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PREFACE 

Of the nearly 1,000 reliable computers, originally costing $234,000 each, 

from the LGM 30 Minuteman ICBM Weapons System, approximately 400 have been 

declared excess by the USAF. These Minuteman D17B Computers can be classed 

as extremely flexible general-purpose minicomputers. Government activities, 

industrial contractors, universities, and other organizations have acquired 

these excess Dl7B computers for development and use in many fields of research, 

education, and other applications. 

The Minuteman Computer Users Group (MCUG) was formed to provide for an 

effective information interchange and the various forms of assistance needed 

by the users. Those who are members of this cooperative, voluntary group 

assist each other by sharing results, programs, applications, interfacing 

techniques, maintenance procedures, and spare parts. The MCUG membership is 

in excess of 145 Government activities, industrial contractors, colleges, 

universities, and other organizations. 

The fourth meeting of the MCUG was held at the Sheraton-Silver Spring 

Hotel in Silver Spring, Maryland on June 5-6, 1972. The registration list is 

included in the Appendix. The persons who attended this meeting numbered 67 

and represented 46 organizations. Previous meetings have been held in Miami 

Beach on July 19-20, 1971, Houston on November 16, 1970, and Anaheim on 

June 11-12, 1970. 

These PRO~EDINGS are a permanent record of the material presented at 

the meeting on June 5, 1972. This publication of the MCUG describes such 

topics as procurement, simulation, state description, design of a hardware 

divider, design of a binary display, and use of the Dl7B in a hybrid computer 

system and an automated data acquisition and waveform analysis system. The 

agenda also included a successful demonstration of the D17B/AutoAnalyzer 

if 



Analysis System developed in the Systems Laboratory at Tulane University under 

a research contract supported by the Army Medical R&D Command. This cost-

effective development included an ASR35 Teletypewriter as the peripheral I/O 

device which provided for full alphanumeric communication with the D17B in a 

conversational interactive mode. The D17B/AutoAnalyzer Analysis System was 

delivered to the Division of Biochemistry at the Walter Reed Army Institute of 

Research where it is used for automated blood serum analysis. In addition to 

the technical sessions there was considerable exchange of information during 

the workshop sessions on June 60 

The assistance and encouragement of Mr. Richard F. Babler and Mr. John 

Po Bartell of the Defense Supply Agency are gratefully acknowledged. We also 

thank Mr. Billy G. Bass of WRAIR for the time and effort required to plan for 

demonstration of the D17B/AutoAnalyzer Analysis System at Walter Reed. 

Methods of Joining the MCUG 

10 Send a check or purchase order in the amount of $100 to the MCUG Chairman 
at the address given below. Specify MCUG membership and/or documentation 
for checkout, operation, and progrannning of the Minuteman D17B Computer. 

2. Request an invoice for $100 to cover the items listed above. 

Drc Charles Ho Beck 
Professor of Electrical Engineering 
Tulane University 
New Orleans, Louisiana 10118 

These PROCEEDINGS can be obtained by sending a check or purchase order 

for $20 to the MCUG Chairman at the a.ddress given above. MCUG members may 

rot' $6c 

The following documentation is included in the MCUGmembership: 

MCUG-1-71, Dl7B Computer Wire List and Logic Equations 
MCUG-2-11 t DI7B Electronic Module Schematics , 
MCUG-3-71, Proceedings of the Third Meeting of the MCUG 
MCUG-4-n~ Minuteman D17B Computer Programming Manual 
MCUG-l-12~ Dl7B Power Supply Schematics .' 
MCUG-2-72, Minuteman Dl1B Computer Programming Manual Supplement 
MCUG-3-72, Proceedings of the Fourth Meeting of 'the MCUG 

iii 

Charles H 0 Beck 
Chairman t MCUG 
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Aerospace Corporation, Los Angeles 
AFCRL (LGW), Hanscom Field, Mass. 
Air Force Institute of Technology, 

Engineering 
Arizona State University, 

Electrical Engineering 
Armstrong State College, Savannah, GA 
Arnold Research Organization, 

ArnoldAFB, TN 
Augustana College, Physics, SD 
Austin College, Computer Center 
Ball State University, Physics 
Beaver College, Psychology 
Bluefield State College, Technology 
Bowling Green State University, 

Psychology 
Brigham Young University, 

Electrical Engineering 
Buena Vista College, Electronics 
Bureau of Mines, Laramie 
Bureau of Mines, Pittsburgh 
California Institute of Technology, 

Geological & Planetary Science 
Center for Diseas~Control, DHEW 
Cleveland State University, Physics 
Christian Brothers College, 

Computer Science 
Colorado State University, 

Atmospheric Science 
Delaware River Basin Comm., Trenton 
Department of State, Nassau 
Des Moines Area Community College, 

Electronics 
Dillard Univ., Mathematics & Physics 
Drexel University, Electrical Engr. 
Duke University, Electrical Engr. 
Eastern Michigan Univ., Ypsilanti 
East:e,rn Washington State University, 

Ppysics 
Einstein College of Medicine, 

Radiology 
Fighton, Inc., Rochester, NY 
Florida State University, CAl Center 
Fredericksburg Geomag. Ctr., Corbin 
Ft. Belvoir, Electronics 
Glastonbury High School, Physics 
Goddard Institute for Space Studies 
Hahnemann Medical School, Radiation 
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Harvard University, Physics 
Haskell Indian Jr. ColI., Voc-Tech. 
Heidelberg College, Physics 
Hughes Aircraft Corp., Culver City 
Indiana University of Pennsylvania, 

Physics 
Johns Hopkins University, Chemistry 
Kansas State College, Pittsburg, 

Industrial Technology 
Knox College, Physics 
Kutztown State College, Physical Sci. 
LSU School of Medicine, Neurology 
LSUNO, New Orleans, Science 
Lowell Technical Inst., Lowell, Mass. 
Linfield College, Research Institute 
Mankato Area Voc-Tech. School, 

Computer Maintenance 
Mass. General Hospital, Boston 
McDonnell Douglas Corp., St. Louis 
Medical University of South Carolina, 

Neurosurgery 
Merchant Marine Academy, 

Computer Science 
Merrimack College, Electrical Engr. 
Michigan State University, 

Cyclotron Laboratory 
Michigan Technological University, 

Electrical Engineering 
Milwaukee Area Technical College, 

Electronics 
MIT, Charles Stark Draper Laboratory 
MIT, Educational Research Center 
NASA, MSFC, Huntsville 
Nat'l Bureau of Standards, Wash., DC 
Nat'l Center for Health Statistics 
Nat'l Library of Medicine, DHEW, PHS 
Naval Ordnance Station, Indian Head 
New Mexico State University, 

Electrical Engineering 
New York Institute of Technology, 

Electronic Technology 
Newark College of Engineering, 

Mechanical Engineering 
Northwestern University, 

Material Science 
Occidental College, Physics 
Ocean Systems, Inc., Reston, Virginia 
Oklahoma State University, 

Biochemistry 
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Oklahoma State University, Physics 
Pennsylvania State University, 

Chemistry 
Polytechnic Institute of Brooklyn, 

Electrical Engineering 
Princeton University, Computer Center 
Purdue University, Aeronautics, 

Astronautics & Engineering Science 
Raytheon Corporation, Bristol, Tenn. 
St. John Fisher College, Physics 
San Diego State College, Biology 
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Sloan-Kettering Institute, Biophysics 
SMU, Computing Laboratory 
Southwest Minnesota State Cellege, 

Electronics 
Space Rad. Effects Lab., Newport News 
Stanford University, Linear 

Accelerator Center 
State University College, Breckport, 

Data Precessing Services 
State University of NY, Mat. Science 
Stephen F. Austin State Univ., Physics 
Stevens Institute of Technology, 

Electrical Engineering . 
Technitrol, Inco, Philadelphia 
Tektronix, Inc., Atlanta 
Teledyne-Ryan Aeronautical, San Diego 
Tennessee Technological University, 

Mechanical Engineering 
Texas A & M University, Physics 
Tulane University, Electrical Engr. 
Union Carbide (Nuclear), OakRidge 
USDA, ARS, Ames 
USDA, Research Service, Beltsville 
University Computing Coo, Dallas 
Univ. of Akron, Electronic Tech. 
University of California, Berkeley, 
Fl~ctrical Engineering 

Univ. of Colorado. Electrical Engr. 
Univ. of Arizona, Optical S.ciences 
Univ. of Dallas, Chemistry . 
Univ. of Delaware, Electrical Engr. 
University of Florida, 

Metallurgical & Materials Engr. 
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University of Florida, Ophthalmology 
Univ. of Houston, Electrical Engr. 
Univ. of Illinois, State Water Survey 
Univ. of Iowa, Neurobiology 
University of Kentucky, 

Mechanical Engineering 
University of Miami, Physics 
Univ. of Michigan, Aeorspace Engro 
Univo of MississippI, Chemistry 
University of Missouri-St. Louis, 

Chemistry 
Univo of Nebraska, Electrical Engr. 
Univo of Nevada, Reno, Electr. Engr. 
Univo of Nevada, Las Vegas, Physics 
Univo of New Hampshire, Electr. Engr. 
Univ. of Oklahoma, Mathematics 
Univ. of Pennsylvania, Geology 
Univ. of Penn 0 , Johnson Foundation 
Univ. ef Pittsburgh, Pharmacology 
Univo of So~th Florida, Physics 
Univ. of Texas i Applied Research Lab. 
Univ. of Trieste, Italy, Geodesy 
Univo of Virginia, Psychology 
Univo of Washington, Psychology 
Univo of Wisconsin, Computer Science 
Univ o of Wisconsin, Electrical Engr. 
Univ. of Wyoming, Electrical Engro 
USAFSAM, Medical Systems Division 
V. Ao Hospital, Lexington 
Vo Ao Research Hospital, Chicago, 

Theraputic Radiology 
Vo Ao Research Hospital, Gainesville, 

Nuclear Medicine 
Virginia Institute of Marine Science, 

Gloucester Point, Virginia 
Washington University, Psychology 
Washington & Lee University, Physics 
West Virginia University, 

Electrical Engineering 
Wisconsin State University, 

Engineering Mechanics 
Worcester Foundation for Experimental 

Biology, Shrewsbury, Mass. 
Wright State University, Computer 

Center 



TABLE OF CONTENTS 

PREFACE • • • • • • • • • • • • • • • • • • · . . . . . . . 
MINUTEMAN COMPUTER USERS GROUP MEMBERSHIP · · · · 
MINUTEMAN D17B COMPUTER PROCUREMENT · · · · · 
MINUTEMAN D17B COMPUTER DESCRIPTION . . · · · · · 
MINUTEMAN D17B COMPUTER SPECIFICATIONS • · · · · 
SOFTWARE SIMULATION OF THE MINUTEMAN D17B COMPUTER 

Bruce Chatterton and Gary B. Lamont 
AFIT/ENE 
Wright-Patterson AFB 

· • · 
· · • · · 
• · • · · 
· · · 

• · 

· ' . 
· · 
· · 
· · 
· 

· . . 
· 
· · · 
· · · 
· · • 

Page 

ii 

iv 

1 

2 

4 

5 

APL SIMULATION OF THE D17B ••••••••••••••••••••• 17 

Harry S. Warford 
USAFSAM, Medical Systems Division 
Brooks AFB 

A HARDWARE DIVIDER FOR THE D17B GUIDANCE COMPUTER • • • • • • • • • • 27 

Alfred M. Williams, Boeing Co. 
and 
James D. Bargainer, University of Houston 

STATE DESCRIPTION OF THE D17B COMPUTER ••••••••••••••• 37 

Douglas J. Allen and Gary B. Lamont 
AFIT/ENE 
Wright-Patterson AFB 

USE OF THE D17B IN A HYBRID COMPUTER SYSTEM • • • • • • • • • • • • • 66 

Lansing B. Evans and Charles H. Beck 
Systems Laboratory, Electrical Engineering 
Tulane University 

DESIGN OF A BINARY DISPLAY FOR THE Dl7B COMPUTER •••••••••• 76 

Harry S. Warford and D. S. MOran, 
USAFSAM, Medical Systems Division 
Brooks AFB 

AUTOMATED DATA ACQUISITION AND WAVEFORM ANALYSIS 
USING THE Dl7B COMPUTER •••••••••••••••••••• 83 

Charles H. Beck and Yih-Young Chen 
Systems Laboratory, Electrical Engineering 
Tulane University 

APPENDIX - REGISTRATION LIST' ••• • • • • • • • • .. • • • • • • 93 

vi 



MINUTEMAN D17B COMPUTER PROCUREMENT 

Approximately 800 Minuteman D17B Computers are expected to be declared 

excess by the USAF through 1974. The original acquisition cost per system 

was approximately $234,000. These computers can be acquired by qualified 

agencies, contractors, and grantees as the systems become available through 

appropriate ADPE reuti1ization agencies on an "as is" non-reimbursable basis 

as follows: 

DoD Agenci es 

Contact respective service Rqs. for ADPE Acquisition for approval and 

for forwarding of Requisition Form 1419 to DARO. 

DoD Agency Contractors and Grantees 

1 

Contact respective contracting officers for approval and for forwarding 

of Form 1419 to Defense Supply Agency, DSAH-DARO, Cameron Station, Alexandria, 

Virginia 22314. 

Civil (Non-DoD) Agencies of the Federal Government 

Contact respective Office for ADPE Acquisition for approval and for 

forwarding of Transfer Order Form 122 to GSA Excess Equipment Utilization 

Branch, Crystal Mall Bldg. 4, Washington, DC 20406. 

Civil Agency Contractors and Grantees 

Contact respective contracting officers for approval and for forwarding 

of Form 122 to GSA as listed previously. 

Authorized Donees 

Contact respective state surplus property offices for acquisition through 

DREW Office of Surplus Property Utilization, 4452 DREW North Bldg., 

Washington, DC 20201. 
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MINUTEMAN D17B COMPUTER DESCRIPTION 

Functional Capabilities and I/O 

The D17B is a small general~purpose computer. It is totally programmable 

and has the capab~lities of: receiving and sampling analog signals, digital 

data, or pulse-type input signals; logical decision-making and performance 

of arithmetic operations using an instruction set of 39 machine language 

instructions; and transmission of output data in the form of analog, digital 

and pulse type signals under program control. Because of the extremely flex­

ible I/O capability of the D17B, it can be quite useful in a wide variety of 

applications. 

Central Processing Unit and Control 

Since the D17B is a serial-binary computer,.simultaneous access to all 

the bits of a memory location is not needed either for instructions or data. 

Hence, the arithmetic registers need not be constructed entirely o.f flip­

flops. Instead, they are in the form of circulating loops in memory. The 

Dl7B has four double-rank arithmetic registers which are Accumulator (A), 

Lower Accumulator (L), Instruction Regist~r (I), and Number Register (N). 

Because the L-register is addressable, it can be used as rapid-access storage 

in addition to performing normal arithmetic functions. There are two non­

addressable arithmetic registers, the 1- and N-registers, which are used 

without programmer control and one 3-bit pseudo-index (phase) register. 

The central processing unit (CPU) has I/O access to four rapid-access 

memory loops of 1, 4, 8, and 16 words in addition to the main memory which is 

arranged in 21 ·channelsof 12.8 words each. Two input buffer loops of four 

words each provide additional input capability to memory in the form of 

direct data entry. These are the V- and R-loops which can also be used as 

general-purpose rapid-access memory loops. 
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Programmed data channels cause data transfers into the arithmetic regis­

ters. All machine functions are processed and interpreted in the CPU. The 

memory channel address from which the next instruction is to be taken is 

determined by the location counter. When the CPU is ready to accept another 

instruction from memory, the address is specified by the channel address 

stored in the location counter and the sector address specified in the 

previous instruction. 

The phase register can modify the operand address of one of the multiply 

instructions. This register also serves as a selector switch for choosing one 

of two pairs of inputs to one of the incremental pulse-type input loops and 

for selecting one of four external positions for each of the three D-A analog 

voltage outputs. 

The Accumulator holds the results of all arithmetic operations and serves 

as an output register for parallel digital data, pulse-type signals, D-A 

analog voltage outputs, and telemetry data. The Lower Accumulator is involved 

in certain arithmetic, input, and logical operations. A real-time clock is 

provided by internal timing signals derived from the clock channel of the disc 

memory. 

Specifications 

The D17B is basically composed of two semi-circular sections. One half 

contains the power supply circuit cards which generate the various dc voltages 

required in the computer and a 400 Hz 3~ signal for providing power to the 

motor in the 6000 rpm disc memory. The other semi-circular section contains 

the discrete DRL and DTL logic components of the computer itself. Some of 

the detailed specifications for the D17B Computer are given in the following 

table. The high degree of reliability and ruggedness of the computer are 

evidenced by the strict requirements of the Minuteman ICBM Weapons System. 
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MINUTEMAN D17B COMPUTER SPECIFICATIONS 

Manufacturer: Autonetics, a division of North American Rockwell 

Model: D17B 

1962 Year: 

Type: Serial, synchronous 

Number System: Binary, fixed point, 2's complement 

Logic Levels: ·0 or False, ° Volts; lor True, -10 Volts 

Data Word Length.(bits): 11 or 24 (double-precision) 

Instruction Word Length (bits): 24 

Maximum I/O (words/s): 25,600 

Number of Instructions: 39 types from a 4-bit op code by using five bits 
of the operand address field for instructions 
which do not access memory. 

Execution Times: 

Add (ps): 78 1/8 
Multiply (ps): 546 7/8 or 1,015 5/8 (double precision) 
Divide: (Software) 
(Note: Parallel processing such as two simultaneous single precision 

operations is permitted without additional execution time.) 

Clock Channel: 345.6 KHz 

Addressing: Direct addressing of entire memory 
Two-address (unf1agged) and three-address (flagged) instructions 

Memory: 

Word Length (bits): 24 plus 3 timing 
Type: Ferrous-oxide-coated NDRO disc 
Cycle Time (ps): 78 1/8 (minimal) 
Capacity (words): 5,454 or 2,727 (double precision) 

Input/Output: 

Input Lines: 48 digital 
Output Lines: 28 digital 

12 Aria10g 
3 Pulse 

Program: 800 5-bit characters/s 

Physical Characteristics: 

Dimensions: 
Power: 
Circuits: 

20" high, 29" diameter 
28 V dc ± 1 V at 19'A 
DRL and DTL. DoUble copper clad, gold plated, glass fiber 
laminate, flexible polyurethane coated circuit boards. 

Software: . Minimal. delay. coding using machine language modular 
special-purpose subroutines.· . 

Reliability: 5.5 years MTBF 



SOFTWARE SIMULATION OF THE MINUTEMAN 

D17B COMPUTER 

Capt Bruce Chatterton Gary B. Lamont 

Electrical Engineering Dept 

Air Force Institute of Technology 

wright-Patterson Air Force Base, Ohio 45433 

ABSTRACT 
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A software program has been developed which simulates the functions of 

the Minuteman D17B Computer at the register transfer level. The simulation 

program is written in the FORTRAN Extended Language to be used on the Intercom 

System (teletype) of a CDC 6600 Computer System. The simulation program was 

developed at the Air Force Institute of Technology as an aid to research in 

the D17B Computer utilization program. The simulation program can be used 

as a teaching aid, for executing D17B programs, and for debugging program 

tapes to be run on the D17B Computer. The simulation program consists of 

a main program and eight subroutines. A programming language was developed 

for the D17B Computer Simulation Program which contains numbers and load 

codes, switches, and miscellaneous commands. 

I. Introduction 

A software simulation of the Minuteman D17B Computer has been developed 

at the Air Force Institute of Technology (AFIT) (Ref 2). The general 

1.e;Telopment objectives and results of this simulation are presented in this 

paper. 

The purpose for developing the D17B Computer Simulation Program was to 

create an aid that would be useful to the research effort of the D17B 

Computer utilization program. This research effort is concerned with getting 

a D17B Computer operational in a laboratory environment and finding useful 

applications. 
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The simulation program has shown itself to be useful in many areas. The 

simulation program can be used in learning the basic operations of the D17B 

Computer. It can also be used as backup capability for running D17B programs 

when the actual computer is not available. Its most important use, however, 

is that the simulation program can provip,e error checks for the D17B programs 

which it executes. The hardware version of the D17B Computer has no execution­

time error checking capabil~ty. 

The capability for entering D17B programs from punched tape has been 

incorporated in the D17B Computer at AFIT~ Provisions were also made in the 

simulation program for reading and executing the data from these same punched 

tapes. Therefore, the simulation program can be extremely helpful in the 

preparation of the program tapes which are to be read into the D17B Computer. 

The simulation program helps in tlle preparation of the program tapes by 

detecting and locating invalid symbols punched on the tape, by decoding the 

program instructions, and by detecting addressed locations in memory that 

are out of range of the program being executed. 

Problem statement and Objectives. The prime objective of the D17B Computer 

simulation program was to simulate the functions of the D17B Computer. To 

pursue this objective;l the following criteria were established~ 

1. The simulation program was to simulate the D17B Computer at the 

register transfer level. A register transfer approach was used because 

it allowed the D17B to be simulated at the information and data transfer 

level. Thus, it was not necessary to simulate the logicr equations required 

to clear and set each flipflop_ The register transfer approach also 

allowed for easability in tracing the information flow in the simulated 

computer as data is loaded and programs executed. 

2 •. The FORTRAN Extended Language was the computer simulation language 

chosen for writing the simulation program. This language was chosen because 

of access to a computer system which contained the FORTRAN Extended Compiler. 

The Computer Design Language (CDL) described in reference 3 was used in 
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writing portions of the simulation program, but because of the nonavail­

ability of a CDL compiler, a transformation to the FORTRAN Extended Language 

was made (Ref 3, Chaps 1-5). CDLis much more descriptive of computer 

operations than FORTRAN. 

3. The simulation program was to simulate the actual computer as 

closely as possible. The same algorithm implemented on the D17B Computer 

was used in the simulation program for most functions. This close corre­

lation between the actual computer and the simulation program makes it 

possible for a user to use both the computer and simulation program using 

only one set of programming techniques. In the areas where a close simu­

lation could not be realized, a quasi-simulation was used. The quasi­

simulation uses the same register inputs and generates the same results, 

but the method of obtaining the results differ. 

4~ The real-time control functions (Fine Countdown and Incremental 

Inputs) of the D17B were not to be included in the simulation program. 

The Fine Countdown function involves the V-loop and the U-loop forming 

a digital integrator which operates without program control. The Incre­

mental inputs are inputs to the D17B which are incrementally supplied 

to the V-loop and R-loop without program control. The instructions 

associated with these functions could be added by a user who is 

r~searching the area of real-time control applications for the D17B. 

The remainder of this paper will be devoted to a description of the 

organization and structure of the D17B Simulation Program and the D17B 

Computer Simulation Language. 

II. D17B Computer Simulation Program 

The organization and structure of th~ D17B Computer Simulation Program 

will be described in this section. The simulation program simulates the 

D17B Computer at the register transfer level and is written in the FORTRAN 

Extended Language to be run on the Intercom System (teletype) of a Control 

Data Corporation (CDC) 6600 Computer System. 
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The concept used in, writing the simv.1ation program was, to have the person 
-, ~ '.' ., ' ,_;' ~ ,.". ~. : .' . '. , :. , •• J . ":. \.' . .' -, "...~:- . ' . ." ". 

using ,it. provide the same ,data to the progI'aIJ:), as h,e. would ,if ,he were using the 
.,.' • '.' • .., :,. • '. • >" h " .- " .. ' :;~.: '.'.' • • • 

actual compute~ in the Jaborato:ry. J'he sw:itches, ;must be ,set to the proper 
, • ", '" " '.r ' • :~. . ' • : '., . • ~, '. 'h' .' -.' ,. .' . 

position to accomplish loading and computing. The data ~stbe error free 'to 

successfully execute a p~ogram., ,The type of di13Pll3,Y (register or memory) is 
. ;., • ~ :. '. . 1" . ,.' 

specifiec;l by. the ~us:er. , 

The D17B. qomputer,. Simula1;i~oA ,Progr~ consists, of. a, main program ande.ight 
.. " ~. ,'; ," ~ ~ • "."., ",' .~ .. ' '"," 1-. ,~. •. . . ".' 

subroutines. The main program .i¥l",a .qompilation. of thr~e distinct sections each 
.·n .;;; . ., . ... ",' . .' ~; ". . . . • , • .' . 

of which performs a major .function. TheSe. thre.e, sections are: 
.. . ~ , ' " . ". :,.,'.. ':: . , ,'. .., . 

1. Eeadingand TI'ansla tiop Section 
. , ......., t.... .~ '. ':. " 

2. Noncomp~te Mode Section 

3. Compute Mode Section 

Fig. 1 shows the program flow between trese. ~eotiolls of the main program and 

the subroutines •. 

The Reading and, TraJl.Slation. Section is., thet~ansla ter and inte:r:preter - , . . '.' .. ; ,", . ~ .. '. 

portion of the simulation program. All input data., is read, interpreted, and 
; , . 'r' . "..... ~ 

translated in this portion 9f the main program., Input data is read as alpha-
. . ." ,;.. ,.... ' -' 

betic and nUlI1eric characters. ~his data is then iniierpreted. as octal qr 

binary data, a D17B load code, a switch designation (setting), or a miscel-
. , '. .', . ~ 

laneous connnand. The miscellaneous commands, are responsible for a variety. 

of functions which include tbe, following: register and melD.ory display, 
• '. . • I· 

discrete data storing, incremental data, storing, and mode tracing. A trans­

fer of operation to the noncompute mode or9neof the sub~outines is made to 

utilize this data. 

The Noncompute Mode Section of the simulation program simulates the non­

compute mode of the D17B computer. The noncompute modeis'responsible for 

synchronizing, idling','preparing1to, load,preparing to compute, 'loading data 

into memory, and verifying "the contents' ,of, memory. 

The Compute Mode Section of the simulation program simulates' the compute 

mode of 'the D17B Computer. The compute mode is'responsible for searching, 

reading, and writing memory and instruction' exec.ut1:on. ' 
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The subroutines as~ociated with the D17B Computer Simulation Program were 

made for three purposes: 

1. Those functions which were needed several times through the program 

were created as subroutines. Subroutines falling into this category are 

Subroutine LDA.D, Subroutine. UNLOAD, aha. Subroutine DISPLAY ~ Subroutine LOAD 

provides the functio:p. .of.l,oad~ng, the .,contents of the accumulator into addressed 

memory locations. Subroutine UNLOAD performs the funQt~o~ ~~ unloading an 

addressed word of memory. The information unlo~ded is then used either as an 
," '-""-. . . ( . 

instruction or an operand. Subroutine ,DISPI,.A~ prov~q.es the simulation program 
. . j '.,' 

with the capability of displaying the binary contents Qf all registers and 

loops which are specifi~d by. the user. The contents of a register or loop is 

provided as output only when the contents of that register or loop cha:Oges. 

2. Those ,functions which are only called from one place in the main 

program, but which are of -such importance that a. separate location is bene­

ficial to the organization of the simulation program., are also subroutines. 

Subroutines in this . category are Subroutine STORE, Subroutine FLAGSTO, and 

Subroutine MEMORY. Subroutine STORE implements the D17B store (STO) 

instruction, which stores the contents of the accumulator in the memory 
, , 

location specified by the instruction register. Subroutine F,LA,GSTO 

performs the function of deciphering the flag store locations bits of the 
.. ~ .. ; . 

instruction register. The contents of the accumulator are then stored in 

the deciphered channel at the sector address associated with the first 

wordtime of execution of the present instruction. Subroutine· MEMORY 

provides the capability of displaYing th~ contents of memory (channels 00 

thru 50) whenever a memory command is us~d. Only those portions of memory 

that have . been wri.tten. into since·· mem?I7.was" .last.··initialized will be shown 

in the output listing •. 
~ ~ 0/- • ," " ~ •• 

3. Those f~ctiol'ls which Will not be. used ,very f;requently and could be 

removed from the simulation program. if it' w.s determined that they were not 
, I. " : ~ ,. ..,~ 

really neededarea:lso subro~tihes. However,' to be abl'e' to utilize all the 

instruction set or the"-D17B' Computer' and all the channel designations, these 
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functions had to remain as a part of the simulation program. Subroutines 

in this category are Subroutine DISCRET and Subroutine INCREME. Subroutine 

TIISCRET provides the capability of entering discrete data and storing it 

for use in a prograrrlsing the discrete input instructions (DIA or DIB). 

Subroutine INCREME provides the capability for entering quasi-incremental 

data into the four words of the V-loop or the four words of the R-loop. 

The D17B Computer Simulation Program requires approximately J5K of 

core memory to execute on the CDC 6600 C9mputer. The majority of programs 

require between two and five seconds of central processor time. In five 

seconds, approximately 1000 D17B instructions can be executed by the 

simulation program. 

III. D17B Computer Simulation Language 

The D17B Computer Simulation Language is the programming language which 

was developed as the input data for the D17B Computer Simulation Program. 

For purposes of describing this language, it has been divided into the 

following categories: 1. Numbers and Load Codes 

2. Switches 

J. Miscellaneous Inputs and Commands 

Numbers and Load Codes. The number systems and load codes accepted by the 

simulation program are: 

Octal Numbers - 0, 1, 2, 3, 4, 5, 6 7 

Binary Numbers - 0, 1 

Load Codes - HALT, LOCATION, FILL, VERIFY, COMPUTE, ENTER, CLEAR, DELETE 

'l'h"'~e jifferent representations of the numbers and load can be specified 

and will be accepted by the simulation program as valid data. These three 

representations are Octal, Binary, and ASCII. The Octal representation repre­

sents the type of input that would be supplied from a teletype keyboard or 

switches on a control console. The Binary representation represents the type 

of input which appears on the character'input lines going into the D17B 
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Vomputer. The ASDII representation represents the type of input data on a 

punched tape which can be entered into the D17B Computer by a tape reader. 

The numbers and load codes in the three representations are as follows: 

Octal Binary ASCII 

Re12r esentation RsU2r~sflnta tion Re12rflsflntation 

Numbers - a 10000 a 

1 00001 1 

2 00010 2 

J 10011 J 

4 00100 4 

5 10101 5 

6 lalla 6 

7 00111 7 

Load Dodes - HALT 01000 8 

LOCATION 11001 9 

FILL 110~0 Z 

VERIFY 01011 ; 

COMPUTE 11100 < 
ENTER 01101 ~ 

CLEAR 01110 

DELETE 11111 ? 

Switchese With the simulation language in this category, it is possible to 

specify switches and designate a setting or mode. The simulation program 

accepts these switch designations and provides this information to program 

variables associated with the switches. The form for specifying switches 

is as follows: 

Switch(Arg) 

where Switch is theq.esignated switch mnemonic name, and Arg is the switch 

setting or mode position of the switch. The switches and allowed settings 



are as follows: 

Switch Name 

Timing Signal 

Power On/Off Switch 

Initiate Loading Switch 

Master Reset Switch 

Cold-Storage ~ite Switch 
Discrete Switch 

Mechanical Input Switch 

Compute Mode Switch 

Switch Mogmonic & Settings 

T(ON) 

PR(ON), PR(OFF) 

FS(ON) 
MR(ON) 

EW( ON), EW( OFF) 

Db(ON), DD(OFF) 

IM(ON) 

K(HALT), K(SINGLE), K(RUN) 

13 

Miscellaneous Inputs and Commands. The simulation language iI.1 this category 

provides many functions. The functions that will be described are listed as 

follows: 

Register and Memory Display 
Mode Tracing 
Execution Specification 

Register and Memory Display. The binary contents of any of the registers 

(A, I, L, N~ or loops (U, F, E, H, V, R) can be displayed by use of the register 

command. The register command has the following form: 

REGISTER(Arg) 

where Arg is a list of the registers. and/or loops to be displayed. 

To. display the Gontents of memory (channels 00 thru 50), a memory command 

is used. The memory command has the following form: 

MEMORY(Arg) 

where Arg is the type of display requested, either BINARY or OCTAL. 

Mode Tracing. MOde tracing is used in deciphering the contents of a 
program. In the noncompute mode, the modes of operation are listed as output. 

In the compute mode, the instruction being executed is listed as outpUt and a 

flag store is indicated if it was programmed. The mode tracing capability is 
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requested by a signal command with the following form: 

SIGNAL 

Execution Specification. There are numerous occasions when a programmer 

will inadvertently write a program which loops on itself resulting in eXecution 

going on to infinitum. To prevent this from happening in the simu1~tedcomputer, 
provisions were made for counting ~he 'number of execution cycles in' the 60mpute 

mode and terminating the program run when the number exceed~aspecified ~ount. 
'The programmer can specify th,e number' of executions allowed' by an eXecute; com-

" mand. The form of the execute command is as follows: 

EXEGU'~(Arg) 

where Arg is any four digit deci~l n~ber from 0000 to 9999. 

Other misce11aneo'us inputs and'command'providethecapability of settin.g 

and clearing f1ipflops~ initialization of the" contents of memory and certain 

specified variables, storing of discrete input data, 

incremental input data. 

and storing of quasi ... 

PrOgramming Methods. D17B programs are executed on the simUlated computer 
, , 

by arranging the simulation language in a program form. D17B programming 

techniques are described, in the Minutemab. Computer Use,r'S Group Programming 

Manual (Ref 1). The simu1ation program allows data to be input without a 

format, so a programmer can write a continuous program With each simulation 

language word separated by a blank. 

The approach' for arranging' the input 1a'nguage .. in program form found 

most advantageous by the author is to visualize a hardware control console 

with switches for each element of thesf.mulation language'. To"write a program 

then requires that the programmer write' down the simulation language word for 

each switch that he would push on theco1'l.sole. This approach works because of 

the similarity between the simulation program and the'hardware ver'sion of the 

Computer. 

An example program which wa:s:' run on the simulated cOmputer has been 

included in this paper as Appendix A. 
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IV • Cgppl,uion 

The lott'lfare simulation program ot the D17B Computerprelented in this 

paper hal been operational linoe November 1m. The simulation program was 

de",eloped to simulate thetunot1ons of the D17B Oomputer. One of the objeotives 

,ot this limulation wal to have the ,Iimulation pro,rd. lillUlate the aotual oom­

puter al ololel,. al pollible. This objeotive wal lDet beoause the _jorit,. of 

the In.7! tunotiol1l have been i1101uded in the ,simulation prOll'''. The loading 

aDd interaotion funotionl ot the nonoompute mode have been used. In the 

88apute mode, the learohing, readiDlh and. writil1l.lIIID017 and inltruo't;ion exe­

oution are all part of the siJlulation proc.raa. Wherever po •• ible, the lame 

allOrithm illplelDented. on the Dl7B' WILl Uled in'the· .imulat1on program. Thi. 

a~roach re8Ulted in lome i08£fioie11Oiel in the simulation program, but a 

by-produot ot usi. the .... al,orithm i. that the liDIulation proaram OaD be 

used a. a teaohiDl aid tor learrd.ni the operatiollot the »1'18 Oomputer. .uIO 

, enol" deteotion va. bui1 t into the .imulation 'proar" aJ2d hal been "'e1"1 helpful 

in creatiDl proar" tape. to be run on the D17B Ooqmter. 

IiliJi ARf.Pht 

Bttot, O. H. WI 0SJllWderf:£Mt.'M MeMl. "port ICt1O-4-71. . i 

." Orlean., Louisiana. Tulane Unt"'eraityS, ... LaboratOl7, Department 
or .1ectrioallltllineeriDl, September 1ml. 

2. Ohatterton, B. §gnarl I' POltiQA Q& the. MilQ1itan IlJ.'lI Q'8PPtv. 
Malter The.i.. Wri,ht-Patteraon AlB, Ohio, Air 'oroe lnstitutn ot 
Technolol7, Department ot Il .• ctrioalll'lli!1lerin~b Maroh 1972. 

3. Olm, I. .IPtrgd'lQi;1on tOOC81?1rl;ef OrI'P1Milg. _l.wood 01itt., lew 

Je1"878 Prentioe-Hall, Ino., 1970. 
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l' OUTPUT 'I IOlU':D1SPOSEDTOPJUNTER. tyPE "I''' AHI) "yotfRNArU:"C OTHEJt"" 
WISE TYPER • H ' 

****.****.***********************************"'********** 
** ** ** D178 COPlPUlER ** .* SIMULATION PROGRAM "'* *. ** *.* OATE= 03/07/12 TIME: J4.28.'8 ** 
"'* " ,** 
***.*********~************************.********** •• * •••• 

•• "UNrOUT OF INPUT '~OGRAPJ ** 
(ENTER PROGRAM' 

S ADDI Tl OH It 1"L£ PROGRAM 
pltC ON) MRlotU FlU O,N) twUltU 'ILL 
4It010002IHTE1t640l0008EHlER CLEAR 1 ENTER 
i'lEf'10RY( OCTAL) PUt( ON) EXEcutE'OOD.) SIGNAL R[GIITlRC A) J( C RUN) 
'p IU 0'''' 

** RESULTS 0' IlI'IU&'ATION ** 

"'* MEMORY 'DUM' *. 
CHAH . SECt 
00000 440aooos 00000001 77777777 

•• gHD O,.M".CRYDUMP.. ", (PORTlONS OF "tMORY, NOT LlstED CONTAIN NO 
INFORMATION PAODUCED BY THE 'RISEln 'ROGa,," RUtH 

H(j. 0' El(ECUr'Cltf • .,EC1'IEO i ,.-
81 GHAL ON" MOllIIWILL. 8£ TRACED 

0(4) I'O(2)'Utl 1I>LI IUI-MOO£ 0' HA.HUAL. HA'-t 
PRIPARE rOCOMPUtE lua·MOOI 0' MAHUAL. HALT 

COl1PUTE PlOOI 

TMA.'ER lHlT'UIC'UOH- (TRA) 

CLiA. ,. AID 1HI'ltU<:,"lO' -(Ct.A),' 
A(14·1):000 000 'I'"' 000000 000 001 

AUD t HI TRUC tl 0;., til , (M)'J 
A(24-.) : 000 000000 lot 000 000 010010 

NO. 0' EX£CUTIOtfS KA\I£EXCEEDiO Hp. SPEct"Er) .. 'JOGRA, TERMINATED '0 au. AtfOTHERPROGRAt'S TyP' RUtl, TO ITOP tyPE HALT .. HALT 

.. Elf 0 OF '''OOOAM 
14.3.1 .14 .stOP 

EXECUTION TIM!: .777 SEC 



APL SIMULATION OF THE Dl7B 

HARRY S. WARFORD, CAPT, USAF, BSC* 

Introduction 

A simulation of the Dl7B serves a broad spectrum of applications. 
It allows a rapid development of software by not only emulating the basic 
machine, but by providing an inexpensive and rapid means of providing a 
large array of outputs. All manner of I/O devices can be simulated for 
development when the actual application may be dedicated and require few, 
if any, I/O devices. Additionally, the simulation is useful where no 
Dl7B exists. Students can receive hands-on experience with many types 
of machines by merely calling on a simulation such as the one under 
development here. Program debugging likewise proceeds at an accelerated 
rate since all the powers of a large system are available with built-in 
tracing routines. 

Program Development 

This simulation is by no means complete at present but has been 
developed in strict accord with actual machine procedure so as to render 
it easily expandable to a full simulation. The serial nature of the 
D17B has been preserved at the word level by controlling the simulation 
with a sector counter advancing one sector at a time as in the rotation 
of the disc memory. Figure I is a simplified flow chart for the machine 
and illustrates how each phase is controlled by tests performed on the 
sector count. 

Development from this flow chart proceeded with APL on an IBM 360 
series system and later on an IBM 370 series system.** APL has proven 
to be an ideal language for this simulation due to its inherent capability 
to handle vector quantities. This was the author's first encounter with 
APL, hence many of the expressions are not as efficient as they could be. 
However, the development proceeded with few difficulties to the wide choice 
of APL operators. 

The main program illustr.ated in Figure 2 was first developed with 
dummy instructions in place of the execution routines. Those routines not 
yet implemented are left in as dummy statements providing only a printed 
indication of proper decoding. As development continues, some of these 
will be deleted entirely as they produce outputs that cannot effectively 
be simulated or have no apparent use in a general purpose system. 

*To be presented by Major M.A. Jenkin, USAF, MC 
**This simulation was started during a course taken by the author at 
Trinity University, San Antonio, Texas. 



Along with the basic program, several short routines are provided 
to simulate necessary panel switches to allow program loading and 
execution start. These are given in Figure 8 and will be discussed in 
greater detail following the discussion of the main routine and execution 
routines. 

At present, twenty-two instructions have been successfully simulated. 
Most of these were straight-forward but for clarity all are listed here 
with comments as to considerations given for simulation. 

CLA: Clear and Add. Present operand, now in 
N-register, replaces contents of A-register 

ADD: Add. Contents of A-register and N-register 
added modulo 16777216. 

SUB: Subtract. Contents of A-register and complement 
of N-register added modulo 16777216. 

MPY: Multiply. Sign of product predetermined; contents 
of A-register saved in L-register; rounded product of 
magnitudes formed then corrected for proper sign. 
Sector counter advanced 12 additional counts. 

SAD: Split Add. Contents of N-register and A-register 
decoded into split format and center bits of A-register 
saved. Split words added independently but simultaneously 
modulo 2048. A-register reassembled. 

SSU: Split Subtract. Contents of N-register split and 
complemented. Jump to SADI to complete as normal spii.t 
add. 

SMP: Split Multiply. Middle of L-register saved; contents 
of A-register encoded into split word format and saved 
criss-cross fashion in L-register. N-register encoded into 
split word format and signs independently but simultaneously 
predetermined. Products of magnitudes formed then corrected 
according to each predetermined sign. During process, products 
are rounded. Sector counter incremented 12 additional counts. 

COM: Complement. Contents of A-register complemented by 
subtraction. 

MIM: Minus Magnitude. If contents of A-register are not 
negative they are forced negative by jumping to COM. 

ANA: And to A. Contents of L-register and A-register are 
encoded into 24-bit vectors and logically anded bit by bit. 
REsults are decoded into 24 place binary number and left 
in A. 



ARS: Accumulator Right Shift. Contents of A-register 
shifted right by division with simulated loss of right-
most bits by floor value if original A-register not negative. 
For negative A-register, complement of A-register is first 
shifted then complemented to provide for extension of sign 
bit. In either case, sector counter is incremented 
appropriate number of counts as determined by number of 
places shifted. 

ALS: Accumulator Left Shift. Contents of A-register shifted 
left by multiplication and limited to 24 bits by residue 
modulo 16777216. Sector counter incremented appropriate 
number of counts as determined by number of places shifted. 

SAR: Split Accumulator Right Shift. Contents of A-register 
encoded into split word format and middle bits saved. Each 
half word shifted right by scheme similar to ARS. Arregister 
put back together and sector counter incremented appropriate 
number of counts. 

SAL: Split Accumulator Left Shift. Contents of A-register 
encoded into split word format and middle bits saved. Left 
shift of each half word proceeds as in ALS. A-register 
reassembled and sector counter incremented appropriately. 

SLR: Split Left Word, Right Shift. Contents of A~register 
encoded into split word format and middle bits and right word 
protected while left word shifted right. A-register re­
assembled and sector counter appropriately incremented. 

SRR: Split Right Word, Right Shift. Contents of A-register 
encoded into split word format and middle bits and left word 
protected while right word shifted right. A-register re­
assembled and sector counter appropriately incremented. 

SLL: Split Left Word, Left Shift. A-register encoded into 
split word format and middle bits saved. Left half word 
shifted left; jump to SALI to reassemble A-register and adjust 
sector counter. 

SRL: Split Right Word, Left Shift. A-register encoded into 
split word format and middle bits saved. Right half word 
shifted left; jump to SALI to reassemble A-register and adjust 
sector counter. 

TRA: Transfer. Fetch instruction specified by transfer 
ins-truction. Change active channel register. 



TMI: Transfer on Minus. If contents of A-register positive 
continue to next instruction. If negative execute TRA. 

STO: Store. Correct operand address to allow for physical 
placement of write head and store contents of A-register 
at the corrected address. 

HPR: Halt and Proceed. Type out PROGRAMMED HALT and proceed 
only after GO has been typed into terminal. 

Results of Execution Routine 

Example of instructions were prepared as three-line programs with a 
simulated binary display providing the output. Additionally, a longer 
program was prepared and the accumulator monitored by a simulated octal 
display. The results are too lengthy to present here but have proven to 
be faithful copies of the machine results. 

Utility Routines 

As mentioned earlier the main program is supported by short simulations 
of pertinent panel functions. The three programs in use to date are listed 
in Figure 3. These programs treat the instructions and data as though they 
were eight place, octal, whole numbers whereas the D17B number range is 
approximately! 1. 

MRC simulates the master reset function and presets· the I-register 
to TRA to channel 0, sector O. The FILL Routine accepts the octally coded 
instructions and data with the exact coding used in the actual D17B system 
at the School of Aerospace Medicine. RUN places the computer into operation. 
No equivalent to halting the comput~r by moving the switch out of RUN has 
been implemented. Instead, the attention button is being used. 

Conclusions and Projections 

An effective simulation with considerable attention to detail has 
been started for the D17B. 

Three tasks remain to complete the task: 1) simulate the remainder 
of the instructions, 2) include the flag store feature, and 3) include 
the rapid access loops. 

Following completion of the D17B simulation, a logical next step 
might include an assembler to run on the D17B but designed on the simulation. 
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V MACHINE 
OP'l,X+-25pOPEHR 

''>'4 
.(...0 

[lJ 
[2] 
[3J 

OPFX+-32pOPERR 
OPC+-ZERO,SCL,TMI,OPERR,SMP,MPY,SMM,MPM,FORTY,CLA,TRA, 
S~O,SAD,ADD,SSU,SUB 

[4J SECT+-l?127 
[5j IS:+(DI[2J=SEC~)/UECOUE 
[6 J +IS ,SEC'l'+-128 I (S8Cl'+1) 
[7J lBCODE:DI+-, 16 2 128 32 128 TM[C;SE.'C:l'J 
[8j U+-DTO AR 
[ 9 ] SEC '1'+-12 8 I (S E C l' + 1 ) 
[luJ +(DI[O]€ 0 2 8 10 11)/NOOP 
[11J CPER:S8CT+-128ISECT+l 
[lLJ +(DI[4J~SEC1')/OPER 
[13J lffl+M[DI[3];DI[4J] 
[14J NOOP:+(DI[lJ=O)/UNPLG 
[15J +UNFLG,pU+-'A SPORED' 
[16] UNPLG:+OPC[DI[OJJ 
[17J ZERO:OPZX[8,9,10,11,12,13,14,15,24]+SAL,ALS,SLL,SRL. 

SAR,ANS,SLR,SRR,COA 
[18J -t]PZX[DI[3]] 
[19J SAL:ARSP+, 2048 4 2048 TAR 
[20J MID+-ARSP[l] 
[21J ARSP+,2048IARSPx 2*DI[4] 
[22] SAL1:AR+(8192xARSP[OJ)+(2048xMID)+ARSP[2] 
[23] +IS,pSECT+128IsECT+1rDI[4] 
[24J ALS:AR+16777216IAR x 2*DI[4] 
[25] +IS,pSECT+128IsECT+1rDI[4] 
[26J SLL:ARSP+, 2048 4 2048 TAR 
[27J MID+-ARSP[lJ 
[28J +SAL1,pARSP[OJ+2048IARSP[OJ x2*DI[4J 
[29] SRL:ARSP+, 2048 4 2048 TAR 
[30J MID+ARSP[lJ 
[31J +SAL1,pARSP[2J+2048IARSP[2J x2*DI[4J 
[32J SAR:ARSP+, 2 1024 4 2 1024 TAR 
[33] SAVE+ARSP[ 0] ,ARSP[ 2],ARSP[ 3 J 
[34J ARSP+LARSPt2*DI[4] 
[35J AR+-ARSP[4J+(8192xARSP[lJ)+(2048xSAVE[lJ)+(SAVE[OJx« 

2~(DI[4J+l)pl)x2*(23-DI[4J»)+(SAVE[2Jx«2~(DI[ 
4J+l)p1)x2*(10-DI[4J») 

Figure 2 . a. Main Program 



[36j+IS.pSECT+128ISECT+1fDI[4J 
[37J ARS:+(AR>8388607)/ARSl 
[38J +ARS2.pAR+LARt2*DI[4J 
[39J ARS1:AR+16777216-f(16777216-AR)t2*DI[4] 
[40J ARS2:+IS,pSECT+128ISECP+lfDI[4] 
[41J SLR:ARSP+, 2 1024 8192 TAR 
[42J SAVE+ARSP[0J,ARSP[2] 
[43J ARSP+LARSPt2*DI[4J 
[44J AR+SAVE[lJ+(U192xAHSP[lJ)+(SAVE[O]x«2~(DI[4]+1)p1)x 

2*(23-DI[4]») 
[45J +IS.pSECT+120IsECT+1rDI[4] 
[46] SRR: ARSP+. 8192 2 1024 TAR 
[47 J SA VE'+ARSP[ 0 J,ARSP[ 1] 
[48J ARSP+LARSPt2*DI[4J 
[49J AR+ARSP[2J+(2048xSAVE[0])+(SAVE[1]x«2~(DI[4]+1)pl)x 

2*(10-DI[4]») 
[50J +IS.pSECT+128IsECP+1rDI[4J 
[51J COA:+IS.pO+'COA' 
[52J SCL:+IS,pO+'SCL' 
[53J TMI:+(AR>8388607)/TRA 
[54J +IS 
[55J OPE'RR:+O,pD+'OPERR' 
[56J SMP:LSP+ 4 2048 TLR 
[ 5 7 J AR S P+ 2 04 8 4 2 04 8 TAR 
[58J MID+ARSP[lJ 
[59J LR+ARSP[OJ+(2048xLSP[OJ)+(8192xARSP[2]) 
[60J NRSP+ 20484 2048 TNR 
[61] SIGN+(ARSP>1023);.e(NRSP>1023) 
[62J PROD+(ARSPL2048-ARSP)x(NRSPL2048-NRSP) 
[63J LPROD+LPRODfSIGN[0]x2048-LPROD+(+/ 1024 2 512 TPROD[O 

J)-512TPROD[0] 
[64J RPROD+RPBOVrSIGN[2Jx2048-RPROD+(+/ 1024 2 512 TPROD[ 

2J)-512TPROD[2] 
[65J AR+(8192xLPROD)+(2048 xMID)+RPROD 
[66J +IS,pSECT+128ISECT+6 
[67J NPY:SIGN+(AR>8388607);.e(NR>8388607} 
[68] LR+AR 
[69J PROD+ 8388608 2 4194304 T(ARL167.77216-AR)x(NRL 

16777216-NR) 
[70J AR+PROD[ O]+PROD[ 1J 

Figure 2 .b . Main Program, Cant. 



[71] AR+ARrSIGNx1G777216-AR 
[72] +IS,pSECT+120ISECT+12 
[73] SMM:+IS,pO+'SMM' 
[74] MPM:+IS,pO+'MPM' 
[75J FOHTY:OPFX[l,4,5,8,9,11,12,13,14,17,lB,19,20, 

21 ]+BOC, BOA, BOB ,RSD, HPR, DOA, VOA, VOB, VOC ,ANA ,MIM. COM, 
DIB,DIA 

[76] OPFX[24,25,28,29,30,31]+HFC,EFC,LPR,LPR,LPR,LPR 
[77] +OPFX[DI[3]] 
[78] BOC:+IS,pU+'BOC' 
[79J BOB:+IS,pO+'BOB' 
[80J BOA:+IS,pO+'BOA' 
[81J RSD:+IS,pU+'RSD' 
[82J liPR: 'PROGRAMMED HAL'i" 
[83J WAIT:START+~ 
[84J +«2tSTART)='GO')/IS 
[85J +WAI'l' 
[86J DOA:+IS,pU+'DOA' 
[87J VOA:+IS,pO+'VOA' 
[88] VOB:+IS,pO+'VOB' 
[89] VOC:+IS,pO+'VOC' 
[90J ANA:+IS,pAR+2~«24p2)TAR)A«24p2)TLR) 
[91] MIM:+(AR>16777215)/IS 
[92J COM:+IS,pAR+1G777216-AR 
[93J DIB:+IS,pD+'DIB' 
[94J DIA:+IS,pO+'DIA' 
[95J HFC:+IS,pO+'HFC' 
[96J EFC:+IS,pO+'EFC' 
[97J LPR:+IS,pO+'LPR' 
[98J CLA:+IS,pAR+ml 
[99J TRA:+IS,p(pC+DI[3J),(pDI[2J+DI[4J) 
[100JSTO:SECT+12BlsECT+l 
[101J +(DI[4J~SECT)/STO 
[102J +IS,pM[DI[3];(12BISECT-2)J+AR 
[103JSAD:NRS+, 2048 4 2048 TNR 
[ 1 0 4 J SAD 1 : AR S P+ , 2 04 8 4 2 04 8 TAR 
[105 J i4ID+ARSP[ 1] 
[106] ARSP+204B I ARSP+NRS 
[107] +IS.pAR+(8192 xARSP[O])+(2048xMID)+ARSP[2J 
[108JADD:+IS,pAR+16777216IAR+NR 
[109JSSU:+SAD1.pNRS+2048-(, 2048 4 2048 TNR) 
[l10JSUB:+IS,pAR+16777216IAR+16777216-NR 

Figure 2.c. Main Program, Cont. 
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[7] 
[8] 
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V PILL 

'PROCEED' 

v 

READ:L+I!] 
~ox\A/(3pL)='END' 
LR+OO TV ( 8 t - 9 t L) 
~«(-ltL)='/').«-ltL)='V'»/LOC.ENT 
~REAV 

LOC:~READ,pIR+LR 

ENT;ADR+ 32 128 TIR 
M[ADR[O];ADR[l]]+AR+LR 
IRS+ 131072 128 TIR 
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(a) 
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V MRC 

[1] IR+l0485760 
V 

(b) 

VRUN[O]V 
V RUN 

[1] DI+ 16 2 128 32 128 TIR 
[2J C+DI[3J 
[3] MACHINE 

V 

(c) 

:fig!.lX"e 3. aJFill Routine, b) Master Reset, cl Run Routine 



A Hardware Divider for the Dl7B Guidance Computer 

by 

Alfred M. Williams 
The Boeing Company 

Houston, Texas 

and 

J. D. Bargainer 
University of Houston 
Houston, Texas 77004 

27 

The Dl7B Guidance Computer for the Minuteman I, ICMB is capa­

ble of performing addition, subtraction and multiplication through 

hardware algorithms. However, division must be performed through 

a software routine. A hardware division c.apability can be acquired 

by modifying the Dl7B operation codes and by incorporating addi-

tional hardware. This paper outlines such a modification to the 

DI7B. The division algorithm is presented along with a description 

of the hardware operation. The divider is designed to perform 

full-word and split-word division and determine a fractional quo-
~ 

tient and "remainder. Both the quotient and remainder are' accessi-

ble to the programmer through the computer registers once the 

operation is complete. 

The Division Algorithm 

A non-restoring division algorithm was desired that was capa-

ble of performing division. with either positive or negative num-' 

bers in either the dividendi or divisor. It was also desired that 

the algorithm be easy to implement on the DI7B. 
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A divider; algori thm which ~ee:l:s these r,equ;irements is the 
. .. ~ . 

following fractional divide algorithm. To find x/y = q l oq2 ••• qn 

1. Let ro = x ero is the first partial remainder) 

2. Let 

q = 1 

1 if'ro and y have the same sign 

o otherwise 

3. Iteratively 

r. = 2r. 1+(1-2q.)y 
~ ~- ~ 

lifr±_l and y ha,ve the same sign 
q. = 
~O otherwise : " 

~ :. . 

The partial remainder r. isthere,fore found by, left 
~ 

shiftingr i-1' ,and th,en ad;¢ling,,'yifr q'i is 0 and s:ub-

tracting y if qiis 1. ;".,' 

4. Repeat the ,i tera,tionn ,tJ.mes , or, Ul1,til ,the pal;"t.::.ial, 

remainder is z'ero.' 

5. Add L 000.~1 to correct the quot,ier:t. 

6. 

7. 

When r. 
~ 

= 
When rf-

1.000 ••• 0. 

0 

0 

then q. ::::. ,1, 
~ 

then correct 

and qj = 0 '" j.> i. 

the quotient by: 'addinSJ 

'; .: 

The divider algorithm implemented on the:D17B closely fol.,.. 

lows this outline; however, the last step in ,the process, cor-

rectionof the pse:udo q:uotient",is no~ perfo:r'med,by adding a 

correction .factor~.. I,nstead., the sign digi,tis pomplemented and 

a "1" is forced ,into the ,leas-.t ,sig:nifi,cant.::. dig.it.::. if the remainder 

is non-zero. The end resu .. lt of this ,technique;is the same as 
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that acquired by adding the correction factor to the pseudo quo­

tient. 

The division operation designed for the Dl7B assumes that 

the dividend is stored in the accumulator. The division instruc­

tion is interpreted by the instruct.ion processor and a divisor is 

loaded into the number (N) register from the specified memory 

address. At the end of the division operation, the quotient is 

stored in the accumulator and the remainder is stored in the 

lower accumulator. This arrangement was chosen because the quo­

tient was desired after most division bperations. In the case 

where the remainder is desired, it is possible to transfer it 

from the lower accumulator to the accumulator by loading alII's 

into the accumulator and executing the ANA instruction. 

It was necessary to add a delay flip· flop to the accumulator 

to perform the left shift required by the division algorithm. A 

delay flip flop was aisoadded to the lower accumulator so that 

the quotient digits could be stored in the proper order. Control 

logic was designed to do each of the following tasks: (1) force 

the least significant bit of the partial remainder to "0" prior 

to each add cycle, (2) determine whether addition or subtraction 

was performed _during the next add cycle, (3) determine the quo;... 

tient digit and store it in the lower accumulator, (4) monitor the 

accumulator for a zero remainder, -(5) correct the pseudo quo­

tient, (6) count the number of shifts performed to determine when 
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the operation was completed. 

The design took into account one more characteristic of the 

DI7B. The D17B operates on two types of numbers, full-word and 

split-word numbers. A full-word number is composed of 24 bits, 

of which one bit is a sign bit •. A split-word number is composed 

of two ll...,.digit numbers. As a result, two different division 

operation code.s were required, one that would perform fl1~l-word 

division and one that would p~rform split-word division. 

Divider Design 

The D17B has 16 .basic operation codes. All 16 codes are 

used. Each operation code is determined by the state of th~ four 

flip flops, 04, 03, 02, and 01. Four of the operation .codes are 

used for multiplication, two are used for split-word and full­

word "normal" multiplication and two are used for split- and full­

word "modified" multiplication. The mqdified multiplication op­

eration was redundant to.the normal multiplication operation and 

was replaced by the division operation. 

To delete the IImodified" multiplication operations, it was 

necessary to modify the multiplication enable signals, OMO, OMF, 

and OM. Each of these signals enabled a period in the multipli­

cation operation and was modified by ANDing the 02 signal with 

them. During multiplication the 02 flip flop is .. used as the 

addition/subtraction indicator to the carry/borrow flip flop, Ak. 

The Ak flip flop was enabled for addition if 02 was true and for 

subtraction if 02 was false. This function could no longer be 



performed by the 02 flip flop and a' spare flipflop replaced 

it. After these modifications were completed, two operation 

codes were available for division'~ The operation code', 

04 03 02 01, (34) i was us'ed'for' full-word division and, 

0'4 03 02 01 (30), was used for split-word: division. The 01 

flip flop was used to distingu'ish"be'tween:"full-word and 

split-word division. 
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The operation codes chosen'for division" maintained two of 

the "modified" multiplication operation' characteristic's. First, 

the number located at the specified memory address wasautomati­

cally loaded into the N register during the first cycle of divi­

sion. Second", the Q flip flop was one set at the end of the 

first word time of division.' A spare flip flop in the computer, 

labeled the DIV flip flop, was used'to designate .the division 

operation. The first word time of division was indicated by the 

signal (DIV Q). All remainin(~r word times' were indicated by the 

signal (DIV Q). The D flipflop was' u'sed to 'separate the middle 

word times from the last word time. 

A word time counter is initialized during'thefirst word time 

of 'division. The counter is composedofthe'CB,5--CBlflip flops. 

These flip f lops" are des igrted' to coun tdowna t Tptime.' , They are 

initialized to (24) or (11000) 2 for full-word, division and (11)10 

or (01011)2 for split-w6rd division. At Tp time of the first word 

time the, accumulator recirculation 'control flip. flop, Ac, is set. 

This disables normal recdrculation o£ the accumulator flip flops 

and makes it possible for the, accumulator to be extended by one 
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bit. The one bit extension creates. the one bit shift required by 

the divide algorithm. Also, at Tp time of the first word time, the 

lower accumulator recirculatioI) control flip fJ.op, Lc, is set. 

This disables normal recirculation Of tl1.e lower accu;m,ulator flip 

flops and makes it possible for the lower accumulator. to be extend­

ed by one bit. The lower accumulator is used to store the pseudo 

quotient and the one bit delay is required so that the quotient 

bits will be stored in the proper order. During the first word 

time of division, the divisor is loaded into the N regis~er from 

memory_ A spare flip flop designated the N2 flip flop CopiE:sthe 

sign of the divisor loaded into the N register. The sign of the 

divisor is compared with the sign of the. number in the accumulator. 

If both signs are the same the N~ flip flop is set. I~ the signs 

differ, the N2 flip flop is reset. After the N2 flip flop has com­

pleted this operation, it indicates whether addition or subtraction 

is performed during the next add cycle. It also indicates the proper 

pseudo quotient digit. This logic isoperatipnal only if a non-

zero remainder exists. If a zero remainder does exist, then the N2 

flip flop logic is modified so that the flip flop is set at the next 

compare time and reset for all remaining modify times. The C5 flip 

flop performs a delay so that the detected addition/subtraction 

operation information will be available during the add cycle. It 

copies the N2 flip flop at TI time during full-word, division and 

at Tp and Tl2 time during split-word division. 

During the middle word times the dividend, located in the 

accumulator, is shifted to the lei't and the divisor, locC'l.ted in 



the N register, is subtracted from or added to it. 

The shift of the dividend is performed by adding a delay 

flip flop to the accumulator. The C4 flip flop was used to 

provide the required one bit delay. 

Extended Accumulator 
-

Logic for the C4 flip flop is designed so that it will 

copy the Ax flip flop. 
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The Ap flip flop is designed to copy the C4 flip flop. The 

A23 flip flop copies the A24 flip flop. The A24 flip flop is 

designed to function as the adder/subtractor flip flop during 

division and theAk flip flop is used to determine the carry or 

borrow. Addition/Subtraction time is determined by the Nl flip 

flop (a spare flip flop). The add cycle is initiated at T2 time 

and continues through Tp time for full-word division. For split-

word division the cycle occurs from T2 ~ T13 time and TIS - Tp 

time. If a zero remainder exists, the add cycle will not be 

initiated. 

The SB3 flipflop is used to copy the adder flip flop and 

determine if a zero remainder exists. It is reset prior to each 

add cycle and set whenever the A24 flip flop is true. 

The J and C2 flip flops are used to store the remainder 

status. Both flip flops are initially reset during the first 

word time. The J flip flop determines if a zero remainder exists 
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in the least significant split word during split-word division. 

It. copies the SB3 flip flop at T13 time," during spli t-woiddi­

vision and the C2 flip flop during full-word division. 

The C2 flip flop determines if a zero remainder exists 

during full-word division or in the most significant split word 

during split-word division. It copies the SB3 flip flop at Tx 

time. The lower accumulator stOres the pseudo quotient 'gener­

ated during the middle word times of division. It is extended by 

one bit through the addition of the C3 flip flop. 

Extended Lower Accumulator 

The one bit delay is required if the pseudo quotient digits 

are to be stored in the proper order. The loop re.circulation 

control flip flop for the lower accumulator, the Lc flip flop, 

has previously been set during the first word time of division, 

so that the C3 flip flop can copy the Lx flip flop at the be-

ginning of the second word time. The C3 flip flop is also de-

signed to function as the quotient flip flop, that is, the C3 

flip flop is responsible for decoding and injecting into the lower 

accumulator the pseudo quotient digit. This detection takes 

place at To time for full-word division. It is accomplished by 

requiring the C3 flip flop to copy the N2 flip flop. 

During split-word division, the pseudo quotient is detected 

at TO and T13 time. At these times, the quotient digit 1.S stored 
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in the C5 flip flop and it is necessary for the C3 flip flop to 

copy the C5 flip flop. When the C3 flip flop is not detecting a 

quotient digit, it copies the Lx flip flop, as previously stated. 

The Lp flip flop is designed to copy the C3 flip flop during 

division. The L24 flip flop copies th Lp flip flop during divi-

sian. 

The operations just discussed are performed recursively dur­

ing the middle word times of divisiono At the end of this period, 

the pseudo quotient digits are stored in the lower accumulator 0 

The remainder is stored in the accumulator 0 During the last word 

time of division, the pseudo quotient is corrected and trans­

ferred to the accumulator and the remainder is transferred to the 

lower accumulator. 

The remainder is transferred from the accumulator to the low­

er accumulator by having the Lp flip flop copy the Ax flip flop. 

Correction of the pseudo quotient is performed by the A24 flip 

flop and the C3 flip flopo The A24 flip flop is responsible for 

complementing the sign digit of the pseudo quotient. It comple­

ments the Ap flip flop at Tp time during full-word division and 

at Tp and T12 time during split-word division. 

The least significant digit of the pseudo quotient is forced 

to "1" by the C3 flip flop if the remainder is non-zero. During 

the last word time of division, the C3 flip flop is set or reset 

at TO time for full-word division and at TO and Tl3 time for split­

word division, depending on the remainder being non-zero or zero 

respectively. The transfer of the pseudo quotient from the lower 
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accumulator to the accumulator is performed by the Ap flip flop. 

It copies the C3 flip flop during the last word time of division. 

At the end of the last word time of division, it is necessary 

to reset the recirculation control flip flops for the accumulator, 

Ac, and lower accumulator, Lc and to reset the DIV flip flop. 

The logic to implement the division algorithm was constructed 

on three cards with the same size and shape as the logic cards of 

the D17B. All flip-flops used in the modification were spare 

flip flops already in the computer and only gating logic was add­

ed. Approximately 350 diodes were used on the three cards. 

Complete documentation of this modification including, wir­

ing lists, circuit diagrams and negatives for etching the boards 

is available and we would be happy to send this documentation to 

anyone requesting it. 
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STATE DESCRIPTION OF Dl7B COMPUTER 
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ABSTRACT 

This report presents a state description of the D17B Computer. A set 

of control flipflops were chosen and from this choice the states of the 

computer Were defined. The discussion of each state includes a set of 
register transfer equations that enumerate the information transfer during 

that state. 
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This approach was taken to present a compromise between a simple veitch 

diagram of the computer modes and a complete listing of the logic equations 

for the computer. Hopefully, this description will not only be a graphic 

study plan of the machine, but also an aid for maintenance and trouble 

shooting. 

Introduction 

A state description of the D17B Computer is a method of portraying the 

functional operations of the computer using the configuration of the control 

flipflops •. A given configuration of the control flipflops is defined as a 

state of the computer and the paths between the states represent the functional 

operations. A set of register transfer equations that outline the information 

transfer between registers may be added to complete this description. 

This approach is used for computer synthesis by Chu (Ref 2: 396-429) and 

is one basic method of. modern computer design. As an analysis technique this 

method places the burden of defining which.flipflops are to be considered as 

control flipflops on the analY~er~ After this decision is made, the process 
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is straightforward. In this presentation two primary considerations were used 

to choose the control flipflops. First, an effort was made to define the 

states so that the state description would parallel previous descriptions of 

the machine. Secondly, the control flipflops were chosen to make the descrip­

tionlas simple and concise as possible. 

A state description offers three advantages: (1) it presents a systematic 

way to study the machine, (2) the description presents a definite path to fol­

low for maintenance checks, (3) this method presents more detail than the 

veitch diagram presentation. 

State Description of the D17B 

Operation of the D17B may be described by considering the various configu­

rations that the control flipflops enter when the machine is executing a 

program. Thus, a state of the machine is defined by a particular configuration 

of the control flipflops. States may be represented on a diagram which depicts 

the various paths that the machine may cycle through during program execution. 

This state diagram may be used in conjunction with a description of the informa­

tion exchange between registers to completely describe the machine operation. 

State descriptions have the advantages of being a visual description, thus 

easily understood and capable of displaying large amounts of information in a 

concise form. Even more important, the state diagram provides a systematic 

approach for describing how the computer functions. 

Register Transfer Notation. In order to conVeniently describe how infor­

mation is transferred between registers during each state, it is necessary to 

adopt a type of shorthand convention to condense the description. The symbols 

usually used in this notation are an adaptati~ of the system used by Chu, 

Ref 2: 378. 

State Diagram. In this report the states of the computer have been broken 

into two major classes or modes, Compute (K) and Non-compute (K'). The states 

in these classes are represented by nodes (circles) and are numbered with an 
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identifying number. Configurations of the major control flipflope which cause 

transition between states are listed beside the transition path on the diagram. 

Associated with each state diagram is a table which lists the state by number 

and name and 'the information transfer which oocurs durinc that statee The 

Non-oompute states are displa7ed in fils. 1 and 2 aDd Oompute states are shown 

in Figs. " 4, and 5. The associated rapster tranafer notation. for these 

state diagrams can be found in Ref 6. Thlllreferenoe oan be obtained from the 

Defense Documentation Center. 

Ion-P2!Quta Sktta. RafOl ,6) and (4, 1.1 - 2.15) 

Power On :Random State. lIten powel' is applied to the D17B, the oontrolling 

flipflops Will beoome aotivated in a raDdOll state. Depr •• aine the "MA.8'l1R 

RESET" swi toh oauses the computer to enter a Prepare To aperatestate where 

in! tialization 18 begun. a.en, 1. 

PtOPW to Qp'tAii (nl). In this state the pba.e register 18 b11 tls.lized 

to an 1dle mode.. '0 1a turDed ott to prevent the oOllpUter trOll ante:ri:QI a 

speoial state called fine oountdOWi1. The m.orete output oo.trol reei.ter i. 

1m tiallzed to prevent randoa diacrete output. and variou. other tl1,f'lopa are 

in! tlalized to start the 81f1ChrordlaUon of the b1 t oounter wi tit the .eotor 

traok. 00ntro1 flipflop. 02 and J are Olle let to allow traas1 tion to the 

S7fto Bit Oounter 1 state. 

sue Bl~goWl'" 1 (n2). Thi. state i8 the •• cond I!l'tate duri. whiob 8711-
ohronisation to the Bit. Oounter and the Seotor Traok i. aooolllpl1sb.ed. AI 

shown on the state 41&12'_,. traa.leut .11I.ter rea.t .11Dal (1... tban ona 
memory revolution in duration) v.11l caUSe tbe_cbine to reOJ'Cle throurh 

tbe hepare To Oompute Stat.. The 01 flipflOP i. ft ana" .et allowinc entr,r 

into the next .tate, S;Jr1O Bit Oounter 2. 

§Do Btt Couphr , (n3)~ In this state the inatruotlonr.,iater i. loaded 

v.l. th an unoohdi tional jump itu.truotion to ohannel 0, I.otor O. Thi. instruction 

v.l.ll be the first 1nstt,totiQlt lflteouW unlel. a nttV instructiotl ia loaded prior 



40 

random state at power on 

'--. 

Fi,-.4. D·118 NOllcompute States 
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to the computer entering the compute mode. 

After complete synchronization of the bit counter and the sector track~ 

the Rc and 01 flipflops are VI zero" . set allowing transition to the Manual 

Halt-Idle state. 

Manual Halt-Idle 1 (n4). This state acts as a decision point for 

state transition. Three separate situations will cause the computer to 

enter the Manual Halt-Interlock state. If the previous state were n3 or n7, 

then state n4 was entered at a bit time corresponding to T of sector number x 
0; thus~ the 04 flipflop will be "one" set prior to the occurrence of any 

other state determining transition. 

A third situation which could ~ause transition from n4 to n5 arises 

when the computer control awi tch is placed into "Hal til or "Single Step" 

during a compute operation. State n4 will be entered from Program Halt 

and transition will occur to state n5 or n7 depending on the 01 flipflop. 

This state transition is not predictable since the 01 flipflop state will 

be determined by the instruction that was being executed when the compute 

switch was placed in the Halt or Single Step. State n7 maybe the next 

state entered if the previous state was n5. In this case n4 Was entered 

at a bit time corresponding to T1 of sector 177 thus allowing the 01 

flipflop to be "one" set. 

State nB, Prepare To Compute, will be entered if the IIComputell 

switch is not in a "Halt" position and Sb2 is zero set. Sb2 is a flipflop 

that is one set as the result of a verify or parity error. 

Manual Halt-Interlock (n5). If there is no Mechanical Reader Input 

Signal (1*1) present or if a "Halt command is present from the IICompute il 
m 

Switch or if a Sprocket timing interlock signal (T*!) is present with no 

Fill Signal, the computer will cycle between states n6 and n5. Similarly, 

a cycle will exist throughn7~ n4, and nS if a Mechanical Reader Input 

signal is present with no Fill signal (F*). "Wait" state, n9, will be s 
entered if a Fill signal is present. Thus, Manual Halt-Interlock, nS, 

acts as an interlock for the state transition prOCeSS of the computer. 
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Manual Halt - ~epare to toad (n6). ~epare to Load state is entered 

if a device such as a photo reader is used for loading. From this state, 

transition will be back to n5 if a Sprocket Timing Interlock signal (T*') 

is present or to the Wait state, n9, if no T*r signal is present. 

ManuaJ. Halt - Idle 2 (n?). The Manual Halt-Idle 2 state serves as a 

timing delay. From this stat~ the computer will enter n4 if the compute 

swi tch is in the "Halt" posi tion and/or a Parity Error has occurred e If 

,no parity or verity errors have occurred, the next state will be nB, the 

Prepare to Compute State. In the event that a Fill signal (~) occUrs, 

the next state will be n9. 

Prepare to Compute (nS). In the Prepare to Compute state initiali­

zation of several flipflops is accomplished in preparation for entry in 

the Number Search State of Compute. J must be "one" set allowing the D 

flipflop to be "one" set. Then when agreement is reached between sector 

track and the Number Register, K is "one" set. 

"Wait (n9). Flipflops are initialized to receive the Input Load code 

in the ~it State. The computer will cycle between this state, n9, and 

nlO,Prepare to Sample, until the Sprocket Timing Interlock signal, T*', 

has reached steady state. If a verify error occurs, the Idle 2 state will 

be reentered. 

Prepare to Sample (nlO). The primary purpose of the Prepare to Sample 

state, nlO, is to allow the Sprocket Timing Interlock signal to reach steady 

state as described above. When this occurs, the computer will remain in the 

Prepare to Sample state until bit time T23 occurs and will then transition 
to the Sample state, nll. 

Sample (nll). During the Sample state, the computer will load the 

information on Input Lines Il* through I 5*. Note that flipflops C I 
. P 

through Cp4 were ·!'-zeDoH-,"set in state n9 and will be "one" set only bY,an 

I* input. At bit timeT13 the computer will enter the Parity Check state. 

Parity Check (n12). Flipflop Sb3 will toggle on Cpl as Cpl through 

Cp4 complete a circular shift. This circulation will occur on each bit time 
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when the 04 flipflop is "one". set. In order to insure circulation for only 

five bit times the 04 flipflop is. "one" set on bit time T;;Wand "zero" set 

on bit T24" "One" setting the CpS flipflop will allow a change to one of 

the Process Code states depending upon the contents of the Input Lines. 

Process Code-Clear (nl). The clear load code C.Ruaes the Lower 

Accumulator, L, to be filled with zeroes •. "One" setting the L flipflop c 
allows new information to be. read into L st~rting with bit time TO. Then. 

the C pI flipflop is flipflop is "zero" set preventing new information from 

being read into the L-Ioop.lfa parity error is indicated by a Sb3 at bit 

time Tp the next modewill.be n9;however, if no parity error occurs, the 

computer will bo to state n7, the Wait state. 

Delete (n14). When the input lines are all "ones" no action is taken 

by the computer ~ Th7.s command can be used as a space in input tape. All 

"zeroes" is not used as a Delete command because the Sb3 flipflop would 

indicate a parity error. 

Prepare to Fill State (nlS). The Prepare t.o Fill state is a prepara­

tion state for filling the memory. After the Fill command is processed, 

the succeeding Load codes will be loaded into memory until "Halt" or "Start 

Compute" commands are processed. In the event a parity error occurs, the 

next state will be n7; if no parity error occurs, n9 will be next. 

Prepare to Verify (nl6). The Prepare to Verify State is analogous to 

the Prepare to Fill State. Once the computer cycles through this state 

(caused by processing a l?ad code IS' 14 13' 12 II) the succeeding load 

codes will be compared with the contents of memory as specified by the 

Instruction Register.. This actual operation will be executed as the 

result of an Enter command will therefore be described as part of the 

Enter state. Exit from this Prepare to Verity is similar to that of the 

Prepare to Fill state. 

Octal Numbers (nl7).In this stat~ the oct~l numbers received from 

the input lines will be .!3tored in the L register. Any number of octal 



44 

codes may be loaded but only eight sets of octal digits may be stored in 

the Lower Accumulator at one time. Octal Numbers that are shifted out of 

L are lost. Exit from this state is similar to those of the other Process 

Code states. 

Location (nlB). In this state, nlB, the contents of the L register 

is transferred to the instruction register. This information will contain 

the memory location, channel and sector number, that will be used to start 

Fill and Verify operations. 

The Ic flipflop is "one" set at bit time TO allowing new information 

to be written in the I register, then it is "zero" set at bit time T24 

after L is transferred to I. 

Enter (nl9). In this state, nl.7, the contents of Lower Accumulator 

will be loaded first into the accumulator, then into memory if a Prepare 

to Fill state had initiated a fill operation or the contents of the 

Accumulator and Memory will be compared if a verify operation had been 

initiated by the machine cycling through the Prepare to Verify state. The 

location of memory involved in the above operation is specified by the 

Instruction Register. If a parity error is detected, transition will be 

from nl9 to n7, otherwise an error-free operation will allow the computer 

to go from the Enter state to the Wait state. 

At this point it is necessary to define a set of four states that the 

computer cycles through during a Fill or Verify operation. (A Fill or 

Verify operation results after the computer has successfully cycled through 

the Prepare to Fill or Prepare to Verify states and will continue until the 

Halt or Start compute state is reached). These four states are called 

Fill-Verify Idle, fvl; Fill-Verify Number Search, fv2; Fill-Verify wait 2 

Word Times, fv3 and Fill-Verify Execute, fv4 and the computer cycles through 

them simultaneously as it passes through the Enter state. A state diagram 

of this four-state operation is depictedfffi~g. These states will be 

discussed in conjunction with the Enter state since they occur simultaneously 
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beginning in the Enter state~ The action taken by the computer will vary 

with the part of memory that is to be filled or verified, thus it is neces­

sary to consider not only the Enter state and the four-state cycle described 

above, but also the part of the memory involved in this operation must be 

considered. 

Fill-Verify Idle (fvl). During the Fill-Verify Idle state the Lower 

Accumulator is copied into the accumulator. "Zero" setting the D flipflop 

causes transition to rv2, the Number Search State. This transition occurs 

simultaneously with a transition from nl9 to n9 states. 

Fill-Verify Number Search (rv2). During this state agreement is 

established between the Sector Track and the operand sector part of the I 

register. This comparison is made by the 0b2 flipflop during bit times 

T2 through T7" . The operand channel part of the I register is copied into 

the C register and channel agreement is established. The D and E flipflops 
p 

are "one" set to caUSe transition to the Wait 2 Word Times state. 

Fill-Verify Wait Two Word Times (rv3). During the Wait Two Word Times 

state, the Channel Buffer is copied into the Channel Register. The Number 

Register copies the contents of memory as specified by the Channel Register. 

"Zero" setting the D flipflop causes transition to the Fill-Verify Execute 

state. 

Fill-Verify Execute (fv4) •. Fo:r both Fill Verify operations, the oper­

and sector part of the I register will be augmented by one in this state. 

For Fill operations the contents of the Accumulator will be transferred to 

a memory location as specified by the Operand Address part of the I regi­

ster. After the Fill operation, transition is made to the Fill-Verify 

Idle state. Verify operations are different in two ways. First, the 

contents of the Accumulator and the Number Register are compared. If 

agreement occurs Sb2 flipflop will remain" zero" set and the next state will 

be fvl. Disagreement is indicated by Sb2 "one" setting and the next state 

will be a Manual Halt state. 



Halt (n20)o When the "Halt" code is processed, the Halt state will be 

entered and the V flipflop will be'''zero'' set causing a transition to the c 
Pcrogram Halt state. 

Start Compute (n2l). The Start Compute command when entered on the 

Input Lines will cause the computer to enter the Manual Halt Idel 1 state 

before transitioning to the Prepare to Compute and Compute states. ' If a 

parity error occurred while processing the code, the computer will not 

transition from the Manual Halt states. 

Program Halt (n22). Four separate conditions may cause the computer 
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to enter n22, the Program Halt state. If a "Halt" load code is successfully 

, processed in, the computer will enter n7 before returning ,to Manual Halt 

Idle, states. 

Secondly, a halt instruction may be executed in the Compute mode or if 

the Compute Switch is not in the "Run" posi tionwhen a new instruction is 

found the computer will return to Program Halt state from the "Last Word 

Time State" of Compute. Also, if during the Number Search state of compute 

, the "Compute Switch" is not in "Run" and an, instruction search is required ' 

to locate a new instruction, the computer will enter n22. In all cases the 

computer prepares to enter' one of the Manual Halt Idle stat"es during the 

Program Halt state. The actual Idle state entered depends upon the state 

of the 01 flipflop which was set by the instruction being executed when 

state n22 was entered. 

If state n22 were entered as the result of processing a Halt command, 

during a Fill or Verify operation, the D and E' flipflops will be set to 

caUSe the computer to simultaneously enter the Idle state of the Fill­
Verify operation. 

Compute StatesG Ref (3: 25) and (4: 5~i - 6.13) 

The Compute mode of the D17B is controlled by seVen major control flip­

flops. Th~ K flip:f,'lop~ when "one" set, indicates that the computer is in 

one of, the "Compute" states. The various states of Compute are then! 
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From Prepare to Compute 

Fig.S'O.17B Compute States 



controlled by the D and E flipflops. When the E flipflop is "one" set 

an instruction is being executed. The D flipflop, when "one" set, indi­

cates that an instruction search is in progress and when" zero" set 

indicates instruction read and/or operand search is in progress. The 

four flipflops of the Operand Storage Register, 04 through 01' determine 

the instruction that will be executed. 

Instruction Search State (cl). The Instruction Search State as 

defined in this report will be the state indicated by the flipflop 

settings K D E'. It is not necessary for this state to occur with the 

execution of every instruction. 

If a program is optimally coded, a new instruction can be read into 

the I register during the execution of the present instruction. In this 
(. 

case, the instruction search operation was performed as a result of fore-

thought of the programmer. Similarly, the Instruction Read-Number Search 

state may also be avoided by astute programming. In this case the computer 

would cycle between the two states of Execute without actually performing 

an instruction or operand search. 

Instruction agreement occurs when the memory location addressed by 

"next instruction" part of I is in a position to be read by the computer. 

Monitoring for this condition is performed by the buffer flipflops ObI 

and 0b2. These two flipflops a:re monitored by the Id flipflop which 

controls the D flipflop. When the D flipflop becomes "zero" set, transi­

tion to state c2 occurs. 

Instruction Read-Number Search State (c2). Instruction Read-Number 

Search state, c2, is a dual function state defined by DE' flipflop condi­

tions. Like the Instruction Search State, this state may not necessarily 

be realized with the execution of every instruction. One-half of the dual 

function of the state may be exercised. For example, the next instruction 

may be found and read during the Execution state and the computer. may cycle 

to state c3 for the Number Search function alone. 
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For number agreement the information in Ip at bit times T2 through 

T must agree with the Sector track, S. Since the loops are effectively 
g 

separate channels of' 4, 8, and 16 word length, more than one f'lipflop is 

needed to check agreement for all channel elngths. Flipflop 0b2 monitors 

for agreement for the 4 word loops, ObI monitors for 8 word loops, Sbl 

for 16 word loops and 0b.3 monitors for the full channel length, 128 words. 

TheNd flipflop is the primary number agreement monitor and is changed by 

the above number agreement flipflops at bit time Tl.3" 

Instruction Read is accomplished by setting the desired memory chan­

nel into the Cp5 through Cpl flipflops. When flipflop Id indicates 

Instruction agreement, the I f1ipf'lop is "one" set allowing the new 
c 

instruction to be read into the I register. Bits I24 through 121 are read 

into the Operand Buffer Register, and 112 through I8 are read into the 

channel buffer register. If the instruction is a flag-store instruction 

(I20::o1) the flag channel information, I19, I18, and I17 is read into the 

Flag Dade Buffer Register. If the instruction is not a flage-store instruc­

tion, the Flag Code Buffer Register is loaded with "zeroes". 

From this state, c2, transition will be to one of the instruction 

execution states or to 01 in the case of the transfer on minus instruction 

with a positive accumulator (see state c4 description). If the Compute 

Switch is not in the "Run" position when the I flipflop is "one" set to c 
read a new instruction, the computer will go to Non Compute Program Halt, 
n22. 

Last Word Time of Execute (0.3). The Last Word Time of Execution, c.3, 

will be discussed in conjunction with the execution of each of the instruc­

tion states since during this state the operation started in each of the 

instruction states is completed. For all one-word-time instructions (04=1), 

the instruction defining state is entered for the first bit time of execution 

and then the computer transitions to c.3 to complete the operation. 

This state acts as a decision point for the computer to exit the Oompute 
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Mode. If the Compute Switch is· not in the· "Run" position and a new instruc­

tion is fOUnd,the computer will go to state n22, Non Compute Program Halt. 

Unconditional Transfer (c4}. The word format of the D17B makes no 

provision for specifying the channel of the next instruction. Thus, there 

must be a command to change· channels of operation. The Unconditional 

Transfer is a "jump" instruction that is used for this purpose. In this 

"jump" instruction the sector of next instruction field is ignored and the 

complete operand address Serves as the address of the next instruction. 

The new channel address is contained in the Operand channel portion of the 

transfer instruction. This information was shifted to the program channel 

tfurfer register during the instruction search operation. At bit time TO 

:t:Q.e program Channel Buffer Register is parallel loaded into the Program 
.".' -, '.: , ,,"" '-

Channel Register. 

Instruction agreement is controlled by the nUmber agreement flipflop 

which determines the sector of the new instruction from bits 17 through II 

of the present instruction. 

'Conditional Transfer (c5).The decision for the Conditional Transfer 

operation is made in state c2. If bit A24 lszero, the accumulator is 

positive and the computer returns to state c1 to search for the instruction 

as indicated by 5p [IJ. A "I" ·lli!::bit position A24 indicates that the accumu­

lator contains a negative number and the computer goes to state c3 and 

selects the new instruction as indicated by 0[1]. 

Store Accumulator (c6). The Store state must be considered for four 

different situations; storing in channel 50, storing in channels 00 thru 

46, storing in the loops, and flag storing. 

Storing in charinel'O or "Hot storage writing" is initiated by setting 

the S{ flipflop to the channel 50 store code, then the Accumulator is copied 

directly intochB.nnel ,0 and in a sector two octal-numbers less than the 

sector of SCI]. This two sector difference is accO'unted for by the fact 

that the write heads are separated i'rom theread·heads by two sectors. 
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In order to store information in channels 00 thru46 an EWC signal must 

be present, enable write switch must be on. for selecting channels 00 thru 

46 the computer utilizes a separate selector switch for each channel. This 

selection is accomplished using the contents of Channel Storage Register. 

The Accumulator is then stored in the memory address specified by the OP[I] 

minus two sector positions. 

Storing in the E, F,H loops is similar to storing in channel 50 

except the S. flipflops are set by the contents of the channel buffer regis-
1. 

Storing in the V and R loops may be accomplished if the computer is 

not in Fine Countdown mode (F =1) (See state 017). In this case, the o 
contents of A is added to the incremental input at the time of execution. 

A special case results when the T20 bit of any instruction is "l". 

This "flag", "lI' in T20 is used to execute two operations with one instruc­

tion. The contents of the Accumulator will be stored in the channel indi­

cated by the contents of bits 119 thru 117 0 This means that the sector of 

next instruction field of the instruction being executed is limited to the 

four bits 116 thru 11.3 and the next instruction must be wi thin the next 16 

sectors. Flag storing is accomplished in the following steps: The Flag 

store buffer register Sb is loaded with :the contents of 119 thru 117 during 

state c2.During the execution of the instruction the Flag Store Buffer 

register is parallel-loaded into the flag store register. This information 

is used to select the proper write heads for writing the Accumulator 

contents into memory. 

Clear and Add ((7). State c7 initiates the clear and add operation, 

in which the contents of memory as specified by the operand address is 

transferred to the ACCUlllulator. In state 07 the N flioflop is "one" set c 
allowing the selected contents of memory to be read. into the Number regis-

ter. In state 0.3 the operation is completed, the selected contents of 

memory is read into the Accumulator. 



Add (c8). State 08 initiates the add operation in which the memory 

contents as specified by operand address is added to the Accumulator. 

The sum is then stored in the Accumulator. 

Subtract (c9). Subtraction is accomplished by the hardware as 

addition in the D17B; however, the carry operation of addition is con­

verted to a borrow operation by a "one" in the 02 flipflop. 

Split Add (cl0). During the split add operation the split word 

contents of the Accumulator is added to the corresponding parts of memory 

and the sum is stored in the split word portions of the Accumulator. At 

bit times T12 and Tl.3 the Ac flipflop is "zero" set allowing the contents 

of A12 and Al.3 to remain unchanged. 

Split Subtract (ell). The split subtract operation is similar to the 

split add operation, except that the split word contents of memory location 

specified by O[IJ is subtracted from the contents of the Accumulator. 

X Special State (c12). No action is performed in the X special state. 

It serves only as a decision point for the computer to enter a special set 

of states that require one word time to complete and do not require access 

to the computer memory. The Channel Storage Register contents are used to 

select the X special state that will be entered from c12. In this special 

operation the channel storage register serves as an auxiliary operation­

code storage register. Since all the X special operations are one word 

time instructions, the specific X special state serVes to define the oper­

ation and much of the actual operation is performed in state 0.3. 

'Complement (013). The complement operation causes the 2's complement 

of the Accumulator to be read into the Accumulator. The Accumulator is 

circulated and the A flipflop is "one" set by the first "one" in the c 
Accumulator. All succeeding bits of the Accumulator are complemented. 

Minus Magnitude (c14). When the computer enters the Minus Magnitude 

state, 014, the sign of the Accumulator is tested. If the Accumulator is 
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negative no' action is taken; if the Accumulator is positive the Cbl flipflop, 

is "one!! set and copied into ,the Cl flipflop, thus generating a complement 

instruction. 

Logical And to Accumulator (c15). Entering state c15 causes the 

correspondig bits of the Accumulator and Lower Accumulator to be logically 

"anded". 

Enter Fine Countdown (c16). Entering the Fine Countdown causeS the 

Fc flipflop to be "one" set. 

ation called Fine Countdown. 

This places the computer into a parailel oper­

During Fine Countd:own the V and U loops fomi a 

digital integrator. This operation will continue until the Halt Fine Count­

down state fs entered. 

Halt Fine Countdown (c17) • Entering the HB.lt Fine Countdown state, 617, 

causes the Fine Countdown flipflOp, F , to be "zero" set. c 
Reset Detector (c18). When the Reset Detector state is entered, the 

Dr flipflop is "zero" set. . The Dr flipflop is '" one" set by I~. 

Halt and Proceed (c19). Entering state c19, Hand and Proceed causes 

the computer to enter state cJ and then state n22, Program Halt. 

Load Phase Register (620). The Load Phase Register special instruction 

causes C2 to be loaded intp P2 and Cl is copied into P20 P3 copies the I~ 

flipflop at bit times Tl through T5• State c20 is defined by three of the C 

flipflops, C5; C4, and C3, the rema1ning two C flipflops may be either "one" 

or "zero" set. The actual purpose in setting the Phase Register will be 

discussed in conjunction with state c~7. 
;, .' 

Binary-Output (c2l, 022,02J). Binary Incremental Output states may 

be discussed simultaneously. These states differ only in the sense that 

state 021 involves output flipflop Gl , c22involves G2, and c2J involves 

GJo Only the first'state, c21, will be discussed because the discussion 

is directly applicable to all three states b.Y substituting the proper G. 
~ 

flipflop in state c2i, where 1=1, 2; or 3. 
In state c21 the state of the Gl flipflop is checked. If Gl equals 
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"1" the first eight bits of A are treated:as' a word and +1 is added ,to that 

word. If Gl equals "on a liS subtracted from the word formed by the first 

eight, bits of A. After one of the above operations is accomplished, the 

Gl flipflop copies the sign bit of A. 

Discrete Inputs (c24, c25).In both discrete input operations 'a set 

of twenty-four discrete input lines and flipflops are sampled and read into 

the A register. For a Discrete Input A,.DIA, operation the discrete input 

lines Xl through X19 and flipflops Dr' Fc' P3, PI' P2, replace bits Al 

through A24 respectively. 

During the operation initiated by state c25, DIB, the discrete lines 

Yl through Y24 replace bits Al through A24 respectively. The actual infor­

mation transfer described in. th.ese states ~kes place in state c3; however, 

the states c24 and 025 serve to,define the operation to be performed in 

state c3. 

Discrete Outputs (026). 

Output A, causes the bits II 

Theoperati.n initiated by state c2, Discrete 

through I5 to be loaded into the Discrete Out-

put Register, Dl through D5" 

Voltage Output (c27, c28, c29). The Voltage Output states are identi-

cal in concept. The function of these states varies only in the phrsical 

location of the.output voltage. 

Three Voltage Output Registers are loaded with the split word contents 

of A. If I4 is "1", ,the right half of A is loaded and if I4 is "0", the left 

half of A is loaded. 

The states c27, c28, and c29 determine which set of Voltage-Output flip­

flops, ViI through Vi8, (i=l, 2, or 3) will be loaded from A. If c27, VOA, 

is entered VII through V18 will be loaded; c28, VOB, causes V21 through V28 
to be loaded; and c29, VaG, causes v31 through V38 to be loaded with the 

proper half-word of A. 

The Phase Register also affects the output location of each voltage 

line. 



y Special Stat~ (030). The YSpecialstate~ 030, Serves only as a 

decision point for entering specific states 031 through 038. Operations 

initiated by the Y Special state do not require a.ccess to Memory; howeVer, 

they do require more than one word time to complete. 

Accumulator I,eft Shift (031) •. A left shift operation is accomplished 

in the D17B by a.dding an extra flipflop, Ak, to the A loop for the num1;>er 

of word times equal to the number of i3hifts required. The number of shifts 

.. is specified by II through c15" This number is loaded into the Channel 

Buffer Register aDd counted down at each word time. 

Accumulator Right Shift (c32). State c32 ini tla,tes a right shift of 

the Accumulator. To accomplish this operation, the A flipflop is reIDOIted 
p 

from the reci.rculation loop of the Accumulator. The number of ri.ght sifts 

required is indicated by II through 15 and-the A flipflop remains out of 
• c P _ _ i 

the A loo:p for that number of word times. If the Acc:umula tor is posi ti ve, 

zeroes are filled into the vacated bits; however,if the AccuniUlator 

contain:;l a negative number, liS replace the bit positions vacated by the 

right .shift. 

Split Accumulator Left and Split Accumulator Bight Shift (c3.3, 034). 

The discussion of states c.3land c.32 are directly applicable to the states 

033 and 034 respectively. In the split~shift states the left and right 

half words of the Accumulator are shifted the same nu."lJ.ber of bit positions 

but are treated as separate words. 

Spli t Left 1r.Tord Left Shift (0.35) ~ State c35 ini tia tea an operation 

which caUSes the l.eft half-word of the Accumulator to be shifted left by 

+~IP "'um.ber of bit positionS specified in 'II tb+ough I," The discussion of 

state 031 is applicable t.o this state except that bits A14 through A24 

only are affected. 

Spl! t Right Word Left Shift rC,~6). Bits Al through Ala only are 

affected by the Split Right Word Left Shift operation. As implied by the 

state name~ the rihgt half-word of the A register is shifted left. 
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Split Left Word Ri.ght Shift (c:37). State 0:37 initiates a right shift 

of the left half-word of the Accumulator. As in all right shift operations, 

if the half -word W'Cire posi ti ve., the bits vacated by the shif·ting are filled 

with zeroes and if the half-word were negative, liS are filled into the 

vacated bit positions. 

Split Right Word Right Shift (038). State c38 initiates a right shift 

of the right half-word of the Accumulator. The discussion of c37 is directly 

applicable to this state except the right half-word is shifted. 

Single Character Output (c39)0 The operation initiated by state 039 

shifts the four most significant bits out of the Accumulator and presents 

them to the four character output lines. A fifth character output line is 

used as a parity linea This information is presented on the character out­

put lines for the number of word times specified in s[I]. 

The Single Character Output operation isaccomplisbed in the following 

manner. The sector portion of the instruction operand is shifted into the 

Operand Channel Buffer Register. Each word time this register is decreased 

by one, thus it is used to terminate the operation after the end of (s[I])+l 

word times. 

During the first word time of the Single Charaoter Output operation, 

the circulation loop of the Accumulator is extended to include four flip­

flops of the Operand Channel Buffer Register: C1' C2, C3, and C4" This 

causes the four most significant bits of the Accumulator to be left shifted 

into these C flipflops 0 Pari ty is indicated by the J flipflop by "zero" 

setting it at the beginning of the operati{!Jn 9.:.nci allowing it to toggle as 

each "1" is shifted into the flipflop. 

The parity (J) and output (C4, C3, C2, and Cl ) is presented on the 

output lines Sc5 through ScI' respectively, with the occurrence of each 

ScT timing pulse. 

Split Compare and Limit (c4O). State 040 initiates the Split Compare 

and Limit Operation in which the split-word contents of the Accumulator is 
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compared with the corresponding bits of a word in memory. The memory is 

specified in the operand of the SCL instruction. 

If the contents of the memory word is greater than:that of A, no 

changes are made. If the split word portion of A is positive and greater 

than the corresponding part of the memory word, the split memory word 

replaces the split-word of A. 

If the quantity in :memory is less than the corresponding part of A 

and that half-word of A is negative, the two's complement of the memory 

half-word replaces the Accumulator half word • 

. Mul tiply (c41). The Multiply operation is ini tia ted by state c41. 

The operation causes the contents of the Accumulator to be moved to the 

Lower Accumulator and the product of the Accumulator and memory contents 

specified by the MPY operand is placed in the Accumulator. 

Split Multiply (C42)0 State c42 initiates the Split MUltiply 

operation. This operation is similar to the Multiply operation except 

the left half-word of A goes into the right half-word of L and the right 

half-word of A goes into the left half-word of L. The split words of the 

Accumulator and the memory word specified by 0 I are multiplied and stored 

in the respective split words of the Accumulator. 

Split Multiply Modified (c43). Split Multiply Modified is an operation 

which causes the three least significant bits of the Channel Buffer Register 

to be replaced by the "exclusive or" of those bits and the contents of the 

Phase register. The operation then proceeds as a Split Multiply operation. 

Split MUltiply Modified commands allow the computer programmer to vary the 

effective operand channel address depending upon the Phase register contents. 

Multiply Modified (c44). State c44 initiates the Multiply Modified 

operation which caUSeS the three least significant bits of the Channel Buffer 

Register to be changed by an "(3Xclusive or" operation with the Phase Register. 

After the above modification, a multiply operation is accomplished as described 



in state 041. It is noteworthy that this operation dOes not change 'the 

original multiply instruction in memory. 

State Description Summary 

In the above jrescription of the D17B the various configurations of 

control flipflops were used to define states of the computer. These 

state definitions are not unique and many other sets of flipflop combi­

nations may be used to describe the machine operation. The states 

described were chosen because they could be given names that correlate 

with other published ini'ormation about the D17B. Hopefully, this type 

of description will be an aid not only in understanding the operations 

of the machine~ but also in maintaining it. For exampleJ the II state" 

of an inoperable machine may be determined by checking the status of the 

control flipflops. Once the state is identified~ the malfunctioning 

circuit may become apparent by considering which flipflop is preventing 

normal state transition. 
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Appendix A 

List of Terms and Abbreviations 

Ak: Carry, borrow and misc. flipflop. 

A : 
p 

"A" register extra delay flipflop. 

A: irA" register read flipflop. x 
A24: "A" register delay flipflop. 

A23w: "A" register write flipflop_ 

B6, B5, B4, B3, B2, Bl : Bit time counter flipflops. 

Cb5 , Cb4, Cb3, Cb2, Cbl : Operand channel buffer register and word time 
counter flipflops. 

Cpl : Program channel register. 

Operand channel storage register and auxiliary 
operation-code storage register. 

DI7B: Designation dfl the computer used for guidance in the Minuteman I 
missile. 

D : 
r 

D5, 
D: 

E: 

E : mx: 
E : x 
E : 

p 

Ewc 

Shift control for "Discrete Output" register. 

Discrete disable signal from a control panel to control the discrete 
outputs. 

Gyro malfunction indicator flipflop. 

D4, D3, D2, Dl : "Discrete Output" register. 

Control flipflop. 

Control flipflop. 

"E"·loop intermediate read flipflop. 

"E" loop end read flipflop. 

"E" loop write flipflop •. 

Enable write signal - from a control panel - enables IIcold storage" 
write heads in memory. 

Fine-countdown-mode indicator flipflop. 

"F" loop write flipflop_ 

F: Also F in some writings - signal from a. control panel that directs s se 
the computer to enter the Prepare to Fill state. 

F: !IF" loop read flipflop. x 



G3, G2, Gl : Binary outputs flipflopso 

H: "HI' loop write flipflop. 
p 

H : "H" loop intermediate read flipflop. mx: 
H : x 
I : c 
Id: 
I.o 
~o 

I mc 

Jo , 
K: 

K' 0 

kr° 

L : 
p 

L : x 
L24w: 
M : 
px 

M : rc 

N : 
p 

, N : 
x 

"H" loop end read flipflop. 

"I" register interrupt control flipflop. 

"Instruc:tionSearGh" sector disagreement indicator flipflop. 

Also Iic~ the ith signal input to the computer from an external 

source for character input, i=l, ••• , 5. 
Symbol fora mechanical input signal to the computer, command to 
enter the Wait state. 

"I" register extra delay flipflop. 

"I" registe~ read flipflop. 
,', ' , - . 

"I" register write flipflop. 

Control flipflop. 

Control flipflop. 

Halt not or run signal from a control console - directs the computer 
to enter the compute states. 

Run not or halt. signal from a control console - directs the computer 
to enter the non-compute stateso 

"L" register interrupt control flipflops. 

"L" register delay flipflop. 

"L" register extra delay flipflop. 

"L" register read flipflop. 

"L" register write flipflop. 

Memory output buffer flipflop. 

Also M - master reset sigDal from a control console, initiates the r c0ID.puter to the Prepare to" Operate state. 

"N" register interrupt control flipflop. 

"Number Search"sector disagreement flipflop. 

"N" register extra delay flipflop. 

liN" register, read flipflop • 
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N24w! "WI register write flipflop. 

0b3' 0b2' ObI: Operation-Code-Buffer register. 

04' 03' 02' 01: Operation-Code-Stora.ge register. 

P3, P2, PI: Phase register. 

Q: Special timing flipflop. 

R: "R" loop interrupt control and mode control flipflop. 
c 

R: "R" loop write flipflop. 
p 

R: "R" loop read flipflop. x 
S: Information read from the sector track of the D17B computer memory. 

Sb3' Sb2' Sbl: UFlag-Code" buffer register. 

S3' S2' Sl: "Flag-Code" storage register. 
T: Sprocket timing signal; used to direct the computer to accept 

c character inputs. 

T.: Bit times of the computer, i=l, ••• , 24. 
~ 

TO: "To Time" indicator flipflop. 

T : 
p 

T : 
x 

U: 
p 

U : x 
V: c 
V : 

p 
V : 

x 
V38 , 

V28 , 

V18, 

OAl : 

A*· l' 

"T Time" indicator flipflop. 
p 

"T Time" indicator flipflop. x 
"U" loop write flipflop. 

"U" loop read flipflop •. 

"V" loop interrupt control and state control flipflop •• 

"V" loop write flipflop. 

"V" loop read flipflop. 

V37, e _ • , V31: Voltage output register number 3. 

V27, a 8 • , V21 : Voltage output register number 2. 

V17, t!I 8 a , VII: Voltage output register number 1. 

Symbolizes that the flipflop named Al is set to a logical "zero" 
condi tion or "zero set". .. 

Symbolizes that the flipflop named Al is set to a logical "one" 
condition or "one set". 

The star or asterisk indicates an external signal to the computer that 
has been changed in voltage level but has the same logical meaning as 



the symbol with no asterisk. 

AI: Prime is used to indicate a logical "not" when A is a logical 1, 
AI is a logical O. 

Flipflop names and some definitions in this list were taken from 
Ref (1: 110-114). 
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USE OF THE 017B IN A HYBR~D COMPUTER SYSTEM 

Lansing'B. Evans and Charles H. Beck 
Tulane University 

Department of Electrical Engineering 
New Orleans=t LA 701rS 

ABSTRACT 

Now that the USAF has reZeased a Zarge number of ~nuteman DZ7B Computers 
whiah were originaZZy designed for missiZe guidanae~ other appZiaations for 
these e:xaess generaZ-purpose aomputers have been undergoing a rapid evoZution 
in many fieZds. This paper desaribes a new hybrid aomputing appZiaation for 
the ~nuteman DZ7B Computer whiah makes use of a Zarge number of the fZe:xibZe 
capabiZities of these computers. Hybrid aomputing system design aan take fuZZ 
advantage of the aapabiZities of both anaZog and digitaZ aomputers as weZZ as 
those of speciaZ hardWare that is possibZe to deveZop beaause of the avaiZa­
biZity of info~ation in both continuous and discrete fo~. Motivation for 
this type of appZiaation for the DZ7B stems primariZy from the versatiZe I/O 
aapabiZity of these maahines. The purpose of this paper is to present some of 
the design aonsiderations and typiaaZ appZiaations for a DZ7B-TR48 hybrid 
aomputing system~ to desaribe the present system aonfiguration~ and to outZine 
a speaifia hybrid optimization mode Zing probZem that is being soZved using 
this system aonfiguration. The DZ7B has been found to be aompZeteZy satisfaa­
tory for this automated design appZiaation. 

BASIC DEFINITION OF A HYBRID SYSTEM 

In a broad sense the field of hybrid computation includes all computing 

techniques which combine some of the features of digital computation with 

some of the features of analog computation. The combination of digital and 

analog devices brings together many of the characteristic advantages of both 

types of hardware and software. In many cases a disadvantage of one part of 

the system is more than compensated for by an attribute of another part of 

the system. The idea of interacting advantages will become more evident by 

citing some of the capabilities of the two major components of the hybrid 

system, the analog and digital computers. There will be additional entries 

to the list of general capabilities which follows depending on the specific 

computers being used in a particular hybrid system. 



Some capabilities of the analog computer include: 

1. Dependent variables within the machine are treated in continuous form. 

2. High-speed or real-time computation is available with computing speeds 
limited primarily by the bandwidth of the computing elements. 
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3. There exists the ability to perform efficiently such operations as addition, 
multiplication, integration and non-linear function generation; on the other 
hand, there is very limited ability to make logical decisions or store data. 

4. Programming techniques involve patching together the various computing 
elements. 

On the other side, some of the capabilities of the digital computer 

include the following: 

1. All data within the computer is in discrete or quantized form. 

2. In general only one operation can be performed at a time and many computing 
units must be time shared. 

3. The facility exists for storing alphanumeric data indefinitely. 

4. The ability exists to perform logical decisions and operations using either 
numerical or non-numerical data. 

5. There exists the ability to modify the program extensively on the basis of 
any calculation. 

Almost any computing system is a subset of a complete hybrid system. 

Whether a system is almost purely digital with only minimal analog capability, 

nearly all analog with a small amount of digital ability, or anywhere in 

between, it qualifies as a hybrid system and the principles of hybrid computing 

may be applied to it. 

HYBRID COMPUTER APPLICATIONS 

Because of the inherent flexibility of the hybrid computer, there are 

numerous applications for this type of system. One of the most important is 

modeling and parameter optimization involving dynamic systems. This particu­

~ar application makes use of a true hybrid system involving an analog computer, 

digital computer, and appropriate interface components. As the name implies, 

modeling requires the use of known experimental input and output data to obtain 

an. accurate mathematical or topological model of the system involved. With a 

complete hybrid system, relatively complicated and multi-variate models may be 

consider,ed. 



68 

The block diagram of a' typical hybri9 modeling technique is, shown "in 

Figure L During a run the actual, system, or ;function. gent;!rat()r representing 

the actual systemds operated' in"parallel with the assumed model. The index 

of performance (IP), which measures the quality of 'the model, is formed on 

th~ analog comput~r'by int~grciting the square 'of the'error function over the 
" : . ,", . ". . . ; '. ~ " ... ~ , . . 

time of the run. Using, this technique the digital computj!r adjusts the model 

parameters after sampling the IP, from the previous run and performing needed 

optimization calculations. The digital computer makes its decisions on the 

new parameter settings using an optimization method such as the Tulane Auto­

mated Hybrid Optimization (TARO) technique. 

The TARO technique has been applied to circuits and various physical 

systems. Currently the TAHO technique is being used for a multi-variate model 

of the head and neck of a pilot in a crash situation. The data are obtained 

by monitoring human subjects who ri~e an acceleration sled along a track. A 

simulation of these data is used as the actual. system portion of Figure 1. 

Other typical applications of the hybrid computersystetninclude: 

Aerospace Simulation 
Simulation of ,Process Con.tro1 
Simulation of Man-Machine S~stems 
Random Process Simulation 

USE OF THE MINUTEMAN D17B COMPUTER IN HYBRID APPLICATIONS 

In most hybrid systems the digital computer provides control functions 

as well as the digital computa'tio~'for the entire system. Therefore, the 

digital computer must have the ability to communicate not only with the usual 

digital peripheral equipment but also with the remainder of the hybrid system. 

The Minuteman Dl7B Co~uter has the need~d input/output versatility and the 

flexibility required for ~ hybrid system. For it~ size, the Dl7B has a large 

number of' digital input and output lines, pulse output lines, and analog type 

output lines. 

The programmability of the' D17B i8also a significant advantage for a 

hybrid system. The D17B has a complete "set of a:rithme'i:ic, control, and input/ 

output instructiori~. It is' also capable of instruction'modification which is 

an important factor in efficient software for a hybrid system. Because many 

of the operations required to control the hybrid interface and the analog 
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computer are of a relatively.basi~ bit-level nature, the machine language 

programming of the Dl7B can be far more efficient than the use of a compiler 

language. In addition, as will be seen in the next section, the D17B input! 

output instructions are very well suited for hybrid operation. 

Perhaps one of the greatest advantages of the D17B hybrid system is the 

comple,te flexibility of the configuration. By the nature of the definition 

of a hybrid system, it may be anywhere from pure digital to pure analog. The 

D17B will fill the digital computer requirements for any of these systems if 

the memory size and speed are suitable. The D17B hybrid system described in 

the following section is a complete hybrid system with full analog and digital 

capabilities. A full system such as this allows for any operation from merely 

using the D17B to control the mode of the analog computer to the sampling of 

analog signals with the A-D converter and performing all processing digitally. 

This means that practically any computing application can be realized as a 

subset of a complete hybrid system. 

MINUTEMAN D17B/TR-48 HYBRID SYSTEM CONFIGURATION 

In designing the configuration of the D17B/TR-48 hybrid computer system, 

a careful effort was made for full and efficient use of the D17B input/output 

capabilities. A block diagram of the basic D17B/TR-48 hybrid computer system 

is shown in Figure 2. It can be seen by inspection of the diagram that this 

system is a complete, digitally-controlled hybrid system. 

The two major paths of information flow in Figure 2 are those from the 

digital to the analog computer and those from the analog to the digital machine. 

Since many applications require multi-variate analysis, it is necessary that 

the major paths in both directions be multi-channel. Within reasonable limits, 

this presents no problem to the ability of the D17B to control the interface. 

The major components of the analog-to-digital information path include a 

l6-channel multiplexer and an analog~to-digital (A-D) converter. The multi­

plexer allows 16 analog signals to time share one A-D converter. The D17B 

controls the operation of both the multiplexer and the A-D converter as shown 

in Figure 3. In order to permit one of the inputs of the multiplexer to be 

switched to the input of the A-D converter, a four-bit binary address, between 

o and 15 decimal, is transmitted to the multiplexer address register. The COA 
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(character output) instruction is used for this purpose because it sends out 

a clock pulse along with a four-bit parallel pulse type word which can easily 

and conveniently be interfaced to the multiplexer address register. The use 

of the COA instruction in this case also means that only one machine language 

instruction will be needed to control the multiplexer. Once the proper analog 

signal has been applied to the A-D converter, two discrete output (DOA) 

instructions are executed to cause the A-D converter to digitize the analog 

input. Two DOAs are used to generate a pulse as required by the A-D converter. 

The ten digital-to-analog (D-A) converters shown in Figure 2 are the most 

important links in the flow of information from the digital computer to the 

analog co~uter. The D-A converters are also under complete control of the 

D17B. Figure 4 shows how the D17B loads and controls the D-As. The D-As used 

in the Tulane hybrid system accept an 8-bit digital input. This 8-bit input 

is loaded into one of the internal D-A buffer registers and converted to a 

proportional analog value when a clock pulse is applied to that D-A. Since no 

input is loaded into a D-A until a clock pulse is applied, the digital inputs 

of all D-As may be connected together and tied to an8 .... bit digital bus. 

The D17B has a voltage output (VOB) instruction which may be used for an 

8-bit parallel digital output. Eight bits from the accumulator are transferred 

to the VOB register when a VOB instruction is executed. Once the VOB .has been 

executed, the desired8-bit word is applied to all D-A inputs. A pair of DOAs 

are then used to load the digital word into the proper one of the ten D-As. 

Only a few machine language instructions are needed for D-A control. 

In addition to the basic A-D and D.;...A units, the interface contains two 

somewhat more sophisticated components. These are the digital parameter units 

(DPU) and the digitally controlled nonlinear function generator (DCNFG). These 

devices involve interactions between digital and analog signals rather than a 

conversion from one form to the other. 

The DPUs provide for the digital control of the parameters in the analog 

computer patching. This control is performed electronically at high speed by 

the D17B. With this ability the parameters of the model may be changed at high 

speed under program control. Basically the DPU is a hybrid multiplier. It 

multiplies the 8-bit digital word transferred from the VOA lines by the corre­

sponding analog signal from the TR-48 as shown in Figure 5. 

The interface between the D17B and the DPUs is quite similar to.the one 

for the D-As shown in Figure 4. The 8-bit VOA lines are fed to the inputs of 
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all DPUs. The digital word is then loaded using two DOA instructions as in 

the case of the D-A converters. The analog inputs and outputs for the DPUs 

are patched on the TR-48 patch board. These extremely powerful hybrid comput­

ing elements are also convenient to use with D17B computer machine languageo 

The nonlinear function generator is a digitally controlled variable 

breakpoint function generator. The function may have up to ten segments of 

any desired slope, and the slopes and breakpoints can be programmed into the 

generator under D17B program control. The slopes and breakpoints are loaded 

into the generator using the 8-bit VOC lines and DOA pulses. After the loading 

of the desired function, the output, y(t), takes on the function output for 

the corresponding analog input, x(t), as shown in Figure 6. The setup time for 

the function generator is fast and versatile as is the case for the DPUs. 

The mode control on the TR-48 Analog Computer is operated from external 

relays controlled by the D17B Computer as shown in Figure 2. The outputs from 

the VOC digital lines are loaded into a buffer which drives the relays on the 

external patch board. The relays that are not used for mode control may be 

used for high-speed patching changes ih the analog computer program. 

CONCLUSIONS 

While the D17B is a small general-purpose digital computer, the versatile 

input/output capability of this machine has allowed for the development of a 

compact, efficient hybrid computer system when used in conjunction with a TR-48 

Analog Computer. The most important benefit of a computer system such as the 

Minuteman D17B/TR-48 hybrid system described in this paper is that it may be 

used in a wide spectrum of computing applications. 
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DESIGN OF A BINARY DISPLAY FOR THE D17B COMPUTER 

by 

. HARRY S • WARFORD ) Capt, USAF, BSC;'; 
DEWIDS .. MJRAN, GS-9 

INTRODUCTION 

Hardware development for the D17B computing system has proceeded rather 
slowly as a spare time interest at the USAF School of Aerospace Medicine. 
As a result, the binary display teclmique described by this paper has . 
not been optimized for future growth of the total system. However, it 
has evolved into compact arid relatively inexpensive design through 
effective use of machine inh~rent characteristics. The overall design 
calls for the capability to monitor any register or memory track with 
random access to any particUlar sector. At present, the hardware for 
monitoring the me-word registers is complete and the design is complete 
for the remaining circuitry to randomly address memory location. 

'IEaINIQUE 

The D17B utilizes the 24-bit full word for programming but actual word 
length m the disc :rremory is 27 bits. "The 3-bit "dead tine" has been . 
used in our design to facilitate display without the need for additional 
holding registers while maintaining the capability to update the display 
each word tine. DUring the 24-bi t times representing the computer word 
a 24-bit serial entry shift register is filled from the D17B while the 
light emitting diode display is blanked. Then during the 3-bit dead time 
the shift register is halted and the parallel outputs drive the display. 
At the end of the 3-bi t times, the display is blanked and the irifornation 
is changed or reloaded into the register .. 

For randan access the sector channel is to be monitored as shown in 
Figure 1. Sector number infornation will be captured in an external . 
register and compared with the numbers selected m a set of octally coded 
thumbwheel switches. When the information agrees, the. proper shift pulses 
are gated to the aforementioned 2~-bit register to capture the next word 
of the chosen channel. Channel choice is by a second set of thurnbwheel 
switches and the decoding internal to the D17B. 

. . 

;'~o be presented by Michael Jenkin, M3.jor, USAF, MC, USAF School of 
Aerospace Medicine, Brooks AFB T~xas 78235 



CIRCUITRY 

Figures 2 and 3 show the circuits used to irrplement the basic display. 
The derived control signals are shown in Figure 4. It must be noted 
here that the logic signals were considered to be of positive sense 
for ease of design with cOlTO'rercial DTL logic. Additionally, the levels 
were not translated but the signals were merely attenuated to produce 
a five volt swing and the integrated circuits were operated with "vcc" 
at 0 VOC and "ground" at minus 5 VDC. Figure 5 shows the proposed 
control signals to accorrplish random access and Figures 6 and 7 show 
the present design being constructed for this purpose. At present, 
all logic has been broken into IIDdules representing a byte of data and 
irrplemented with commercial plug-in cards and racks. 

OTHER DEVELOPMENTS 

Little effort has been expended on hard-copy output thus far since the 
surplus Flexowriters obtained for this project rapidly deteriorated and 
failed early in the project. However, an extremely sirrple and in­
expensive technique was used to provide input only by mounting a second 
set of leaf switches in tandem with those used to operate the punch 
select magnets of our remaining operable . Flexcwri ter. This provides 
corrplete electrical isolation thus alleviating the need to IIDdify the 
Flexowriter power supply and requires a single capacitor to shape the 
timing pulses. 

Additionally, an extra tape reader has been converted to stand-alone 
use as depicted in Figure 8. A manual I/O panel similar to those 
described at earlier user's meetings provides for miscellaneous control. 
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AUTOMATED DATA ACQUISITION AND WAVEFORM 

ANALYSIS USING THE MINUTEMAN D17B COMPUTER 

Charles H. Beck and Yih-Young Chen 
Systems Laboratory, Tulane University 

New Orleans, LA 70118 

SUMMARY 
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This paper describes the development of an automated data acquisition and 
waveform anaZysis system for a single-channel AutoAnalyzer using the Minuteman 
Dl7B Computer. This automated system is a typical example exhibiting several 
essential features on which other laboratory data acquisition systems can be 
based. The complete AutoAnalyzer Analysis System was set up in the Tulane 
Systems Laboratory, and total protein analysis of blood serum was executed as 
a representative example of the use of this system. An identicaZ system ~hich 
was also developed in the Systems Laboratory was shipped to the Walter Reed 
Army Medical Center for use in biochemistry research. This system was used to 
demonstrate the success of this development during the Fourth Meeting of the 
MCUG. The consistency, accuracy, reliability, and cost-effectiveness of this 
system have shown the usefulness of the Dl7B Computer in this application. 

INTRODUCTION 

Current advances in medical practice are making ever increasing demands 

on medical laboratories which result in a shortage of skilled technical staff. 

Medical laboratory instruments are finding increased use for clinical and also 

research chemical analysis. Some laboratory instruments such as AutoAnalyzers 

have increased the productivity that is possible for a given size staff, but 

there is still need for improved efficiency if the total laboratory workload 

is to be increased without the addition of technical staff or the purchase of 

more expensive equipment. 

Typical data from these instruments are in the form of recorder traces 

consisting of a series of peaks. These peaks are conventionally interpreted 

by graphical evaluation performed manually. This tedious and inaccurate task 

of manually performing waveform analysis su~gests the need for cost-effective 

automation. 



Automation offers a potential solution as well as a different set of 

problems. Various automated analysis systems are available through either 

commercial or research organizations, but these systems represent considerable 

cost and offer little flexibility. Most chemical technologists can be trained 

to operate a variety bflaboratory instruments. However, special-purpose 

commercial analyzers require increased hardware cost if they are to be used in 

more than a limited application. This additional hardware cost will be needed 

for each new task unless the analyzer includes a general-purpose programmable 

computer. This latter solution offers flexibility, but the cost may even be 

prohibitive for many laboratories especially if mUltiple units are needed. 

One method of reducing the high cost of laboratory automation is to use 

excess DoD computer equipment such as the Minuteman Dl7B computers from the 

Minuteman I missiles. .The main requirements for successful use of the Dl7B as 

a general-purpose minicomputer are software development and the interfacing of 

various peripheral I/O devices and instruments. Application areas will expand 

as the interfacing of these sensing and display devices is developed. 

OPERATIONAL PRINCIPLES OF THE AUTOANALYZER 

The AutoAnalyzer is a continuous-flow chemical analysis system in which 

individual operations are performed on a flowing stream containing specimens 

such as blood serum. The AutoAnalyzer makes it possible to measure the con­

centration of various constituents of the blood serum as individual patient 

samples flow through the system. The standards, controls, and samples are 

measured continuously against a fixed reference. The final results are traced 

on a chart by a recorder stylus. 

It is possible to place a re-transmitting potentiometer on a shaft of the 

pen drive for the purpose of creating an electrical signal whose amplitude is 

proportional to that of the plotted waveform. The re-transmitting device can 

be connected to the recorder shaft of the AutoAnalyzer in a few minutes thus 

providing the only modification required for interfacing the AutoAnalyzer to 

the automated Dl7B data acquisition and waveform analysis system. 

There are a few operational procedures that should be followed quite 

caref~lly in operating the A~toAnalyzer. The essential requirement for the 

correct operation of the entire system is proper flow of the various liquids 
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and air through the pump, coils, and the flow cell. One of the most critical 

characteristics of the flow is the bubble pattern. It must be uniform through 

the system for accurate analysis.. It is always desirable to assure that all 

tubes have clean, smooth inside walls. In general, the AutoAnalyzer has been 

proven to be a reliable and consistent instrument. 

SET-UP OF THE AUTOMATED MINUTEMAN/AUTOANAlYZER SYSTEM 

A Minuteman/AutoAnalyzer Analysis System has been developed in the Tulane 

Systems Laboratory under a research contract supported by the Army Medical R&D 

Command, and total protein analysis of blood serum has been executed as one 

representative example of the use of this system. This automated data analysis 

system for use with an AutoAnalyzer is one typical example of a system which 

includes a Minuteman Dl7B Computer and has potential for cost-effective medical 

application in clinical and research laboratories. 

It has been demonstrated that this system gives accurate, consistent, and 

useful results. The cost-effective use of the Dl7B for automated concentration 

analysis from an AutoAnalyzer compares favorably with commercial special-design 

analyzers, but the capability is similar.to analyze~s which offer the increased 

flexibility that is possible with a small general-purpose computer. 

The Dl7B requires a 28 V DC ± I V power supply that is capable of provid­

ing 20 A in continuous duty. The power supply should be checked for proper 

output voltage under actual operating conditions before it is connected to the 

D17B. The Dl7B should be operated in a cool, dry environment to minimize any 

hardware failures. Therefore,an air conditioned laboratory is desirable in 

many locations, and a fan is necessary to cool the electronic circuitry as well 

as the memory. A relatively simple control panel can be constructed for the 

Dl7B which allows the operator to supply specific initializing and interactive 

input signals. 

A Model ASR35 Teletype was used as an I/O device in this system. The 

interface between the Dl7B and the Teletype has three modes of operation: 

Cha.racter Input, Print Out, and Direct Input. The Character Input mode permits 

the operator .to load data into the Dl7B via keyboard or tape reader. The Print 

Out mode is entered when the Dl7B is to execute a print out subroutine. The 

Direct Input mode is used to load data directly into the Accumulator when a 
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discrete input' instruction is executed., The interface will automatically go 

into the proper mode depending on the state of the D17B. The cost of the 

interface was minimized by time-sharing hardware for the various modes of 

operation. 

The estimated cost for installation of an initial Minuteman/AutoAnalyzer 

Analysis System is approximately $440 plus 60 man-hours technician time. This 

cost does not include amounts for the AutoAnalyzer, Teletype, or the external 

power supplies and the D17B which were acquired as excess property. 

AUTOANALYZER WAVEFORM ANALYSIS 

In the development of the automated system, a typical waveform from the 

AutoAnalyzer was simulated using D17B hybrid function generation initially 

instead of using output directly from the laboratory instrument. D17B hybrid 

simulation offers the advantage of faster operation than is possible when the 

waveform is obtained directly from the AutoAnalyzer. The zero-order hold 

waveform obtained from a D-A converter was improved by filtering with a simple 

first~order feedback network. 

Data sampling is an essential consideration in automated waveform analysis. 

The sampling theorem specifies the lower limit for the sampling rate, and the 

upper limit is determined by the signal waveform and the characteristics of the 

specific A-D converter that is used. The amplitude spectrum of the simulated 

signal was monitored using a wave analyzer for estimating the sampling rate. 

The minimum sampling rate required for this waveform was also investigated by 

using two additional approaches, namely practical considerations and explicit 

function representation. With the data from these analyses an optimal sampling 

rate of one sample per two second interval was determined. This sampling rate 

is practical and has been shown to be suitable for one percent (1%) accuracy. 

The output waveform from the AutoAnalyzer consists of a series of peaks 

corresponding to the individual standards and specimen samples. By observing 

typical output charts obtained from clinical laboratories, potential sources 

, of distortion in the analog signal were identified. Distortion is character­

ized by such effects as noise, carry-over, drift, irregularity in the crest, 

and early or late rise. 'Theref(;re, error and sensitivity analysis were applied 

in the sampling rate determination. 
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AUTOANALYZER ANALYSIS PROGRAM 

The output of the AutoAnalyzer is a signal with a waveform consisting of 

a series of peaks. The height of each peak represents the concentration of a 

certain compound or radical in the corresponding specimen. Criteria have 

been established to check whether the distort:i.on in the signal is above the 

maxim~m acceptable level for a qualified peak. A peak is qualified only when 

all the criteria are met. A complete 'program is composed of various subrou­

tines which are linked together by a standardized subroutine linkage technique. 

The flow chart for the AutoAnalyzer Analysis Program (AAP) is shown in 

Figure 1. The system checkout subroutine wi,ll check for proper operation of 

the system, both software- and-hardware-wise, daily or as requested by the 

operator. During the execution of" this subroutine, the peak values and 

ACCEPTABLE/NOT ACCEPTABLE messages will be recorded indicating whether or not 

the system checkout was satisfactory for each peak. 

After the system checkout, the prog,ram determines the base-line as the 

zero reference level before the calibration curve is validated. Aft;er the 

base-line determination, there are five calibration standards to be validated. 

The calibration waveform is then followed by the specimen samples.· A peak is 

identified by falling readings following rising readings. The sampling rate 

is under program controL 

The first peak of each 'batch of samples is used for time-basesynchroni­

zation purposes. When the first peak is. detected, a counter is set so that 

the following peaks must arrive during specified time limits. The-:duration 

of the allowed peak time window is also under program control. A 20 second' 

time window has been used in this development.; . 

At the end of the calibration curve validation, a message will be printed 

to indicate whether the calibration curve is acceptab'le or not. A drift 

standard may be included to form the batch depending on whether drift correc­

tion is required. The peak heighf of the drift standard is compared to the 

value of stored data,o, If the differellceis beyond a certain limit,Le. 'a 

drift is detected, a linear correction will be applied to the previous peak 

heights. Sample concentration which is the most meaningful pathological data 

is calculated by using linear interpolation in order to agree with convention. 

The concentrad.onvalue and 'the associated data will be recorded in a specific 

format which can be designed as preferred by modifying the program. 
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This program is designed with the ability to detect possible errors. If 

an error is detected, a buzzer will be triggered by a pulse generated using a 

Discrete Output line from the D17B. An error message will also be printed by 

the Teletype. From this indication the operator can decide on the appropriate 

action. The entire automated system will be in the "Halt and Proceed" mode 

waiting for the operator to furnish further instructions. 

SYSTEM DEMONSTRATION AT WRAIR 

A system which typified the prototype development of the Minuteman D17B/ 

Technicon single-channel AutoAna1yzer was shipped to Walter Reed Army Institute 

of Research at the Walter Reed Army Medical Center and was used to exhibit one 

of the many possible methodologies during demonstrations on June 5 and 7 by the 

Systems Laboratory staff. A U.S. Army photograph of the system appears in 

Figure 2. Resulting demonstrations have shown the D17B Computer to be capable, 

reliable and cost-effective in this application • 

.. CONCLUSIONS 

The Minuteman ICBM Weapons System currently includes approximately 300 

operational Minuteman I missiles. Several hundred additional reliable D17B 

minicomputers from Minuteman I missiles are being declared excess by the USAF. 

These small general-purpose computers with extremely flexible I/O originally 

cost $234,000 each. 

Although the D17B does not provide all the capability of large-scale 

computers, it does resemble them functionally, and it possesses a number of 

similar features. One unique feature of the D17B is the reliability factor 

which has been quoted by USAF to be 5.5 years MTBF for over 1,000 units. 

These computers can provide numerous computing requirements with application 

to medicine and other fields. Work that has been completed in the Systems 

Laboratory at Tulane has demonstrated that the modifications required to 

provide for the use of the D17B in a continuous duty laboratory environment 

are not only feasible but cost-effective. A system using the D17B has been 

developed for automated data acquisition, control and waveform evaluation 
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necessary to perform automated concentration analysis from an AutoAnalyzer. 

Commercial equipment for such analysis is available, but these systems have 

high costs that are often difficult to justify especially if a number of 

similar systems are desired. 

Construction of a complete single-channel AutoAnalyzer Analysis System 

which includes a D17B Computer is estimated to require 60 man-hours of tech­

nician time. The total cost for an initial unit will be approximately 50% 

of the current price of a special-purpose commercial unit. The cost compari­

Son for a dual-channel unit is approximately 30% of that for a special-purpose 

commercial unit. These cost estimates include both time and materials for a 

complete system with a teletype used for I/O. The cost will be reduced very 

considerably if these units are mass produced. Although the capability of 

this system is similar to analyzers which include the versatility of small 

general-purpose computers, the cost effectiveness is quite advantageous when 

compared with commercial special-purpose analyzers. 

Accuracy, consistency, simplicity, and cost-effectiveness are the main 

features of the AutoAnalyzer Analysis System. The methodology for total 

protein analysis which was demonstrated during this development is just one 

example of the use of this system with the AutoAnalyzer, and the AutoAnalyzer 

Analysis System is just one typical application for the D17B Computer. The 

D17B has been found to be extremely capable and reliable in this application. 

This system was designed such that there would be no disruption of the· 

usual laboratory procedure. In addition, the simplicity of the system is 

such that existing personnel can easily be trained to operate the automated 

system. This system will give laboratory technologists and professional staff 

more time to evaluate results and investigate specific abnormal data; i.e., 

effective utilization of less-skilled personnel is possible. 

The AAS has full alpha-numeric capability and a proven accuracy of better 

than 1%. The accuracy and reliability obtained with the AAS are considerably 

increased compared to that obtained by manual means because of the reduction 

of human errors in procedure and data manipulation. It has also been shown 

that there will be added flexibility in the implementation of sophisticated 

experimental and analysis techniques. This 'system offers future adaptability 

to the analysis of signals from other laboratory instruments and to other 

computing applications by simply reading in different programs. 
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