARITHMETIC STATEMENTS: In general, ARITHMETIC statements
have the following form:

tag, variable: expression $
Examples of ARITHHETIC statements are as follows:
05, X: X-1 $
LIST(A,B) : SaRT(LIST(1,19))+ 10 & ALPHA $
COMP, ELEMENT(5) : ELEMENT(5)/ELEMENT(J) + 21,776 $
GROUP : GROUP + 1 §
An ARITHMETIC statement may contain any expression that
is permissible under the rules outlined in the definition

of an expression,

c. CONTROL STATEMENTS:

(1) GO T0: The GO TO statement causes an unconditional
change of control to the named statement, In general,
the GO TO statement has the following form:
tag, GO TO label $ or
tag, GOTO label $

For example:
12, GO TO 09 $
GOTO ANYPLACE $
ENDOFAA, GO TO 17 $

(2) IF: The IF statements will cause a conditional change
of control depending on the value of an expression or
the setting of a sense switch, The IF statements
have the following form:

tag, IF(expression) minus, zero, plus S

tag, IF(SENSE n) on, off $

5

For example:
23, IF(X- 0,12) 01, INPUT, 17 S
IF(X'2 + SIN(ALPHA) - GaMMA) 21, 02, OUT $
ANYOUT, IF(SENSE C) 23, ENDOFB S
(3) DO: The DO statement is used to control iteration
loops, The controlled variable may be a subscript
or a variable, The DO statement has the following
form:
tag, DO label FOR index start (delta) limit $
For example:
55, DO 56 FOR X 1(1) 10 $
DO MOVE FOR K 1(1) M §
DO 01 FOR Y P(Q)R

Examples of the use of DO statements is contained
in paragraph 4.

(4) STOP: The STOP statement represents a dynamic end
of a program, This statement has the following form:

tag, STOP $
For example:
99, STOPS
ENDOFIT , STOP S
STOP $
(5) CONTINUE: The CONTINUE statement is a dummy statement
which generates no object code. The primary use of
this statement is as the last statement of a DO range.
This statement has the following form:
tag, CONTINUE
(6) RETURN: The RETURN statement marks the dynamic end
of a subroutine, It is usually paired with a ROUTINE

statement, The RETURN statement has the following
form:

(7)

(8)

(9)

tag, RETURN name $,

where the field "name" is the tag used at the
beginning of the subroutine, For example:

ROUTINE CUBEROOT $

. (subroutine)

81, RETURN CUBEROUT $

RUUTINE XYZ $

. (subroutine)

RETURN XYZ $

END: The END statement marks the end of the data

to be assembled. This statement is not tagged. It
has only the following form: ‘

END $

PAUSE ¢ The PAUSE statement will cause a SCRAP PAUSE

to be punched on paper tape. This statement is not
tagged, It has only the following form:

PAUSE $

ENTER SCRAP: The ENTER SCRAP statement will cause

the SALT processor to allow the input of SCRAP
coding, This statement has only the following form:

ENTER SCRAP $
The processing of SALT statements may be continued by

use of the location "GOTOSALT" in the SCRAP coding,
The SALT processor will then process SALT statements,

SPECIFICATION STATEMENTS:

(1)

ROUTINE: The routine statement marks the dynamic

beginning of a subroutine, This statement is not

tagged. It has the following form:

RVUTINE name & -

where, "name" is the name of the subroutine, This

7

(2)

statement will cause the construction of only the
simplest type of subroutine calling sequence and
oy one exit, CExamples of the use of the RCUTINE
statement have been giveri under the discussion of
the RETURN statement.

ARRaY: The ARRAY statement must be given for each

subscripted variable, This statement will reserve
the necessary storage area for the array and will
construct the appropriated constants needed for
the processing of subscripted variables, in
general, the ARRAY statements have the following
form:

ARRAY name (items) S or

ARKAY name (rows, columns) $

The dimensions of the array must be numeric data,
For example:

ARRAY MaTRIX (10,10) S
ARRAY TABLE (5,8) S

ARKAY LIST (25) $

4, USE CUF DO STATEMIHTS: The DO statements require that certain

rules be followed so that proper iadexing will occur., The three rules
which must be observed are as follows:

a,

HOT P

If a DO statement is contained in the range of another
DU statement, all statements in the range of the second
DO must be contained in the range of the first DO
statement., IFor example:

Do
DO
DO l DO
—_ |
| 0
.
DO DO
—

F s

SRMITTED ' PERMITTED

b, No transfer of control is permitted into the range of
DO from outside the range of the DO statement,

DO\' ..o
X,

20 DO

/

L RN

NOT PERMITTED PERMITTED +

c. The last statement in the range of a DO may not be an
IF or a GOTO statement. In such cases the CONTINUE
statement is used as dummy, For example, the following
is a Table Look-up Operation for a table containing
100 items:

DO 20 FOR K 1(1) 100 DO 20 FOR K 1 (1) 100 5
20, IF (LIST(K) - ARG) 20,21,20 % IF (LIST(K) - ARG) 20,21,20 S
21, 20, CUNTINUE $
21,
NOT PERMITTED PEKMITTED

5. UPERATION: The SALT statements are entered into the SALT
processor from the RECOMP typewriter in the format prescribed in
paragraph 3. The SALT processor translates each statement as it
occurs and punches the interpretation of the statement in SCRAP
language into paper tape, The translated program may then be
assembled by the SCRAP assembly program, The program to be compiled
may, in addition, contain SCRAP language coding, These lines of
coding are not processed but are copied directly into paper tape,

The SALT processor performs a check for correct statement construction,
In those statements which contain expressions, the expression is
examined to determine if it is properly constructed. Such SCRAP
coding as may be entered is also edited for proper construction,

SUMMARY ¢ ‘The SALT processor is a two pass compiler system which
will translate algebraic statements into SCRAP assembly language,

The SCRAP language program may then be assembled into a final object
program, The SALT language contains fifteen (15) statements which

will allow for the expression of many numerical processes and which
will provide a convenient and rapid means of translation from a problem

language into machine coding,

10

01, RESULT : (DATA'2 - 1)&(SQRT(ALPHA - GAMMA/DELTA)) + 10TA $

01, STOP $
"END $

LOCATION

LINE Ol

LINE O2
FLOCNO1

LINE Ol
GAMMA
DELTA
STORE Ol
ALPHA
DATA
I0TA
RESULT
LINE 02
FLOCNOI
ENDTABLE

COMMAND ADDRESS
ORG +0500
FCA GAMMA
FDV DELTA
FST STOREOQ1
FCA ALPHA
FSB STOREOI
FST STOREOQOI
FSQ STOREO!1
FST STOREO1
FCA DATA
FMP DATA
FsSB (+1)
FMP STOREO1
FAD I0TA
FST RESULT
HALT C

END

+1
+0000000-0005000

-0000000-0000000
-0000000~0000000
~-0000000~-0000000
~-0000000~-0000000
-0000000-0000000
-0000000-0000000
-0000000-0000000
+0000000-0005070
+0000000-0005100
+0000000-0005120

END FIRST PASS

LOCATION

LINE O1

LINE 02
FLOCNO1

LINE Ol
GAMMA
DELTA
STOREO!
ALPHA
DATA
10TA
RESULT
LINE 02
FLOCNO1
ENDTABLE

COMMAND ADDRESS
ORG +0500
FCA GAMMA
FDV DELTA
FST STOREOI
FCA ALPHA
FSB STOREO]
FST STOREO]
FSQ STOREO]
FST STOREO]
FCA DATA
FMP DATA
FSB FLOCNOI
FMP STOREO!
FAD I0TA
FST RESULT
HALT c

sL

DEC IMAL (+1)
END

+0000000-0005000
+0000000-0005120
+0000000-0005140
+0000000-0005160
+0000000-0005200
+0000000-0005220
+0000000-0005240
+0000000-0005260
+0000000~-0005070
+0000000-0005100
+0000000-0005300

LO5000

+3005120+0505140
+350% 16043005200
+060~ 1560+3505160
+4405160+3505160
+3005220+0705220
+0605100+0705160
+0405240+3505260
+7705070+4000000

+4000000-0000000
+0000000~-0000001

BuTpo) TTVS JO ordwes

RECOMP II USERS' PROGRAM NO. 1034

APPENDIX 1

PROGRAM TITLE: SIGNAL CORPS RECOMP ALGEBRAIC TRANSLATOR - SALT
OPERATING INSTRUCTIONS

PROGRAM CLASSIFICATION: Executive and Control

AUTHOR: T, J, Tobias
U. S. Army Signal Engineering Agency
Arlington Hall Station
Arlington, Virginia

PURPOSE: The SALT processor accepts statements which are typéd
from the RECOMP typewriter and translates these into
SCRAP symbolic instructions which are then punched into
paper tape. This document contains the information
concerning the following:
a, Operating Procedure
b. Permissible Functions

¢c. Restrictions and Error Halts

DATE: Pebruary, 1960

al

2.

SIGNAL CORPS RECOMP ALGEBRAIC TRANSLATOR, SALT
OPERATING INSTRUCTIONS

GENERAL: The SALT processor accepts statements which are typed from the
RECOMP typewriter and translates these into SCRAP symbolic instructions which
are then punched into paper tape. This document contains the information
concerning the following:

a. Operating Procedure

b. Permissible Functions

c. Restrictions and Error Halts
OPERATING PROCEDURE: The SALT program accepts input from the RECOMP typewriter
and produces SCRAP instructions of paper tape. The SALT processor checks for
correct statement construction and when SCRAP coding is entered the identical

checks are made as are performed by the SCRAP processor. The operating
procedure for SALT is as follows:

a, Initial Operations:

(1) Load SALT program tape.
(2) Set typewriter margin at 10; tabs at 20, 29, and 32.
(3) Depress START 1 to begin.

b. Typing STATEMENTS:

(1) Type each statement being careful to insure that each
number or name is terminated by a space, figures shift, letters shift,
or carriage return. Thase four functions serve as end of field marks. The
symbols +, =, &, /, (,), ', :, $§, >, are individually recognized when they
are the first symbol of a new field but not when contained

within a field, For example, ...&éDATAg))+§ALPHAg+.;. is correct.

However, ...g137.2)g or FOl S are not cofrect, since in each case the

SP
numeric field has not been terminated properly. The following would be
LF F

F F F S
correct: S137.28) or ¢137.2 or 0l,, or OI

SS) s?

Typing extra spaces, letters or figures shifts, or carriage returns is
permitted. The Tab function is also permitted.

(J

3.

SALT OPERATING INSTRUCTIONS (Cont.)

(2) Each statement is terminated by use of the $ code. It
serves as an "enter" function. If format errors are detected in statement
before the $, the word "ERROR" will be typed. The line must be re-entered
correctly.

(3) If an error is discovered while typing,the statement may
be deleted by striking the blank, 02, key next to the "M" key. The
statement must be re-typed.

(L) If an output error is caused by typing too quickly, this
condition may be corrected by depressing

(a) Error Reset, then
(b) START 1, and then
(¢) Re-type the line

, _Y(S) Entering of SCRAP coding is accomplished in the same manner
as specified in the SCRAP Operating Instructions.

c. Termination: The end of the program must be signified by use of

the statement, END 3.

PERMISSIBLE FUNCTIONS: The SALT processor contains a list of permissible
functions in locations 2300 - 2327. This provides space for 23 functions.
Three of the function names, SQRT, EXP, IN must be included. The names
for the other functions may be changed if desired. The standard SALT
program contains the following list of functions:

SQRT LOGTEN
INTEGER LOGE
SIN LOG
Cos IN

TAN ABS
ARCTAN EXP
ARCSIN TENPOW
ARCCOS TWOPOW
LOGTWO

The list must be terminated by a minus zero word and the function names
may not exceed seven characters in length.

@3

SALT OPERATING INSTRUCTIONS (Cont.)

The calling sequence for the subroutine is indicated by the name of the
function as the op code in the SCRAP coding. For example,

The SALT input; O7, DATA : SIN (ALPHA) 4
would generate
LINE 07 FCA ALPHA
SIN
FST DATA

as SCRAP coding. The exact calling sequence must be generated by the
SCRAP assembly program with the name of the function, "SIN", serving

as the name of the macro instruction. If the sine routine is in location
0100.0 and if the argument is provided to it in A,R and the sine of the
argument is produced in A,R, then the SCRAP assembly program must
substitute a TRA 0100 for the SIN line of coding. Thus producing as a
result of the first pass:

LINE 07 FCA ALPHA
TRA 0100
FST DATA

The SALT processor assumes that all of the function subroutines will have
the following standard calling sequence and specification:

a. Functions must be of only one argument and produce only one
result.
b, Argument and result will be in floating point.

c. Function subroutine, I, will produce I(W) in the A and R, where
the argument, W, was in A and R at subroutine entry.

d. Calling sequence:

FCA L(W)
TRA L(I) C(A,R) = W
+1 RETURN C(A,R) = I(W)

#May be any series of operations which leaves W in A and R.
This coding is provided by SALT except when instructions are
inputed in SCRAP language.

SALT OPERATING INSTRUCTIONS (CONT.)

e. Whenh subroutine calls are automatically compiled, it is most
convenient if "error" conditions are resolved, if possible, within the
routine without error returns. However error returns may be compiled if
provided in the SCRAP macro-instruction definition of the calling sequence.

RESTRITIONS AND ERROR HALTS:

a. An error in the construction of a statement will be indicated by the
printing of the word, ERROR.

b. Incorrect construction of an arithmetic statement will produce the
two words, PAIR ERROR.

c. When an error is detected, the statement is erased and the SALT
processor returns to the beginning of statement mode.

d. The only restriction on statement construction, other than those
imposed by format, is that no statement may exceed 128 elements, an
element being a name, a number, or a symbol. This condition may only
occur for a statement containing an arithmetic expression. If the
maximum is exceeded the word ERROR will be printed.

