

A Practical Guide to

Data Base
Management

AUERBACH Data Processing Management Library

James Hannan, Editor

•

Contributors To This Volume

Grayce Booth
Honeywell Information Systems, Phoenix AZ

Martin E. Modell
Systems Architect, Merrill Lynch, New York NY

T. William aile
Consultant, Surrey, England

Bernard K. Plagman
The PLAGMAN Group, New York NY

Myles E. Walsh
Director of Information Systems Planning, CBS, New York NY

Jay-Louise Weldon
Graduate School of Business Administration, New York University, New York NY

J. Chris Wood
Datacrown Incorporated, Arlington VA

John W. Young, Jr.
Systems Engineering, NCR Corporation, Scripps Ranch, San Diego CA

A Practical Guide to

A
AUERBACH .
~

Data Base
Management

Edited by James Hannan

AUERBACH Publishers Inc
Pennsauken NJ

VAN NOSTRAND REINHOLD COMPANY
New York Cincinnati Toronto London Melbourne

Copyright © 1982 by AUERBACH Publishers Inc

Library of Congress Catalog Card Number 82-11340

ISBN 0-442-20916-9

All rights reserved. No part of this work covered by the copyright hereon
may be reproduced or used in any fonn or by any means-graphic,
electronic, or mechanical, including photocopying, recording, taping,
or infonnation storage and retrieval systems-without written pennis
sion of the publisher.

Printed in the United States of America

Published in the United States in 1982
by Van Nostrand Reinhold Company Inc
135 West 50th Street
New York NY 10020 USA

16 15 14 13 12 11 10 9 8 7 6 5

Library of Congress Cataloging in Publication Data
Main entry under title:

A Practical guide to data base management.

(Auerbach data processing management library; v. 4)
1. Data base management. I. Hannan, James,

1946- . II. Series.
QA76.9.D3P725 1982 658' .054 82-11340
ISBN 0-442-20916-9 (Van Nostrand Reinhold Co. : pbk.)

Contents

Preface vii

Introduction ix

Chapter 1 Data Base: A Management Perspective
Martin E. Modell

2 Justifying a Data Base System
John W. Young, Jr. 9

3 Pitfalls to Avoid in DBMS Implementation
Planning

T. William Olle •••••••••••••• 0 ••••••••••••••••• 19

4 Trade-offs in Data Base Design
Jay-Louise Weldon 27

5 Systems Development in a Data Base
Environment

Bernard K. Plagman •••• 0 ••••••••••••••••••••••• 37

6 Restart and Recovery in DBMSs
J. Chris Wood ••••••••• 0 ••••••••••••••••• 0 ••••• 49

7 Concurrency in DBMSs
John W. Young, Jr. ••••••••••••••••••••••• 0 ••••• 59

8 Administration of Data Bases in a Distributed
Environment

Bernard K. Plagman 71

9 Distributed Data Bases on U Dlike Computers
Grayce Booth 81

10 IMS/VS Implementation Case Study
Myles E. Walsh 95

Preface

In its relatively brief existence, the computer has emerged
from the back rooms of most organizations to become an integral part of
business life. Increasingly sophisticated data processing systems are being used
today to solve increasingly complex business problems. As a result, the typical
data processing function has become as intricate and specialized as the business
enterprise it serves.

Such specialization places a strenuous burden on computer
professionals. Not only must they possess specific technical expertise, they
must understand how to apply their special knowledge in support of business
objectives and goals. A computer professional's effectiveness and career hinge
on how ably he or she manages this challenge.

To assist computer professionals in meeting this challenge,
AUERBACH Publishers has developed the AUERBACH Data Processing
Management library. The series comprises eight volumes, each addressing the
management of a specific DP function:

A Practical Guide to Data Processing Management
A Practical Guide to Programming Management
A Practical Guide to Data Communications Management
A Practical Guide to Data Base Management
A Practical Guide to Systems Development Management
A Practical Guide to Data Center Operations Management
A Practical Guide to EDP Auditing
A Practical Guide to Distributed Processing Management

Each volume contains well-tested, practical solutions to the
most common and pressing set of problems facing the manager of that function.
Supplying the solutions is a prominent group of DP practitioners-people who
make their living in the areas they write about. The concise, focused chapters
are designed to help the reader directly apply the solutions they contain to his or
her environment.

AUERBACH has been serving the information needs of
computer professionals for more than 25 years and knows how to help them
increase their effectiveness and enhance their careers. The AUERBACH Data
Processing Management library is just one of the company's many offerings in
this field.

James Hannan
Assistant Vice President
AUERBACH Publishers

vii

Introduction

An increasing number of organizations have come to view the
computerized data used in their operations as a valuable asset. This viewpoint
has led to greater demands on DP professionals to manage their organizations'
data more efficiently and effectively, spawning the concept of data resource
management. In their attempts to meet those demands, many DP professionals
have turned to data base technology.

Data base, as both a concept and a set of technologies , has been
in existence for more than two decades. The data base approach to information
systems evolved, in large measure, in response to the problems associated with
what can be termed the "applications-centered approach." With the latter,
separate data files are built for different applications; each application defines
its own data elements together with their relationships and storage structures.
The collection of these discrete, independent applications is considered an
organization's "information system." The problems with such a system are
obvious: data redundancy, processing and storage inefficiencies, excessive
program maintenance, and questionable data consistency, integrity, and reli
ability.

In contrast, the data base approach stresses minimal data
redundancy, faster processing times, reduced storage requirements, program
independence from changes in the storage structure or logical views of data,
and central administration and definition of data. Achieving these goals,
however, is no simple matter.

Adopting the data base approach requires not only a sizable
investment in expensive technology, but a fundamental change in information
management practices. Without such a change, even the best data base manage
ment system (DBMS) can become little more than a sophisticated access
device. This volume of the A UERBACH Data Processing Management Library
is designed to help those charged with planning, implementing, and maintain
ing a data base environment make cost-effective decisions regarding the avail
able technological tools and management techniques that comprise the data
base approach.

We have commissioned an outstanding group of data base
practitioners to share the benefits of their extensive and varied experience. Our
authors have written on a carefully chosen range of topics and have provided
proven, practical advice for managing the data base function productively.

In Chapter One, Martin E. Modell discusses the formidable
management issues that must be resolved in establishing a data base environ
ment and provides a strategy for careful planning and coordination of a data
base project.

ix

Introduction

An important planning issue is convincing upper management
to approve a data base project-they must be provided with reliable information
and apprised of the specific benefits to be achieved. In his "Justifying a Data
Base System," John W. Young, Jr., discusses the reasons for initiating a data
base project and provides a practical and systematic method for justifying the
data base approach to management.

Selecting and installing a DBMS also requires careful plan
ning; both managerial and technical problems will likely be encountered.
T. William Olle describes and analyzes many of these problems and offers
practical advice on how to avoid them in Chapter Three.

Designing a data base and developing systems in a data base
environment are complex undertakings. The factors involved in data base
design are numerous and interrelated. Attempting to consider all their relation
ships can enmesh the designer in seemingly endless analysis. To aid the data
base designer, Jay-Louise Weldon describes the methods for recognizing and
evaluating the trade-offs inherent in data base design in Chapter Four. In
Chapter Five, Bernard K. Plagman highlights the problems that systems devel
opers are likely to encounter in a data base environment and describes ways for
solving them.

. Data sharing is a key component-and a major benefit-of a
data base environment. Unfortunately, it is often very difficult to convince
users to share' 'their" data. Understandably, users will agree to share data only
if their requirements for acceptable downtime and system throughput are met.
Thus effectively dealing with such crucial issues as restart/recovery and con
currency is vital to the success of the data base approach in any organization.
J. Chris Wood addresses the former issue in his "Restart and Recovery in
DBMSs" and discusses how to design effective restart and recovery mecha
nisms. John Young treats the latter issue in Chapter Seven and proposes a
workable solution to concurrency-a locking mechanism that minimizes the
possibility of deadlock.

Distributed data base environments pose a unique set of mana
gerial and technical problems. Administrative control of data in such an
environment is mandatory. The traditional role of the data/data base adminis
trator, however, is patterned fora centralized environment. Thus new strategies
for administration and control must be developed. In Chapter Eight,
Bernard Plagman examines alternative strategies and offers practical guidelines
that can be followed in this area.

The problems associated with administering and controlling
data in a distributed environment are compounded when the data resides on
unlike computers. Grayce Booth discusses these problems and suggests pro
gram and data migration as methods of solving them in Chapter Nine.

x

Introduction

The old saw, "Experience is the best teacher," is well illus
trated in Myles E. Walsh's description of a successful IMS/VS implementa
tion. In Chapter Ten, Walsh describes the background of the project, the project
teams, the sequence of project events, training, and the lessons his organization
learned.

xi

~ Data Base:
A Management
Perspective

INTRODUCTION

by Martin E. Modell

The compilation of transactions generated as a result of doing business
results in infonnation. In a sense, this infonnation can be called a data base. A
company data base, in its broadest sense, consists of all infonnation, or data,
that comprises the records of the finn.

Organizations are slowly realizing that data is one of their most valuable
resources; in fact, some companies today would go out of business if they lost
access to their data files. These same companies are also recognizing that
rapid access to timely, accurate data enables them to grow and prosper as
never before.

Some companies, however, find themselves in a precarious position. They
have acquired the technological tools to manage their data, with the intention
of using that technology to create corporate data bases. They have not, how
ever, come to grips with the problems of tailoring their systems, much less
their organizations, to reflect the thinking that must accompany the establish
ment of a data base environment. In addition, they have not adequately
defined their concept of data base, nor have they recognized that such defini
tion is necessary. Neither have they adequately defined the parameters of a
data base environment; moreover, there is still confusion about the terminol
ogy of technological implementation.

The use of integrated file structures, in which users share common data,
implies centralized control, which, in tum, can cause many organizational
problems. The question of data ownership is one of these problems. There is a
function that originates data, a function that maintains it, a function that relies
on it for daily operations, and a function that detennines its termination.
These functions may reside in many corporate areas. Who may authorize
access to this data? Who may authorize change or modification? Who actually
owns the data?

This chapter addresses the new organizational relationships, requirements,
and management approach that should be developed when establishing a data
base environment. It examines the design criteria for a data base environmerit
from a management viewpoint and delineates the considerations involved in

2 DATA BASE MANAGEMENT

evaluating data base alternatives. A rationale for the analysis that leads to the
objective detennination of data structures and, therefore, data base require
ments within an organization is presented, as is a discussion of data base
related cost considerations.

DATA AS A RESOURCE-TECHNOLOGY VERSUS
METHODOLOGY

The value of data is assessed by the extent to which it can be retrieved,
processed, and presented to aid a particular decision or action. Data has no
value if it cannot be located or processed in time. The value of data also
depends on the accuracy and precision of its definition and the acceptability of
that definition to the recipient.

Information within an organization is analogous to a river-it flows from
point to point with little effective control or standardization, and its bounda
ries are ill defined. Thus, its accuracy is usually suspect, and its usefulness is
severely diminished.

There is a growing realization that data, or· information, is a business
resource and must be managed as such. Because traditional techniques for
resource management only partially address this task, new methodologies
must be developed.

What makes this concern both unique and difficult is that all other re
sources have a logical place of control and residence within an organization.
Information and data, however, pervade the organization, and they are gener
ally inaccurately identified, ill defined, and ill controlled at the organizational
level. The challenge in harnessing these resources is not so much a technolog
ical issue as it is a question of methodology. The technology of data base is
not new; but the methodology of data resource management is.

The Rationale for Creating a Data Base

With the growth of computer capacity and speed, we can now process
information rapidly and consistently . We also have the technical tools and
facilities to control, manage, and present information. The methodologies and
techniques of design, the designs themselves, and the processing, however,
still only replicate the manual processes they have supplanted. Thus, we are
coupling primitive methodology and advanced technology in order to process
information. We still process raw, unorganized data to produce information
with marginai or narrow usefulness.

Organizations need to record data for both short- and long-term use. The
systematic, short-term, accurate recording of data is basic to the successful
daily operation and long-term survival of the organization. By providing a
permanent record of the corporation's activities, the archiving of data sustains
the auditing, statistical, forecasting, and control functions.

Usually, information is stored in a decentralized manner, which reflects
the functional departmentalization of the organization. Payroll records, for

A MANAGEMENT PERSPECTIVE 3

instance, are usually stored in the payroll or accounting department, personnel
records in the personnel department.

Some records, however, are stored in more than one functional area.
Copies of purchase orders, for example, might be kept in purchasing, inven
tory, receiving, quality control, accounting, and in the originating department
itself. As each area performs its part of the processing, the base information is
modified. ~ly, if ever, are all copies of the base information changed in
unison; thus, to gain a complete picture of a particular transaction, one must
look into the files of each area that had access to or processed the purchase
order in some way.

As a result (and to the detriment of the firm), the information in each
processing area is incomplete or, worse, inaccurate. At best, it is suspect. In
any caSe, only those areas that have copies can use the information. Thus, the
view management has of information it receives is biased toward the area
from which it was obtained (i.e., only information germane to a given area
can be expected from that area).

RELATION OF DATA BASE TO MIS

The term information has been used to designate data arranged in an
ordered and useful form. Thus, management information can be thought of as
information acquired as a result of business operations and presented to man
agement in order to achieve specific purposes or enhance understanding.

The theoretical aim of a management information system (MIS) is to create
an integrated series of systems (one for each major organizational function) to
provide management with the information it needs, how and when it needs it.
The greatest problem in the creation of a management information system
arises from the traditional, functional approach to data. Usually, no single file
of information is sufficient to answer more than simple queries. Answering
complex questions requires going to multiple files, extracting information,
and creating another file, which then must be processed in the required man
ner.

Corporate Information System. A corporate information system implies
that while individual functional areas may have their separate systems, for
corporate purposes there must be a certain level of aggregation and integration
that allows upper management to view the corporate functional system from
an organizational level. Thus, the unifying thread of a corporate information
system is not the fact that it is a single system serving all. but rather that the
data, which acts as the base for all parts, is common to all who need informa
tion. The integration is really a consolidation of all like elements of data (i.e.,
those related to the same subject [although not necessarily real-world] en
tries). An organization with files of purchase orders; invoices; payments; and
inventory, receiving, and vendor information, for example, could consolidate
them into a material management data base in which all data related to that
integrated function would reside as an integrated whole, with data segregated
and organized against a logical model reflecting the natural aggregates of data

4 DATA BASE MANAGEMENT

and the relationships that exist among them. Thus, management information
systems can be transformed into corporate information systems founded on
the data base approach (see Figure 1-1).

Corporate Information System

User System Interface

I
Exception
Reporting I ~ I Application 1

Programs

Data Base Management System

Backupl Access
Data

Security Dictionaryl
Recovery Methods Directory

t
Data Base(s)

Figure 1-1. Major Elements of a Corporate Information System

Multiple Management Levels

All managers need an understanding of the purpose of their organization
(i.e., its policies, programs, plans, and goals). Individual managers differ,
however, in their other informational requirements, the ways in which they
have to view information, their analytical approaches in using it, and their
conceptual organization of relevant facts.

An additional factor that complicates the management of information is the
organizational level of the individual manager (see Figure 1-2). A manager at
a lower operating level needs information to help him make daily operating
decisions. At the upper levels, however, information is needed to support
long-range planning and policy decisions. Managers at the various organiza
tionallevels also require different degrees of information summarization. In
addition, they must be able to probe the corporate data base in order to obtain
answers to questions, especially those that are vague or poorly defined when
first asked. The success of corporate information systems thus depends on
methodologies that produce:

• A common data base (or base of data)
• A common and consistent definition of the components of that data

base that is accepted throughout the organization
• A data organization flexible enough to support structured or unstruc

tured queries

A MANAGEMENT PERSPECTIVE

Information
Requests

e
~
Il.

Special
Requests

0)

:c
III
.~
O)

&!
II:
.!9
r::::
::::I

~

0)

i
Il.
.!9
r::::
::::I

~

Operating
Management
Information
Functional
(Control)

Grouping for
Control

~
0 r::::0l

<..> .2:E
~ 0::::1
.9 ::::I'C

'CO) r:::: o.r::::
~ .. u
.E

Il.W

Ol
'C_
r::::r::::

r:::: (110) Ol

"i .r::::E r::::
0) ~o. ~ r:::: 111.2
'6> 0)0) III
r:::: 8J~ :::!! W a:c

Figure 1-2. Levels of Information Required In an Organization

Data Base

5

Tmditionaliy, DP support activities have been oriented toward single de
partments and functional operational applications. In most cases, information
is defined and organized differently for each application; thus, the data is
often expensively duplicated (with an increase in the possibility of error) and
impossible to integrate in meaningful ways. Information from payroll and
personnel ftles, for example, could be combined only with great difficulty
because of the different methods of classifying or identifying employees.
Better integration of information-producing activities should lead to informa
tion that is more complete and relevant. The cotpOrate move toward a data
base environment must attempt to achieve this.

Input data, for example, must be commonly defined and consistently orga
nized. Transactions must be set up so that they can be entered into the system
once and can update all of the requisite data base records. In addition, such
data as part numbers and customer and employee identification codes must be
standardized. This approach eliminates duplicate data storage and also intro
duces integration and integrity.

6 DATA BASE MANAGEMENT

Because many organizational units would be able to use such a common
data resource, a centralized function is required to manage and protect it.
Each unit cannot be allowed to modify data at will. Access to, and the
processing of, the data base must be controlled.

The management of data is analogous to the management of finances. Just
as there is a controller to manage money, there must be an administrator to
manage data. Just as the controller uses ledgers, balance sheets, statements,
and journals to record and control financial items, the data administrator uses
function logical designs, libraries, documentation, and dictionaries to control
and structure data items.

Each element of data has a source, an owner, and at least one use. The data
administrator can use the aforementioned tools to describe them. He can also
employ data base management systems to store data and to provide access and
security.

Data Base Administration

The data administration function must deal with the following questions:
• Most information systems today serve the needs of operatiiJ.g supervi

sors and, to a lesser extent, middle managers, with little or no direct
support provided to upper management. How can data bases be struc
tured to satisfy the information needs of all levels of management? Is it
possible to organize and structure a single set of data bases to meet the
needs at each level, or must different data bases be created for different
horizontal levels?

• Can different functional areas share a data base? Can a single data base
supply the information needed by managers at different levels with
diverse functions, or must separate, vertical data bases be designed for
each gross function? Should an attempt be made to integrate function
ally separate data requirements into one data base that will serve the
broader needs of a cross-function environment?

• Managers at the higher levels need information about the external
world. The quality of externally produced data, however, is more
difficult to control than internal data quality since the definition is less
precise; moreover, external data is expensive to obtain. Should data
from external sources be incorporated into the data base(s)? Can we
ensure that this information is complete, timely, and accurate?

• Different managers occupying the same position over a period of time
will have different informational needs, and the system should not have
to be redesigned to meet these changing requirements. Can suitable
flexibility be built into the logical data structures that underlie the data
base(s)? .

To address these and other questions, we must define the various forms a data
base can assume and the components that must be developed, either for many
different data bases, each one serving a particular functional unit (Le., decen
tralized data bases) or for one data base serving all parts of the organization

A MANAGEMENT PERSPECTIVE 7

(Le., a centralized data base). In this context, the impact of each of these
forms on the organization must be evaluated.

This evaluation should not be performed from the perspective of the soft
ware that makes data base implementation possible. It should not deal with
the hardware and personnel problems inherent in a data base environment.
Rather, the methodology for evaluation should focus on:

• Defining the data base requirements
• Designing the structure
• Specifying the degree of sharing that will occur
• Protecting the data base(s)

This evaluation should be augmented with an analysis of the required
decision-support framework and the effect that the data base discipline will
have on the organization's operations. In addition, the data administration
function should be clearly defined.

COST IMPLICATIONS

Another management consideration is the cost of data base implementa
tion. This is especially so because the cost of a data base program can differ
considerably from other DP costs. The payoff period from the data base
program is longer than that derived from increasing the hardware configura
tion or adding programmers. Because DP has grown so rapidly, managers are
accustomed to change; however, in the past, change occurred in direct re
sponse to a strong user demand. This is not the case in the data base environ
ment. The manager must fully appreciate the cost behavior of the data base
program and make a concerted effort to control costs.

Out-ot-Pocket Costs. Since out-of-pocket costs have an immediate im
pact on the operating budgets, the high cost of the data base effort is of great
concern to the line manager. The high cost includes the price of software,
hardware, and programmers and extends to the labor costs of developing
standards and procedures and coordinating numerous requirements.

Misuse ot Data Base Software. Another type of cost that may be incurred
is that resulting from misuse of data base software. In order to compromise
between going to a full-fledged data base system and maintaining the user's
custom system, nonstandard use of data base software may be implemented.
A situation can therefore result in which semi-integrated files are processed
using data base software. This becomes a costly compromise when expensive
maintenance problems, poor system integration, and inefficient use of soft
ware result.

Hidden Costs. Managers who commit to data base technology must real
ize that many hidden costs exist. Since the data base can change the basic way
in which systems work, many costs are not readily discernible until the actual
changes are made. Although managers cannot be relieved of their responsibil
ity for thoroughness, the following costs are not obvious:

8 DATA BASE MANAGEMENT

• The relationship between software and hardware (because new soft
ware may require additional core or hardware).

• Software changes requiring unanticipated hardware upgrades to main
tain improvements or realize performance.

• User need to commit large blocks of time to integrate previously inde
pendent systems. (The delays that can be caused in this situation are
costly.)

• The cost of running parallel systems (especially disk and labor costs).
• The task of keeping up with the latest software releases to realize the

benefits of new capabilities.
• The need for specific documentation and procedures.
• An initial increase in applications design time because of the learning

curve and the requirement for more coordination.

Data Resource Accounting System. Giving data the status of a corporate
resource has important ramifications in terms of accounting. Most manage
ment control and accounting systems do not provide a good mechanism for
apprising management of its data costs; therefore, the need for a data resource
accounting system is evident. Most firms treat the costs of creating data or a
data base as an expense and do not attempt to give the product an asset value.
To many firms, data is a more important asset than the physical plant; yet this
fact is not reflected on the books. Data, as a resource and asset, has many
attributes that should be captured in the accounting practice for tax putposes
and should be used to reflect the true market value of the organization.

CONCLUSION

In preparing for a data base environment, management should focus on the
issues described in this chapter and emphasize the management of data as a
resource. The formation of an organizational unit to address data administ~
tion issues is an important step in this direction.

Blbliograpby

Davis, Gordon B. MantJgement ltiformation Systems. New York: McGraw-Hill Book Compnny, 1974.

Sandets, Donald H. Computers and MantJgement in a Changing Society, 2nd ed. New YOlk: McGraw-Hill Book Compnny,
1974_

"Selection and Acquisition of Data Base Mauagement Systems." A report of the CODASYL Systems COInmittee, 1976.

Sibley, Edgar H. "The Development of Data Base Technology." Computing Surveys, Vol. 8, No.2 (March 1976).

72 Justifying a
Data Base
System

INTRODUCTION

by John W. Young, Jr.

Justifying a data base system to management is a precarious process.
Because data base is a relatively new concept in the DP industry, many
organizations are switching to a data base approach, with little or no under
standing of the concept. What is worse, management is often asked to decide
on a data base project on the basis of incorrect or insufficient information or
false justifications. If management is provided with the wrong information, it
is likely to reject the project. On the other hand, false justification may
convince management to approve a data base project that will only be aban
doned when it fails to produce the promised results. It is vital, therefore, to
the success of a data base project (and, consequently, to the welfare of the
organization) that the data base system be carefully designed to meet user
needs and that the real benefits to be gained from its implementation be fully
and correctly presented to management.

A data base system represents a philosophy of organizing data into an
integrated whole to meet the following objectives:

• Protect the integrity of the data
• Make all data easily available to whichever users and programs need it,

both for one-time requests and for new application systems
• Minimize unnecessary data redundancy
• Bring the data under the unified control of a DBMS in order to meet the

first three objectives
This chapter discusses the data base system approach but does not discuss
specific data base management systems.

FAVORABLE ENVIRONMENT FOR A DATA BASE SYSTEM

A frequent end-user complaint is that the DP department is incapable of
meeting their informational needs. Users often complain that reports are
wrong or do not reflect current information. In addition, it is often difficult or
too time-consuming to get a new report when needed. A brief exploration of
these complaints helps explain the friction between users and the DP depart
ment.

10 DATA BASE MANAGEMENT

Reports Are Wrong. The many reasons why reports are often wrong
range from the mundane (e.g., an error during initial data entry) to the exotic
(e.g., an incorrect program flow is produced by an unanticipated and unprece
dented set of data values or conditions). In fact, these two types of errors
constitute a large percentage of the errors in single-fIle applications.

Another major source of error involves programs that read several fIles at
the same time. Resulting report errors occur because of a lack of fIle synchro
nization. This problem can be illustrated with the following example.

A bank maintains a fIle of savings customers and a fIle of checking custom
ers. A report is to be prepared listing all customers who have both kinds of
accounts; the fIles are to be matched based on customer name and address. If
the savings fIle is updated on second shift and the checking fIle on third shift,
a problem can occur: if a change of address received for a customer is to be
applied to both fIles that night and the match report is run at the end of the
second shift (i.e., before the checking fIle is updated), that customer's ad
dresses will not match, and the report will be incorrect. This problem is
further (and perhaps permanently) compounded if the customer gives the new
address as "517 North Pennsylvania st" on one change form and "517 N.
Penn" on the other. Only a very sophisticated matching program can detect
the fact that these addresses are really the same.

Reports Do Not Reflect Current Information. If information is main
tained in a collection of separate fIles, the time lag in updating them can result
in reports not bearing current information. Thus, in an online order entry
system in which several fIles contain stock levels and orders and queries
arrive continuously, timely reports can be achieved only if much effort is
devoted to synchronization.

Reports Are Too Hard to Get. To improve their decision making, man
agement constantly demands more and better-organized information. Because
these demands are often unpredictable, however, providing this kind of infor
mation can be a major source of frustration to management and the DP
department alike. In addition, producing the desired reports often involves
assembling and processing information from various sources within the total
body of information available to the organization, and developing programs
that use multiple fIles is a difficult job. There are several complicating factors:

• One or more of the fIles may lack proper documentation (e.g., certain
fields may no longer exist although the most recent record layouts show
that they do, or there may be dummy records with check totals that are
known only to the programmer who put them there).

• The fIles may be sorted on different keys.
• The owner of one of the fIles may not wish to surrender it, thus setting

off a series of management clashes.
These factors, plus the laboriousness of working with relatively low-level
programming languages, often mean that the need for a particular report will
have passed before it can be prepared; or a manager may be informed that the

JUSTIFYING A DATA BASE SYSTEM 11

requested infonnation is unavailable even though the basic data elements
required to produce it exist in machine-readable fonn [1].

Symptoms of File-Related Problems

The problems that prompt the preceding complaints can manifest them
selves in many ways. Typical symptoms of these problems include:

• A large backlog of unftlled requests to the DP department.
• Managers attempting to manually combine the data from several re

ports. (This is often an indication of the DP department's inability to
combine infonnation from several ftles in a single report.)

• Taking an excessive amount of time to close the books each month. In
the competitive business world, it is unrealistic and unreasonable to
require a manager to make month-end decisions before month-end data
is available.

UNFAVORABLE ENVIRONMENT FOR A DATA BASE SYSTEM

There are certain environments in which a data base system might be
inappropriate. Although certain conditions may not entirely preclude consid
eration of a data base system, the environment must be examined carefully to
ensure that it is well suited to a transition to data base.

Satisfied Users

The purpose of a data base system is to provide more accurate and timely
infonnation to the user community. If the community is satisfted with the
present information system, it would be presumptuous to attempt to justify
changes or additions to the system. It should be carefully verifted, however,
that the users are really satisfted with the system and are not just adopting an
attitude of "Oh, what's the use of asking for anything else; we'll never get it
anyway!"

Recently Introduced File Systems

The chief beneftt of a data base system results from replacing a heteroge
neous collection of mes with an integrated data base. If there have been
recent, substantial investments in the development of ftle-oriented systems,
however, it may be difficult to cost justify moving to a data base approach.

Lack of Proper Organizational Environment

Data base systems are a revolutionary departure from the traditional ftle
oriented approach to data handling. The transition to a data base environment
can be hindered by several organizational factors [2].

No Continuity of Organizational Policy. The objectives of the organiza
tion must be stable, since the purpose of the data base approach is to help

12 DATA BASE MANAGEMENT

fulfill those objectives. It should be noted, however, that once the system is
installed, it can help cope with moderately changing goals.

High Personnel Turnover. Employees must be trained in the design and
use of systems in the data base environment. Conducting this training when
there is constant staff turnover is a very difficult task.

Management Resistance to New Ideas. Changing to a data base envi
ronment introduces new DP concepts and techniques but also shifts the rela
tionships between the DP organization and the users. Management at all
levels must be prepared to accept the organizational and procedural changes
that are required in this new environment-an environment in which data is
viewed as a corporate asset as significant as inventory or buildings.

Lack of Technical Foundation

Data base management systems are intended to handle a variety of com
plex batch and online requirements and to provide satisfactory throughput and
response times. Designing the logical and physical structure of the data base
and properly interfacing programs to the data base usually require a moderate
to high degree of specialized knowledge and technical skill. Although this
skill may not be currently available in the DP organization, the personnel who
are to work with the data base must quickly acquire the necessary in-depth
technical expertise through self-study, courses and seminars, and vendor
training.

Inadequacies in this area quickly become apparent when an application
runs several times more slowly in the data base environment than it did using
conventional files. If such a situation arises, it may be necessary to seek
expert advice from a consultant or vendor representative. Such help may also
be necessary to fill in gaps in employees' technical training (e.g., to indicate
design errors and to show how to avoid similar errors in the future).

The lack of appropriate or adequate technical background can result in
wasteful use of computer resources, poor response to user needs, and, worst
of all, a data base whose contents mayor may not be correct. Such factors can
jeopardize the whole data base project. It is important to avoid these pitfalls
by ensuring that the installation has people capable of being trained as well as
the resources available to prepare them for their new responsibilities.

Lack of Data Base Administration

Administration of the data base resource by a single centralized group is
essential to the effectiveness of the data base approach. This does not mean
that the needs or wishes of individual managers are ignored but, rather, that
the data base administration staff controls the development of the system and
ensures that a coordinated structure is planned from the beginning. Failure to
establish this group and to provide it with adequate authority to carry out its

JUSTIFYING A DATA BASE SYSTEM 13

function can result in a patchwork of system fragments instead of a smoothly
functioning integrated data base.

JUSTIFYING A DATA BASE MANAGEMENT SYSTEM

The arguments for justifying a data base management system (DBMS) to
management must be carefully formulated. The acquisition and installation of
a DBMS represents a substantial investment and is likely to be undertaken
only if equally substantial potential benefits can be documented. Fortunately,
those benefits are often evident, and the DP department almost always has the
support of the users in presenting them. When possible, the benefits should be
quantified so that actual financial savings can be shown.

The principal justifications for a DBMS are described in the following
sections.

Increased Data Integrity

Correctness. Since a given data element exists at only one place in a data
base, there is no possibility of inconsistent versions of an element. The value
of this can be described in terms of the consequences, possibly financial, of
incorrect or inconsistent data use in critical operations. It should also be
pointed out, if true, that validation criteria are applied to prevent incorrect
data from entering the data base.

Security. DBMSs usually have some security mechanism to prevent un
authorized access to data. This facility keeps sensitive personal or corporate
data from being compromised and thus avoids consequent financial liability or
loss of competitive advantage.

Protection and Recovery. It has been pointed out that data is an impor
tant corporate resource that merits the same degree of protection as any other
property. Each system user must be assured that once their data has been
entrusted to the data base system, it will be safe from damage. Just as guards
protect physical property, the DBMS safeguards the data. System cost can be
measured against the consequences to the organization if portions of its opera
tional information (e.g., accounts receivable) are lost.

Better Response to User Needs

Special Reports. The users' need to quickly obtain organized and format
ted special reports from existing data is undoubtedly a major factor in decid
ing to install a DBMS. The value of this DBMS capability can be measured
against two criteria:

• The cost to the organization of not having the desired information
available

• The cost to assemble the information manually or in some other fashion
without the DBMS

14 DATA BASE MANAGEMENT

New Applications. Users are continually expanding their horizons in
terms of what new applications can be introduced profitably. DBMSs hasten
the development of new applications in two ways. Since the data and its
description is centralized, it is easier to plan new applications; that is, infor
mation about scattered and uncoordinated files does not have to be assembled
from multiple sources of perhaps questionable accuracy. In addition, DBMSs
provide tools for faster and more accurate programming of new applications.
Thus, programmers can usually devote more effort to the functioning of the
system and less to the details of record storage, access, and processing. This
faster development is reflected in three benefits that can be presented as part
of DBMS justification:

• Less effort is required on the part of system analysts and programmers,
resulting in a saving in personnel costs.

• The benefits of new applications are realized sooner; thus, return on
investment starts earlier.

• A shorter development cycle provides less chance for changing applica
tion requirements; thus, the development process is simplified.

Improved Usability of Data

Improved Timeliness. The fact that data in a data base is easier to keep
updated results in several advantages. First, decisions are made on the basis of
the latest information. In presenting this justification, examples should be
submitted of cases in which rapidly changing conditions made it essential for
management to have the very latest data-cases in which there would have
been a financial penalty if the most recent data was unavailable. Second, the
organization can directly achieve a monetary gain through faster information
processing (e.g., bills can be sent out in 5 days instead of 15). The increased
value of the funds being available sooner can be calculated and presented.

More Flexible Data Structures. A characteristic of DBMSs is that they
allow for more flexible associations among data elements. Although this
advantage is difficult to quantify, it clearly results in both easier system
design and in a better fit between user needs and system output.

Less Redundancy. Data storage is now sufficiently inexpensive that the
nonredundancy offered by the data base approach may not be a major benefit.
The improVed consistency of data, however, as well as the savings in not
having to update multiple copies of the same information should be consid
ered for presentation as part of DBMS justification.

Easier Adaptation to Future Change

Data Independence. A major advantage of the data base approach is that
it largely insulates application programs from the effects of changes in logical
data structures or in physical data organization, hardware, or media. If such
changes can be projected for the future, savings in analysis, programming,
and program recompilation and testing can be claimed.

JUSTIFYING A DATA BASE SYSTEM 15

Distributed Data Processing. The centralized control and knowledge in
herent in a data base can make a transition to distributed OP much easier. This
justification is usually purely qualitative.

False Expectations

There are, however, two areas in which it might be thought that a data base
could reduce the requirements for OP resources but in which savings are
seldom achieved: staff size and computer resources. It is widely believed that
a smaller OP staff would be required with a data base system. This is almost
certainly false for the first year of development. It usually requires two to
three years to begin realizing savings in personnel. By that time, additional
requirements have appeared, necessitating additional staff members.

If an organization has much redundant data that is being synchronized and
maintained, there is a chance that a data base system would slightly reduce
computer resource utilization. In general, however, OBMSs require more
computer resources because they are generalized and are designed to satisfy a
wide range of requirements.

ESTIMATING THE COST OF A DATA BASE SYSTEM

Although some of the benefits of data base implementation are difficult to
quantify, estimating the associated cost is a relatively straightforward process.
Since the cost is totally dependent on the nature and size of the organization
and on the scope of the proposed data base environment, no attempt is made
in this chapter to present absolute times or costs of these efforts. It should be
noted, however, that part of the justification process is to carefully estimate
the cost of each task and its duration. This can be done by deciding how many
users would have to be interviewed, how long each interview would take,
how much work would be involved in writing up the interview results, and so
on.

In the following paragraphs, a typical data base project has been divided
into a number of major tasks that should be considered when determining the
cost of data base implementation. Table 2-1, which identifies the major cost
items associated with each task, can serve as a checklist of cost items in each
category.

Feasibility Study. This study presents the current state of an information
system in order to decide whether it is worthwhile to further investigate the
possible installation of a data base system.

User Survey and Information Flow. A comprehensive examination of the
information requirements of an organization, this phase of the effort is by far
the most exacting and time-consuming. It consists of interviewing potential
users of a data base system as well as covering the organization's existing data
flows and processing. Future needs must also be included, taking into account

16 DATA BASE MANAGEMENT

Table 2·1. Major Expense Items

Major Expense Category

Feasibility Study

User Survey and
Information Flow Analysis

Data Analysis

Data Dictionary

Cost/Benefit Analysis

Package Evaluation,
Selection, and Acquisition

Initial System Design

Expense Items

Education of technical staff
Analyst time
Consultants fees

Interviewer time
Interviewee time
DBA staff time
Project manager time
Analyst time
Application programmer time
Clerical support time

DBA design staff time
Consultants fees

Software package cost
Clerical support and data entry

time

Research time
Report preparation time

Education of technical staff
DBA staff time
Consultants fees
Travel expense
Benchmarking and evaluation

cost
Contract preparation, review,

and negotiation time
Initial package and

maintenance costs
Additional hardware and

software costs

Computer analyst time
User time
Vendor representative time
Consultants fees

Approximate
Cost

$

possible new activities, improved decision making, and so on. The work
needed to thoroughly document the results of the study must not be over
looked.

Data Dictionary Installation. Most of the input for this task comes from
the information flow analysis and user survey. There is substantial data entry
associated with this task; the magnitude of this undertaking depends on
whether the data dictionary can use the same data definition input as the data
base system itself or whether two separate descriptions must be prepared. A
software package is usually required to maintain the data dictionary.

JUSTIFYING A DATA BASE SYSTEM 17

Cost/Benefit Analysis. It is a good idea to do the benefit half of this task
concurrently with the user survey. When a user mentions a particular data
base service, the interviewer should request an estimate of the value of such a
service (i.e., what the interviewee would be willing to pay for it).

Data Analysis. This is a study of the interrelationships among data entities
in an organization. Such a study requires careful attention to detail; review by
an external source (e.g., a consultant) may also be required.

Package Evaluation, Selection, and Acquisition. Selecting the most
suitable data base package is a time-consuming and expensive process. It is
important, therefore, that the evaluation criteria be chosen carefully to ensure
appropriateness. Once selected, each criterion should be assigned a numerical
weight that roughly approximates its perceived value. This facilitates compar
ison of the value of each criterion relative to the value of any other criterion. It
also provides a simple method of assigning a single relative score to each
package under consideration. The weighting scheme can be supplemented by
preparing one list of characteristics that any package must have to be consid
ered and another list of those attributes that it must not possess.

It is important not to skimp in the selection process. Although this process
may be as costly as the package itself, the long-term costs and adverse
consequences of choosing the wrong system make economizing in this area
most unwise. Thus, although benchmarking can be expensive, it is sometimes
recommended when deciding among several data base packages.

The costs involved in the actual acquisition of a DBMS (e.g., travel and
contract preparation) should not be neglected. Naturally, the cost of the
DBMS itself, maintenance fees, and the expense of any additional hardware
and software required are of primary concern.

Initial System Design. The duration and cost of developing the initial
application to use the DBMS depends on the application itself. In addition to
the direct cost of the application are costs associated with training personnel in
the system design techniques appropriate for the data base environment. It
should be noted that if the first project fails, the entire data base effort will
probably be scrapped; thus, it is usually advisable to procure outside help for
the initial implementation.

CONCLUSION

In a data base presentation for management, most costs and benefits are
quantifiable. Quantifiable costs should be grouped in one section, nonquanti
fiable ones in another. A note of caution: an unsupportable dollar value
assigned to a benefit may be vulnerable to attack by financial executives.
Once one figure has been discredited, it is often assumed that all are suspect.
Thus, much additional time might have to be spent in creating new justifica
tions for every number in the costlbenefit analysis. All figures, therefore,

18 DATA BASE MANAGEMENT

should be carefully and realistically derived to minimize delay and to avoid
embarrassment after the project has been approved.

References

1. Nolan, Richanl. "Computer Data Base: The Fuwre is Now.'· Harvard Business Review (September-October 1973).
2. CODASYL Systems Committee. Selection and Acquisition 0/ Data Buse Management Systems. Association for Computing

Machinety, March 1976.

@ Pitfalls to Avoid in
DBMS Implementation
Planning by T. William aile

INTRODUCTION

It is unfortunate that in the application of DP techniques during the past 20
years, many people have not learned from the mistakes of others. When an
organization is planning for a DBMS, the potential benefits and risks are
extremely high. It is essential, therefore, to be very careful and to consider all
related aspects of a situation before making a decision.

DBMS implementation planning has a number of pitfalls that can be
avoided. These include:

• Accepting a DBMS without careful evaluation
• Using the DBMS as a sophisticated access method
• Not recognizing the need to analyze application data
• Applying outdated information systems design methodologies
• A lack of management commitment
• Failure to recognize the intangible benefits
• Forgetting the data dictionary

In addition, several technical problems must be given careful attention. These
pitfalls and problems are discussed in this chapter.

TIMING THE DECISION

In a recent work, R.L. Nolan [1] states that organizations have a traditional
learning curve to surmount as they absorb and attempt to profit from DP
technology. Nolan's "stage hypothesis" identifies four stages of the learning
curve:

• Stage I-initiation
• Stage 2-contagion
• Stage 3-control
• Stage 4-integration

It is interesting to note that data base management starts to play a role in
this learning curve in Stage 3-after the stage in which everyone has become
enthusiastic and applications have proliferated. Nolan sees Stage 3 as the
stage in which existing applications are consolidated; some applications may

20 DATA BASE MANAGEMENT

have to be rewritten in a consolidation of this type. Stage 4 is the stage in
which the applications using the central data base are used in an online mode.

The point of this analysis is that all installations will sooner or later con
sider using a DBMS to consolidate applications and to obtain the benefits that
can be achieved by integrating flIes into carefully designed and centrally
controlled data bases.

Nevertheless, it is not always obvious when an installation should make the
move into data base management, and it is even less obvious how rapidly it
should proceed. There have been many sad tales of installations that made the
move too early and too quickly and failed completely. Conversely, some
installations proceeded so slowly that the result was disappointing.

Some organizations, however, have taken the bold step from a manual
information system to a fully integrated data base approach. This is possible
only when highly skilled personnel or consultants with related experience are
available.

Making the move to a DBMS at the wrong time can be devastating. The
problems with moving too early are related to the maturity of the data process
ing function in the organization, while moving too late can cause loss of a
competitive edge in the marketplace.

PROBLEMS PECULIAR TO ALL DBMSs

A number of DBMS-related problems can occur quite independently of the
DBMS to be used. (This chapter borrows from a paper written by E.H. Sibley
that was presented at the 1977 IFIP Congress in Toronto [2].)

Technical Expenise Required

Assuming that the use of a DBMS requires no more expertise than does the
use of conventional DP is analogous to taking a pilot out of a small, propeller
driven aircraft and putting him in charge of a commercial jetliner. The fact
that he has flown a somewhat older kind of aircraft means only that he is a
reasonable candidate for being trained to fly a jet. A similar argument can be
applied to DP and DBMS personnel. Implementation of a DBMS lives or dies
on the expertise available to do the job. Note that consultants can be con
tracted with and/or experienced personnel identified or recruited to ensure
successful design and installation.

The change from conventional to data-base-oriented systems is difficult
and should be treated with considerable care. A training program for all
concerned must be established. Management-level personnel and end users
require an orientation that does not present technical details but rather covers
the essential differences between a conventional and a data base approach to
building an information system. All technical personnel should receive thor
ough technical training. Frequent review meetings are also necessary to dis
cuss problems encountered in design and development activities.

DBMS IMPLEMENTATION PLANNING 21

Accepting a DBMS without Careful Evaluation

A number of fully developed DBMSs are currently available commer
cially. Users of IBM equipment are particularly fortunate because they can
choose from more than five DBMSs, all of which have enjoyed from 6 to 10
years of useful (and, to a varying extent, productive) life. These DBMSs,
however, vary considerably in technical characteristics; thus, a careful (six
month) comparative evaluation is essential.

In the early 1970s, there were not nearly as many DBMSs to choose from.
A situation occurring frequently in Europe today is one in which a U.S. parent
company who made its choice of DBMS in 1971 or 1972 now insists that its
European subsidiary make the same choice. This can be unfortunate.

Using the DBMS as a Sophisticated Access Method

It is sometimes tempting to use a DBMS as nothing more than an elaborate
indexed sequential-access method. As such, a fairly simple application's
magnetic file or existing ISAM file would be replaced by a fairly simple data
base. This is an easy approach that may, in fact, offer some of the widely
known advantages (e.g., better data independence) of using a DBMS. Doing
this, however, is simply ignoring most of the potential DBMS advantages.
The effect is rather like paying for a jet airliner and flying it at propeller
driven-aircraft speeds.

To obtain reasonable advantages from using a DBMS, one should select an
initial application that requires between 15 and 20 record types. This will spur
correct implementation of the DBMS and check any temptation to misuse the
software.

Not Recognizing the Need to Analyze Application Data

The need to analyze application data is now widely discussed by people
experienced in the selection and application of DBMSs. The value of a data
model (sometimes called a conceptual schema) as an indispensable aid to
understanding the meaning of the data is now recognized. A data model
should be designed first, and then the functions to be computerized should be
analyzed and designed in terms of that data model.

It would be unfair to claim that there is a complete lack of controversy
surrounding the idea of a data model. Although most people who have had
experience with DBMSs recommend that some kind of data model be pre
pared, there is a difference of opinion between practitioners and theoreticians
conceming the kind of data model that is most suitable. The essence of the
controversy is the use of the concept of a record type that contains several data
items. Theoreticians claim that grouping data items into a record type is
making a storage decision that one might wish to modify after a period of use.
The assertion is that better data independence can be achieved by developing a
data model based on more fundamental constructs than the record type.

22 DATA BASE MANAGEMENT

The comerstone of the kind of data model advocated here is a data struc
ture diagram (see Figure 3-1). This example shows a purchasing application
in which tender, price quotations, and purchase orders can be requested. The
diagram shows the static relationships between the various entities, each of
which is illustrated in a rectangular box. The arrows between boxes show
classic one-to-many relationships. Failure to perfonn the kind of analysis
required to prepare a data model before selecting a DBMS is one of the most
common and dangerous pitfalls that can be encountered in moving to a DBMS
environment.

Request
Product - Supplier r- Price

Quotation

~ 4- I I
I

I
+ i t

Possibility RPQ Line
to Supply Sent to in
Product Supplier RPQ

l
I

t
Purchase Quotation I-
Order

"-J ,
Purchase Line in Order Quotation Line

Figure 3·1. Purchasing Example

Applying Outdated Information Systems Design Methodologies

Many useful design methodologies have emerged from conventional DP.
Some of these techniques become part of an installation's design standard.
Although it is good to have a systematic approach to design, the impact of
data base design requirements on the information systems design methodol
ogy is often underestimated.

There are many design methodologies that rely on a basic INPUT
PROCESS-OUTPUT analysis. Such methodologies have a role to play in the
design of application programs after a data base is designed. It is important,

DBMS IMPLEMENTATION PLANNING 23

however, to avoid being too insistent about reconciling conventional infonna
tion systems design methodology with data base design techniques.

Lack of Management Commitment

It is tempting for managers to regard DBMS implementation (and, indeed,
all problems connected with DP) as technical problems that they should not
have to address. Unfortunately, the move to a DBMS cannot be ignored by
management. If, for example, technical personnel choose to use the DBMS as
an elaborate access method, management will probably not be affected by the
changeover but will continue to experience frustration in its attempts to obtain
integrated infonnation overviews from the DP department. If the DBMS is to
be correctly implemented, management's commitment must be a driving
force.

Failure to Recognize Intangible Benefits

After more than two decades of business experience with computers, it is
understandable that management should seek cost justification for moving
into a DBMS environment. All too often, management has approved the
expenditure of funds only to be disappointed by the abortive or superficial
nature of the results. The fact is that because many advantages of a data base
environment are intangible, it is often difficult to produce two columns of
figures that detail all associated costs and benefits. They become apparent
only after several applications have been successfully implemented and inte
grated and are fully operational. At that point, it is quite possible that the
systems will link across functional lines, providing unanticipated advantages
to upper management.

Forgetting the Data Dictionary

A data dictionary should be thought of as a special data base in which one
stores data about the data in the main data base [3]. The term meta-data-base
is sometimes used to describe this special kind of data base. When an organi
zation has a large number of record types, data items, and programs, a data
dictionary can be used as an administrative tool for controlling the record,
item, and program names and showing how they are used in relation to each
other.

It should be pointed out that a data dictionary is perfectly valid in the
context of conventional application systems; however, with DBMSs, the mass
of data about data is even more critical. This infonnation should be stored in a
data dictionary, which, by the way, can also conveniently store the results of
the data analysis activity previously discussed.

PROBLEMS PECULIAR TO SPECIFIC DBMSs

There are three problems that are peculiar to specific DBMSs; these prob
lems may, however, be encountered with any DBMS to a greater or lesser
degree.

24 DATA BASE MANAGEMENT

Restrictive Structuring Facilities

Each DBMS has certain restrictions in the way the designer can structure
the data base. A restriction of this kind can be overcome simply by defining
extra record types and extra relationships. This extra structure is often referred
to as clutter. While a detailed discussion of this topic is outside the scope of
this chapter, it is important to be aware of the problem because it can seriously
influence the choice and operation of a DBMS. If a detailed DBMS selection
study is performed in conjunction with an analysis of application data, the
clutter that must be introduced into the data base design because of the
shortcomings of a particular DBMS will become apparent and can be further
evaluated.

Hidden Execution-Time Overheads

DBMSs vary considerably in the efficiency of the generated code. Even if
the data base is reasonably well defined within the confines of the structuring
facilities, the user can still get a nasty shock when application program execu
tion time is measured. This is particularly true for online systems in which
terminal response time is so noticeable.

The difficulty with hidden execution-time overheads is basically this: the
DBMS is designed so that it is easy for the applications programmers to write
programs that are logically and functionally correct and will produce the
desired result. This implies that the application programmer need not know
what goes on behind the scenes. In fact, in order to write reasonably efficient
code, the programmer does have to know what goes on behind the scenes.
Consequently, an ease-of-use advantage may not exist. To circumvent this
problem, careful analysis of DBMS structure and code is necessary. In addi
tion, emphasis must be placed on training people to the level of expertise
required to work the new system.

Difficulty in Achieving the Desired Level of Data Independence

The possibility for achieving improved data independence is frequently
cited as one of the prime reasons for using a DBMS.

Most systems must be extended after some period of use. This extension
may involve designing and preparing new programs to process the existing
data base. This does not usually create problems. The extensions may, how
ever, require adding items to the existing data base. It may be necessary to
add new items to existing record types, add completely new record types, or
create new relationships between new and existing record types. If this can be
done without affecting existing application programs, one can claim that the
DBMS is supporting a reasonable level of data independence. With some
commercially available DBMSs, however, it is simply not possible to add
new data items to existing record types.

The solution is either to add extra record types and relationships, with the
concomitant clutter and efficiency problems, or to undertake an extensive

DBMS IMPLEMENTATION PLANNING 25

rewrite. Because this can be extremely expensive and cancels one of the prime
reasons for using DBMS, it is most important to check data independence
functions when performing the recommended DBMS comparative evaluation.

CONCLUSION

The major pitfalls of DBMS implementation and use can be avoided
through:

• The competence of the technical personnel and the involvement and
commitment of management.

• Careful analysis of application data in order to understand the inherent
complexities prior to embarking on an evaluation of DBMSs.

• Careful evaluation of available DBMSs and data dictionaries before
committing the organization to a particular system.

• Choosing a pilot application system for the DBMS that is neither too
small nor too large; suitable size is between 15 and 20 record types.

References

1. Nolan, R.L. "Thoughts about the Fifth Stage." Data Base, Vol. 7, No.2 (Fall 1975), pp. 4-10.
2. Sibley, E.L. "The Impact of Data Base Technology on Business Systems." Proceedings IFIP 77 Congress. Toronto, Canada,

1977, pp.589-596.
3. Plagman, Bernard K. "Data DictionarylDirectory System-A Tool for Data Administration and Control." Portfolio

22·0\-02. AUERBACH Data Base Management. Pennsauken NJ: AUERBACH Publishers Inc.

Bibliography

Gosline, W. George. "Data Independence in DBMS-Parts I and II. " Portfolios 22-03-08 and 22-03-09. AUERBACH Data Base
Management. Pennsauken NJ: AUERBACH Publishers Inc.

~ Trade-offs in
Data Base
Design

INTRODUCTION

by Jay-Louise Weldon

In its broadest sense, data base design encompasses activities that range
from the identification of end-user requirements to the final arrangement of
data values on a physical device. The first phase of the design process, logical
design [1], results in a formal description of the entities and relationships that
must be captured by the data base to meet user requirements. The second
phase, physical design [2], determines how the logical data base (the data
base schema or data submodel [3]) should be physically represented for the
most efficient data storage and processing. Many design decisions must be
made during both phases; decisions made in one may affect the choices
available in the other. The designer who errs in either phase or lacks knowl
edge of one phase's effect on the other can expect suboptimal results.

Many organizations are beginning to recognize the importance of the data '
base design process. Business organizations are increasingly moving from the
traditional approach of developing data fIles that support specific applications
to developing large, integrated data bases that can be shared by many users. In
such an environment, design errors can be costly, not only to one application
system but to any user accessing shared data. Design errors can also be costly
in terms of excess or inefficient processing, excess device capacity, lengthy
application development times, frequent data base reorganization, or required
reprogramming of application programs.

Unfortunately, many organizations approach the data base design process
with little or no understanding of the trade-offs. The designer must often make
decisions based on intuition or experience with non-data-base systems. De
sign errors can be minimized, however, if the designer views the data base
design process as a series of trade-offs.

A trade-off is the result of a knowledgeable assessment of the costs and
benefits of a decision or action, in which one benefit is exchanged for another
when the latter is deemed more desirable or of higher priority. Using trade
offs advantageously thus requires a knowledge of the effects of and interrela
tionships among factors involved in the decision.

28 DATA BASE MANAGEMENT

Two classes of trade-offs can be identified for the process of data base
design-general and operational. General trade-offs relate to the designer's
approach to the overall design problem. They should serve as guidelines for
selecting feasible alternatives for the logical and physical structure of the data
base. Operational trade-offs [4], however, pennit specific choices among
design tools or among actual or proposed alternative data base structures. The
designer should assess these trade-offs in tenns of design alternatives and
should use the results to select an implementation strategy that corresponds to
organizational objectives.

GENERAL TRADE-OFFS

The data base designer should be cognizant of the five general trade-offs
that follow, which fonn the basis of a design philosophy that can guide the
fonnulation of implementation alternatives. In addition, the designer can use
these trade-offs to evaluate the general feasibility of different implementation
approaches. Final decisions must, however, be made in conjunction with the
evaluation of operational trade-offs.

Specialization versus Generalization. The traditional approach to file
design focuses entirely on the needs of a specific application (i.e., a group of
related processing requirements). Data required by more than one application
is often duplicated rather than shared, and storage and access decisions are
made to optimize the files for the primary user.

In a data base environment, however, the emphasis on managing data as a
cOIpOrate resource changes the data base into a repository of shared informa
tion. Thus, customized representations or implementations are inappropriate.
Evaluating cost and perfonnance in such an environment is complex, since
the overall objective is a kind of global optimum that may be suboptimal for
any given application or primary user.

Extent of Required Analysis. For most data bases, some degree of analy
sis is worthwhile, considering the often severe and continuing penalties result
ing from inefficient implementation. The effort involved in such analysis,
however, must be weighed against its benefit. When selecting a data compres
sion method for a textural data base, for example, the designer should deter
mine whether the cost of content analysis is justified or whether similar
infonnation is available in published works on character frequency in English
text.

Application and Configuration Requirements. When matching the
structural and utilization requirements of the data base with the capabilities of
the DBMS as well as with available access methods and data storage devices,
the data base designer should attempt to make an economic trade-off between
the power of the configuration and the requirements of the applications. The
configuration should meet the requirements without providing significant un
used capacity.

DATA BASE DESIGN 29

Planning for the Future. The data base designer should try to select a
design that will remain tenable for a number of years. To do so, the designer
must consider the life expectancy of the data base as well as current trends in
DBMS software and data storage devices. For example, the storage and
access potential of new devices (e.g., mass storage devices, bubble memo
ries) and new data structuring ideas (e.g., relational and set-theoretic data
models) should not be overlooked.

Planned versus Ad Hoc Processing. The data base designer must know
the required proportion of planned to ad hoc processing. Design decisions
favoring planned processing put less emphasis on nonprocedural interaction
with the data base than do those supporting spontaneous processing. Simi
larly, the storage overhead (e.g., indexes, pointers) necessary to facilitate ad
hoc processing is unnecessarily burdensome when applications are known and
repeated.

OPERATIONAL TRADE-OFFS

There are operational trade-offs during both logical and physical design.
During logical design, operational trade-offs relate primarily to the strategies
and tools selected for developing the data base schema. During physical
design, the trade-offs concern alternatives for data base implementation. Cer
tain operational trade-offs relate to the interaction between logical and physi
cal design.

Trade-offs in Logical Design

The logical design phase begins with an investigation of user requirements
and ends with a logical description (schema) of a data base that can support
those requirements. This description, termed logical because it does not con
tain details about how the data is to be represented, is used during the subse
quent physical design phase.

Logical design can be divided into four activities [1]:
• Requirements analysis
• Data modeling
• View integration
• Schema development

The breakdown is shown in Figure 4-1.

Requirements analysis is the process of determining and documenting user
needs. These needs are then expressed as an abstract, formal data model that
represents the user's environment as realistically as possible. Since the data
base must support a number of users, each with different views of the data,
several views must be integrated into one global data model. The global data
model is then transformed into a DBMS-dependent schema representation.

Logical design decisions have an immediate effect on how data is collected
and assembled to meet user needs. When making these decisions, the logical
designer faces several trade-offs.

30

Data
Modeling

DATA BASE MANAGEMENT

View
Integration

Figure 4·1. The Logical Design Phase

Application versus Global Modeling. Two activities in logical design
data modeling and view integration-reflect the designer's attempt to model
each user's view, or application, separately and then to merge these views
into a global model capable of supporting all users. Although this approach
makes the collection of user requirements and model development easier,
there is no guarantee that the view models can be successfully integrated.
Since the development of the full data base can occur over time (i.e., when
applications are added in succession), incompatibility of application models
can necessitate costly data base redesign.

To avoid this problem, the designer can initially develop a global model
and define application models as subsets of the global model. In order to
develop a global model, however, the requirements analysis must also be
global in scope. This increases the complexity of the design task as well as the
time and resources required to accomplish the task. In addition, such an
approach delays the expected benefit of the data base implementation because
no applications can be put into production until the full data base is specified.

Most designers believe a compromise in which a high-level global model is
developed [5] and used as a guide during the specification of application
models is the solution. Such an approach can reduce the risk of incompatibil
ity without adding inordinately to the complexity and cost of the design
process.

Choosing a Data Modeling Technique. There are many data modeling
techniques [6], all of which contain constructs and notations for representing
data entities and relationships. In choosing a modeling technique, the designer
must weigh capabilities in requirements specification and user communication
against the ease of mapping models developed with the technique into appro
priate DBMS schemas. Generally, the more user oriented the technique (i.e.,
the easier it is to represent and interpret its models), the less rigorous and

DATA BASE DESIGN 31

complete it is. Thus, models of this type must be augmented and revised
before they are mapped to DBMS schemas.

Process- versus Information-Oriented Design. The traditional approach
to data fIle design emphasizes processing requirements rather than data. Only
those data elements required by the processing are included and are grouped
to optimize efficient execution of the processes required. Although exclusive
use of this approach is inappropriate in a data base environment, the degree to
which processing requirements should influence data base design is still in
question.

This trade-off represents a balance between completeness and adequacy. A
complete data base must contain all information relevant to the organization
(i.e., a faithful and complete model). A complete data base is perfectly
flexible (i.e., able to support all existing and future processing needs) at the
cost of excess data collection and maintenance. A data base designed with a
process orientation, however, contains only that data necessary to make it
adequate for support of processing requirements. Although a customized data
base is less costly initially, it requires redefinition when inadequate for new
processing requirements.

DBMS-Dependent versus DBMS-Independent DeSign. When to intro
duce the DBMS into the data base design process is an important concern of
the data base designer. Many believe that to achieve short-range efficiency,
the logical constructs of the DBMS should be used as early as the require
ments specification and data modeling stages. In this way, all information
needed for the DBMS data base schema would be collected and extraneous
information would not. A data model expressed in DBMS constructs cannot
easily be mapped into the constructs of another DBMS, however; additional
analysis and design work are necessary if the software environment changes.
In addition, each DBMS imposes its own logical view of how data should be
grouped and structured. The designer who follows this view early in the
logical design phase can miss opportunities for representing data requirements
that may, in the long run, surpass those offered by the DBMS.

Trade-offs in Physical Design

The physical design phase begins with a logical schema that represents
user requirements and provides information on the processing requirements.
A plan for the physical implementation of the data base that will achieve the
best performance at the least cost results. Physical design includes four activi
ties:

• Determining and documenting data representation
• Selecting and documenting access modes
• Allocating data to devices
• Loading and reorganizing the data base

These physical design activities are represented in Figure 4-2.

32

Data
Representa
tion

DATA BASE MANAGEMENT

Figure 4·2. The Physical Design Phase

Each data element and group in the schema is first assigned a data type and
size and is then documented using the data definition language (DDL) of the
DBMS. Next, the access methods by which the elements and records will be
stored and retrieved are chosen. Each element, record, or file is then assigned
to a data storage device, and these assignments are recorded in the DBMS
internal schema [5], using Device Media Control Language (DMCL). Fi
nally, the physical designer loads the actual data into the data base and
prepares to revise the decisions concerning physical aspects of the data base as
changes in data or processing requirements dictate.

During physical design, data storage and processing costs must be weighed
against data base performance. Unfortunately, improvements in cost usually
deter performance; improvements in performance generally increase cost.

Effect of Data Allocation. Access to data on secondary storage devices is
efficient when data that is used together is stored in close physical proximity.
Clustering data in this way improves the chances that a physical block of data
transferred to main memory will have more than one required data record.
When multiple blocks must be retrieved, I/O time can be minimized if access
is restricted to tracks within one disk cylinder or those on adjacent cylinders.

The trade-off here is that while data base environment processing programs
share data, the optimal data allocation for each is likely to differ. The physical
designer must plan data allocation in response to application priorities, based
on a minimum standard for acceptable performance for each application.

Choosing an Access Method. Many DBMSs offer the designer a choice
of access methods for each physical file in the data base. When selecting an
access method, the designer must determine whether to trade storage effi
ciency and access method simplicity for flexibility and speed of data access.
Methods with minimal storage and processing overhead (e.g., a sequential-

DATA BASE DESIGN 33

access method) place constraints on data placement (e.g., the requirement for
a physical or logical sequence of records) and processing (e.g., no direct
record retrieval or in-place updating). Methods that allow flexible and direct
retrieval (e.g., indexed or inverted list methods) require additional storage
(e.g., for pointers, indexes, directories) and more complex processing opera
tions (e.g., for overflow handling or record addition and deletion).

Redundancy versus Efficiency. Although minimal redundancy is an ob
jective of the data base approach, with current hardware and software, con
trolled redundancy may be necessary and desirable for efficient processing. A
data element such as PROD-NAME, shown in Figure 4-3, should ideally be
stored once within a database, probably with the other attributes of the
product it describes. An order referring to this product might contain the
product identifier, but the product name would not be stored redundantly.
Duplicating the PROD-NAME data element as an attribute of the order,
however, may save enough I/O accesses to more than offset the cost of the
additional bytes of storage. The physical designer must think about such
trade-offs explicitly and ensure that proper controls are in place to guarantee
consistency among duplicate instances of the same data element. In the pre
ceding example, an update to the product data involving PROD-NAME must
trigger a similar update of related orders.

Product

P#

Ord=er:..-_-__ ~ ?

0#

Note:
PRO[)'NAME is the data name for the product name data field.

Figure 4-3. Redundancy versus Efficiency: Should Product Name Be Stored
Twice?

Data Compression. Compressing, or compacting, data before it is stored
can save valuable storage space. This is especially important in conjunction
with access methods (e.g., inverted lists) that add substantial overhead infor
mation to the data base. This saving in storage must be weighed against
increased processing time for encoding or decoding data elements when add
ing them to or deleting them from the data base. The balance can be tipped in
favor of data compression by selective compression. With selective compres
sion, only certain portions of the data (e.g., non-key fields) are compressed;

34 DATA BASE MANAGEMENT

thus, many searches can be perfonned without decoding until the final set of
records is selected.

Interaction between Logical and Physical Design

Although logical and physical design are two distinct phases of the data
base design process, they affect each other. The designer must be aware of
this and must know how the interaction can affect data base structure and
implementation.

DBMS Constraints on Physical Design. Ideally, the constructs used to
represent the logical schema for a data base are independent of implementa
tion details. In most commercial DBMSs, however, this ideal is not achieved.
The constructs used to represent groups of related data items (e.g., records or
segments) actually represent physically stored records. In addition, the rela
tionships described define actual access paths, and, in some cases, data allo
cation is specified in the data base schema (e.g., the CODASYL Data Base
Task Group-DBTG) area or realm concept. When this type of overlap oc
curs, the physical designer has less flexibility in selecting implementation
methods. Furthennore, a change in implementation has far-reaching ramifica
tions because the logical schema and programs based on that schema may be
affected.

Impact of Processing Optimization on Logical Design. Concern for the
perfonnance of data base applications can result in constraints on the logical
design. The designer may choose to use only those DBMS constructs or
relationships that are known to provide fast access. For example, an IMS
designer may express most data base views as independent (Physical) data
bases, choosing not to use the IMS facility that allows a logical view to span
two or more physical data bases. Another example is the DBTG designer who
chooses to avoid the DBTG set type and, instead, represents the relationship
between two types of records using embedded (and redundant) data values.
Unfortunately, allowing physical considerations to constrain the logical de
sign obviates the benefits of data independence and prevents the logical de
signer and application programmers from taking full advantage of the power
of the DBMS.

The effects of logical design on physical design and vice versa appear to
result from shortcomings in currently available DBMSs and storage devices.
Advances in either area should promote true data independence, thus elimi
nating these trade-offs.

CONCLUSION

The two classes of trade-offs discussed in this chapter generally relate to
the phases of the data base design process (see Figure 4-4). General trade-offs
are applicable throughout the design process; operational trade-offs are en
countered in the more analytical steps that follow the data base design phases.

DATA BASE DESIGN

~
Data Gathering
on Data Base
Characteristics

~ ~
Formulation
of Design
Alternatives

~ ~
Evaluation
of Design
Alternatives

~ ~
Selection
of Data Base
Configuration

I

General Trade-offs and
Logical Design Trade-offs

Figure 4-4. The Relationship of General and Operational Trade-offs to the
Data Base Design Process

35

During the fonnulation of alternative designs, the general trade-offs can be
used by the data base designer in three ways:

• To set practical limits on the resources (i.e., personnel, time, funds)
expended on the design process. This function is served primarily by
the trade-off involving the extent of analysis perfonned.

• To provide guidance whenever choices must be made. For example,
the generality of a particular data modeling technique may result in its
recommendation, or a device may be rejected for lack of desired capa
bilities.

• To aid in developing an acceptance standard (or a set of criteria) that
can be used to evaluate operational trade-offs. For example, to be
acceptable, a design may be required to meet retrieval needs for a
period of five years.

Results of the operational trade-offs in logical design provide the data base
designer with a logical design approach and tool(s) for specifying data re
quirements. The approach selected determines the scope of the logical design
process and the types and extent of data collected during this phase. The data
model selected and its relationship to the DBMS further define the type of
requirements data to be collected and also govern whether or not a schema
mapping step is necessary as part of logical design.

36 DATA BASE MANAGEMENT

Ideally, the data base designer should be able to evaluate the operational
trade-offs among alternative physical configurations in an iterative fashion.
The designer should be able to change design parameters and easily reevaluate
each alternative. He or she should also be able to stratify the evaluation of a
given data base (i.e., apply different constraints and design alternatives to
different portions of the data base). It should be possible, for example, to
evaluate the effect of using a mix of devices (i.e., a storage hierarchy). The
best way to accomplish a systematic evaluation of this type is to simulate or
model the data base in question [7].

In any case, the evaluation of the operational trade-offs for each design
alternative should result in the identification of one or more designs that meet
the acceptance standard. If only one configuration is acceptable, selection is
complete. If more than one meets the standard, a final decision is required.
The designer may again rely on the priorities established by the general trade
offs to aid in the final selection. For example, if two equally acceptable
designs differ in ad hoc inquiry support, the planned versus ad hoc processing
trade-off could be the determining factor.

Once selected and implemented, a data base design should be monitored
over its lifetime to ensure that it continues to meet the criteria that resulted in
its selection. Both classes of trade-offs should continue to guide the data base
designer and should serve as indicators of the need for redesign.

References

1. Yao, S.B .• Navathe, S.B., and Weldon, J.L. "An Integrated Approach to Logical Data Base Design." Proceedings of the
NYU Symposium on Data Base Design. New York, 1978.

2. Martin, J. Computer Data Base Organization. Englewood Cliffs NJ: Prentice-Hall Inc, 1975.
3. Date, C.J. An Introduction to Database Systems. Reading MA: Addison-Wesley, 1977.
4. Weldon, S.L. Data Base Administration. New York: Plenum Publishing Co, 1981.
5. ANSIIX3ISP ARC Study Group on Data Base Management Systems. Seattle W A: Interim Report 75-02-08. ACM FDT Vol. 7,

No.2 (1975).
6. Wiederhold, G. Database Design. New York: McGraw-Hill, 1977.
7. Weldon, J.L. Data Storage Decisions for Large Data Bases. Springfield VA: NTIS Publication No. AS/A-023874. U.S.
~nt of Commerce, Febnwy 1976.

~ Systems Development
in a Data Base
Environment by Bernard K. Plagman

INTRODUCTION

The seventies witnessed the maturation of data base technology. Data base
management systems (DBMSs), which in earlier years were prone to software
errors, became relatively bug free and comparatively stable. Tools to support
the development and operation of information systems built on the principle
of data shared among different applications became available. Instead of
being used as a sophisticated access method, DBMSs and other data base
technologies began to be employed as integral and important parts of a data
base environment.

This chapter defines the term "data base environment" and explores the
impact of the data base phenomenon on systems development. Because the
systems development process is fundamentally affected by the principle of
data sharing, this chapter discusses the areas of management and control of
that process that merit close attention. In particular, the use of the Data
Dictionruy/Directory System (DDIDS) is stressed because it has considerable
potential as a tool for developing better management practices and more
effective project control.

It should be noted that this chapter discusses the impact of a technical
issue-data base technology-on a management process-systems develop
ment. The purpose is not to dwell on the technical aspects but to focus on
areas that affect management of the systems development process. Thus, this
chapter focuses on the role of systems development, the fundamentals of the
data base environment, the impact of that environment on the systems devel
opment process, and the control concerns of the DP manager.

ROLE OF SYSTEMS DEVELOPMENT

Systems development is responsible for software development projects that
entail designing, implementing, and maintaining information systems in re
sponse to users' business needs. Typically, this function reports to the DP
manager, and many application development projects may be under its con
trol. For the purpose of this discussion, it is assumed that systems develop
ment is responsible for two or more application development projects.

38 DATA BASE MANAGEMENT

The basic role and management objectives of systems development are
constant, regardless of the technologies used in the implementation of infor
mation systems. Systems development's role is to apply and effectively man
age resources to achieve management goals. The objective is to deliver to the
end user information systems that provide accurate, consistent, complete, and
timely information, consistent with the end user's business needs. This must
be accomplished within budgeted limits for time, money, and personnel.

While role and management objectives are unaffected by the use of specific
technologies, the way the systems manager performs duties and functions is
most definitely affected. In a data base environment, certain aspects of the
development process must be emphasized; coordinating activity becomes
more important, as does the use of standard practices. In addition, technical
expertise applied at key points in the development process is indispensable in
a data base environment.

In order to more fully explain the impact of the data base environment on
systems development, it is helpful to describe that environment.

DATA BASE ENVIRONMENT

A data base environment can be defined by the information systems it
supports and the hardware/software and administrative components of which
it consists.

Information systems in a data base environment share data by means of a
data base to increase accuracy and consistency of representation. In a bank
system employing dedicated mes, for example, both redundancy and incon
sistency of data may occur (see Figure 5-1). The shared use of data in a data
base, however, helps alleviate these problems (see Figure 5-2). This sharing
of data to build integrated information systems is a characteristic that distin
guishes a data base environment from conventionally designed systems.

There are five basic components of a data base environment:
• Data base-a collection of data logically organized to meet the informa

tion requirements of a universe of users
• Data base management system-a hardware/software system that man

ages data by providing organization, access, and control functions
• Data Dictionary/Directory System-a repository of information about

data and the data base environment
• User system interfaces-components of the data base environment that

request, manipulate, and transform data into information for end users
• Data base administration-A human function involved in the coordina

tion and control of data-related activities

The first four items are hardware/software components; the fifth is admin
istrative. Figure 5-3 shows the functional architecture of this environment and
illustrates the interaction between components.

It is important to recognize that the components of the data base environ
ment support multiple logical views of a single physical representation of

SYSTEMS DEVELOPMENT

Consumer
Loans

Corporate
Trust

Demand
Deposit
Account

Customer
Information
Inquiries

Wire
Transfer
Service

Savings
Deposits

Foreign
Exchange

Figure 5·1. Dedicated Use of Customer Data in a Bank

Consumer Wire

Loans i'~(~/
Transfer
Service

Customer
Corporate Information Savings
Trust Deposits

'- ./

T
Demand Customer Foreign
Deposit Information Exchange
Account Inquiries

Figure 5·2. Sample Data Base of Information for a Bank

39

40 DATA BASE MANAGEMENT

User Data

System Dictionaryl

Interfaces Directory
System

4

-
r Data

Base

-
DataBase DataBase Management Administration System

Figure 5-3. Functions Performed in a Data Base Environment

data. This capability, which is necessary to support data sharing among di
verse applications, is accomplished at the technical level through data inde
pendence techniques.

At the application program level, each program is provided with a data
description that represents the program's logical view of data. The DBMS is
given a data description corresponding to the global logical view that satisfies
all logical views. In addition, the DBMS is furnished with the description of
the physical representation in tenns of storage structures and access methods
necessary to support the global logical view. Thus, there is a set of separate
but consistent definitions that describes the multiple logical views as well as
the single physical representation used in data sharing among application
systems.

IMPACT OF A DATA BASE ENVIRONMENT ON SYSTEMS
DEVELOPMENT

The impact of a data base environment on systems development depends
upon the level of data sharing. The higher the level of sharing, the greater the
impact on the systems development life cycle (SDLC); the lower the level of
sharing, the less the impact.

Systems Development Life Cycle

The systems development life cycle aids in managing and controlling
development activities. Projects are hierarchically structured into units of
work called phases, activities, tasks, and sometimes even smaller units of
work. A data base environment affects the SDLC at the phase level.

The SDLC consists of five phases:
• Requirements analysis and feasibility
• Systems design

SYSTEMS DEVELOPMENT 41

• Program design and coding
• Testing and acceptance
• Operations and maintenance

These phases are affected by a data base environment because of the
contrast between file design and data base design. File design is typically an
application-project-oriented task under the direct auspices of a project leader;
it yields files primarily dedicated to specified purposes. The data base design
process, on the other hand, results in a data base that can be shared among
many applications with diverse logical views. This requirement for data shar
ing necessitates two separate but interdependent design processes that must
proceed in parallel-systems design and data base design. The systems devel
opment process must therefore interact with the data base design process. This
interaction must be defined in terms of a data base development life cycle, just
as the systems design is defined in terms of a systems development life cycle.

The data base development life cycle (also referred to as a data base design
methodology) consists of four major phases:

• Global conceptual data base design-identifies entities and the data
clusters that describe these entities. It also includes specifying relation
ships among the data clusters defmed. The result is a global conceptual
data structure diagram and supporting documentation.

• Detailed conceptual data base design-follows the global phase of de
sign and uses its deliverables. This phase entails specifying record
types, including design and assignment of data elements. The result of
this phase is a detailed conceptual data structure diagram and support
ing documentation.

• Logical data base design-is based on logical view requirements devel
oped in application projects, uses the detailed conceptual design, and
adds storage structures and access methods that can satisfy all logical
views. The result is a global logical data base, which may include a
data structure diagram and data description language (DOL) code as
well as supporting documentation.

• Physical data base design-allocates storage for the data base and deter
mines such physical aspects as buffer and block sizes and physical
placement options. The result of this phase is a fully described data
base design coded and ready for data base loading procedures.

Figure 5-4 illustrates the manner in which the phases of the SOLe must
interact with the phases of the data base development life cycle. Most impor
tant from the systems development viewpoint is the responsibility to deliver
the definition of logical views and to critically review the deliverables pro
vided by the data base design process. The interaction of the phases of the
SOLe with those of the data base development life cycle is discussed in the
following paragraphs.

Requirements Analysis and Feasibility. During this initial SOLe phase,
efforts focus on user-oriented and conceptual aspects of the design; it is

. important to coordinate these activities with the development of the global

Data Base
Development
Life Cycle)

Life Cycle)
Deliverables

Systems
Development
Life Cycle)

Global
Conceptual
Data Base
Design

Global
Conceptual
Data Structure

Detailed
Conceptual
Data Base
Design

Detailed
Conceptual
Data Structures

Logical
Data Base
Design

Logical
Data Base
Specifications

Program
Design and
Coding

Figure 5·4. Interaction between Data Base Development Life Cycle and
Systems Development Life Cycle

Physical
Data Base
Design

Physical
Data Base
Specifications

Testing
.and
Acceptance

Operations
and
Maintenance

~

~
~ en m
s:: » z »
G>
m
s::
m
z
-l

SYSTEMS DEVELOPMENT 43

conceptual data structure. This data structure should be produced in an inde
pendent planning effort that precedes the initiation of an SOLe for the appli
cation project. An application project thus deals with a subset of the global
conceptual data structure and refines the applicable sections of that structure
in accordance with user requirements by providing additional conceptual in
sight. In this regard, systems development is responsible for ensuring that
each application is appropriately placed into the context of the overall global
conceptual data structure.

One question concerning the feasibility of an application project is whether
it can use the data base(s) defined in the global conceptual data structure and
whether supporting data base technology (e.g., a DBMS) must be employed.
These issues should be formally addressed in the requirements and feasibility
report. In addition, this report should identify and describe user requirements
that are related to the access, storage, and maintenance of information in the
data base(s).

Systems Design. The second phase of the SOLe is concerned with de
tailed analysis leading to a systems solution. The systems design effort is a
refinement of the previous phase, which established only feasibility for the
conceptual level.

The systems development manager must be sure that each application
project specifies its data requirements in conjunction with the detailed specifi
cation stage of systems design (i.e., the logical views of each application must
be carefully detailed). This is accomplished by enumerating the transactions
needed to support the business functions in question. From these transactions,
the analysis identifies the data elements and data relationships necessary to
support the application. The need for retrieving, updating, and modifying data
is established and corresponding volume-frequency information compiled.
This data should then be analyzed and prepared as a formal deliverable repre
senting the logical views of the application.

Program Design and Coding. This SOLe phase involves the transforma
tion of the systems design into operable code. The tasks in this phase usually
require knowledge of the data structures and access methods used in the data
base design. Thus, information from the data base design process must be
made available to the systems development project team. This information is
delivered in the form of the logical data base design.

In the course of designing and coding application programs, systems devel
opment personnel should employ procedures and techniques to promote data
independence and the overall integrity of the data base. Special care should be
applied when writing programs t11.at update, modify, and/or delete data from
the data base. In addition, special attention should be given to edit and
validation controls, DBMS return-code processing, and other error processing
procedures.

Testing and Acceptance. During this phase, the system undergoes vari
ous levels of testing to ensure design completeness and accuracy. If data is

44 DATA BASE MANAGEMENT

shared across application lines, however, an additional level of testing-data
base integration testing-must be perfonned, during which the newly coded
application system is processed against a test data base, along with the other
application programs that are in production mode. This is done in order to
verify that the newly coded programs will not have an adverse impact on
existing programs.

Op~ratlons and Maintenance. The final phase of the SDLC is an ongo
ing phase-the production mode of operations and the method for correcting
bugs and enhancing the application systems.

Maintenance is critical in a data base environment. Changes to data ele
ments can affect several application programs, thus crossing application proj
ect boundaries. Of course, this situation can be mitigated if a reasonable
degree of data independence has been ensured in previous phases of the
SDLC. A high degree of data independence pennits changes in data elements
while circumventing actual coding changes. In many instances, recompilation
of application programs can be avoided. A reasonable degree of program data
independence can also significantly reduce the relative percentage of man
power and other resources expended on maintenance versus new develop
ment.

The interaction and coordination of the systems and data base life cycles is
controlled by the deliverables that serve as interfaces between the two life
cycles. As illustrated in Figure 5-4, the deliverables of each life cycle play an
important role in all subsequent phases.

CONTROL CONCERNS OF SYSTEMS DEVELOPMENT

Controls are implemented in infonnation systems in order to ensure the
accuracy, completeness, and timeliness of infonnation provided to end users.
The system of internal control also helps ensure authorized access and ade
quate audit trails. Automated controls must be considered part of the system
of internal control. Development projects must also be controlled to ensure
their completion on time and within budget.

Development Project Control

A data base design project must have its own centralized administration.
The systems development manager, therefore, must ensure that controls for
the systems development project are not neglected. In the traditional environ
ment, project leaders had total control over the development effort, inclusive
of file design; in the data base environment, however, the project leader must
rely on data base designers who will probably work in a separate organiza
tional unit (e.g., Data Base Administration [DBA]). In a data base environ
ment, therefore, "finger pointing" may arise between members of the project
team and those of the data base design team. Although the purpose of the
DBA function is to coordinate and control, quality control and timely comple
tion of project activities remain a systems management responsibility.

SYSTEMS DEVELOPMENT 45

Design and Implementation of Controls in Systems

Infonnation systems supported by a data base environment raise new con
trol concerns and also present opportunities to mitigate them.

One of the greatest problems in a data base environment is the migration of
system controls from the individual application to the generalized systems
environment. Access controls to prevent unauthorized reading and writing to
flies may be an application program function in a traditional environment. In a
data base environment, however, these controls are implemented in the con
text of the data base management system as part of the security mechanism
available on a general basis. This is true for other types of controls as well,
including edit and validation, restart/recovery, and contention controls.

The migration of controls affects systems development in a number of
important ways. It particularly affects placement and awareness of controls.

Placement of Controls. The placement of controls in the design is usually
heavily influenced by the systems designer. In addition, placement has a
direct impact on the controls' effectiveness as well as on any cost benefit
analysis that might be performed to evaluate them.

The opportunity for efficient and effective placement of controls is greatly
enhanced in a data base environment. Among the numerous possibilities are:

• Schema/subschema controls
• Privacy locks and keys
• Before/after image logging
• Data base procedures

Awareness of Control Requirements. Even in a non-data-base environ
ment, the systems manager must be mindful of the need for controls in
automated infonnation systems. In a data base environment, however, the
control concerns are heightened because of the introduction of data sharing
and the implementation of data independence. This has brought about greater
concern in the areas of authorized access, coordination of activity, and con
centration of risk.

It is the systems manager's responsibility to ensure that designers are aware
of the need for controls. Furthermore, the opportunities for using new tools
and techniques should be underscored in order to guarantee that all available
alternatives are evaluated.

The best way to promote an awareness of these control issues among
designers is through training sessions. The efficacy of such training is en
hanced by the participation of a member of the EDP auditing staff.

Personnel Considerations

A lack of necessary technical support skills is possibly the most common
cause of delays and even failure of projects involving data base management.

46 DATA BASE MANAGEMENT

Moreover, these technical skills are most important during the initial phases
of design, a time when staff is just "getting their feet wet."

The following skills are necessary in the systems staff to support the design
and implementation of data-base-supported information systems:

• Specification of logical views of data
• Design of data structures
• Knowledge of DBMS-specific access methods
• Data manipulation coding techniques
• Knowledge of DBMS-specific performance analysis

The systems manager should plan and initiate training sessions to ensure
that the design staff has the required skills to operate effectively. Many
organizations use outside consultants to provide the required skills. The sys
tems manager should choose consultants who employ proven data base design
methodologies.

Using the OOIDS As a Tool for Management and Control

The following briefly summarizes some of the ways a DDIDS can assist in
managing and controlling the data base environment.

Documentation. The DDIDS can assist in maintaining up-to-date and
reliable descriptions of the programs and modules that share portions of the
data base. Documentation can be produced as a by-product of the develop
ment process instead of as a burdensome addition.

Controlling Change. The DD/DS can help ensure accurate and autho
rized changes to the systems environment. By using the STATUS attribute
provided in most DD/DSs, systems managers can effectively track and con
trol changes to programs and data descriptions within their purview.

SDLC Support. The management objective of requiring deliverables for
each phase of the SDLC can be greatly facilitated by the DDIDS. The DD/DS
can collect the data necessary for each deliverable and then produce the
information necessary to create each of these deliverables (see Figure 5-5).
The DD/DS can be employed to generate data structure diagrams at various
phases of the SDLC, for example.

CONCLUSION

The introduction of data sharing and the implementation of data indepen-
dence affects systems development by:

• Changing the SDLC
• Increasing control concerns
• Affecting project management
• Requiring highly skilled personnel

SYSTEMS DEVELOPMENT 47

Systems Development Life Cycles

Systems DataBase
Development Development OOIDS

Needs Identification Needs Identification Documentation and
Feasibility

Global Conceptual
Analytic Support

Functional Specification Design

System Specification Documentation and

Programming Specification
Detailed Conceptual Analytic Support
Design

Change Control

Metadata Generation
Programming Logical Design Change Control

Unit and Integration
Testing

Physical Design Metadata Generation
Change Control

Conversion Operation Metadata Generation
Change Control

Operation Maintenance

Figure 5-5. OOIDS Interface of Systems Development Life Cycles

A program should be undertaken to prepare the systems environment for
the introduction of data base technology. This program can include:

• Intensive training in the concepts, methods, and procedures of design
ing data base-supported information systems

• Employment of outside consultation and expertise when appropriate
• Consideration of the DDIDS as an aid in managing and controlling the

environment

Finally, data base technology should be adopted on a phased implementa
tion basis.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I

I

I
I

I
I
I
I

I
I

I

I
I
I
I

(Q) Restart and
Recovery in
DBMSs

INTRODUCTION

by J. Chris Wood

As organizations continue to investigate the benefits of integrating data
bases, protecting data mes has become more important. Many benefits of
using DP techniques can best be realized when all,or a significant portion, of
the organization's data resources are integrated under the control of a DBMS.
Many critical applications thus depend on the DBMS to provide a constantly
available and accurate source of data. To meet this need, a DBMS must
contain basic functions that can detect and recover from any type of failure in
as short a time as possible and still be able to handle the processing load
dependent on the data. Without such functions, a DBMS will quickly gain a
reputation of unreliability or excessive downtime. Users will then ask to have
their data isolated for better reliability, undermining the concept of sharing
data. Thus, the effectiveness of restart and recovery mechanisms is an impor
tant consideration in creating a successful data base environment.

This chapter discusses in detail the design considerations and trade-offs
that must be considered when developing restart/recovery procedures. Be
cause recovery is an important criterion in the selection of a DBMS, the
infonnation in this chapter can also be used during the evaluation phase of that
process.

RECOVERY CONCEPTS

The basic goal of recovery is to provide a framework within which a
damaged data base can be restored to its fonner contents. This concept can
involve a series of manual and/or automated procedures. The basic trade-off
is between throughput efficiency and recovery efficiency.

Recovery Tools

Four basic tools are used in the recovery of a data base:
• Transaction log/journal
• Before and after images
• Save/restore (dumps)

50 DATA BASE MANAGEMENT

• Checkpoints
A DBMS must incorporate all four tools to have an adequate recovery mecha
nism.

Transaction Log/Journal. For recovery purposes, this log contains a
copy of each update transaction against the data base. It may also contain
read-only transactions,statistics, beginning- and end-of-transaction entries,
checkpoint indicators, and before and after images.

Before and After Images. A before image is a copy of a portion of the
data base before it is updated. An after image is a copy of a portion of the data
base after it is modified. Both types of image are stored on either the transac
tion log or a separate log fIle. A data base update using these images must be
performed in the following sequences:

1. Write before image to log
2. Write after image to log
3. Write after image to data base (perform update)
4. Mark log to reflect successful completion of update (optional)

This procedure guarantees that the log always reflects the data base and that
all updates to the data base can be recreated or removed, depending on the
type of recovery.

Not every update to the data base will generate four I/O operations. In
most DBMSs, several before images might be written for a given record
before the after images are written. This idea is explained further in the
discussion of granularity later in this chapter. In addition, most DBMSs buffer
the before and after images to reduce the number of physical I/O operations.
The previous sequence must still be maintained, however; for example, no
after image may be written to the data base until the buffer containing a copy
of that after image has been successfully written to a log fIle, regardless of the
amount of data currently in the buffer.

Save/Restore. Saving the data base entails copying it at some time; re
storing a data base involves recreating it from a saved copy. Some DBMSs
allow partial saves and restorations of sections of a data base. This procedure
should be used carefully (if at all) and only under specific conditions with
explicit controls; otherwise, unsynchronized data can compromise the integ
rity and reliability of the data base. Procedures to ensure integrity and reliabil
ity in case of partial restorations are especially critical in systems that use
internal physical pointers between records. For example, it is possible to save
a section of a data base that points to a record, which is deleted before the
section containing that record is saved. When the two sections are restored,
any program using that relationship will abort.

Checkpoint. A checkpoint in a data base environment occurs when no
updates are in progress; thus, it is certain that the data base is intact. A
checkpoint is typically achieved by:

RESTART AND RECOVERY IN DBMSs 51

• Halting all incoming transactions or queuing them
• Writing all before and after images still in the log buffer to the log
• Writing all modified pages from the data base buffers
• Marking the log

Checkpoints can also be established at the individual transaction, or pro
gram, level. In this technique, the DBMS controls the use of each record in
the data base through some internal flagging algorithm. The DBMS guaran
tees that only one transaction can update a record at a given instant by locking
that record. This lock can be removed only when the transaction owning the
lock terminates normally or issues a command to release all of its locked
records. Because a locked record cannot be accessed by another transaction,
transactions needing a locked record are queued until that record is unlocked.
This technique guarantees that each transaction has a private subset of the data
base (identified by its locks) and can therefore be considered a unit for
checkpoint purposes. For the duration of a given transaction, no other transac
tion could have possibly changed any data updated by this transaction; thus,
any roll-forward or rollback operations would not affect other transactions.
This form of checkpointing requires start-of-transaction, end-of-transaction,
and checkpoint records to be written to the same log ftle as the before and
after images.

TYPES OF FAILURE

Five types of failure can occur in a data base environment; each requires
different combinations of mechanisms for recovery:

• Catastrophic-portion of data base unreadable
• Intermittent-data base stopped, status of last transactions unknown
• Transaction failure
• Valid but incorrect update-data base erosion
• Structural damage-failure of pointer mechanisms

Catastrophic Failure. With this type of failure, all or part of the data base
is unreadable, typically as a result of 1/0 device errors. Because the data base
is unreadable, recovery must begin with a purge of the bad data and restora
tion of a previous copy of the data base. Recovery must roll this file forward
until it duplicates the data in the original, undamaged data base.

The first step in this process is to destroy the damaged data base. Next, an
old copy of the saved data base is restored to the disk. The more often a save
is performed, the more recent is this copy of the data base and the speedier the
recovery.

The next step involves rolling the data base forward in time. After images
are written to the new ftle in ascending time sequence (i.e., oldest to newest),
applying all modifications to the data base in the exact sequence in which they
occurred. The transactions that generated the changes are unknown, however.
Since some transactions may not have been completed before the damage was
detected, not every after image on the log ftle can be applied. Some data, or

52 DATA BASE MANAGEMENT

pointers, could have been modified in the data buffers but never written to the
me, for example. Thus, this method can only recover up to the most recent
checkpoint. Checkpoint recovery, which is neither simple nor straightfor
ward, is detailed in the next section.

Intermittent Failure. This occurs when activity to the data base is sud
denly interrupted without a chance to perfonn a checkpoint or allow currently
executing transactions to finish. Although the entire data base is readable
when the system is reactivated, it is still damaged; it cannot be known
whether modifications still in the buffer or in a given program were made to
the data in the data base.

Because a readable but inaccurate copy of the data base exists, there is no
need to purge it. Instead, recovery from this type of failure consists of taking
the damaged data base and rolling it backward to the most recent checkpoint.
The checkpoint could have occurred only when no transactions were in
progress and the buffers were flushed or written to the me.

Rolling back the me to the previous checkpoint involves writing before
images to the data base in reverse time sequence; thus, all modifications since
the last checkpoint are backed out. Either the log me is read backward or the
last checkpoint is found; then all before images up to the failure are copied,
sorted in reverse time sequence, and written directly to the file. An alternative
approach is to apply only the before images of incomplete transactions.

Many systems now have a recovery feature that enables the system to
automatically roll back to the previous checkpoint when it restarts after inter
mittent failure. This is advantageous because it removes a human function
from the process. Systems that automatically roll forward should be carefully
examined to determine how they reexecute the transaction that caused the
failure (e.g., potential infinite loop recoveries must be avoided).

Transaction Failure. This occurs when a transaction fails after updating
one or more records in the data base. Recovery is similar to that for intermit
tent failure, except that only before images for the records modified by the
failed transaction are applied to the data. In most cases, other transactions
currently executing are allowed to continue-even during recovery for the
failed transaction. At the end of the rollback, all locks held by the failed
transaction are released. This erases all impact on the data base generated by
the failed transaction so that the transaction appears to have never existed.

Valid but Incorrect Update. This is typically detected by a user who notes
some discrepancy in a report after an update. No edit/validation procedure can
guarantee detection of all errors (e.g., transposing numbers or entering too
many zeros at the end of a numeric field). Recovery from this condition could
be perfonned ideally by processing the data base to the nearest checkpoint and
then rerunning all transactions since that time. After images could not be used
because they contain the incorrect update.

To limit the scope of recovery, all areas of the data base affected by the
modification must be carefully tracked, as should all modifications made by

RESTART AND RECOVERY IN DBMSs 53

transactions reading this changed data. The longer the time period involved,
the less feasible this requirement becomes. Furthermore, the expense of log
ging all transactions read to the data base creates a large overhead that may be
difficult to justify.

Although the most common answer to the problem is to enter a counter
transaction to correct the data, this solution does not encompass cascaded
transactions (Le., transactions that read the incorrect base and used it to
update data elsewhere). Because tracking cascaded transactions is so com
plex, no effective general solution has been found; in fact, very little effort
has been expended searching for one. Proper use of a data dictionary or
directory system, however, can simplify tracking the cascade effect and iden
tifying affected users.

Structural Damage. This problem is caused by a failure of the pointer
mechanisms within a data base. Specifically, a pointer stored in a record
incorrectly points to either unrelated or nonexistent data. This is usually not
detected when it occurs but when a transaction attempting to follow this
pointer aborts.

Occasionally this condition can be corrected by some form of direct modi
fication utility that can be applied to the data base without being controlled by
the DBMS. This is a dangerous utility that must be carefully used and con
trolled.

If direct fixes cannot be applied, the data base must be recovered to the
most recent checkpoint before the damage occurred. The same techniques
uscd for the other types of failures can be employed.

The remainder of this chapter concentrates primarily on the catastrophic
and intermittent failures and the basic tools to recover from them. Recovery
from incorrect data and/or pointers uses these same basic tools after the initial
repair; however, the difficulty of tracking cascaded transactions and the possi
bility that the error has existed for a long time before detection make general
ized recovery from these situations extremely difficult, if not impossible.

RECOVERY DESIGN CONSIDERATIONS

Many factors should be considered when evaluating or designing a data
base recovery mechanism. The primary trade-off is usually between speed of
recovery and efficiency of throughput. Typically, techniques allowing the
fastest recovery tend to impose the most overhead on the system during
normal processing. The following section discusses the most important design
considerations for recovery software.

Checkpoints/Dumps

Frequency is an important consideration in making backup copies of the
data base. If the interval between save commands is n minutes, a catastrophic

54 DATA BASE MANAGEMENT

failure requires recovery time proportional to that needed to execute an aver
age of nl2 minutes of processing. Since writing after images is much more
efficient than performing all transactions for the period, the actual time of
recovery is less than nl2 minutes. It is therefore important to minimize the
time between dumps. While a save command is running, however, no updates
can be allowed to the data base. Depending on the size of the data base, this
restriction could significantly delay update processing. The ability to save or
restore several sections of the data base simultaneously could lessen the
impact (at the expense of complicating the procedure).

The frequency of checkpoints involves the same trade-off as dump fre
quency; recovery is faster the more frequently a checkpoint is taken, but a
heavier burden is placed on throughput. For a given purpose, the longer the
time between checkpoints, the more before and after images generated and thus
the more 110 activity required to perform a recovery operation.

The DBMS automatically recovers the data base and guarantees its integ
rity; it cannot guarantee that the programs generating the updates can be
restarted. Each running program is responsible for participating in check
points only if it can be restarted. Transactions are typically coded to be brief,
only interfacing with the checkpoint mechanism when they are finished.
Unless large batch programs take checkpoints fairly often, large numbers of
data base records could be locked for long periods. Therefore, these types of
lengthy programs either should never be run simultaneously with online appli
cations or must take internal snapshot checkpoints to synchronize their activi
ties with the DBMS checkpoint. In this way a program can be restarted in the
middle and remain consistent with the contents of the data base. This is
usually accomplished by writing transaction-oriented batch programs that
read a transaction and execute it to completion before reading the next trans
action, thus allowing a checkpoint at the end of each transaction. Certain
common coding techniques to optimize 110 efficiency in a batch program
must be rewritten since no transaction should rely on any previous transac
tion. Moreover, such techniques as saving a record in case the next transac
tion needs it must be abandoned.

Another consideration during checkpoints is synchronizing the operation of
the log tape(s) with the transaction controller, the DBMS, the operating sys
tem, and batch programs. This action prevents loss of transactions or pro
cesses. The specific software packages involved largely influence the out
come.

Granularity

The simplest level of granularity used for the before and after images is
identical to the physical unit of retrieval of a DBMS, called a block, or page.
A single update causes one read of the desired page and one write each of a
before image, an after image, and the modified page back to the disk (i.e.,
four 110 operations per update). Such a sequence can be initiated in some
DBMSs by turning on a "must write" switch. This causes the update to be

RESTART AND RECOVERY IN DBMSs 55

written to the data base when it occurs and is equivalent to a checkpoint. At
this point, the before and after images can usually be written with one 110
operation.

Most systems attempt to reduce this overhead by employing some form of
a least recently used (LRU) buffer management algorithm. LRU in a shared
multibuffer environment is intended to keep active pages in the buffer while
they are accessed. When a page is needed that is not currently in the buffer,
the page in the buffer that has not been accessed for the longest time is
replaced. If this page has been modified, an after image is first written to the
log and the page written to the data base. Thus, a modified page is not written
immediately but is held until space is needed for a successive read operation.

This technique is not without its drawbacks. In the case of the top level of
inverted indexes, for example, pages could be held in memory for hours with
hundreds of modifications that would not be represented in the data base. As a
result, frequent checkpoints are mandatory-a checkpoint flushes all buffers
(or at least those modified by a given program).

If page-level granularity is used, the recovery process involves overwriting
pages in the data base without reading them first. If the after images are sorted
into physical address order and reverse time sequence, only the most current
after image of a given page must be written. This procedure significantly
improves the roll-forward process; however, the cost of performing this sort
select may exceed the savings realized. Although this process can also be
applied to rollback, the usually brief time between checkpoints detracts from
its cost-effectiveness.

Another technique that reduces throughput overhead uses record-level
granularity to write before and after images. The advantage of this approach is
that the size of the log file is greatly reduced, lessening the 1/0 activity to this
file. The cost in system resources to write a single element of a full page is
still one 110 operation, however. To use this technique optimally, the log is
buffered (i.e., a block is not written until it contains enough updates, or
images, to fill the buffer). Frequent checkpoints must again be performed.

Record-level granularity can cause fewer 1/0 operations to the log file. The
recovery mechanism, however, is less efficient because the affected pages
must be read, altered, and written back to the data base. All updates to a
page-not just the most recent-must be performed. In situations where
variable-length records are allowed, one record may occupy many pages
,during a processing period. This can complicate the location of the records,
which must be modified if the updates (images) are applied in any order other
than strict time sequence.

Another technique, item-level granularity (i.e., keeping track of how spe
cific items were modified), can further reduce overhead during normal pro
cessing but can also delay recovery.

Another method involves keeping sufficient information to allow construc
tion of the after image from the before image. A version of the transaction and
indications of modified fields are stored. The advantage of this method is that

56 DATA BASE MANAGEMENT

a transaction that caused several pages to be modified can be contained in one
log entry. Recovery is slower because the transactions must be processed
from an intermediate phase, not the beginning. In addition, the log must be
applied in strict time sequence to recover a data base from a restored copy.

Recovery from Checkpoint Forward

The application of before and after images allows recovery from the time
of the most recent checkpoint. Recovery can be extremely complicated, espe
cially since multiple users could have simultaneously updated the same data.
If the data base has been segregated into areas, each of which can be updated
by only one user at a time, transactions completed since the last checkpoint
can be rolled forward. This implies that during normal processing, other users
were locked out of this area and possibly subjected to unacceptable delays.
Incomplete transactions can be restored if a copy of the transaction was kept
in the log. .

If transactions are allowed to overlap (i.e., share data), the only roll
forward technique that can be used is reexecution of already completed trans
actions. For example, in Figure 6-1, Transaction B modifies Record 1.
Transaction A then reads Record 1, using information in Record 1 to modify
Record 2. Transaction A finishes normally, but the system fails before
Transaction B completes. If Transaction A is recovered but not Transaction B,
the data base is incorrect. In addition, the data base could have suffered
structural damage if the information stored in Record 2 consisted of a pointer
related to the information modified by Transaction B in Record 1.
Transaction B alone cannot be recovered since it may contain within its own
buffers structural information that was not contained on the log. A similar
argument can be made about methods of rolling back selected instead of all
transactions. The problem could be avoided with record locking, as
Transaction A could not have read Record 1 until Transaction B released its
lock.

Other mechanisms can solve this problem. For example, a checkpoint can
be forced automatically when any transaction attempts to read a record (or
page) modified by a different transaction since the last checkpoint. The book
keeping activity, however, can be quite complicated and result in slow
throughput.

The DBMS is responsible only for recovering the data. It is the responsibil
ity of either the operations or programming staff to recover batch programs
and of the teleprocessing monitor to recover transaction programs.

Logging

The more log files generated, the more complex their synchronization.
Alternatively, if only one comprehensive log file is generated, much recovery
time is wasted skipping over information not needed by the recovery process.
The basic trade-off is again between throughput and recovery efficiency.

RESTART AND RECOVERY IN DBMSs 57

1. Transaction B modifies Record 1.
2. Transaction A reads Record 1.
3. Using data obtained in Step 2, Transaction A modifies Record 2.
4. Transaction A reaches normal completion.
5. System fails before Transaction B reaches normal completion.

Figure 6-1. Recovery from Overlapping Transactions

One technique for optimizing the log in the area of rollback is based on the
assumption that the need to roll back beyond the most recent checkpoint will
never arise. Accordingly, a separate, small disk file can be kept containing
only the before images since the last checkpoint. When a checkpoint is taken,
this file is simply repositioned at its starting point. This technique optimizes
logging because before images are not kept on the main log tape(s). The speed
.of recovery is also enhanced because disk can be processed backward during
recovery, eliminating the need to sort the before images.

Debate continues on whether tape or disk is better for log files. Tape is the
popular medium because it is inexpensive and most installations can rarely
spare disk space from online storage needs. Disk, however, is much faster and
is usually considered more reliable than tape. It can be easily read backward
or randomly, can be read simultaneously by more than one process, and can
be spooled to tape later (possibly offline).

The log can never be allowed to run out of space. If a physical reel or
device detects end of information, a scratch file must be instantly engaged to
receive the information. This means that two drives or spindles must be
dedicated to each log, four drives if dual logging is used for reliability. If disk
logging is used, the log should never be on the same device as the data base.

SYSTEM DESIGN CONSIDERATIONS

The recovery techniques discussed in this chapter are needed only in an
environment that must support an online update capability. If no updates are
performed during normal processing, there are no before or after images;
recovery simply consists of turning the system back on or, at worst, running
the restore utility with the most recent backup.

58 DATA BASE MANAGEMENT

The system designer must first determine if the user can accept online edit/
validation of update transactions, with the actual transactions run later in a
batch when the online system is disabled. This usually causes an overnight
delay before updates are reflected in the file. The system designer should
realize that the primary purpose of recovery is to assure the user that the
system is reliable, accurate, and will not experience greater downtime than
that specified by the user. .

The basic user requirements necessary to establish appropriate strategies
are acceptable downtime and the mean time between failures. The more
important of the two is the fonner. Very short acceptable downtime is not
always necessary. Users should be encouraged to establish realistic estimates
to balance the trade-off between throughput and recovery time.

SPECIAL ENVIRONMENTS

Any discussion of recovery should include distributed processing and the
use of a back-end computer for all DBMS operations.

Recovery in a distributed environment can be complicated, depending on
such factors as the extent of data sharing, the relative need for synchronization
between computers, and the methods for resolving transactions on the same
data from multiple sites. Recovery in distributed systems is beyond the scope
of this chapter; it is mentioned merely to alert designers of recovery systems
to the many problems they face.

A back-end computer affects recovery because all recovery mechanisms,
other than the transaction log (and possibly even that), are handled completely
by the back end. In addition, because a single back end can support multiple
mainframes and multiple sets of users, a centralized recovery mechanism for
all users must be achieved.

Careful examination of many current data base applications claiming al
most perfect uptime reveals that they achieve this not with sophisticated
recovery mechanisms but with duplicate hardware. Recovery was not consid
ered an important topic in DP until the introduction of online update. Conse
quently, much work is needed before the technology is mastered, especially in
environments requiring 24-hour uptime and very short acceptable downtime.

CONCLUSION

Recovery must be considered an integral part of the system and data base
design process. Systems analysts and data base designers must study the
principles of restart and recovery and apply them throughout the design effort.
Capabilities of the resident DBMS must be thoroughly understood before
recovery tools can be effectively employ'ed. Ultimately, the controlling fac
tors are the user requirements for acceptable downtime and system through
put.

11 Concurrency
in DBMSs

INTRODUCTION

by John W. Young, Jr.

The problem of shared resources among concurrent processes predated the
use of integrated data bases-operating systems have long been plagued by
the problem. There are, however, fundamental differences between the fea
tures of an operating system and those of an integrated data base:

• A data base has vastly more shareable elements than an operating
system; each record of the millions in a data base is potentially share
able on an individual basis, compared to the scores of components in an
operating system.

• Changes in the sharing arrangement occur more frequently in a data
base; each time a new record is requested, the pattern of sharing may
change.

• The modes of sharing are more complex in a data base (e.g., a record
data base may be read or written, or a munher of data base records may
be involved in a single operation).

An additional problem must be considered when studying problems of
concurrency in a data base environment: an integrated data base must main
tain its integrity and present a consistent view to all users at all times. The
sharing of data among concurrent processes can adversely affect data base
integrity and consistency.

Most solutions to the problem of concurrency involve some type of locking
mechanism. With any of these, however, the problem of deadlock may occur.
In fact, eliminating deadlocks is the root of the problem in resolving concur
rency problems in data base management systems. The unique characteristics
of data make many of the conventional solutions to deadlock difficult or
impossible to apply.

This chapter investigates the problem of concurrency in light of its effect
on data base integrity and consistency. Traditional solutions will be examined
and some new ones presented.

PROBLEMS OF CONCURRENCY

Data base integrity encompasses the accuracy, confidentiality, and reliabil
ity of data. The accuracy of data can be maintained through input validation,

60 DATA BASE MANAGEMENT

mechanisms to ensure that the data remains valid, and control of concurrent
processes. Confidentiality can be ensured through access regulation, encryp
tion, and other security controls. Finally, reliability of data can be maintained
through hardware monitors, software monitors, and checkpoint and recovery
procedures.

Consistency of data, the aspect of data base integrity that is addressed in
this chapter, is a subset of the concept of accuracy of data. Maintaining
consistency of data requires preventing semantic errors that may result from
the interaction of two or more processes operating concurrently on a data
base.

There are three major categories of inconsistencies that can be caused by
uncontrolled concurrent processes. The following sections discuss how each
can occur and how each affects data base integrity.

Lost Updates. This inconsistency is illustrated by the following example
of uncontrolled concurrency between two transactions:

1. Transaction 1 (Tl) reads record A.
2. T2 reads A.
3. Tl modifies the contents of A that it has read and rewrites them in the

data base, erasing the original data read in Steps 1 and 2.
4. T2 modifies the contents of A that it read and rewrites them in the data

base, erasing the modified version written by Tl in Step 3.
The effect of Tl 's update in Step 3 has been lost-if each transaction added
one to the value of some field in A, a total of only one has been added to that
field, not two as should have been the case.

Reading of Inconsistent Data. A simple example of this type of problem
is the case in which Tl is reading sequentially by number through the cus
tomer account records and adding up the balances; other transactions, in
particular T2, are updating the accounts. Tl reaches Account 500; at that
point T2 transfers $1,000 from Account 002 to Account 998. That $1,000 will
be counted twice by Tl, once in each account, and an inconsistent result will
be obtained. A similar situation would occur if T2 were inserting new ac
counts into the data base. Tl might process some of these accounts but not
others (this is called the "phantom record" problem).

A variation of this problem would occur if Tl were reading account
records at random and read Account 998 twice, once before the $1,000 was
added and once after. This is referred to as an "unrepeatable read."

Reading of Aborted Changes. Suppose Tl adds $100,000 to Account 50
and T2 reads that new balance. Soon thereafter, Tl receives infonnation
(e.g., through the terminal operator depressing the VOID key) that the
amount should have been $100. Tl can correct the value in the data base, but
T2 will proceed with erroneous data.

CONCURRENCY IN DBMSs 61

A useful definition of data base consistency must acknowledge that each
transaction is independent and should have an independent effect on the data
base. With that in mind, the following definition of data base consistency is
proposed:

A data base is consistent after the execution of a group of concurrent
transactions if its state is identical to what it would have been if the transac
tions had executed one after the other, in any order, without overlapping
(Le., each one finishing before the next started).

Since transactions occur randomly, their order is immaterial. If, for exam
ple, TI transferred 10 teachers from the History to the Sociology department,
and T2 gave all Sociology instructors a five percent raise, it is unknown and
irrelevant whether those 10 teachers got the raise or not. What is important is
that all of them did (Tl was followed by T2) or none of them did (T2 was
followed by Tl). The data base would be inconsistent if five instructors
received raises and five did not-a state not corresponding to any sequence of
nonoverlapped execution of TI and T2. The transactions did not have inde
pendent effects.

LOCKING

The solution to the problems of concurrency seems to be obvious. When
two or more processes are operating on the same data in a potentially conflict
ing way, that data must be "locked" so that only a single process can operate
on it at a time.

Two basic kinds of locks meet two different situations:
• A process (transaction) that is reading a data element holds a shared

lock on it; this allows other concurrent processes to read it also (i.e.,
they can also hold shared locks on it) but prevents any concurrent
process from updating the element.

• A process that is writing a data element holds an exclusive lock on it;
this prevents any other process from either reading or writing it.

By applying the following rules, one can ensure that a data base will
present a consistent view:

I. A process should get a shared lock on a data element before reading it.
2. A process should obtain an exclusive lock on a datil element before

writing it.
3. A shared lock on a data element will not be granted if anyone holds an

exclusive lock on that element.
4. An exclusive lock on a data element will not be granted if anyone holds

any lock on that element.
S. A process should hold a shared lock on a data element until it has

completely finished reading that element.
6. A process should hold all of its exclusive locks until it has completed its

62 DATA BASE MANAGEMENT

operations successfully and has finally written all modified data back
into the data base.

Conscientious application of these rules will prevent the inconsistencies
described earlier. The examples used to illustrate those inconsistencies can
also show how the rules are applied:

• Lost updates-Since Tl is to update A, it obtains an exclusive lock on
it. T2 cannot then access A until T1 is finished; T1' s update is thus
protected.

• Reading of inconsistent data-T1 obtained a shared lock on the whole
set of customer accounts before starting to process it. T2, conse
quently, could not acquire an exclusive lock on the accounts it was to
modify, nor could it insert new accounts. (The latter case could not be
handled by locks on any existing records; rather, the record type "cus
tomer account" has to be locked against the insertion of any new
instances.) In the example using customer record accounts stated ear
lier, Tl would have held a continuous shared lock on Account 998.

• Reading of aborted changes-According to rule 6, T2 could not have
read the balance until after T1 had acknowledged the error and cor
rected it.

The use of the two kinds of locks, shared and exclusive, provides maxi
mum concurrency for nonconflicting data base usages while protecting data
base integrity and providing consistent views.

The discussion to this point has been entirely in terms of locking of logical
entities (e.g., records). For implementation, however, it may be necessary to
apply locks at the physical level (e.g., a sector on the disk is physically locked
if any logical record on it is conceptually locked).

GRANULARITY

A major decision affecting the performance of a data base system that uses
locking is the size, or granularity, of the data grouping to be locked. If a
transaction is to access a large number of records of the same type (or all of
them), it may be more efficient to place a single lock on that record type rather
than myriad locks on all record instances. The system designer must weigh
the overhead of maintaining many locks against the loss in concurrency if a
whole structure type is locked. For example, no other process could access
any record of the locked type while the original transaction was in progress.

Ullman [1] proposes that the size of the lockable data group should be such
that a transaction accesses a "few" elements. Thus, the element might be the
record instance if the transaction were reading and writing individual in
stances, or the element might be the relation if the transaction were doing
joins, selects, and the like on whole relations in a relational data base environ
ment.

To provide a more flexible, efficient solution to the granularity problem,
Gray and others [2] have developed a technique known as intention locking.

CONCURRENCY IN DBMSs 63

With this method the data types and instances are arranged in a hierarchy
(e.g., data base, file, record type, record instances); the user can place a
"warning" at any node in the hierarchy to signal that a descendant of that
node is locked. This technique allows different transactions to manipulate
different subtrees of the hierarchy without interference or excessive locking
overhead, provided that their uses are mutually consistent.

SPECIAL PROBLEMS AND SOLUTIONS

There are several problems on the issue of concurrency that require special
solutions. These are discussed in the following sections.

The Slow Reader

In a previous example, one process was reading sequentially through an
entire section of the data base, while other processes were waiting to update
that same section. If the section were left unlocked, the slow reader would not
see a consistent view; if it were locked, however, the updating transactions
might have to wait for a very long time. One solution to this dilemma is to
lock that part of the data base long enough to make a fast copy of it-a
snapshot-that the slow reader could use at its leisure. If the section is large,
however, this solution may be impractical.

A faster but more complex alternative is to preserve a time-stamped copy
of the old version of each record whenever it is modified during the time the
slow reader is executing. When the slow reader gets to the point of the
modification, it can look through the stack of record copies and, from the time
stamps, determine the version that existed at the time it began execution. This
allows any number of slow readers to operate on the same data simultaneously
and independently. Of course, provision must be made for disposing of copies
that no longer interest any slow reader.

Temporary InconSistency

If a set of integrity constraints has been specified for the data base, and if
multistep transactions are being run against it, one or more of the integrity
constraints may be temporarily violated between steps of the transaction. For
example, a constraint may require that the total of the account balances be $1
million. This constraint will not be satisfied after a transaction has subtracted
$1,000 from one account and before that figure is added to the intended
account. Thus, a need exists for commands that suspend and resume the
checking of integrity constraints.

Levels of Consistency

The discussion so far has assumed that every transaction needs perfectly
consistent views of the data base. IBM's System R, however, offers the
interesting possibility of three levels of read consistency (total update consis-

64 DATA BASE MANAGEMENT

tency is guaranteed by the system). These are:
• Level I-One transaction may read changes made to the data base by

another transaction before the latter has completed and has finally
committed the modified data. Thus, the data read may later be dis
owned by the updating transaction.

• Level 2-Reads are not automatically reproducible (i.e., data read for a
second time may not be identical to that in the first read), but protection
against this can be requested by the transaction.

• Level 3-FuU consistency is assured by the system.
This scheme allows more flexibility in balancing the needs of the application
and transaction types against the overhead of concurrency control.

Implicit versus Explicit Locking

In some systems, locking is implicit, controlled by whatever access com
mand is issued to the DBMS (i.e., the DBMS will do whatever locking and
unlocking is necessary to ensure data base consistency). In this mode, how
ever, the DBMS has no way of knowing the user's intentions or requirements.
As a result, the consistency control has to be on a "least common denomina
tor" basis-the DBMS may be doing much more than is necessary. The user,
however, is freed from the burden of worrying about concurrency problems.

In those systems that provide explicit lc;>cking, the user can fine tune
concurrency control by locking only the required elements and by retaining
the locks for as short a time as possible. This puts a serious responsibility on
the user, however, since errors in the locking specification can damage data
base integrity.

Predicate Locks

In general, the locking techniques described depend on lock attachment to
each element under consideration; that lock is turned on and off individually,
depending on events in the system. If there is a large number of lockable
elements (as is usually the case in a data base), the locking and unlocking
overhead can become very large indeed. To overcome this problem, the
concept of the predicate lock has been developed.

A predicate lock consists of a description or specification of the set of
elements that should be locked on behalf of a particular operation; that is, it
defines a logical predicate such that any element for which that predicate is
true should be locked. Instead of having to manage thousands or millions of
locks, the DBMS has only a (relatively) few predicate locks to administer.

To return to the example of the slow reader, suppose a summary were to be
prepared for all customers in New York with balances of more than $1,000.
Rather than locking all customer accounts, the predicate

LOCATION = 'NEW YORK' AND BALANCE > 1000

could be recorded. Whenever another process needs to update an account
record, the predicate can be checked to see if that record is one that has been

CONCURRENCY IN DBMSs 65

locked. An extension of the method checks a newly requested predicate lock
to see if it conflicts with any existing one.

The high-level concept of predicate locks has several advantages over
placing locks at the level of the object data. A predicate lock can specify the
nonexistence of a record as well as its existence, thereby precluding the
possibility of phantom records. The set of active locks is substantially smaller
in a predicate locking scheme than in the analogous low-level locking
scheme-the latter would have to lock each piece of data identified by the
predicate. The predicate lock method results in less storage overhead for
maintaining the lock list and fewer items to test for possible conflicts.

In theory, predicate locks provide the ideal means for both specifying and
setting locks. In practice, severe problems appear when an attempt is made to
identify the set of data specified by a complex predicate. In such situations the
problem has proved to be recursively unsolvable. Therefore, the concept of
predicate locks has centered around developing testing algorithms that will
allow concurrent processing in the more common situations. These algorithms
can be developed so that the degree of concurrency permitted can be traded
off against the overhead costs associated with detecting nonobvious, "safe"
processes.

Predicate locks must be considered superior to low-level locking mecha
nisms. Although the same amount of concurrency cannot be guaranteed,
predicate locks will allow a reasonable amount of concurrency and will better
ensure data base consistency.

Data Base Locking in COBOL (CODASYL DML)

Data base locking in COBOL, the most popular programming language,
deserves a special mention. When a data base record is accessed by a read
type operation, a select (shared) lock is established for it. That lock is main
tained as long as the record is in use (i.e., for a run unit, set type, record type,
or realm) and prevents any other run unit from executing a write-type opera
tion against it.

When a record is accessed by a write-type operation (including FIND FOR
UPDATE), an update (exclusive) lock is established. That lock is maintained
until the end of the run unit or until the run unit executes a COMMIT
statement. The lock prevents any other access to the record. In COBOL,
updated versions of data base records are not made available immediately to
other run units. Rather, they are held in abeyance until the run unit performs a
COMMIT, at which time the modifications are made in the data base and are
available to other run units.

Since a program may be instructed to preserve the contents of several
records read during its execution, even after they are no longer in use, the user
may define a named keep list. While a record is still current for a run unit (and
therefore shared locked), the program may give a "KEEP keep-list-name"
command that will place the record's data base key at the top of the designated

66 DATA BASE MANAGEMENT

keep list. In addition to the currency indicator criterion, a record will now
remain shared locked as long as it appears on any keep list. It may be removed
from a keep list by a FREE command. All keep lists are emptied by a
COMMIT or at the end of the run unit.

CODASYL DML also has concurrency control at the realm level-the
READY (open) statement can specify that a shared or exclusive lock be
applied to the designated realm(s). It persists until a FINISH (close) statement
or the end of the run unit is reached.

Reaction to a Lock

A system may take either of two approaches when a process tries to access
a locked record in a prohibited mode (e.g., tries to modify a record that is
shared locked):

• A status may be returned to the process and indicate that it has at
tempted to violate a lock restriction. The process may then continue its
execution and try the operation later. Eventually, of course, it may
have to go into a loop, repetitively trying the command until it is
successful.

• The process may be suspended and entered in a queue to await record
availability, when it is then reactivated.

In some systems, the requestor may specify which of these methods is
desired.

DEADLOCK

The simplest kind of deadlock is shown by the following example:
1. Process A exclusive-locks resource X.
2. Process B exclusive-locks resource Y.
3. Process A tries to lock resource Y and waits.
4. Process B tries to lock resource X and waits.

A is waiting for B to release Y, which B cannot do because B is waiting for A
to release X. Neither process can proceed further, and deadlock results.

Deadlock can occur only when all of the following five conditions exist:
• Concurrency-Two or more processes simultaneously compete for ex

clusive use of two or more sets of data.
• Locking-A process can be given exclusive use of data.
• Additional locking-A process can request additional locks while hold

ing locks to other sets of data.
• No preemption-A set of data cannot be forcibly taken (preempted)

from a process that has locked that data.
• Circular wait-A circular chain of processes exists such that each pro

cess locks a set of data that is being requested by the next process in the
chain.

The problem of deadlock can be averted by avoiding anyone of these
conditions.

CONCURRENCY IN DBMSs 67

Solving Deadlock

There are four basic methodologies proposed for handling deadlock. A
brief discussion of each follows.

Ignoring Deadlock. This could be called the nonsolution. No mechanisms
for solving the problems of deadlock are built into the system. When a
deadlock occurs, it must be detected by some external means (e.g., telling an
operator or affected user that a process has been waiting for a time longer than
some threshold). At that time, one of the deadlocked processes could be
tenninated through external means. Of course, if any updates had been com
pleted by the terminated process, they would have to be backed out (undone)
in order to preserve data base consistency. More crucial to this discussion are
the intolerable delays that such a strategy would cause-deadlocks in a data
base system are more frequent than in an operating system. Ignoring dead
locks is counterproductive.

Detecting Deadlock and Backing Out. In the example of deadlock given,
the deadlock could be detected when process B requests the data that process
A has already locked, thus completing a cycle. The policy of deadlock detec
tion and backout requires a mechanism that can detect when a deadlock has
occurred. This entails using a "state graph" that indicates the status of the
data base relative to the interactions of the active processes and data at a
particular time. The state graph is updated whenever a process becomes active
or tenninates and whenever a granule of data is allocated or released. This
graph is examined for a chain of locks, implying a deadlock (circular wait),
whenever a process has to wait (or possibly periodically at longer intervals).

Once the deadlock has been detected, the more complex problem of back
out must be addressed. There are at least two approaches. The first requires
the termination of one or more of the deadlocked processes, and the second
involves the preemption of data from one or more of the deadlocked pro
cesses. In either case, it may prove desirable to use another algorithm whose
function would be to detennine the optimal backout process that would allevi
ate the deadlock condition. In general, this will be the backout process whose
cost is least.

Since backout costs can be high, techniques for accelerating backout
should be considered (e.g., having a process do its updating on a copy of the
relevant portion of the data base). If the process terminates successfully,
pointers are changed to incorporate the copy into the data base, simultane
ously removing the original from it. If backout is needed, the original is
simply left in place.

Avoiding Deadlock. Avoiding deadlock requires advance information on
the data requirements of a process. The basic approach is to alleviate the
additional locking condition by not allowing a process to proceed until safe.
As with deadlock detection, avoiding deadlock requires a state graph and the
associated manipulation algorithms.

68 DATA BASE MANAGEMENT

In order to avoid deadlock, the DBMS must examine the data requirements
of the process in question and determine if the request is safe. An unsafe
process is placed in a wait queue. When an active process releases its set of
data, all processes on the wait queue are reexamined for safety. Thus, in
addition to the overhead costs associated with maintaining state graphs,
avoidance can cause a process to become permanently blocked. This draw
back could be overcome by attaching a counter to each process that would
indicate the number of times the process has been examined for safety. When
the counter reaches some threshold, no new process would be allowed to lock
data that the blocked process requires. Eventually, the active process causing
the delay would terminate, and the blocked process could continue.

In a low-level locking scheme, the a priori specification of required data is
impossible because access may be required to a set of data whose values
indicate a subsequent set of needed data. The strategy of avoidance, then,
could not be utilized by such low-level locking schemes. A high-level predi
cate locking scheme, however, could use the strategy of avoiding deadlocks
because the predicates provide a mechanism for stating the data requirements
a priori. Also, the state graphs and associated algorithms would no longer be
needed in a predicate locking scheme. Instead, the DBMS would examine the
predicates for possible conflicts and only grant the safe requests. This is
another argument for using predicate locks.

Preventing Deadlock. Deadlock can occur only if all five conditions
exist-concurrency, locking, additional locking, no preemption, and circular
wait. If one or more of those conditions could be obviated, deadlock could be
prevented. The prevention of deadlock can be accomplished through one of
four basic mechanisms: presequencing, preordering, preemption, or pre
claiming.

Reviewing the conditions for deadlock reveals that the locking condition
cannot be overcome without sacrificing data base consistency. The condition
of concurrency could be relieved through the mechanism of presequencing,
which entails the ordering of processes to execute serially. Although this
would solve all problems of concurrency, it would lead to an intolerable level
of inefficiency.

Preordering can prevent the condition of circular wait. This technique
requires that each data granule be ordered in some manner and that requests
for data granules follow the given ordering. Thus, a circular chain of data
requests could not occur, and deadlock would be prevented. Unfortunately,
the characteristics of data make such a strategy difficult to implement. The
major pitfalls of preordering are the need for a means to present the ordering
of data granules to all users, the lack of data independence, and the impracti
cal restriction that the user access data in the specified order.

Another condition for deadlock specifies that no preemption be allowed.
The obvious solution to this condition would be to allow preemption. When
the possibility of a deadlock has been detected, the preemption of needed data
resources could prevent the deadlock from occurring; however, the preemp-

CONCURRENCY IN DBMSs 69

tion of data from a process that has already begun to operate upon that data
would require backing out its changes.

The final condition for deadlock, that of allowing additional locking, can
be relieved by requiring that each process start out by requesting all of its data
at one time (the preclaim strategy). This is difficult, however, since the first
data accessed may determine what data will be needed later.

Another implementation involves breaking down processes into a series of
subprocesses, each with its own data requirements. At the beginning of each
subprocess, the required data is locked; at the end of each subprocess, all data
is released. This technique requires that the processes be broken down in such
a manner that data base consistency and process integrity are preserved.

In all variations of the preclaim strategy, one restriction must be noted.
Never is a sequence of events allowed whereby a process locks data, modifies
the data, and then requests that additional data sets be locked.

The preclaim strategy is similar to the strategy for avoiding deadlock. The
distinction lies in that to avoid deadlock, a process is not allowed to proceed
until a safe state can be guaranteed; the preclaim strategy requires that a
process set all necessary locks before being allowed to proceed. The problem
of a process becoming permanently blocked also exists under the preclaim
strategy and can be solved through the same countermechanism used to avoid
deadlock (attaching counters to each process).

For high-level locks, the preclaim strategy is identical to the strategy
described for avoiding deadlock. Of all strategies for preventing deadlock,
preclaim is the only one that is feasible in a data base environment.

CONCLUSION

Concurrent processes must be controlled in order to maintain process in
tegrity and data base integrity and consistency. Any mechanism for control
ling concurrent processes should have certain features:

• The mechanism should be able to maintain the consistency of the data
base, despite the actions of a process.

• The mechanism should not depend upon external means (e.g., operator
interference or prescheduling of processes).

• The mechanism should not allow a process to become permanently
blocked in order to prevent a possible deadlock or as a result of a
deadlock.

• The mechanism should allow locking at a level of granularity that is
sufficiently fine to provide reasonable efficiency.

In addition, the mechanism should separate the user from the problems of
concurrency. The user should not be responsible for data integrity threatened
by the interaction of concurrent processes; nor should the user be concerned
with the other processes that are executing simultaneously with his.

One of the best mechanisms for specifying and setting locks is predicate
locking. Such a high-level locking scheme sets logical locks that eliminate the
problem of phantom records.

70 DATA BASE MANAGEMENT

Unfortunately, any locking mechanism is faced with the possibility of dead
locks. Of the several approaches to solving the deadlock issue, only detection
and backout, avoidance,· and preclaiming are feasible. It is not yet clear which
of these is optimal.

References

1. Ullman, J. Principles of Dotabase Systems, Potomac MO: Computer Science Press, 1980.
2. Gray, J.N., Putzolu, F., and Traiger, I. "Granularity of Locks and Degrees of Consistency in a Shared Da1a Base." Modeling

in Data Base Management Systems, Amstenlam: North-Holland, 1976,365-394.

Blbliograpby

Date, C.I. An Introduction to Database Systems, 2nded. Reading MA: Addison-Wesley, 1977.

Eswaren, K. P., et aI. "On the Notions of Consistency and Predicate Locks." Communications of the ACM, Vol. 19, No. I
(November 1976), 624-633.

Gray, I.N. "Notes on Data Base Operating Systems," Operating Systems-An Advanced Course, Edited by P. Bsyer, et aI. New
Yod<: Springer-Verlag, 1978, 393-481.

Potier, D., and Leblanc, Ph. "Analysis of Locking Policies in Database Management Systems," Communications of the ACM,
Vol. 23, No. 10 (October 1980), 584-593.

Rico, D.R., and Stonebraker, M.R. "Effects of Locking Granularity in a Data Bsse Management System," ACM Transactions
Data Base Systems, Vol. 2, No.3 (September 1977), 233-246.

Ries, D.R. and Stonebraker, M.R. "Locking Granularity Revisited," ACM Transactions Data Base Systems, Vol. 4, No.2 (June
1979), 210-227.

Scbiso, K., and O.su, T.M. A Survey of Concurrency Control Mechanisms for Centro/ked aod Distributed Data Base •. Ohio
State University Computer and Informstion Science Resesn:h Center, OSU-CISRC-TR-SI-I, February 1981.

Stonebraker, M. and Wong, E. "Access Control in a Relational Data Base Management System by QueI)' Modification."
Proceeding. 1977 ACM Annual Conference, 180-186.

Yannakskis, M., Papndimitriou, C.H., and Kung, H.T. "Locking Policies: Safety and Freedom from Deadlock." ffiEE.
Proceeding. 20th Annual Symposium Foundations of Computer Science, 1979,286-297.

® Administration of Data
Bases in a Distributed
Environment by Bernard K. Plagman

INTRODUCTION

Data bases are generally viewed as centralized, with all data residing
physically in one location under the control of the data base management
system (DBMS). Control over a centralized environment is typically an ad
ministrative function, which includes responsibility over the entire spectrum
of the data resource. This type of control helps ensure the integrity of data that
is shared by a number of applications and users.

In the distributed data base environment, coordination and control are
required among users and programs in physically dispersed locations. Thus, it
may not be desirable, or even possible, for a centralized control group to
perform the data/data base administration (DAIDBA) functions that generally
must be performed in more than one location.

Distribution of data tends to weaken DBMS data integrity mechanisms.
The identical data base concept that when implemented in a centralized envi
ronment brings increased control tends to reduce control in a distributed
environment. Furthermore, distribution of data tends to be most applicable in
organizations with autonomous, decentralized management. This type of
management structure is not conducive to the implementation of a centralized
data administration activity.

The goal is to find an effective balance between the decentralized process
ing and management of data, on the one hand, and the need for centralized
coordination and control of the data resource on the other. This chapter
discusses data/data base administration in a distributed data base environ
ment. The terms used are defined in the following paragraphs.

Data Base Administration. Data base administration is primarily a tech
nical function. Its roots are in the systems programming and applications
development fields, and its evolving role combines aspects of both. Its pur
pose is highly specialized and wedded to the maintenance of the DBMS
software, the data base files, and the applications that maintain and access the
data base files. The DBA is assigned complete responsibility for and authority
over the data base files, their design and integrity, and the specification and

72 DATA BASE MANAGEMENT

management of related ancillary utility functions through the entire applica
tion life cycle. In this way, all technical and implementation problems can be
addressed. Because the DBA role is tied to the DBMS and its facility, it is site
oriented.

Data Administration. Although data administration includes all data base
administration functions, there are some differences. Whereas the DBA role is
traditionally limited to those applications and mes using the DBMS, data
administration encompasses all data in an organization. The DA's job is
usually more conceptual, less technical, and exists at a higher level within the
organization than that of the DBA. In many organizations with a DA function,
the DBA group is subordinate to that function. The DA is more oriented to
users and their business needs than is the DBA, whose users are within the DP
area and whose concerns are more technical. Figure 8-1 shows a typical data
and data base administration organizational relationship.

V.P.
Data
Processing

--u I l~
I I I

Applications
Development Data Administration Operations

I
I I I

DataBase DataBase DataBase
Administration Administration Administration
(Standards) (Design) (Technical Support)

Figure 8-1. Relationship of Data Base Administration to Data Administration

Distributed Processing. Distributed processing, generally speaking, is
the placement of some or all of the following DP functions at physically
dispersed locations:

• Data entry
• Data manipulation
• Data storage
• Data retrieval
• Data display

These locations (nodes) are linked by a telecommunications network.

Distributed Data Base. CODASYL defines data base environment as one
that includes a data base, a DBMS, a data base definition (schema), and a user
schema. Placing data base management functions at one or more locations in a

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT 73

distributed processing environment produces a distributed data base environ
ment.

To be effective, a DBMS must control all data base activity. In fact, the
one characteristic that generally differentiates a data base environment from a
non-data-base environment is that, in the fonner, all data file activity is
handled and coordinated through a DBMS.

In a distributed data base environment (see Figure 8-2), whether the data
bases are partitioned or replicated, the DBMS functions must be perfonned as
if the data at the dispersed locations were logically one integrated unit. This
implies the ability to organize, control, and provide access to data base data
wherever it is located and to maintain its integrity regardless of how or by
whom it is updated. The mechanics of data location and integrity maintenance
are handled by the network data base management system (NDBMS).

Location 1

• NAP Network Access Process Location 3

Figure 8·2. Distributed Data Base Environment

Distributed Administration of Data. In a distributed data base environ
ment, the DA/DBA function controls, designs, and defines the data base from
an administrative viewpoint. The geographically dispersed (local) administra
tion functions are handled by local DA/DBAs whose activities should be
coordinated across the network (see Figure 8-3).

SYSTEMS DEVELOPMENT AND DATA BASE DESIGN
CONSIDERATIONS

Each distributed data base location is autonomous and under the control of
a local designer, who addresses local problems. Taken together, there is a
multiplicity of activity that, unless coordinated or controlled, leads to incom
patability of design methodology and design and thus to complications in the
interlocation communications process.

74 DATA BASE MANAGEMENT

Figure 8-3. Distributed Data/Data Base Administration Environment

Between any two nodes there is a single interface; however, as nodes are
added to the network, the interfaces proliferate (see Figure 84). Resolution of
access and update among nodes is handled by the NDBMS. The NDBMS
represents the functions, over and above those of the DBMS, that are neces
sary to support internodal use of data. The NDBMS must provide support for
each of the following possibilities for each data base me:

• A partitioned data base, with pieces stored at different nodes
• A replicated data base, with multiple copies stored at multiple nodes
• A combination of replicated and partitioned data bases

Although it may be technically feasible to provide an NDBMS to support
such distribution, the coordination function becomes increasingly complex.
Because of changing local needs, the modi operandi of nodes tend to drift
further and further apart. Should that evolution proceed unchecked, it could
negate the distributed data base environment and supplant it with a group of
totally autonomous data base environments. If distribution of function is to be
effective, this evolutionary drift must be controlled.

Alternative Strategies and Guidelines

To control this drifting and to provide a basis for communication among
nodes, a DAiDBA equivalent of the NDBMS should be created. This function
would provide the organizational interface mechanism between the local DAf
DBA groups. This interface function should address the areas indicated in the
following sections.

A Common or Standard Systems Development Life Cycle
(SDLC). This provides the mechanism for a common development interface
and identifies those points at which distributed data base considerations must
be addressed from a global viewpoint. In addition, an SDLe should provide a
common method of documentation that can promote better internodal commu
nication.

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT

Two Nodes
One Interface

M
~

Three Nodes-Three Interfaces

Four Nodes-Six Interfaces Five Nodes-Ten Interfaces

Figure 8-4. Interface Multiplication

75

Data Base Design Methodology. The coordinating DBA uses the data
base design methodology to distribute and coordinate the data base design
efforts at each location in much the same way as the DBA controls the
integration of data base design at a single location. This centralized function
has primary, or at least coordinative, responsibility for the design of interfaces
among nodes in the distributed environment and primary control over data
changes in all locations. In addition, this function addresses problems of
integrity and design or definitional changes that occur at one node and are also
needed at other nodes. The local DAIDBA handles any intralocation design
efforts.

In addition, a common design methodology for data bases in a distributed
environment can help ensure that distribution alternatives for data are consid
ered, based on a set of commonly understood and accepted design criteria.
This topic is discussed later in this chapter.

The Data Dictionary/Directory System (DO/OS). The OOIDS in a dis
tributed environment can be divided into central and local functions. The
central OOIDS would maintain definitional and locater information on all
distributed data. The local OOIDS would maintain the local metadata and
transmit through the central OOIDS those changes that should be propagated
through the network. The central OOIDS in a distributed environment may
contain many variants of metadata as a result of the local evolutionary pro
cess. It acts as the catalyst for data translation whenever data is transferred
from one location to another and incompatibility is recognized. Update con
trol and the total definition of the data bases are maintained through the DOl
OS.

76 DATA BASE MANAGEMENT

The Design of Distributed Data Bases

Only from a global vantage point can the following distributed data base
decisions be made:

• To distribute or maintain data bases centrally
• To replicate or partition data bases
• To distribute the DDIDS or maintain it centrally (or some combination

thereof)
• To determine who has what responsibility and authority

These distribution decisions must be made centrally to ensure maximum
global-level balance in perfonnance and integrity. Nonetheless, each decision
has an impact on each node. Thus, although processing of the distributed data
is perfonned locally and responsibility for this processing resides locally,
distribution decisions should be made centrally.

This dilemma is further complicated by the desire of local personnel to
design their own data bases. The issue is where the distribution decision
making should end and local data base design should begin. While managers
at local nodes may have been led to believe the distribution of data would lead
to greater autonomy in decision making, the centrally made distribution deci
sions may be more constraining than anticipated. The solution to this diffi
culty is the specification and use of a carefully procedurized data base design
methodology for distributed data bases.

As the technology of distributed data bases evolves, this decision-making
dilemma could worsen. Consider, for example, when the NDBMS and DDt
DS allow dynamic replication and partitioning of data bases, contingent on
access patterns and processing requirements. This movement and placement
of data must be controlled. Heavy reliance on the NDBMS and the DDIDS to
maintain the distributed network must be closely coordinated with DAtDBA
design activities at the nodes to ensure compatibility among nodes.

The complexity of the environment requires more technical expertise on
the part of the designers and greater administrative control on the part of the
respective DAIDBA staffs. More emphasis must be placed on the higher-level
conceptual design efforts that will coordinate activities across nodes. Related
SDLC standards must be created.

The designer can no longer address the local environment in isolation. He
or she must be aware of the environment beyond the interface. The local node
is part of a whole; it is both dependent on and independent of the whole.
Recognizing this, the designer must examine the impact of all design deci
sions beyond the immediate local environment.

OPERATIONS AND PRODUCTION CONSIDERATIONS

The distributed data base environment poses additional operational and
production considerations that the DAtDBA charged with the control and
coordination of the environment must address. The solutions are administra
tive in nature. Although technical implementation features are a part of the

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT 77

NDBMS facilities, the DA/DBA is responsible for specifying parameters and
procedures that properly govern production.

Administration and Control

Whether there are few or many locations or few or many DnMSs in the
distributed environment, procedures must enable a coordinated and integrated
functioning of the entire data base network. These procedures must ensure
that all locations are synchronized from the data base point of view as well as
from the viewpoints of the dictionaries, directories, operations, and documen
tation. In addition, because of the heavy dependence on data base software,
all version and release updates must be coordinated and propagated through
the network on a timely basis.

The control and coordination procedures must extend through the mainte
nance of application programs that process the data base. Procedures for
applying changes must be reflected in all components.

Restart and Recovery Considerations

The greater complexity of restart and recovery in the distributed environ
ment is caused by both the necessity to synchronize the process across nodes
and by a correspondingly greater number of recovery options. Operational
procedures must be carefully established, taking into account the coordination
and synchronization of recovery activities at each node in the network. All
nodes must be able to recover to the same point in time. This is difficult
because of computer clock synchronization; it is even more difficult when the
operational schedules of the nodes differ because of location in different time
zones.

Each possible type of location or network failure must be identified and
analyzed. The state of the data at each node must be accurately determined as
a precondition to each recovery operation.

Unlike the centralized data base environment in which the recovery opera
tion is either successful or not, it is conceivable that in a distributed environ
ment some nodal recoveries may succeed, while others fail. Sufficient backup
must be maintained to ensure that recovery can be achieved at all nodes and
that individual nodes can continue processing despite failures at other nodes.
Partitioned data bases must be examined after recovery to ensure that the
node-to-node linkages are all intact. Replicated data bases must be compared
to ensure synchronization or must be redistributed if possible.

Because distributed data bases are physically separate but logically con
nected and data location is transparent to the end user, failure at one location
may affect other locations. It may be difficult, however, to determine quickly
exactly where the data base physically failed when irregularities are reported
by end users. Note that local recovery procedures should include global user
notification, just as local recovery includes global verification and validation.

78 DATA BASE MANAGEMENT

Access Control Considerations

The DBMS operating on individual nodes of a network provides intranodal
security requirements in much the same way as a central-site DBMS provides
data base security needs. The administration of the access control mechanism
of the NDBMS relates to the specification of security profiles that span nodes
on the network. The major consideration involves authorization of a process
initiated at one node to access data at another. This procedure is referred to as
delegation.

In a distributed environment in which internodal data access is transparent
to the user, the security profile must be carefully specified and maintained by
the DA/DBA to ensure that the transfer of data and requests from one node to
another does not result in unauthorized access of data. This can only be
accomplished with a global view of the network and its distributed data base
design. Maintenance of the distributed security profile must also be centrally
coordinated by the DAIDBA; a change to security profiles must not adversely
affect processing patterns or allow inadvertent delegation of authority to ac
cess data at another node.

Access control for the distributed data base environment is not only a data
base technology issue; communications technology can and should also pro
vide for the implementation of security needs. Access control to executing
processes, operational terminals, and/or lines should augment the access con
trol mechanism implemented in the DBMS and the NDBMS. Data in trans
mission can also be encrypted. It is the responsibility of the DAIDBA to
coordinate these activities on an ongoing basis.

ORGANIZATIONAL ISSUES

Those organizations that have migrated to a distributed processing environ
ment have found effective DP strategies in support of decentralized manage
ment. Control of development and operations is thus passed to local sites. The
trends toward autonomy, as evidenced by user organizational structures, ex
tend to the DP departments that service those structures.

Simultaneously, these same organizations have started to use data base
technology for their application systems-one of the strongest centralization
forces in DP today. This paradox of centralization because of data base as
opposed to decentralization as a result of distribution must be addressed by
management and data/data base administrators, who must resolve the inherent
conflict between their data base needs and the needs of the distributed pro
cessing environment.

An Alternative Strategy

A division of functions, some local and some global, has resulted as the
role of the DA/DBA in a distributed environment has evolved. The global
(network-wide) functions are organization-wide and thus corporate in nature.
The local functions fall within the domain of local management.

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT 79

One way to handle this situation is to divide responsibilities along the lines
of the distributed processing itself (see Figures 8-5 and 8-6). That is, the local
DA/DBA function, which must operate within the guidelines and procedures
specified by the corporate DA/DBA, would deal with local development and
operations. The strictly local portions of the data base would, of course, be
fully controlled locally.

Local Management

t
Data/Data --- Corporate I

OataIData Base
Base Administration
Adminis-
tration

Software Data Recovery Communi· Data
DataBase Base Data Security Program- Dictionary Restart cations Analysts P~ogram- (local) ming (local) (local) (local) mmg

Figure 8-5. Local DatalData Base Administration Organization

Corporate
Data/Data
Base
Adminis-
tration

Global Software
Standards Data Restart! Commun-- Evaluation Data

& Dictionary Recovery icalians & Security
Procedures (global) (global) (globaQ Recommen- (global)

dation

Figure 8-6. Corporate Data/Data Base Administration Organization

The corporate DA/DBA functions would address network maintenance
and the data communications aspect of internodal data base access. The
corporate DA/DBA would have primary responsibility for planning and coor
dinating global recovery (including problem extent determination), recovery
scheduling, and global validation after recovery. The actual recovery opera
tions would be executed and handled at the affected nodes. In addition, the
corporate unit would have overall responsibility to coordinate network change
control, with documentation maintenance to ensure that all nodes receive
change information. They would also resolve conflicts among nodes as they
pertain to data base use and modification. The corporate unit would also have
to make DBMS software decisions that maintain the global compatibility of
the data base environment.

There are many potential political conflicts between corporate and local
functions. The autonomy intended by the distribution of processing is par-

80 DATA BASE MANAGEMENT

tially negated by the requirements of the data base environment. This conflict
must be well understood and resolved.

CONCLUSION

The distributed data base environment must evolve; it cannot be imposed.
Before attempting migration from a centralized organization, there should be
careful planning. Before implementation, procedures, standards, and controls
must be developed, accepted by all parties, and tested. Local and corporate
management responsibilities must be clearly delineated.

In addition, all DAIDBA staff members must thoroughly understand the
environment. Extensive training may be required to provide technical and
conceptual understanding at all levels.

Bibliography

Canning, R.G. "Disttibu1ed Data Systems." EDP Analyzer. Vol. 14, No.7 (June 1976).

Canning, R.G. "N-..rlc Structures for Disttibu1ed Systems." EDP Analyzer, Vol. 14, No.7 (July 1976).

Csshing, P.G. "Data Base Interworking." Network Systems and Software. Maidenhead, England: Infotech Jnternational Ltd.,
1975.

Comba, P.G. "Needed: Disttibu1ed Control." Proceedings of the International Cmiference on Ve". I.o.rge DakJ Base •. New
YOlk NY: Associatinn for Computing Machinety, 1975.

Davis, G.B. Management Information Systems. New YOlk: McGraw-Hili, 1974.

Lowenthsl, Eugene I. "The Disttibu1ed Data Management Function." Proceedings of 1M NOlional Computer Cmiference.
Montvale NJ: AFlPS Press, 1974.

"The Data Base Administrator." GUIDE Infonnation Msnagement Group, November 1972.

® Distributed Data
Bases on Unlike
Computers

INTRODUCTION

by Grayce Booth

A distributed data base exists when related data elements are stored at two
or more processors within a distributed system. When applied to the elements
of a distributed data base, the term related is quite flexible; the relationship
can be either very close and require a great deal of coordination among the
processors or can be very loose and require only minimal coordination. In any
case, the existence of this relationship distinguishes a distributed data base
from multiple independent data bases.

Distributed data bases can be partitioned or replicated. A partitioned data
base exists when each part or segment contains unique data elements. Al
ternatively, the segments can contain partially or entirely redundant data
elements, forming a replicated data base. Combinations of partitioning and
replication are also possible.[I]

Unlike Computers

When the need arises to expand a centralized system, an organization is
likely to acquire a number of minicomputers, place them in point-of
transaction locations, and distribute some of the processing and data base(s) to
those locations. Often there are good business and/or technical reasons for
acquiring the minis_from someone other than the mainframe vendor; in such
situations the probability of differences between the minis and the mainframe
is great. Even if the minicomputers are from the vendor who supplied the
central processor, they may be incompatible with that computer. Therefore, a
hierarchically distributed system [2] (see Figure 9-1) involves some degree of
difference between the host processor and the satellite processors.

A distributed data base can involve different kinds of computers when two
previously independent processors are linked to form a distributed system.
These computers may have served different divisions or departments or even
different companies now combined through merger or acquisition. Because
each system was selected by a different organization and, perhaps, for differ
ent uses, the type of computer may differ in each case. The result is a
horizontally distributed system [2] (see Figure 9-2).

82 DATA BASE MANAGEMENT

T T T

Figure 9-1. Hierarchically Distributed System

T T T T T T T T

Figure 9-2. Horizontally Distributed System

This type of system might also be used because a single organizational
entity requires two or more types of computers for different pwposes. For
example, a specialized scientific processor and a specialized time-sharing
processor might be used in an engineering organization. These computers
might require access to common data; in that case, a distributed data base
would be established to provide shared data access.

A major technical challenge associated with the use of distributed data
bases is how to provide access to remotely stored data. For example, how can
a user whose terminal is attached to one processor obtain data stored at
another? The same problem exists when a program executing (or submitted
for execution) at one processor needs data stored at another processor. The
remote-access problem can be solved by program migration (moving the
program to the data) and data migration (moving the data to the program).
This chapter describes the methods of locating data elements, the two remote
access strategies, the various differences that may be encountered, how these
differences affect the access strategy chosen, and how to resolve (or avoid)
the problems in each case. To simplify the discussion, the following sections
assume that only two computers are involved (the same situations would exist
regardless of the number of computers in the distributed system).

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 83

LOCATING DATA ELEMENTS

When a tenninal user or an application program requires access to data
elements that are part of a distributed data base, logic must be provided to
determine where the required elements are stored, regardless of whether the
program or the data will be moved to provide access. Much or all of this logic
is either included in the application programs or supplied by the terminal
users. In the longer tenn, the logic will move into the system software, using
one or more of the methods outlined.

The Schema

In the CODASYL approach to data bases (and in most modem data base
software systems), a description of the data base structure and formats is
stored with the data base (rather than in the accessing programs). This de
scription is called a schema.

In a schema-based DBMS, each access to the data base is interpretive, and
the schema is used to determine how to accomplish each access (see Figure
9-3).

A distributed data base can be described by a global schema that defmes all
elements and relationships of the entire data base. If the global schema is
stored at each computer within the distributed system, access requests can be
mapped against it, regardless of where the requested data element(s) is stored.

There is no reason why a single global schema cannot describe data base
segments with different data structures. In fact, the Honeywell implementa
tion of the CODASYL recommendations, Integrated Data Store/II (IDS/II),
allows a single schema to describe indexed and network/hierarchical struc
tures as part of one data base. The only restriction is that indexed structures
and network/hierarchical structures must be in different areas of the data base.
Area is a concept that allows the data base administrator (DBA) to separate the
logical data base into subdivisions to be mapped independently onto physical
storage. In fact, the area concept can be easily extended to the distributed data
base environment.

Conceptually, a distributed data base is a single logical data base, seg
ments of which are partitioned and/or replicated and associated with two or
more computers. For the long-tenn development of a distributed DBMS, the
use of global schemas and the association of one or more areas with each
computer seems logical.

The use of the global schema can be considered if each computer in the
distributed system supports a schema-based DBMS. The schema at each
location can describe local and remote area(s), although the local DBMS will
not have access to the remote data. Of course, differences in data formats and/
or structures must be considered when attempting to set up a global schema;
and if the differences are significant, schema use may be impractical. If
feasible, however, this approach allows compilation of applications and/or
end-user procedures that access local as well as remote data elements.

84

Catalogs

Data Base

Input
Data

Data Base
Definition

Application
Program
Source

Output

DATA BASE MANAGEMENT

Schema

Figure 9-3. SChema-Based Data Base Management

Data elements in a distributed data base can also be located by using
catalogs to indicate where specific data sets are stored. Catalogs usually
maintain infonnation at the data set, fIle, or area level rather than at the data
element level as schemas do.

A global catalog can list remotely accessed data sets, indicating where each
resides. If a copy of the global catalog is maintained at each computer, the
location of all globally accessible data elements can always be determined.
The main difficulty with this approach is that all copies of the global catalog
must be kept current (this same problem applies to global schemas). In prac
tice, however, catalog updates will probably occur infrequently, thus
minimizing the difficulty of keeping all copies synchronized.

It may be practical to extend an existing catalog facility so that it can
perform global catalog functions. If this can be done, the amount of data
location logic required in application programs and/or in terminal user proce
dures will be minimized.

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 85

Data Dictionary

The use of a global data dictionary is another way to keep track of data
elements in a distributed data base. A data dictionary serves many of the same
purposes as does a schema in describing the data base structure and formats
and also supplies "where used" information (i.e., which application(s) uses
each data element). The data dictionary, however, is a DBA aid that is used to
manage data base content and use, while the schema is used directly by the
DBMS software to access the data base.

A good data dictionary system can probably accommodate descriptions for
both local and remote data elements; thus, the distributed data base and its use
can be controlled through the single data dictionary. Unlike the global schema
and global catalog, the data dictionary does not automate the process of
dynamically finding data in a distributed data base. A single data dictionary,
however, can assist the DBA in overall management of that data base.

PROGRAM MIGRATION

In a distributed system, a terminal user or an application program associ
ated with one computer may require access to distributed data base elements
associated with another. As shown in Figure 9-4, a user at terminal At can
easily be provided with access to data base segment A. If, however, the user
requires access to data base segment B, the situation is more complex. One
way to provide the needed access is through program migration. In program
migration, the data base access program is sent and executed where the
required data e1ement(s) resides, and some or all of the output produced is
then returned to the other location.

Figure 9·4. Access to Remote Data.

Object or Source Migration

Program migration between computers can occur in object or source form.
If the program is sent in object- form, it can be placed in execution immedi-

86 DATA BASE MANAGEMENT

ately upon receipt. If sent in source form, the program must be compiled
before being executed.

The degree of difference between computers affects program migration. It
is often difficult to move a program in object form between unlike computers.
If host A supports a cross-compiler for host B, it can generate object code
suitable for that system, allowing object-form program migration between
unlike computers.

Of course, object-code compatibility is only one of the points to be consid
ered. In many computers a program requires such further processing as link
ing to library routines and/or editing for correct loading format before it is
ready for execution. If the target computer (the one on which the moved
program is to be executed) requires this type of program preparation, it must
be provided either before or after program migration.

Movement of the program in, source rather than object form decreases
compatibility problems because source programs are more likely to be com
patible than are object programs. Complete compatibility, however, cannot be
assumed and must be planned for carefully.

In assessing program compatibility, it is important to ensure that capabili
ties with the same name are, in fact, identical. For example, the fact that most
computers support COBOL does not guarantee compatibility and transferabil
ity for COBOL programs.

The industry-standard definition of COBOL is updated periodically, and a
specific computer mayor may not support the most recent version. In addi
tion, COBOL is defined in terms of a language nucleus plus a series of
modules (e.g., table handling, sequential 110, sort/merge). The nucleus con
sists of a low-level portion that provides basic internal operations and a high
level portion for more extensive options. Some of the language modules also
have low and high options. Therefore, to determine the level of compatibility
between two COBOL compilers, it is necessary to determine:

• The version of the language standard supported
• Which modules are implemented
• Which level of each module is provided
• Whether any nonstandard extensions have been included

While this determination may seem complex, COBOL has well-defined
formal standards that can be used as the basis for comparison. For many other
languages and DBMSs, there are no such guidelines, thereby complicating the
determination of program compatibility.

Dynamic or Static Migration

Program migratiQn, in either object or source form, can be dynamic or
static. In the dynamic mode, the program is moved when data access is
requested. In the static mode, the need for program migration is recognized
during system design, and a copy of the program is established at the desired

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 87

location prior to the need for its use. Although the latter case might not be
considered program migration, the result is the same.

Dynamic Program Movement. This movement involves sending the
equivalent of a job to the remote computer for execution. If the program is
sent in object form, the job consists of the object program (possibly prelinked
and/or link edited), the required JCL, and any input data needed. If the
program is sent in source form, the job consists of the source program with
JCL requesting compilation followed by execution and input data.

Obviously, an extremely fast response cannot be expected in either pro
gram migration method. Dynamic program movement is best suited to spe
cific situations. For example, dynamic program movement is useful when an
expert programmer is using a terminal to browse through a distributed data
base, preparing the programs needed for remote access as browsing pro
gresses. The dynamic mode is also useful when large amounts of remote data
are required to complete an unanticipated report. Therefore, in any situation
that requires remote access to large volumes of data but does not require rapid
response, dynamic program migration can be used.

Static Program Migration. This form of migration allows time for pre
planning because the program is moved and established at the remote location
prior to its use. When access is actually required, only a program-initiation
request and any needed input data are sent.

If fast response is needed, however, the static migration mode is more
suitable than the dynamic mode. In both modes the differences between the
computers involved must be fully explored.

Secondary Data Migration

Even though the strategy chosen to provide access to remotely stored data
is program migration, data migration often results. In Figure 9-4, the basic
problem is to provide the user at terminal Al with access to data base segment
B. Presumably, the user will want some of the data obtained to be returned to
terminal AI, thereby causing data movement. In addition, in order to deter
mine which data elements are required from segment B, it will probably be
necessary to send input data to the remote location. Thus, program migration
problems as well as data migration problems must be solved by the system
designer.

DATA MIGRATION

Data migration depends on sending a data access (and possibly update)
request to some program at the remote location that will perform the required
operation and return the desired result. The program at the remote location
may be an application routine written specifically for this putpOse. This
routine is called a surrogate process or server process. Alternatively, the

88 DATA BASE MANAGEMENT

remote program may be the DBMS if it can accept access requests from
remote locations.

Format and Structural Differences

When data ~lements are moved between unlike computers, the data must
be meaningful to, and usable by, the receiving application or user. Transla
tions may be needed to convert between unlike data fonnats, as well as to
resolve differences in the structures of the two data base segments. The
required translations can be very simple or extremely complex.

Dynamic or Static Migration

Data migration, like program migration, can be either dynamic or static.

Dynamic Data Migration. This migration occurs at the time the access is
requested and is most often used to obtain small amounts of remotely stored
data. Online transaction processing or time-sharing users or programs are
most likely to generate this type of request. Even when data migration re
quests and responses occur dynamically, the data movement must be pre
planned. The necessary surrogate application or server DBMS must be estab
lished at the remote location and must be available to respond to data base
access requests when received.

Static Data Migration. This migration can be used for access to a large
volume of data. If it is known that a definable set of data elements will be
accessed, the entire set of data can be moved to the location where the data is
needed. The data can then be accessed, and if it has been updated, the revised
version can be moved back to the original location.

Static data migration is shown in Figure 9-5. When payroll checks must be
printed for office A, the pay records for that office are moved from the host
processor to the satellite processor at office A. The paycheck application is
run against that data set, producing the checks as output. In this case, since no
updates have been perfonned, there is probably no need to return the data to
headquarters. If, however, the data is updated, the data set can be returned to
the host to replace the earlier data copy.

The key to successful static data migration is to avoid concurrent updating
of the master copy of the data and the temporary copy at the remote location.
Updating two or more copies of the same data concurrently causes a very
complex data reconciliation problem for which there are no general
solutions-these can only be fonnulated within the framework of the specific
application.

Independent updating is manageable, however, if different fields or
records are involved. For example, a remote copy of an inventory data base
might be updated to reflect changes in current stock balances at the same time
the master is being updated to reflect price changes. Reconciling the two
versions then involves using descriptive infonnation from the master and

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS

Payroll
Data Base

Figure 9-5. Static Data Migration

89

balance infonnation from the copy. Data migration is clearly more complex if
the remote access involves updating. To minimize complications, update
during data migration should be avoided whenever possible.

DATA FORMAT DIFFERENCES

Data migration between unlike computers almost always involves data
conversion because of the differences between the respective computers'
hardware and software. Program migration may also trigger data migration,
again causing conversion.

Conversion routines must deal with data fonnat differences as well as data
base structural differences. Data fonnats can vary widely because of inherent
differences in computer hardware or because of the software approaches
chosen.

Code Sets

The code sets used to store the segments of the distributed data base may
be different. The most commonly used code sets for data storage are ASCII
and EBCDIC. Some computer systems, however, use other codes, and even
though two computers may both use the ASCII code set, for example, one
may use a fuller set of the possible codes.

Converting data from one code set to another is basically a straightforward
process, but provision must be made for handling characters or codes that
occur in one set but not in the other. Some convention must be adopted for
coping with these unmappable codes.

If unmappable codes do not require conversion, they can be translated into
space or null characters. Occasionally, for example, printer-control codes are

90 DATA BASE MANAGEMENT

carried in stored data for quick output to hard-copy devices. Because these
types of codes are device specific, they do not have to be translated when
moving the data to another computer system. If unmappable codes must be
carried, each code can be converted to a 2-character sequence in the target
code set. The first of the two codes is an "escape" or "flag" character, and
the second indicates which unmappable code is represented. This flexible
approach allows a larger code set to be mapped to a smaller code set, without
any data loss.

Word, Field, or Record Size

Data movement may also be affected by differences in the word, field,
and/or record sizes on each computer. As in the case of code sets, the diffi
culty arises when one computer has a larger maximum size than the other.

Word- and field-size differences are usually a problem when binary data is
stored. A binary field may be limited to one or two computer words in length
(e.g., 32 or 64 bits in a computer whose word size is 32 bits). The movement
of binary data can therefore pose a problem. For example, in moving binary
data from a 36-bit-word-size computer to a 32-bit machine, either data preci
sion may be lost or the data must be expanded to 64 bits for storage.

If this situation exists in a distributed data base, three methods are possible
for handling the binary data. First, all data can be carried in character or
packed decimal form rather than binary. This approach, however, can waste
storage space and cause conversions to/from binary when the data must be
used in calculations. Second, extra space can be allocated in the smaller
computer to accommodate the data from the larger computer. In the case of
variable-length byte-size fields, this is the best approach. If binary data must
be stored in full-word increments, however, this method wastes storage
space. Finally, the computer that supports a larger word, field, or record can
be arbitrarily constrained to support the same size as the other computer.
Although this may waste some storage capacity of the larger computer, it may
avoid complex translations and/or wasteful space use on the smaller com
puter. In the total system context, therefore, this may be the best choice.

All of these format differences-code set, word size, field size, and record
length-can be handled quite easily. If the data base formats used in each
segment of the distributed data base are fully documented, mapping or con
version routines can be easily devised for data translation.

If the distributed data base is in the process of being designed, there is
considerable flexibility in constructing formats that require minimal conver
sion. For example, as noted earlier, in the case of two different word sizes, it
may be most efficient to use only part of the capability of the larger computer,
thereby ensuring compatibility with the smaller one. If, however, the distrib
uted data base is being formed from two existing separate data bases that are
independently designed, there is less flexibility in constructing formats. The
problems of accommodation, therefore, will be more complex.

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 91

STRUCTURAL DIFFERENCES

While differences in data fonnats are easy to manage, a distributed data
base established on unlike computers can also involve structuml differences.
These differences are typically more difficult to handle.

Structures and Access Methods

Structuml differences involve the interrecord data relationships of the data
base. For example, in an indexed-sequential structure, the records are stored
semisequentially and accessed through one or more indexes. Access methods
for this structure involve requesting a record through its identifying field(s).
The DBMS then uses the indexes as necessary to obtain the requested record,
which is then passed to the requesting program (and perhaps through that
program to a terminal user).

Another implementation of an indexed structure might use a different
number of indexes and/or might physically place records on the storage me
dium using a different storage strategy. Nevertheless, the same access request
could be fulfilled in this second implementation, without the differences being
apparent to a terminal user or to the application program developer.

There are, however, structuml differences that are difficult to map. For
example, the CODASYL model of data storage assumes that the user or
programmer is a "navigator" [3] moving through the data base, seeking
specific items of interest.

Figure 9-6 shows a network data structure consistent with the CODASYL
data model. In this structure, logically related records are associated into sets.
For each set, one type of record is the set owner, and one or more other record
types are set members. For example, in a customer-order data base, each

/· ... -s;~-;-",
I Owner \
(Record Type 1 I
\ Member I
\. Record Type 2 //

'..... ,,/ ------

.,.,.----..........
// Set 1-3 ,

/ Owner '\
(Record Type 1 1

Member /
\ Record Type 3 / , .,,-

....... --------,...,.
..",-------..,

/' Set 3-4 , '--_.-----'
/ Owner \
I Record Type 3 \
, Member I'
'\ Record Type 4 / __ -'--_-, ,-

................ _----'/

Figure 9-6. CODASYL Data Base Structure

92 DATA BASE MANAGEMENT

customer record might be the owner of a set, while order records are members
of the set. To obtain data from this type of network data structure, the
programmer writes such statements as FIND NEXT RECORD-NAME
WITHIN SET-NAME, FIND PRIOR RECORD-NAME WITHIN SET
NAME, and so on. These access requests are li~ed to the data model used
in this case, a network consisting of owner/member record sets. Thus, it is
somewhat difficult to map these same access requests onto a different struc
ture; attempting to execute a FIND NEXT RECORD-NAME WITHIN SET
NAME command against an indexed-sequential structure is meaningless
since the data structure model does not include the concept of sets.

Structural differences cause difficulty because of the desirability of provid
ing common access methods, despite the use of different structures. This is
true regardless of whether the access strategy chosen is to migrate the data or
the program.

Structure-Independent Access Methods

As might be expected, access methods that are independent of the data
structure are most easily mapped to different structures. The trade-off, how
ever, is that these methods may also be relatively costly in terms of the
computer resources used.

Approaches most often encountered with relational data bases [4] tend to
be very structure independent. LINUS (Logicalloquiry and Update System)
software, available for use with Honeywell's Multics Relational Data Store,
allows the user to formulate such queries as SELECT NUMBER FROM
PHONE BOOK WHERE NAME = "SMITH JOHN C." With this type of
access method, the user formulating the query need have no knowledge of the
data base except that it contains certain data elements. How these elements are
stored and any interelement relationships need not be apparent to the user.

It is theoretically possible to map a structure-independent access request to·
many different structures. The efficiency and response speed achieved depend
on both the complexity of the mapping and the particular implementation.
Because of these factors, performance can range from excellent to unaccepta
ble.

Mapping Structure-Dependent Access Methods

Structure-dependent access requests can be mapped onto a data structure
different than that envisioned in the access request. One way to accomplish
this is through multilevel mapping, as shown in Figure 9-7.

By choosing a conceptual or reference data model (perhaps a relational
structure, although not all researchers agree that this is the correct data
model), it should be possible to map any actual data model to/from that
conceptual model. It should also be possible to map any type of access request
to the conceptual data model and thus to any real data structure. Although a
very neat diagram of this approach can be drawn, its practicality remains to be

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS

Access Access
Request Request
Type 1 Type 2

'\ M +. Mapping applng

Access
Request
Type 3

I
Mapping

Conceptual
(or Reference)
Data Model

Mapping

Actual
Data
Model 1

Mapping

Actual
Data
Model 2

Figure 9-7. Mapping Data Models and Access Requests

93

proven. Even if logical feasibility is established, it may be difficult to provide
an implementation with acceptable perfonnance and response. Realistically,
such a general mapping currently belongs to the realm of theory rather than of
practice. In mapping access requests onto different structures, the most practi
cal approach today is to use a structure-independent access method similar to
LINUS or "Query by Example" (QBE)[5]. Although these are relatively easy
to translate to different structures, doing so while providing an adequately fast
response can present a challenge.

DISTRIBUTED DATA BASE TRANSPARENCY

As noted earlier, data format and/or structure conversion will be necessary
in most cases where a distributed data base is established on unlike comput
ers, regardless of whether program or data migration is used to access remote
data elements.

Where the necessary conversion takes place has a considerable impact on
application and user independence from the distributed data base. This con
cept of independence is called transparency. If the requesting application
program or terminal user must perform the data or structural conversions, data
base changes can affect the program or user. In addition; the procedures for
data base access can be more cumbersome and inconvenient for (presumably)
multiple users and/or programs.

It is more advantageous to perform the conversion in the server application
or DBMS, if possible. This centralizes the conversion routines so that it
changes are required, only one set of software is affected. The conversion
process will also be transparent to the terminal users or application programs.

94 DATA BASE MANAGEMENT

Transparency is also affected by how the required data elements are lo
cated within the distributed data base. If the application program or terminal
user must manually determine where elements are located, transparency is
low, and any movement of data will affect people and programs. If data
elements are located by the system through the use of global schemata and/or
global catalogs, transparency is improved.

CONCLUSION

Providing access for users and applications at the different computers to
the various segments of the distributed data base requires careful planning so
that the differences involved do not make data base access unacceptably
difficult. The choice between program and data migration should be based on
minimizing transmission volume (and therefore cost). The different possibili
ties must be analyzed in the context of the specific application, and the one
that requires the lowest volume of data transmission should be chosen.

If program migration is selected, program differences must be resolved. If
data migration is chosen, data format and/or structural differences must be
resolved. Often both types of differences must, in practice, be handled, re
gardless of which strategy is chosen.

Straightforward translation methods are adequate to resolve data differ
ences. Differences in data base structures, however, are more complex to
handle. While some elegant theoretical approaches can be considered, in
practice, remote access between radically different data structures is quite
difficult to achieve. Rather than considering a generic "ideal" solution, a
translation method that can handle the specific structures involved should be
used.

Since ease of use and flexibility for change are important aspects of any
distributed system, transparency should be an objective in every distributed
data base implementation.

I. Booth, a.M. "Distributed Data Bases in Distributed Processing." Infotech State of the Art Report, Vol. 2 Maidenhead UK:
Infotech International Ltd. 1977.

2. Booth, a.M. "Distributed Infonnation Systems." Proceedings of the 1976 NaJiotlill Computer Conference, Montvale NJ.
3. Bachman, C.W. "The Programmer as Navigator." Turing Lecture in CACM, Vol. 16, No. II (November 1973), 653-658.
4. Codd, E.F. "A Relational Model of Data for Large Shared Data Banks." CACM, Vol. 13, No.6 (June 1970), 377-387.
5. Zloof, M.M. "Query-By-Example--Operations on Hierarchical Data Bases." Proceedings of the 1976 NatiOtlilI Computer

Co'lference, Montvale NJ.

~@ IMS/VS
Implementation
Case Study

INTRODUCTION

by Myles E. Walsh

This case study involves the implementation of IMS/vS at a large, central
ized data center. The data center is a corporate facility that processes the
computerized applications of several divisions of a $4 billion per year corpo
ration. In the spring of 1980, the equipment configuration of the data center
included three large-scale mM computers, more than 180 spindles of direct
access storage (DASD), approximately 30 magnetic tape drives, and a mag
netic tape library containing nearly 30,000 reels of tape. The facility sup
ported a telecommunications network of more than 250 lines with 1,800
terminals of various types connected to them. The data center was processing
about 250,000 transactions a day against the online files and data bases and
was turning around approximately 120,000 batch jobs per month. These
configuration and production statistics include the equipment requirements
and the activity of the applications using the data base management system.
The DP environment had not always been like this.

In 1976, when the corporate data processing department decided to investi
gate data base management, the data center housed computers that had only
25 percent of the computing power of the 1980 configurations and less than
one-half of the DASDs. Online transaction volumes were also less than one
half: there were 150 telecommunications lines and about 800 terminals. Con
current with the plunge into data base management was a commitment on the
part of corporate D P to increased computer processing capabilities via virtual
storage technology, time sharing for applications development, and computer
networking.

The divisional DP director, committed to developing an application that
would use a data base and the DBMS, began the design and development
work simultaneously with the corporate study on the various DBMS products.
By the time the corporate study was completed, the overall design work was
also almost completed, and a significant portion of the elements that were to
be included in the application's data base had been defined and documented
(see Figure 10-1). The latter task had been assigned to an individual who had
been appointed as the divisional data base administrator (DBA).

96

Task

Decision to investigate ..
DBMS Environment I"

Study group met

First application designed

IMSNS support group es-
tablished

First project team formed

Rudimentary IMSNS
batch processing system
implemented

Online and data communi
cations features imple
mented; 0010 became
theJirst application to run
online

Other divisions show inter
est; additional project
teams set up for assist
ance

Accounts receivable appli
cation placed into pro
duction mode

Two small applications de
veloped

New IMSNS released and
installed

Sample tracking system
placed into production
mode in test control re
gion

Master catalog application.
placed into production
mode

First large application
placed into production
mode

Another small application
placed into production
mode

1976

•
• -
•

•

1977

..
01 CD
c E
1: E
D, :::I
tntn

DATA BASE MANAGEMENT

•

1978

..
01 CD
C E
1: E
D,:::I
tntn

-•
•

•

1979

..
01 CD
c E
·c E
D, :::I
tntn

•
•

1980

Figure 10-1. Time Phases of the ProJect

IMSNS CASE STUDY 97

1976 1977 1978 1979 1980

Task
.. QGI .. Q GI .. Q GI .. QGI .. Q

.! c E GI C E GI C E GI C E .! c ·c E .. ·c E .. ·c E .. ·c E ·c c = c iii
c 1i c 1i .5 i r::L :::lI 1\1 .- r::L :::lI i r::L :::lI i r::L:::lI r::L

t/)t/) II..~ t/)t/) II.. t/)t/) II.. t/)t/) II..~ t/)

Resolution of problems -• with local computers

Installation of local com- • puter application

Excellent performance of • local computer applica-
tion

Figure 10-1. (Cont)

At the time, the title data base administrator was quite fluid. It was used to
describe everything from a corporate executive who was to be responsible for
the corporation's data resource to a technical/clerical person who was to
document data descriptions. The divisional DBA had, at this point, listed
nearly every data element for the new application and the characteristics and
attributes of each and had begun to define the relationships that existed among
the elements. It was these relationships that would transfonn the collection of
data elements into a divisional data base for the application.

The application itself had been segregated into two systems: an order
entry, order inquiry, billing, and shipping system and an accounts receivable
and cash application system. The two, although separate, had common inter
faces on several of the files (Le., some of the mes were used by both sys
tems). Each of the systems had an online and a batch facility. The online
facilities were to be available 10 hours a day, from 8:00 A.M. unti16:00 P.M.,
and the batch facilities were to be run between 6:00 P.M. and 8:00 A.M. These
parameters were established by September 1976, when the project team was
fonned.

Having selected the IMS/vS data base management system (DBMS) one
month earlier, the corporate DP department fonned an organization to support
it. Two separate groups were set up. One was a systems software program
ming group that was responsible for the installation, support, enhancement,
and troubleshooting of all data-base-related software products. The other
group was a technical support group that was initially responsible for assisting
divisions in data base design and reconciling the divisional data base require
ments with the data center capacity. This latter aspect of the technical support
group's responsibility required a high degree of both technical and political
skill. The individuals in this group were also given the title of data base
administrator. By September, the two groups consisted oftwo DBAs, a direc
tor of technical services, one systems software programmer, and a director of
data base systems. All five became part of a project team.

98 DATA BASE MANAGEMENT

The Project Team

The function of the project team was to periodically bring together those
individuals involved with the details of the design, implementation, and oper
ation of the application. Members of the project team included a nucleus of
individuals who attended 'every meeting and several other individuals whose
attendance was required from time to time. The nucleus included individuals
representing the following functions:

• Divisional DBA
• Corporate DBA
• Systems programmer
• Applications project manager
• Auditor

Other functions from which representation was required frequently, but not
always, included:

• Divisional DP director
• Director of technical services
• Director of data base systems
• Divisional operations supervisor
• Corporate operations supervisor
• Director of systems software
• Various application programmers
• IBM systems engineer

In addition to the project team, there was a steering committee consisting of
individuals higher up in the divisional and corporate organizations. This com
mittee included:

• Corporate vice president of DP
• Divisional DP director
• Various divisional directors (the management of those functions that

were to use the system in its operational state)
• Corporate operations director

On some occasions, members of the project team would attend steering com
mittee meetings, thereby maintaining communications between the two
groups.

THE PRELIMINARY STAGES

By the end of 1976, several project team meeting~ had been held, and a
rudimentary IMS/vS batch processing system had been generated and was in
use. It had been determined that several additional data-base-related software
products were needed. The most pressing. need was for a data dictionary
system. Of secondary importance was the need for a product that would
facilitate the testing of online transactions by simulation in a batch processing
environment. Both products were ordered before the end of 1976. The simula
tor, an IBM product known as the Batch Terminal Simulator (BTS), was set
up first, simply because it was easy to install. It was operational almost
immediately. Implementing the data dictionary product was somewhat more
complicated.

IMSNS CASE STUDY 99

The need for a data dictionary was agreed upon by everyone involved with
the project because the idea of someone trying to keep field, record, file, and
data base information up to date and synchronized, with copies distributed to
all individuals who needed them, was judged an impossible task. The sugges
tion of a centralized computer file containing all the required information,
available on an inquiry basis, appealed to everyone.

Several products were evaluated, and the IBM data dictionary/directory
(DD/D) was selected. It was then decided that the DD/D should become the
first application to use the IMS/vS system within the data center environ
ment, especially because it could serve as an ideal test vehicle for the online
IMS/vS and the data communications facilities.

In April 1977 , the online and data communications feature of IMS/vS was
generated, and the DD/D became the first application to run online. The test
was successful, and in less than a month it was possible to begin testing online
transactions for the divisional applications.

During the remainder of 1977 and in early 1978, several significant factors
became apparent:

• Separate test and production facilities were needed.
• Other divisions were interested in DBMS.
• Staffing needs were increasing.
• Training was going to be expensive.
• Interfacing with other software would add to the complexity of required

support.

After the online facilities testing began, it became apparent that testing and
production could not be run on the same system. The architecture of the IMS/
VS online feature is such that it has a single control region performing all I/O
operations, while application transactions execute in separate regions, known
as message-processing regions. An individual transaction is executed in a
specific message-processing region, and the liD activities of the transaction
are channeled through the control region. In a testing environment, it is
expected that some transactions will process erroneously and abnormally
terminate (abend), creating extra work for the control region. Thus, produc
tion transactions, which are supposed to execute quickly, would be slowed if
they were executing while a test transaction was abending. Because one of the
data center's objectives was to provide an environment in which production
transactions could execute quickly, it was determined that separate facilities
would be required for testing and production. The result was a forecasted need
for twice the amount of resources Originally estimated.

In the spring of 1977, several other divisions began inquiring about the
capabilities of data base management, in general, and IMS/vS in particular.
To assist DP personnel in these divisions, project teams were set up similar to
those established in the fall of 1976. The experience gained by those already
involved was shared with those making the inquiries.

The inquiries were from divisions that had small applications in mind. For
example, one division wanted to put a master catalog of its products, cross-

100 DATA BASE MANAGEMENT

referenced with other material, into a data base system. Another division
wished to put up a sample tracking system using online IMS/vS facilities.
Both of these applications involved relatively small files and a small volume
of transactions. The project teams began initial analysis and design work.

It became apparent immediately that more people were needed in cOlporate
technical services and in data base systems software support and that a signifi
cant amount of IMS/vS education was required, especially in the area of data
base systems software. Therefore, two systems software specialists were
added during 1977, and in early 1978, two OBAs were added on the cotpOrate
side.

At that time, the IMS/VS online and data communications facilities and the
DOlO online feature were relatively new products. Consequently, no one was
experienced in their use or support. It was necessary to train both the data base
systems software specialists and the OBAs from the ground up. Divisional
OBAs and application programming personnel also required training. It was
estimated that training over a two-year period for cotpOrate OP and four
divisions could cost as much as $100,000. Since that time, IBM has dropped
many of the courses and has replaced them with self-study programs that are
somewhat less expensive. Table 10-1 contains a list of recommended courses,
arranged by job (costs are subject to change). Other vendors have developed
courses to fill the void left by IBM.

Other Technologies. IMS/VS and the DOlO were not the only complex
technologies that had to be dealt with in this implementation. Virtual storage
technology, more sophisticated computers, and a more complicated operating
system were very much a part of this, as were computer networks and tele
communications.

The whole idea of access methods had also changed. Access methods such
as BSAM, QSAM, BOAM, ISAM, and BTAM, which contain th~ program
modules necessary to transfer data between peripheral devices and computer
storage, were giving way to VSAM and VTAM. VSAM, although referred to
as an access method, is actually a complete data management facility capable
of cataloging and keeping statistics on data sets stored on direct-access storage
devices. VTAM is a complete telecommunications network facility that can
support computer-to-computer communications and multiple systems access
for terminals throughout the network.

In addition, the need for master terminal operations (MTO) support was
recognized. Another feature of the IMS/vS online data communications facil
ity is the master terminal. This function acts as IMS/vS system monitor,
controller, and troubleshooter. Each IMS/vS data base requires a dedicated
master terminal, with both a CRT terminal and a typewriter terminal. The
typewriter records all messages in hard-copy form; the master terminal opera
tor monitors and controls the system through the CRT terminal. The operator
participates in the starting and stopping of telecommunications lines and
terminals, displays system status, participates in recovery and restart opera
tions, and is the focal point for responding to user questions in a production

Table 10-1. Training Courses for IMSNS Implementation

Cost Systems Software
Course $ Managers Technicians
James Martin Seminar 1,150 X
Data Base Design and Administration 700 X
Leo Cohen Seminar 850 X
IMSNS Concepts and Facilities 0 X X
IMSNS Functions for Application Program- 410

ming
*IMSNS Data Base Implementation I 869 X
*IMSNS Data Base Implementation II 1,000 X
IMSNS Master Terminal Operations 345 X X
IMSNS Data Base Performance and Tun- 1,105 X

ing
IMSNS Data Communications Implementa- 1,530 X

tion
* DUI Application Programming 1,806 X
*IMSNS DC Application Programming 500 X
*IMSNS Message Format Service 325 X
IMSNS DC Performance Analysis 902 X

*IMSNS Systems Control 557 X
IMSNS-SNA Implementation 775 X

*VSAM Coding for OS/MVS 357 X
VSAM for Systems Programmers 709 X

* DB/DC Data Dictionary 571 X X

• Self-study courses

Application
DBAs Programmers

X X

X X
X X

X
X

X

X X
X X
X X

X

Operations
Personnel

X

X

~
C/)

<:
C/)

~
C/)
m
C/)
--I
C
o
-<

......
o

102 DATA BASE MANAGEMENT

environment. Concurrent with the recognition of the importance of this func
tion came an awareness of another software product, Control IMS Realtime,
from Boole and Babbage. It proved to be an extremely good investment
because it provided a window into the IMSIVS online and data communica
tions system.

Application Installation

By early 1978, the IMSIVS system was fairly well established, and the first
application, the accounts receivable and cash application system, was put into
production. The original intention had been to put everything in together
order entry, billing, shipping, and so on-but not all of the components were
ready. Special programs and procedures had to be created to compensate for
the fact that the newly installed accounts receivable and cash application
system had to interface with an existing non-IMSIVS system, rather than with
the planned IMSIVS system, which also was not ready. After a few initial
difficulties, however, the system: ran quite well.

During the remainder of 1978, the two smaller systems that were being
developed by the other divisions approached completion, and a new release of
IMSIVS was generated and installed. In addition, the order entry, billing, and
shipping application was postponed a few more times. Because of such de
lays, a peculiar situation began to develop.

When a problem is explained up the line in large organizations, there is a
tendency for distortions to creep in. IMSIVS and data base management were
starting to get a bad name; however, few of the reasons for the postponements
had anything to do with data base technology or IMSIVS. The problems were
those of magnitude; the proposed system was very large, both in terms of
transaction volume and file size. In addition, it became clear that the applica~
tion would require more than 24 hours to complete its daily processing cycle
whenever a significant problem occurred. Basically, the application had an
online requirement of 10 hours a day, 8:00 A.M. to 6:00 P.M., and a batch
requirement of 7 or 8 more hours. When the online portion of the system was
brought down in the evening, it was necessary to spend approximately four
hours in IMSIVS housekeeping, backing up data bases, consolidating log
files, and preparing performance statistics. Because these tasks required a
total of21 to 22 hours, only 2 hours were left to handle recovery and restart in
the event of problems. This led to what could be called an interesting political
climate.

In 1978, one of the key data base software technicians resigned to take a
better position outside the company. This was the first turnover on the corpo
rate side since the two groups had been established. (There was no further
turnover until the spring of 1980, when another data base software technician
was given a better position within another division of the company.) The
resigning individual was replaced by the second in command within the
group, and two more technicians were recruited from within the company,
bringing the data base systems software support complement to four: a man-

IMSNS CASE STUDY 103

ager and three systems software technicians. The corporate technical services
group had also added two more technicians, so now there were four DBAs.

The previously mentioned sample tracking system was put into production
in December 1978. This was the first system having a user located in another
city. The single biggest difficulty with this system's installation had been the
number of groups working on it. In addition to technical services and data
base system software, there were two application development teams that
participated in its implementation. The user division had a team involved, and
so did corporate DP. A few misunderstandings about who was to do what
occurred, and some premature commitments were made to the user. Based on
these commitments, the user cut over to production in October. In doing so,
the user had burned his bridges, so there was no going back. This system ran
"in production" from the user's point of view in the IMS/vS test control
region. This also caused political friction. By December, however, the misun
derstandings were overcome, and the application went into normal produc
tion. It processed between 10,000 and 15,000 transactions a day and had a
small batch processing cycle that ran overnight. Aside from the typical tele
communications problems that occasionally occur in applications using inter
state communications facilities, the application was trouble free.

In March 1979, the other division's master catalog application went into
production. The problems with that system were minimal and primarily re
lated to the user's lack of experience in data base and data communications
technology. Once those hurdles were cleared, the system functioned quite
well.

Another Major Thrust

By the spring of 1979, then, there were four small- to moderate-sized IMS/
VS applications in production: the DOlO, the accounts receivable/cash appli
cation system, the sample tracking system, and the master catalog system.
After a couple of postponements, the large order entry, billing, and shipping
system was being primed for another attempt at production in May 1979. At
the same time, still another division was preparing applications for produc
tion.

In 1978, this fourth division had made some preliminary investigations into
data base technology and IMS/VS and subsequently had made major commit
ments to use it. The commitments involved planning, data gathering, pilot
application development, and major application development. The division
reorganized its DP department and hired a number of new people. Planning
was begun, data gathering commenced, and the pilot application was started.
Several smaller applications were scheduled to begin after the planning and
data gathering were completed. The major application was contracted to IBM
for design, development, and implementation.

One of the small applications-a client, product, production, and shipping
status system-is essentiillly an inquiry system. The data bases are rather
small and transaction volume low. The one new difficulty with this system

104 DATA BASE MANAGEMENT

was the introduction of distributed intelligence. When originally conceived,
the application was somewhat larger; thus, a decision was made to implement
it in stages.

Tenninals using the application were to be located in four sites around the
country. These terminals were to be part of a local computer configuration,
which, in tum, would communicate to the host in the centrally located data
center. Support for these local computers was to be the responsibility of the
division; however, it was not that simple.

Specific software products were required in the data center's host computer
to support the local computers. At the time, no one at the data center had
experience with, or even the most basic training in, support of these devices.
Most of the problems associated with the implementation of this application
revolved around lack of experience in this area. As time passed, knowledge
was gained, but it was a slow and sometimes painful process. It is to the credit
of the project manager that, with all these difficulties, the delay in the installa
tion schedule was less than two months. This application went into production
in June 1979.

Thus, by June 1979, there were five IMS/VS applications in production,
six project teams were meeting, and a seventh was about to be formed because
another division expressed interest in IMS/vS. There were project teams for:

• The order entry, billing, and shipping application
• The client, product, production, and shipping status application
• A forecasting application, building on the master catalog application
• A financial commitments and disbursements application
• A second accounts receivable/cash application system for another divi

sion, using much of the first division's system
• A marketing data base system
• A circulation revenue information system

Of these, the marketing data base system represented the most significant
development (except for the order entry, billing, and shipping application,
which had been postponed again and rescheduled for October 1979). This
system was scheduled for partial implementation in late summer, 1980.

During the spring of 1979, both data base system software and technical
services added one staff member. There were then five DBAs and five sys
tems software programmers. Of the systems software programmers, one was
a manager.

By late summer on979, technical services, data base software, and other
technical support functions at the data center were spending an inordinate
amount of time attempting to resolve problems concerning the local comput
ers used in the client, product, production, and shipping-status system. At
tempting to identify the source of the problem was a frustrating part of the
problem-solving effort. Technicians from different disciplines are often too
busy with problems that have already been defined to collaborate in isolating a
problem that may be someone else's.

The autumn of 1979 was a time of tremendous activity because the post
poned order entry, billing, and shipping system was readied for implementa-

IMSNS CASE STUDY 105

tion. Procedures were developed for the conversion, for the production sys
tem, and for Plan B, the procedure for going back to the old system if the new
system malfunctioned. After a week of day and night activity, however, the
system did not work. The -online data communications portion of the system
worked reasonably well, but several batch programs did not, and there was
not enough time in the day to finish the cycle. Plan B went into effect, and the
existing system was reactivated. After frustration levels began to decline, a
new target date was set for late January 1980.

In situations such as the one just described, a certain amount of animosity
builds up at all levels of an organization; a we/they mentality can develop.
November and December 1979 were spent regrouping and getting ready for
the January target date. Tempers subsided, and recriminations and accusa
tions died down. This situation had become so tense that cooperation between
divisional and corporate personnel was superficial and rather grudgingly
achieved. Because of the tension, hard work, long hours, second guessing,
and misunderstandings, individuals on each side were working in survival
mode.

In January 1980, however, a second attempt worked. It took all of Febru
ary and most of March for the system to settle down, but it eventually did. By
June 1980, it was actually performing better in some respects than had origi
nally been anticipated.

WHAT WAS LEARNED

In the four years since data base and data base management systems were
proposed, experience has provided some important insights. The project has
also shown that some of the concerns about data base technology receive far
too much attention at the expense of other important issues.

Planning Considerations. There is a great deal of discussion and litera
ture dealing with the relative merits of data bases, hierarchical structures, and
networks. Much of this is esoteric and primarily for the enlightenment of
those who can understand it; it actually has little significance in the real-world
situations in which DBMSs are found. Other factors, however, are of greater
significance.

The advantages of one DBMS over another is another subject that is
terribly overworked. The applications for the proposed DBMS and the operat
ing environment into which it must be integrated, for example, represent two
much more important considerations in selecting a DBMS. Discussing the
relative merits of TOTAL, IMS/vS, SYSTEM 2000, and IDMS, without
having a particular application in mind, is somewhat like discussing the
relative athletic capabilities of Reggie Jackson, Johnny Bench, Steve Carlton,
and Pete Rose. All are recognized and proven, but the application to which
they are assigned is an important evaluation factor.

Staffing and Training. Once IMS/VS had been selected as the appropriate
DBMS, the first concern was that of staffmg. Skilled people of three types

106 DATA BASE MANAGEMENT

were needed: systems software technicians, file and data base designers, and
application programmers. The latter, as it turned out, required less training
than anticipated and were productive within a couple of months. An IMS/VS
Concepts and Facilities course, a three-day course called Application- Pro
gramming in an IMS/vS DB Environment, a two-day course called Applica
tion Programming in an IMS/vS DC environment, and another two-day
course in IMS/vS Message Fonnat Services (MFS) were all that were neces
sary for application programmer training. These four courses offered an over
view of the concept and facilities of IMS/vS; illustrated how to write Data
Language/I (DLlI) instructions that were integrated into PLlI, COBOL, or
Assembler language programs; and taught how to prepare display formats for
mM 3270 CRT terminals. (DLlI, the IMS/vS I/O language, facilitates the
transfer of data elements, called segments, between auxiliary storage devices
and computer memory. MFS, a utility feature of IMS/vS, acts as an editor/
interface between messages appearing in application programs and displays
appearing on terminal devices.) Within two months of taking these courses
and after using what they had been taught, programmers were producing
executable IMS/vS application programs.

The data base administrators and systems programmers eventually at
tended these courses, also. The DBAs took a few more courses initially and
the system programmers took several more over an I8-month period so that
training was accomplished both in the classroom and on the job. Members of
both groups functioned on the job while they were learning. The courses
taught the practical realities of using IMS/vS, the DDID, and several other
data base management productivity aids and support products and their inte
gration into the daily data center operation. When individuals were added to
the staffs, they received the same training as did their predecessors.

Job Functions. Sketchy job descriptions had been written initially but
only because the personnel department required them so as to determine job
levels and salaries. Over time, however, these jobs began to include specific
functions. The application programmer job description was affected the least;
it was modified slightly to require DL/I and MFS experience. Other job
descriptions were completely rewritten. For example, the DBA function in
cluded experience in:

• DLiI and MFS
• File and data base design
• Data base definition (DBD)
• Program specification block (PSB)
• Data dictionary/directory (DD/D)
• Data base system standards
• Data base system product evaluation
• Generation of DBD and PSB control blocks
• Data base reorganization
• Interface between divisional and corporate personnel
• Data base design review

IMSNS CASE STUDY 107

As the DBAs developed, they gained a wide range of technical and political
skills.

The data base systems software technicians evolved into a highly valuable
group of individuals. Their skills included:

• Data base system generations (GENS)
• Troubleshooting
• Supporting related data base system products
• Perfonnance measuring and tuning
• Interfacing with data center operations
• Answering technical questions from various sources
• Assisting with application implementation
• Maintaining data base integrity (recovery and restart procedures)
• Assisting with data base reorganization
• Assisting with data base backup operations
• Enhancing data base systems software
• Handling the telecommunications software interface
• Handling the security software interface
• Handling the operating systems software interface

The corporate DBAs and the data base system software technicians serve in
support roles. The DBA primarily functions in the design and development
stages of a project; this role diminishes, however, as implementation ap
proaches. The role of the system software technician, on the other hand, is
minor during design and development; his or her involvement increases dur
ing implementation. Note that individuals from both groups belonged to the
several project teams that were functioning during a given time interval.

Standards. Because a cooperative effort between the two groups was
required, a set of internal data base and data dictionary standards was formu
lated. These standards were issued piecemeal but were ultimately published,
about a year after IMS/vS was installed, as an internal standards manual.
This manual is periodically modified; Table 10-2 shows the manual's table of
contents.

Installation. DBAs and systems programmers had to address other situa
tions that arose after the commitment to DBMS. These situations, which are
described in the following paragraphs, are concerned with the installation of
IMS/vS, the DDID, and related products in the corporate data order de
scribed earlier.

Integrating a DBMS into an existing environment probably involves in
stalling at least two generations: one for testing and development work, one
for production. In organizations having multiple divisional users of the
DBMS, more than two generations are needed if the existing resource billing
system is unable to separate the various users.

As DBMS applications are developed, several sets of fIles or data bases
may be needed (e.g., a complete set for the production systems, a separate

108 DATA BASE MANAGEMENT

Table 10-2. Standards Manual Table of Contents

Section Description
1. Naming Conventions Complete naming convention

requirements for alllMS applications.
2. DUI Programming Techniques DUI coding standards and guidelines for

better performance of programs under
IMS.

3. IMS PU1 Programming Techniques PU1 coding standards and guidelines to
be used for alllMS PU1 applications.

4. MFS Standards/Guidelines Message Formatting Services standards
and guidelines required to efficiently
map IMS messages with devices.

5. Library Organization and Application Complete list of test and production
Procedures library names to be used for alllMS

applications; IMS application PROCs
for divisional use.

6. User Application Code in IMS Control Information about user-written routines
Region for data base maintenance and

available .IMS data communications
exits, as well as standards for using
each feature.

7. Broadcasting Messages and IMS
System Commands for Divisional Use

Identification of broadcast messages
and switches and a list of commands
that can be entered by divisional users
ofiMS.

8. DLIERROR User documentation for the IMS Status
Code Analyzer, DLIERROR, which
must be included in alllMS programs
developed in or for the organization.

9. System Trouble Sheets The Data Center System Trouble Sheet
forms and instructions for reporting
IMS computer system problems.

10. System Resource and Transaction The data center forms and instructions
Security Forms needed to transmit system resources

and transaction security requirements
to the IMS software staff.

11. Data Dictionary/Directory Standards Forms and instructions designed for use
by the systems/programming user or
divisional DBA to define data to the
DO/D. AIlIMS-related information to be
defined must be entered into the
DO/D.

12. Glossary of Standard Abbreviations of Construction of standard abbreviated
Business Keywords for PU1 Data keywords (commonly used business
Names terms), along with standards and rules

for constructing PU1 data names for

13. Sparse Index Routines and Customized
use in IMS applications.

Divisional testing and implementation
Randomizer Routines procedures for IMS Sparse Index

routines, as well as customized IMS
Randomizer routines.

14. IMS Maintenance Procedures Information concerning data dictionary
updates, Division News Data Sets,
ACBGEN schedules, IMS production
maintenance checklist form, batch to
online test steps, and online test to
production steps.

15. IMS Restart/Recovery Applications requirements to take
advantage of the IMS backup and

16. Unusual Abend Conditions and
recovery s(stem.

Collection 0 unusual abend conditions
Inefficient Processing encountered using IMS; also,

inefficient processing techniques to
avoid.

!MSNS CASE STUDY 109

subset for systems or volume testing, another subset for batch and unit test
ing). Careful attention should be given to direct-access storage device
(DASD) estimates. Experience has shown that DASD requirements are often
underestimated.

DBMSs in a data center environment either use or interface with the
facilities of other software that is often equally if not more complex than the
DBMS software itself. For example, in an IBM equipment configuration,
interfaces must be established to such products as VSAM and VTAM. IMS/
VS also uses the facilities of MVS (a sophisticated operating system). Some
knowledge of each of these facilities is necessary for the DBAs and systems
software technicians.

In addition to the support for the DBMS package itself, support is required
for other related products. Included in this group is the already mentioned
DO/D. There may also be a requirement for a report writer like MCAUTO's
MRCS. Some users request any package that appears to facilitate their appli
cations development work. Batch Terminal Simulator (BTS) is a package that
tests online programs in a batch environment. IMSMAP is a productivity aid
that produces graphic representations of logical data base schemas and sub
schemas. DB PROTOTYPE aids in testing various data base structures to
evaluate alternatives. These are just a few of many.

Within IMS/VS-DC there is a feature known as the master terminal. A
master terminal operator (MTO) who is, from an operations perspective, the
owner/caretaker of the systems is required. This function is staffed with an
individual who can respond to unexpected situations. This person must also
act as the interpersonal communications interface for all IMS/vS users. The
MTO is the first line of defense. When something goes wrong, the MTO is
generally the first person on the corporate side to know about it, either
through a message on the master terminal or a phone call from a user.

There are some aspects of IMS/vS where timing is very important. Al
though they seem almost too obvious to state, they are sometimes overlooked
by overly optimistic application developers. Recoveries of large-scale data
bases, for example, can be elaborate and time-consuming. The longest outage
during the last four years was a recovery situation that took three days from
the occurrence of the error to the point of restoring the data bases to usable
condition. Although the system had indicated a probable error, it was decided
to run a day's work online. When checked at end of day, it was found that a
major data base had been damaged. Several hours were spent planning recov
ery, several more executing it, and several more checking the results. That
was an extreme case, however; most recoveries are completed within min
utes, while some take an hour or two.

Reorganization of a large-scale data base often takes several hours. In
theory, reorganization should not be required often if data bases are designed
properly. In practice, however, parameters change, users think of new ideas,
and the data bases, as designed, are no longer adequate. Thus, reorganization
should be anticipated. For applications requiring most of a 20-hour day to
process, reorganizations must be scheduled on weekends.

110 DATABASE MANAGEMENT

Data bases must be backed up periodically. A dynamic data base, one that
is updated frequently, should be backed up daily. Although this is time
consuming, it must be planned as part of the daily schedule. Waiting longer
saves daily processing time, but the trade-off is that recovery, when needed,
may be substantially longer and more complex.

People are not machines. Every attempt should be made to spread respon
sibilities for critical tasks among as many individuals as possible. Too much
responsibility can cause individuals to make mistakes, become ill, or resign.
Each of these consequences is undesirable.

CONCLUSION

IMSIVS is a complex system, especially when run as a multiple-user
system in a multiple-machine, multiple-user environment. Implementation
time, amount of training, training costs, and so on often exceed original
estimates.

Some generalizations can be gleaned from the experience of IMSIVS im
plementation. Speed of retrieval is traded for simplicity of function. Retrieval
is quick, but file maintenance can be appreciably slower than with conven
tional files. Although data redundancy is reduced, processing complexity is
increased (this is the old space/processing trade-off). Data independence, the
isolation of data files from programs, creates more productive application
programming and less complex maintenance of both files and programs. The
primary trade-off, however, is the creation of a whole new technical
specialization-data base administration-with a high . price tag.

