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PREFACE

Of the nearly 1,000 reliable computers, originally costing $234,000 each,
from the LGM 30 Minuteman ICBM Weapons System, approximately 400 have been
declared excess by the USAF. These Minuteman D17B Computers can be classed
as extremely flexible general-purpose minicomputers. Government activities,
industrial contractors, universities, and other organizations have acquired
these excess D17B computers for development and use in many fields of research,
education, and other applications.

The Minuteman Computer Users Group (MCUG) was formed to provide for an
effective information interchange and the various forms of assistance needed
by the users. Those who are members of this cooperative, voluntary group
assist each other by sharing results, programs, applications, interfacing
techniques, maintenance procedures, and spare parts., The MCUG membership is
in excess of 145 Government activities, industrial contractors, colleges,
universities, and other organizations.

The fourth meeting of the MCUG was held at the Sheraton-Silver Spring
Hotel in Silver Spring, Maryland on June 5-6, 1972. The registration list is
included in the Appendix. The persons who attended this meeting numbered 67
and represented 46 organizations. Previous meétings have been held in Miami
Beach on July 19-20, 1971, Houston on November 16, 1970, and Anaheim on
June 11-12, 1970.

These PROCEEDINGS are a permanent record of the material presented at
the meeting on June 5, 1972. This publication of the MCUG describes such
topics as proéurement, simulation, state description, design of a hardware
divider, design of a binary display, and use of the D17B in a hybrid computer
system and an automated data acquisition and waveform analysis system. The
agenda also included a successful demonstration of the D17B/AutoAnalyzer
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Analysis System developed in the Systems Laboratory at Tulane University under
a research contract supported by the Army Medical R&D Command. This cost-
effective development included an ASR35 Teletypewriter as the_peripheral 1/0
device which provided for full alphanumeric commﬁnication>wifhlthe¥D17B in a
conversational interactive mode. The D17B/AutoAnalyzer Analysis System was
delivered to the Division of Biochemistry at the Walter Reed Army Institute of
Research where it is used for automated blood serum analysls. In addition to
the technical sessions there was considerable exchange bf.informatlon during
the workshop sessions on June 6. | | |
The assistance and encouragement of Mr. Richard Fi Eabler and Mr. John
P. Bartell of the Defense Supply Agency are gratefully acknowledged. We also
thank Mr. Billy G. Bass of WRAIR for the time and effdrtkreQuired to plan for
demonstration of the D17B/AutocAnalyzer Analysis System‘at ﬁalter Reed. |

Methods of Joining the MCUG

1. Send a check or purchase order in the amount of $100 to the MCUG Chairman
at the address given below. Specify MCUG membership and/or documentation
for checkout, operation, and programming of the Minuteman D17B Computer.

2. Request an invoice for $100 to cover the items listed above.

Dr. Charles H. Beck _
Professor of Electrical Engineering
Tulane University

New Orleans, Louisiana 70118

These PROCEEDINGS can be obtained by sending a check or purchase order
for $20 to the MCUG Chairman at the address given aboveabeCUG members mayv
=ddicional coples for $6.
The following documentation is included in the MCUG membership:

MCUG~1-71, D17B Computer Wire List and Logic Equations
MCUG-2-71, D17B Electronic Module Schematics '
MCUG-3-71, Proceedings of the Third Meeting of the MCUG
MCUG-4~71, Minuteman D17B Computer Programming Manual

MCUG-1-72, D17B Power Supply Schematics ' '
MCUG~2-72, Minuteman D17B Computer Programming Manual Supplement
MCUG-3-72, Proceedings of the Fourth Meeting of the MCUG ’

Charles H. Beck
Chairman, MCUG

i1d



MINUTEMAN COMPUTER USERS GROUP MEMBERSHIP
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Air Force Institute of Technology,
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Arizona State University,
Electrical Engineering

Armstrong State College, Savannah, GA

Arnold Research Organization,
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Augustana College, Physics, SD

Austin College, Computer Center

Ball State University, Physics

Beaver College, Psychology

Bluefield State College, Technology

Bowling Green State University,
Psychology

Brigham Young University,
Electrical Engineering

Buena Vista College, Electronics

Bureau of Mines, Laramie

Bureau of Mines, Pittsburgh

California Institute of Technology,
Geological & Planetary Science

Center for Disease Control, DHEW

Cleveland State University, Physics

Christian Brothers College,
Computer Science

Colorado State University,
Atmospheric Science
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Des Moines Area Community College,
Electronics

Dillard Univ., Mathematics & Physics

Drexel University, Electrical Engr.

Duke University, Electrical Engr.
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Physics

Einstein College of Medicine,
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Fighton, Inc., Rochester, NY
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Hahnemann Medical School, Radiation
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Harvard University, Physics
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Heidelberg College, Physics
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Indiana University of Pennsylvania,
Physics
Johns Hopkins University, Chemistry
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Industrial Technology
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Nat'l Library of Medicine, DHEW, PHS
Naval Ordnance Station, Indian Head
New Mexico State University,
Electrical Engineering
New York Institute of Technology,
Electronic Technology
Newark College of Engineering,
Mechanical Engineering
Northwestern University,
Material Science
Occidental College, Physics
Ocean Systems, Inc., Reston, Virginia
Oklahoma State University,
Biochemistry



MINUTEMAN COMPUTER USERS GROUP MEMBERSHIP (Continued)
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Electrical Engineering
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Flectrical Engineering
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Univ. of Dallas, Chemistry

Univ. of Delaware, Electrical Engr.
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Univ. of Houston, Electrical Engr.
Univ., of Illinois, State Water Survey
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Mechanical Engineering
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Engineering Mechanics
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MINUTEMAN D17B COMPUTER PROCUREMENT

Approximately 800 Minuteman D17B Computers are expected to be declared
excess by the USAF through 1974. The original acquisition cost per system
was approximately $234,000. These computers can be acquired by qualified
agencies, contractors, and grantees as the systems become available through
appropriate ADPE reutilization agencies on an "as is' non-reimbursable basis
as follows:

DoD Agencies

Contact respective service Hqs. for ADPE Acquisition for approval and
for forwarding of Requisition Form 1419 to DARO.

DoD Agency Contractors and Grantees

Contact respective contracting officers for approval and for forwarding
of Form 1419 to Defense Supply Agency, DSAH-DARO, Cameron Station, Alexandria,
Virginia 22314.

Civil (Non-DoD) Agencies of the Federal Government

Contact respective Office for ADPE Acquisition for approval and for
forwarding of Transfer Order Form 122 to GSA Excess Equipment Utilization
Branch, Crystal Mall Bldg. 4, Washington, DC 20406.

Civil Agency Contractors and Grantees

Contact respective contracting officers for approval and for forwarding
of Form 122 to GSA as listed previously.

Authorized Donees

Contact respective state surplus property offices for acquisition through
DHEW Office of Surplus Property Utilization, 4452 DHEW North Bldg.,

Washington, DC 20201.



MINUTEMAN D17B COMPUTER DESCRIPTION

Functional Capabilities and I/0

The D17B is a small general-purpose computer. It is totally programmable
and has the capabilities of: receiving and sampling analog signals, digital
daté, or pulse-type input signals; logical decision-making and performance
of arithmetic operations using an instruction set of 39 machine language
instructions; and transmission of output data in the form of analog, digital
and pulse type signals under program control. Because of the extreﬁely flex-
ible I/0 capability of the D17B, it can be quite useful in a wide variety of
applications.

Central Processing Unit and Control

Since the D17B is a serial-binary computer, simultaneous access to all
the bits of a memory locatlon is not needed either for instructions or data.
Hence, the arithmetic registers need not be constructed entirely of flip-
flops. Instead, they are in’the form of citculating loops in memory. The
D17B has four double-rank arithmetic registérs which are Accumulatof a),
Lower Accumulator (L), Inst;uction Register (I), and Number Register (N).
Because the L-register is addressable, it can ﬁe used as rapid—access storage
in addition to performing normal arithmetic functions, Thefe are two non-
addressable arithmetic registers, the I-‘and N—registers,’which are used
without programmer control and one 3-bit pseudo-index (phase) register.

The central processing unit (CPU) has 1I/0 access to four rapid—-access
memory loops of 1, 4, 8, and 16 words in addition to the main memory which is
arranged in 21 channels of‘128 words each. Two input buffer loops of four
words each provide additional input capability to memory in the form of
direct data entry. These are the V- and R-loops which can also be used as

general-purpose rapid-access memory loops.



Programmed data channels cause data transfers into the arithmetic regis-
ters. All machine functions are processed and interpreted in the CPU. The
memory channel address from which the next instruction is to be taken is
determined by the location counter. When the CPU is ready to accept another
instruction from memory, the address is specified by the channel address
stored in the location counter and the sector address specified in the
previous instruction.

The phase register can modify the operand address of one of the multiply
instructions. This register also serves as a selector switch for choosing one
of two pairs of inputs to one of the incremental pulse-type input loops and
for selecting one of four external positions for each of the three D-A analog
voltage outputs.

The Accumulator holds the results of all arithmetic operations and serves
as an output register for parallel digital data, pulse-type signals, D-A
analog voltage outputs, and telemetry data. The Lower Accumulator is involved
in certain arithmetic, input, and logical operations. A real-time clock is
provided by internal timing signals derived from the clock channel of the disc
~ memory.

Specifications

The D17B is basically composed of two semi-circular sections. One half
contains the power supply circuit cards which generate the various dc voltagés
required in the computer and a 400 Hz 3¢ signal for providing power to the
motor in the 6000 rpm disc memory. The other semi-circular section contains
the discrete DRL and DTL logic compénents of the computer itself. Some of
the detailed specifications for the D17B Computer are given in the following
table. The high degree of reliability and ruggedness of the computer are

evidenced by the strict requirements of the Minuteman ICBM Weapons System.



MINUTEMAN D178 COMPUTER SPECIFICATIONS

Manufacturer: Autonetics, a division of North American Rockwell
Model: D17B

Year: 1962

Type: Serial, synchronous /

Number System: Binary, fixed point, 2's cdmblement

Logic Levels: O or False, 0 Volts; 1 or True, -10 Volts

Data Word Length (bits): 11 or 24 (double-precision)

Instruction Word Length (bits): 24

Maximum I/0 (words/s): 25,600

Number of Instructions: 39 types from a 4-bit op code by using five bits
of the operand address field for instructions

which do not access memory.
Execution Times:

Add (ws): 78 1/8

Multiply (us): 546 7/8 or 1,015 5/8 (double precision)

Divide: (Software)

(Note: Parallel processing such as two simultaneous single precision
operations is permitted without additional execution time.)

Clock Channel: 345.6 KHz

Addressing: Direct addressing of entire memory
Two-address (unflagged) and three-address (flagged) instructions

Memory:

Word Length (bits): 24 plus 3 timing

Type: Ferrous-oxide-coated NDRO disc

Cycle Time (ps): 78 1/8 (minimal)

Capacity (words): 5,454 or 2,727 (double precision)

Input/Output:

Input Lines: 48 digital
Output Lines: 28 digital
12 Analog
3 Pulse
Program: 800 5-bit characters/s

Physical Characteristics:

Dimensions: 20" high, 29" diameter

Power: 28V de +1Vat 19 A .

Circuits: DRL and DTL. Double copper clad gold plated, glass fiber
~ laminate, flexible polyurethane coated circuit boards.

Software: Minimal delay coding using machine language modular
special-purpose subroutines.

Reliability: 5.5 years MTBF



SOFTWARE SIMULATION OF THE MINUTEMAN
D17B COMPUTER

Capt Bruce Chatterton Gary B. Lamont
Electrical Engineering Dept
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

ABSTRACT

A software program has been developed which simulates the functions of
the Minuteman D17B Computer at the register transfer level. The simulation
program is written in the FORTRAN Extended Language to be used on the Intercom
System {teletype) of a CDC 6600 Computer System. The simulation program was
developed at the Air Force Institute ofJTechnology as an aid to research in
the D17B Computer utilization program. The simulation program can be used
as a teaghing aid, for executing D17B programs, and for debugging program
tapes to be run on the D17B Computer. The simulation program consists of
a main program and eight subroutines. A programming language was developed
for the D17B Computer Simulation Program which contains numbers and load

codes, switches, and miscellaneous commands.

I. Introduction

A software simulation of the Minuteman D17B Computer has been developed
at the Air Force Institute of Technology (AFIT) (Ref 2). The general
development objectives and results of this simulation are presented in this
paper.

The purpose for developing the D17B Computer Simulation Program was to
create an aid that would be useful to the research effort of the D17B
Computer utilization program. This research effort is concerned with getting
a D17B Computer operational in a laboratory environment and finding useful

applications.



The simulation program has shown itself to be useful in many areas. The
simulation program can be used in learning the basic operations of the D17B
Computer. It can also be used as backup capability for running D17B programs
when the actual computer is not available.  Its most important use, however,
is that the simulation program can provide error checks for the D17B programs
which it executes. The hardware version of the D17B Computer has no execution-
time error checking capability. . . :

The capability for entering D17B programs from punched tape has been
incorporated in the D17B Computer at AFIT. Provisions were also made in the
simulation program for reading and executing the data from these same punched
tapes. Therefore; the simulétion program can be extremely helpful in the
preparation of the program tapes which are to be read into the D17B Computer.
The simulation program helps in the preparation of the program tapes by
detecting and locating invalid sjmbols punched on the tape, by decoding the
program instructions, and by detecting addressed locations in memory that

are out of range of the progfam being executed.

Problem Statement and Objectives. The prime objective of the D17B Computer
simulation program was to simulate the functions of the D17B Computer. To
pursue this objective, the following criteria were established:

1. The simulation program was to simulate the D17B Computer at the
register transfer level. A register transfer approach was used because
it allowed the D17B to be simulated at the information and data transfer
level. Thus, it was not necessary to simulate the logic equations required
to clear and set each flipflop. The register transfer approach also
allowed for easability in tracing the information flow in the simulated
computer as data is loaded and programs executed.

2. The FORTRAN Extended Language was the computer simulation language
chosen for writing the simulation program. This language was chosen because
of access to a @omput@r system which contained the FORTRAN Extended Compiler.

The Computer Design Lénguage (CDL) described in reference 3 was used in



writing portions of the simulation program, but because of the nonavail-
ability of a CDL compiler, a transformation to the FORTRAN Extended Language
was made (Ref 3, Chaps 1-5). CDL is much more descriptive of computer
operations than FORTRAN., '

3. The simulation program was to simulate the actual computer as
closely as possible. The same algorithm implemented on the D17B Computer
was used in the simulation program for most functions. This close corre-
lation between the actual computer and the simulation program makes it
- possible for a user to use both the computer and simulation program using
only one set of programming techniques. In the areas where a close simu-
lation could not be realized, a quasi-simulation was used. The quasi-
simulation uses the same register inputs and generates the same results,
but the method of obtaining the results differ.

4. The real-time control functions (Fine Countdown and Incremental
Inputs) of the D17B were not to be included in the simulation program.
The Fine Countdown function involves the V-loop and the U-loop forming
a digital integrator which operates without program control. The Incre-
mental inputs are inputs to the D17B which are incrementally supplied
to the V-loop and R-loop without program control. The instructions
associated with these functions could be added by a user who is
féséarching the area of real-time control applications for the D17B.

The remainder of this paper will be devoted to a description of the
organization and structure of the D17B Simulation Program and the D17B
Computer Simulation Language.

II. D17B Computer Simulation Program

The organization and structure of the D17B Computer Simulation Program
will be described in this section. The simulation program simulates the
D17B Computer at the register transfer level and is written in the FORTRAN
Extended Language to be run on the Intercom System (teletype) of a Control
Data Corporation (CDC) 6600 Computer System.



The concept used in writing the s1mu1atlon program was to have the person
using it prov1de the same data to the program as he would if he were using the
actual eomputer in the laboratory. The sw1tches must be set to the proper
position to éééomplishiloadihé and computing. The data mustibe error free to
successfully execute a program. The type of display (register or memory)'is
specified by the user. = k |

The D17B Computer élmulatlon Program cons1sts of a maln program.and elght
subroutines. The main program is-a compllatlon of three distinet sections each
of which performs a magprﬁfpnctlop.w These.threetsectlons are:

1. Reading and Translation Section

2. ancompufe Mode Secfioh | |

3. Compute Mode Section ;

Fig. 1 shows the program flow between theSe sectlons of the main program and
the subroutlnese ; . .. o

The Reading and. Translatlon Sectlon is the translater and 1nterpreter
portion of the simulation program. All input data_ is regd,'lnterpreted, and
translated in this portion of the main prdgram.‘,Input data is read as alpha-
betic and numeric,characters.‘ ?his data ig then.ih@erpreted;as octal or
binary data, a DI7B load code, a switch designation (setting), or a miscel-
laneous command. The miséellaneousqcommandé are reéponsiblé for a variety
of functions which includé the‘followingfn register and memory display,
discrete data storing, incremental data storing, and mode tracing. A trans-
fer of operation to'the noncémpute mode of one of the subroufines’is made to
utilize this data. o

The Noncompute Mode Section of the simulation progfém éimulates the non-
compute mode of the D17B computer. The noncompute mode\15vresponsiblé for
synchronizing, idling, preparing'to.load, preparing to compute, loading data
into memory, and verifying the contents of memory. -

The Compute Mode Section of the simulation program simulates the compute
mode of the D17B Computer. The compute mode is responsible for searching,

reading, and writing memory and instruction execution. -
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The subroutines associated with the D17B Computer Simulation Program were
made for three purposes:

1. Those functions which were needed several times through the program
were created as subroutines. Subroutines falling into this category are
Subroutine LOAD, Subroutine UNLOAD, and Subroutine DISPLAY. Subroutine LOAD
provides the function of loading the contents of the accumulator into addressed
memory locations. Subroutine UNLOAD perfOrmsvthe funétion of unloading an
addressed word of memory. The 1nformatlon unloaded is then used either as an
instruction or an operand. Subroutlne DISPLAY prov1des the simulation program
with the capability of displaying the binary contents of all registers and
loops which are specified by the user. The contents of a register or loop is
provided as output only whén‘the contents of that register or loop changes.

2. Those functions wﬁich are only called from one place in the main
program, but which are of -such importance that a separate location is bene-
ficial to the organization of the simulation\program_are also subroutines.
Subroutines in this category are Subroutine STORE, Subroutine FLAGSTO, and
Subroutine MEMORY. Subroutine STORE implements the D17B store (sTO)
instruction, which stores the contents of the accumulator in the memory
location specified by the instruction registér. Subréutine FLAGSTO |
performs the function of deciphering the flag store locations bits of the
instruction register. The contents of fhe accumulator are then stored in
the deciphered channel at the sector address associated with the first
wordtime of execution of the present instruction. ‘Subroutine: MEMORY
provides the capability of displa&ihg the contents of memory (channels 00
thru 50) whenever a memory command is used. Only those portions of memory
that have been written into since memory was last initialized will be shown
in the output listing. o "

3. Those functlons whlch w1ll not be used very frequently and could be
removed from the simulation program if it was determlned that they were not
really needed are also subroutihnes. However, to be able to utilize all the
instruction set of the D17B Computer and allvthé channel designations, these



11

functions had to remain as a part of the simulation program. Subroutines
in this category are Subroutine DISCRET and Subroutine INCREME. Subroutine
DISCRET provides the capability of entering discrete data and storing it
for use in a prograr ising the discrete input instructions (DIA or DIB).
Subroutine INCREME provides the capability for entering quasi-incremental
data into the four words of the V-loop or the four words of the R~-loop.

The D17B Computer Simulation Program requires approximately 35K of
core memory to execute on the CDC 6600 Computer. The majority of programs
require between two and five seconds of central processor time. In five
seconds, approximately 1000 D17B instructions can be executed by the
simulation program.

ITI. D17B Computer Simulation Language

The D17B Computer Simulation Languagé‘is the programming language which
was developed as the input data for the D17B Computer Simulation Program.
For purposes of describing this language, it has been divided into the
following categories: 1. Numbers and Load Codes
2. Switches
3. Miscellaneous Inputs and Commands
Numbers and Load Codes. The number systems and load codes accepted by the
simulation program are: ‘
Octal Mumbers - O, 1, 2, 3, 4, 5, 6 7
Binary Numbers - 0, 1 ' ‘
Load Codes - HALT, LOCATION, FILL, VERIFY, COMPUTE, ENTER, CLEAR, DELETE
Thrse different representations of the numbers and load can be specified
and will be accepted by the simulation program as valid data. These three
representations are Octal, Binary, and ASCII. The Octal representation repre-
sents the type of input that would be supplied'from a teletype keyboard or
switches on a control console. The Binary representationkrepreSents the type

of input which appears on the character input lines going into the D17B
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Computer. The ASTII representation represents the type of input data on a
punched tape which can be entered into the D17B Computer by a tape reader.

The numbefs and load codes in the three représentations are as follows:

,Represgntation RgprQSQntation Representation
Numbers - o 10000 0
1 00001 | 1
2 00010 2
3 10011 3
A 00100 4
5 10101 5
6 10110 6
7 00111 7
Load Codes -~ HALT 01000 8
LOCATION 11001 9
FILL 11010 z
VERIFY 01011 ;
COMPUTE 11100 <
ENTER 01101 =
CLEAR 01110
DELETE 11111 ?

Switches. With the simulation language in this category, it is possible to
specify switches and designate a setting or mode. The simulation program
accepts these switch designations and provides this information to program
variables associated with the switches. The form for specifying switches
is as follows: ‘

Switch(Arg)
where Switch is the designated switch mnemonic name, and Arg is the switch

setting or mode position of the switch. The switches and allowed settings
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are as follows:

Switch Name Switch Mnemonic & Settings
Timing Signal o T(ON)
Power On/Off Switch ) PR(ON), PR(OFF)
Initiate Loading Switch Fs(on)
Master Reset Switch MR(ON)
Cold-Storage Write Switch EW(ON), EW(OFF)
Discrete Switch DD(ON), DD(OFF)
Mechanical Input Switch , IM(ON)
Compute Mode Switch K(HALT), K(SINGLE), K(RUN)

Miscellaneous Inputs and Commands. The simulation language in this category
provides many functions. The functions that will be described are listed as
follows:

Register and Memory Display
Mode Tracing
Execution Specification

Register and Memory Display. The binary contents of any of the registers
(4, I, L, M) or loops (U, F, E, H, V, R) can be displayed by use of the register
command, The register command has the following form:

REGISTER (Arg) _

where Arg is a list of the registers»and/br loops to be displayed.

To display the contents of memory (chanmels 00 thru 50), a memory command
is used. The memory command has the following form:

B , MEMORY (Arg)

where Arg is the type of display requested, either BINARY or OCTAL.

Mode Tracing. Mode tracing is used in deciphering the contents of a -
program. In the noncompute mode, the modes of operation are listed as output.
In the compute mode, the instruction being executed is listed as output and a

flag store is indicated if it was programmed. The mode tracing capability is
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requested by a signal command with the following form:
SIGNAL

Execution Specification. There are numerous occasions when a programmer
will inadvertently write a program whlch loops on 1tself resulting in executlon
going on to infinitum. To prevent thls from happening in the 31mu1ated computer,
provisions were made for counting the number of executlon cycles in the compute
mode and terminating the program run when the number exceeds a spe01f1ed amount.
The programmer can spec1fy the number of executions allowed by an execute com~
mand. The form of the execute command is as follows:

EXECUTE(Arg)
where Arg is any four dlglt decimal number from 0000 to 9999

Other miscellanecus inputs and command provide the capability of setting
and clearing flipflops, initialization of the’ contents of memory and certain
specified variables, storing of discrete input data, and storing of quasi-
incremental input data.

Programming Methods. D17B programs are executed on the 31mulated computer
by arranging the simulation language in a program form. D17B programmlng
techniques are described in the Minuteman Computer User's Group Programming
Manual (Ref 1). The simulation program allows data to be input without a
format, so a programmer can write a continuous program with each simulation
language word separated by a blank.

The approach for arranging the input language in program form found
most advantageous by the author is to visualize a hardware control console
with switches for each element of the simulation language. To 'write a program
then requires that the programmer write down the simulation language word for
each switch that he would push on the console. This approach works because of
the similarity between the simulation program and the hardware version of the
computer. -

An example program which was run on the simulated computer has been
included in this paper as Appendix A. -



15

IV. Concluasion

The software simulation program of the D17B Computer presented in this
paper has been operational since November 1971. The simulation program was
developed to simulate the funotions of the D17B Computer. One of the objectives
~of this simulation was to have the simulation program simulate the actual com-
puter as closely as possible. This objective was met because the majority of
the D17B functions have been included in the simulation program. The loading
and interaction functions of the noncompute mode have been used. In the
88mpute mode, the searching, reading, and writing memory and instruction exe-
cution are all part of the simulation program. Wherever possible, the same
algorithm implemented on the D17B was used in the simulation program. This
approach resulted in some inefficiencies in the simulation program, but a
by-product of ueing the same algorithm is that the simmlation program can be
used as a teaching aid for learning the operation of the D17B Computer. Also
error detection was built into the simulation program and has been very helpful
in oreating program tapes to be run on the D17B Oohputar.
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16 APPENDIX A

IF OUTPUT 15 IO BE DISPOSED TO PRINTER TYPE “P" AND "YOUR NAME™: OTHER‘
WISE TYPE

3k 34 e e 3 2 o e o e o 3 ke e ek e e o ke e 3 ok ek 3k s ok ok sl ook ol s 3ok S afe e sk ok s sk sk kol sl ok sk ok ke ok

"ok K
*ok D173 COMPUTER ¥k
** . SIMULATION PROGRAM » *k
*oh A
* % DATEs 03707772 : TIME= 14.,28.58 @ *x
ok | ok

30 2 o e e s ok 34 ok 2k e o € e sk o e e e ol o o sk e ke 3k 2l o e s e o o e e ok o e a afe e ook e o ok 3ok ok ok ok sk

v %% PRINTOUT OF INPUT PROGRAM %x
(ENTER PROGRAM) ' '

$ ADDITION RIPPLE PROGRAM

PRCON) MRCON) FSCON) EWCON) FILL ’

44030002 ENTER 64010002 ENTER CLEAR | ENTER

MEMORYCOCTALY MRCON) EXECUTEC0004) SIGNAL REGISTERCA) KCRUN)

PRCOFF)

*% RESULTS OF SIMULATION s+

#% MEMORY DUMP %%

CHAN ~ BECT | |
00 000 44010002 64010002 00000001 17171777
x% END OF MEMORY DUMP %% (PORTIONS OF MEMORY NOT LISTED CONTAIN NO

INFORMATION PRODUCED BY THE PRESENT PROGRAM RUN)
NGe OF EXECUTIONS SPECIFIED =
S§1GNAL ON ~ MODES HILL BE TRRCED

0¢4) 0(2)0(3) IDLE SUB-MODE OF MANUAL HALT
PREPARE TO COMPUTE SUB-MODE OF MANUAL HALT

COMPUTE MODE

TRANSFER INSTRUCTION = (TRA)

CLEAR & ADD INSTRUCTION = (CLA)
AC(24-1) = 000 000 000 000 000 000 000 001

ADD INSTRUCTION = CADD) |
AC24=1) = 000 000 000 000 000 000 000 010

NO. OF EXECUTIONS HAVE EXCEEDED NO. SFECIFIEB = PROGRAY TERMINATED
TO RUN AﬂOTHER PROGRAM TYPE RUN 'y TO STOP TYPE HALT = HALT

#% END OF PROGRAM EXECUTION TIME= .7177 SEC
14‘.55.24.81‘@ '



APL SIMULATION OF THE D17B

HARRY S. WARFORD, CAPT, USAF, BSC*

Introduction

A simulation of the D17B serves a broad spectrum of applications.
It allows a rapid development of software by not only emulating the basic
machine, but by providing an inexpensive and rapid means of providing a
large array of outputs. All manner of I/0 devices can be simulated for
development when the actual application may be dedicated and require few,
if any, I/0 devices. Additionally, the simulation is useful where no
D17B exists. Students can receive hands-on experience with many types
of machines by merely calling on a simulation such as the one under
development here. Program debugging likewise proceeds at an accelerated
rate since all the powers of a large system are available with built-in
tracing routines.

Program Development

This simulation is by no means complete at present but has been
developed in strict accord with actual machine procedure so as to render
it easily expandable to a full simulation. The serial nature of the
D17B has been preserved at the word level by controlling the simulation
with a sector counter advancing one sector at a time as in the rotation
of the disc memory. Figure 1 is a simplified flow chart for the machine
and illustrates how each phase is controlled by tests performed on the
sector count. »

Development from this flow chart proceeded with APL on an IBM 360
series system and later on an IBM 370 series system.** APL has proven
to be an ideal language for this simulation due to its inherent capability
to handle vector quantities. This was the author's first encounter with
APL, hence many of the expressions are not as efficient as they could be.
However, the development proceeded with few difficulties to the wide choice
of APL operators.

The main program illustrated in Figure 2 was first developed with
dummy instructions in place of the execution routines. Those routines not
yet implemented are left in as dummy statements providing only a printed
indication of proper decoding. As development continues, some of these
will be deleted entirely as they produce outputs that cannot effectively
be simulated or have no apparent use in a general purpose system.

*To be presented by Major M.A. Jenkin, USAF, MC
*#*This simulation was started during a course taken by the author at
Trinity University, San Antonio, Texas.



Along with the basic program, several short routines are providéd
to simulate necessary panel switches to allow program loading and
execution start. These are given in Figure 8 and will be discussed in
greater detail following the discussion of the main routine and execution
routines.

At present, twenty-two instructions have been successfully simulated.
Most of these were straight-forward but for clarity all are listed here
with comments as to considerations given for simulation.

CLA: Clear and Add. Present operand, now in
N-register, replaces contents of A-register

ADD: Add. Contents of A-register and N-register
added modulo 16777216.

SUB: Subtract. Contents of A-register and complement
of N-register added modulo 16777216.

MPY: Multiply. Sign of product predetermined; contents
of A-register saved in L-register; rounded product of
magnitudes formed then corrected for proper sign.

Sector counter advanced 12 additional counts.

SAD: Split Add. Contents of N-register and A-register
decoded into split format and center bits of A-register
saved. Split words added independently but simultaneously
modulo 2048. A-register reassembled.

SSU: Split Subtract. Contents of N-register split and
complemented. Jump to SADl to complete as normal split
add.

SMP: Split Multiply. Middle of L-register saved; contents

of A-register encoded into split word format and saved
criss~cross fashion in L-register. N-register encoded into
split word format and signs independently but simultaneously
predetermined. Products of magnitudes formed then corrected
according to each predetermined sign. During process, products
are rounded., Sector counter incremented 12 additional counts.

COM: Complement. Contents of A-register complemented by
subtraction.

MIM: Minus Magnitude. If contents of A-register are not
negative they are forced negative by jumping to COM.

ANA: And to A. Contents of L-register and A-register are
encoded into 24-bit vectors and logically anded bit by bit.
REsults are decoded into 24 place binary number and left
in A.



ARS: Accumulator Right Shift. Contents of A-register
shifted right by division with simulated loss of right-

most bits by floor value if original A-register not negative.
For negative A-register, complement of A-register is first
shifted then complemented to provide for extension of sign
bit. In either case, sector counter is incremented
appropriate number of counts as determined by number of
places shifted.

ALS: Accumulator Left Shift. Contents of A-register shifted
left by multiplication and limited to 24 bits by residue
modulo 16777216. Sector counter incremented appropriate
number of counts as determined by number of places shifted.

SAR: Split Accumulator Right Shift. Contents of A-register
encoded into split word format and middle bits saved. Each
half word shifted right by scheme similar to ARS. Arregister
put back together and sector counter incremented appropriate
number of counts.

SAL: Split Accumulator Left Shift. Contents of A-register
encoded into split word format and middle bits saved. Left
shift of each half word proceeds as in ALS. A-register
reassembled and sector counter incremented appropriately.

SLR: Split Left Word, Right Shift. Contents of Asregister
encoded into split word format and middle bits and right word
protected while left word shifted right. A-register re-
assembled and sector counter appropriately incremented.

SRR: Split Right Word, Right Shift. Contents of A-register
encoded into split word format and middle bits and left word
protected while right word shifted right. A-register re-
assembled and sector counter appropriately incremented.

SLL: Split Left Word, Left Shift. A-register encoded into
split word format and middle bits saved. Left half word
shifted left; jump to SALl to reassemble A-register and adjust
sector counter.

SRL: Split Right Word, Left Shift. A-register encoded into
split word format and middle bits saved. Right half word
shifted left; jump to SAL]l to reassemble A-register and adjust
sector counter.

TRA: Transfer. Fetch instruction specified by transfer
instruction. Change active channel register.



TMI: Transfer on Minus. If contents of A-register positive
continue to next instruction. If negative execute TRA.

STO: Store. Correct operand address to allow for physical
placement of write head and store contents of A-register

at the corrected address.

HPR: Halt and Proceed. Type out PROGRAMMED HALT and proceed
only after GO has been typed into terminal.

Results of Execution Routine

Example of instructions were prepared as three-line programs with a
simulated binary display providing the output. Additionally, a longer
program was prepared and the accumulator monitored by a simulated octal
display. The results are too lengthy to present here but have proven to
be faithful copies of the machine results.

Utility Routines

As mentioned earlier the main program is supported by short simulations
of pertinent panel functions. The three programs in use to date are listed
in Figure 3. These programs treat the instructions and data as though they
were eight place, octal, whole numbers whereas the D17B number range is
approximately T 1,

MRC simulates the master reset function and presets- the I-register
to TRA to channel 0, sector 0. The FILL Routine accepts the octally coded
instructions and data with the exact coding used in the actual D17B system
at the School of Aerospace Medicine. RUN places the computer into operation.
No equivalent to halting the computer by moving the switch out of RUN has
been implemented. Instead, the attention button is being used.

Conclusions and Projections

An effective simulation with considerable attention to detail has
been started for the D17B.

Three tasks remain to complete the task: 1) simulate the remaindér
of the instructions, 2) include the flag store feature, and 3) include
the rapid access loops.

Following completion of the D17B simulation, a logical next step
might include an assembler to run on the D17B but designed on the simulationm.
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£6]
(71
L84
[9]
[i0]
[11]
L121]
{13]
Cdia]
[15]
[i6]
[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
(34]
[35]

V MACHINE
OP.X<25p0PERR
OPFX+32p0PERR
OPC«ZERO,SCL,TMI ,OPERR,SMP,MPY,SMM ,MPM,FORTY,CLA,TRA,
$40,SAD ,ADD ,SSU,SUB
SECT«12127

IS:»(DIL2]1=8ECY)/DECODE
+>I8,SECT«128 | (SECT+1)

CODE :DI+, 16 2 128 32 128 TM[C;SECT]
L<DTO AR
SECI<128| (SECT+1)
>(DI[vle 0 2 8 10 i1)/WOOP

PER : SECT«128 | SECT+1
+~(DI[4]1=SECT)/OPER
WR«<MIDI[3]1;DICu4]1]

WNOOP:~>(DI[11=0)/UNFLG

+UNFLG,pU«'A STORED'

UNFLG:»0PCLDI[0O]]

ZERO:0PZ2X[(8,9,10,11,12,13,14,15, 2uJ+SAL ALS,SLL,SRL,
SAR JARS ,SLR ,SRR ,COA4

-0PZX[DI[3]]

SAL:ARSP«, 2048 4 2048 TAR

MID<«ARSP[1]

ARSP<«, 2048 | ARSPx2*DI[ 4]

SAL1: AR+(8192xARSP£o])+(2048xMID)+ARSP[2]
+TS,pSECT«128|SECT+1IDI[4]

ALS :AR«16777216 |ARx2%DI[ 4]
+>IS,pSECT+128|SECT+1IDI[ 4]
SDL:ARSP«, 2048 4 2048 TAR

VID+ARbP[1]
+SAL1,pARSP[0]«20u48 | ARSPLO]x2*DI[ 4]

SRL:ARSP«, 2048 4 2048 TAR
MID<«ARSP[1]
+SAL1 ,pARSP[2]«20u8|ARSPL21x2*xDI[ 4]

SAR:ARSP«, 2 1024 4 2 1024 TAR
SAVE«ARSPLO0],ARSPL2],ARSPL 3]

ARSP«| ARSP+2*xDI[ 4]
AR<ARSPLUI+(8192xARSPL1]1)+(2048xSAVEL1]1)+(SAVEL 0]x((
20(DIC4]+1)p1)x2%(23-DIL4]1)))+(SAVEL2]x((2L(DIL
bl+1)p1)x2%x(10-DIC4])))

Figure 2 .a. Main Program



[3061]
[371]
[38]
[39]
fuol
[u1]
[42]
[43]
Cuu]

[us5]
[46]
[u71]
(48]
[49]

[501]
[51]
[52]
[53]
[54]
[5%]
[56]
[571]
[58]
[59]
[60]
[61]
[62]
[63]

[ou]

[65]
[66]
[67]
[68]
[69]

701

>I1S5,pSECT+128|SECT+1IDI[ 4]

ARS :»(AR>8388607) /ARS1

+ARS2,p AR« AR+2*DI[u4]
S1:AR<16777216~-[(16777216-AR)+2*DI[ 4]

ARS2 +»IS ,pSECT«128|SECT+1TDI[ 4]

SLR:ARSP+, 2 1024 8192 TAR

SAVE«ARSPL0],ARSP[2]

ARSP<+| ARSP+ z*DI[u]
AR<SAVE[L1]+(8192xARSPL1])+(SAVELO0]Ix((2L(DI[4]+1)p1)x
2%x(23-pICu1)))

+>IS,pSECT«128 | SECT+1DI[ 4]

SRR :ARSP<«, 8192 2 1024 TAR

SAVE<«ARSPLO0],ARSPL1]

ARSP<«| ARSP+2*DI[ 4]
AR<«ARSPL2]+(2048xSAVE[L01)+(SAVEL11x((2L(DIlu4]+1)p1)x
2%(10-DIC4])))

+>IS5,pSECT«128|SECT+1TDI[ 4]

COA:~IS,pll«'COA"

SCL:>IS,plU«'SCL!

TMI :>(AR>8388607)/TRA

+IS

OPERR :+0,p«'OPERR"

SMP:LSP« 4 2048 TLR

ARSP« 2048 4 2048 TAR

MID<«ARSP[1]

LH+AR5P[O]+(2OMSXLSP[0])+(8192XARSP[2J)

NRSP« 2048 4 2048 TNR

SIGH«(ARSP>1023)#(NRSP>1023)
PROD«(ARSPL2048-ARSP)x(WRSPL2048-NRSP)
LPROD<«LPROD[SIGN[0]x2048-LPROD«(+/ 1024 2 512 TPROD[O
1)-512TPRODL O]

RPROD<RPROD[ SIGN[2]x2048-RPROD«(+/ 1024 2 512 TPRODL
21)-512TPROD[ 2]

AR« (8192xLPROD)+(20u48xMID)+RPROD
+>IS,pSECT«128|SECT+6

MPY:SIGN«(AR>8388607)=(VR>8388607)

LR<AR

PROD+« 8388608 2 4194304 T(ARL16777216- AR)x(NRL
16777216-NR)

AR<PROD[0]+PROD[ 1]

Figure 2.b. Main Program, Cont.



[71] AR<ARTSIGNx16777216-4R

[72] ~+IS8,pSECT«128|SECT+12

(73] SMM:~>IS,p«"'SHUM®

L74] MPM:»IS,pll«"'MPM"'

[75] FORTY:0PFX[(1,4,5,8,9,11,12,13,14,17,18,19,20,
21]«B0OC,BOA,BOB,RSD,HPR,DOA,V0OA,VOB,VOC,ANA ,MIM,COM,
DIB,DIA

{761 OPFX[24,25,28,29,30,31]«HFC,EFC,LPR,LPR,LPR,LPR

[77] -»0PFX(DI[31]]

(781 BOC:~+IS,pl«"'BOC'

[79] BOB:»IS,pl«'BOB"

[80] BOA:»IS,p0<«"BOA'

[(81] RSD:»IS,pll«"RSD"

(821 HPR:'PROGRAMMED HALT'

[83] WAIT:START<[

(841 >((248TART)='G0"')/IS

[(85] >WAIT

[86] DOA:»>IS,pll«"DOA"

[87] VOA:+IS,pli«'VOA"

[(88] VOB:»IS,pl«'VOB'

[89] VOC:»IS,pll«'VOC"

[90] ANA:>IS,pAR«21((24p2)TAR)A((24p2)TLR)

[91] MIM:+»(AR>16777215)/IS

(92] COM:>IS,pAR+16777216-AR

[93] DIB:+IS,pll«'DIB"

Lou] DIA:~»IS,pll«'DIA"

[95] HFC:»>IS,pll«'HFC"

{961 EFC:»IS,pl«"EFC"

[97] LPR:»IS,pl«'LPR'

(98] CLA:~+IS,pAR<«NR

[99] TRA:»IS,p(pC«DI[3]),(pDIL[2]«DI[u4])

(1001870 :SECT«128|SECT+1 :

[101] >(DILu4]1=SECT)/STO

[102] »15,pMIDIL3];(128|SECT-2)1«AR

[103]SAD:NRS+«, 2048 4 2048 TIR

[104]SAD1:ARSP«+, 2048 4 2048 TAR

[105] MID<«ARSP[1]

[106] ARSP«2048|ARSP+NRS

[107] »IS5,pAR<(8192xARSPL0])+(20u48xMID)+ARSP[2]

[108JADD:»IS,pAR«16777216 | AR+IiR

[109]8SU:+SAD1,pNRS«2048-(, 2048 4 2048 TNR)

[110]SUB:>IS,pAR«16777216 | AR+16777216~NR

Figure 2.c. Main Program, Cont.



VFILLLUIV

V FILL
(11 " PROCEED'
(2] READ:L<[N
[31] +0x1A/(3pL)="END"'
(4] LR<00TD(84 94L)
(5]  ~>(((T14L)=*/"),((T14L)="V"))/LOC,ENT
(6] +>READ
(7] LOC:+»READ,pIR<LR
(8] ENT:ADR<+ 32 128 TIR
9] MLADRL O] ;ADR{ 1] ]<«AR<LR
[10] IRS<« 131072 128 TIR
[11] ~>READ,pIR«(IRS[0Ix131072)+128|IRS[1]1+1

v
(a)
VMRCLUIV
Vv MRC \
(1] ITR«10485760
v
(b
VRUNLU]V
Vv RUN

[11] DI« 16 2 128 32 128 TIR
[2] c«DI1l[ 3]
[3] MACHINE

Vv

(c)

Figure 8.a) Fill Routine, b) Master Reset, c) Run Routine
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A Hardware Divider for the D17B Guidance Computer

by
Alfred M. Williams
The Boeing Company
Houston, Texas
and
J. D. Bargainer
University of Houston
Houston, Texas 77004

The D17B Guidance Computer for the Minuteman I, ICMB is capa-
ble of performing addition, subtraction and multiplication through
hardware algorithms. However, division must be performed through
a software routine. A hardware division capability can be acquired
by modifying the D17B operation codes and by incorporating addi-
tional hardware. This paper outlines such a modification to the
D17B. The division algorithm is presented along with a description
of the hardware operation. The divider is designed to perform
full-word and split-word division and determine a fractional quo-
tient andfremainder. Both the quotient and remainder are accessi-
ble to the programmer through the computer registers once the
operation is complete.

The Division Algorithm

A non-restoring division algorithm was desired that was capa-
ble of performing division with either positive or negative num-
bers in either the dividend or divisor. It was also desired that

the algorithm be easy to implement on the D17B.
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A divider algorithm which meets these requirements is the

following fractional divide algorithm. To find x/y = dq°dye-edy

l.

2.

Let r = x (rO is the first partial remainder)

Let N o
1 if'rO and y have the same sign
q =
L 0 otherwise
Iteratively

r, = 2ri_l+(l—2qi)y

1 if ri_q and y have the same sign
q N =

1 0 otherwise

The partial remainder ry is therefore found by left
shiftinggri_l‘and then.adding«y»ifxqi is 0 and sub-.
tracting y if q; is 1.

Repeat the iteration n times or until the partial
remainder is zero.

Add 1.000..1 to correct the gquotient.

]

When ry 0 then_qi-=~l,and qg. = 0.3 > i.

J

When r, 0 then correct the quotient by -adding

1.000...0.

The divider algorithm implemented on the D17B closely fol-

lows this outline; however, the last step in the process, cor-

rection of the pseudo quotient, is not performed by adding a

correction factor.. Instead, the sign digit is complemented and

a "1" is forced into the least significant digit if the remainder

is non-zero. The end result of this technique is the same as



29

that acquired by adding the correction factor to the pseudo quo-
tient. |

The division operation designed for the D17B assumes that
the dividend is stored in the accumulator. The division instruc-
tion is interpreted by the instruction processor and a divisor is
loaded into the number (N) register from the specified memory
address. At the end of the division operation, the gquotient is
stored in the accumulator and the rémainder is stored in the
lower accumulator. This arrangement was chosen because the quo-
tient was désired after most division dperatibns. In the case
where the remainder is desired; it is possible to transfer it
from the lower accumulator to the accumulator by loading all 1l's
into the accumulator and executing the ANA instruction.

It was necessary to add a delay flip flop to the accuﬁulator
to perform the left shift required by the division algorithm. A
delay flip flop was also added to the lower accumulator so that
the quotient digits could be stored in the proper order. Control
logic was designed to do each of the following tasks: (1) force
the least significant bit:of fhe partial remainder to "O0" prior
to each add cycle, (2) determine whether addition or subtraction
was performed during the next add cycle, (3) determine the quo-
tient digit and store it in the lower accumulator, (4) monitor the
accumulator for a zero remaindér, (5) correct the pseudo quo- |

tient, (6) count the number of shifts performed to determine when
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the operation was completed.

The design took into account one more characteristic of the
D17B. The D17B operates on two types of numbers, fpll-word and
split-word numbers. A full-word number is composed of 24 bits,
of which one bit is a sign bit. A split—word nﬁmber»is composed
of two 11-digit numbers. As a result, two different division
operation codes were required, one that would perform full-word
division and one that would perform split-word division.

Divider Design

The D17B has 16 basic operation codes. All 16 codes are
used. Each operation code is determined by the state of the four
flip flops, 04, 03, 02, and 01l. Four of the operation‘codes are
used for multiplication, two are used for split—word and full-
word "normal" multiplication and two are used for split- and full-
word "modified" multiplication. The modified multiplication op-
eration was redundant to the normal multiplication operation apd
was replaced by the division operation.

To delete the "modified" multiplication operations, it was,
necessary to modify the multiplication enable signals, OMO, OMF,
and OM. Each of these signals enabled a period in the multipliQ
cation operation and was modified by ANDing the 02 signal with
them. During multiplication‘the 02 flip flop is used as the
addition/sﬁbtraction indicator to the carry/borrow flip flop, Ak.
The Ak flip fiop was enabled for addition if 02 was true and for

subtraction if 02 was false. This function could no longer be
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performed by the 02 flip flop and a spare flip flop replaced
it. After these modifications were completed; two operation
codes were available for division. The operation code,

04 03 02 01, (34), was used for full-word division and,

04 03 02 0L (30), was used for split-word division. The 01
flip flop was used to distinguish between full-word and
split-word division.

The operation codes chosen for division maintained two of
the "modified" multiplication operation characteristics. First,
the number located at the specified memory address was automati-
cally loaded into the N register during the first cycle of divi-
sion. Second, the Q flip flop was one set at the end of the
first word time of division. A Spare flip flop in the computer,
labeled the DIV flip flop, was used to designate the division
operation. The first word time of division was indicated by the
signal (DIV Q). All remaining word times were indicated by the
signal (DIV Q). hThe D flip flop was used to separate the middle
word times from the last word time.

A word time counter is initialized during the first word time
of division. The counter is composed of the CB5-CBl flip flops.
These flip flops_ are designed to count down at Tp time. ' They are
initialized to (24) or (11000)2’for full-word division and (ll)lo
or (Ololl)z'for split-word division. At Tp time of the. first word
time the accumulator recirculation control flip: flop, Ac, is set.
This disables normal recirculation of the accumulator flip flops

and makes it possible for the accumulator to be extended by one
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bit. The one bit extension‘c;eates the one bit,shift,required by
the divide algorithm. Also, at Tp‘time of ;he‘first word time, the
lower accumulator recirculation?contrel,flip,flop,,Lc,»is set.
This disables normal recirculatien ofwtheA;ower accumulator flip
flops and makes it possible for the lower accumulator to be extend-
ed by one bit. The lower aceumulatpr is used tpAstpre the pseudo
quotient and the one bit delay is requifed so thet.the,qUOtient
bits will be stored in the proper Qrder.d During_the‘first word
time of division, the divisor is,leaded into the N register from
memory. A spare}flip flep designated the N2 flip flopﬂcOpiesvthe
sign of the divisor loaded into’the N register. ‘The sign,ofrthe
divisor is compared with‘the sign Qf the number in the accumulator.
If both signs are the same the N2 flip flop is set. If the eigns
differ, the N2 flip flop is reset. After the N2‘flip flop has com-
pleted this operation,‘it indicates whether‘addition or subtraction
is performed during the next add cycle.v It also indicates the proper
pseudo quotient digit. This logic is operatiopnal iny if a non-
zero remainder exists. If a zero remainder does exist, then the NZ
flip flop logic is modified so that the flip flop is set at the next
compare time and reset for all remaining modify times. The C5 flip
flop performs a delay so that thevdetected addition/subtraction
operation information will be ayailable during the add cycle. It
copies the N2 flip flqp_at,Tl time during fu%;-word_division and
at ijand T12 time during split—word division. |

During the middle word times the dividend, lecated in Fhe‘

accumulator, is shifted to the left and the divisor, located in
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the N register, is subtracted from or added to it.
The shift of the dividend is performed by adding a delay
flip flop to the accumulator. The C4 flip flop was used to

provide the required one bit delay.

\a Ap |- A24 |— A23 Disc Ax 1 cC4 —}

Extended Accumulator

Logic for the C4 flip flop is designed so that it will
copy the Ax flip flop. )

The Ap flip flop is designed to copy the C4 flip flop. The
A23 flip flop copies the A24 flip flop. The A24 flip flop is
designed to function as the adder/subtractor flip flop during
division and the Ak flip flop is used to determine the carry or
borrow. Addition/Subtraction time is determined by the N1 £flip
flop'(a spare flip flop). The add cycle is initiated at T2 time
and continues through Tp time for full-word division. For split-
word division the cycle occurs from T2 - T13 time and T15 - Tp
time. If a zero iémainder exists, the add cycle will not be
initiated.

The SB3 flip flop is used to copy the adder flip flop and
determine if a zero remainder exists. It is reset prior to each
add cycle and set whenever the A24 flip flop is true.

The J and C2 flip fiops are used to store the remainder
status. Both flip flops are initially reset during the first

word time. The J flip flop determines if a zero remainder exists
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- in the least significant éplit word during split-word division.
It copies the SB3 flip flop at T13 time, during split-word di-
vision and the C2 flip flop during full-word division.

The C2 flip flop determines if a zero remainder éxiSts
during full-word division or in the most significant split word
during.split—word division. It copies the{SB3 fiip flop at Tx
time. The lower accumulator stores thefpseudo guotient gener-
ated during the middle word times Qf division. It is extended by

one bit through the addition of the C3 flip flop.

Lp 4124 pisc | Lx {9 c3

Exteﬁded Lower Accumuiator

The one bit delay is required if the pseudo.quotient digiﬁs
are to be stored in the proper order. The ldop recirculation
control flip flop for the lower accumulator, the Lc flip flop,
has previously been set during the first word time of divisidn,
so that the C3 flip flqp can copy the Lx flip flop‘at the be-
ginning of the Second word time. The C3 flip flbp is also de-
signed to function as the quotient flip flop, that is, the C3
flip flop is responsible for decoding and injecting into the lower
accumulator the pseudo quotient digit; This detection takes
place at To time for full-word division. It is accomplished by
requiring the C3 flip flop to copy the N2 flip fiop. |

During split—wdrd division, the pseudo quotient is detected

at TO and T13 time. At these times, the quotient digit is stored
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in the C5 flip flop and it is necessary for the C3 flip flop to
copy the C5 flip flop. When the C3 flip flop is not detecting a
guotient digit, it copies the Lx flip flop,‘as previocusly stated.

The Lp flip flop is designed‘to copy the C3 flip flop during
division. The L24 flip flop éopies th Lp flip flop during divi-
sion.

The operations just discussed are performed recursively dur-
ing the middle word timeé of divisiono_ At the end of this periocd,
the pseudo quotient digits are stored in the lower accumulator.
The remainder is stored in the accumulator. During the last word
time of division, the pseudo quotient is corrected and trans-
ferred to the accumulator and the remainder is transferred to the
lower accumulator.

The.remainder is transferred from the accumulator to thé low-
er accumulator by having the Lp flip flop copy the Ax‘flip flop.
Correction of the pseudo quotient is performed by the A24 flip
flop and the C3 flip flop. The A24 flip flop is responsible for
complementing the sign digit of the pseudo quotient. It comple;
ments the Ap flip flop at Tp time during full-word division and
at Tp and T1l2 time during split-word division, |

The least significant digit of the pseudq quotient is forced
to "1" by the C3 flip flop if the remainder is non-zero. During
the last word time ofvdivision, the¥C3 flip flop is set or reset
at TO time for full-word division ahd at TO and T1l3 time for split-
word division, depending on the remainder being non-zero or zero

respectively. The transfer of the pseudo quotient from the lower
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accumulator to the accumulator is performed by the Ap flip flop.
It copies the C3 flip flop during the last word time of division.

At the end of the last word time of division, it is necessary
to reset the recirculation control flip flops for the accumulator,
Ac, and lower accumulator, Lc and to reset the DIV flip flop.

The logic to implement the division algorithm was constructed
on three cards with the same size and shape as the logic cards of
the D17B. All flip-flops used in the modification were spare
flip flops already in the computer and only gating logic was add-
ed. Approximately 350 diodes were used on the three cards.

Complete documentation of this modification including, wir-
ing lists, circuit diagrams and negatives for etching the boards
is available and we would be happy to send this documentation to
anyone requesting it.

Bibliography

Yaohan Chu, Digital Computer Design Fundamentals, McGraw Hill

Book Company Inc., 1962

Autonetics, Minuteman Computer Logical Description Engineering
Manual 2065 14 January 1960

Air Force, General Purpose Digital Computer Technical Order
11G2-10-5-3-5 December 1960

Air Force, Digital Computer Electronic Modules Technical Order

11G2-10-5-3-10 15 October 1962



37

STATE DESCRIPTION OF D17B COMPUTER

Cépt Dbug‘laste Allen ‘ Gary B. Lamont
. Electrical Engineering Department
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

ABSTRACT

This report presents a state description.of the D17B Computer. A set
of control flipflops were chosen and from this choice the states of the
computer were defined. The discussion of each state includes a set bf
regisfer transfer equations that ehumerate the information transfer during
that state. ‘ o | |

This approach was taken té bresent a compromise between a simple veitch
diagram of the computer modes and a compiéte listing of the logic equations
for the computer. Hopefully, this description will not only bs a graphic
study plan of the machine, but also an aid for maintenance and trouble

shooting.
Introduction

A state description of the D17B Computer is a method of portraying the
functional operations of the computer using the configuration of the control
flipflops. A given configuration of the control flipflops is defined as a
state of the computer and the paths between the states represent the functional
operations. A set of r@éister transfer equations that ocutline the information
transfer between registefs may be added to complete this description.

This approach is used for computer synthesis by Chu (Ref 2: 396-429) and
is one basic method of modern computer design. As an analysis technique this
method’places the burden of defihing which flipflops are to be considered as
control flipflops on theyanalyzere After this decision is made, the process
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is straightforward. In this presentation two primary considerations were used
to choose the control flipflops. First, an effort was made to define the
states so that the state description would parallel previous descriptions of
the machine. Secondly, the control flipflops were chosen to make the descrip-
tionjas simple and concise as‘pOSSible.

A state description offers three advantages: (1) it presents a systematic
way to study the machine, (2) the description presents a definite path to fol-
low for maintenance checks, (3) this method presents more detail than the

veitch diagram presentation.

State Description of the D17B
Operation of the D17B may be described by considering the various configu-

rations that the control flipflops enter when the machine is executing a
program. Thus, a state of the machine is defined by a particular configuration
of the control flipflops. States may be represented on a diagram which depicts
the various paths that the machine may cycle through during program execution.
This state diagram may be used in conjunction with a description of the informa-
tion exchange between registers to completely describe the machine operation.
State descriptions have the advantages of being a visual description, thus
easily understood and capable of displaying large amounts of information in a
concise form. Even more important, the state diagram provides a systematic

approach for describing how the computer functions.

Register Transfer Notation. In order to conveniently describe how infor-
mation is transferred between registers during each state, it is necessary to
adopt a type of shorthand convention to condense the description. The symbols
usually used in this notation are an adaptation of the system used by Chu,

Ref 2: 378.

State Diagram. In this report the states of the computer have been broken

into two major classes or modes, Compute (K) and Non-compute (K'). The states

in these classes are represented by nodes (circles) and are numbered with an
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identifying number. Configurations of the major control flipflops which cause
transition between states are listed beside the transition path on the diagram.
Associated with each state disgram is a table which lists the state by number
and name and the information transfer which occurs during that state. The
Non-compute states are displayed in Figs. 1 and 2 and Compute states are shown
in Figs. 3, 4, and 5. The associated register transfer notations for these
state diagrams can be found in Ref 6. This reference can be obtained from the
Defense Documentation Center. ' |

Non-Compute Stetes. Ref(3: 56) and (41 1.1 - 2.15)

Power On Random State. When power is applied to the D17B, the controlling
flipflops will become activated in a random state. Depressing the "MASTER
RESET" switch causes the computer to enter a Prepare To Operate state where
initialization is begun. See Fig 1. ,

Prepare To Operate (nl). 1In this state the phase register is initialized
to an 1dle mode. Fb is turned off to prevent the computer from entering a
special state called fine countdown. The Disorete cutput control register is
initialized to prevent random disocrete outputs and various other flipflops are
initialized to start the synchronization of the bit counter with the sector
track. Control flipflops 0, and J are one set to allow transition to the
Sync Bit Counter 1 state.

Syne Bit Counter 1 (n2). This state is the mecond state during which syn-
chronigation fo the Bit Counter and the Seotor Track is accomplished. As
shown on the state diudrsm, e transient master reset signal (less than one
memory revolution in duration) will cause the machine to recycle through
the Prepare To Compute State. The O, flipflop is "one" set allowing entry
into the next state, Sync Bit Counter 2.

Syno Bit Counter 2 (n3). In this state the instruction register is loaded
with an unconditionsl jump inmetruction to chamel O, sector 0. This instruction
will be the first instruction executed unless a new instruction is loaded prior
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to the computer entering the compute mode.

After complete synchronization of the bit counter and the sector track,
the Rc and O flipflops are "zero" set allowing transition to the Manual
Halt-Idle state.

Manual Halt-Idle 1 (n4). This state acts as a decision point for
state transition. Three separate situations will cause the computer to
enter the Mamual Halt-Interlock state. If the previous state were n3 or n7,
then state n4 was entered at a bit time corresponding to Tx of sector number

0; thus, the OA flipfldp will be "one" set prior to the occurrence of any

other state determining transition.

A third situvation which could cause transition from n4 to n5 arises
when the computer control switch is placed into "Halt" or "Single Step"
during a compﬁte operation. State n4 will be entered from Program Halt
and transition will occur to state n5 or n7 depending on the O1 flipflop.
This state transition is not predictable since the O1 flipflop state will
be determined by the instruction that was being executed when the compute
switch was placed in the Halt or Single Step. State n7 may be the next
state entered if the previous state was n5. In this case n4 was entered
at a bit time corresponding to T1 of sector 177 thus allowing the O1
flipflop to be "one" set.

State n8, Prepare To Compute, will be entered if the "Compute"
switech is not in a "Halt" position and sz is zero set. sz is a flipflop
that is one set as the result of a verify or parity error.

Manual Halt-Interlock (n5).  If there is no Mechanical Reader Input
Signal (I*&) present or if a "Halt command is present from the "Compute”

Switeh or if a Sprocket timing interlock signal (T#') is present with no
Fill Signal, the computer will cycle between states né and n5. Similarly,
a cycle will exist through n7, n4, and n5 if a Mechanical Reader Input
signal is present with no Fill signal (F§)° "Wait" state, n9, will be
entered if a Fill signal is present. Thus, Manual Halt-Interlock, n5,

acts as an interlock for the state transition process of the computer.
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Manual Halt - Prepare to Load (n6é). Prepare to Load state is entered
if a device such as a photo reader is used for loading. From this state,
transition will be back to n5 if a Sprocket Timing Interlock signal (T¥!')
is present or to the Wait state, n9, if no T*' signal is present.

Manugl Halt - Idle 2 (n7). The Manual Halt-Idle 2 state serves as a
timing delay. From this staté the computer will enter n if the compute
switch is in the "Halt" position and/or a Parity Error has occurred. If

‘'no parity or verify errors have occurred, the next state will be n8, the
Prepare to Compute State. In the‘event that a Fill signal (F:) ocecurs,
the next state will be n9.

Prepare to Compute (n8). In the Prepare to Compute state initiali-
zation of several flipflops is accomplished in preparation for entry in
the Number Search State of Compute. J must be "one" set allowing the D
flipflop to be "one" set. Then when agreement is reached between sector
track and the Number Register, K is "one" set.

Wait (n9). Flipflops are initialized to receive the Input Load code
in the Wait State. The computer will cycle between this state, n9, and
nl0, Prepare to Sample, until the Sprocket Timing Interlock signal, T#!,
has reached steady state. If a verify error occurs, the Idle 2 state will
be reentered.

Prepare to Sample (nl0). The primary purpose of the Prepare to Sample
state, nl0, is to allow the Sprocket Timing Interlock signal to reach steady
state as described above. When this occurs, the computer will remain in the
Prepare to Sample state until bit time T23 occﬁrs and will then transition
to the Sample state, nll.

Sample (nll). During the Sample state, the computer will load the

1* through 15*. Note that flipflops Cpl
through Cp4 were "zero®iget invstate n9 and will be "one" set only by an

information on Input Lines I

I* input. At bit time.T13'the computer will enter the Parity Check state.
Parity Check (nl2). Flipflop Sp3 Will toggle on Cpl as Cpl through
Cp4 complete a circular shift. This circulation will occur on each bit time
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when the 04 flipflop is "one" set. In order to insure circulation for only
five bit times the 04 flipflop is "one" set on bit time T20 and "zero" set
on bit T24° "One" setting theACp5 flipflop will allow a change to one of
the Process Code states depending upon the contents of the Input Lines.
Process Code-Clear (nl13). The clear load code causes the Lower
Accumulator, L, to be filled with zeroes. "One" setting the Lc flipflop
allows new information to be read into L starting with bit time TO’ Then
the Cpl flipflop is flipflop is "zero" set preventing new information from

being read into the L-loop. If a parity error is ihdicated by a S%B at bit

time Tp the next mode will be n9; however, if no parity error occurs, the
computer will bo to state n7, the Wait state.

Delete (nl4). When the input lines are all "ones" no action is taken
by the computer. This command can be used as a space in input tape. All
"zeroes" is not used@ as a Delete command because the Sb3 flipflop would
indicate a parity error. o

Prepare to Fill State (nl5). The Prepare to Fill state is a prepara-
tion state for filling the memory. After the Fill command is processed,
the succeeding Load codes will be loaded into memory until "Halt" or "Start
Compute" commands are processed. In the event a parity error occurs, the
next state will be n7; if no parity error occurs, n9 will be next.

Prepare to Verify (nl6). The Prepare to Verify State is analogous to
the Prepare to Fill State. Once the computer cycles through this state
(caused by processing a load code I5' I, IB' I, Il) the succeeding load
codes will be compared with the contents of memory as specified by the
Instruction Register. This actual operation will be executed as the
result of an Enter command will therefore be described as part of the
Enter state. Exit from this Prepare to Verify is similar to that of the
Prepare to Fill state.

Octal Numbersk(nl7)o In this state the octal numbers received from
the input lines will be stored in the L regiéter. Any number of octal
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codes may be loaded but only eight sets of octal digits may be stored in
the Lower Accumulator at one time. Octal Numbers that are shifted out of
L are lost. Exit from this state is similar to those of the other Process
Code states.

Location (nl18). In this state, nl8, the contents of the L register
is transferred to the instruction register. This information will contain
the memory location, channel and sector number, that will be used to start
Fill and Verify operations.

The Ic flipflop is "one" set at bit time TO

to be written in the I register, then it is "zero" set at bit time T24

allowing new information

after L is transferred to I.

Enter (n19). In this state, nl7, the contents of Lower Accumulator -
will be loaded first into the accumulator, then into memory if a Prepare
to Fill state had initiated a fill operation or the contents of the
Accumulator and Memory will be compared if a verify operation had been
initiated by the machine cycling through the Prepare to Verify state. The
location of memory involved in the above operation is specified by the
Instruction Register. If a parity error is detected, transition will be
from nl9 to n7, otherwise an error-free operation will allow the computer
to go from the Enter state to the Wait state.

At this point it is necessary to define a set of four states that the
computer cycles through during a Fill or Verify operation. (A Fill or
Verify operation results after the computer has successfully cycled through
the Prepare to Fill or Prepare to Verify states and will continue until the
Halt or Start compute state is reached). These four states are called
Fill-Verify Idle, fvl; Fill-Verify Number Search, fv2; Fill-Verify Wait 2
Word Times, fv3 and Fill-Verify Execute, fv4 and the computer cycles through
them simultaneously as it passes through the Enter state. A state diagram
of this four-state operation is depicted ifn" Fitg-2. These states will be

discussed in conjunction with the Enter state since they occur simultaneously
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beginning in the Enter state. The action taken by the computer will vary
with the part of memory that is to be filled or verified, thus it is neces-
sary to consider not only the Enter state and the four-state cycle described
‘above, but also the part of the memory involved in this operation must be
considered. _ '

Fill-Verify Idle (fvl). During the Fill-Verify Idle state the Lower
Accumulator is copied into the accumulator. "Zero" setting the D flipflop

causes transition to fv2, the Number Search State. This transition occurs
simultaneously with a transition from nl9 to n9 states.

Fill-Verify Number Search (fv2). During this state agreement is
established between the Sector Track and the:operand sector part of the I
register. This comparison is made by the Ob2 flipflop during bit times
T2 through T7. ' The operand channel part of the I register is copied into
the Cp register and channel agreement is established. The D and E flipflops
are "one" set to cause transition to the Wait 2 Word Times state.

Fill-Verify Wait Two Word Times (fv3). During the Wait Two Word Times
state, the Channel Buffer is copied into the Channel Register. The Number
Register copies‘the contents of memory as specified by the Channel Register.

"Zero" setting the D flipflop causes transition to the Fill-Verify Execute
state. '

Fill-Verify Execute (fv4). For both Fill Verify operations, the oper-
and sector part of the I register will be augmented by one in this state.
For Fill operations the contents of the Accumulator will be transferred to
a memory location as specified by the Opefand Address part of the I regi-
ster. After the Fill‘operation,»transifion is made to the Fill-Verify
Idle state. Verify operations are different in two ways. First, the
contents of the Accumulator and the Number Register are compared. If
agreement occurs Sb2 flipflop will remain "zero" set and the next state will
be fvl. Disagreement is indicated by S
will be a Manual Halt state.

b2 "one" setting and the next state
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Halt (n20). When the "Halt" code is processed, the Halt state will be
entered and the Vc flipflop will be "zero" set causing a transition to the
Program Halt state.

StartVCompute (n21). The Start Compute command when entered on the
input Lines will cause the computer to enter the Manual Halt Idel 1 state

before transitioning to the Prepare to Compute and Compute states. If a

parity error occurred while processing the code, the computer will not
transition from the Manual Halt states. |

Program Halt (n22). Four separate conditions may cause the computer
to enter n22, the Program Halt state. If a "Halt" load code is successfully

- processed in, the computer will enter n7 before returning to Manual Halt
Idle states.

Secondly, a halt instruction may be executed in the Compute mode or if
the Compute Switch is not in the "Run" position when a new instruction is
found the computer will return to Program Halt state from the "Last Word
Time State" of Compute. Also, if during the Number Search state of compute

~the "Compute Switeh" is not in "Run" and an instruction search is required
to locate a new instruction, the computer will enter n22. In all cases the
computer prepares to enter one of the Manual Halt Idle states during the
Program Halt state. The actual Idle state entered depends upon the state
of the 0l flipflop which was set by the instruction being executed when
state n22 was entered.

If state n22 were entered as the result of processing a Halt command.
: during a Fill or Verify operation, the D and E flipflops will be set to
~ cause the computer to simultaneously enter the Idle state of the Fill-
Verify operation. ‘ » |
Compute States. Ref (3: 25) and (4: 5.1 - 6.13)

The Compute mode of the D17B is controlled by seven major control flip-
flops. The K flipflop, when "one" set, indicates that the computer is in

one of the "Compute" states. The various states of Compute are then
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controlled by the D and E flipflops. When the E flipflop is "one" set

an instruction is being executed. The D flipflop, when "one" set, indi-
cates that an instruction search is in progress and when "zero" set
indicates instruction read and/or operand search is in progress. The
four flipflops of the Operand Storage Register, OZ through Ol, determine
the instruction that will be executed.

Instruction Search State (cl). The Instruction Search State as

defined in this report will be the state indicated by the flipflop
settings K D E'. It is not necessary for this state to occur with the
execution of every instruction.

If a program is optimally coded, a new instruction can be read into
the I register during the execution of the present instruction. In this
EaSe, the instruction search operation was performed as a result of fore-
thought of the programmer. Similarly, the Instruction Read-Number Search
state may also be avoided by astute programming. In this case the computer
would cycle between the two states of Execute without actually performing
an instruction or operand search.

Instruction agreement occurs when the memory location addressed by
"next instruction" part of I is in a position to be read by the computer.
Monitoring for this condition is performed by the buffer flipflops Obl
and O
controls the D flipflop. When the D flipflop becomes "zero" set, transi-

b2° These two flipflops are monitored by the Id flipflop which

tion to state c2 occurs.

Instruction Read-Number Search State (c2). Instruction Read-Number
Search state, c2, is a dual function state defined by DE' flipflop condi~-
tions. Like the Instruction Search State, this state may not necessarily
be realized with the execution of every instruction. One-half of the dual
function of the state may be exercised. For example, the next instruction
may be found and read during the Execution state and the computer may cycle
to state c¢3 for the Number Search function alone.
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For number agreement the informaticn in Ip at bit times T2‘through
Tg must agree with the Sector track, S. Since the loops are effectively
separate channels of 4, 8, and 16 word length, more than one flipflop is
needed to check agreement for all channel elngths. Flipflop Ob2 monitors

for agreement for the 4 word loops, O,. monitors for 8 word loops, Sbl

bl
for 16 word loops and Ob3 monitors for the full chamnel length, 128 words.

ThegNa flipflop is the primary number agreement monitor and is changed by

the above number agreement flipflops at bit time T13,
Instruction Read is accomplished by setting the desired memory chan-
nel into the C_, through C_. flipflops. When flipfiop I

p5 pl d
Instruction agreement, the Ic flipflop is "one" set allowing the new

indicates

instruction to be read into the I register. Bits I24 through 121 are read.
into the Operand Buffer Register, and I12

channel buffer register. If the instruction is a flag-store instruction

through I8 are read into the

(12021) the flag channel information, I g, I g4, and I, is read into the
Flag Code Buffer Register. If the instruction is not a flage-store instruc-
tion, the Flag Code Buffer Register is loaded with "zeroes".

From this state, ¢2, transition will be to one of the instruction
execution states or to cl in the case of the transfer on minus instruction
with a positive accumulator (see state c4 description). If the Compute
Switch is not in the "Run" position when the Ic flipflop is "one" set to
read a new instruction, the computer will go to Non Compute Program Halt,
n22, '

Last Word Time of Execute (c3). The Last Word Time of Execution, c3,

will be discussed in conjunction with the execution of each of the instruc-

tion states since during this state the operation started in each of the
instruction states is completed. For all one-word-time instructions (04=l),
the instruction defining state is entered for the first bit time of execution
and then the computer transitions to ¢3 to complete the operation.

This state acts as a decision point for the computer to exit the Compute



51

Mode., If the Compute Switch is not in the "Run" position and a new instruc-
tion is found, the computer will go to state n22, Non Compute Program Halt.
Unconditional Transfer (c4). The word format of the D17B makes no

provision for specifying the channel of the next instruction. Thus, there
must be a command to change chamnels of operation. The Unconditiomnal
Transfer is a "jump" instruction that is used for this purpose. In this
"jump" instruction the sector of next instruction field is ignored and the
complete opérand address serves as the address of the next instruetion.
The new channel address is contained in the Operand channel portion of the
transfer instruction. This information was shifted to the program channel
Buffer register during the instruction search operation. At bit time TO
tbe program Channel Buffer Register is parallel loaded into the Program
Channel Register.

Instruction agreement is controlled by the number agreement flipflop

which determines the sector of the new instruction from bits I7 through I1
of the present instruction. .

Conditional Transfer (c5). The decision for the Conditional Transfer
operation is made in state c2. If bit A24 is zero, the accumulator is
positive and the computer returns to state ¢l to search for the instruction
as indicated by 5p [I]. A "1" in-bit position A,, indicates that the accumu-
lator contains a negative number and the computer goes to state c¢3 and
selects the new instruction as indicated by O[I].

Store Accumulator (cé). The Store state must be considered for four
different situations; storing in channel 50, storing in channels 00 thru
46, storing in the loops, and flag storing.

Storing in channel 50 or "Hot storage writing" is initiated by setting
the Si flipflop to the channel 50 store code, then the Accumulator is copied
directly into channel 50 and in a sector two octal-numbers less than the
sector of S[I]. This two sector difference is accounted for by the fact

that the write heads are separated from the read heads by two sectors.
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In order to store information in channels 00 thru 46 an EWC signal must
be present, enable write switch must be on. For selecting channels 00 thru
L6 the computer utilizes a separate selector switch for each channel. ‘This
selection is accomplished using the contents of Channel Storage Registei-e
The Accumulator is then stored in the memory address specified by the OP[I]
minus two sector positions.

Storing in the E, F, H loops is similar to storing in channel 50 -
except the S flipflops are set by the contents of the channel buffer regis-
ter. . ;
Storing in the V and R loops may be accomplished if the computer is
not in Fine Countdown mode (Fc=1) (See state ¢17). In this case, the
contents of A is added to the incremental input at the time of execution.

A special case results when the T20 bit of any 1nstrucﬁlon is 1",

This "flag", "1" in T20 is used to execute two operations with one 1nstruc-
tion., The contents of the Accumulator will be stored in the channel 1nd1—
cated by the contents of bits 119 thru I17. This means that the sector of
next instruction field of the instruction being executed is limited to the
four bits I16 thru 113 and the next instruction must be within the next 16
sectors. Flag storing is accomplished in the following steps: The Flag
b,is loaded with the contents of 119
state c2. During the execution of the instruction the Flag Store Buffer

store buffer register S thru I, during
register is parallel-locaded into the flag store register. This information
is used to select the proper write heads for writing the Accumulator
contents into memory. .

Clear and Add (c7). State c7 initiates the clear and add operation,
in which the contents of memory as specified by the operand address is
transferred to the Accumulator. In state c¢7 the Nc flioflop is "one" set
allowing the selected contents of memory to be read into the Number regis-
ter. In state ¢3 the operation is completed, the selected contents of

memory is read into the Accumulator.
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Add (c8). State c8 initiates the add operation in which the memory
contents as specified by operand address is added to the Accumulator.

The sum is then stored in the Accumulator.

Subtract (c9). Subtraction is accomplished by the hardware as
addition in the D17B; however, the carry operation of addition is con-

verted to a borrow operation by a "one" in the O2 flipflop.

~ Split Add (c10). During the split add operation the split word
contents of the Accumulator is added to the corresponding parts of memory
and the sum is stored in the split word portions of the Accumulator. At
bit times le and TlB
of A12 and Al3 to remain unchanged.
Split Subtract (cll). The split subtract operation is similar to the

the Ac flipflop is "zero" set allowing the contents

split add operation, except that the split word contents of memory location
specified by O[I] is subtracted from the contents of the Accumulator.

X Special State (cl2). No action is performed in the X special state.
It serves only as a decision point for the computer to enter a special set
of states that require one word time to complete and do not require access
to the computer memory. The Channel Storage Register contents are used to
select the X special state that will be entered from cl2. In this special
operation the channel storage register serves as an auxiliary operation-
code storage register. Since all the X special operations are one word
time instructions, the specific X special state serves to define the oper-
ation and much of the actual operation is performed in state e3.

Complement (cl3). The complement operation causes the 2's complement
of the Accumulator to be read into the Accumulator. The Accumulator is
circulated and the Ac flipflop is "one" set by the first "one" in the
Accumulator. All succeeding bits of the Accumulator are complemented.

Minus Magnitude (cl4). When the computer enters the Minus Magnitude
state, cl4, the sign of the Accumulator is tested. If the Accumulator is
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negative no action is taken; if the Accumulator is positive the Cb1 flipflop.
is "one" set and copied into ‘the C1 flipflop, thus generating a complement
instruction.

Logical And to Accumulator (e15). Entering state cl5 causes the
correspondig bits of the Accumulator and Lower Accumulator to be logically

"anded".

Enter Fine Countdown (clé). Entering the Fine Countdown causes the
F flipflop to be "one" set. This places the computer into a parallel oper-
atlon called Fine Countdown. During Fine Countdown the V and U loops form a
digital integrator. This operatlon will continue until the Halt Fine Count-
down state is entered.

Halt Fine Countdown (cl17). Entering the Halt Fine Countdown state, cl7,
causes the Fine Countdown flipflop, Fc’ to be "zero" set. ‘

Reset Detector (cl8). When the Reset Detector state is entered, the
Dr flipflop is "zero" set. The Dr flipflop is "one" set by Iﬁ, |

Halt and Proceed (cl9). Entering state c19, Hand and Proceed causes
the computer to enter state c¢3 and then state n22, Program Halt.

Load Phase Register (c20). The Load Phase Register special instruction
causes'02 to be loaded intp P, and C; is copied into P,. P, copies the I_ '
flipflop at bit times T1 thrqugh T5. State c20 is defined by three of the C
flipflops, 055 04, and 03; the remaining two C flipflops may be either "one"

1

or "zero" set. The actual purpose in setting the Phase Register will be
discussed in conjunction with state c27.

Binary Output (c2l, 22, c23). éinary Incremental Output states may
be discussed simultanedusly. These states differ only in the sense that
state ¢21 involves output flipflop G

=1
G3. Only the first state, c2l, will be discussed because the discussion

, €22 involves Gy, and ¢23 involves

is directly applicable to all three states by substltutlng the proper G
flipflop in state ¢2i, where i=1, 2, or 3.

In state cRl the state of the G1 flipflop is checked. If Gi equals
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"1" the first éight‘bits of A are treated as a word and +1 is added to that

word . ~If"G1fequals "O" a 1 is subtracted from the word formed by the first
eight-bits of A. After one of the above operations is accomplished, the -
Gl flipflop copies the sign bit of A. o

Discrete Inputs (c24, ¢25). In both discrete input operations a set

of twenty-four discrete input lines and flipflops are sampled and read into
the A register. For a Discrete Input A,DIA, operatlon the discrete 1nput
1 through X19 and flipflops Dr s P P P

lines X 39 5
through A24 respectively.

s replace bits A:1
During the operation initiated by state c25, DIB, the discrete 1ines
Y. through Y24 replace bits A

1 1
mation transfer described in these states takes place in state ¢3; however,

through A24 respectively. The actual infor-

the states c24 and ¢25 serve to.define the operation to be performed in
state c3. | , »

Discrete Outputs (c26). The operatien initiated by state c2, Discrete
Output A, causes the bits Il through I, to be ldaded into the Discrete Out-
put Register, D1 through D5@ ‘

Voltage Output (e27, ¢28, c29). The Voltage Output states are identi-

cal in concept. The function of these states varies only in the physical

5

location of the output voltage.

Three Voltage Output Registers are loaded with the split word contents
of A, If 14 is "1", the right half of A is loaded and if I4 is "O", the left
half of A is loaded.

The states c27, c28, and cR9 determine which set of Voltage-Output flip-
flops, V., through Vg, (i=1, 2, or 3) will be loaded from A. If c27, VOA,

11 through V18 will be loaded; c28, VOB, causes V21 through V28

is entered V
to be loaded; and c29, VOC, causes V,, through V., to be loaded with the

31 38

proper half-word of A.
The Phase Register also affects the output location of each voltage
line.



Y Special State (e30). The Y Special state, ¢30, serves only as a
decision point for entering specific states ¢31 through ¢38. Operatioﬁs
initiated by the Y Special state do not require access to Memory; however,
they do require more than one word time to complete.

Accumulator Left Shift (e¢31). A left shift operation is accompliéhed
in the D17B by adding an extra flipflop, A, to the A loop for the number
of word times equal to the number of shifts required. The number of shifts
is specified by I through I ‘This number is loaded into the Channel
Buffer Register and counted down at each word time.

Accumulato“ nght Shift (e32). State c¢32 1n1tlates a right shift of
“the Accumulator. To accompllsh:thls operation, the Ap flipflop is removed
from the recirculation loop of the AcCumulatoro The number of right sifts
v 1 through‘I5 |
the A- 10@p for %ﬂat number of word times. If the Accumalator is positive,

required is indicated by I and the A, flipflop remains out of
zZeroes are £illed into the vacated b1t5° however, if the Accumulator
contalns a negative number, l's replace the bit p051tlons vacated by the
right shift. \ | o o

Split Aecumulato$ gft and Split Accumulator Right Shift (c;), e3L).
The dlscu531on of states ¢31 and ¢32 are directly appllcable to the states
¢33 and ¢34 respectively. In the split-shift states the left and right
half words of th@ Accumulator” are shlfted the same number of bit positions
but are treated as separate words.

Split Left Word Left Shift (c35). State c35 inifiates an operation
which causes the left half-word of the Accumulator to be shifted left by
+the »umher of bit positiOnd'Speéified infi through Ise The discussion of
state ¢31 is applicable to thls state except that bits A14 through A24
only are affected.

Split Right Word Left Shift (c36) Bits A, through A, only are
affected by the Split Right Wbrereft Shift operation. As implied by the
state name, the rihgt half-word of the A register is shifted left.

57
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Split Left Word Right Shift (e¢37). State ¢37 initiates a right shift
of the left ha1f~word of the Accumulator. As in all right shift operations,
if the half-word were positive, the bits vacated by the shifting are filled
with zerces and if “he half-word were negative, l's are filled into the
vacated bit positions. ‘ ‘

Split Right Word Right Shift (e¢38). State ¢38 initiates a right shift
of the right half-word of the Accumulator. The discussion of ¢37 is directly
applicable to this state except the right half-word is shifted.

Single Character Output (e39). The operaticn initiated by state ©39
shifts the four most significant bits cut of the Accumulator and presents
them to the four character ocutput lines. A fifth character ocutput line is
used as a parity line. This information is presented on the character out-
put lines for the number of werd times specified in s[I].

The Single Character Output operation is accomplished in the following
manner. The sector portion of the instruction operand is shifted into the
Operand Channel Buffer Register; Bach word time this register is decreased
by one, thus it is used to terminate the operation after the end of (s[I])+l
word times,

During the first word time of the Single Character Output cperatiocm,
the circulation loop of the Accumulator is extended to inelude four flip-
flops of the Operand Channel Buffer Register: Cj, Cp, 03, and C,. This
causes the four most significant bits of the Accumulator to be left shifted
into these C flipflops. Parity is indicated by the J flipflop by "zero"
setting it at the beginning of the operaﬁiQn gad allowing it to toggle as
each "1" is shifted into the flipflop.

The parity (J) and output (043,C3, C,, and Cl) is presented on the
output lines S@5 through Scl’ respectively, with the occurrence of each

ScT timing pulse.

Split Compare and Limit (040)@ State c40 initiates the Split Compare
and Limit Operation in which the split-word contents of the Accumulator is
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compared with the corresponding bits of a word in memory. The memory is
specified in the operand of the SCL instruction.

If the contents of the memory word is greater thanfthat of A, no
changes are made. If the split word portion of A is positive and greater
than the corresponding part of the memory word, the split memory word
replaces the split~word of A.

If the quantity in memory is less than the corresponding part of A
and that half-word of A is negative, the two's complement of the memory
half-word replaces the Accumulator half word. '

Multiply (c4l). The Multiply operation is initiated by state c4l.

The operation causes the contents of the Accumulator to be moved to the
Lower Accumulator and the product of the Accumulator and memory contents
specified by the MPY operand is placed in the Accumulator.

Split Multiply (c42). State c4? initiates the Split Multiply
operation. This operation is similar to the Multiply operation excepf
the left half-word of A goes into the right half-word of L and the right
half-word of A goes into the left half-word of L. The split words of the
Accumulator and the memory word specified by O I are multiplied and stored
in the respective split words of the Accumulator. '

Split Multiply Modified (c43). Split Multiply Modified is an operation
which causes the three least significant bits of the Channel Buffer Register
to be replaced by the "exclusive or" of those bits and the contents of the
Phase register. The operation then proceeds as a Split Multiply operation.
Split Multiply Modified commands allow the computer programmer to vary the
effective operand channel address depending upon the Phase register contents.

Multiply Modified (c44). State c44 initiates the Multiply Modified
operation which causes the three least significant bits of the Channel Buffer
Register to be changed by an "exclusive or" operation with the Phase Register.

After the above modification, a multiply cperation is accomplished as described



in state c4l. It is noteworthy that this operation does not change the
original multiply instruction in memory.

State Description Summary

In the above description of the D17B the varicus configurations of
control flipflops were used to define states of the computer. These
state definitions are not unique and many other sets of flipflop combi-
nations may be used to describe the machine operation. The states
described were chosen because they could be given names that correlate
with other published information about the D17B. Hopefully, this type
of description will be an aid not dnly in understanding the cperations

of the machine, but alsc in maintaining it. For example, the "state"

of an inoperable machine may be determined by checking the status of the

control flipflops. Once the state is identified, the malfunctioning
circuit may become apparent by considering which flipflop is preventing
normal state transition.
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Appendix A

List of Terms and Abbreviations

Ak: Carry, borrow and misc. flipflop.
AP: "A" register extra delay flipflop.
AX: "A" register read flipflop.

A24: "A" register delay flipflop.
Aéjw: A" register write flipflop.

Bgs Bsy By, By, By, Bi: Bit time counter flipflops.

Cpsr Cpyr Cp3s COpos ©

B
Operand channel buffer register and word time

bl counter flipflops.
Cp5, Cp4’ Cp3, sz, Cpl’ Program channel register.
CS’ CA’ 03, Cry Cl: Operand channel storage register and auxiliary

operation-code storage register.

D17B: Designation of the computer used for guidance in the Minuteman I
missile.

Dc: Shift control for "Discrete Output" register.

Dd ¢ Discrete disable signal from a control panel to control the discrete
outputs.

Dr: Gyro malfunction indicator flipflop.

5, 4, 3, D2, Dlz "Discrete Output" register.
¢ Control flipflop.

E: Control flipflop.

mez "E". loop intermediate read flipflop.

E_: "E" loop end read flipflop.

¢ "E" loop write flipflop.

E
E _: Enable write signal - from a control panel - enables "cold storage"
write heads in memory.

F.: Fine~-countdown-mode indicator flipflop.

F : "F" loop write flipflop.

FS: Also FSc in some writings - signal from a control panel that directs
the computer to enter the Prepare to Fill state.

F : "F" loop read flipflop.



GB’ G2, Gi: Binary outputs flipflops.

Hp: "H" loop write flipflop. v

Hﬁx: "H" loop intermediate.read flipflop.

Hx: "H" loop end read flipflop.

Ic: "I" register interrupt control flipflop. ,

Id: "Instruction - Seiichﬁ sector disagreement indicator flipflcp.
Ii‘ Also Ij,s the 1™ signal input to the computer from an external

source for character input, i=l, ..., 5.

I : Symbol for a mechanical input signal to the computer, command to
enter the Wait state.

I : "I" register extra delay flipflop.
IX: nn reglster read fl:l.pflope ,
I24W: nn reglster wrlte fllpflop.

J3 Control flipflop.

K: Control flipflop.

to enter the compute states.

K!' : Run not or halt signal from a control console - dlrects the computer

to enter the non-compute states.

Lc: "L" register 1nterrupt control flipflops.
LO "L register delay flipflop.

Lp: "L"  register extra delay flipflop.

LX: "IL" register read flipflop.

L24w: "L" register write}flipflop.

be: Memory ocutput buffer flipflop.:

M

, computer to the Prepare to, Operate state.

Né: g reglster 1nterrupt control flipflop.

Nd: "Number Search" sector disagreement fllpflop. «
Nb: "N" register extra delay flipflop.

NX: “Nﬁnreg;ster,read"fl;pfigpov“

Kﬁ ¢ Halt not or run signal from a control console - directs the computer

¢ Also M - master reset signal from a control console, initiates the

63
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A
0 1l: Symbolizes that the fllpflop named A

Né&w? "N" register write flipflop.
Ob3’ b2? Oblz Operation-Code—Buffgr register.
04, 03, 02, 01: Operation-Code~Storage register.
P P2, Pl: Phase register.
Q: Special timing flipflop.
Rc: "R" loop interrupt control and mode control flipflop.
Rp: "R" loop write flipflop.
Rx: "R" loop read flipflop.
S: Information read from the sector track of the D17B computer memory.
Sp37 Spps Sppi “Flag-Code" buffer register. |
83, 82, Slz "Flag-Code" storage register.
Tc: Sprocket t%ming signal; used to direct the computer to accept
character inputs.
' Ti: Bit times of the computer, i=1l, ..., 24.
TO: "To Time" indicator flipflop.
Tp: "Tp Time" indicator flipflop.
?x: "Qx Timeﬁ indicator flipflop.
Uﬁ: "g" loop write flipflop.
qx: "g" loop read flipflop.
Vc: "V" loop interrupt control and state control flipflop..
Vp: "V" loop write flipflop.
Vx: "V loop read flipflop.
V38, V37, coey V31: Voltage output register number 3.
V28’ V27, coey V21: Voltage output register number 2.
V18’ v 172 *e e Vilz Voltage output register number 1.

1 is set to a logical "zero"
condition or "gzero set".

171: Symbolizes that the flipflop named A1 is set to a logical "one"

condition or "one set".

: The star or asterisk indicates an external signal to the computer that
has been changed in voltage level but has the same logical meaning as



the symbol with no asterisk.

Prime is used to indicate a logical "not" when A is a logical 1,
A' is a logical O. :

Flipflop names and some definitions in thls list were taken from
Ref (1: 110-114).
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USE OF THE D17B IN A HYBRID COMPUTER SYSTEM

Lansing B. Evans and Charles H. Beck
Tulane University
Department of Electrical Engineering
New Orleans, LA 70118

ABSTRACT

Now that the USAF has released a large number of Minuteman DL7B Computers
which were originally designed for missile guidance, other applications for
these excess general-purpose computers have been undergoing a rapid evolution
in many fields. This paper describes a new hybrid computing application for
the Minuteman DL7B Computer which makes use of a large number of the flexible
capabilities of these computers. Hybrid computing system design can take full
advantage of the capabilities of both analog and digital computers as well as
those of special hardware that is possible to develop because of the availa-
bility of information in both continuous and discrete form. Motivation for
this type of application for the DL7B stems primarily from the versatile I/0
capability of these machines. The purpose of this paper is to present some of
the design considerations and typical applications for a DL7B-TR48 hybrid
computing system, to describe the present system configuration, and to outline
a specific hybrid optimization modeling problem that is being solved using
this system configuration. The DL7B has been found to be completely satisfac-
tory for this automated design application.

BASIC DEFINITION OF A HYBRID SYSTEM

In a broad sense the field of hybrid computation includes all computing
techniques which combine some of the features of digital computation with
some of the features of analog computation. The combination of digital and
analog devices brings together many of the characteristic advantages of both
types of hardware and software. In many cases a disadvantage of one part of
the system is more than compensated for by an attribute of another part of
the system. The idea of interacting advantages will become more evident by
citing some of the capabilities of the two major components of the hybrid
system, the analog and digital computers. There will be additional entries
to the list of general capabilities which follows depending on the specific

computers being used in a particular hybrid system.
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Some capabilities of the analog computer include:
1. Dependent variables within the machine are treated in continuous form.

2, High-speed or real-time computation is available with computing speeds
limited primarily by the bandwidth of the computing elements.

3. There exists the ability to perform efficiently such operations as addition,
multiplication, integration and non-linear function generation; on the other
hand, there is very limited ability to make logical decisions or store data.

4. Programming techniques involve patching together the various computing
elements.

On the other side, some of the capabilities of the digital computer
include the following:
1. All data within the computer is in discrete or quantized form.

2. In general only one operation can be performed at a time and many computing
units must be time shared.

3. The facility exists for storing alphanumeric data indefinitely.

4. The ability exists to perform logical decisions and operations using either
numerical or non-numerical data.

5. There exists the ability to modify the program extensively on the basis of
any calculation.

Almost any computing system is a subset of a complete hybrid system.
Whether a system is almost purely digital with only minimal analog capability,
nearly all analog with a small amount of digital ability, or anywhere in
between, it qualifies as a hybrid system and the principles of hybrid computing
may be applied to it.

HYBRID COMPUTER APPLICATIONS

Because of the inherent flexibility of the hybrid computer, there are
numerous applications for this type of system. One of the most important is
modeling and parameter optimization involving dynamic systems. This particu-
lar application makes use of a true hybrid system involving an analog computer,
digital computer, and appropriate interface components. As the name implies,
modeling requires the use qf known experimental input and output data to obtain
an accurate mathematical or topological model of the system involved. With a
complete hybrid system, relatively complicated and multi-variate models may be

considered.
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The block diagram of a typical hybrid modeling technique is shown in
Figure 1. During a run the actual system or function. generator representing
the actual system:is operated in. parallel with the assumed model. The index
of performance (IP), which measures the quality of the model, is formed on
the analog computer by 1ntegrat1ng the square of the error functlon over the
‘time of the run. Using. this technique the digital computer adJusts the model
parameters after sampling the IP. from. the previous run and performing needed
optimization calculations. The digital computer makes its decisions on the
new parameter settings using an optimization method such as the Tulane Auto-
mated Hybrid Optimization (TAHO) technique.

The TAHO technique has been applied to circuits and various physical
systems. JCurrently the TAHO technique is being used for a multi-variate model
of the head and neck of a pilot in a crash situation. The data are obtained
by monitoring human squects who ride an aeceletatiou sleo along a track. A
simulation of these data is used as’the actual system portion of Figure 1.

Other typical applications of the hybrid computer system include:

Aerospace Simulation

Simulation of Process Control -
Simulation of Man-Machine Systems
Random Process Simulation

USE OF THE MINUTEMAN D17B COMPUTER IN HYBRID APPLICATIONS

In most hybrid systems the digital computer provides control functions
as well as the digital computation”fot'the eﬁtirespstem° Therefore, the
digital computer must have the ability to communicate not only with the usual
digital peripherai equipment but also with the remainder of the hybrid system.
The Minuteman D17B Computef has the needed‘input/output versatility and the
flexibility required for a hy‘brid'systemo For its size, the D17B has a large
‘number of digital input and output 11nes, pulse output 1ines, and analog type
output lines. ' ’

The programmapility of the D17B is also a significant advantage for a
hybrid system. The D17B has a complete set of arithmetic, control, and input/
output instructions. It is also capable of instruction modification which is
an important factor in efficient software for a hybrid system. Because many

of the operations required to control the hybrid interface and the analog
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computer are of a relatively basic bit-level nature, the machine language
programming of the D17B can be far more efficient than the use of a compiler
language. In addition, as will be seen in the next section, the D17B input/
output instructions are very well suited for hybrid operation. _
Perhaps one of the greatest advantages of the D17B hybrid system is the
complete flexibility of the configuration. By the nature‘of the definition
of a hybrid system, it may be anywhere from pure digital to pure analog. The
D17B will fill the digital computer requirements for any of these systems if
the memory size and speed are suitable. The D17B hybrid system described in
the following section is a complete hybrid system with full analog and digital
capabi’litieso A full system such as this allows for any operation from merely
using the D17B to control the mode af the analog computer to the sampling of
analog signals with the A-D converter and performing all processing digitally.
This means that practically any computing application can be realized as a

subset of a complete hybrid system.

MINUTEMAN D17B/TR-48 HYBRID SYSTEM CONFIGURATION

In designing the configuration of the D17B/TR-48 hybrid computer system,
a careful effort was made for full and efficient use of the D17B input/output
capabilities. A block diagram of the basic D17B/TR-48 hybrid computer system
is shown in Figure 2. It can be seen by inspection of the diagram that this
system is a complete, digitally-controlled hybrid system.k

The two major paths of information flow in Figure 2 are those from the
‘ digital to the analog computer and those from the analog to the digital machine.
| Since many applications require multi-variate analysis, it is necessary that
the major paths in both directions be multi-channel. Within reasonable limits,
this presents no problem to the ability of the D17B to control the interface.

The major components of the analog-to-digital information path include a
16-channel multiplexer and an'analog—to?digital (A-D) converter. The multi-
plexer allows 16 analog signals to time share one A-D converter. The D17B
controls the operation of both the multiplexer and the A-D converter as shown
in Figure 3. In order to permit one of the inputs of the multiplexer to be
switched to the input of the A-D converter, a four-bit binary address, between

0 and 15 decimal, is trénsmitted to the‘multiplexer address register. The COA
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(character output) instruction is used for this purpose because it sends out

a clock pulse along with a four-bit parallel pulse type word which can easily
and conveniently be interfaced to the multiplexer address register. The use

of the COA instruction in this case also means that only one machine language
instruction will be needed to control the multiplexer. Once the proper analog
signal has been applied to the A-D converter, two discrete output (DOA)
instructions‘are executed to cause the A-D converter to digitize the analog
input. Two DOAs ére used to generate a pulse as required by the A-D converter.

The ten digital-to-analog (D-A) converters shown in Figure 2 are the most
important links in the flow of information from the digital computer to the
analog computer. The D-A converters are also under complete control of the
D17B. Figure 4 shows how the D17B loads and contrdls the D-As. The D-As used
in the Tulane hybrid system accept an 8-bit digital input. This 8-bit input
is loaded into one of the internal D-A buffer registers and converted to a
proportional analog value when a clock pulse is applied to that D-A. Since no
input is loaded into a D-A until a clock pulse is applied, the digital inputs
of all D-As may be connected together and tied to an 8-bit digital bus.

The D17B has a voltage output (VOB) instruction which may be used for an
8-bit parallel digital output. Eight bits from the accumulator are transferred
to the VOB register when a VOB instruction is executed. Once the VOB has been
executed, the desired 8-bit word is applied to all D-A inputs. A pair of DOAs
are then used to load the digital word into the proper one of the ten D-As.
Only a few machine language instructions are needed for D-A control.

In addition to the basic A-D and D-A units, the interface contains two
somewhat more sophisticated components. These are the digital parameter units
(DPU) and the digitally controlled nonlinear function generator (DCNFG). These
devices involve interactions between digital and analog signals rather than a
conversion from one form to the other.

The DPUs provide for the digital control of the parameters in the analog
computer patching. This control is pefformed electronically at high speed by
the D17B. With this ability the pafameters of the model may be changed at high
speed under program control. Basically the DPU is a hybrid multiplier. It
multiplies the 8-bit digital word transferred from the VOA lines by the corre-
sponding analog signal from the TR-48 as shown in Figure 5.

The interface between the D17B and the DPUs is quite similar to the one
for the D-As shown in Figure 4. The 8-bit VOA lines are fed to the inputs of
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all DPUs. The digital word is then loaded using two DOA instructions as in
the case of the D-A converters. The analog inputs and outputs for the DPUs
are patched on the TR-48 patch board. These extremely powerful hybrid comput-
ing elements are also convenient to use with D17B computer machine language.

- The nonlinear function generator is a digitally controlled variable
breakpoint function generator. The function may have up to ten segments of
any desired slope, and the slopes and breakpoints can be programmed into the
generator under D17B program control. The slopes and breakpoints are loaded
into the generator using the 8-bit VOC lines and DOA pulses. After the loading
of the desired function, the output, y(t), takes on the function output for
the corresponding analog input, x(t), as shown in Figure 6. The setup time for
the function generator is fast and versatile as is the case for the DPUs.

The mode control on the TR-48 Analog Computér is operated from external
relays controlled by the D17B Computer as shown in Figure 2. The outputs from
the VOC digital lines are loaded into a buffer which drives the relays on the
external patch board. The relays that are not used for mode control may be

used for high-speed patching changes in the analog computer program.

CONCLUSIONS

While the D17B is a small general-purpose digital computer, the versatile
input/output capability of this machine has allowed for the development of a
compact, efficient hybrid computer system when used in conjunction with a TR-48
Analog Computer. The most important benefit of a computer system such as the
Minuteman D17B/TR-48 hybrid system described in this paper is that it may be

used in a wide spectrum of computing applications.
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DESIGN OF A BINARY DISPLAY FOR THE D17B COMPUTER

by

HARRY S. WARFORD, Capt, USAF, BSC*
DAVID S. MORAN, GS-9

INTRODUCTION

Hardware development for the D17B computing system has proceeded rather
slowly as a spare time interest at the USAF School of Aerospace Medicine.
As a result, the binary display technique described by this paper has
not been optimized for future growth of the total system. However, it
has evolved into compact and relatively inexpensive design through
effective use of machine inherent characteristics. The overall design
calls for the capability to monitor any register or memory track with
random access to any particular sector. At present, the hardware for
monitoring the one-word registers is complete and the design is complete
for the remaining circuitry to randomly address memory location.

TECHNIQUE

The D17B utilizes the 24-bit full word for programming but actual word
length on the disc memory is 27 bits. The 3-bit "dead time" has been
used in our design to facilitate display without the need for additional
holding registers while maintaining the capability to update the display
each word time. During the 24-bit times representing the computer word
a 24-bit serial entry shift register is filled from the D17B while the
light emitting diode display is blanked. Then during the 3-bit dead time
the shift register is halted and the parallel outputs drive the display.
At the end of the 3-bit times, the display is blanked and the information
is changed or reloaded into the register. ,

For random access the sector channel is to be monitored as shown in
Figure 1. Sector number information will be captured in an external
register and compared with the numbers selected on a set of octally coded
thumbwheel switches. When the information agrees, the proper shift pulses
are gated to the aforementioned 24-bit register to capture the next word
of the chosen channel. Channel choice is by a second set of thurmbwheel
switches and the decoding internal to the D17B.

#To be presented by Michael Jenkin, Major, USAF, MC, USAF School of
Aerospace Medicine, Brooks AFB Texas 78235



CIRCUITRY

Figures 2 and 3 show the circuits used to implement the basic display.
The derived control signals are shown in Figure 4. It must be noted
here that the logic signals were considered to be of positive sense
for ease of design with commercial DIL logic. Additionally,the levels
were not translated but the signals were merely attenuated to produce
a five volt swing and the integrated circuits were operated with "VCC"
at 0 VDC and "ground" at minus 5 VDC. TFigure 5 shows the proposed
control signals to accomplish random access and Figures 6 and 7 show
the present design being constructed for this purpose. At present,
all logic has been broken into modules representing a byte of data and
implemented with commercial plug-in cards and racks.

OTHER DEVELOPMENTS

Little effort has been expended on hard-copy output thus far since the
surplus Flexowriters obtained for this project rapidly deteriorated and
failed early in the project. However, an extremely simple and in-
expensive technique was used to provide input only by mounting a second
set of leaf switches in tandem with those used to operate the punch
select magnets of our remaining operable Flexowriter. This provides
complete electrical isolation thus alleviating the need to modify the
Flexowriter power supply and requires a single capacitor to shape the
timing pulses.

Additionally, an extra tape reader has been converted to stand-alone
use as depicted in Figure 8. A manual I/0 panel similar to those
described at earlier user's meetings provides for miscellaneous control.
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AUTOMATED DATA ACQUISITION AND WAVEFORM
ANALYSIS USING THE MINUTEMAN D17B COMPUTER

Charles H. Beck and Yih-Young Chen
Systems Laboratory, Tulane University
New Orleans, LA 70118

SUMMARY

This paper describes the development of an automated data acquisition and
waveform analysis system for a single-channel AutoAnalyzer using the Minuteman
DL7B Computer. This automated system is a typical example exhibiting several
essential features on which other laboratory data acquisition systems can be
based. The complete AutoAnalyzer Analysis System was set up in the Tulane
Systems Laboratory, and total protein analysis of blood serum was executed as
a representative example of the use of this system. An identical system which
was also developed in the Systems Laboratory was shipped to the Walter Reed
Army Medical Center for use in biochemistry research. This system was used to
demonstrate the success of this development during the Fourth Meeting of the
MCUG. The consistency, accuracy, reliability, and cost-effectiveness of this
. system have shown the usefulness of the DL7B Computer in this application.

INTRODUCTION

Current advances in medical practice are making ever increasing demands
on medical laboratories which result in a shortage of skilled technical staff.
Medical laboratory instruments are finding increased use for clinical and also
research chemical analysis. Some labbratory instruments such as AutoAnalyzers
have increased the productivity that is possible for a given size staff, but
there is still need for impro#ed efficiency if the total laboratory workload
is to be increased without the addition of technical staff of the purchase of
more expensive eduipmen;.
| Typical data from thése instruments are in the form of recorder traces
consisting of a series of peaks. Théée peaks are conventionally interpreted
by gr;phical evaluation performea manually. This tedious and inaccurate task
of manually performing waveform analysié suggests the need for cost-effective

automation.
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Automation offers a potential solution as well as a different set of
problems. Various automated analysis systems. are available through either
commercial or research organizations, but these systems represent considerable
cost and offer little flexibility. Most chemical technologists can be trained
to operate a variety of laboratory instruments.  However, special-purpose
commercial analyzers require increased hardware cost if they are to be used in
more than a limited application. This additional hardware cost will be needed
for each new task unless the analyzer includes a general-purpose programmable
computer. This latter solution offers flexibility, but the cost may even be
prohibitive for many laboratories especially if multiple units are needed.

One method of reducing the high cost of laboratory automation is to use
excess DoD computer equipment such as the Minuteman D17B computers from the
Minufeman I missiles. The main reqﬁirements for successful use of the D17B as
a general-purpose minicomputer are software development and the interfacing of
various peripheral I/0 devices and instruments. Application éreas will expand

as the interfacing‘of these sensing and display devices is developed.

OPERATIONAL‘PRINCIPLES OF THE AUTOANALYZER

The AutoAnalyzer is a continuous-flow;chemical analysis system in which
individual operations are performed on a flowing stream containing specimens
such as blood serum. The AutoAnalyzer makes it possible to measure the con-
centration of various constituents of the blood serum as individual patient
| samples flow through the system. The standards, Controls, and samples are
measured continuouély agaiﬁst a fixed reference. The final results are traéed
on a chart by a recorder étyius.

It is possible to place é re—transmitting potentiometer on a shaft of the
pen drive for thé purpose of creating an eleétriéal signal whose amplitude is
proportional to that of the plotted waveférm. The re-transmitting device can
be connected to the recorder shaft of the AutoAnalyzer in a few minutes thus
providing thé‘only modification fequired for interfacing the AutoAnalyzer to
the‘autométed D17B daté vauisitiOﬁ and waveform analysis system.

Thgfe ére a few'opératiqnal procedtres'thét should be followed quite
carefdlly in oﬁerating the AﬁtoAnéiyier; 'The4esséntial requirement for the

correct operation of the entire system is proper flow of the various liquids
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and air through the pump, coils, and the flow cell. One of the most critical
characteristics of the flow is the bubble pattern. It must be uniform through
the system for accurate analysis. It is always desirable to assure that all
tubes have clean, smooth inside walls. In general, the AutoAnalyzer has been

proven to be a reliable and consistent instrument.

SET-UP OF THE AUTOMATED MINUTEMAN/AUTOANALYZER SYSTEM

A Minuteman/AutoAnalyzer Analysis System has been developed in the Tulane
Systems Laboratory under a research contract supported by the Army Medical R&D
Command, and total protein analysis of blood serum has been executed as one
representative example of the use of this system. This automated data analysis
system for use with an AutoAnalyzer is one typical example of a system which
- includes a Minuteman D17B Computer and has potential for cost-effective medical
application in clinical and research laboratories.

It has been demonstrated that this system gives accurate, consistent, and
useful results. The cost-effective use of the D17B for automated concentration
analysis from an AutoAnalyzer compares favorably with commercial special-design
analyzers, but the capability is similar to analyzers which offer the increased
flexibility that is possible with a small general-purpose computer.

‘The D17B requires a 28 V.DC + 1 V power supply that is capable of provid-
ing 20 A in continuous duty. The power supply should be checked for proper
output voltage under actual operating conditions before it is connected to the
D17B. The D17B should be operated in a cool, dry environment to minimize any
hardware failures. Therefore, an air conditioned laboratory is desirable in
many locations, and a fan is necessary to cool the electronic circuitry as well
as the memory. A relatively simple control panel can be constructed for the
D17B which allows the operator to supply specific initializing and interactive
input signals.

A Model ASR35 Teletype was used as an I/0 device in this system. The
interface between the D17B and the Teletype has three modes of operation:
Character Input, Print Out, and Direct Input. The Character Input mode permits
the operator to load data into the D17B via keyboard or tape reader. The Print
Out mode is entered when the D17B is to execute a print out subroutine. The

Direct Input mode is used to load data directly into the Accumulator when a
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discrete input' instruction is executed. The interface will automatically go
into the proper mode depending on the state of the D17B. The cost of the
interface was minimized by time-sharing hardware for the various modes of
operation.

The estimated cost for installation of an initial Minuteman/AutoAnalyzer
Analysis System is approximately $440 plus 60 man-hours technician time. This
cost does not include amounts for the AutoAnalyzer, Teletype, or the external

power supplies and the D17B which were acquired as excess property.

AUTOANALYZER WAVEFORM ANALYSIS

In the development of the automated system, a typical waveform from the
AutoAnalyzer was simulated using D17B hybrid function generation initially
instead of using output directly from the laboratory instrument. D17B hybrid
simulation offers the advantage of faster operation than is possible when the
waveform is obtained directly from the AutoAnalyzer. The zero-order hold
waveform obtained from a D-A converter was improved by filtering with a simple
first-order feedback network.

Data sampling is an essential consideration in automated waveform analysis.
The sampling theorem specifies the lower limit for the sampling rate, and the
upper limit is determined by the signal waveform and the characteristics of the
specific A-D converter that is used. The amplitude spectrum of the simulated
signal was monitored using a wave analyzer for estimating the sampling rate.
The minimum sampling rate required for this waveform was also investigated by
using two additional approaches, namely practical considerations and explicit
function representation. With the data from these analyses an optimal sampling
rate of one sample per two second interval was determined. This sampling rate
is practical and has been shown to be suitable for one percent (12) accuracy.

The output waveform from the AutoAnalyzer consists of a series of peaks
corresponding to the individual standards and specimen samples. By observing
typical output charts obtained from clinical laboratories, potential sources
of distortion in the analog signal were identified. Distortion is character-
ized by such effects as noise, carry-over, drift, irregularity in ﬁhe crest,
and early or late rise. Therefore, error and sensitivity analysis were applied

in the sampling rate determination.
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AUTOANALYZER ANALYSIS PROGRAM

The output of the AutoAnalyzer is a signal with a waveform consisting of
a series of peaks. The height of each peak represents the concentration of a
certain compound or radical in the corresponding specimen. Criteria have
been established to check whether the distortion in the signal is above the
maximum acceptable level for a qualified peak. A peak is qualified only when
all the cfitefia are met. A complete"prograﬁ is composed of various subrou-
tines which are linked together by a standardized subroutine linkage technique.

The flow chart for the AutoAnalyzer Analysis Program (AAP) is shown in
Figure 1. The system checkout subroutine will check for proper operation of
the system, both software= and hardware-wise, daily or as requested by the
operator. During the execution of this subroutine, the peak values and
ACCEPTABLE/NOT ACCEPTABLE messages will be recorded indicating whether or not
the system checkout was satisfactory for each peak. -

After the system checkout, the program‘determines the base-line as the
zero reference level before the calibration curve is validated. After the
base~line determination, there are five calibration standards to be validated.
The calibration waveform is then followed by the specimen sémples0 A peak is
identified by falling readings following rising readings. The sampling rate
is under progra;ncontrol.. ‘

The first peak of each-batch of samples is used for time-base synchroni-
zation purposes. When the first peak is detected, a counter is set so that
the following péaks must arrive during specified time limits. The -duration
of the allowed peak time window is also under program control. A 20 second
time window has been used in this development.’ ‘

At the end of the calibration curve validation, a message will be printed
to indicate whether the calibration curve is acceptabié or not. A drift
standard may be included to form the batch depending on whether drift correc-
tion is required. ‘The peak height of the drift standard is compared to the
value of stored dafa, If the difference is beyond a certain limit, i.e. a
drift is detected, a linear correction will be applied to the previous peak
heights. Sample concentration which is the most meaningful pathological data
is calculated by using linear interpolation in order to agree with convention.
The concentration value and the associated data will be recorded in a specific

format which can be designed as preferred by modifying the program.
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This program is designed with the ability to detect possible errors. If
an error is detected, a buzzer will be triggered by a pulse generated using a
Discrete Output line from the D17B. An error message will also be printed by
the Teletype. From this indication the operator can decide on the appropriate
action. The entire automated system will be in the '"Halt and Proceed'" mode

waiting for the operator to furnish further instructions.

SYSTEM DEMONSTRATION AT WRAIR

A system which typified the prototype development of the Minuteman D17B/
Technicon single~channel AutoAnalyzer was shipped to Walter Reed Army Institute
of Research at the Walter Reed Army Medical Center and was used to exhibit one
of the many possible methodologies during demonstrations on June 5 and 7 by the
Systems Laboratory staff. A U.S. Army photograph of the system appears in
Figure 2. Resulting demonstrations have shown the D17B Computer to be capable,

reliable and cost-effective in this application.

CONCLUSIONS

The Minuteman ICBM Weapons System currently includes approximately 300
operational Minuteman I missiles. Several hundred additional reliable D17B
minicomputers from Minuteman I missiles are being declared excess by the USAF.
These small general-purpose computers with extremely flexible I/0 originally
cost $234,000 each.

Although the D17B does not provide all the capability of large-scale
computers, it does resemble them functionally, and it possesses a number of
similar features. One unique feature of the D17B is the reliability factor
which has been quoted by USAF to be 5.5 years MIBF for over 1,000 units.,
These computers can provide numerous computing requirements with application
to medicine and other fields. Work that has been completed in the Systems
Laboratory at Tulane has demonstrated that the modifications required to
provide for the use of the D17B in a continuous duty laboratory environment
are not only feasible but cost-effective. A system using the D17B has been

developed for automated data acquisition, control and waveform evaluation
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necessary to perform automated concentration analysis from an AutoAnalyzer.
Commercial equipment for such analysis is available, but these systems have
high costs that are often difficult to justify especially if a number of
similar systems are desired.

Construction of a complete single-channel AutoAnalyzer Analysis System
which includes a D17B Computer is estimated to require 60 man-hours of tech-
nician time. The total cost for an initial unit will be approximately 507
of the current price of a special-purpose commercial unit. The cost compari-
son for a dual-channel unit is approximately 307 of that for a special~purpose
commercial unit. These cost estimates include both time and materials for a
complete system with a teletype used for I/0. The cost will be reduced very
considerably if these units are mass produced. Although the capability of
this system is similar to analyzers which include the versatility of small
general-purpose computers, the cost effectiveness is quite advantageous when
compared with commercial special-purpose analyzers.

Accuracy, consistency, simplicity, and cost-effectiveness are the main
features of the AutoAnalyzer Analysis System. The methodology for total
protein analysis which was demonstrated during this development is just one
example of the use of this system with the AutoAnalyzer, and the AutoAnalyzer
Analysis System is just one typical application for the D17B Computer. The
D17B has been found to be extremely capable and reliable in this application.

This system was designed such that there would be no disruption of the
usual laboratory procedure. In addition, the simplicity of the system is
such that existing personnel can easily be trained to operate the automated
system. This system will give laboratory technologists and professional staff
more time to evaluate results and investigate specific abnormal data; i.e.,
 effective utilization of less-skilled personnel is possible.

The AAS has full alpha-numeric capability and a proven accuracy of better
than 17. The accuracy and reliability obtained with the AAS are considerably
increased.éompared to that obtained by manual means because of the reduction
of human errors in procedure and data manipulation. It has also been shown
that there will be added flexibility in the implementation of sophisticated
experimenital and analysiS’teéhniques. This system offers future adaptability
to the analysis of signals from other laboratory instruments and to other

computing applications by simply reading in different programs.
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