UNIX®
SYSTEM V
Release 4

System Calls
and Library Functions
Reference Manual

for

Motorola Processors

@ MOTOROLA

4

UNIX®
SYSTEM V
Release 4

System Calls
and Library Functions
Reference Manual

U for U
0 Motorola Processors |

@ MOTOROLA

© COPYRIGHT MOTOROLA 1993
ALL RIGHTS RESERVED
Printed in the United States of America.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990 AT&T
© Copyright 1991, 1992 UNIX System Laboratories, Inc.
ALL RIGHTS RESERVED
Printed in the United States of America.
= Published by PTR Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

LI

OWNERSHIP
Portions of this documentation product(s) were contributed and copyrighted by Motorola, Inc.

REPRODUCTION/USE/DISCLOSURE
This documentation is copyrighted material. Making unauthorized copies is prohibited by law. No
part of this material may be reproduced or copied in man- or machine-readable form in any tangible
medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic,
mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission
of Motorola, Inc.

NOTICE REGARDING DISCLAIMER OF WARRANTIES
The following does not apply where such provisions are inconsistent with local law; some states do not
allow disclaimers of express or implied warranties in certain transactions - therefore, this statement
may not apply to you. UNLESS OTHERWISE PROVIDED BY WRITTEN AGREEMENT WITH
MOTOROLA, INC., THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

ERRORS/CHANGES (MOTOROLA)
While reasonable efforts have been made to assure the accuracy of this documentation, Motorola, Inc.
assumes no liability resulting from any omissions in this documentation or from the use of the
information contained therein. Motorola reserves the right to revise this documentation and to make
changes from time to time in the content hereof without obligation to notify any person of such revision
or changes.

10987654321

ISBN D0-13-035841-X

IMPORTANT NOTE TO USERS (USL)
While every effort has been made to ensure the accuracy of all information in this documentation, UNIX
System Laboratories, Inc. (USL) assumes no liabilities to any party for any loss or damage caused by
errors or omissions or by statements of any kind in this documentation, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence, accident,
or any other cause. USL further assumes no liability arising out of the application or use of any product
or system described herein, nor any liability for incidental or consequential damages arising from the
use of this documentation. USL disclaims all warranties regarding the information contained herein,
whether expressed, implied, or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of any license to make, use or sell equipment constructed in accordance with
such descriptions. USL reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design.

PRODUCT AVAILABILITY
It is possible that this publication may contain reference to, or information about Motorola products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that Motorola intends to announce such
Motorola products, programming, or services in your country.

GNU C COMPILER
The GNU C compiler is a product of the Free Software Foundation, Inc. and is subject to the GNU
General Public License as published by the Free Software Foundation. You should have received a
copy of the GNU General Public License along with the GNU C compiler product; if not, contact:

Free Software Foundation

675 Massachusetts Ave.
Cambridge, Massachusetts 02139
US.A.

THIS PROGRAM IS PROVIDED WITHOUT ANY WARRANTY, INCLUDING THE IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Under the General Public License for GNU C you have the freedom to distribute copies of GNU C,
obtain source code if you want it, change the software, or use pieces of it in new free programs.

The GNU C compiler has been modified by Motorola, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(0)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.

MOTOROLA, INC.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282

TRADEMARKS
Motorola and the Motorola logo are registered trademarks of Motorola, Inc. in the U.S.A. and in other
countries.
DeltaPRO, DeltaSeries, DeltaSERVER, M88000, SYSTEM V /68, and SYSTEM V /88 are trademarks of
Motorola, Inc. in the U.S.A.
All other marks are trademarks or registered trademarks of their respective holders.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
OSF/Motif is a trademark of The Open Software Foundation Inc.

GNU C is a trademark of the Free Software Foundation.

Table of Contents

System Calls(2), Functions(3), and Miscellaneous Facilities(5)

intro(2) ... introduction to system calls and error numbers

INETO (3) wroiereirieeeeeieie ettt tse e teee s es et ebe ettt se s s et s eeeseaes introduction to functions and libraries
INEFO (BM) ettt introduction to math libraries
INETO (5) cvveveveeeieerieirte ettt ettt ettt ettt e nenene introduction to miscellany
ITIETO (2) 1veveereeerieeeeieteee et cereete ettt ea et sttt bt st e seae bttt b ket ae st st b et et aeresas b s sest s s s en s it intro
a641,164a(3C) ..o convert between long integer and base-64 ASCII string
ADOTE(3C) vt s .. generate an abnormal termination signal
ADS, 1aDS(BC) oottt return integer absolute value
accept(3N) OSSO accept a connection on a socket
ACCESS(2) vvvrrererereerieeereeeee et e determine accessibility of a file
ACCE(2) cvoveverererrreiit ettt e ettt et enable or disable process accounting
AAASEV (BC) vt define additional severities
addseverity (3C)ccoonvue build a list of severity levels for an application for use with fmtmsg
adjtime(2) correct the time to allow synchronization of the system clock
alarm(2) ettt ettt e set a process alarm clock
alloca(3) et eteteteereteeueeteteterseseteaeas et eatas s et et ettt es e s et s ebebenee b et ese et ebeseatetesannen memory allocator
assert (3X) e en verify program assertion
ALEXIE(BC) vt add program termination routine
basename (3G) . . . return the last element of a path name
bessel: j0, j1, jn, y0, y1, yn(3M) e s Bessel functions
DEELS (BG) cooverrrrcrreiiriieret et read stream up to next delimiter
bind (3N) . ettt taes bind a name to a socket
brk, sbrk(2) e change data segment space allocation
bsearch(3C) st et nenens binary search a sorted table
bstring: bcopy, bcmp, bzero, (3) ... bit and byte string operations
bufsplit (3G)ccvvvriiiiiiciii e . split buffer into fields
byteorder, htonl, htons, ntohl, ntohs (3N)

.............. convert values between host and network byte order
catgets(3C) SRR s read a program message
catopen, catclose(3C) et open/close a message catalog
chdir, fchdir(2) ..ooceeeveevevceneeerecrcrreeeeeeschange working directory
chmod, fchmod(2) ...coocoeveereeecemninerereeceeeanes SO O T OTROTU RPN change mode of file
chown, Ichown, fChOWIN(2)oooviviriieeiciiceecreeteecscereeene change owner and group of a file
ChIOO(2) woveveeriecieeiectiet s - change root directory
ChSIZE(2) cevverereereerecrereeeieeseeeseesesceeneneases change the size of a file
CLOCK(BC) vttt report CPU time used
CLOSE(2) wvveeereeeirirereeii ettt close a file descriptor
connect(3N) . . SRR initiate a connection on a socket

Table of Contents 1

Table of Contents

conv: toupper, tolower, _toupper, _tolower, toascii(3C) . translate characters
COPYLISE(BG) corrverirrrrriseercrir st copy a file into memory
CTEAL(2) cervrerieirieiererreereirtrts et asa e ssenns create a new file or rewrite an existing one
CTEALSEIM (2) .eeeierecneiiceciei ettt ettt create an instance of a binary semaphore
crypt, setkey, encrypt(3C) ... generate encryption
CTYPEBX) oo password and file encryption functions
CSYNC(2) vt sss s s designate portions of memory safe for execution
CEEIMIA (3S) ..eeeiveieieeeieeiee ettt . generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C)ccoovvrvniriiirinncn. convert date and time to string
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,

isprint, isgraph, i5ascii(3C)ccoeiriirrreeiieecer s character handling

curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,

mvaddchnstr, mvwaddchstr, mvwaddchnstr(3X)

... add string of characters (and attributes) to a curses window
curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar(3X)

............................... add a character (with attributes) to a curses window and advance cursor
curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr, mvwaddstr,

mvwaddnstr(3X) add a string of characters to a curses window and advance cursor
curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar,
wechowchar(3X)

............... add a wchar_t character (with attributes) to a curses window and advance cursor
curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,

mvaddnwstr, mvwaddwstr, mvwaddnwstr(3X)

............................ add a string of wchar_t characters to a curses window and advance cursor
curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,

mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr(3X)

........ add string of wchar_t characters (and attributes) to a curses window

curs_attr: attroff, wattroff, attron, wattron, attrset, wattrset, standend, wstandend,

standout, wstandout(3X) curses character and window attribute control routines
curs_beep: beep, flash (3X)ccccocevvviuviniincnncs curses bell and screen flash routines
curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd (3X)

................. .curses window background manipulation routines
curs_border: border, wborder, box hline, whline, vline, wvline(3X)

........................... create curses borders, horizontal and vertical lines
curs_clear: erase, werase, clear wclear clrtobot, wclrtobot, clrtoeol, wclrtoeol (3X)
. . clear all or part of a curses window
curs_color: start_color, init_pair, init_color, has_colors, can_change_color,

color_content, pair_content(3X) curses color manipulation routines

2 System Calls and Library Functions Reference Manual

S Table of Contents

curs_delch: delch, wdelch, mvdelch, mvwdelch (3X)

.. delete character under cursor in a curses window
curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln (3X)

... . delete and insert lines in a curses window
curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch(3X)

........ get (or push back) characters from curses terminal keyboard

curs_getstr: getstr, getnstr, wgetstr, wgetnstr, mvgetstr, mvgetnstr, mvwgetstr,

mvwgetnstr(3X) ..o, get character strings from curses terminal keyboard
curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch (3X)
. get (or push back) wchar_t characters from curses terminal keyboard
curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,

mvwgetwstr, mvwgetnwstr(3X)

.. get wchar_t character strings from curses terminal keyboard
curs_getyx: getyx, getparyx, getbegyx, getmaxyx(3X)

......... get curses cursor and window coordinates
curs_inch: inch, winch, mvinch, mvwinch (3X)
get a character and its attributes from a curses window
curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,

mvwinchstr, mvwinchnstr(3X)

.. get a string of characters (and attributes) from a curses window
curs_initscr: initscr, newterm, endwin, isendwin, set_term, delscreen (3X)
.curses screen initialization and manipulation routines
curs_inopts: cbreak nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta,

nodelay, notimeout, raw, noraw, noqiflush, giflush, timeout, wtimeout,

typeahead (3X)cccvvucucuiunciiiiiciciciciceeanae curses terminal input option control routines
curs_insch: insch, winsch, mvinsch, mvwinsch (3X)

............................ insert a character before the character under the cursor in a curses window
curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,

mvwinsnstr(3X) insert string before character under the cursor in a curses window
curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,
MVWINNSEE(3X) cvevveceeiecieieireereiecieneereneeene get a string of characters from a curses window

curs_inswch: inswch, winswch, mvinswch, mvwinswch (3X)
............ insert a wchar_t character before the character under the cursor in a curses window
curs_instr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,
mvwinswstr, mvwinsnwstr(3X)
............................ insert wchar_t string before character under the cursor in a curses window
curs_inwch: inwch, winwch, mvinwch, mvwinwch (3X)
............ get a wchar_t character and its attributes from a curses window

Table of Contents 3

Table of Contents

curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr(3X)
................................ get a string of wchar_t characters (and attributes) from a curses window
curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr, mvwinwstr,
mvwinnwstr(3X) ...ccoceveeerereeenerennen. get a string of wchar_t characters from a curses window
curs_kernel: def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode,
resetty, savetty, getsyx, setsyx, ripoffline, curs_set, napms(3X)
.. low-level curses routines

curs_move: move, WIMOVe (3X)cccoceereerrerierreerernenenens move curses window cursor
curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg, wsetscrreg, scrollok,
nl, nonl(3X) v curses terminal output option control routines

curs_overlay: overlay, overwrite, copywin(3X)
...................... overlap and manipulate overlapped curses windows

curs_pad: newpad, subpad, prefresh, pnoutrefresh, pechochar, pechowchar(3X)

.................. . crrnnnen Create and display curses pads
curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw (3X)

... print formatted output in curses windows
curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin, wredrawlIn (3X)

.. refresh curses windows and lines
curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw (3X)

................................ convert formatted input from a curses window
curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set(3X)

..........read (write) a curses screen from (to) a file
curs_scroll: scroll, srcl, WSCI1(3X) ..occvciveeieririeieireeeeeetesesese e eae e scroll a curses window
curs_slk: slk_init, slk_set, slk_refresh, slk_noutrefresh, slk_label, slk_clear,

slk_restore, slk_touch, slk_attron, slk_attrset, slk_attroff(3X) curses soft label routines
curs_termattrs: baudrate, erasechar, has_ic, has_il, killchar, longname, termattrs,

termname (3X)ccovvcuieiniciiie s curses environment query routines
curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs(3X)

.. curses interfaces (emulated) to the termcap library
curs_terminfo: setupterm, setterm, set_curterm, del_curterm, restartterm, tparm,

tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr(3X)

........................ curses interfaces to terminfo database

curs_ touch touchwin, touchline, untouchwm wtouchln, is_linetouched,

is_ WiINtoUChed (3X) ..c.oveureeeeerrisireieinireeresscesesses e ssessesssesenns curses refresh control routines
curs_util: unctrl, keyname, filter, use_env, putwin, getwin, delay_output,

flushinp (3X) .miscellaneous curses utility routines
curs_window: newwin, delwin, mvwin, subwm, derwin, mvderwin, dupwin,

wsyncup, syncok, weursyncup, wsyncdown (3X)ccceeeeceieerreennnn. create curses windows
curses (3X) ..o CRT screen handling and optimization package

4 System Calls and Library Functions Reference Manual

_ Table of Contents

CUSETIA (3S) ceovrieeeiirencieiereicreieie ettt ses et ese s s s sesesesnenes get character login name of the user
dbm: dbminit, dbmclose, fetch, store, delete, firstkey, nextkey(3) data base subroutines
decimal_to_floating: decimal_to_single, decimal_to_double,

decimal_to_extended (3)cceceorvinirrrinennnne. convert decimal record to floating-point value

dial(BC) oo establish an outgoing terminal line connection
Aifftime (BC) veeeeeeereeieeeee e computes the difference between two calendar times
opendir, readdir, telldir, seekdir, rewinddir, closedir(3)ccccocoeurvrriurininncen. directory operations
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C) directory operations
dirname (3G) ...cococvvveninennnreeeeeeeeeeeeeeeas report the parent directory name of a file path name
iV, IdiV (3C) ceeiieieeeeeee ettt compute the quotient and remainder
ALCLOSE(BX) ettt ettt sttt close a shared object
A1erTOr(3X) covoieiii e get diagnostic information
ALOPEN(3X) coreeriiiiieieieieieiceie ettt sttt aes open a shared object
AISYM(BX) oo get the address of a symbol in shared object
AOCONTIG(BN) oo seses execute a configuration script
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48(3C)
.. generate uniformly distributed pseudo-random numbers
AUP (2) v duplicate an open file descriptor
AUP2(3C) vt duplicate an open file descriptor
econvert, fconvert, geonvert, seconvert, sfconvert, sgconvert ((C) IS output conversion
ecvt, fevt, geVt(3C) i convert floating-point number to string

CIE(BE) ottt es object file access library
elf_begin(3E) ettt ettt b et b ettt et ees make a file descriptor
elf_cntl(3E)control a file descriptor
elf end(3E) OO <wvsrveeenen. finish using an object file

elf_errmsg, elf_ermnoO(3E)ccoourviiicccc e error handling
ELf_fIIL(BE) ceeiiuiueieieirieieeeicetete et cs st eas ettt sttt a s s st e sen et ennsnn set fill byte
elf_flagdata, elf_flagehdr, elf flagelf, elf flagphdr, elf_flagscn, elf_flagshdr(3E)

R e Rt nn i manipulate flags
elf fsize: elf32_fSize(3E)ccccovuuvirreumervererireieeeececeieneeeeeenenens return the size of an object file type
elf_getarhdr(3E)ccccoouiiiiiiiiiiiicccrceccecc e retrieve archive member header
elf_getarsym (3E)cooeviiriiiiiicc s retrieve archive symbol table
elf_getbase(3E) ... get the base offset for an object file
elf_getdata, elf newdata, elf_rawdata(3E) . ettt b e bereerenees get section data
elf_getehdr: elf32_getehdr, elf32_newehdr(3E) retrieve class-dependent object file header
elf_getident(3E)cccooeuiimiiiiiccc s retrieve file identification data
elf_getphdr: elf32_getphdr, elf32_newphdr(3E)

... retrieve class-dependent program header table
elf_getscn, elf ndxscn, elf_newscn, elf_nextscn(3E)ccovvurevcurcencnncee get section information
elf_getshdr: elf32_getshdr(3E)ccccccoveueeneirirnniccrnncance retrieve class-dependent section header

Table of Contents 5

Table of Contents

elf_hash(3E) compute hash value
elf_kind(3E) determine file type
elf_next(3E) ..ccoovreeerreererenene sequential archive member access
elf rand(3E) random archive member access
Elf_TaWFIE(BE) ...uoeiieececenieee et easse et et se e nenes retrieve uninterpreted file contents
elf_strptr(3E) make a string pointer
elf_update(3E) ... s update an ELF descriptor
elf_version(3E) coordinate ELF library and application versions
elf_xlate: elf32_xlatetof, elf32_xlatetom(3E)cccecoeevnueverurecncnnne class-dependent data translation
end, etext, edata(3C) ... e last locations in program
erf, erfc(3M) . error function and complementary error function
ethers(3N) . Ethernet address mapping operations
eucioctl(5) covveererrenenee .. generic interface to EUC handling TTY drivers and modules
exec: execl, execv, execle, execve, execlp, eXecvp(2)ccoovvvuerne. execute a file
exit, _exit(2) .terminate process

exp, expf, cbrt, log, logf, 1og10, log10f, pow, powf, sqrt, sqrtf(3M)
....... exponential, logarithm, power, square root functions

fattach (3C)

.............. attach a STREAMS-based file descriptor to an object in the file system name space
fclose, fflush(3S) close or flush a stream
fentl(2) file control
fentl(5) . file control options
fdetach(3C) . detach a name from a STREAMS-based file descriptor
ferror, feof, clearerr, fileno (3S) . stream status inquiries
IS (BC) wvrevrmeecneieireeinieiseetseaet ettt st ees et b seae find first set bit
floatingpoint(3)cccccecueuerucunnc. .. IEEE floating point definitions

floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint, remainder(3M)
........ floor, ceiling, remainder, absolute value functions
floating_to_decimal: single_to_decimal, double_to_decimal,

extended_to_decimal(3) ..cccccoevevrrrrrrrenuennnnes convert floating-point value to decimal record
fmtmsg(3C) oo, ..display a message on stderr or system console
fopen, freopen, fdopen(3S)cccccvvuerrvrirrreerreierncieene. open a stream
fopen, freopen, fdopen(3S) open a stream
fork(2) create a new process
form_cursor: pos_form_cursor(3X)ccccecveunnn. position forms window cursor

form_data: data_ahead, data_behind (3X)

.. tell if forms field has off-screen data ahead or behind
form_driver(3X)ccccovveviiiunne command processor for the forms subsystem
form_field: set_form_fields, form ﬁelds field_count, move_field (3X) connect fields to forms

6 System Calls and Library Functions Reference Manual

S } R _.___ Table of Contents

form_field_attributes: set_field_fore, field_fore, set_field_back, field_back,

set_field_pad, field_pad(3X)cccccovurrrrecurrunnn. format the general display attributes of forms
form_field_buffer: set_field_buffer, field_buffer, set_field_status, field_status,

set_max_field (3X) ..c.cvrreeeieieeeeteee s set and get forms field attributes
form_field_info: field_info, dynamic_field_info(3X) get forms field characteristics
form_field_just: set_field_just, field_just(3X) format the general appearance of forms
form_field_new: new_field, dup_field, link_field, free_field, (3X)

... create and destroy forms fields
form_field_opts: set_field opts f1e1d _opts_on, field_opts_off, field_opts(3X)

... forms field option routines
form_field_userptr: set_field_userptr, field_userptr(3X)

.. associate application data with forms
form_field_validation: set_field_type, field_type, field_arg(3X)

... forms field data type validation
form_fieldtype: new_fieldtype, free_fieldtype, set_fieldtype_arg,

set_fieldtype_choice, link_fieldtype(3X) ..o forms fieldtype routines
form_hook: set_form_init, form_init, set_form_term, form_term, set_field_init,

field_init, set_field_term, field_term (3X)

... assign application-specific routines for invocation by forms
form_new: new_form, free_form(3X)cccceeruereune.. create and destroy forms
form_new_page: set_new_page, New_page(3X)ccooorwrrrrrieiiminiiniensisniesienis forms pagination
form_opts: set_form_opts, form_opts_on, form_opts_off, form_opts(3X)

... forms option routines
form_page: set_form_page, form_page, set_current_field, current_field,

field_index(3X) ..ot set forms current page and field
form_post: post_form, unpost_form(3X) write or erase forms from associated subwindows
form_userptr: set_form_userptr, form_userptr(3X) associate application data with forms

form_win: set_form_win, form_win, set_form_sub, form_sub, scale_form (3X)

.......................... . forms window and subwindow association routines
fOrmMS (3X) et .character based forms package
fpathconf, pathconf(2) ... get configurable pathname variables
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky (3C)

. ettt aeae .IEEE floating-point environment control
fread, fwrite(3S5) ettt et binary input/output
frexp, Idexp, logb, modf, modff, nextafter, scalb (3C)
manipulate parts of floating-point numbers

fseek, rewind, ftell (3S) ... reposition a file pointer in a stream
fsetpos, fgetpos(3C) ...reposition a file pointer in a stream
537 11 (72 synchronize a file's in-memory state with that on the physical medium
FEINE (2) ettt get time and date

Table of Contents 7

Table of Contents

ftime(3C) . . get date and time
ftw, nftw (3C) bRt walk a file tree
gamma, lgamma (3M) . log gamma function
getc, getchar, fgetc, getw (3S) get character or word from a stream
getcontext, setcontext(2) get and set current user context
EECWA(3C) couveiitreccrcr e get pathname of current working directory
getdate(3C) convert user format date and time
getdents(2)ccoceeieieiinnnes read directory entries and put in a file system independent format
getdtablesize(3) get descriptor table size
EtENV (BC) vttt return value for environment name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent(3C)cccevuuune. get group file entry
getgroups, setgroups(2) . . get or set supplementary group access list IDs
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent, herror(3N)
get network host entry
gethostid (3) get unique identifier of current host
gethostname, sethostname(3)............... ... get/set name of current host
getitimer, setitimer(3C) get/set value of interval timer
getlogin (3C) get login name
getmntent, getmntany (3C) get mnttab file entry
getmsg(2) get next message off a stream
getnetconfig (3N) .get network configuration database entry
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent(3N) get network entry
getnetgrent, setnetgrent, endnetgrent, innetgr(3N) get network group entry
getnetpath(BN) ..o get netconfig entry corresponding to NETPATH component
getopt(3C) .get option letter from argument vector
getpagesize(3) get system page size
getpass(3C) read a password
getpeername (3N)ccovuvcvciriiriernnnns ..get name of connected peer
getpid, getpgrp, getppid, getpgid(2) get process, process group, and parent process IDs
getpriority, setpriority(3) get/set program scheduling priority
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent (3N)
. get protocol entry
getpw (3C) . get name from UID

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C)
manipulate password file entry

getrlimit, setrlimit(2) control maximum system resource consumption
getrusage(3) get information about resource utilization
gets, fgets(3S) .o, get a string from a stream
getservent, getservbyport, getservbyname, setservent, endservent(3N) get service entry
8etSIA(2) ovveii e get session ID

8 System Calls and Library Functions Reference Manual

i Table of Contents

getsOCKNAME (BIN) ... e get socket name

getsockopt, setsockopt(3N) get and set options on sockets

getspent, getspnam, setspent, endspent, fgetspent, Ickpwdf, ulckpwdf(3C)
............. manipulate shadow password file entry

getsubOPt(BC) ..ot parse suboptions from a string
gettimeofday, settimeofday (3)ccccovevvruccnnce . get or set the date and time
gettimeofday, settimeofday (3C) ..ot get or set the date and time
8ettXt(3C) o . ettt retrieve a text string

getuid, geteuid, getgid, getegid(2)

get real user, effective user, real group, and effective group IDs
getusershell, setusershell endusershell (3) . .get legal user shells
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname (3C)

......... access utmp file entry
getutx: getutxent, getutxid, getutxline, pututxline, setutxent, endutxent,

utmpxname, getutmp, getutmpx, updwtmp, updwtmpx(3C) access utmpx file entry
getvfsent, getvfsfile, getvfsspec, getvfsany(3C) ..get vistab file entry
getwc, getwchar, fgetwc(3W) . get wchar_t character from a stream
getwd(3) get current working directory pathname
getwidth(3W) get information of supplementary code sets
getws, fetWS(BW) .o get a wchar_t string from a stream
MAtCh(BG) oot s shell global pattern matching
Srantpt(3C) ..o grant access to the slave pseudo-terminal device
hsearch, hcreate, hdestroy (3C) manage hash search tables
RYPOL(BM) oottt Euclidean distance function

ieee_functions, fp_class, isnan, copysign, scalbn(3M)
..... miscellaneous functions for IEEE arithmetic

ieee_handler(BM) ... eseeseeeeens IEEE exception trap handler function
ifignore(3N) eetheieue ettt ettt bttt bt s s eaean check for ignored network interface
index, NAeX (3) ... e string operations

inet: inet_addr, inet_network, inet_makeaddr, inet_Inaof, inet_netof, inet_ntoa (3N)
e e ... Internet address manipulation
INtGroups(3C) .ot initialize the supplementary group access list

insque, 1eMqUe(3C) ..o insert/remove element from a queue
TOCEL(2) cvuvverrerireereneieiseeieestesesseas i tstis st se bttt a bbb ensssassesonaes control device
1SAStrEAM (3C) .uvuuerenieereirecieeeieteere et reerernraesenans test a file descriptor
iSencrypt(3G) ooovveeeeiieier s determme whether a character buffer is encrypted
isnan, isnand, isnanf, finite, fpclass, unordered (3C) ... determine type of floating-point number
kill(2) send a signal to a process or a group of processes
KIIPG(B) ettt s ss s sssnnnas send signal to a process group
13tol, IOI3(BC) ..o convert between 3-byte integers and long integers

Table of Contents 9

Table of Contents

Ifmt(3C)

...... display error message in standard format and pass to logging and monitoring services
libwindows (3X) e windowing terminal function library
BNK(2) 1otlink to a file
BSEEN(BIN) oottt re ettt s s sa st sere e sbesesaananenas hsten for connections on a socket
localeconv (3C) get numeric formatting information
lock(2) et lock a process in primary memory
10ckf(3C) v ettt et aes record locking on files
LOCKING (2) cevviivviirineiinicicce e lock or unlock a file region for reading or writing
Isearch, 1find (3C) ettt ettt e ae s s b tens linear search and update
Iseek (2) .cocovrererinennne ettt bbbttt e b et enen move read /write file pointer
MAIlOCK (3X) vt seseenene ...manage lockfile for user’s mailbox
makecontext, swapcontext(3C)manipulate user contexts
makedev, major, minor(3C) ettt bttt et et et ebeae e eaererens manage a device number
mallog, free, realloc, calloc, memalign, valloc,(3C)cooe.e... memory allocator
malloc, free, realloc, calloc, mallopt, mallinfo (3X) ..o, memory allocator
math(5) . math functions and constants
Matherr(3M) ..o error-handling function
mbchar: mbtowc, mblen, wctomb 30) ... multibyte character handling
mbstring: mbstowcs, WeStombs (3C)ouvvmrvcirirnirniesine e multibyte string functions
MCEL(3) et . memory management control
mementl (2) . . memory management control

memory: memccpy, memchr, memcmp, memcpy, memmove, memset (3C)
....................... memory operations

menu_attributes: set_menu_fore, menu fore set_menu_back, menu_back,

set_menu_grey, menu_grey, set_menu_pad, menu_pad(3X)
control menus display attributes
menu_cursor: pos_menu_cursor(3X)..... correctly position a menus cursor
menu_driver(3X) ... command processor for the menus subsystem
menu_format: set_menu_format, menu_ format 3X)

.. set and get maximum numbers of rows and columns in menus
menu_hook: set_item_init, item_init, set_item_term, item_term, set_menu_init,

menu_init, set_menu_term, menu_term(3X)

.................................. assign application-specific routines for automatic invocation by menus
menu_item_current: set_current_item, current_item, set_top_row, top_row,

item_index(3X) ..o set and get current menus items
menu_item_name: item_name, item_description (3X) get menus item name and description
menu_item_new: new_item, free_item (3X) .create and destroy menus items

10 System Calls and Library Functions Reference Manual

Table of Contents

menu_item_opts: set_item_opts, item_opts_on, item_opts_off, item_opts(3X)
... menus item option routines
menu_item_userptr: set_item_userptr, item_userptr(3X)
... associate application data with menus items
menu_item_value: set_item_value, item_value (3X)cccccevvueuenene set and get menus item values
menu_item_visible: item_visible (3X) ..o tell if menus item is visible
menu_items: set_menu_items, menu_items, item_count(3X)
connect and disconnect items to and from menus
menu_mark: set_menu_mark, menu_mark (3X) menus mark string routines
menu_new: new_menu, free_menu(3X) ...c.cccoereeerernrrereenreinreneereeeeinnnns create and destroy menus
menu_opts: set_menu_opts, menu_opts_on, menu_opts_off, menu_opts(3X)
0 0 ST RSP ESRSS PR T TSR menus option routines
menu_pattern: set_menu_pattern, menu_pattern(3X) .. set and get menus pattern match buffer
menu_post: post_menu, unpost_menu (3X)
... write or erase menus from associated subwindows
menu_userptr: set_menu_userptr, menu_userptr(3X)associate application data with menus
menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub, scale_menu (3X)
................ menus window and subwindow association routines

menus(3X)cooenunee . character based menus package
MINCOTE (2) coovvierrinriini s ss s ssas determine residency of memory pages
mkdir(2)make a directory
mkdirp, rmdirp (3G)ccooeveeerric s create, remove directories in a path
INKFILO(BC) oottt ettt sttt create a new FIFO
mknod (2) make a directory, or a special or ordinary file
IMKNOA (2) oo saenas make a directory, or a special or ordinary file
mkstemp (3) make a unique file name
MKEEMP (BC) vttt sttt make a unique file name
mktime (3C) converts a tm structure to a calendar time
mlock, munlock (3C) .. lock (or unlock) pages in memory

mlockall, munlockall(3C)
mmap(2) ..

lock or unlock address space
map pages of memory

IONIEOT (BC) ceouirnrmiireiieeireerieeeieer ettt seeesseas et csenesenesanes prepare execution profile
mount(2) ... ettt ettt ettt ettt .mount a file system
mp: madd, msub mult, mdiv, memp, min, mout, pow, ged, rpow, msqrt, sdiv, itom,

xtom, mtox, mfree(3) multiple precision integer arithmetic
mprotect(2) set protection of memory mapping
msgctl(2) . . ettt tteaenene ...message control operations
MSZGEE(2) woovieiriiietctt s ...get message queue
mSgop: MSZSNA, MSGICV (2) cvvvrvvrervrriierinsiseniisiiessessssie e sssssssssssssisssssssssesssns message operations
msync(3C) synchronize memory with physical storage

Table of Contents 11

Table of Contents

munmap (2) e unmap pages of memory
NAP(2) covirirriiiri e suspends execution for a short interval
netdir_getbyname, netdlr _getbyaddr, netdir_free, taddr2uaddr, uaddr2taddr,

netdir_perror, netdir_sperror(3N) generic transport name-to-address translation
NICE(2) vt ..change priority of a time-sharing process
NUCE(3C) oo change priority of a process
N1_1aNgINfO (3C) ...ovviiiriircicer s language information
NL_tYPES (D) ettt native language data types
NS (BE) oot reecseseneeees e ssetsessasesesnacs get entries from name list
NSt (3) v ettt ettt tes get entries from symbol table
nIsgetcall (BN) ... get client’s data passed via the listener
NISPIOVIAEr(BN) ..o get name of transport provider
nlsrequest (3N) ..o format and send listener service request message
OffSELOF (BC) 1uvurrieieinerieeee ettt e s offset of structure member
open(2) ettt st ettt ettt et open for reading or writing
OPENSEINL(2) ooevvvrerrrciresscirstsssissss s ss st ss s e sn s sn s sr s rben b s open a semaphore
p2open, p2close(3G) ..o open, close pipes to and from a command
P_onlNe(2) oo turn a processor online or offline
panel_above: panel_above, panel below(BX) panels deck traversal primitives
panel_move: move_panel(3X)cccccovvvrinrrvnrnncn. move a panels window on the virtual screen
panel_new: new_panel, del_panel (3X) . .create and destroy panels
panel_show: show_panel, hide_panel, panel_hidden(3X) ... panels deck manipulation routines
panel_top: top_panel, bottom_panel (3X)cc.cccoovururierrnne panels deck manipulation routines
panel_update: update_panels(3X)ccccoerrerrinirnnrinniiinrinnns panels virtual screen refresh routine

panel_userptr: set_panel_userptr, panel_userptr(3X)

associate application data with a panels panel

panel window: panel window, replace_panel (3X)
............................. get or set the current window of a panels panel

PANEIS(BX) covorvrivrricrct s character based panels package
Pathfind (BG) ..o search for named file in named directories
PAUSE(2) oottt s s suspend process until signal
PEITOT(BC) ottt print system error messages
PEMEBC) s display error message in standard format

pipe(2) create an interprocess channel
PLOCK(2) covieeeimiicccc s lock into memory or unlock process, text, or data
POLL(2) e input/output multiplexing
popen, pclose(3S) ...,initiate pipe to/from a process
printf, fprintf, SPrintf(3S)ccocoivimiiir s print formatted output
printf, forintf, Sprintf (B3W) ..o print formatted output
printf, fprintf, sprintf, vprintf, vfprintf, vsprintf(3)cccceooeenues formatted output conversion

12 System Calls and Library Functions Reference Manual

Table of Contents

PIIOCHEL(Z) oo process scheduler control
PHOCNEISE (2) oocveevir e generalized process scheduler control
Processor_bind(2) ... s bind a process to a processor
Processor_info(2) get information about one processor

PIOF(5) oo RSO profile within a function
Profil(2) .o, et execution time profile
psignal, psiginfo(3C) et system signal messages
psignal, sys_siglist(3)ccccovririiiiiiiniici s system signal messages

PETACE(2) oottt process trace
ptsName(3C) ... get name of the slave pseudo-terminal device
publickey: getpublickey, getsecretkey (3N)cccoeorvrrereiriencininrninn. retrieve public or secret key
putc, putchar, fputc, putw (3S) ..o put character or word on a stream
PULENV (BC) oo s change or add value to environment
PUEMSZ(2) vviiieiiiciirti ittt send a message on a stream
PULPWENE(ZC) oottt write password file entry
PUts, fPULS(3S) ..o put a string on a stream
PUESPENE(BC) oo write shadow password file entry
putwe, putwchar, fputwc(BW) ..o, put wchar_t character on a stream
putws, fputws (BW) ..o put a wchar_t string on a stream
GSOTE(BC) vt s . quicker sort
TAISE (BC) ottt e send signal to program
rand, STand (3C) ... simple random-number generator
rand, STANA (BC) ..cvvvrrierireerereeereeteeeeeere e naes simple random number generator
random, srandom, initstate, setstate(3)

.. better random number generator; routines for changing generators
rcmd, rresvport, ruserok (3N) routines for returning a stream to a remote command
TACHK(2) oottt sttt check to see if there is data to be read
TEAM (2) -eeereutrereiriteicrtseee ettt ettt ettt et bttt ettt h bt at et h e ae e ntan read from file
TEAAINK (2) oottt e read the value of a symbolic link
realpath (3C) eteieheutieaeaereaeaea ettt bttt be bt b s et et st ene et s aeae st aean returns the real file name
J (<] eTo o014 (C) IR et reboot system or halt processor
recv, recvirom, recvmsg(3N)ccovvuienrierninnineeei s receive a message from a socket
regcmp, 1€ZEX (3G) .o compile and execute regular expression
regex, re_comp, re_exXec(3) ... SRR regular expression handler
regexp: compile, step, advance(5)ccoocuerunnes regular expression compile and match routines
regexpr: compile, step, advance(3G)c.......... regular expression compile and match routines
TEMOVE (BC) vttt eesessessssssenes remove file
TENAME (2) 1oevvrveieiereeereiarteiestessesessesessessassesetsessnsesessssssssssesansessenssesssassesssnssesesana change the name of a file

Table of Contents 13

Table of Contents

resolver: res_query, res_search, res_mkquery, res_send, res_init, dn_comp,

dn_expand (3N) . resolver routines
rexec (3N) return stream to a remote command
rmdir(2) remove a directory
rpc(3N) hbrary routines for remote procedure calls

rpc_cint_auth: auth_destroy, authnone_create, authsys_create,

authsys_create_default(3N)
library routines for client side remote procedure call authentication
rpc_cint_calls: cInt_call, cInt_freeres, cInt_geterr, cInt_perrno, cInt_perror,

cInt_sperrno, cInt_sperror, rpc_broadcast, rpc_call(3N)

library routines for client side calls
rpc_cint_create: clnt_control, cInt_create, cInt_destroy, clnt_dg_create,

cnt_pcreateerror, cint_raw_create, clnt_spcreateerror, clnt_tli_create,

clnt_tp_create, cInt_vc_create(3N)

.................. library routines for dealing with creation and manipulation of CLIENT handles
rpc_svce_calls: rpc_reg, svc_reg, svc_unreg, xprt_register, xprt_unregister (3N)

...... library routines for registering servers
rpc_svc_create: svc_create, svc destroy, svc_dg_create, svc_fd_create,

svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create (3N)
... library routines for dealing with the creation of server handles
rpc_svc_err: sveerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,

svcerr_progvers, svcerr_systemerr, svcerr_weakauth (3N)
.. library routines for server side remote procedure call errors
rpc_svc_reg: svc_freeargs, svc_getargs, svc_getreqset, svc_getrpccaller, sve_run,

svc_sendreply (3N) library routines for RPC servers
rpc_xdr: xdr_accepted_reply, xdr_authsys_parms, xdr_callhdr, xdr_callmsg,

xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg(3N)
XDR library routines for remote procedure calls
rpcbind: rpcb _getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set,

rpcb_unset(3N) library routines for RPC bind service
rusers(3N) return information about users on remote machines
TWall(BN) .o write to specified remote machines
scandir, alphasort(3) ... scan a directory
scanf, fscanf, sscanf(3S) convert formatted input
scanf, fscanf, sscanf(3W) convert formatted input
sdenter, sdleave(2) synchronize access to a shared data segment
sdget, sdfree(2) attach and detach a shared data segment
sdgetv(2) synchronize shared data access

14 System Calls and Library Functions Reference Manual

— Table of Contents

secure_rpc: authdes_seccreate, authdes_getucred, getnetname, host2netname,
key_decryptsession, key_encryptsession, key_gendes, key_setsecret,
netname2host, netname2user, user2netname (3N)

.. library routines for secure remote procedure calls
SE1ECE (BC) ouiiriiect s synchronous I/O multiplexing
SEIMCEL(2) weveveceiriieei ettt semaphore control operations
SEMEE(2) w.ovvvvrivrerierircieeriscie st s get set of semaphores
SEmMOP (2) .vvveevvenrreriennns . et semaphore operations
send, sendto, sendmsg(3N)cccccorvrrerrrirerrnnicinnieieecers send a message from a socket
setbuf, SEtVDUL(3S) ..ot assign buffering to a stream
setbuf, setbuffer, setlinebuf, setvbuf(3S) . assign buffering to a stream
setbuffer, setlinebuf (3S)ccovvieieivirieeee e assign buffering to a stream
setcat(3C) .ovveverrerirerreneenens define default catalog
setimp, 1oNgIMP (BC) ...orvmiiririi s non-local goto
setjimp, longjmp, _setjmp, long]mp, sigsetfmp, siglongjmp (3)cc.coovvrrrrrrrrnnrnnn non-local goto
SEHIADEL(3C) vttt define the label for pfmt() and lfmt()
setlocale(3C) ..o et modify and query a program’s locale
Setpgid(2) coovverieeeecne e set process group ID
SEEPEIP (2) ceorrerrieeeeeerie e set process group ID
setregid(3) ..o, SRR set real and effective group IDs
SEETEULA (3) 1neueuieeeeeeeei ittt ettt enes set real and effective user IDs
SEESIA (2) wveveveeerrrrirenieirieeieeeeeteeeeereeieieeseeasenens ettt ettt n bbbttt set session 1D
setuid, SetZId(2) ..ot s set user and group IDs
shmctl(2) ...ooovvrevernennee. e ..shared memory control operations
shmget(2) ..o e get shared memory segment identifier
shmop: shmat, ShMA(2) ..o shared memory operations
Shutdown (BN) ... shut down part of a full-duplex connection
SIgACtiON (2) coovorveeierenieeieiene, . s detailed signal management
SIGAltStACK(2) .o set or get signal alternate stack context
sigblock, sigmask(3)cc..cc.....block signals
sigfpe(3) e, . . 51gna1 handhng for spec1f1c SIGFPE codes
SIZINO(5) covcvvimieii s signal generation information
siginterrupt (3) «..ccocveeie allow signals to interrupt system calls
signal, sigset, sighold, sigrelse, sigignore, sigpause(2) simplified signal management
SIGNAL(3) overvirei e .simplified software signal facilities
SIENAL(5) cvvvcveeriticicete et s .base signals
SIgPAUSE(3) couvvvvcirrei e, automically release blocked signals and wait for interrupt
sigpending (2)examine signals that are blocked and pending
SIEPTOCIMASK(2) oottt change or examine signal mask
SIZSEIM(2) weveivieriineieriesi sttt signal a process waiting on a semaphore

Table of Contents 15

Table of Contents

sigsend, sigsendset(2) ...send a signal to a process or a group of processes
sigsetjmp, siglongjmp (3C) a non-local goto with signal state
sigsetmask (3) set current signal mask
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember(3C) manipulate sets of signals
sigstack(3) set and /or get signal stack context
sigsuspend (2) install a signal mask and suspend process until signal
sigvec(3) software signal facilities
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh(3M)c.c..ccce...... hyperbolic functions
sleep (3C) suspend execution for interval
sleep (3) ...suspend execution for interval
socket(3N) ettt ettt sttt st bbbttt sttt ettt create an endpoint for communication
socketpair(3N) create a pair of connected sockets
spray (3N) N ...scatter data in order to check the network
sputl, sgetl(3X) access long integer data in a machine-independent fashion
ssignal, gsignal (3C) software signals
stat, Istat, fstat(2) . get file status
stat(5) data returned by stat system call
stat, Istat, fstat(2) .. get file status
statvfs, fstatvfs(2) get file system information
stdarg(5) handle variable argument list
stdio(35) standard buffered input/output package
stdipc: ftok(3C) standard interprocess communication package
stime(2) set time
stkprotect(2) set permissions of stack
str: strfind, strrspn, strtms (3G) string manipulations
strccpy: streadd, strcadd, strecpy (3G) copy strings, compressing or expanding escape codes
strcoll(3C) string collation
strerror(3C) get error message string
strftime, cftime, ascftime (3C) convert date and time to string
string: strcat, strdup, strncat, stremp, strnemp, strepy, strnepy, strlen, strchr, strrchr,

strpbrk, strspn, strcspn, strtok, strstr(3C) string operations
string: strcasecmp, strncasecmp (3) string operations
strtod, atof,(3C) convert string to double-precision number
strtol, strtoul, atol, atoi(3C) convert string to integer
SEIXEIINL(BC) oottt ettt s bt st sn e b st s eesebes e easaes string transformation
swab(3C) swap bytes
swapctl(2) manage swap space
symlink (2) make a symbolic link to a file
sync(2) update super block
syscall(3) indirect system call

16 System Calls and Library Functions Reference Manual

Table of Contents

sysconf(3C)
sysfs(2)

...retrieves configurable system variables
.. get file system type information

sysinfo(2)
syslog, openlog, closelog, setlogmask(3)
sysm68k(2) .

sysm88k(2)

get and set system information strings
control system log
machine-specific functions
machine-specific functions

issue a shell command

system(35)
t_accept(3N)

................ accept a connect request

t_alloc(3N)

t_bind (3N)

..allocate a library structure
bind an address to a transport endpoint

t_close(3N)

........... ..close a transport endpoint

t_connect(3N)

establish a connection with another transport user

t_error(3N)

produce error message

t_free(3N)

free a library structure

t_getinfo(3N)

get protocol-specific service information

t_getstate(3N)
t_listen (3N)

.............. get the current state
listen for a connect request

t_look(3N)
t_open(3N)

look at the current event on a transport endpoint
establish a transport endpoint

t_optmgmt (3N)
t_rcv(3N)

manage options for a transport endpoint

...receive data or expedited data sent over a connection

t_rcvconnect(3N)
t_rcvdis(3N)

receive the confirmation from a connect request
retrieve information from disconnect

t_rcvrel (3N)
t_rcvudata(3N)

acknowledge receipt of an orderly release indication
receive a data unit

t_rcvuderr(3N)
t_snd (3N)

receive a unit data error indication
send data or expedited data over a connection

t_snddis(3N)

send user-initiated disconnect request

t_sndrel (3N)

initiate an orderly release

t_sndudata (3N)

..... send a data unit

t_sync(3N)

synchronize transport library

t_unbind (3N)

disable a transport endpoint

tam (3X)

TAM transition libraries

tesetpgrp (3C)

set terminal foreground process group id

termios: tcgetattr, tcsetattr, tcsendbreak,

tedrain, teflush, teflow, cfgetospeed,

cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tegetsid (2)

time(2)

.general terminal interface
get time

times(2)
times (3C)

get process and child process times
get process times

Table of Contents

17

Table of Contents

timezone (3C)coevvvurnninnes s get time zone name given offset from GMT
tMPLlE(3S) oo s create a temporary file
tmpnam, tempnam(3S) ...t e create a name for a temporary file

trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf, atan2, atan2f(3M)
....... . sevennnn. trigonometric functions

truncate, ftruncate(3C) set a file to a specified length
tsearch, tfind, tdelete, tWalk(BC) ...ccvivereerreireernieireeeseersseereesesnaeieens manage binary search trees
ttyname, isatty (3C) cerr find name of a terminal
tYSIOt(3C) coveeerereeee s find the slot in the utmp file of the current user
tYPES(5) vt primitive system data types
UAAMIN(2) oo cererree et renes administrative control
ualarm(3) ..o, schedule signal after interval in microseconds
UCOTEEXE (5) wevuveertrincrereeineeueiserieseiereaesesess s ssesesseseseseassesstasssssssesesstaesssssassssessentassessanessassessesesens user context
ulimit(2) bttt ettt ettt a ettt se s s et s s s asasaeneaen get and set user limits
UMASK(2) cooverveiiriiiciciines set and get file creation mask
UMOUNE(2) .oviriirireereiietrereetstiesseeseesesees s ese s sesassssasesessesecsesncas unmount a file system
uname(2)get name of current UNIX system
UNEtC(3S) .o ...push character back onto input stream
ungetwc(3W) ..push wchar_t character back into input stream
unlink(2) remove directory entry
unlockpt(3C) . e unlock a pseudo-terminal master/slave pair
USIEEP(3) vt .suspend execution for interval in microseconds
USEAL(2) v get file system statistics
utime(2) .. set file access and modification times
utimes(3) set file times
values(5) machine-dependent values
Varargs(5) ..o et teene handle variable argument list
vfork(2) et s spawn new process in a virtual memory efficient way
v1fmt(3C)

...... display error message in standard format and pass to logging and monitoring services
vpfmt(3C)
...... display error message in standard format and pass to logging and monitoring services

vprintf, viprintf, vsprintf(3S)cccecvrunruunce print formatted output of a variable argument list
vprintf, viprintf, vsprintf 3W)cccccevuneen. print formatted output of a variable argument list
wait(2) wait for child process to stop or terminate

wait, wait3, WIFSTOPPED, WIFSIGNALED, WIFEXITED(3)
..... . wait for process to terminate or stop

waitid(2) ..o, wait for child process to change state
waitpid(2) wait for child process to change state
waitsem, nbwaitsem(2) await and check access to a resource governed by a semaphore

18 System Calls and Library Functions Reference Manual

Table of Contents

weonv: towupper, towlower(3W) ... translate characters
wctype: iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,

iswpunct, iswprint, iswgraph, iswentrl, iswascii, isphonogram, isideogram,

isenglish, isnumber, isspecial (3W)

... classify ASCII and supplemetary code set characters

WIAEC(BW) ettt multibyte character I/O routines
WEItE, WITEEV (2) ceviveieeeeeeceieeeeeecse e ereseeeseaeeeeeeeswrite on a file
wstat(5) e ettstseseueaeuetesetebetet et ehatete e a st et e s e s e R b e ke b b et sttt e bttt et bbb ebeaeae wait status

wstring: wscat, wsncat, wscmp, wsncmp, wscpy, wsncpy, wslen, wschr, wsrchr,

wspbrk, wsspn, wscspn, wstok, wstostr, strtows(3W)

.......................... wechar_t string operations and type transformation
XAT (BN et esee library routines for external data representation
xdr_admin: xdr_getpos, xdr_inline, xdrrec_eof, xdr_setpos(3N)

... library routines for external data representation
xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference,

xdr_string, xdr_union, xdr_vector, xdr_wrapstring (3N)
. library routines for external data representation
xdr_create: xdr _destroy, xdrmem_create, xdrrec_create, xdrstdio_create (3N)

........ ... library routines for external data representation stream creation
xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free, xdr_int,

xdr_long, xdr_short, xdr_u_char, xdr_u_long, xdr_u_short, xdr_void (3N)
library routines for external data representation
ypcint, yp _get default_domain, yp_bind, yp_unbind, yp_match, yp_first, yp_next,

yp_all, yp_order, yp_master, yperr_string, ypprot_err(3N)ccceeuu.... NIS client interface

YP_update(BN) ..o ...change NIS information

Table of Contents 19

Table of Contents

20 System Calls and Library Functions Reference Manual

Introduction

Reference Manuals

Description Manual pages provide technical reference information about
the interfaces and execution behavior of each UNIX SYSTEM

V Release 4 component.

Organization The type of component being described is indicated by the
numerical section suffix. Within each section there may be
subsections indicated by a single letter. Related sections are
organized into reference manuals and alphabetized by name.
The following table shows the contents of the reference

manuals and their section suffixes.

Title and Contents Sections

Commands Reference Manual Volumes 1 and 2
General-purpose user commands 1
Basic networking commands 1C
Form and Menu Language Interpreter (FMLI) 1F
System maintenance commands M
Enhanced networking commands 1IN
Miscellaneous reference information related to 5

commands.

System Calls and Library Functions

Reference Manual
System calls 2
BSD system compatibility library 3
Standard C library 3C
Executable and linking format library 3E

Continued on next page

Introduction

Reference Manuals, Continued

Contents Sections
System Calls and Library Functions Reference Manual (continued)
General-purpose library 3G
Math library 3M
Networking library 3N
Standard I/O library 35
Specialized library 3X

Miscellaneous reference information related to programming. | 5

System Files and Devices Reference Manual

System file formats 4

Special files (devices) 7
Device Driver Interface/Driver - Kernel Interface Reference Manual

Driver Data Definitions D1

Driver Entry Point Routines D2

Kernel Utility Routines D3

Kernel Data Structures D4

Kernel Defines D5
Master Permuted Index

Permuted index of all manual pages All

2 Introduction

Retitled Reference Manuals

Background

Four reference manuals for this release have been
restructured and/or retitled to more accurately describe their
contents. The following table shows these changes.

Previous Titles Current Titles Current
Sections
User’s Reference Manual/ Commands Reference Manual 1,1C, 1F,
System Administrator’s (Volume 1,a -1) 1M, 1N,
Reference Manual (Volume 2, m - z) 5
(Commands a - 1)
(Commands m - z)
Programmer’s Reference Manual: System Calls and Library Functions 2,3,3C,
Operating System API Reference Manual 3E, 3G,
Part 1: Programming Commands 3M, 3N,
and System Calls 35,3X,5
Part 2: Functions
System Files and Devices Reference | System Files and Devices Reference 4,7
Manual Manual (section 5 removed)
Permuted Index Master Permuted Index All
Introduction 3

Manual Page Format

Main All UNIX manual pages have a common format. The
headings following main headings are used:
used
Heading Section Contents

NAME Name of the component and brief statement of its purpose

SYNOPSIS Syntax of the component

DESCRIPTION | General discussion of functionality

EXAMPLE Example(s) of usage

FILES File names built into the component

SEE ALSO Cross-references to related components

Note: Not all manual pages use all headings.

4 Introduction

Typographical Conventions

Style and The following typographical and formatting conventions are
conventions used.
used
Convention Indicates ...
Constant width a literal that should be entered just as it
appears
Italic a substitutable argument
Square brackets around an argu- | an optional argument
ment []
name or file a file name
Ellipses ... previous argument may be repeated
Argument beginning with a flag argument
- minus
+ plus
= equal

Introduction 5

Permuted Index

Definition A permuted index is an alphabetical listing of all the
keywords in the NAME line of a manual page.

Certain common words are not considered keywords and are
not recognized. In the example below, the common words of,
to, and the are not recognized.

Example The NAME line of the adjtime(2) manual page appears
below.
adjtime(2) adjtime(2)
NAME

adjtime- correct the time to allow synchronization of the system clock

The adjtime(2) entries from the permuted index are shown
below. These entries appear in the a, ¢, and s sections of the
permuted index respectively.

Remainder of NAME line Keyword and NAME line Manual
Page

synchronization of the system/ adjtime correct the time to allow. adjtime(2)
clock adjtime correct the time to allow synchronization of the system.. .. adjtime(2)
allow synchronization of the system clock adjtime correct the timeto... adjtime(2)
synchronization of the/ adjtime correct thetimetoallow.............. adjtime(2)
adjtime correct the time to allow synchronization of the system clock . . . adjtime(2)

to allow synchronization of the system clock / correct the time....... adjtime(2)

Continued on next page

6 Introduction

Permuted Index, Continued

How a
permuted
index is
constructed

Identification
of entries

Master
Permuted
Index

Introduction

The center column lists each keyword followed by all or a
portion of the NAME line, as space permits. The left column
lists the remainder of the NAME line. The right column
indicates the manual page being referenced.

Omitted words are indicated with a slash (/).

Manual page entries are identified with their section suffixes
shown in parentheses.

Example: man(1) and man(5)

Section suffixes eliminate confusion caused by duplication of
names among the sections.

Each reference manual has a permuted index for the manual
pages contained in that book.

The Master Permuted Index covers all the manual pages of this
documentation library.

Request for Comment

Description

Online
versions
of RFCs

A Request for Comment (RFC) is a document that describes
some aspect of networking technology. The RFCs cited in the
SEE ALSO section of these manual pages are available in
hard copy for a small fee from:

Network Information System Center
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025

415-859-6387 fax: 415-859-6028
emailinisc@nisc.sri.com

Online versions of the RFCs are available by ftp from
nic.ddn.mil.To retrieve an on-line RFC, do the following:

Step

Action

1

Connect to the RFC host by entering:

ftp nic.ddn.mil
user name:anonymous
password: guest

Retrieve the RFC by entering:
get rfc/rfcnum

where num is the number of the RFC

Example:
get rfc:rfcll71.txt

End the ftp session by entering:

quit

Introduction

intro (2) intro(2)

NAME

intro - introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

10/92

This section describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -1 or the NULL pointer; the individual descriptions
specify the details. An error number is also made available in the external variable
errno. errno is not cleared on successful calls, so it should be tested only after an
error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to modify a file in some way for-
bidden except to its owner or the super-user. It is also returned for attempts
by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
A file-name is specified and the file should exist but doesn’t, or one of the
directories in a path-name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by PID in the kill
or ptrace routine.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execution is
resumed after processing the signal, it will appear as if the interrupted rou-
tine call returned this error condition.

5 EI0 1/0O error
Some physical I/O error has occurred. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/0 on a special file refers to a subdevice which does not exist, or exists
beyond the limit of the device. It may also occur when, for example, a tape
drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arglist too long
An argument list longer than ARG_MAX bytes is presented to a member of the
exec family of routines. The argument list limit is the sum of the size of the
argument list plus the size of the environment’s exported shell variables.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid format.

Page 1

intro(2) intro(2)

Page 2

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read [respectively, write]
request is made to a file that is open only for writing (respectively, reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
For example, the fork routine failed because the system’s process table is
full or the user is not allowed to create any more processes, or a system call
failed because of insufficient memory or swap space.

12 ENOMEM Not enough space

During execution of an exec, brk, or sbrk routine, a program asks for more
space than the system is able to supply. This is not a temporary condition;
the maximum size is a system parameter. The error may also occur if the
arrangement of text, data, and stack segments requires too many segmenta-
tion registers, or if there is not enough swap space during the fork routine.
If this error occurs on a resource associated with Remote File Sharing (RFS),
it indicates a memory depletion which may be temporary, dependent on
system activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument
of a routine. For example, errno potentially may be set to EFAULT any time
a routine that takes a pointer argument is passed an invalid address, if the
system can detect the condition. Because systems will differ in their ability
to reliably detect a bad address, on some implementations passing a bad
address to a routine will result in undefined behavior.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required (for
example, in a call to the mount routine).

16 EBUSY Device busy
An attempt was made to mount a device that was already mounted or an
attempt was made to unmount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (for example,
call to the 1ink routine).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

10/92

intro(2)

10/92

19

20

21

22

23

24

25

26

27

28

29

30

31

32

intro(2)

ENODEV No such device
An attempt was made to apply an inappropriate operation to a device (for
example, read a write-only device).

ENOTDIR Not a directory
A non-directory was specified where a directory is required (for example, in
a path prefix or as an argument to the chdir routine).

EISDIR Isa directory
An attempt was made to write on a directory.

EINVAL Invalid argument
An invalid argument was specified (for example, unmounting a non-
mounted device), mentioning an undefined signal in a call to the signal or
kill routine.

ENFILE File table overflow
The system file table is full (that is, SYS_OPEN files are open, and tem-
porarily no more files can be opened).

EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors open at a time.

ENOTTY Not a typewriter
A call was made to the ioctl routine specifying a file that is not a special
character device.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or to
remove a pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size, FCHR_MAX [see
getrlimit].

ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there is no free
space left on the device. In the fcntl routine, the setting or removing of
record locks on a file cannot be accomplished because there are no more
record entries left on the system.

ESPIPE Illegal seek
A call to the 1seek routine was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links, LINK_MAX, to
a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condi-
tion normally generates a signal; the error is returned if the signal is ignored.

Page 3

intro(2) intro (2)

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on
the specified message queue [see msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal
of an identifier from the file system’s name space [see msgct1(2), semct1(2),
and shmct1(2)].

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error pertains to file
and record locking.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is full [see
fent1(2)].

47-49 Reserved
58-59 Reserved

60 ENOSTR Device not a stream
A putmsg or getmsg system call was attempted on a file descriptor that is
not a STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired
The timer set for a STREAMS ioctl call has expired. The cause of this error
is device specific and could indicate either a hardware or software failure, or
perhaps a timeout value that is too short for the specific operation. The
status of the ioct1 operation is indeterminate.

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no STREAMS head
data structures were available. This is a temporary condition; one may
recover from it if other processes release resources.

Page 4 10/92

intro(2) intro (2)

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try to
advertise, unadvertise, mount, or unmount remote resources while the
machine has not done the proper startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call from a package
which has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to advertise a resource
which is not on the local machine, or try to mount/unmount a device (or
path-name) that is on a remote machine.

67 ENOLINK Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit) connecting
to a remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource
which has been advertised already, or try to stop RFS while there are
resources still advertised, or try to force unmount a resource when it is still
advertised.

69 ESRMNT Srmount error
This error is RFS specific. It occurs when an attempt is made to stop RFS
while resources are still mounted by remote machines, or when a resource is
readvertised with a client list that does not include a remote machine that
currently has the resource mounted.

70 ecoMM Communication error on send
This error is RFS specific. It occurs when the current process is waiting for a
message from a remote machine, and the virtual circuit fails.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is generally
not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote resources
which are not directly accessible.

76 EDOTDOT Error76
This error is RFS specific. A way for the server to tell the client that a process
has transferred back from mount point.

77 EBADMSG Not a data message
During a read, getmsg, or ioctl I_RECVFD system call to a STREAMS dev-
ice, something has come to the head of the queue that can't be processed.
That something depends on the system call:

read: control information or a passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

10/92 Page 5

intro (2) intro (2)

Page 6

78 ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect; see 1im-
its(4).

79 EOVERFLOW
Value too large for defined data type.

80 ENOTUNIQ Name not unique on network
Given log name not unique.

81 EBADFD File descriptor in bad state
Either a file descriptor refers to no open file or a read request was made to a
file that is open only for writing.

82 EREMCHG Remote address changed

83 ELIBACC Cannot access a needed shared library
Trying to exec an a.out that requires a static shared library and the static
shared library doesn’t exist or the user doesn’t have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec an a.out that requires a static shared library (to be linked in)
and exec could not load the static shared library. The static shared library
is probably corrupted.

85 ELIBSCN .lib section in a.out corrupted
Trying to exec an a. out that requires a static shared library (to be linked in)
and there was erroneous data in the .1ib section of the a.out. The .1ib
section tells exec what static shared libraries are needed. The a.out is
probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a.out that requires more static shared libraries than is
allowed on the current configuration of the system.

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle multiple characters as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path-name traversal
exceeds MAXSYMLINKS

91 ESTART Error91
Interrupted system call should be restarted.

92 ESTRPIPE Error92
Streams pipe error (not externally visible).

158 ENOTEMPTY Directory not empty

160 EUSERS Too many users
Too many users.

10/92

intro(2)

130

131

132

133

134

135

136

137

138

139

140

141

142
143

144

10/92

intro (2)

ENOTSOCK Socket operation on non-socket
Self-explanatory.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a transport endpoint.
Destination address required.

EMSGSIZE Message too long
A message sent on a transport provider was larger than the internal mes-
sage buffer or some other network limit.

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket
type requested.

ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting options for a
protocol.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation
for it exists.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or
no implementation for it exists.

EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram transport end-
point.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no imple-
mentation for it exists. Used for the Internet protocols.

EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

EADDRINUSE Address already in use
User attempted to use an address already in use, and the protocol does not
allow this.

EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with an address not
on the current machine.

ENETDOWN Network is down
Operation encountered a dead network.

ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

Page 7

intro (2) intro (2)

145 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

146 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a
loss of the connection on the remote host due to a timeout or a reboot.

147 ENOBUFS No buffer space available
An operation on a transport endpoint or pipe was not performed because
the system lacked sufficient buffer space or because a queue was full.

148 EISCONN Transport endpoint is already connected
A connect request was made on an already connected transport endpoint;
or, a sendto or sendmsg request on a connected transport endpoint
specified a destination when already connected.

149 ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the transport end-
point is not connected and (when sending a datagram) no address was sup-
plied.

150 ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport endpoint has
already been shut down.

151 ETOOMANYREFS Too many references: cannot splice

152 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not prop-
erly respond after a period of time. (The timeout period is dependent on the
communication protocol.)

153 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused
it. This usually results from trying to connect to a service that is inactive on
the remote host.

156 EHOSTDOWN Host is down
A transport provider operation failed because the destination host was
down.

157 EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreachable host.

129 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an
operation in progress.

128 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was
attempted on a non-blocking object.

162 ESTALE Stale NFS file handle

DEFINITIONS
Background Process Group
Any process group that is not the foreground process group of a session that has
established a connection with a controlling terminal.

Page 8 10/92

intro (2) intro (2)

Controlling Process

A session leader that established a connection to a controlling terminal.

Controlling Terminal

A terminal that is associated with a session. Each session may have, at most, one
controlling terminal associated with it and a controlling terminal may be associated
with only one session. Certain input sequences from the controlling terminal cause
signals to be sent to process groups in the session associated with the controlling
terminal; see termio(7).

Directory

Directories organize files into a hierarchical system where directories are the nodes
in the hierarchy. A directory is a file that catalogues the list of files, including direc-
tories (sub-directories), that are directly beneath it in the hierarchy. Entries in a
directory file are called links. A link associates a file identifier with a file-name. By
convention, a directory contains at least two links, . (dot) and .. (dot-dot). The
link called dot refers to the directory itself while dot-dot refers to its parent direc-
tory. The root directory, which is the top-most node of the hierarchy, has itself as
its parent directory. The path-name of the root directory is / and the parent direc-
tory of the root directory is /.

Downstream

In a stream, the direction from stream head to driver.

Driver

In a stream, the driver provides the interface between peripheral hardware and the
stream. A driver can also be a pseudo-driver, such as a multiplexor or log driver
[see 1og(7)], which is not associated with a hardware device.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID that are used to
determine file access permissions (see below). The effective user ID and effective
group ID are equal to the process’s real user ID and real group ID
respectively, unless the process or one of its ancestors evolved from a file that had
the set-user-ID bit or set-group ID bit set [see exec(2)].

File Access Permissions

10/92

Read, write, and execute/search permissions on a file are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the
file and the appropriate access bit of the ““owner”” portion (0700) of the file
mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file, but either the effective group ID or one of the supplementary
group IDs of the process match the group ID of the file and the appropriate
access bit of the ““group”” portion (0070) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file, and neither the effective group ID nor any of the supplementary
group IDs of the process match the group ID of the file, but the appropriate
access bit of the ““other’” portion (0007) of the file mode is set.

Page 9

intro(2) intro (2)

Otherwise, the corresponding permissions are denied.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The value of a file
descriptor is from 0 to (NOFILES-1). A process may have no more than NOFILES
file descriptors open simultaneously. A file descriptor is returned by system calls
such as open, or pipe. The file descriptor is used as an argument by calls such as
read,write, ioctl, and close.

File-Name
Names consisting of 1 to NAME_MAX characters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file-names because of
the special meaning attached to these characters by the shell [see sh(1)]. Although
permitted, the use of unprintable characters in file-names should be avoided.

A file-name is sometimes referred to as a path-name component. The interpretation
of a path-name component is dependent on the values of NAME MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any path-
name component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect for the
path prefix of that component [see fpathconf(2) and limits(4)], it shall be con-
sidered an error condition in that implementation. Otherwise, the implementation
shall use the first NAME_MAX bytes of the path-name component.

Foreground Process Group
Each session that has established a connection with a controlling terminal will dis-
tinguish one process group of the session as the foreground process group of
the controlling terminal. This group has certain privileges when accessing its con-
trolling terminal that are denied to background process groups.

Message
In a stream, one or more blocks of data or information, with associated STREAMS
control structures. Messages can be of several defined types, which identify the
message contents. Messages are the only means of transferring data and communi-
cating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue Identifier
A message queue identifier (msgid) is a unique positive integer created by a
msgget system call. Each msqid has a message queue and a data structure associ-
ated with it. The data structure is referred to as msgid_ds and contains the follow-
ing members:

Page 10 10/92

intro(2)

intro(2)

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;

ulong msg_cbytes;
ulong msg_gnum;
ulong msg_gbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
long msg_susec;
time_t msg_rtime;
long msg_rusec;
time_t msg_ctime;
long msg_cusec;

Here are descriptions of the fields of the msgid_ds structure:

msg_perm is an ipc_perm structure that specifies the message operation
permission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */

gid_t cgid; /* creator group id */

uid_t uid; /* user id */

gid_t gid; /% group id */

mode_t mode; /* r/w permission */

ushort seq; /* slot usage sequence # */

key_t key; /* key */

*msg_first is a pointer to the first message on the queue.
*msg_last is a pointer to the last message on the queue.
msg_cbytes is the current number of bytes on the queue.

msg_gnum is the number of messages currently on the queue.
msg_abytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd
operation.

msg_lrpid is the process id of the last process that performed a msgrcv
operation.

msg_stime and msg_susec are the seconds and microseconds respectively,
of the time of the last msgsnd operation.

msg_rtime and msg_rusec are the seconds and microseconds respectively,
of the time of the last msgrcv operation.

msg_ctime and msg_cusec are the seconds and microseconds respectively,
of the time of the last msgctl operation that changed a member of the
above structure.

Message Operation Permissions
In the msgop and msgctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed, inter-
preted as follows:

10/92

Page 11

intro(2) intro (2)

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a msgid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid and the
appropriate bit of the ““user’”” portion (0600) of msg_perm.mode is set.

The effective group ID of the process matches msg_perm.cgid or
msg_perm.gid and the appropriate bit of the ““group” portion (060) of
msg_perm.mode is set.

The appropriate bit of the ““other’”” portion (006) of msg_perm.mode is set.
Otherwise, the corresponding permissions are denied.

Module
A module is an entity containing processing routines for input and output data. It
always exists in the middle of a stream, between the stream’s head and a driver. A
module is the STREAMS counterpart to the commands in a shell pipeline except that
a module contains a pair of functions which allow independent bidirectional
(downstream and upstream) data flow and processing.

Multiplexor
A multiplexor is a driver that allows streams associated with several user processes
to be connected to a single driver, or several drivers to be connected to a single user
process. STREAMS does not provide a general multiplexing driver, but does pro-
vide the facilities for constructing them and for connecting multiplexed
configurations of streams.

Orphaned Process Group
A process group in which the parent of every member in the group is either itself a
member of the group, or is not a member of the process group’s session.

Path-Name
A path-name is a null-terminated character string starting with an optional slash
(/), followed by zero or more directory names separated by slashes, optionally fol-
lowed by a file-name.
If a path-name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path-name is treated as if it named a
non-existent file.

Page 12 10/92

intro(2) intro(2)

Process ID
Each process in the system is uniquely identified during its lifetime by a positive
integer called a process ID. A process ID may not be reused by the system until the
process lifetime, process group lifetime and session lifetime ends for any process ID,
process group ID and session ID equal to that process ID.

Parent Process ID
A new process is created by a currently active process [see fork(2)]. The parent
process ID of a process is the process ID of its creator.

Privilege
Having appropriate privilege means having the capability to override system res-
trictions.

Process Group
Each process in the system is a member of a process group that is identified by a
process group ID. Any process that is not a process group leader may create a new
process group and become its leader. Any process that is not a process group
leader may join an existing process group that shares the same session as the pro-
cess. A newly created process joins the process group of its parent.

Process Group Leader
A process group leader is a process whose process ID is the same as its process
group ID.

Process Group ID
Each active process is a member of a process group and is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader.
This grouping permits the signaling of related processes [see ki11(2)].

Process Lifetime
A process lifetime begins when the process is forked and ends after it exits, when
its termination has been acknowledged by its parent process. See wait(2).

Process Group Lifetime
A process group lifetime begins when the process group is created by its process
group leader, and ends when the lifetime of the last process in the group ends or
when the last process in the group leaves the group.

Read Queue
In a stream, the message queue in a module or driver containing messages moving
upstream.

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer (0 to MAXUID)
called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID
and real group ID, respectively, of the user responsible for the creation of the pro-
cess.

10/92 Page 13

intro(2) intro(2)

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path-name searches. The root direc-
tory of a process need not be the root directory of the root file system.

Saved User ID and Saved Group ID
The saved user ID and saved group ID are the values of the effective user ID and
effective group ID prior to an exec of a file whose set user or set group file mode bit
has been set [see exec(2)].

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget
system call. Each semid has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds and contains the following

members:
struct ipc_perm sem perm; /% operation permission struct */
struct sem *sem_base; /* ptr to first semaphore in set */
char sem_pad[2] ;
ushort sem_nsems; /* # of sems in set */
time_t sem_otime; /* last semop time */
long sem_ousec; /% in secs and microsecs. */
time_t sem_ctime; /% last change time */
long sem_cusec /* in secs and microsecs. */

Here are descriptions of the fields of the semid_ds structure:

sem_perm is an ipc_perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

uid_t uid; /* user id %/

gid_t gid; /% group id */

uid_t cuid; /* creator user id */

gid_t cgid; /#* creator group id */

mode_t mode; /* r/a permission */

ushort seq; /* slot usage sequence number */
key_t key; /* key */

sem_nsems is equal to the number of semaphores in the set. Each sema-
phore in the set is referenced by a nonnegative integer referred to as a
sem_num. sem num values run sequentially from 0 to the value of
sem_nsems minus 1.

sem_otime and sem_ousec are the seconds and microseconds respectively,
of the time of the last semop operation.

sem_ctime and sem_cusec are the seconds and microseconds respectively,
of the time of the last semctl operation that changed a member of the
above structure.

A semaphore is a data structure called sem that contains the following members:

Page 14 10/92

intro(2) intro (2)

ushort semval; /* gemaphore value */

pid_t sempid; /% pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

semval is a non-negative integer that is the actual value of the semaphore.

sempid is equal to the process ID of the last process that performed a sema-
phore operation on this semaphore.

semncnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become greater than its current value.

semzcnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become 0.

Semaphore Operation Permissions
In the semop and semctl system call descriptions, the permission required for an
operation is given as {token}, where foken is the type of permission needed inter-
preted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions on a semid are granted to a process if one or more of the
following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem perm.cuid or
sem_perm.uid in the data structure associated with semid and the
appropriate bit of the ““user’” portion (0600) of sem_perm.mode is set.

The effective group ID of the process matches sem perm.cgid or
sem_perm.gid and the appropriate bit of the “group’ portion (060) of
sem_perm.mode is set.

The appropriate bit of the ““other’”” portion (06) of sem_perm.mode is set.
Otherwise, the corresponding permissions are denied.

Session
A session is a group of processes identified by a common ID called a session ID,
capable of establishing a connection with a controlling terminal. Any process that
is not a process group leader may create a new session and process group, becom-
ing the session leader of the session and process group leader of the process group.
A newly created process joins the session of its creator.

Session ID
Each session in the system is uniquely identified during its lifetime by a positive
integer called a session ID, the process ID of its session leader.

10/92 Page 15

intro (2)

Session Leader
A session leader is a process whose session ID is the same as its process and process
group ID.

Session Lifetime
A session lifetime begins when the session is created by its session leader, and ends
when the lifetime of the last process that is a member of the session ends, or when
the last process that is a member in the session leaves the session.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a
shmget system call. Each shmid has a segment of memory (referred to as a shared
memory segment) and a data structure associated with it. (Note that these shared
memory segments must be explicitly removed by the user after the last reference to
them is removed.) The data structure is referred to as shmid_ds and contains the
following members:

struct
int
struct
pid_t
pid_t
ulong
ulong
time_t
long
time_t
long
time_t
long

ipc_perm shm_perm;

shm_segsz;

anon_map *#shm_amp;

shm_1pid;
shm_cpid;

shm_nattch;
shm_cnattch;

shm_atime;
shm_ausec;
shm_dtime;
shm_cusec;
shm_ctime
shm_cusec

/* operation permission struct */
/* size of segment in bytes #*/

/* segment anon_map pointer#*/

/%
/¥
/¥
/¥
/¥
/*
/¥
/¥
/¥
/¥

pid of last operation
pid of creator */
used only for shminfo
used only for shminfo
last shmat time */

in secs and microsecs.

last shmdt time */

in secs and microsecs.

last change time */

in secs and microsecs.

Here are descriptions of the fields of the shmid_ds structure:

Page 16

*/

*/
*/

*/

*/

*/

intro(2)

shm_permis an ipc_perm structure that specifies the shared memory opera-

tion permission (see below).

members:

uid_t
gid_t
uid_t
gid_t
mode_t
ushort
key_t

cuid;
cgid;
uid;
gid;
mode;
seq;
key;

/%
/%
/*
/ *
/*
/%
/*

creator user id */
creator group id */
user id */

group id */

r/w permission #*/

slot usage sequence # */

key */

This structure includes the following

shm_segsz specifies the size of the shared memory segment in bytes.

shm_cpid is the process ID of the process that created the shared memory

identifier.

shm_1pid is the process ID of the last process that performed a shmop

operation.

10/92

intro(2)

intro (2)

shm_nattch is the number of processes that currently have this segment
attached.

shm_otime and shm_ausec are the seconds and microseconds respectively,
of the time of the last shmat operation [see shmop(2)].

shm_dt ime and shm_dusec are the seconds and microseconds respectively,
of the time of the last shmdt operation [see shmop(2)].

shm_ctime and shm_cusec are the seconds and microseconds respectively,
of the time of the last shmct1 operation that changed members of the above
structure.

Shared Memory Operation Permissions
In the shmop and shmctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed inter-
preted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid and the
appropriate bit of the ““user”” portion (0600) of shm_perm.mode is set.

The effective group ID of the process matches shm perm.cgid or
shm_perm.gid and the appropriate bit of the ““group” portion (060) of
shm_perm.mode is set.

The appropriate bit of the ““other”” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Special Processes
The process with ID 0 and the process with ID 1 are special processes referred to as
proc0 and procl; see kil1(2). proc0 is the process scheduler. procl is the initializa-
tion process (init); procl is the ancestor of every other process in the system and is
used to control the process structure.

STREAMS

A set of kernel mechanisms that support the development of network services and
data communication drivers. It defines interface standards for character
input/output within the kernel and between the kernel and user level processes.
The STREAMS mechanism is composed of utility routines, kernel facilities and a set
of data structures.

10/92

Page 17

intro(2) intro (2)

Stream
A stream is a full-duplex data path within the kernel between a user process and
driver routines. The primary components are a stream head, a driver and zero or
more modules between the stream head and driver. A stream is analogous to a
shell pipeline except that data flow and processing are bidirectional.

Stream Head
In a stream, the stream head is the end of the stream that provides the interface
between the stream and a user process. The principal functions of the stream head
are processing STREAMS-related system calls, and passing data and information
between a user process and the stream.

Super-user
A process is recognized as a super-user process and is granted special privileges,
such as immunity from file permissions, if its effective user ID is 0.

Upstream
In a stream, the direction from driver to stream head.

Write Queue
In a stream, the message queue in a module or driver containing messages moving
downstream.

Page 18 10/92

intro(3)

NAME

DESCRIPTION

10/92

intro (3)

intro - introduction to functions and libraries

This section describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in Sec-
tion 2 of this volume. Function declarations can be obtained from the #include
files indicated on each page. Certain major collections are identified by a letter after
the section number:

3C)

(3E)

8G)

(M)

(BN)

These functions, together with those of Section 2 and those marked (3S), con-
stitute the standard C library, 1ibc, which is automatically linked by the C
compilation system. The standard C library is implemented as a shared
object, 1ibc.so, and an archive, libc.a. C programs are linked with the
shared object version of the standard C library by default. Specify -dn on
the cc command line to link with the archive version. See cc(1) for other
overrides.

These functions constitute the ELF access library, 1ibelf. This library is not
implemented as a shared object, and is not automatically linked by the C
compilation system. Specify -1elf on the cc command line to link with this
library.

These functions constitute the general-purpose library, 1ibgen. This library
is not implemented as a shared object, and is not automatically linked by the
C compilation system. Specify -1gen on the cc command line to link with
this library.

These functions constitute the math library, 1ibm. Declarations for these
functions may be obtained from the #include filemath.h. [See math(5).]

libm is not automatically loaded by the C compilation system; use the -1
option to cc to access the library.

libm contains the full set of double-precision routines plus some single-
precision routines (designated by the suffix £) that give better performance
with less precision. Selected routines are hand-optimized for performance.
The optimized routines include sin, cos, tan, atan, atan2, exp, log, 1ogl0,
pow, and sart and their single-precision equivalents.

This library is not implemented as a shared object, and is not automatically
linked by the C compilation system. Specify -1mon the cc command line to
link with this library.

These functions are contained in three libraries: the Network Services
library, 1ibnsl; the Sockets Interface library, l1ibsocket; and the Internet
Domain Name Server library, 1ibresolv.

The following functions constitute the 1ibns1 library:

crl crl authentication library
cs Connection Server library interface
des Data Encryption Standards library

Page 1

intro(3) intro(3)

netdir Network Directory functions. This contains look-up functions
and the access point to network directory libraries for various
network transports.

netselect Network Selection routines. These functions manipulate the
/etc/netconfig file and return entries.

nsl Transport Library Interface (TLI). These functions contain the
implementation of X/OPEN's Transport Level Interface.

rexec REXEC library interface

rpC User-level Remote Procedure Call library

saf Service Access Facility library

vp Network Information Service functions

The libsocket library has two components: inet, containing the Inernet
library routines, and socket, containing the Socket Interface routines. The
libresolv library contains the resolver routines.

The standard networking libraries are implemented as a shared object
(1ibnsl.so and libsocket .so) or archive file (1ibresolv.a). To link with
these libraries, specify the cc command line with -1nsl, -1socket, or -
lresolv, respectively.

(3S) These functions constitute the “standard 1/O package” [see stdio(35)].

(3X) Specialized libraries. The files in which these libraries are found are given on
the appropriate pages.

DEFINITIONS

A character is any bit pattern able to fit into a byte on the machine. The null charac-
ter is a character with value 0, conventionally represented in the C language as \0.
A character array is a sequence of characters. A null-terminated character array (a
string) is a sequence of characters, the last of which is the null character. The null
string is a character array containing only the terminating null character. A NULL
pointer is the value that is obtained by casting 0 into a pointer. C guarantees that
this value will not match that of any legitimate pointer, so many functions that
return pointers return NULL to indicate an error. The macro NULL is defined in
stdio.h. Types of the form size_t are defined in the appropriate header files.

In the Network Services library, netbuf is a structure used in various TLI functions
to send and receive data and information. netbuf is defined in sys/tiuser.h, and
includes the following members:

struct netbuf {
unsigned int maxlen; /* The physical size of the buffer */
unsigned int len; /* The number of bytes in the buffer */
char *buf; /* Points to user input and/or output buffer */
}i

If netbuf is used for output, the function will set the user value of len on return.
maxlen generally has significance only when buf is used to receive output from the
TLI function. In this case, it specifies the maximum value of len that can be set by
the function. If maxlen is not large enough to hold the returned information, an

Page 2 10/92

intro (3) intro(3)

FILES

TBUFOVFLW error will generally result. However, certain functions may return part
of the data and not generate an error.

INCDIR usually /usr/include
LIBDIR usually /usr/ccs/1lib
LIBDIR/1ibc.so

LIBDIR/1ibc.a

LIBDIR/1libgen.a

LIBDIR/1ibm.a

LIBDIR/1ibnsl.so

LIBDIR/libresolv.a

LIBDIR/1ibsfm.sa

LIBDIR/11ibsocket.so
/usr/lib/libc.so.1

SEE ALSO

ar(1), cc(1), 1d(1), 1int(1), nm(1), intro(2), stdio(3S), math(5),

DIAGNOSTICS
Math Library (libm) Only

NOTES

10/92

For functions that return floating-point values, error handling varies according to
compilation mode. Under the -xt (default) option to cc, these functions return the
conventional values 0, +HUGE, or NaN when the function is undefined for the given
arguments or when the value is not representable. In the -Xa and -Xc compilation
modes, tHUGE_VAL is returned instead of #HUGE. (HUGE_VAL and HUGE are defined
inmath.h to be infinity and the largest-magnitude single-precision number, respec-
tively.) In every case, the external variable errno [see intro(2)] is set to the value
EDOM or ERANGE, although the value may vary for a given error depending on com-
pilation mode.

None of the functions, external variables, or macros should be redefined in the
user’s programs. Any other name may be redefined without affecting the behavior
of other library functions, but such redefinition may conflict with a declaration in
an included header file.

The header files in INCDIR provide function prototypes (function declarations
including the types of arguments) for most of the functions listed in this manual.
Function prototypes allow the compiler to check for correct usage of these func-
tions in the user’s program. The 1int program checker may also be used and will
report discrepancies even if the header files are not included with #include state-
ments. Definitions for Sections 2, 3C, and 3S are checked automatically. Other
definitions can be included by using the -1 option to lint. (For example, -1m
includes definitions for 1ibm.) Use of 1int is highly recommended.

Users should carefully note the difference between STREAMS and stream. STREAMS
is a set of kernel mechanisms that support the development of network services
and data communication drivers. It is composed of utility routines, kernel facilities,
and a set of data structures. A stream is a file with its associated buffering. It is
declared to be a pointer to a type FILE defined in stdio.h.

In detailed definitions of components, it is sometimes necessary to refer to symbolic
names that are implementation-specific, but which are not necessarily expected to

Page 3

intro(3) intro(3)

Page 4

be accessible to an application program. Many of these symbolic names describe
boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given sym-
bolic names. These names always appear enclosed in curly brackets to distinguish
them from symbolic names of other implementation-specific constants that are
accessible to application programs by header files. These names are not necessarily
accessible to an application program through a header file, although they may be
defined in the documentation for a particular system.

In general, a portable application program should not refer to these symbolic names
in its code. For example, an application program would not be expected to test the
length of an argument list given to a routine to determine if it was greater than
{ARG_MAX}.

10/92

intro (3M) (Math Libraries) intro (3M)

NAME

intro - introduction to math libraries

SYNOPSIS

cc [flag .. .1file ... -1m[library ...]
cc -0 -Ksd|flag ...Jfile ... -0 stm[library ...]
#include <math.h>

DESCRIPTION

10/92

This section describes the functions in the math libraries, 1ibm and libsfm.
Declarations for these functions may be obtained from the #include file math.h.
Several generally useful mathematical constants are also defined there [see
intro(3) and math(5)].

The reference manual pages are divided as follows: Commands Reference Manual,
Volumes 1: Section 1 and all Section 1 subsections, and Section 5 manual pages
related to commands.

System Calls and Library Functions Reference Manual: Sections 2, 3, and all Section 3
subsections, and Section 5 manual pages related to programming.

System Files and Devices Reference Manual: Sections 4 and 7.

The math libraries are not automatically loaded by the C compilation system; use
the -1 or -J options to cc to access the libraries as follows:

-1m Search the regular math library, 1ibm.

-J sfm Do in-line expansion of functions from the fast single-precision
assembly source math library, 1ibsfm. Specify -O -Ksd to
optimize for speed.

libm Contains the full set of double-precision routines plus some single-
precision routines (designated by the suffix f) that give better perfor-
mance with less precision. Selected routines are hand-optimized for per-
formance. The optimized routines include sin, cos, tan, atan, atan2,
exp, log, 10910, pow, and sart and their single-precision equivalents.

libsfm Contains the functions sinf, cosf, tanf, asinf, acosf, atanf, expf,
logf, 1ogl0f, powf, and sqrtf. The source library routines are in-line
expanded by the optimizer to provide faster execution by reducing the
overhead of argument passing, function calling and returning, and return
value passing. The source library is designed for applications that desire
an increase in speed at the potential cost of size.

libsfmshould be used only when necessary and with extreme caution. It
is a special purpose library that does not do error checking or domain
reduction. In other words, these functions never call matherr, and argu-
ments aren’t reduced to be within a finite range.

Inputs to sinf and cosf must be in the range

S

2 2

Page 1

intro (3M) (Math Libraries)

Inputs to tanf must be in the range

I n
- 5 <X < o
Inputs to sgrtf, logf, and 1ogl0f must be greater than 0.
DEFINITIONS
See intro(3) for C language definitions.
FILES
LIBDIR usually /usr/ccs/1ib
LIBDIR/1ibm.a
SEE ALSO
cc(l), intro(2), intro(3), math(b)
DIAGNOSTICS

intro (3M)

Error handling varies according to compilation mode. Under the -xXt (default)
option to cc, these functions return the conventional values 0, tHUGE, or NaN when
the function is undefined for the given arguments or when the value is not
representable. In the -Xa and -Xc compilation modes, *HUGE_VAL is returned
instead of +HUGE. (HUGE_VAL and HUGE are defined in math.h to be infinity and the
largest-magnitude single-precision number, respectively.) In every case, the exter-
nal variable errno [see intro(2)] is set to the value EDOM or ERANGE, although the
value may vary for a given error depending on compilation mode. See the table

under matherr(3M) below.

Page 2

10/92

intro(5) intro (5)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities related to programming.

10/92 Page 1

intro(2)

NAME
intro

Errnos

(Application Compatibility Package) intro(2)

This section describes all the system calls. Many of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value which is almost always -1 or the NULL pointer. The individual descriptions
specify the details. The following is a complete list of the error names and their

descriptions.
EACCES

EDEADLK

EEXIST
EFAULT
EFAULT

EINVAL

EINTR
EISNAM

ELOOP
EMULTIHOP

ENAMETOOLONG

ENAVAIL

ENOENT

10/92

Search permission is denied for a component of the path
prefix.

A process’ attempt to lock a file region would cause a
deadlock between processes vying for control of that region.

The named file exists.
buf or path points to an invalid address.

path points outside the allocated address space of the pro-
cess.

An invalid argument was specified mentioning an
undefined signal in a call to the signal or kill routine.
Also set by the functions described in the math package
(3M).

A signal was caught during the system call.

A XENIX name file (semaphore, shared data, and so on) was
specified when not expected.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines.

The length of the path argument exceeds { PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
(_POSIX_NO_TRUNC) is in effect.

An opensem(2), waitsem(2) or sigsem(2) was issued to a
XENIX semaphore that has not been initialized by a call to
creatsem(2). A sigsem was issued to a XENIX semaphore
out of sequence; that is, before the process has issued the
corresponding waitsem to the semaphore. An nbwaitsem
was issued to a semaphore guarding a resource that is
currently in use by another process. The semaphore that a
process was waiting on has been left in an inconsistent state
when the process controlling the semaphore exited without
relinquishing control properly; that is, without issuing a
waitsemon the semaphore.

The named file does not exist or is the null pathname.

Page 1

intro(2)

Page 2

ENOENT

ENOLCK
ENOLINK

ENOSPC
ENOTDIR
ENOTNAM

EOVERFLOW

EPERM
EROFS

(Application Compatibility Package) intro (2)

A component of the path prefix does not exist or is a null
pathname.

Cannot allocate a record lock for fentl or locking.

path points to a remote machine and the link to that machine
is no longer active.

No space is available.
A component of the path prefix is not a directory.

Not available. A creatsem, opensem(2), waitsem(2), or sig-
sem(2) was issued using and invalid XENIX semaphore
identifier. Or, a process attempted a sdget(2) on a file that
exists but is not shared data type.

A component is too large to store in the structure pointed to
by buf. does not exist or is a null pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on a
read-only file system.

10/92

a641(3C) (C Development Set) a641(3C)

NAME

a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS

#include <stdlib.h>
long a64l (const char *s);
char *164a (long 1);

DESCRIPTION

NOTES

10/92

These functions are used to maintain numbers stored in base-64 ASCII characters.
These characters define a notation by which long integers can be represented by up
to six characters; each character represents a “digit”” in a radix-64 notation.

The characters used to represent ““digits”” are . for 0, / for 1, 0 through 9 for 2-11, A
through z for 12-37, and a through z for 38-63.

a64l takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

a641 scans the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number.

l64a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which
are overwritten by each call.

Page 1

abort(3C) (C Development Set) abort(3C)

NAME

abort - generate an abnormal termination signal
SYNOPSIS

#include <stdlib.h>

void abort (void);

DESCRIPTION
abort first closes all open files, stdio(3S) streams, directory streams and message
catalogue descriptors, if possible, then causes the signal SIGABRT to be sent to the
calling process.

SEE ALSO
tbx(1), exit(2), ki11(2), signal(2), catopen(3C), stdio(3S).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable, a

core dump is produced and the message abort - core dumped is written by the
shell [see sh(1)].

10/92 Page 1

abs (3C) (C Development Set) abs(3C)

NAME
abs, labs - return integer absolute value

SYNOPSIS
#include <stdlib.h>
int abs (int val);
long labs (long lval);
DESCRIPTION

abs returns the absolute value of its int operand. labs returns the absolute value
of its long operand.

SEE ALSO
floor(3M)

NOTES

In 2’s-complement representation, the absolute value of the largest magnitude
negative integral value is undefined.

10/92 Page 1

accept(3N) accept(3N)

NAME

accept - accept a connection on a socket
SYNOPSIS

#include <sys/types.h>

int accept(int s, caddr_t addr, int *addrlen);
DESCRIPTION

The argument s is a socket that has been created with socket and bound to an
address with bind, and that is listening for connections after a call to listen.
accept extracts the first connection on the queue of pending connections, creates a
new socket with the properties of s, and allocates a new file descriptor, s, for the
socket. If no pending connections are present on the queue and the socket is not
marked as non-blocking, accept blocks the caller until a connection is present. If
the socket is marked as non-blocking and no pending connections are present on
the queue, accept returns an error as described below. accept uses the netcon-
fig file to determine the STREAMS device file name associated with s. This is the
device on which the connect indication will be accepted. The accepted socket, ns, is
used to read and write data to and from the socket that connected to ns; it is not
used to accept more connections. The original socket (s) remains open for accepting
further connections.

The argument addr is a result parameter that is filled in with the address of the con-
necting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

addrlen is a value-result parameter. Initially, it contains the amount of space
pointed to by addr; on return it contains the length in bytes of the address returned.

accept is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select a socket for the purpose of an accept by selecting it for
read. However, this will only indicate when a connect indication is pending; it is
still necessary to call accept.

RETURN VALUE

accept returns -1 on error. If it succeeds, it returns a non-negative integer that is a
descriptor for the accepted socket.

ERRORS

10/92

accept will fail if:

EBADF The descriptor is invalid.

ENOTSOCK The descriptor does not reference a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EWOULDBLOCK The socket is marked as non-blocking and no connections
are present to be accepted.

EPROTO A protocol error has occurred; for example, the STREAMS

protocol stack has not been initialized.

ENODEV The protocol family and type corresponding to s could not
be found in the netconfig file.

Page 1

accept (3N) accept (3N)

ENOMEM There was insufficient user memory available to complete
the operation.

ENOSR There were insufficient STREAMS resources available to com-
plete the operation.

SEE ALSO

NOTES

Page 2

bind(3N), connect(3N), 1isten(3N), socket(3N), netconfig(4)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF_UNIX) require a socketaddr_un struc-
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet/in.h. Other address fami-
lies may require other structures. Use the structure appropriate to the address fam-
ily; cast the structure address to a generic caddr_t in the call to accept and pass
the size of the structure in the addrlen argument.

10/92

access(2)

NAME

access (2)

access - determine accessibility of a file

SYNOPSIS

#include <unistd.h>

int access(const char *path, int amode) ;

DESCRIPTION

path points to a path name naming a file. access checks the named file for accessi-
bility according to the bit pattern contained in amode, using the real user ID in place
of the effective user ID and the real group ID in place of the effective group ID. The
bit pattern contained in amode is constructed by an OR of the following constants
(defined in <unistd.h>):

R_OK
W_OK
X_OK
F_OK

read

write

execute (search)
check existence of file

Access to the file is denied if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES Permission bits of the file mode do not permit the requested
access.

EFAULT path points outside the allocated address space for the pro-
cess.

EINTR A signal was caught during the access system call.

EINVAL Argument is invalid.

ELOOP Too many symbolic links were encountered in translating
path.

EMULTIHOP Components of path require hopping to multiple remote
machines.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds (NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

ENOTDIR A component of the path prefix is not a directory.

ENOENT Read, write, or execute (search) permission is requested for a
null path name.

ENOENT The named file does not exist.

ENOLINK path points to a remote machine and the link to that machine
is no longer active.

EROFS Wrrite access is requested for a file on a read-only file system.

SEE ALSO

chmod(2), stat(2)
“File Access Permission” in intro(2).

10/92

Page 1

access(2) access(2)

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Page 2 10/92

acct(2) acct(2)

NAME

acct - enable or disable process accounting

SYNOPSIS

#include <unistd.h>

int acct (const char #*path);

DESCRIPTION

acct enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each process
that terminates. The termination of a process can be caused by one of two things:
an exit call or a signal [see exit(2) and signal(2)]. The effective user ID of the
process calling acct must be superuser.

path points to a pathname naming the accounting file. The accounting file format is
given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. It is disabled if path is (char *)NULL and no errors occur during the
system call.

acct will fail if one or more of the following are true:

EACCES The file named by path is not an ordinary file.

EBUSY An attempt is being made to enable accounting using the
same file that is currently being used.

EFAULT path points to an illegal address.

ELOOP Too many symbolic links were encountered in translating
path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the

length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

ENOTDIR A component of the path prefix is not a directory.
ENOENT One or more components of the accounting file pathname do
not exist.
EPERM The effective user of the calling process is not superuser.
EROFS The named file resides on a read-only file system.
SEE ALSO

exit(2), signal(2), acct(4).

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

addsev (3C) (C Programming Language Utilities) addsev (3C)

NAME
addsev - define additional severities

SYNOPSIS
int addsev(int int_val, const char *string) ;

DESCRIPTION
The function addsev () defines additional severities for use in subsequent calls to
pfmt () or 1fmt (). addsev() associates an integer value int_val in the range [5-
255] with a character string. It overwrites any previous string association with
int_val and string.

If int_val is ORed with the flags passed to subsequent calls pfmt () or 1fmt(),
string will be used as severity.

Passing a NULL string removes the severity.
Add-on severities are only effective within the applications defining them.

RETURN VALUE
addsev () returns 0 in case of success, -1 otherwise.

USAGE
Only the standard severities are automatically displayed per the locale in effect at
runtime. An application must provide the means for displaying locale-specific ver-
sions of add-on severities.

EXAMPLE
#define Panic 5
setlabel ("APPL") ;
setcat ("my_appl") ;
addsev (Panic, gettxt(":26", "PANIC"));
VAV
1fmt (stderr, MM_SOFT|MM_APPL| Panic, ":12:Cannot locate database\n");

will display the message to stderr and forward to the logging service:
APPL: PANIC: Cannot locate database

SEE ALSO
gettxt(3C), Ifmt(3C), pfmt(3C).

10/92 Page 1

addseverity (3C) (Essential Utilities) addseverity (3C)

NAME

addseverity - build a list of severity levels for an application for use with fmtmsg

SYNOPSIS

#include <fmtmsg.h>

int addseverity (int severity, const char *string);

DESCRIPTION

The addseverity function builds a list of severity levels for an application to be
used with the message formatting facility, fmtmsg. severity is an integer value indi-
cating the seriousness of the condition, and string is a pointer to a string describing
the condition (string is not limited to a specific size).

If addseverity is called with an integer value that has not been previously
defined, the function adds that new severity value and print string to the existing
set of standard severity levels.

If addseverity is called with an integer value that has been previously defined,
the function redefines that value with the new print string. Previously defined
severity levels may be removed by supplying the NULL string. If addseverity is
called with a negative number or an integer value of 0, 1, 2, 3, or 4, the function fails
and returns -1. The values 0-4 are reserved for the standard severity levels and can-
not be modified. Identifiers for the standard levels of severity are:

MM_HALT indicates that the application has encountered a severe fault
and is halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces
the print string ERROR.

MM_WARNING indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the print
string WARNING.

MM_INFO provides information about a condition that is not in error.
Produces the print string INFO.

MM_NOSEV indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment
variable [see fmtmsg(3C)].

EXAMPLES

When the function addseverity is used as follows:
addseverity (7, "ALERT")
the following call to fmtmsg:

fmtmsg (MM_PRINT, "UX:cat", 7, "invalid syntax", "refer to
manual", "UX:cat:001")
produces:

UX:cat: ALERT: invalid syntax
TO FIX: refer to manual UX:cat:001

SEE ALSO

10/92

fmtmsg(1M), fmtmsg(3C), gettxt(3C), print £(3S)

Page 1

addseverity (3C) (Essential Utilities) addseverity (3C)

DIAGNOSTICS
addseverity returns MM_OK on success or MM_NOTOK on failure.

Page 2 10/92

adjtime (2) adjtime (2)

NAME

adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

DESCRIPTION

adjtime adjusts the system's notion of the current time, as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in
the struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or
slowing down (if that amount of time is negative) the system’s clock by some small
percentage, generally a fraction of one percent. Thus, the time is always a mono-
tonically increasing function. A time correction from an earlier call to adjtime may
not be finished when adjtime is called again. If delta is 0, then olddelta returns the
status of the effects of the previous adjtime call and there is no effect on the time
correction as a result of this call. If olddelta is not a NULL pointer, then the structure
it points to will contain, upon return, the number of seconds and/or microseconds
still to be corrected from the earlier call. If olddelta is a NULL pointer, the
corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

Only the super-user may adjust the time of day.
The adjustment value will be silently rounded to the resolution of the system clock.

RETURN

A 0 return value indicates that the call succeeded. A -1 return value indicates an
error occurred, and in this case an error code is stored into the global variable
errno.

ERRORS

The following error codes may be set in errno:

EFAULT delta or olddelta points outside the process’s allocated address
space, or olddelta points to a region of the process’ allocated
address space that is not writable.

EPERM The process’s effective user ID is not that of the super-user.

SEE ALSO

10/92

date(l), gettimeofday(3C).

Page 1

alarm(2) alarm(2)

NAME
alarm- set a process alarm clock

SYNOPSIS
#include <unistd.h>
unsigned alarm(unsigned sec);

DESCRIPTION
alarm instructs the alarm clock of the calling process to send the signal SIGALRM to
the calling process after the number of real time seconds specified by sec have
elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.
If sec is 0, any previously made alarm request is canceled.

fork sets the alarm clock of a new process to 0 [see fork(2)]. A process created by
the exec family of routines inherits the time left on the old process’s alarm clock.

SEE ALSO
fork(2), exec(2), pause(2), signal(2), sigset(2)

DIAGNOSTICS
alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

10/92 Page 1

alloca(3) (BSD Compatibility Package) alloca(3)

NAME
alloca - memory allocator

SYNOPSIS
/usr/ucb/cc [flag...]file...
#include <alloca.h>
char *alloca(size)
int size;

DESCRIPTION
alloca allocates size bytes of space in the stack frame of the caller, and returns a
pointer to the allocated block. This temporary space is automatically freed when
the caller returns. Note: if the allocated block is beyond the current stack limit, the
resulting behavior is undefined.

NOTES
alloca is machine-, compiler-, and most of all, system-dependent. Its use is
strongly discouraged. Within the M88 family of processors, the programmer is
responsible for freeing the allocated block because the M88 family of processors
does not set up and free stack frames upon entry and exit from a function. Also,
local variables on the stack may be improperly accessed after allocation. Therefore,
its use on the M88 family of processors is discouraged.

SEE ALSO
csh(1), 1d(1), brk(2), getrlimit(2), calloc(3), sigstack(3), sigvec(3), malloc(3).

Stephenson, C.J., Fast Fits, in Proceedings of the ACM 9th Symposium on Operating Sys-
tems, SIGOPS Operating Systems Review, vol. 17, no. 5, October 1983.

Core Wars, in Scientific American, May 1984.

10/92 Page 1

assert (3X) assert (3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>
void assert (int expression);

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if
expression is false (zero), assert prints

Assertion failed: expression, file xyz, linennn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement. The latter
are respectively the values of the preprocessor macros __FILE__and _ LINE_ .
Compiling with the preprocessor option -DNDEBUG [see cc(1)], or with the prepro-
cessor control statement #define NDEBUG ahead of the #include assert.h state-
ment, will stop assertions from being compiled into the program.

SEE ALSO
cc(1), abort(3C)

NOTES

Since assert is implemented as a macro, the expression may not contain any string
literals.

10/92 Page 1

atexit (3C) (C Development Set) atexit (3C)

NAME
atexit - add program termination routine

SYNOPSIS
#include <stdlib.h>

int atexit (void (*func) (void));

DESCRIPTION
atexit adds the function func to a list of functions to be called without arguments
on normal termination of the program. Normal termination occurs by either a call
to the exit system call or a return from main. At most 32 functions may be
registered by atexit; the functions will be called in the reverse order of their regis-
tration.

atexit returns 0 if the registration succeeds, nonzero if it fails.

SEE ALSO
exit(2)

10/92 Page 1

basename (3G) basename (3G)

NAME
basename - return the last element of a path name
SYNOPSIS
cclflag . . .1file . . . -1gen[library . . .]
#include <libgen.h>
char *basename (char *path);

DESCRIPTION

Given a pointer to a null-terminated character string that contains a path name,
basenane returns a pointer to the last element of path. Trailing ““/” characters are
deleted.

If path or *path is zero, pointer to a static constant **."’ is returned.
EXAMPLES
Input string Output pointer
/usr/lib lib

/usr/ usr
/ /

SEE ALSO
basename(1), dirname(3G).

10/92 Page 1

bessel (3M) (Math Libraries) bessel (3M)

NAME

bessel: j0, j1, jn,v0,v1,yn - Bessel functions

SYNOPSIS

cc [flag ...1file ... -Im[library ...]
#include <math.h>

double jO (double x);

double jl1 (double x);

double jn (int n, double Xx);

double y0 (double x);

double y1 (double x);

double yn (int n, double x);
DESCRIPTION

j0 and j1 return Bessel functions of x of the first kind of orders 0 and 1, respec-
tively. jn returns the Bessel function of x of the first kind of ordern.

v0 and y1 return Bessel functions of x of the second kind of orders 0 and 1, respec-
tively. yn returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

SEE ALSO

matherr(3M)

DIAGNOSTICS

10/92

Non-positive arguments cause y0, y1, and yn to return the value -HUGE and to set
errno to EDOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

Arguments too large in magnitude cause j0, j1, y0, and y1 to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the
standard error output.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages are
printed.

Page 1

bgets (3G) bgets (3G)

NAME
bgets - read stream up to next delimiter

SYNOPSIS
cc [flag ...1file ... -1gen [library ...]
#include <libgen.h>
char *bgets (char #*buffer, size_t #*count, FILE *stream,

const char #*breakstring);

DESCRIPTION
bgets reads characters from stream into buffer until either count is exhausted or one
of the characters in breakstring is encountered in the stream. The read data is ter-
minated with a null byte ("\0’) and a pointer to the trailing null is returned. If a
breakstring character is encountered, the last non-null is the delimiter character that
terminated the scan.
Note that, except for the fact that the returned value points to the end of the read -
string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, "\n");
is identical to
fgets (buffer, sizeof buffer, stream);
There is always enough room reserved in the buffer for the trailing null.

If breakstring is a null pointer, the value of breakstring from the previous call is used.
If breakstring is null at the first call, no characters will be used to delimit the string.

EXAMPLES
#include <libgen.h>

char buffer(8];

/* read in first user name from /etc/passwd */
fp = fopen("/etc/passwd","r");

bgets (buffer, 8, fp, ":");

DIAGNOSTICS
NULL is returned on error or end-of-file. Reporting the condition is delayed to the
next call if any characters were read but not yet returned.

SEE ALSO
gets(3S)

10/92 Page 1

bind (3N) bind (3N)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>

int bind(int s, caddr_t name, int namelen);

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is created with socket,
it exists in a name space (address family) but has no name assigned. bind requests
that the name pointed to by name be assigned to the socket.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS

The bind call will fail if:

EBADF s is not a valid descriptor.

ENOTSOCK s is a descriptor for a file, not a socket.

EADDRNOTAVAIL The specified address is not available on the local machine.

EADDRINUSE The specified address is already in use.

EINVAL namelen is not the size of a valid address for the specified
address family.

EINVAL The socket is already bound to an address.

EACCES The requested address is protected and the current user has
inadequate permission to access it.

ENOSR There were insufficient STREAMS resources for the operation

to complete.

The following errors are specific to binding names in the UNIX domain:

ENOTDIR A component of the path prefix of the pathname in name is
not a directory.

ENOENT A component of the path prefix of the pathname in name
does not exist.

EACCES Search permission is denied for a component of the path
prefix of the pathname in name.

ELOOP Too many symbolic links were encountered in translating
the pathname in name.

EIO An I/0 error occurred while making the directory entry or
allocating the inode.

EROF'S The inode would reside on a read-only file system.

EISDIR A null pathname was specified.

SEE ALSO

unlink(2) in the Programmer’s Reference Manual

10/92 Page 1

bind (3N) bind (3N)

NOTES

Page 2

Binding a name in the UNIX domain creates a socket in the file system that must be
deleted by the caller when it is no longer needed [see unlink(2)].

The rules used in name binding vary between communication domains.

The type of address structure passed to bind depends on the address family. UNIX
domain sockets (address family AF_UNIX) require a socketaddr_un structure as
defined in sys/un.h; Internet domain sockets (address family AF_INET) require a
sockaddr_in structure as defined in netinet/in.h. Other address families may
require other structures. Use the structure appropriate to the address family; cast
the structure address to a generic caddr_t in the call to bind and pass the size of
the structure in the namelen argument.

10/92

brk(2)

NAME

brk (2)

brk, sbrk - change data segment space allocation

SYNOPSIS

#include <unistd.h>
int brk(void *endds) ;

void #sbrk(int incr);

DESCRIPTION

brk and sbrk are used to change dynamically the amount of space allocated for the
calling process’s data segment [see exec(2)]. The change is made by resetting the
process’s break value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases. Newly allocated
space is set to zero. If, however, the same memory space is reallocated to the same
process its contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space accord-
ingly. incr can be negative, in which case the amount of allocated space is
decreased.

brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

ENOMEM Such a change would result in more space being allocated
than is allowed by the system-imposed maximum process
size [see ulimit(2)].

EAGATN Returned when the system is out of swap space.

SEE ALSO

exec(2), shmop(2), ulimit(2), end(3C).

DIAGNOSTICS

10/92

Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

Page 1

bsearch (3C) (C Development Set) bsearch (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch (const void *key, const void *base, size_t nel,
size_t size, int (*compar) (const void *, const void *));

DESCRIPTION

bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table (an array) indicating where a datum may be found or
anull pointer if the datum cannot be found. The table must be previously sorted in
increasing order according to a comparison function pointed to by compar. key
points to a datum instance to be sought in the table. base points to the element at
the base of the table. nel is the number of elements in the table. size is the number
of bytes in each element. The function pointed to by compar is called with two
arguments that point to the elements being compared. The function must return an
integer less than, equal to, or greater than 0 as accordingly the first argument is to
be considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This program reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct node { /* these are stored in the table */
char *string;
int length;

};

static struct node table[] = /% table to be searched */

{
{ "asparagus", 10 },
{ "beans", 6 },
{ "tomato", 7 1},
{ "watermelon", 11 },
bi

main()
{
struct node *node_ptr, node;
/% routine to compare 2 nodes */
static int node_compare (const void *, const void *);
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%20s", node.string) != EOF) {

10/92 Page 1

bsearch (3C) (C Development Set) bsearch (3C)

node_ptr = bsearch(&node,
table, sizeof (table)/sizeof (struct node),
sizeof (struct node), node_compare) ;
if (node_ptr != NULL) {
(void) printf("string = %20s, length = %d\n",
node_ptr—>string, node_ptr—>length);

} else {
(void)printf ("not found: %20s\n", node.string) ;

}
}

return(0) ;

}

/* routine to compare two nodes based on an */
/* alphabetical ordering of the string field */

static int
node_compare (const void *nodel, const void *node2)

{
return (strcmp (
((const struct node *)nodel)—->string,

((const struct node *)node2)->string));

SEE ALSO
hsearch(3C), 1search(3C), gsort(3C), tsearch(3C)

DIAGNOSTICS
A null pointer is returned if the key cannot be found in the table.

NOTES
The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table, nel
should be the lower number.

Page 2 10/92

bstring (3) (BSD Compatibility Package) bstring (3)
NAME
bstring: bcopy, bemp, bzero, - bit and byte string operations
SYNOPSIS
/usr/ucb/cc [flag...1file...
bcopy (b1, b2, length)
char *bl, *b2;
int length;
int bcmp (bl, b2, length)
char #*bl, *b2;
int length;
bzero(b, length)
char *b;
int length;
DESCRIPTION
The functions bcopy, bemp, and bzero operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3) do.
bcopy copies length bytes from string b1 to the string b2. Overlapping strings are
handled correctly.
bemp compares byte string b1 against byte string b2, returning zero if they are ident-
ical, 1 otherwise. Both strings are assumed to be length bytes long. bcmp of length
zero bytes always returns zero.
bzero places length 0 bytes in the string b.
NOTES
The bcmp and bcopy routines take parameters backwards from strcmp and
strcpy.
SEE ALSO
££s(3C), string(3C).
10/92 Page 1

bufsplit (3G) (Enhanced Programming Library) bufsplit (3G)

NAME
bufsplit - split buffer into fields

SYNOPSIS
cc [flag ...1file ... -1gen [library ...]
#include <libgen.h>
size_t bufsplit (char *buf, size_t n, char **a);

DESCRIPTION
bufsplit examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by tabs or new-
lines.

To change the characters used to separate fields, call bufsplit with buf pointing to
the string of characters, and n and a set to zero. For example, to use ’:’,”.”,and ’,’
as separators along with tab and new-line:

bufsplit (":.,\t\n", 0, (char**)0);

RETURN VALUE
The number of fields assigned in the array a. If buf is zero, the return value is zero
and the array is unchanged. Otherwise the value is at least one. The remainder of

the elements in the array are assigned the address of the null byte at the end of the
buffer.

EXAMPLES
/%
* set al[0] = "This", all] = "is", al2] = "a",
* al3] = "test"
*/
bufsplit ("This\tis\ta\ttest\n", 4, a);
NOTES
bufsplit changes the delimiters to null bytes in buf.

10/92 Page 1

byteorder(3N) byteorder (3N)

NAME
byteorder, htonl, htons, ntohl, ntohs - convert values between host and

network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
u_long htonl (u_long hostlong) ;
u_short htons (u_short hostshort);
u_long ntohl (u_long netlong) ;
u_short ntohs (u_short netshort);

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros
in the include file netinet/in.h. On other architectures, if their host byte order is
different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses and
ports as returned by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), get servent(3N)

10/92 Page 1

catgets (3C) catgets (3C)

NAME
catgets - read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets (nl_catd catd, int set_num, int msg_num, char *s);

DESCRIPTION
catgets attempts to read message msg_num, in set set_num, from the message
catalogue identified by catd. catd is a catalogue descriptor returned from an earlier
call to catopen. s points to a default message string which will be returned by cat-
gets if the identified message catalogue is not currently available.

SEE ALSO
catopen(3C)

DIAGNOSTICS
If the identified message is retrieved successfully, catgets returns a pointer to an
internal buffer area containing the null terminated message string. If the call is

unsuccessful because the message catalogue identified by catd is not currently
available, a pointer to s is returned.

10/92 Page 1

catopen(3C) catopen (3C)

NAME
catopen, catclose - open/close a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen (char *name, int oflag);
int catclose (nl_catd catd);

DESCRIPTION
catopen opens a message catalog and returns a catalog descriptor. name specifies
the name of the message catalog to be opened. If name contains a *“/”" then name
specifies a pathname for the message catalog. Otherwise, the environment variable
NLSPATH is used. If NLSPATH does not exist in the environment, or if a message
catalog cannot be opened in any of the paths specified by NLSPATH, then the default
path is used [see nl_types(5)].

The names of message catalogs, and their location in the filestore, can vary from
one system to another. Individual applications can choose to name or locate mes-
sage catalogs according to their own special needs. A mechanism is therefore
required to specify where the catalog resides.

The NLSPATH variable provides both the location of message catalogs, in the form of
a search path, and the naming conventions associated with message catalog files.
For example:

NLSPATH=/nlslib/$L/%N.cat:/nlslib/%$N/%L

The metacharacter $ introduces a substitution field, where $L substitutes the
current setting of the LANG environment variable (see following section), and %N
substitutes the value of the name parameter passed to catopen. Thus, in the above
example, catopen will search in /nlslib/$LANG/name.cat, then in
/nlslib/name/$LANG, for the required message catalog.

NLSPATH will normally be set up on a system wide basis (for example, in
/etc/profile) and thus makes the location and naming conventions associated
with message catalogs transparent to both programs and users.

The full set of metacharacters is:

oo

N The value of the name parameter passed to catopen.
The value of LANG.
The value of the language element of LANG.

o0 o
[

o°
P

The value of the territory element of LANG.
The value of the codeset element of LANG.
A single %.

[
Q

oo
o

The LANG environment variable provides the ability to specify the user’s require-
ments for native languages, local customs and character set, as an ASCII string in
the form

LANG=language[_territory|[.codeset]]

10/92 Page 1

catopen(3C) catopen (3C)

A user who speaks German as it is spoken in Austria and has a terminal which
operates in ISO 8859 /1 codeset, would want the setting of the LANG variable to be

LANG=De_A.88591

With this setting it should be possible for that user to find any relevant catalogs
should they exist.

Should the LANG variable not be set then the value of LC_MESSAGES as returned by
setlocale is used. If this is NULL then the default path as defined innl_types is
used.

oflag is reserved for future use and should be set to 0. The results of setting this
field to any other value are undefined.

catclose closes the message catalog identified by catd .

SEE ALSO

catgets(3C), setlocale(3C), environ(b), nl_types(5)

DIAGNOSTICS

Page 2

If successful, catopen returns a message catalog descriptor for use on subsequent
calls to catgets and catclose. Otherwise catopen returns
(nl_catd) -1.

catclose returns 0 if successful, otherwise -1.

10/92

chdir(2) chdir(2)

NAME
chdir, fchdir - change working directory
SYNOPSIS
#include <unistd.h>
int chdir(const char #*path);
int fchdir(int fildes);
DESCRIPTION
chdir and fchdir cause a directory pointed to by path or fildes to become the
current working directory, the starting point for path searches for path names not
beginning with /. path points to the path name of a directory. The fildes argument
to fchdir is an open file descriptor of a directory.
In order for a directory to become the current directory, a process must have exe-
cute (search) access to the directory.
chdir will fail and the current working directory will be unchanged if one or more
of the following are true:
EACCES Search permission is denied for any component of the path
name.
EFAULT path points outside the allocated address space of the pro-
cess.
EINTR A signal was caught during the execution of the chdir sys-
tem call.
EIO An I/0 error occurred while reading from or writing to the
file system.
ELOOP Too many symbolic links were encountered in translating
path.
ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds (NAME_MAX} while
_POSTX_NO_TRUNC is in effect.
ENOTDIR A component of the path name is not a directory.
ENOENT Either a component of the path prefix or the directory named
by path does not exist or is a null pathname.
ENOLINK path points to a remote machine and the link to that machine
is no longer active.
EMULTIHOP Components of path require hopping to multiple remote
. machines and file system type does not allow it.
fchdir will fail and the current working directory will be unchanged if one or
more of the following are true:
EACCES Search permission is denied for fildes.
EBADF fildes is not an open file descriptor.
10/92 Page 1

chdir(2)

EINTR
EIO
ENOLINK

ENOTDIR
SEE ALSO

chroot(2)

DIAGNOSTICS

chdir(2)

A signal was caught during the execution of the fchdir sys-
tem call.

An I/0 error occurred while reading from or writing to the
file system.

fildes points to a remote machine and the link to that
machine is no longer active.

The open file descriptor fildes does not refer to a directory.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2

10/92

chmod(2) chmod (2)

NAME
chmod, fchmod - change mode of file
SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode) ;
int fchmod(int fildes, mode_t mode) ;
DESCRIPTION
chmod and fchmod set the access permission portion of the mode of the file whose
name is given by path or referenced by the descriptor fildes to the bit pattern con-
tained in mode. If path or fildes are symbolic links, the access permissions of the tar-
get of the symbolic links are set. Access permission bits are interpreted as follows:
S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if #is 7,5,3,0r 1
Enable mandatory file/record locking if #is 6, 4, 2, or 0
S_ISVTX 01000 Save text image after execution.
S_TRWXU 00700 Read, write, execute by owner.
S_IRUSR 00400 Read by owner.
S_IWUSR 00200 Write by owner.
S_IXUSR 00100 Execute (search if a directory) by owner.
S_IRWXG 00070 Read, write, execute by group.
S_IRGRP 00040 Read by group.
S_IWGRP 00020 Write by group.
S_IXGRP 00010 Execute by group.
S_IRWXO 00007 Read, write, execute (search) by others.
S_IROTH 00004 Read by others.
S_IWOTH 00002 Write by others
S_IXOTH 00001 Execute by others.
Modes are constructed by OR’ing the access permission bits.
The effective user ID of the process must match the owner of the file or the process
must have the appropriate privilege to change the mode of a file.
If the process is not a privileged process and the file is not a directory, mode bit
01000 (save text image on execution) is cleared.
If neither the process nor a member of the supplementary group list is privileged,
and the effective group ID of the process does not match the group ID of the file,
mode bit 02000 (set group ID on execution) is cleared.
If a 0410 executable file has the sticky bit (mode bit 01000) set, the operating system
will not delete the program text from the swap area when the last user process ter-
minates. If a 0413 or ELF executable file has the sticky bit set, the operating system
will not delete the program text from memory when the last user process ter-
minates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it, thus
making execution faster.
10/92 Page 1

chmod(2) chmod(2)

If a directory is writable and has the sticky bit set, files within that directory can be
removed or renamed only if one or more of the following is true [see unlink(2) and
rename(2)]:

the user owns the file

the user owns the directory
the file is writable by the user
the user is a privileged user

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (exe-
cute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to open(2), creat(2), read(2), and write(2)
on this file.

Upon successful completion, chmod and fchmod mark for update the st_ctime
field of the file.

chmod will fail and the file mode will be unchanged if one or more of the following

are true:

EACCES Search permission is denied on a component of the path prefix
of path.

EFAULT path points outside the allocated address space of the process.

EINTR A signal was caught during execution of the system call.

EIO An 1/0 error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTTHOP Components of path require hopping to multiple remote
machines and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX], or the
length of a path component exceeds {NAME MAX} while
_POSIX_NO_TRUNC is in effect.

ENOTDIR A component of the prefix of path is not a directory.

ENOENT Either a component of the path prefix, or the file referred to by
path does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is
no longer active.

EPERM The effective user ID does not match the owner of the file and
the process does not have appropriate privilege.

EROFS The file referred to by path resides on a read-only file system.

fchmod will fail and the file mode will be unchanged if:

EBADF
EIO

fildes is not an open file descriptor

AnI/0 error occurred while reading from or writing to the file
system.

10/92

chmod (2)

EINTR
ENOLINK
EPERM

EROFS
SEE ALSO

chmod (2)

A signal was caught during execution of the fchmod system
call.

path points to a remote machine and the link to that machine is
no longer active.

The effective user ID does not match the owner of the file and
the process does not have appropriate privilege.

The file referred to by fildes resides on a read-only file system.

chmod(l) chown(2), creat(2), fentl(2), mknod(2), open(2), read(2), stat(2),
write(2), mkfifo(3C), stat(5)

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

Page 3

chown(2) chown (2)

NAME

chown, 1chown, fchown - change owner and group of a file

SYNOPSIS

#include <unistd.h>
#include <sys/stat.h>

int chown (const char *path, uid_t owner, gid_t group);
int lchown(const char #*path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION

10/92

The owner ID and group ID of the file specified by path or referenced by the descrip-
tor fildes, are set to owner and group respectively. If owner or group is specified as -1,
the corresponding ID of the file is not changed.

The function 1chown sets the owner ID and group ID of the named file just as chown
does, except in the case where the named file is a symbolic link. In this case 1chown
changes the ownership of the symbolic link file itself, while chown changes the
ownership of the file or directory to which the symbolic link refers.

If chown, 1chown, or fchown is invoked by a process other than super-user, the set-
user-ID and set-group-ID bits of the file mode, S_ISUID and S_ISGID respectively,
are cleared [see chmod(2)].

The operating system has a configuration option, {_POSIX_CHOWN_RESTRICTED}, to
restrict ownership changes for the chown, 1chown, and fchown system calls. When
{_POSIX_CHOWN_RESTRICTED} is not in effect, the effective user ID of the process
must match the owner of the file or the process must be the super-user to change
the ownership of a file. When {_POSIX_CHOWN_RESTRICTED} is in effect, the chown,
lchown, and fchown system calls, for users other than super-user, prevent the
owner of the file from changing the owner ID of the file and restrict the change of
the group of the file to the list of supplementary group IDs.

Upon successful completion, chown, fchown and lchown mark for update the
st_ctime field of the file.

chown and lchown fail and the owner and group of the named file remain
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix of path.

EFAULT path points outside the allocated address space of the pro-
cess.

EINTR A signal was caught during the chown or lchown system
calls.

EINVAL group or owner is out of range.

EIO An I/0 error occurred while reading from or writing to the
file system.

ELOOP Too many symbolic links were encountered in translating
path.

Page 1

chown (2)

EMULTIHOP

ENAMETOOLONG

ENOLINK

ENOTDIR
ENOENT

EPERM

EROFS

chown (2)

Components of path require hopping to multiple remote
machines and file system type does not allow it. Too many
symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX], or the
length of a path component exceeds (NAME MAX} while
_POSIX_NO_TRUNC is in effect.

path points to a remote machine and the link to that machine
is no longer active.

A component of the path prefix of path is not a directory.

Either a component of the path prefix or the file referred to
by path does not exist or is a null pathname.

The effective user ID does not match the owner of the file or
the process is not the super-user and
{_POSIX_CHOWN_RESTRICTED} indicates that such privilege
is required.

The named file resides on a read-only file system.

fchown fails and the owner and group of the named file remain unchanged if one
or more of the following are true:

EBADF fildes is not an open file descriptor.

EINVAL group or owner is out of range.

EPERM The effective user ID does not match the owner of the file or
the process is not the super-user and
{_POSIX_CHOWN_RESTRICTED} indicates that such privilege
is required.

EROFS The named file referred to by fildes resides on a read-only file
system.

EINTR A signal was caught during execution of the system call.

EIO An I/0O error occurred while reading from or writing to the
file system.

ENOLINK fildes points to a remote machine and the link to that
machine is no longer active.

SEE ALSO
chgrp(1), chown(1), chmod(2).
DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

chroot(2) chroot (2)

NAME
chroot - change root directory
SYNOPSIS
#include <unistd.h>
int chroot (const char #*path);
DESCRIPTION
path points to a path name naming a directory. chroot causes the named directory
to become the root directory, the starting point for path searches for path names
beginning with /. The user’s working directory is unaffected by the chroot system
call.
The effective user ID of the process must be super-user to change the root directory.
The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root direc-
tory.
chroot will fail and the root directory will remain unchanged if one or more of the
following are true:
ELOOP Too many symbolic links were encountered in translating path.
ENAMETOOLONG The length of the path argument exceeds {PATH_MAX], or the length
of a path component exceeds {NAME_MAX} while _ POSTX_NO_TRUNC
is in effect.
EFAULT path points outside the allocated address space of the process.
EINTR A signal was caught during the chroot system call.
EMULTTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.
ENOLINK path points to a remote machine and the link to that machine is no
longer active.
ENOTDIR Any component of the path name is not a directory.
ENOENT The named directory does not exist or is a null pathname.
EPERM The effective user ID is not super-user.
SEE ALSO
chdir(2)
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.
10/92 Page 1

chsize (2) (Application Compatibility Package) chsize (2)

NAME
chsize - change the size of a file

SYNOPSIS
cc [flag ..]file...-1x
int chsize (int fildes, long size);

DESCRIPTION
fildes is a file descriptor obtained from a create, open, dup, fcntl, or pipe system
call. chsize changes the size of the file associated with the file descriptor fildes to
be exactly size bytes in length. The routine either truncates the file, or pads it with
an appropriate number of bytes. If size is less than the initial size of the file, then all
allocated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit(2) is enforced when chsize is called,
rather than on subsequent writes. Thus chsize fails, and the file size remains
unchanged if the new changed file size would exceed the ulimit.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, the value -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), 1seek(2), open(2), pipe(2), ulimit(2)

NOTES
In general if chsize is used to expand the size of a file, when data is written to the

end of the file, intervening blocks are filled with zeros. In a some cases, reducing
the file size may not remove the data beyond the new end-of-file.

10/92 Page 1

clock (3C) (C Development Set) clock(3C)

NAME

clock - report CPU time used

SYNOPSIS

#include <time.h>

clock_t clock (void);

DESCRIPTION

clock returns the amount of CPU time (in microseconds) used since the first call to
clock in the calling process. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it has exe-
cuted the wait system call, the pclose function, or the system function.

Dividing the value returned by clock by the constant CLOCKS_PER_SEC, defined in
the time.h header file, will give the time in seconds.

The resolution of the clock is defined by CLK_TCK in limits.h, and is typically
1/100 or 1/60 of a second.

SEE ALSO

NOTES

10/92

times(2), wait(2), popen(3S), system(3S)

The value returned by clock is defined in microseconds for compatibility with sys-
tems that have CPU clocks with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes). If the process time used is not available or cannot be
represented, clock returns the value (clock_t)-1.

Page 1

close(2) close(2)

NAME
close - close a file descriptor

SYNOPSIS
#include <unistd.h>
int close(int fildes);

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or iocntl
system call. close closes the file descriptor indicated by fildes. All outstanding
record locks owned by the process (on the file indicated by fildes) are removed.

When all file descriptors associated with the open file description have been closed,
the open file description is freed.

If the link count of the file is zero, when all file descriptors associated with the file
have been closed, the space occupied by the file is freed and the file is no longer
accessible.

If a STREAMS-based [see intro(2)] fildes is closed, and the calling process had previ-
ously registered to receive a SIGPOLL signal [see signal(2)] for events associated
with that stream [see T_SETSIG in streamio(7)], the calling process will be unre-
gistered for events associated with the stream. The last close for a stream causes
the stream associated with fildes to be dismantled. If O_NDELAY and O_NONBLOCK
are clear and there have been no signals posted for the stream, and if there are data
on the module’s write queue, close waits up to 15 seconds (for each module and
driver) for any output to drain before dismantling the stream. The time delay can
be changed via an I_SETCLTIME ioctl request [see streamio(7)]. If O_NDELAY or
O_NONBLOCK is set, or if there are any pending signals, c1lose does not wait for out-
put to drain, and dismantles the stream immediately.

If fildes is associated with one end of a pipe, the last close causes a hangup to occur
on the other end of the pipe. In addition, if the other end of the pipe has been
named [see fattach(3C)], the last close forces the named end to be detached [see
fdetach(3C)]. If the named end has no open processes associated with it and
becomes detached, the stream associated with that end is also dismantled.

The named file is closed unless one or more of the following are true:

EBADF fildes is not a valid open file descriptor.
EINTR A signal was caught during the close system call.
ENOLINK fildes is on a remote machine and the link to that machine is no

longer active.
SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), intro(2), open(2), pipe(2), signal(2),
fattach(3C), fdetach(3C), signal(5), streamio(7).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92 Page 1

connect(3N) connect (3N)

NAME

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>

int connect (int s, addr_t name, int namelen) ;

DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, connect specifies the peer
with which the socket is to be associated; this address is the address to which
datagrams are to be sent if a receiver is not explicitly designated; it is the only
address from which datagrams are to be received. If the socket s is of type
SOCK_STREAM, connect attempts to make a connection to another socket. The
other socket is specified by name. name is an address in the communications space
of the socket. Each communications space interprets the name parameter in its own
way. If s is not bound, then it will be bound to an address selected by the underly-
ing transport provider. Generally, stream sockets may successfully connect only
once; datagram sockets may use connect multiple times to change their associa-
tion. Datagram sockets may dissolve the association by connecting to a null
address.

RETURN VALUE

If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned
and a more specific error code is stored in errno.

ERRORS

The call fails if:

EBADF s is not a valid descriptor.

ENOTSOCK s is a descriptor for a file, not a socket.

EINVAL namelen is not the size of a valid address for the specified
address family.

EADDRNOTAVAIL The specified address is not available on the remote
machine.

EAFNOSUPPORT Addresses in the specified address family cannot be used
with this socket.

EAGAIN The socket is non-blocking and the connection cannot be
completed immediately. It is possible to select for comple-
tion by selecting the socket for writing. However, this is
only possible if the socket STREAMS module is the topmost
module on the protocol stack with a write service procedure.
This will be the normal case.

EISCONN The socket is already connected.

ETIMEDOUT Connection establishment timed out without establishing a
connection.

ECONNREFUSED The attempt to connect was forcefully rejected. The calling
program should close the socket descriptor, and issue
another socket call to obtain a new descriptor before
attempting another connect call.

10/92 Page 1

connect (3N)

ENETUNREACH
EADDRINUSE
EALREADY

EINTR

EINTR
ENOTSOCK
EOPNOTSUPP
EPROTOTYPE

ENOSR

connect (3N)

The network is not reachable from this host.
The address is already in use.

The socket is non-blocking and a previous connection
attempt has not yet been completed.

The connection attempt was interrupted before any data
arrived by the delivery of a signal.

System call returned due to interrupt.
The file referred to by name is not a socket.
The socket is in the listen state.

The file referred to by name is a socket of a type other than
type s (for example, s is a SOCK_DGRAM socket, while name
refers to a SOCK_STREAM socket).

There were insufficient STREAMS resources available to com-
plete the operation.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPC domain.

ENOTDIR

ENOENT

ENOENT

EACCES

ELOOP

EIO

SEE ALSO

A component of the path prefix of the pathname in name is
not a directory.

A component of the path prefix of the pathname in name
does not exist.

The socket referred to by the pathname in name does not
exist.

Search permission is denied for a component of the path
prefix of the pathname in name.

Too many symbolic links were encountered in translating
the pathname in name.

An 1/0 error occurred while reading from or writing to the
file system.

close(2), accept(3N), connect(3N), get sockname(3N), socket (3N).

NOTES

The type of address structure passed to connect depends on the address family.
UNIX domain sockets (address family AF_UNIX) require a socketaddr_un struc-
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet/in.h. Other address fami-
lies may require other structures. Use the structure appropriate to the address fam-
ily; cast the structure address to a generic caddr_t in the call to connect and pass
the size of the structure in the namelen argument.

Page 2

10/92

conv (3C) (C Programming Language Utilities) conv(3C)

NAME

conv: toupper, tolower,_toupper,_tolower, toascii - translate characters

SYNOPSIS

#include <ctype.h>
int toupper (int c);

int tolower (int c)

’

int _toupper (int c);
int _tolower (int c)

int toascii (int c);

DESCRIPTION

toupper and tolower have as their domain the range of the function getc: all
values represented in an unsigned char and the value of the macro EOF as defined
in stdio.h. If the argument of toupper represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of tolower represents an
upper-case letter, the result is the corresponding lower-case letter. All other argu-
ments in the domain are returned unchanged.

The macros _toupper and _tolower accomplish the same things as toupper and
tolower, respectively, but have restricted domains and are faster. _toupper
requires a lower-case letter as its argument; its result is the corresponding upper-
case letter. _tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause undefined
results.

toascii yields its argument with all bits turned off that are not part of a standard
7-bit ASCII character; it is intended for compatibility with other systems.

toupper, tolower, _toupper, and_tolower are affected by LC_CTYPE. In the C
locale, or in a locale where shift information is not defined, these functions deter-
mine the case of characters according to the rules of the ASCII-coded character set.
Characters outside the ASCII range of characters are returned unchanged.

SEE ALSO

10/92

ctype(3C), getc(3S), setlocale(3C), environ(b)

Page 1

copylist(3G) copylist (3G)

NAME

copylist - copy a file into memory
SYNOPSIS

cclflag . . .1file . . . -1gen [library . . .]

#include <libgen.h>
char *copylist (const char *filenm, off_t *szptr);

DESCRIPTION
copylist copies a list of items from a file into freshly allocated memory, replacing
new-lines with null characters. It expects two arguments: a pointer filenm to the
name of the file to be copied, and a pointer szptr to a variable where the size of the
file will be stored.

Upon success, copylist returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc, or opening the file.

EXAMPLES
/% read "file" into buf #*/
off_t size;
char *buf;
buf = copylist("file", &size);
for (1 = 0; 1 < size; i++)

if(buf(i])
putchar (buf[i]) ;
else
putchar ('\n”’);
SEE ALSO
malloc(3C)

10/92 Page 1

creat(2) creat(2)

NAME

creat - create a new file or rewrite an existing one

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *path, mode_t mode) ;

DESCRIPTION

10/92

creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged.

If the file does not exist the file’s owner ID is set to the effective user ID of the pro-
cess. The group ID of the file is set to the effective group ID of the process, or if the
S_ISGID bit is set in the parent directory then the group ID of the file is inherited
from the parent directory. The access permission bits of the file mode are set to the
value of mode modified as follows:

If the group ID of the new file does not match the effective group ID or one
of the supplementary group IDs, the S_ISGID bit is cleared.

All bits set in the process’s file mode creation mask are cleared [see
umask(2)].

The “save text image after execution bit” of the mode is cleared [see
chmod(2) for the values of mode].

Upon successful completion, a write-only file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to remain open across exec sys-
tem calls [see fcnt1(2)]. A new file may be created with a mode that forbids writ-
ing.
The call creat (path, mode) is equivalent to:

open (path, O_WRONLY | O_CREAT | O_TRUNC, mode)

creat fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES The file does not exist and the directory in which the file is to
be created does not permit writing.

EACCES The file exists and write permission is denied.

EAGAIN The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod(2)].

EFAULT path points outside the allocated address space of the pro-
cess.

Page 1

creat(2)

EISDIR
EINTR
ELOOP

EMFILE

ENAMETOOLONG

ENOTDIR
ENOENT
ENOENT
EROFS

ETXTBSY

ENFILE
ENOLINK

EMULTIHOP

ENOSPC

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), getrlimit(2), 1seek(2), open(2), read(2),
umask(2), write(2), stat(5)

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the lowest numbered
unused file descriptor, is returned. Otherwise, a value of -1 is returned, no files are
created or modified, and errno is set to indicate the error.

Page 2

creat(2)

The named file is an existing directory.
A signal was caught during the creat system call.

Too many symbolic links were encountered in translating
path.

The process has too many open files [see getrlimit(2)].

The length of the path argument exceeds {PATH_MAX]}, or the
length of a path component exceeds {NAME MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.
A component of the path prefix does not exist.
The path name is null.

The named file resides or would reside on a read-only file
system.

The file is a pure procedure (shared text) file that is being
executed.

The system file table is full.

path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

The file system is out of inodes.

10/92

creatsem(2) (Application Compatibility Package) creatsem(2)

NAME

creatsem - create an instance of a binary semaphore

SYNOPSIS

cc [flag .. 1file...-1x

int creatsem(char *sem name, int mode) ;

DESCRIPTION

creatsen defines a binary semaphore named by sem_name to be used by waitsem
and sigsem to manage mutually exclusive access to a resource, shared variable, or
critical section of a program. creatsem returns a unique semaphore number,
sem_num, which may then be used as the parameter in waitsem and sigsem calls.
Semaphores are special files of 0 length. The filename space is used to provide
unique identifiers for semaphores. mode sets the accessibility of the semaphore
using the same format as file access bits. Access to a semaphore is granted only on
the basis of the read access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive, such as
waitsem or sigsem, by creatsem which initializes it to some value, or by opensem
which opens the semaphore for use by a process. Synchronizing primitives are
guaranteed to be executed without interruption once started. These primitives are
used by associating a semaphore with each resource (including critical code sec-
tions) to be protected.

The process controlling the semaphore should issue:
sem_num = creatsem("semaphore", mode) ;

to create, initialize, and open the semaphore for that process. All other processes
using the semaphore should issue:

sem_num = opensem("semaphore") ;

to access the semaphore’s identification value. Note that a process cannot open and
use a semaphore that has not been initialized by a call to creatsem, nor should a
process open a semaphore more than once in one period of execution. Both the
creating and opening processes use waitsem and sigsem to use the semaphore
sem_num.

DIAGNOSTICS

creatsem returns the value -1 if an error occurs. If the semaphore named by
sem_name is already open for use by other processes, errno is set to EEXIST. If the
file specified exists but is not a semaphore type, errno is set to ENOTNAM. If the
semaphore has not been initialized by a call to creatsem, errno is set to EINVAL.

SEE ALSO

NOTES

10/92

opensem(2), sigsem(2), waitsem(2)

After a creatsem, you must do awaitsem to gain control of a given resource.

Page 1

crypt(3C) (C Programming Language Utilities) crypt(3C)

NAME

crypt, setkey, encrypt - generate encryption

SYNOPSIS

#include <crypt.h>
char *crypt (const char #*key, const char *salt);
void setkey (const char #*key);

void encrypt (char *block, int edflag);

DESCRIPTION

crypt is the password encryption function. It is based on a one-way encryption
algorithm with variations intended (among other things) to frustrate use of
hardware implementations of a key search.

key is the input string to encrypt, for instance, a user’s typed password. Only the
first eight characters are used; the rest are ignored. salt is a two-character string
chosen from the set a-zA-2z0-9./; this string is used to perturb the hashing algo-
rithm in one of 4096 different ways, after which the input string is used as the key
to encrypt repeatedly a constant string. The returned value points to the encrypted
input string. The first two characters of the return value are the salt itself.

The setkey and encrypt functions provide (rather primitive) access to the actual
hashing algorithm. The argument of setkey is a character array of length 64 con-
taining only the characters with numerical value 0 and 1. This string is divided into
groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key that is
set into the machine. This is the key that will be used with the hashing algorithm to
encrypt the string block with the encrypt function.

The block argument of encrypt is a character array of length 64 containing only the
characters with numerical value 0 and 1. The argument array is modified in place
to a similar array representing the bits of the argument after having been subjected
to the hashing algorithm using the key set by setkey. The argument edflag, indicat-
ing decryption rather than encryption, is ignored; use encrypt in libcrypt [see
crypt(3X)] for decryption.

SEE ALSO

login(1), passwd(1), crypt(3X), getpass(3C), passwd(4).

DIAGNOSTICS

NOTES

10/92

If edflag is set to anything other than zero, errno will be set to ENOSYS.

The return value for crypt points to static data that are overwritten by each call.

Page 1

crypt (3X) (Encryption Utilities) crypt (3X)

NAME

crypt - password and file encryption functions

SYNOPSIS

cc[flag ...1file ... -lcrypt [library ...]

#include <crypt.h>

char *crypt (const char #*key, const char *salt);
void setkey (const char *key);

void encrypt (char *block, int flag);

char *des_crypt (const char #*key, const char #*salt);
void des_setkey (const char #*key);

void des_encrypt (char *block, int flag);

int run_setkey (int *connection, const char xkey);

int run_crypt (long offset, char *buffer, unsigned int count,
int *connection) ;

int crypt_close(int *connection) ;

DESCRIPTION

10/92

des_crypt is the password encryption function. It is based on a one-way hashing
encryption algorithm with variations intended (among other things) to frustrate
use of hardware implementations of a key search.

key is a user’s typed password. salt is a two-character string chosen from the set
[a-zA-20-9./]; this string is used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password. The first
two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of des_setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If this string
is divided into groups of 8, the low-order bit in each group is ignored, thereby
creating a 56-bit key that is set into the machine. This key is the key that will be
used with the hashing algorithm to encrypt the string block with the function
des_encrypt.

The argument to the des_encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and 1. The argument array is modified
in place to a similar array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by des_setkey. If flag is zero,
the argument is encrypted; if non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt. The
international version is part of the C Development Set, and the domestic version is
part of the Encryption Utilities. If decryption is attempted with the international
version of des_encrypt, an error message is printed.

Page 1

crypt (3X) (Encryption Utilities) crypt(3X)

crypt, setkey, and encrypt are front-end routines that invoke des_crypt,
des_setkey, and des_encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications that
need cryptographic capabilities [such as ed(1) and vi(1)] that must be compatible
with the crypt(1) user-level utility. run_setkey establishes a two-way pipe con-
nection with the crypt utility, using key as the password argument. run_crypt
takes a block of characters and transforms the cleartext or ciphertext into their
ciphertext or cleartext using the crypt utility. offset is the relative byte position
from the beginning of the file that the block of text provided in buffer is coming
from. count is the number of characters in buffer, and connection is an array contain-
ing indices to a table of input and output file streams. When encryption is finished,
crypt_close is used to terminate the connection with the crypt utility.

run_setkey returns -1 if a connection with the crypt utility cannot be established.
This result will occur in international versions of the UNIX system in which the
crypt utility is not available. If a null key is passed to run_setkey, 0 is returned.
Otherwise, 1 is returned. run_crypt returns -1 if it cannot write output or read
input from the pipe attached to crypt. Otherwise it returns 0.

The program must be linked with the object file access routine library 1ibcrypt .a.

SEE ALSO

crypt(1), login(1), passwd(l), getpass(3C), passwd(4).

DIAGNOSTICS

NOTES

Page 2

In the international version of crypt(3X), a flag argument of 1 to encrypt or
des_encrypt is not accepted, and errno is set to ENOSYS to indicate that the func-
tionality is not available.

The return value in crypt points to static data that are overwritten by each call.

10/92

csync(2) csync(2)

NAME
csync - designate portions of memory safe for execution

SYNOPSIS
#include <sys/types.h>
int csync(caddr_t base, unsigned length);

DESCRIPTION
csync designates portions of memory as safe for execution in all executable map-
pings of the memory. On systems with hardware caches, this notification has the
effect of synchronizing the contents of memory with that of the caches.
The values of base and length designate an area of the calling process’s address
space: if length is zero, all addresses (locations 0x0000 0000 through Oxffff ffff,
inclusive) are designated; otherwise, base gives the base address and length the
length (in bytes) of the area. If length is not zero, the sum of base and length shall
exceed the value of base. The memory associated with the designated area of the
calling process’s address space is made safe for execution in all executable map-
pings of the memory.
Under the following conditions, the function csync fails and sets errno to:
EINVAL base plus length does not exceed base.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
memcnt 1(2), mmap(2), mprotect(2), stkprotect(2)

10/92 Page 1

ctermid (3S) (C Development Set) ctermid (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid (char *s);

DESCRIPTION
ctermid generates the path name of the controlling terminal for the current pro-
cess, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a character array of at least
L_ctermid elements; the path name is placed in this array and the value of s is
returned. The constant L._ctermid is defined in the stdio.h header file.

SEE ALSO
ttyname(3C)

NOTES
The difference between ctermid and ttyname(3C) is that ttyname must be handed
a file descriptor and returns the actual name of the terminal associated with that file
descriptor, while ctermid returns a string (/dev/tty) that will refer to the terminal
if used as a file name. Thus ttyname is useful only if the process already has at
least one file open to a terminal.

10/92 Page 1

ctime (3C) (C Programming Language Utilities) ctime (3C)

NAME

ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS

#include <time.h>

char #*ctime (const time_t *clock);

struct tm *localtime (const time_t *clock);
struct tm *gmtime (const time_t *clock);
char *asctime (const struct tm *tm);
extern time_t timezone, altzone;

extern int daylight;

extern char *tzname[2];

void tzset (void);

DESCRIPTION

10/92

ctime, localtime, and gmtime accept arguments of type time_t, pointed to by
clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970. ctime
returns a pointer to a 26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated. The fields are constant
in width:
Fri Sep 13 00:00:00 1986\n\0

localtime and gmtime return pointers to tm structures, described below. local-
time corrects for the main time zone and possible alternate (“daylight savings™)

time zone; gmt ime converts directly to Coordinated Universal Time (UTC), which is
the time the UNIX system uses internally.

asctime converts a tm structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
time.h header file. The structure declaration is:

struct tm {
int tm_sec; /% seconds after the minute — [0, 61] */
/* for leap seconds */
int tm_min; /* minutes after the hour — [0, 59] #*/

int tm _hour; /* hour since midnight — [0, 23] */
int tm _mday; /* day of the month — [1, 31] */

int tm_mon; /% months since January — [0, 11] */
int tm year; /% years since 1900 */
int tm wday; /% days since Sunday — [0, 6] */

int tm_yday; /* days since January 1 — [0, 365] */
int tm_isdst; /* flag for alternate daylight */
/* savings time */
Yi

The value of tm_isdst is positive if daylight savings time is in effect, zero if day-
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of tm_isdst was defined as non-zero if daylight savings
time was in effect.)

Page 1

ctime (3C) (C Programming Language Utilities) ctime (3C)

FILES

The external time_t variable altzone contains the difference, in seconds, between
Coordinated Universal Time and the alternate time zone. The external variable
timezone contains the difference, in seconds, between UTC and local standard time.
The external variable daylight indicates whether time should reflect daylight sav-
ings time. Both timezone and altzone default to 0 (UTC). The external variable
daylight is non-zero if an alternate time zone exists. The time zone names are
contained in the external variable t zname, which by default is set to:

char *tzname(2] = { "eMT", " "}

These functions know about the peculiarities of this conversion for various time
periods for the U.S.A. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.

tzset uses the contents of the environment variable TZ to override the value of the
different external variables. The function tzset is called by asctime and may also
be called by the user. See environ(5) for a description of the TZ environment vari-
able.

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New
Jersey in 1986 could be

ESTS5EDT4,116/2:00:00,298/2:00:00
or simply
ESTS5EDT
An example of a southern hemisphere setting such as the Cook Islands could be
KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of T2, tzname[0] is EST, t imezone
will be set to 5#60+%60, t zname[1] is EDT, altzone will be set to 4#60+60, the starting
date of the alternate time zone is the 117th day at 2 AM, the ending date of the alter-
nate time zone is the 299th day at 2 AM (using zero-based Julian days), and day-
light will be set positive. Starting and ending times are relative to the alternate
time zone. If the alternate time zone start and end dates and the time are not pro-
vided, the days for the United States that year will be used and the time will be 2
AM. If the start and end dates are provided but the time is not provided, the time
will be 2 AM. The effects of tzset are thus to change the values of the external vari-
ables timezone, altzone, daylight, and tzname. ctime, localtime, mktime, and
strftime will also update these external variables as if they had called tzset at
the time specified by the time_t or struct tmvalue that they are converting.

Note that in most installations, Tz is set to the correct value by default when the
user logs on, via the local /etc/profile file [see profile(4) and timezone(4)].

/usr/lib/locale/language/LC_TIME - file containing locale specific date and time
information

SEE ALSO

Page 2

time(2), getenv(3C), mktime(3C), putenv(3C), printf(3S), setlocale(3C),
strftime(3C), cftime(4), profile(4), timezone(4), environ(5)

10/92

ctime (3C) (C Programming Language Utilities) ctime (3C)

NOTES

10/92

The return values for ctime, localtime, and gmtime point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from timezone to altzone or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

Page 3

ctype (3C)

NAME

10/92

ctype:

(C Programming Language Utilities) ctype(3C)

isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace,

isentrl, ispunct, isprint, isgraph, isascii - character handling

SYNOPSIS
#include <ctype.h>

int isalpha(int c);

int isupper (int c);

int islower(int c);

int isdigit (int c);

int isxdigit (int c);

int isalnum(int c);

int isspace(int c);

int ispunct (int c);

int isprint(int c¢);

int isgraph(int c);

int iscntrl (int c);

int isascii(int c¢);

DESCRIPTION
These macros classify character-coded integer values. Each is a predicate returning
non-zero for true, zero for false. The behavior of these macros, except isascii, is
affected by the current locale [see setlocale(3C)]. To modify the behavior, change
the LC_TYPE category in setlocale, that is, setlocale (LC_CTYPE, newlocale). In
the C locale, or in a locale where character type information is not defined, charac-
ters are classified according to the rules of the US-ASCII 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are defined only where
the argument is an int, the value of which is representable as an unsigned char,
or EOF, which is defined by the stdio.h header file and represents end-of-file.

isalpha

isupper

islower

tests for any character for which isupper or islower is true, or
any character that is one of an implementation-defined set of char-
acters for which none of iscntrl, isdigit, ispunct, or isspace
is true. In the C locale, isalpha returns true only for the charac-
ters for which isupper or islower is true.

tests for any character that is an upper-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or islower is true. In the
C locale, isupper returns true only for the characters defined as
upper-case ASCII characters.

tests for any character that is a lower-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or isupper is true. In the
C locale, islower returns true only for the characters defined as
lower-case ASCII characters.

Page 1

ctype(3C)

FILES

Page 2

isdigit
isxdigit

isalnum

isspace

ispunct

isprint
isgraph
iscntrl

isascii

(C Programming Language Utilities) ctype (3C)

tests for any decimal-digit character.
tests for any hexadecimal-digit character ([0-9], [A-F] or [a-£]).

tests for any character for which isalpha or isdigit is true
(letter or digit).

tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of an
implementation-defined set of characters for which isalnum is
false. In the C locale, isspace returns true only for the standard
white-space characters.

tests for any printing character which is neither a space nor a char-
acter for which isalnumis true.

tests for any printing character, including space (" ").

tests for any printing character, except space.

tests for any ““control character’” as defined by the character set.
tests for any ASCII character, code between 0 and 0177 inclusive.

All the character classification macros and the conversion functions and macros use

a table lookup.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (for example, #undef isdigit).

/usr/lib/locale/locale/L.C_CTYPE

SEE ALSO
chrtbl(1M), setlocale(3C), stdio(3S), ascii(5), environ(b)

DIAGNOSTICS
If the argument to any of the character handling macros is not in the domain of the
function, the result is undefined.

10/92

curs_addchstr(3X) curs_addchstr(3X)

NAME
curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,
mvaddchnstr, mvwaddchstr, mvwaddchnstr - add string of characters (and attri-
butes) to a curses window

SYNOPSIS
#include <curses.h>

int addchstr (chtype *chstr);

int addchnstr (chtype *chstr, int n);

int waddchstr (WINDOW *win, chtype *chstr);

int waddchnstr (WINDOW *win, chtype *chstr, int n);

int mvaddchstr(int y, int x, chtype *chstr);

int mvaddchnstr(int y, int x, chtype *chstr, int n);

int mvwaddchstr (WINDOW *win, int y, int x, chtype *chstr);

int mvwaddchnstr (WINDOW *win, int y, int x,
chtype *chstr, int n);

DESCRIPTION
All of these routines copy chstr directly into the window image structure starting at
the current cursor position. The four routines with # as the last argument copy at
most 1 elements, but no more than will fit on the line. If n=-1 then the whole string
is copied, to the maximum number that fit on the line.

The position of the window cursor is not advanced. These routines works faster
than waddnstr because they merely copy chstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don’t perform any kind of checking (such as for the newline character), they don’t
advance the current cursor position, and they truncate the string, rather then wrap-
ping it around to the new line.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except waddchnstr may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_addch (3X) curs_addch (3X)

NAME

curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar - add a
character (with attributes) to a curses window and advance cursor

SYNOPSIS

#include <curses.h>

addch (chtype ch) ;

waddch (WINDOW *win, chtype ch);

mvaddch (int y, int x, chtype ch);

mvwaddch (WINDOW *win, int y, int x, chtype ch);
echochar (chtype ch) ;

wechochar (WINDOW *win, chtype ch);

DESCRIPTION

With the addch, waddch, mvaddch and mvwaddch routines, the character ch is put
into the window at the current cursor position of the window and the position of
the window cursor is advanced. Its function is similar to that of putchar. At the
right margin, an automatic newline is performed. At the bottom of the scrolling
region, if scrollok is enabled, the scrolling region is scrolled up one line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol before moving. Tabs are considered to
be at every eighth column. If ch is another control character, it is drawn in the ~X
notation. Calling winch after adding a control character does not return the control
character, but instead returns the representation of the control character.

Video attributes can be combined with a character by ORing them into the
parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using inch and
addch.) [see standout, predefined video attribute constants, on the
curs_attr(3X) pagel.

The echochar and wechochar routines are functionally equivalent to a call to
addch followed by a call to refresh, or a call to waddch followed by a call to
wrefresh. The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain
might be seen by using these routines instead of their equivalents.

Line Graphics

10/92

The following variables may be used to add line drawing characters to the screen
with routines of the addch family. When variables are defined for the terminal, the
A_ALTCHARSET bit is turned on [see curs_attr(3X)]. Otherwise, the default char-
acter listed below is stored in the variable. The names chosen are consistent with
the VT100 nomenclature.

Page 1

curs_addch (3X)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine

NOTES

Page 2

descriptions.

curs_addch (3X)

Name Default Glyph Description
ACS_ULCORNER + upper left-hand corner
ACS_LLCORNER + lower left-hand corner
ACS_URCORNER + upper right-hand corner
ACS_LRCORNER + lower right-hand corner
ACS_RTEE + right tee (4)

ACS_LTEE + left tee ()

ACS_BTEE + bottom tee (|)
ACS_TTEE + top tee (T)

ACS_HLINE - horizontal line
ACS_VLINE I vertical line

ACS_PLUS + plus

ACS_s1 - scan line 1

ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD : checker board (stipple)
ACS_DEGREE ! degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET o bullet

ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW A arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

The header file curses.h automatically includes the header files stdio.h and

unctrl.h.

Note that addch, mvaddch, mvwaddch, and echochar may be macros.

SEE ALSO
curses(3X), curs_attr(3X), curs_clear(3X), curs_inch(3X), curs_outopts(3X),
curs_refresh(3X) putc(3S)

10/92

curs_addstr(3X) curs_addstr (3X)

NAME
curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr,
mvwaddstr, mvwaddnstr - add a string of characters to a curses window and
advance cursor

SYNOPSIS
#include <curses.h>

int addstr (char *str);

int addnstr(char *str, int n);

int waddstr (WINDOW *win, char *str);

int waddnstr (WINDOW *win, char *str, int n);

int mvaddstr(y, int x, char *str);

int mvaddnstr(y, int x, char *str, int n);

int mvwaddstr (WINDOW *win, int y, int x, char *str);

int mvwaddnstr (WINDOW *win, int y, int x, char *str,
int n);

DESCRIPTION
All of these routines write all the characters of the null terminated character string
str on the given window. It is similar to calling waddch once for each character in
the string. The four routines with 1 as the last argument write at most n characters.
If n is negative, then the entire string will be added.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all of these routines except waddstr and waddnstr may be macros.

SEE ALSO
curses(3X), curs_addch(3X)

10/92 Page 1

curs_addwch (3X) curs_addwch (3X)

NAME

curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar, wechowchar
- add a wchar_t character (with attributes) to a curses window and advance cur-
sor

SYNOPSIS

#include <curses.h>

int addwch (chtype wch) ;

int waddwch (WINDOW *win, chtype wch) ;

int mvaddwch (int y, int x, chtype wch) ;

int mvwaddwch (WINDOW *win, int y, int x, chtype wch);
int echowchar (chtype wch) ;

int wechowchar (WINDOW *win, chtype wch) ;

DESCRIPTION

With the addwch, waddwch, mvaddwch and mvwaddwch routines, the character wch
which is holding a wchar_t character is put into the window at the current cursor
position of the window and the position of the window cursor is advanced. Its
function is similar to that of putwchar in the C multibyte library. At the right mar-
gin, an automatic newline is performed. At the bottom of the scrolling region, if
scrollok is enabled, the scrolling region is scrolled up one line.

If wch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol before moving. Tabs are considered to
be at every eighth column. If wch is another control character, it is drawn in the ~X
notation. Calling winwch after adding a control character does not return the con-
trol character, but instead returns the representation of the control character.

Video attributes can be combined with a wchar_t character by OR-ing them into
the parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using inwch and
addwch.) [see standout, predefined video attribute constants, on the curs_attr(3X)
pagel.

The echowchar and wechowchar routines are functionally equivalent to a call to
addwch followed by a call to refresh, or a call to waddwch followed by a call to
wrefresh. The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain
might be seen by using these routines instead of their equivalents.

Line Graphics

10/92

The following variables may be used to add line drawing characters to the screen
with routines of the addwch family. When variables are defined for the terminal,
the A_ALTCHARSET bit is turned on [see curs_attr(3X)]. Otherwise, the default char-
acter listed below is stored in the variable. The names chosen are consistent with
the VT100 nomenclature.

Page 1

curs_addwch (3X)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine

NOTES

descriptions.

curs_addwch (3X)

Name Default Glyph Description
ACS_ULCORNER + upper left-hand cormer
ACS_LLCORNER + lower left-hand corner
ACS_URCORNER + upper right-hand corner
ACS_LRCORNER + lower right-hand corner
ACS_RTEE + right tee (4)

ACS_LTEE + left tee (})

ACS_BTEE + bottom tee (|)
ACS_TTEE + top tee ()

ACS_HLINE - horizontal line
ACS_VLINE I vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD : checker board (stipple)
ACS_DEGREE ’ degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET [¢] bullet

ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW A arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that addwch, mvaddwch, mvwaddwch, and echowchar may be macros.

SEE ALSO
curses(3X), curs_attr(3X), curs_clear(3X), curs_inwch(3X),
curs_outopts(3X), curs_refresh(3X) putwc(3W).

Page 2

10/92

curs_addwstr (3X) curs_addwstr (3X)

NAME

curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,
mvaddnwstr, mvwaddwstr, mvwaddnwstr - add a string of wchar_t characters to a
curses window and advance cursor

SYNOPSIS

#include <curses.h>

int addwstr (wchar_t *wstr);
int addnwstr (wchar_t *wstr, int n);
int waddwstr (WINDOW *win, wchar_ t *wstr);
int waddnwstr (WINDOW *win, wchar_t *wstr, int n);
int mvaddwstr(y, int x, wchar_t *wstr);
int mvaddnwstr(y, int x, wchar_t *wstr, int n);
int mvwaddwstr (WINDOW *win, int y, int x, wchar_t *wstr);
int mvwaddnwstr (WINDOW *win, int y, int x, wchar_t *wstr,
int n);
DESCRIPTION

All of these routines write all the characters of the null terminated wchar_t charac-
ter string str on the given window. It is similar to calling waddwch once for each
wchar_t character in the string. The four routines with 7 as the last argument write
at most n wchar_t characters. If 7 is negative, then the entire string will be added.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all of these routines except waddwstr and waddnwstr may be macros.

SEE ALSO

curses(3X), curs_addwch(3X).

10/92

Page 1

curs_addwchstr (3X) curs_addwchstr (3X)

NAME
curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,
mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr - add string of
wchar_t characters (and attributes) to a curses window

SYNOPSIS
#include <curses.h>

int addwchstr (chtype *wchstr) ;

int addwchnstr (chtype *wchstr, int n);

int waddwchstr (WINDOW *win, chtype *wchstr);

int waddwchnstr (WINDOW *win, chtype *wchstr, int n);

int mvaddwchstr (int y, int x, chtype *wchstr);

int mvaddwchnstr (int y, int x, chtype *wchstr, int n);

int mvwaddwchstr (WINDOW *win, int y, int x, chtype *wchstr);

int mvwaddwchnstr (WINDOW *win, 1nt y, 1int x,
chtype *wchstr, int n);

DESCRIPTION
All of these routines copy wchstr which points to the string of wchar_t characters
directly into the window image structure starting at the current cursor position.
The four routines with # as the last argument copy at most n elements, but no more
than will fit on the line. If n=-1 then the whole string is copied, to the maximum
number that fit on the line.

The position of the window cursor is NOT advanced. These routines works faster
than waddnwstr because they merely copy wchstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don’t perform any kind of checking (such as for the newline character), they don’t
advance the current cursor position, and they truncate the string, rather then wrap-
ping it around to the new line.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all routines except waddwchnstr may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_attr (3X) curs_attr (3X)

NAME

curs_attr: attroff, wattroff, attron, wattron, attrset, wattrset,
standend, wstandend, standout, wstandout - curses character and window
attribute control routines

SYNOPSIS

#include <curses.h>

int attroff(int attrs);

int wattroff (WINDOW *win, int attrs);
int attron(int attrs);

int wattron (WINDOW *win, int attrs);
int attrset(int attrs);

int wattrset (WINDOW *win, int attrs);
int standend(void) ;

int wstandend (WINDOW *win) ;

int standout (void) ;

int wstandout (WINDOW *win) ;

DESCRIPTION

All of these routines manipulate the current attributes of the named window. The
current attributes of a window are applied to all characters that are written into the
window with waddch, waddstr and wprintw. Attributes are a property of the char-
acter, and move with the character through any scrolling and insert/delete
line/character operations. To the extent possible on the particular terminal, they
are displayed as the graphic rendition of characters put on the screen.

The routine attrset sets the current attributes of the given window to attrs. The
routine attroff turns off the named attributes without turning any other attri-
butes on or off. The routine attron turns on the named attributes without affecting
any others. The routine standout is the same as attron (A_STANDOUT). The rou-
tine standend is the same as attrset (0), that is, it turns off all attributes.

Attributes

10/92

The following video attributes, defined in curses.h, can be passed to the routines
attron, attroff, and attrset, or ORed with the characters passed to addch.

A_STANDOUT Best highlighting mode of the terminal.
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set
A_CHARTEXT Bit-mask to extract a character
COLOR_PAIR (1) Color-pair number n
The following macro is the reverse of COLOR_PAIR (n):
PAIR_NUMBER (attrs) Returns the pair number associated

with the COLOR_PAIR (n) attribute.

Page 1

curs_attr(3X) curs_attr (3X)

RETURN VALUE
These routines always return 1.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that attroff, wattroff, attron, wattron, attrset, wattrset, standend
and standout may be macros.

SEE ALSO
curses(3X), curs_addch(3X), curs_addstr(3X), curs_printw(3X)

Page 2 10/92

curs_beep (3X) curs_beep (3X)

NAME
curs_beep: beep, flash - curses bell and screen flash routines

SYNOPSIS
#include <curses.h>

int beep (void) ;
int flash(void);

DESCRIPTION
The beep and flash routines are used to signal the terminal user. The routine beep
sounds the audible alarm on the terminal, if possible; if that is not possible, it
flashes the screen (visible bell), if that is possible. The routine flash flashes the
screen, and if that is not possible, sounds the audible signal. If neither signal is pos-
sible, nothing happens. Nearly all terminals have an audible signal (bell or beep),
but only some can flash the screen.

RETURN VALUE
These routines always return OK.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

SEE ALSO
curses(3X)

10/92 Page 1

curs_bkgd (3X) curs_bkgd (3X)

NAME

curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd - curses window background
manipulation routines

SYNOPSIS

#include <curses.h>

void bkgdset (chtype ch);

void wbkgdset (WINDOW *win, chtype ch);
int bkgd(chtype ch);

int wbkgd (WINDOW *win, chtype ch);

DESCRIPTION

The bkgdset and wbkgdset routines manipulate the background of the named
window. Background is a chtype consisting of any combination of attributes and a
character. The attribute part of the background is combined (ORed) with all non-
blank characters that are written into the window with waddch. Both the character
and attribute parts of the background are combined with the blank characters. The
background becomes a property of the character and moves with the character
through any scrolling and insert/delete line/character operations. To the extent
possible on a particular terminal, the attribute part of the background is displayed
as the graphic rendition of the character put on the screen.

The bkgd and wbkgd routines combine the new background with every position in
the window. Background is any combination of attributes and a character. Only
the attribute part is used to set the background of non-blank characters, while both
character and attributes are used for blank positions. To the extent possible on a
particular terminal, the attribute part of the background is displayed as the graphic
rendition of the character put on the screen.

RETURN VALUE

NOTES

bkgd and wbkgd return the integer OK, or a non-negative integer, if immedok is set.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that bkgdset and bkgd may be macros.

SEE ALSO

10/92

curses(3X), curs_addch(3X), curs_outopts(3X)

Page 1

curs_border (3X) curs_border (3X)

NAME
curs_border: border, wborder, box, hline, whline, vline, wvline - create
curses borders, horizontal and vertical lines

SYNOPSIS
#include <curses.h>

int border (chtype ls, chtype rs, chtype ts, chtype bs,

chtype tl, chtype tr, chtype bl, chtype br);
int wborder (WINDOW *win, chtype ls, chtype rs,

chtype ts, chtype bs, chtype tl, chtype tr,

chtype bl, chtype br);
int box (WINDOW *win, chtype verch, chtype horch);
int hline(chtype ch, int n);
int whline (WINDOW *win, chtype ch, int n);
int vline(chtype ch, int n);
int wvline (WINDOW *win, chtype ch, int n);

DESCRIPTION

With the border, wborder and box routines, a border is drawn around the edges of
the window. The argument Is is a character and attributes used for the left side of
the border, rs - right side, ts - top side, bs - bottom side, ¢! - top left-hand corner, ¢ -
top right-hand corner, bl - bottom left-hand corner, and br - bottom right-hand
corner. If any of these arguments is zero, then the following default values (defined
in curses.h) are used instead: ACS_VLINE, ACS _VLINE, ACS_HLINE,
ACS_HLINE, ACS_ULCORNER, ACS_URCORNER, ACS_BLCORNER, ACS_BRCORNER.

box (win, verch, horch) is a shorthand for the following call: wborder (win, verch,
verch, horch, horch, 0, 0, 0, 0).

hline and whline draw a horizontal (left to right) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most # characters long, or as many as fit into the window.

vline and wvline draw a vertical (top to bottom) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most n characters long, or as many as fit into the window.
RETURN VALUE
All routines return the integer OK, or a non-negative integer if immedok is set.
NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that border and box may be macros.

SEE ALSO
curses(3X), curs_outopts(3X)

10/92 Page 1

curs_clear (3X) curs_clear(3X)

NAME
curs_clear: erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol,
wclrtoeol - clear all or part of a curses window

SYNOPSIS
include <curses.h>

int erase(void) ;

int werase (WINDOW *win) ;
int clear (void) ;

int wclear (WINDOW *win) ;
int clrtobot (void) ;

int wclrtobot (WINDOW *win) ;
int clrtoeol (void) ;

int wclrtoeol (WINDOW *win) ;

DESCRIPTION
The erase and werase routines copy blanks to every position in the window.

The clear and wclear routines are like erase and werase, but they also call
clearok, so that the screen is cleared completely on the next call to wrefresh for
that window and repainted from scratch.

The clrtobot and wclrtobot routines erase all lines below the cursor in the win-
dow. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol and welrtoeol routines erase the current line to the right of the cur-
sor, inclusive.

RETURN VALUE
All routines return the integer OK, or a non-negative integer if immedok is set.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that erase, werase, clear,wclear, clrtobot, and clrtoeol may be macros.

SEE ALSO
curses(3X), curs_outopts(3X), curs_refresh(3X)

10/92 Page 1

curs_color(3X) curs_color(3X)

NAME

curs_color: start_color, init_pair, init_color, has_colors,
can_change_color, color_content, pair_content - curses color manipulation
routines

SYNOPSIS

include <curses.h>

int start_color (void) ;

int init_pair (short pair, short f, short b);

int init_color (short color, short r, short g, short b);

bool has_colors (void) ;

bool can_change_color (void) ;

int color_content (short color, short *r, short *g, short *b);
int pair_content (short pair, short *f, short *b);

DESCRIPTION
Overview

curses provides routines that manipulate color on color alphanumeric terminals.
To use these routines start_color must be called, usually right after initscr.
Colors are always used in pairs (referred to as color-pairs). A color-pair consists of
a foreground color (for characters) and a background color (for the field on which
the characters are displayed). A programmer initializes a color-pair with the rou-
tine init_pair. After it has been initialized, COLOR_PAIR(n), a macro defined in
curses.h, can be used in the same ways other video attributes can be used. If a
terminal is capable of redefining colors, the programmer can use the routine
init_color to change the definition of a color. The routines has_colors and
can_change_color return TRUE or FALSE, depending on whether the terminal has
color capabilities and whether the programmer can change the colors. The routine
color_content allows a programmer to identify the amounts of red, green, and
blue components in an initialized color. The routine pair_content allows a pro-
grammer to find out how a given color-pair is currently defined.

Routine Descriptions

10/92

The start_color routine requires no arguments. It must be called if the program-
mer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right after initscr. start_color initializes
eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables, COLORS and COLOR_PAIRS (respectively defining the max-
imum number of colors and color-pairs the terminal can support). It also restores
the colors on the terminal to the values they had when the terminal was just turned
on.

The init_pair routine changes the definition of a color-pair. It takes three argu-
ments: the number of the color-pair to be changed, the foreground color number,
and the background color number. The value of the first argument must be
between 1 and COLOR_PAIRS-1. The value of the second and third arguments must
be between 0 and COLORS. If the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair is changed to the new definition.

Page 1

curs_color(3X) curs_color(3X)

The init_color routine changes the definition of a color. It takes four arguments:
the number of the color to be changed followed by three RGB values (for the
amounts of red, green, and blue components). The value of the first argument must
be between 0 and COLORS. (See the section Colors for the default color index.)
Each of the last three arguments must be a value between 0 and 1000. When
init_color is used, all occurrences of that color on the screen immediately change
to the new definition.

The has_colors routine requires no arguments. It returns TRUE if the terminal can
manipulate colors; otherwise, it returns FALSE. This routine facilitates writing
terminal-independent programs. For example, a programmer can use it to decide
whether to use color or some other video attribute.

The can_change_color routine requires no arguments. It returns TRUE if the ter-
minal supports colors and can change their definitions; other, it returns FALSE. This
routine facilitates writing terminal-independent programs.

The color_content routine gives users a way to find the intensity of the red,
green, and blue (RGB) components in a color. It requires four arguments: the color
number, and three addresses of shorts for storing the information about the
amounts of red, green, and blue components in the given color. The value of the
first argument must be between 0 and COLORS. The values that are stored at the
addresses pointed to by the last three arguments are between 0 (no component) and
1000 (maximum amount of component).

The pair_content routine allows users to find out what colors a given color-pair
consists of. It requires three arguments: the color-pair number, and two addresses
of shorts for storing the foreground and the background color numbers. The value
of the first argument must be between 1 and COLOR_PAIRS-1. The values that are
stored at the addresses pointed to by the second and third arguments are between 0
and COLORS.

Colors

In curses.h the following macros are defined. These are the default colors.
curses also assumes that COLOR_BLACK is the default background color for all ter-
minals.

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

RETURN VALUE

Page 2

All routines that return an integer return ERR upon failure and OK upon successful
completion.

10/92

curs_color(3X) curs_color(3X)

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

SEE ALSO
curses(3X), curs_initscr(3X), curs_attr(3X)

10/92 Page 3

curs_delch (3X) curs_delch (3X)

NAME
curs_delch: delch, wdelch, mvdelch, mvwdelch - delete character under cursor
in a curses window

SYNOPSIS
#include <curses.h>

int delch(void);

int wdelch (WINDOW *win) ;

int mvdelch(int y, int x);

int mvwdelch (WINDOW *win, int y, int x);

DESCRIPTION
With these routines the character under the cursor in the window is deleted; all
characters to the right of the cursor on the same line are moved to the left one posi-
tion and the last character on the line is filled with a blank. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware delete character feature.)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that delch, mvdelch, and mvwdelch may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_deleteln (3X) curs_deleteln (3X)

NAME

curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln,
winsertln - delete and insert lines in a curses window

SYNOPSIS

#include <curses.h>

int deleteln(void) ;

int wdeleteln (WINDOW *win) ;

int insdelln(int n);

int winsdelln (WINDOW *win, int n);
int insertln(void) ;

int winsertln (WINDOW *win) ;

DESCRIPTION

With the deleteln and wdeleteln routines, the line under the cursor in the win-
dow is deleted; all lines below the current line are moved up one line. The bottom
line of the window is cleared. The cursor position does not change. (This does not
imply use of a hardware delete line feature.)

With the insdelln and winsdelln routines, for positive n, insert 7 lines into the
specified window above the current line. The #n bottom lines are lost. For negative
n, delete n lines (starting with the one under the cursor), and move the remaining
lines up. The bottom # lines are cleared. The current cursor position remains the
same.

With the insertln and insertln routines, a blank line is inserted above the
current line and the bottom line is lost. (This does not imply use of a hardware
insert line feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all but winsdelln may be a macros.

SEE ALSO

10/92

curses(3X)

Page 1

curs_getch (3X) curs_getch (3X)

NAME

curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch - get (or push back)
characters from curses terminal keyboard

SYNOPSIS

#include <curses.h>

int getch(void);

int wgetch (WINDOW *win) ;

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

DESCRIPTION

With the getch, wgetch, mvgetch and mvwgetch, routines a character is read from
the terminal associated with the window. In no-delay mode, if no input is waiting,
the value ERR is returned. In delay mode, the program waits until the system
passes text through to the program. Depending on the setting of cbreak, this is
after one character (cbreak mode), or after the first newline (nocbreak mode). In
half-delay mode, the program waits until a character is typed or the specified
timeout has been reached. Unless noecho has been set, the character will also be
echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
curses.h with integers beginning with 0401, whose names begin with KEy_. If a
character that could be the beginning of a function key (such as escape) is received,
curses sets a timer. If the remainder of the sequence does not come in within the
designated time, the character is passed through; otherwise, the function key value
is returned. For this reason, many terminals experience a delay between the time a
user presses the escape key and the escape is returned to the program. Since tokens
returned by these routines are outside the ASCII range, they are not printable.

The unget ch routine places ch back onto the input queue to be returned by the next
call to wgetch.

Function Keys

10/92

The following function keys, defined in curses.h, might be returned by getch if
keypad has been enabled. Note that not all of these may be supported on a particu-
lar terminal if the terminal does not transmit a unique code when the key is pressed
or if the definition for the key is not present in the terminfo database.

Page 1

curs_getch (3X)

curs_getch (3X)

Name Key name
KEY_BREAK Break key
KEY_DOWN The four arrow keys ...
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE Backspace
KEY_FO0 Function keys; space for 64 keys is reserved.
KEY_F (n) For0<n<63
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send
KEY_SRESET Soft (partial) reset
KEY_RESET Reset or hard reset
KEY_PRINT Print or copy
KEY_LL Home down or bottom (lower left).
Keypad is arranged like this:
Al up A3
left B2 right
C1 down C3
KEY_Al Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab key
KEY_BEG Beg(inning) key
KEY_CANCEL Cancel key
KEY_CLOSE Close key
KEY_COMMAND Cmd (command) key
KEY_COPY Copy key

10/92

curs_getch (3X)

curs_getch (3X)
Name Key name
KEY_CREATE Create key
KEY_END End key
KEY_EXIT Exit key
KEY_FIND Find key
KEY_HELP Help key
KEY_MARK Mark key
KEY_MESSAGE Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_OPEN Open key

KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME

10/92

Options key

Previous object key
Redo key

Ref(erence) key
Refresh key

Replace key

Restart key

Resume key

Save key

Shifted beginning key
Shifted cancel key
Shifted command key
Shifted copy key
Shifted create key
Shifted delete char key
Shifted delete line key
Select key

Shifted end key
Shifted clear line key
Shifted exit key
Shifted find key
Shifted help key
Shifted home key
Shifted input key
Shifted left arrow key
Shifted message key
Shifted move key
Shifted next key
Shifted options key
Shifted prev key
Shifted print key
Shifted redo key
Shifted replace key
Shifted right arrow
Shifted resume key

Page 3

curs_getch (3X) curs_getch (3X)

Name Key name
KEY_SSAVE Shifted save key
KEY_SSUSPEND Shifted suspend key
KEY_SUNDO Shifted undo key
KEY_SUSPEND Suspend key
KEY_UNDO Undo key

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getch, wgetch, mvgetch, or mvwgetch, nocbreak mode (nocbreak)
and echo mode (echo) should not be used at the same time. Depending on the
state of the tty driver when each character is typed, the program may produce
undesirable results.

Note that getch, mvgetch, and mvwgetch may be macros.

SEE ALSO

Page 4

curses(3X), curs_inopts(3X), curs_move(3X), curs_refresh(3X)

10/92

curs_getstr(3X) curs_getstr(3X)

NAME

curs_getstr: getstr, getnstr, wgetstr, wgetnstr, mvgetstr, mvgetnstr,
nmvwget str, mvwgetnstr - get character strings from curses terminal keyboard

SYNOPSIS

#include <curses.h>

int
int
int
int
int
int
int

int

getstr(char *str);

getnstr(char *str, int n);

wgetstr (WINDOW *win, char *str);

wgetnstr (WINDOW *win, char *str, int n);
mvgetstr (int y, int x, char *str);

mvgetnstr (int y, int x, char *str, int n);
mvwgetstr (WINDOW *win, int y, int x, char *str);

mvwgetnstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
The effect of getstr is as though a series of calls to getch were made, until a new-

line

and carriage return is received. The resulting value is placed in the area

pointed to by the character pointer str. getnstr reads at most n characters, thus
preventing a possible overflow of the input buffer. The user’s erase and kill charac-
ters are interpreted, as well as any special keys (such as function keys, "home" key,
"clear” key, etc.).

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all routines except wgetnstr may be macros.

SEE ALSO

curses(3X), curs_getch(3X).

10/92

Page 1

curs_getwch (3X) curs_getwch (3X)

NAME

curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch - get (or push
back) wchar_t characters from curses terminal keyboard

SYNOPSIS

#include <curses.h>

int getwch(void) ;

int wgetwch (WINDOW *win) ;

int mvgetwch (int y, int x);

int mvwgetwch (WINDOW *win, int y, int x);

int ungetwch (wchar_t wch) ;

DESCRIPTION

With the getwch, wgetwch, mvgetwch and mvwgetwch routines, a EUC character is
read from the terminal associated with the window, it is transformed into a
wchar_t character, and a wchar_t character is returned. In no-delay mode, if no
input is waiting, the value ERR is returned. In delay mode, the program waits until
the system passes text through to the program. Depending on the setting of
cbreak, this is after one character (cbreak mode), or after the first newline (noc-
break mode). In half-delay mode, the program waits until a character is typed or
the specified timeout has been reached. Unless noecho has been set, the character
will also be echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
<curses.h> with integers beginning with 0401, whose names begin with KEy_. If
a character that could be the beginning of a function key (such as escape) is
received, curses sets a timer. If the remainder of the sequence does not come in
within the designated time, the character is passed through; otherwise, the function
key value is returned. For this reason, many terminals experience a delay between
the time a user presses the escape key and the escape is returned to the program.

The ungetwch routine places wch back onto the input queue to be returned by the
next call to wgetwch.

Function Keys

10/92

The following function keys, defined in <curses.h>, might be returned by getwch
if keypad has been enabled. Note that not all of these may be supported on a par-
ticular terminal if the terminal does not transmit a unique code when the key is
pressed or if the definition for the key is not present in the terminfo database.

Page 1

curs_getwch (3X)

Page 2

curs_getwch (3X)

Name Key name
KEY_BREAK Break key
KEY_DOWN The four arrow keys ...
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME Home key (upward-+left arrow)
KEY_BACKSPACE Backspace
KEY_F0 Function keys; space for 64 keys is reserved.
KEY_F (n) For0<n<63
KEY_DL Delete line
KEY_TL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send
KEY_SRESET Soft (partial) reset
KEY_RESET Reset or hard reset
KEY_PRINT Print or copy
KEY_LL Home down or bottom (lower left).
Keypad is arranged like this:
Al up A3
left B2 right
Cc1l down C3
KEY_Al Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab key
KEY_BEG Beg(inning) key
KEY_CANCEL Cancel key
KEY_CLOSE Close key
KEY_COMMAND Cmd (command) key
KEY_COPY Copy key

10/92

curs_getwch (3X)

curs_getwch (3X)

Name Key name
KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key
KEY_MESSAGE Message key
KEY_MOVE Move key

KEY_NEXT Next object key
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PREVIOUS Previous object key
KEY_REDO Redo key
KEY_REFERENCE Ref(erence) key
KEY_REFRESH Refresh key
KEY_REPLACE Replace key
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_SAVE Save key

KEY_SBEG Shifted beginning key
KEY_SCANCEL Shifted cancel key
KEY_SCOMMAND Shifted command key
KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SDC Shifted delete char key
KEY_SDL Shifted delete line key
KEY_SELECT Select key

KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key
KEY_SLEFT Shifted left arrow key
KEY_SMESSAGE Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key
KEY_SOPTIONS Shifted options key
KEY_SPREVIOUS Shifted prev key
KEY_SPRINT Shifted print key
KEY_SREDO Shifted redo key
KEY_SREPLACE Shifted replace key
KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key

10/92

Page 3

curs_getwch (3X) curs_getwch (3X)

Name Key name
KEY_SSAVE Shifted save key
KEY_SSUSPEND Shifted suspend key
KEY_SUNDO Shifted undo key
KEY_SUSPEND Suspend key
KEY_UNDO Undo key

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getwch, wgetwch, mvgetwch, or mvwgetwch, nocbreak mode (noc-
break) and echo mode (echo) should not be used at the same time. Depending on
the state of the tty driver when each character is typed, the program may produce
undesirable results.

Note that getwch, mvgetwch, and mvwgetwch may be macros.

SEE ALSO
curses(3X), curs_inopts(3X), curs_move(3X), curs_refresh(3X).

Page 4 10/92

curs_getwstr (3X) curs_getwstr (3X)

NAME
curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr,
mvgetnwstr, mvwgetwstr, mvwgetnwstr - get wchar_t character strings from
curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getwstr (wchar_t *wstr);

int getnwstr (wchar_t *wstr, int n);

int mvgetwstr(int y, int x, wchar_t *wstr);

int mvgetnwstr (int y, int x, wchar_t *wstr, int n);

int mvwgetwstr (WINDOW *win, int y, int x, wchar_t *wstr);

int mvwgetnwstr (WINDOW *win, int y, int x, wchar_t *wstr, int n);
int wgetwstr (WINDOW *win, wchar_ t *wstr);

int wgetnwstr (WINDOW *win, wchar_t *wstr, int n);

DESCRIPTION
The effect of getwstr is as though a series of calls to getwch were made, until a
newline and carriage return is received. The resulting value is placed in the area
pointed to by the wchar_t pointer str. getnwstr reads at most n wchar_t charac-
ters, thus preventing a possible overflow of the input buffer. The user’s erase and
kill characters are interpreted, as well as any special keys (such as function keys,
"home" key, "clear" key, etc.).

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file <curses . h> automatically includes the header files <stdic.h> and
<unctrl.h>.

Note that all routines except wgetnwstr may be macros.

SEE ALSO
curses(3X), curs_getwch(3X).

10/92 Page 1

curs_getyx (3X) curs_getyx(3X)

NAME
curs_getyx: getyx, getparyx, getbegyx, getmaxyx - get curses cursor and
window coordinates

SYNOPSIS
#include <curses.h>

void getyx (WINDOW *win, int vy, int x);

void getparyx (WINDOW *win, int y, int x);
void getbegyx (WINDOW *win, int y, int x);
void getmaxyx (WINDOW *win, int y, int x);

DESCRIPTION
With the getyx macro, the cursor position of the window is placed in the two
integer variables y and x.

With the getparyx macro, if win is a subwindow, the beginning coordinates of the
subwindow relative to the parent window are placed into two integer variables, y
and x. Otherwise, -1 is placed into y and x.

Like getyx, the getbegyx and getmaxyx macros store the current beginning coor-
dinates and size of the specified window.

RETURN VALUE
The return values of these macros are undefined (that is, they should not be used as
the right-hand side of assignment statements).

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all of these interfaces are macros and that "&" is not necessary before the
variables y and x.

SEE ALSO
curses(3X)

10/92 Page 1

curs_inch (3X) curs_inch (3X)

NAME
curs_inch: inch, winch, mvinch, mvwinch - get a character and its attributes

from a curses window

SYNOPSIS
#include <curses.h>

chtype inch(void) ;

chtype winch (WINDOW *win) ;

chtype mvinch(int vy, int x);

chtype mvwinch (WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the character, of type chtype, at the current position in the
named window is returned. If any attributes are set for that position, their values
are ORed into the value returned. Constants defined in <curses.h> can be used
with the & (logical AND) operator to extract the character or attributes alone.

Attributes
The following bit-masks may be ANDed with characters returned by winch.

A_CHARTEXT Bit-mask to extract character
A_ATTRIBUTES Bit-mask to extract attributes
A_COLOR Bit-mask to extract color-pair field information
NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.
Note that all of these routines may be macros.
SEE ALSO
curses(3X)

10/92 Page 1

curs_inchstr(3X) curs_inchstr (3X)

NAME
curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr,
nvinchnstr, mvwinchstr, mvwinchnstr - get a string of characters (and attributes)
from a curses window

SYNOPSIS
#include <curses.h>

int inchstr (chtype *chstr);

int inchnstr (chtype *chstr, int n);

int winchstr (WINDOW *win, chtype *chstr);

int winchnstr (WINDOW *win, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvinchnstr (int y, int x, chtype *chstr, int n);

int mvwinchstr (WINDOW *win, int y, int x, chtype *chstr);

int mvwinchnstr (WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION
With these routines, a string of type chtype, starting at the current cursor position
in the named window and ending at the right margin of the window, is returned.
The four functions with 7 as the last argument, return the string at most n charac-
ters long. Constants defined in curses.h can be used with the & (logical AND)
operator to extract the character or the attribute alone from any position in the chstr
[see curs_inch(3X)].

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except winchnstr may be macros.

SEE ALSO
curses(3X), curs_inch(3X)

10/92 Page 1

curs_initscr(3X) curs_initscr (3X)

NAME

curs_initscr: initscr, newterm, endwin, isendwin, set_term, delscreen -
curses screen initialization and manipulation routines

SYNOPSIS

#include <curses.h>

WINDOW *initscr(void) ;

int endwin(void) ;

int isendwin(void) ;

SCREEN *newterm(char *type, FILE *outfd, FILE *infd);
SCREEN *set_term(SCREEN *new) ;

void delscreen (SCREEN* sp) ;

DESCRIPTION

10/92

initscr is almost always the first routine that should be called (the exceptions are
slk_init, filter, ripoffline, use_env and, for multiple-terminal applications,
newterm.) This determines the terminal type and initializes all curses data struc-
tures. initscr also causes the first call to refresh to clear the screen. If errors
occur, initscr writes an appropriate error message to standard error and exits;
otherwise, a pointer is returned to stdscr. If the program needs an indication of
error conditions, newterm() should be used instead of initscr; initscr should
only be called once per application.

A program that outputs to more than one terminal should use the newterm routine
for each terminal instead of initscr. A program that needs an indication of error
conditions, so it can continue to run in a line-oriented mode if the terminal cannot
support a screen-oriented program, would also use this routine. The routine
newterm should be called once for each terminal. It returns a variable of type
SCREEN * which should be saved as a reference to that terminal. The arguments
are the type of the terminal to be used in place of $TERV, a file pointer for output to
the terminal, and another file pointer for input from the terminal (if type is NULL,
$TERM will be used). The program must also call endwin for each terminal being
used before exiting from curses. If newterm is called more than once for the same
terminal, the first terminal referred to must be the last one for which endwin is
called.

A program should always call endwin before exiting or escaping from curses
mode temporarily. This routine restores tty modes, moves the cursor to the lower
left-hand corner of the screen and resets the terminal into the proper non-visual
mode. Calling refresh or doupdate after a temporary escape causes the program
to resume visual mode.

The isendwin routine returns TRUE if endwin has been called without any subse-
quent calls to wrefresh, and FALSE otherwise.

The set_term routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. The previous terminal is returned
by the routine. This is the only routine which manipulates SCREEN pointers; all
other routines affect only the current terminal.

Page 1

curs_initscr(3X) curs_initscr(3X)

The delscreen routine frees storage associated with the SCREEN data structure.
The endwin routine does not do this, so delscreen should be called after endwin if
a particular SCREEN is no longer needed.

RETURN VALUE
endwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers always return NULL on error.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that initscr and newterm may be macros.

SEE ALSO
curses(3X), curs_kernel(3X), curs_refresh(3X), curs_s1k(3X), curs_uti1(3X)

Page 2 10/92

curs_inopts (3X) curs_inopts (3X)

NAME

curs_inopts: cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad,
meta, nodelay, notimeout, raw, noraw, nogiflush, giflush, timeout, wtimeout,
typeahead - curses terminal input option control routines

SYNOPSIS

#include <curses.h>

int cbreak(void) ;

int nocbreak(void) ;

int echo(void) ;

int noecho (void) ;

int halfdelay(int tenths);

int intrflush(WINDOW *win, bool bf);
int keypad (WINDOW *win, bool bf);
int meta (WINDOW *win, bool bf);

int nodelay (WINDOW *win, bool bf);
int notimeout (WINDOW *win, bool bf);
int raw(void) ;

int noraw(void);

void nogiflush(void) ;

void giflush(void);

void timeout (int delay);

void wtimeout (WINDOW *win, int delay);
int typeahead(int fd);

DESCRIPTION

10/92

The cbreak and nocbreak routines put the terminal into and out of cbreak mode,
respectively. In this mode, characters typed by the user are immediately available
to the program, and erase/kill character-processing is not performed. When out of
this mode, the tty driver buffers the typed characters until a newline or carriage
return is typed. Interrupt and flow control characters are unaffected by this mode.
Initially the terminal may or may not be in cbreak mode, as the mode is inherited;
therefore, a program should call cbreak or nocbreak explicitly. Most interactive
programs using curses set the cbreak mode.

Note that cbreak overrides raw. [See curs_getch(3X) for a discussion of how
these routines interact with echo and noecho.]

The echo and noecho routines control whether characters typed by the user are
echoed by getch as they are typed. Echoing by the tty driver is always disabled,
but initially getch is in echo mode, so characters typed are echoed. Authors of
most interactive programs prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing by calling noecho. [See
curs_getch(3X) for a discussion of how these routines interact with cbreak and

Page 1

curs_inopts (3X) curs_inopts (3X)

nocbreak.]

The halfdelay routine is used for half-delay mode, which is similar to cbreak
mode in that characters typed by the user are immediately available to the pro-
gram. However, after blocking for tenths tenths of seconds, ERR is returned if noth-
ing has been typed. The value of tenths must be a number between 1 and 255.
Use nocbreak to leave half-delay mode.

If the intrflush option is enabled, (bf is 1RUE), when an interrupt key is pressed
on the keyboard (interrupt, break, quit) all output in the tty driver queue will be
flushed, giving the effect of faster response to the interrupt, but causing curses to
have the wrong idea of what is on the screen. Disabling (bf is FALSE), the option
prevents the flush. The default for the option is inherited from the tty driver set-
tings. The window argument is ignored.

The keypad option enables the keypad of the user’s terminal. If enabled (bf is
TRUE), the user can press a function key (such as an arrow key) and wgetch returns
a single value representing the function key, as in KEY_LEFT. If disabled (bf is
FALSE), curses does not treat function keys specially and the program has to inter-
pret the escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option causes the
terminal keypad to be turned on when wgetch is called. The default value for
keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends on
the control mode of the tty driver [see termio(7)]. To force 8 bits to be returned,
invoke meta(win, TRUE). To force 7 bits to be returned, invoke meta(win, FALSE).
The window argument, win, is always ignored. If the terminfo capabilities smm
(meta_on) and rmm (meta_off) are defined for the terminal, smm is sent to the termi-
nal when meta(win, TRUE) is called and rmm is sent when meta(win, FALSE) is called.

The nodelay option causes getch to be a non-blocking call. If no input is ready,
getch returns ERR. If disabled (bf is FALSE), getch waits until a key is pressed.

While interpreting an input escape sequence, wgetch sets a timer while waiting for
the next character. If not imeout (win, TRUE) is called, then wgetch does not set a
timer. The purpose of the timeout is to differentiate between sequences received
from a function key and those typed by a user.

With the raw and noraw routines, the terminal is placed into or out of raw mode.
Raw mode is similar to cbreak mode, in that characters typed are immediately
passed through to the user program. The differences are that in raw mode, the
interrupt, quit, suspend, and flow control characters are all passed through uninter-
preted, instead of generating a signal. The behavior of the BREAK key depends on
other bits in the tty driver that are not set by curses.

When the nogiflush routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done [see
termio(7)]. When giflushis called, the queues will be flushed when these control
characters are read.

The timeout and wtimeout routines set blocking or non-blocking read for a given
window. If delay is negative, blocking read is used (that is, waits indefinitely for
input). If delay is zero, then non-blocking read is used (that is, read returns ERR if
no input is waiting). If delay is positive, then read blocks for delay milliseconds, and
returns ERR if there is still no input. Hence, these routines provide the same

Page 2 10/92

curs_inopts (3X) curs_inopts (3X)

functionality as nodelay, plus the additional capability of being able to block for
only delay milliseconds (where delay is positive).

curses does “line-breakout optimization”” by looking for typeahead periodically
while updating the screen. If input is found, and if is coming from a tty, the current
update is postponed until refresh or doupdate is called again. This allows faster
response to commands typed in advance. Normally, the input FILE pointer passed
to newterm, or stdin in the case that initscr was used, will be used to do this
typeahead checking. The typeahead routine specifies that the file descriptor fd is
to be used to check for typeahead instead. If fd is -1, then no typeahead checking is
done.

RETURN VALUE
All routines that return an integer return ERR upon failure and an integer value
other than ERR upon successful completion, unless otherwise noted in the preced-
ing routine descriptions.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that echo, noecho, halfdelay, intrflush, meta, nodelay, notimeout,
nogiflush, giflush, timeout, and wt imeout may be macros.

SEE ALSO
curses(3X), curs_getch(3X), curs_initscr(3X), termio(7)

10/92 Page 3

curs_insch(3X) curs_insch(3X)

NAME
curs_insch: insch, winsch, mvinsch, mvwinsch - insert a character before the
character under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int insch(chtype ch);

int winsch (WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch (WINDOW *win, int y, int x, chtype ch);

DESCRIPTION
With these routines, the character ch is inserted before the character under the cur-
sor. All characters to the right of the cursor are moved one space to the right, with
the possibility of the rightmost character on the line being lost. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware insert character feature.)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that insch, mvinsch, and mvwinsch may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_insstr(3X) curs_insstr(3X)

NAME

curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr,
mvwinsstr, mvwinsnstr - insert string before character under the cursor in a
curses window

SYNOPSIS

#include <curses.h>

int insstr(char *str);

int insnstr(char *str, int n);

int winsstr (WINDOW *win, char *str);

int winsnstr (WINDOW *win, char *str, int n);

int mvinsstr(int y, int x, char *str);

int mvinsnstr(int y, int x, char *str, int n);

int mvwinsstr (WINDOW *win, int y, int X, char *str);

int mvwinsnstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION

With these routines, a character string (as many characters as will fit on the line) is
inserted before the character under the cursor. All characters to the right of the cur-
sor are moved to the right, with the possibility of the rightmost characters on the
line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.) The
four routines with 7 as the last argument insert at most # characters. If n<=0, then
the entire string is inserted.

If a character in str is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a c1rtoeol before
moving. Tabs are considered to be at every eighth column. If a character in str is
another control character, it is drawn in the "X notation. Calling winch after
adding a control character (and moving to it, if necessary) does not return the con-
trol character, but instead returns the representation of the control character.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all but winsnstr may be macros.

SEE ALSO

10/92

curses(3X), curs_clear(3X), curs_inch(3X)

Page 1

curs_instr(3X) curs_instr(3X)

NAME
curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,
mvwinnstr - get a string of characters from a curses window

SYNOPSIS
#include <curses.h>

int instr(char *str);

int innstr(char *str, int n);

int winstr (WINDOW *win, char *str);

int winnstr (WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinstr (WINDOW *win, int y, int x, char *str);

int mvwinnstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
These routines return a string of characters in str, starting at the current cursor posi-
tion in the named window and ending at the right margin of the window. Attri-
butes are stripped from the characters. The four functions with 7 as the last argu-
ment return the string at most n characters long.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except winnstr may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_inswch (3X) curs_inswch (3X)

NAME
curs_inswch: inswch,winswch, mvinswch, mvwinswch - insert a wchar_t charac-
ter before the character under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int inswch (chtype wch) ;
int winswch (WINDOW *win, chtype wch);
int mvinswch(int y, int x, chtype wch);

int mvwinswch (WINDOW *win, int y, int x, chtype wch);

DESCRIPTION
With these routines, the character wch holding a wchar_t character is inserted
before the character under the cursor. All characters to the right of the cursor are
moved one space to the right, with the possibility of the rightmost character on the
line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.)
RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.
NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.
Note that inswch, mvinswch, and mvwinswch may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_inswstr (3X) curs_inswstr (3X)

NAME
curs_instr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr,
mvinsnwstr, mvwinswstr, mvwinsnwstr - insert wchar_t string before character
under the cursor in a curses window

SYNOPSIS
#include <curses.h>
int inswstr(wchar_t *wstr);
int insnwstr(wchar_t *wstr, int n);
int winswstr (WINDOW *win, wchar_t *wstr);
int winsnwstr (WINDOW *win, wchar_t *wstr, int n);
int mvinswstr(int y, int x, wchar_t *wstr);
int mvinsnwstr (int y, int x, wchar_t *wstr, int n);
int mvwinswstr (WINDOW *win, int y, int x, wchar_t *wstr);
int mvwinsnwstr (WINDOW *win, int y, int x, wchar_t *wstr, int n);
DESCRIPTION
With these routines, a wchar_t character string (as many wchar_t characters as
will fit on the line) is inserted before the character under the cursor. All characters
to the right of the cursor are moved to the right, with the possibility of the right-
most characters on the line being lost. The cursor position does not change (after
moving to y, x, if specified). (This does not imply use of the hardware insert charac-

ter feature.) The four routines with # as the last argument insert at most n wchar_t
characters. If n<=0, then the entire string is inserted.

If a character in wstr is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol before
moving. Tabs are considered to be at every eighth column. If a character in wstr is
another control character, it is drawn in the "X notation. Calling winch after
adding a control character (and moving to it, if necessary) does not return the con-
trol character, but instead returns the representation of the control character.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all but winsnwstr may be macros.

SEE ALSO
curses(3X), curs_clear(3X), curs_inwch(3X).

10/92 Page 1

curs_inwch (3X) curs_inwch (3X)

NAME
curs_inwch: inwch, winwch, mvinwch, mvwinwch - get a wchar_t character and
its attributes from a curses window

SYNOPSIS
#include <curses.h>

chtype inwch(void) ;

chtype winwch (WINDOW *win) ;

chtype mvinwch(int y, int x);

chtype mvwinwch (WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the wchar_t character, of type chtype, at the current position
in the named window is returned. If any attributes are set for that position, their
values are OR-ed into the value returned. Constants defined in <curses.h> can be
used with the & (logical AND) operator to extract the character or attributes alone.

Attributes
The following bit-masks may be AND-ed with characters returned by winwch.

A_CHARTEXT Bit-mask to extract character
A_ATTRIBUTES Bit-mask to extract attributes
A_COLOR Bit-mask to extract color-pair field information

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.
Note that all of these routines may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_inwchstr (3X) curs_inwchstr (3X)

NAME
curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr - get a string of wchar_t characters
(and attributes) from a curses window

SYNOPSIS
#include <curses.h>

int inwchstr (chtype *wchstr) ;

int inwchnstr (chtype *wchstr, int n);

int winwchstr (WINDOW *win, chtype *wchstr);

int winwchnstr (WINDOW *win, chtype *wchstr, int n);

int mvinwchstr (int y, int x, chtype *wchstr);

int mvinwchnstr(int y, int x, chtype *wchstr, int n);

int mvwinwchstr (WINDOW *win, int y, int x, chtype *wchstr);

int mvwinwchnstr (WINDOW *win, int y, int x, chtype *wchstr, int n);

DESCRIPTION
With these routines, a string of type chtype holding wchar_t characters, starting at
the current cursor position in the named window and ending at the right margin of
the window, is returned. The four functions with 7 as the last argument, return the
string at most n wchar_t characters long. Constants defined in <curses.h> can be
used with the & (logical AND) operator to extract the wchar_t character or the
attribute alone from any position in the chstr [see curs_inch(3X)].

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all routines except winwchnstr may be macros.

SEE ALSO
curses(3X), curs_inwch(3X).

10/92 Page 1

curs_inwstr (3X) curs_inwstr(3X)

NAME
curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr,
mvwinwstr, mvwinnwstr - get a string of wchar_t characters from a curses win-
dow

SYNOPSIS
#include <curses.h>

int inwstr(wchar_t *str);

int innwstr (wchar_t *str, int n);

int winwstr (WINDOW *win, wchar_t *str);

int winnwstr (WINDOW *win, wchar_t *str, int n);

int mvinwstr (int vy, int x, wchar_t *str);

int mvinnwstr (int y, int x, wchar_ t *str, int n);

int mvwinwstr (WINDOW *win, int y, int x, wchar_t *str);

int mvwinnwstr (WINDOW *win, int vy, int x, wchar_t *str, int n);

DESCRIPTION
These routines return a string of wchar_t characters in str, starting at the current
cursor position in the named window and ending at the right margin of the win-
dow. Attributes are stripped from the characters. The four functions with # as the
last argument return the string at most n wchar_t characters long.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all routines except winnwstr may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_kernel (3X) curs_kernel (3X)

NAME

curs_kernel: def_prog_mode,def_shell _mode, reset_prog_mode,
reset_shell_mode, resetty, savetty, getsyx, setsyx, ripoffline, curs_set,
napms - low-level curses routines

SYNOPSIS

#include <curses.h>

int def_prog_mode (void) ;

int def_shell_mode (void) ;

int reset_prog_mode (void) ;

int reset_shell_mode (void) ;

int resetty (void) ;

int savetty (void) ;

int getsyx(int y, int x);

int setsyx(int vy, int x);

int ripoffline(int line, int (*init) (WINDOW *, int));
int curs_set (int visibility);

int napms(int ms);

DESCRIPTION

10/92

The following routines give low-level access to various curses functionality.
Theses routines typically are used inside library routines.

The def_prog_mode and def_shell_mode routines save the current terminal
modes as the "program” (in curses) or "shell" (not in curses) state for use by the
reset_prog_mode and reset_shell_mode routines. This is done automatically
by initscr.

The reset_prog_mode and reset_shell_mode routines restore the terminal to
"program” (in curses) or "shell” (out of curses) state. These are done automati-
cally by endwin and, after an endwin, by doupdate, so they normally are not called.

The resetty and savetty routines save and restore the state of the terminal
modes. savetty saves the current state in a buffer and resetty restores the state
to what it was at the last call to savetty.

With the getsyx routine, the current coordinates of the virtual screen cursor are
returned in y and x. If leaveok is currently TRUE, then -1,-1 is returned. If lines
have been removed from the top of the screen, using ripoffline, y and x include
these lines; therefore, y and x should be used only as arguments for setsyx.

With the setsyx routine, the virtual screen cursor is set to y, x. If y and x are both
-1, then leaveok is set. The two routines getsyx and setsyx are designed to be
used by a library routine, which manipulates curses windows but does not want
to change the current position of the program’s cursor. The library routine would
call getsyx at the beginning, do its manipulation of its own windows, do a
wnoutrefresh on its windows, call setsyx, and then call doupdate.

Page 1

curs_kernel (3X) curs_kernel (3X)

The ripoffline routine provides access to the same facility that slk_init [see
curs_s1k(3X)] uses to reduce the size of the screen. ripoffline must be called
before initscr or newterm is called. If line is positive, a line is removed from the
top of stdscr; if line is negative, a line is removed from the bottom. When this is
done inside initscr, the routine init (supplied by the user) is called with two
arguments: a window pointer to the one-line window that has been allocated and
an integer with the number of columns in the window. Inside this initialization
routine, the integer variables LINES and COLS (defined in curses.h) are not
guaranteed to be accurate and wrefresh or doupdate must not be called. It is
allowable to call wnoutrefresh during the initialization routine.

ripoffline can be called up to five times before calling initscr or newterm.

With the curs_set routine, the cursor state is set to invisible, normal, or very visi-
ble for visibility equal to 0, 1, or 2 respectively. If the terminal supports the visi-
bility requested, the previous cursor state is returned; otherwise, ERR is returned.

The napms routine is used to sleep for ms milliseconds.

RETURN VALUE

NOTES

Except for curs_set, these routines always return OK. curs_set returns the previ-
ous cursor state, or ERR if the requested visibility is not supported.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that getsyx is a macro, so & is not necessary before the variables y and x.

SEE ALSO

Page 2

curses(3X), curs_initscr(3X), curs_outopts(3X), curs_refresh(3X),
curs_scr_dump(3X), curs_s1k(3X)

10/92

curs_move (3X) curs_move (3X)

NAME
curs_move: move,wmove - move curses window cursor

SYNOPSIS
#include <curses.h>

int move(int y, int x);
int wmove (WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the cursor associated with the window is moved to line y and
column x. This routine does not move the physical cursor of the terminal until
refreshis called. The position specified is relative to the upper left-hand corner of
the window, which is (0,0).

RETURN VALUE
These routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that move may be a macro.

SEE ALSO
curses(3X), curs_refresh(3X)

10/92 Page 1

curs_outopts (3X) curs_outopts (3X)

NAME

curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg,
wsetscrreg, scrollok, nl, nonl - curses terminal output option control routines

SYNOPSIS

#include <curses.h>

int clearok (WINDOW *win, bool bf);

int idlok (WINDOW *win, bool bf);

void idcok (WINDOW *win, bool bf);

void immedok (WINDOW *win, bool bf);

int leaveok (WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg (WINDOW *win, int top, int bot);
int scrollok (WINDOW *win, bool bf);

int nl(void);

int nonl (void) ;

DESCRIPTION

10/92

These routines set options that deal with output within curses. All options are
initially FALSE, unless otherwise stated. It is not necessary to turn these options off
before calling endwin.

With the clearok routine, if enabled (bf is TRUE), the next call to wrefresh with
this window will clear the screen completely and redraw the entire screen from
scratch. This is useful when the contents of the screen are uncertain, or in some
cases for a more pleasing visual effect. If the win argument to clearok is the global
variable curscr, the next call to wrefresh with any window causes the screen to
be cleared and repainted from scratch.

With the idlok routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete line feature of terminals so equipped. If disabled (bf is
FALSE), curses very seldom uses this feature. (The insert/delete character feature
is always considered.) This option should be enabled only if the application needs
insert/delete line, for example, for a screen editor. It is disabled by default because
insert/delete line tends to be visually annoying when used in applications where it
isn’t really needed. If insert/delete line cannot be used, curses redraws the
changed portions of all lines.

With the idcok routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete character feature of terminals so equipped. This is enabled
by default.

With the immedok routine, if enabled (bf is TRUE) , any change in the window image,
such as the ones caused by waddch, wclrtobot, wscrl, and so on, automatically
cause a call to wrefresh. However, it may degrade the performance considerably,
due to repeated calls to wrefresh. It is disabled by default.

Page 1

curs_outopts (3X) curs_outopts (3X)

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. The leaveok option allows the cursor to be left wherever the update
happens to leave it. It is useful for applications where the cursor is not used, since
it reduces the need for cursor motions. If possible, the cursor is made invisible
when this option is enabled.

The setscrreg and wsetscrreg routines allow the application programmer to set
a software scrolling region in a window. top and bot are the line numbers of the top
and bottom margin of the scrolling region. (Line 0 is the top line of the window.) If
this option and scrollok are enabled, an attempt to move off the bottom margin
line causes all lines in the scrolling region to scroll up one line. Only the text of the
window is scrolled. (Note that this has nothing to do with the use of a physical
scrolling region capability in the terminal, like that in the VT100. If idlok is
enabled and the terminal has either a scrolling region or insert/delete line capabil-
ity, they will probably be used by the output routines.)

The scrollok option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either as a result of a newline
action on the bottom line, or typing the last character of the last line. If disabled, (bf
is FALSE), the cursor is left on the bottom line. If enabled, (bf is TRUE), wrefresh is
called on the window, and the physical terminal and window are scrolled up one
line. [Note that in order to get the physical scrolling effect on the terminal, it is also
necessary to call idlok.]

The nl and nonl routines control whether newline is translated into carriage return
and linefeed on output, and whether return is translated into newline on input. Ini-
tially, the translations do occur. By disabling these translations using nonl, curses
is able to make better use of the linefeed capability, resulting in faster cursor
motion.

RETURN VALUE

NOTES

setscrreg and wsetscrreg return OK upon success and ERR upon failure. All
other routines that return an integer always return OK.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that clearok, leaveok, scrollok, idcok, nl, nonl and setscrreg may be
macros.

The immedok routine is useful for windows that are used as terminal emulators.

SEE ALSO

Page 2

curses(3X), curs_addch(3X), curs_clear(3X), curs_initscr(3X),
curs_scroll(3X), curs_refresh(3X)

10/92

curs_overlay (3X) curs_overlay (3X)

NAME
curs_overlay: overlay, overwrite, copywin - overlap and manipulate over-
lapped curses windows

SYNOPSIS
#include <curses.h>

int overlay (WINDOW *srcwin, WINDOW *dstwin) ;
int overwrite (WINDOW *srcwin, WINDOW *dstwin);

int copywin (WINDOW *srcwin, WINDOW *dstwin, int sminrow,
int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

DESCRIPTION
The overlay and overwrite routines overlay srcwin on top of dstwin. scrwin and
dstwin are not required to be the same size; only text where the two windows over-
lap is copied. The difference is that overlay is non-destructive (blanks are not
copied) whereas overwrite is destructive.

The copywin routine provides a finer granularity of control over the overlay and
overwrite routines. Like in the prefresh routine, a rectangle is specified in the
destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper-
left-corner coordinates of the source window, (sminrow, smincol). If the argument
overlay is t rue, then copying is non-destructive, as in overlay.

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that overlay and overwrite may be macros.

SEE ALSO
curses(3X), curs_pad(3X), curs_refresh(3X)

10/92 Page 1

curs_pad (3X) curs_pad (3X)

NAME

curs_pad: newpad, subpad, prefresh, pnoutrefresh, pechochar, pechowchar -
create and display curses pads

SYNOPSIS

#include <curses.h>

WINDOW *newpad (int nlines, int ncols);

WINDOW *subpad (WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

int prefresh(WINDOW *pad, int pminrow, int pmincol,
int sminrow, int smincol, int smaxrow, int smaxcol);

int pnoutrefresh (WINDOW *pad, int pminrow, int pmincol,
int sminrow, int smincol, int smaxrow, int smaxcol) ;

int pechochar (WINDOW *pad, chtype ch);
int pechowchar (WINDOW *pad, chtype wch) ;

DESCRIPTION

10/92

The newpad routine creates and returns a pointer to a new pad data structure with
the given number of lines, nlines, and columns, ncols. A pad is like a window,
except that it is not restricted by the screen size, and is not necessarily associated
with a particular part of the screen. Pads can be used when a large window is
needed, and only a part of the window will be on the screen at one time.
Automatic refreshes of pads (e.g., from scrolling or echoing of input) do not occur.
It is not legal to call wrefresh with a pad as an argument; the routines prefresh or
pnoutrefresh should be called instead. Note that these routines require addi-
tional parameters to specify the part of the pad to be displayed and the location on
the screen to be used for the display.

The subpad routine creates and returns a pointer to a subwindow within a pad
with the given number of lines, nlines, and columns, ncols. Unlike subwin, which
uses screen coordinates, the window is at position (begin_x, begin_y) on the pad.
The window is made in the middle of the window orig, so that changes made to one
window affect both windows. During the use of this routine, it will often be neces-
sary to call touchwin or touchline on orig before calling prefresh.

The prefresh and pnoutrefresh routines are analogous to wrefresh and
wnoutrefresh except that they relate to pads instead of windows. The additional
parameters are needed to indicate what part of the pad and screen are involved.
pminrow and pmincol specify the upper left-hand corner of the rectangle to be
displayed in the pad. sminrow, smincol, smaxrow, and smaxcol specify the edges of
the rectangle to be displayed on the screen. The lower right-hand corner of the rec-
tangle to be displayed in the pad is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely contained
within their respective structures. Negative values of pminrow, pmincol, sminrow, or
smincol are treated as if they were zero.

The pechochar routine is functionally equivalent to a call to addch followed by a
call to refresh, a call to waddch followed by a call to wrefresh, or a call to waddch
followed by a call to prefresh. The knowledge that only a single character is
being output is taken into consideration and, for non-control characters, a

Page 1

curs_pad (3X) curs_pad (3X)

considerable performance gain might be seen by using these routines instead of
their equivalents. In the case of pechochar, the last location of the pad on the
screen is reused for the arguments to prefresh.
The pechowchar routine is functionally equivalent to a call to addwch followed by
a call to refresh, a call to waddwch followed by a call to wrefresh, or a call to
waddwch followed by a call to prefresh.

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.
Note that pechochar may be a macro.

SEE ALSO
curses(3X), curs_refresh(3X), curs_touch(3X), curs_addch(3X),
curs_addwch(3X).

Page 2 10/92

curs_printw (3X) curs_printw (3X)

NAME

curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw - print format-
ted output in curses windows

SYNOPSIS

#include <curses.h>

int printw(char *fmt [, arg] ...):;
int wprintw(WINDOW *win, char *fmt [, arg] ...):;
int mvprintw(int y, int x, char *fmt [, arg] ...):;
int mvwprintw (WINDOW *win, int y, int x,
char *fmt [, arg] ...):
#include <stdarg.h>
int vwprintw (WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION

The printw, wprintw, mvprintw and mvwprintw routines are analogous to printf
[see print£(3S)]. In effect, the string that would be output by printf is output
instead as though waddstr were used on the given window.

The vwprintw routine is analogous to vprintf [see vprintf(3S)] and performs a
wprintw using a variable argument list. The third argument is a va_list, a pointer
to a list of arguments, as defined in <stdarg.h>.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

SEE ALSO

10/92

curses(3X), print £(3S), print £(3W), vprint £(3S).

Page 1

curs_refresh (3X) curs_refresh (3X)

NAME

curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin,
wredrawln - refresh curses windows and lines

SYNOPSIS

#include <curses.h>

int refresh(void);

int wrefresh (WINDOW *win) ;

int wnoutrefresh (WINDOW *win) ;
int doupdate (void) ;

int redrawwin (WINDOW *win) ;

int wredrawln (WINDOW *win, int beg_line, int num_lines);

DESCRIPTION

10/92

The refresh and wrefresh routines (or wnoutrefresh and doupdate) must be
called to get any output on the terminal, as other routines merely manipulate data
structures. The routine wrefresh copies the named window to the physical termi-
nal screen, taking into account what is already there in order to do optimizations.
The refresh routine is the same, using stdscr as the default window. Unless
leaveok has been enabled, the physical cursor of the terminal is left at the location
of the cursor for that window.

The wnoutrefresh and doupdate routines allow multiple updates with more
efficiency than wrefresh alone. In addition to all the window structures, curses
keeps two data structures representing the terminal screen: a physical screen,
describing what is actually on the screen, and a virtual screen, describing what the
programmer wants to have on the screen.

The routine wrefresh works by first calling wnoutrefresh, which copies the
named window to the virtual screen, and then calling doupdate, which compares
the virtual screen to the physical screen and does the actual update. If the pro-
grammer wishes to output several windows at once, a series of calls to wrefresh
results in alternating calls to wnoutrefresh and doupdate, causing several bursts
of output to the screen. By first calling wnoutrefresh for each window, it is then
possible to call doupdate once, resulting in only one burst of output, with fewer
total characters transmitted and less CPU time used. If the win argument to
wrefresh is the global variable curscr, the screen is immediately cleared and
repainted from scratch.

The redrawwin routine indicates to curses that some screen lines are corrupted
and should be thrown away before anything is written over them. These routines
could be used for programs such as editors, which want a command to redraw
some part of the screen or the entire screen. The routine redrawln is preferred over
redrawwin where a noisy communication line exists and redrawing the entire win-
dow could be subject to even more communication noise. Just redrawing several
lines offers the possibility that they would show up unblemished.

Page 1

curs_refresh (3X) curs_refresh (3X)

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that refresh and redrawwin may be macros.

SEE ALSO
curses(3X), curs_outopts(3X)

Page 2 10/92

curs_scanw (3X) curs_scanw (3X)

NAME
curs_scanw: Scanw, wscanw, mvscanw, mvwscanw, vwscanw - convert formatted
input from a curses window

SYNOPSIS
#include <curses.h>

int scanw(char *fmt [, arg] ...);
int wscanw (WINDOW *win, char *fmt [, arg] ...);
int mvscanw(int y, int x, char *fmt [, arg] ...);

int mvwscanw (WINDOW *win, int vy, int x,
char *fmt [, arg] ...);

#finclude <stdarg.h>

int vwscanw (WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION
The scanw, wscanw and mvscanw routines correspond to scanf [see scanf(3S)].
The effect of these routines is as though wgetstr were called on the window, and
the resulting line used as input for the scan. Fields which do not map to a variable
in the fmt field are lost.

The vwscanw routine is similar to vwprintw in that it performs a wscanw using a
variable argument list. The third argument is a va_list, a pointer to a list of argu-
ments, as defined in <stdarg.h>.

RETURN VALUE
vwscanw returns ERR on failure and an integer equal to the number of fields
scanned on success.

Applications may interrogate the return value from the scanw, wscanw, mvscanw
and mvwscanw routines to determine the number of fields which were mapped in
the call.

NOTES
The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

SEE ALSO
curses(3X), curs_getstr(3X), curs_printw(3X), scanf(3S), scanf(3W).

10/92 Page 1

curs_scr_dump (3X) curs_scr_dump (3X)

NAME

curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set - read (write) a
curses screen from (to) a file

SYNOPSIS

#include <curses.h>

int scr_dump (char *filename) ;
int scr_restore(char *filename) ;
int scr_init (char *filename) ;

int scr_set (char *filename) ;

DESCRIPTION

With the scr_dump routine, the current contents of the virtual screen are written to
the file filename.

With the scr_restore routine, the virtual screen is set to the contents of filename,
which must have been written using scr_dump. The next call to doupdate restores
the screen to the way it looked in the dump file.

With the scr_init routine, the contents of filename are read in and used to initial-
ize the curses data structures about what the terminal currently has on its screen.
If the data is determined to be valid, curses bases its next update of the screen on
this information rather than clearing the screen and starting from scratch.
scr_init is used after initscr or a system [see system(BA_LIB)] call to share the
screen with another process which has done a scr_dump after its endwin call. The
data is declared invalid if the time-stamp of the tty is old or the terminfo capabili-
ties rmcup and nrrmc exist.

The scr_set routine is a combination of scr_restore and scr_init. It tells the
program that the information in filename is what is currently on the screen, and also
what the program wants on the screen. This can be thought of as a screen inheri-
tance function.

To read (write) a window from (to) a file, use the getwin and putwin routines [see
curs_util(3X)].

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and OK upon success.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that scr_init, scr_set, and scr_restore may be macros.

SEE ALSO

10/92

curses(3X), curs_initscr(3X), curs_refresh(3X), curs_uti1(3X), system(3S)

Page 1

curs_scroll (3X) curs_scroll (3X)

NAME
curs_scroll: scroll, srcl,wscrl - scroll a curses window

SYNOPSIS
#include <curses.h>

int scroll (WINDOW *win) ;
int scrl(int n);
int wscrl (WINDOW *win, int n);

DESCRIPTION
With the scroll routine, the window is scrolled up one line. This involves moving
the lines in the window data structure. As an optimization, if the scrolling region
of the window is the entire screen, the physical screen is scrolled at the same time.
With the scrl and wscrl routines, for positive 7 scroll the window up # lines (line
i+n becomes i); otherwise scroll the window down # lines. This involves moving
the lines in the window character image structure. The current cursor position is
not changed.
For these functions to work, scrolling must be enabled via scrollok.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that scrl and scroll may be macros.

SEE ALSO
curses(3X), curs_outopts(3X)

10/92 Page 1

curs_slk(3X) curs_slk(3X)

NAME

curs_slk: slk_init, slk_set, slk_refresh, slk noutrefresh, slk_label,
slk_clear, slk_restore, slk_touch, slk_attron, slk_attrset, slk_attroff -
curses soft label routines

SYNOPSIS

#include <curses.h>

int slk_init(int fmt);

int slk_set (int labnum, char *label, int fmt);
int slk_refresh(void);

int slk_noutrefresh(void);
char *slk_label (int labnum) ;
int slk_clear (void) ;

int slk_restore(void) ;

int slk_touch(void);

int slk_attron(chtype attrs);
int slk_attrset (chtype attrs);
int slk_attroff (chtype attrs);

DESCRIPTION

10/92

curses manipulates the set of soft function-key labels that exist on many termi-
nals. For those terminals that do not have soft labels, curses takes over the bottom
line of stdscr, reducing the size of stdscr and the variable LINES. curses stand-
ardizes on eight labels of up to eight characters each.

To use soft labels, the s1k_init routine must be called before initscr or newterm
is called. If initscr eventually uses a line from stdscr to emulate the soft labels,
then fmt determines how the labels are arranged on the screen. Setting fmt to 0
indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement.

With the s1k_set routine, labnum is the label number, from 1 to 8. label is the string
to be put on the label, up to eight characters in length. A null string or a null
pointer sets up a blank label. fmt is either 0, 1, or 2, indicating whether the label is
to be left-justified, centered, or right-justified, respectively, within the label.

The slk_refresh and slk_noutrefresh routines correspond to the wrefresh
and wnoutrefresh routines.

With the s1k_label routine, the current label for label number labnum is returned
with leading and trailing blanks stripped.

With the s1k_clear routine, the soft labels are cleared from the screen.

With the slk_restore routine, the soft labels are restored to the screen after a
slk_clear is performed.

With the s1k_touch routine, all the soft labels are forced to be output the next time
a slk_noutrefresh is performed.

Page 1

curs_slk(3X) curs_slk(3X)

The slk_attron, slk_attrset and slk_attroff routines correspond to attron,
attrset, and attroff. They have an effect only if soft labels are simulated on the
bottom line of the screen.

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

slk_label returns NULL on error.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.
Most applications would use slk_noutrefresh because a wrefresh is likely to
follow soon.

SEE ALSO
curses(3X), curs_attr(3X), curs_initscr(3X), curs_refresh(3X)

Page 2 10/92

curs_termattrs (3X) curs_termattrs (3X)

NAME

curs_termattrs: baudrate, erasechar, has_ic, has_il, killchar, longname,
termattrs, termname - curses environment query routines

SYNOPSIS

#include <curses.h>

int baudrate (void) ;
char erasechar (void) ;
int has_ic(void);

int has_il (void) ;

char killchar (void);
char *longname (void) ;
chtype termattrs(void);

char *termname (void) ;

DESCRIPTION

10/92

The baudrate routine returns the output speed of the terminal. The number
returned is in bits per second, for example 9600, and is an integer.

With the erasechar routine, the user’s current erase character is returned.

The has_ic routine is true if the terminal has insert- and delete-character capabili-
ties.

The has_i1 routine is true if the terminal has insert- and delete-line capabilities, or
can simulate them using scrolling regions. This might be used to determine if it
would be appropriate to turn on physical scrolling using scrollok.

With the killchar routine, the user’s current line kill character is returned.

The longname routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose description
is 128 characters. It is defined only after the call to initscr or newterm. The area
is overwritten by each call to newterm and is not restored by set_term, so the
value should be saved between calls to newterm if longname is going to be used
with multiple terminals.

If a given terminal doesn’t support a video attribute that an application program is
trying to use, curses may substitute a different video attribute for it. The
termattrs function returns a logical OR of all video attributes supported by the ter-
minal. This information is useful when a curses program needs complete control
over the appearance of the screen.

The termname routine returns the value of the environmental variable TERM (trun-
cated to 14 characters).

Page 1

curs_termattrs (3X) curs_termattrs (3X)

RETURN VALUE
longname and termname return NULL on error.

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

NOTES

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that termattrs may be a macro.

SEE ALSO
curses(3X), curs_initscr(3X), curs_outopts(3X)

Page 2 10/92

curs_termcap (3X) curs_termcap (3X)

NAME
curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs - curses
interfaces (emulated) to the termcap library

SYNOPSIS
#include <curses.h>
#include <term.h>
int tgetent (char *bp, char *name);
int tgetflag(char id[2]);
int tgetnum(char id[2]);
char *tgetstr(char id(2], char **area);
char *tgoto(char *cap, int col, int row) ;
int tputs(char *str, int affcnt, int (*putc) (void));
DESCRIPTION
These routines are included as a conversion aid for programs that use the termcap
library. Their parameters are the same and the routines are emulated using the ter-

minfo database. These routines are supported at Level 2 and should not be used in
new applications.

The tgetent routine looks up the termcap entry for name. The emulation ignores
the buffer pointer bp.

The tget flag routine gets the boolean entry for id.
The tgetnum routine gets the numeric entry for id.

The tgetstr routine returns the string entry for id. Use tputs to output the
returned string.
The tgoto routine instantiates the parameters into the given capability. The out-
put from this routine is to be passed to tputs.
The tputs routine is described on the curs_terminfo(4) manual page.

RETURN VALUE

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

SEE ALSO
curses(3X), curs_terminfo(4), putc(3S)

10/92 Page 1

curs_terminfo (3X) curs_terminfo (3X)

NAME

curs_terminfo: setupterm, setterm, set_curterm, del_curterm, restart-
term, tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum,
tigetstr - curses interfaces to terminfo database

SYNOPSIS

#include <curses.h>

#include <term.h>

int setupterm(char *term, int fildes, int *errret);
int setterm(char *term);

int set_curterm(TERMINAL *nterm) ;

int del_curterm(TERMINAL *oterm) ;

int restartterm(char *term, int fildes, int *errret);

char *tparm(char *str, long int pl, long int p2, long int p3,
long int p4, long int p5, long int p6, long int p7,
long int p8, long int p9);

int tputs(char *str, int affcnt, int (*putc) (char));

int putp(char *str);

int vidputs (chtype attrs, int (*putc) (char));

int vidattr (chtype attrs);

int mvcur (int oldrow, int oldcol, int newrow, int newcol) ;
int tigetflag(char *capname) ;

int tigetnum(char *capname) ;

int tigetstr(char *capname) ;

DESCRIPTION

10/92

These low-level routines must be called by programs that have to deal directly with
the terminfo database to handle certain terminal capabilities, such as program-
ming function keys. For all other functionality, curses routines are more suitable
and their use is recommended.

Initially, setupterm should be called. Note that setupterm is automatically called
by initscr and newterm. This defines the set of terminal-dependent variables
[listed in terminfo(4)]. The terminfo variables 1ines and columns are initialized
by setupterm as follows: If use_env (FALSE) has been called, values for lines
and columns specified in terminfo are used. Otherwise, if the environment vari-
ables LINES and COLUMNS exist, their values are used. If these environment vari-
ables do not exist and the program is running in a window, the current window
size is used. Otherwise, if the environment variables do not exist, the values for
lines and columns specified in the terminfo database are used.

The header files curses.h and term.h should be included (in this order) to get the
definitions for these strings, numbers, and flags. Parameterized strings should be
passed through tparm to instantiate them. All terminfo strings [including the
output of tparm] should be printed with tputs or putp. Call the

Page 1

curs_terminfo (3X) curs_terminfo (3X)

reset_shell_mode to restore the tty modes before exiting [see curs_kernel(3X)].
Programs which use cursor addressing should output enter_ca_mode upon
startup and should output exit_ca_mode before exiting. Programs desiring shell
escapes should call reset_shell_mode and output exit_ca_mode before the shell
is called and should output enter_ca mode and call reset_prog_mode after
returning from the shell.

The setupterm routine reads in the terminfo database, initializing the terminfo
structures, but does not set up the output virtualization structures used by curses.
The terminal type is the character string term; if term is null, the environment vari-
able TERM is used. All output is to file descriptor fildes which is initialized for
output. If errret is not null, then setupterm returns OK or ERR and stores a status
value in the integer pointed to by errret. A status of 1 in errret is normal, 0 means
that the terminal could not be found, and -1 means that the terminfo database
could not be found. If errret is null, setupterm prints an error message upon
finding an error and exits. Thus, the simplest call is:

setupterm((char *)0, 1, (int *)0);,
which uses all the defaults and sends the output to stdout.
The set term routine is being replaced by setupterm. The call:
setupterm(term, 1, (int *)0)

provides the same functionality as setterm(term). The setterm routine is
included here for compatibility and is supported at Level 2.

The set_curterm routine sets the variable cur_term to nterm, and makes all of the
terminfo boolean, numeric, and string variables use the values from nterm.

The del_curtermroutine frees the space pointed to by oterm and makes it available
for further use. If oterm is the same as cur_term, references to any of the terminfo
boolean, numeric, and string variables thereafter may refer to invalid memory loca-
tions until another setupterm has been called.

The restartterm routine is similar to setupterm and initscr, except that it is
called after restoring memory to a previous state. It assumes that the windows and
the input and output options are the same as when memory was saved, but the ter-
minal type and baud rate may be different.

The tparm routine instantiates the string str with parameters pi. A pointer is
returned to the result of str with the parameters applied.

The tputs routine applies padding information to the string str and outputs it. The
str must be a terminfo string variable or the return value from tparm, tgetstr, or
tgoto. affcnt is the number of lines affected, or 1 if not applicable. putc is a
putchar-like routine to which the characters are passed, one at a time.

The putp routine calls tputs (str, 1, putchar). Note that the output of putp
always goes to stdout, not to the fildes specified in setupterm.

The vidputs routine displays the string on the terminal in the video attribute mode
attrs, which is any combination of the attributes listed in curses(3X). The charac-
ters are passed to the putchar-like routine putc.

Page 2 10/92

curs_terminfo (3X) curs_terminfo (3X)

The vidattr routine is like the vidputs routine, except that it outputs through
putchar.

The mvcur routine provides low-level cursor motion.

The tigetflag, tigetnum and tigetstr routines return the value of the capabil-
ity corresponding to the terminfo capname passed to them, such as xen1.

With the tigetflag routine, the value -1 is returned if capname is not a boolean
capability.

With the tigetnum routine, the value -2 is returned if capname is not a numeric
capability.

With the tigetstr routine, the value (char *)-1 is returned if capname is not a
string capability.

The capname for each capability is given in the table column entitled capname code
in the capabilities section of terminfo(4).

char *boolnames, *boolcodes, *bool fnames
char *numnames, *numcodes, *numfnames
char *strnames, *strcodes, *strfnames

These null-terminated arrays contain the capnames, the termcap codes, and the full
C names, for each of the terminfo variables.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

Routines that return pointers always return NULL on error.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

The setupterm routine should be used in place of setterm.
Note that vidattr and vidputs may be macros.

SEE ALSO

10/92

curses(3X), curs_initscr(3X), curs_kernel(3X), curs_termcap(3X), putc(3S),
terminfo(4)

Page 3

curs_touch (3X) curs_touch (3X)

NAME

curs_touch: touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_wintouched - curses refresh control routines

SYNOPSIS

#include <curses.h>

int touchwin (WINDOW *win) ;

int touchline (WINDOW *win, int start, int count);

int untouchwin (WINDOW *win) ;

int wtouchln (WINDOW *win, int y, int n, int changed) ;
int is_linetouched (WINDOW *win, int line);

int is_wintouched (WINDOW *win) ;

DESCRIPTION

The touchwin and touchline routines throw away all optimization information
about which parts of the window have been touched, by pretending that the entire
window has been drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but the records
of which lines have been changed in the other window do not reflect the change.
The routine touchline only pretends that count lines have been changed, begin-
ning with line start.

The untouchwin routine marks all lines in the window as unchanged since the last
call to wrefresh.

The wtouchln routine makes lines in the window, starting at line y, look as if they
have (changed=1) or have not (changed=0) been changed since the last call to
wrefresh.

The is_linetouched and is_wintouched routines return TRUE if the specified
line/window was modified since the last call to wrefresh; otherwise they return
FALSE. In addition, is_linetouched returns ERR if line is not valid for the given
window.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except wtouchln may be macros.

SEE ALSO

10/92

curses(3X), curs_refresh(3X)

Page 1

curs_util (3X) curs_util (3X)

NAME

curs_util: unctrl, keyname, filter,use_env, putwin, getwin, delay_output,
flushinp - miscellaneous curses utility routines

SYNOPSIS

#include <curses.h>

char *unctrl (chtype c);

char *keyname (int c);

int filter(void);

void use_env(char bool) ;

int putwin (WINDOW *win, FILE *filep);
WINDOW *getwin(FILE *filep);

int delay_output (int ms);

int flushinp(void);

DESCRIPTION

10/92

The unctrl macro expands to a character string which is a printable representation
of the character c. Control characters are displayed in the "X notation. Printing
characters are displayed as is.

With the keyname routine, a character string corresponding to the key c is returned.

The filter routine, if used, is called before initscr or newterm are called. It
makes curses think that there is a one-line screen. curses does not use any termi-
nal capabilities that assume that they know on what line of the screen the cursor is
positioned.

The use_env routine, if used, is called before initscr or newterm are called.
When called with FALSE as an argument, the values of lines and columns
specified in the terminfo database will be used, even if environment variables LINES
and COLUMNS (used by default) are set, or if curses is running in a window (in
which case default behavior would be to use the window size if LINES and
COLUMNS are not set).

With the putwin routine, all data associated with window win is written into the
file to which filep points. This information can be later retrieved using the getwin
function.

The getwin routine reads window related data stored in the file by putwin. The
routine then creates and initializes a new window using that data. It returns a
pointer to the new window.

The delay_output routine inserts an ms millisecond pause in output. This routine
should not be used extensively because padding characters are used rather than a
CPU pause.

The flushinp routine throws away any typeahead that has been typed by the user
and has not yet been read by the program.

Page 1

curs_util (3X) curs_util (3X)

RETURN VALUE
Except for f1lushinp, routines that return an integer return ERR upon failure and an
integer value other than ERR upon successful completion.

flushinp always returns OK.
Routines that return pointers return NULL on error.

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that unctrl is a macro, which is defined in unctrl .h.

SEE ALSO
curses(3X), curs_initscr(3X), curs_scr_dump(3X)

Page 2 10/92

curs_window (3X) curs_window (3X)

NAME

curs_window: newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, syncok, weursyncup, wsyncdown - create curses windows

SYNOPSIS

#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y,
intbegin_x) ;

int delwin (WINDOW *win) ;

int mvwin (WINDOW *win, int y, int x);

WINDOW *subwin (WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

WINDOW *derwin (WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

int mvderwin (WINDOW *win, int par_y, int par_x);
WINDOW *dupwin (WINDOW *win) ;

void wsyncup (WINDOW *win) ;

int syncok (WINDOW *win, bool bf);

void wcursyncup (WINDOW *win) ;

void wsyncdown (WINDOW *win) ;

DESCRIPTION

10/92

The newwin routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The upper left-hand corner of the win-
dow is at line begin_y, column begin_x. If either nlines or ncols is zero, they default to
LINES — begin_y and COLS — begin_x. A new full-screen window is created by cal-
ling newwin (0,0,0,0).

The delwin routine deletes the named window, freeing all memory associated with
it. Subwindows must be deleted before the main window can be deleted.

The mvwin routine moves the window so that the upper left-hand corner is at posi-
tion (x, y). If the move would cause the window to be off the screen, it is an error
and the window is not moved. Moving subwindows is allowed, but should be
avoided.

The subwin routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The window is at position (begin_y,
begin_x) on the screen. (This position is relative to the screen, and not to the win-
dow orig.) The window is made in the middle of the window orig, so that changes
made to one window will affect both windows. The subwindow shares memory
with the window orig. When using this routine, it is necessary to call touchwin or
touchline on orig before calling wrefresh on the subwindow.

Page 1

curs_window (3X) curs_window (3X)

The derwin routine is the same as subwin, except that begin_y and begin_x are rela-
tive to the origin of the window orig rather than the screen. There is no difference
between the subwindows and the derived windows.

The mvderwin routine moves a derived window (or subwindow) inside its parent
window. The screen-relative parameters of the window are not changed. This rou-
tine is used to display different parts of the parent window at the same physical
position on the screen.

The dupwin routine creates an exact duplicate of the window win.

Each curses window maintains two data structures: the character image structure
and the status structure. The character image structure is shared among all win-
dows in the window hierarchy (that is, the window with all subwindows). The
status structure, which contains information about individual line changes in the
window, is private to each window. The routine wrefresh uses the status data
structure when performing screen updating. Since status structures are not shared,
changes made to one window in the hierarchy may not be properly reflected on the
screen.

The routine wsyncup causes the changes in the status structure of a window to be
reflected in the status structures of its ancestors. If syncok is called with second
argument TRUE then wsyncup is called automatically whenever there is a change in
the window.

The routine wcursyncup updates the current cursor position of all the ancestors of
the window to reflect the current cursor position of the window.

The routine wsyncdown updates the status structure of the window to reflect the
changes in the status structures of its ancestors. Applications seldom call this rou-
tine because it is called automatically by wrefresh.

RETURN VALUE

NOTES

Routines that return an integer return the integer ERR upon failure and an integer
value other than ERR upon successful completion.

delwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers return NULL on error.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

If many small changes are made to the window, the wsyncup option could degrade
performance.

Note that syncok may be a macro.

SEE ALSO

Page 2

curses(3X), curs_refresh(3X), curs_touch(3X)

10/92

curses (3X) (Terminal Information Utilities) curses (3X)

NAME

curses - CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>

DESCRIPTION

10/92

The curses library routines give the user a terminal-independent method of updat-
ing character screens with reasonable optimization. A program using these rou-
tines must be compiled with the -1curses option of cc.

The curses package allows: overall screen, window and pad manipulation; output
to windows and pads; reading terminal input; control over terminal and curses
input and output options; environment query routines; color manipulation; use of
soft label keys; terminfo access; and access to low-level curses routines.

To initialize the routines, the routine initscr or newterm must be called before
any of the other routines that deal with windows and screens are used. The routine
endwin must be called before exiting. To get character-at-a-time input without
echoing (most interactive, screen oriented programs want this), the following
sequence should be used:

initscr, cbreak, noecho;
Most programs would additionally use the sequence:

nonl, intrflush(stdscr, FALSE) , keypad (stdscr, TRUE) ;

Before a curses program is run, the tab stops of the terminal should be set and its
initialization strings, if defined, must be output. This can be done by executing the
tput init command after the shell environment variable TERM has been exported.
[See terminfo(4) for further details.]

The curses library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters representing all or part
of a CRT screen. A default window called stdscr, which is the size of the terminal
screen, is supplied. Others may be created with newwin.

Windows are referred to by variables declared as WINDOW *. These data structures
are manipulated with routines described on 3X paages (whose names begin
"curs_"). Among which the most basic routines are move and addch. More general
versions of these routines are included with names beginning with w, allowing the
user to specify a window. The routines not beginning with w affect stdscr.)

After using routines to manipulate a window, refresh is called, telling curses to
make the user’s CRT screen look like stdscr. The characters in a window are actu-
ally of type chtype, (character and attribute data) so that other information about
the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows which
are not constrained to the size of the screen and whose contents need not be com-
pletely displayed. See curs_pad(3X) for more information.

In addition to drawing characters on the screen, video attributes and colors may be
included, causing the characters to show up in such modes as underlined, in
reverse video, or in color on terminals that support such display enhancements.
Line drawing characters may be specified to be output. On input, curses is also
able to translate arrow and function keys that transmit escape sequences into single
values. The video attributes, line drawing characters, and input values use names,

Page 1

curses (3X) (Terminal Information Utilities) curses (3X)

defined in <curses.h>, such as A_REVERSE, ACS_HLINE, and KEY_LEFT.

If the environment variables LINES and COLUMNS are set, or if the program is exe-
cuting in a window environment, line and column information in the environment
will override information read by terminfo.

If the environment variable TERMINFO is defined, any program using curses checks
for a local terminal definition before checking in the standard place. For example, if
TERM is set to att4424, then the compiled terminal definition is found in
/usr/share/lib/terminfo/a/att4424.
(The a is copied from the first letter of att4424 to avoid creation of huge direc-
tories.) However, if TERMINFO is set to $HOME/myterms, curses first checks
SHOME /myterms/a/att4424,
and if that fails, it then checks
/usr/share/lib/terminfo/a/att4424.
This is useful for developing experimental definitions or when write permission in
/usr/share/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h> and will be filled
in by initscr with the size of the screen. The constants TRUE and FALSE have the
values 1 and 0, respectively.

The curses routines also define the WINDOW * variable curscr which is used for
certain low-level operations like clearing and redrawing a screen containing gar-
bage. The curscr can be used in only a few routines.

International Functions
The number of byte and the number of columns to hold a character from the sup-
plementary character set is locale-specific (locale category LC_CTYPE) and can be
specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen for-
matting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (for example, addch) operates on a screen level. Overwrit-
ing a character by a character which requires a different number of columns may
produce orphaned columns. These orphaned columns are filled with background
character.

Inserting characters (for example, insch) operates on a character level (that is, at
the character boundaries). The specified character is inserted right before the char-
acter, regardless of whichever column of a character the cursor points to. Before
insertion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (for example, delch) operates on a
character level (that is, at the character boundaries). The character at the cursor is
deleted whichever columns of the character the cursor points to. Before deletion,
the cursor position is adjusted to the first column of the character.

Multi-column character cannot be put on the last column of the lines. When such
attempts are made, the last column is set to the background character. In addition,
when such operation creates orphaned columns, such columns is also be filled with
the background character.

Page 2 10/92

curses (3X) (Terminal Information Utilities) curses (3X)

Overlapping and overwriting windows follows the operation of overwriting char-
acters around its edge. The orphaned columns, if any, is handled in the same
manner of the character operations

The cursor is allowed to be placed anywhere in a window. If the insertion or dele-
tion are made when the cursor points to the second or later column position of a
character which holds multiple columns, the cursor is adjusted to the first column
of it before the insertion or deletion.

Routine and Argument Names

Many curses routines have two or more versions. The routines prefixed with w
require a window argument. The routines prefixed with p require a pad argument.
Those without a prefix generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to before per-
forming the appropriate action. The mv routines imply a call to move before the call
to the other routine. The coordinate y always refers to the row (of the window),
and x always refers to the column. The upper left-hand corner is always (0,0), not
(1,1).

The routines prefixed with mvw take both a window argument and x and y coordi-
nates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type WINDOW.

Option setting routines require a Boolean flag bf with the value TRUE or FALSE; bf is
always of type bool. The variables ch and attrs below are always of type chtype.
The types WINDOW, SCREEN, bool, and chtype are defined in <curses.h>. The type
TERMINAL is defined in <term.h>. All other arguments are integers.

Routine Name Index

10/92

The following table lists each curses routine and the name of the manual page on
which it is described.

curses Routine Name Manual Page Name
addch curs_addch(3X)
addchnstr curs_addchstr(3X)
addchstr curs_addchstr(3X)
addnstr curs_addstr(3X)
addnwstr curs_addwstr(3X)
addstr curs_addstr(3X)
addwch curs_addwch(3X)
addwchnstr curs_addwchstr(3X)
addwchstr curs_addwchstr(3X)
addwstr curs_addwstr(3X)
attroff curs_attr(3X)
attron curs_attr(3X)
attrset curs_attr(3X)
baudrate curs_termattrs(3X)

Page 3

curses (3X)

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

beep

bkgd
bkgdset
border

box
can_change_color
cbreak
clear
clearok
clrtobot
clrtoeol
color_content
copywin
curs_set
def_prog_mode
def_shell_mode
del_curterm
delay_output
delch
deleteln
delscreen
delwin
derwin
doupdate
dupwin

echo
echochar
echowchar
endwin

erase
erasechar
filter

flash
flushinp
getbegyx
getch
getmaxyx
getnstr
getnwstr
getparyx
getstr
getsyx
getwch
getwin
getwstr

curs_beep(3X)
curs_bkgd(3X)
curs_bkgd(3X)
curs_border(3X)
curs_border(3X)
curs_color(3X)
curs_inopts(3X)
curs_clear(3X)
curs_outopts(3X)
curs_clear(3X)
curs_clear(3X)
curs_color(3X)
curs_overlay(3X)
curs_kernel(3X)
curs_kernel(3X)
curs_kernel(3X)
curs_terminfo(4)
curs_util(3X)
curs_delch(3X)
curs_deleteln(3X)
curs_initscr(3X)
curs_window(3X)
curs_window(3X)
curs_refresh(3X)
curs_window(3X)
curs_inopts(3X)
curs_addch(3X)
curs_addwch(3X)
curs_initscr(3X)
curs_clear(3X)
curs_termattrs(3X)
curs_util(3X)
curs_beep(3X)
curs_util(3X)
curs_getyx(3X)
curs_getch(3X)
curs_getyx(3X)
curs_getstr(3X)
curs_getwstr(3X)
curs_getyx(3X)
curs_getstr(3X)
curs_kernel(3X)
curs_getwch(3X)
curs_util(3X)
curs_getwstr(3X)

10/92

curses (3X)

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

getyx
halfdelay
has_colors
has_ic
has_11
idcok
idlok
immedok
inch
inchnstr
inchstr
init_color
init_pair
initscr
innstr
innwstr
insch
insdelln
insertln
insnstr
insnwstr
insstr
instr
inswch
inswstr
intrflush
inwch
inwchnstr
inwchstr
inwstr

is_linetouched
is_wintouched

isendwin
keyname
keypad
killchar
leaveok
longname
meta

move
mvaddch
nmvaddchnstr
mvaddchstr
mvaddnstr
mvaddnwstr

10/92

curs_getyx(3X)
curs_inopts(3X)
curs_color(3X)
curs_termattrs(3X)
curs_termattrs(3X)
curs_outopts(3X)
curs_outopts(3X)
curs_outopts(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_color(3X)
curs_color(3X)
curs_initscr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_deleteln(3X)
curs_deleteln(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inopts(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_touch(3X)
curs_touch(3X)
curs_initscr(3X)
curs_util(3X)
curs_inopts(3X)
curs_termattrs(3X)
curs_outopts(3X)
curs_termattrs(3X)
curs_inopts(3X)
curs_move(3X)
curs_addch(3X)
curs_addchstr(3X)
curs_addchstr(3X)
curs_addstr(3X)
curs_addwstr(3X)

Page 5

curses (3X)

Page 6

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

mvaddstr
mvaddwch
mvaddwchnstr
mvaddwchstr
mvaddwstr
mvcur
mvdelch
mvderwin
mvgetch
mvgetnstr
mvgetnwstr
mvgetstr
mvgetwch
mvgetwstr
mvinch
mvinchnstr
mvinchstr
mvinnstr
mvinnwstr
mvinsch
mvinsnstr
mvinsnwstr
mvinsstr
mvinstr
mvinswch
mvinswstr
mvinwch
mvinwchnstr
mvinwchstr
mvinwstr
mvprintw
mvscanw
mvwaddch
mvwaddchnstr
mvwaddchstr
mvwaddnstr
mvwaddnwstr
mvwaddstr
mvwaddwch
mvwaddwchnstr
mvwaddwchstr
nvwaddwstr
mvwdelch
mvwgetch
mvwgetnstr

curs_addstr(3X)
curs_addwch(3X)
curs_addwchstr(3X)
curs_addwchstr(3X)
curs_addwstr(3X)
curs_terminfo(4)
curs_delch(3X)
curs_window(3X)
curs_getch(3X)
curs_getstr(3X)
curs_getwstr(3X)
curs_getstr(3X)
curs_getwch(3X)
curs_getwstr(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_printw(3X)
curs_scanw(3X)
curs_addch(3X)
curs_addchstr(3X)
curs_addchstr(3X)
curs_addstr(3X)
curs_addwstr(3X)
curs_addstr(3X)
curs_addwch(3X)
curs_addwchstr(3X)
curs_addwchstr(3X)
curs_addwstr(3X)
curs_delch(3X)
curs_getch(3X)
curs_getstr(3X)

10/92

curses (3X)

10/92

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

mvwgetnwstr
mvwgetstr
mvwgetwch
mvwgetwstr
mvwin
mvwinch
mvwinchnstr
mvwinchstr
mvwinnstr
mvwinnwstr
mvwinsch
nmvwinsnstr
mvwinsnwstr
nmvwinsstr
mvwinstr
nmvwinswch
mvwinswstr
mvwinwch
mvwinwchnstr
mvwinwchstr
mvwinwstr
mvwprintw
mvwscanw
napms
newpad
newterm
newwin

nl

nocbreak
nodelay
noecho

nonl
nogiflush
noraw
notimeout
overlay
overwrite
pair_content
pechochar
pechowchar
pnoutrefresh
prefresh
printw
putp
putwin

curs_getwstr(3X)
curs_getstr(3X)
curs_getwch(3X)
curs_getwstr(3X)
curs_window(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_printw (3X)
curs_scanw(3X)
curs_kernel(3X)
curs_pad(3X)
curs_initscr(3X)
curs_window(3X)
curs_outopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_outopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_overlay(3X)
curs_overlay(3X)
curs_color(3X)
curs_pad(3X)
curs_pad(3X)
curs_pad(3X)
curs_pad(3X)
curs_printw(3X)
curs_terminfo(4)
curs_util(3X)

Page 7

curses (3X)

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

giflush

raw
redrawwin
refresh
reset_prog_mode
reset_shell_mode
resetty
restartterm
ripoffline
savetty
scanw
scr_dump
scr_init
scr_restore
scr_set
scroll
scrollok
set_curterm
set_term
setscrreg
setsyx
setterm
setupterm
slk_attroff
slk_attron
slk_attrset
slk _clear
slk_init
slk_label
slk_noutrefresh
slk_refresh
slk_restore
slk_set
slk_touch
srcl
standend
standout
start_color
subpad
subwin
syncok
termattrs
termname
tgetent
tgetflag

curs_inopts(3X)
curs_inopts(3X)
curs_refresh(3X)
curs_refresh(3X)
curs_kernel(3X)
curs_kernel(3X)
curs_kernel(3X)
curs_terminfo(4)
curs_kernel(3X)
curs_kernel(3X)
curs_scanw(3X)
curs_scr_dump(3X)
curs_scr_dump(3X)
curs_scr_dump(3X)
curs_scr_dump(3X)
curs_scroll(3X)
curs_outopts(3X)
curs_terminfo(4)
curs_initscr(3X)
curs_outopts(3X)
curs_kernel(3X)
curs_terminfo(4)
curs_terminfo(4)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_scroll(3X)
curs_attr(3X)
curs_attr(3X)
curs_color(3X)
curs_pad(3X)
curs_window(3X)
curs_window(3X)
curs_termattrs(3X)
curs_termattrs(3X)
curs_termcap(3X)
curs_termcap(3X)

10/92

curses (3X)

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

tgetnum
tgetstr
tgoto
tigetflag
tigetnum
tigetstr
timeout
touchline
touchwin
tparm
tputs
tputs
typeahead
unctrl
ungetch
ungetwch
untouchwin
use_env
vidattr
vidputs
vwprintw
vwscanw
waddch
waddchnstr
waddchstr
waddnstr
waddnwstr
waddstr
waddwch
waddwchnstr
waddwchstr
waddwstr
wattroff
wattron
wattrset
wbkgd
wbkgdset
wborder
wclear
wclrtobot
wclrtoeol
WCUrsyncup
wdelch
wdeleteln
wechochar

10/92

curs_termcap(3X)
curs_termcap(3X)
curs_termcap(3X)
curs_terminfo(4)
curs_terminfo(4)
curs_terminfo(4)
curs_inopts(3X)
curs_touch(3X)
curs_touch(3X)
curs_terminfo(4)
curs_termcap(3X)
curs_terminfo(4)
curs_inopts(3X)
curs_util(3X)
curs_getch(3X)
curs_getwch(3X)
curs_touch(3X)
curs_util(3X)
curs_terminfo(4)
curs_terminfo(4)
curs_printw(3X)
curs_scanw(3X)
curs_addch(3X)
curs_addchstr(3X)
curs_addchstr(3X)
curs_addstr(3X)
curs_addwstr(3X)
curs_addstr(3X)
curs_addwch(3X)
curs_addwchstr(3X)
curs_addwchstr(3X)
curs_addwstr(3X)
curs_attr(3X)
curs_attr(3X)
curs_attr(3X)
curs_bkgd(3X)
curs_bkgd(3X)
curs_border(3X)
curs_clear(3X)
curs_clear(3X)
curs_clear(3X)
curs_window(3X)
curs_delch(3X)
curs_deleteln(3X)
curs_addch(3X)

Page 9

curses (3X)

curses Routine Name

(Terminal Information Utilities)

Manual Page Name

curses (3X)

wechowchar
werase
wgetch
wgetnstr
wgetnwstr
wgetstr
wgetwch
wgetwstr
whline
winch
winchnstr
winchstr
winnstr
winnwstr
winsch
winsdelln
winsertln
winsnstr
winsnwstr
winsstr
winstr
winswch
winswstr
winwch
winwchnstr
winwchstr
winwstr
wmove

wnoutrefresh

wprintw
wredrawln
wrefresh
wscanw
wscrl
wsetscrreg
wstandend
wstandout
wsyncdown
WSyncup
wtimeout
wtouchln
wvline

RETURN VALUE

curs_addwch(3X)
curs_clear(3X)
curs_getch(3X)
curs_getstr(3X)
curs_getwstr(3X)
curs_getstr(3X)
curs_getwch(3X)
curs_getwstr(3X)
curs_border(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_deleteln(3X)
curs_deleteln(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_move(3X)
curs_refresh(3X)
curs_printw(3X)
curs_refresh(3X)
curs_refresh(3X)
curs_scanw(3X)
curs_scroll(3X)
curs_outopts(3X)
curs_attr(3X)
curs_attr(3X)
curs_window(3X)
curs_window(3X)
curs_inopts(3X)
curs_touch(3X)
curs_border(3X)

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the routine

descriptions.

Page 10

10/92

curses (3X) (Terminal Information Utilities) curses (3X)

All macros return the value of the w version, except setscrreg, wsetscrreg,
getyx, getbegyx, getmaxyx. The return values of setscrreg, wsetscrreg,
getyx, getbegyx, and getmaxyx are undefined (that is, these should not be used as
the right-hand side of assignment statements).

Routines that return pointers return NULL on error.

SEE ALSO

NOTES

10/92

terminfo(4) and 3X pages whose names begin "curs_" for detailed routine descrip-
tions.

curs_addch(3X), curs_addchstr(3X), curs_addstr(3X), curs_attr(3X), curs_beep(3X),
curs_bkgd(3X), curs_border(3X), curs_clear(3X), curs_color(3X), curs_delch(3X),
curs_deleteln(3X), curs_getch(3X), curs_getyx(3X), curs_inch(3X), curs_inchstr(3X),
curs_initscr(3X), curs_inopts(3X), curs_insch(3X), curs_insstr(3X), curs_instr(3X),
curs_kernel(3X), curs_move(3X), curs_outopts(3X), curs_overlay(3X),
curs_refresh(3X), curs_scr_dmp(3X), curs_scroll(3X), curs_slk(3X),
curs_termattr(3X), curs_termcap(3X), curs_terminfo(3X), curs_touch(3X),
curs_util(3X), curs_window(3X) in the Programmer’s Guide: Character User Interface.

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

The following internal data objects once existed in the libcurses library but have
since been removed in order to avoid namespace conflicts with valid application
defined data objects:

BC, Def_term, Mouse_status, Oldcolors, PC, SP, UP,
acs32map, bit_attributes, curs_err_strings, curs_errno,
curs_parm_err, curses_version, ospeed, outchcount,
term err_ strings, term errno, term_parm err, ttytype

These objects have been renamed by prepending an underscore to their old names.
These renamed objects refer to undocumented curses interfaces which may be
changed or removed in the future.

Page 11

cuserid (3S) (C Development Set) cuserid (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (char *s);

DESCRIPTION
cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, s is assumed to point to an array of at least L_cuserid char-
acters; the representation is left in this array. The constant L_cuserid is defined in
the stdio.h header file.

SEE ALSO
getlogin(3C), getpwent(3C)

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character “\0 " will be placed ats[0].

10/92 Page 1

dbm (3N) dbm (3N)

NAME

dbom, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey -
database subroutines

SYNOPSIS

#include <dbm.h>
typedef struct {

char *dptr;
int dsize;
} datum;

int dbminit (char *file);

int dbmclose(void) ;

datum fetch(datum key) ;

int store(datum key, datum content) ;
int delete(datum key) ;

datum firstkey (void);

datum nextkey (datum key) ;

DESCRIPTION

These functions maintain key/content pairs in a database. The functions will han-
dle very large (a billion blocks) databases and will access a keyed item in one or
two file system accesses. The functions are obtained with the loader option -1ns1.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The database is stored in two files. One file is a directory con-
taining a bit map and has .dir as its suffix. The second file contains all data and
has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file.dir and file. pag must exist. An empty database is created by
creating zero-length .dir and .pag files.

A database may be closed by calling dbmclose. You must close a database before
opening a new one.

Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. firstkey will return the first key in the
database. With any key nextkey will return the next key in the database. This
code will traverse the database:

for (key = firstkey(); key.dptr != NULL; key = nextkey (key))

RETURN VALUE

10/92

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0) dptr.

Page 1

dbm (3N) dbm (3N)

NOTES

FILES

Page 2

The .pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(1), cat(1), tar(l), ar(1)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit
on a single block. store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and nextkey depends on a hashing func-
tion, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

/usr/lib/libnsl.a

10/92

dbm (3) (BSD Compatibility Package) dbm (3)

NAME
dbm: dbminit, domclose, fetch, store, delete, firstkey, nextkey - data base
subroutines
SYNOPSIS
cc[flag...1file...-1dbm
#include <dbm.h>
typedef struct {
char *dptr;
int dsize;
} datum;
dbminit (char *file);
domclose() ;
datum fetch(datum key) ;
store(datum key, datum content) ;
delete(datum key) ;
datum firstkey();
datum nextkey (datum key) ;
DESCRIPTION
Note: the dbm library has been superceded by ndbm(3), and is now implemented
using ndbm.
These functions maintain key/content pairs in a data base. The functions will han-
dle very large (a billion blocks) databases and will access a keyed item in one or
two file system accesses. The functions are obtained with the loader option -1dbm.
keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The data base is stored in two files. One file is a directory con-
taining a bit map and has .dir as its suffix. The second file contains all data and
has .pag as its suffix.
Before a database can be accessed, it must be opened by dominit. At the time of
this call, the files file.dir and file. pag must exist. An empty database is created by
creating zero-length .dir and .pag files.
A database may be closed by calling domclose. You must close a database before
opening a new one.
Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. firstkey will return the first key in the
database. With any key nextkey will return the next key in the database. This
code will traverse the data base:
for (key = firstkey; key.dptr != NULL; key = nextkey (key))
SEE ALSO
ndbm(3)
10/92 Page 1

dbm(3) (BSD Compatibility Package) dbm(3)

RETURN VALUE

NOTES

Page 2

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0)
dptr.

The .pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(1), cat(1), tar(l), ar(1)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit
on a single block. store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and nextkey depends on a hashing func-
tion, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

10/92

decimal_to_floating (3) (BSD Compatibility Package) decimal_to_floating (3)

NAME
decimal_to_floating: decimal_to_single,decimal_to_double,
decimal_to_extended - convert decimal record to floating-point value

SYNOPSIS
/usr/ucb/cc [flag...1file...

#include <floatingpoint.h>

void decimal_to_single(px, pm, pd, ps)
single *px ;

decimal_mode *pm;

decimal_record *pd;
fp_exception_field_type *ps;

void decimal_to_double (px, pm, pd, ps)
double *px ;

decimal_mode *pm;

decimal_record *pd;
fp_exception_field_type *ps;

void decimal_to_extended (px, pm, pd, ps)
extended *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;
DESCRIPTION
The decimal_to_floating functions convert the decimal record at *pd into a
floating-point value at *px, observing the modes specified in *pm and setting excep-
tions in *ps. If there are no IEEE exceptions, *ps will be zero.

pd->sign and pd->fpclass are always taken into account. pd->exponent and pd->ds are
used when pd->fpclass is fp_normal or fp_subnormal. In these cases pd->ds must con-
tain one or more ASCII digits followed by a NULL. *px is set to a correctly rounded
approximation to

(pd->sign) * (pd->ds) *10** (pd->exponent)
Thus if pd->exponent == -2 and pd->ds == "1234", *px will get 12.34 rounded to
storage precision. pd->ds cannot have more than DECIMAL_STRING_LENGTH-1
significant digits because one character is used to terminate the string with a NULL.
If pd->more!=0 on input then additional nonzero digits follow those in pd->ds;
fp_inexact is set accordingly on output in *ps.
*px is correctly rounded according to the IEEE rounding modes in pm->rd. *ps is set
to contain fp_inexact, fp_underflow, or fp_overflow if any of these arise.
pd->ndigits , pm->df, and pm->ndigits are not used.
strtod(3C), scanf(3S), fscanf(), and sscanf() all use decimal_to_double.

SEE ALSO
scanf(3S), strtod(3C).

10/92 Page 1

dial (3C) (C Programming Language Utilities) dial (3C)

NAME

dial - establish an outgoing terminal line connection

SYNOPSIS

#include <dial.h>
int dial (CALL call);
void undial (int £d);

DESCRIPTION

10/92

dial returns a file-descriptor for a terminal line open for read /write. The argument
to dial is a CALL structure (defined in the dial .h header file).

When finished with the terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal device.

The definition of CALL in the dial.h header file is:
typedef struct {

struct termio *attr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /% 212A modem: low=300, high=1200 */

char *1ine; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string */

int modem; /% specify modem control for direct lines #*/
char *device; /* unused */

int dev_len; /* unused */

} CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be either 300 or 1200 to identify the 113A modem, or
the high- or low-speed setting on the 212A modem. Note that the 113A modem or
the low-speed setting of the 212A modem will transmit at any rate between 0 and
300 bits per second. However, the high-speed setting of the 212A modem transmits
and receives at 1200 bits per second only. The CALL element baud is for the desired
transmission baud rate. For example, one might set baud to 110 and speed to 300
(or 1200). However, if speed is set to 1200, baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should
be placed in the 1ine element in the CALL structure. Legal values for such terminal
device names are kept in the Devices file. In this case, the value of the baud ele-
ment should be set to -1. This value will cause dial to determine the correct value
from the Devices file.

The telno element is for a pointer to a character string representing the telephone
number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dial *

dial
= wait for secondary dial tone
- delay for approximately 4 seconds

Page 1

dial (3C) (C Programming Language Utilities) dial (3C)

FILES

The CALL element modem is used to specify modem control for direct lines. This ele-
ment should be non-zero if modem control is required. The CALL element attr is a
pointer to a termio structure, as defined in the termio.h header file. A NULL value
for this pointer element may be passed to the dial function, but if such a structure
is included, the elements specified in it will be set for the outgoing terminal line
before the connection is established. This setting is often important for certain attri-
butes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained in
the CALL structure for compatibility reasons.

/etc/uucp/Devices
/etc/uucp/Systems
/var/spool /uucp/LCK. . tty-device

SEE ALSO

alarm(2), read(2), write(2).
termio(7) in the System Administrator’s Reference Manual .
uucp(1C) in the User’s Reference Manual.

DIAGNOSTICS

NOTES

Page 2

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the dial.h
header file.

INTRPT -1 /* interrupt occurred */

D_HUNG -2 /#* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds #*/
ILL_BD -4 /* illegal baud-rate */

A _PROB -5 /% acu problem (open() failure) */
I,_PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /% can’'t open Devices file */

DV_NT_A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at requested baud */
NO_BD_K -11 /* no device known at requested baud */
DV_NT_E -12 /* requested speed does not match */
BAD_SYS -13 /* system not in Systems file*/

Including the dial.h header file automatically includes the termio.h header file.

An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of ““touching” the LCK. . file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uucp(1C) may simply
delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call, causing an apparent
error return. If the user program expects to be around for an hour or more, error
returns from reads should be checked for (errno==EINTR), and the read possibly
reissued.

10/92

difftime (3C) (C Development Set) difftime (3C)

NAME
difftime - computes the difference between two calendar times

SYNOPSIS
#include <time.h>
double difftime (time_t timel, time_t time0);

DESCRIPTION
difftime computes the difference between two calendar times. f4difftime
returns the difference (timel-time0) expressed in seconds as a double. This
function is provided because there are no general arithmetic properties defined for
type time_t.

SEE ALSO
ctime(3C)

10/92 Page 1

directory (3) (BSD Compatibility Package) directory (3)

NAME

opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS

#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir (filename)
char *filename;

struct direct *readdir (dirp)
DIR *dirp;

long telldir(dirp)

DIR *dirp;

seekdir (dirp, loc)

DIR *dirp;

long loc;

rewinddir (dirp)

DIR *dirp;

closedir (dirp)
DIR *dirp;

DESCRIPTION

10/92

opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The pointer NULL is returned if filename cannot be accessed,
or if it cannot allocate enough memory with malloc to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reach-
ing the end of the directory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the one associated with the directory stream when the
telldir operation was performed. Values returned by telldir are good only for
the lifetime of the DIR pointer from which they are derived. If the directory is
closed and then reopened, the telldir value may be invalidated due to
undetected directory compaction. It is safe to use a previous telldir value
immediately after a call to opendir and before any calls to readdir.

rewinddir resets the position of the named directory stream to the beginning of
the directory.

closedir closes the named directory stream and frees the structure associated with
the DIR pointer.

Page 1

directory (3)

(BSD Compatibility Package) directory (3)

Sample code which searchs a directory for the entry name is:

SEE ALSO

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))
if (dp->d_namlen == len && !strcmp (dp->d_name, name)) {
closedir (dirp) ;
return FOUND;
}
closedir (dirp) ;
return NOT_FOUND;

open(2), close(2), read(2), Iseek(2),

Page 2

10/92

directory (3C) directory (3C)

NAME

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - direc-
tory operations

SYNOPSIS

#include <dirent.h>

DIR *opendir (const char *filename) ;
struct dirent *readdir (DIR *dirp);
long telldir (DIR *dirp);

void seekdir (DIR *dirp, long loc);
void rewinddir (DIR *dirp);

int closedir (DIR *dirp);

DESCRIPTION

10/92

opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. The
NULL pointer is returned if filename cannot be accessed or is not a directory, or if it
cannot malloc(3C) enough memory to hold a DIR structure or a buffer for the
directory entries.

readdir returns a pointer to the next active directory entry and positions the direc-
tory stream at the next entry. No inactive entries are returned. It returns NULL
upon reaching the end of the directory or upon detecting an invalid location in the
directory. readdir buffers several directory entries per actual read operation;
readdir marks for update the st_atime field of the directory each time the direc-
tory is actually read.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the position associated with directory stream at the
time the telldir operation that provides loc was performed. Values returned by
telldir are valid only if the directory has not changed because of compaction or
expansion. This situation is not a problem with System V, but it may be a problem
with some file system types.

rewinddir resets the position of the named directory stream to the beginning of
the directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to opendir would.

closedir closes the named directory stream and frees the DIR structure.
The following errors can occur as a result of these operations.
opendir returns NULL on failure and sets errno to one of the following values:

ENOTDIR A component of filename is not a directory.
EACCES A component of filename denies search permission.
EACCES Read permission is denied on the specified directory.

Page 1

directory (3C) directory (3C)

EMFILE The maximum number of file descriptors are currently open.

ENFILE The system file table is full.

EFAULT filename points outside the allocated address space.

ELOOP Too many symbolic links were encountered in translating
filename.

ENAMETOOLONG The length of the filename argument exceeds { PATH_MAX}, or

the length of a filename component exceeds {NAME_MAX}
while (_POSIX_NO_TRUNC) is in effect.

ENOENT A component of filename does not exist or is a null pathname.

readdir returns NULL on failure and sets errno to one of the following values:

ENOENT The current file pointer for the directory is not located at a
valid entry.

EBADF The file descriptor determined by the DIR stream is no longer

valid. This result occurs if the DIR stream has been closed.

telldir, seekdir,and closedir return -1 on failure and set errno to the follow-

ing value:
EBADF The file descriptor determined by the DIR stream is no longer
valid. This results if the DIR stream has been closed.
EXAMPLE
Here is a sample program that prints the names of all the files in the current direc-
tory:

#include <stdio.h>
#include <dirent.h>

main()
{
DIR *dirp;
struct dirent *direntp;

dirp = opendir(".");

while ((direntp = readdir(dirp)) != NULL)
(void)printf("%s\n", direntp->d_name);

closedir(dirp);

return (0);

SEE ALSO
getdents(2), dirent(4)

NOTES
rewinddir is implemented as a macro, so its function address cannot be taken.

Page 2 10/92

dirname (3G) dirname (3G)

NANE dirname - report the parent directory name of a file path name
SYNOPSIS

cc[flag ...]1file ... -1gen [library ...]

#include <libgen.h>

char *dirname (char #*path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a file system
path name, dirname returns a pointer to a static constant string that is the parent
directory of that file. In doing this, it sometimes places a null byte in the path name
after the next to last element, so the content of path must be disposable. Trailing
"“/" characters in the path are not counted as part of the path.

If path or *path is zero, a pointer to a static constant *“.”” is returned.

dirname and basename together yield a complete path name. dirname (path) is
the directory where basename (path) is found.

EXAMPLES
A simple file name and the strings ““.”” and ““..”" all have “.”" as their return value.
Input string Output pointer
/usr/lib /usr
/usr/ /
usr .
/ /

The following code reads a path name, changes directory to the appropriate direc-
tory [see chdir(2)], and opens the file.

char path{100], =*pathcopy;
int fd;
gets (path);
pathcopy = strdup (path);
chdir (dirname (pathcopy));
fd = open (basename (path), O_RDONLY) ;
SEE ALSO
basename(1), chdir(2), basename(3G).

10/92 Page 1

div(3C) (C Development Set) div(3C)

NAME

div, 1div - compute the quotient and remainder

SYNOPSIS

#include <stdlib.h>
div_t div (int numer, int denom);

ldiv_t 1div (long int numer, long int denom) ;

DESCRIPTION

10/92

div computes the quotient and remainder of the division of the numerator numer
by the denominator denom. This function provides a well-defined semantics for the
signed integral division and remainder operations, unlike the implementation-
defined semantics of the built-in operations. The sign of the resulting quotient is
that of the algebraic quotient, and, if the division is inexact, the magnitude of the
resulting quotient is the largest integer less than the magnitude of the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise,
quotient * denom + remainder will equal numer.

div returns a structure of type div_t, comprising both the quotient and remainder:
typedef struct div_t {
int quot; /*quotient*/

int rem; /*remainder*/
} div_t;

1div is similar to div, except that the arguments and the members of the returned
structure (which has type 1div_t) all have type long int.

Page 1

diclose (3X) (C Development Set) diclose (3X)

NAME

dlclose - close a shared object

SYNOPSIS

cc|flag .. 1file ... -141 [library ...]
#include <dlfcn.h>

int dlclose(void *handle);

DESCRIPTION

dlclose disassociates a shared object previously opened by dlopen from the
current process. Once an object has been closed using d1lclose, its symbols are no
longer available to d1sym. All objects loaded automatically as a result of invoking
dlopen on the referenced object [see dlopen(3X)] are also closed. handle is the
value returned by a previous invocation of dlopen.

This routine is available in a library that is loaded if the option -1dl is used with
cc or 1d. The -1d1 library (and the routines it contains) may not be used when a
program is to be statically linked.

SEE ALSO

dlerror(3X), dlopen(3X), dlsym(3X)

DIAGNOSTICS

NOTES

10/92

If the referenced object was successfully closed, dlclose returns 0. If the object
could not be closed, or if handle does not refer to an open object, dlclose returns a
non-0 value. More detailed diagnostic information is available through dlerror.

A successful invocation of dlclose does not guarantee that the objects associated
with handle have actually been removed from the address space of the process.
Objects loaded by one invocation of dlopen may also be loaded by another invoca-
tion of dlopen. The same object may also be opened multiple times. An object is
not removed from the address space until all references to that object through an
explicit dlopen invocation have been closed and all other objects implicitly
referencing that object have also been closed.

Once an object has been closed by dlclose, referencing symbols contained in that
object can cause undefined behavior.

Page 1

dlerror (3X) (C Development Set) dlerror (3X)

NAME

dlerror - get diagnostic information

SYNOPSIS

cclflag ...1file ... -141 [library ...]
#include <dlfen.h>

char *dlerror (void) ;

DESCRIPTION

dlerror returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror,
dlerror returns NULL. Thus, invoking dlerror a second time, immediately fol-
lowing a prior invocation, results in NULL being returned.

This routine is available in a library that is loaded if the option -1d1 is used with
cc or 1d. The -1d1 library (and the routines it contains) may not be used when a
program is to be statically linked.

SEE ALSO

NOTES

10/92

dlclose(3X), dlopen(3X), dlsym(3X)

The messages returned by dlerror may reside in a static buffer that is overwritten
on each call to dlerror. Application code should not write to this buffer. Pro-
grams wishing to preserve an error message should make their own copies of that
message.

Page 1

dlopen (3X) (C Programming Language Utilities) dlopen (3X)

NAME

dlopen - open a shared object

SYNOPSIS

cc [flag .. 1file ... -1a1 [library ...]
#include <dlfcn.h>

void *dlopen(char *pathname, int mode) ;

DESCRIPTION

dlopen is one of a family of routines that give the user direct access to the dynamic
linking facilities. These routines are available in a library that is loaded if the
option -1d1 is used with cc or 1d. The -1d1 library (and the routines it contains)
may not be used when a program is to be statically linked.

dlopen makes a shared object available to a running process. dlopen returns to
the process a handle the process may use on subsequent calls to dlsym and
dlclose. This value should not be interpreted in any way by the process. path-
name is the path name of the object to be opened; it may be an absolute path or rela-
tive to the current directory. If the value of pathname is 0, dlopen makes the sym-
bols contained in the original a.out, and all of the objects that were loaded at pro-
gram startup with the a.out, available through d1sym.

When a shared object is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is loaded.
These references must be relocated before the symbols can be accessed. The mode
parameter governs when these relocations take place and may have the following
values:

RTLD_LAZY
Under this mode, only references to data symbols are relocated when the
object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode should result in better per-
formance, since a process may not reference all of the functions in any given
shared object.

RTLD_NOW
Under this mode, all necessary relocations are performed when the object is
first loaded. This may result in some wasted effort, if relocations are per-
formed for functions that are never referenced, but is useful for applications
that need to know as soon as an object is loaded that all symbols referenced
during execution will be available.

DIAGNOSTICS

NOTES

10/92

If pathname cannot be found, cannot be opened for reading, is not a shared object, or
if an error occurs during the process of loading pathname or relocating its symbolic
references, dlopen returns NULL. More detailed diagnostic information is available
through dlerror.

If other shared objects were link edited with pathname when pathname was built,
those objects are automatically loaded by dlopen. The directory search path to be
used to find both pathname and the other needed objects may be specified by setting
the environment variable LD_LIBRARY_PATH. This environment variable should
contain a colon-separated list of directories, in the same format as the PATH variable

Page 1

dlopen (3X) (C Programming Language Utilities) dlopen (3X)

[see sh(1)]. LD_LIBRARY_PATH is ignored if the process is running setuid or set-
gid [see exec(2)] or if the name specified is not a simple file name (that is, contains
a / character). Objects whose names resolve to the same absolute or relative path
name may be opened any number of times using d1open, however, the object refer-
enced is loaded only once into the address space of the current process. The same
object referenced by two different path names, however, may be loaded multiple
times. For example, given the object /usr/home/me/mylibs/mylib.so, and
assuming the current working directory is /usr/home/me/workdir,

void *handlel;
void *handle2;

handlel = dlopen("../mylibs/mylib.so", RTLD_LAZY) ;
handle2 = dlopen("/usr/home/me/mylibs/mylib.so", RTLD_LAZY) ;

results in mylibs.so being loaded twice for the current process. On the other
hand, given the same object and current working directory, if
LD_LIBRARY_PATH=/usr/home/me/mylibs, then

void *handlel;
void *handle2;

handlel
handle2

dlopen("mylib.so", RTLD_LAZY) ;
dlopen (" /usr/home/me/mylibs/mylib.so", RTLD_LAZY) ;

results in my1ibs. so being loaded only once.

Objects loaded by a single invocation of dlopen may import symbols from one
another or from any object loaded automatically during program startup, but
objects loaded by one dlopen invocation may not directly reference symbols from
objects loaded by a different dlopen invocation. Those symbols may, however, be
referenced indirectly using d1sym.

Users who wish to gain access to the symbol table of the a.out itself using
dlsym (0, mode) should be aware that some symbols defined in the a.out may not
be available to the dynamic linker. The symbol table created by 1d for use by the
dynamic linker might contain only a subset of the symbols defined in the a.out:
specifically those referenced by the shared objects with which the a. out is linked.

Any symbols in the executable that may be referenced from a shared object
accessed via dlopen must also be referenced in a shared library that is linked in at
link time.

SEE ALSO

Page 2

cc(l), 1d(1), sh(1), exec(2), dlclose(3X), dlerror(3X), dlsym(3X).

10/92

disym (3X) (C Programming Language Utilities) disym (3X)

NAME
dlsym - get the address of a symbol in shared object

SYNOPSIS
cc [flag ..1file ... -141 [library ...]

#include <dlfcn.h>
void *dlsym(void *handle, char *name);

DESCRIPTION
dlsym allows a process to obtain the address of a symbol defined within a shared
object previously opened by dlopen. handle is a value returned by a call to dlopen;
the corresponding shared object must not have been closed using dlclose. name is
the symbol’s name as a character string. dlsym searches for the named symbol in
all shared objects loaded automatically as a result of loading the object referenced
by handle [see dlopen(3X)].

This routine is available in a library that is loaded if the option -1d1 is used with
cc or 1d. The -1d1 library (and the routines it contains) may not be used when a
program is to be statically linked.
EXAMPLES

The following example shows how one can use dlopen and dlsym to access either
function or data objects. For simplicity, error checking has been omitted.

void *handle;

int i, *iptr;

int (*fptr) (int);

/* open the needed object */
handle = dlopen("/usr/mydir/libx.so", RTLD_LAZY) ;

/* find address of function and data objects */
fptr = (int (*) (int))dlsym(handle, "some_function");

iptr = (int *)dlsym(handle, "int_object");

/* invoke function, passing value of integer as a parameter */

i = (*fptr) (*iptr);
SEE ALSO
dlclose(3X), dlerror(3X), dlopen(3X)
DIAGNOSTICS

If handle does not refer to a valid object opened by dlopen, or if the named symbol
cannot be found within any of the objects associated with handle, dlsym returns
NULL. More detailed diagnostic information is available through dlerror.

10/92 Page 1

doconfig (3N) (Networking Support Utilities) doconfig (3N)

NAME

doconfig - execute a configuration script

SYNOPSIS

include <sac.h>

int doconfig(int fd, char *script, long rflag);

DESCRIPTION

10/92

doconfig is a Service Access Facility library function that interprets the
configuration scripts contained in the files /etc/saf/pmtag/_config,
/etc/saf/_sysconfig, and /etc/saf/pmtag/svctag.

script is the name of the configuration script; fd is a file descriptor that designates
the stream to which stream manipulation operations are to be applied; rflag is a bit-
mask that indicates the mode in which script is to be interpreted. rflag may take
two values, NORUN and NOASSIGN, which may be or'd. If flag is zero, all commands
in the configuration script are eligible to be interpreted. If rflag has the NOASSIGN
bit set, the assign command is considered illegal and will generate an error return.
If 7flag has the NORUN bit set, the run and runwait commands are considered illegal
and will generate error returns.

The configuration language in which script is written consists of a sequence of
commands, each of which is interpreted separately. The following reserved key-
words are defined: assign, push, pop, runwait, and run. The comment character
is #; when a # occurs on a line, everything from that point to the end of the line is
ignored. Blank lines are not significant. No line in a command script may exceed
1024 characters.

assign variable=value

Used to define environment variables. variable is the name of the environ-
ment variable and value is the value to be assigned to it. The value
assigned must be a string constant; no form of parameter substitution is
available. value may be quoted. The quoting rules are those used by the
shell for defining environment variables. assign will fail if space cannot
be allocated for the new variable or if any part of the specification is
invalid.

push modulel[, module2, module3, . . .]
Used to push STREAMS modules onto the stream designated by fd.
modulel is the name of the first module to be pushed, module2 is the name
of the second module to be pushed, etc. The command will fail if any of
the named modules cannot be pushed. If a module cannot be pushed, the
subsequent modules on the same command line will be ignored and
modules that have already been pushed will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If
an argument is given, modules will be popped one at a time until the
named module is at the top of the stream. If the named module is not on
the designated stream, the stream is left as it was and the command fails.
If module is the special keyword ALL, then all modules on the

Page 1

doconfig (3N) (Networking Support Utilities) doconfig (3N)

stream will be popped. Note that only modules above the topmost driver
are affected.

runwait command
The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is run
with /usr/bin/sh -c prepended to it; shell scripts may thus be executed
from configuration scripts. The runwait command will fail if command
cannot be found or cannot be executed, or if command exits with a non-
zero status.

run command
The run command is identical to runwait except that it does not wait for
command to complete. command is the pathname of the command to be
run. run will not fail unless it is unable to create a child process to execute
the command.

Although they are syntactically indistinguishable, some of the commands available
to run and runwait are interpreter built-in commands. Interpreter built-ins are
used when it is necessary to alter the state of a process within the context of that
process. The doconfig interpreter built-in commands are similar to the shell spe-
cial commands and, like these, they do not spawn another process for execution.
See sh(1). The initial set of built-in commands is:

cd
ulimit
umask

DIAGNOSTICS

doconfig returns O if the script was interpreted successfully. If a command in the
script fails, the interpretation of the script ceases at that point and a positive
number is returned; this number indicates which line in the script failed. If a sys-
tem error occurs, a value of -1 is returned. When a script fails, the process whose
environment was being established should not be started.

SEE ALSO

Page 2

pmadm(1M), sacadm(1M), sh(1).

10/92

drand48(3C) (C Development Set) drand48(3C)

NAME

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed4s,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS

#include <stdlib.h>

double drand48 (void);

double erand48 (unsigned short xsubi([3]);
long lrand48 (void);
long nrand48 (unsigned short xsubi[3]);

long jrand48

(
(

long mrand48 (void);
(unsigned short xsubi[3]);
(

void srand48 (long seedval);
unsigned short *seed48 (unsigned short seedlé6v[3]);

void lcong48 (unsigned short param([7]);

DESCRIPTION

10/92

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-
point values uniformly distributed over the interval $[0.0,71.0).$

Functions 1rand48 and nrand48 return non-negative long integers uniformly dis-
tributed over the interval $[0,2 sup 31).$

Functions mrand48 and jrand48 return signed long integers uniformly distributed
over the interval $[-2 sup 31,72 sup 31).$

Functions srand48, seed48, and lcong48 are initialization entry points, one of
which should be invoked before either drand48, 1rand48, or mrand48 is called.
(Although it is not recommended practice, constant default initializer values will be
supplied automatically if drand48, 1rand48, or mrand48 is called without a prior
call to an initialization entry point.) Functions erand48, nrand48, and jrand48 do
not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, $X sub i ,$
according to the linear congruential formula

Xy = (IZX,, + C)mod m n20.

The parameter $m"="2 sup 48%; hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value a and the addend value c are
given by

a = 5DEECE66D 44 = 2736731631554

c=B 16 = 13 8-
The value returned by any of the functions drand48, erand48, 1rand48, nrand4s,
mrand48, or jrand48 is computed by first generating the next 48-bit $X sub i$ in
the sequence. Then the appropriate number of bits, according to the type of

Page 1

drand48(3C) (C Development Set) drand48(3C)

data item to be returned, are copied from the high-order (leftmost) bits of $X sub i$
and transformed into the returned value.

The functions drand48, 1rand48, and mrand48 store the last 48-bit $X sub i$ gen-
erated in an internal buffer. $X sub i$ must be initialized prior to being invoked.
The functions erand48, nrand48, and jrand48 require the calling program to pro-
vide storage for the successive $X sub i$ values in the array specified as an argu-
ment when the functions are invoked. These routines do not have to be initialized;
the calling program must place the desired initial value of $X sub i$ into the array
and pass it as an argument. By using different arguments, functions erand4s,
nrand48, and jrand48 allow separate modules of a large program to generate
several independent streams of pseudo-random numbers, that is, the sequence of
numbers in each stream will not depend upon how many times the routines have
been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of $X sub i$ to the 32
bits contained in its argument. The low-order 16 bits of $X sub i$ are set to the arbi-
trary value $roman 330E sub 16 .$

The initializer function seed48 sets the value of $X sub i$ to the 48-bit value
specified in the argument array. In addition, the previous value of $X sub i$ is
copied into a 48-bit internal buffer, used only by seed48, and a pointer to this
buffer is the value returned by seed48. This returned pointer, which can just be
ignored if not needed, is useful if a program is to be restarted from a given point at
some future time — use the pointer to get at and store the last $X sub i$ value, and
then use this value to reinitialize via seed48 when the program is restarted.

The initialization function 1cong48 allows the user to specify the initial $X sub i ,$
the multiplier value $a,$ and the addend value $c.$ Argument array elements
param[0-2] specify $X sub i ,$ param[3-5] specify the multiplier $a,$ and param[6]
specifies the 16-bit addend $c.$ After 1cong48 has been called, a subsequent call to
either srand48 or seed48 will restore the “standard” multiplier and addend
values, a and $c,$ specified on the previous page.

SEE ALSO

Page 2

rand(3C)

10/92

dup(2) dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fentl, pipe, or ioctl
system call. dup returns a new file descriptor having the following in common with
the original:

Same open file (or pipe).
Same file pointer (that is, both file descriptors share one file pointer).
Same access mode (read, write or read /write).

The new file descriptor is set to remain open across exec system calls [see
fent1(2)].

The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.
EINTR A signal was caught during the dup system call.
EMFILE The process has too many open files [see get r1imit(2)].
ENOLINK fildes is on a remote machine and the link to that machine is no
longer active.
SEE ALSO
close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), dup2(3C),
lockf(3C)
DIAGNOSTICS

Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

10/92 Page 1

dup2(3C) dup2(3C)

NAME

dup?2 - duplicate an open file descriptor

SYNOPSIS

#include <unistd.h>
int dup2 (int fildes, int fildes2);

DESCRIPTION

fildes is a file descriptor referring to an open file, and fildes2 is a non-negative integer
less than {OPEN_MAX} (the maximum number of open files). dup2 causes fildes2 to
refer to the same file as fildes. If fildes2 already referred to an open file, not fildes, it is
closed first. If fildes2 refers to fildes, or if fildes is not a valid open file descriptor,
fildes2 will not be closed first.

dup2 will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.
EBADF fildes2 is negative or greater than or equal to {OPEN_MAX}.
EINTR a signal was caught during the dup2 call.
EMFILE {OPEN_MAX} file descriptors are currently open.
SEE ALSO

creat(2), close(2), exec(2), fcnt1(2), open(2), pipe(2), lockf(3C), 1imits(4)

DIAGNOSTICS

10/92

Upon successful completion a non-negative integer, namely, the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

econvert(3) (BSD Compatibility Package) econvert(3)

NAME

econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert - output
conversion

SYNOPSIS

/usr/ucb/cc [flag...]file. ..
#include <floatingpoint.h>

char *econvert (value, ndigit, decpt, sign, buf)
double value;

int ndigit, *decpt, *sign;

char *buf;

char *fconvert (value, ndigit, decpt, sign, buf)
double value;

int ndigit, *decpt, *sign;

char *buf;

char *gconvert (value, ndigit, trailing, buf)
double value;

int ndigit;

int trailing;

char *buf;

char *seconvert (value, ndigit, decpt, sign, buf)
single *value;

int ndigit, *decpt, *sign;

char *buf;

char *sfconvert (value, ndigit, decpt, sign, buf)
single *value;

int ndigit, *decpt, *sign;

char *buf;

char *sgconvert (value, ndigit, trailing, buf)
single *value;

int ndigit;

int trailing;

char *buf;

DESCRIPTION

10/92

econvert converts the value to a NULL-terminated string of ndigit ASCII digits in buf
and returns a pointer to buf. buf should contain at least ndigit+1 characters. The
position of the decimal point relative to the beginning of the string is stored
indirectly through decpt. Thus buf == "314" and *decpt == 1 corresponds to the
numerical value 3.14, while buf == "314" and *decpt == -1 corresponds to the numeri-
cal value .0314. If the sign of the result is negative, the word pointed to by sign is
nonzero; otherwise it is zero. The least significant digit is rounded.

fconvert works much like econvert, except that the correct digit has been
rounded as if for sprintf ($w.nf) output with n=ndigit digits to the right of the
decimal point. ndigit can be negative to indicate rounding to the left of the decimal
point. The return value is a pointer to buf. buf should contain at least
310+max(0,ndigit) characters to accommodate any double-precision value.

Page 1

econvert(3) (BSD Compatibility Package) econvert(3)

gconvert converts the value to a NULL-terminated ASCII string in buf and returns a
pointer to buf. It produces ndigit significant digits in fixed-decimal format, like
sprintf (w.nf), if possible, and otherwise in floating-decimal format, like
sprintf (3w.ne); in either case buf is ready for printing, with sign and exponent.
The result corresponds to that obtained by

(void) sprintf (buf, ’‘%w.ng’’,value) ;

If trailing = 0, trailing zeros and a trailing point are suppressed, as in sprintf (%g).
If trailing != 0, trailing zeros and a trailing point are retained, as in sprintf ($#g).

seconvert, sfconvert, and sgconvert are single-precision versions of these func-
tions, and are more efficient than the corresponding double-precision versions. A
pointer rather than the value itself is passed to avoid C’s usual conversion of
single-precision arguments to double.

IEEE Infinities and NaNs are treated similarly by these functions. “NaN" is
returned for NaN, and “Inf” or ““Infinity”” for Infinity. The longer form is produced
when ndigit > 8.

SEE ALSO

Page 2

sprint £(3S).

10/92

ecvt(3C) (C Development Set) ecvt(3C)

NAME

ecvt, fevt, gevt - convert floating-point number to string

SYNOPSIS

#include <stdlib.h>
char *ecvt (double value, int ndigit, int *decpt, int *sign);
char *fcvt (double value, int ndigit, int *decpt, int *sign);

char *gcvt (double value, int ndigit, char #*buf);

DESCRIPTION

ecvt converts value to a null-terminated string of ndigit digits and returns a pointer
thereto. The high-order digit is non-zero, unless the value is zero. The low-order
digit is rounded. The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero.

fevt is identical to ecvt, except that the correct digit has been rounded for print £
$f output of the number of digits specified by ndigit .

gevt converts the value to a null-terminated string in the array pointed to by buf
and returns buf. It attempts to produce ndigit significant digits in £ format if pos-
sible, otherwise %e format (scientific notation), ready for printing. A minus sign, if
there is one, or a decimal point will be included as part of the returned string. Trail-
ing zeros are suppressed.

SEE ALSO

NOTES

10/92

print£(3S)

The values returned by ecvt and fcvt point to a single static data array whose
content is overwritten by each call.

Page 1

elf (3E) (ELF Library) elf (3E)

NAME

elf - object file access library

SYNOPSIS

cc [flag .. 1file ... -1elf [library ...]
#include <libelf.h>

DESCRIPTION

Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header file
provides type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF
descriptor. That is, when the program starts working with a file, e1£_begin creates
an ELF descriptor through which the program manipulates the structures and infor-
mation in the file. These ELF descriptors can be used both to read and to write files.
After the program establishes an ELF descriptor for a file, it may then obtain section
descriptors to manipulate the sections of the file [see elf getscn(3E)]. Sections
hold the bulk of an object file’s real information, such as text, data, the symbol table,
and so on. A section descriptor “‘belongs’” to a particular ELF descriptor, just as a
section belongs to a file. Finally, data descriptors are available through section
descriptors, allowing the program to manipulate the information associated with a
section. A data descriptor “belongs’ to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data
descriptor is associated with one section descriptor, which is associated with one
ELF descriptor, which is associated with one file. Although descriptors are private,
they give access to data that may be shared. Consider programs that combine input
files, using incoming data to create or update another file. Such a program might
get data descriptors for an input and an output section. It then could update the
output descriptor to reuse the input descriptor’s data. That is, the descriptors are
distinct, but they could share the associated data bytes. This sharing avoids the
space overhead for duplicate buffers and the performance overhead for copying
data unnecessarily.

FILE CLASSES

10/92

ELF provides a framework in which to define a family of object files, supporting
multiple processors and architectures. An important distinction among object files
is the class, or capacity, of the file. The 32-bit class supports architectures in which a
32-bit object can represent addresses, file sizes, etc., as in the following.

Name Purpose
E1£32_Addr Unsigned address
E1£32_Half Unsigned medium integer
E1£32_Off Unsigned file offset
E1£32_Sword Signed large integer
E1£32_Word Unsigned large integer
unsigned char | Unsigned small integer

Other classes will be defined as necessary, to support larger (or smaller) machines.
Some library services deal only with data objects for a specific class, while others
are class-independent. To make this distinction clear, library function names reflect
their status, as described below.

Page 1

elf (3E) (ELF Library) elf (3E)

DATA REPRESENTATIONS

Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied by
the header files work on the native machine, which may have different data encod-
ings (size, byte order, etc.) than the target machine. Although native memory
objects should be at least as big as the file objects (to avoid information loss), they
may be bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations.
Some library routines convert data automatically, while others leave conversion as
the program’s responsibility. Either way, programs that create object files must
write file-typed objects to those files; programs that read object files must take a
similar view. See elf_xlate(3E) and el f_fsize(3E) for more information.

Programs may translate data explicitly, taking full control over the object file layout
and semantics. If the program prefers not to have and exercise complete control,
the library provides a higher-level interface that hides many object file details.
elf_begin and related functions let a program deal with the native memory types,
converting between memory objects and their file equivalents automatically when
reading or writing an object file.

ELF VERSIONS

Object file versions allow ELF to adapt to new requirements. Three—
independent—versions can be important to a program. First, an application pro-
gram knows about a particular version by virtue of being compiled with certain
header files. Second, the access library similarly is compiled with header files that
control what versions it understands. Third, an ELF object file holds a value identi-
fying its version, determined by the ELF version known by the files creator. Ideally,
all three versions would be the same, but they may differ.

If a program’s version is newer than the access library, the program might
use information unknown to the library. Translation routines might not
work properly, leading to undefined behavior. This condition merits ins-
talling a new library.

The library’s version might be newer than the program’s and the file’s. The
library understands old versions, thus avoiding compatibility problems in
this case.

Finally, a file’s version might be newer than either the program or the
library understands. The program might or might not be able to process
the file properly, depending on whether the file has extra information and
whether that information can be safely ignored. Again, the safe alterna-
tive is to install a new library that understands the file’s version.

To accommodate these differences, a program must use elf_version to pass its
version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper
representations. When the library reads object files, it uses each file’s version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program’s working version for the file data.

Page 2 10/92

elf(3E) (ELF Library) elf(3E)

SYSTEM SERVICES

As mentioned above, e1f_begin and related routines provide a higher-level inter-
face to ELF files, performing input and output on behalf of the application program.
These routines assume a program can hold entire files in memory, without expli-
citly using temporary files. When reading a file, the library routines bring the data
into memory and perform subsequent operations on the memory copy. Programs
that wish to read or write large object files with this model must execute on a
machine with a large process virtual address space. If the underlying operating
system limits the number of open files, a program can use elf_cnt1 to retrieve all
necessary data from the file, allowing the program to close the file descriptor and
reuse it.

Although the elf_begin interfaces are convenient and efficient for many pro-
grams, they might be inappropriate for some. In those cases, an application may
invoke the elf_xlate data translation routines directly. These routines perform
no input or output, leaving that as the application’s responsibility. By assuming a
larger share of the job, an application controls its input and output model.

LIBRARY NAMES

10/92

Names associated with the library take several forms.

elf_name These class-independent names perform some service, name, for
the program.

el £32_name Service names with an embedded class, 32 here, indicate they
work only for the designated class of files.

ELf_Type Data types can be class-independent as well, distinguished by
Type.

E1£32_Type Class-dependent data types have an embedded class name, 32
here.

ELF_C_CMD Several functions take commands that control their actions.

These values are members of the E1f_Cmd enumeration; they
range from zero through ELF_C_NUM-1.

ELF_F_FLAG Several functions take flags that control library status and/or
actions. Flags are bits that may be combined.

ELF32_FSz _TYPE
These constants give the file sizes in bytes of the basic ELF types
for the 32-bit class of files. See e1f_fsize for more information.

ELF_K_KIND The function elf_kind identifies the KIND of file associated
with an ELF descriptor. These values are members of the
El1f_Kind enumeration; they range from zero through
ELF_K_NUM-1.

ELF_T_TYPE When a service function, such as e1f_xlate, deals with multiple
types, names of this form specify the desired TYPE. Thus, for
example, ELF_T_EHDR is directly related to E1£32_Ehdr. These
values are members of the E1f_Type enumeration; they range
from zero through ELF_T_NUM-1.

Page 3

elf (3E) (ELF Library) elf (3E)

SEE ALSO

NOTES

Page 4

cof2elf(l), elf_begin(3E), elf_cntl(3E), elf_end(3E), elf_error(3E),
elf_fi11(3E), elf_flag(3E), elf_fsize(3E), elf_getarhdr(3E),
elf_getarsym(3E), elf_getbase(3E), elf_getdata(3E), elf_getehdr(3E),
elf_getident(3E), elf_getphdr(3E), elf_getscn(3E), elf_getshdr(3E),
elf_hash(3E), elf_kind(3E), elf_next(3E), elf_rand(3E), elf_rawfile(3E),
elf_strptr(BE), elf_update(3E), elf_version(3E), elf_xlate(3E), a.out(4),
ar(4).

Information in the ELF header files is separated into common parts and processor-
specific parts. A program can make a processor’s information available by includ-
ing the appropriate header file: sys/elf_NAME.h where NAME matches the pro-
cessor name as used in the ELF file header.

Symbol Processor
M32 I AT&T WE 32100
SPARC | SPARC

386 " Intel 80386

68K Motorola 68000
88K Motorola 88000

Other processors will be added to the table as necessary. To illustrate, a program
could use the following code to “’see’’ the processor-specific information for the
88K 32100.

#include <libelf.h>
#include <sys/elf_88K.h>

Without the sys/elf_88K.h definition, only the common ELF information would
be visible.

10/92

elf_begin (3E)

NAME

10/92

(ELF Library) elf_begin (3E)

elf_begin - make a file descriptor

SYNOPSIS
cclflag ...1file ... -1lelf [library ...]

#include <libelf.h>
Elf *elf_begin(int fildes, E1f_Cmd cmd, E1f *ref);

DESCRIPTION
elf_begin,elf_next,elf_rand, and elf_end work together to process ELF object
files, either individually or as members of archives. After obtaining an ELF descrip-
tor from elf_begin, the program may read an existing file, update an existing file,
or create a new file. fildes is an open file descriptor that e1f_begin uses for reading
or writing. The initial file offset [see 1seek(2)] is unconstrained, and the resulting
file offset is undefined.

cmd may have the following values.

ELF_C_NULL

ELF_C_READ

ELF_C_RDWR

When a program sets cmd to this value, e1f_begin returns a null
pointer, without opening a new descriptor. ref is ignored for this
command. See elf_next(3E) and the examples below for more
information.

When a program wishes to examine the contents of an existing
file, it should set c¢md to this value. Depending on the value of
ref, this command examines archive members or entire files.
Three cases can occur.

First, if ref is a null pointer, elf_begin allocates a new ELF
descriptor and prepares to process the entire file. If the file being
read is an archive, e1f_begin also prepares the resulting descrip-
tor to examine the initial archive member on the next call to
elf_begin, as if the program had used elf_next or elf_rand to
“move’”’ to the initial member.

Second, if ref is a non-null descriptor associated with an archive
file, e1f_begin lets a program obtain a separate ELF descriptor
associated with an individual member. The program should
have used elf_next or elf_rand to position ref appropriately
(except for the initial member, which elf_begin prepares; see
the example below). In this case, fildes should be the same file
descriptor used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,
elf_begin increments the number of activations for the descrip-
tor and returns ref, without allocating a new descriptor and
without changing the descriptor’s read/write permissions. To
terminate the descriptor for ref, the program must call elf_end
once for each activation. See elf_next(3E) and the examples
below for more information.

This command duplicates the actions of ELF_C_READ and addi-
tionally allows the program to update the file image [see
elf_update(3E)]. That is, using ELF_C_READ gives a read-only
view of the file, while ELF_C_RDWR lets the program read and

Page 1

elf_begin (3E) (ELF Library) elf_begin (3E)

write the file. ELF_C_RDWR is not valid for archive members. If
ref is non-null, it must have been created with the ELF_C_RDWR
command.

ELF_C_WRITE If the program wishes to ignore previous file contents, presum-
ably to create a new file, it should set cmd to this value. ref is
ignored for this command.

elf_begin “works” on all files (including files with zero bytes), providing it can
allocate memory for its internal structures and read any necessary information from
the file. Programs reading object files thus may call e1f_kind or elf_getehdr to
determine the file type (only object files have an ELF header). If the file is an
archive with no more members to process, or an error occurs, el f_begin returns a
null pointer. Otherwise, the return value is a non-null ELF descriptor.

Before the first call to e1f_begin, a program must call elf_version to coordinate
versions.

SYSTEM SERVICES

When processing a file, the library decides when to read or write the file, depending
on the program’s requests. Normally, the library assumes the file descriptor
remains usable for the life of the ELF descriptor. If, however, a program must pro-
cess many files simultaneously and the underlying operating system limits the
number of open files, the program can use elf_cnt1 to let it reuse file descriptors.
After calling e1f_cntl with appropriate arguments, the program may close the file
descriptor without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end ter-
minates the descriptor’s last activation. After the descriptors have been terminated,
the storage is released; attempting to reference such data gives undefined behavior.
Consequently, a program that deals with multiple input (or output) files must keep
the ELF descriptors active until it finishes with them.

EXAMPLES

Page 2

A prototype for reading a file appears below. If the file is a simple object file, the
program executes the loop one time, receiving a null descriptor in the second itera-
tion. In this case, both elf and arf will have the same value, the activation count
will be two, and the program calls e1f_end twice to terminate the descriptor. If the
file is an archive, the loop processes each archive member in turn, ignoring those
that are not object files.

10/92

elf_begin (3E) (ELF Library) elf_begin (3E)

if (elf_version (EV_CURRENT) == EV_NONE)
{
/% library out of date */
/% recover from error */
}
cmd = ELF_C_READ;
arf = elf_begin(fildes, cmd, (E1f *)0);

while ((elf = elf_begin(fildes, cmd, arf)) != 0)
{ if ((ehdr = elf32_getehdr(elf)) != 0)

(/* process the file ... */

émd = elf_next (elf);

elf_end(elf);
}

elf_end(arf) ;

Alternatively, the next example illustrates random archive processing. After identi-
fying the file as an archive, the program repeatedly processes archive members of
interest. For clarity, this example omits error checking and ignores simple object
files. Additionally, this fragment preserves the ELF descriptors for all archive
members, because it does not call el f_end to terminate them.

elf version (EV_CURRENT) ;
arf = elf_begin(fildes, ELF_C_READ, (E1f *)0);

if (elf_kind(arf) != ELF_K_AR)
{
/* not an archive */
}
/* initial processing */
/% set offset = ... for desired member header */
while (elf_rand(arf, offset) == offset)
{
if ((elf = elf_begin(fildes, ELF_C_READ, arf)) == 0)
break;
if ((ehdr = elf32_getehdr(elf)) != 0)
{
/* process archive member ... */
}
/% set offset = ... for desired member header */

}

The following outline shows how one might create a new ELF file. This example is
simplified to show the overall flow.

10/92 Page 3

elf_begin (3E) (ELF Library) elf_begin (3E)

elf_ version (EV_CURRENT) ;

fildes = open("path/name", O_RDWR|O_TRUNC|O_CREAT, 0666) ;

if ((elf = elf_begin(fildes, ELF_C_WRITE, (E1f #)0)) == 0)
return;

ehdr = elf32_newehdr (elf);

phdr = elf32_newphdr(elf, count);

scn = elf newscn(elf);

shdr = elf32_getshdr(scn);

data = elf_newdata(scn) ;

elf_update(elf, ELF_C_WRITE);

elf_end(elf);

Finally, the following outline shows how one might update an existing ELF file.
Again, this example is simplified to show the overall flow.

elf version (EV_CURRENT) ;
fildes = open("path/name", O_RDWR) ;
elf = elf_begin(fildes, ELF_C_RDWR, (E1f *)0);

/% add new or delete old information ... */

close(creat ("path/name", 0666));
elf_update(elf, ELF_C_WRITE);
elf_end(elf);

In the example above, the call to creat truncates the file, thus ensuring the result-
ing file will have the “right” size. Without truncation, the updated file might be as
big as the original, even if information were deleted. The library truncates the file,
if it can, with ftruncate [see truncate(2)]. Some systems, however, do not sup-
port ftruncate, and the call to creat protects against this.

Notice that both file creation examples open the file with write and read permis-
sions. On systems that support mmap, the library uses it to enhance performance,
and mmap requires a readable file descriptor. Although the library can use a write-
only file descriptor, the application will not obtain the performance advantages of
mmap.

SEE ALSO
cof2elf(l), creat(2), lseeck(2), mmap(2), open(2), truncate(2), e1 £(3E),
elf_cntl1(3E), elf_end(3E), elf_getarhdr(3E), elf_getbase(3E),
elf_getdata(3E), el f_getehdr(3E), elf_getphdr(3E), elf_getscn(3E),
elf_kind(3E), elf_next(3E), elf_rand(3E), elf_rawfile(3E), elf_update(3E),
elf_version(3E), ar(4)

NOTES
COFF is an object file format that preceded ELF . When a program calls e1f_begin
on a COFF file, the library translates COFF structures to their ELF equivalents, allow-
ing programs to read (but not to write) a COFF file as if it were ELF. This conversion
happens only to the memory image and not to the file itself. After the initial
elf_begin, file offsets and addresses in the ELF header, the program headers, and
the section headers retain the original COFF values [see elf_getehdr,
elf_getphdr, and elf_getshdr]. A program may call el1f_update to adjust these
values (without writing the file), and the library will then present a consistent, ELF
view of the file. Data obtained through elf_getdata are translated (the COFF

Page 4 10/92

elf_begin (3E) (ELF Library) elf_begin (3E)

10/92

symbol table is presented as ELF, and so on). Data viewed through elf_rawdata
undergo no conversion, allowing the program to view the bytes from the file itself.

Some COFF debugging information is not translated, though this does not affect the
semantics of a running program.

Although the ELF library supports COFF , programmers are strongly encouraged to
recompile their programs, obtaining ELF object files.

Page 5

elf_cntl(3E) (ELF Library) elf_cntl(3E)

NAME

elf_cntl - control a file descriptor

SYNOPSIS

cclflag ...1file ... -1elf [library ...]
#include <libelf.h>
int elf_cntl(E1f *elf, E1f_Cmd cmd);

DESCRIPTION

elf_cntl instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3E) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Gen-
erally, el1f_cntl commands apply to all activations of elf. Moreover, if the ELF
descriptor is associated with an archive file, descriptors for members within the
archive will also be affected as described below. Unless stated otherwise, opera-
tions on archive members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF_C_FDDONE
This value tells the library not to use the file descriptor associated with
elf. A program should use this command when it has requested all the
information it cares to use and wishes to avoid the overhead of reading
the rest of the file. The memory for all completed operations remains
valid, but later file operations, such as the initial e1f_getdata for a sec-
tion, will fail if the data are not in memory already.

ELF_C_FDREAD
This command is similar to ELF_C_FDDONE, except it forces the library to
read the rest of the file. A program should use this command when it
must close the file descriptor but has not yet read everything it needs
from the file. After e1f_cntl completes the ELF_C_FDREAD command,
future operations, such as e1f_getdata, will use the memory version of
the file without needing to use the file descriptor.

If e1f_cntl succeeds, it returns zero. Otherwise elf was null or an error occurred,
and the function returns -1.

SEE ALSO

NOTE

10/92

elf(3E), elf_begin(3E), elf_getdata(3E), elf_rawfile(3E)

If the program wishes to use the “‘raw”’ operations [see elf_rawdata, which
elf getdata(3E) describes, and elf_rawfile(3E)] after disabling the file descrip-
tor with ELF_C_FDDONE or ELF_C_FDREAD, it must execute the raw operations
explicitly beforehand. Otherwise, the raw file operations will fail. Calling
elf_rawfile makes the entire image available, thus supporting subsequent
elf_rawdata calls.

Page 1

elf_end(3E) (ELF Library) elf_end (3E)

NAME
elf_end - finish using an object file

SYNOPSIS
cclflag .. 1file ... -lelf [library ...]

#include <libelf.h>
int elf_end(E1f *elf);

DESCRIPTION
A program uses elf_end to terminate an ELF descriptor, elf, and to deallocate data
associated with the descriptor. Until the program terminates a descriptor, the data
remain allocated. elf should be a value previously returned by elf_begin; a null
pointer is allowed as an argument, to simplify error handling. If the program
wishes to write data associated with the ELF descriptor to the file, it must use
elf_update before calling el f_end.

As elf begin(3E) explains, a descriptor can have more than one activation.
Calling elf_end removes one activation and returns the remaining activation
count. The library does not terminate the descriptor until the activation count
reaches zero. Consequently, a zero return value indicates the ELF descriptor is no
longer valid.

SEE ALSO
e1f(3E), elf_begin(3E), elf_update(3E)

10/92 Page 1

elf_error(3E) (ELF Library) elf_error(3E)

NAME

elf_errmsg, elf_errno - error handling

SYNOPSIS

cc flag ..) file ... -1lelf [library ...]
#include <libelf.h>

const char *elf_errmsg(int err);
int elf_errno(void) ;

DESCRIPTION

If an ELF library function fails, a program may call elf_errno to retrieve the
library’s internal error number. As a side effect, this function resets the internal
error number to zero, which indicates no error.

elf_errmsg takes an error number, ¢rr, and returns a null-terminated error mes-
sage (with no trailing new-line) that describes the problem. A zero err retrieves a
message for the most recent error. If no error has occurred, the return value is a null
pointer (not a pointer to the null string). Using ¢rr of -1 also retrieves the most
recent error, except it guarantees a non-null return value, even when no error has
occurred. If no message is available for the given number, elf_errmsg returns a
pointer to an appropriate message. This function does not have the side effect of
clearing the internal error number.

EXAMPLE

The following fragment clears the internal error number and checks it later for
errors. Unless an error occurs after the first call to elf_errno, the next call will
return zero.

(void)elf_errno();
while (more_to_do)
{
/* processing ... #*/
1if ((err = elf_errno()) != 0)
{
msg = elf_errmsgl(err);
/% print msg */

SEE ALSO

10/92

elf(3E), elf_version(3E)

Page 1

elf_fill (3E) (ELF Library) elf_fill (3E)

NAME
elf_fill - set fill byte

SYNOPSIS
cc[flag ..1file ... -1elf [library ...]
#include <libelf.h>
void elf_fill(int f£ill);

DESCRIPTION
Alignment constraints for ELF files sometimes require the presence of “‘holes.” For
example, if the data for one section are required to begin on an eight-byte boun-
dary, but the preceding section is too ““short,” the library must fill the intervening
bytes. These bytes are set to the fill character. The library uses zero bytes unless the
application supplies a value. See elf_getdata(3E) for more information about
these holes.

SEE ALSO
elf(3E), elf_getdata(3E), elf_flag(3E), elf_update(3E)

NOTE
An application can assume control of the object file organization by setting the
ELF_F_LAYOUT bit [see elf_flag(3E)]. When this is done, the library does not fill
holes.

10/92 Page 1

elf_flag (3E) (ELF Library) elf_flag (3E)

NAME

elf_flagdata, elf_flagehdr, elf_flagelf, elf_ flagphdr,
elf_flagscn, elf_flagshdr - manipulate flags

SYNOPSIS

cclflag ...1file ... -1elf [library ...]

#include <libelf.h>

unsigned elf_ flagdata(Elf_Data *data, E1f_Cmd cmd, unsigned flags);
unsigned elf_flagehdr (E1f *elf, E1f_Cmd cmd, unsigned flags);
unsigned elf_flagelf (E1f #elf, E1f_Cmd cmd, unsigned flags);
unsigned elf_flagphdr (E1f *elf, E1f_Cmd cmd, unsigned flags);
unsigned elf_flagscn(E1f_Scn #*scn, E1f_Cmd cmd, unsigned flags);

unsigned elf_flagshdr (E1f_Scn #*scn, E1f_Cmd cmd, unsigned flags);

DESCRIPTION

10/92

These functions manipulate the flags associated with various structures of an ELF
file. Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor
(scn), the functions may set or clear the associated status bits, returning the
updated bits. A null descriptor is allowed, to simplify error handling; all functions
return zero for this degenerate case.

cmd may have the following values.

ELF_C_CLR The functions clear the bits that are asserted in flags. Only the
non-zero bits in flags are cleared; zero bits do not change the
status of the descriptor.

ELF_C_SET The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the status
of the descriptor.

Descriptions of the defined flags bits appear below.

ELF_F_DIRTY When the program intends to write an ELF file, this flag asserts
the associated information needs to be written to the file.
Thus, for example, a program that wished to update the ELF
header of an existing file would call elf_flagehdr with this
bit set in flags and cmd equal to ELF_C_SET. A later call to
elf_update would write the marked header to the file.

ELF_F_LAYOUT Normally, the library decides how to arrange an output file.
That is, it automatically decides where to place sections, how
to align them in the file, etc. If this bit is set for an ELF descrip-
tor, the program assumes responsibility for determining all file
positions. This bit is meaningful only for elf_flagelf and
applies to the entire file associated with the descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for exam-
ple, if the program sets the ELF_F_DIRTY bit with elf_flagelf, the entire logical
tile is ““dirty.”

Page 1

elf_flag (3E) (ELF Library) elf_flag (3E)

EXAMPLE
The following fragment shows how one might mark the ELF header to be written to

the output file.
ehdr = elf32_getehdr(elf);
/% dirty ehdr ... #*/
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY) ;

SEE ALSO
elf(3E), elf_end(3E), elf_getdata(3E), elf_getehdr(3E), elf_update(3E)

Page 2 10/92

elf_fsize (3E) (ELF Library) elf_fsize (3E)

NAME
elf_ fsize:elf32_fsize - return the size of an object file type

SYNOPSIS
cclflag ...1file ... -1elf [library ...]

#include <libelf.h>
size_t elf32 fsize(Elf_Type type, size_t count, unsigned ver);

DESCRIPTION
elf32_fsize gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size [see
elf(3E) and el f_version(3E)].

Constant values are available for the sizes of fundamental types.

ELF_T_WORD ELF32_FSZ_WORD sizeof (E1£32_Word)

Elf_Type File Size Memory Size
ELF_T_ADDR | ELF32_FSZ_ADDR sizeof (E1£32_Addr)
ELF_T_ BYTE I 1 sizeof (unsigned char)
ELF_T_ HALF ‘ ELF32_FSZ_HALF sizeof (E1f32_Half)
ELT_T_OFF | ELF32_FSZ_OFF sizeof (E1f32_Off)
ELF_T SWORD ‘ ELF32_FSZ_SWORD sizeof (E1£32_Sword)

| (

elf32_fsize returns zero if the value of fype or ver is unknown. See
elf_xlate(3E) for alist of the type values.

SEE ALSO
elf(3E), elf_version(3E), elf_xlate(3E)

10/92 Page 1

elf_getarhdr(3E) (ELF Library) elf_getarhdr(3E)

NAME
elf_getarhdr - retrieve archive member header

SYNOPSIS
cc [flag .. 1file ... -1elf [library ...]
#include <libelf.h>
Elf_Arhdr *elf_getarhdr(E1lf =*elf);

DESCRIPTION
elf_getarhdr returns a pointer to an archive member header, if one is available
for the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf_getarhdr then returns a null value. The header
includes the following members.

char *ar_name;
time_t ar_date;
long ar_uid;

long ar_gid;
unsigned long ar_mode;
off_t ar_size;
char *ar_rawname;

An archive member name, available through ar_name, is a null-terminated string,
with the ar format control characters removed. The ar_rawname member holds a
null-terminated string that represents the original name bytes in the file, including
the terminating slash and trailing blanks as specified in the archive format.

In addition to “regular’” archive members, the archive format defines some special
members. All special member names begin with a slash (/), distinguishing them
from regular members (whose names may not contain a slash). These special
members have the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf getarsym. The information in the symbol table is useful for random
archive processing [see e1f_rand(3E)].

// This member, if present, holds a string table for long archive member
names. An archive member’s header contains a 16-byte area for the name,
which may be exceeded in some file systems. The library automatically
retrieves long member names from the string table, setting ar_name to the
appropriate value.

Under some error conditions, a member’s name might not be available. Although
this causes the library to set ar_name to a null pointer, the ar_rawname member
will be set as usual.

SEE ALSO
el f£(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4)

10/92 Page 1

elf_getarsym (3E) (ELF Library) elf_getarsym (3E)

NAME

elf_getarsym - retrieve archive symbol table

SYNOPSIS

cc [flag ...]lfile ... -lelf [library ...]
#include <libelf.h>
E1f_Arsym *elf_getarsym(Elf *elf, size_t #*ptr);

DESCRIPTION

elf_getarsym returns a pointer to the archive symbol table, if one is available for
the ELF descriptor elf. Otherwise, the archive doesn’t have a symbol table, an error
occurred, or elf was null; elf_getarsym then returns a null value. The symbol
table is an array of structures that include the following members.

char *as_name;
size_t as_off;
unsigned long as_hash;

These members have the following semantics.
as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the
member’s header. The archive member residing at the given offset
defines the associated symbol. Values in as_off may be passed as argu-
ments to elf_rand to access the desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash.

If ptr is non-null, the library stores the number of table entries in the location to
which ptr points. This value is set to zero when the return value is null. The table’s
last entry, which is included in the count, has a null as_name, a zero value for
as_off,and ~0UL for as_hash.

SEE ALSO

10/92

elf(3E), elf_getarhdr(3E), el f_hash(3E), el f_rand(3E), ar(4)

Page 1

elf_getbase (3E) (ELF Library) elf_getbase (3E)

NAME
elf_getbase - get the base offset for an object file

SYNOPSIS
cc [flag ...]file ... -1elf [library ...]

#include <libelf.h>
off_t elf_getbase(Elf *elf);

DESCRIPTION
elf_getbase returns the file offset of the first byte of the file or archive member
associated with elf, if it is known or obtainable, and -1 otherwise. A null elf is
allowed, to simplify error handling; the return value in this case is -1. The base
offset of an archive member is the beginning of the member’s information, not the
beginning of the archive member header.

SEE ALSO
elf(3E), el f_begin(3E), ar(4)

10/92 Page 1

elf_getdata(3E) (ELF Library) elf_getdata(3E)

NAME

elf_getdata, elf_newdata, elf_rawdata - get section data

SYNOPSIS

ccflag ...]file ... -1lelf [library ...]

#include <libelf.h>

Elf_Data #*elf_getdata(Elf_Scn *scn, E1f_Data *data);
Elf_Data *elf newdata(Elf_Scn #*scn);

Elf_Data *elf_rawdata (Elf_Scn #*scn, El1f_Data #*data);

DESCRIPTION

10/92

These functions access and manipulate the data associated with a section descrip-
tor, scn. When reading an existing file, a section will have a single data buffer asso-
ciated with it. A program may build a new section in pieces, however, composing
the new data from multiple data buffers. For this reason, “‘the’” data for a section
should be viewed as a list of buffers, each of which is available through a data
descriptor.

elf_getdata lets a program step through a section’s data list. If the incoming data
descriptor, data, is null, the function returns the first buffer associated with the sec-
tion. Otherwise, data should be a data descriptor associated with scn, and the func-
tion gives the program access to the next data element for the section. If scn is null
or an error occurs, el f_getdata returns a null pointer.

elf_getdata translates the data from file representations into memory representa-
tions [see elf_xlate(3E)] and presents objects with memory data types to the pro-
gram, based on the file’s class [see el£(3E)]. The working library version [see
elf_version(3E)] specifies what version of the memory structures the program
wishes elf_getdata to present.

elf_newdata creates a new data descriptor for a section, appending it to any data
elements already associated with the section. As described below, the new data
descriptor appears empty, indicating the element holds no data. For convenience,
the descriptor’s type (d_type below) is set to ELF_T_BYTE, and the version
(d_version below) is set to the working version. The program is responsible for
setting (or changing) the descriptor members as needed. This function implicitly
sets the ELF_F_DIRTY bit for the section’s data [see el f_flag(3E)]. If sci is null or
an error occurs, el f_newdata returns a null pointer.

elf_rawdata differs from elf_getdata by returning only uninterpreted bytes,
regardless of the section type. This function typically should be used only to
retrieve a section image from a file being read, and then only when a program must
avoid the automatic data translation described below. Moreover, a program may
not close or disable [see e1f_cnt1(3E)] the file descriptor associated with elf before
the initial raw operation, because el f_rawdata might read the data from the file to
ensure it doesn’t interfere with elf_getdata. See elf_rawfile(3E) for a related
facility that applies to the entire file. When elf_getdata provides the right trans-
lation, its use is recommended over elf_rawdata. If scn is null or an error occurs,
elf_rawdata returns a null pointer.

Page 1

elf_getdata (3E) (ELF Library) elf_getdata (3E)

The E1f_Data structure includes the following members.

void *d_buf;
E1lf_Type d_type:;
size_t d_size;
off_t d_off;
size_ t d_align;
unsigned d_version;

These members are available for direct manipulation by the program. Descriptions
appear below.

d_buf A pointer to the data buffer resides here. A data element with no
data has a null pointer.

d_type This member’s value specifies the type of the data to which d_buf
points. A section’s type determines how to interpret the section
contents, as summarized below.

d_size This member holds the total size, in bytes, of the memory occupied
by the data. This may differ from the size as represented in the file.
The size will be zero if no data exist. [See the discussion of
SHT_NOBITS below for more information.]

d_off This member gives the offset, within the section, at which the buffer
resides. This offset is relative to the file’s section, not the memory
object’s.

d_align This member holds the buffer’s required alignment, from the begin-

ning of the section. That is, d_off will be a multiple of this
member’s value. For example, if this member’s value is four, the
beginning of the buffer will be four-byte aligned within the section.
Moreover, the entire section will be aligned to the maximum of its
constituents, thus ensuring appropriate alignment for a buffer
within the section and within the file.

d_version This member holds the version number of the objects in the buffer.
When the library originally read the data from the object file, it
used the working version to control the translation to memory
objects.

DATA ALIGNMENT
As mentioned above, data buffers within a section have explicit alignment con-
straints. Consequently, adjacent buffers sometimes will not abut, causing “‘holes”
within a section. Programs that create output files have two ways of dealing with
these holes.

First, the program can use elf_£ill to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to initial-
ize the data there. The library’s initial fill value is zero, and e1f_£il1 lets the appli-
cation change that.

Second, the application can generate its own data buffers to occupy the gaps, filling
the gaps with values appropriate for the section being created. A program might
even use different fill values for different sections. For example, it could set text
sections’ bytes to no-operation instructions, while filling data section holes with
zero. Using this technique, the library finds no holes to fill, because the application

Page 2 10/92

elf_getdata(3E) (ELF Library) elf_getdata (3E)

eliminated them.

SECTION AND MEMORY TYPES

elf_getdata interprets sections’ data according to the section type, as noted in the
section header available through elf_getshdr. The following table shows the sec-
tion types and how the library represents them with memory data types for the 32-
bit file class. Other classes would have similar tables. By implication, the memory
data types control translation by e1f_xlate.

Section Type Elf Type 32-Bit Type
SHT_DYNAMIC | ELF_T_DYN | ELf32_Dyn
SHT_DYNSYM ! ELF_T SYM | E1f32_Sym
SHT_HASH | ELF_T_WORD ‘ E1£32_Word
SHT _NOBITS ELF_T_BYTE ‘ unsigned char
SHT NOTE ELF_T BYTE unsigned char
SHT_NULL | none none

SHT_PROGBITS ELF_T_BYTE unsigned char

|
SHT_REL i ELF_T_REL E1f32_Rel
SHT RELA | ELF_T_RELA E1f32_Rela
SHT_STRTAB | ELF_T BYTE | uns igned char
SHT _SYMTAR | ELF_T_SYM ‘ E1£32_Sym
other | ELF_T BYTE ‘ unsigned char

elf_rawdata creates a buffer with type ELF_T_BYTE.

As mentioned above, the program’s working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type “’belongs” to a version newer than the
application’s working version, the library does not translate the section data.
Because the application cannot know the data format in this case, the library
presents an untranslated buffer of type ELF_T BYTE, just as it would for an
unrecognized section type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even
when the section header indicates a non-zero size. el f_getdata and elf_rawdata
“work” on such a section, setting the data structure to have a null buffer pointer
and the type indicated above. Although no data are present, the d_size value is
set to the size from the section header. When a program is creating a new section of
type SHT_NOBITS, it should use elf newdata to add data buffers to the section.
These “empty” data buffers should have the d_size members set to the desired
size and the d_buf members set to null.

EXAMPLE

10/92

The following fragment obtains the string table that holds section names (ignoring
error checking). See elf_strptr(3E) for a variation of string table handling.

Page 3

elf_getdata (3E) (ELF Library) elf_getdata (3E)

ehdr = elf32_getehdr(elf);

scn = elf_getscn(elf, (size_t)ehdr->e_shstrndx) ;
shdr = elf32_getshdr (scn);

if (shdr->sh_type != SHT_ STRTAB)

{
/* not a string table */
}
data = 0;
if ((data = elf_getdata(scn, data)) == || data->d_size == 0)
{

/* error or no data */
}

The e_shstrndx member in an ELF header holds the section table index of the
string table. The program gets a section descriptor for that section, verifies it is a
string table, and then retrieves the data. When this fragment finishes, data->d_buf
points at the first byte of the string table, and data->d_size holds the string table’s
size in bytes.

SEE ALSO
elf(3E), elf_cnt1(3E), elf_fi11(3E), elf_flag(3E), elf_getehdr(3E),
elf_getscn(3E), elf_getshdr(3E), elf_rawfile(3E), elf_version(3E),
elf_xlate(3E)

Page 4 10/92

elf_getehdr(3E) (ELF Library) elf_getehdr(3E)
NAME
elf_getehdr: elf32_getehdr, el£32_newehdr - retrieve class-dependent object
file header
SYNOPSIS

cc flag ..1file ... -1elf [library ...]
#include <libelf.h>

E1f32_Ehdr #*elf32_getehdr(E1f *elf);
E1£32_Ehdr *elf32_newehdr (E1f #*elf);

DESCRIPTION
For a 32-bit class file, e1£32_getehdr returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32_newehdr allocates a ““clean’” one, but it otherwise behaves the same as
elf32_getehdr. It does not allocate a new header if one exists already. If no
header exists (for e1f_getehdr), one cannot be created (for elf_newehdr), a sys-
tem error occurs, the file is not a 32-bit class file, or elf is null, both functions return

10/92

a null pointer.

The header includes the following members.

unsigned char

e_ident [EI_NIDENT] ;

E1f32_Half e_type;
E1f32 Half e_machine;
E1f32_Word e_version;
E1£32_Addr e_entry;
E1£32_Off e_phoff;
E1£32_Off e_shoff;
E1£32_Word e_flags;
E1£32_Half e_ehsize;
E1f32_Half e_phentsize;
E1f32_Half e_phnum;
E1f32_Half e_shentsize;
E1f32_Half e_shnum;
E1f32_Half e_shstrndx;

elf32_newehdr automatically sets the ELF_F_DIRTY bit [see elf_flag(3E)]. A

program may use el f_getident to inspect the identification bytes from a file.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getident(3E)

Page 1

elf_getident (3E) (ELF Library) elf_getident (3E)

NAME
elf_getident - retrieve file identification data

SYNOPSIS
cc[flag ...1file ... -1lelf [library ...]
#include <libelf.h>
char *elf_getident (E1f *elf, size_t *ptr);

DESCRIPTION
As e1£(3E) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits, etc. To accommodate these differences,
without forcing the larger sizes on smaller machines, the initial bytes in an ELF file

hold identification information common to all file classes. Every ELF header’s
e_ident has EI_NIDENT bytes with the following interpretation.

e_ident Index Value Purpose
EI_MAGO ELFMAGO
EI_MAGL ELFMAG1 . s .
BT MAG2 ELEMAG2 File identification
EI_MAG3 ELFMAG3
ELFCLASSNONE
EI_CLASS ELFCLASS32 File class
ELFCLASS64
ELFDATANONE
EI_DATA ELFDATA2LSB Data encoding
ELFDATA2MSB
EI_VERSION EV_CURRENT File version
7-15 0 Unused, set to zero

Other kinds of files [see e1f_kind(3E)] also may have identification data, though
they would not conform to e_ident.

e

elf_getident returns a pointer to the file's “initial bytes.” If the library recognizes
the file, a conversion from the file image to the memory image may occur. In any
case, the identification bytes are guaranteed not to have been modified, though the
size of the unmodified area depends on the file type. If ptr is non-null, the library
stores the number of identification bytes in the location to which ptr points. If no
data are present, elf is null, or an error occurs, the return value is a null pointer, with
zero optionally stored through ptr.

SEE ALSO
elf(3E), elf_begin(3E), elf_getehdr(3E), el f_kind(3E), elf_rawfile(3E)

10/92 Page 1

elf_getphdr(3E) (ELF Library) elf_getphdr(3E)

NAME
elf_ getphdr: elf32_getphdr, elf32_newphdr - retrieve class-dependent pro-
gram header table

SYNOPSIS
cc[flag ..1file ... -lelf [library ...]

#include <libelf.h>
E1£f32_Phdr #*elf32_getphdr(Elf #*elf);
E1f32_Phdr #*elf32_newphdr(E1lf *elf, size_t count);

DESCRIPTION
For a 32-bit class file, e1£32_getphdr returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.

el£32_newphdr allocates a new table with count entries, regardless of whether one
existed previously, and sets the ELF_F_DIRTY bit for the table [see e1f_flag(3E)].
Specifying a zero count deletes an existing table. Note this behavior differs from
that of e1£32_newehdr [see e1£32_getehdr(3E)], allowing a program to replace or
delete the program header table, changing its size if necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs, or
elf is null, both functions return a null pointer. Additionally, el£32_newphdr
returns a null pointer if count is zero.

The table is an array of E1£32_Phdr structures, each of which includes the follow-
ing members.

E1£f32_Word p_type;
E1f32_Off p_offset;
E1f32_Addr p_vaddr;
E1f32_Addr p_paddr;
E1£32_Word p_filesz;
E1£f32_Word p_Memsz;
E1f32_Word p_flags;
E1f32_Word p_align;

The ELF header’s e_phnum member tells how many entries the program header table
has [see elf_getehdr(3E)]. A program may inspect this value to determine the
size of an existing table; e1£32_newphdr automatically sets the member’s value to
count. If the program is building a new file, it is responsible for creating the file’s
ELF header before creating the program header table.

SEE ALSO
elf(3E), elf_begin(3E), elf_f1lag(3E), elf_getehdr(3E)

10/92 Page 1

elf_getscn (3E) (ELF Library) elf_getscn (3E)

NAME

elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn - get section information

SYNOPSIS

cc [flag ...1file ... -1elf [library ...]
#include <libelf.h>

E1f_Scn *elf_getscn(E1f *elf, size_t index);
size_t elf_ndxscn(El1f_Scn *scn);

Elf_Scn *elf_newscn (E1f *elf);

Elf_Scn *elf_nextscn(E1f *elf, E1f_Scn #*scn);

DESCRIPTION

These functions provide indexed and sequential access to the sections associated
with the ELF descriptor elf. If the program is building a new file, it is responsible for
creating the file’s ELF header before creating sections; see e1f_getehdr(3E).

elf_getscn returns a section descriptor, given an index into the file’s section
header table. Note the first “real’” section has index 1. Although a program can get
a section descriptor for the section whose index is 0 (SHN_UNDEF, the undefined sec-
tion), the section has no data and the section header is “empty” (though present).
If the specified section does not exist, an error occurs, or elf is null, elf_getscn
returns a null pointer.

elf_newscn creates a new section and appends it to the list for elf. Because the
SHN_UNDET section is required and not “interesting’’ to applications, the library
creates it automatically. Thus the first call to elf_newscn for an ELF descriptor
with no existing sections returns a descriptor for section 1. If an error occurs or elf is
null, elf_newscn returns a null pointer.

After creating a new section descriptor, the program can use elf_getshdr to
retrieve the newly created, “’clean’ section header. The new section descriptor will
have no associated data [see elf_getdata(3E)]. When creating a new section in
this way, the library updates the e_shnum member of the ELF header and sets the
ELF_F_DIRTY bit for the section [see elf_flag(3E)]. If the program is building a
new file, it is responsible for creating the file’s ELF header [see e1f_getehdr(3E)]
before creating new sections.

elf_nextscn takes an existing section descriptor, scn, and returns a section
descriptor for the next higher section. One may use a null scn to obtain a section
descriptor for the section whose index is 1 (skipping the section whose index is
SHN_UNDEF). If no further sections are present or an error occurs, elf_nextscn
returns a null pointer.

elf_ndxscn takes an existing section descriptor, scn, and returns its section table
index. If scn is null or an error occurs, el £_ndxscn returns SHN_UNDEF.

EXAMPLE

10/92

An example of sequential access appears below. Each pass through the loop
processes the next section in the file; the loop terminates when all sections have
been processed.

Page 1

elf_getscn (3E) (ELF Library) elf_getscn (3E)

(scn = elf_nextscn(elf, scn)) !'= 0)

/* process section */

SEE ALSO

elf(3E), el f_begin(3E), el f_flag(3E), elf_getdata(3E), elf_getehdr(3E),
elf_getshdr(3E)

Page 2 10/92

elf_getshdr(3E) (ELF Library) elf_getshdr(3E)

NAME

elf_getshdr: elf32_getshdr - retrieve class-dependent section header

SYNOPSIS

cc [flag ...1file ... -1elf [library ...]

#include <libelf.h>

E1£f32_Shdr #*elf32_getshdr (E1f_Scn *scn) ;

DESCRIPTION

For a 32-bit class file, e1£32_getshdr returns a pointer to a section header for the
section descriptor scr. Otherwise, the file is not a 32-bit class file, scn was null, or an
error occurred; el £32_getshdr then returns NULL.

The header includes the following members.

E1£32_Word
E1f32_Word
E1f32_Word
E1f32_Addr
E1f32_Off

E1f32_Word
E1£32_Word
E1f32_Word
E1f32_Word
E1£f32_Word

sh_name;
sh_type;
sh_flags;
sh_addr;
sh_offset;
sh_size;
sh_link;
sh_info;
sh_addralign;
sh_entsize;

If the program is building a new file, it is responsible for creating the file's ELF

header before creating sections.
SEE ALSO

elf(3E), elf_f1ag(3E), elf_getscn(3E), elf_strptr(3E)

10/92

Page 1

elf_hash (3E) (ELF Library) elf_hash (3E)

NAME

elf_hash - compute hash value

SYNOPSIS

cc|flag .. 1file ... -lelf [library ...]
#include <libelf.h>

unsigned long elf_hash(const char *name);

DESCRIPTION

elf_hash computes a hash value, given a null terminated string, name. The
returned hash value, &, can be used as a bucket index, typically after computing
h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash
uses unsigned arithmetic to avoid possible differences in various machines’ signed
arithmetic. Although name is shown as char* above, elf_hash treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates type
conflicts with expressions such as e1f_hash("name").

ELF files' symbol hash tables are computed using this function [see
elf_getdata(3E) and elf_xlate(3E)]. The hash value returned is guaranteed not
to be the bit pattern of all ones (~0UL).

SEE ALSO

10/92

elf(3E), elf_getdata(3E), el f_xlate(3E)

Page 1

elf_kind (3E) (ELF Library) elf_kind (3E)

NAME
elf_kind - determine file type

SYNOPSIS
cc[flag ...1file ... -lelf [library ...]
#include <libelf.h>
E1f_Kind elf kind(Elf *elf);

DESCRIPTION
This function returns a value identifying the kind of file associated with an ELF
descriptor (elf). Currently defined values appear below.

ELF_K_AR The file is an archive [see ar(4)]. An ELF descriptor may also be
associated with an archive member, not the archive itself, and
then elf_kind identifies the member’s type.

ELF_K_COFF The file is a COFF object file. elf_ begin(3E) describes the
library’s handling for COFF files.

ELF_K_ELF The file is an ELF file. The program may use elf_getident to

determine the class. Other functions, such as elf_getehdr, are
available to retrieve other file information.

ELF_K_NONE This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should
be a value previously returned by elf_begin. A null pointer is allowed, to sim-
plify error handling, and causes e1f_kind to return ELF_K_NONE.

SEE ALSO
el1£(3E), elf_begin(3E), el f_getehdr(3E), elf_getident(3E), ar(4)

10/92 Page 1

elf_next(3E) (ELF Library) elf_next(3E)

NAME
elf_next - sequential archive member access

SYNOPSIS
cclflag .. 1file ... -1elf [library ...]
#include <libelf.h>

Elf_Cmd elf_next (ELf #*elf);

DESCRIPTION
elf_next, elf_rand, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_next provides sequential access to the next archive member. That is, having
an ELF descriptor, elf, associated with an archive member, e1f_next prepares the
containing archive to access the following member when the program calls
elf_begin. After successfully positioning an archive for the next member,
elf_next returns the value ELF_C_READ. Otherwise, the open file was not an
archive, elf was null, or an error occurred, and the return value is ELF_C_NULL. In
either case, the return value may be passed as an argument to elf_begin, specify-
ing the appropriate action.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), el f_rand(3E), ar(4)

10/92 Page 1

elf_rand(3E) (ELF Library) elf_rand (3E)

NAME

elf_rand - random archive member access

SYNOPSIS

cc[flag .. 1file ... -1elf [library ...]
#include <libelf.h>

size_t elf_rand(Elf *elf, size_t offset);

DESCRIPTION

elf _rand, elf_next, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_rand provides random archive processing, preparing elf to access an arbitrary
archive member. elf must be a descriptor for the archive itself, not a member within
the archive. offset gives the byte offset from the beginning of the archive to the
archive header of the desired member. See elf_getarsym(3E) for more informa-
tion about archive member offsets. When elf_rand works, it returns offset. Other-
wise it returns 0, because an error occurred, elf was null, or the file was not an
archive (no archive member can have a zero offset). A program may mix random
and sequential archive processing.

EXAMPLE

An archive starts with a ““magic string”’ that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns -1 for errors and 0 otherwise).

#include <ar.h>
#include <libelf.h>

int
rewindelf (E1f #*elf)
{
if (elf_rand(elf, (size_t)SARMAG) == SARMAG)
return 0;
return -1;

SEE ALSO

10/92

elf(3E), elf_begin(3E), elf_getarsym(3E), el f_next(3E), ar(4)

Page 1

elf_rawfile (3E) (ELF Library) elf_rawfile (3E)

NAME

elf_rawfile - retrieve uninterpreted file contents

SYNOPSIS

cc [flag ..]file ... -1lelf [library ...]
#include <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

DESCRIPTION

elf_rawfile returns a pointer to an uninterpreted byte image of the file. This
function should be used only to retrieve a file being read. For example, a program
might use e1f_rawfile to retrieve the bytes for an archive member.

A program may not close or disable [see elf_cnt1(3E)] the file descriptor associ-
ated with elf before the initial call to elf_rawfile, because elf_rawfile might
have to read the data from the file if it does not already have the original bytes in
memory. Generally, this function is more efficient for unknown file types than for
object files. The library implicitly translates object files in memory, while it leaves
unknown files unmodified. Thus asking for the uninterpreted image of an object
file may create a duplicate copy in memory.

elf_rawdata [see elf_getdata(3E)] is a related function, providing access to sec-
tions within a file.

If ptr is non-null, the library also stores the file’s size, in bytes, in the location to
which ptr points. If no data are present, elf is null, or an error occurs, the return
value is a null pointer, with zero optionally stored through ptr.

SEE ALSO

NOTE

10/92

elf(3E), elf_begin(3E), elf_cnt1(3E), elf_getdata(3E), elf_getehdr(3E),
elf_getident(3E), elf_kind(3E)

A program that uses elf_rawfile and that also interprets the same file as an object
file potentially has two copies of the bytes in memory. If such a program requests
the raw image first, before it asks for translated information (through such func-
tions as elf_getehdr, elf_getdata, and so on), the library “freezes” its original
memory copy for the raw image. It then uses this frozen copy as the source for
creating translated objects, without reading the file again. Consequently, the appli-
cation should view the raw file image returned by elf_rawfile as a read-only
buffer, unless it wants to alter its own view of data subsequently translated. In any
case, the application may alter the translated objects without changing bytes visible
in the raw image.

Multiple calls to e1f_rawfile with the same ELF descriptor return the same value;
the library does not create duplicate copies of the file.

Page 1

elf_strptr(3E) (ELF Library) elf_strptr(3E)

NAME
elf_strptr - make a string pointer

SYNOPSIS
cc [flag ...1file ... -lelf [library ...]
#include <libelf.h>
char #elf_strptr(E1f *elf, size_t section, size_t offset);

DESCRIPTION
This function converts a string section offset to a string pointer. elf identifies the file
in which the string section resides, and section gives the section table index for the
strings. elf_strptr normally returns a pointer to a string, but it returns a null
pointer when elf is null, section is invalid or is not a section of type SHT_STRTAB, the
section data cannot be obtained, offset is invalid, or an error occurs.

EXAMPLE
A prototype for retrieving section names appears below. The file header specifies
the section name string table in the e_shstrndx member. The following code loops
through the sections, printing their names.

if ((ehdr = elf32_getehdr(elf)) == 0)
{
/* handle the error */
return;
}
ndx = ehdr->e_shstrndx;
scn = 0;
while ((scn = elf _nextscn(elf, scn)) != 0)
{
char *name = 0;
1if ((shdr = elf32_getshdr(scn)) != 0)
name = elf_strptr(elf, ndx, (size_t)shdr->sh_name);
printf ("’%s’\n", name? name: " (null)");

SEE ALSO
elf(3E), elf_getdata(3E), elf_getshdr(3E), elf_xlate(3E)

NOTE
A program may call elf_getdata to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than
using elf_strptr.

10/92 Page 1

elf_update (3E)

NAME

10/92

(ELF Library) elf_update (3E)

elf_update - update an ELF descriptor

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>
off_t elf_update(Elf *elf, E1f_Cmd cmd);

DESCRIPTION
elf_update causes the library to examine the information associated with an ELF
descriptor, elf, and to recalculate the structural data needed to generate the file’s

image.

cmd may have the following values.

ELF_C_NULL

ELF_C_WRITE

This value tells e1f_update to recalculate various values, updat-
ing only the ELF descriptor’s memory structures. Any modified
structures are flagged with the ELF_F_DIRTY bit. A program
thus can update the structural information and then reexamine
them without changing the file associated with the ELF descrip-
tor. Because this does not change the file, the ELF descriptor may
allow reading, writing, or both reading and writing [see
elf_begin(3E)].

If cmd has this value, elf_update duplicates its ELF_C_NULL
actions and also writes any ““dirty’”” information associated with
the ELF descriptor to the file. That is, when a program has used
elf_getdata or the elf_flag facilities to supply new (or
update existing) information for an ELF descriptor, those data
will be examined, coordinated, translated if necessary [see
elf_xlate(3E)], and written to the file. When portions of the file
are written, any ELF_F_DIRTY bits are reset, indicating those
items no longer need to be written to the file [see e1f_flag(3E)].
The sections’ data are written in the order of their section header
entries, and the section header table is written to the end of the
file.

When the ELF descriptor was created with elf_begin, it must
have allowed writing the file. That is, the e1f_begin command
must have been either ELF_C_RDWR or ELF_C_WRITE.

If e1f_update succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns -1.

When updating the internal structures, elf_update sets some members itself.
Members listed below are the application’s responsibility and retain the values
given by the program.

Page 1

elf_update (3E) (ELF Library) elf_update (3E)

Member Notes
e_ident [EI_DATA] | Library controls other e_ident values
e_type

e_machine
e_version
ELFHeader e_entry

e_phoff Only when ELF_F_LAYOUT asserted
e_shoff Only when ELF_F_LAYOUT asserted
e_flags
e_shstrndx
Member Notes
p_type The application controls all
p_offset | program header entries
p_vaddr
Program Header b_D ?ddr
p_filesz
p_memsz
p_flags
p_align
Member Notes
sh_name
sh_type
sh_flags
sh_addr
: sh_offset Only when ELF_F_LAYOUT asserted
Section Header sh_size Only when ELF_F_LAYOUT asserted
sh_link
sh_info
sh_addralign | Only when ELF_F_LAYOUT asserted
sh_entsize

Page 2 10/92

getrlimit(2) getrlimit(2)

NAME

getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

int getrlimit (int resource, struct rlimit *rlp);

int setrlimit (int resource, const struct rlimit *rlp);

DESCRIPTION

10/92

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with getrlimit and set with setrlimit.

Each call to either getrlimit or setrlimit identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits
may be changed by a process to any value that is less than or equal to the hard
limit. A process may (irreversibly) lower its hard limit to any value that is greater
than or equal to the soft limit. Only a process with an effective user ID of superuser
can raise a hard limit. Both hard and soft limits can be changed in a single call to
setrlimit subject to the constraints described above. Limits may have an infinite
value of RLIM_INFINITY. rlp is a pointer to struct rlimit that includes the fol-
lowing members:

rlim_t rlim_cur; /* current (soft) limit */
rlim t rlim max; /* hard limit */

rlim_t is an arithmetic data type to which objects of type int, size_t, and off_t
can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when current limit
is exceeded, are summarized in the following table:

Resources Description Action
RLIMIT_CORE The maximum size of a The writing of a core file
core file in bytes that may will terminate at this size.
be created by a process. A
limit of 0 will prevent the
creation of a core file.

RLIMIT_CPU The maximum amount of SIGXCPU is sent to the pro-
CPU time in seconds used cess. If the process is
by a process. holding or ignoring

SIGXCPU, the behavior is
scheduling class defined.

RLIMIT_DATA The maximum size of a brk(2) will fail with errno
process’s heap in bytes. set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file SIGXFSZ is sent to the pro-
in bytes that may be cess. If the process is
created by a process. A holding or ignoring

Page 1

getpwent (3C) (C Development Set) getpwent (3C)

SEE ALSO
getgrent(3C), get1ogin(3C), passwd(4).

DIAGNOSTICS
getpwent, getpwnid, getpwnam, and fgetpwent return a null pointer on EOF or
error.

NOTES
All information is contained in a static area, so it must be copied if it is to be saved.

Page 2 10/92

getpwent (3C) (C Development Set) getpwent (3C)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - manipulate
password file entry

SYNOPSIS

#include <pwd.h>

struct passwd *getpwent (void);

struct passwd *getpwuid (uid_t uid);

struct passwd *getpwnam (const char *name);
void setpwent (void);

void endpwent (void);

struct passwd *fgetpwent (FILE *f);

DESCRIPTION

FILES

10/92

getpwent, getpwuid, and getpwnam each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the /etc/passwd
file. Each line in the file contains a passwd structure, declared in the pwd.h header
file:

struct passwd {
char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
char =*pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;
}i
getpwent when first called returns a pointer to the first passwd structure in the file;
thereafter, it returns a pointer to the next passwd structure in the file; so successive
calls can be used to search the entire file. getpwuid searches from the beginning of
the file until a numerical user id matching wuid is found and returns a pointer to the
particular structure in which it was found. getpwnam searches from the beginning
of the file until a login name matching name is found, and returns a pointer to the
particular structure in which it was found. If an end-of-file or an error is encoun-
tered on reading, these functions return a null pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated
searches. endpwent may be called to close the password file when processing is
complete.

fgetpwent returns a pointer to the next passwd structure in the stream f, which
matches the format of /etc/passwd.

/etc/passwd

Page 1

getpw (3C) (C Development Set) getpw (3C)

NAME
getpw - get name from UID

SYNOPSIS
#include <stdlib.h>
int getpw (uid_t uid, char *buf);

DESCRIPTION
getpw searches the password file for a user id number that equals uid, copies the
line of the password file in which uid was found into the array pointed to by buf,
and returns 0. getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should not
be used; see getpwent (3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent (3C), passwd(4).

DIAGNOSTICS
getpw returns non-zero on error.

10/92 Page 1

getprotoent (3N) getprotoent (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent,
endprotoent - get protocol entry

SYNOPSIS

#include <netdb.h>

struct protoent *getprotoent (void) ;

struct protoent #*getprotobyname (char #*name) ;
struct protoent *getprotobynumber (int proto) ;
int setprotoent (int stayopen) ;

int endprotoent (void) ;

DESCRIPTION
getprotoent, getprotobyname, and getprotobynumber each return a pointer to
an object with the following structure containing the broken-out fields of a line in
the network protocol data base, /etc/protocols.

The protoent structure include the following members:

char *p_name; /* official name of protocol */
char #%p aliases; /* alias list */
int p_proto; /* protocol number */

The members of this structure are:
p_name the official name of the protocol
p_aliases a zero terminated list of alternate names for the protocol
p_proto the protocol number

getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net
data base will not be closed after each call to getprotoent (either directly, or
indirectly through one of the other getproto calls).

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the beginning
of the file until a matching protocol name or protocol number is found, or until an
EOF is encountered.

FILES
/etc/protocols
SEE ALSO
protocols(4)
DIAGNOSTICS
A NULL pointer is returned on an EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet protocols are currently understood.

10/92 Page 1

getpriority (3) (BSD Compatibility Package) getpriority (3)

SEE ALSO
nice(l), renice(1M), fork(2).

NOTES
It is not possible for the process executing setpriority to lower any other process
down to its current priority, without requiring privileged user privileges.

Page 2 10/92

getpriority (3) (BSD Compatibility Package) getpriority (3)

NAME

getpriority, setpriority - get/set program scheduling priority

SYNOPSIS

/usr/ucb/cc [flag...]file...

#include <sys/time.h>
#include <sys/resource.h>

int getpriority (which, who)
int which, who;

int setpriority (which, who, prio)
int which, who, prio;

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which
and who is obtained with getpriority and set with setpriority The default
priority is 0; lower priorities cause more favorable scheduling.

which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted
relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value of who denotes the current
process, process group, Or user.

getpriority returns the highest priority (lowest numerical value) enjoyed by any
of the specified processes. setpriority sets the priorities of all of the specified
processes to the value specified by prio. If prio is less than -20, a value of -20 is used;
if it is greater than 20, a value of 20 is used. Only the privileged user may lower
priorities.

RETURN VALUE

Since getpriority can legitimately return the value -1, it is necessary to clear the
external variable errno prior to the call, then check it afterward to determine if a -1
is an error or a legitimate value. The setpriority call returns 0 if there is no error,
or -1 if there is.

ERRORS

10/92

getpriority and setpriority may return one of the following errors:
ESRCH No process was located using the which and who values specified.
EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the fol-
lowing errors returned:

EPERM A process was located, but one of the following is true:

Neither its effective nor real user ID matched the effective user ID of
the caller, and neither the effective nor the real user ID of the process
executing the setpriority was the privileged user.

The call to getpriority would have changed a process’ priority to a
value lower than its current value, and the effective user ID of the pro-
cess executing the call was not that of the privileged user.

Page 1

getpid (2) getpid (2)

NAME
getpid, getpgrp, getppid, getpgid - get process, process group, and parent pro-
cess IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void) ;

pid_t getpgrp(void) ;
pid_t getppid(void);
pid_t getpgid(pid_t pid);

DESCRIPTION
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.
getppid returns the parent process ID of the calling process.

getpgid returns the process group ID of the process whose process ID is equal to
pid, or the process group ID of the calling process, if pid is equal to zero.

getpgid will fail if one or more of the following is true:

EPERM The process whose process ID is equal to pid is not in the same ses-
sion as the calling process, and the implementation does not allow
access to the process group ID of that process from the calling pro-
cess.

ESRCH There is no process with a process ID equal to pid.

SEE ALSO
exec(2), fork(2), getpid(2), getsid(2), intro(2), setpgid(2), setsid(2)
setpgrp(2), signal(2)

DIAGNOSTICS

Upon successful completion, getpgid returns a process group ID. Otherwise, a
value of (pid_t) -1 is returned and errno is set to indicate the error.

10/92 Page 1

getpeername (3N) getpeername (3N)

NAME

getpeername - get name of connected peer
SYNOPSIS

int getpeername (int s, caddr_t name, int *namelen);
DESCRIPTION

getpeername returns the name of the peer connected to socket s. The int pointed
to by the namelen parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name returned (in
bytes). The name is truncated if the buffer provided is too small.

RETURN VALUE
0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF The argument s is not a valid descriptor.
ENOTSOCK The argument s is a file, not a socket.
ENOTCONN The socket is not connected.
ENOMEM There was insufficient user memory for the operation to complete.
ENOSR There were insufficient STREAMS resources available for the
operation to complete.
SEE ALSO
accept(3N), bind(3N), get sockname(3N), socket(3N)
NOTES

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF_UNIX) require a socketaddr_un struc-
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet/in.h. Other address fami-
lies may require other structures. Use the structure appropriate to the address fam-
ily; cast the structure address to a generic caddr_t in the call to getpeername and
pass the size of the structure in the namelen argument.

10/92 Page 1

getpass(3C) (C Development Set) getpass (3C)

NAME

getpass - read a password
SYNOPSIS

#include <stdlib.h>

char *getpass (const char *prompt) ;

DESCRIPTION
getpass reads up to a newline or EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters. If
/dev/tty cannot be opened, a null pointer is returned. An interrupt will terminate
input and send an interrupt signal to the calling program before returning.

FILES
/dev/tty
NOTE
The return value points to static data whose content is overwritten by each call.

10/92 Page 1

getpagesize (3) (BSD Compatibility Package) getpagesize (3)

NAME

getpagesize - get system page size
SYNOPSIS

/usr/ucb/cc |[flag...1file...

int getpagesize (VOID) ;
DESCRIPTION

getpagesize returns the number of bytes in a page. Page granularity is the granu-
larity of many of the memory management calls.

The page size is a system page size and need not be the same as the underlying
hardware page size.

SEE ALSO
pagesize(l), brk(2).

10/92 Page 1

getopt (3C) (C Programming Language Utilities) getopt (3C)

if (iflg == 0) {
infile = stdin ;

} else if ((infile=fopen(ifile,"r")) == NULL) {
open_err_exit (cmdname, ifile, errno) ;

}

for (; optind<argc ; optind+=1l) {
if ((outfile=fopen(ofile=argv([optind], "r+")) == NULL) {

open_err_exit (cmdname,ofile, errno) ;

}

if ((retval=do_work(aflg,bflg,infile,outfile)) != 0) {
work_err_exit (cmdname,ofile, retval) ;
}
if (fclose(outfile) != 0) {
close_err_exit (cmdname, ofile, errno) ;
}
}
exit(0) ;

}

SEE ALSO
pfmt(3C), setlabel(3C).

10/92 Page 3

getopt(3C) (C Programming Language Utilities) getopt(3C)

RETURN VALUE

The function getopt () returns a question mark (?) when it encounters an option
letter not included in optstring; it also prints an error message on stderr if opterr
is set to non-0 (opterr is initialized to 1). The message is printed in the standard
error format. getopt () support localized output messages. If the appropriate
translated system messages are installed on the system, they are selected by the
latest call to setlocale () (using the LC_ALL or LC_MESSAGES categories).

The label defined by a call to setlabel () will be used if available, otherwise the
name of the utility (argv [0]) will be used.

EXAMPLE

Page 2

The following code fragment shows how one might process the options and argu-
ments for a command that takes: mutually exclusive options a and b, exactly one of
which is required; an optional option i which takes an option-argument; and at
least two arguments.

main(int argc, char *argv([] /*, char envp[]*/)
/* envp 1s unused in this example */

int opt, aflg=0, bflg=0, iflg=0, errflg=0, retval ;
char *cmdname, *ifile, *ofile ;

FILE *infile, *outfile ;

extern int optind, opterr, errno ;

extern char *optarg ;

setlabel ("UX:example") ;
cmdname = argv[0] ;

opterr = 0 ; /* inhibit getopt err msg */
while ((opt=getopt (argc,argv,"abi:")) != EOF) {
switch (opt) {
case 'a’ :

aflg += 1 ; break ;
case ‘b’ :
bflg += 1 ; break ;
case "1’ :
iflg += 1 ; ifile = optarg ; break ;
default : /* includes '?’ case */
errflg += 1 ; break ;

}
if (errflg>0 || aflg+bflg!=1 || iflg>1 || argc-optind<2) {
usage_err_exit (cmdname) ;

(continues)

10/92

getopt (3C) (C Programming Language Utilities) getopt (3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
#include <stdio.h>

int getopt (int argc, char *const *arguv, const char *optstring);

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
The function getopt () is a command-line parser. It returns the next option letter
in argv that matches a letter in optstring.

The function getopt () places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before the first call to the
function getopt ().

The argument optstring is a string of recognized option letters; if a letter is followed
by a colon, the option is expected to have an argument that may be separated from
it by white space.

The variable optarg is set to point to the start of the option argument on return
from getopt ().

When all options have been processed (i.e., up to the first non-option argument),
the function getopt () returns EOF. The special option -- may be used to delimit
the end of the options; EOF will be returned and -- will be skipped.

The following rules comprise the System V standard for command-line syntax:
RULE 1: Command names must be between two and nine characters.

RULE 2: Command names must include lower-case letters and digits only.
RULE 3: Option names must be a single character in length.

RULE 4: All options must be delimited by the - character.

RULE 5: Options with no arguments may be grouped behind one delimiter.

RULE 6: The first option-argument following an option may be preceded by
white space.

RULE 7: Option arguments cannot be optional.

RULE 8: Groups of option arguments following an option must be separated by
commas or separated by white space and quoted.

RULE 9: All options must precede operands on the command line.
RULE 10: The characters -- may be used to delimit the end of the options.
RULE 11: The order of options relative to one another should not matter.

RULE 12: The order of operands may matter and position-related interpretations
should be determined on a command-specific basis.

RULE 13: The - character preceded and followed by white space should be used
only to mean standard input.

10/92 Page 1

getnetpath (3N) (Networking Support Utilities) getnetpath (3N)

NAME

getnetpath - get netconfig entry corresponding to NETPA'I'H component

SYNOPSIS

#include <netconfig.h>

void *setnetpath(void);
struct netconfig *getnetpath(void *handlep) ;
int endnetpath (void *handlep) ;

DESCRIPTION

The three routines described on this page are part of the UNIX System V Network
Selection component. They provide application access to the system network
configuration database, /etc/netconfig, as it is “filtered” by the NETPATH
environment variable [see environ(5)]. Network Selection also includes routines
that access the network configuration database directly [see getnetconfig(3N)].

A call to setnetpath “‘binds” or “rewinds’’ NETPATH. setnetpath must be called
before the first call to getnetpath and may be called at any other time. It returns a
handle that is used by getnetpath. setnetpath will fail if the netconfig data-
base is not present. If NETPATH is unset, setnetpath returns the number of “'visi-
ble’” networks in the netconfig file. The set of visible networks constitutes a
default NETPATH.

When first called, getnetpath returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. The netconfig entry is for-
matted as a netconfig structure. On each subsequent call, getnetpath returns a
pointer to the netconfig entry that corresponds to the next valid NETPATH com-
ponent. getnetpath can thus be used to search the netconfig database for all
networks included in the NETPATH variable. When NETPATH has been exhausted,
getnetpath returns NULL.

getnetpath silently ignores invalid NETPATH components. A NETPATH component
is invalid if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath behaves as if NETPATH were set to the
sequence of “default” or “‘visible” networks in the netconfig database, in the
order in which they are listed.

endnetpath may be called to “unbind” NETPATH when processing is complete,
releasing resources for reuse. Programmer’s should be aware, however, that end-
netpath frees all memory allocated by setnetpath. endnetpath returns 0 on suc-
cess and -1 on failure (for example, if setnetpath was not called previously).

SEE ALSO

10/92

getnetconfig(3N), netconfig(4), environ(5).

Page 1

getnetgrent (3N) getnetgrent (3N)

NAME

getnetgrent, setnetgrent, endnetgrent, innetgr - get network group
entry

SYNOPSIS

getnetgrent (machinep, userp, domainp)
char **machinep, **userp, **domainp;

vetnetgrent (netgroup)
ctiar *net group

cndnetgrent ()

“tmetgr (netgroup, machine, user, domain)
~har *netgroup, *machine, *user, *domain;

DESCRIPTION

FILES

(etnetgrent () returns the next member of a network group. After the call,
machinep will contain a pointer to a string containing the name of the machine part
of the network group member, and similarly for userp and domainp. If any of
machinep, userp or domainp is returned as a NULL pointer, it signifies a wild card.
getnetgrent () will use malloc(3C) to allocate space for the name. This space is
released when a endnetgrent () call is made. getnetgrent () returns 1 if it suc-
ceeded in obtaining another member of the network group, 0 if it has reached the
end of the group.

getnetgrent () establishes the network group from which getnetgrent () will
obtain members, and also restarts calls to getnetgrent () from the beginning of
the list. If the previous setnetgrent () call was to a different network group, a
endnetgrent () call is implied. endnetgrent () frees the space allocated during
the getnetgrent () calls. innetgr returns 1 or 0, depending on whether netgroup
contains the machine, user, domain triple as a member. Any of the three strings
machine, user, or domain can be NULL, in which case it signifies a wild card.

/etc/netgroup

WARNINGS

NOTES

10/92

The Network Information Service (NIS) package must be installed and running
when using getnetgrent (), since it only inspects the NIS netgroup map, never
the local files.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP). The functionality of the two remains the same; only the name has changed.

Page 1

getnetent (3N) getnetent (3N)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.
Only Internet network numbers are currently understood.

Page 2 10/92

getnetent (3N) getnetent (3N)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get net-
work entry

SYNOPSIS

#include <netdb.h>

