
UNIX®
SYSTEM V
Release 4

System Calls
and Library Functions

Reference Manual

for
l\.1otorolaProcessors

UNIX®
SYSTEM V
Release 4

System Calls
and Library Functions

Reference Manual

@ MOTOROLA

for
l\.1otorolaProcessors

© COPYRIGHT MOTOROLA 1993
ALL RIGHTS RESERVED

Printed in the United States of America.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990 AT&T
© Copyright 1991, 1992 UNIX System Laboratories, Inc.

ALL RIGHTS RESERVED
Printed in the United States of America.

Published by PTR Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

OWNERSHIP
Portions of this documentation product(s) were contributed and copyrighted by Motorola, Inc.

REPRODUCTION/USE/DISCLOSURE
This documentation is copyrighted material. Making unauthorized copies is prohibited by law. No
part of this material may be reproduced or copied in man- or machine-readable form in any tangible
medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic,
mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission
of Motorola, Inc.

NOTICE REGARDING DISCLAIMER OF WARRANTIES
The following does not apply where such provisions are inconsistent with local law; some states do not
allow disclaimers of express or implied warranties in certain transactions - therefore, this statement
may not apply to you. UNLESS OTHERWISE PROVIDED BY WRITTEN AGREEMENT WITH
MOTOROLA, INC., THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

ERRORS/CHANGES (MOTOROLA)
While reasonable efforts have been made to assure the accuracy of this documentation, Motorola, Inc.
assumes no liability resulting from any omissions in this documentation or from the use of the
information contained therein. Motorola reserves the right to revise this documentation and to make
changes from time to time in the content hereof without obligation to notify any person of such revision
or changes.

10987654321

ISBN 0-13-035841-X

IMPORT ANT NOTE TO USERS (USL)
While every effort has been made to ensure the accuracy of all information in this documentation, UNIX
System Laboratories, Inc. (USL) assumes no liabilities to any party for any loss or damage caused by
errors or omissions or by statements of any kind in this documentation, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence, accident,
or any other cause. USL further assumes no liability arising out of the application or use of any product
or system described herein, nor any liability for incidental or consequential damages arising from the
use of this documentation. USL disclaims all warranties regarding the information contained herein,
whether expressed, implied, or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of any license to make, use or sell equipment constructed in accordance with
such descriptions. USL reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design.

PRODUCT AVAILABILITY
It is possible that this publication may contain reference to, or information about Motorola products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that Motorola intends to announce such
Motorola products, programming, or services in your country.

GNU C COMPILER
The GNU C compiler is a product of the Free Software Foundation, Inc. and is subject to the GNU
General Public License as published by the Free Software Foundation. You should have received a
copy of the GNU General Public License along with the GNU C compiler product; if not, contact:

Free Software Foundation
675 Massachusetts Ave.
Cambridge, Massachusetts 02139
U.S.A.

THIS PROGRAM IS PROVIDED WITHOUT ANY WARRANTY, INCLUDING THE IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Under the General Public License for GNU C you have the freedom to distribute copies of GNU C,
obtain source code if you want it, change the software, or use pieces of it in new free programs.

The GNU C compiler has been modified by Motorola, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(l)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.

MOTOROLA, INC.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

TRADEMARKS
Motorola and the Motorola logo are registered trademarks of Motorola, Inc. in the U.S.A. and in other
countries.
DeltaPRO, DeltaSeries, DeltaSERVER, M88000, SYSTEM V /68, and SYSTEM V /88 are trademarks of
Motorola, Inc. in the U.S.A.
All other marks are trademarks or registered trademarks of their respective holders.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.

OSF /Motif is a trademark of The Open Software Foundation Inc.

GNU C is a trademark of the Free Software Foundation.

Table of Contents

System Calls(2), Functions(3), and Miscellaneous Facilities(S)

intro(2) .. introduction to system calls and error numbers
intro (3) .. introduction to functions and libraries
intro(3M) .. introduction to math libraries
intro(S) .. introduction to miscellany
intro(2) .. intro
a641, 164a (3C) .. convert between long integer and base-64 ASCII string
abort(3C) .. generate an abnormal termination signal
abs, labs(3C) ... return integer absolute value
accept(3N) .. accept a connection on a socket
access(2) ... determine accessibility of a file
acct (2) ... enable or disable process accounting
addsev (3C) ... define additional severities
addseverity(3C) build a list of severity levels for an application for use with fmtmsg
adjtime (2) ... correct the time to allow synchronization of the system clock
alarm (2) .. set a process alarm clock
alloca(3) .. memory allocator
assert(3X) ... verify program assertion
atexit(3C) ... add program termination routine
basename (3G) .. return the last element of a path name
bessel: jO, jl, jn, yO, yl, yn(3M) .. Bessel functions
bgets(3G) ... read stream up to next delimiter
bind(3N) .. bind a name to a socket
brk, sbrk(2) .. change data segment space allocation
bsearch(3C) .. binary search a sorted table
bstring: bcopy, bcmp, bzero,(3) ... bit and byte string operations
bufsplit(3G) .. split buffer into fields
byteorder, htonl, htons, ntohl, ntohs(3N)

.. convert values between host and network byte order
catgets(3C) ... read a program message
catopen, catclose(3C) .. open/close a message catalog
chdir, fchdir(2) ... change working directory
chmod, fchmod (2) .. change mode of file
chown, lchown, fchown(2) .. change owner and group of a file
chroot (2) .. change root directory
chsize (2) ... change the size of a file
clock(3C) ... report CPU time used
close (2) .. close a file descriptor
connect(3N) .. initiate a connection on a socket

Table of Contents 1

Table of Contents

conv: toupper, tolower, _toupper, _tolower, toascii(3C) translate characters
copylist(3G) .. copy a file into memory
creat(2) ... create a new file or rewrite an existing one
creatsem(2) .. create an instance of a binary semaphore
crypt, setkey, encrypt(3C) .. generate encryption
crypt(3X) .. password and file encryption functions
csync(2) .. designate portions of memory safe for execution
ctermid(3S) .. generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C) convert date and time to string
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,

isprint, isgraph, isascii (3C) .. character handling
curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,

mvaddchnstr, mvwaddchstr, mvwaddchnstr(3X)
... add string of characters (and attributes) to a curses window

curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar(3X)
............................... add a character (with attributes) to a curses window and advance cursor

curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr, mvwaddstr,
mvwaddnstr(3X) add a string of characters to a curses window and advance cursor

curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar,
wechowchar(3X)
............... add a wchar_t character (with attributes) to a curses window and advance cursor

curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,
mvaddnwstr, mvwaddwstr, mvwaddnwstr(3X)
............................ add a string of wchar_t characters to a curses window and advance cursor

curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,
mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr(3X)
....................................... add string of wchar_t characters (and attributes) to a curses window

curs_attr: attroff, wattroff, attron, wattron, attrset, wattrset, standend, wstandend,
standout, wstandout(3X) curses character and window attribute control routines

curs_beep: beep, flash(3X) .. curses bell and screen flash routines
curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd(3X)

... curses window background manipulation routines
curs_border: border, wborder, box, hline, whline, vline, wvline(3X)

... create curses borders, horizontal and vertical lines
curs_clear: erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol, wclrtoeol(3X)

.. clear all or part of a curses window
curs_color: start_color, init_pair, init_color, has_colors, can_change_color,

color_content, pair_content(3X) ... curses color manipulation routines

2 System Calls and Library Functions Reference Manual

Table of Contents

curs_delch: delch, wdelch, mvdelch, mvwdelch(3X)
.. delete character under cursor in a curses window

curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln(3X)
.. delete and insert lines in a curses window

curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch(3X)
.. get (or push back) characters from curses terminal keyboard

curs_getstr: getstr, getnstr, wgetstr, wgetnstr, mvgetstr, mvgetnstr, mvwgetstr,
mvwgetnstr(3X) get character strings from curses terminal keyboard

curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch(3X)
...................................... get (or push back) wchar_t characters from curses terminal keyboard

curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,
mvwgetwstr, mvwgetnwstr(3X)
.. get wchar_t character strings from curses terminal keyboard

curs_getyx: getyx, getparyx, getbegyx, getmaxyx(3X)
... get curses cursor and window coordinates

curs_inch: inch, winch, mvinch, mvwinch(3X)
.. get a character and its attributes from a curses window

curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,
mvwinchstr, mvwinchnstr(3X)
.. get a string of characters (and attributes) from a curses window

curs_initscr: initscr, newterm, endwin, isendwin, set_term, delscreen(3X)
.. curses screen initialization and manipulation routines

curs_inopts: cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta,
nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout, wtimeout,
typeahead(3X) .. curses terminal input option control routines

curs_insch: insch, winsch, mvinsch, mvwinsch(3X)
............................ insert a character before the character under the cursor in a curses window

curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,
mvwinsnstr(3X) insert string before character under the cursor in a curses window

curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,
mvwinnstr(3X) ... get a string of characters from a curses window

curs_inswch: inswch, winswch, mvinswch, mvwinswch(3X)
............ insert a wchar_t character before the character under the cursor in a curses window

curs_instr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,
mvwinswstr, mvwinsnwstr(3X)
............................ insert wchar_t string before character under the cursor in a curses window

curs_inwch: inwch, winwch, mvinwch, mvwinwch(3X)
.. get a wchar_t character and its attributes from a curses window

Table of Contents 3

Table of Contents

curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr(3X)
................................ get a string of wchar_t characters (and attributes) from a curses window

curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr, mvwinwstr,
mvwinnwstr(3X) get a string of wchar_t characters from a curses window

curs_kemel: def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode,
resetty, savetty, getsyx, setsyx, ripofiline, curs_set, napms(3X)
... low-level curses routines

curs_move: move, wmove (3X) .. move curses window cursor
curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg, wsetscrreg, scrollok,

nl, nonl (3X) ... curses terminal output option control routines
curs_overlay: overlay, overwrite, copywin(3X)

... overlap and manipulate overlapped curses windows
curs_pad: newpad, subpad, prefresh, pnoutrefresh, pechochar, pechowchar(3X)

... create and display curses pads
curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw(3X)

... print formatted output in curses windows
curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin, wredrawln(3X)

.. refresh curses windows and lines
curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw(3X)

.. convert formatted input from a curses window
curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set(3X)

.. read (write) a curses screen from (to) a file
curs_scroll: scroll, srcl, wscrl(3X) .. scroll a curses window
curs_slk: slk_init, slk_set, slk_refresh, slk_noutrefresh, slk_label, slk_clear,

slk_restore, slk_touch, slk_attron, slk_attrset, slk_attroff(3X) curses soft label routines
curs_termattrs: baudrate, erasechar, has_ic, has_il, killchar, longname, termattrs,

termname(3X) ... curses environment query routines
curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs(3X)

.. curses interfaces (emulated) to the termcap library
curs_terminfo: setupterm, setterm, set_curterm, del_curterm, restartterm, tparm,

tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr(3X)
.. curses interfaces to terminfo database

curs_touch: touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_ wintouched (3X) ... curses refresh control routines

curs_util: unctrl, keyname, filter, use_env, putwin, getwin, delay_output,
flushinp(3X) .. miscellaneous curses utility routines

curs_ window: newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, syncok, wcursyncup, wsyncdown(3X) create curses windows

curses (3X) ... CRT screen handling and optimization package

4 System Calls and Library Functions Reference Manual

Table of Contents

cuserid(3S) .. get character login name of the user
dbm: dbminit, dbmclose, fetch, store, delete, firstkey, nextkey(3) data base subroutines
decimal_to_floating: decimal_to_single, decimal_to_double,

decimal_to_extended(3) convert decimal record to floating-point value
dial(3C) .. establish an outgoing terminal line connection
difftime(3C) ... computes the difference between two calendar times
opendir, readdir, telldir, seekdir, rewinddir, closedir(3) directory operations
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C) directory operations
dimame(3G) ... report the parent directory name of a file path name
div, ldiv(3C) ... compute the quotient and remainder
dlclose (3X) .. close a shared object
dlerror(3X) ... get diagnostic information
dlopen(3X) .. open a shared object
dlsym (3X) ... get the address of a symbol in shared object
doconfig(3N) ... execute a configuration script
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 (3C)

.. generate uniformly distributed pseudo-random numbers
dup (2) .. duplicate an open file descriptor
dup2(3C) ... duplicate an open file descriptor
econvert, £convert, gconvert, seconvert, sfconvert, sgconvert(3) output conversion
ecvt, fcvt, gcvt(3C) ... convert floating-point number to string
elf(3E) ... object file access library
elf_begin (3E) .. make a file descriptor
elf_cntl(3E) .. control a file descriptor
elf_end(3E) ... finish using an object file
elf_errmsg, elf_errno(3E) .. error handling
elf_fill (3E) ... set fill byte
elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr, elf_flagscn, elf_flagshdr(3E)

.. manipulate flags
elf_fsize: elf32_fsize(3E) ... return the size of an object file type
elf_getarhdr(3E) .. retrieve archive member header
elf_getarsym(3E) .. retrieve archive symbol table
elf_getbase(3E) ... get the base offset for an object file
elf_getdata, elf_newdata, elf_rawdata(3E) .. get section data
elf_getehdr: elf32_getehdr, elf32_newehdr(3E) retrieve class-dependent object file header
elf_getident (3E) ... retrieve file identification data
elf_getphdr: elf32_getphdr, elf32_newphdr(3E)

... retrieve class-dependent program header table
elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn(3E) get section information
elf_getshdr: elf32_getshdr(3E) .. retrieve class-dependent section header

Table of Contents 5

Table of Contents

elf_hash(3E) .. compute hash value
elf_kind (3E) ... determine file type
elf_next(3E) .. sequential archive member access
elf_rand (3E) .. random archive member access
elf_rawfile(3E) ... retrieve uninterpreted file contents
elf_strptr(3E) ... make a string pointer
elf_update(3E) .. update an ELF descriptor
elf_ version (3E) .. coordinate ELF library and application versions
elf_xlate: elf32_xlatetof, elf32_xlatetom(3E) class-dependent data translation
end, etext, edata (3C) .. last locations in program
erf, erfc (3M) ... error function and complementary error function
ethers(3N) ... Ethernet address mapping operations
eucioct1(5) .. generic interface to EUC handling TTY drivers and modules
exec: execl, execv, execle, execve, execlp, execvp(2) ... execute a file
exit, _exit(2) ... terminate process
exp, expf, cbrt, log, logf, loglO, loglOf, pow, powf, sqrt, sqrtf(3M)

.. exponential, logarithm, power, square root functions
fattach(3C)

.............. attach a STREAMS-based file descriptor to an object in the file system name space
fclose, fflush(3S) ... close or flush a stream
fcntl (2) ... file control
fcntl(5) .. file control options
fdetach(3C) .. detach a name from a STREAMS-based file descriptor
ferror, feof, clearerr, fileno(3S) ... stream status inquiries
ffs(3C) .. find first set bit
floatingpoint(3) ... IEEE floating point definitions
floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint, remainder(3M)

.. floor, ceiling, remainder, absolute value functions
floating_ to_ decimal: single_to _decimal, double_ to _decimal,

extended_to_decimal(3) convert floating-point value to decimal record
fmtmsg(3C) ... display a message on stderr or system console
fopen, freopen, fdopen(3S) ... open a stream
fopen, freopen, fdopen(3S) ... open a stream
fork(2) .. create a new process
form_cursor: pos_form_cursor(3X) .. position forms window cursor
form_data: data_ahead, data_behind(3X)

.. tell if forms field has off-screen data ahead or behind
form_driver(3X) ... command processor for the forms subsystem
form_field: set_form_fields, form_fields, field_count, move_field(3X) connect fields to forms

6 System Calls and Library Functions Reference Manual

Table of Contents

form_field_attributes: set_field_fore, field_fore, set_field_back, field_back,
set_field_pad, field_pad(3X) format the general display attributes of forms

form_field_buffer: set_field_buffer, field_buffer, set_field_status, field_status,
set_max_field(3X) ... set and get forms field attributes

form_field_info: field_info, dynamic_field_info(3X) get forms field characteristics
form_field_just: set_field_just, field_just(3X) format the general appearance of forms
form_field_new: new _field, dup _field, link_field, free_field, (3X)

.. create and destroy forms fields
form_field_opts: set_field_opts, field_opts_on, field_opts_off, field_opts(3X)

.. forms field option routines
form_field_userptr: set_field_userptr, field_userptr(3X)

.. associate application data with forms
form_field_validation: set_field_type, field_type, field_arg(3X)

... forms field data type validation
form_fieldtype: new _fieldtype, free_fieldtype, set_fieldtype_arg,

set_fieldtype_choice, link_fieldtype(3X) .. forms fieldtype routines
form_hook: set_form_init, form_init, set_form_term, form_term, set_field_init,

field_init, set_field_term, field_term(3X)
... assign application-specific routines for invocation by forms

form_new: new _form, free_form(3X) ... create and destroy forms
form_new _page: set_new _page, new _page (3X) ... forms pagination
form_opts: set_form_opts, form_opts_on, form_opts_off, form_opts(3X)

... forms option routines
form_page: set_form_page, form_page, set_current_field, current_field,

field_index(3X) ... set forms current page and field
form_post: post_form, unpost_form(3X) write or erase forms from associated subwindows
form_userptr: set_form_userptr, form_userptr(3X) associate application data with forms
form_ win: set_form_win, form_ win, set_form_sub, form_sub, scale_form(3X)

... forms window and subwindow association routines
forms(3X) ... character based forms package
fpathconf, pathconf(2) ... get configurable pathname variables
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky(3C)

.. IEEE floating-point environment control
fread, fwrite(3S) .. binary input/output
frexp, ldexp, logb, modf, modff, nextafter, scalb(3C)

... manipulate parts of floating-point numbers
fseek, rewind, ftell(3S) ... reposition a file pointer in a stream
fsetpos, fgetpos(3C) ... reposition a file pointer in a stream
fsync(2) synchronize a file's in-memory state with that on the physical medium
ftime(2) .. get time and date

Table of Contents 7

Table of Contents

ftime (3C) ... get date and time
ftw, nftw(3C) .. walk a file tree
gamma, lgamma (3M) ... log gamma function
getc, getchar, fgetc, getw (35) ... get character or word from a stream
getcontext, setcontext (2) ... get and set current user context
getcwd (3C) .. get pathname of current working directory
getdate (3C) .. convert user format date and time
getdents(2) read directory entries and put in a file system independent format
getdtablesize(3) ... get descriptor table size
getenv (3C) ... return value for environment name
getgrent, getgrgid, getgmam, setgrent, endgrent, fgetgrent(3C) get group file entry
getgroups, setgroups (2) .. get or set supplementary group access list IDs
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent, herror(3N)

... get network host entry
gethostid (3) .. get unique identifier of current host
gethostname, sethostname(3) .. get/set name of current host
getitimer, setitimer(3C) .. get/set value of interval timer
getlogin (3C) .. get login name
getrnntent, getmntany(3C) .. get mnttab file entry
getmsg(2) .. get next message off a stream
getnetconfig (3N) .. get network configuration database entry
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent(3N) get network entry
getnetgrent, setnetgrent, endnetgrent, innetgr(3N) get network group entry
getnetpath(3N) get netconfig entry corresponding to NETPATH component
getopt(3C) ... get option letter from argument vector
getpagesize (3) .. get system page size
getpass(3C) .. read a password
getpeemame(3N} ... get name of connected peer
getpid, getpgrp, getppid, getpgid(2) get process, process group, and parent process IDs
getpriority, setpriority(3) ... get/set program scheduling priority
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent(3N)

.. get protocol entry
getpw (3C) ... get name from UID
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C)

... manipulate password file entry
getrlimit, setrlimit (2) .. control maximum system resource consumption
getrusage(3) .. get information about resource utilization
gets, fgets(3S) .. get a string from a stream
getservent, getservbyport, getservbyname, setservent, endservent(3N) get service entry
getsid(2} ... get session ID

8 System Calls and Library Functions Reference Manual

----------------------- ---~-- --- Table of Contents

getsockname(3N) .. get socket name
getsockopt, setsockopt(3N) .. get and set options on sockets
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf(3C)

.. manipulate shadow password file entry
getsubopt(3C) ... parse suboptions from a string
gettimeofday, settimeofday(3) .. get or set the date and time
gettimeofday, settimeofday(3C) ... get or set the date and time
gettxt(3C) ... retrieve a text string
getuid, geteuid, getgid, getegid(2)

.. get real user, effective user, real group, and effective group IDs
getusershell, setusershell, endusershell(3) .. get legal user shells
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname(3C)

... access utmp file entry
getutx: getutxent, getutxid, getutxline, pututxline, setutxent, endutxent,

utmpxname, getutmp, getutmpx, updwtmp, updwtmpx(3C) access utmpx file entry
getvfsent, getvfsfile, getvfsspec, getvfsany (3C) .. get vfstab file entry
getwc, getwchar, fgetwc (3W) .. get wchar_t character from a stream
getwd (3) ... get current working directory pathname
getwidth(3W) .. get information of supplementary code sets
getws, fgetws(3W) .. get a wchar_t string from a stream
gmatch(3G) .. shell global pattern matching
grantpt(3C) ... grant access to the slave pseudo-terminal device
hsearch, hcreate, hdestroy(3C) .. manage hash search tables
hypot(3M) ... Euclidean distance function
ieee_functions, fp_class, isnan, copysign, scalbn(3M)

.. miscellaneous functions for IEEE arithmetic
ieee_handler(3M) ... IEEE exception trap handler function
ifignore(3N) .. check for ignored network interface
index, rindex(3) .. string operations
inet: inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa(3N)

... Internet address manipulation
initgroups(3C) .. initialize the supplementary group access list
insque, remque(3C) .. insert/remove element from a queue
ioct1(2) ... control device
isastream(3C) ... test a file descriptor
isencrypt(3G) ... determine whether a character buffer is encrypted
isnan, isnand, isnanf, finite, fpclass, unordered (3C) ... determine type of floating-point number
kill(2) ... send a signal to a process or a group of processes
killpg(3) ... send signal to a process group
13tol, ltol3 (3C) .. convert between 3-byte integers and long integers

Table of Contents 9

Table of Contents

lfmt(3C)
...... display error message in standard format and pass to logging and monitoring services

libwindows(3X) .. windowing terminal function library
link (2) ... link to a file
listen(3N) ... listen for connections on a socket
localeconv (3C) ... get numeric formatting information
lock(2) ... lock a process in primary memory
lockf(3C) ... record locking on files
locking(2) .. lock or unlock a file region for reading or writing
lsearch, Hind (3C) ... linear search and update
lseek(2) ... move read/write file pointer
maillock(3X) .. manage lockfile for user's mailbox
makecontext, swapcontext (3C) .. manipulate user contexts
makedev, major, minor(3C) ... manage a device number
malloc, free, realloc, calloc, memalign, valloc,(3C) ... memory allocator
malloc, free, realloc, calloc, mallopt, mallinfo(3X) .. memory allocator
math(S) ... math functions and constants
matherr(3M) ... error-handling function
mbchar: mbtowc, mblen, wctomb (3C) ... multibyte character handling
mbstring: mbstowcs, wcstombs(3C) .. multibyte string functions
mctl(3) ... memory management control
memcntl (2) .. memory management control
memory: memccpy, memchr, memcmp, memcpy, memmove, memset(3C)

... memory operations
menu_attributes: set_menu_fore, menu_fore, set_menu_back, menu_back,

set_menu_grey, menu_grey, set_menu_pad, menu_pad(3X)
... control menus display attributes

menu_cursor: pos_menu_cursor(3X) .. correctly position a menus cursor
menu_driver(3X) .. command processor for the menus subsystem
menu_format: set_menu_format, menu_format(3X)

.. set and get maximum numbers of rows and columns in menus
menu_hook: set_item_init, item_init, set_item_term, item_term, set_menu_init,

menu_init, set_menu_term, menu_term(3X)
.................................. assign application-specific routines for automatic invocation by menus

menu_item_current: set_current_item, current_item, set_top_row, top_row,
item_index(3X) ... set and get current menus items

menu_item_name: item_name, item_description(3X) get menus item name and description
menu_item_new: new_item, free_item(3X) create and destroy menus items

10 System Calls and Library Functions Reference Manual

Table of Contents

menu_item_opts: set_item_opts, item_opts_on, item_opts_off, item_opts(3X)
.. menus item option routines

menu_item_userptr: set_item_userptr, item_userptr(3X)
... associate application data with menus items

menu_item_ value: set_item_ value, item_ value(3X) set and get menus item values
menu_item_visible: item_visible(3X) ... tell if menus item is visible
menu_items: set_menu_items, menu_items, item_count(3X)

.. connect and disconnect items to and from menus
menu_mark: set_menu_mark, menu_mark(3X) menus mark string routines
menu_new: new _menu, free_menu(3X) .. create and destroy menus
menu_opts: set_menu_opts, menu_opts_on, menu_opts_off, menu_opts(3X)

... menus option routines
menu_pattem: set_menu_pattem, menu_pattem(3X) .. set and get menus pattern match buffer
menu_post: post_menu, unpost_menu(3X)

.. write or erase menus from associated subwindows
menu_userptr: set_menu_userptr, menu_userptr(3X) associate application data with menus
menu_ win: set_menu_win, menu_ win, set_menu_sub, menu_sub, scale_menu(3X)

... menus window and subwindow association routines
menus (3X) .. character based menus package
mincore (2) .. determine residency of memory pages
mkdir(2) ... make a directory
mkdirp, rmdirp(3G) ... create, remove directories in a path
mkfifo (3C) ... create a new FIFO
mknod (2) .. make a directory, or a special or ordinary file
mknod(2) .. make a directory, or a special or ordinary file
mkstemp(3) ... make a unique file name
mktemp (3C) .. make a unique file name
mktime(3C) ... converts a tm structure to a calendar time
mlock, munlock(3C) ... lock (or unlock) pages in memory
mlockall, munlockall (3C) ... lock or unlock address space
mmap (2) .. map pages of memory
monitor(3C) ... prepare execution profile
mount(2) ... mount a file system
mp: madd, msub, mult, mdiv, mcmp, min, mout, pow, gcd, rpow, msqrt, sdiv, itom,

xtom, mtox, mfree(3) .. multiple precision integer arithmetic
mprotect(2) .. set protection of memory mapping
msgctl(2) ... message control operations
msgget(2) ... get message queue
msgop: msgsnd, msgrcv(2) .. message operations
msync(3C) ... synchronize memory with physical storage

Table of Contents 11

Table of Contents

munmap (2) .. unmap pages of memory
nap(2) ... suspends execution for a short interval
netdir_getbyname, netdir_getbyaddr, netdir_free, taddr2uaddr, uaddr2taddr,

netdir_perror, netdir_sperror(3N) generic transport name-to-address translation
nice(2) .. change priority of a time-sharing process
nice (3C) .. change priority of a process
nl_langinfo (3C) ... language information
nl_types(S) .. native language data types
nlist(3E) .. get entries from name list
nlist (3) .. get entries from symbol table
nlsgetcall (3N) ... get client's data passed via the listener
nlsprovider(3N) ... get name of transport provider
nlsrequest(3N) ... format and send listener service request message
offsetof(3C) .. offset of structure member
open(2) .. open for reading or writing
opensem(2) ... open a semaphore
p2open, p2close(3G) ... open, close pipes to and from a command
p_online(2) ... tum a processor online or offline
panel_above: panel_above, panel_below(3X) panels deck traversal primitives
panel_move: move_panel(3X) move a panels window on the virtual screen
panel_new: new _panel, del_panel(3X) ... create and destroy panels
panel_show: show _panel, hide_panel, panel_hidden(3X) ... panels deck manipulation routines
panel_top: top_panel, bottom_panel(3X) panels deck manipulation routines
panel_ update: update_panels(3X) ... panels virtual screen refresh routine
panel_userptr: set_panel_userptr, panel_userptr(3X)

.. associate application data with a panels panel
panel_ window: panel_ window, replace_panel(3X)

.. get or set the current window of a panels panel
panels (3X) ... character based panels package
pathfind (3G) ... search for named file in named directories
pause(2) .. suspend process until signal
perror(3C) .. print system error messages
pfmt(3C) ... display error message in standard format
pipe(2) .. create an interprocess channel
plock(2) ... lock into memory or unlock process, text, or data
poll(2) .. input/ output multiplexing
popen, pclose (3S) ... initiate pipe to I from a process
print£, fprintf, sprintf(3S) .. print formatted output
print£, fprintf, sprintf(3W) .. print formatted output
print£, fprintf, sprint£, vprintf, vfprintf, vsprintf(3) formatted output conversion

12 System Calls and Library Functions Reference Manual

Table of Contents

priocntl(2) .. process scheduler control
priocntlset (2) .. generalized process scheduler control
processor_bind(2) .. bind a process to a processor
processor_info(2) ... get information about one processor
prof(S) .. profile within a function
profil(2) ... execution time profile
psignal, psiginfo (3C) .. system signal messages
psignal, sys_siglist(3) .. system signal messages
ptrace(2) .. process trace
ptsname(3C) ... get name of the slave pseudo-terminal device
publickey: getpublickey, getsecretkey(3N) ... retrieve public or secret key
putc, putchar, fputc, putw(3S) .. put character or word on a stream
putenv (3C) .. change or add value to environment
putmsg(2) .. send a message on a stream
putpwent(3C) .. write password file entry
puts, fputs(3S) .. put a string on a stream
putspent(3C) .. write shadow password file entry
putwc, putwchar, fputwc(3W) ... put wchar_t character on a stream
putws, fputws(3W) .. put a wchar_t string on a stream
qsort(3C) ... quicker sort
raise(3C) ... send signal to program
rand, srand(3C) ... simple random-number generator
rand, srand (3C) ... simple random number generator
random, srandom, initstate, setstate(3)

.. better random number generator; routines for changing generators
rcmd, rresvport, ruserok(3N) routines for returning a stream to a remote command
rdchk(2) .. check to see if there is data to be read
read(2) ... read from file
readlink(2) .. read the value of a symbolic link
realpath(3C) ... returns the real file name
reboot (3) .. reboot system or halt processor
recv, recvfrom, recvmsg(3N) ... receive a message from a socket
regcmp, regex(3G) ... compile and execute regular expression
regex, re_comp, re_exec(3) .. regular expression handler
regexp: compile, step, advance(S) regular expression compile and match routines
regexpr: compile, step, advance(3G) regular expression compile and match routines
remove(3C) .. remove file
rename(2) .. change the name of a file

Table of Contents 13

Table of Contents

resolver: res_ query, res_search, res_mkquery, res_send, res_init, dn_comp,
dn_expand(3N) .. resolver routines

rexec (3N) .. return stream to a remote command
rmdir(2) .. remove a directory
rpc(3N) .. library routines for remote procedure calls
rpc_clnt_auth: auth_destroy, authnone_create, authsys_create,

authsys_create_default(3N)
... library routines for client side remote procedure call authentication

rpc_clnt_calls: clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror,
clnt_sperrno, clnt_sperror, rpc_broadcast, rpc_call(3N)
... library routines for client side calls

rpc_clnt_create: clnt_control, clnt_create, clnt_destroy, clnt_dg_create,
clnt_pcreateerror, clnt_raw _create, clnt_spcreateerror, clnt_tli_create,
clnt_tp _create, clnt_ vc_ create (3N)
.................. library routines for dealing with creation and manipulation of CLIENT handles

rpc_svc_calls: rpc_reg, svc_reg, svc_unreg, xprt_register, xprt_unregister(3N)
... library routines for registering servers

rpc_svc_create: svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw _create, svc_tli_create, svc_tp _create, svc_ vc_create(3N)
.. library routines for dealing with the creation of server handles

rpc_svc_err: svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,
svcerr_progvers, svcerr_systemerr, svcerr_weakauth(3N)
.. library routines for server side remote procedure call errors

rpc_svc_reg: svc_freeargs, svc_getargs, svc_getreqset, svc_getrpccaller, svc_run,
svc_sendreply(3N) ... library routines for RPC servers

rpc_xdr: xdr_accepted_reply, xdr_authsys_parms, xdr_callhdr, xdr_callmsg,
xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg(3N)
... XDR library routines for remote procedure calls

rpcbind: rpcb_getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set,
rpcb_unset(3N) ... library routines for RPC bind service

rusers(3N) ... return information about users on remote machines
rwall(3N) .. write to specified remote machines
scandir, alphasort(3) ... scan a directory
scan£, fscanf, sscanf(3S) .. convert formatted input
scan£, fscanf, sscanf(3W) .. convert formatted input
sdenter, sdleave(2) .. synchronize access to a shared data segment
sdget, sdfree(2) ... attach and detach a shared data segment
sdgetv(2) .. synchronize shared data access

14 System Calls and Library Functions Reference Manual

________________________ Table of Contents

secure_rpc: authdes_seccreate, authdes_getucred, getnetname, host2netname,
key _decryptsession, key _encryptsession, key _gendes, key _setsecret,
netname2host, netname2user, user2netname(3N)
.. library routines for secure remote procedure calls

select(3C) ... synchronous I/O multiplexing
semctl(2) .. semaphore control operations
semget(2) ... get set of semaphores
semop (2) .. semaphore operations
send, sendto, sendmsg(3N) .. send a message from a socket
setbuf, setvbuf(3S) ... assign buffering to a stream
setbuf, setbuffer, setlinebuf, setvbuf(3S) .. assign buffering to a stream
setbuffer, setlinebuf(3S) .. assign buffering to a stream
setcat (3C) .. define default catalog
setjmp, longjmp (3C) .. non-local goto
setjmp, longjmp, _setjmp, _longjmp, sigsetjmp, siglongjmp(3) non-local goto
setlabel(3C) ... define the label for pfmt() and lfmt()
setlocale(3C) ... modify and query a program's locale
setpgid (2) .. set process group ID
setpgrp(2) ... set process group ID
setregid(3) ... set real and effective group IDs
setreuid(3) ... set real and effective user IDs
setsid (2) .. set session ID
setuid, setgid(2) ... set user and group IDs
shmctl(2) ... shared memory control operations
shmget(2) .. get shared memory segment identifier
shmop: shmat, shmdt(2) .. shared memory operations
shutdown(3N) ... shut down part of a full-duplex connection
sigaction(2) ... detailed signal management
sigaltstack(2) .. set or get signal alternate stack context
sigblock, sigmask(3) ... block signals
sigfpe(3) ... signal handling for specific SIGFPE codes
siginfo (5) .. signal generation information
siginterrupt(3) .. allow signals to interrupt system calls
signal, sigset, sighold, sigrelse, sigignore, sigpause(2) simplified signal management
signal(3) .. simplified software signal facilities
signal(S) ... base signals
sigpause(3) ... automically release blocked signals and wait for interrupt
sigpending(2) .. examine signals that are blocked and pending
sigprocmask(2) .. change or examine signal mask
sigsem(2) .. signal a process waiting on a semaphore

Table of Contents 15

Table of Contents

sigsend, sigsendset(2) .. send a signal to a process or a group of processes
sigsetjmp, siglongjmp(3C) ... a non-local goto with signal state
sigsetmask(3) ... set current signal mask
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember(3C) manipulate sets of signals
sigstack(3) ... set and/or get signal stack context
sigsuspend (2) .. install a signal mask and suspend process until signal
sigvec(3) ... software signal facilities
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh(3M) hyperbolic functions
sleep (3C) ... suspend execution for interval
sleep (3) .. suspend execution for interval
socket(3N) ... create an endpoint for communication
socketpair(3N) ... create a pair of connected sockets
spray(3N) ... scatter data in order to check the network
sputl, sgetl(3X) access long integer data in a machine-independent fashion
ssignal, gsignal(3C) .. software signals
stat, lstat, fstat (2) .. get file status
stat(S) ... data returned by stat system call
stat, lstat, fstat (2) .. get file status
statvfs, fstatvfs(2) .. get file system information
stdarg(S) ... handle variable argument list
stdio(3S) .. standard buffered input/output package
stdipc: ftok(3C) ... standard interprocess communication package
stime(2) ... set time
stkprotect(2) ... set permissions of stack
str: strfind, strrspn, strtms (3G) ... string manipulations
strccpy: streadd, strcadd, strecpy(3G) copy strings, compressing or expanding escape codes
strcoll(3C) ... string collation
strerror(3C) ... get error message string
strftime, cftime, ascftime(3C) .. convert date and time to string
string: strcat, strdup, stmcat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr,

strpbrk, strspn, strcspn, strtok, strstr(3C) .. string operations
string: strcasecmp, strncasecmp (3) .. string operations
strtod, atof,(3C) ... convert string to double-precision number
strtol, strtoul, atol, atoi(3C) .. convert string to integer
strxfrm(3C) ... string transformation
swab(3C) .. swap bytes
swapctl(2) .. manage swap space
symlink(2) ... make a symbolic link to a file
sync (2) .. update super block
syscall(3) .. indirect system call

16 System Calls and Library Functions Reference Manual

--·- Table of Contents

sysconf(3C) ... retrieves configurable system variables
sysfs(2) .. get file system type information
sysinfo (2) .. get and set system information strings
syslog, openlog, closelog, setlogmask(3) ... control system log
sysm68k(2) .. machine-specific functions
sysm88k(2) .. machine-specific functions
system(3S) ... issue a shell command
t_accept(3N) .. accept a connect request
t_alloc(3N) ... allocate a library structure
t_bind(3N) ... bind an address to a transport endpoint
t_close (3N) ... close a transport endpoint
t_connect(3N) ... establish a connection with another transport user
t_error(3N) .. produce error message
t_free (3N) .. free a library structure
t_getinfo (3N) ... get protocol-specific service information
t_getstate(3N) ... get the current state
t_listen(3N) ... listen for a connect request
t_look(3N) .. look at the current event on a transport endpoint
t_open(3N) .. establish a transport endpoint
t_optmgmt(3N) .. manage options for a transport endpoint
t_rcv(3N) .. receive data or expedited data sent over a connection
t_rcvconnect(3N) .. receive the confirmation from a connect request
t_rcvdis (3N) ... retrieve information from disconnect
t_rcvrel(3N) ... acknowledge receipt of an orderly release indication
t_rcvudata(3N) .. receive a data unit
t_rcvuderr(3N) ... receive a unit data error indication
t_snd (3N) .. send data or expedited data over a connection
t_snddis(3N) .. send user-initiated disconnect request
t_sndrel(3N) .. initiate an orderly release
t_sndudata (3N) ... send a data unit
t_sync (3N) .. synchronize transport library
t_unbind(3N) ... disable a transport endpoint
tam(3X) ... TAM transition libraries
tcsetpgrp (3C) ... set terminal foreground process group id
termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,

cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid(2)
.. general terminal interface

time(2) .. get time
times(2) ... get process and child process times
times(3C) ... get process times

Table of Contents 17

Table of Contents

timezone (3C) .. get time zone name given offset from GMT
tmpfile(3S) ... create a temporary file
tmpnam, tempnam(3S) .. create a name for a temporary file
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf, atan2, atan2f(3M)

... trigonometric functions
truncate, ftruncate(3C) ... set a file to a specified length
tsearch, tfind, tdelete, twalk (3C) ... manage binary search trees
ttyname, isatty(3C) .. find name of a terminal
ttyslot(3C) .. find the slot in the utmp file of the current user
types(S) .. primitive system data types
uadmin(2) .. administrative control
ualarm(3) .. schedule signal after interval in microseconds
ucontext(S) ... user context
ulimit(2) .. get and set user limits
umask(2) .. set and get file creation mask
umount(2) ... unmount a file system
uname(2) ... get name of current UNIX system
ungetc(3S) .. push character back onto input stream
ungetwc (3W) ... push wchar_t character back into input stream
unlink(2) ... remove directory entry
unlockpt(3C) .. unlock a pseudo-terminal master/slave pair
usleep(3) .. suspend execution for interval in microseconds
ustat(2) ... get file system statistics
utime(2) .. set file access and modification times
utimes (3) .. set file times
values(S) ... machine-dependent values
varargs(S) ... handle variable argument list
vfork(2) ... spawn new process in a virtual memory efficient way
vlfmt(3C)

...... display error message in standard format and pass to logging and monitoring services
vpfmt(3C)

...... display error message in standard format and pass to logging and monitoring services
vprintf, vfprintf, vsprintf(3S) print formatted output of a variable argument list
vprintf, vfprintf, vsprintf(3W) print formatted output of a variable argument list
wait(2) .. wait for child process to stop or terminate
wait, wait3, WIFSTOPPED, WIFSIGNALED, WIFEXITED(3)

.. wait for process to terminate or stop
waitid(2) ... wait for child process to change state
waitpid(2) .. wait for child process to change state
waitsem, nbwaitsem(2) await and check access to a resource governed by a semaphore

18 System Calls and Library Functions Reference Manual

Table of Contents

wconv: towupper, towlower(3W) .. translate characters
wctype: iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,

iswpunct, iswprint, iswgraph, iswcntrl, iswascii, isphonogram, isideogram,
isenglish, isnumber, isspecial (3W)
... classify ASCII and supplemetary code set characters

widec(3W) ... multibyte character I/0 routines
write, writev (2) .. write on a file
wstat(S) ... wait status
wstring: wscat, wsncat, wscmp, wsncmp, wscpy, wsncpy, wslen, wschr, wsrchr,

wspbrk, wsspn, wscspn, wstok, wstostr, strtows(3W)
... wchar_t string operations and type transformation

xdr(3N) .. library routines for external data representation
xdr_admin: xdr_getpos, xdr_inline, xdrrec_eof, xdr_setpos(3N)

... library routines for external data representation
xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference,

xdr_string, xdr_union, xdr_vector, xdr_wrapstring(3N)
... library routines for external data representation

xdr_create: xdr_destroy, xdrmem_create, xdrrec_create, xdrstdio_create(3N)
.. library routines for external data representation stream creation

xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free, xdr_int,
xdr_long, xdr_short, xdr_u_char, xdr_u_long, xdr_u_short, xdr_ void (3N)
... library routines for external data representation

ypclnt, yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first, yp_next,
yp_all, yp_order, yp_master, yperr_string, ypprot_err(3N) NIS client interface

yp_update(3N) ... change NIS information

Table of Contents 19

Table of Contents

20 System Calls and Library Functions Reference Manual

Introduction

Reference Manuals

Description Manual pages provide technical reference information about
the interfaces and execution behavior of each UNIX SYSTEM
V Release 4 component.

Organization The type of component being described is indicated by the
numerical section suffix. Within each section there may be
subsections indicated by a single letter. Related sections are
organized into reference manuals and alphabetized by name.
The following table shows the contents of the reference
manuals and their section suffixes.

Title and Contents Sections
Commands Reference Manual Volumes 1 and 2

General-purpose user commands 1
Basic networking commands IC
Form and Menu Language Interpreter (FMLI) lF
System maintenance commands lM
Enhanced networking commands lN
Miscellaneous reference information related to 5

commands.

System Calls and Library Functions
Reference Manual

System calls 2
BSD system compatibility library 3
Standard C library 3C
Executable and linking format library 3E

Continued on next page

Introduction 1

Reference Manuals, Continued

Contents Sections
System Calls and Library Functions Reference Manual (continued)

General-purpose library 3G
Math library 3M
Networking library 3N
Standard 1/0 library 3S
Specialized library 3X
Miscellaneous reference information related to programming. 5

System Files and Devices Reference Manual
System file formats 4
Special files (devices) 7

Device Driver Interface/Driver - Kernel Interface Reference Manual
Driver Data Definitions Dl
Driver Entry Point Routines D2
Kernel Utility Routines D3
Kernel Data Structures D4
Kernel Defines DS

Master Permuted Index
Permuted index of all manual pages All

2 Introduction

Retitled Reference Manuals

Background Four reference manuals for this release have been
restructured and/ or retitled to more accurately describe their
contents. The following table shows these changes.

Previous Titles Current Titles Current
Sections

User's Reference Manual/ Commands Reference Manual 1, 1C, 1F,
System Administrator's (Volume 1, a - l) 1M, 1N,
Reference Manual (Volume 2, m - z) 5
(Commands a -1)

(Commands m - z)

Programmer's Reference Manual: System Calls and Library Functions 2, 3, 3C,
Operating System API Reference Manual 3E, 3G,
Part 1: Programming Commands 3M,3N,
and System Calls 35, 3X, 5
Part 2: Functions

System Files and Devices Reference System Files and Devices Reference 4,7
Manual Manual (section 5 removed)
Permuted Index Master Permuted Index All

Introduction 3

Manual Page Format

Main
headings
used

Heading
NAME

SYNOPSIS

DESCRIPTION
EXAMPLE
FILES

SEE ALSO

4

All UNIX manual pages have a common format. The
following main headings are used:

Section Contents
Name of the component and brief statement of its purpose
Syntax of the component
General discussion of functionality
Example(s) of usage
File names built into the component
Cross-references to related components

Note: Not all manual pages use all headings.

Introduction

Typographical Conventions

Style and
conventions
used

The following typographical and formatting conventions are
used.

Convention Indicates ...
Constant width a literal that should be entered just as it

appears
Italic a substitutable argument
Square brackets around an argu- an optional argument
ment []

name or file a file name
Ellipses ... previous argument may be repeated
Argument beginning with a flag argument

- minus
+ plus
= equal

Introduction 5

Permuted Index

Definition A permuted index is an alphabetical listing of all the
keywords in the NAME line of a manual page.

Example

Certain common words are not considered keywords and are
not recognized. In the example below, the common words of,
to, and the are not recognized.

The NAME line of the adj t ime(2) manual page appears
below.

adjtime{2)

NAME

adjtime{2)

adj time- correct the time to allow synchronization of the system clock

The adj t ime(2) entries from the permuted index are shown
below. These entries appear in the a, c, and s sections of the
permuted index respectively.

Remainder of NAME line Keyword and NAME line Manual
Page

synchronization of the system/
clock adjtime correct the time to

allow synchronization of the system
synchronization of the/ adjtime
adjtime correct the time to allow

to allow synchronization of the

6

adjtime correct the time to allow
allow synchronization of the system .. .
clock adjtime correct the time to .. .
correctthe time to allow
synchronization of the system clock .. .
system clock I correct the time

adjtime(2)
adjtime(2)
adjtime(2)
adjtime(2)
adjtime(2)
adjtime(2)

Continued on next page

Introduction

Permuted Index, Continued

How a
permuted
index is
constructed

The center column lists each keyword followed by all or a
portion of the NAME line, as space permits. The left column
lists the remainder of the NAME line. The right column
indicates the manual page being referenced.

Omitted words are indicated with a slash (I).

Identification Manual page entries are identified with their section suffixes
of entries shown in parentheses.

Master
Permuted
Index

Introduction

Example: man(l) and man(S)

Section suffixes eliminate confusion caused by duplication of
names among the sections.

Each reference manual has a permuted index for the manual
pages contained in that book.

The Master Permuted Index covers all the manual pages of this
documentation library.

7

Request for Comment

Description

Online
versions
of RFCs

8

A Request for Comment (RFC) is a document that describes
some aspect of networking technology. The RFCs cited in the
SEE ALSO section of these manual pages are available in
hard copy for a small fee from:

Network Information System Center
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
415-859-6387 fax: 415-859-6028
email:nisc@nisc. sri. com

Online versions of the RFCs are available by ftp from
nic. ddn. mil.To retrieve an on-line RFC, do the following:

Step Action
1 Connect to the RFC host by entering:

ftp nic.ddn.mil
user name:anonymous
password: guest

2 Retrieve the RFC by entering:
get rfc/rfcnum

where num is the number of the RFC

Exam12le:
get rfc:rfc1171.txt

3 End the ftp session by entering:

quit

Introduction

intro (2) intro (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION

10/92

This section describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -1 or the NULL pointer; the individual descriptions
specify the details. An error number is also made available in the external variable
errno. errno is not cleared on successful calls, so it should be tested only after an
error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to modify a file in some way for­
bidden except to its owner or the super-user. It is also returned for attempts
by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
A file-name is specified and the file should exist but doesn't, or one of the
directories in a path-name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by PID in the kill
or ptrace routine.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execution is
resumed after processing the signal, it will appear as if the interrupted rou­
tine call returned this error condition.

5 EIO I/0 error
Some physical I/0 error has occurred. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or exists
beyond the limit of the device. It may also occur when, for example, a tape
drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than ARG_MAX bytes is presented to a member of the
exec family of routines. The argument list limit is the sum of the size of the
argument list plus the size of the environment's exported shell variables.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid format.

Page 1

intro (2) intro(2)

Page 2

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read [respectively, write]
request is made to a file that is open only for writing (respectively, reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
For example, the fork routine failed because the system's process table is
full or the user is not allowed to create any more processes, or a system call
failed because of insufficient memory or swap space.

12 ENOMEM Not enough space
During execution of an exec, brk, or sbrk routine, a program asks for more
space than the system is able to supply. This is not a temporary condition;
the maximum size is a system parameter. The error may also occur if the
arrangement of text, data, and stack segments requires too many segmenta­
tion registers, or if there is not enough swap space during the fork routine.
If this error occurs on a resource associated with Remote File Sharing (RFS),
it indicates a memory depletion which may be temporary, dependent on
system activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument
of a routine. For example, errno potentially may be set to EFAULT any time
a routine that takes a pointer argument is passed an invalid address, if the
system can detect the condition. Because systems will differ in their ability
to reliably detect a bad address, on some implementations passing a bad
address to a routine will result in undefined behavior.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required (for
example, in a call to the mount routine).

16 EBUSY Device busy
An attempt was made to mount a device that was already mounted or an
attempt was made to unmount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (for example,
call to the link routine).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

10/92

intro(2) intro (2)

10/92

19 ENODEV No such device
An attempt was made to apply an inappropriate operation to a device (for
example, read a write-only device).

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required (for example, in
a path prefix or as an argument to the chdir routine).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
An invalid argument was specified (for example, unmounting a non­
mounted device), mentioning an undefined signal in a call to the signal or
kill routine.

23 ENFILE File table overflow
The system file table is full (that is, SYS_OPEN files are open, and tem­
porarily no more files can be opened).

24 EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors open at a time.

25 ENOTTY Not a typewriter
A call was made to the ioctl routine specifying a file that is not a special
character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or to
remove a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size, FCHR_MAX [see
getrlimit].

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there is no free
space left on the device. In the fcntl routine, the setting or removing of
record locks on a file cannot be accomplished because there are no more
record entries left on the system.

29 ESPIPE Illegal seek
A call to the lseek routine was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links, LINK_MAX, to
a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condi­
tion normally generates a signal; the error is returned if the signal is ignored.

Page 3

intro(2) intro(2)

Page 4

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on
the specified message queue [see rnsgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal
of an identifier from the file system's name space [see rnsgctl(2}, sernctl(2),
and shrnct1(2}].

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error pertains to file
and record locking.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is full [see
fcntl(2)].

47-49 Reserved

58-59 Reserved

60 ENOSTR Device not a stream
A putrnsg or getrnsg system call was attempted on a file descriptor that is
not a STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired
The timer set for a STREAMS ioctl call has expired. The cause of this error
is device specific and could indicate either a hardware or software failure, or
perhaps a timeout value that is too short for the specific operation. The
status of the ioctl operation is indeterminate.

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no STREAMS head
data structures were available. This is a temporary condition; one may
recover from it if other processes release resources.

10/92

intro(2) intro (2)

10/92

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try to
advertise, unadvertise, mount, or unmount remote resources while the
machine has not done the proper startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call from a package
which has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to advertise a resource
which is not on the local machine, or try to mount/unmount a device (or
path-name) that is on a remote machine.

67 ENOLINK Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit) connecting
to a remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource
which has been advertised already, or try to stop RFS while there are
resources still advertised, or try to force unmount a resource when it is still
advertised.

69 ESRMNT Srmount error
This error is RFS specific. It occurs when an attempt is made to stop RFS
while resources are still mounted by remote machines, or when a resource is
readvertised with a client list that does not include a remote machine that
currently has the resource mounted.

70 ECOMM Communication error on send
This error is RFS specific. It occurs when the current process is waiting for a
message from a remote machine, and the virtual circuit fails.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is generally
not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote resources
which are not directly accessible.

76 EDOTDOT Error 76
This error is RFS specific. A way for the server to tell the client that a process
has transferred back from mount point.

77 EBADMSG Not a data message
During a read, getmsg, or ioctl I_RECVFD system call to a STREAMS dev­
ice, something has come to the head of the queue that can't be processed.
That something depends on the system call:
read: control information or a passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

Page 5

intro(2) intro(2)

Page 6

78 ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect; see lirn­
i ts(4).

79 EOVERFLOW
Value too large for defined data type.

80 ENOTUNIQ Name not unique on network
Given log name not unique.

81 EBADFD File descriptor in bad state
Either a file descriptor refers to no open file or a read request was made to a
file that is open only for writing.

82 EREMCHG Remote address changed

83 ELIBACC Cannot access a needed shared library
Trying to exec an a. out that requires a static shared library and the static
shared library doesn't exist or the user doesn't have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec an a. out that requires a static shared library (to be linked in)
and exec could not load the static shared library. The static shared library
is probably corrupted.

85 ELIBSCN • lib section in a. out corrupted
Trying to exec an a. out that requires a static shared library (to be linked in)
and there was erroneous data in the .lib section of the a.out. The .lib
section tells exec what static shared libraries are needed. The a. out is
probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a. out that requires more static shared libraries than is
allowed on the current configuration of the system.

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle multiple characters as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path-name traversal
exceeds MAXSYMLINKS

91 ESTART Error 91
Interrupted system call should be restarted.

92 ESTRPIPE Error 92
Streams pipe error (not externally visible).

158 ENOTEMPTY Directory not empty

160 EUSERS Too many users
Too many users.

10/92

intro(2) intro (2)

10/92

130 ENOTSOCK Socket operation on non-socket
Self-explanatory.

131 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a transport endpoint.
Destination address required.

132 EMSGSIZE Message too long
A message sent on a transport provider was larger than the internal mes­
sage buffer or some other network limit.

133 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket
type requested.

134 ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting options for a
protocol.

135 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation
for it exists.

136 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or
no implementation for it exists.

137 EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram transport end­
point.

138 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no imple­
mentation for it exists. Used for the Internet protocols.

139 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

140 EADDRINUSE Address already in use
User attempted to use an address already in use, and the protocol does not
allow this.

141 EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with an address not
on the current machine.

142 ENETDOWN Network is down
Operation encountered a dead network.

143 ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

144 ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

Page 7

intro (2) intro (2)

145 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

146 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a
loss of the connection on the remote host due to a timeout or a reboot.

147 ENOBUFS No buffer space available
An operation on a transport endpoint or pipe was not performed because
the system lacked sufficient buffer space or because a queue was full.

148 EISCONN Transport endpoint is already connected
A connect request was made on an already connected transport endpoint;
or, a sendto or sendmsg request on a connected transport endpoint
specified a destination when already connected.

149 ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the transport end­
point is not connected and (when sending a datagram) no address was sup­
plied.

150 ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport endpoint has
already been shut down.

151 ETOOMANYREFS Too many references: cannot splice

152 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not prop­
erly respond after a period of time. (The timeout period is dependent on the
communication protocol.)

153 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused
it. This usually results from trying to connect to a service that is inactive on
the remote host.

156 EHOSTDOWN Host is down
A transport provider operation failed because the destination host was
down.

157 EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreachable host.

129 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an
operation in progress.

128 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was
attempted on a non-blocking object.

162 ESTALE Stale NFS file handle

DEFINITIONS
Background Process Group

Page 8

Any process group that is not the foreground process group of a session that has
established a connection with a controlling terminal.

10/92

intro (2) intro (2)

Controlling Process
A session leader that established a connection to a controlling terminal.

Controlling Terminal
A terminal that is associated with a session. Each session may have, at most, one
controlling terminal associated with it and a controlling terminal may be associated
with only one session. Certain input sequences from the controlling terminal cause
signals to be sent to process groups in the session associated with the controlling
terminal; see termio(7).

Directory
Directories organize files into a hierarchical system where directories are the nodes
in the hierarchy. A directory is a file that catalogues the list of files, including direc­
tories (sub-directories), that are directly beneath it in the hierarchy. Entries in a
directory file are called links. A link associates a file identifier with a file-name. By
convention, a directory contains at least two links, . (dot) and .. (dot-dot). The
link called dot refers to the directory itself while dot-dot refers to its parent direc­
tory. The root directory, which is the top-most node of the hierarchy, has itself as
its parent directory. The path-name of the root directory is I and the parent direc­
tory of the root directory is I.

Downstream
In a stream, the direction from stream head to driver.

Driver
In a stream, the driver provides the interface between peripheral hardware and the
stream. A driver can also be a pseudo-driver, such as a multiplexor or log driver
[see log(7)], which is not associated with a hardware device.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are used to
determine file access permissions (see below). The effective user ID and effective
group ID are equal to the process's real user ID and real group ID
respectively, unless the process or one of its ancestors evolved from a file that had
the set-user-ID bit or set-group ID bit set [see exec(2)].

File Access Permissions

10/92

Read, write, and execute/search permissions on a file are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the
file and the appropriate access bit of the "owner" portion (0700) of the file
mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file, but either the effective group ID or one of the supplementary
group IDs of the process match the group ID of the file and the appropriate
access bit of the "group" portion (0070) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file, and neither the effective group ID nor any of the supplementary
group IDs of the process match the group ID of the file, but the appropriate
access bit of the "other" portion (0007) of the file mode is set.

Page 9

intro (2) intro (2)

Otherwise, the corresponding permissions are denied.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The value of a file
descriptor is from 0 to (NOFILES-1). A process may have no more than NOFILES
file descriptors open simultaneously. A file descriptor is returned by system calls
such as open, or pipe. The file descriptor is used as an argument by calls such as
read, write, ioctl, and close.

File-Name
Names consisting of 1 to NAME_MAX characters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for I (slash).

Note that it is generally unwise to use *, ? , [,or J as part of file-names because of
the special meaning attached to these characters by the shell [see sh(l)]. Although
permitted, the use of unprintable characters in file-names should be avoided.

A file-name is sometimes referred to as a path-name component. The interpretation
of a path-name component is dependent on the values of NAME_MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any path­
name component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect for the
path prefix of that component [see fpathconf(2) and limi ts(4)], it shall be con­
sidered an error condition in that implementation. Otherwise, the implementation
shall use the first NAME_MAX bytes of the path-name component.

Foreground Process Group
Each session that has established a connection with a controlling terminal will dis­
tinguish one process group of the session as the foreground process group of
the controlling terminal. This group has certain privileges when accessing its con­
trolling terminal that are denied to background process groups.

Message
In a stream, one or more blocks of data or information, with associated STREAMS
control structures. Messages can be of several defined types, which identify the
message contents. Messages are the only means of transferring data and communi­
cating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a
msgget system call. Each msqid has a message queue and a data structure associ­
ated with it. The data structure is referred to as msqid_ds and contains the follow­
ing members:

Page 10 10/92

intro (2) intro (2)

struct
struct
struct
ulong
ulong
ulong
pid_l
pid_t
time_t
long
time_t
long
time_t
long

ipc_perm msg_perm;
msg *msg_first;
msg *msg_last;

msg_cbytes;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_susec;
msg_rtime;
msg_rusec;
msg_ctime;
msg_cusec;

Here are descriptions of the fields of the msqid_ds structure:

msg_perm is an ipc_perm structure that specifies the message operation
permission (sec below). This structure includes the following members:

uid_t cuid; I* creator user id *I
gid_t cg id; I* creator group id *I
uid_t uid; I* user id *I
gid_t gid; I* group id *I
mode t mode; I* r/w permission *I
us ho rt seq; I* slot usage sequence # *I
key_t key; I* key *I

*msg_first is a pointer to the first message on the queue.

*msg_last is a pointer to the last message on the queue.

msg_cbytes is the current number of bytes on the queue.

msg_qnum is the number of messages currently on the queue.

msg_qbytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd
operation.

msg_lrpid is the process id of the last process that performed a msgrcv
operation.

msg_stime and msg_susec are the seconds and microseconds respectively,
of the time of the last msgsnd operation.

msg_rtime and msg_rusec are the seconds and microseconds respectively,
of the time of the last msgrcv operation.

msg_ctime and msg_cusec are the seconds and microseconds respectively,
of the time of the last msgctl operation that changed a member of the
above structure.

Message Operation Permissions

10/92

In the msgop and msgctl system call descriptions, the permission required for an
operation is given as Uokenl, where token is the type of permission needed, inter­
preted as follows:

Page 11

intro(2)

00400
00200
00040
00020
00004
00002

READ by user
WRITE by user
READ by group
WRITE by group
READ by others
WRITE by others

intro (2)

Read and write permissions on a msqid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg__perm. cuid or
msg__perm. uid in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of msg__perm. mode is set.

The effective group ID of the process matches msg__perm. cgid or
msg__perm. gid and the appropriate bit of the "group" portion (060) of
msg__perm.modeisset.

The appropriate bit of the "other" portion (006) of msg__perm. mode is set.

Otherwise, the corresponding permissions are denied.

Module
A module is an entity containing processing routines for input and output data. It
always exists in the middle of a stream, between the stream's head and a driver. A
module is the STREAMS counterpart to the commands in a shell pipeline except that
a module contains a pair of functions which allow independent bidirectional
(downstream and upstream) data flow and processing.

Multiplexor
A multiplexor is a driver that allows streams associated with several user processes
to be connected to a single driver, or several drivers to be connected to a single user
process. STREAMS does not provide a general multiplexing driver, but does pro­
vide the facilities for constructing them and for connecting multiplexed
configurations of streams.

Orphaned Process Group
A process group in which the parent of every member in the group is either itself a
member of the group, or is not a member of the process group's session.

Path-Name
A path-name is a null-terminated character string starting with an optional slash
(/),followed by zero or more directory names separated by slashes, optionally fol­
lowed by a file-name.

If a path-name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path-name is treated as if it named a
non-existent file.

Page 12 10/92

intro(2) intro (2)

Process ID
Each process in the system is uniquely identified during its lifetime by a positive
integer called a process ID. A process ID may not be reused by the system until the
process lifetime, process group lifetime and session lifetime ends for any process ID,
process group ID and session ID equal to that process ID.

Parent Process ID
A new process is created by a currently active process [see fork(2)]. The parent
process ID of a process is the process ID of its creator.

Privilege
Having appropriate privilege means having the capability to override system res­
trictions.

Process Group
Each process in the system is a member of a process group that is identified by a
process group ID. Any process that is not a process group leader may create a new
process group and become its leader. Any process that is not a process group
leader may join an existing process group that shares the same session as the pro­
cess. A newly created process joins the process group of its parent.

Process Group Leader
A process group leader is a process whose process ID is the same as its process
group ID.

Process Group ID
Each active process is a member of a process group and is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader.
This grouping permits the signaling of related processes [see kill(2)].

Process Lifetime
A process lifetime begins when the process is forked and ends after it exits, when
its termination has been acknowledged by its parent process. See wai t(2).

Process Group Lifetime
A process group lifetime begins when the process group is created by its process
group leader, and ends when the lifetime of the last process in the group ends or
when the last process in the group leaves the group.

Read Queue
In a stream, the message queue in a module or driver containing messages moving
upstream.

Real User ID and Real Group ID

10/92

Each user allowed on the system is identified by a positive integer (O to MAXUID)
called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID
and real group ID, respectively, of the user responsible for the creation of the pro­
cess.

Page 13

intro (2) intro (2)

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path-name searches. The root direc­
tory of a process need not be the root directory of the root file system.

Saved User ID and Saved Group ID
The saved user ID and saved group ID are the values of the effective user ID and
effective group ID prior to an exec of a file whose set user or set group file mode bit
has been set [see exec(2)].

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget
system call. Each semid has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds and contains the following
members:

struct ipc_perm sern_perm; I* operation permission struct *I
struct sern *sem_base; I* ptr to first semaphore in set *I
char sern_pad [2];
ushort sem_nsems; I* # of sems in set *I
time_t sem_otirne; I* last sernop time *I
long sem_ousec; /* in secs and microsecs. *I
time_ t sem_ctirne; I* last change time */
long sern_cusec I* in secs and microsecs. *I

Here are descriptions of the fields of the semid_ds structure:

sem_perm is an ipc_perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

uid_t uid; I* user id *I
gid_t gid; I* group id *I
uid_t cu id; I* creator user id *I
gid_t cgid; I* creator group id *I
mode - t mode; I* r/a permission *I
us ho rt seq; I* slot usage sequence number *I
key_t key; I* key *I

sem_nsems is equal to the number of semaphores in the set. Each sema­
phore in the set is referenced by a nonnegative integer referred to as a
sem_num. sem_num values run sequentially from 0 to the value of
sem_nsems minus 1.

sem_otime and sem_ousec are the seconds and microseconds respectively,
of the time of the last semop operation.

sem_ctime and sem_cusec are the seconds and microseconds respectively,
of the time of the last semctl operation that changed a member of the
above structure.

A semaphore is a data structure called sem that contains the following members:

Page 14 10/92

intro(2) intro (2)

ushort semval; I* semaphore value *I
pid_t sempid; I* pid of last operation *I
ushort semncnt; I* # awaiting semval > cval *I
ushort semzcnt; I* # awaiting semval = 0 *I

semval is a non-negative integer that is the actual value of the semaphore.

sempid is equal to the process ID of the last process that performed a sema­
phore operation on this semaphore.

semncnt is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become greater than its current value.

semzcnt is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become 0.

Semaphore Operation Permissions
In the semop and semctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed inter­
preted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions on a semid are granted to a process if one or more of the
following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm. cuid or
sem_perm. uid in the data structure associated with semid and the
appropriate bit of the "user" portion (0600) of sem_perm. mode is set.

The effective group ID of the process matches sem_perm. cg id or
sem_perm. gid and the appropriate bit of the "group" portion (060) of
sem_perm.mode is set.

The appropriate bit of the "other" portion (06) of sem_perm. mode is set.

Otherwise, the corresponding permissions are denied.

Session
A session is a group of processes identified by a common ID called a session ID,
capable of establishing a connection with a controlling terminal. Any process that
is not a process group leader may create a new session and process group, becom­
ing the session leader of the session and process group leader of the process group.
A newly created process joins the session of its creator.

Session ID

10/92

Each session in the system is uniquely identified during its lifetime by a positive
integer called a session ID, the process ID of its session leader.

Page 15

intro (2) intro (2)

Session Leader
A session leader is a process whose session ID is the same as its process and process
group ID.

Session Lifetime
A session lifetime begins when the session is created by its session leader, and ends
when the lifetime of the last process that is a member of the session ends, or when
the last process that is a member in the session leaves the session.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a
shmget system call. Each shmid has a segment of memory (referred to as a shared
memory segment) and a data structure associated with it. (Note that these shared
memory segments must be explicitly removed by the user after the last reference to
them is removed.) The data structure is referred to as shmid_ds and contains the
following members:

struct ipc_perm shm_perm; I* operation permission struct *I
int shm_segsz; I* size of segment in bytes */
struct anon_map *shm_amp; I* segment anon_map pointer*/
pid_t shrn_lpid; I* pid of last operation */
pid_t shm_cpid; /* pid of creator */
ulong shm_nattch; /* used only for shminfo */
ulong shm_cnattch; I* used only for shminfo *I
time_ t shm_atime; /* last shmat time *I
long shm_ausec; I* in secs and microsecs.*/
time_ t shm_dtime; I* last shrndt time *I
long shm_cusec; I* in secs and microsecs. *I
time_ t shm_ctime I* last change time *I
long shm_cusec I* in secs and microsecs. *I

Here are descriptions of the fields of the shmid_ds structure:

Page 16

shm__perm is an ipc__perm structure that specifies the shared memory opera­
tion permission (see below). This structure includes the following
members:

uid_t cu id; I* creator user id *I
gid_t cg id; I* creator group id *I
uid_t uid; I* user id *I
gid_t gid; I* group id *I
mode - t mode; I* r/w permission *I
ushort seq; I* slot usage sequence # *I
key_t key; I* key *I

shm_segsz specifies the size of the shared memory segment in bytes.

shm_cpid is the process ID of the process that created the shared memory
identifier.

shm_lpid is the process ID of the last process that performed a shmop
operation.

10/92

intro (2) intro (2)

shm_nattch is the number of processes that currently have this segment
attached.

shm_otime and shm_ausec are the seconds and microseconds respectively,
of the time of the last shmat operation [see shmop(2)].

shm_dtime and shm_dusec are the seconds and microseconds respectively,
of the time of the last shmdt operation [see shmop(2)].

shm_ctime and shm_cusec are the seconds and microseconds respectively,
of the time of the last shmctl operation that changed members of the above
structure.

Shared Memory Operation Permissions
In the shmop and shmctl system call descriptions, the permission required for an
operation is given as !token\, where token is the type of permission needed inter­
preted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm. cuid or
shm_perm. uid in the data structure associated with shmid and the
appropriate bit of the "user" portion (0600) of shm_perm.mode is set.

The effective group ID of the process matches shm_perm. cg id or
shm_perm.gid and the appropriate bit of the "group" portion (060) of
shm_perm. mode is set.

The appropriate bit of the "other" portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Special Processes
The process with ID 0 and the process with ID 1 are special processes referred to as
procO and procl; see kill(2). procO is the process scheduler. procl is the initializa­
tion process (init); procl is the ancestor of every other process in the system and is
used to control the process structure.

STREAMS

10/92

A set of kernel mechanisms that support the development of network services and
data communication drivers. It defines interface standards for character
input/output within the kernel and between the kernel and user level processes.
The STREAMS mechanism is composed of utility routines, kernel facilities and a set
of data structures.

Page 17

intro (2) intro (2)

Stream
A stream is a full-duplex data path within the kernel between a user process and
driver routines. The primary components are a stream head, a driver and zero or
more modules between the stream head and driver. A stream is analogous to a
shell pipeline except that data flow and processing are bidirectional.

Stream Head
In a stream, the stream head is the end of the stream that provides the interface
between the stream and a user process. The principal functions of the stream head
are processing STREAMS-related system calls, and passing data and information
between a user process and the stream.

Super-user
A process is recognized as a super-user process and is granted special privileges,
such as immunity from file permissions, if its effective user ID is 0.

Upstream
In a stream, the direction from driver to stream head.

Write Queue
In a stream, the message queue in a module or driver containing messages moving
downstream.

Page 18 10/92

intro(3) intro(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION

10/92

This section describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in Sec­
tion 2 of this volume. Function declarations can be obtained from the #include
files indicated on each page. Certain major collections are identified by a letter after
the section number:

(3C) These functions, together with those of Section 2 and those marked (3S), con­
stitute the standard C library, libc, which is automatically linked by the C
compilation system. The standard C library is implemented as a shared
object, libc. so, and an archive, libc. a. C programs are linked with the
shared object version of the standard C library by default. Specify -dn on
the cc command line to link with the archive version. See cc(l) for other
overrides.

(3E) These functions constitute the ELF access library, libelf. This library is not
implemented as a shared object, and is not automatically linked by the C
compilation system. Specify - lelf on the cc command line to link with this
library.

(3G) These functions constitute the general-purpose library, libgen. This library
is not implemented as a shared object, and is not automatically linked by the
C compilation system. Specify - lgen on the cc command line to link with
this library.

(3M) These functions constitute the math library, libm. Declarations for these
functions may be obtained from the #include file math. h. [See math(S).]

libm is not automatically loaded by the C compilation system; use the -1
option to cc to access the library.

libm contains the full set of double-precision routines plus some single­
precision routines (designated by the suffix f) that give better performance
with less precision. Selected routines are hand-optimized for performance.
The optimized routines include sin, cos, tan, a tan, atan2, exp, log, loglO,
pow, and sqrt and their single-precision equivalents.

This library is not implemented as a shared object, and is not automatically
linked by the C compilation system. Specify - lm on the cc command line to
link with this library.

(3N) These functions are contained in three libraries: the Network Services
library, libnsl; the Sockets Interface library, libsocket; and the Internet
Domain Name Server library, libresol v.

The following functions constitute the libnsl library:

crl

cs

des

crl authentication library

Connection Server library interface

Data Encryption Standards library

Page 1

intro(3) intro(3)

netdir Network Directory functions. This contains look-up functions
and the access point to network directory libraries for various
network transports.

netselect Network Selection routines. These functions manipulate the
I etc/netconfig file and return entries.

nsl Transport Library Interface (TLI). These functions contain the
implementation of X/OPEN's Transport Level Interface.

rexec REXEC library interface

rpc User-level Remote Procedure Call library

saf Service Access Facility library

yp Network Information Service functions

The libsocket library has two components: inet, containing the Inernet
library routines, and socket, containing the Socket Interface routines. The
libresol v library contains the resolver routines.

The standard networking libraries are implemented as a shared object
(libnsl. so and libsocket. so) or archive file (libresol v. a). To link with
these libraries, specify the cc command line with -lnsl, -lsocket, or -
lresol v, respectively.

(3S) These functions constitute the "standard I/Opackage" [see stdio(3S)].

(3X) Specialized libraries. The files in which these libraries are found are given on
the appropriate pages.

DEFINITIONS

Page 2

A character is any bit pattern able to fit into a byte on the machine. The null charac­
ter is a character with value 0, conventionally represented in the C language as \ O.
A character array is a sequence of characters. A null-terminated character array (a
string) is a sequence of characters, the last of which is the null character. The null
string is a character array containing only the terminating null character. A NULL
pointer is the value that is obtained by casting O into a pointer. C guarantees that
this value will not match that of any legitimate pointer, so many functions that
return pointers return NULL to indicate an error. The macro NULL is defined in
stdio. h. Types of the form size_t are defined in the appropriate header files.

In the Network Services library, netbuf is a structure used in various TLI functions
to send and receive data and information. netbuf is defined in sys/tiuser .h, and
includes the following members:

struct netbuf {

} ;

unsigned int maxlen; /* The physical size of the buffer */
unsigned int len; /* The number of bytes in the buffer */
char *buf; /* Points to user input and/or output buffer */

If netbuf is used for output, the function will set the user value of Zen on return.
maxZen generally has significance only when buf is used to receive output from the
TLI function. In this case, it specifies the maximum value of Zen that can be set by
the function. If maxZen is not large enough to hold the returned information, an

10/92

intro(3) intro (3)

FILES

TBUFOVFLW error will generally result. However, certain functions may return part
of the data and not generate an error.

IN CD IR
LIBDIR
LIBDIR/libc. so
LIBDIR/ 1 ibc. a
LIBDIR!l ibgen. a

usually /usr/include
usually /usr/ccs/lib

LIB DIR/ 1 ibm. a
LIBDIR/libnsl. so
LIBDIRI 1 ibresol v. a
LIBDIR/libsfm. sa
LIBDIR/ 1 ibsocket. so
/usr/lib/libc.so.1

SEE ALSO
ar(l), cc(l), ld(l), lint(l), nm(l), intro(2), stdio(3S), math(S),

DIAGNOSTICS
Math Library (libm) Only

NOTES

10/92

For functions that return floating-point values, error handling varies according to
compilation mode. Under the -Xt (default) option to cc, these functions return the
conventional values 0, ±HUGE, or NaN when the function is undefined for the given
arguments or when the value is not representable. In the -Xa and -Xe compilation
modes, ±HUGE_ VAL is returned instead of ±HUGE. (HUGE_ VAL and HUGE are defined
in math. h to be infinity and the largest-magnitude single-precision number, respec­
tively.) In every case, the external variable errno [see intro(2)] is set to the value
EDOM or ERANGE, although the value may vary for a given error depending on com­
pilation mode.

None of the functions, external variables, or macros should be redefined in the
user's programs. Any other name may be redefined without affecting the behavior
of other library functions, but such redefinition may conflict with a declaration in
an included header file.

The header files in INCDIR provide function prototypes (function declarations
including the types of arguments) for most of the functions listed in this manual.
Function prototypes allow the compiler to check for correct usage of these func­
tions in the user's program. The lint program checker may also be used and will
report discrepancies even if the header files are not included with #include state­
ments. Definitions for Sections 2, 3C, and 3S are checked automatically. Other
definitions can be included by using the -1 option to 1 int. (For example, - lm
includes definitions for libm.) Use of lint is highly recommended.

Users should carefully note the difference between STREAMS and stream. STREAMS
is a set of kernel mechanisms that support the development of network services
and data communication drivers. It is composed of utility routines, kernel facilities,
and a set of data structures. A stream is a file with its associated buffering. It is
declared to be a pointer to a type FILE defined in stdio. h.

In detailed definitions of components, it is sometimes necessary to refer to symbolic
names that are implementation-specific, but which are not necessarily expected to

Page 3

intro (3) intro(3)

Page 4

be accessible to an application program. Many of these symbolic names describe
boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given sym­
bolic names. These names always appear enclosed in curly brackets to distinguish
them from symbolic names of other implementation-specific constants that are
accessible to application programs by header files. These names are not necessarily
accessible to an application program through a header file, although they may be
defined in the documentation for a particular system.

In general, a portable application program should not refer to these symbolic names
in its code. For example, an application program would not be expected to test the
length of an argument list given to a routine to determine if it was greater than
{ARG_MAX}.

10/92

intro(3M) (Math Libraries) intro(3M)

NAME
intro - introduction to math libraries

SYNOPSIS
cc [t1ag ...]file ... -lm[library ...]

cc -o -Ksd [t1ag .. .]file ... -J sfm [library ...]

#include <math.h>

DESCRIPTION

10/92

This section describes the functions in the math libraries, libm and libsfm.
Declarations for these functions may be obtained from the #include file math.h.
Several generally useful mathematical constants are also defined there [see
intro(3) and math(5)].

The reference manual pages are divided as follows: Commands Reference Manual,
Volumes 1: Section 1 and all Section 1 subsections, and Section 5 manual pages
related to commands.

System Calls and Library Functions Reference Manual: Sections 2, 3, and all Section 3
subsections, and Section 5 manual pages related to programming.

System Files and Devices Reference Manual: Sections 4 and 7.

The math libraries are not automatically loaded by the C compilation system; use
the -1 or -J options to cc to access the libraries as follows:

- lm Search the regular math library, 1 ibm.

-J sfm Do in-line expansion of functions from the fast single-precision
assembly source math library, libsfm. Specify -0 -Ksd to
optimize for speed.

libm Contains the full set of double-precision routines plus some single­
prec1s10n routines (designated by the suffix f) that give better perfor­
mance with less precision. Selected routines are hand-optimized for per­
formance. The optimized routines include sin, cos, tan, atan, atan2,
exp, log, loglO, pow, and sqrt and their single-precision equivalents.

libsfm Contains the functions sinf, cosf, tanf, asinf, acosf, atanf, expf,
logf, loglOf, powf, and sqrtf. The source library routines are in-line
expanded by the optimizer to provide faster execution by reducing the
overhead of argument passing, function calling and returning, and return
value passing. The source library is designed for applications that desire
an increase in speed at the potential cost of size.

libsfm should be used only when necessary and with extreme caution. It
is a special purpose library that does not do error checking or domain
reduction. In other words, these functions never call matherr, and argu­
ments aren't reduced to be within a finite range.

Inputs to sinf and cosf must be in the range

E:::;x:::;E_
2 2

Page 1

intro(3M) (Math Libraries) intro(3M)

Inputs to tanf must be in the range
7t 7t --<x<-
2 2

Inputs to sqrtf, logf, and loglOf must be greater than 0.

DEFINITIONS
See intro(3) for C language definitions.

FILES
LIBDIR usually /usr/ccs/lib
LIBDIR/libm.a

SEE ALSO
cc(l), intro(2), intro(3), math(S)

DIAGNOSTICS

Page 2

Error handling varies according to compilation mode. Under the -Xt (default)
option to cc, these functions return the conventional values 0, ±HUGE, or NaN when
the function is undefined for the given arguments or when the value is not
representable. In the -Xa and -Xe compilation modes, ±HUGE_VAL is returned
instead of ±HUGE. (HUGE_ VAL and HUGE are defined in math. h to be infinity and the
largest-magnitude single-precision number, respectively.) In every case, the exter­
nal variable errno [see intro(2)] is set to the value EDOM or ERANGE, although the
value may vary for a given error depending on compilation mode. See the table
under ma therr(3M) below.

10/92

intro (5)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities related to programming.

10/92

intro (5)

Page 1

intro (2) (Application Compatibility Package) intro (2)

NAME

Errnos

10/92

intro

This section describes all the system calls. Many of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value which is almost always -1 or the NULL pointer. The individual descriptions
specify the details. The following is a complete list of the error names and their
descriptions.

EACCES Search permission is denied for a component of the path
prefix.

EDEADLK

EEXIST

EFAULT

EFAULT

EINVAL

EINTR

EISNAM

ELOOP

EMULTIHOP

ENAMETOOLONG

ENAVAIL

ENO ENT

A process' attempt to lock a file region would cause a
deadlock between processes vying for control of that region.

The named file exists.

buf or path points to an invalid address.

path points outside the allocated address space of the pro­
cess.

An invalid argument was specified mentioning an
undefined signal in a call to the signal or kill routine.
Also set by the functions described in the math package
(3M).

A signal was caught during the system call.

A XENIX name file (semaphore, shared data, and so on) was
specified when not expected.

Too many symbolic links were encountered in translating
path.
Components of path require hopping to multiple remote
machines.

The length of the path argument exceeds { PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
(_POSIX_NO_TRUNC) is in effect.

An opensem(2), waitsem(2) or s.igsem(2) was issued to a
XENIX semaphore that has not been initialized by a call to
creatsem(2). A sigsem was issued to a XENIX semaphore
out of sequence; that is, before the process has issued the
corresponding wait sem to the semaphore. An nbwai t sem
was issued to a semaphore guarding a resource that is
currently in use by another process. The semaphore that a
process was waiting on has been left in an inconsistent state
when the process controlling the semaphore exited without
relinquishing control properly; that is, without issuing a
wai tsem on the semaphore.

The named file does not exist or is the null pathname.

Page 1

intro(2)

Page 2

ENO ENT

ENOLCK

ENO LINK

ENOS PC

ENOTDIR

ENOTNAM

EOVERFLOW

EPERM

EROFS

(Application Compatibility Package) intro(2)

A component of the path prefix does not exist or is a null
pathname.

Cannot allocate a record lock for fcntl or locking.

path points to a remote machine and the link to that machine
is no longer active.

No space is available.

A component of the path prefix is not a directory.

Not available. A creatsem, opensem(2), waitsem(2), or sig­
sem(2) was issued using and invalid XENIX semaphore
identifier. Or, a process attempted a sdget(2) on a file that
exists but is not shared data type.

A component is too large to store in the structure pointed to
by buf. does not exist or is a null pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on a
read-only file system.

10/92

a641 (3C) (C Development Set) a641 (3C)

NAME
a64L 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
#include <stdlib.h>

long a641 (const char *s);

char *164a (long 1);

DESCRIPTION

NOTES

10/92

These functions are used to maintain numbers stored in base-64 ASCII characters.
These characters define a notation by which long integers can be represented by up
to six characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are . for 0, I for 1, O through 9 for 2-11, A
through z for 12-37, and a through z for 38-63.

a641 takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

a641 scans the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number.

164a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which
are overwritten by each call.

Page 1

abort(3C) (C Development Set)

NAME
abort - generate an abnormal termination signal

SYNOPSIS
#include <stdlib.h>

void abort (void) ;

DESCRIPTION

abort(3C)

abort first closes all open files, stdio(3S) streams, directory streams and message
catalogue descriptors, if possible, then causes the signal SIGABRT to be sent to the
calling process.

SEE ALSO
tbx(l), exit(2), ki11(2), signal(2), catopen(3C), stdio(3S).

DIAGNOSTICS

10/92

If SIGABRT is neither caught nor ignored, and the current directory is writable, a
core dump is produced and the message abort - core dumped is written by the
shell [see sh(l)].

Page 1

abs(3C) (C Development Set)

NAME
abs, labs - return integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs (int val);

long labs (long lval);

DESCRIPTION

abs(3C)

abs returns the absolute value of its int operand. labs returns the absolute value
of its long operand.

SEE ALSO
floor(3M)

NOTES

10/92

In 2's-complement representation, the absolute value of the largest magnitude
negative integral value is undefined.

Page 1

accept (3N) accept (3N)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>

int accept(int s, caddr_t addr, int *addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket and bound to an
address with bind, and that is listening for connections after a call to listen.
accept extracts the first connection on the queue of pending connections, creates a
new socket with the properties of s, and allocates a new file descriptor, ns, for the
socket. If no pending connections are present on the queue and the socket is not
marked as non-blocking, accept blocks the caller until a connection is present. If
the socket is marked as non-blocking and no pending connections are present on
the queue, accept returns an error as described below. accept uses the netcon­
fig file to determine the STREAMS device file name associated with s. This is the
device on which the connect indication will be accepted. The accepted socket, ns, is
used to read and write data to and from the socket that connected to ns; it is not
used to accept more connections. The original socket (s) remains open for accepting
further connections.

The argument addr is a result parameter that is filled in with the address of the con­
necting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

addrlen is a value-result parameter. Initially, it contains the amount of space
pointed to by addr; on return it contains the length in bytes of the address returned.

accept is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select a socket for the purpose of an accept by selecting it for
read. However, this will only indicate when a connect indication is pending; it is
still necessary to call accept.

RETURN VALUE
accept returns -1 on error. If it succeeds, it returns a non-negative integer that is a
descriptor for the accepted socket.

ERRORS

10/92

accept will fail if:

EBADF

ENOTSOCK

EOPNOTSUPP

EWOULDBLOCK

EPROTO

ENO DEV

The descriptor is invalid.

The descriptor does not reference a socket.

The referenced socket is not of type SOCK_STREAM.

The socket is marked as non-blocking and no connections
are present to be accepted.

A protocol error has occurred; for example, the STREAMS
protocol stack has not been initialized.

The protocol family and type corresponding to s could not
be found in the netconfig file.

Page 1

accept(3N) accept(3N)

ENOMEM

ENO SR

There was insufficient user memory available to complete
the operation.

There were insufficient STREAMS resources available to com­
plete the operation.

SEE ALSO

NOTES

Page 2

bind(3N), connect(3N), listen(3N), socket(3N), netconfig(4)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a socketaddr_un struc­
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet/ in. h. Other address fami­
lies may require other structures. Use the structure appropriate to the address fam­
ily; cast the structure address to a generic caddr_t in the call to accept and pass
the size of the structure in the addrlen argument.

10/92

access(2) access(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access(const char *path, int amode);

DESCRIPTION
path points to a path name naming a file. access checks the named file for accessi­
bility according to the bit pattern contained in amode, using the real user ID in place
of the effective user ID and the real group ID in place of the effective group ID. The
bit pattern contained in amode is constructed by an OR of the following constants
(defined in <unistd.h>):

R_OK read
W_OK write
X_OK execute (search)
F _OK check existence of file

Access to the file is denied if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES

EFAULT

EINTR

EINVAL

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENO ENT

ENO ENT

ENO LINK

EROFS

Permission bits of the file mode do not permit the requested
access.

path points outside the allocated address space for the pro­
cess.

A signal was caught during the access system call.

Argument is invalid.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines.

The length of the path argument exceeds {PATH_MAXl, or the
length of a path component exceeds (NAME_MAXl while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.

Read, write, or execute (search) permission is requested for a
null path name.

The named file does not exist.

path points to a remote machine and the link to that machine
is no longer active.

Write access is requested for a file on a read-only file system.

SEE ALSO
chrnod(2), stat(2)
"File Access Permission" in intro(2).

10/92 Page 1

access(2) access(2)

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Page 2 10/92

acct (2) acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
#include <unistd.h>

int acct(const char *path);

DESCRIPTION
acct enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each process
that terminates. The termination of a process can be caused by one of two things:
an exit call or a signal [see exit(2) and signal(2)]. The effective user ID of the
process calling acct must be superuser.

path points to a pathname naming the accounting file. The accounting file format is
given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. It is disabled if path is (char *)NULL and no errors occur during the
system call.

acct will fail if one or more of the following are true:

EACCES The file named by path is not an ordinary file.

EBUSY

EFAULT

ELOOP

ENAMETOOLONG

ENOTDIR

ENO ENT

EPERM

EROFS

An attempt is being made to enable accounting using the
same file that is currently being used.

path points to an illegal address.

Too many symbolic links were encountered in translating
path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while

POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.

One or more components of the accounting file pathname do
not exist.

The effective user of the calling process is not superuser.

The named file resides on a read-only file system.

SEE ALSO
exi t(2), signal(2), acct(4).

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

addsev(3C) (C Programming Language Utilities) addsev(3C)

NAME
addsev - define additional severities

SYNOPSIS
int addsev(int int_val, const char *string);

DESCRIPTION
The function addsev () defines additional severities for use in subsequent calls to
pfmt () or lfmt () . addsev () associates an integer value int_val in the range [5-
255] with a character string. It overwrites any previous string association with
int_val and string.

If int_val is ORed with the flags passed to subsequent calls pfmt () or lfmt (),
string will be used as severity.

Passing a NULL string removes the severity.

Add-on severities are only effective within the applications defining them.

RETURN VALUE

USAGE

addsev () returns 0 in case of success, -1 otherwise.

Only the standard severities are automatically displayed per the locale in effect at
runtime. An application must provide the means for displaying locale-specific ver­
sions of add-on severities.

EXAMPLE
#define Panic 5
setlabel ("APPL");
setcat ("my _appl") ;
addsev (Panic, get txt (" : 2 6" , "PANIC")) ;
/* ... *I
lfmt(stderr, MM_SOFTIMM_APPLI Panic, ":12:Cannot locate database\n");

will display the message to stderr and forward to the logging service:
APPL: PANIC: Cannot locate database

SEE ALSO
gettxt(3C), lfmt(3C), pfmt(3C).

10/92 Page 1

add severity (3C) (Essential Utilities) addseverity (3C)

NAME
addseveri ty - build a list of severity levels for an application for use with fmtmsg

SYNOPSIS
#include <fmtmsg.h>

int addseverity(int severity, const char *string);

DESCRIPTION
The addseverity function builds a list of severity levels for an application to be
used with the message formatting facility, fmtmsg. severity is an integer value indi­
cating the seriousness of the condition, and string is a pointer to a string describing
the condition (string is not limited to a specific size).

If addseverity is called with an integer value that has not been previously
defined, the function adds that new severity value and print string to the existing
set of standard severity levels.

If addseverity is called with an integer value that has been previously defined,
the function redefines that value with the new print string. Previously defined
severity levels may be removed by supplying the NULL string. If addseverity is
called with a negative number or an integer value of 0, 1, 2, 3, or 4, the function fails
and returns -1. The values 0-4 are reserved for the standard severity levels and can­
not be modified. Identifiers for the standard levels of severity are:

MM_HALT indicates that the application has encountered a severe fault
and is halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces
the print string ERROR.

MM_WARNING indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the print
string WARNING.

MM_INFO provides information about a condition that is not in error.
Produces the print string INFO.

MM_NOSEV indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment
variable [see fmtmsg(3C)].

EXAMPLES
When the function addseverity is used as follows:

addseverity (7, "ALERT")
the following call to fmtmsg:

fmtmsg(MM_PRINT, "UX:cat", 7, "invalid syntax", "refer to
manual", "UX:cat:OOl")

produces:
UX:cat: ALERT: invalid syntax
TO FIX: refer to manual UX:cat:OOl

SEE ALSO
fmtmsg(lM), fmtmsg(3C), gettxt(3C), printf(3S)

10/92 Page 1

addseverity (3C) (Essential Utilities) addseverity (3C)

DIAGNOSTICS
addseveri ty returns MM_OK on success or MM_NOTOK on failure.

Page 2 10/92

adjtime(2) adjtime(2)

NAME
adj time - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

DESCRIPTION
adjtime adjusts the system's notion of the current time, as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in
the struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or
slowing down (if that amount of time is negative) the system's clock by some small
percentage, generally a fraction of one percent. Thus, the time is always a mono­
tonically increasing function. A time correction from an earlier call to adj time may
not be finished when adjtime is called again. If delta is 0, then olddelta returns the
status of the effects of the previous adj time call and there is no effect on the time
correction as a result of this call. If olddelta is not a NULL pointer, then the structure
it points to will contain, upon return, the number of seconds and/or microseconds
still to be corrected from the earlier call. If olddelta is a NULL pointer, the
corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an
error occurred, and in this case an error code is stored into the global variable
errno.

ERRORS
The following error codes may be set in errno:

EFAULT

EPERM

delta or olddelta points outside the process's allocated address
space, or olddelta points to a region of the process' allocated
address space that is not writable.

The process's effective user ID is not that of the super-user.

SEE ALSO
date(l), gettimeofday(3C).

10/92 Page 1

alarm(2) alarm (2)

NAME
alarm - set a process alarm clock

SYNOPSIS
#include <unistd.h>

unsigned alarm(unsigned sec);

DESCRIPTION
alarm instructs the alarm clock of the calling process to send the signal SIGALRM to
the calling process after the number of real time seconds specified by sec have
elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.

If sec is 0, any previously made alarm request is canceled.

fork sets the alarm clock of a new process to 0 [see fork(2)]. A process created by
the exec family of routines inherits the time left on the old process's alarm clock.

SEE ALSO
fork(2), exec(2), pause(2), signal(2), sigset(2)

DIAGNOSTICS

10/92

alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

Page 1

alloca(3) (BSD Compatibility Package) alloca(3)

NAME
alloca - memory allocator

SYNOPSIS
/usr/ucb/cc [flag ...]file ...
#include <alloca.h>
char *alloca(size)
int size;

DESCRIPTION

NOTES

alloca allocates size bytes of space in the stack frame of the caller, and returns a
pointer to the allocated block. This temporary space is automatically freed when
the caller returns. Note: if the allocated block is beyond the current stack limit, the
resulting behavior is undefined.

alloca is machine-, compiler-, and most of all, system-dependent. Its use is
strongly discouraged. Within the MSS family of processors, the programmer is
responsible for freeing the allocated block because the MSS family of processors
does not set up and free stack frames upon entry and exit from a function. Also,
local variables on the stack may be improperly accessed after allocation. Therefore,
its use on the MSS family of processors is discouraged.

SEE ALSO

10/92

csh(l), ld(l), brk(2), getrlimit(2), calloc(3), sigstack(3), sigvec(3), malloc(3).

Stephenson, CJ., Fast Fits, in Proceedings of the ACM 9th Symposium on Operating Sys­
tems, SIGOPS Operating Systems Review, vol. 17, no. 5, October 1983.

Core Wars, in Scientific American, May 1984.

Page 1

assert(3X) assert (3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

void assert (int expression);

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if
expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement. The latter
are respectively the values of the preprocessor macros _FILE_ and _LINE_.

Compiling with the preprocessor option -DNDEBUG [see cc(l)], or with the prepro­
cessor control statement #define NDEBUG ahead of the #include assert .h state­
ment, will stop assertions from being compiled into the program.

SEE ALSO

NOTES

10/92

cc(l), abort(3C)

Since assert is implemented as a macro, the expression may not contain any string
literals.

Page 1

atexit (3C) (C Development Set)

NAME
atexi t - add program termination routine

SYNOPSIS
#include <stdlib.h>

int atexit (void (*func) (void));

DESCRIPTION

atexit(3C)

atexit adds the function June to a list of functions to be called without arguments
on normal termination of the program. Normal termination occurs by either a call
to the exit system call or a retu,rn from main. At most 32 functions may be
registered by atexi t; the functions will be called in the reverse order of their regis­
tration.

atexi t returns 0 if the registration succeeds, nonzero if it fails.

SEE ALSO
exit(2)

10/92 Page 1

basename (3G) base name (3G)

NAME
basename - return the last element of a path name

SYNOPSIS
cc fflag ...]file ... - lgen [library ...]

#include <libgen.h>

char *basename (char *path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a path name,
basename returns a pointer to the last element of path. Trailing "/" characters are
deleted.

If path or *path is zero, pointer to a static constant "." is returned.

EXAMPLES

SEE ALSO

Input string
/usr/lib
/usr/
I

basename(l), dirname(3G).

10/92

Output pointer
lib
usr
I

Page 1

bessel (3M) (Math Libraries) bessel(3M)

NAME
bessel: j 0, j 1, jn, yO, yl, yn - Bessel functions

SYNOPSIS
cc [flag .. .]file ... -lm [library ...]

#include <math.h>

double jO (double x);

double jl (double x);

double jn (int n, double x);

double yO (double x);

double yl (double x);

double yn (int n, double x);

DESCRIPTION
j O and j 1 return Bessel functions of x of the first kind of orders 0 and 1, respec­
tively. j n returns the Bessel function of x of the first kind of order n.

yO and yl return Bessel functions of x of the second kind of orders 0 and 1, respec­
tively. yn returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

SEE ALSO
matherr(3M)

DIAGNOSTICS

10/92

Non-positive arguments cause yO, yl, and yn to return the value -HUGE and to set
errno to EDOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

Arguments too large in magnitude cause j O, j 1, yO, and yl to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the
standard error output.

Except when the -Xe compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xe compilation
options are used, HUGE_ VAL is returned instead of HUGE and no error messages are
printed.

Page 1

bgets(3G) bgets(3G)

NAME
bgets - read stream up to next delimiter

SYNOPSIS
cc [flag .. .]file ... - lgen [library ...]

#include <libgen.h>

char *bgets (char *buffer, size_t *count, FILE *stream,
const char *breakstring) ;

DESCRIPTION
bgets reads characters from stream into buffer until either count is exhausted or one
of the characters in breakstring is encountered in the stream. The read data is ter­
minated with a null byte (' \ O ') and a pointer to the trailing null is returned. If a
breakstring character is encountered, the last non-null is the delimiter character that
terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, "\n");

is identical to

fgets (buffer, sizeof buffer, stream);

There is always enough room reserved in the buffer for the trailing null.

If breakstring is a null pointer, the value of breakstring from the previous call is used.
If breakstring is null at the first call, no characters will be used to delimit the string.

EXAMPLES
#include <libgen.h>

char buffer[S];
I* read in first user name from /etc/passwd */
fp = fopen("/etc/passwd","r");
bgets(buffer, 8, fp, ":");

DIAGNOSTICS
NULL is returned on error or end-of-file. Reporting the condition is delayed to the
next call if any characters were read but not yet returned.

SEE ALSO
gets(3S)

10/92 Page 1

bind (3N) bind (3N)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>

int bind(int s, caddr_t name, int namelen);

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is created with socket,
it exists in a name space (address family) but has no name assigned. bind requests
that the name pointed to by name be assigned to the socket.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS
The bind call will fail if:

EBADF

ENOTSOCK

EADDRNOTAVAIL

EADDRINUSE

EINVAL

EINVAL

EACCES

ENO SR

sis not a valid descriptor.

s is a descriptor for a file, not a socket.

The specified address is not available on the local machine.

The specified address is already in use.

namelen is not the size of a valid address for the specified
address family.

The socket is already bound to an address.

The requested address is protected and the current user has
inadequate permission to access it.

There were insufficient STREAMS resources for the operation
to complete.

The following errors are specific to binding names in the UNIX domain:

ENOTDIR A component of the path prefix of the pathname in name is
not a directory.

ENOENT A component of the path prefix of the pathname in name
does not exist.

EACCES

ELOOP

EIO

EROFS

EI SD IR

Search permission is denied for a component of the path
prefix of the pathname in name.

Too many symbolic links were encountered in translating
the pathname in name.

An I/O error occurred while making the directory entry or
allocating the inode.

The inode would reside on a read-only file system.

A null pathname was specified.

SEE ALSO
unl ink(2) in the Programmer's Reference Manual

10/92 Page 1

bind (3N) bind (3N)

NOTES

Page 2

Binding a name in the UNIX domain creates a socket in the file system that must be
deleted by the caller when it is no longer needed [see unlink(2)].

The rules used in name binding vary between communication domains.

The type of address structure passed to bind depends on the address family. UNIX
domain sockets (address family AF _UNIX) require a socketaddr_un structure as
defined in sys/un.h; Internet domain sockets (address family AF_INET) require a
sockaddr_in structure as defined in netinet/ in. h. Other address families may
require other structures. Use the structure appropriate to the address family; cast
the structure address to a generic caddr_t in the call to bind and pass the size of
the structure in the namelen argument.

10/92

brk(2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
#include <unistd.h>

int brk(void *endds);

void *sbrk(int incr);

DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated for the
calling process's data segment [see exec(2)]. The change is made by resetting the
process's break value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases. Newly allocated
space is set to zero. If, however, the same memory space is reallocated to the same
process its contents are undefined.

brk sets the break value to cndds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space accord­
ingly. incr can be negative, in which case the amount of allocated space is
decreased.

brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

ENOMEM Such a change would result in more space being allocated
than is allowed by the system-imposed maximum process
size [see ulimi t(2)].

EA GAIN Returned when the system is out of swap space.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C).

DIAGNOSTICS

10/92

Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

Page 1

bsearch(3C) (C Development Set) bsearch (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch (const void *key, const void *base, size_t nel,
size_t size, int (*compar) (const void *, const void *)) ;

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table (an array) indicating where a datum may be found or
a null pointer if the datum cannot be found. The table must be previously sorted in
increasing order according to a comparison function pointed to by compar. key
points to a datum instance to be sought in the table. base points to the element at
the base of the table. nel is the number of elements in the table. size is the number
of bytes in each element. The function pointed to by compar is called with two
arguments that point to the elements being compared. The function must return an
integer less than, equal to, or greater than 0 as accordingly the first argument is to
be considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This program reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct node {
char *string;
int length;

} ;

static struct node table[]
{

} ;

main()
{

"asparagus", 10 } ,
"beans", 6 } ,
"tomato", 7 },
"watermelon", 11 } ,

I* these are stored in the table */

I* table to be searched */

struct node *node_ptr, node;
/* routine to compare 2 nodes */
static int node_compare(const void * const void *);
char str_space[20]; I* space to read string into */

node.string = str_space;
while (scanf("%20s", node.string) != EOF) {

10/92 Page 1

bsearch (3C) (C Development Set) bsearch(3C)

node_ptr = bsearch(&node,
table, sizeof(table)/sizeof(struct node),
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void) printf("string = %20s, length= %d\n",

node_ptr->string, node_ptr->length);
else {

(void)printf("not found: %20s\n", node.sering);

return (0);

/* routine to compare two nodes based on an */
I* alphabetical ordering of the string field */
static int
node_compare(const void *nodel, const void *node2)
{

return (strcmp (
((const struct node *)nodel)->string,
((const struct node *)node2)->string));

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C)

DIAGNOSTICS

NOTES

Page 2

A null pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table, nel
should be the lower number.

10/92

bstring(3) (BSD Compatibility Package) bstring(3)

NAME
bstring: bcopy, bcmp, bzero, - bit and byte string operations

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

bcopy(bl, b2, length)
char *bl, *b2;
int length;

int bcmp(bl, b2, length)
char *bl, *b2;
int length;

bzero(b, length)
char *b;
int length;

DESCRIPTION

NOTES

The functions bcopy, bcmp, and bzero operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3) do.

bcopy copies length bytes from string bl to the string b2. Overlapping strings are
handled correctly.

bcmp compares byte string bl against byte string b2, returning zero if they are ident­
ical, 1 otherwise. Both strings are assumed to be length bytes long. bcmp of length
zero bytes always returns zero.

bzero places length 0 bytes in the string b.

The bcmp and bcopy routines take parameters backwards from strcmp and
strcpy.

SEE ALSO
ffs(3C), string(3C).

10/92 Page 1

bufsplit (3G) (Enhanced Programming Library) bufsplit(3G)

NAME
bufspli t - split buffer into fields

SYNOPSIS
cc [f1ag ...]file ... -lgen [library ...]

#include <libgen.h>

size_t bufsplit (char *buf, size_t n, char **a);

DESCRIPTION
bufsplit examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by tabs or new­
lines.

To change the characters used to separate fields, call bufsplit with buf pointing to
the string of characters, and n and a set to zero. For example, to use ': ', '. ', and ', '
as separators along with tab and new-line:

bufsplit (":.,\t\n", 0, (char**)O);

RETURN VALUE
The number of fields assigned in the array a. If buf is zero, the return value is zero
and the array is unchanged. Otherwise the value is at least one. The remainder of
the elements in the array are assigned the address of the null byte at the end of the
buffer.

EXAMPLES

I*
*set a[OJ ="This", a[l] "is", a[2] "a",
* a[3] = "test"
*I

bufsplit ("This\tis\ta\ttest\n", 4, a);

NOTES
buf split changes the delimiters to null bytes in buf.

10/92 Page 1

byteorder(3N) byteorder(3N)

NAME
byteorder, htonl, htons, ntohl, ntohs - convert values between host and
network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

u_long htonl(u_long hostlong);

u_short htons(u_short hostshort);

u_long ntohl(u_long netlong);

u_short ntohs(u_short netshort);

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros
in the include file net inet I in. h. On other architectures, if their host byte order is
different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses and
ports as returned by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

10/92 Page 1

catgets (3C) catgets (3C)

NAME
catgets - read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets (nl_catd catd, int set_nurn, int msg_nurn, char *s);

DESCRIPTION
catgets attempts to read message msg_num, in set set_num, from the message
catalogue identified by catd. catd is a catalogue descriptor returned from an earlier
call to catopen. s points to a default message string which will be returned by cat­
gets if the identified message catalogue is not currently available.

SEE ALSO
catopen(3C)

DIAGNOSTICS

10/92

If the identified message is retrieved successfully, catgets returns a pointer to an
internal buffer area containing the null terminated message string. If the call is
unsuccessful because the message catalogue identified by catd is not currently
available, a pointer to sis returned.

Page 1

catopen (3C) catopen (3C)

NAME
catopen, catclose - open/close a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen (char *name, int oflag);

int catclose (nl_catd catd) ;

DESCRIPTION

10/92

catopen opens a message catalog and returns a catalog descriptor. name specifies
the name of the message catalog to be opened. If name contains a "/" then name
specifies a pathname for the message catalog. Otherwise, the environment variable
NLSPATH is used. If NLSPATH does not exist in the environment, or if a message
catalog cannot be opened in any of the paths specified by NLSPATH, then the default
path is used [see nl_types(S)].

The names of message catalogs, and their location in the filestore, can vary from
one system to another. Individual applications can choose to name or locate mes­
sage catalogs according to their own special needs. A mechanism is therefore
required to specify where the catalog resides.

The NLSPATH variable provides both the location of message catalogs, in the form of
a search path, and the naming conventions associated with message catalog files.
For example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the
current setting of the LANG environment variable (see following section), and %N
substitutes the value of the name parameter passed to catopen. Thus, in the above
example, catopen will search in /nlslib/$LANG/name.cat, then in
/nlslib/name/$LANG, for the required message catalog.

NLSPATH will normally be set up on a system wide basis (for example, in
/etc/profile) and thus makes the location and naming conventions associated
with message catalogs transparent to both programs and users.

The full set of metacharacters is:

%N The value of the name parameter passed to catopen.

%L The value of LANG.

%1 The value of the language element of LANG.

%t The value of the territory element of LANG.

%c The value of the codeset element of LANG.

%% A single%.

The LANG environment variable provides the ability to specify the user's require­
ments for native languages, local customs and character set, as an ASCII string in
the form

LANG=language[_territory[.codeset]J

Page 1

catopen (3C) catopen (3C)

A user who speaks German as it is spoken in Austria and has a terminal which
operates in ISO 8859 /1 codeset, would want the setting of the LANG variable to be

LANG=De_A.88591

With this setting it should be possible for that user to find any relevant catalogs
should they exist.

Should the LANG variable not be set then the value of LC_MESSAGES as returned by
set locale is used. If this is NULL then the default path as defined in nl_types is
used.

oflag is reserved for future use and should be set to 0. The results of setting this
field to any other value are undefined.

cat close closes the message catalog identified by catd.

SEE ALSO
catgets(3C), setlocale(3C), environ(S), nl_types(S)

DIAGNOSTICS

Page 2

If successful, catopen returns a message catalog descriptor for use on subsequent
calls to catgets and catclose. Otherwise catopen returns
(nl_catd) -1.

catclose returns 0 if successful, otherwise -1.

10/92

chdir(2) chdir(2)

NAME
chdir, fchdir - change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

DESCRIPTION

10/92

chdir and fchdir cause a directory pointed to by path or fildes to become the
current working directory, the starting point for path searches for path names not
beginning with I. path points to the path name of a directory. The fildes argument
to fchdir is an open file descriptor of a directory.

In order for a directory to become the current directory, a process must have exe­
cute (search) access to the directory.

chdir will fail and the current working directory will be unchanged if one or more
of the following are true:

EACCES Search permission is denied for any component of the path
name.

EFAULT

EINTR

EIO

ELOOP

ENAMETOOLONG

ENOTDIR

ENO ENT

ENO LINK

EMULTIHOP

path points outside the allocated address space of the pro-
cess.

A signal was caught during the execution of the chdir sys­
tem call.

An I/O error occurred while reading from or writing to the
file system.

Too many symbolic links were encountered in translating
path.

The length of the path argument exceeds {PATH_MAX), or the
length of a path component exceeds {NAME_MAX) while
_POSIX_NO_TRUNC is in effect.

A component of the path name is not a directory.

Either a component of the path prefix or the directory named
by path does not exist or is a null pathname.

path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

fchdir will fail and the current working directory will be unchanged if one or
more of the following are true:

EACCES Search permission is denied for fildes.

EBADF fildes is not an open file descriptor.

Page 1

chdir(2)

EINTR

EIO

ENO LINK

ENOTDIR

SEE ALSO
chroot(2)

DIAGNOSTICS

chdir(2)

A signal was caught during the execution of the fchdir sys­
tem call.

An 1/0 error occurred while reading from or writing to the
file system.

fildes points to a remote machine and the link to that
machine is no longer active.

The open file descriptor fildes does not refer to a directory.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2 10/92

chmod(2) chmod(2)

NAME
chmod, f chmod - change mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

DESCRIPTION

10/92

chmod and fchmod set the access permission portion of the mode of the file whose
name is given by path or referenced by the descriptor fildes to the bit pattern con­
tained in mode. If path or fildes are symbolic links, the access permissions of the tar­
get of the symbolic links are set. Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if# is 7, 5, 3, or 1

S_ISVTX 01000
Enable mandatory file/record locking if# is 6, 4, 2, or O
Save text image after execution.

S_IRWXU 00700
S_IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S IXGRP 00010
S_IRWXO 00007
S_IROTH 00004
S_IWOTH 00002
S IXOTH 00001

Read, write, execute by owner.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

Modes are constructed by OR'ing the access permission bits.

The effective user ID of the process must match the owner of the file or the process
must have the appropriate privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit
01000 (save text image on execution) is cleared.

If neither the process nor a member of the supplementary group list is privileged,
and the effective group ID of the process does not match the group ID of the file,
mode bit 02000 (set group ID on execution) is cleared.

If a 0410 executable file has the sticky bit (mode bit 01000) set, the operating system
will not delete the program text from the swap area when the last user process ter­
minates. If a 0413 or ELF executable file has the sticky bit set, the operating system
will not delete the program text from memory when the last user process ter­
minates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it, thus
making execution faster.

Page 1

chmod(2) chmod (2)

Page 2

If a directory is writable and has the sticky bit set, files within that directory can be
removed or renamed only if one or more of the following is true [see unlink(2) and
rename(2)]:

the user owns the file
the user owns the directory
the file is writable by the user
the user is a privileged user

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (exe­
cute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to open(2), creat(2), read(2), and wri te(2)
on this file.

Upon successful completion, chrnod and fchrnod mark for update the st_ctime
field of the file.

chrnod will fail and the file mode will be unchanged if one or more of the following
are true:

EACCES

EFAULT

EINTR

EIO

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENO ENT

ENOLINK

EPERM

EROFS

Search permission is denied on a component of the path prefix
of path.

path points outside the allocated address space of the process.

A signal was caught during execution of the system call.

An I/O error occurred while reading from or writing to the file
system.

Too many symbolic links were encountered in translating path.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds (NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the prefix of path is not a directory.

Either a component of the path prefix, or the file referred to by
path does not exist or is a null pathname.

fildes points to a remote machine and the link to that machine is
no longer active.

The effective user ID does not match the owner of the file and
the process does not have appropriate privilege.

The file referred to by path resides on a read-only file system.

f chrnod will fail and the file mode will be unchanged if:

EBADF

EIO

fildes is not an open file descriptor

An I/O error occurred while reading from or writing to the file
system.

10/92

chmod(2) chmod (2)

EINTR

ENO LINK

EPERM

EROFS

A signal was caught during execution of the fchrnod system
call.

path points to a remote machine and the link to that machine is
no longer active.

The effective user ID does not match the owner of the file and
the process does not have appropriate privilege.

The file referred to by fildes resides on a read-only file system.

SEE ALSO
chrnod(l) chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), stat(2),
write(2), mkfifo(3C), stat(S)

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

chown(2) chown(2)

NAME
chown, lchown, fchown - change owner and group of a file

SYNOPSIS
#include <unistd.h>
#include <sys/stat.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION

10/92

The owner ID and group ID of the file specified by path or referenced by the descrip­
tor fildes, are set to owner and group respectively. If owner or group is specified as -1,
the corresponding ID of the file is not changed.

The function lchown sets the owner ID and group ID of the named file just as chown
does, except in the case where the named file is a symbolic link. In this case lchown
changes the ownership of the symbolic link file itself, while chown changes the
ownership of the file or directory to which the symbolic link refers.

If chown, lchown, or fchown is invoked by a process other than super-user, the set­
user-ID and set-group-ID bits of the file mode, S_ISUID and S_ISGID respectively,
are cleared [see chmod(2)].

The operating system has a configuration option, {_POSIX_CHOWN_RESTRICTEDl, to
restrict ownership changes for the chown, lchown, and fchown system calls. When
{_POSIX_CHOWN_RESTRICTED} is not in effect, the effective user ID of the process
must match the owner of the file or the process must be the super-user to change
the ownership of a file. When {_POSIX_CHOWN_RESTRICTED} is in effect, the chown,
lchown, and fchown system calls, for users other than super-user, prevent the
owner of the file from changing the owner ID of the file and restrict the change of
the group of the file to the list of supplementary group IDs.

Upon successful completion, chown, fchown and lchown mark for update the
st_ctime field of the file.

chown and lchown fail and the owner and group of the named file remain
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix of path.

EFAULT

EINTR

EINVAL

EIO

ELOOP

path points outside the allocated address space of the pro­
cess.

A signal was caught during the chown or lchown system
calls.

group or owner is out of range.

An 1/0 error occurred while reading from or writing to the
file system.

Too many symbolic links were encountered in translating
path.

Page 1

chown(2) chown(2)

EMULTIHOP

ENAMETOOLONG

ENO LINK

ENOTDIR

ENO ENT

EPERM

EROFS

Components of path require hopping to multiple remote
machines and file system type does not allow it. Too many
symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX) while
_POSIX_NO_TRUNC is in effect.

path points to a remote machine and the link to that machine
is no longer active.

A component of the path prefix of path is not a directory.

Either a component of the path prefix or the file referred to
by path does not exist or is a null pathname.

The effective user ID does not match the owner of the file or
the process is not the super-user and
{_POSIX_CHOWN_RESTRICTED) indicates that such privilege
is required.

The named file resides on a read-only file system.

fchown fails and the owner and group of the named file remain unchanged if one
or more of the following are true:

EBADF fildes is not an open file descriptor.

EINVAL

EPERM

EROFS

EINTR

EIO

ENOLINK

group or owner is out of range.

The effective user ID does not match the owner of the file or
the process is not the super-user and
{_POSIX_CHOWN_RESTRICTED) indicates that such privilege
is required.

The named file referred to by fildes resides on a read-only file
system.

A signal was caught during execution of the system call.

An I/0 error occurred while reading from or writing to the
file system.

fildes points to a remote machine and the link to that
machine is no longer active.

SEE ALSO
chgrp(l), chown(l), chrnod(2).

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
#include <unistd.h>

int chroot(const char *path);

DESCRIPTION
path points to a path name naming a directory. chroot causes the named directory
to become the root directory, the starting point for path searches for path names
beginning with I. The user's working directory is unaffected by the chroot system
call.

The effective user ID of the process must be super-user to change the root directory.

The . . entry in the root directory is interpreted to mean the root directory itself.
Thus, . . cannot be used to access files outside the subtree rooted at the root direc­
tory.

chroot will fail and the root directory will remain unchanged if one or more of the
following are true:

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length

EFAULT

EINTR

EMULTIHOP

ENO LINK

ENOTDIR

ENO ENT

EPERM

of a path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC

is in effect.

path points outside the allocated address space of the process.

A signal was caught during the chroot system call.

Components of path require hopping to multiple remote machines
and file system type does not allow it.

path points to a remote machine and the link to that machine is no
longer active.

Any component of the path name is not a directory.

The named directory does not exist or is a null pathname.

The effective user ID is not super-user.

SEE ALSO
chdir(2)

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

chsize(2) (Application Compatibility Package) chsize(2)

NAME
chsize - change the size of a file

SYNOPSIS
cc [flag ...] file ... - lx
int chsize (int fildes, long size);

DESCRIPTION
fildes is a file descriptor obtained from a create, open, dup, fcntl, or pipe system
call. chsize changes the size of the file associated with the file descriptor fildes to
be exactly size bytes in length. The routine either truncates the file, or pads it with
an appropriate number of bytes. If size is less than the initial size of the file, then all
allocated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit(2) is enforced when chsize is called,
rather than on subsequent writes. Thus chsize fails, and the file size remains
unchanged if the new changed file size would exceed the ulimit.

DIAGNOSTICS
Upon successful completion, a value of O is returned. Otherwise, the value -1 is
returned and errno is set to indicate the error.

SEE ALSO

NOTES

10/92

creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2)

In general if chsize is used to expand the size of a file, when data is written to the
end of the file, intervening blocks are filled with zeros. In a some cases, reducing
the file size may not remove the data beyond the new end-of-file.

Page 1

clock(3C) (C Development Set) clock(3C)

NAME
clock - report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock (void) ;

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used since the first call to
clock in the calling process. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it has exe­
cuted the wait system call, the pclose function, or the system function.

Dividing the value returned by clock by the constant CLOCKS_PER_SEC, defined in
the time. h header file, will give the time in seconds.

The resolution of the clock is defined by CLK_TCK in limits.h, and is typically
1/100or1/60 of a second.

SEE ALSO

NOTES

10/92

times(2), wait(2), popen(3S), system(3S)

The value returned by clock is defined in microseconds for compatibility with sys­
tems that have CPU clocks with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes). If the process time used is not available or cannot be
represented, clock returns the value (clock_t) -1.

Page 1

close(2) close(2)

NAME
close - close a file descriptor

SYNOPSIS
#include <unistd.h>
int close(int fildes);

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or iocntl
system call. close closes the file descriptor indicated by fildes. All outstanding
record locks owned by the process (on the file indicated by fildes) are removed.

When all file descriptors associated with the open file description have been closed,
the open file description is freed.

If the link count of the file is zero, when all file descriptors associated with the file
have been closed, the space occupied by the file is freed and the file is no longer
accessible.

If a STREAMS-based [see intro(2)] fildes is closed, and the calling process had previ­
ously registered to receive a SIGPOLL signal [see signal(2)] for events associated
with that stream [see I_SETSIG in strearnio(7)], the calling process will be unre­
gistered for events associated with the stream. The last close for a stream causes
the stream associated with fildes to be dismantled. If O_NDELAY and O_NONBLOCK
are clear and there have been no signals posted for the stream, and if there are data
on the module's write queue, close waits up to 15 seconds (for each module and
driver) for any output to drain before dismantling the stream. The time delay can
be changed via an I_SETCLTIME ioctl request [see strearnio(7)]. If O_NDELAY or
O_NONBLOCK is set, or if there are any pending signals, close does not wait for out­
put to drain, and dismantles the stream immediately.

Ifjildes is associated with one end of a pipe, the last close causes a hangup to occur
on the other end of the pipe. In addition, if the other end of the pipe has been
named [see fattach(3C)], the last close forces the named end to be detached [see
fdetach(3C)]. If the named end has no open processes associated with it and
becomes detached, the stream associated with that end is also dismantled.

The named file is closed unless one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EINTR

ENO LINK

A signal was caught during the close system call.

fildes is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), intro(2), open(2), pipe(2), signal(2),
fattach(3C), fdetach(3C), signal(S), strearnio(7).

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

connect (3N) connect (3N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>

int connect(int s, addr_t name, int namelen);

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, connect specifies the peer
with which the socket is to be associated; this address is the address to which
datagrams are to be sent if a receiver is not explicitly designated; it is the only
address from which datagrams are to be received. If the socket s is of type
SOCK_STREAM, connect attempts to make a connection to another socket. The
other socket is specified by name. name is an address in the communications space
of the socket. Each communications space interprets the name parameter in its own
way. If s is not bound, then it will be bound to an address selected by the underly­
ing transport provider. Generally, stream sockets may successfully connect only
once; datagram sockets may use connect multiple times to change their associa­
tion. Datagram sockets may dissolve the association by connecting to a null
address.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned
and a more specific error code is stored in errno.

ERRORS

10/92

The call fails if:

EBADF

EN OT SOCK

EINVAL

EADDRNOTAVAIL

EAFNOSUPPORT

EA GAIN

EISCONN

ETIMEDOUT

ECONNREFUSED

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

namelen is not the size of a valid address for the specified
address family.

The specified address is not available on the remote
machine.

Addresses in the specified address family cannot be used
with this socket.

The socket is non-blocking and the connection cannot be
completed immediately. It is possible to select for comple­
tion by selecting the socket for writing. However, this is
only possible if the socket STREAMS module is the topmost
module on the protocol stack with a write service procedure.
This will be the normal case.

The socket is already connected.

Connection establishment timed out without establishing a
connection.

The attempt to connect was forcefully rejected. The calling
program should close the socket descriptor, and issue
another socket call to obtain a new descriptor before
attempting another connect call.

Page 1

connect (3N) connect (3N)

ENETUNREACH

EADDRINUSE

EAL READY

EINTR

EINTR

ENOTSOCK

EOPNOTSUPP

EPROTOTYPE

ENO SR

The network is not reachable from this host.

The address is already in use.

The socket is non-blocking and a previous connection
attempt has not yet been completed.

The connection attempt was interrupted before any data
arrived by the delivery of a signal.

System call returned due to interrupt.

The file referred to by name is not a socket.

The socket is in the listen state.

The file referred to by name is a socket of a type other than
type s (for example, s is a SOCK_DGRAM socket, while name
refers to a SOCK_STREAM socket).

There were insufficient STREAMS resources available to com­
plete the operation.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPC domain.

ENOTDIR

ENO ENT

ENO ENT

EA CC ES

ELOOP

EIO

A component of the path prefix of the pathname in name is
not a directory.

A component of the path prefix of the pathname in name
does not exist.

The socket referred to by the pathname in name does not
exist.

Search permission is denied for a component of the path
prefix of the pathname in name.

Too many symbolic links were encountered in translating
the pathname in name.

An I/0 error occurred while reading from or writing to the
file system.

SEE ALSO

NOTES

Page 2

close(2), accept(3N), connect(3N), getsockname(3N), socket(3N).

The type of address structure passed to connect depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a socketaddr_un struc­
ture as defined in sys/un. h; Internet domain sockets (address family AF _INET)
require a sockaddr_in structure as defined in netinet/ in. h. Other address fami­
lies may require other structures. Use the structure appropriate to the address fam­
ily; cast the structure address to a generic caddr_t in the call to connect and pass
the size of the structure in the namelen argument.

10/92

conv(3C) (C Programming Language Utilities) conv(3C)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (int c);

int tolower (int c);

int _toupper (int c);

int _tolower (int c);

int toascii (int c);

DESCRIPTION
toupper and tolower have as their domain the range of the function getc: all
values represented in an unsigned char and the value of the macro EOF as defined
in stdio. h. If the argument of toupper represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of tolower represents an
upper-case letter, the result is the corresponding lower-case letter. All other argu­
ments in the domain are returned unchanged.

The macros _toupper and _tolower accomplish the same things as toupper and
tolower, respectively, but have restricted domains and are faster. _toupper
requires a lower-case letter as its argument; its result is the corresponding upper­
case letter. _tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause undefined
results.

toascii yields its argument with all bits turned off that are not part of a standard
7-bit ASCII character; it is intended for compatibility with other systems.

toupper, tolower, _toupper, and_tolower are affected by LC_CTYPE. In the C
locale, or in a locale where shift information is not defined, these functions deter­
mine the case of characters according to the rules of the ASCII-coded character set.
Characters outside the ASCII range of characters are returned unchanged.

SEE ALSO
ctype(3C), getc(3S), setlocale(3C), environ(S)

10/92 Page 1

copylist (3G) copylist (3G)

NAME
copy list - copy a file into memory

SYNOPSIS
cc [flag ...]file ... -lgen [library ...]

#include <libgen.h>

char *copylist (const char *filenm, off_t *szptr);

DESCRIPTION
copy list copies a list of items from a file into freshly allocated memory, replacing
new-lines with null characters. It expects two arguments: a pointer filenm to the
name of the file to be copied, and a pointer szptr to a variable where the size of the
file will be stored.

Upon success, copylist returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc, or opening the file.

EXAMPLES
/* read "file" into buf */
off_t size;
char *buf;
buf = copy list ("file", &size) ;
for (i = O; i < size; i++)

if (buf [i])
putchar(buf[i]);

else
putchar (' \n');

SEE ALSO
malloc(3C)

10/92 Page 1

creat{2) creat (2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION

10/92

creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged.

If the file does not exist the file's owner ID is set to the effective user ID of the pro­
cess. The group ID of the file is set to the effective group ID of the process, or if the
S_ISGID bit is set in the parent directory then the group ID of the file is inherited
from the parent directory. The access permission bits of the file mode are set to the
value of mode modified as follows:

If the group ID of the new file does not match the effective group ID or one
of the supplementary group IDs, the S_ISGID bit is cleared.

All bits set in the process's file mode creation mask are cleared [see
umask(2)].

The "save text image after execution bit" of the mode is cleared [see
chmod(2) for the values of mode].

Upon successful completion, a write-only file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to remain open across exec sys­
tem calls [see fcnt1(2)]. A new file may be created with a mode that forbids writ­
ing.

The call creat (path, mode) is equivalent to:

open (path, O_WRONLY I O_CREAT I O_TRUNC, mode)

creat fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES

EACCES

EA GAIN

EFAULT

The file does not exist and the directory in which the file is to
be created does not permit writing.

The file exists and write permission is denied.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod(2)].

path points outside the allocated address space of the pro­
cess.

Page 1

creat(2) creat(2)

EISDIR

EINTR

ELOOP

EMF ILE

ENAMETOOLONG

ENOTDIR

ENO ENT

ENO ENT

EROFS

ETXTBSY

ENFILE

ENOLINK

EMULTIHOP

ENOS PC

The named file is an existing directory.

A signal was caught during the creat system call.

Too many symbolic links were encountered in translating
path.
The process has too many open files [see getrlimit(2)].

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The path name is null.

The named file resides or would reside on a read-only file
system.

The file is a pure procedure (shared text) file that is being
executed.

The system file table is full.

path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

The file system is out of inodes.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), getrlimit(2), lseek(2), open(2), read(2),
umask(2), write(2), stat(S)

DIAGNOSTICS

Page 2

Upon successful completion a non-negative integer, namely the lowest numbered
unused file descriptor, is returned. Otherwise, a value of -1 is returned, no files are
created or modified, and errno is set to indicate the error.

10/92

creatsem(2) (Application Compatibility Package) creatsem (2)

NAME
creatsem - create an instance of a binary semaphore

SYNOPSIS
cc [flag ...] file ... - lx
int creatsem(char *sem_name, int mode);

DESCRIPTION
creatsem defines a binary semaphore named by sem_name to be used by waitsem
and sigsem to manage mutually exclusive access to a resource, shared variable, or
critical section of a program. creatsem returns a unique semaphore number,
sem_num, which may then be used as the parameter in waitsem and sigsem calls.
Semaphores are special files of 0 length. The filename space is used to provide
unique identifiers for semaphores. mode sets the accessibility of the semaphore
using the same format as file access bits. Access to a semaphore is granted only on
the basis of the read access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive, such as
waitsem or sigsem, by creatsem which initializes it to some value, or by opensem
which opens the semaphore for use by a process. Synchronizing primitives are
guaranteed to be executed without interruption once started. These primitives are
used by associating a semaphore with each resource (including critical code sec­
tions) to be protected.

The process controlling the semaphore should issue:

sem_num = creatsem("semaphore", mode);

to create, initialize, and open the semaphore for that process. All other processes
using the semaphore should issue:

sem_num = opens em ("semaphore") ;

to access the semaphore's identification value. Note that a process cannot open and
use a semaphore that has not been initialized by a call to creatsem, nor should a
process open a semaphore more than once in one period of execution. Both the
creating and opening processes use waitsem and sigsem to use the semaphore
sem_num.

DIAGNOSTICS
creatsem returns the value -1 if an error occurs. If the semaphore named by
sem_name is already open for use by other processes, errno is set to EEXIST. If the
file specified exists but is not a semaphore type, errno is set to ENOTNAM. If the
semaphore has not been initialized by a call to creatsem, errno is set to EINVAL.

SEE ALSO
opensem(2), sigsem(2), waitsem(2)

NOTES
After a creatsem, you must do a waitsem to gain control of a given resource.

10/92 Page 1

crypt (3C) (C Programming Language Utilities) crypt (3C)

NAME
crypt, setkey, encrypt - generate encryption

SYNOPSIS
#include <crypt.h>

char *crypt (const char *key, const char *salt);

void setkey (const char *key);

void encrypt (char *block, int edflag);

DESCRIPTION
crypt is the password encryption function. It is based on a one-way encryption
algorithm with variations intended (among other things) to frustrate use of
hardware implementations of a key search.

key is the input string to encrypt, for instance, a user's typed password. Only the
first eight characters are used; the rest are ignored. salt is a two-character string
chosen from the set a-zA-Z0-9. /;this string is used to perturb the hashing algo­
rithm in one of 4096 different ways, after which the input string is used as the key
to encrypt repeatedly a constant string. The returned value points to the encrypted
input string. The first two characters of the return value are the salt itself.

The setkey and encrypt functions provide (rather primitive) access to the actual
hashing algorithm. The argument of setkey is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. This string is divided into
groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key that is
set into the machine. This is the key that will be used with the hashing algorithm to
encrypt the string block with the encrypt function.

The block argument of encrypt is a character array of length 64 containing only the
characters with numerical value 0 and 1. The argument array is modified in place
to a similar array representing the bits of the argument after having been subjected
to the hashing algorithm using the key set by setkey. The argument edflag, indicat­
ing decryption rather than encryption, is ignored; use encrypt in libcrypt [see
crypt(3X)] for decryption.

SEE ALSO
login(l), passwd(l), crypt(3X), getpass(3C), passwd(4).

DIAGNOSTICS
If edflag is set to anything other than zero, errno will be set to ENOSYS.

NOTES
The return value for crypt points to static data that are overwritten by each call.

10/92 Page 1

crypt(3X) (Encryption Utilities) crypt(3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag ...]file ... -lcrypt [library ...]

#include <crypt.h>

char *crypt (const char *key, const char *salt);

void setkey (const char *key);

void encrypt (char *block, int flag);

char *des_crypt (const char *key, const char *salt);

void des_setkey (const char *key);

void des_encrypt (char *block, int flag);

int run_setkey (int *connection, const char *key);

int run_crypt (long offset, char *buffer, unsigned int count,
int *connection) ;

int crypt_close(int *connection);

DESCRIPTION

10/92

des_crypt is the password encryption function. It is based on a one-way hashing
encryption algorithm with variations intended (among other things) to frustrate
use of hardware implementations of a key search.

key is a user's typed password. salt is a two-character string chosen from the set
[a-zA-Z0-9. /];this string is used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password. The first
two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of des_setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If this string
is divided into groups of 8, the low-order bit in each group is ignored, thereby
creating a 56-bit key that is set into the machine. This key is the key that will be
used with the hashing algorithm to encrypt the string block with the function
des_ encrypt.

The argument to the des_encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and 1. The argument array is modified
in place to a similar array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by des_setkey. Hflag is zero,
the argument is encrypted; if non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt. The
international version is part of the C Development Set, and the domestic version is
part of the Encryption Utilities. If decryption is attempted with the international
version of des_encrypt, an error message is printed.

Page 1

crypt(3X) (Encryption Utilities) crypt (3X)

crypt, setkey, and encrypt are front-end routines that invoke des_crypt,
des_setkey, and des_encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications that
need cryptographic capabilities [such as ed{l) and vi{l)] that must be compatible
with the crypt{l) user-level utility. run_setkey establishes a two-way pipe con­
nection with the crypt utility, using key as the password argument. run_crypt
takes a block of characters and transforms the cleartext or ciphertext into their
ciphertext or cleartext using the crypt utility. offset is the relative byte position
from the beginning of the file that the block of text provided in buffer is corning
from. count is the number of characters in buffer, and connection is an array contain­
ing indices to a table of input and output file streams. When encryption is finished,
crypt_close is used to terminate the connection with the crypt utility.

run_setkey returns -1 if a connection with the crypt utility cannot be established.
This result will occur in international versions of the UNIX system in which the
crypt utility is not available. If a null key is passed to run_setkey, 0 is returned.
Otherwise, 1 is returned. run_crypt returns -1 if it cannot write output or read
input from the pipe attached to crypt. Otherwise it returns 0.

The program must be linked with the object file access routine library libcrypt. a.

SEE ALSO
crypt{l), login{l), passwd{l), getpass(3C), passwd{4).

DIAGNOSTICS

NOTES

Page 2

In the international version of crypt(3X), a flag argument of 1 to encrypt or
des_encrypt is not accepted, and errno is set to ENOSYS to indicate that the func­
tionality is not available.

The return value in crypt points to static data that are overwritten by each call.

10/92

csync(2) csync(2)

NAME
csync - designate portions of memory safe for execution

SYNOPSIS
#include <sys/types.h>

int csync(caddr_t base, unsigned length);

DESCRIPTION
csync designates portions of memory as safe for execution in all executable map­
pings of the memory. On systems with hardware caches, this notification has the
effect of synchronizing the contents of memory with that of the caches.

The values of base and length designate an area of the calling process's address
space: if length is zero, all addresses (locations OxOOOO 0000 through Oxffff ffff,
inclusive) are designated; otherwise, base gives the base address and length the
length (in bytes) of the area. If length is not zero, the sum of base and length shall
exceed the value of base. The memory associated with the designated area of the
calling process's address space is made safe for execution in all executable map­
pings of the memory.

Under the following conditions, the function csync fails and sets errno to:

EINVAL base plus length does not exceed base.

DIAGNOSTICS
Upon successful completion a value of O is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
memcnt1(2), mmap(2), mprotect(2), stkprotect(2)

10/92 Page 1

ctermid (3S) (C Development Set) ctermid (3S)

NAME
ctermid- generate file name for terminal

SYNOPSIS
#include <Stdio.h>

char *ctermid (char *s);

DESCRIPTION
ctermid generates the path name of the controlling terminal for the current pro­
cess, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a character array of at least
L_ctermid elements; the path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the stdio. h header file.

SEE ALSO
ttyname(3C)

NOTES

10/92

The difference between ctermid and ttyname(3C) is that ttyname must be handed
a file descriptor and returns the actual name of the terminal associated with that file
descriptor, while ctermid returns a string (/dev/tty) that will refer to the terminal
if used as a file name. Thus ttyname is useful only if the process already has at
least one file open to a terminal.

Page 1

ctime(3C) (C Programming Language Utilities) ctime(3C)

NAME
ct ime, local time, gmt ime, as ct ime, t z set - convert date and time to string

SYNOPSIS
#include <time.h>

char *ctime (const time_t *clock);

struct tm *localtime (const time_t *clock);

struct tm *gmtime (const time_t *clock);

char *asctime (const struct tm *tm);

extern time_t timezone, altzone;

extern int daylight;

extern char *tzname[2];

void tzset (void);

DESCRIPTION

10/92

ctime, local time, and gmtime accept arguments of type time_t, pointed to by
clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970. ctime
returns a pointer to a 26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated. The fields are constant
in width:

Fri Sep 13 00:00:00 1986\n\0

local time and gmtime return pointers to tm structures, described below. local­
time corrects for the main time zone and possible alternate ("daylight savings")
time zone; gmtime converts directly to Coordinated Universal Time (UTC), which is
the time the UNIX system uses internally.

asctime converts a tm structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
time. h header file. The structure declaration is:

struct tm {

int tm_sec; I* seconds after the minute - [O, 61] *I
I* for leap seconds *I

int tm_min; /* minutes after the hour - [0' 59] */
int tm_hour; /* hour since midnight - [0, 23] *I
int tm_mday; I* day of the month - [l, 31] *I
int tm_mon; I* months since January - [O, 11] */
int tm_year; I* years since 1900 *I
int tm_wday; I* days sincf' Sunday - r o, 6] *I
int tm_yday; /* days since January 1 - [0' 365] *I
int tm_isdst; I* flag for alternate daylight *I

I* savings time *I
} ;

The value of tm_isdst is positive if daylight savings time is in effect, zero if day­
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of tm_isdst was defined as non-zero if daylight savings
time was in effect.)

Page 1

ctime(3C) (C Programming Language Utilities) ctime(3C)

FILES

The external time_t variable alt zone contains the difference, in seconds, between
Coordinated Universal Time and the alternate time zone. The external variable
timezone contains the difference, in seconds, between UTC and local standard time.
The external variable daylight indicates whether time should reflect daylight sav­
ings time. Both timezone and altzone default to 0 (UTC). The external variable
daylight is non-zero if an alternate time zone exists. The time zone names are
contained in the external variable tzname, which by default is set to:

char *tzname [2 J = { "GMT", " " } ;

These functions know about the peculiarities of this conversion for various time
periods for the U.S.A. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.

tzset uses the contents of the environment variable TZ to override the value of the
different external variables. The function tzset is called by asctime and may also
be called by the user. See environ{5) for a description of the TZ environment vari­
able.

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New
Jersey in 1986 could be

EST5EDT4,116/2:00:00,298/2:00:00

or simply

ESTSEDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[O] is EST, timezone
will be set to 5*60*60, tzname[l] is EDT, alt zone will be set to 4*60*60, the starting
date of the alternate time zone is the 117th day at 2 AM, the ending date of the alter­
nate time zone is the 299th day at 2 AM (using zero-based Julian days), and day­
light will be set positive. Starting and ending times are relative to the alternate
time zone. If the alternate time zone start and end dates and the time are not pro­
vided, the days for the United States that year will be used and the time will be 2
AM. If the start and end dates are provided but the time is not provided, the time
will be 2 AM. The effects of tzset are thus to change the values of the external vari­
ables timezone, alt zone, daylight, and tzname. ctime, localtime,mktime, and
strftime will also update these external variables as if they had called tzset at
the time specified by the time_t or struct tm value that they are converting.

Note that in most installations, TZ is set to the correct value by default when the
user logs on, via the local /etc/profile file [see profile{4) and timezone{4)].

/usr /lib/locale/ language/LC_TIME - file containing locale specific date and time
information

SEE ALSO

Page 2

time{2), getenv(3C), mktime(3C), putenv{3C), printf{3S), setlocale{3C),
strftime(3C), cftime(4), profile{4), timezone(4), environ(5)

10/92

ctime(3C) (C Programming Language Utilities) ctime(3C)

NOTES

10/92

The return values for ctime, localtime, and gmtime point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from timezone to altzone or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

Page 3

ctype(3C) (C Programming Language Utilities) ctype(3C)

NAME
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace,
iscntrl, ispunct, isprint, isgraph, isascii - character handling

SYNOPSIS
#include <ctype.h>

int isalpha (int c);

int isupper(int c);

int islower(int c);

int isdigit(int c);

int isxdigit(int c);

int isalnum(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int cl;

int isgraph (int c);

int iscntrl(int c);

int isascii(int c);

DESCRIPTION

10/92

These macros classify character-coded integer values. Each is a predicate returning
non-zero for true, zero for false. The behavior of these macros, except isascii, is
affected by the current locale [see setlocale(3C)]. To modify the behavior, change
the LC_TYPE category in setlocale, that is, setlocale (LC_CTYPE, newlocale). In
the c locale, or in a locale where character type information is not defined, charac­
ters are classified according to the rules of the US-ASCII 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are defined only where
the argument is an int, the value of which is representable as an unsigned char,
or EOF, which is defined by the stdio. h header file and represents end-of-file.

is alpha

isupper

is lower

tests for any character for which isupper or islower is true, or
any character that is one of an implementation-defined set of char­
acters for which none of iscntrl, isdigit, ispunct, or isspace
is true. In the c locale, isalpha returns true only for the charac­
ters for which isupper or is lower is true.

tests for any character that is an upper-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or islower is true. In the
c locale, isupper returns true only for the characters defined as
upper-case ASCII characters.

tests for any character that is a lower-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or isupper is true. In the
c locale, islower returns true only for the characters defined as
lower-case ASCII characters.

Page 1

ctype(3C) (C Programming Language Utilities) ctype(3C)

FILES

isdigit

isxdigit

isalnum

is space

ispunct

isprint

isgraph

iscntrl

isascii

tests for any decimal-digit character.

tests for any hexadecimal-digit character ([0-9 J, [A-Fl or [a-f J).

tests for any character for which isalpha or isdigit is true
(letter or digit).

tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of an
implementation-defined set of characters for which isalnum is
false. In the C locale, isspace returns true only for the standard
white-space characters.

tests for any printing character which is neither a space nor a char­
acter for which isalnum is true.

tests for any printing character, including space (" ").

tests for any printing character, except space.

tests for any "control character" as defined by the character set.

tests for any ASCII character, code between O and 0177 inclusive.

All the character classification macros and the conversion functions and macros use
a table lookup.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (for example, #undef isdigit).

/usr I lib/ locale/ locale /LC_CTYPE

SEE ALSO
chrtbl(lM), setlocale(3C), stdio(3S), ascii(S), environ(S)

DIAGNOSTICS

Page 2

If the argument to any of the character handling macros is not in the domain of the
function, the result is undefined.

10/92

curs_addchstr (3X) curs_addchstr (3X)

NAME
curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,
mvaddchnstr, mvwaddchstr, mvwaddchnstr - add string of characters (and attri­
butes) to a curses window

SYNOPSIS
#include <curses.h>

int addchstr(chtype *chstr);

int addchnstr(chtype *chstr, int n);

int waddchstr(WINDOW *win, chtype *chstr);

int waddchnstr(WINDOW *win, chtype *chstr, int n);

int mvaddchstr(int y, int x, chtype *chstr);

int mvaddchnstr(int y, int x, chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x,
chtype *chstr, int n);

DESCRIPTION
All of these routines copy chstr directly into the window image structure starting at
the current cursor position. The four routines with n as the last argument copy at
most n elements, but no more than will fit on the line. If n=-1 then the whole string
is copied, to the maximum number that fit on the line.

The position of the window cursor is not advanced. These routines works faster
than waddnstr because they merely copy chstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don't perform any kind of checking (such as for the newline character), they don't
advance the current cursor position, and they truncate the string, rather then wrap­
ping it around to the new line.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that all routines except waddchnstr may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_addch (3X) curs_addch (3X)

NAME
curs_addch: addch,waddch,mvaddch,mvwaddch,echochar,wechochar- add a
character (with attributes) to a curses window and advance cursor

SYNOPSIS
#include <curses.h>

addch(chtype ch);

waddch(WINDOW *win, chtype ch);

mvaddch(int y, int x, chtype ch);

mvwaddch(WINDOW *win, int y, int x, chtype ch);

echochar(chtype ch);

wechochar(WINDOW *win, chtype ch);

DESCRIPTION
With the addch, waddch, mvaddch and mvwaddch routines, the character ch is put
into the window at the current cursor position of the window and the position of
the window cursor is advanced. Its function is similar to that of putchar. At the
right margin, an automatic newline is performed. At the bottom of the scrolling
region, if scrollok is enabled, the scrolling region is scrolled up one line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol before moving. Tabs are considered to
be at every eighth column. If ch is another control character, it is drawn in the AX
notation. Calling winch after adding a control character does not return the control
character, but instead returns the representation of the control character.

Video attributes can be combined with a character by ORing them into the
parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using inch and
addch.) [see standout, predefined video attribute constants, on the
curs_attr(3X) page].

The echochar and wechochar routines are functionally equivalent to a call to
addch followed by a call to refresh, or a call to waddch followed by a call to
wrefresh. The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain
might be seen by using these routines instead of their equivalents.

Line Graphics

10/92

The following variables may be used to add line drawing characters to the screen
with routines of the addch family. When variables are defined for the terminal, the
A_ALTCHARSET bit is turned on [see curs_attr(3X)]. Otherwise, the default char­
acter listed below is stored in the variable. The names chosen are consistent with
the VTlOO nomenclature.

Page 1

curs_addch (3X) curs_addch (3X)

Name Default Glyph Description

ACS_ULCORNER + upper left-hand comer
ACS_LLCORNER + lower left-hand comer
ACS_URCORNER + upper right-hand comer
ACS_LRCORNER + lower right-hand comer
ACS_RTEE + right tee (-I)
ACS_LTEE + left tee(~)
ACS_BTEE + bottom tee (1)
ACS_TTEE + top tee (T)
ACS_HLINE horizontal line
ACS_VLINE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW /\ arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid sguare block

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that addch, mvaddch, mvwaddch, and echochar may be macros.

SEE ALSO

Page 2

curses(3X), curs_at tr(3X), curs_clear(3X), curs_inch(3X), curs_outopts(3X),
curs_refresh(3X) putc(3S)

10/92

curs_addstr (3X) curs_addstr (3X)

NAME
curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr,
mvwaddstr, mvwaddnstr - add a string of characters to a curses window and
advance cursor

SYNOPSIS
#include <curses.h>

int addstr(char *str);

int addnstr(char *str, int n);

int waddstr(WINDOW *win, char *str);

int waddnstr(WINDOW *win, char *str, int n);

int mvaddstr(y, int x, char *str);

int mvaddnstr(y, int x, char *str, int n);

int mvwaddstr(WINDOW *win, int y, int x, char *str);

int mvwaddnsLr(WINDOW *win, int y, int x, char *str,
int n);

DESCRIPTION
All of these routines write all the characters of the null terminated character string
str on the given window. It is similar to calling waddch once for each character in
the string. The four routines with n as the last argument write at most n characters.
If n is negative, then the entire string will be added.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that all of these routines except waddstr and waddnstr may be macros.

SEE ALSO
curses(3X), curs_addch(3X)

10/92 Page 1

curs_addwch (3X) curs_addwch (3X)

NAME
curs_addwch: addwch,waddwch,mvaddwch,mvwaddwch,echowchar,wechowchar
- add a wchar_t character (with attributes) to a curses window and advance cur­
sor

SYNOPSIS
#include <curses.h>

int addwch(chtype wch);

int waddwch(WINDOW *win, chtype wch);

int mvaddwch(int y, int x, chtype wch);

int mvwaddwch(WINDOW *win, int y, int x, chtype wch);

int echowchar(chtype wch);

int wechowchar(WINDOW *win, chtype wch);

DESCRIPTION
With the addwch, waddwch, mvaddwch and mvwaddwch routines, the character wch
which is holding a wchar_t character is put into the window at the current cursor
position of the window and the position of the window cursor is advanced. Its
function is similar to that of putwchar in the C multibyte library. At the right mar­
gin, an automatic newline is performed. At the bottom of the scrolling region, if
scrollok is enabled, the scrolling region is scrolled up one line.

If wch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol before moving. Tabs are considered to
be at every eighth column. If wch is another control character, it is drawn in the AX
notation. Calling winwch after adding a control character does not return the con­
trol character, but instead returns the representation of the control character.

Video attributes can be combined with a wchar_t character by OR-ing them into
the parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using inwch and
addwch.) [see standout, predefined video attribute constants, on the curs_attr(3X)
page].

The echowchar and wechowchar routines are functionally equivalent to a call to
addwch followed by a call to refresh, or a call to waddwch followed by a call to
wrefresh. The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain
might be seen by using these routines instead of their equivalents.

Line Graphics

10/92

The following variables may be used to add line drawing characters to the screen
with routines of the addwch family. When variables are defined for the terminal,
the A_ALTCHARSET bit is turned on [see curs_attr(3X)]. Otherwise, the default char­
acter listed below is stored in the variable. The names chosen are consistent with
the VTlOO nomenclature.

Page 1

curs_addwch (3X) curs_addwch (3X)

Name Default Glyph Description

ACS_ULCORNER + upper left-hand comer
ACS_LLCORNER + lower left-hand comer
ACS_URCORNER + upper right-hand comer
ACS_LRCORNER + lower right-hand comer
ACS_RTEE + right tee rn
ACS_LTEE + left tee (~)
ACS_BTEE + bottom tee (1)
ACS_TTEE + top tee (T)
ACS_HLINE horizontal line
ACS_VLINE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS PLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW /\ arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctr 1. h>.

Note that addwch, mvaddwch, mvwaddwch, and echowchar may be macros.

SEE ALSO

Page 2

curses(3X), curs_attr(3X), curs_clear(3X), curs_inwch(3X),
curs_outopts(3X), curs_refresh(3X) putwc(3W).

10/92

curs_addwstr(3X) curs_addwstr(3X)

NAME
curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, rnvaddwstr,
rnvaddnwstr, rnvwaddwstr, rnvwaddnwstr - add a string of wchar_t characters to a
curses window and advance cursor

SYNOPSIS
#include <curses.h>

int addwstr(wchar_t *wstr);

int addnwstr(wchar_t *wstr, int n);

int waddwstr(WINDOW *win, wchar_t *wstr);

int waddnwstr(WINDOW *win, wchar_t *wstr, int n);

int rnvaddwstr(y, int x, wchar_t *wstr);

int rnvaddnwstr(y, int x, wchar_t *wstr, int n);

int rnvwaddwstr(WINDOW *win, int y, int x, wchar_t *wstr);

int rnvwaddnwstr(WINDOW *win, int y, int x, wchar_t *wstr,
int n);

DESCRIPTION
All of these routines write all the characters of the null terminated wchar_t charac­
ter string str on the given window. It is similar to calling waddwch once for each
wchar_t character in the string. The four routines with n as the last argument write
at most n wchar_t characters. If n is negative, then the entire string will be added.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctr 1 . h>.

Note that all of these routines except waddwstr and waddnwstr may be macros.

SEE ALSO
curses(3X), curs_addwch(3X).

10/92 Page 1

curs_addwchstr (3X) curs_addwchstr(3X)

NAME
curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,
mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr - add string of
wchar_t characters (and attributes) to a curses window

SYNOPSIS
#include <curses.h>

int addwchstr(chtype *wchstr);

int addwchnstr(chtype *wchstr, int n);

int waddwchstr(WINDOW *win, chtype *wchstr);

int waddwchnstr(WINDOW *win, chtype *wchstr, int n);

int mvaddwchstr(int y, int x, chtype *wchstr);

int mvaddwchnstr(int y, int x, chtype *wchstr, int n);

int mvwaddwchstr(WINDOW *win, int y, int x, chtype *wchstr);

int mvwaddwchnstr(WINDOW *win, int y, int x,
chtype *wchstr, int n);

DESCRIPTION
All of these routines copy wchstr which points to the string of wchar_t characters
directly into the window image structure starting at the current cursor position.
The four routines with n as the last argument copy at most n elements, but no more
than will fit on the line. If n=-1 then the whole string is copied, to the maximum
number that fit on the line.

The position of the window cursor is NOT advanced. These routines works faster
than waddnwstr because they merely copy wchstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don't perform any kind of checking (such as for the newline character), they don't
advance the current cursor position, and they truncate the string, rather then wrap­
ping it around to the new line.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctr 1. h>.

Note that all routines except waddwchnstr may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_attr(3X) curs_attr(3X)

NAME
curs_attr: attroff, wattroff, attron, wattron, attrset, wattrset,
standend, wstandend, standout, wstandout - curses character and window
attribute control routines

SYNOPSIS
#include <curses.h>

int attroff(int attrs);
int wattroff(WINDOW *win, int attrs);
int attron(int attrs);
int wattron(WINDOW *win, int attrs);
int attrset(int attrs);
int wattrset(WINDOW *win, int attrs);
int standend(void);
int wstandend(WINDOW *win);
int standout(void);
int wstandout(WINDOW *win);

DESCRIPTION
All of these routines manipulate the current attributes of the named window. The
current attributes of a window are applied to all characters that are written into the
window with waddch, waddstr and wprintw. Attributes are a property of the char­
acter, and move with the character through any scrolling and insert/delete
line/character operations. To the extent possible on the particular terminal, they
are displayed as the graphic rendition of characters put on the screen.

The routine attrset sets the current attributes of the given window to attrs. The
routine attroff turns off the named attributes without turning any other attri­
butes on or off. The routine attron turns on the named attributes without affecting
any others. The routine standout is the same as attron (A_STANDOUT). The rou­
tine standend is the same as attrset (O), that is, it turns off all attributes.

Attributes

10/92

The following video attributes, defined in curses . h, can be passed to the routines
attron, at troff, and attrset, or ORed with the characters passed to addch.

A_STANDOUT Best highlighting mode of the terminal.
A_ UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set
A_CHARTEXT Bit-mask to extract a character
COLOR_PAIR (n) Color-pair number n

The following macro is the reverse of COLOR_PAIR (n) :

PAIR_NUMBER (attrs) Returns the pair number associated
with the COLOR_PAIR (n) attribute.

Page 1

curs_attr(3X) curs_attr (3X)

RETURN VALUE

NOTES

These routines always return 1.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that attroff, wattroff, attron, wattron, attrset, wattrset, standend
and standout may be macros.

SEE ALSO
curses(3X), curs_addch(3X), curs_addstr(3X), curs_printw(3X)

Page 2 10/92

curs_beep (3X) curs_beep (3X)

NAME
curs_beep: beep, flash- curses bell and screen flash routines

SYNOPSIS
#include <curses.h>

int beep (void) ;

int flash(void);

DESCRIPTION
The beep and flash routines are used to signal the terminal user. The routine beep
sounds the audible alarm on the terminal, if possible; if that is not possible, it
flashes the screen (visible bell), if that is possible. The routine flash flashes the
screen, and if that is not possible, sounds the audible signal. If neither signal is pos­
sible, nothing happens. Nearly all terminals have an audible signal (bell or beep),
but only some can flash the screen.

RETURN VALUE

NOTES

These routines always return OK.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

SEE ALSO
curses(3X)

10/92 Page 1

curs_bkgd (3X) curs_bkgd (3X)

NAME
curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd - curses window background
manipulation routines

SYNOPSIS
#include <curses.h>

void bkgdset(chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

int bkgd(chtype ch);

int wbkgd(WINDOW *win, chtype ch);

DESCRIPTION
The bkgdset and wbkgdset routines manipulate the background of the named
window. Background is a chtype consisting of any combination of attributes and a
character. The attribute part of the background is combined (ORed) with all non­
blank characters that are written into the window with waddch. Both the character
and attribute parts of the background are combined with the blank characters. The
background becomes a property of the character and moves with the character
through any scrolling and insert/delete line/character operations. To the extent
possible on a particular terminal, the attribute part of the background is displayed
as the graphic rendition of the character put on the screen.

The bkgd and wbkgd routines combine the new background with every position in
the window. Background is any combination of attributes and a character. Only
the attribute part is used to set the background of non-blank characters, while both
character and attributes are used for blank positions. To the extent possible on a
particular terminal, the attribute part of the background is displayed as the graphic
rendition of the character put on the screen.

RETURN VALUE

NOTES

bkgd and wbkgd return the integer OK, or a non-negative integer, if imrnedok is set.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that bkgdset and bkgd may be macros.

SEE ALSO
curses{3X), curs_addch(3X), curs_outopts(3X)

10/92 Page 1

curs_border(3X) curs_border(3X)

NAME
curs_border; border, wborder, box, hline, whline, vline, wvline - create
curses borders, horizontal and vertical lines

SYNOPSIS
#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs,
chtype tl, chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs,
chtype ts, chtype bs, chtype tl, chtype tr,
chtype bl, chtype br);

int box(WINDOW *win, chtype verch, chtype horch);
int hline(chtype ch, int n);
int whline(WINDOW *win, ch type ch, int n);
int vline(chtype ch, int n);
int wvline(WINDOW *win, ch type ch, int n);

DESCRIPTION
With the border, wborder and box routines, a border is drawn around the edges of
the window. The argument ls is a character and attributes used for the left side of
the border, rs - right side, ts - top side, bs - bottom side, tl - top left-hand corner, tr -
top right-hand corner, bl - bottom left-hand corner, and br - bottom right-hand
corner. If any of these arguments is zero, then the following default values (defined
in curses.h) are used instead: ACS_VLINE, ACS_VLINE, ACS_HLINE,
ACS_HLINE, ACS_ULCORNER, ACS_URCORNER, ACS_BLCORNER, ACS_BRCORNER.

box (win , verch, horch) is a shorthand for the following call: wborder (win , verch,
verch, horch, horch, O, O, O, O).

hline and whline draw a horizontal (left to right) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most n characters long, or as many as fit into the window.

vline and wvline draw a vertical (top to bottom) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most n characters long, or as many as fit into the window.

RETURN VALUE

NOTES

All routines return the integer OK, or a non-negative integer if irrrrnedok is set.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that border and box may be macros.

SEE ALSO
curses(3X), curs_outopts(3X)

10/92 Page 1

curs_clear (3X) curs_clear(3X)

NAME
curs_clear: erase,werase, clear,wclear, clrtobot,wclrtobot, clrtoeol,
wclrtoeol - clear all or part of a curses window

SYNOPSIS
include <curses.h>

int erase (void) ;

int werase(WINDOW *win);

int clear (void) ;

int wclear(WINDOW *win);

int clrtobot (void) ;

int wclrtobot(WINDOW *win);

int clrtoeol (void) ;

int wclrtoeol(WINDOW *win);

DESCRIPTION
The erase and werase routines copy blanks to every position in the window.

The clear and wclear routines are like erase and werase, but they also call
clearok, so that the screen is cleared completely on the next call to wrefresh for
that window and repainted from scratch.

The clrtobot and wclrtobot routines erase all lines below the cursor in the win­
dow. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol and wclrtoeol routines erase the current line to the right of the cur­
sor, inclusive.

RETURN VALUE

NOTES

All routines return the integer OK, or a non-negative integer if irnmedok is set.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that erase, werase, clear, wclear, clrtobot, and clrtoeol may be macros.

SEE ALSO
curses(3X), curs_outopts(3X), curs_refresh(3X)

10/92 Page 1

curs_color(3X) curs_color(3X)

NAME
curs_color: start_color, init_pair, init_color, has_colors,
can_change_color, color_content, pair_content - curses color manipulation
routines

SYNOPSIS
include <curses.h>

int start_color(void);
int init_pair(short pair, short f, short b);
int init_color(short color, short r, short g, short b);
bool has_colors(void);
bool can_change_color(void);
int color_content(short color, short *r, short *g, short *b);
int pair_content(short pair, short *f, short *b);

DESCRIPTION
Overview

curses provides routines that manipulate color on color alphanumeric terminals.
To use these routines start_color must be called, usually right after initscr.
Colors are always used in pairs (referred to as color-pairs). A color-pair consists of
a foreground color (for characters) and a background color (for the field on which
the characters are displayed). A programmer initializes a color-pair with the rou­
tine init_pair. After it has been initialized, COLOR_PAIR(n), a macro defined in
curses. h, can be used in the same ways other video attributes can be used. If a
terminal is capable of redefining colors, the programmer can use the routine
init_color to change the definition of a color. The routines has_colors and
can_change_color return TRUE or FALSE, depending on whether the terminal has
color capabilities and whether the programmer can change the colors. The routine
color_content allows a programmer to identify the amounts of red, green, and
blue components in an initialized color. The routine pair_content allows a pro­
grammer to find out how a given color-pair is currently defined.

Routine Descriptions

10/92

The start_color routine requires no arguments. It must be called if the program­
mer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right after initscr. start_color initializes
eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables, COLORS and COLOR_PAIRS (respectively defining the max­
imum number of colors and color-pairs the terminal can support). It also restores
the colors on the terminal to the values they had when the terminal was just turned
on.

The init_pair routine changes the definition of a color-pair. It takes three argu­
ments: the number of the color-pair to be changed, the foreground color number,
and the background color number. The value of the first argument must be
between 1 and COLOR_PAIRS-1. The value of the second and third arguments must
be between 0 and COLORS. If the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair is changed to the new definition.

Page 1

curs_color (3X) curs_color(3X)

The ini t_color routine changes the definition of a color. It takes four arguments:
the number of the color to be changed followed by three RGB values (for the
amounts of red, green, and blue components). The value of the first argument must
be between O and COLORS. (See the section Colors for the default color index.)
Each of the last three arguments must be a value between 0 and 1000. When
init_color is used, all occurrences of that color on the screen immediately change
to the new definition.

The has_colors routine requires no arguments. It returns TRUE if the terminal can
manipulate colors; otherwise, it returns FALSE. This routine facilitates writing
terminal-independent programs. For example, a programmer can use it to decide
whether to use color or some other video attribute.

The can_change_color routine requires no arguments. It returns TRUE if the ter­
minal supports colors and can change their definitions; other, it returns FALSE. This
routine facilitates writing terminal-independent programs.

The color_content routine gives users a way to find the intensity of the red,
green, and blue (RGB) components in a color. It requires four arguments: the color
number, and three addresses of shorts for storing the information about the
amounts of red, green, and blue components in the given color. The value of the
first argument must be between 0 and COLORS. The values that are stored at the
addresses pointed to by the last three arguments are between 0 (no component) and
1000 (maximum amount of component).

The pair_content routine allows users to find out what colors a given color-pair
consists of. It requires three arguments: the color-pair number, and two addresses
of shorts for storing the foreground and the background color numbers. The value
of the first argument must be between 1 and COLOR_PAIRS-1. The values that are
stored at the addresses pointed to by the second and third arguments are between 0
and COLORS.

Colors
In curses . h the following macros are defined. These are the default colors.
curses also assumes that COLOR_BLACK is the default background color for all ter­
minals.

COLOR_BLACK
COLOR_RED
COLOR_ GREEN
COLOR_ YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_ CYAN
COLOR_WHITE

RETURN VALUE

Page 2

All routines that return an integer return ERR upon failure and OK upon successful
completion.

10/92

curs_color(3X) curs_color(3X)

NOTES
The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

SEE ALSO
curses(3X), curs_initscr(3X), curs_attr(3X)

10/92 Page 3

curs_delch (3X) curs_delch (3X)

NAME
curs_delch: delch, wdelch, mvdelch, mvwdelch - delete character under cursor
in a curses window

SYNOPSIS
#include <curses.h>

int delch(void);

int wdelch(WINDOW *win);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

DESCRIPTION
With these routines the character under the cursor in the window is deleted; all
characters to the right of the cursor on the same line are moved to the left one posi­
tion and the last character on the line is filled with a blank. The cursor position
does not change (after moving toy, x, if specified). (This does not imply use of the
hardware delete character feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses .h automatically includes the header files stdio.h and
unctrl .h.

Note that delch, mvdelch, and mvwdelch may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_deleteln (3X) curs_deleteln (3X)

NAME
curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln,
winsertln - delete and insert lines in a curses window

SYNOPSIS
#include <curses.h>

int deleteln (void) ;

int wdeleteln(WINDOW *win);

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

int insertln (void) ;

int winsertln(WINDOW *win);

DESCRIPTION
With the deleteln and wdeleteln routines, the line under the cursor in the win­
dow is deleted; all lines below the current line are moved up one line. The bottom
line of the window is cleared. The cursor position does not change. (This does not
imply use of a hardware delete line feature.)

With the insdelln and winsdelln routines, for positive n, insert n lines into the
specified window above the current line. The n bottom lines are lost. For negative
n, delete n lines (starting with the one under the cursor), and move the remaining
lines up. The bottom n lines are cleared. The current cursor position remains the
same.

With the insertln and insertln routines, a blank line is inserted above the
current line and the bottom line is lost. (This does not imply use of a hardware
insert line feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.hand
unctrl .h.

Note that all but winsdelln may be a macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_getch (3X) curs_getch (3X)

NAME
curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch - get (or push back)
characters from curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getch(void);

int wgetch(WINDOW *win);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

DESCRIPTION
With the get ch, wgetch, mvgetch and mvwgetch, routines a character is read from
the terminal associated with the window. In no-delay mode, if no input is waiting,
the value ERR is returned. In delay mode, the program waits until the system
passes text through to the program. Depending on the setting of cbreak, this is
after one character (cbreak mode), or after the first newline (nocbreak mode). In
half-delay mode, the program waits until a character is typed or the specified
timeout has been reached. Unless noecho has been set, the character will also be
echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
curses. h with integers beginning with 0401, whose names begin with KEY_. If a
character that could be the beginning of a function key (such as escape) is received,
curses sets a timer. If the remainder of the sequence does not come in within the
designated time, the character is passed through; otherwise, the function key value
is returned. For this reason, many terminals experience a delay between the time a
user presses the escape key and the escape is returned to the program. Since tokens
returned by these routines are outside the ASCII range, they are not printable.

The ungelch routine places ch back onto the input queue to be returned by the next
call to wgetch.

Function Keys

10/92

The following function keys, defined in curses. h, might be returned by get ch if
keypad has been enabled. Note that not all of these may be supported on a particu­
lar terminal if the terminal does not transmit a unique code when the key is pressed
or if the definition for the key is not present in the terminfo database.

Page 1

curs_getch (3X)

Page 2

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

KEY_Al
KEY_A3
KEY_B2
KEY_Cl
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY

curs_getch (3X)

Key name

Break key
The four arrow keys ...

Home key (upward+left arrow)
Backspace
Function keys; space for 64 keys is reserved.
ForO :<:; n :<:; 63
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backward (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
Soft (partial) reset
Reset or hard reset
Print or copy
Home down or bottom (lower left).
Keypad is arranged like this:

Al up A3
left B2 right
Cl down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
Beg(inning) key
Cancel key
Close key
Cmd (command) key
Copy key

10/92

curs_getch (3X)

10/92

Name

KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_ OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME

Key name

Create key
End key
Exit key
Find key
Help key
Mark key
Message key
Move key
Next object key
Open key
Options key
Previous object key
Redo key
Ref(erence) key
Refresh key
Replace key
Restart key
Resume key
Save key
Shifted beginning key
Shifted cancel key
Shifted command key
Shifted copy key
Shifted create key
Shifted delete char key
Shifted delete line key
Select key
Shifted end key
Shifted clear line key
Shifted exit key
Shifted find key
Shifted help key
Shifted home key
Shifted input key
Shifted left arrow key
Shifted message key
Shifted move key
Shifted next key
Shifted options key
Shifted prev key
Shifted print key
Shifted redo key
Shifted replace key
Shifted right arrow
Shifted resume key

curs_getch (3X)

Page 3

curs_getch (3X) curs_getch (3X)

Name

KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO

Key name

Shifted save key
Shifted suspend key
Shifted undo key
Suspend key
Undo key

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getch, wgetch, mvgetch, or mvwgetch, nocbreak mode (nocbreak)
and echo mode (echo) should not be used at the same time. Depending on the
state of the tty driver when each character is typed, the program may produce
undesirable results.

Note that get ch, mvgetch, and mvwgetch may be macros.

SEE ALSO
curses(3X), curs_inopts(3X), curs_move(3X), curs_refresh(3X)

Page 4 10/92

curs _getstr (3X) curs_getstr(3X)

NAME
curs_getstr: getstr, getnstr, wgetstr, wgetnstr, mvgetstr, mvgetnstr,
mvwgetstr, mvwgetnstr - get character strings from curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getstr(char *str);

int getnstr(char *str, int n);

int wgetstr(WINDOW *win, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

int mvgetstr(int y, int x, char *str);

int mvgetnstr(int y, int x, char *str, int n);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int mvwgetnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
The effect of gets tr is as though a series of calls to getch were made, until a new­
line and carriage return is received. The resulting value is placed in the area
pointed to by the character pointer str. getnstr reads at most n characters, thus
preventing a possible overflow of the input buffer. The user's erase and kill charac­
ters are interpreted, as well as any special keys (such as function keys, "home" key,
"clear" key, etc.).

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl. h>.

Note that all routines except wgetnstr may be macros.

SEE ALSO
curses(3X), curs_getch(3X).

10/92 Page 1

curs_getwch (3X) curs_getwch (3X)

NAME
curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch - get (or push
back) wchar_t characters from curses terminal keyboard

SYNOPSIS
#include <Curses.h>

int getwch(void);

int wgetwch(WINDOW *win);

int mvgetwch(int y, int x);

int mvwgetwch(WINDOW *win, int y, int x);

int ungetwch(wchar_t wch);

DESCRIPTION
With the getwch, wgetwch, mvgetwch and mvwgetwch routines, a EUC character is
read from the terminal associated with the window, it is transformed into a
wchar_t character, and a wchar_t character is returned. In no-delay mode, if no
input is waiting, the value ERR is returned. In delay mode, the program waits until
the system passes text through to the program. Depending on the setting of
cbreak, this is after one character (cbreak mode), or after the first newline (noc­
break mode). In half-delay mode, the program waits until a character is typed or
the specified timeout has been reached. Unless noecho has been set, the character
will also be echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
<curses. h> with integers beginning with 0401, whose names begin with KEY_. If
a character that could be the beginning of a function key (such as escape) is
received, curses sets a timer. If the remainder of the sequence does not come in
within the designated time, the character is passed through; otherwise, the function
key value is returned. For this reason, many terminals experience a delay between
the time a user presses the escape key and the escape is returned to the program.

The ungetwch routine places wch back onto the input queue to be returned by the
next call to wgetwch.

Function Keys

10/92

The following function keys, defined in <curses .h>, might be returned by getwch
if keypad has been enabled. Note that not all of these may be supported on a par­
ticular terminal if the terminal does not transmit a unique code when the key is
pressed or if the definition for the key is not present in the terminfo database.

Page 1

curs_getwch (3X)

Page 2

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

KEY_Al
KEY_A3
KEY_B2
KEY_Cl
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY

curs_getwch (3X)

Key name

Break key
The four arrow keys ...

Home key (upward+left arrow)
Backspace
Function keys; space for 64 keys is reserved.
For 0:::; n:::; 63
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backward (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
Soft (partial) reset
Reset or hard reset
Print or copy
Home down or bottom (lower left).
Keypad is arranged like this:

Al up A3
left B2 right
Cl down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
Beg(inning) key
Cancel key
Close key
Cmd (command) key
Copy key

10/92

curs_getwch (3X)

10/92

Name

KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME

Key name

Create key
End key
Exit key
Find key
Help key
Mark key
Message key
Move key
Next object key
Open key
Options key
Previous object key
Redo key
Ref(erence) key
Refresh key
Replace key
Restart key
Resume key
Save key
Shifted beginning key
Shifted cancel key
Shifted command key
Shifted copy key
Shifted create key
Shifted delete char key
Shifted delete line key
Select key
Shifted end key
Shifted clear line key
Shifted exit key
Shifted find key
Shifted help key
Shifted home key
Shifted input key
Shifted left arrow key
Shifted message key
Shifted move key
Shifted next key
Shifted options key
Shifted prev key
Shifted print key
Shifted redo key
Shifted replace key
Shifted right arrow
Shifted resume key

curs_getwch (3X)

Page 3

curs_getwch (3X) curs_getwch (3X)

Name

KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO

Key name

Shifted save key
Shifted suspend key
Shifted undo key
Suspend key
Undo key

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl .h>.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getwch, wgetwch, mvgetwch, or mvwgetwch, nocbreak mode (noc­
break) and echo mode (echo) should not be used at the same time. Depending on
the state of the tty driver when each character is typed, the program may produce
undesirable results.

Note that getwch, mvgetwch, and mvwgetwch may be macros.

SEE ALSO
curses(3X), curs_inopts(3X), curs_move(3X), curs_refresh(3X).

Page 4 10/92

curs_getwstr(3X) curs_getwstr(3X)

NAME
curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr,
mvgetnwstr, mvwgetwstr, mvwgetnwstr - get wchar_t character strings from
curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getwstr(wchar_t *wstr);

int getnwstr(wchar_t *wstr, int n);

int mvgetwstr(int y, int x, wchar_t *wstr);

int mvgetnwstr(int y, int x, wchar_t *wstr, int n);

int mvwgetwstr(WINDOW *win, int y, int x, wchar_t *wstr);

int mvwgetnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

int wgetwstr(WINDOW *win, wchar_t *wstr);

int wgetnwstr(WINDOW *win, wchar_t *wstr, int n);

DESCRIPTION
The effect of getwstr is as though a series of calls to getwch were made, until a
newline and carriage return is received. The resulting value is placed in the area
pointed to by the wchar_t pointer str. getnwstr reads at most n wchar_t charac­
ters, thus preventing a possible overflow of the input buffer. The user's erase and
kill characters are interpreted, as well as any special keys (such as function keys,
"home" key, "clear" key, etc.).

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl.h>.

Note that all routines except wgetnwstr may be macros.

SEE ALSO
curses(3X), curs_getwch(3X).

10/92 Page 1

curs_getyx(3X) curs_getyx (3X)

NAME
curs_getyx: getyx, getparyx, getbegyx, getmaxyx - get curses cursor and
window coordinates

SYNOPSIS
#include <curses.h>

void getyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);

void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

DESCRIPTION
With the getyx macro, the cursor position of the window is placed in the two
integer variables y and x.

With the getparyx macro, if win is a subwindow, the beginning coordinates of the
subwindow relative to the parent window are placed into two integer variables, y
and x. Otherwise, -1 is placed into y and x.

Like getyx, the getbegyx and getmaxyx macros store the current beginning coor­
dinates and size of the specified window.

RETURN VALUE

NOTES

The return values of these macros are undefined (that is, they should not be used as
the right-hand side of assignment statements).

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that all of these interfaces are macros and that "&"is not necessary before the
variables y and x.

SEE ALSO
curses(3X)

10/92 Page 1

curs_inch (3X) curs_inch (3X)

NAME
curs_inch: inch, winch, mvinch, mvwinch - get a character and its attributes
from a curses window

SYNOPSIS
#include <curses.h>

chtype inch(void);

chtype winch(WINDOW *win);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the character, of type chtype, at the current position in the
named window is returned. If any attributes are set for that position, their values
are ORed into the value returned. Constants defined in <curses. h> can be used
with the & (logical AND) operator to extract the character or attributes alone.

Attributes

NOTES

The following bit-masks may be ANDed with characters returned by winch.

A_CHARTEXT Bit-mask to extract character
A_ATTRIBUTES Bit-mask to extract attributes
A_COLOR Bit-mask to extract color-pair field information

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that all of these routines may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_inchstr(3X) curs _inchstr (3X)

NAME
curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr,
mvinchnstr, mvwinchstr, mvwinchnstr - get a string of characters (and attributes)
from a curses window

SYNOPSIS
#include <curses.h>

int inchstr(chtype *chstr);

int inchnstr(chtype *chstr, int n);

int winchstr(WINDOW *win, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION
With these routines, a string of type chtype, starting at the current cursor position
in the named window and ending at the right margin of the window, is returned.
The four functions with n as the last argument, return the string at most n charac­
ters long. Constants defined in curses. h can be used with the & (logical AND)
operator to extract the character or the attribute alone from any position in the chstr
[see curs_inch(3X)].

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that all routines except winchnstr may be macros.

SEE ALSO
curses(3X), curs_inch(3X)

10/92 Page 1

curs_initscr(3X) curs_initscr(3X)

NAME
curs_initscr: initscr, newterrn, endwin, isendwin, set_terrn, delscreen -
curses screen initialization and manipulation routines

SYNOPSIS
#include <curses.h>

WINDOW *initscr(void);

int endwin(void);

int isendwin(void);

SCREEN *newterrn(char *type, FILE *outfd, FILE *infd);

SCREEN *set_term(SCREEN *new);

void delscreen(SCREEN* sp);

DESCRIPTION

10/92

ini tscr is almost always the first routine that should be called (the exceptions are
slk_init, filter, ripoffline, use_env and, for multiple-terminal applications,
newterrn.) This determines the terminal type and initializes all curses data struc­
tures. ini tscr also causes the first call to refresh to clear the screen. If errors
occur, ini tscr writes an appropriate error message to standard error and exits;
otherwise, a pointer is returned to stdscr. If the program needs an indication of
error conditions, newterm() should be used instead of initscr; initscr should
only be called once per application.

A program that outputs to more than one terminal should use the newterrn routine
for each terminal instead of initscr. A program that needs an indication of error
conditions, so it can continue to run in a line-oriented mode if the terminal cannot
support a screen-oriented program, would also use this routine. The routine
newterm should be called once for each terminal. It returns a variable of type
SCREEN * which should be saved as a reference to that terminal. The arguments
are the type of the terminal to be used in place of $TERM, a file pointer for output to
the terminal, and another file pointer for input from the terminal (if type is NULL,
$TERM will be used). The program must also call endwin for each terminal being
used before exiting from curses. If newterm is called more than once for the same
terminal, the first terminal referred to must be the last one for which endwin is
called.

A program should always call endwin before exiting or escaping from curses
mode temporarily. This routine restores tty modes, moves the cursor to the lower
left-hand corner of the screen and resets the terminal into the proper non-visual
mode. Calling refresh or doupdate after a temporary escape causes the program
to resume visual mode.

The isendwin routine returns TRUE if endwin has been called without any subse­
quent calls to wrefresh, and FALSE otherwise.

The set_terrn routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. The previous terminal is returned
by the routine. This is the only routine which manipulates SCREEN pointers; all
other routines affect only the current terminal.

Page 1

curs_initscr(3X) curs_initscr (3X)

The delscreen routine frees storage associated with the SCREEN data structure.
The endwin routine does not do this, so delscreen should be called after endwin if
a particular SCREEN is no longer needed.

RETURN VALUE

NOTES

endwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers always return NULL on error.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that initscr and newterm may be macros.

SEE ALSO
curses(3X), curs_kernel(3X), curs_refresh(3X), curs_slk(3X), curs_util(3X)

Page 2 10/92

curs_inopts (3X) curs_inopts(3X)

NAME
curs_inopts: cbreak,nocbreak,echo,noecho,halfdelay,intrflush,keypad,
meta,nodelay,notimeout,raw,noraw,noqiflush,qiflush,timeout,wtimeout,
typeahead - curses terminal input option control routines

SYNOPSIS
#include <curses.h>

int cbreak(void);

int nocbreak(void);

int echo (void) ;

int noecho(void);

int halfdelay(int tenths);

int intrflush(WINDOW *win, bool bf);

int keypad(WINDOW *win, bool bf);

int meta(WINDOW *win, bool bf);

int nodelay(WINDOW *win, bool bf);

int notimeout(WINDOW *win, bool bf);

int raw (void) ;

int noraw (void) ;

void noqiflush(void);

void qiflush(void);

void timeout(int delay);

void wtimeout(WINDOW *win, int delay);

int typeahead(int fd);

DESCRIPTION

10/92

The cbreak and nocbreak routines put the terminal into and out of cbreak mode,
respectively. In this mode, characters typed by the user are immediately available
to the program, and erase/kill character-processing is not performed. When out of
this mode, the tty driver buffers the typed characters until a newline or carriage
return is typed. Interrupt and flow control characters are unaffected by this mode.
Initially the terminal may or may not be in cbreak mode, as the mode is inherited;
therefore, a program should call cbreak or nocbreak explicitly. Most interactive
programs using curses set the cbreak mode.

Note that cbreak overrides raw. [See curs_getch(3X) for a discussion of how
these routines interact with echo and noecho.]

The echo and noecho routines control whether characters typed by the user are
echoed by getch as they are typed. Echoing by the tty driver is always disabled,
but initially getch is in echo mode, so characters typed are echoed. Authors of
most interactive programs prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing by calling noecho. [See
curs_getch(3X) for a discussion of how these routines interact with cbreak and

Page 1

curs _i nopts (3X) curs_inopts (3X)

Page 2

nocbreak.]

The halfdelay routine is used for half-delay mode, which is similar to cbreak
mode in that characters typed by the user are immediately available to the pro­
gram. However, after blocking for tenths tenths of seconds, ERR is returned if noth­
ing has been typed. The value of tenths must be a number between 1 and 255.
Use nocbreak to leave half-delay mode.

If the intrflush option is enabled, (bf is TRUE), when an interrupt key is pressed
on the keyboard (interrupt, break, quit) all output in the tty driver queue will be
flushed, giving the effect of faster response to the interrupt, but causing curses to
have the wrong idea of what is on the screen. Disabling (bf is FALSE), the option
prevents the flush. The default for the option is inherited from the tty driver set­
tings. The window argument is ignored.

The keypad option enables the keypad of the user's terminal. If enabled (bf is
TRUE), the user can press a function key (such as an arrow key) and wgetch returns
a single value representing the function key, as in KEY_LEFT. If disabled (bf is
FALSE), curses does not treat function keys specially and the program has to inter­
pret the escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option causes the
terminal keypad to be turned on when wgetch is called. The default value for
keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends on
the control mode of the tty driver [see termio(7)]. To force 8 bits to be returned,
invoke meta(win, TRUE). To force 7 bits to be returned, invoke meta(win, FAT.SE).
The window argument, win, is always ignored. If the terminfo capabilities smm
(meta_on) and rmm (meta_off) are defined for the terminal, smm is sent to the termi­
nal when meta(win, TRUE) is called and rmm is sent when meta(win, FALSE) is called.

The nodelay option causes getch to be a non-blocking call. If no input is ready,
get ch returns ERR. If disabled (bf is FALSE), get ch waits until a key is pressed.

While interpreting an input escape sequence, wgetch sets a timer while waiting for
the next character. If notimeout (win, TRUE) is called, then wgetch does not set a
timer. The purpose of the timeout is to differentiate between sequences received
from a function key and those typed by a user.

With the raw and noraw routines, the terminal is placed into or out of raw mode.
Raw mode is similar to cbreak mode, in that characters typed are immediately
passed through to the user program. The differences are that in raw mode, the
interrupt, quit, suspend, and flow control characters are all passed through uninter­
preted, instead of generating a signal. The behavior of the BREAK key depends on
other bits in the tty driver that are not set by curses.

When the noqiflush routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done [see
termio(7)]. When qi flush is called, the queues will be flushed when these control
characters are read.

The timeout and wtimeout routines set blocking or non-blocking read for a given
window. If delay is negative, blocking read is used (that is, waits indefinitely for
input). If delay is zero, then non-blocking read is used (that is, read returns ERR if
no input is waiting). If delay is positive, then read blocks for delay milliseconds, and
returns ERR if there is still no input. Hence, these routines provide the same

10/92

curs_inopts (3X) curs_inopts (3X)

functionality as nodelay, plus the additional capability of being able to block for
only delay milliseconds (where delay is positive).

curses does "line-breakout optimization" by looking for typeahead periodically
while updating the screen. If input is found, and it is coming from a tty, the current
update is postponed until refresh or doupdate is called again. This allows faster
response to commands typed in advance. Normally, the input FILE pointer passed
to newterm, or stdin in the case that initscr was used, will be used to do this
typeahead checking. The typeahead routine specifies that the file descriptor fd is
to be used to check for typeahead instead. If fd is -1, then no typeahead checking is
done.

RETURN VALUE

NOTES

All routines that return an integer return ERR upon failure and an integer value
other than ERR upon successful completion, unless otherwise noted in the preced­
ing routine descriptions.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that echo, noecho, halfdelay, intrflush, meta, nodelay, notimeout,
noqiflush, qi flush, timeout, and wtimeout may be macros.

SEE ALSO
curses(3X), curs_getch(3X), curs_ini tscr(3X), termio(7)

10/92 Page 3

curs_insch (3X) curs_insch (3X)

NAME
curs_insch: insch, winsch, mvinsch, mvwinsch - insert a character before the
character under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int insch(chtype ch);

int winsch(WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

DESCRIPTION
With these routines, the character ch is inserted before the character under the cur­
sor. All characters to the right of the cursor are moved one space to the right, with
the possibility of the rightmost character on the line being lost. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware insert character feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that insch, mvinsch, and mvwinsch may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_insstr(3X) curs_insstr(3X)

NAME
curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr,
mvwinsstr, mvwinsnstr - insert string before character under the cursor in a
curses window

SYNOPSIS
#include <curses.h>

int insstr(char *str);
int insnstr(char *str, int n);
int winsstr(WINDOW *win, char *str);
int winsnstr(WINDOW *win, char *str, int n);
int mvinsstr(int y, int x, char *str);
int mvinsnstr(int y, int x, char *str, int n);
int mvwinsstr(WINDOW *win, int y, int x, char *str);
int mvwinsnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
With these routines, a character string (as many characters as will fit on the line) is
inserted before the character under the cursor. All characters to the right of the cur­
sor are moved to the right, with the possibility of the rightmost characters on the
line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.) The
four routines with n as the last argument insert at most n characters. If n<=O, then
the entire string is inserted.

If a character in str is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol before
moving. Tabs are considered to be at every eighth column. If a character in str is
another control character, it is drawn in the AX notation. Calling winch after
adding a control character (and moving to it, if necessary) does not return the con­
trol character, but instead returns the representation of the control character.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that all but winsnstr may be macros.

SEE ALSO
curses(3X), curs_clear(3X), curs_inch(3X)

10/92 Page 1

curs_instr(3X) curs_instr (3X)

NAME
curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,
mvwinnstr - get a string of characters from a curses window

SYNOPSIS
#include <curses.h>

int instr(char *str);

int innstr(char *str, int n);

int winstr(WINIXJW *win, char *str);

int winnstr(WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
These routines return a string of characters instr, starting at the current cursor posi­
tion in the named window and ending at the right margin of the window. Attri­
butes are stripped from the characters. The four functions with n as the last argu­
ment return the string at most n characters long.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that all routines except winnstr may be macros.

SEE ALSO
curses(3X)

10/92 Page 1

curs_inswch (3X) curs_inswch (3X)

NAME
curs_inswch: inswch, winswch, mvinswch, mvwinswch - insert a wchar_t charac­
ter before the character under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int inswch(chtype wch);

int winswch(WINDOW *win, chtype wch);

int mvinswch(int y, int x, chtype wch);

int mvwinswch(WINDOW *win, int y, int x, chtype wch);

DESCRIPTION
With these routines, the character wch holding a wchar_t character is inserted
before the character under the cursor. All characters to the right of the cursor are
moved one space to the right, with the possibility of the rightmost character on the
line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl. h>.

Note that inswch, mvinswch, and mvwinswch may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_inswstr(3X) curs_inswstr (3X)

NAME
curs_instr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr,
mvinsnwstr, mvwinswstr, mvwinsnwstr - insert wchar_t string before character
under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int inswstr(wchar_t *wstr);
int insnwstr(wchar_t *wstr, int n);
int winswstr(WINDOW *win, wchar_t *wstr);
int winsnwstr(WINDOW *win, wchar_t *wstr, int n);
int mvinswstr(int y, int x, wchar_t *wstr);
int mvinsnwstr(int y, int x, wchar_t *wstr, int n);
int mvwinswstr(WINDOW *win, int y, int x, wchar_t *wstr);
int mvwinsnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION
With these routines, a wchar_t character string (as many wchar_t characters as
will fit on the line) is inserted before the character under the cursor. All characters
to the right of the cursor are moved to the right, with the possibility of the right­
most characters on the line being lost. The cursor position does not change (after
moving to y, x, if specified). (This does not imply use of the hardware insert charac­
ter feature.) The four routines with n as the last argument insert at most n wchar_t
characters. If n<=O, then the entire string is inserted.

If a character in wstr is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol before
moving. Tabs are considered to be at every eighth column. If a character in wstr is
another control character, it is drawn in the ~x notation. Calling winch after
adding a control character (and moving to it, if necessary) does not return the con­
trol character, but instead returns the representation of the control character.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl. h>.

Note that all but winsnwstr may be macros.

SEE ALSO
curses(3X), curs_clear(3X), curs_inwch(3X).

10/92 Page 1

curs_inwch (3X) curs_inwch (3X)

NAME
curs_inwch: inwch, winwch, mvinwch, mvwinwch - get a wchar_t character and
its attributes from a curs0s window

SYNOPSIS
#include <curses.h>

chtype inwch(void);

chtype winwch(WINDOW *win);

chtype mvinwch(int y, int x);

chtype mvwinwch(WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the wchar_t character, of type chtype, at the current position
in the named window is returned. If any attributes are set for that position, their
values are OR-ed into the value returned. Constants defined in <curses. h> can be
used with the & (logical AND) operator to extract the character or attributes alone.

Attributes

NOTES

The following bit-masks may be AND-ed with characters returned by winwch.

A_ CHAR TEXT
A_ATTRIBUTES
A_COLOR

Bit-mask to extract character
Bit-mask to extract attributes
Bit-mask to extract color-pair field information

The header file <curses .h> automatically includes the header files <Stdio. h> and
<unctr 1. h>.

Note that all of these routines may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_inwchstr(3X) curs_inwchstr (3X)

NAME
curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr - get a string of wchar_t characters
(and attributes) from a curses window

SYNOPSIS
#include <curses.h>

int inwchstr(chtype *wchstr);

int inwchnstr(chtype *wchstr, int n);

int winwchstr(WINDOW *win, chtype *wchstr);

int winwchnstr(WINDOW *win, chtype *wchstr, int n);

int mvinwchstr(int y, int x, chtype *wchstr);

int mvinwchnstr(int y, int x, chtype *wchstr, int n);

int mvwinwchstr(WINDOW *win, int y, int x, chtype *wchstr);

int mvwinwchnstr(WINDOW *win, int y, int x, chtype *wchstr, int n);

DESCRIPTION
With these routines, a string of type chtype holding wchar_t characters, starting at
the current cursor position in the named window and ending at the right margin of
the window, is returned. The four functions with n as the last argument, return the
string at most n wchar_t characters long. Constants defined in <curses. h> can be
used with the & (logical AND) operator to extract the wchar_t character or the
attribute alone from any position in the chstr [see curs_inch(3X)].

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl. h>.

Note that all routines except winwchnstr may be macros.

SEE ALSO
curses(3X), curs_inwch(3X).

10/92 Page 1

curs_inwstr(3X) curs_inwstr(3X)

NAME
curs_inwstr; inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr,
mvwinwstr, mvwinnwstr - get a string of wchar_t characters from a curses win­
dow

SYNOPSIS
#include <curses.h>

int inwstr(wchar_t *str);

int innwstr(wchar_t *str, int n);

int winwstr(WINDOW *win, wchar_t *str);

int winnwstr(WINDOW *win, wchar_t *str, int n);

int mvinwstr(int y, int x, wchar_t *str);

int mvinnwstr(int y, int x, wchar_t *str, int n);

int mvwinwstr(WINDOW *win, int y, int x, wchar_t *str);

int mvwinnwstr(WINDOW *win, int y, int x, wchar_t *str, int n);

DESCRIPTION
These routines return a string of wchar_t characters instr, starting at the current
cursor position in the named window and ending at the right margin of the win­
dow. Attributes are stripped from the characters. The four functions with n as the
last argument return the string at most n wchar_t characters long.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctr 1 . h>.

Note that all routines except winnwstr may be macros.

SEE ALSO
curses(3X).

10/92 Page 1

curs_ kernel (3X) curs_kernel (3X)

NAME
curs_kernel: def_prog_mode,def_shell_mode,reset_prog_mode,
reset_shell_mode,resetty,savetty,getsyx,setsyx,ripoffline,curs_set,
napms - low-level curses routines

SYNOPSIS
#include <curses.h>

int def_prog_mode(void);

int def_shell_mode(void);

int reset_prog_mode(void);

int reset_shell_mode(void);

int resetty (void);

int savetty (void);

int getsyx(int y, int x);

int setsyx(int y, int x);

int ripoffline(int line, int (*init) (WINDOW* int));

int curs_set(int visibility);

int napms (int ms);

DESCRIPTION

10/92

The following routines give low-level access to various curses functionality.
Theses routines typically are used inside library routines.

The def_prog_mode and def_shell_mode routines save the current terminal
modes as the "program'' (in curses) or "shell" (not in curses) state for use by the
reset_prog_mode and reset_shell_mode routines. This is done automatically
by initscr.

The reset_prog_mode and reset_shell_mode routines restore the terminal to
"program'' (in curses) or "shell" (out of curses) state. These are done automati­
cally by endwin and, after an endwin, by doupdate, so they normally are not called.

The resetty and savetty routines save and restore the state of the terminal
modes. savetty saves the current state in a buffer and resetty restores the state
to what it was at the last call to savetty.

With the getsyx routine, the current coordinates of the virtual screen cursor are
returned in y and x. If leaveok is currently TRUE, then -1,-1 is returned. If lines
have been removed from the top of the screen, using ripoffline, y and x include
these lines; therefore, y and x should be used only as arguments for setsyx.

With the setsyx routine, the virtual screen cursor is set toy, x. If y and x are both
-1, then leaveok is set. The two routines getsyx and setsyx are designed to be
used by a library routine, which manipulates curses windows but does not want
to change the current position of the program's cursor. The library routine would
call getsyx at the beginning, do its manipulation of its own windows, do a
wnoutrefresh on its windows, call setsyx, and then call doupdate.

Page 1

curs_kernel (3X) curs_kernel (3X)

The ripoffline routine provides access to the same facility that slk_init [see
curs_slk(3X)] uses to reduce the size of the screen. ripoffline must be called
before initscr or newterrn is called. If line is positive, a line is removed from the
top of stdscr; if line is negative, a line is removed from the bottom. When this is
done inside initscr, the routine init (supplied by the user) is called with two
arguments: a window pointer to the one-line window that has been allocated and
an integer with the number of columns in the window. Inside this initialization
routine, the integer variables LINES and COLS (defined in curses. h) are not
guaranteed to be accurate and wrefresh or doupdate must not be called. It is
allowable to call wnoutrefresh during the initialization routine.

ripoffline can be called up to five times before calling ini tscr or newterrn.

With the curs_set routine, the cursor state is set to invisible, normal, or very visi­
ble for visibility equal to 0, 1, or 2 respectively. If the terminal supports the visi­
bility requested, the previous cursor state is returned; otherwise, ERR is returned.

The napms routine is used to sleep for ms milliseconds.

RETURN VALUE

NOTES

Except for curs_set, these routines always return OK. curs_set returns the previ­
ous cursor state, or ERR if the requested visibility is not supported.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that getsyx is a macro, so & is not necessary before the variables y and x.

SEE ALSO

Page 2

curses(3X), curs_initscr(3X), curs_outopts(3X), curs_refresh(3X),
curs_scr_dump(3X), curs_slk(3X)

10/92

curs_move (3X) curs_move (3X)

NAME
curs_move: move, wrnove - move curses window cursor

SYNOPSIS
#include <curses.h>

int move(int y, int x);

int wrnove(WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the cursor associated with the window is moved to line y and
column x. This routine does not move the physical cursor of the terminal until
refresh is called. The position specified is relative to the upper left-hand comer of
the window, which is (0,0).

RETURN VALUE

NOTES

These routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that move may be a macro.

SEE ALSO
curses(3X), curs_refresh(3X)

10/92 Page 1

curs_outopts (3X) curs_outopts (3X)

NAME
curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg,
wsetscrreg, scrollok, nl, nonl - curses terminal output option control routines

SYNOPSIS
#include <curses.h>

int clearok(WINDOW *win, bool bf);

int idlok(WINDOW *win, bool bf);

void idcok(WINDOW *win, bool bf);

void imrnedok(WINDOW *win, bool bf);

int leaveok(WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

int scrollok(WINDOW *win, bool bf);

int nl (void) ;

int nonl (void) ;

DESCRIPTION

10/92

These routines set options that deal with output within curses. All options are
initially FALSE, unless otherwise stated. It is not necessary to turn these options off
before calling endwin.

With the clearok routine, if enabled (bf is TRUE), the next call to wrefresh with
this window will clear the screen completely and redraw the entire screen from
scratch. This is useful when the contents of the screen are uncertain, or in some
cases for a more pleasing visual effect. If the win argument to clearok is the global
variable curscr, the next call to wrefresh with any window causes the screen to
be cleared and repainted from scratch.

With the idlok routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete line feature of terminals so equipped. If disabled (bf is
FALSE), curses very seldom uses this feature. (The insert/delete character feature
is always considered.) This option should be enabled only if the application needs
insert/delete line, for example, for a screen editor. It is disabled by default because
insert/delete line tends to be visually annoying when used in applications where it
isn't really needed. If insert/delete line cannot be used, curses redraws the
changed portions of all lines.

With the idcok routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete character feature of terminals so equipped. This is enabled
by default.

With the immedok routine, if enabled (bf is TRUE), any change in the window image,
such as the ones caused by waddch, wclrtobot, wscrl, and so on, automatically
cause a call to wrefresh. However, it may degrade the performance considerably,
due to repeated calls to wrefresh. It is disabled by default.

Page 1

curs_outopts (3X) curs_ outopts (3X)

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. The leaveok option allows the cursor to be left wherever the update
happens to leave it. It is useful for applications where the cursor is not used, since
it reduces the need for cursor motions. If possible, the cursor is made invisible
when this option is enabled.

The setscrreg and wsetscrreg routines allow the application programmer to set
a software scrolling region in a window. top and bot are the line numbers of the top
and bottom margin of the scrolling region. (Line 0 is the top line of the window.) If
this option and scrollok are enabled, an attempt to move off the bottom margin
line causes all lines in the scrolling region to scroll up one line. Only the text of the
window is scrolled. (Note that this has nothing to do with the use of a physical
scrolling region capability in the terminal, like that in the VTlOO. If idlok is
enabled and the terminal has either a scrolling region or insert/delete line capabil­
ity, they will probably be used by the output routines.)

The scrollok option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either as a result of a newline
action on the bottom line, or typing the last character of the last line. If disabled, (bf
is FALSE), the cursor is left on the bottom line. If enabled, (bf is TRUE), wrefresh is
called on the window, and the physical terminal and window are scrolled up one
line. [Note that in order to get the physical scrolling effect on the terminal, it is also
necessary to call idlok.]

The nl and nonl routines control whether newline is translated into carriage return
and linefeed on output, and whether return is translated into newline on input. Ini­
tially, the translations do occur. By disabling these translations using nonl, curses
is able to make better use of the linefeed capability, resulting in faster cursor
motion.

RETURN VALUE

NOTES

setscrreg and wsetscrreg return OK upon success and ERR upon failure. All
other routines that return an integer always return OK.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that clearok, leaveok, scrollok, idcok, nl, nonl and setscrreg may be
macros.

The immedok routine is useful for windows that are used as terminal emulators.

SEE ALSO

Page 2

curses(3X}, curs_addch(3X}, curs_clear(3X}, curs_initscr(3X},
curs_scroll(3X), curs_refresh(3X)

10/92

curs_overlay(3X) curs_ overlay (3X)

NAME
curs_overlay: overlay, overwrite, copywin - overlap and manipulate over­
lapped curses windows

SYNOPSIS
#include <curses.h>

int overlay(WINDOW *srcwin, WINDOW *dstwin);

int overwrite(WINDOW *srcwin, WINDOW *dstwin);

int copywin(WINDOW *srcwin, WINDOW *dstwin, int sminrow,
int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

DESCRIPTION
The overlay and overwrite routines overlay srcwin on top of dstwin. scrwin and
dstwin are not required to be the same size; only text where the two windows over­
lap is copied. The difference is that overlay is non-destructive (blanks are not
copied) whereas overwrite is destructive.

The copywin routine provides a finer granularity of control over the overlay and
overwrite routines. Like in the prefresh routine, a rectangle is specified in the
destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper­
left-corner coordinates of the source window, (sminrow, smincol). If the argument
overlay is true, then copying is non-destructive, as in overlay.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that overlay and overwrite may be macros.

SEE ALSO
curses(3X), curs_pad(3X), curs_refresh(3X)

10/92 Page 1

curs_pad (3X) curs_pad (3X)

NAME
curs_pad: newpad,subpad,prefresh,pnoutrefresh,pechochar,pechowchar­
create and display curses pads

SYNOPSIS
#include <curses.h>

WINDOW *newpad(int nlines, int ncols);

WINDOW *subpad(WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

int prefresh(WINDOW *pad, int pminrow, int pmincol,
int sminrow, int smincol, int smaxrow, int smaxcol);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol,
int sminrow, int smincol, int smaxrow, int smaxcol);

int pechochar(WINDOW *pad, chtype ch);

int pechowchar(WINDOW *pad, chtype wch);

DESCRIPTION

10/92

The newpad routine creates and returns a pointer to a new pad data structure with
the given number of lines, nlines, and columns, ncols. A pad is like a window,
except that it is not restricted by the screen size, and is not necessarily associated
with a particular part of the screen. Pads can be used when a large window is
needed, and only a part of the window will be on the screen at one time.
Automatic refreshes of pads (e.g., from scrolling or echoing of input) do not occur.
It is not legal to call wrefresh with a pad as an argument; the routines pre fresh or
pnoutrefresh should be called instead. Note that these routines require addi­
tional parameters to specify the part of the pad to be displayed and the location on
the screen to be used for the display.

The subpad routine creates and returns a pointer to a subwindow within a pad
with the given number of lines, nlines, and columns, ncols. Unlike subwin, which
uses screen coordinates, the window is at position (begin_x, begin_J!) on the pad.
The window is made in the middle of the window orig, so that changes made to one
window affect both windows. During the use of this routine, it will often be neces­
sary to call touchwin or touchline on orig before calling pre fresh.

The prefresh and pnoutrefresh routines are analogous to wrefresh and
wnoutrefresh except that they relate to pads instead of windows. The additional
parameters are needed to indicate what part of the pad and screen are involved.
pminrow and pmincol specify the upper left-hand corner of the rectangle to be
displayed in the pad. sminrow, smincol, smaxrow, and smaxcol specify the edges of
the rectangle to be displayed on the screen. The lower right-hand corner of the rec­
tangle to be displayed in the pad is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely contained
within their respective structures. Negative values of pminrow, pmincol, sminrow, or
smincol are treated as if they were zero.

The pechochar routine is functionally equivalent to a call to addch followed by a
call to refresh, a call to waddch followed by a call to wrefresh, or a call to waddch
followed by a call to prefresh. The knowledge that only a single character is
being output is taken into consideration and, for non-control characters, a

Page 1

curs_pad (3X) curs_pad (3X)

considerable performance gain might be seen by using these routines instead of
their equivalents. In the case of pechochar, the last location of the pad on the
screen is reused for the arguments to prefresh.

The pechowchar routine is functionally equivalent to a call to addwch followed by
a call to refresh, a call to waddwch followed by a call to wrefresh, or a call to
waddwch followed by a call to pre fresh.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl .h>.

Note that pechochar may be a macro.

SEE ALSO

Page 2

curses(3X), curs_refresh(3X), curs_touch(3X), curs_addch(3X),
curs_addwch(3X).

10/92

curs_printw(3X) curs_printw(3X)

NAME
curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw - print format­
ted output in curses windows

SYNOPSIS
#include <curses.h>

int printw(char *fmt [, arg] ...);

int wprintw(WINDOW *win, char *fmt [, arg] ...);

int mvprintw(int y, int x, char *fmt [, arg] ...);

int mvwprintw(WINDOW *win, int y, int x,
char *fmt [, arg] ...);

#include <stdarg.h>

int vwprintw(WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION
The printw, wprintw, mvprintw and mvwprintw routines are analogous to printf
[see printf(3S)]. In effect, the string that would be output by printf is output
instead as though waddstr were used on the given window.

The vwprintw routine is analogous to vprintf [see vprintf(3S)] and performs a
wprintw using a variable argument list. The third argument is a va_list, a pointer
to a list of arguments, as defined in <stdarg. h>.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl.h>.

SEE ALSO
curses(3X), printf(3S), printf(3W), vprintf(3S).

10/92 Page 1

curs_refresh (3X) curs_refresh (3X)

NAME
curs_refresh; refresh, wrefresh, wnoutref resh, doupdate, redrawwin,
wredrawln - refresh curses windows and lines

SYNOPSIS
#include <curses.h>

int refresh(void);

int wrefresh(WINDOW *win);

int wnoutrefresh(WINDOW *win);

int doupdate(void);

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg_line, int nurn_lines);

DESCRIPTION

10/92

The refresh and wrefresh routines (or wnoutrefresh and doupdate) must be
called to get any output on the terminal, as other routines merely manipulate data
structures. The routine wrefresh copies the named window to the physical termi­
nal screen, taking into account what is already there in order to do optimizations.
The refresh routine is the same, using stdscr as the default window. Unless
leaveok has been enabled, the physical cursor of the terminal is left at the location
of the cursor for that window.

The wnoutrefresh and doupdate routines allow multiple updates with more
efficiency than wrefresh alone. In addition to all the window structures, curses
keeps two data structures representing the terminal screen: a physical screen,
describing what is actually on the screen, and a virtual screen, describing what the
programmer wants to have on the screen.

The routine wrefresh works by first calling wnoutrefresh, which copies the
named window to the virtual screen, and then calling doupdate, which compares
the virtual screen to the physical screen and does the actual update. If the pro­
grammer wishes to output several windows at once, a series of calls to wrefresh
results in alternating calls to wnoutrefresh and doupdate, causing several bursts
of output to the screen. By first calling wnoutrefresh for each window, it is then
possible to call doupdate once, resulting in only one burst of output, with fewer
total characters transmitted and less CPU time used. If the win argument to
wrefresh is the global variable curscr, the screen is immediately cleared and
repainted from scratch.

The redrawwin routine indicates to curses that some screen lines are corrupted
and should be thrown away before anything is written over them. These routines
could be used for programs such as editors, which want a command to redraw
some part of the screen or the entire screen. The routine redrawln is preferred over
redrawwin where a noisy communication line exists and redrawing the entire win­
dow could be subject to even more communication noise. Just redrawing several
lines offers the possibility that they would show up unblemished.

Page 1

curs_refresh {3X) curs_refresh {3X)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that refresh and redrawwin may be macros.

SEE ALSO
curses(3X), curs_outopts(3X)

Page 2 10/92

curs_scanw (3X) curs_scanw (3X)

NAME
curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscilnw - convert formatted
input from a curses window

SYNOPSIS
#include <curses.h>

int scanw(char *fmt [, arg] ...) ;

int wscanw(WINDOW *win, char *fmt [, arg] ...) ;

int mvscanw(int y, int x, char *fmt [, arg] ...) ;

int mvwscanw(WINDOW *win, int y, int x,
char *fmt [, arg] ...) ;

#include <stdarg.h>

int vwscanw(WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION
The scanw, wscanw and mvscanw routines correspond to scanf [see scanf(3S)].
The effect of these routines is as though wgetstr were called on the window, and
the resulting line used as input for the scan. Fields which do not map to a variable
in the fmt field are lost.

The vwscanw routine is similar to vwprintw in that it performs a wscanw using a
variable argument list. The third argument is a va_list, a pointer to a list of argu­
ments, as defined in <stdarg .h>.

RETURN VALUE

NOTES

vwscanw returns ERR on failure and an integer equal to the number of fields
scanned on success.

Applications may interrogate the return value from the scanw, wscanw, mvscanw
and mvwscanw routines to determine the number of fields which were mapped in
the call.

The header file <curses. h> automatically includes the header files <stdio. h> and
<unctrl .h>.

SEE ALSO
curses(3X), curs_getstr(3X), curs_printw(3X), scanf(3S), scanf(3W).

10/92 Page 1

curs_scr_dump (3X) curs_scr_dump (3X)

NAME
curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set - read (write) a
curses screen from (to) a file

SYNOPSIS
#include <curses.h>

int scr_dump(char *filename);

int scr_restore(char *filename);

int scr_init(char *filename);

int scr_set(char *filename);

DESCRIPTION
With the scr_dump routine, the current contents of the virtual screen are written to
the file filename.

With the scr_restore routine, the virtual screen is set to the contents of filename,
which must have been written using scr_dump. The next call to doupdate restores
the screen to the way it looked in the dump file.

With the scr_init routine, the contents of filename are read in and used to initial­
ize the curses data structures about what the terminal currently has on its screen.
If the data is determined to be valid, curses bases its next update of the screen on
this information rather than clearing the screen and starting from scratch.
scr_ini t is used after ini tscr or a system [see system(BA_LIB)] call to share the
screen with another process which has done a scr_dump after its endwin call. The
data is declared invalid if the time-stamp of the tty is old or the terminfo capabili­
ties rmcup and nrrmc exist.

The scr_set routine is a combination of scr_restore and scr_init. It tells the
program that the information in filename is what is currently on the screen, and also
what the program wants on the screen. This can be thought of as a screen inheri­
tance function.

To read (write) a window from (to) a file, use the getwin and putwin routines [see
curs_util(3X)].

RETURN VALUE

NOTES

All routines return the integer 1'RR upon failure and OK upon success.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that scr_ini t, scr_set, and scr_res tore may be macros.

SEE ALSO
curses(3X), curs_initscr(3X), curs_refresh(3X), curs_util(3X), system(3S)

10/92 Page 1

curs_scroll (3X) curs_scroll (3X)

NAME
curs_scroll: scroll, srcl, wscrl - scroll a curses window

SYNOPSIS
#include <curses.h>

int scroll(WINDOW *win);

int scrl(int n);

int wscrl(WINDOW *win, int n);

DESCRIPTION
With the scroll routine, the window is scrolled up one line. This involves moving
the lines in the window data structure. As an optimization, if the scrolling region
of the window is the entire screen, the physical screen is scrolled at the same time.

With the scrl and wscrl routines, for positive n scroll the window up n lines (line
i+n becomes i); otherwise scroll the window down n lines. This involves moving
the lines in the window character image structure. The current cursor position is
not changed.

For these functions to work, scrolling must be enabled via scrollok.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that scr 1 and scroll may be macros.

SEE ALSO
curses(3X), curs_outopts(3X)

10/92 Page 1

curs_slk(3X) curs_slk(3X)

NAME
curs_slk: slk_ini t, slk_set, slk_refresh, slk_noutrefresh, slk_label,
slk_clear,slk_restore,slk_touch,slk_attron,slk_attrset,slk_attroff­
curses soft label routines

SYNOPSIS
#include <curses.h>

int slk_init(int fmt);

int slk_set(int labnum, char *label, int fmt);

int slk_refresh(void);

int slk_noutrefresh(void);

char *slk_label(int labnum);

int slk_clear(void);

int slk_restore(void);

int slk_touch(void);

int slk_attron(chtype attrs);

int slk_attrset(chtype attrs);

int slk_attroff(chtype attrs);

DESCRIPTION

10/92

curses manipulates the set of soft function-key labels that exist on many termi­
nals. For those terminals that do not have soft labels, curses takes over the bottom
line of stdscr, reducing the size of stdscr and the variable LINES. curses stand­
ardizes on eight labels of up to eight characters each.

To use soft labels, the slk_ini t routine must be called before ini tscr or newterm
is called. If ini tscr eventually uses a line from stdscr to emulate the soft labels,
then fmt determines how the labels are arranged on the screen. Setting fmt to O
indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement.

With the slk_set routine, labnum is the label number, from 1 to 8. label is the string
to be put on the label, up to eight characters in length. A null string or a null
pointer sets up a blank label. fmt is either 0, 1, or 2, indicating whether the label is
to be left-justified, centered, or right-justified, respectively, within the label.

The slk_refresh and slk_noutrefresh routines correspond to the wrefresh
and wnoutrefresh routines.

With the slk_label routine, the current label for label number labnum is returned
with leading and trailing blanks stripped.

With the slk_clear routine, the soft labels are cleared from the screen.

With the slk_restore routine, the soft labels are restored to the screen after a
slk_clear is performed.

With the slk_touch routine, all the soft labels are forced to be output the next time
a slk_noutrefresh is performed.

Page 1

curs_slk (3X) curs_slk (3X)

The slk_attron, slk_attrset and slk_attroff routines correspond to attron,
attrset, and attroff. They have an effect only if soft labels are simulated on the
bottom line of the screen.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

slk_label returns NULL on error.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Most applications would use slk_noutrefresh because a wrefresh is likely to
follow soon.

SEE ALSO
curses(3X), curs_attr(3X), curs_ini tscr(3X), curs_refresh(3X)

Page 2 10/92

curs_termattrs (3X) curs_termattrs (3X)

NAME
curs_termattrs: bctudrate, erasechar, has_ic, has_il, killchar, longname,
termattrs, termname - curses environment query routines

SYNOPSIS
#include <curses.h>

int baudrate(void);

char erasechar(void);

int has_ic(void);

int has_il(void);

chaI killchar (void) ;

char *longname(void);

chtype termattrs(void);

char *termname(void);

DESCRIPTION

10/92

The baudrate routine returns the output speed of the terminal. The number
returned is in bits per second, for example 9600, and is an integer.

With the erasechar routine, the user's current erase character is returned.

The has_ic routine is true if the terminal has insert- and delete-character capabili­
ties.

The has_il routine is true if the terminal has insert- and delete-line capabilities, or
can simulate them using scrolling regions. This might be used to determine if it
would be appropriate to turn on physical scrolling using scrollok.

With the killchar routine, the user's current line kill character is returned.

The longname routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose description
is 128 characters. It is defined only after the call to ini t scr or newterm. The area
is overwritten by each call to newterm and is not restored by set_term, so the
value should be saved between calls to newterm if longname is going to be used
with multiple terminals.

If a given terminal doesn't support a video attribute that an application program is
trying to use, curses may substitute a different video attribute for it. The
termat trs function returns a logical OR of all video attributes supported by the ter­
minal. This information is useful when a curses program needs complete control
over the appearance of the screen.

The termname routine returns the value of the environmental variable TERM (trun­
cated to 14 characters).

Page 1

curs_termattrs (3X) curs_termattrs (3X)

RETURN VALUE

NOTES

longname and termname return NULL on error.

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that termattrs may be a macro.

SEE ALSO
curses(3X), curs_ini tscr(3X), curs_outopts(3X)

Page 2 10/92

curs_termcap (3X) curs_termcap (3X)

NAME
curs_termcap: tgetent, Lgetflag, tgetnum, tgetstr, tgoto, tputs - curses
interfaces (emulated) to the termcap library

SYNOPSIS
#include <curses.h>
#include <term.h>

int tgetent(char *bp, char *name);
int tgetflag(char id[2]);

int tgetnum(char id[2]);
char *tgetstr(char id[2], char **area);
char *tgoto(char *cap, int col, int row);
int tputs(char *str, int affcnt, int (*putc) (void));

DESCRIPTION
These routines are included as a conversion aid for programs that use the termcap
library. Their parameters are the same and the routines are emulated using the ter­
minfo database. These routines are supported at Level 2 and should not be used in
new applications.

The tgetent routine looks up the termcap entry for name. The emulation ignores
the buffer pointer bp.

The tgetflag routine gets the boolean entry for id.

The tgetnum routine gets the numeric entry for id.

The tgetstr routine returns the string entry for id. Use tputs to output the
returned string.

The tgoto routine instantiates the parameters into the given capability. The out­
put from this routine is to be passed to tputs.

The tputs routine is described on the curs_terminfo(4) manual page.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

SEE ALSO
curses(3X), curs_terminfo(4), putc(3S)

10/92 Page 1

curs_terminfo (3X) curs_terminfo (3X)

NAME
curs_terminfo: setupterm, setterm, set_curterm, del_curterm, restart­
term, tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum,
tigetstr - curses interfaces to terminfo database

SYNOPSIS
#include <curses.h>
#include <term.h>

int setupterm(char *term, int fildes, int *errret);

int setterm(char *term);

int set_curterm(TERMINAL *nterm);

int del_curterm(TERMINAL *oterm);

int restartterm(char *term, int fildes, int *errret);

char *tparm(char *str, long int pl, long int p2, long int p3,
long int p4, long int p5, long int p6, long int p7,
long int p8, long int p9);

int tputs(char *str, int affcnt, int (*putc) (char));

int putp(char *str);

int vidputs(chtype attrs, int (*putc) (char));

int vidattr(chtype attrs);

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

int tigetflag(char *capname);

int tigetnum(char *capname);

int tigetstr(char *capname);

DESCRIPTION

10/92

These low-level routines must be called by programs that have to deal directly with
the terminfo database to handle certain terminal capabilities, such as program­
ming function keys. For all other functionality, curses routines are more suitable
and their use is recommended.

Initially, setupterm should be called. Note that setupterm is automatically called
by initscr and newterm. This defines the set of terminal-dependent variables
[listed in terminfo(4)]. The terminfo variables lines and columns are initialized
by setupterm as follows: If use_env(FALSE) has been called, values for lines
and columns specified in terminfo are used. Otherwise, if the environment vari­
ables LINES and COLUMNS exist, their values are used. If these environment vari­
ables do not exist and the program is running in a window, the current window
size is used. Otherwise, if the environment variables do not exist, the values for
lines and columns specified in the terminfo database are used.

The header files curses.hand term.h should be included (in this order) to get the
definitions for these strings, numbers, and flags. Parameterized strings should be
passed through tparm to instantiate them. All terminfo strings [including the
output of tparm] should be printed with tputs or putp. Call the

Page 1

curs_terminfo (3X) curs_terminfo (3X)

Page 2

reset_shell_mode to restore the tty modes before exiting [see curs_kernel(3X)].
Programs which use cursor addressing should output enter_ca_mode upon
startup and should output exi t_ca_mode before exiting. Programs desiring shell
escapes should call reset_shell_mode and output exit_ca_mode before the shell
is called and should output enter_ca_mode and call reset_prog_mode after
returning from the shell.

The setupterm routine reads in the terminfo database, initializing the terminfo
structures, but does not set up the output virtualization structures used by curses.
The terminal type is the character string term; if term is null, the environment vari­
able TERM is used. All output is to file descriptor fildes which is initialized for
output. If errret is not null, then setupterm returns OK or ERR and stores a status
value in the integer pointed to by errret. A status of 1 in errret is normal, O means
that the terminal could not be found, and -1 means that the terminfo database
could not be found. If errret is null, setupterm prints an error message upon
finding an error and exits. Thus, the simplest call is:

setupterm((char *)0, l, (int *)0) ;,

which uses all the defaults and sends the output to stdout.

The set term routine is being replaced by setupterm. The call:

setupterm(term, l, (int *) 0)

provides the same functionality as setterm(term). The setterm routine is
included here for compatibility and is supported at Level 2.

The set_curterm routine sets the variable cur_term to nterm, and makes all of the
terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm routine frees the space pointed to by oterm and makes it available
for further use. If oterm is the same as cur_term, references to any of the terminfo
boolean, numeric, and string variables thereafter may refer to invalid memory loca­
tions until another setupterm has been called.

The restartterm routine is similar to setupterm and initscr, except that it is
called after restoring memory to a previous state. It assumes that the windows and
the input and output options are the same as when memory was saved, but the ter­
minal type and baud rate may be different.

The tparm routine instantiates the string str with parameters pi. A pointer is
returned to the result of str with the parameters applied.

The tputs routine applies padding information to the string strand outputs it. The
str must be a terminfo string variable or the return value from tparm, tgetstr, or
tgoto. ajfcnt is the number of lines affected, or 1 if not applicable. putc is a
putchar-like routine to which the characters are passed, one at a time.

The putp routine calls tputs (str, l, putchar). Note that the output of putp
always goes to stdout, not to the fildes specified in setupterm.

The vidputs routine displays the string on the terminal in the video attribute mode
attrs, which is any combination of the attributes listed in curses(3X). The charac­
ters are passed to the putchar-like routine putc.

10/92

curs_terminfo (3X) curs_terminfo (3X)

The vidattr routine is like the vidputs routine, except that it outputs through
put char.

The mvcur routine provides low-level cursor motion.

The tigetflag, tigetnum and tigetstr routines return the value of the capabil­
ity corresponding to the terminfo capname passed to them, such as xenl.

With the tigetflag routine, the value -1 is returned if capname is not a boolean
capability.

With the tigetnum routine, the value -2 is returned if capname is not a numeric
capability.

With the tigetstr routine, the value (char *)-1 is returned if capname is not a
string capability.

The capname for each capability is given in the table column entitled capname code
in the capabilities section of terminfo(4).

char *boolnames,*boolcodes,*boolfnames

char *numnames,*numcodes,*numfnames

char *strnames,*strcodes,*strfnames

These null-terminated arrays contain the capnames, the termcap codes, and the full
C names, for each of the terminfo variables.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

Routines that return pointers always return NULL on error.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

The setupterm routine should be used in place of set term.

Note that vidattr and vidputs maybe macros.

SEE ALSO

10/92

curses(3X), curs_ini tscr(3X), curs_kernel(3X), curs_termcap(3X), putc(3S),
terminfo(4)

Page 3

curs_touch (3X) curs_touch (3X)

NAME
curs_touch: touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_wintouched- curses refresh control routines

SYNOPSIS
#include <curses.h>

int touchwin(WINDOW *win);
int touchline(WINDOW *win, int start, int count);
int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win, int y, int n, int changed);
int is_linetouched(WINDOW *win, int line);
int is_wintouched(WINDOW *win);

DESCRIPTION
The touchwin and touchline routines throw away all optimization information
about which parts of the window have been touched, by pretending that the entire
window has been drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but the records
of which lines have been changed in the other window do not reflect the change.
The routine touchline only pretends that count lines have been changed, begin­
ning with line start.

The untouchwin routine marks all lines in the window as unchanged since the last
call to wrefresh.

The wtouchln routine makes n lines in the window, starting at line y, look as if they
have (changed=l) or have not (changed=O) been changed since the last call to
wrefresh.

The is_linetouched and is_wintouched routines return TRUE if the specified
line/window was modified since the last call to wrefresh; otherwise they return
FALSE. In addition, is_linetouched returns ERR if line is not valid for the given
window.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that all routines except wtouchln may be macros.

SEE ALSO
curses(3X), curs_refresh(3X)

10/92 Page 1

curs_util (3X) curs_util (3X)

NAME
curs_util: unctrl,keyname,filter,use_env,putwin,getwin,delay_output,
flushinp - miscellaneous curses utility routines

SYNOPSIS
#include <curses.h>

char *unctrl(chtype c);

char *keyname(int c);

int filter(void);

void use_env(char bool);

int putwin(WINDOW *win, FILE *filep);

WINDOW *getwin(FILE *filep);

int delay_output(int ms);

int flushinp(void);

DESCRIPTION

10/92

The unctrl macro expands to a character string which is a printable representation
of the character c. Control characters are displayed in the AX notation. Printing
characters are displayed as is.

With the keyname routine, a character string corresponding to the key c is returned.

The filter routine, if used, is called before initscr or newterm are called. It
makes curses think that there is a one-line screen. curses does not use any termi­
nal capabilities that assume that they know on what line of the screen the cursor is
positioned.

The use_env routine, if used, is called before ini tscr or newterm are called.
When called with FALSE as an argument, the values of lines and colwnns
specified in the terminfo database will be used, even if environment variables LINES
and COLUMNS (used by default) are set, or if curses is running in a window (in
which case default behavior would be to use the window size if LINES and
COLUMNS are not set).

With the putwin routine, all data associated with window win is written into the
file to which filep points. This information can be later retrieved using the getwin
function.

The getwin routine reads window related data stored in the file by putwin. The
routine then creates and initializes a new window using that data. It returns a
pointer to the new window.

The delay_output routine inserts an ms millisecond pause in output. This routine
should not be used extensively because padding characters are used rather than a
CPU pause.

The fl ushinp routine throws away any typeahead that has been typed by the user
and has not yet been read by the program.

Page 1

curs_util (3X) curs_util (3X)

RETURN VALUE

NOTES

Except for flushinp, routines that return an integer return ERR upon failure and an
integer value other than ERR upon successful completion.

f 1 ushinp always returns OK.

Routines that return pointers return NULL on error.

The header file curses. h automatically includes the header files stdio. h and
unctrl .h.

Note that unctrl is a macro, which is defined in unctrl. h.

SEE ALSO
curses(3X), curs_ini tscr(3X), curs_scr_dump(3X)

Page 2 10/92

curs_window(3X) curs_window (3X)

NAME
curs_window: newwin, delwin, rnvwin, subwin, derwin, rnvderwin, dupwin,
wsyncup, syncok, wcursyncup, wsyncdown - create curses windows

SYNOPSIS
#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y,
intbegin_x) ;

int delwin(WINDOW *win);

int rnvwin(WINDOW *win, int y, int x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

WINDOW *derwin(WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

int rnvderwin(WINDOW *win, int par_y, int par_x);

WINDOW *dupwin(WINDOW *win);

void wsyncup(WINDOW *win);

int syncok(WINDOW *win, bool bf);

void wcursyncup(WINDOW *win);

void wsyncdown(WINDOW *win);

DESCRIPTION

10/92

The newwin routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The upper left-hand corner of the win­
dow is at line begin_y, column begin_x. If either nlines or ncols is zero, they default to
LINES - begin_y and COLS - begin_x. A new full-screen window is created by cal­
ling newwin (0, 0, 0 , 0) .

The delwin routine deletes the named window, freeing all memory associated with
it. Subwindows must be deleted before the main window can be deleted.

The rnvwin routine moves the window so that the upper left-hand corner is at posi­
tion (x, y). If the move would cause the window to be off the screen, it is an error
and the window is not moved. Moving subwindows is allowed, but should be
avoided.

The subwin routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The window is at position (begin_y,
begin_x) on the screen. (This position is relative to the screen, and not to the win­
dow orig.) The window is made in the middle of the window orig, so that changes
made to one window will affect both windows. The subwindow shares memory
with the window orig. When using this routine, it is necessary to call touchwin or
touchline on orig before calling wrefresh on the subwindow.

Page 1

curs_window(3X) curs_window(3X)

The derwin routine is the same as subwin, except that begin_y and begin_x are rela­
tive to the origin of the window orig rather than the screen. There is no difference
between the subwindows and the derived windows.

The mvderwin routine moves a derived window (or subwindow) inside its parent
window. The screen-relative parameters of the window are not changed. This rou­
tine is used to display different parts of the parent window at the same physical
position on the screen.

The dupwin routine creates an exact duplicate of the window win.

Each curses window maintains two data structures: the character image structure
and the status structure. The character image structure is shared among all win­
dows in the window hierarchy (that is, the window with all subwindows). The
status structure, which contains information about individual line changes in the
window, is private to each window. The routine wrefresh uses the status data
structure when performing screen updating. Since status structures are not shared,
changes made to one window in the hierarchy may not be properly reflected on the
screen.

The routine wsyncup causes the changes in the status structure of a window to be
reflected in the status structures of its ancestors. If syncok is called with second
argument TRUE then wsyncup is called automatically whenever there is a change in
the window.

The routine wcursyncup updates the current cursor position of all the ancestors of
the window to reflect the current cursor position of the window.

The routine wsyncdown updates the status structure of the window to reflect the
changes in the status structures of its ancestors. Applications seldom call this rou­
tine because it is called automatically by wrefresh.

RETURN VALUE

NOTES

Routines that return an integer return the integer ERR upon failure and an integer
value other than ERR upon successful completion.

delwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers return NULL on error.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

If many small changes are made to the window, the wsyncup option could degrade
performance.

Note that syncok may be a macro.

SEE ALSO
curses(3X), curs_refresh(3X), curs_touch(3X)

Page 2 10/92

curses(3X) (Terminal Information Utilities) curses (3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>

DESCRIPTION

10/92

The curses library routines give the user a terminal-independent method of updat­
ing character screens with reasonable optimization. A program using these rou­
tines must be compiled with the -lcurses option of cc.

The curses package allows: overall screen, window and pad manipulation; output
to windows and pads; reading terminal input; control over terminal and curses
input and output options; environment query routines; color manipulation; use of
soft label keys; terminfo access; and access to low-level curses routines.

To initialize the routines, the routine ini tscr or newterm must be called before
any of the other routines that deal with windows and screens are used. The routine
endwin must be called before exiting. To get character-at-a-time input without
echoing (most interactive, screen oriented programs want this), the following
sequence should be used:

initscr,cbreak,noecho;
Most programs would additionally use the sequence:

nonl,intrflush(stdscr,FALSE),keypad(stdscr,TRUE);

Before a curses program is run, the tab stops of the terminal should be set and its
initialization strings, if defined, must be output. This can be done by executing the
tput ini t command after the shell environment variable TERM has been exported.
[See terminfo(4) for further details.]

The curses library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters representing all or part
of a CRT screen. A default window called stdscr, which is the size of the terminal
screen, is supplied. Others may be created with newwin.

Windows are referred to by variables declared as WINDOW *. These data structures
are manipulated with routines described on 3X paages (whose names begin
"curs_"). Among which the most basic routines are move and addch. More general
versions of these routines are included with names beginning with w, allowing the
user to specify a window. The routines not beginning with w affect stdscr.)

After using routines to manipulate a window, refresh is called, telling curses to
make the user's CRT screen look like stdscr. The characters in a window are actu­
ally of type chtype, (character and attribute data) so that other information about
the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows which
are not constrained to the size of the screen and whose contents need not be com­
pletely displayed. See curs_pad(3X) for more information.

In addition to drawing characters on the screen, video attributes and colors may be
included, causing the characters to show up in such modes as underlined, in
reverse video, or in color on terminals that support such display enhancements.
Line drawing characters may be specified to be output. On input, curses is also
able to translate arrow and function keys that transmit escape sequences into single
values. The video attributes, line drawing characters, and input values use names,

Page 1

curses(3X) (Terminal Information Utilities) curses (3X)

defined in <curses. h>, such as A_REVERSE, ACS_HLINE, and KEY_LEFT.

If the environment variables LINES and COLUMNS are set, or if the program is exe­
cuting in a window environment, line and column information in the environment
will override information read by terminfo.

If the environment variable TERMINFO is defined, any program using curses checks
for a local terminal definition before checking in the standard place. For example, if
TERM is set to att4424, then the compiled terminal definition is found in

/usr/share/lib/terminfo/a/att4424.
(The a is copied from the first letter of att4424 to avoid creation of huge direc­
tories.) However, if TERMINFO is set to $HOME/myterms, curses first checks

$HOME/myterms/a/att4424,
and if that fails, it then checks

/usr/share/lib/terminfo/a/att4424.
This is useful for developing experimental definitions or when write permission in
/usr I share/lib/terrninfo is not available.

The integer variables LINES and COLS are defined in <curses. h> and will be filled
in by initscr with the size of the screen. The constants TRUE and FALSE have the
values 1 and 0, respectively.

The curses routines also define the WINDOW * variable curscr which is used for
certain low-level operations like clearing and redrawing a screen containing gar­
bage. The curscr can be used in only a few routines.

International Functions

Page 2

The number of byte and the number of columns to hold a character from the sup­
plementary character set is locale-specific (locale category LC_CTYPE) and can be
specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen for­
matting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (for example, addch) operates on a screen level. Overwrit­
ing a character by a character which requires a different number of columns may
produce orphaned columns. These orphaned columns are filled with background
character.

Inserting characters (for example, insch) operates on a character level (that is, at
the character boundaries). The specified character is inserted right before the char­
acter, regardless of whichever column of a character the cursor points to. Before
insertion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (for example, delch) operates on a
character level (that is, at the character boundaries). The character at the cursor is
deleted whichever columns of the character the cursor points to. Before deletion,
the cursor position is adjusted to the first column of the character.

Multi-column character cannot be put on the last column of the lines. When such
attempts are made, the last column is set to the background character. In addition,
when such operation creates orphaned columns, such columns is also be filled with
the background character.

10/92

curses(3X) (Terminal Information Utilities) curses(3X)

Overlapping and overwriting windows follows the operation of overwriting char­
acters around its edge. The orphaned columns, if any, is handled in the same
manner of the character operations

The cursor is allowed to be placed anywhere in a window. If the insertion or dele­
tion are made when the cursor points to the second or later column position of a
character which holds multiple columns, the cursor is adjusted to the first column
of it before the insertion or deletion.

Routine and Argument Names
Many curses routines have two or more versions. The routines prefixed with w
require a window argument. The routines prefixed with p require a pad argument.
Those without a prefix generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to before per­
forming the appropriate action. The mv routines imply a call to move before the call
to the other routine. The coordinate y always refers to the row (of the window),
and x always refers to the column. The upper left-hand comer is always (0,0), not
(1,1).

The routines prefixed with mvw take both a window argument and x and y coordi­
nates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type WINDOW.

Option setting routines require a Boolean flag bf with the value TRUE or FALSE; bf is
always of type bool. The variables ch and attrs below are always of type chtype.
The types WINDOW, SCREEN, bool, and ch type are defined in <curses. h>. The type
TERMINAL is defined in <term. h>. All other arguments are integers.

Routine Name Index

10/92

The following table lists each curses routine and the name of the manual page on
which it is described.

curses Routine Name

add ch
addchnstr
addchstr
addnstr
addnwstr
adds tr
addwch
addwchnstr
addwchstr
addwstr
attrof f
attron
attrset
baudrate

Manual Page Name

curs_addch(3X)
curs_addchstr(3X)
curs_addchstr(3X)
curs_addstr(3X)
curs_addwstr(3X)
curs_addstr(3X)
curs_addwch(3X)
curs_addwchstr(3X)
curs_addwchstr(3X)
curs_addwstr(3X)
curs_attr(3X)
curs_attr(3X)
curs_attr(3X)
curs_termattrs(3X)

Page 3

curses(3X) (Terminal Information Utilities)

curses Routine Name Manual Page Name

Page 4

beep
bkgd
bkgdset
border
box
can_char1ge_culur
cbreak
clear
clearok
clrtobot
clrtoeol
color_content
copywin
curs_set
def_prog_mode
def shell_mode
del_curterm
delay_output
delch
deleteln
delscreen
delwin
derwin
doupdate
dupwin
echo
echochar
echowchar
endwin
erase
erasechar
filter
flash
flushinp
getbegyx
get ch
getmaxyx
getnstr
getnwstr
getparyx
gets tr
getsyx
getwch
get win
getwstr

curs_beep(3X)
curs_bkgd(3X)
curs_bkgd(3X)
curs_border(3X)
curs_border(3X)
curs_color(3X)
curs_inopts(3X)
curs_clear(3X)
curs_outopts(3X)
curs_clear(3X)
curs_clear(3X)
curs_color(3X)
curs_overlay(3X)
curs_kemel(3X)
curs_kemel(3X)
curs_kemel(3X)
curs_terminfo(4)
curs_util(3X)
curs_delch(3X)
curs_deleteln(3X)
curs_initscr(3X)
curs_ window(3X)
curs_ window(3X)
curs_refresh(3X)
curs_ window(3X)
curs_inopts(3X)
curs_addch(3X)
curs_addwch(3X)
curs_initscr(3X)
curs_clear(3X)
curs_ termattrs(3X)
curs_util(3X)
curs_beep(3X)
curs_util(3X)
curs_getyx(3X)
curs_getch(3X)
curs_getyx(3X)
curs_getstr(3X)
curs_getwstr(3X)
curs_getyx(3X)
curs_getstr(3X)
curs_kemel(3X)
curs_getwch(3X)
curs_util(3X)
curs_getwstr(3X)

curses(3X)

10/92

curses (3X) (Terminal Information Utilities)

curses Routine Name Manual Page Name

10/92

getyx
halfdelay
has_ colors
has_ic
has_il
idcok
idlok
immedok
inch
inchnstr
inchstr
init_color
init_pair
initscr
inns tr
innwstr
ins ch
insdelln
insertln
insnstr
insnwstr
insstr
instr
inswch
inswstr
intrflush
inwch
inwchnstr
inwchstr
inwstr
is_linetouched
is_wintouched
isendwin
keyname
keypad
kill char
leaveok
longname
meta
move
mvaddch
mvaddchnstr
mvaddchstr
mvaddnstr
mvaddnwstr

curs_getyx(3X)
curs_inopts(3X)
curs_color(3X)
curs_termattrs(3X)
curs_termattrs(3X)
curs_outopts(3X)
curs_outopts(3X)
curs_outopts(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_color(3X)
curs_ color(3X)
curs _initscr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_deleteln(3X)
curs_deleteln(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inopts(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_touch(3X)
curs_touch(3X)
curs _initscr(3X)
curs_util(3X)
curs_inopts(3X)
curs_termattrs(3X)
curs_outopts(3X)
curs_termattrs(3X)
curs_inopts(3X)
curs_move(3X)
curs_addch(3X)
curs_addchstr(3X)
curs_addchstr(3X)
curs_addstr(3X)
curs_addwstr(3X)

curses(3X)

Page 5

curses (3X) (Terminal Information Utilities)

curses Routine Name Manual Page Name

Page 6

mvaddstr
mvaddwch
mvaddwchnstr
mvaddwchstr
mvaddwstr
mvcur
mvdelch
mvderwin
mvgetch
mvgetnstr
mvgetnwstr
mvgetstr
mvgetwch
mvgetwstr
mvinch
mvinchnstr
mvinchstr
mvinnstr
mvinnwstr
mvinsch
mvinsnstr
mvinsnwstr
mvinsstr
mvinstr
mvinswch
mvinswstr
mvinwch
mvinwchnstr
mvinwchstr
mvinwstr
mvprintw
mvscanw
mvwaddch
mvwaddchnstr
mvwaddchstr
mvwaddnstr
mvwaddnwstr
mvwaddstr
mvwaddwch
mvwaddwchnstr
mvwaddwchstr
mvwaddwstr
mvwdelch
mvwgetch
mvwgetnstr

curs_addstr(3X)
curs_addwch(3X)
curs_addwchstr(3X)
curs_addwchstr(3X)
curs_addwstr(3X)
curs_terminfo(4)
curs_delch(3X)
curs_ window(3X)
curs_getch(3X)
curs_getstr(3X)
curs_getwstr(3X)
curs_getstr(3X)
curs_getwch(3X)
curs_getwstr(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_printw(3X)
curs_scanw(3X)
curs_addch(3X)
curs_a<ldchstr(3X)
curs_addchstr(3X)
curs_addstr(3X)
curs_addwstr(3X)
curs_addstr(3X)
curs_addwch(3X)
curs_addwchstr(3X)
curs_addwchstr(3X)
curs_addwstr(3X)
curs_delch(3X)
curs_getch(3X)
curs_getstr(3X)

curses(3X)

10/92

curses(3X) (Terminal Information Utilities)

curses Routine Name Manual Page Name

10/92

mvwgetnwstr
mvwgetstr
mvwgetwch
mvwgetwstr
mvwin
mvwinch
mvwinchnstr
mvwinchstr
mvwinnstr
mvwinnwstr
mvwinsch
mvwinsnstr
mvwinsnwstr
mvwinsstr
mvwinstr
mvwinswch
mvwinswstr
mvwinwch
mvwinwchnstr
mvwinwchstr
mvwinwstr
mvwprintw
mvwscanw
nap ms
newpad
newterm
newwin
nl
nocbreak
node lay
noecho
nonl
noqiflush
nor aw
notimeout
overlay
overwrite
pair_content
pechochar
pechowchar
pnoutrefresh
pre fresh
printw
putp
put win

curs_getwstr(3X)
curs_getstr(3X)
curs_getwch(3X)
curs_getwstr(3X)
curs_ window(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_printw(3X)
curs_scanw(3X)
curs_kemel(3X)
curs_pad(3X)
curs_initscr(3X)
curs_ window(3X)
curs_outopts(3X)
curs _inopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_ outopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_inopts(3X)
curs_overlay(3X)
curs_overlay(3X)
curs_color(3X)
curs_pad(3X)
curs_pad(3X)
curs_pad(3X)
curs_pad(3X)
curs_printw(3X)
curs_terrninfo(4)
curs_util(3X)

curses(3X)

Page 7

curses(3X) (Terminal Information Utilities)

curses Routine Name Manual Page Name

Page 8

qi flush
raw
redrawwin
refresh
reset_prog_mode
reset_shell_mode
resetty
restart term
ripoffline
savetty
scanw
scr_dump
scr_init
scr_restore
scr_set
scroll
scrollok
set_curterm
set_ term
setscrreg
setsyx
set term
setupterm
slk_attroff
slk_attron
slk_attrset
slk_clear
slk_init
slk_label
slk_noutrefresh
slk_refresh
slk_restore
slk_set
slk_touch
srcl
standend
standout
start_color
subpad
subwin
syncok
termattrs
termname
tgetent
tgetflag

curs_inopts(3X)
curs_inopts(3X)
curs_refresh(3X)
curs_refresh(3X)
curs_kemel(3X)
curs_kemel(3X)
curs_kemel(3X)
curs_terminfo(4)
curs_kemel(3X)
curs _kemel(3X)
curs_scanw(3X)
curs_scr_dump(3X)
curs_scr_dump(3X)
curs_scr_dump(3X)
curs_scr_dump(3X)
curs_scroll(3X)
curs_outopts(3X)
curs_terminfo(4)
curs_initscr(3X)
curs_outopts(3X)
curs_kemel(3X)
curs_terminfo(4)
curs_terminfo(4)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_slk(3X)
curs_scroll(3X)
curs_attr(3X)
curs_attr(3X)
curs_color(3X)
curs_pad(3X)
curs_ window(3X)
curs_ window(3X)
curs_termattrs(3X)
curs_termattrs(3X)
curs_termcap(3X)
curs_termcap(3X)

curses(3X)

10/92

curses(3X) (Terminal Information Utilities) curses(3X)

curses Routine Name Manual Page Name

tgetnurn curs_termcap(3X)
tgetstr curs_termcap(3X)
tgoto curs_termcap(3X)
tigetflag curs_terminfo(4)
tigetnurn curs_terminfo(4)
tigetstr curs_terminfo(4)
timeout curs_inopts(3X)
touchline curs_touch(3X)
touchwin curs_touch(3X)
tparm curs_terminfo(4)
tputs curs_termcap(3X)
tputs curs_terminfo(4)
typeahead curs_inopts(3X)
unctrl curs_util(3X)
ungetch curs_getch(3X)
ungetwch curs_getwch(3X)
untouchwin curs_ touch(3X)
use_env curs_util(3X)
vidattr curs_terminfo(4)
vidputs curs_terminfo(4)
vwprintw curs_printw(3X)
vwscanw curs_scanw(3X)
waddch curs_addch(3X)
waddchnstr curs_addchstr(3X)
waddchstr curs_addchstr(3X)
waddnstr curs_addstr(3X)
waddnwstr curs_addwstr(3X)
waddstr curs_addstr(3X)
waddwch curs_addwch(3X)
waddwchnstr curs_addwchstr(3X)
waddwchstr curs_addwchstr(3X)
waddwstr curs_addwstr(3X)
wattroff curs_attr(3X)
wattron curs_attr(3X)
wattrset curs_attr(3X)
wbkgd curs_bkgd(3X)
wbkgdset curs_bkgd(3X)
wborder curs_border(3X)
wclear curs_clear(3X)
wclrtobot curs_clear(3X)
wclrtoeol curs_ clear(3X)
wcursyncup curs_ window(3X)
wdelch curs_delch(3X)
wdeleteln curs_deleteln(3X)
wechochar curs_addch(3X)

10/92 Page 9

curses(3X) (Terminal Information Utilities)

curses Routine Name Manual Page Name

wechowchar
werase
wgetch
wgetnstr
wgetnwstr
wgetstr
wgetwch
wgetwstr
whline
winch
winchnstr
winchstr
winnstr
winnwstr
wins ch
winsdelln
winsertln
winsnstr
winsnwstr
winsstr
wins tr
winswch
winswsLr
winwch
winwchnstr
winwchstr
winwstr
wmove
wnoutrefresh
wprintw
wredrawln
wrefresh
wscanw
wscrl
wsetscrreg
wstandend
wstandout
wsyncdown
wsyncup
wtimeout
wtouchln
wvline

RETURN VALUE

curs_addwch(3X)
curs_clear(3X)
curs_getch(3X)
curs_getstr(3X)
curs_getwstr(3X)
curs_getstr(3X)
curs_getwch(3X)
curs_getwstr(3X)
curs_border(3X)
curs_inch(3X)
curs_inchstr(3X)
curs_inchstr(3X)
curs_instr(3X)
curs_inwstr(3X)
curs_insch(3X)
curs_ deleteln(3X)
curs_ deleteln(3 X)
curs_insstr(3X)
curs_inswstr(3X)
curs_insstr(3X)
curs_instr(3X)
curs_inswch(3X)
curs_inswstr(3X)
curs_inwch(3X)
curs_inwchstr(3X)
curs_inwchstr(3X)
curs_inwstr(3X)
curs_move(3X)
curs_refresh(3X)
curs_printw(3X)
curs_refresh(3X)
curs_refresh(3X)
curs_scanw(3X)
curs_scroll(3X)
curs_outopts(3X)
curs_attr(3X)
curs_attr(3X)
curs_ window(3X)
curs_ window(3X)
curs_inopts(3X)
curs_touch(3X)
curs_border(3X)

curses(3X)

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the routine
descriptions.

Page 10 10/92

curses(3X) (Terminal Information Utilities) curses(3X)

All macros return the value of the w version, except setscrreg, wsetscrreg,
getyx, getbegyx, getmaxyx. The return values of setscrreg, wsetscrreg,
getyx, getbegyx, and getmaxyx are undefined (that is, these should not be used as
the right-hand side of assignment statements).

Routines that return pointers return NULL on error.

SEE ALSO

NOTES

10/92

terminfo(4) and 3X pages whose names begin "curs_" for detailed routine descrip­
tions.
curs_addch(3X), curs_addchstr(3X), curs_addstr(3X), curs_attr(3X), curs_beep(3X),
curs_bkgd(3X), curs_border(3X), curs_clear(3X), curs_color(3X), curs_delch(3X),
curs_deleteln(3X), curs__getch(3X), curs_getyx(3X), curs_inch(3X), curs_inchstr(3X),
curs_initscr(3X), curs_inopts(3X), curs_insch(3X), curs_insstr(3X), curs_instr(3X),
curs_kernel(3X), curs_move(3X), curs_outopts(3X), curs_overlay(3X),
curs_refresh(3X), curs_scr_dmp(3X), curs_scroll(3X), curs_slk(3X),
curs_termattr(3X), curs_termcap(3X), curs_terminfo(3X), curs_touch(3X),
curs_util(3X), curs_window(3X) in the Programmer's Guide: Character User Interface.

The header file <curses. h> automatically includes the header files <Stdio. h> and
<unctr 1 . h>.

The following internal data objects once existed in the libcurses library but have
since been removed in order to avoid namespace conflicts with valid application
defined data objects:

BC, Def_term, Mouse_status, Oldcolors, PC, SP, UP,
acs32map, bit_attributes, curs_err_strings, curs_errno,
curs_parm_err, curses_version, ospeed, outchcount,
term_err_strings, term_errno, term_parm_err, ttytype

These objects have been renamed by prepending an underscore to their old names.
These renamed objects refer to undocumented curses interfaces which may be
changed or removed in the future.

Page 11

cuserid (3S) (C Development Set) cuserid (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (char *s);

DESCRIPTION
cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, s is assumed to point to an array of at least L_cuserid char­
acters; the representation is left in this array. The constant L_cuserid is defined in
the stdio. h header file.

SEE ALSO
getlogin(3C), getpwent(3C)

DIAGNOSTICS

10/92

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character · \ o , will be placed at s [o J.

Page 1

dbm(3N) dbm(3N)

NAME
dbm, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey -
database subroutines

SYNOPSIS
#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

datum;

int dbminit(char *file);

int dbmclose(void);

datum fetch(datum key);

int store(datum key, datum content);

int delete(datum key);

datum firstkey(void);

datum nextkey(datum key);

DESCRIPTION
These functions maintain key I content pairs in a database. The functions will han­
dle very large (a billion blocks) databases and will access a keyed item in one or
two file system accesses. The functions are obtained with the loader option -lnsl.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The database is stored in two files. One file is a directory con­
taining a bit map and has . dir as its suffix. The second file contains all data and
has . pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file. dir and file. pag must exist. An empty database is created by
creating zero-length . dir and . pag files.

A database may be closed by calling dbmclose. You must close a database before
opening a new one.

Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. firstkey will return the first key in the
database. With any key nextkey will return the next key in the database. This
code will traverse the database:

for (key = firstkey(); key.dptr !=NULL; key = nextkey(kcy))

RETURN VALUE

10/92

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0) dptr.

Page 1

dbm(3N) dbm(3N)

NOTES

FILES

Page 2

The . pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(l), cat(l), tar(l), ar(l)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key I content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key /content pairs that hash together must fit
on a single block. store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and nextkey depends on a hashing func­
tion, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

/usr/lib/libnsl.a

10/92

dbm(3) (BSD Compatibility Package) dbm(3)

NAME
dbm: dbminit, dbmclose, fetch, store, delete, firstkey, nextkey - data base
subroutines

SYNOPSIS
cc [flag . ..] file ... - ldbm

#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

datum;
dbminit(char *file);
dbmclose();
datum fetch(datum key);
store(datum key, datum content);
delete(datum key);
datum firstkey();
datum nextkey(datum key);

DESCRIPTION
Note: the dbm library has been superceded by ndbm(3), and is now implemented
usingndbm.

These functions maintain key /content pairs in a data base. The functions will han­
dle very large (a billion blocks) databases and will access a keyed item in one or
two file system accesses. The functions are obtained with the loader option - ldbm.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The data base is stored in two files. One file is a directory con­
taining a bit map and has . dir as its suffix. The second file contains all data and
has . pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file. dir and file. pag must exist. An empty database is created by
creating zero-length . dir and . pag files.

A database may be closed by calling dbmclose. You must close a database before
opening a new one.

Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. firstkey will return the first key in the
database. With any key nextkey will return the next key in the database. This
code will traverse the data base:

for (key= firstkey; key.dptr !=NULL; key= nextkey(key))

SEE ALSO
ndbm(3)

10/92 Page 1

dbm(3) (BSD Compatibility Package) dbm(3)

RETURN VALUE

NOTES

Page 2

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0)
dptr.

The . pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(l), cat(l), tar(l), ar(l)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key I content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit
on a single block. store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and nextkey depends on a hashing func­
tion, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

10/92

decimal_to_floating (3) (BSD Compatibility Package) decimal_to_floating (3)

NAME
decimal_to_floating: decimal_to_single,decimal_to_double,
decimal_to_extended - convert decimal record to floating-point value

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <floatingpoint.h>

void decimal_to_single(px, pm, pd, ps)
single *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

void decimal_to_double(px, pm, pd, ps)
double *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

void decimal_to_extended(px, pm, pd, ps)
extended *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

DESCRIPTION
The decimal_to_floating functions convert the decimal record at *pd into a
floating-point value at *px, observing the modes specified in *pm and setting excep­
tions in *ps. If there are no IEEE exceptions, *ps will be zero.

pd->sign and pd->fpclass are always taken into account. pd->exponent and pd->ds are
used when pd->jpclass is fp_normal or fp_subnormal. In these cases pd->ds must con­
tain one or more ASCII digits followed by a NULL. *px is set to a correctly rounded
approximation to

(pd->sign)*(pd->ds)*lO**(pd->exponent)

Thus if pd->exponent == -2 and pd->ds == "1234", *px will get 12.34 rounded to
storage precision. pd->ds cannot have more than DECIMAL_STRING_LENGTH-1
significant digits because one character is used to terminate the string with a NULL.
If pd->more!=O on input then additional nonzero digits follow those in pd->ds;
fp_inexact is set accordingly on output in *ps.

*px is correctly rounded according to the IEEE rounding modes in pm->rd. *psis set
to contain fp_inexact ,fp_underflow, or fp_overfiow if any of these arise.

pd->ndigits, pm->df, and pm->ndigits are not used.

strtod(3C), scanf(3S), fscanf(), and sscanf() all use decimal_to_double.

SEE ALSO
scanf(3S), strtod(3C).

10/92 Page 1

dial (3C) (C Programming Language Utilities) dial (3C)

NAME
dial - establish an outgoing terminal line connection

SYNOPSIS
#include <dial.h>

int dial(CALL call);

void undial(int fd);

DESCRIPTION

10/92

dial returns a file-descriptor for a terminal line open for read/write. The argument
to dial is a CALL structure (defined in the dial. h header file).

When finished with the terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal device.

The definition of CALL in the dial. h header file is:

typedef struct
struct termio *attr; I* pointer to termio attribute struct *I
int baud; I* transmission data rate *I
int speed; I* 212A modem: low=300, high=l200 *I
char *line; I* device name for out-going line *I
char *telno; I* pointer to tel-no digits string *I
int modem; /* specify modem control for direct lines *I
char *device; I* unused *I
int dev_len; I* unused *I

} CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be either 300 or 1200 to identify the 113A modem, or
the high- or low-speed setting on the 212A modem. Note that the 113A modem or
the low-speed setting of the 212A modem will transmit at any rate between 0 and
300 bits per second. However, the high-speed setting of the 212A modem transmits
and receives at 1200 bits per second only. The CALL element baud is for the desired
transmission baud rate. For example, one might set baud to 110 and speed to 300
(or 1200). However, if speed is set to 1200, baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should
be placed in the line element in the CALL structure. Legal values for such terminal
device names are kept in the Devices file. In this case, the value of the baud ele­
ment should be set to -1. This value will cause dial to determine the correct value
from the Devices file.

The telno element is for a pointer to a character string representing the telephone
number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dial*
dial#

wait for secondary dial tone
delay for approximately 4 seconds

Page 1

dial (3C) (C Programming Language Utilities) dial (3C)

FILES

The CALL element modem is used to specify modem control for direct lines. This ele­
ment should be non-zero if modem control is required. The CALL element attr is a
pointer to a termio structure, as defined in the termio. h header file. A NULL value
for this pointer element may be passed to the dial function, but if such a structure
is included, the elements specified in it will be set for the outgoing terminal line
before the connection is established. This setting is often important for certain attri­
butes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained in
the CALL structure for compatibility reasons.

/etc/uucp/Devices
/etc/uucp/Systems
/var I spool /uucp/LCK .. tty-device

SEE ALSO
alarm(2), read(2), wri te(2).
termio(7) in the System Administrator's Reference Manual.

uucp(lC) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the dial. h
header file.

INTRPT -1 I* interrupt occurred */
D_HUNG -2 /* didler hung (no return from write) *I
NO_ANS -3 I* no answer within 10 seconds */
ILL_BD -4 /* illegal baud-rate */
A_PROB -5 /* acu problem (open() failure) */
L_PROB -6 /* line problem (open() failure) *I
NO_Ldv -7 I* can't open Devices file */
DV_NT_A -8 I* requested device not available */
DV_NT_K -9 I* requested device not known */
NO_BD_A -10 /* no device available at requested baud *I
NO_BD_K -11 I* no device known at requested baud */
DV_NT_E -12 /* requested speed does not match */
BAD_SYS -13 I* system not in Systems file* I

Including the dial. h header file automatically includes the termio. h header file.

An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of "touching" the LCK .. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uucp(lC) may simply
delete the LCK .. entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call, causing an apparent
error return. If the user program expects to be around for an hour or more, error
returns from reads should be checked for (errno==EINTR), and the read possibly
reissued.

10/92

difftime(3C) (C Development Set)

NAME
difftime - computes the difference between two calendar times

SYNOPSIS
#include <time.h>

double difftime (time_t timel, time_t timeO);

DESCRIPTION

difftime(3C)

difftime computes the difference between two calendar times. f4difftime
returns the difference (time1-time0) expressed in seconds as a double. This
function is provided because there are no general arithmetic properties defined for
type time_t.

SEE ALSO
ctime(3C)

10/92 Page 1

directory (3) (BSD Compatibility Package) directory(3)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

closedir(dirp)
DIR *dirp;

DESCRIPTION

10/92

opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The pointer NULL is returned if filename cannot be accessed,
or if it cannot allocate enough memory with malloc to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reach­
ing the end of the directory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the one associated with the directory stream when the
telldir operation was performed. Values returned by telldir are good only for
the lifetime of the DIR pointer from which they are derived. If the directory is
closed and then reopened, the telldir value may be invalidated due to
undetected directory compaction. It is safe to use a previous telldir value
immediately after a call to opendir and before any calls to readdir.

rewinddir resets the position of the named directory stream to the beginning of
the directory.

closedir closes the named directory stream and frees the structure associated with
the DIR pointer.

Page 1

directory(3) (BSD Compatibility Package) directory (3)

Sample code which searchs a directory for the entry name is:

len = strlen(name);
dirp = opendir (" . ") ;
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))

if (dp->d_namlen == len && !strcmp(dp->d_name, name))
closedir (dirp);
return FOUND;

closedir (dirp);
return NOT_FOUND;

SEE ALSO
open(2), close(2), read(2), lseek(2),

Page 2 10/92

directory (3C) directory(3C)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - direc­
tory operations

SYNOPSIS
#include <dirent.h>

DIR *opendir (const char *filename);

struct dirent *readdir (DIR *dirp);

long telldir (DIR *dirp);

void seekdir (DIR *dirp, long loc);

void rewinddir (DIR *dirp);

int closedir (DIR *dirp);

DESCRIPTION

10/92

opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. The
NULL pointer is returned if filename cannot be accessed or is not a directory, or if it
cannot malloc(3C) enough memory to hold a DIR structure or a buffer for the
directory entries.

readdir returns a pointer to the next active directory entry and positions the direc­
tory stream at the next entry. No inactive entries are returned. It returns NULL
upon reaching the end of the directory or upon detecting an invalid location in the
directory. readdir buffers several directory entries per actual read operation;
readdir marks for update the st_atime field of the directory each time the direc­
tory is actually read.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next rcaddir operation on the directory stream.
The new position reverts to the position associated with directory stream at the
time the telldir operation that provides Zoe was performed. Values returned by
telldir are valid only if the directory has not changed because of compaction or
expansion. This situation is not a problem with System V, but it may be a problem
with some file system types.

rewinddir resets the position of the named directory stream to the beginning of
the directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to opendir would.

closedir closes the named directory stream and frees the DIR structure.

The following errors can occur as a result of these operations.

opendir returns NULL on failure and sets errno to one of the following values:

ENOTDIR A component of filename is not a directory.

EACCES

EA CC ES

A component of filename denies search permission.

Read permission is denied on the specified directory.

Page 1

directory(3C) directory (3C)

EMFILE

ENFILE

EFAULT

ELOOP

ENAMETOOLONG

ENO ENT

The maximum number of file descriptors are currently open.

The system file table is full.

filename points outside the allocated address space.

Too many symbolic links were encountered in translating
filename.

The length of the filename argument exceeds { PATH_MAX}, or
the length of a filename component exceeds {NAME_MAX}
while (_POSIX_NO_TRUNC) is in effect.

A component of filename does not exist or is a null pathname.

readdir returns NULL on failure and sets errno to one of the following values:

ENOENT The current file pointer for the directory is not located at a
valid entry.

EBADF The file descriptor determined by the DIR stream is no longer
valid. This result occurs if the DIR stream has been closed.

telldir, seekdir, and closedir return -1 on failure and set errno to the follow­
ing value:

EBADF The file descriptor determined by the DIR stream is no longer
valid. This results if the DIR stream has been closed.

EXAMPLE
Here is a sample program that prints the names of all the files in the current direc­
tory:

#include <stdio.h>
#include <dirent.h>

main()
{

DIR *dirp;
struct dirent *direntp;

dirp = opendir (" . ") ;
while ((direntp = readdir(dirp)) !=NULL)

(void) printf ("%s\n", direntp->d_name) ;
closedir(dirp) ;
return (0);

SEE ALSO
getdents(2), dirent(4)

NOTES
rewinddir is implemented as a macro, so its function address cannot be taken.

Page 2 10/92

dirname(3G) dirname(3G)

NAME
dirname - report the parent directory name of a file path name

SYNOPSIS
cc [flag . ..]file ... - lgen [library ...]

#include <libgen.h>

char *dirname (char *path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a file system
path name, dirname returns a pointer to a static constant string that is the parent
directory of that file. In doing this, it sometimes places a null byte in the path name
after the next to last element, so the content of path must be disposable. Trailing
"!"characters in the path are not counted as part of the path.

If path or *path is zero, a pointer to a static constant "." is returned.

dirname and basename together yield a complete path name. dirname (path) is
the directory where basename (path) is found.

EXAMPLES
A simple file name and the strings "." and " .. " all have "." as their return value.

Input string
/usr/lib
/usr/
usr
I

Output pointer
/usr
I

I

The following code reads a path name, changes directory to the appropriate direc­
tory [see chdir(2)], and opens the file.

char path[lOOJ, *pathcopy;
int fd;
gets (path) ;
pathcopy = strdup (path) ;
chdir (dirname (pathcopy));
fd = open (basename (path) , O_RDONLY) ;

SEE ALSO
basename(l), chdir(2), basename(3G).

10/92 Page 1

div(3C) (C Development Set) div (3C)

NAME
div, ldi v - compute the quotient and remainder

SYNOPSIS
#include <stdlib.h>

div_t div (int nurner, int denom);

ldiv_t ldiv (long int nurner, long int denom);

DESCRIPTION

10/92

div computes the quotient and remainder of the division of the numerator numer
by the denominator denom. This function provides a well-defined semantics for the
signed integral division and remainder operations, unlike the implementation­
defined semantics of the built-in operations. The sign of the resulting quotient is
that of the algebraic quotient, and, if the division is inexact, the magnitude of the
resulting quotient is the largest integer less than the magnitude of the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise,
quotient * denom + remainder will equal numer.

div returns a structure of type div_t, comprising both the quotient and remainder:

typedef struct div_t {
int quot; I *quotient* I
int rem; /*remainder* I

div_t;

ldi vis similar to div, except that the arguments and the members of the returned
structure (which has type ldi v_t) all have type long int.

Page 1

di close (3X) (C Development Set) dlclose (3X)

NAME
dlclose - close a shared object

SYNOPSIS
cc [flag . ..]file ... -ldl [library ...]

#include <dlfcn.h>

int dlclose(void *handle);

DESCRIPTION
dlclose disassociates a shared object previously opened by dlopen from the
current process. Once an object has been closed using dlclose, its symbols are no
longer available to dlsym. All objects loaded automatically as a result of invoking
dlopen on the referenced object [see dlopen(3X)] are also closed. handle is the
value returned by a previous invocation of dlopen.

This routine is available in a library that is loaded if the option - ldl is used with
cc or ld. The -ldl library (and the routines it contains) may not be used when a
program is to be statically linked.

SEE ALSO
dlerror(3X), dlopen(3X), dlsym(3X)

DIAGNOSTICS

NOTES

10/92

If the referenced object was successfully closed, dlclose returns 0. If the object
could not be closed, or if handle does not refer to an open object, dlclose returns a
non-0 value. More detailed diagnostic information is available through dlerror.

A successful invocation of dlclose does not guarantee that the objects associated
with handle have actually been removed from the address space of the process.
Objects loaded by one invocation of dlopen may also be loaded by another invoca­
tion of dlopen. The same object may also be opened multiple times. An object is
not removed from the address space until all references to that object through an
explicit dlopen invocation have been closed and all other objects implicitly
referencing that object have also been closed.

Once an object has been closed by dlclose, referencing symbols contained in that
object can cause undefined behavior.

Page 1

dlerror(3X) (C Development Set) dlerror(3X)

NAME
dlerror - get diagnostic information

SYNOPSIS
cc [flag ...]file ... -ldl [library ...]

#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
dlerror returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror,
dlerror returns NULL. Thus, invoking dlerror a second time, immediately fol­
lowing a prior invocation, results in NULL being returned.

This routine is available in a library that is loaded if the option - ldl is used with
cc or ld. The -ldl library (and the routines it contains) may not be used when a
program is to be statically linked.

SEE ALSO

NOTES

10/92

dlclose(3X), dlopen(3X), dlsym(3X)

The messages returned by dlerror may reside in a static buffer that is overwritten
on each call to dlerror. Application code should not write to this buffer. Pro­
grams wishing to preserve an error message should make their own copies of that
message.

Page 1

dlopen(3X) (C Programming Language Utilities) dlopen(3X)

NAME
dlopen - open a shared object

SYNOPSIS
cc [flag . ..]file ... -ldl [library ...]

#include <dlfcn.h>

void *dlopen(char *pathname, int mode);

DESCRIPTION
dlopen is one of a family of routines that give the user direct access to the dynamic
linking facilities. These routines are available in a library that is loaded if the
option -ldl is used with cc or ld. The - ldl library (and the routines it contains)
may not be used when a program is to be statically linked.

dlopen makes a shared object available to a running process. dlopen returns to
the process a handle the process may use on subsequent calls to dlsym and
dlclose. This value should not be interpreted in any way by the process. path­
name is the path name of the object to be opened; it may be an absolute path or rela­
tive to the current directory. If the value of pathname is 0, dlopen makes the sym­
bols contained in the original a. out, and all of the objects that were loaded at pro­
gram startup with the a. out, available through dlsym.

When a shared object is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is loaded.
These references must be relocated before the symbols can be accessed. The mode
parameter governs when these relocations take place and may have the following
values:

RTLD_LAZY
Under this mode, only references to data symbols are relocated when the
object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode should result in better per­
formance, since a process may not reference all of the functions in any given
shared object.

RTLD_NOW
Under this mode, all necessary relocations are performed when the object is
first loaded. This may result in some wasted effort, if relocations are per­
formed for functions that are never referenced, but is useful for applications
that need to know as soon as an object is loaded that all symbols referenced
during execution will be available.

DIAGNOSTICS

NOTES

10/92

If pathname cannot be found, cannot be opened for reading, is not a shared object, or
if an error occurs during the process of loading pathname or relocating its symbolic
references, dlopen returns NULL. More detailed diagnostic information is available
through dlerror.

If other shared objects were link edited with pathname when pathname was built,
those objects are automatically loaded by dlopen. The directory search path to be
used to find both pathname and the other needed objects may be specified by setting
the environment variable LD_LIBRARY_PATH. This environment variable should
contain a colon-separated list of directories, in the same format as the PATH variable

Page 1

dlopen(3X) (C Programming Language Utilities) dlopen(3X)

[see sh(l)]. LD_LIBRARY_PATH is ignored if the process is running setuid or set­
gid [see exec(2)] or if the name specified is not a simple file name (that is, contains
a I character). Objects whose names resolve to the same absolute or relative path
name may be opened any number of times using dlopen, however, the object refer­
enced is loaded only once into the address space of the current process. The same
object referenced by two different path names, however, may be loaded multiple
times. For example, given the object /usr/home/me/mylibs/mylib. so, and
assuming the current working directory is /usr /home/me/workdir,

void *handlel;
void *handle2;

handlel
handle2

dlopen(" .. /mylibs/mylib.so", RTLD_LAZY);
dlopen ("/usr/home/me/mylibs/mylib. so", RTLD_LAZY);

results in my libs. so being loaded twice for the current process. On the other
hand, given the same object and current working directory, if
LD_LIBRARY_PATH=/usr/home/me/mylibs,then

void *handlel;
void *handle2;

handlel
handle2

dlopen ("my lib. so", RTLD_LAZY);
dlopen ("/usr/home/me/mylibs/mylib. so", RTLD_LAZY);

results in my 1 ibs . so being loaded only once.

Objects loaded by a single invocation of dlopen may import symbols from one
another or from any object loaded automatically during program startup, but
objects loaded by one dlopen invocation may not directly reference symbols from
objects loaded by a different dlopen invocation. Those symbols may, however, be
referenced indirectly using dlsym.

Users who wish to gain access to the symbol table of the a. out itself using
dlsym (O, mode) should be aware that some symbols defined in the a. out may not
be available to the dynamic linker. The symbol table created by ld for use by the
dynamic linker might contain only a subset of the symbols defined in the a. out:
specifically those referenced by the shared objects with which the a. out is linked.

Any symbols in the executable that may be referenced from a shared object
accessed via dlopen must also be referenced in a shared library that is linked in at
link time.

SEE ALSO
cc(l), ld(l), sh(l), exec(2), dlclose(3X), dlerror(3X), dlsym(3X).

Page 2 10/92

dlsym(3X) (C Programming Language Utilities) dlsym(3X)

NAME
dlsyrn- get the address of a symbol in shared object

SYNOPSIS
cc [flag .. .]file ... -ldl [library ...]

#include <dlfcn.h>

void *dlsyrn(void *handle, char *name);

DESCRIPTION
dlsyrn allows a process to obtain the address of a symbol defined within a shared
object previously opened by dlopen. handle is a value returned by a call to dlopen;
the corresponding shared object must not have been closed using dlclose. name is
the symbol's name as a character string. dlsyrn searches for the named symbol in
all shared objects loaded automatically as a result of loading the object referenced
by handle [see dlopen(3X)].

This routine is available in a library that is loaded if the option - ldl is used with
cc or ld. The -ldl library (and the routines it contains) may not be used when a
program is to be statically linked.

EXAMPLES
The following example shows how one can use dlopen and dlsyrn to access either
function or data objects. For simplicity, error checking has been omitted.

void *handle;
int i, *iptr;
int (*fptr) (int);

/* open the needed object */
handle = dlopen ("/usr /mydir /libx. so", RTLD_LAZY) ;

/* find address of function and data objects */
fptr (int (*)(int))dlsyrn(handle, "sorne_function");

iptr (int *)dlsyrn(handle, "int_object");

/* invoke function, passing value of integer as a parameter */

i = (*fptr) (*iptr);

SEE ALSO
dlclose(3X), dlerror(3X), dlopen(3X)

DIAGNOSTICS

10/92

If handle does not refer to a valid object opened by dlopen, or if the named symbol
cannot be found within any of the objects associated with handle, dlsyrn returns
NULL. More detailed diagnostic information is available through dlerror.

Page 1

doconfig(3N) (Networking Support Utilities) doconfig (3N)

NAME
doconf ig - execute a configuration script

SYNOPSIS
include <sac.h>

int doconfig(int fd, char *script, long rflag);

DESCRIPTION

10/92

doconfig is a Service Access Facility library function that interprets the
configuration scripts contained in the files /etc/saf/pmtag/_config,
/etc/saf/ _sysconfig, and /etc/saf!pmtag /svctag.

script is the name of the configuration script; fd is a file descriptor that designates
the stream to which stream manipulation operations are to be applied; rflag is a bit­
mask that indicates the mode in which script is to be interpreted. rflag may take
two values, NORUN and NOASSIGN, which may be or'd. If rflag is zero, all commands
in the configuration script are eligible to be interpreted. If rflag has the NOASSIGN
bit set, the assign command is considered illegal and will generate an error return.
If rflag has the NORUN bit set, the run and runwai t commands are considered illegal
and will generate error returns.

The configuration language in which script is written consists of a sequence of
commands, each of which is interpreted separately. The following reserved key­
words are defined: assign, push, pop, runwait, and run. The comment character
is #;when a # occurs on a line, everything from that point to the end of the line is
ignored. Blank lines are not significant. No line in a command script may exceed
1024 characters.

assign variable=value
Used to define environment variables. variable is the name of the environ­
ment variable and value is the value to be assigned to it. The value
assigned must be a string constant; no form of parameter substitution is
available. value may be quoted. The quoting rules are those used by the
shell for defining environment variables. assign will fail if space cannot
be allocated for the new variable or if any part of the specification is
invalid.

push modulel [, module2, module3, . ..]
Used to push STREAMS modules onto the stream designated by fd.
modulel is the name of the first module to be pushed, module2 is the name
of the second module to be pushed, etc. The command will fail if any of
the named modules cannot be pushed. If a module cannot be pushed, the
subsequent modules on the same command line will be ignored and
modules that have already been pushed will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If
an argument is given, modules will be popped one at a time until the
named module is at the top of the stream. If the named module is not on
the designated stream, the stream is left as it was and the command fails.
If module is the special keyword ALL, then all modules on the

Page 1

doconfig (3N) (Networking Support Utilities) doconfig(3N)

stream will be popped. Note that only modules above the topmost driver
are affected.

runwai t command
The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is run
with /usr /bin/ sh -c prepended to it; shell scripts may thus be executed
from configuration scripts. The runwai t command will fail if command
cannot be found or cannot be executed, or if command exits with a non­
zero status.

run command
The run command is identical to runwai t except that it does not wait for
command to complete. command is the pathname of the command to be
run. run will not fail unless it is unable to create a child process to execute
the command.

Although they are syntactically indistinguishable, some of the commands available
to run and runwai t are interpreter built-in commands. Interpreter built-ins are
used when it is necessary to alter the state of a process within the context of that
process. The doconfig interpreter built-in commands are similar to the shell spe­
cial commands and, like these, they do not spawn another process for execution.
See sh(l). The initial set of built-in commands is:

cd
ulimit
umask

DIAGNOSTICS
doconfig returns O if the script was interpreted successfully. If a command in the
script fails, the interpretation of the script ceases at that point and a positive
number is returned; this number indicates which line in the script failed. If a sys­
tem error occurs, a value of -1 is returned. When a script fails, the process whose
environment was being established should not be started.

SEE ALSO
pmadm(lM), sacadm(lM), sh(l).

Page 2 10/92

drand48 (3C) (C Development Set) drand48 (3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
#include <stdlib.h>

double drand48 (void) ;

double erand48 (unsigned short xsubi[3]);

long lrand48 (void);

long nrand48 (unsigned short xsubi [3]) ;

long mrand48 (void);

long jrand48 (unsigned short xsubi [3]) ;

void srand48 (long seedval) ;

unsigned short *seed48 (unsigned short seed16v[3]);

void lcong48 (unsigned short param[7]) ;

DESCRIPTION

10/92

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating­
point values uniformly distributed over the interval $[0.0,-1.0).$

Functions lrand48 and nrand48 return non-negative long integers uniformly dis­
tributed over the interval $[0,-2 sup 31).$

Functions mrand48 and jrand48 return signed long integers uniformly distributed
over the interval $[-2 sup 31 ,-2 sup 31).$

Functions srand48, seed48, and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48, or mrand48 is called.
(Although it is not recommended practice, constant default initializer values will be
supplied automatically if drand48, lrand48, or mrand48 is called without a prior
call to an initialization entry point.) Functions erand48, nrand48, and jrand48 do
not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, $X sub i ,$
according to the linear congruential formula

X11+1=(aX11+c)mod111 n2':0.

The parameter $m'='2 sup 48$; hence 48-bit integer arithmetic is performed. Unless
1cong48 has been invoked, the multiplier value a and the addend value c are
given by

a = 5DEECE66D 16 = 273673163155 8

c=B 16 =13 8 .

The value returned by any of the functions drand48, erand48, lrand48, nrand48,
mrand48, or j rand48 is computed by first generating the next 48-bit $X sub i$ in
the sequence. Then the appropriate number of bits, according to the type of

Page 1

drand48 (3C) (C Development Set) drand48(3C)

data item to be returned, are copied from the high-order (leftmost) bits of $X sub i$
and transformed into the returned value.

The functions drand48, lrand48, and rnrand48 store the last 48-bit $X sub i$ gen­
erated in an internal buffer. $X sub i$ must be initialized prior to being invoked.
The functions erand48, nrand48, and jrand48 require the calling program to pro­
vide storage for the successive $X sub i$ values in the array specified as an argu­
ment when the functions are invoked. These routines do not have to be initialized;
the calling program must place the desired initial value of $X sub i$ into the array
and pass it as an argument. By using different arguments, functions erand48,
nrand48, and jrand48 allow separate modules of a large program to generate
several independent streams of pseudo-random numbers, that is, the sequence of
numbers in each stream will not depend upon how many times the routines have
been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of $X sub i$ to the 32
bits contained in its argument. The low-order 16 bits of $X sub i$ are set to the arbi­
trary value $roman 330E sub 16 .$

The initializer function seed48 sets the value of $X sub i$ to the 48-bit value
specified in the argument array. In addition, the previous value of $X sub i$ is
copied into a 48-bit internal buffer, used only by seed48, and a pointer to this
buffer is the value returned by seed48. This returned pointer, which can just be
ignored if not needed, is useful if a program is to be restarted from a given point at
some future time - use the pointer to get at and store the last $X sub i$ value, and
then use this value to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial $X sub i ,$
the multiplier value $a,$ and the addend value $c.$ Argument array elements
param[0-2] specify $X sub i ,$ param[3-5] specify the multiplier $a,$ and param[6]
specifies the 16-bit addend $c.$ After lcong48 has been called, a subsequent call to
either srand48 or seed48 will restore the "standard" multiplier and addend
values, a and $c,$ specified on the previous page.

SEE ALSO
rand(3C)

Page 2 10/92

dup(2) dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);

DESCRIPTION
ft/des is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or ioctl
system call. dup returns a new file descriptor having the following in common with
the original:

Same open file (or pipe).

Same file pointer (that is, both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fcntl(2)].

The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

EBADF ft/des is not a valid open file descriptor.

EINTR

EMF ILE

ENOLINK

A signal was caught during the dup system call.

The process has too many open files [see getrlimit(2)].

ft/des is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
close(2), creat(2), exec(2), fcnt1(2), getrlimit(2), open(2), pipe(2), dup2(3C),
lockf(3C)

DIAGNOSTICS

10/92

Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

dup2(3C) dup2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup2 (int fildes, int fildes2);

DESCRIPTION
fildes is a file descriptor referring to an open file, and fildes2 is a non-negative integer
less than {OPEN_MAX} (the maximum number of open files). dup2 causesfildes2 to
refer to the same file as fildes. If fildes2 already referred to an open file, not fildes, it is
closed first. If fildes2 refers to fildes, or if fildes is not a valid open file descriptor,
fildes2 will not be closed first.

dup2 will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EBADF

EINTR

EMF ILE

fildes2 is negative or greater than or equal to { OPEN_MAX}.

a signal was caught during the dup2 call.

{OPEN_MAX} file descriptors are currently open.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C), limits(4)

DIAGNOSTICS

10/92

Upon successful completion a non-negative integer, namely, the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

econvert (3) (BSD Compatibility Package) econvert (3)

NAME
econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert - output
conversion

SYNOPSIS
/usr /ucb/ cc [flag . ..]file . ..

#include <floatingpoint.h>

char *econvert(value, ndigit, decpt, sign, buf)
double value;
int ndigit, *decpt, *sign;
char *buf;

char *fconvert(value, ndigit, decpt, sign, buf)
double value;
int ndigit, *decpt, *sign;
char *buf;

char *gconvert(value, ndigit, trailing, buf)
double value;
int ndigit;
int trailing;
char *buf;

char *seconvert(value, ndigit, decpt, sign, buf)
single *value;
int ndigit, *decpt, *sign;
char *buf;

char *sfconvert(value, ndigit, decpt, sign, buf)
single *value;
int ndigit, *decpt, *sign;
char *buf;

char *sgconvert(value, ndigit, trailing, buf)
single *value;
int ndigit;
int trailing;
char *buf;

DESCRIPTION

10/92

econvert converts the value to a NULL-terminated string of ndigit ASCII digits in buf
and returns a pointer to buf. buf should contain at least ndigit + 1 characters. The
position of the decimal point relative to the beginning of the string is stored
indirectly through decpt. Thus buf == "314" and *decpt == 1 corresponds to the
numerical value 3.14, while buf == "314" and *decpt == -1 corresponds to the numeri­
cal value .0314. If the sign of the result is negative, the word pointed to by sign is
nonzero; otherwise it is zero. The least significant digit is rounded.

fconvert works much like econvert, except that the correct digit has been
rounded as if for sprintf (%w.nf) output with n=ndigit digits to the right of the
decimal point. ndigit can be negative to indicate rounding to the left of the decimal
point. The return value is a pointer to buf. buf should contain at least
310+max(O,ndigit) characters to accommodate any double-precision value.

Page 1

econvert (3) (BSD Compatibility Package) econvert (3)

gconvert converts the value to a NULL-terminated ASCII string in buf and returns a
pointer to buf. It produces ndigit significant digits in fixed-decimal format, like
sprintf(%w.nf), if possible, and otherwise in floating-decimal format, like
sprintf (%w .ne); in either case buf is ready for printing, with sign and exponent.
The result corresponds to that obtained by

(void) sprintf(buf, ''%w.ng'' ,value) ;

If trailing= 0, trailing zeros and a trailing point are suppressed, as in sprintf (%g).
If trailing!= 0, trailing zeros and a trailing point are retained, as in sprintf (%#g).

seconvert, sf convert, and sgconvert are single-precision versions of these func­
tions, and are more efficient than the corresponding double-precision versions. A
pointer rather than the value itself is passed to avoid C's usual conversion of
single-precision arguments to double.

IEEE Infinities and NaNs are treated similarly by these functions. "NaN" is
returned for NaN, and "Inf" or "Infinity" for Infinity. The longer form is produced
when ndigit ~ 8.

SEE ALSO
sprintf(3S).

Page 2 10/92

ecvt (3C) (C Development Set) ecvt (3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
#include <stdlib.h>

char *ecvt (double value, int ndigit, int *decpt, int *sign);

char •fcvt (double value, int ndigit, int *decpt, int •sign);

char *gcvt (double value, int ndigit, char *buf);

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits and returns a pointer
thereto. The high-order digit is non-zero, unless the value is zero. The low-order
digit is rounded. The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero.

fcvt is identical to ecvt, except that the correct digit has been rounded for printf
%f output of the number of digits specified by ndigit.

gcvt converts the value to a null-terminated string in the array pointed to by buf
and returns buf. It attempts to produce ndigit significant digits in %f format if pos­
sible, otherwise %e format (scientific notation), ready for printing. A minus sign, if
there is one, or a decimal point will be included as part of the returned string. Trail­
ing zeros are suppressed.

SEE ALSO
printf(3S)

NOTES

10/92

The values returned by ecvt and fcvt point to a single static data array whose
content is overwritten by each call.

Page 1

elf(3E) (ELF Library) elf(3E)

NAME
elf - object file access library

SYNOPSIS
cc [fiag .. .]file ... -lelf [library ...]
#include <libelf.h>

DESCRIPTION
Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header file
provides type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF
descriptor. That is, when the program starts working with a file, elf_begin creates
an ELF descriptor through which the program manipulates the structures and infor­
mation in the file. These ELF descriptors can be used both to read and to write files.
After the program establishes an ELF descriptor for a file, it may then obtain section
descriptors to manipulate the sections of the file [see elf_getscn(3E)]. Sections
hold the bulk of an object file's real information, such as text, data, the symbol table,
and so on. A section descriptor "belongs" to a particular ELF descriptor, just as a
section belongs to a file. Finally, data descriptors are available through section
descriptors, allowing the program to manipulate the information associated with a
section. A data descriptor "belongs" to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data
descriptor is associated with one section descriptor, which is associated with one
ELF descriptor, which is associated with one file. Although descriptors are private,
they give access to data that may be shared. Consider programs that combine input
files, using incoming data to create or update another file. Such a program might
get data descriptors for an input and an output section. It then could update the
output descriptor to reuse the input descriptor's data. That is, the descriptors are
distinct, but they could share the associated data bytes. This sharing avoids the
space overhead for duplicate buffers and the performance overhead for copying
data unnecessarily.

FILE CLASSES

10/92

ELF provides a framework in which to define a family of object files, supporting
multiple processors and architectures. An important distinction among object files
is the class, or capacity, of the file. The 32-bit class supports architectures in which a
32-bit object can represent addresses, file sizes, etc., as in the following.

Name
Elf32_Addr
Elf32_Half
Elf32_0ff
Elf32_Sword
Elf32_Word
unsigned char

Pu ose
Unsigned address
Unsigned medium integer
Unsigned file offset
Signed large integer
Unsigned large integer
Unsigned small inte er

Other classes will be defined as necessary, to support larger (or smaller) machines.
Some library services deal only with data objects for a specific class, while others
are class-independent. To make this distinction clear, library function names reflect
their status, as described below.

Page 1

elf (3E) (ELF Library) elf(3E)

DATA REPRESENTATIONS
Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied by
the header files work on the native machine, which may have different data encod­
ings (size, byte order, etc.) than the target machine. Although native memory
objects should be at least as big as the file objects (to avoid information loss), they
may be bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations.
Some library routines convert data automatically, while others leave conversion as
the program's responsibility. Either way, programs that create object files must
write file-typed objects to those files; programs that read object files must take a
similar view. See elf_xlate(3E) and elf_fsize(3E) for more information.

Programs may translate data explicitly, taking full control over the object file layout
and semantics. If the program prefers not to have and exercise complete control,
the library provides a higher-level interface that hides many object file details.
elf_begin and related functions let a program deal with the native memory types,
converting between memory objects and their file equivalents automatically when
reading or writing an object file.

ELF VERSIONS

Page 2

Object file versions allow ELF to adapt to new requirements. Three-­
independent-versions can be important to a program. First, an application pro­
gram knows about a particular version by virtue of being compiled with certain
header files. Second, the access library similarly is compiled with header files that
control what versions it understands. Third, an ELF object file holds a value identi­
fying its version, determined by the ELF version known by the file's creator. Ideally,
all three versions would be the same, but they may differ.

If a program's version is newer than the access library, the program might
use information unknown to the library. Translation routines might not
work properly, leading to undefined behavior. This condition merits ins­
talling a new library.

The library's version might be newer than the program's and the file's. The
library understands old versions, thus avoiding compatibility problems in
this case.

Finally, a file's version might be newer than either the program or the
library understands. The program might or might not be able to process
the file properly, depending on whether the file has extra information and
whether that information can be safely ignored. Again, the safe alterna­
tive is to install a new library that understands the file's version.

To accommodate these differences, a program must use elf_version to pass its
version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper
representations. When the library reads object files, it uses each file's version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program's working version for the file data.

10/92

elf(3E) (ELF Library) elf(3E)

SYSTEM SERVICES
As mentioned above, elf_begin and related routines provide a higher-level inter­
face to ELF files, performing input and output on behalf of the application program.
These routines assume a program can hold entire files in memory, without expli­
citly using temporary files. When reading a file, the library routines bring the data
into memory and perform subsequent operations on the memory copy. Programs
that wish to read or write large object files with this model must execute on a
machine with a large process virtual address space. If the underlying operating
system limits the number of open files, a program can use elf_cntl to retrieve all
necessary data from the file, allowing the program to close the file descriptor and
reuse it.

Although the elf_begin interfaces are convenient and efficient for many pro­
grams, they might be inappropriate for some. In those cases, an application may
invoke the elf_xlate data translation routines directly. These routines perform
no input or output, leaving that as the application's responsibility. By assuming a
larger share of the job, an application controls its input and output model.

LIBRARY NAMES

10/92

Names associated with the library take several forms.

elf_name

elf32_name

Elf_Type

Elf32_Type

ELF_C_CMD

These class-independent names perform some service, name, for
the program.

Service names with an embedded class, 3 2 here, indicate they
work only for the designated class of files.

Data types can be class-independent as well, distinguished by
Type.

Class-dependent data types have an embedded class name, 3 2
here.

Several functions take commands that control their actions.
These values are members of the Elf_Cmd enumeration; they
range from zero through ELF _C_NUM-1.

ELF _F _FLAG Several functions take flags that control library status and/ or
actions. Flags are bits that may be combined.

ELF3 2_FSZ_TYPE

ELF_K_KIND

ELF_T_TYPE

These constants give the file sizes in bytes of the basic ELF types
for the 32-bit class of files. See elf fsize for more information.

The function elf_kind identifies the KIND of file associated
with an ELF descriptor. These values are members of the
Elf_Kind enumeration; they range from zero through
ELF _K_NUM-1.

When a service function, such as elf_xlate, deals with multiple
types, names of this form specify the desired TYPE. Thus, for
example, ELF _T_EHDR is directly related to Elf 3 2_Ehdr. These
values are members of the El f_Type enumeration; they range
from zero through ELF_T_NUM-1.

Page 3

elf(3E) (ELF Library) elf (3E)

SEE ALSO

NOTES

Page 4

cof2elf(l), elf_begin(3E), elf_cntl(3E), elf_end(3E), elf_error(3E),
elf_f ill(3E), elf_flag(3E), elf_f size(3E), elf_getarhdr(3E),
elf_getarsym(3E), elf_getbase(3E), elf_getdata(3E), elf_getehdr(3E),
elf_getident(3E), elf_getphdr(3E), elf_getscn(3E), elf_getshdr(3E),
elf_hash(3E), elf_kind(3E), elf_next(3E), elf_rand(3E), elf_rawfile(3E),
elf_strptr(3E), elf_update(3E), elf_version(3E), elf_xlate(3E), a. out(4),
ar(4).

Information in the ELF header files is separated into common parts and processor­
specific parts. A program can make a processor's information available by includ­
ing the appropriate header file: sys/elf_NAME .h where NAME matches the pro­
cessor name as used in the ELF file header.

Symbol
M32
SPARC
386
68K
88K

Processor
I AT&T WE 32100

SPARC
Intel 80386
Motorola 68000
Motorola 88000

Other processors will be added to the table as necessary. To illustrate, a program
could use the following code to "see" the processor-specific information for the
88K 32100.

#include <libelf.h>
#include <sys/elf_88K.h>

Without the sys/elf_88K.h definition, only the common ELF information would
be visible.

10/92

elf_begin (3E) (ELF Library) elf_begin (3E)

NAME
elf_begin - make a file descriptor

SYNOPSIS
cc fjlag .. .]file ... -lelf [library ...]

#include <libelf.h>

Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

DESCRIPTION

10/92

elf_begin, elf_next, elf_rand, and elf_end work together to process ELF object
files, either individually or as members of archives. After obtaining an ELF descrip­
tor from elf_begin, the program may read an existing file, update an existing file,
or create a new file. fildes is an open file descriptor that elf_begin uses for reading
or writing. The initial file offset [see lseek(2)] is unconstrained, and the resulting
file offset is undefined.

cmd may have the following values.

ELF_C_NULL

ELF_C_READ

ELF_C_RDWR

When a program sets cmd to this value, elf_begin returns a null
pointer, without opening a new descriptor. ref is ignored for this
command. See elf_next(3E) and the examples below for more
information.

When a program wishes to examine the contents of an existing
file, it should set cmd to this value. Depending on the value of
ref, this command examines archive members or entire files.
Three cases can occur.

First, if ref is a null pointer, elf_begin allocates a new ELF
descriptor and prepares to process the entire file. If the file being
read is an archive, elf_begin also prepares the resulting descrip­
tor to examine the initial archive member on the next call to
elf_begin, as if the program had used elf_next or elf_rand to
"move" to the initial member.

Second, if ref is a non-null descriptor associated with an archive
file, el f_begin lets a program obtain a separate ELF descriptor
associated with an individual member. The program should
have used elf_next or elf_rand to position ref appropriately
(except for the initial member, which elf_begin prepares; see
the example below). In this case, fildes should be the same file
descriptor used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,
elf_begin increments the number of activations for the descrip­
tor and returns ref, without allocating a new descriptor and
without changing the descriptor's read/write permissions. To
terminate the descriptor for ref, the program must call elf_end
once for each activation. See elf_next(3E) and the examples
below for more information.

This command duplicates the actions of ELF _C_READ and addi­
tionally allows the program to update the file image [see
elf_update(3E)]. That is, using ELF _C_READ gives a read-only
view of the file, while ELF _C_RDWR lets the program read and

Page 1

elf_begin (3E) (ELF Library) elf_begin (3E)

ELF_C_WRITE

write the file. ELF _C_RDWR is not valid for archive members. If
ref is non-null, it must have been created with the ELF _C_RDWR
command.

If the program wishes to ignore previous file contents, presum­
ably to create a new file, it should set cmd to this value. ref is
ignored for this command.

elf_begin "works" on all files (including files with zero bytes), providing it can
allocate memory for its internal structures and read any necessary information from
the file. Programs reading object files thus may call elf_kind or elf_getehdr to
determine the file type (only object files have an ELF header). If the file is an
archive with no more members to process, or an error occurs, elf_begin returns a
null pointer. Otherwise, the return value is a non-null ELF descriptor.

Before the first call to elf_begin, a program must call elf_ version to coordinate
versions.

SYSTEM SERVICES
When processing a file, the library decides when to read or write the file, depending
on the program's requests. Normally, the library assumes the file descriptor
remains usable for the life of the ELF descriptor. If, however, a program must pro­
cess many files simultaneously and the underlying operating system limits the
number of open files, the program can use elf_cntl to let it reuse file descriptors.
After calling elf_cntl with appropriate arguments, the program may close the file
descriptor without interfering with the library.

All data associated with an ELF descriptor remain allocated until el f_end ter­
minates the descriptor's last activation. After the descriptors have been terminated,
the storage is released; attempting to reference such data gives undefined behavior.
Consequently, a program that deals with multiple input (or output) files must keep
the ELF descriptors active until it finishes with them.

EXAMPLES

Page 2

A prototype for reading a file appears below. If the file is a simple object file, the
program executes the loop one time, receiving a null descriptor in the second itera­
tion. In this case, both elf and arf will have the same value, the activation count
will be two, and the program calls elf_end twice to terminate the descriptor. If the
file is an archive, the loop processes each archive member in turn, ignoring those
that are not object files.

10/92

elf_begin (3E) (ELF Library) elf_begin (3E)

10/92

if (elf_version(EV_CURRENT) == EV_NONE)
{

/* library out of date */
I* recover from error */

cmd ELF_C_READ;
arf elf_begin(fildes, cmd, (Elf *)0);
while ((elf= elf_begin(fildes, cmd, arf)) != 0)
{

if ((ehdr = elf32_getehdr(elf)) != 0)
{

/*process the file ... *I

cmd elf_next(elf);
elf_end(elf);

elf_end(arf);

Alternatively, the next example illustrates random archive processing. After identi­
fying the file as an archive, the program repeatedly processes archive members of
interest. For clarity, this example omits error checking and ignores simple object
files. Additionally, this fragment preserves the ELF descriptors for all archive
members, because it does not call elf_end to terminate them.

elf_version(EV_CURRENT);
arf = elf_begin(fildes, ELF_C_READ, (Elf *)0);
if (elf_kind(arf) != ELF_K_AR)
{

I* not an archive */

I* initial processing */
/*set offset= ... for desired member header*/
while (elf_rand(arf, offset) == offset)
{

if ((elf= elf_begin(fildes, ELF_C_READ, arf)) 0)
break;

if ((ehdr = elf32_getehdr(elf)) != 0)
{

/*process archive member ... *I

I* set offset= ... for desired member header*/

The following outline shows how one might create a new ELF file. This example is
simplified to show the overall flow.

Page 3

elf_begin (3E) (ELF Library) elf_begin (3E)

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWRIO_TRUNCIO_CREAT, 0666);
if ((elf = elf_begin(fildes, ELF_C_WRITE, (Elf *) 0)) == 0)

return;
ehdr = elf32_newehdr(elf);
phdr = elf32_newphdr(elf, count);
sen= elf_newscn(elf);
shdr = elf32_getshdr(scn);
data = elf_newdata(scn);
elf_update(elf, ELF_C_WRITE);
elf_end(elf);

Finally, the following outline shows how one might update an existing ELF file.
Again, this example is simplified to show the overall flow.

elf_version(EV_CURRENT);
fildes = open ("path/name", O_RDWR);
elf = elf_begin(fildes, ELF_C_RDWR, (Elf *) 0);

/* add new or delete old information */

close (creat ("path/name", 0666));
elf_update(elf, ELF_C_WRITE);
elf_end(elf);

In the example above, the call to creat truncates the file, thus ensuring the result­
ing file will have the "right" size. Without truncation, the updated file might be as
big as the original, even if information were deleted. The library truncates the file,
if it can, with ftruncate [see truncate(2)]. Some systems, however, do not sup­
port ftruncate, and the call to creat protects against this.

Notice that both file creation examples open the file with write and read permis­
sions. On systems that support mmap, the library uses it to enhance performance,
and mmap requires a readable file descriptor. Although the library can use a write­
only file descriptor, the application will not obtain the performance advantages of
mmap.

SEE ALSO

NOTES

Page 4

cof2elf(l), creat(2), lscck(2), mmap(2), open(2), truncate(2), elf(3E),
elf_cntl(3E), elf_end(3E), elf_getarhdr(3E), elf_getbase(3E),
elf_getdata(3E), elf_getehdr(3E), elf_getphdr(3E), elf_getscn(3E),
elf_kind(3E), elf_next(3E), elf_rand(3E), elf_rawfile(3E), elf_update(3E),
elf_version(3E), ar(4)

COFF is an object file format that preceded ELF. When a program calls elf_begin
on a COFF file, the library translates COFF structures to their ELF equivalents, allow­
ing programs to read (but not to write) a COFF file as if it were ELF. This conversion
happens only to the memory image and not to the file itself. After the initial
elf_begin, file offsets and addresses in the ELF header, the program headers, and
the section headers retain the original COFF values [see elf_getehdr,
elf_getphdr, and elf_getshdr]. A program may call elf_update to adjust these
values (without writing the file), and the library will then present a consistent, ELF
view of the file. Data obtained through elf_getdata are translated (the COFF

10/92

elf_begin (3E) (ELF Library) elf_begin (3E)

10/92

symbol table is presented as ELF, and so on). Data viewed through elf_rawdata
undergo no conversion, allowing the program to view the bytes from the file itself.

Some COFF debugging information is not translated, though this does not affect the
semantics of a running program.

Although the ELF library supports COFF , programmers are strongly encouraged to
recompile their programs, obtaining ELF object files.

Page 5

elf_cntl (3E) (ELF Library) elt_cntl (3E)

NAME
elf_cntl - control a file descriptor

SYNOPSIS
cc lflag .. .]file ... -lelf [library ...]

#include <libelf.h>

int elf_cntl(Elf *elf, Elf_Cmd cmd);

DESCRIPTION
elf_cntl instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3E) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Gen­
erally, elf_cntl commands apply to all activations of elf. Moreover, if the ELF
descriptor is associated with an archive file, descriptors for members within the
archive will also be affected as described below. Unless stated otherwise, opera­
tions on archive members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF_C_FDDONE
This value tells the library not to use the file descriptor associated with
elf. A program should use this command when it has requested all the
information it cares to use and wishes to avoid the overhead of reading
the rest of the file. The memory for all completed operations remains
valid, but later file operations, such as the initial elf_getdata for a sec­
tion, will fail if the data are not in memory already.

ELF_C_FDREAD
This command is similar to ELF _C_FDDONE, except it forces the library to
read the rest of the file. A program should use this command when it
must close the file descriptor but has not yet read everything it needs
from the file. After elf_cntl completes the ELF _C_FDREAD command,
future operations, such as elf_getdata, will use the memory version of
the file without needing to use the file descriptor.

If elf_cntl succeeds, it returns zero. Otherwise elf was null or an error occurred,
and the function returns -1.

SEE ALSO

NOTE

10/92

elf(3E), elf_begin(3E), elf_getdata(3E), elf_rawfile(3E)

If the program wishes to use the "raw" operations [see elf_rawdata, which
elf_getdata(3E) describes, and elf_rawfile(3E)] after disabling the file descrip­
tor with ELF _C_FDDONE or ELF _C_FDREAD, it must execute the raw operations
explicitly beforehand. Otherwise, the raw file operations will fail. Calling
elf_rawfile makes the entire image available, thus supporting subsequent
elf_rawdata calls.

Page 1

elf_end (3E) (ELF Library) elf_end (3E)

NAME
elf_end - finish using an object file

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

int elf_end(Elf *elf);

DESCRIPTION
A program uses elf_end to terminate an ELF descriptor, elf, and to deallocate data
associated with the descriptor. Until the program terminates a descriptor, the data
remain allocated. elf should be a value previously returned by elf_begin; a null
pointer is allowed as an argument, to simplify error handling. If the program
wishes to write data associated with the ELF descriptor to the file, it must use
elf_update before calling elf_end.

As elf_begin(3E) explains, a descriptor can have more than one activation.
Calling elf_end removes one activation and returns the remaining activation
count. The library does not terminate the descriptor until the activation count
reaches zero. Consequently, a zero return value indicates the ELF descriptor is no
longer valid.

SEE ALSO
elf(3E), elf_begin(3E), elf_update(3E)

10/92 Page 1

elf_error(3E) (ELF Library) elf_error(3E)

NAME
elf_errmsg, elf_errno - error handling

SYNOPSIS
cc [fing .. .]file ... -lelf [library ...]

#include <libelf.h>

canst char *elf_errmsg(int err);
int elf_errno (void);

DESCRIPTION
If an ELF library function fails, a program may call elf_errno to retrieve the
library's internal error number. As a side effect, this function resets the internal
error number to zero, which indicates no error.

elf_errmsg takes an error number, err, and returns a null-terminated error mes­
sage (with no trailing new-line) that describes the problem. A zero err retrieves a
message for the most recent error. If no error has occurred, the return value is a null
pointer (not a pointer to the null string). Using err of -1 also retrieves the most
recent error, except it guarantees a non-null return value, even when no error has
occurred. If no message is available for the given number, el f_errmsg returns a
pointer to an appropriate message. This function does not have the side effect of
clearing the internal error number.

EXAMPLE
The following fragment clears the internal error number and checks it later for
errors. Unless an error occurs after the first call to el f_errno, the next call will
return zero.

(void)elf_errno();
while (more_to_do)
{

/* processing ... */
if ((err= elf_errno()) != 0)
{

msg = elf_errmsg(err);
/* print msg */

SEE ALSO
elf(3E), elf_ version(3E)

10/92 Page 1

elf_fill (3E) (ELF Library) elf_fill (3E)

NAME
elf_fill - set fill byte

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]

#include <libelf.h>

void elf_fill(int fill);

DESCRIPTION
Alignment constraints for ELF files sometimes require the presence of "holes." For
example, if the data for one section are required to begin on an eight-byte boun­
dary, but the preceding section is too "short," the library must fill the intervening
bytes. These bytes are set to the fill character. The library uses zero bytes unless the
application supplies a value. See elf_getdata(3E) for more information about
these holes.

SEE ALSO

NOTE

10/92

elf(3E), elf_getdata(3E), elf_flag(3E), elf_update(3E)

An application can assume control of the object file organization by setting the
ELF _F _LAYOUT bit [see elf_flag(3E)]. When this is done, the library does not fill
holes.

Page 1

elf_flag (3E) (ELF Library) elf_flag (3E)

NAME
elf_flagdata, elf_flagehdr, elf_flagcl f, el f_flagphdr,
elf_flagscn, elf_flagshdr - manipulate flags

SYNOPSIS
cc [flag ...] file ... - lelf [library ...]

#include <libelf.h>

unsigned elf_flagdata (Elf_Data *data, Elf_Cmd cmd, unsigned flags) ;

unsigned elf_flagehdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagphdr (Elf *elf, Elf_Cmd cmd, unsigned flags) ;

unsigned elf_flagscn (Elf_Scn *sen, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagshdr(Elf_Scn *sen, Elf_Cmd cmd, unsigned flags);

DESCRIPTION

10/92

These functions manipulate the flags associated with various structures of an ELF
file. Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor
(sen), the functions may set or clear the associated status bits, returning the
updated bits. A null descriptor is allowed, to simplify error handling; all functions
return zero for this degenerate case.

cmd may have the following values.

ELF_C_CLR The functions clear the bits that are asserted in flags. Only the
non-zero bits in flags are cleared; zero bits do not change the
status of the descriptor.

ELF _C_SET The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the status
of the descriptor.

Descriptions of the defined flags bits appear below.

ELF _F _DIRTY When the program intends to write an ELF file, this flag asserts
the associated information needs to be written to the file.
Thus, for example, a program that wished to update the ELF
header of an existing file would call elf_flagehdr with this
bit set in flags and cmd equal to ELF _C_SET. A later call to
elf_update would write the marked header to the file.

ELF _F _LAYOUT Normally, the library decides how to arrange an output file.
That is, it automatically decides where to place sections, how
to align them in the file, etc. If this bit is set for an ELF descrip­
tor, the program assumes responsibility for determining all file
positions. This bit is meaningful only for el f_flagelf and
applies to the entire file associated with the descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for exam­
ple, if the program sets the ELF _F _DIRTY bit with elf_flagelf, the entire logical
file is "dirty."

Page 1

elf_flag (3E) (ELF Library) elf_flag(3E)

EXAMPLE
The following fragment shows how one might mark the ELF header to be written to
the output file.

SEE ALSO

ehdr = elf32_getehdr(elf);
/*dirty ehdr ... *I
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

elf(3E), elf_end(3E), elf_getdata(3E), elf_getehdr(3E), elf_update(3E)

Page 2 10/92

elf_fsize (3E) (ELF Library) elf_fsize(3E)

NAME
elf_faize: elf32_fsize - return the size of an object file type

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

DESCRIPTION
elf32_fsize gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size [see
elf(3E) and elf_version(3E)].

Constant values are available for the sizes of fundamental types.

El f_Type File Size Memory Size

ELF_T_ADDR ELF32 - FSZ_ADDR sizeof(Elf32_Addr)
ELF_T_BYTE 1 sizeof(unsigned char)
ELF_T_HALF ELF32 FSZ_HALF sizeof(Elf32_Half)
ELT_T_OFF F:LF32 FSZ_OFF sizeof(Elf32_0ff)
ELF_T_SWORD ELF32 - FSZ SWORD sizeof(Elf32_Sword)
ELF_T_WORD ELF32_FSZ_WORD sizeof(Elf32_Word)

elf32 fsize returns zero if the value of type or ver is unknown. See
elf_xlate(3E) for a list of the type values.

SEE ALSO
elf(3E), elf_version(3E), elf_xlate(3E)

10/92 Page 1

elf_getarhdr(3E) (ELF Library) elf_getarhdr (3E)

NAME
el f_getarhdr - retrieve archive member header

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *elf);

DESCRIPTION
elf_getarhdr returns a pointer to an archive member header, if one is available
for the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf_getarhdr then returns a null value. The header
includes the following members.

char
time_t
long
long
unsigned long
off_t
char

*ar_name;
ar_date;
ar_uid;
ar_gid;
ar_mode;
ar_size;
*ar_rawname;

An archive member name, available through ar_name, is a null-terminated string,
with the ar format control characters removed. The ar_rawname member holds a
null-terminated string that represents the original name bytes in the file, including
the terminating slash and trailing blanks as specified in the archive format.

In addition to "regular'' archive members, the archive format defines some special
members. All special member names begin with a slash (/), distinguishing them
from regular members (whose names may not contain a slash). These special
members have the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf_getarsym. The information in the symbol table is useful for random
archive processing [see elf_rand(3E)].

I I This member, if present, holds a string table for long archive member
names. An archive member's header contains a 16-byte area for the name,
which may be exceeded in some file systems. The library automatically
retrieves long member names from the string table, setting ar_name to the
appropriate value.

Under some error conditions, a member's name might not be available. Although
this causes the library to set ar_name to a null pointer, the ar_rawname member
will be set as usual.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4)

10/92 Page 1

elf_getarsym (3E) (ELF Library) elf_getarsym (3E)

NAME
elf_getarsyrn - retrieve archive symbol table

SYNOPSIS
cc [flag ...] file ... - lelf [library ...]

#include <libelf.h>

Elf_Arsyrn *elf_getarsyrn(Elf *elf, size_t *ptr);

DESCRIPTION
elf_getarsym returns a pointer to the archive symbol table, if one is available for
the ELF descriptor elf. Otherwise, the archive doesn't have a symbol table, an error
occurred, or elf was null; el f_getarsym then returns a null value. The symbol
table is an array of structures that include the following members.

char *as_name;
size_t as_off;
unsigned long as_hash;

These members have the following semantics.

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the
member's header. The archive member residing at the given offset
defines the associated symbol. Values in as_of f may be passed as argu­
ments to elf rand to access the desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash.

If ptr is non-null, the library stores the number of table entries in the location to
which ptr points. This value is set to zero when the return value is null. The table's
last entry, which is included in the count, has a null as_name, a zero value for
as_off, and -ouL for as_hash.

SEE ALSO
elf(3E), el f_getarhdr(3E), elf_hash(3E), elf_rand(3E), ar(4)

10/92 Page 1

elf _getbase (3E) (ELF Library)

NAME
elf_getbase - get the base offset for an object file

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

off_t elf_getbase(Elf *elf);

DESCRIPTION

elf_getbase (3E)

el f_getbase returns the file offset of the first byte of the file or archive member
associated with elf, if it is known or obtainable, and -1 otherwise. A null elf is
allowed, to simplify error handling; the return value in this case is -1. The base
offset of an archive member is the beginning of the member's information, not the
beginning of the archive member header.

SEE ALSO
elf(3E), elf_begin(3E), ar(4)

10/92 Page 1

elf_getdata (3E) (ELF Library) elf_getdata (3E)

NAME
elf_getdata, elf_newdata, elf_rawdata - get section data

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf_getdata(Elf_Scn *sen, F:lf_Data *data);

Elf_Data *elf_newdata(Elf_Scn *sen);

Elf_Data *elf_rawdata(Elf_Scn *sen, Elf_Data *data);

DESCRIPTION

10/92

These functions access and manipulate the data associated with a section descrip­
tor, sen. When reading an existing file, a section will have a single data bu ff er asso­
ciated with it. A program may build a new section in pieces, however, composing
the new data from multiple data buffers. For this reason, "the" data for a section
should be viewed as a list of buffers, each of which is available through a data
descriptor.

el f_getdata lets a program step through a section's data list. If the incoming data
descriptor, data, is null, the function returns the first buffer associated with the sec­
tion. Otherwise, data should be a data descriptor associated with sen, and the func­
tion gives the program access to the next data element for the section. If sen is null
or an error occurs, elf_getdata returns a null pointer.

elf_getdata translates the data from file representations into memory representa­
tions [see elf_xlate(3E)] and presents objects with memory data types to the pro­
gram, based on the file's class [see elf(3E)]. The working library version [see
elf_version(3E)] specifies what version of the memory structures the program
wishes elf_getdata to present.

elf_newdata creates a new data descriptor for a section, appending it to any data
elements already associated with the section. As described below, the new data
descriptor appears empty, indicating the element holds no data. For convenience,
the descriptor's type (d_type below) is set to ELF_T_BYTE, and the version
(d_version below) is set to the working version. The program is responsible for
setting (or changing) the descriptor members as needed. This function implicitly
sets the ELF _F _DIR'rY bit for the section's data [see elf_flag(3E)]. If srn is null or
an error occurs, el f_newdata returns a null pointer.

elf_rawdata differs from elf_getdata by returning only uninterpreted bytes,
regardless of the section type. This function typically should be used only to
retrieve a section image from a file being read, and then only when a program must
avoid the automatic data translation described below. Moreover, a program may
not close or disable [see elf_cntl(3E)] the file descriptor associated with elf before
the initial raw operation, because elf_rawdata might read the data from the file to
ensure it doesn't interfere with elf_getdata. See elf_rawfile(3E) for a related
facility that applies to the entire file. When elf_getdata provides the right trans­
lation, its use is recommended over el f_rawdata. If sen is null or an error occurs,
el f_rawdata returns a null pointer.

Page 1

elf_getdata (3E) (ELF Library) elf_getdata (3E)

The Elf_Data structure includes the following members.

void
Elf_Type
size_t
off_t
size_t
unsigned

*d_buf;
d_type;
d_size;
d_off;
d_align;
d_version;

These members are available for direct manipulation by the program. Descriptions
appear below.

d_buf

d_type

d_size

d_of f

d_align

d_version

A pointer to the data buffer resides here. A data element with no
data has a null pointer.

This member's value specifies the type of the data to which d_buf
points. A section's type determines how to interpret the section
contents, as summarized below.

This member holds the total size, in bytes, of the memory occupied
by the data. This may differ from the size as represented in the file.
The size will be zero if no data exist. (See the discussion of
SHT_NOBITS below for more information.]

This member gives the offset, within the section, at which the buffer
resides. This offset is relative to the file's section, not the memory
object's.

This member holds the buffer's required alignment, from the begin­
ning of the section. That is, d_off will be a multiple of this
member's value. For example, if this member's value is four, the
beginning of the buffer will be four-byte aligned within the section.
Moreover, the entire section will be aligned to the maximum of its
constituents, thus ensuring appropriate alignment for a buffer
within the section and within the file.

This member holds the version number of the objects in the buffer.
When the library originally read the data from the object file, it
used the working version to control the translation to memory
objects.

DATA ALIGNMENT

Page 2

As mentioned above, data buffers within a section have explicit alignment con­
straints. Consequently, adjacent buffers sometimes will not abut, causing "holes"
within a section. Programs that create output files have two ways of dealing with
these holes.

First, the program can use elf_fill to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to initial­
ize the data there. The library's initial fill value is zero, and elf_fill lets the appli­
cation change that.

Second, the application can generate its own data buffers to occupy the gaps, filling
the gaps with values appropriate for the section being created. A program might
even use different fill values for different sections. For example, it could set text
sections' bytes to no-operation instructions, while filling data section holes with
zero. Using this technique, the library finds no holes to fill, because the application

10/92

elf_getdata (3E) (ELF Library) elf_getdata (3E)

eliminated them.

SECTION AND MEMORY TYPES
elf_getdata interprets sections' data according to the section type, as noted in the
section header available through elf_getshdr. The following table shows the sec­
tion types and how the library represents them with memory data types for the 32-
bit file class. Other classes would have similar tables. By implication, the memory
data types control translation by elf_xlate.

Section Type Elf_Type 32-Bit Type

SHT_DYNAMIC ELF_T_DYN Elf32_Dyn
SHT_DYNSYM ELF_T_SYM Elf32 _Sym
SHT_HASH ELF_T_WORD Elf32_Word
SHT_NOBITS ELF_T_BYTE unsigned char
SHT_NOTE ELF_T_BYTE unsigned char
SHT_NULL none none
SHT_PROGBITS ELF_T_BYTE unsigned char
SHT_REL ELF_T_REL Elf32_Rel
SHT_RELA ELF_T_RELA Elf32_Rela
SHT_STRTAB ELF_T_BYTE unsigned char
SHT_SYMTAB ELF_T_SYM Elf32 _Sym
other ELF_T_BYTE unsigned char

elf_rawdata creates a buffer with type ELF _T_BYTE.

As mentioned above, the program's working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type "belongs" to a version newer than the
application's working version, the library does not translate the section data.
Because the application cannot know the data format in this case, the library
presents an untranslated buffer of type ELF _T_BYTE, just as it would for an
unrecognized section type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even
when the section header indicates a non-zero size. elf_getdata and elf_rawdata
"work" on such a section, setting the data structure to have a null buffer pointer
and the type indicated above. Although no data are present, the d_size value is
set to the size from the section header. When a program is creating a new section of
type SHT_NOBITS, it should use elf_newdata to add data buffers to the section.
These "empty" data buffers should have the d_size members set to the desired
size and the d_buf members set to null.

EXAMPLE

10/92

The following fragment obtains the string table that holds section names (ignoring
error checking). See elf_strptr(3E) for a variation of string table handling.

Page 3

elf_getdata (3E) (ELF Library) elf_getdata (3E)

ehdr = elf32_getehdr(elf);
sen= elf_getscn(elf, (size_t)ehdr->e_shstrndx);
shdr = elf32_getshdr(scn);
if (shdr->sh_type != SHT_STRTAB)
{

I* not a string table */

data O;
if ((data= elf_getdata(scn, data))
{

I* error or no data */

0 I I data->d_size

The e_shstrndx member in an ELF header holds the section table index of the
string table. The program gets a section descriptor for that section, verifies it is a
string table, and then retrieves the data. When this fragment finishes, data->d_buf
points at the first byte of the string table, and data->d_size holds the string table's
size in bytes.

SEE ALSO

Page 4

elf(3E), elf_cntl(3E), elf_fi11(3E), elf_flag(3E), elf_getehdr(3E),
elf_getscn(3E), elf_getshdr(3E), elf_rawfile(3E), elf_version(3E),
elf_xlate(3E)

10/92

0)

elf_getehdr (3E) (ELF Library) elf_getehdr (3E)

NAME
elf_getehdr: elf32_getehdr, elf32_newehdr - retrieve class-dependent object
file header

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

Elf32_Ehdr *elf32_getehdr(Elf *elf);

Elf32_Ehdr *elf32_newehdr(Elf *elf);

DESCRIPTION
For a 32-bit class file, elf32_getehdr returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32_newehdr allocates a "clean" one, but it otherwise behaves the same as
elf32_getehdr. It does not allocate a new header if one exists already. If no
header exists (for elf_getehdr), one cannot be created (for elf_newehdr), a sys­
tem error occurs, the file is not a 32-bit class file, or elf is null, both functions return
a null pointer.

The header includes the following members.

unsigned char
Elf32_Half
Elf32_Half
Elf32_Word
Elf32_Addr
Elf32_0ff
Elf32_0ff
Elf32_Word
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half

e_ident[EI_NIDENT];
e_type;
e_machine;
e_version;
e_entry;
e_phoff;
e_shoff;
e_flags;
e_ehsize;
e_phentsize;
e_phnum;
e_shentsize;

Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

elf32_newehdr automatically sets the ELF _F _DIRTY bit [see elf_flag(3E)]. A
program may use elf_getident to inspect the identification bytes from a file.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getident(3E)

10/92 Page 1

elf_getident (3E) (ELF Library) elf_getident (3E)

NAME
elf_getident - retrieve file identification data

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

char *elf_getident(Elf *elf, size_t *ptr);

DESCRIPTION
As elf(3E) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits, etc. To accommodate these differences,
without forcing the larger sizes on smaller machines, the initial bytes in an ELF file
hold identification information common to all file classes. Every ELF header's
e_ident has EI_NIDENT bytes with the following interpretation.

e_ident Index Value Purpose

EI_MAGO ELFMAGO
EI_MAGl ELFMAGl File identification EI_MAG2 ELFMAG2
EI_MAG3 ELFMAG3

ELFCLASSNONE
EI_CLASS ELFCLASS32 File class

ELFCLASS64
ELFDATANONE

EI_DATA ELFDATA2LSB Data encoding
ELFDATA2MSB

EI_ VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of files [see elf_kind(3E)] also may have identification data, though
they would not conform to e_ident.

elf_getident returns a pointer to the file's "initial bytes." If the library recognizes
the file, a conversion from the file image to the memory image may occur. In any
case, the identification bytes are guaranteed not to have been modified, though the
size of the unmodified area depends on the file type. If ptr is non-null, the library
stores the number of identification bytes in the location to which ptr points. If no
data are present, elf is null, or an error occurs, the return value is a null pointer, with
zero optionally stored through ptr.

SEE ALSO
elf(3E), elf_begin(3E), elf_getehdr(3E), elf_kind(3E), elf_rawfile(3E)

10/92 Page 1

elf_getphdr(3E) (ELF Library) elf_getphdr(3E)

NAME
elf_getphdr: elf32_getphdr, elf32_newphdr - retrieve class-dependent pro­
gram header table

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]

#include <libelf.h>

Elf32_Phdr *elf32_getphdr(Elf *elf);

Elf32_Phdr *elf32_newphdr(Elf *elf, size_t count);

DESCRIPTION
For a 32-bit class file, elf32_getphdr returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.

elf32_newphdr allocates a new table with count entries, regardless of whether one
existed previously, and sets the ELF _F _DIRTY bit for the table [see elf_flag(3E)].
Specifying a zero count deletes an existing table. Note this behavior differs from
that of elf32_newehdr [see elf32_getehdr(3E)], allowing a program to replace or
delete the program header table, changing its size if necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs, or
elf is null, both functions return a null pointer. Additionally, elf32_newphdr
returns a null pointer if count is zero.

The table is an array of Elf32_Phdr structures, each of which includes the follow­
ing members.

Elf32_Word
Elf32_0ff
Elf32_Addr
Elf32_Addr
Elf32_Word
Elf32_Word
Elf32_Word

p_type;
p_offset;
p_vaddr;
p_paddr;
p_filesz;
p_memsz;
p_flags;

Elf32_Word p_align;

The ELF header's e_phnum member tells how many entries the program header table
has [see elf_getehdr(3E)]. A program may inspect this value to determine the
size of an existing table; elf32_newphdr automatically sets the member's value to
count. If the program is building a new file, it is responsible for creating the file's
ELF header before creating the program header table.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getehdr(3E)

10/92 Page 1

elf_getscn (3E) (ELF Library) elf_getscn (3E)

NAME
elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn - get section information

SYNOPSIS
cc fjlag .. .]file ... - lelf [library ...]

#include <libelf.h>

Elf_Scn *elf_getsen(Elf *elf, size_t index);

size_t elf_ndxsen(Elf_Sen *sen);

Elf_Sen *elf_newsen(Elf *elf);

Elf Sen *elf_nextsen(Elf *elf, Elf_Sen *sen);

DESCRIPTION
These functions provide indexed and sequential access to the sections associated
with the ELF descriptor elf. If the program is building a new file, it is responsible for
creating the file's ELF header before creating sections; see el f_getehdr(3E).

elf_getsen returns a section descriptor, given an index into the file's section
header table. Note the first "real" section has index 1. Although a program can get
a section descriptor for the section whose index is 0 (SHN_UNDEF, the undefined sec­
tion), the section has no data and the section header is "empty" (though present).
If the specified section does not exist, an error occurs, or elf is null, elf_getsen
returns a null pointer.

elf_newsen creates a new section and appends it to the list for elf. Because the
SHN_UNDEF section is required and not "interesting" to applications, the library
creates it automatically. Thus the first call to elf_newsen for an ELF descriptor
with no existing sections returns a descriptor for section 1. If an error occurs or elf is
null, elf_newsen returns a null pointer.

After creating a new section descriptor, the program can use elf_getshdr to
retrieve the newly created, "clean" section header. The new section descriptor will
have no associated data [see elf_getdata(3E)]. When creating a new section in
this way, the library updates the e_shnwn member of the ELF header and sets the
ELF _F _DIRTY bit for the section [see elf_flag(3E)]. If the program is building a
new file, it is responsible for creating the file's ELF header [see elf_getehdr(3E)]
before creating new sections.

elf_nextsen takes an existing section descriptor, sen, and returns a section
descriptor for the next higher section. One may use a null sen to obtain a section
descriptor for the section whose index is 1 (skipping the section whose index is
SHN_UNDEF). If no further sections are present or an error occurs, elf_nextsen
returns a null pointer.

elf_ndxsen takes an existing section descriptor, sen, and returns its section table
index. If sen is null or an error occurs, elf_ndxsen returns SHN_UNDEF.

EXAMPLE

10/92

An example of sequential access appears below. Each pass through the loop
processes the next section in the file; the loop terminates when all sections have
been processed.

Page 1

elf_getscn (3E) (ELF Library) elf_getscn (3E)

sen = O;
while ((sen= elf_nextscn(elf, sen)) != 0)
{

I* process section */

SEE ALSO

Page 2

elf(3E), elf_begin(3E), elf_f I ag(3E), elf_getdata(3E), elf_getehdr(3E),
elf_getshdr(3E)

10/92

elf_getshdr(3E) (ELF Library) elf_getshdr(3E)

NAME
elf_getshdr: elf32_getshdr - retrieve class-dependent section header

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]

#include <libelf.h>

Elf32_Shdr *elf32_getshdr(Elf_Scn *sen);

DESCRIPTION
For a 32-bit class file, elf32_getshdr returns a pointer to a section header for the
section descriptor sen. Otherwise, the file is not a 32-bit class file, sen was null, or an
error occurred; elf32_getshdr then returns NULL.

The header includes the following members.

Elf32_Word sh_narne;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_0ff sh_offset;
Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word

sh_size;
sh_link;
sh_info;
sh_addralign;
sh_entsize;

If the program is building a new file, it is responsible for creating the file's ELF
header before creating sections.

SEE ALSO
elf(3E), elf_flag(3E), elf_getscn(3E), elf_strptr(3E)

10/92 Page 1

elf_hash (3E) (ELF Library) elf_hash (3E)

NAME
elf_hash- compute hash value

SYNOPSIS
cc [f1ag .. .]file ... - lelf [library ...]

#include <libelf.h>

unsigned long elf_hash(const char *name);

DESCRIPTION
elf_hash computes a hash value, given a null terminated string, name. The
returned hash value, h, can be used as a bucket index, typically after computing
h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because el f_hash
uses unsigned arithmetic to avoid possible differences in various machines' signed
arithmetic. Although name is shown as char* above, elf_hash treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates type
conflicts with expressions such as el f_hash ("name") .

ELF files' symbol hash tables are computed using this function [see
elf_getdata(3E) and elf_xlate(3E)]. The hash value returned is guaranteed not
to be the bit pattern of all ones (-ouL).

SEE ALSO
elf(3E), elf_getdata(3E), elf_xlate(3E)

10/92 Page 1

elf_kind (3E) (ELF Library) elf_kind (3E)

NAME
el f_kind - determine file type

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]

#include <libelf.h>

Elf_Kind elf_kind(Elf *elf);

DESCRIPTION
This function returns a value identifying the kind of file associated with an ELF
descriptor (elf). Currently defined values appear below.

ELF _K_AR The file is an archive [see ar(4)]. An ELF descriptor may also be
associated with an archive member, not the archive itself, and
then elf_kind identifies the member's type.

ELF _K_COFF The file is a COFF object file. elf_begin(3E) describes the
library's handling for COFF files.

ELF_K_ELF

ELF_K_NONE

The file is an ELF file. The program may use elf_getident to
determine the class. Other functions, such as elf_getehdr, are
available to retrieve other file information.

This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should
be a value previously returned by elf_begin. A null pointer is allowed, to sim­
plify error handling, and causes el f_kind to return ELF _K_NONE.

SEE ALSO
elf(3E), elf_begin(3E), elf_getehdr(3E), elf_getident(3E), ar(4)

10/92 Page 1

elf_next (3E) (ELF Library) elf_next (3E)

NAME
elf_next - sequential archive member access

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

Elf_Crnd elf_next(Elf *elf);

DESCRIPTION
elf_next, elf_rand, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_next provides sequential access to the next archive member. That is, having
an ELF descriptor, elf, associated with an archive member, elf_next prepares the
containing archive to access the following member when the program calls
elf_begin. After successfully positioning an archive for the next member,
elf_next returns the value ELF _C_READ. Otherwise, the open file was not an
archive, elf was null, or an error occurred, and the return value is ELF _C_NULL. In
either case, the return value may be passed as an argument to elf_begin, specify­
ing the appropriate action.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsyrn(3E), elf_rand(3E), ar(4)

10/92 Page 1

elf_rand (3E) (ELF Library) elf_rand (3E)

NAME
elf_rand- random archive member access

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]

#include <libelf.h>

size_t elf_rand(Elf *elf, size_t offset);

DESCRIPTION
elf_rand, elf_next, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from el f_begin.

elf_rand provides random archive processing, preparing elf to access an arbitrary
archive member. elf must be a descriptor for the archive itself, not a member within
the archive. offset gives the byte offset from the beginning of the archive to the
archive header of the desired member. See elf_getarsym(3E) for more informa­
tion about archive member offsets. When elf_rand works, it returns offset. Other­
wise it returns 0, because an error occurred, elf was null, or the file was not an
archive (no archive member can have a zero offset). A program may mix random
and sequential archive processing.

EXAMPLE
An archive starts with a "magic string" that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns -1 for errors and 0 otherwise).

#include <ar.h>
#include <libelf.h>

int
rewindelf(Elf *elf)
{

if (elf_rand(elf, (size_t)SARMAG)
return O;

return -1;

SARMAG)

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_next(3E), ar(4)

10/92 Page 1

elf_rawfile (3E) (ELF Library) elf_rawfile (3E)

NAME
elf_rawfile - retrieve uninterpreted file contents

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]

#include <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

DESCRIPTION
elf_rawfile returns a pointer to an uninterpreted byte image of the file. This
function should be used only to retrieve a file being read. For example, a program
might use elf_rawfile to retrieve the bytes for an archive member.

A program may not close or disable [see elf_cntl(3E)] the file descriptor associ­
ated with elf before the initial call to elf_rawfile, because elf_rawfile might
have to read the data from the file if it does not already have the original bytes in
memory. Generally, this function is more efficient for unknown file types than for
object files. The library implicitly translates object files in memory, while it leaves
unknown files unmodified. Thus asking for the uninterpreted image of an object
file may create a duplicate copy in memory.

elf_rawdata [see elf_getdata(3E)] is a related function, providing access to sec­
tions within a file.

If ptr is non-null, the library also stores the file's size, in bytes, in the location to
which ptr points. If no data are present, elf is null, or an error occurs, the return
value is a null pointer, with zero optionally stored through ptr.

SEE ALSO

NOTE

10/92

elf(3E), elf_begin(3E), elf_cntl(3E), elf_getdata(3E}, elf_getehdr(3E},
elf_getident(3E), elf_kind(3E)

A program that uses elf_rawfile and that also interprets the same file as an object
file potentially has two copies of the bytes in memory. If such a program requests
the raw image first, before it asks for translated information (through such func­
tions as elf_getehdr, elf_getdata, and so on), the library "freezes" its original
memory copy for the raw image. It then uses this frozen copy as the source for
creating translated objects, without reading the file again. Consequently, the appli­
cation should view the raw file image returned by elf_rawfile as a read-only
buffer, unless it wants to alter its own view of data subsequently translated. In any
case, the application may alter the translated objects without changing bytes visible
in the raw image.

Multiple calls to elf_rawfile with the same ELF descriptor return the same value;
the library does not create duplicate copies of the file.

Page 1

elf_strptr(3E) (ELF Library) elf_strptr(3E)

NAME
elf_strptr - make a string pointer

SYNOPSIS
cc fjlag .. .]file ... -lelf [library ...]
#include <libelf.h>

char *elf_strptr(Elf *elf, size_t section, size_t offset);

DESCRIPTION
This function converts a string section offset to a string pointer. elf identifies the file
in which the string section resides, and section gives the section table index for the
strings. elf_strptr normally returns a pointer to a string, but it returns a null
pointer when elf is null, section is invalid or is not a section of type SHT_STRTAB, the
section data cannot be obtained, offset is invalid, or an error occurs.

EXAMPLE
A prototype for retrieving section names appears below. The file header specifies
the section name string table in the e_shstrndx member. The following code loops
through the sections, printing their names.

if ((ehdr = elf32_getehdr(elf)) == 0)

I* handle the error */
return;

ndx ehdr->e_shstrndx;
sen O;
while ((sen= elf_nextscn(elf, sen)) != 0)
{

char *name = O;
if ((shdr = elf32_getshdr(scn)) != 0)

name= elf_strptr(elf, ndx, (size_t)shdr->sh_name);
printf (" '%s' \n", name? name: "(null)");

SEE ALSO

NOTE

10/92

elf(3E), elf_getdata(3E), elf_getshdr(3E), elf_xlate(3E)

A program may call elf_getdata to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than
using elf_strptr.

Page 1

elf_update (3E) (ELF Library) elf_update (3E)

NAME
elf_update - update an ELF descriptor

SYNOPSIS
cc [f1ag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_update(Elf *elf, Elf_Cmd cmd);

DESCRIPTION

10/92

elf_update causes the library to examine the information associated with an ELF
descriptor, elf, and to recalculate the structural data needed to generate the file's
image.

cmd may have the following values.

ELF _C_NULL This value tells elf_update to recalculate various values, updat­
ing only the ELF descriptor's memory structures. Any modified
structures are flagged with the ELF _F _DIRTY bit. A program
thus can update the structural information and then reexamine
them without changing the file associated with the ELF descrip­
tor. Because this does not change the file, the ELF descriptor may
allow reading, writing, or both reading and writing [see
elf_begin(3E)].

ELF_C_WRITE If cmd has this value, elf_update duplicates its ELF _C_NULL
actions and also writes any "dirty" information associated with
the ELF descriptor to the file. That is, when a program has used
elf_getdata or the elf_flag facilities to supply new (or
update existing) information for an ELF descriptor, those data
will be examined, coordinated, translated if necessary [see
elf_xlate(3E)], and written to the file. When portions of the file
are written, any ELF _F _DIRTY bits are reset, indicating those
items no longer need to be written to the file [see elf_flag(3E)].
The sections' data are written in the order of their section header
entries, and the section header table is written to the end of the
file.

When the ELF descriptor was created with elf_begin, it must
have allowed writing the file. That is, the elf_begin command
must have been either ELF _C_RDWR or ELF _C_WRITE.

If elf_update succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns -1.

When updating the internal structures, elf_update sets some members itself.
Members listed below are the application's responsibility and retain the values
given by the program.

Page 1

elf_update (3E) (ELF Library) elf_update (3E)

Member
e_ident[EI_DATA]
e_type
e_machine
e_version

ELF Header e_entry
e_phoff
e shoff
e_flags
e shstrndx

Member

Program Header

p_type
p_of f set
p_vaddr
p_paddr
p_filesz
p_memsz
p_flags
p_align

Section Header

Member
sh_ name
sh_ type
sh_flags
sh_addr
sh_offset
sh_size
sh_link
sh_inf o

Notes
Library controls other e_ident values

Only when ELF _F _LAYOUT asserted
Only when ELF _F _LAYOUT asserted

Notes
The application controls all
program header entries

Notes

Only when ELF _F _LAYOUT asserted
Only when ELF _F _LAYOUT asserted

sh_addralign Only when ELF _F _LAYOUT asserted
sh_entsize

Page 2 10/92

getrlimit(2) getrlimit (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION

10/92

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with getrlimit and set with setrlimit.

Each call to either getrlimit or setrlimit identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits
may be changed by a process to any value that is less than or equal to the hard
limit. A process may (irreversibly) lower its hard limit to any value that is greater
than or equal to the soft limit. Only a process with an effective user ID of superuser
can raise a hard limit. Both hard and soft limits can be changed in a single call to
setrlimit subject to the constraints described above. Limits may have an infinite
value of RLIM_INFINITY. rip is a pointer to struct rlimit that includes the fol­
lowing members:

rlim_t
rlim_t

rlim_cur;
rlim_max;

/* current (soft) limit */
/* hard limit */

rlim_t is an arithmetic data type to which objects of type int, size_t, and off_t
can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when current limit
is exceeded, are summarized in the following table:

Resources
RLIMIT_CORE

RLIMIT_CPU

RLIMIT_DATA

RLIMIT_FSIZE

Description
The maximum size of a
core file in bytes that may
be created by a process. A
limit of O will prevent the
creation of a core file.

The maximum amount of
CPU time in seconds used
by a process.

The maximum size of a
process's heap in bytes.

The maximum size of a file
in bytes that may be
created by a process. A

Action
The writing of a core file
will terminate at this size.

SIGXCPU is sent to the pro­
cess. If the process is
holding or ignoring
SIGXCPU, the behavior is
scheduling class defined.

brk(2) will fail with errno
set to ENOMEM.

SIGXFSZ is sent to the pro­
cess. If the process is
holding or ignoring

Page 1 .

getpwent (3C) (C Development Set) getpwent (3C)

SEE ALSO
getgrent(3C), getlogin(3C), passwd(4).

DIAGNOSTICS
getpwent, getpwnid, getpwnam, and fgetpwent return a null pointer on EOF or
error.

NOTES
All information is contained in a static area, so it must be copied if it is to be saved.

Page 2 10/92

getpwent (3C) (C Development Set) getpwent (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - manipulate
password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent (void);

struct passwd *getpwuid (uid_t uid);

struct passwd *getpwnam (const char *name);

void setpwent (void);

void endpwent (void);

struct passwd *fgetpwent (FILE *f) ;

DESCRIPTION

FILES

10/92

getpwent, getpwuid, and getpwnam each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the /etc/passwd
file. Each line in the file contains a passwd structure, declared in the pwd. h header
file:

struct passwd {

} ;

char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
char *pw_age;
char *pw_corrnnent;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

getpwent when first called returns a pointer to the first passwd structure in the file;
thereafter, it returns a pointer to the next passwd structure in the file; so successive
calls can be used to search the entire file. getpwuid searches from the beginning of
the file until a numerical user id matching uid is found and returns a pointer to the
particular structure in which it was found. getpwnam searches from the beginning
of the file until a login name matching name is found, and returns a pointer to the
particular structure in which it was found. If an end-of-file or an error is encoun­
tered on reading, these functions return a null pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated
searches. endpwent may be called to close the password file when processing is
complete.

fgetpwent returns a pointer to the next passwd structure in the stream f, which
matches the format of /etc/passwd.

/etc/passwd

Page 1

getpw(3C) (C Development Set)

NAME
getpw - get name from UID

SYNOPSIS
#include <Stdlib.h>

int getpw (uid_t uid, char *buf);

DESCRIPTION

getpw(3C)

getpw searches the password file for a user id number that equals uid, copies the
line of the password file in which uid was found into the array pointed to by buf,
and returns 0. getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should not
be used; see getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
getpw returns non-zero on error.

10/92 Page 1

getprotoent (3N) getprotoent (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent,
endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent(void);

struct protoent *getprotobyname(char *name);

struct protoent *getprotobynumber(int proto);

int setprotoent(int stayopen);

int endprotoent(void);

DESCRIPTION

FILES

getprotoent, getprotobyname, and getprotobynumber each return a pointer to
an object with the following structure containing the broken-out fields of a line in
the network protocol data base, I etc/protocols.

The protoent structure include the following members:

char
char
int

*p_name;
**p_aliases;
p_proto;

/* official name of protocol */
/* alias list */
/*protocol number */

The members of this structure are:

p_name

p_aliases

p_yroto

the official name of the protocol

a zero terminated list of alternate names for the protocol

the protocol number

getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net
data base will not be closed after each call to getprotoent (either directly, or
indirectly through one of the other getproto calls).

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the beginning
of the file until a matching protocol name or protocol number is found, or until an
EOF is encountered.

/etc/protocols

SEE ALSO
protocols(4)

DIAGNOSTICS

10/92

A NULL pointer is returned on an EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet protocols are currently understood.

Page 1

getpriority (3) (BSD Compatibility Package) getpriority (3)

SEE ALSO
nice(l), renice(lM), fork(2).

NOTES
It is not possible for the process executing setpriori ty to lower any other process
down to its current priority, without requiring privileged user privileges.

Page 2 10/92

getpriority (3) (BSD Compatibility Package) getpriority (3)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/time.h>
#include <sys/resource.h>

int getpriori ty (which, who)
int which, who;

int setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which
and who is obtained with getpriority and set with setpriority The default
priority is O; lower priorities cause more favorable scheduling.

which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted
relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value of who denotes the current
process, process group, or user.

getpriority returns the highest priority (lowest numerical value) enjoyed by any
of the specified processes. setpriori ty sets the priorities of all of the specified
processes to the value specified by prio. If prio is less than -20, a value of -20 is used;
if it is greater than 20, a value of 20 is used. Only the privileged user may lower
priorities.

RETURN VALUE
Since getpriori ty can legitimately return the value -1, it is necessary to clear the
external variable errno prior to the call, then check it afterward to determine if a -1
is an error or a legitimate value. The setpriori ty call returns 0 if there is no error,
or -1 if there is.

ERRORS

10/92

getpriority and setpriority may return one of the following errors:

ESRCH No process was located using the which and who values specified.

EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriori ty may fail with one of the fol­
lowing errors returned:

EPERM A process was located, but one of the following is true:

Neither its effective nor real user TD matched the effective user ID of
the caller, and neither the effective nor the real user ID of the process
executing the setpriority was the privileged user.

The call to getpriori ty would have changed a process' priority to a
value lower than its current value, and the effective user ID of the pro­
cess executing the call was not that of the privileged user.

Page 1

getpid (2) getpid (2)

NAME
getpid, getpgrp, getppid, getpgid - get process, process group, and parent pro­
cess IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t gctpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

DESCRIPTION
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

getpgid returns the process group ID of the process whose process ID is equal to
pid, or the process group ID of the calling process, if pid is equal to zero.

getpgid will fail if one or more of the following is true:

EPERM

ESRCH

The process whose process ID is equal to pid is not in the same ses­
sion as the calling process, and the implementation does not allow
access to the process group ID of that process from the calling pro­
cess.

There is no process with a process ID equal to pid.

SEE ALSO
exec(2), fork(2), getpid(2), getsid(2), intro(2), setpgid(2), setsid(2)
setpgrp(2), signal(2)

DIAGNOSTICS

10/92

Upon successful completion, getpgid returns a process group ID. Otherwise, a
value of (pid_t) -1 is returned and errno is set to indicate the error.

Page 1

getpeername (3N) getpeername (3N)

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername(int s, caddr_t name, int *namelen);

DESCRIPTION
getpef'rname returns the name of the peer connected to sockets. The int pointed
to by the name/en parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name returned (in
bytes). The name is truncated if the buffer provided is too small.

RETURN VALUE
O is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

ENOMEM

ENO SR

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The socket is not connected.

There was insufficient user memory for the operation to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

10/92

accept(3N), bind(3N), getsockname(3N), socket(3N)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a socketaddr_un struc­
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet /in. h. Other address fami­
lies may require other structures. Use the structure appropriate to the address fam­
ily; cast the structure address to a generic caddr_t in the call to getpeername and
pass the size of the structure in the name/en argument.

Page 1

getpass (3C) (C Development Set) getpass (3C)

NAME
getpass - read a password

SYNOPSIS
#include <stdlib.h>

char *getpass (const char *prompt);

DESCRIPTION

FILES

NOTE

10/92

getpass reads up to a newline or EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters. If
I dev It ty cannot be opened, a null pointer is returned. An interrupt will terminate
input and send an interrupt signal to the calling program before returning.

/dev/tty

The return value points to static data whose content is overwritten by each call.

Page 1

getpagesize (3) (BSD Compatibility Package)

NAME
getpagesize - get system page size

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int getpagesize(VOID);

DESCRIPTION

getpagesize (3)

getpagesize returns the number of bytes in a page. Page granularity is the granu­
larity of many of the memory management calls.

The page size is a system page size and need not be the same as the underlying
hardware page size.

SEE ALSO
pagesize(l), brk(2).

10/92 Page 1

getopt(3C) (C Programming Language Utilities)

)

SEE ALSO

if I iflg == O I {

_i_nfile :::: stdin

else if ((infile=fopen(ifile, "r" I I == NULL I {

open_err_exit(cmdname,ifile,errno)

for I ; optind<argc ; optind+=l I {

if ((outfile=fopen(ofile=argv[optind], "r+" I I

open_err_exit(cmdname,ofile,errno) ;

NULL) {

if I (retval=do_work(aflg,bflg,infile,outfile) I ,_ 0 I {

work_err_exit(cmdname,ofile,retval)

if I fclose (outfile) ! = 0) {

close_err_exit(crndname,ofile,errno)

exit IOI

pfmt(3C), setlabel(3C).

10/92

getopt (3C)

Page 3

getopt (3C) (C Programming Language Utilities) getopt (3C)

RETURN VALUE
The function getopt () returns a question mark(?) when it encounters an option
letter not included in optstring; it also prints an error message on stderr if opterr
is set to non-0 (opterr is initialized to 1). The message is printed in the standard
error format. getopt () support localized output messages. If the appropriate
translated system messages are installed on the system, they are selected by the
latest call to set locale () (using the LC_ALL or LC_MESSAGES categories).

The label defined by a call to set label () will be used if available, otherwise the
name of the utility (argv [0 J) will be used.

EXAMPLE

Page 2

The following code fragment shows how one might process the options and argu­
ments for a command that takes: mutually exclusive options a and b, exactly one of
which is required; an optional option i which takes an option-argument; and at
least two arguments.

main(int argc, char *argv[] /*,char envp[]*/)

/* envp is unused in this example */

int

char

FILE

opt, aflg=O, bflg=O, iflg=O, errflg=D, retval

*cmdname, *ifile, *ofile

extern i_nt

extern char

*infile, *outfile ;

optind, opterr, errno ;

*optarg

setlabe: I "UX:example" I;

cmdname = argv[O] ;

opterr = 0 ; I* inhibit getopL err msg *I

while I (opt=getopt(argc,argv, "abi :")I ,_ F:OF) {

switch I opt I {

case 'a'

aflg += 1 break

case 'b'

bflg += 1 oreak

case 'i'

iflg += 1 ifile = oprarg ; break

default : /* includes '?' case*/

errflg += 1 ; break ;

if I errflg>D I I aflg+bflg ! =1 I I iflg> 1 I I argc-optind<2 I (

usage_err_exit(cmdname) ;

(continues)

10/92

getopt(3C) (C Programming Language Utilities) getopt(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
#include <stdio.h>

int getopt (int argc, char *const *argv, const char *optstring);

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
The function getopt () is a command-line parser. It returns the next option letter
in argv that matches a letter in optstring.

The function getopt () places in opt ind the argv index of the next argument to be
processed. The external variable opt ind is initialized to 1 before the first call to the
function getopt () .

The argument optstring is a string of recognized option letters; if a letter is followed
by a colon, the option is expected to have an argument that may be separated from
it by white space.

The variable optarg is set to point to the start of the option argument on return
from getopt () .

When all options have been processed (i.e., up to the first non-option argument),
the function getopt () returns EOF. The special option -- may be used to delimit
the end of the options; EOF will be returned and -- will be skipped.

The following rules comprise the System V standard for command-line syntax:

RULE 1: Command names must be between two and nine characters.

RULE 2:

RULE 3:

RULE 4:

RULE 5:

RULE 6:

RULE 7:

RULE 8:

RULE 9:

Command names must include lower-case letters and digits only.

Option names must be a single character in length.

All options must be delimited by the - character.

Options with no arguments may be grouped behind one delimiter.

The first option-argument following an option may be preceded by
white space.

Option arguments cannot be optional.

Groups of option arguments following an option must be separated by
commas or separated by white space and quoted.

All options must precede operands on the command line.

RULE 10: The characters - - may be used to delimit the end of the options.

RULE 11: The order of options relative to one another should not matter.

RULE 12: The order of operands may matter and position-related interpretations
should be determined on a command-specific basis.

RULE 13: The - character preceded and followed by white space should be used
only to mean standard input.

10/92 Page 1

getnetpath (3N) (Networking Support Utilities) getnetpath (3N)

NAME
getnetpath - get netconfig entry corresponding to NETPA'l'H component

SYNOPSIS
#include <netconfig.h>

void *setnetpath(void);
struct netconfig *getnetpath(void *handlep);
int endnetpath(void *handlep);

DESCRIPTION
The three routines described on this page are part of the UNIX System V Network
Selection component. They provide application access to the system network
configuration database, /etc/netconfig, as it is "filtered" by the NETPATH
environment variable [see environ(5)]. Network Selection also includes routines
that access the network configuration database directly [see getnetconfig(3N)].

A call to setnetpath "binds" or "rewinds" NETPATH. setnetpath must be called
before the first call to getnetpath and may be called at any other time. It returns a
handle that is used by getnetpath. setnetpath will fail if the netconfig data­
base is not present. If NETPATH is unset, setnetpath returns the number of "visi­
ble'' networks in the netconfig file. The set of visible networks constitutes a
default NETPATH.

When first called, getnetpath returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. The netconfig entry is for­
matted as a netconfig structure. On each subsequent call, getnetpath returns a
pointer to the netconfig entry that corresponds to the next valid NETPATH com­
ponent. getnetpath can thus be used to search the netconfig database for all
networks included in the NETPATH variable. When NETPATH has been exhausted,
getnetpath returns NULL.

getnetpath silently ignores invalid NETPATH components. A NETPATH component
is invalid if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath behaves as if NETPATH were set to the
sequence of "default" or "visible'' networks in the netconfig database, in the
order in which they are listed.

endnetpath may be called to "unbind" NETPATH when processing is complete,
releasing resources for reuse. Programmer's should be aware, however, that end­
netpath frees all memory allocated by setnetpath. endnetpath returns O on suc­
cess and -1 on failure (for example, if setnetpath was not called previously).

SEE ALSO
getnetconfig(3N), netconfig(4), environ(5).

10/92 Page 1

getnetgrent (3N) getnetgrent (3N)

NAME
gctnetgrent, c;etnetgrent, endnetgrent, innetgr - get network group
entry

SYNOPSIS
'1• ·Lnetgrent (machinep, userp, domainp)
c·l1cir **macl1Lnep, **userp, **domainp;

: '·Lnetgrent (netgroup)
r ·11,1r *net group

' ·11dnetgrent ()

1111c•Lgr(netgroup, machine, user, domain)
·11.ir *netgroup, *machine, *user, *domain;

DESCRIPTION

FILES

'1etnetgrent () returns the next member of a network group. After the call,
111achinep will contain a pointer to a string containing the name of the machine part
of the network group member, and similarly for userp and domainp. If any of
machinep, userp or domainp is returned as a NULL pointer, it signifies a wild card.
getnetgrent () will use malloc(3C) to allocate space for the name. This space is
released when a endnetgrent () call is made. getnetgrent () returns 1 if it suc­
ceeded in obtaining another member of the network group, 0 if it has reached the
end of the group.

getnetgrent () establishes the network group from which getnetgrent () will
obtain members, and also restarts calls to getnetgrent () from the beginning of
the list. If the previous setnetgrent () call was to a different network group, a
endnetgrent () call is implied. endnetgrent () frees the space allocated during
the getnetgrent () calls. innetgr returns 1 or 0, depending on whether netgroup
contains the machine, user, domain triple as a member. Any of the three strings
machine, user, or domain can be NULL, in which case it signifies a wild card.

/etc/netgroup

WARNINGS

NOTES

10/92

The Network Information Service (NIS) package must be installed and running
when using getnetgrent () , since it only inspects the NIS netgroup map, never
the local files.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP). The functionality of the two remains the same; only the name has changed.

Page 1

getnetent (3N) getnetent (3N)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.
Only Internet network numbers are currently understood.

Page 2 10/92

getnetent (3N) getnetent (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get net­
work entry

SYNOPSIS
#include <netdb.h>

struct netent *getnetent(void);

struct netent *getnetbyname(char *name);

struct netent *getnetbyaddr(long net, int type);

int setnetent(int stayopen);

int endnetent(void);

DESCRIPTION

FILES

getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object
with the following structure containing the broken-out fields of a line in the net­
work data base, /etc/networks.

The structure netent include the following members:

char *n_name;
char **n_aliases;
int n_addrtype;
unsigned long n_net;

The members of this structure are:

/* official name of net */
/* alias list */
/* net type */
/* network number */

n_narne The official name of the network.

n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only
AF_INET.

n_net The network number. Network numbers are returned in
machine byte order.

getnetent reads the next line of the file, opening the file if necessary.

setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data
base will not be closed after each call to getnetent (either directly, or indirectly
through one of the other getnet calls).

endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from the beginning of the
file until a matching net name or net address and type is found, or until EOF is
encountered. Network numbers are supplied in host order.

/etc/networks

SEE ALSO
networks(4)

10/92 Page 1

getnetconfig (3N) (Networking Support Utilities) getnetconfig (3N)

nc_sperror is similar to nc_perror but instead of sending the message to the
standard error indicating why the network selection routines failed, it returns the
string which contains the message:

Warning: It returns pointer to static data that is overwrit­
ten on each call.

nc_perror and nc_sperror can also be used with the NETP ATH access routines
defined in getnetpath(3N).

SEE ALSO
netconfig(4), getnetpath(3N), and environ(S).

Page 2 10/92

getnetconfig (3N) (Networking Support Utilities) getnetconfig (3N)

NAME
getnetconfig - get network configuration database entry

SYNOPSIS
#include <netconfig.h>

void *setnetconfig(void);

struct netconfig *getnetconfig(void *handlep);

int endnetconfig(void *handlep);

struct netconfig *getnetconfigent(char *netid);

void freenetconfigent(struct netconfig *netconfigp);

void nc_perror (char *msg);

char *nc_sperror (void) ;

DESCRIPTION

10/92

The five library routines described on this page are part of the UNIX System V Net­
work Selection component. They provide application access to the system network
configuration database, /etc/netconfig. In addition to the netconfig database
and the routines for accessing it, Network Selection includes the environment vari­
able NETPATH [see environ(S)] and the NETPATH access routines described in
getnetpath(3N).

A call to setnetconfig has the effect of "binding" or "rewinding" the netconfig
database. setnetconfig must be called before the first call to getnetconfig and
may be called at any other time. setnetconfig need not be called before a call to
getnetconfigent. setnetconfig returns a unique handle to be used by get­
netconfig. In the case of an error, setconfig returns NULL and nc_perror or
nc_sperror can be used to print the reason for failure.

When first called, getnetconfig returns a pointer to the current entry in the
netconfig database, formatted as a netconfig structure. getnetconfig can thus
be used to search the entire netconfig file. getnetconfig returns NULL at end of
file.

endnetconfig should be called when processing is complete to release resources
for reuse. Programmers should be aware, however, that the last call to
endnetconfig frees all memory allocated by getnetconfig for the struct
netconfig data structure. endnetconfig may not be called before setnetconfig.
endnetconf ig returns O on success and -1 on failure (for example, if setnetcon­
f ig was not called previously).

getnetconfigent returns a pointer to the netconfig structure corresponding to
netid. It returns NULL if netid is invalid (that is, does not name an entry in the
netconfig database). It returns NULL and sets errno in case of failure (for exam­
ple, if setnetconfig was not called previously).

freenetconfigent frees the netconfig structure pointed to by netconfigp,
previously returned by getnetconfigent.

nc_perror prints a message to the standard error indicating why any of the above
routines failed. The message is prepended with string msg and a colon. A NEW­
LINE is appended at the end of the message.

Page 1

getmsg{2) getmsg{2)

DIAGNOSTICS

10/92

Upon successful completion, a non-negative value is returned. A value of 0 indi­
cates that a full message was read successfully. A return value of MORECTL indi­
cates that more control information is waiting for retrieval. A return value of MORE­
DATA indicates that more data are waiting for retrieval. A return value of MORECTL
I MOREDATA indicates that both types of information remain. Subsequent getmsg
calls retrieve the remainder of the message. However, if a message of higher prior­
ity has come in on the stream head read queue, the next call to getmsg will retrieve
that higher priority message before retrieving the remainder of the previously
received partial message.

Page 3

getmsg(2) getmsg(2)

0, getmsg retrieves any message available on the stream head read queue. In this
case, on return, the integer pointed to by Jlagsp will be set to RS_HIPRI if a high
priority message was retrieved, or 0 otherwise.

For getpmsg, the flags are different. Jlagsp points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like
getmsg, getpmsg processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the
integer pointed to by Jlagsp to MSG_HIPRI and the integer pointed to by bandp to 0.
In this case, getpmsg will only process the next message if it is a high-priority mes­
sage. In a similar manner, a user may choose to retrieve a message from a particular
priority band by setting the integer pointed to by Jlagsp to MSG_BAND and the integer
pointed to by bandp to the priority band of interest. In this case, getpmsg will only
process the next message if it is in a priority band equal to, or greater than, the
integer pointed to by bandp, or if it is a high-priority message. If a user just wants to
get the first message off the queue, the integer pointed to by Jlagsp should be set to
MSG_ANY and the integer pointed to by bandp should be set to 0. On return, if the
message retrieved was a high-priority message, the integer pointed to by Jlagsp will
be set to MSG_HIPRI and the integer pointed to by bandp will be set to 0. Otherwise,
the integer pointed to by Jlagsp will be set to MSG_BAND and the integer pointed to
by bandp will be set to the priority band of the message.

If O_NDELAY and O_NONBLOCK are clear, getmsg blocks until a message of the type
specified by Jlagsp is available on the stream head read queue. If O_NDELAY or
O_NONBLOCK has been set and a message of the specified type is not present on the
read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg
continues to operate normally, as described above, until the stream head read
queue is empty. Thereafter, it returns 0 in the len fields of ctlptr and dataptr.

getmsg or getpmsg will fail if one or more of the following are true:

EAGAIN The O_NDELAY or O_NONBLOCK flag is set, and no messages are
available.

EBADF fd is not a valid file descriptor open for reading.

EBADMSG

EFAULT

EINTR

EINVAL

ENOS TR

Queued message to be read is not valid for getmsg.

ctlptr, dataptr, bandp, or Jlagsp points to a location outside the allo­
cated address space.

A signal was caught during the getmsg system call.

An illegal value was specified in Jlagsp, or the stream referenced by
fd is linked under a multiplexor.

A stream is not associated withfd.

getmsg can also fail if a STREAMS error message had been received at the stream
head before the call to getmsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
intro(2), poll{2), putmsg(2), read{2), write(2).

Page 2 10/92

getmsg (2) getmsg(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *flagsp);

int getpmsg(int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *bandp, int *flagsp);

DESCRIPTION

10/92

getmsg retrieves the contents of a message [see intro(2)] located at the stream
head read queue from a STREAMS file, and places the contents into user specified
buffer(s). The message must contain either a data part, a control part, or both. The
data and control parts of the message are placed into separate buffers, as described
below. The semantics of each part is defined by the STREAMS module that gen­
erated the message.

The function getpmsg does the same thing as getmsg, but provides finer control
over the priority of the messages received. Except where noted, all information
pertaining to getmsg also pertains to getpmsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure, which contains the following members:

int maxlen; /* maximum buffer length */
int len; /* length uf data */
char *buf; /* ptr to buffer */

buf points to a buffer in which the data or control information is to be placed, and
maxlen indicates the maximum number of bytes this buffer can hold. On return,
len contains the number of bytes of data or control information actually received,
or 0 if there is a zero-length control or data part, or -1 if no data or control informa­
tion is present in the message. flagsp should point to an integer that indicates the
type of message the user is able to receive. This is described later.

ctlptr is used to hold the control part from the message and dataptr is used to hold
the data part from the message. If ctlptr (or dataptr) is NULL or the maxlen field is -1,
the control (or data) part of the message is not processed and is left on the stream
head read queue. If ctlptr (or dataptr) is not NULL and there is no corresponding con­
trol (or data) part of the messages on the stream head read queue, len is set to -1. If
the maxlen field is set to 0 and there is a zero-length control (or data) part, that
zero-length part is removed from the read queue and len is set to 0. If the maxlen
field is set to 0 and there are more than zero bytes of control (or data) information,
that information is left on the read queue and len is set to 0. If the maxlen field in
ctlptr or dataptr is less than, respectively, the control or data part of the message,
maxlen bytes are retrieved. In this case, the remainder of the message is left on the
stream head read queue and a non-zero return value is provided, as described
below under DIAGNOSTICS.

By default, getmsg processes the first available message on the stream head read
queue. However, a user may choose to retrieve only high priority messages by set­
ting the integer pointed by flagsp to RS~HIPRI. In this case, getmsg processes the
next message only if it is a high priority message. If the integer pointed by flagsp is

Page 1

getmntent (3C) getmntent (3C)

NAME
getmntent, getmntany - get mnt tab file entry

SYNOPSIS
#include <stdio.h>
#include <sys/mnttab.h>

int getmntent (FILE *fp, struct mnttab *mp) ;

int getmntany (FILE *fp, struct mnttab *mp, struct mnttab *mpref);

DESCRIPTION

FILES

getmntent and getmntany each fill in the structure pointed to by mp with the
broken-out fields of a line in the I etc/mnttab file. Each line in the file contains a
mnttab structure, declared in the sys/mnttab. h header file:

struct mnttab {

} ;

char *mnt_special;
char *mnt_mountp;
char *mnt_fstype;
char *mnt_mntopts;
char *mnt_time;

The fields have meanings described in mnttab(4).

getmntent returns a pointer to the next mnt tab structure in the file; so successive
calls can be used to search the entire file. getmntany searches the file referenced by
fp until a match is found between a line in the file and mpref. mpref matches the line
if all non-null entries in mpref match the corresponding fields in the file. Note that
these routines do not open, close, or rewind the file.

/etc/mnttab

SEE ALSO
mnttab(4)

DIAGNOSTICS

NOTES

10/92

If the next entry is successfully read by getmntent or a match is found with
getmntany, 0 is returned. If an end-of-file is encountered on reading, these func­
tions return -1. If an error is encountered, a value greater than 0 is returned. The
possible error values are:

MNT_TOOLONG A line in the file exceeded the internal buffer size of
MNT_LINE_MAX.

MNT_TOOMANY

MNT_TOOFEW

A line in the file contains too many fields.

A line in the file contains too few fields.

The members of the mnttab structure point to information contained in a static
area, so it must be copied if it is to be saved.

Page 1

getlogin (3C) (C Development Set) getlogin(3C)

NAME
get login - get login name

SYNOPSIS
#include <stdlib.h>

char *getlogin (void) ;

DESCRIPTION

FILES

getlogin returns a pointer to the login name as found in /var/adm/utmp. It may
be used in conjunction with getpwnam to locate the correct password file entry
when the same user id is shared by several login names.

If get login is called within a process that is not attached to a terminal, it returns a
null pointer. The correct procedure for determining the login name is to call
cuserid, or to call get login and if it fails to call getpwuid.

/var/adm/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4)

DIAGNOSTICS
Returns a null pointer if the login name is not found.

NOTES
The return values point to static data whose content is overwritten by each call.

10/92 Page 1

getitimer(3C) getitimer (3C)

NOTES

Page 2

Under the following conditions, the functions getitimer and setitimer fail and
set errno to:

EINVAL The specified number of seconds is greater than 100,000,000, the number
of microseconds is greater than or equal to 1,000,000, or the which
parameter is unrecognized.

The microseconds field should not be equal to or greater than one second.

setitimer is independent of the alarm system call.

Do not use setitimer with the sleep routine. A sleep following a setitimer
wipes out knowledge of the user signal handler.

10/92

getitimer(3C) getitimer(3C)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(int which, struct itimerval *value, struct itimerval
*ovalue);

DESCRIPTION
The system provides each process with three interval timers, defined in
sys It ime. h. The get it imer call stores the current value of the timer specified by
which into the structure pointed to by value. The seti timer call sets the value of
the timer specified by which to the value specified in the structure pointed to by
value, and if ovalue is not NULL, stores the previous value of the timer in the struc­
ture pointed to by ovalue.

A timer value is defined by the itimerval structure [see gettimeofday(3C) for the
definition of timeval], which includes the following members:

struct timeval it_interval;
struct timeval it_value;

I* timer interval */
/* current value */

If it_value is non-zero, it indicates the time to the next timer expiration. If
i t_interval is non-zero, it specifies a value to be used in reloading it_ value
when the timer expires. Setting i t_value to zero disables a timer, regardless of the
value of it_interval. Setting it_interval to zero disables a timer after its next
expiration (assuming it_ value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

The three timers are:

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when
this timer expires.

ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the pro­
cess is executing. A SIGVTALRM signal is delivered when it
expires.

ITIMER_PROF Decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used by
interpreters in statistically profiling the execution of inter­
preted programs. Each time the ITIMER_PROF timer expires,
the SIGPROF signal is delivered. Because this signal may inter­
rupt in-progress system calls, programs using this timer must
be prepared to restart interrupted system calls.

SEE ALSO
alarm(2), gettimeofday(3C)

DIAGNOSTICS

10/92

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is
returned, and an error code is placed in the global variable errno.

Page 1

get host name (3) (BSD Compatibility Package) gethostname (3)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int gethostname(name, namelen)
char *name;
int namelen;

int sethostname(name, narnelen)
char *name;
int narnelen;

DESCRIPTION
gethostname returns the standard host name for the current processor, as previ­
ously set by sethostname. The parameter namelen specifies the size of the array
pointed to by name. The returned name is null-terminated unless insufficient space
is provided.

sethostname sets the name of the host machine to be name, which has length
namelen. This call is restricted to the privileged user and is normally used only
when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is
returned and an error code is placed in the global location errno.

ERRORS
The following error may be returned by these calls:

EFAULT

EPERM

The name or namelen parameter gave an invalid address.

The caller was not the privileged user. Note: this error only
applies to sethostnarne.

SEE ALSO

NOTES

10/92

unarne(2), gethostid(3).

Host names are limited to MAXHOSTNAMELEN characters, currently 256. (See the
pararn. h header file.)

Page 1

get host id (3) (BSD Compatibility Package)

NAME
gethostid - get unique identifier of current host

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

gethostid()

DESCRIPTION

gethostid (3)

gethostid returns the 32-bit identifier for the current host, which should be
unique across all hosts. This number is usually taken from the CPU board's ID
PROM.

This routine resides in libucb.

SEE ALSO
hostid(l), sysinfo(2).

10/92 Page 1

gethostent (3N)

TRY_AGAIN

NO_RECOVERY

NO_DATA

USER CONSIDERATIONS

gethostent (3N)

This is usually a temporary error and means that the local server
did not receive a response from an authoritative server. A retry
at some later time may succeed.

Some unexpected server failure was encountered (This is a non­
recoverable error).

The requested name is valid, but does not have an IP address.
This is not a temporary error: instead, this means that the name is
known to the name server, but there is no address associated
with this name. Another type of request to the name server using
this domain name should result in an answer (for example, a
"mail-forwarder" may be registered for this domain).

Since all information will be stored in a static area it must be copied if it is to be
saved.
Only the Internet address format is currently supported.

FILES
/etc/hosts

SEE ALSO
resolver(3), hosts(4), named(lM).

10/92 Page 3

gethostent (3N) gethostent (3N)

h_aliases

h_addrtype

h_length

h_addr_list

h_addr

A zero-terminated array of alternate names for the
host.

The type of address being returned; currently always
AF_INET.

The length, in bytes, of the address.

A zero-terminated array of network addresses for the
named host; the host addresses are returned in net-
work byte order.

The first address in h_addr_list; this is for back­
ward compatibility.

When using the nameserver, gethostbyname () will search for the named host in
the current domain and its parents unless the name ends in a dot ("."). It the name
contains no dot - and if the environment variable HOSTALIASES contains the name
of an alias file - this alias file will be searched first for an alias matching the input
name.

The gethostent () system call will read the next line of the file, after opening the
file if necessary.

The sethostent () system call will open and rewind the file; sethostent () may
be used to request the use of a connected TCP socket for queries. If the stayopen
flag is non-zero, the host data base will not be closed after each call to gethos­
tent () - either directly, or indirectly through one of the other gethos t * calls. In
other words, if the stayopen flag is non-zero, this option will send all queries to the
named served using TCP and maintain the connection after each call of gethost­
byname or gethostbyaddr; otherwise the queries will utilize UDP datagrams.

The endhostent () system call will close the file and the TCP connection.

The gethostbyname () and gethostbyaddr () system calls will search sequen­
tially from the beginning of the file until a matching host name or host address is
found, or until an EOF is encountered. The host addresses will be supplied in net­
work order.

The gethostbyaddr () system call will accept a pointer to an address structure.
This structure will be unique to each type of address. For an address of type
AF _INET, this is an in_addr structure [see netinet/in. h].

DIAGNOSTICS

Page 2

A NULL pointer will be returned at EOF or when an error has occurred.

An error return status from gethostbyname and gethostbyaddr will be indicated
by a NULL pointer. The external integer h_errno may then be checked to see
whether this is a temporary failure, or an invalid or unknown host. The routine
herror can be used to print an error message describing the failure. If its argument
string is non-NULL, it will be printed, followed by a colon and a space. The error
message will be printed with a trailing newline symbol.

h_errno can have the following values:

HOST_NOT_FOUND
No such host is known.

10/92

gethostent (3N) gethostent (3N)

NAME
gethostent,gethostbyaddr,gethostbyname,sethostent,endhostent,herror
- get network host entry

SYNOPSIS
cc[flags] files -lsocket -lnsl

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname (name)
char *name;

struct hostent *gethostbyaddr (addr, len, type)
char *addr;
int len, type;

struct hostent *gethostent()

sethostent (stayopen)
int stayopen;

endhostent ()

herror (string)
char *string:

DESCRIPTION

10/92

The gethostent(), gethostbyaddr(), and gethostbyname() system calls each
return a pointer to an object with the following structure which describes at inter­
net host referenced by name or by address, respectively. This structure contains
either the information obtained from the name server, named, or broken-out fields
from a line in the network host data base, /etc/hosts. If the local name server is
not running, these routines do a lookup in /etc/hosts. In the case of gethost­
byaddr(), addr is a pointer to the binary format address of length len (not a char­
acter string).

The hos tent structure is as follows:

struct
char
char
int
int
char
#define

hostent {
*h_name
**h_aliases
h_addrtype
h_length
**h_addr_list
h_addr h_addr_list [0]

The members of this structure are:

I* official name of host *I
I* alias list *I
/* host address type *I
/* length of address *I
/* list of addresses from name server* I)
/* address, for backward compatibility *I

h_name The official name of the host.

Page 1

getgroups (2) getgroups (2)

NAME
getgroups, setgroups - get or set supplementary group access list IDs

SYNOPSIS
#include <unistd.h>

int getgroups(int gidsetsize, gid_t *grouplist)

int setgroups(int ngroups, const gid_t *grouplist)

DESCRIPTION
getgroups gets the current supplemental group access list of the calling process
and stores the result in the array of group IDs specified by grouplist. This array has
gidsetsize entries and must be large enough to contain the entire list. This list cannot
be greater than {NGROUPS_MAX}. If gidsetsize equals 0, getgroups will return the
number of groups to which the calling process belongs without modifying the
array pointed to by grouplist.

setgroups sets the supplementary group access list of the calling process from the
array of group IDs specified by grouplist. The number of entries is specified by
ngroups and can not be greater than {NGROUPS_MAX}. This function may be invoked
only by the super-user.

getgroups will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of
supplementary group IDs set for the calling process.

setgroups will fail if:

EINVAL The value of ngroups is greater than {NGROUPS_MAX}.

EPERM The effective user ID is not super-user.

Either call will fail if:

EFAULT A referenced part of the array pointed to by grouplist is outside of
the allocated address space of the process.

SEE ALSO
groups(l), chown(2), getuid(2), setuid(2), initgroups(3C).

DIAGNOSTICS

10/92

Upon successful completion, getgroups returns the number of supplementary
group IDs set for the calling process and setgroups returns the value 0. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

Page 1

getgrent(3C) (C Programming Language Utilities) getgrent(3C)

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS

NOTES

Page 2

getgrent, getgrgid, getgrnarn, and fgetgrent return a null pointer on EOF or
error.

All information is contained in a static area, so it must be copied if it is to be saved.

10/92

getgrent (3C) (C Programming Language Utilities) getgrent (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file
entry

SYNOPSIS
#include <grp.h>

struct group *getgrent (void);

struct group *getgrgid (gid_t gid);

struct group *getgrnam (const char *name);

void setgrent (void) ;

void endgrent (void) ;

struct group *fgetgrent (FILE *f) ;

DESCRIPTION

FILES

getgrent, getgrgid, and getgrnam each return pointers to an object containing
the broken-out fields of a line in the I etc I group file. Each line contains a "group"
structure, defined in the grp. h header file with the following members:

char *gr_name; I* the name of the group */
char *gr_passwd; I* the encrypted group password *I
gid_t gr_gid; I* the numerical group ID */
char **gr_mem; I* vector of pointers to member names *I

When first called, getgrent returns a pointer to the first group structure in the file;
thereafter, it returns a pointer to the next group structure in the file; so, successive
calls may be used to search the entire file. getgrgid searches from the beginning of
the file until a numerical group id matching gid is found and returns a pointer to
the particular structure in which it was found.

getgrnam searches from the beginning of the file until a group name matching
name is found and returns a pointer to the particular structure in which it was
found. If an end-of-file or an error is encountered on reading, these functions
return a null pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. endgrent may be called to close the group file when processing is com­
plete.

fgetgrent returns a pointer to the next group structure in the stream f, which
matches the format of /etc/group.

/etc/group

SEE ALSO

10/92 Page 1

getenv(3C) (C Development Set)

NAME
getenv - return value for environment name

SYNOPSIS
#include <stdlib.h>

char *getenv (canst char *name);

DESCRIPTION

getenv(3C)

getenv searches the environment list [see environ(S)] for a string of the form
name=value and, if the string is present, returns a pointer to the value in the current
environment. Otherwise, it returns a null pointer.

SEE ALSO
exec(2), putenv(3C), environ(S)

10/92 Page 1

getdtablesize (3) (BSD Compatibility Package)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
/usr /ucb/ cc [flag ...]file . ..

long getdtablesize()

DESCRIPTION

getdtablesize (3)

Each process has a descriptor table which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at 0.
The call getdtablesize returns the current maximum size of this table by calling
the getrlimit system call.

SEE ALSO
close(2), dup(2), getrlimit(2), open(2).

10/92 Page 1

getdents (2) getdents (2)

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
#include <sys/dirent.h>

int getdents (int fildes, struct dirent *buf, size_t nbyte);

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or ioctl
system call.

get dents attempts to read nbyte bytes from the directory associated with fildes and
to format them as file system independent directory entries in the buffer pointed to
by buf. Since the file system independent directory entries are of variable length, in
most cases the actual number of bytes returned will be strictly less than nbyte. See
dirent(4) to calculate the number of bytes.

The file system independent directory entry is specified by the dirent structure.
For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given by the
file pointer associated with fildes. Upon return from getdents, the file pointer is
incremented to point to the next directory entry.

This system call was developed in order to implement the readdir routine [for a
description, see directorY(3C)], and should not be used for other purposes.

getdents will fail if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for reading.

EFAULT buf points outside the allocated address space.

EINVAL

ENO ENT

ENO LINK

ENOTDIR

EIO

nbyte is not large enough for one directory entry.

The current file pointer for the directory is not located at a valid
entry.

fildes points to a remote machine and the link to that machine is no
longer active.

fildes is not a directory.

An I/O error occurred while accessing the file system.

SEE ALSO
directorY(3C), dirent(4).

DIAGNOSTICS

10/92

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. A value of 0 indicates the end of the directory has
been reached. If the system call failed, a -1 is returned and errno is set to indicate
the error.

Page 1

get date (3C) (C Programming Language Utilities) getdate (3C)

NOTES
Subsequent calls to getdate(3C) alter the contents of getdate_err.

Dates before 1970 and after 2037 are illegal.

getdate makes explicit use of macros described in ctype(3C).

Page 4 10/92

getdate (3C) (C Programming Language Utilities) getdate (3C)

FILES

If no date is given, today is assumed if the given hour is greater than the
current hour and tomorrow is assumed if it is less.

The following examples illustrate the above rules. Assume that the current date is
Mon Sep 22 12:19:47 EDT 1986 and the LANG environment variable is not set.

ln_E_ut Line in Tem_E_late Date
Mon %a T Mon Sep 22 12:19:48EDT19861
Sun %a I Sun Sep 28 12:19:49 EDT 1986 I

Fri
September
January
December
Sep Mon
Jan Fri

%a Fri Sep 2612:19:49 EDT 1986
%B Mon Sep 112:19:49EDT1986
%B Thu Jan 112:19:49 EST 1987
%B 1 Mon Dec 112:19:49 EST 1986
%b %a Mon Sep 112:19:50EDT1986
%b %a Fri Jan 2 12:19:50 EST 1987

Dec Mon %b %a Mon Dec 112:19:50 EST 1986
Jan Wed 1989 %b %a %Y Wed Jan 412:19:51EST1989
Fri 9
Feb 10: 30
10:30
13 :30

%a %H Fri Sep 26 09:00:00 EDT 1986
%b %H: %S Sun Feb 110:00:30 EST 1987
%H: %M Tue Sep 23 10:30:00 EDT 1986
%H: %M Mon Se 22 13:30:00 EDT 1986

/usr/lib/locale/<locale>/LC_TIME
/usr/lib/locale/<locale>/LC_CTYPE

language specific printable files
code set specific printable files

SEE ALSO
setlocale(3C), ctype(3C), environ(5)

DIAGNOSTICS

10/92

On failure getdate returns NULL and sets the variable getdate_err to indicate the
error.

The following is a complete list of the getdate_err settings and their meanings.

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3

4

5

6

7

8

Failed to get file status information.

The template file is not a regular file.

An error is encountered while reading the template file.

malloc failed (not enough memory is available).

There is no line in the template that matches the input.

The input specification is invalid (for example, February 31).

Page 3

getdate (3C) (C Programming Language Utilities) get date (3C)

Page 2

%Y year as ccyy (for example, 1986)
% z time zone name or no characters if no time zone exists

The month and weekday names can consist of any combination of upper and lower
case letters. The user can request that the input date or time specification be in a
specific language by setting the categories LC_TIME and LC_CTYPE of
setlocale(3C).

The following example shows the possible contents of a template:

%m
%A %B %d %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate("l0/1/87 4 PM")
getdate ("Friday")
getdate("Friday September 19 1987, 10:30:30")
getdate("24,9,1986 10:30")
getdate("at monday the 1st of december in 1986")
getdate("run job at 3 PM, december %2nd")

If the LANG environment variable is set to german, the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples show
how local date and time specification can be defined in the template.

Invocation
getdate("ll/27/86")

I getdate("27.11.86")
'getdate("86-11-27")
getdate("Friday 12:00:00")

Line in Tern late
%m/%d/%y
%d. %m. %y
%y-%m-%d
%A %H:%M:%S

The following rules are applied for converting the input specification into the inter­
nal format:

If only the weekday is given, today is assumed if the given day is equal to
the current day and next week if it is less.

If only the month is given, the current month is assumed if the given month
is equal to the current month and next year if it is less and no year is given.
(The first day of month is assumed if no day is given.)

If no hour, minute, and second are given, the current hour, minute, and
second are assumed.

10/92

getdate (3C) (C Programming Language Utilities) getdate(3C)

NAME
getdate - convert user format date and time

SYNOPSIS
#include <time.h>

struct tm *getdate (const char *string);

extern int getdate_err;

DESCRIPTION
getdate converts user-definable date and/or time specifications pointed to by
string into a tm structure. The structure declaration is in the time. h header file [see
also ctime(3C)].

User-supplied templates are used to parse and interpret the input string. The tem­
plates are text files created by the user and identified via the environment variable
DATEMSK. Each line in the template represents an acceptable date and/or time
specification using some of the same field descriptors as the ones used by the date
command. The first line in the template that matches the input specification is used
for interpretation and conversion into the internal time format. If successful, the
function getdate returns a pointer to a tm structure; otherwise, it returns NULL and
sets the global variable getdate_err to indicate the error.

The following field descriptors are supported:

%% same as%
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c locale's appropriate date and time representation
%d day of month (01 - 31; the leading 0 is optional)
%e same as %d
%D date as %m/ %d/ %y
%h abbreviated month name
%H hour (00 - 23)
%I hour (01 - 12)
%m month number (01 - 12)
%M minute (00 - 59)
%n same as \n
%p locale's equivalent of either AM or PM
%r time as %I: %M: %S %p
%R time as %H : %M
%S seconds (00 - 59)
%t insert a tab
%T time as %H: %M: %S
%w weekday number (Sunday = 0 - 6)
%x locale's appropriate date representation
%X locale's appropriate time representation
%y year with century (00 - 99)

10/92 Page 1

-

getcwd(3C) (C Development Set) getcwd(3C)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd (char *buf, int size};

DESCRIPTION
getcwd returns a pointer to the current directory pathname. The value of size must
be at least one greater than the length of the pathname to be returned.

If buf is not NULL, the pathname will be stored in the space pointed to by buf.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C). In
this case, the pointer returned by getcwd may be used as the argument in a subse­
quent call to free.

getcwd will fail if one or more of the following are true:

EACCES A parent directory cannot be read to get its name.

EINVAL

ERANGE

size is equal to 0.

size is less than 0 or is greater than 0 and less than the length of the
pathname plus 1.

EXAMPLE
Here is a program that prints the current working directory.

#include <unistd.h>
#include <stdio.h>

main(}
{

char *cwd;
if ((cwd = getcwd(NULL, 64))
{

perror ("pwd");
exit (2);

(void}printf("%s\n", cwd};
return(O);

SEE ALSO
malloc(3C)

DIAGNOSTICS

NULL)

Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function.

10/92 Page 1

getcontext (2) getcontext (2)

NAME
getcor1Lext, setcontext - get and set current user context

SYNOPSIS
#include <ucontext.h>

int getcontext(ucontext_t *ucp);

int setcontext(ucontext_t *ucp);

DESCRIPTION

NOTES

These functions, along with those defined in makecontext(3C), are useful for
implementing user level context switching between multiple threads of control
within a process.

get context initializes the structure pointed to by ucp to the current user context of
the calling process. The user context is defined by ucontext(S) and includes the
contents of the calling process's machine registers, signal mask and execution stack.

set context restores the user context pointed to by ucp. The call to set context
does not return; program execution resumes at the point specified by the context
structure passed to setcontext. The context structure should have been one
created either by a prior call to get context or makecontext or passed as the third
argument to a signal handler [see sigaction(2)]. If the context structure was one
created with getcontext, program execution continues as if the corresponding call
of getcontext had just returned. If the context structure was one created with
makecontext, program execution continues with the function specified to
makecontext.

When a signal handler is executed, the current user context is saved and a new con­
text is created by the kernel. If the process leaves the signal handler via
longjmp(3C) the original context will not be restored, and future calls to get­
context will not be reliable. Signal handlers should use siglongjmp(3C) or set­
context instead.

DIAGNOSTICS
On successful completion, setcontext does not return and getcontext returns 0.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
sigaction(2), sigal tstack(2), sigprocmask(2), makecontext(3C), ucontext(S)

10/92 Page 1

getc (3S) (C Development Set) getc(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#include <stdio.h>

int getc (FILE *stream};

int getchar (void) ;

int fgetc (FILE *stream};

int getw (FILE *stream};

DESCRIPTION
getc returns the next character (that is, byte) from the named input stream [see
intro(3)] as an unsigned char converted to an int. It also moves the file pointer,
if defined, ahead one character in stream. get char is defined as getc (s tdin) .
getc and getchar are macros.

fgetc behaves like getc, but is a function rather than a macro. fgetc runs more
slowly than getc, but it takes less space per invocation and its name can be passed
as an argument to a function.

getw returns the next word (that is, integer) from the named input stream. getw
increments the associated file pointer, if defined, to point to the next word. The size
of a word is the size of an integer and varies from machine to machine. getw
assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S),
stdio(3S), ungetc(3S)

DIAGNOSTICS

NOTES

These functions return the constant EOF at end-of-file or upon an error and set the
EOF or error indicator of stream, respectively. Because EOF is a valid integer, ferror
should be used to detect getw errors.

If the integer value returned by getc, getchar, or fgetc is stored into a character
variable and then compared against the integer constant EOF, the comparison may
never succeed, because sign-extension of a character on widening to integer is
implementation dependent.

The macro version of getc evaluates a stream argument more than once and may
treat side effects incorrectly. In particular, getc (*f++} does not work sensibly.
Use fgetc instead.

Because of possible differences in word length and byte ordering, files written using
- putw are implementation dependent, and may not be read using getw on a different

processor.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (for example, #undef getc).

10/92 Page 1

gamma(3M) (Math Libraries) gamma(3M)

NAME
gamma, lgamma - log gamma function

SYNOPSIS
cc [flag .. .J.file ... -lrn [library ...]

#include <rnath.h>

double gamma (double x);

double lgamma (double x);

extern int signgarn;

DESCRIPTION
gamma and lgamma return

ln(I r(x) I)

where r(x) is defined as

f e-1F-1dt
0

The sign of r(x) is returned in the external integer signgarn. The argument x may
not be a non-positive integer.

The following C program fragment might be used to calculate r:
if ((y = gamma (x)) > LN_MAXDOUBLE)

error ();
y = signgarn * exp(y);

where LN_MAXDOUBLE is the least value that causes exp to return a range error, and
is defined in the values . h header file.

SEE ALSO
exp(3M), rnatherr(3M), values(S)

DIAGNOSTICS

10/92

For non-positive integer arguments HUGE is returned and errno is set to EDOM. A
message indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma and lgamma return HUGE and set errno
to ERANGE.

Except when the -Xe compilation option is used, these error-handling procedures
may be changed with the function rnatherr. When the -Xa or -Xe compilation
options are used, HUGE_ VAL is returned instead of HUGE and no error messages are
nrinh::irl r---L----·

Page 1

-

ftw(3C) (C Development Set) ftw(3C)

base is the offset into the pathname of the base name of the object. level indicates
the depth relative to the rest of the walk, where the root level is zero.

The values of the third argument are as follows:

FTW_F The object is a file.

FTW_D

FTW_DP

FTW_SLN

FTW_DNR

The object is a directory.

The object is a directory and subdirectories have been visited.

The object is a symbolic link that points to a non-existent file.

The object is a directory that cannot be read. Jn will not be called for
any of its descendants.

FTW_NS stat failed on the object because of lack of appropriate permission.
The stat buffer passed to Jn is undefined. stat failure other than lack
of appropriate permission (EACCES) is considered an error and nftw
will return -1.

Both ftw and nftw use one file descriptor for each level in the tree. The depth argu­
ment limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. depth must not be greater than the number of file
descriptors currently available for use. f tw will run faster if depth is at least as large
as the number of levels in the tree. When ftw and nftw return, they close any file
descriptors they have opened; they do not close any file descriptors that may have
been opened by Jn.

SEE ALSO

NOTES

Page 2

stat(2), malloc(3C)

Because ftw is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.

ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is for­
cibly terminated, such as by longjmp being executed by Jn or an interrupt routine,
ftw will not have a chance to free that storage, so it will remain permanently allo­
cated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have Jn return a nonzero value at its next invocation.

10/92

ftw(3C) (C Development Set) ftw(3C)

NAME
ftw, nftw-walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (const char *path, int (*fn) (const char *, const struct
stat*, int), int depth);

int nftw (const char *path, int (*fn) (const char *, const struct
stat*, int, struct FTW*), int depth, int flags);

DESCRIPTION

10/92

f tw recursively descends the directory hierarchy rooted in path. For each object in
the hierarchy, ftw calls the user-defined function Jn, passing it a pointer to a null­
terminated character string containing the name of the object, a pointer to a stat
structure (see stat(2)) containing information about the object, and an integer.
Possible values of the integer, defined in the ftw. h header file, are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. Descendants of the
directory will not be processed.

FTW_NS stat failed on the object because of lack of appropriate permission or
the object is a symbolic link that points to a non-existent file. The stat
buffer passed to Jn is undefined.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of Jn returns a
nonzero value, or some error is detected within ftw (such as an I/O error). If the
tree is exhausted, ftw returns zero. If Jn returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by Jn. If ftw detects an error
other than EACCES, it returns -1, and sets the error type in errno.

The function nftw is similar to ftw except that it takes an additional argument,
flags. The flags field is used to specify:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw will
follow links but will not walk down any path that crosses itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories will be visited before the directory itself.

FTW_CHDIR The walk will change to each directory before reading it.

The function nftw calls Jn with four arguments at each file and directory. The first
argument is the pathname of the object, the second is a pointer to the stat buffer,
the third is an integer giving additional information, and the fourth is a struct
FTW that contains the following members:

int base;
int level;

Page 1

-

ftime(3C) (BSD Compatibility Package) ftime(3C)

NAME
ftime - get date and time

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/types.h>
#include <sys/timeb.h>

ftime(tp)
struct timeb *tp;

DESCRIPTION
The ftime entry fills in a structure pointed to by its argument, as defined by
<sys/timeb. h>:

struct timeb

} ;

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds
of more-precise interval, the local time zone (measured in minutes of time west­
ward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving
time applies locally during the appropriate part of the year.

SEE ALSO
date(l), gettimeofday(2), ctime(3).

10/92 Page 1

ftime(2) (Application Compatibility Package) ftime(2)

NAME
ftime - get time and date

SYNOPSIS
cc [flag ...]file . .. - lx [library . ..]

#include <sys/times.h>

ftime(struct timeb *tp);

DESCRIPTION
ftime returns the time in a structure (see DIAGNOSTICS below). ftime will fail if
tp points to an illegal address [EFAULT].

DIAGNOSTICS
The ftime entry fills in a structure pointed to by its argument, as defined by
sys/timeb. h:

/* Structure returned by ftime system call */

struct timeb {

} ;

long time;
unsigned short millitm;
short timezone;
short dst flag;

Note that the timezone value is a system default timezone and not the value of the
TZ environment variable.

The structure contains the time since the 00:00:00 GMT, January 1, 1970 up to 1000
milliseconds of more-precise interval, the local time zone (measured in minutes of
time westward from Greenwich), and a flag that, if nonzero, indicates that Daylight
Saving time applies locally during the appropriate part of the year.

SEE ALSO

NOTES

10/92

cc(l), stime(2), ctime(3C)

Since ftime does not return the correct timezone value, its use is not recom­
mended. See ctime(3C) for accurate use of the TZ variable.

Page 1

-

fsync (2) fsync (2)

NAME
fsync - synchronize a file's in-memory state with that on the physical medium

SYNOPSIS
#include <unistd.h>

int fsync(int fildes);

DESCRIPTION
fsync moves all modified data and attributes of ft/des to a storage device. When
f sync returns, all in-memory modified copies of buffers associated with ft/des have
been written to the physical medium. fsync is different from sync, which
schedules disk 1/0 for all files but returns before the 1/0 completes.

fsync should be used by programs that require that a file be in a known state. For
example, a program that contains a simple transaction facility might use fsync to
ensure that all changes to a file or files caused by a given transaction were recorded
on a storage medium.

f sync fails if one or more of the following are true:

EBADF ft/des is not a valid file descriptor open for writing.

ENO LINK

EINTR

EIO

ftldes is on a remote machine and the link on that machine is no
longer active.

A signal was caught during execution of the fsync system call.

An 1/0 error occurred while reading from or writing to the file
system.

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

The way the data reach the physical medium depends on both implementation and
hardware. fsync returns when the device driver tells it that the write has taken
place.

SEE ALSO
sync(2)

10/92 Page 1

fsetpos (3C) (C Development Set) fsetpos (3C)

NAME
fsetpos, fgetpos - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fsetpos (FILE *stream, const fpos_t *pos);

int fgetpos (FILE *stream, fpos_t *pos);

DESCRIPTION
fsetpos sets the position of the next input or output operation on the stream
according to the value of the object pointed to by pas. The object pointed to by pas
must be a value returned by an earlier call to fgetpos on the same stream.

fsetpos clears the end-of-file indicator for the stream and undoes any effects of the
ungetc function on the same stream. After tsetpos, the next operation on a file
opened for update may be either input or output.

fgetpos stores the current value of the file position indicator for stream in the
object pointed to by pas. The value stored contains information usable by fsetpos
for repositioning the stream to its position at the time of the call to fgetpos.

If successful, both fsetpos and fgetpos return zero. Otherwise, they both return
nonzero.

SEE ALSO
fseek(3S), lseek(2) ungetc(3S)

10/92 Page 1

-

fseek(3S) (C Development Set) fseek(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (FILE *stream, long offset, int ptrname};

void rewind (FILE *stream};

long ftell (FILE *stream};

DESCRIPTION
fseek sets the position of the next input or output operation on the stream [see
intro(3)]. The new position is at the signed distance offset bytes from the begin­
ning, from the current position, or from the end of the file, according to a ptrname
value of SEEK_SET, SEEK_CUR, or SEEK_END (defined in stdio. h) as follows:

SEEK_SET set position equal to offset bytes.

SEEK_CUR set position to current location plus offset.

SEEK_END set position to EOF plus offset.

fseek allows the file position indicator to be set beyond the end of the existing
data in the file. If data is later written at this point, subsequent reads of data in the
gap will return zero until data is actually written into the gap. fseek, by itself,
does not extend the size of the file.

rewind (stream} is equivalent to:

(void} fseek (stream, OL, SEEK_SET};

except that rewind also clears the error indicator on stream.

fseek and rewind clear the EOF indicator and undo any effects of ungetc on
stream. After fseek or rewind, the next operation on a file opened for update may
be either input or output.

If stream is writable and buffered data has not been written to the underlying file,
fseek and rewind cause the unwritten data to be written to the file.

ftell returns the offset of the current byte relative to the beginning of the file asso­
ciated with the named stream.

SEE ALSO
lseek(2), write(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S)

DIAGNOSTICS

NOTES

10/92

fseek returns -1 for improper seeks, otherwise zero. An improper seek can be, for
example, an fseek done on a file that has not been opened via fopen; in particular,
fseek may not be used on a terminal or on a file opened via popen. After a stream
is closed, no further operations are defined on that stream.

Although on the UNIX system an offset returned by ftell is measured in bytes, and
it is permissible to seek to positions relative to that offset, portability to non-UNIX
systems requires that an offset be used by fseek directly. Arithmetic may not
meaningfully be performed on such an offset, which is not necessarily measured in
bytes.

Page 1

frexp(3C) (C Development Set) frexp(3C)

Page 2

If input valuel to nextafter is positive or negative infinity, that input is returned
and errno is set to EDOM. The overflow and inexact exceptions are signalled when
input valuel is finite, but nextafter (valuel, value2) is not. The underflow and
inexact excei13tions are signalled when nextafter (valuel, value2) lies strictly
between ± 2- 22 . In both cases errno is set to ERANGE.

When the program is compiled with the cc options - Xe or - xa, HUGE_ VAL is
returned instead of HUGE.

10/92

-

frexp(3C) (C Development Set) frexp(3C)

NAME
frexp, ldexp, logb, modf, modff, nextafter, scalb - manipulate parts of
floating-point numbers

SYNOPSIS
#include <math.h>

double frexp (double value, int *eptr);

double ldexp (double value, int exp);

double logb (double value);

double nextafter (double valuel, double value2);

double scalb (double value, double exp);

double modf (double value, double *iptr);

float modff (float value, float *iptr);

DESCRIPTION
Every non-zero number can be written uniquely as x * 2 11 , where the "mantissa"
(fraction) x is in the range 0.5 ::; I x I < 1.0, and the "exponent" n is an integer.
frexp returns the mantissa of a double value, and stores the exponent indirectly in
the location pointed to by eptr. If value is zero, both results returned by frexp are
zero.

ldexp and sea lb return the quantity value * 2exp. The only difference between the
two is that scalb of a signaling NaN will result in the invalid operation exception
being raised.

logb returns the unbiased exponent of its floating-point argument as a double­
precision floating-point value.

modf and modff (single-precision version) return the signed fractional part of value
and store the integral part indirectly in the location pointed to by iptr.

nextafter returns the next representable double-precision floating-point value
following valuel in the direction of value2. Thus, if value2 is less than valuel,
nextafter returns the largest representable floating-point number less than valuel.

SEE ALSO
cc(l), intro(3M)

DIAGNOSTICS

10/92

If ldexp would cause overflow, ±HUGE (defined in math. h) is returned (according
to the sign of value), and errno is set to ERANGE. If ldexp would cause underflow,
zero is returned and errno is set to ERANGE. If the input value to ldexp is NaN or
infinity, that input is returned and errno is set to EDOM. The same error conditions
apply to scalb except that a signaling NaN as input will result in the raising of the
invalid operation exception.

logb of NaN returns that NaN, logb of infinity returns positive infinity, and logb
of zero returns negative infinity and results in the raising of the divide by zero
exception. In each of these conditions errno is set to EDOM.

Page 1

fread(3S) (C Development Set) tread (3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include <stdio.h>

size_t fread (void *ptr, size_t size, size_t nitems, FILE *stream);

size_t fwrite (const void *ptr, size_t size, size_t nitems, FILE
*stream);

DESCRIPTION
fread reads into an array pointed to by ptr up to nitems items of data from stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null
byte) of length size. fread stops reading bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been read. fread incre­
ments the data pointer in stream to point to the byte following the last byte read if
there is one. fread does not change the contents of stream. fread returns the
number of items read.

fwrite writes to the named output stream at most nitems items of data from the
array pointed to by ptr, where an item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. fwrite stops writing when it has written
nitems items of data or if an error condition is encountered on stream. fwrite does
not change the contents of the array pointed to by ptr. fwrite increments the
data-pointer in stream by the number of bytes written. fwrite returns the number
of items written.

If size or nitems is zero, then fread and fwri te return a value of 0 and do not effect
the state of stream.

The ferror or feof routines must be used to distinguish between an error condi­
tion and end-of-file condition.

SEE ALSO
exi t(2), lseek(2), read(2), wri te(2), abort(3C), fclose(3S), fopen(3S), getc(3S),
gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S), stdio(3S)

DIAGNOSTICS
If an error occurs, the error indicator for stream is set.

10/92 Page 1

fpgetround (3C) (C Development Set) fpgetround (3C)

Page 2

C requires truncation (round to zero) for floating point to integral conversions. The
current rounding mode has no effect on these conversions.

10/92

fpgetround {3C) { C Development Set) fpgetround {3C)

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky -
IEEE floating-point environment control

SYNOPSIS
#include <ieeefp.h>

fp_rnd fpgetround (void);

fp_rnd fpsetround (fp_rnd rnd_dir);

fp_except fpgetmask (void);

fp_except fpsetmask (fp_except mask);

fp_except fpgetsticky (void);

fp_except fpsetsticky (fp_except sticky);

DESCRIPTION
There are five floating-point exceptions: divide-by-zero, overflow, underflow,
imprecise (inexact) result, and invalid operation. When a floating-point exception
occurs, the corresponding sticky bit is set, and if the mask bit is enabled, the trap
takes place. These routines let the user change the behavior on occurrence of any of
these exceptions, as well as change the rounding mode for floating-point opera­
tions.

FP_X_INV /* invalid operation exception */
FP_X_OFL /* overflow exception */
FP_X_UFL /* underflow exception */
FP_X_DZ /* divide-by-zero exception */
FP_X_IMP /* imprecise (loss of precision) */
FP_RN /* round to nearest representative number */
FP_RP /* round to plus infinity */
FP_RM /* round to minus infinity */
FP_RZ /* round to zero (truncate) */

fpgetround returns the current rounding mode.

fpsetround sets the rounding mode and returns the previous rounding mode.

fpgetmask returns the current exception masks.

fpsetmask sets the exception masks and returns the previous setting.

fpgetsticky returns the current exception sticky flags.

fpsetsticky sets (clears) the exception sticky flags and returns the previous set­
ting.

The default environment is rounding mode set to nearest (FP _RN} and all traps dis­
abled.

Individual bits may be examined using the constants defined in ieeefp. h.

SEE ALSO
isnan(3C}

NOTES
fpsetsticky modifies all sticky flags. fpsetmask changes all mask bits. fpset­
mask clears the sticky bit corresponding to any exception being enabled.

10/92 Page 1

fpathconf (2) fpathconf (2)

6 If path or fildes refers to a pipe or FIFO, the value returned applies to the
FIFO itself. If path or fildes refers to a directory, the value returned applies to
any FIFOs that exist or can be created within the directory. If path or fildes
refer to any other type of file, the behavior is undefined.

7 If path or fildes refers to a directory, the value returned applies to any files,
other than directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name does not
change during the lifetime of the calling process.

fpathconf fails if the following is true:

EBADF fildes is not a valid file descriptor.

pathconf fails if one or more of the following are true:

EACCES search permission is denied for a component of the path prefix.

ELOOP too many symbolic links are encountered while translating path.

EMULTIHOP components of path require hopping to multiple remote machines and
file system type does not allow it.

ENAMETOOLONG

ENO ENT

ENO LINK

ENOTDIR

the length of a pathname exceeds {PATH_MAX}, or pathname com­
ponent is longer than {NAME_MAX} while (_POSIX_NO_TRUNC) is in
effect.

path is needed for the command specified and the named file does not
exist or if the path argument points to an empty string.

path points to a remote machine and the link to that machine is no
longer active.

a component of the path prefix is not a directory.

Both fpathconf and pathconf fail if the following is true:

EINVAL if name is an invalid value.

SEE ALSO
sysconf(3C), limits(4)

DIAGNOSTICS

Page 2

If fpathconf or pathconf are invoked with an invalid symbolic constant or the
symbolic constant corresponds to a configurable system limit or option not sup­
ported on the system, a value of -1 is returned to the invoking process. If the func­
tion fails because the configurable system limit or option corresponding to name is
not supported on the system the value of errno is not changed.

10/92

fpathconf(2) fpathconf (2)

NAME
fpathconf, pathconf - get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf (int fildes, int name);
long pathconf (char *path, int name);

DESCRIPTION

10/92

The functions fpathconf and pathconf return the current value of a configurable
limit or option associated with a file or directory. The path argument points to the
pathname of a file or directory; fildes is an open file descriptor; and name is the sym­
bolic constant (defined in unistd.h) representing the configurable system limit or
option to be returned.

The values returned by pathconf and fpathconf depend on the type of file
specified by path or fildes. The following table contains the symbolic constants sup­
ported by pathconf and fpathconf along with the POSIX defined return value.
The return value is based on the type of file specified by path or fildes.

Notes:

1

2

3

4

5

Value of name See Note

_PC_LINK_MAX 1

_PC_MAX_CANNON 2

_PC_MAX_INPUT 2

_PC_NAME_MAX 3,4

_PC_PATH_MAX 4,5

_PC_PIPE_BUF 6

_PC_CHOWN_RESTRICTED 7

_PC_NO_TRUNC 3,4

_PC_VDISABLE 2

If path or fildes refers to a directory, the value returned applies to the direc­
tory itself.

The behavior is undefined if path or fildes does not refer to a terminal file.

lt path or fildes refers to a directory, the value returned applies to the
filenames within the directory.

The behavior is undefined if path or fildes does not refer to a directory.

If path or fildes refers to a directory, the value returned is the maximum
length of a relative pathname when the specified directory is the working
directory.

Page 1

forms (3X) forms(3X)

forms Routine Name

set form_fields
set_form_init
set_form_opts
set_f orm_page
set f orm_sub
set f orm_term
set_form_userptr
set_form_win
set_max_field
set_new_page
unpost_form

Manual Page Name

form_field(3X)
form_hook(3X)
form_opts(3X)
form_page(3X)
form_win(3X)
f orm_hook(3X)
form_userptr(3X)
form_win(3X)
form_f ield_buf fer(3X)
form_new_page(3X)
form_pos t (3X)

RETURN VALUE

NOTES

Routines that return a pointer always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The function returned successfully.
E_CONNECTED - The field is already connected to a form.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_CURRENT - The field is the current field.
E_POSTED - The form is posted.
E_NOT_POSTED - The form is not posted.
E_INVALID_FIELD - The field contents are invalid.
E_NOT_CONNECTED - The field is not connected to a form.
E_NO_ROOM - The form does not fit in the subwindow.
E_BAD_STATE - The routine was called from an initiali-

zation or termination function.
E_REQUEST_DENIED - The form driver request failed.
E_UNKNOWN_COMMAND - An unknown request was passed to the

the form driver.

The header file form.h automatically includes the header files eti.h and
curses .h.

SEE ALSO

10/92

curses(3X), and 3X pages whose names begin "form_" for detailed routine descrip­
tions.

Page 3

forms(3X)

Page 2

forms Routine Name

field_opts_off
field_opts_on
field_pad
field_status
field_terrn
field_type
field_userptr
forrn_driver
forrn_fields
forrn_init
form_ opts
forrn_opts_off
forrn_opts_on
forrn_page
forrn_sub
form_ term
forrn_userptr
form_ win
free_field
free_fieldtype
free_forrn
link_field
link_f ieldtype
move_field
new_field
new_fieldtype
new_forrn
new_page
pos_f orrn_cursor
post_forrn
scale_forrn
set current_field
set_field_back
set_field_buffer
set_field_fore
set_field_init
set_field_just
set_field_opts
set_f ield_pad
set_field_status
set_field_terrn
set_field_type
set_field_userptr
set_fieldtype_arg
set_fieldtype_choice

Manual Page Name

forrn_field_opts(3X)
forrn_f ield_opts(3X)
forrn_field_attributes(3X)
forrn_f ield_buf f er(3X)
forrn_hook(3X)
forrn_field_validation(3X)
forrn_field_userptr(3X)
forrn_dri ver(3X)
forrn_field(3X)
forrn_hook(3X)
forrn_opts(3X)
forrn_opts(3X)
forrn_opts(3X)
forrn_page(3X)
forrn_win(3X)
forrn_hook(3X)
forrn_userptr(3X)
forrn_win(3X}
forrn_f i el d_new(3X)
forrn_fieldtype(3X)
forrn_new(3X)
forrn_f ield_new(3X)
forrn_f ieldtype(3X)
forrn_field(3X)
forrn_f ield_new(3X)
forrn_fieldtype(3X)
forrn_new(3X)
forrn_new_page(3X}
forrn_cursor(3X)
forrn_post(3X)
forrn_win(3X)
forrn_page(3X)
forrn_field_attributes(3X)
forrn_f ield_buf fer(3X)
forrn_field_attributes(3X)
forrn_hook(3X)
forrn_f i eld_j us t (3X)
forrn_field_opts(3X)
forrn_field_attributes(3X)
forrn_field_buffer(3X)
forrn_hook(3X)
forrn_field_validation(3X)
forrn_f ield_userptr(3X)
forrn_fieldtype(3X)
forrn_fieldtype(3X)

forms(3X)

10/92

forms(3X) forms (3X)

NAME
forms - character based forms package

SYNOPSIS
#include <form.h>

DESCRIPTION
The form library is built using the curses library, and any program using forms
routines must call one of the curses initialization routines such as initscr. A
program using these routines must be compiled with -lform and -lcurses on the
cc command line.

The forms package gives the applications programmer a terminal-independent
method of creating and customizing forms for user-interaction. The forms package
includes: field routines, which are used to create and customize fields, link fields
and assign field types; fieldtype routines, which are used to create new field types
for validating fields; and form routines, which are used to create and customize
forms, assign pre/post processing functions, and display and interact with forms.

Current Default Values for Field Attributes
The forms package establishes initial current default values for field attributes.
During field initialization, each field attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL field pointer. If
an application changes a current default field attribute value, subsequent fields
created using new_field will have the new default attribute value. (The attributes
of previously created fields are not changed if a current default attribute value is
changed.)

Routine Name Index

10/92

The following table lists each forms routine and the name of the manual page on
which it is described.

forms Routine Name

current field
data_ahead
data_behind
dup_f ield
dynamic_field_info
field_arg
field_back
field_buffer
field_count
field_fore
field_index
field_info
field_init
field_just
field_opts

Manual Page Name

f orm_page(3X)
form_data(3X)
form_data(3X)
f orm_f i eld_new(3X)
[orm_[i eld_inf o(3X)
form_f ield_validation(3X)
form_field_attributes(3X)
form_f ield_buf f er(3X)
form_field(3X)
form_field_attributes(3X)
f orm_page(3X)
form_f ield_inf o(3X)
f orm_hook(3X)
form_field_just(3X)
form_field_opts(3X)

Page 1

form_win(3X) form_ win (3X)

NAME
form_win: set_form_win, form_win, set_form_sub, form_sub, scale_form -
forms window and subwindow association routines

SYNOPSIS
#include <form.h>

int set_form_win(FORM *form, WINDOW *win);
WINDOW *form_win(FORM *form);

int set_form_sub(FORM *form, WINDOW *sub);
WINDOW *form_sub(FORM *form);

int scale_form(FORM *form, int *rows, int *cols);

DESCRIPTION
set_form_win sets the window of form to win. form_win returns a pointer to the
window associated with form.

set_form_sub sets the subwindow of form to sub. form_sub returns a pointer to
the subwindow associated with form.

scale_form returns the smallest window size necessary for the subwindow of
form. rows and cols are pointers to the locations used to return the number of rows
and columns for the form.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_NOT_CONNECTED - The field is not connected to a form.
E_POSTED - The form is posted.

The header file form. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_userptr(3X) form_ userptr (3X)

NAME
form_userptr: set_form_userptr, form_userptr - associate application data
with forms

SYNOPSIS
#include <form.h>

int set_form_userptr(FORM *form, char *ptr);
char *form_userptr(FORM *form);

DESCRIPTION
Every form has an associated user pointer that can be used to store pertinent data.
set_form_userptr sets the user pointer of form. form_userptr returns the user
pointer of form.

RETURN VALUE

NOTES

form_userptr returns NULL on error. set_form_userptr returns one of the
following:

E_OK
E_SYSTEM_ERROR

- The function returned successfully.
- System error.

The header file form. h automatically includes the header files et i . h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form _post (3X) form_post (3X)

NAME
form_post: post_form, unpost_form - write or erase forms from associated
subwindows

SYNOPSIS
#include <form.h>

int post_form(FORM *form);

int unpost_form(FORM *form);

DESCRIPTION
post_form writes form into its associated subwindow. The application program­
mer must use curses library routines to display the form on the physical screen or
call update_panels if the panels library is being used.

unpost_form erases form from its associated subwindow.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_POSTED
E_NOT_POSTED
E_NO_ROOM
E_BAD_STJ\TE

E_NOT_CONNECTED

The function returned successfully.
System error.
An argument is incorrect.
The form is posted.
The form is not posted.
The form does not fit in the subwindow.

- The routine was called from an initialization
or termination function.

- The field is not connected to a form.

The header file form. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), forms(3X), panels(3X), panel_update(3X)

10/92 Page 1

form_page (3X) form _page (3X)

NAME
form_page: set_form_page,form_page,set_current_field,current_field,
field_index - set forms current page and field

SYNOPSIS
#include <form.h>

int set_form_page(FORM *form, int page);
int form_page(FORM *form);

int set_current_field(FORM *form, FIELD *field);
FIELD *current_field(FORM *form);

int field_index(FIELD *field);

DESCRIPTION
set_form_page sets the page number of form to page. form_page returns the
current page number of form.

set_current_field sets the current field of form to field. current field returns
a pointer to the current field of form.

f ield_index returns the index in the field pointer array of field.

RETURN VALUE

NOTES

form_page returns -1 on error.

current field returns NULL on error.

field_index returns -1 on error.

set_form_page and set_current_field return one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMEN'r
E_BAD_STATE

E_INVALID_FIELD
E_REQUEST_DENIED

- The function returned successfully.
- System error.
- An argument is incorrect.
- The routine was called from an initialization

or termination function.
- The field contents are invalid.
- The form driver request failed.

The header file form. h automatically includes the header files et i. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_ opts (3X) form_opts (3X)

NAME
form_opts: set_form_opts, form_opts_on, form_opts_off, form_opts -
forms option routines

SYNOPSIS
#include <form.h>

int set_form_opts(FORM *form, OPTIONS opts);
int form_opts_on(FORM *form, OPTIONS opts);
int form_opts_off(FORM *form, OPTIONS opts);
OPTIONS form_opts(FORM *form);

DESCRIPTION
set_form_opts turns on the named options for form and turns off all remaining
options. Options are boolean values which can be OR-ed together.

form_opts_on turns on the named options; no other options are changed.

form_opts_off turns off the named options; no other options are changed.

form_opts returns the options set for form.

Form Options:

O_NL_OVERLOAD
O_BS_OVERLOAD

Overload the REQ_NEW_LINE form driver request.
Overload the REQ_DEL_PREV form driver request.

RETURN VALUE

NOTES

set_form_opts, form_opts_on and form_opts_off return one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.

The header file form. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_new_page(3X) form_new_page (3X)

NAME
form_new_page: set_new_page, new_page - forms pagination

SYNOPSIS
#include <form.h>

int set_new_page(FIELD *field, int bool);

int new_page(FIELD *field);

DESCRIPTION
set_new_page marks field as the beginning of a new page on the form.

new_page returns a boolean value indicating whether or not field begins a new page
of the form.

RETURN VALUE

NOTES

new_page returns TRUE or FALSE.

set_new_page returns one of the following:

E_OK
E_CONNECTED
E_SYSTEM_ERROR

- The function returned successfully.
- The field is already connected to a form.
- System error.

The header file form. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_new(3X) form_new(3X)

NAME
form_new: new_form, free_form - create and destroy forms

SYNOPSIS
#include <form.h>

FORM *new_form(FIELD **fields);

int free_form(FORM *form);

DESCRIPTION
new_form creates a new form connected to the designated fields and returns a
pointer to the form.

free_form disconnects the form from its associated field pointer array and deallo­
cates the space for the form.

RETURN VALUE

NOTES

new_form always returns NULL on error. free_form returns one of the following:

E_OK - The function returned successfully.
E_BAD_ARGUMENT - An argument is incorrect.
E_POSTED - The form is posted.

The header file form.h automatically includes the header files eti .h and
curses.h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_hook (3X) form_hook (3X)

SEE ALSO
curses(3X), forms(3X)

Page 2 10/92

form_hook (3X) form_hook (3X)

NAME
form_hook: set_form_init, form_init, set_form_term,
set_field_init, field_init, set_field_term, field_term
application-specific routines for invocation by forms

form_ term,
assign

SYNOPSIS
#include <form.h>

int set_form_init(FORM *form, void (*func) (FORM*));
void (*)(FORM*) form_init(FORM *form);

int set_form_term(FORM *form, void (*func) (FORM*));
void (*)(FORM*) form_term(FORM *form);

int set_field_init(FORM *form, void (*func) (FORM*));
void (*)(FORM*) field_init(FORM *form);

int set_field_term(FORM *form, void (*func) (FORM *));
void (*)(FORM*) field_term(FORM *form);

DESCRIPTION
These routines allow the programmer to assign application specific routines to be
executed automatically at initialization and termination points in the forms appli­
cation. The user need not specify any application-defined initialization or termina­
tion routines at all, but they may be helpful for displaying messages or page
numbers and other chores.

set_form_init assigns an application-defined initialization function to be called
when the form is posted and just after a page change. form_ini t returns a pointer
to the initialization function, if any.

set_form_term assigns an application-defined function to be called when the form
is unposted and just before a page change. form_term returns a pointer to the
function, if any.

set_field_init assigns an application-defined function to be called when the
form is posted and just after the current field changes. field_ini t returns a
pointer to the function, if any.

set_field_term assigns an application-defined function to be called when the
form is unposted and just before the current field changes. field_term returns a
pointer to the function, if any.

RETURN VALUE

NOTES

10/92

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK
E_SYSTEM_ERROR

- The function returned successfully.
- System error.

The header file form. h automatically includes the header files eti. h and
curses .h.

Page 1

form_fieldtype (3X)

NOTES

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_CONNECTED

form_fieldtype (3X)

- The function returned successfully.
- System error.
- An argument is incorrect.
- Type is connected to one or more fields.

The header file form. h automatically includes the header files et i. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

Page 2 10/92

form _fieldtype (3X) form_fieldtype (3X)

NAME
form_fieldtype: new_fieldtype,free_fieldtype,set_fieldtype_arg,
set_fieldtype_choice, link_fieldtype - forms fieldtype routines

SYNOPSIS
#include <form.h>

FIELDTYPE *new_fieldtype(int (* field_check) (FIELD* char*),
int (* char_check) (int, char*));

int free_fieldtype(FIELDTYPE *fieldtype);

int set_fieldtype_arg(FIELDTYPE *fieldtype,
char*(* mak_arg) (va_list *),
char*(* copy_arg) (char*), void (* free_arg) (char*));

int set_fieldtype_choice(FIELDTYPE *fieldtype,
int (* next_choice) (FIELD*, char*),
int (* prev_choice) (FIELD*, char*));

FIELDTYPE *link_fieldtype(FIELDTYPE *typel, FIELDTYPE *type2);

DESCRIPTION
new_fieldtype creates a new field type. The application programmer must write
the function field_check, which validates the field value, and the function char _check,
which validates each character. free_fieldtype frees the space allocated for the
field type.

By associating function pointers with a field type, set_fieldtype_arg connects to
the field type additional arguments necessary for a set_field_type call. Function
mak_arg allocates a structure for the field specific parameters to set_field_type
and returns a pointer to the saved data. Function copy_arg duplicates the structure
created by make_arg. Function free_arg frees any storage allocated by make_arg or
copy_arg.

The form_driver requests REQ_NEXT_CHOICE and REQ_PREV_CHOICE let the user
request the next or previous value of a field type comprising an ordered set of
values. set_fieldtype_choice allows the application programmer to implement
these requests for the given field type. It associates with the given field type those
application-defined functions that return pointers to the next or previous choice for
the field.

link_fieldtype returns a pointer to the field type built from the two given types.
The constituent types may be any application-defined or pre-defined types.

RETURN VALUE

10/92

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

Page 1

form_field_validation (3X) form_field_validation (3X)

NAME
form_field_validation: set_field_type,field_type,field_arg-forms
field data type validation

SYNOPSIS
#include <form.h>

int set_field_typ8 (FIELD *field, FIELDTYPE *type, ...);

FIELDTYPE *field_type(FIELD *field);

char *field_arg(FIELD *field);

DESCRIPTION
set_field_type associates the specified field type with field. Certain field types
take additional arguments. TYPE_ALNUM, for instance, requires one, the minimum
width specification for the field. The other predefined field types are: TYPE_ALPHA,
TYPE_ENUM,TYPE_INTEGER,TYPE_NUMERIC,TYPE_REGEXP.

f ield_type returns a pointer to the field type of field. NULL is returned if no field
type is assigned.

field_arg returns a pointer to the field arguments associated with the field type of
field. NULL is returned if no field type is assigned.

RETURN VALUE

NOTES

field_type and field_arg return NULL on error.

set_field_type returns one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.

The header file form. h automatically includes the header files et i. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field_userptr (3X) form_field_userptr(3X)

NAME
form_field_userptr: set_field_userptr, field_userptr - associate applica­
tion data with forms

SYNOPSIS
#include <form.h>

int set_field_userptr(FIELD *field, char *ptr);
char *field_userptr(FIELD *field);

DESCRIPTION
Every field has an associated user pointer that can be used to store pertinent data.
set_field_userptr sets the user pointer ofjield. field_userptr returns the user
pointer of field.

RETURN VALUE

NOTES

field_userptr returns NULL on error.
lowing:

set_field_userptr returns one of the fol-

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.

The header file form. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field_opts (3X) form_field_opts (3X)

NAME
form_field_opts: set_field_opts,field_opts_on,field_opts_off,
field_opts - forms field option routines

SYNOPSIS
#include <form.h>

int set_field_opts(FIELD *field, OPTIONS opts);
int field_opts_on(FIELD *field, OPTIONS opts);
int field_opts_off(FIELD *field, OPTIONS opts);
OPTIONS field_opts(FIELD *field);

DESCRIPTION
set_field_opts turns on the named options of field and turns off all remaining
options. Options are boolean values that can be OR-ed together.

field_opts_on turns on the named options; no other options are changed.

field_opts_off turns off the named options; no other options are changed.

f ield_opt s returns the options set for field.

Field Options:

O_VISIBLE
O_ACTIVE
O_PUBLIC
O_EDIT
O_WRAP
O_BLANK

O_AUTOSKIP
O_NULLOK
O_STATIC
O_PASSOK

The field is displayed.
The field is visited during processing.
The field contents are displayed as data is entered.
The field can be edited.
Words not fitting on a line are wrapped to the next line.
The whole field is cleared if a character is entered in the
first position.
Skip to the next field when the current field becomes full.
A blank field is considered valid.
The field buffers are fixed in size.
Validate field only if modified by user.

RETURN VALUE

NOTES

set_field_opts, field_opts_on and field_opts_off return one of the follow­
ing:

E_OK
E_SYSTEM_ERROR
E_CURRENT

- The function returned successfully.
- System error.
- The field is the current field.

The header file form. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field_new (3X) form_field_new(3X)

NAME
form_field_new: new_field, dup_field, link_field, free_field, - create
and destroy forms fields

SYNOPSIS
#include <form.h>

FIELD *new_field(int r, int c, int frow, int fcol,
int nrow, int ncol);

FIELD *dup_field(FIELD *field, int frow, int fcol);

FIELD *link_field(FIELD *field, int frow, int fcol);

int free_field(FIELD *field);

DESCRIPTION
new_field creates a new field with r rows and c columns, starting at frow, Jcol, in
the subwindow of a form. nrow is the number of off-screen rows and nbuf is the
number of additional working buffers. This routine returns a pointer to the new
field.

dup_field duplicates field at the specified location. All field attributes are dupli­
cated, including the current contents of the field buffers.

link_field also duplicates field at the specified location. However, unlike
dup_field, the new field shares the field buffers with the original field. After crea­
tion, the attributes of the new field can be changed without affecting the original
field.

free_field frees the storage allocated for field.

RETURN VALUE

NOTES

Routines that return pointers return NULL on error. free_field returns one of the
following:

E_OK
E_CONNECTED
E_SYSTEM_ERROR
E_BAD_ARGUMENT

- The function returned successfully.
- The field is already connected to a form.
- System error.
- An argument is incorrect.

The header file form.h automatically includes the header files eti .h and
curses.h.

SEE ALSO
forms(3X)

10/92 Page 1

form_field_just (3X) form_field_just (3X)

NAME
torm_field_just: set_field_just, field_just - format the general appear­
ance of forms

SYNOPSIS
#include <form.h>

int set_field_just(FIELD *field, int justification);

int field_just(FIELD *field);

DESCRIPTION
set_f ield_just sets the justification for field. Justification may be one of:

NO_JUSTIFICATION,JUSTIFY_RIGHT,JUSTIFY_LEFT,orJUSTIFY_CENTER.

The field justification will be ignored if field is a dynamic field.

field_just returns the type of justification assigned to field.

RETURN VALUE

NOTES

field_just returns the one of:
NO_JUSTIFICATION,JUSTIFY_RIGHT,JUSTIFY_LEFT,orJUSTIFY_CENTEH.

set_field_just returns one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.

The header file form. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field_info (3X) form_field_info (3X)

NAME
form_field_info: field_info, dynamic_field_info - get forms field charac­
teristics

SYNOPSIS
#include <form.h>

int field_info(FIELD *field, int *rows, int *cols,
int *frow, int *fcol, int *nrow, int *nbuf);

int dynamic_field_info(FIELD *field, int *drows, int *dcols,
int *max);

DESCRIPTION
field_info returns the size, position, and other named field characteristics, as
defined in the original call to new_field, to the locations pointed to by the argu­
ments rows, cols,frow,fcol, nrow, and nbuf.

dynamic_field_info returns the actual size of the field in the pointer arguments
drows, dcols and returns the maximum growth allowed for field in max. If no max­
imum growth limit is specified for field, max will contain 0. A field can be made
dynamic by turning off the field option O_STATIC.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK - The function returned successfully.
E SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.

The header file form. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field_buffer(3X) form _field_ buffer (3X)

NAME
form_field_buffer: sPt_field_buffer,field_buffer,set_field_sLatus,
field_status, set_max_Lield - set and get forms field attributes

SYNOPSIS
#include <form.h>

int set_field_buffer(FIELD *field, int buf, char *value);
char *field_buffer(FIELD *field, int buf);

int set_field_status(FIELD *field, int status);
int field_status(FIELD *field);

int set_max_field(FIELD *field, int max);

DESCRIPTION
set_field_buffer sets buffer buf of field to value. Buffer 0 stores the displayed
contents of the field. Buffers other than 0 are application specific and not used by
the forms library routines. f ield_buffer returns the value of field buffer buf.

Every field has an associated status flag that is set whenever the contents of field
buffer 0 changes. set_field_status sets the status flag of field to status.
field_status returns the status of field.

set_max_field sets a maximum growth on a dynamic field, or if max=O turns off
any maximum growth.

RETURN VALUE

NOTES

field_buffer returns NULL on error.

field_status returns TRUE or FALSE.

set_field_buffer, set_field_status and set_max_field return one of the
following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT

- The function returned successfully.
- System error.
- An argument is incorrect.

The header file form.h automatically includes the header files eti.h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field_attributes (3X) form_field_attributes (3X)

NAME
fonn_field_attributes: set_field_fore, field_fore, set_field_back,
field_back, set_field_pad, field_pad - format the general display attributes of
fonns

SYNOPSIS
#include <fonn.h>

int set_field_fore(FIELD *field, chtype attr);
chtype field_fore(FIELD *field);

int set_field_back(FIELD *field, chtype attr);
chtype field_back(FIELD *field);

int set_field_pad(FIELD *field, int pad);
int field_pad(FIELD *field);

DESCRIPTION
set_field_fore sets the foreground attribute of field. The foreground attribute is
the low-level curses display attribute used to display the field contents.
field_fore returns the foreground attribute of field.

set_field_back sets the background attribute of field. The background attribute
is the low-level curses display attribute used to display the extent of the field.
f ield_back returns the background attribute of field.

set_field_pad sets the pad character of field to pad. The pad character is the char­
acter used to fill within the field. f ield_pad returns the pad character of field.

RETURN VALUE

NOTES

field_fore, field_back and field_pad return default values if field is NULL. If
field is not NULL and is not a valid FIELD pointer, the return value from these rou­
tines is undefined.

set_field_fore, set_field_back and set_field_pad return one of the follow­
ing:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT

- The function returned successfully.
- System error.
- An argument is incorrect.

The header file fonn. h automatically includes the header files eti . h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_field (3X) form_field (3X)

NAME
form_field: set_form_fields,form_fields,field_count,move_field-con­
nect fields to forms

SYNOPSIS
#include <form.h>

int set_form_fields(FORM *form, FIELD **field);

FIELD **form_fields(FORM *form);

int field_count(FORM *form);

int move_field(FIELD *field, int frow, int fcol);

DESCRIPTION
set_form_fields changes the fields connected to form to fields. The original fields
are disconnected.

form_f ields returns a pointer to the field pointer array connected to form.

field_count returns the number of fields connected to form.

move_field moves the disconnected field to the location frow, fcol in the forms
subwindow.

RETURN VALUE

NOTES

form_f ields returns NULL on error.

f ield_count returns -1 on error.

set_form_fields and move_field return one of the following:

E_OK
E_CONNECTED
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_POSTED

- The function returned successfully.
- The field is already connected to a form.
- System error.
- An argument is incorrect.
- The form is posted.

The header file form.h automatically includes the header files eti .h and
curses .h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_driver(3X) form_driver (3X)

SEE ALSO
curses(3X), fonns(3X)

10/92 Page 3

form_driver(3X) form_ driver (3X)

REQ_UP_CHAR
REQ_DOWN_CHAR

REQ_NEW_LINE
REQ_INS_CHAR
REQ_INS_LINE
REQ_DEL_CHAR
REQ_DEL_PREV
REQ_DEL_LINE
REQ_DEL_WORD
REQ_CLR_EOL
REQ_CLR_EOF
REQ_CLR_FIELD
REQ_OVL_MODE
REQ_INS_MODE

REQ_SCR_FLINE
REQ_SCR_BLINE
REQ_SCR_FPAGE
REQ_SCR_BPAGE
REQ_SCR_FHPAGE
REQ_SCR_BHPAGE

REQ_SCR_FCHAR
REQ_SCR_BCHAR
REQ_SCR_HFLINE
REQ_SCR_HBLINE
REQ_SCR_HFHALF
REQ_SCR_HBHALF

REQ_VALIDATION
REQ_PREV_CHOICE
REQ_NEXT_CHOICE

Move up in the field.
Move down in the field.

Insert/overlay a new line.
Insert the blank character at the cursor.
Insert a blank line at the cursor.
Delete the character at the cursor.
Delete the character before the cursor.
Delete the line at the cursor.
Delete the word at the cursor.
Clear to the end of the line.
Clear to the end of the field.
Clear the entire field.
Enter overlay mode.
Enter insert mode.

Scroll the field forward a line.
Scroll the field backward a line.
Scroll the field forward a page.
Scroll the field backward a page.
Scroll the field forward half a page.
Scroll the field backward half a page.

Horizontal scroll forward a character.
Horizontal scroll backward a character.
Horizontal scroll forward a line.
Horizontal scroll backward a line.
Horizontal scroll forward half a line.
Horizontal scroll backward half a line.

Validate field.
Display the previous field choice.
Display the next field choice.

RETURN VALUE

NOTES

Page 2

form_dri ver returns one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_NOT_POSTED
E_INVALID_FIELD
E_BAD_STATE

E_REQUEST_DENIED
E_UNKNOWN_COMMAND

The function returned successfully.
System error.
An argument is incorrect.
The form is not posted.
The field contents are invalid.
The routine was called from an initialization or termi­
nation function.
The form driver request failed.
An unknown request was passed to the the form
driver.

The header file form. h automatically includes the header files eti. h and
curses.h.

10/92

form_driver(3X) form_driver(3X)

NAME
form_dri ver - command processor for the forms subsystem

SYNOPSIS
#include <form.h>

int form_driver(FORM *form, int c);

DESCRIPTION

10/92

form_driver is the workhorse of the forms subsystem; it checks to determine
whether the character c is a forms request or data. If it is a request, the form driver
executes the request and reports the result. If it is data (a printable ASCII charac­
ter), it enters the data into the current position in the current field. If it is not recog­
nized, the form driver assumes it is an application-defined command and returns
E_UNKNOWN_COMMAND. Application defined commands should be defined relative
to MAX_COMMAND, the maximum value of a request listed below.

Form driver requests:

REQ_NEXT_PAGE
REQ_PREV_PAGE
REQ_FIRST_PAGE
REQ_LAST_PAGE

REQ_NEXT_FIELD
REQ_PREV_FIELD
REQ_FIRST_FIELD
REQ_LAST_FIELD
REQ_SNEXT_FIELD
REQ_SPREV_FIELD
REQ_SFIRST_FIELD
REQ_SLAST_FIELD
REQ_LEFT_FIELD
REQ_RIGHT_FIELD
REQ_UP_FIELD
REQ_DOWN_FIELD

REQ_NEXT_CHAR
REQ_PREV_CHAR
REQ_NEXT_LINE
REQ_PREV_LINE
REQ_NEXT_WORD
REQ_PREV_WORD
REQ_BEG_FIELD
REQ_END_FIELD
REQ_BEG_LINE
REQ_END_LINE
REQ_LEFT_CHAR
REQ_RIGHT_CHAR

Move to the next page.
Move to the previous page.
Move to the first page.
Move to the last page.

Move to the next field.
Move to the previous field.
Move to the first field.
Move to the last field.
Move to the sorted next field.
Move to the sorted prev field.
Move to the sorted first field.
Move to the sorted last field.
Move left to field.
Move right to field.
Move up to field.
Move down to field.

Move to the next character in the field.
Move to the previous character in the field.
Move to the next line in the field.
Move to the previous line in the field.
Move to the next word in the field.
Move to the previous word in the field.
Move to the first char in the field.
Move after the last char in the field.
Move to the beginning of the line.
Move after the last char in the line.
Move left in the field.
Move right in the field.

Page 1

form_data (3X) form_data (3X)

NAME
form_data: data_ahead, data_behind - tell if forms field has off-screen data
ahead or behind

SYNOPSIS
#include <form.h>

int data_ahead(FORM *form);

int data_behind(FORM *form);

DESCRIPTION

NOTES

data_ahead returns TRUE (1) if the current field has more off-screen data ahead;
otherwise it returns FALSE (0).

data_behind returns TRUE (1) if the current field has more off-screen data behind;
otherwise it returns FALSE (0).

The header file form.h automatically includes the header files eti .h and
curses.h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

form_cursor(3X) form_cursor(3X)

NAME
form_cursor: pos_form_cursor - position forms window cursor

SYNOPSIS
#include <form.h>

int pos_form_cursor(FORM *form);

DESCRIPTION
pos_form_cursor moves the form window cursor to the location required by the
form driver to resume form processing. This may be needed after the application
calls a curses library I/0 routine.

RETURN VALUE

NOTES

pos_form_cursor returns one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_NOT_POSTED - The form is not posted.

The header file form.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3X), forms(3X)

10/92 Page 1

fork (2) fork (2)

The child process's tms structure is cleared: tms_utime, stime, cutime,
and cs time are set to 0 [see times(2)].

The time left until an alarm clock signal is reset to 0.

The set of signals pending for the child process is initialized to the empty
set.

Record locks set by the parent process are not inherited by the child process [see
fcnt1(2)].

fork will fail and no child process will be created if one or more of the following
are true:

EAGAIN The system imposed limit on the total number of processes under
execution system wide {PROC_MAX} or by a single user ID
{CHILD_MAX} would be exceeded, or the system lacked the
necessary resources to create another process."

SEE ALSO
alarm(2), exec(2), fcntl(2), getrlimi t(2), nice(2), plock(2), priocntl(2),
ptrace(2), semop(2), shmop(2), signal(2), times(2), umask(2), wai t(2), system(3S)

DIAGNOSTICS

Page 2

Upon successful completion, fork returns a value of O to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of (pid_t) -1 is returned to the parent process, no child process is created, and
errno is set to indicate the error.

10/92

fork(2) fork(2)

NAME
fork- create a new process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

DESCRIPTION

10/92

fork causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

real user ID, real group ID, effective user ID, effective group ID
environment
close-on-exec flag [see exec(2)]
signal handling settings (i.e., SIG_DFL, SIG_IGN, SIG_HOLD, function
address)
supplementary group IDs
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value [see nice(2)]
scheduler class [see priocnt1(2)]
all attached shared memory segments [see shmop(2)]
process group ID
session ID [see exit(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
resource limits [see getrlirnit(2)]
controlling terminal

Scheduling priority and any per-process scheduling parameters that are specific to
a given scheduling class may or may not be inherited according to the policy of that
particular class [see priocntl(2)].

The child process differs from the parent process in the following ways:

The child process has a unique process ID which does not match any active
process group ID.

The child process has a different parent process ID (i.e., the process ID of the
parent process).

The child process has its own copy of the parent's file descriptors and direc­
tory streams. Each of the child's file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

All sernadj values are cleared [see sernop(2)].

Process locks, text locks and data locks are not inherited by the child [see
plock(2)].

Page 1

fopen (3S) (BSD Compatibility Package) fopen (3S)

SEE ALSO
open(2), pipe(2), fclose(3S), fseek(3S), fopen(3S), malloc(3C).

RETURN VALUE

NOTES

Page 2

fopen, freopen, and fdopen return a NULL pointer on failure.

fopen differs from the library routine of the same name in the base system only in
interface.

In order to support the same number of open files that the system does, fopen must
allocate additional memory for data structures using calloc [see malloc(3)] after
64 files have been opened. This confuses some programs which use their own
memory allocators.

10/92

fopen(3S) (BSD Compatibility Package) fopen (35)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
/usr /ucb/ cc [flag ...]file . ..

#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
int fildes;
char *type;

DESCRIPTION

10/92

fopen opens the file named by filename and associates a stream with it. If the open
succeeds, fopen returns a pointer to be used to identify the stream in subsequent
operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append: open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at EOF

freopen opens the file named by filename and associates the stream pointed to by
stream with it. The type argument is used just as in fopen. The original stream is
closed, regardless of whether the open ultimately succeeds. If the open succeeds,
freopen returns the original value of stream.

freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

fdopen associates a stream with the file descriptor fildes. File descriptors are
obtained from calls like open, dup, creat, or pipe(2), which open files but do not
return streams. Streams are necessary input for many of the Section 3S library rou­
tines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the result­
ing stream. However, output may not be directly followed by input without an
intervening fseek or rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation which encounters
EOF.

Page 1

fopen (35) (C Development Set) fopen (35)

When a file is opened for append (i.e., when type is "a", "ab", "a+", or "ab+"), it is
impossible to overwrite information already in the file. fseek may be used to repo­
sition the file pointer to any position in the file, but when output is written to the
file, the current file pointer is disregarded. All output is written at the end of the
file and causes the file pointer to be repositioned at the end of the output. If two
separate processes open the same file for append, each process may write freely to
the file without fear of destroying output being written by the other. The output
from the two processes will be intermixed in the file in the order in which it is writ­
ten.

When opened, a stream is fully buffered if and only if it can be determined not to
refer to an interactive device. The error and end-of-file indicators are cleared for the
stream.

SEE ALSO
close(2), creat(2), dup(2), open(2), pipe(2), write(2), fclose(3S), fseek(3S),
setbuf(3S), stdio(3S)

DIAGNOSTICS

Page 2

The functions fopen and freopen return a null pointer if path cannot be accessed,
or if type is invalid, or if the file cannot be opened.

The function fdopen returns a null pointer if fildes is not an open file descriptor, or
if type is invalid, or if the file cannot be opened.

The functions fopen or fdopen may fail and not set errno if there are no free
stdio streams.

File descriptors used by fdopen must be less than 255.

10/92

fopen (3S) (C Development Set) fopen (3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (const char *filename, const char *type) ;

FILE *freopen (const char *filename, const char *type, FILE
*stream);

FILE *fdopen (int fildes, const char *type);

DESCRIPTION

10/92

fopen opens the file named by filename and associates a stream with it. fopen
returns a pointer to the FILE structure associated with the stream.

filename points to a character string that contains the name of the file to be opened.

type is a character string beginning with one of the following sequences:

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing
11 r+ 11 , 11 r+b" or "rb+"

open for update (reading and writing)
11 w+", "w+b 11 or "wb+ 11

truncate or create for update
11 a+ 11 , 11 a+b" or "ab+"

append; open or create for update at end-of-file

The "b" is ignored in the above types. The "b" exists to distinguish binary files
from text files. However, there is no distinction between these types of files on a
UNIX system.

freopen substitutes the named file in place of the open stream. A flush is first
attempted, and then the original stream is closed, regardless of whether the open
ultimately succeeds. Failure to flush or close stream successfully is ignored. freo­
pen returns a pointer to the FILE structure associated with stream.

freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files. stderr is by default unbuffered, but the use of
freopen will cause it to become buffered or line-buffered.

fdopen associates a stream with a file descriptor. File descriptors are obtained from
open, dup, creat, or pipe, which open files but do not return pointers to a FILE
structure stream. Streams are necessary input for almost all of the Section 3S library
routines. The type of stream must agree with the mode of the open file. The file
position indicator associated with stream is set to the position indicated by the file
offset associated with fildes.

When a file is opened for update, both input and output may be done on the result­
ing stream. However, output may not be directly followed by input without an
intervening fflush, fseek, fsetpos, or rewind, and input may not be directly fol­
lowed by output without an intervening fseek, fsetpos, or rewind, or an input
operation that encounters end-of-file.

Page 1

fmtmsg(3C) (Essential Utilities) fmtmsg(3C)

DIAGNOSTICS
The exit codes for fmtmsg are the following:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on the standard error
stream, but otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

FUTURE DIRECTIONS

10/92

A slightly different standard error message format and a new developer interface,
pfmt, is being introduced as the replacement for fmtmsg. A similar interface, lfmt,
is also being introduced for producing a standard format message and forwarding
messages to the console and/or to the system message logging and monitoring
facilities. fmtmsg will be removed at a future time.

Page 5

fmtmsg(3C) (Essential Utilities) fmtmsg (3C)

Argument Type Null-Value Identifier
label char* (char*) NULL MM_NULLLBL
severity int 0 MM_NULLSEV
class long OL MM_NULLMC
text char* (char*) NULL MM_NULLTXT
action char* (char*) NULL MM_NULLACT
tag char* (char*) NULL MM_NULLTAG

Another means of systematically omitting a component is by omitting the com­
ponent keyword(s) when defining the MSGVERB environment variable (see the
"Environment Variables" section).

EXAMPLES
Example 1:

The following example of fmtmsg:

fmtmsg (MM_PRINT' "UX: cat"' MM_ERROR,
"refer to manual", "UX:cat:OOl")

"invalid syntax",

produces a complete message in the standard message format:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual

Example 2:

UX:cat:OOl

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg produces:

ERROR: invalid syntax
TO FIX: refer to manual

Example 3:

When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following call to fmtmsg:

fmtmsg(MM_UTIL I MM_PRINT, "UX:cat", 5, "invalid syntax",
"refer to manual", "UX: cat: 001")

produces:

UX:cat: NOTE: invalid syntax
TO FIX: refer to manual UX:cat:OOl

SEE ALSO

Page 4

addseverity(3C), gettxt(3C), printf(3S)
fmtmsg(l)

10/92

fmtmsg(3C) (Essential Utilities) fmtmsg(3C)

MSGVERB affects only which components are selected for display to the standard
error stream. All message components are included in console messages.

SEV _LEVEL defines severity levels and associates print strings with them for use by
fmtmsg. The standard severity levels shown below cannot be modified. Additional
severity levels can also be defined, redefined, and removed using addseverity [see
addseverity(3C)]. If the same severity level is defined by both SEV_LEVEL and
addseverity, the definition by addseverity is controlling.

0 (no severity is used)
1 HALT
2 ERROR
3 WARNING

4 INFO

SEV _LEVEL can be set as follows:

SEV _LEVEL= [description [: description [: ...]]]
export SEV_LEVEL

description is a comma-separated list containing three fields:

description=severity_keyword, level, printstring

severity_keyword is a character string that is used as the keyword on the -s severity
option to the fmtmsg command. (This field is not used by the fmtmsg function.)

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or
4, which are reserved for the standard severity levels). If the keyword
severity_keyword is used, level is the severity value passed on to the fmtmsg function.

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If a description in the colon list is not a three-field comma list, or, if the second field
of a comma list does not evaluate to a positive integer, that description in the colon
list is ignored.

The first time fmtmsg is called, it examines the SEV _LEVEL environment variable, if
defined, to see whether the environment expands the levels of severity beyond the
five standard levels and those defined using addseverity. The values accepted on
the initial call are saved for future calls.

Use in Applications

10/92

One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that com­
ponent.

The table below indicates the null values and identifiers for fmtmsg arguments.

Page 3

fmtmsg(3C) (Essential Utilities) fmtmsg(3C)

severity
Indicates the seriousness of the condition. Identifiers for the standard levels
of severity are:

MM_HALT indicates that the application has encountered a severe fault
and is halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces
the print string ERROR.

MM_WARNING indicates a condition out of the ordinary that might be a
problem and should be watched. Produces the print string WARNING.

MM_INFO provides information about a condition that is not in error. Pro­
duces the print string INFO.

MM_NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseveri ty routine.

text Describes the condition that produced the message. The text string is not
limited to a specific size.

action Describes the first step to be taken in the error recovery process. frntrnsg pre­
cedes each action string with the prefix: TO FIX:. The action string is not
limited to a specific size.

tag An identifier which references on-line documentation for the message. Sug­
gested usage is that tag includes the label and a unique identifying number.
A sample tag is UX: cat: 146.

Environment Variables

Page 2

There are two environment variables that control the behavior of frntrnsg: MSGVERB
and SEV _LEVEL.

MSGVERB tells frntrnsg which message components it is to select when writing mes­
sages to stderr. The value of MSGVERB is a colon-separated list of optional key­
words. MSGVERB can be set as follows:

MSGVERB=[keyword[: keyword[: ...]]]
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB contains
a keyword for a component and the component's value is not the component's null
value, frntrnsg includes that component in the message when writing the message
to stderr. If MSGVERB does not include a keyword for a message component, that
component is not included in the display of the message. The keywords may
appear in any order. If MSGVERB is not defined, if its value is the null-string, if its
value is not of the correct format, or if it contains keywords other than the valid
ones listed above, frntrnsg selects all components.

The first time frntrnsg is called, it examines the MSGVERB environment variable to
see which message components it is to select when generating a message to write to
the standard error stream, stderr. The values accepted on the initial call are saved
for future calls.

10/92

tmtmsg(3C) (Essential Utilities) fmtmsg(3C)

NAME
frntrnsg - display a message on stderr or system console

SYNOPSIS
#include <frntrnsg.h>

int frntrnsg(long classification, canst char *label, int severity,
canst char *text, canst char *action, canst char *tag);

DESCRIPTION
Based on a message's classification component, frntrnsg writes a formatted message
to stderr, to the console, or to both.

frntrnsg can be used instead of the traditional printf interface to display messages
to stderr. frntrnsg, in conjunction with gettxt, provides a simple interface for
producing language-independent applications.

A formatted message consists of up to five standard components as defined below.
The component, classification, is not part of the standard message displayed to the
user, but rather defines the source of the message and directs the display of the for­
matted message.

classification
Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in combi­
nation by ORing the values together with a single identifier from a different
subclass. Two or more identifiers from the same subclass should not be used
together, with the exception of identifiers from the display subclass. (Both
display subclass identifiers may be used so that messages can be displayed
to both stderr and the system console).

"Major classifications" identify the source of the condition. Identifiers
are: MM_HARD (hardware), MM_SOFT (software), and MM_FIRM (firmware).

"Message source subclassifications" identify the type of software in
which the problem is spotted. Identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS (operating system).

"Display subclassifications" indicate where the message is to be
displayed. Identifiers are: MM_PRINT to display the message on the stan­
dard error stream, MM_CONSOLE to display the message on the system
console. Neither, either, or both identifiers may be used.

"Status subclassifications" indicate whether the application will recover
from the condition. Identifiers are: MM_RECOVER (recoverable) and
MM_NRECOV (non-recoverable).

An additional identifier, MM_NULLMC, indicates that no classification com­
ponent is supplied for the message.

label Identifies the source of the message. The format of this component is two
fields separated by a colon. The first field is up to 10 characters long; the
second is up to 14 characters. Suggested usage is that label identifies the
package in which the application resides as well as the program or applica­
tion name. For example, the label UX: cat indicates the UNIX System V pack­
age and the cat application.

10/92 Page 1

floating_to_decimal (3) (BSD Compatibility Package) floating_to_decimal (3)

If pm->df==JixedJorm and pm->ndigits < 0, then pm->ds always contains -pm­
>ndigits trailing zeros; in other words, rounding occurs -pm->ndigits to the left of
the decimal point, but the digits rounded away are retained as zeros. The total
number of digits required is in pd->ndigits. pd->exponent always gets 0. Thus if *px
== 12.34 and pm->ndigits == -1, then pd->ds gets 10, pd->exponent gets 0, and pd­
>ndigits gets 2.

pd->more is not used.

econvert(3), fconvert, gconvert, printf(3S), and sprintf, all use
double_to_decimal.

SEE ALSO
econvert(3), printf(3S).

Page 2 10/92

floating_to_decimal (3) (BSD Compatibility Package) floating_to_decimal (3)

NAME
floating_to_decimal: single_to_decimal,double_to_decimal,
extended_to_decimal - convert floating-point value to decimal record

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <floatingpoint.h>

void single_to_decimal(px, pm, pd, ps)
single *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

void double_to_decimal(px, pm, pd, ps)
double *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

void extended_to_decimal(px, pm, pd, ps)
extended *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

DESCRIPTION

10/92

The floating_to_decimal functions convert the floating-point value at *px into a
decimal record at *pd, observing the modes specified in *pm and setting exceptions
in *ps. If there are no IEEE exceptions, *ps will be zero.

If *px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set. Otherwise
pd->exponent and pd->ds are also set so that

(pd->sign)*(pd->ds)*lO**(pd->exponent)

is a correctly rounded approximation to *px. pd->ds has at least one and no more
than DECIMAL_STRING_LENGTH -1 significant digits because one character is used
to terminate the string with a NULL.

pd->ds is correctly rounded according to the IEEE rounding modes in pm->rd. *ps
has fp_inexact set if the result was inexact, and has fp_overflow set if the string result
does not fit in pd->ds because of the limitation DECIMAL_STRING_LENGTH.

If pm->df==floatingJorm, then pd->ds always contains pm->ndigits significant digits.
Thus if *px == 12.34 and pm->ndigits == 8, then pd->ds will contain 12340000 and
pd->exponent will contain -6.

If pm->df==fixedJorm and pm->ndigits >= 0, then pd->ds always contains pm­
>ndigits after the point and as many digits as necessary before the point. Since the
latter is not known in advance, the total number of digits required is returned in
pd->ndigits; if that number >= DECIMAL_STRING_LENGTH, then ds is undefined. pd­
>exponent always gets -pm->ndigits. Thus if *px == 12.34 and pm->ndigits == 1, then
pd->ds gets 123, pd->exponent gets -1, and pd->ndigits gets 3.

Page 1

floor(3M) (Math Libraries) floor(3M)

NAME
floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint,
remainder - floor, ceiling, remainder, absolute value functions

SYNOPSIS
cc [flag .. .]file ... -lm [library ...]

#include <math.h>

double floor (double x) ;

float floorf (float x);

double ceil (double x);

float ceilf (float x);

double copysign (double x, double y) ;

double fmod (double x, double y);

float fmodf (float x, float y);

double fabs (double x);

float fabsf (float x);

double rint (double x);

double remainder (double x, double y);

DESCRIPTION
floor and floorf return the largest integer not greater than x. ceil and ceilf
return the smallest integer not less than x.

copys ign returns x but with the sign of y.

fmod and fmodf return the floating point remainder of the division of x by y. More
precisely, they return the number f with the same sign as x, such that x = iy + f for
some integer i, and If I < I y I .
fabs and fabsf return the absolute value of x, I x I .

rint returns the nearest integer value to its floating point argument x as a double­
precision floating point number. The returned value is rounded according to the
currently set machine rounding mode. If round-to-nearest (the default mode) is set
and the difference between the function argument and the rounded result is exactly
0.5, then the result will be rounded to the nearest even integer.

remainder returns the floating point remainder of the division of x by y. More pre­
cisely, it returns the valuer= x - yn, where n is the integer nearest the exact value
x!y. Whenever I n - x!y I = Yi, then n is even.

SEE ALSO
abs(3C), matherr(3M)

DIAGNOSTICS

10/92

fmod and fmodf return x when y is 0 and set errno to EDOM. remainder returns
NaN when y is 0 and sets errno to EDOM. In both cases, except in compilation modes
-Xa or -Xe, a message indicating DOMAIN error is printed on the standard error out­
put. Except under -Xe, these error-handling procedures may be changed with the
function matherr.

Page 1

floatingpoint (3) (BSD Compatibility Package) floatingpoint (3)

FILES
/usr/include/sys/ieeefp.h
/usr/include/fp.h
/usr/ucblib/libucb.a

SEE ALSO

10/92

decimal_to_floating(3), econvert(3), floating_to_decimal(3),
ieee_handler(3M), sigfpe(3)

abort(3), strtod(3).

Page 3

floatingpoint (3) (BSD Compatibility Package) floating point (3)

Page 2

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions.
Each exception is given a bit number.

fp_exception_field_type The type intended to hold at least
N_IEEE_EXCEPTION bits corresponding to the IEEE
exceptions numbered by fp_exception_type.
Thus fp_inexact corresponds to the least
significant bit and fp_invalid to the fifth least
significant bit. Note: some operations may set more
than one exception.

fp_accrued_exceptions The IEEE exceptions between the time this global
variable was last cleared, and the last time a func­
tion was called to update the variable by obtaining
the hardware state.

ieee_handlers An array of user-specifiable signal handlers for use
by the standard SIGFPE handler for IEEE
arithmetic-related SIGFPE codes. Since IEEE trap­
ping modes correspond to hardware modes, ele­
ments of this array should only be modified with a
function like ieee_handler(3M) that performs the
appropriate hardware mode update. If no
sigfpe_handler has been declared for a particular
IEEE-related SIGFPE code, then the related
ieee_handlers will be invoked.

IEEE Formats and Classification:

single; extended

fp_class_type

IEEE Base Conversion:

Definitions of IEEE formats.

An enumeration of the various classes of IEEE
values and symbols.

The functions described under floating_to_decimal(3) and
decimal_to_floating(3) not only satisfy the IEEE Standard, but also the stricter
requirements of correct rounding for all arguments.

DECIMAL_STRING_LENGTH The length of a decimal_string.

decimal_string

decimal_record

decimal form

decimal_mode

decimal_string_form

The digit buffer in a decimal_record.

The canonical form for representing an unpacked
decimal floating-point number.

The type used to specify fixed or floating binary to
decimal conversion.

A struct that contains specifications for conversion
between binary and decimal.

An enumeration of possible valid character strings
representing floating-point numbers, infinities, or
NaNs.

10/92

floatingpoint(3) (BSD Compatibility Package) floatingpoint (3)

NAME
floatingpoint - IEEE floating point definitions

SYNOPSIS
/usr /ucb/ cc [flag ...]file . ..
#include <sys/ieeefp.h>
#include <fp.h>

DESCRIPTION

10/92

This file defines constants, types, variables, and functions used to implement stan­
dard floating point according to ANSI/IEEE Std 754-1985. The variables and func­
tions are implemented in libucb.a. The included file sys/ieeefp.h defines cer­
tain types of interest to the kernel.

IEEE Rounding Modes:

fp_direction_type

fp_direction

fp_precision_type

fp_precision

SIGFPE Handling:

sigfpe_code_type

sigfpe_handler_type

SIGFPE_DEFAULT

SIGFPE_IGNORE

SIGFPE_ABORT

IEEE Exception Handling:

N_IEEE_EXCEPTION

The type of the IEEE rounding direction mode.
Note: the order of enumeration varies according to
hardware.

The IEEE rounding direction mode currently in
force. This is a global variable that is intended to
reflect the hardware state, so it should only be writ­
ten indirectly through a function that also sets the
hardware state.

The type of the IEEE rounding precision mode,
which only applies on systems that support
extended precision.

The IEEE rounding precision mode currently in
force. This is a global variable that is intended to
reflect the hardware state on systems with extended
precision, so it should only be written indirectly.

The type of a SIGFPE code.

The type of a user-definable SIGFPE exception
handler called to handle a particular SIGFPE code.

A macro indicating the default SIGFPE exception
handling, namely to perform the exception han­
dling specified by calls to ieee_handler(3M), if
any, and otherwise to dump core using abort(3).

A macro indicating an alternate SIGFPE exception
handling, namely to ignore and continue execution.

A macro indicating an alternate SIGFPE exception
handling, namely to abort with a core dump.

The number of distinct IEEE floating-point excep­
tions.

Page 1

ffs(3C)

NAME
ffs - find first set bit

SYNOPSIS
#include <string.h>

int ffs(const inti);

DESCRIPTION

(C Development Set) ffs(3C)

ffs finds the first bit set in the argument passed it and returns the index of that bit.
Bits are numbered starting at 1 from the low order bit. A return value of zero indi­
cates that the value passed is zero.

10/92 Page 1

ferror(3S) (C Development Set) ferror(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (FILE *stream);

int feof (FILE *stream) ;

void clearerr (FILE *stream);

int fileno (FILE *stream);

DESCRIPTION
ferror returns non-zero when an error has previously occurred reading from or
writing to the named stream [see intro(3)], otherwise zero.

feof returns non-zero when EOF has previously been detected reading the named
input stream, otherwise zero.

clearerr resets the error indicator and EOF indicator to zero on the named stream.

fileno returns the integer file descriptor associated with the named stream [see
open(2)].

SEE ALSO
open(2), fopen(3S), stdio(3S)

10/92 Page 1

fdetach (3C) fdetach (3C)

NAME
fdetach - detach a name from a STREAMS-based file descriptor

SYNOPSIS
int fdetach(const char *path);

DESCRIPTION
The fdetach routine detaches a STREAMS-based file descriptor from a name in the
file system. path is the path name of the object in the file system name space, which
was previously attached [see fattach(3C)]. The user must be the owner of the file
or a user with the appropriate privileges. All subsequent operations on path will
operate on the file system node and not on the STREAMS file. The permissions and
status of the node are restored to the state the node was in before the STREAMS file
was attached to it.

RETURN VALUE
If successful, fdetach returns O; otherwise it returns -1 and sets errno to indicate
an error.

ERRORS
Under the following conditions, the function fdetach fails and sets errno to:

EPERM The effective user ID is not the owner of path or is not a user with
appropriate permissions.

ENOTDIR

ENO ENT

EINVAL

A component of the path prefix is not a directory.

path does not exist.

path is not attached to a STREAMS file.

ENAMETOOLONG

ELOOP

The size of path exceeds { PATH_MAX}, or a path name component is
longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

Too many symbolic links were encountered in translating path.

SEE ALSO
fdetach(lM), fattach(3C), strearnio(7).

10/92 Page 1

.J.
I

fcntl (5) fcntl (5)

O_TRUNC Truncate flag

File status flags used for open and fcntl:
O_APPEND Set append mode
O_NDELAY Non-blocking mode
O_NONBLOCK Non-blocking mode (POSIX)
O_SYNC Synchronous writes
O_PRIV Private access to file

Mask for use with file access modes:
O_ACCMODE Mask for file access modes

File access modes used for open and fcntl:
O_RDONLY Open for reading only
O_RDWR Open for reading and writing
O_WRONLY Open for writing only

The structure flock describes a file lock. It includes the following members:

short 1 _type; /* Type of lock */
short l_whence; /* Flag for starting off set */
off_t 1 _start; /* Relative offset in bytes */
of f_t 1 _len; /* Size; if 0 then until EOF */
pid_t l_pid; /* Returned with F_GETLK */
short l_sysid; /* Returned with F_GETLK */

SEE ALSO
creat(2), exec(2), fcntl(2), open(2)

Page 2 10/92

fcntl (5)

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION

fcntl (5)

The fcntl. h header defines the following requests and arguments for use by the
functions fcntl [see fcnt1(2)] and open [see open(2)].

10/92

Values for cmd used by fcntl (the following values are unique):
F _DUPFD Duplicate file descriptor
F _GETFD Get file descriptor flags
F _SETFD Set file descriptor flags
F _GETFL Get file status flags
F _SETFL Set file status flags
F _GETLK Get record locking information
F _SETLK Set record locking information
F _SETLKW Set record locking information;

F_CHKFL
F_ALLOCSP
F_FREESP

wait if blocked
Unused
Reserved
Free file space

F _ISSTREAM Is the file desc. a stream
F _BLOCKS Get number of BLKSIZE

blocks allocated
F_BLKSIZE

F_RSETLK
F_RGETLK

F_RSETLKW

F_GETOWN
F_SETOWN

Get optimal I/O block size

Remote SETLK for NFS
Remote GETLK for NFS
Remote SETLKW for NFS

Get owner (socket emulation, M88000 only)
Set owner (socket emulation, M88000 only)

File descriptor flags used for fcntl:
FD_CLOEXEC Close the file descriptor upon

execution of an exec function [see exec(2)]

Values for l_type used for record locking with fcntl
(the following values are unique):

F _RDLCK Shared or read lock
F_UNLCK Unlock
F _WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct:
Values for oflag used by open:

O_CREAT Create file if it does not exist
O_EXCL Exclusive use flag
O_NOCTTY Do not assign controlling tty

Page 1

"" I

fcntl (2) fcntl (2)

NOTES

10/92

F_DUPFD

F_GETFD

F_SETFD

F_FREESP

F_GETFL

F_SETFL

F_GETLK

F_SETLK

F_SETLKW

A new file descriptor.

Value of flag (only the low-order bit is defined). The
return value will not be negative.

Value other than -1.

Value of 0.

Value of file status flags. The return value will not be
negative.

Value other than -1.

Value other than -1.

Value other than -1.

Value other than -1.

On failure, fcntl returns -1 and sets errno to indicate the error.

In the future, the variable errno will be set to EAGAIN rather than EACCES when a
section of a file is already locked by another process. Therefore, portable applica­
tion programs should expect and test for either value.

Page 5

fcntl (2)

Em:llDLK

Em:ADLK

EF/\IJLT

EI I ll'R

l< I I J

EMF ILE

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

ENOLCK

ENOLINK

ENO LINK

EOVERFLOW

SEE ALSO

fcntl (2)

cmd is F _SETLKW, the lock is blocked by some lock from another
process, and if fcntl blocked the calling process waiting for that
lock to become free, a deadlock would occur.

cmd is F _FREESP, mandatory record locking is enabled, O_NDELAY
and O_NONBLOCK are clear and a deadlock condition was detected.

cmd is F _FREESP and the value pointed to by the third argument arg
resulted in an address outside the process's allocated address space.

Cllld is F _GETLK, F _SETLK or F _SETLKW and the value pointed to by
the third argument resulted in an address outside the program
address space.

A signal was caught during execution of the fcntl system call.

An I/0 error occurred while reading from or writing to the file sys­
tem.

cmd is F _DUPFD and the number of file descriptors currently open in
the calling process is the configured value for the maximum
number of open file descriptors allowed each user.

cmd is F _DUPFD and the third argument is either negative, or greater
than or equal to the configured value for the maximum number of
open file descriptors allowed each user.

cmd is F _GETOWN or F _SETOWN and the fildes is not a STREAM dev­
ice.

cmd is F _SETOWN and the third argument is not a valid process ID or
the negative of a valid process-group ID.

cmd is not a valid value.

cmd is F _GETLK, F _SETLK, or F _SETLKW and the third argument or
the data it points to is not valid, or fildes refers to a file that does not
support locking.

crnd is F _SETLK or F _SETLKW, the type of lock is a read or write lock,
and there are no more record locks available (too many file seg­
ments locked) because the system maximum has been exceeded.

fildes is on a remote machine and the link to that machine is no
longer active.

cmd is F _FREESP, the file is on a remote machine, and the link to
that machine is no longer active.

cmd is F _GETLK and the process ID of the process holding the
requested lock is too large to be stored in the l_pid field.

close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), fcntl(S)
The "File and Record Locking" chapter

DIAGNOSTICS
On success, fcntl returns a value that depends on cmd:

Page 4 10/92

fcntl (2) fcntl(2)

10/92

A read lock prevents any process from write locking the protected area. More than
one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a reuJ lock is being placed must have been opened with read
access.

A write lock prevents any process from read locking or write locking the protected
area. Only one write lock and no read locks may exist for a given segment of a file
at a given time. The file descriptor on which a write lock is being placed must have
been opened with write access.

The flock structure describes the type (l_type), starting offset (l_whence), rela­
tive offset (l_start), size (l_len), process ID (l_pid), and system ID (l_sysid) of
the segment of the file to be affected. The process ID and system ID fields are used
only with the F _GETLK cmd to return the values for a blocking lock. Locks may start
and extend beyond the current end of a file, but may not be negative relative to the
beginning of the file. A lock may be set to always extend to the end of file by set­
ting l_len to 0. If such a lock also has l_whence and l_start set to 0, the whole
file will be locked. Changing or unlocking a segment from the middle of a larger
locked segment leaves two smaller segments at either end. Locking a segment that
is already locked by the calling process causes the old lock type to be removed and
the new lock type to take effect. All locks associated with a file for a given process
are removed when a file descriptor for that file is closed by that process or the pro­
cess holding that file descriptor terminates. Locks are not inherited by a child pro­
cess in a fork(2) system call.

When mandatory file and record locking is active on a file [see chrnod(2)], creat(2),
open(2), read(2) and wri te(2) system calls issued on the file will be affected by the
record locks in effect.

fcntl will fail if one or more of the following are true:

EACCES cmd is F _SETLK, the type of lock (l_type) is a read lock (F _RDLCK)
and the segment of a file to be locked is already write locked by
another process, or the type is a write lock (F _WRLCK) and the seg­
ment of a file to be locked is already read or write locked by another
process.

EA GAIN

EAGAIN

EBADF

EBADF

EBADF

EBADF

cmd is F _FREESP, the file exists, mandatory file/record locking is
set, and there are outstanding record locks on the file.

cmd is F _SETLK or F _SETLKW and the file is currently being mapped
to virtual memory via mrnap [see mrnap(2)].

fildes is not a valid open file descriptor.

cmd is F_SETLK or F_SETLKW, the type of lock (Ltype) is a read
lock (F _RDLCK), and fildes is not a valid file descriptor open for
reading.

cmd is F _SETLK or F _SETLKW, the type of lock (l_type) is a write
lock (F _WRLCK), and fildes is not a valid file descriptor open for writ­
ing.

cmd is F _FREESP, and ft/des is not a valid file descriptor open for
writing.

Page 3

fcntl (2) fcntl (2)

Page 2

F _GETOWN (M88000 only)
The argument is ignored. Return the int value that is the process
ID or the process-group ID that is receiving SIG IO or SIGURG signals
for the socket referred to by the descriptor passed to fcntl. This is
identical to the ioctl commands FIOGETOWN and SIOCGPGRP.

F _FREESP Free storage space associated with a section of the ordinary file
fildes. The section is specified by a variable of data type struct
flock pointed to by the third argument arg. The data type struct
flock is defined in the <fcntl. h> header file [see fcntl(S)] and
contains the following members: l_whence is 0, 1, or 2 to indicate
that the relative offset l_start will be measured from the start of
the file, the current position, or the end of the file, respectively.
l_start is the offset from the position specified in l_whence.
l_len is the size of the section. An l_len of 0 frees up to the end
of the file; in this case, the end of file (i.e., file size) is set to the
beginning of the section freed. Any data previously written into
this section is no longer accessible.

The following commands are used for record-locking. Locks may be placed on an
entire file or on segments of a file.

F _SETLK Set or clear a file segment lock according to the flock structure that
arg points to [see fcntl(S)]. The cmd F _SETLK is used to establish
read (F _RDLCK) and write (F _WRLCK) locks, as well as remove either
type of lock (F _UNLCK). If a read or write lock cannot be set, fcntl
will return immediately with an error value of -1.

F_SETLKW

F_GETLK

F_RSETLK

F_RSETLKW

F_RGETLK

This cmd is the same as F _SETLK except that if a read or write lock is
blocked by other locks, fcntl will block until the segment is free to
be locked.

If the lock request described by the flock structure that arg points
to could be created, then the structure is passed back unchanged
except that the lock type is set to F _UNLCK and the l_whence field
will be set to SEEK_SET.

If a lock is found that would prevent this lock from being created,
then the structure is overwritten with a description of the first lock
that is preventing such a lock from being created. The structure
also contains the process ID and the system ID of the process hold­
ing the lock.

This command never creates a lock; it tests whether a particular
lock could be created.

Used by the network lock daemon, lockd(3N), to communicate
with the NFS server kernel to handle locks on NFS files.

Used by the network lock daemon, lockd(3N), to communicate
with the NFS server kernel to handle locks on NFS files.

Used by the network lock daemon, lockd(3N), to communicate
with the NFS server kernel to handle locks on NFS files.

10/92

fcntl(2) fcntl(2)

NAME
fcntl - file control

SYNOPSIS
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>

int fcntl (int fildes, int cmd, . . . !* arg */);

DESCRIPTION

10/92

fcntl provides for control over open files. ftldcs is an open file descriptor [see
intro(2)].

fcntl may take a third argument, arg, whose data type, value and use depend
upon the value of cmd. cmd specifies the operation to be performed by fcntl and
may be one of the following:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

Return a new file descriptor with the following characteristics:

Lowest numbered available file descriptor greater than or
equal to the integer value given as the third argument.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file descrip­
tors share one file pointer).

Same access mode (read, write, or read/write) as the original
file.

Shares any locks associated with the original file descriptor.

Same file status flags (that is, both file descriptors share the
same file status flags) as the original file.

The close-on-exec flag [see F_GETFD] associated with the new
file descriptor is set to remain open across exec(2) system calls.

Get the close-on-exec flag associated with ft/des. If the low-order bit
is 0, the file will remain open across exec. Otherwise, the file will
be closed upon execution of exec.

Set the close-on-exec flag associated with ftldes to the low-order bit
of the integer value given as the third argument (0 or 1 as above).

Get ft/des status flags.

F _SETFL Set ft/des status flags to the integer value given as the third argu­
ment. Only certain flags can be set [see fcntl(S)].

F _SETOWN (M88000 only)
The argument is an int that if greater than zero refers to a process
ID and if less than zero refers to a process-group ID which is the
absolute value of the argument. Set the process or process-group
ID that will subsequently receive SIGIO or SIGURG signals for the
socket referred to by the descriptor passed to fcntl to the value of
that int. This is identical to the ioctl commands FIOSETOWN and
SIOCSPGRP.

Page 1

fclose(3S) (C Development Set) fclose(3S)

NAME
fclose, fflush- close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (FILE *stream);

int fflush (FILE *stream);

DESCRIPTION
fclose causes any buffered data waiting to be written for the named stream [see
intro(3)] to be written out, and the stream to be closed. If the underlying file
pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with the
byte after the last one read from or written to the file being closed.

fclose is performed automatically for all open files upon calling exit.

If stream points to an output stream or an update stream on which the most recent
operation was not input, fflush causes any buffered data waiting to be written for
the named stream to be written to that file. Any unread data buffered in stream is
discarded. The stream remains open. If stream is open for reading, the underlying
file pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with the
byte after the last one read from or written to the stream.

When calling fflush, if stream is a null pointer, all files open for writing are
flushed.

SEE ALSO
close(2), exi t(2), intro(3), fopen(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS

10/92

Upon successful completion these functions return a value of zero. Otherwise EOF
is returned.

Page 1

fattach (3C) fattach (3C)

NAME
fattach - attach a STREAMS-based file descriptor to an object in the file system
name space

SYNOPSIS
int fattach(int fildes, const char *path);

DESCRIPTION
The fat tach routine attaches a STREAMS-based file descriptor to an object in the
file system name space, effectively associating a name with ft/des. ft/des must be a
valid open file descriptor representing a STREAMS file. path is a path name of an
existing object and the user must have appropriate privileges or be the owner of the
file and have write permissions. All subsequent operations on path will operate on
the STREAMS file until the STREAMS file is detached from the node. ft/des can be
attached to more than one path, that is, a stream can have several names associated
with it.

The attributes of the named stream [see stat(2)], are initialized as follows: the per­
missions, user ID, group ID, and times are set to those of path, the number of links is
set to 1, and the size and device identifier are set to those of the streams device
associated with ftldes. If any attributes of the named stream are subsequently
changed [e.g., chmod(2)], the attributes of the underlying object are not affected.

RETURN VALUE
If successful, fat tach returns O; otherwise it returns -1 and sets errno to indicate
an error.

ERRORS
Under the following conditions, the function fat tach fails and sets errno to:

EACCES The user is the owner of path but does not have write permissions
on path or ft Ides is locked.

EBADF ft/des is not a valid open file descriptor.

ENOENT path does not exist.

ENOTDIR A component of a path prefix is not a directory.

EINVAL ft/des does not represent a STREAMS file.

EPERM The effective user ID is not the owner of path or a user with the
appropriate privileges.

EBUSY path is currently a mount point or has a STREAMS file descriptor
attached it.

ENAMETOOLONG The size of path exceeds { PATH_MAX}, or the component of a path
name is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

ELOOP Too many symbolic links were encountered in translating path.

EREMOTE path is a file in a remotely mounted directory.

SEE ALSO
fdetach(lM), fdetach(3C), isastream(3C), streamio(7).

10/92 Page 1

exp(3M) (Math Libraries) exp(3M)

Page 2

sqrt and sqrtf return 0 and set errno to EDOM when x is negative. A message
indicating DOMAIN error is printed on the standard error output.

Except when the -Xe compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xe compilation
options are used, HUGE_ VAL is returned instead of HUGE and no error messages are
printed. In the - Xe compilation mode, pow and powf return 1, setting errno to
EDOM, when both x and y are O; in the -Xa compilation mode, pow and powf return 0,
setting errno to EDOM; when x is 0 and y is negative, they return - HUGE_ VAL and set
errno to EDOM. Under -Xe, log and logf return -HUGE_VAL and set errno to
ERANGE when xis 0. Under -Xe, sqrt and sqrt f return NaN when xis negative.

10/92

exp(3M) (Math Libraries) exp(3M)

NAME
exp, expf, cbrt, log, logf, loglO, loglOf, pow, powf, sqrt, sqrtf - exponential,
logarithm, power, square root functions

SYNOPSIS
cc [flag .. .]file ... - lm [library ...]

cc -0 -Ksd [flag .. .]file ... -J sfm [library ...]

#include <math.h>

double exp (double x);

float expf (float x);

double cbrt (double x);

double log (double x);

float logf (float x);

double loglO (double x) ;

float loglOf (float x);

double pow (double x, double y);

float powf (float x, floaty);

double sqrt (double x);

float sqrtf (float x);

DESCRIPTION
exp and expf return ex.

cbrt returns the cube root of x.

log and logf return the natural logarithm of x. The value of x must be positive.

logl O and logl Of return the base ten logarithm of x. The value of x must be posi­
tive.

pow and powf return xY. If x is 0, y must be positive. If x is negative, y must be an
integer.

sqrt and sqrtf return the non-negative square root of x. The value of x may not
be negative.

SEE ALSO
hypot(3M), matherr(3M), sinh(3M)

DIAGNOSTICS

10/92

exp and expf return HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and set errno to ERANGE.

log, logf, loglO, and loglOf return -HUGE and set errno to EDOM when xis non­
positive. A message indicating DOMAIN error is printed on standard error.

pow and powf return 0 and set errno to EDOM when x is 0 and y is non-positive, or
when x is negative and y is not an integer. In these cases, a message indicating
DOMAIN error is printed on standard error. When the correct value for pow or powf
would overflow or underflow, these functions return ±HUGE or 0, respectively, and
set errno to ERANGE.

Page 1

exit(2) exit(2)

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in stdlib.h and may
be used as the value of status to indicate successful or unsuccessful termination,
respectively.

SEE ALSO

NOTES

Page 2

acct(2), intro(2), plock(2), semop(2), sigaction(2), signal(2), times(2), wait(2),
atexit(3C)

See signal(2) NOTES.

10/92

exit (2) exit(2)

NAME
exit, _exit - terminate process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

#include <unistd.h>

void _exit(int status);

DESCRIPTION

10/92

_exit terminates the calling process with the following consequences:

All of the file descriptors, directory streams and message catalogue descrip­
tors open in the calling process are closed.

A SIGCHLD signal is sent to the calling process's parent process.

If the parent process of the calling process has not specified the
SA_NOCLDWAIT flag [see sigaction(2)], the calling process is transformed
into a "zombie process." A zombie process is a process that only occupies a
slot in the process table. It has no other space allocated either in user or ker­
nel space. The process table slot that it occupies is partially overlaid with
time accounting information [see <sys /proc. h>] to be used by the times
system call.

The parent process ID of all of the calling process's existing child processes
and zombie processes is set to 1. This means the initialization process [see
intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
[see semop(2)], that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)].

An accounting record is written on the accounting file if the system's
accounting routine is enabled [see acct(2)].

If the process is a controlling process, SIGHUP is sent to the foreground pro­
cess group of its controlling terminal and its controlling terminal is deallo­
cated.

If the calling process has any stopped children whose process group will be
orphaned when the calling process exits, or if the calling process is a
member of a process group that will be orphaned when the calling process
exits, that process group will be sent SIGHUP and SIGCONT signals.

The C function exi t(3C) calls any functions registered through the atexi t func­
tion in the reverse order of their registration. The function _exit circumvents all
such functions and cleanup.

Page 1

exec(2) exec(2)

ENO ENT

ENOTDIR

ENO EXEC

ETXTBSY

ENOMEM

ENO LINK

One or more components of the new process path name of
the file do not exist or is a null pathname.

A component of the new process path of the file prefix is not
a directory.

The exec is not an execlp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

path points to a remote machine and the link to that machine
is no longer active.

SEE ALSO
ps(l), sh(l), alarrn(2), exi t(2), fcntl(2), fork(2), getrlimi t(2), nice(2),
priocntl(2), ptrace(2), semop(2), signal(2), sigpending(2), sigprocmask(2),
times(2), umask(2), lockf(3C), system(3S), a. out(4), environ(5).

DIAGNOSTICS

Page 4

If exec returns to the calling process, an error has occurred; the return value is -1
and errno is set to indicate the error.

10/92

exec(2) exec(2)

10/92

time left until an alarm clock signal [see alarm(2)]
current working directory
root directory
file mode creation mask [see urnask(2)]
resource limits [see getrlimit(2)]
utime, stime, cutime, and cs time [see times(2)]
file-locks [see fcntl(2) and lockf(3C)]
controlling terminal
process signal mask [see sigprocmask(2)]
pending signals [see sigpending(2)]

Upon successful completion, exec marks for update the st_atime field of the file.
Should the exec succeed, the process image file is considered to have been
open ()-ed. The corresponding close () is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call
to exec.

exec will fail and return to the calling process if one or more of the following are
true:

EACCES

E2BIG

EACCES

EACCES

EAGAIN

EFAULT

EFAULT

EFAULT

EINTR

ELIBACC

ELIBEXEC

ELOOP

EMULTIHOP

ENAMETOOLONG

Search permission is denied for a directory listed in the new
process file's path prefix.

The number of bytes in the new process's argument list is
greater than the system-imposed limit. In order to deter­
mine the system-imposed limit, see the sysconf(3C) manual
page for further information.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

Total amount of system memory available when reading via
raw I/O is temporarily insufficient.

Required hardware is not present.

An a.out that was compiled with the MAU or 32B flag is run­
ning on a machine without a MAU or 32B.

An argument points to an illegal address.

A signal was caught during the exec system call.

Required shared library does not have execute permission.

Trying to exec(2) a shared library directly.

Too many symbolic links were encountered in translating
path or file.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

The length of the file or path argument exceeds {PATH_MAX},
or the length of a file or path component exceeds {NAME_MAX}
while _POSIX_NO_TRUNC is in effect.

Page 3

exec(2) exec(2)

Page 2

The arguments argO, ... , argn point to null-terminated character strings. These
strings constitute the argument list available to the new process image. Minimally,
argO must be present. It will become the name of the process, as displayed by the
ps command. Conventionally, argO points to a string that is the same as path (or the
last component of path). The list of argument strings is terminated by a (char *) 0
argument.

argv is an array of character pointers to null-terminated strings. These strings con­
stitute the argument list available to the new process image. By convention, argv
must have at least one member, and it should point to a string that is the same as
path (or its last component). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings con­
stitute the environment for the new process image. envp is terminated by a null
pointer. For execl, execv, execvp, and execlp, the C run-time start-off routine
places a pointer to the environment of the calling process in the global object
extern char **environ, and it is used to pass the environment of the calling
process to the new process.

File descriptors open in the calling process remain open in the new process, except
for those whose close-on-exec flag is set; [see fcnt1(2)]. For those file descriptors
that remain open, the file pointer is unchanged.

Signals that are being caught by the calling process are set to the default disposition
in the new process image [see signal(2)]. Otherwise, the new process image inher­
its the signal dispositions of the calling process.

If the set-user-ID mode bit of the new process file is set [see chrnod(2)], exec sets the
effective user ID of the new process to the owner ID of the new process file. Simi­
larly, if the set-group-ID mode bit of the new process file is set, the effective group
ID of the new process is set to the group ID of the new process file. The real user ID
and real group ID of the new process remain the same as those of the calling pro­
cess.

If the effective user-ID is root or super-user, the set-user-ID and set-group-ID bits
will be honored when the process is being controlled by pt race.

The shared memory segments attached to the calling process will not be attached to
the new process [see shrnop(2)].

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling process:

nice value [see nice(2)]
scheduler class and priority [see priocntl(2)]
process ID
parent process ID
process group ID
supplementary group IDs
sernadj values [see sernop(2)]
session ID [see exi t(2) and signal(2)]
trace flag [see ptrace(2) request O]

10/92

exec(2) exec(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
#include <unistd.h>

int execl (const char *path, const char *argO, ... , const char
*argn, (char *) 0);

int execv (const char *path, char *const *argv);

int execle (const char *path, const char *argO, ... , const char
*argn, (char *0), const char *envp[]);

int execve (const char *path, char *const *argv, char *const
*envp);

int execlp (const char *file, const char *argO, ... , const char
*argn, (char *) 0);

int execvp (const char *file, char *Const *argv);

DESCRIPTION

10/92

exec in all its forms overlays a new process image on an old process. The new pro­
cess image is constructed from an ordinary, executable file. This file is either an
executable object file, or a file of data for an interpreter. There can be no return
from a successful exec because the calling process image is overlaid by the new
process image.

An interpreter file begins with a line of the form

! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument.
When an interpreter file is exec'd, the system execs the specified interpreter. The
pathname specified in the interpreter file is passed as argO to the interpreter. If arg
was specified in the interpreter file, it is passed as argl to the interpreter. The
remaining arguments to the interpreter are argO through argn of the originally
exec'd file.

When a C program is executed, it is called as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the argu­
ments themselves, and envp is an array of character pointers to the environment
strings. As indicated, argc is at least one, and the first member of the array points to
a string containing the name of the file.

path points to a path name that identifies the new process file.

file points to the new process file. If file does not contain a slash character, the path
prefix for this file is obtained by a search of the directories passed in the PATH
environment variable [see environ(S)]. The environment is supplied typically by
the shell [see sh(l)].

If the new process file is not an executable object file, execlp and execvp use the
contents of that file as standard input to sh(l).

Page 1

eucioctl (5) eucioctl (5)

EUC_MREST

EUC_IXLOFF

EUC_IXLON

EUC_OXLOFF

EUC_OXLON

If a mode was saved via a previous EUC_MSAVE call, the saved
mode is restored, and the "saved state" flag is cleared. If the
mode was not previously saved, this call has no effect. (The
exact semantics are somewhat dependent on the module, since
some modules may respond to specific user-requests to switch
modes, even while a mode is being saved via EUC_MSAVE.)

If a module is currently in a state where "input conversion" is
being performed on the incoming byte stream, then input
conversion is turned off, and the module's "mode'' status is
saved. If no input conversion is being performed, there is no
effect on the module. The purpose of this call is to provide a
way of insuring a "pure'' byte stream to the program. The byte
stream while input conversion is off is, of course, not
guaranteed to be a stream of EUC characters. Turning off input
conversion is roughly equivalent to the old concept of "raw"
mode, if used in conjunction with ICANON off. It should nor­
mally not be used by applications.

If a module previously saved its state and turned off input
conversion, then input conversion is restored (i.e., turned back
on); otherwise, there is no effect.

In a manner similar to EUC_IXLOFF, any "output conversion"
is turned off, and the current mode status saved.

In a manner similar to EUC_IXLON, any saved "output conver­
sion" status is restored (i.e., output conversion is turned back
on if previously turned off via EUC_OXLOFF).

LIMITATIONS

NOTES

FILES

Drivers and modules that support EUC should all respond appropriately to these
calls, depending on their type. Line disciplines must respond to EUC_WSET and
EUC_WGET, changing their current codeset sizes to match EUC_WSET requests. All
TTY STREAMS modules that do any input or output conversion should recognize
the other calls; modules that do no codeset conversion are not required to recognize
the calls, but must pass them through. Drivers that support EUC TTY STREAMS must
all acknowledge the ON/OFF calls, whether the drivers themselves are affected or
not, since these calls are purposely not acknowledged by modules which receive
them; they are intended to be made available for affecting all modules in the whole
STREAM.

Adherence to this protocol for all EUC handling modules is strongly encouraged in
order to increase portability and language-independence of applications. These
calls are intended as a small set of primitives to help reduce an anticipated plethora
of module- and language-dependent operations.

/usr/include/sys/eucioctl.h

SEE ALSO
eucset(l).

Page 2 10/92

eucioctl (5) eucioctl (5)

NAME
eucioctl - generic interface to EUC handling TTY drivers and modules

SYNOPSIS
#include <sys/eucioctl.h>

ioctl(int fd, I_STR, struct strioctl *sb);

DESCRIPTION

10/92

This interface is implemented in TTY drivers and pushable STREAMS modules that
handle EUC codes. It is intended as a generic interface for EUC handling, to elim­
inate an explosion of "module specific" ioctl calls that would otherwise be neces­
sary, and to provide uniformity in dealing with EUC codesets in the TTY subsystem.

Several calls are defined. The first two calls take an argument, which is expected to
be a pointer to an eucioc structure, defined in the header file <sys I eucioctl. h>:

struct eucioc {

} ;

unsigned char eucw[4];
unsigned char scrw[4];

typedef struct eucioc eucioc_t;

In all cases, these calls return non-zero on failure. Failure should be usually taken
as an indication that the current driver, or line discipline module, does not support
EUC in which case errno will be set to EINVAL. For the EUC_WSET and EUC_WGET
calls errno will be set will be set to EPROTO if the struct eucioc argument is
invalid.

EUC_WSET

EUC_WGET

This call takes a pointer to an eucioc structure, and uses it to
set the EUC line discipline's local definition for the codeset
widths to be used for subsequent operations. Within the
STREAM, the line discipline may optionally notify other
modules of this setting via M_CTL messages.

This call takes a pointer to an eucioc structure, and returns in
it the EUC codeset widths currently in use by the EUC line dis-
cipline. It need be recognized only by line discipline modules.

The following calls take no arguments. They should only fail if the driver (at the
bottom of the TTY STREAM) does not recognize EUC codes. Drivers that support
EUC, whether the STREAM contains modules that respond to the calls or not, will
recognize the calls and acknowledge them. These calls are normally only interpreted
by modules that have modes other than ASCII, and/or do some form of I/O conver­
sion that normally prevents a program from receiving non-EUC characters in its
byte stream. All of these calls, when received by modules, are passed down the TTY
STREAM, to be ultimately acknowledged by the TTY driver.

EUC_MSAVE This call has no effect on modules that are currently in ASCII
mode. Otherwise (i.e., for modules not in ASCII mode), the fol­
lowing actions are taken by all modules that recognize this call:
(1) the current "mode" status is saved, (2) the mode is changed
to ASCII mode immediately.

Page 1

ethers(3N) (Internet Utilities) ethers(3N)

NAME
ethers - Ethernet address mapping operations

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>

char *ether_ntoa(struct ether_addr *e);

struct ether_addr *ether_aton(char *s);

int ether_ntohost(char *hostname, struct ether_addr *e);

int ether_hostton(char *hostname, struct ether_addr *e);

int ether_line(char *l, struct ether_addr *e, char *hostname);

DESCRIPTION

FILES

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether_ntoa converts a 48 bit Ethernet number pointed to by e to its
standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x:x:x:x:x:x where x is a hexadecimal number between 0
and ff. The function ether_aton converts an ASCII string in the standard
representation back to a 48 bit Ethernet number; the function returns NULL if the
string cannot be scanned successfully.

The function ether_ntohost maps an Ethernet number (pointed to by e) to its
associated hostname. The string pointed to by hostname must be long enough to
hold the hostname and a NULL character. The function returns zero upon success
and non-zero upon failure. Inversely, the function ether_hostton maps a host­
name string to its corresponding Ethernet number; the function modifies the Ether­
net number pointed to by e. The function also returns zero upon success and non­
zero upon failure. The function ether_line scans a line (pointed to by 1) and sets
the hostname and the Ethernet number (pointed to bye). The string pointed to by
hostname must be long enough to hold the hostname and a NULL character. The
function returns zero upon success and non-zero upon failure. The format of the
scanned line is described by ethers(4).

/etc/ethers

SEE ALSO
ethers(4)

10/92 Page 1

erf (3M) (Math Libraries)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
cc [flag .. .]file ... - lm [library ...]
#include <math.h>

double erf (double x);

double erfc (double x);

DESCRIPTION
erf returns the error function of x, defined as

1 fe-12 dt
Vit 0

erf(3M)

erfc, which returns 1.0 - erf (x), is provided because of the extreme loss of relative
accuracy if erf (x) is called for large x and the result subtracted from 1.0 (for exam­
ple, for x = 5, 12 places are lost).

SEE ALSO
exp(3M)

10/92 Page 1

end(3C) (C Programming Language Utilities) end(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern etext;

extern edata;

extern end;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents;
only their addresses are meaningful.

etext The address of etext is the first address above the program text.

edata The address of edata is the first address above the initialized data region.

end The address of end is the first address above the uninitialized data region.

SEE ALSO

NOTE

10/92

cc(l), brk(2), malloc(3C), stdio(3S)

When execution begins, the program break (the first location beyond the data) coin­
cides with end, but the program break may be reset by the routines brk, malloc,
the standard input/output library [see stdio(3S)], by the profile (-p) option of cc,
and so on. Thus, the current value of the program break should be determined by
sbrk (0) [see brk(2)].

Page 1

elf_xlate (3E) (ELF Library) elf_xlate (3E)

Elf_Type 32-Bit Memory Type

ELF_T_ADDR Elf32_Addr
ELF_T_BYTE unsigned char
ELF_T_DYN Elf32 _Dyn
ELF_T_EHDR Elf32 - Ehdr
ELF_T_HALF Elf32_Half
ELT_T_OFF Elf32_0ff
ELF_T_PHDR Elf32 - Phdr
ELF_T_REL Elf32_Rel
ELF_T_RELA Elf32_Rela
ELF_T_SHDR Elf32 - Shdr
ELF_T_SWORD Elf32 - Sword
ELF_T_SYM Elf32 _Sym
ELF_T_WORD Elf32_Word

"Translating" buffers of type ELF _T_BYTE does not change the byte order.

SEE ALSO
elf(3E), elf_fsize(3E), elf_getdata(3E), elt_getident(3E)

Page 2 10/92

elf_xlate (3E) (ELF Library) elf_xlate (3E)

NAME
elf_xlate: elf32_xlatetof, elf32_xlatetom - class-dependent data translation

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf32_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf32_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

DESCRIPTION

10/92

elf32_xlatetom translates various data structures from their 32-bit class file
representations to their memory representations; elf32_xlatetof provides the
inverse. This conversion is particularly important for cross development environ­
ments. src is a pointer to the source buffer that holds the original data; dst is a
pointer to a destination buffer that will hold the translated copy. encode gives the
byte encoding in which the file objects are (to be) represented and must have one of
the encoding values defined for the ELF header's e_ident [EI_DATA] entry [see
elf_getident(3E)]. If the data can be translated, the functions return dst.
Otherwise, they return null because an error occurred, such as incompatible types,
destination buffer overflow, etc.

elf_getdata(3E) describes the Elf_Data descriptor, which the translation
routines use as follows.

d_buf

d_type

d_size

d_version

Both the source and destination must have valid buffer pointers.

This member's value specifies the type of the data to which d_buf
points and the type of data to be created in the destination. The
program supplies a d_type value in the source; the library sets the
destination's d_type to the same value. These values are summar­
ized below.

This member holds the total size, in bytes, of the memory occupied
by the source data and the size allocated for the destination data. If
the destination buffer is not large enough, the routines do not
change its original contents. The translation routines reset the
destination's d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

This member holds version number of the objects (desired) in the
buffer. The source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is,
dst->d_buf may equal src->d_buf. Other cases where the source and destina­
tion buffers overlap give undefined behavior.

Page 1

elf_version (3E) (ELF Library) elf_version (3E)

NAME
elf_ version - coordinate ELF library and application versions

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_version(unsigned ver);

DESCRIPTION
As elf(3E) explains, the program, the library, and an object file have independent
notions of the "latest" ELF version. elf_ version lets a program determine the ELF
library's internal version. It further lets the program specify what memory types it
uses by giving its own working version, ver, to the library. Every program that uses
the ELF library must coordinate versions as described below.

The header file libelf .h supplies the version to the program with the macro
EV_CURRENT. If the library's internal version (the highest version known to the
library) is lower than that known by the program itself, the library may lack seman­
tic knowledge assumed by the program. Accordingly, elf_version will not
accept a working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version to return the library's internal
version, without altering the working version. If ver is a version known to the
library, elf_version returns the previous (or initial) working version number.
Otherwise, the working version remains unchanged and elf_version returns
EV_NONE.

EXAMPLE

NOTES

The following excerpt from an application program protects itself from using an
older library.

if (elf_version(EV_CURRENT) == EV_NONE)
{

/* library out of date */
/* recover from error */

The working version should be the same for all operations on a particular elf
descriptor. Changing the version between operations on a descriptor will probably
not give the expected results.

SEE ALSO
elf(3E), elf_begin(3E), elf_xlate(3E)

10/92 Page 1

elf_update (3E) (ELF Library) elf_update (3E)

Data Descriptor

Member
d_buf
d_type
d_size
d_off
d_align
d_version

Notes

Only when ELF _F _LAYOUT asserted

Note the program is responsible for two particularly important members (among
others) in the ELF header. The e_version member controls the version of data
structures written to the file. If the version is EV _NONE, the library uses its own
internal version. The e_ident [EI_DATA] entry controls the data encoding used in
the file. As a special case, the value may be ELFDATANONE to request the native data
encoding for the host machine. An error occurs in this case if the native encoding
doesn't match a file encoding known by the library.

Further note that the program is responsible for the sh_entsize section header
member. Although the library sets it for sections with known types, it cannot reli­
ably know the correct value for all sections. Consequently, the library relies on the
program to provide the values for unknown section type. If the entry size is
unknown or not applicable, the value should be set to zero.

When deciding how to build the output file, elf_update obeys the alignments of
individual data buffers to create output sections. A section's most strictly aligned
data buffer controls the section's alignment. The library also inserts padding
between buffers, as necessary, to ensure the proper alignment of each buffer.

SEE ALSO

NOTE

10/92

elf(3E), elf_begin(3E), elf_flag(3E), elf_fsize(3E), elf_getdata(3E),
elf_getehdr(3E), elf_getshdr(3E), elf_xlate(3E)

As mentioned above, the ELF _C_WRITE command translates data as necessary,
before writing them to the file. This translation is not always transparent to the
application program. If a program has obtained pointers to data associated with a
file [for example, see elf_getehdr(3E) and elf_getdata(3E)], the program should
reestablish the pointers after calling elf_update.

As elf_begin(3E) describes, a program may "update" a COFF file to make the
image consistent for ELF . The ELF _C_NULL command updates only the memory
image; one can use the ELF _C_WRITE command to modify the file as well. Absolute
executable files (a. out files) require special alignment, which cannot normally be
preserved between COFF and ELF . Consequently, one may not update an execut­
able COFF file with the ELF _C_WRITE command (though ELF _C_NULL is allowed).

Page 3

mknod(2) (Application Compatibility Package) mknod(2)

mknod may be invoked only by the privileged user for file types other than FIFO
special.

mknod fails and creates no new file if one or more of the following are true:

EEXIST The named file exists.

EINVAL

EFAULT

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENO ENT

EPERM

EROFS

ENOS PC

EINTR

ENOLINK

Invalid arg value.

path points outside the allocated address space of the pro­
cess.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines.

The length of the path argument exceeds {PATH_MAXf, or the
length of a path component exceeds {NAME_MAXf while
(_POSIX_NO_TRUNC) is in effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist or is a null
pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on a
read-only file system.

No space is available.

A signal was caught during the mknod system call.

path points to a remote machine and the link to that machine
is no longer active.

SEE ALSO
mkdir(l), creatsem(2), chmod(2), exec(2), sdget(2), umask(2), mkfifo(3C), fs(4)
stat(S).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

If mknod creates a device in a remote directory using Remote File Sharing, the major
and minor device numbers are interpreted by the server.

Semaphore files should be created with the creatsem system call. Shared data files
should be created with the sdget system call.

10/92

mknod(2) (Application Compatibility Package) mknod (2)

NAME
mknod ~ make a directory, or a special or ordinary file

SYNOPSIS
#include <sys/types.h>
#include <osfcn.h>
#include <sys/stat.h>

int mknod (const char *path, rnode_t mode, dev_t dev);

DESCRIPTION

10/92

mknod creates a new file named by the path name pointed to by path. The file type
and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IFMT bits, which must be set to one of the
following values:

S_IFIFO fifo special
S_IFCHR character special
S_IFDIR directory
S_IFBLK block special
S_IFREG ordinary file
S_IFNAM name special file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

s_rsurn 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if# is 7, 5, 3, or 1

S_ISVTX 01000
S_IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S_IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S_IXGRP 00010
S_IRWXO 00007
S_IROTH 00004
S_IWOTH 00002
S_IXOTH 00001

Enable mandatory file/record locking if# is 6, 4, 2, or 0
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S_ISGID bit is
set in the parent directory, then the group ID of the file is inherited from the parent.
If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_ISGID bit is cleared.

Values of mode other than those above are undefined and should not be used. The
access permission bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared [see urnask(2)].
For block and character special files, dev is the special file's device number. For
name special files, dev is the file type of the name file, either a XENIX shared data
file or a XENIX semaphore. Otherwise, dev is ignored. See rnkdev(3C).

Page 1

mknod{2) mknod{2)

configuration-dependent specification of a character or block I/0 device. If mode
does not indicate a block special or character special device, dev is ignored.

mknod may be invoked only by a privileged user for file types other than FIFO spe­
cial.

If path is a symbolic link, it is not followed.

mknod fails and creates no new file if one or more of the following are true:

EEXIST The named file exists.

EINVAL

EFAULT

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENO ENT

EPERM

EROFS

ENOS PC

EINTR

ENO LINK

dev is invalid.

path points outside the allocated address space of the pro­
cess.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist or is a null
pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on a
read-only file system.

No space is available.

A signal was caught during the mknod system call.

path points to a remote machine and the link to that machine
is no longer active.

SEE ALSO
mkdir(l), chmod(2), exec(2), umask(2), makedev(3C), mkfifo(3C), fs(4), stat(S).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

If mknod creates a device in a remote directory using Remote File Sharing, the major
and minor device numbers are interpreted by the server.

10/92

mknod(2) mknod(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

DESCRIPTION

10/92

mknod creates a new file named by the path name pointed to by path. The file type
and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IFMT bits, which must be set to one of the
following values:

S_IFIFO
S_IFCHR
S_IFDIR
S_IFBLK
S_IFREG
S_INSEM
S_INSHD

fifo special
character special
directory
block special
ordinary file
semaphore
shared data

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if# is 7, 5, 3, or 1

S_ISVTX 01000
S_IRWXU 00700
S_IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S_IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S_IXGRP 00010
S_IRWXO 00007
S_IROTH 00004
S_IWOTH 00002
S_IXOTH 00001

Enable mandatory file/record locking if# is 6, 4, 2, or 0
Save text image after execution.
Read, write, execute by owner.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S_ISGID bit is
set in the parent directory, then the group ID of the file is inherited from the parent.
If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_ISGID bit is cleared.

The access permission bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared [see umask(2)].
If mode indicates a block or character special file, dev is a

Page 1

mkfifo(3C) (C Development Set) mkfifo(3C)

NAME
mkfifo - create a new FIFO

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

DESCRIPTION
The mkfifo routine creates a new FIFO special file named by the pathname pointed
to by path. The mode of the new FIFO is initialized from mode. The file permission
bits of the mode argument are modified by the process's file creation mask [see
umask(2)].

The FIFO's owner ID is set to the process's effective user ID. The FIFO's group ID is
set to the process's effective group ID, or if the S_ISGID bit is set in the parent direc­
tory then the group ID of the FIFO is inherited from the parent.

mkf i fo calls the system call mknod to make the file.

SEE ALSO
mkdir(l), chmod(2), exec(2), mknod(2), umask(2), fs(4), stat(S).

DIAGNOSTICS

NOTES

10/92

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Bits other than the file permission bits in mode are ignored.

Page 1

mkdirp{3G) mkdirp(3G)

NAME
mkdirp, rmdirp- create, remove directories in a path

SYNOPSIS
cc [flag .. .)file ... - lgen [library ...]
#include <libgen.h>

int mkdirp (const char *path, mode_t mode);

int rmdirp (char *d, char *dl);

DESCRIPTION
mkdirp creates all the missing directories in the given path with the given mode.
[See chmod(2) for the values of mode.] The protection part of the mode argument is
modified by the process's file creation mask [see umask(2)].

rmdirp removes directories in path d. This removal starts at the end of the path
and moves back toward the root as far as possible. If an error occurs, the remaining
path is stored in dl. rmdirp returns a 0 only if it is able to remove every directory
in the path.

EXAMPLES
I* create scratch directories */
if (mkdirp(" /tmp/subl/sub2/sub3", 0755) == -1) {

fprintf(stderr, "cannot create directory");
exit(l);

chdir("/tmp/subl/sub2/sub3");

I* cleanup */
chdir ("/tmp");
rmdirp("subl/sub2/sub3");

DIAGNOSTICS

NOTES

If a needed directory cannot be created, mkdirp returns -1 and sets errno to one of
the mkdir error numbers. If all the directories are created, or existed to begin with,
it returns zero.

mkdirp uses malloc to allocate temporary space for the string.

rmdirp returns -2 if a "." or " .. " is in the path and -3 if an attempt is made to
remove the current directory. If an error occurs other than one of the above, -1 is
returned.

SEE ALSO
mkdir(2), rmdir(2), umask(2)

10/92 Page 1

mkdir(2)

ENO LINK

ENOS PC

EN OT DIR

EROFS

DIAGNOSTICS

mkdir(2)

path points to a remote machine and the link to that machine
is no longer active.

No free space is available on the device containing the direc­
tory.

A component of the path prefix is not a directory.

The path prefix resides on a read-only file system.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

SEE ALSO
chrnod(2), mknod(2), urnask(2), stat(5)

Page 2 10/92

mkdir(2) mkdir(2)

NAME
mkdir - make a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

DESCRIPTION

10/92

mkdir creates a new directory named by the path name pointed to by path . The
mode of the new directory is initialized from mode [see chmod(2) for values of
mode]. The protection part of the mode argument is modified by the process's file
creation mask [see umask(2)].

The directory's owner ID is set to the process's effective user ID. The directory's
group ID is set to the process's effective group ID, or if the S_ISGID bit is set in the
parent directory, then the group ID of the directory is inherited from the parent.
The S_ISGID bit of the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and
its parent directory (..).

Upon successful completion, mkdir marks for update the st_atime, st_ctime and
st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the
directory that contains the new entry are marked for update.

mkdir fails and creates no directory if one or more of the following are true:

EACCES Either a component of the path prefix denies search permis­
sion or write permission is denied on the parent directory of
the directory to be created.

EEXIST

EFAULT

EIO

ELOOP

EMLINK

EMULTIHOP

ENAMETOOLONG

ENO ENT

The named file already exists.

path points outside the allocated address space of the pro­
cess.

An 1/0 error has occurred while accessing the file system.

Too many symbolic links were encountered in translating
path.

The maximum number of links to the parent directory
would be exceeded.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix does not exist or is a null
pathname.

Page 1

mincore(2) mincore(2)

NAME
rnincore - determine residency of memory pages

SYNOPSIS
#include <unistd.h>
int rnincore(caddr_t addr, size_t len, char *vec);

DESCRIPTION
rnincore returns the primary memory residency status of pages in the address
space covered by mappings in the range [addr, addr + len). The status is returned as
a character-per-page in the character array referenced by *vee (which the system
assumes to be large enough to encompass all the pages in the address range). The
least significant bit of each character is set to 1 to indicate that the referenced page
is in primary memory, 0 if it is not. The settings of other bits in each character are
undefined and may contain other information in future implementations.

rnincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this informa­
tion may quickly be outdated. Only locked pages are guaranteed to remain in
memory; see rnerncntl(2).

RETURN VALUE
rnincore returns 0 on success, -1 on failure.

ERRORS
rnincore fails if:

EFAULT

EINVAL

EINVAL

ENOMEM

SEE ALSO

*Vee includes an out-of-range or otherwise inaccessible address.

addr is not a multiple of the page size as returned by sysconf(3C).

The argument len has a value less than or equal to O.

Addresses in the range [addr, addr + Zen) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

rnlock(3C), rnrnap(2), sysconf(3C)

10/92 Page 1

menus(3X) menus(3X)

NOTES

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the

routine.
E_POSTED - The menu is already posted.
E_CONNECTED - One or more items are already connected

to another menu.
E_BAD_STATE - The routine was called from an initialization

or termination function.
E_NO_ROOM - The menu does not fit within its subwindow.
E_NOT_POSTED - The menu has not been posted.
E_UNKNOWN_COMMAND - An unknown request was passed to the

menu driver.
E_NO_MATCH - The character failed to match.
E_NOT_SELECTABLE - The item cannot be selected.
E_NOT_CONNECTED - No items are connected to the menu.
E_REQUEST_DENIED - The menu driver could not process the

request.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO

10/92

curses(3X), and 3X pages whose names begin "menu_" for detailed routine descrip­
tions

Page 3

menus(3X)

menus Routine Name

menu_driver
menu_fore
menu_format
menu_grey
menu_init
menu_items
menu_mark
menu_ opts
menu_opts_off
menu_opts_on
menu_pad
menu_pattern
menu_sub
menu_ term
menu_userptr
menu_win
new_item
new_menu
pos_menu_cursor
post_menu
scale_menu
set current_item
set_item_init
set_item_opts
set_item_term
set_item_userptr
set_item_value
set_menu_back
set_menu_fore
set_menu_format
set_menu_grey
set_menu_init
set_menu_items
set_menu_mark
set_menu_opts
set_menu_pad
set_menu_pattern
set_menu_sub
set_menu_term
set_menu_userptr
set_menu_win
set_top_row
top_row
unpost_menu

RETURN VALUE

Manual Page Name

menu_dri ver{3X)
menu_at tributes(3X)
menu_format(3X)
menu_at tributes(3X)
menu_hook{3X)
menu_i tems{3X)
menu_mark(3X)
menu_opts(3X)
menu_opts(3X)
menu_opts(3X)
menu_attributes(3X)
menu_pattern(3X)
menu_win(3X)
menu_hook{3X)
menu_userptr(3X)
menu_win(3X)
menu_i tem_new{3X)
menu_new(3X)
menu_cursor(3X)
menu_post(3X)
menu_win(3X)
menu_item_current(3X)
menu_hook{3X)
menu_i tem_opts(3X)
menu_hook{3X)
menu_i tem_userptr{3X)
menu_i tem_ value(3X)
menu_attributes(3X)
menu_attributes(3X)
menu_format(3X)
menu_attributes(3X)
menu_hook{3X)
menu_i tems(3X)
menu_mark(3X)
menu_opts(3X)
menu_attributes(3X)
menu_pat tern{3X)
menu_win(3X)
menu_hook{3X)
menu_userptr(3X)
menu_win{3X)
menu_i tem_current{3X)
menu_item_current(3X)
menu_pos t(3X)

menus(3X)

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

Page 2 10/92

menus(3X) menus(3X)

NAME
menus - character based menus package

SYNOPSIS
#include <menu.h>

DESCRIPTION
The menu library is built using the curses library, and any program using menus
routines must call one of the curses initialization routines, such as initscr. A
program using these routines must be compiled with - lmenu and - lcurses on the
cc command line.

The menus package gives the applications programmer a terminal-independent
method of creating and customizing menus for user interaction. The menus pack­
age includes: item routines, which are used to create and customize menu items;
and menu routines, which are used to create and customize menus, assign pre- and
post-processing routines, and display and interact with menus.

Current Default Values for Item Attributes
The menus package establishes initial current default values for item attributes.
During item initialization, each item attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL item pointer. If
an application changes a current default item attribute value, subsequent items
created using new_item will have the new default attribute value. (The attributes
of previously created items are not changed if a current default attribute value is
changed.)

Routine Name Index

10/92

The following table lists each menus routine and the name of the manual page on
which it is described.

menus Routine Name

current_item
free_item
free_menu
item_count
item_description
item_index
item_init
item_name
item_opts
item_opts_off
item_opts_on
item_term
item_userptr
item_ value
item_ visible
menu_back

Manual Page Name

menu_i tem_current(3X)
menu_i tem_new(3X)
menu_new(3X)
menu_i tems(3X)
menu_i tem_name(3X)
menu_item_current(3X)
menu_hook(3X)
menu_i tem_name(3X)
menu_i tem_opts(3X)
menu_i tem_opts(3X)
menu_i tem_opts(3X)
menu_hook(3X)
menu_i tem_userptr(3X)
menu_i tern_ val ue(3X)
menu_i tem_ visible(3X)
menu_attributes(3X)

Page 1

menu_win (3X) menu_win (3X)

NAME
menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub, scale_menu -
menus window and subwindow association routines

SYNOPSIS
#include <menu.h>

int set_menu_win(MENU *menu, WINDOW *win);
WINDOW *menu_win(MENU *menu);

int set_menu_sub(MENU *menu, WINDOW *sub);
WINDOW *menu_sub(MENU *menu);

int scale_window(MENU *menu, int *rows, int *cols);

DESCRIPTION
set_menu_win sets the window of menu to win. menu_win returns a pointer to the
window of menu.

set_menu_sub sets the subwindow of menu to sub. menu_sub returns a pointer to
the subwindow of menu.
scale_window returns the minimum window size necessary for the subwindow of
menu. rows and cols are pointers to the locations used to return the values.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_POSTED
E_NOT_CONNECTED

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- The menu is already posted.
- No items are connected to the menu.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses{3X}, menus(3X)

10/92 Page 1

menu_userptr(3X) menu_userptr(3X)

NAME
menu_userptr: set_menu_userptr, menu_userptr - associate application data
with menus

SYNOPSIS
#include <menu.h>

int set_menu_userptr(MENU *menu, char *userptr);
char *menu_userptr(MENU *menu);

DESCRIPTION
Every menu has an associated user pointer that can be used to store relevant infor­
mation. set_menu_userptr sets the user pointer of menu. menu_userptr returns
the user pointer of menu.

RETURN VALUE

NOTES

menu_userptr returns NULL on error.

set_menu_userptr returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_post(3X) menu_post(3X)

NAME
menu_post: post_menu, unpost_menu - write or erase menus from associated
subwindows

SYNOPSIS
#include <menu.h>

int post_menu(MENU *menu);

int unpost_menu(MENU *menu);

DESCRIPTION
post_menu writes menu to the subwindow. The application programmer must use
curses library routines to display the menu on the physical screen or call
update_panels if the panels library is being used.

unpost_menu erases menu from its associated subwindow.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.
E_BAD_STATE - The routine was called from an initialization or

E_NO_ROOM
E_NOT_POSTED
E_NOT_CONNECTED

termination function.
- The menu does not fit within its subwindow.
- The menu has not been posted.
- No items are connected to the menu.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3X), menus(3X), panels(3X)

10/92 Page 1

menu_pattern (3X) menu_pattern (3X)

NAME
menu_pattern: set_menu_pattern, menu_pattern - set and get menus pattern
match buffer

SYNOPSIS
#include <menu.h>

int set_menu_pattern(MENU *menu, char *pat);

char *menu_pattern(MENU *menu);

DESCRIPTION
Every menu has a pattern buffer to match entered data with menu items.
set_menu_pat tern sets the pattern buffer to pat and tries to find the first item that
matches the pattern. If it does, the matching item becomes the current item. If not,
the current item does not change. menu_pattern returns the string in the pattern
buffer of menu.

RETURN VALUE

NOTES

menu_pattern returns NULL on error. set_menu_pattern returns one of the
following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_NO_MATCH

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- The character failed to match.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_opts (3X) menu_opts(3X)

NAME
menu_opts: set_menu_opts, menu_opts_on, menu_opts_of f, menu_opts -
menus option routines

SYNOPSIS
#include <menu.h>

int set_menu_opts(MENU *menu, OPTIONS opts);
int menu_opts_on(MENU *menu, OPTIONS opts);
int menu_opts_off(MENU *menu, OPTIONS opts);
OPTIONS menu_opts(MENU *menu);

DESCRIPTION
Menu Options

set_menu_opts turns on the named options for menu and turns off all other
options. Options are boolean values that can be OR-ed together.

menu_opts_on turns on the named options for menu; no other option is changed.

menu_opts_off turns off the named options for menu; no other option is changed.

menu_opts returns the current options of menu.

Menu Options:

O_ONEVALUE
O_SHOWDESC
O_ROWMAJOR
O_IGNORECASE
O_SHOWMATCH

O_NONCYCLIC

Only one item can be selected from the menu.
Display the description of the items.
Display the menu in row major order.
Ignore the case when pattern matching.
Place the cursor within the item name when pat­
tern matching.
Make certain menu driver requests non-cyclic.

RETURN VALUE

NOTES

Except for menu_opts, these routines return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_POSTED - The menu is already posted.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_new(3X) menu_new(3X)

NAME
menu_new: new_menu, free_menu - create and destroy menus

SYNOPSIS
#include <menu.h>

MENU *new_menu(ITEM **items);

int free_menu(MENU *menu);

DESCRIPTION
new_menu creates a new menu connected to the item pointer array items and returns
a pointer to the new menu.

free_menu disconnects menu from its associated item pointer array and frees the
storage allocated for the menu.

RETURN VALUE

NOTES

new_menu returns NULL on error.

free_menu returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.

The header file menu.h automatically includes the header files eti .h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_mark(3X) menu_mark(3X)

NAME
menu_mark: set_menu_mark, menu_mark- menus mark string routines

SYNOPSIS
#include <menu.h>

int set_menu_mark{MENU *menu, char *mark);

char *menu_mark{MENU *menu);

DESCRIPTION
menus displays mark strings to distinguish selected items in a menu (or the current
item in a single-valued menu). set_menu_mark sets the mark string of menu to
mark. menu_mark returns a pointer to the mark string of menu.

RETURN VALUE

NOTES

menu_mark returns NULL on error. set_menu_mark returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_items (3X) menu_items (3X)

NAME
menu_items: set_menu_items, menu_items, item_count - connect and dis­
connect items to and from menus

SYNOPSIS
#include <menu.h>

int set_menu_items(MENU *menu, ITEM **items);

ITEM **menu_items(MENU *menu);

int item_count(MENU *menu);

DESCRIPTION
set_menu_i terns changes the item pointer array connected to menu to the item
pointer array items.
menu_i terns returns a pointer to the item pointer array connected to menu.

item_count returns the number of items in menu.

RETURN VALUE

NOTES

menu_i terns returns NULL on error.

i tern_ count returns -1 on error.

set_menu_i terns returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.
E_CONNECTED - One or more items are already connected to

another menu.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_item_visible (3X) menu_item_ visible (3X)

NAME
menu_item_visible: item_ visible - tell if menus item is visible

SYNOPSIS
#include <menu.h>

int item_visible(ITEM *item);

DESCRIPTION
A menu item is visible if it currently appears in the subwindow of a posted menu.
item_ visible returns TRUE if item is visible, otherwise it returns FALSE.

NOTES
The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X), menu_new(3X)

10/92 Page 1

menu_item_value (3X) menu_item_value (3X)

NAME
menu_item_value: set_item_value, item_value - set and get menus item
values

SYNOPSIS
#include <menu.h>

int set_item_value(ITEM *item, int bool);

int item_value(ITEM *item);

DESCRIPTION
Unlike single-valued menus, multi-valued menus enable the end-user to select one
or more items from a menu. set_item_value sets the selected value of the item -
TRUE (selected) or FALSE (not selected). set_item_value may be used only with
multi-valued menus. To make a menu multi-valued, use set_menu_opts or
menu_opts_off to turn off the option O_ONEVALUE. [see menu_opts(3X)].

item_value returns the select value of item, either TRUE (selected) or FALSE
(unselected).

RETURN VALUE

NOTES

set_item_value returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_REQUEST_DENIED - The menu driver could not pro­

cess the request.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X), menu_opts(3X)

10/92 Page 1

menu_item_userptr(3X) menu_item_userptr(3X)

NAME
menu_item_userptr: set_item_userptr, item_userptr - associate application
data with menus items

SYNOPSIS
#include <menu.h>

int set_item_userptr(ITEM *item, char *userptr);

char *item_userptr(ITEM *item);

DESCRIPTION
Every item has an associated user pointer that can be used to store relevant infor­
mation. set_itell_userptr sets the user pointer of item. item_userptr returns
the user pointer of item.

RETURN VALUE

NOTES

item_userptr returns NULL on error.
lowing:

set_item_userptr returns one of the fol-

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_item_opts (3X) menu_item_opts (3X)

NAME
menu_item_opts: set_item_opts,item_opts_on,item_opts_off,item_opts­
menus item option routines

SYNOPSIS
#include <menu.h>

int set_item_opts(ITEM *item, OPTIONS opts};
int item_opts_on(ITEM *item, OPTIONS opts};
int item_opts_off(ITEM *item, OPTIONS opts};
OPTIONS item_opts(ITEM *item};

DESCRIPTION
set_item_opts turns on the named options for item and turns off all other options.
Options are boolean values that can be OR-ed together.

item_opts_on turns on the named options for item; no other option is changed.

item_opts_off turns off the named options for item; no other option is changed.

i tem_opts returns the current options of item.
Item Options:

O_SELECTABLE The item can be selected during menu processing.

RETURN VALUE

NOTES

Except for item_opts, these routines return one of the following:

E_OK
E_SYSTEM_ERROR

- The routine returned successfully.
- System error.

The header file menu.h automatically includes the header files eti .h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_item_new (3X) menu_item_new (3X)

NAME
menu_i tem_new: new_i tern, free_i tern - create and destroy menus items

SYNOPSIS
#include <menu.h>

ITEM *new_item(char *name, char *desc);

int free_item(ITEM *item);

DESCRIPTION
new_i tern creates a new item from name and description, and returns a pointer to the
new item.

free_item frees the storage allocated for item. Once an item is freed, the user can
no longer connect it to a menu.

RETURN VALUE

NOTES

new_i tern returns NULL on error.

free_item returns one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_CONNECTED

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- One or more items are already connected to

another menu.

The header file menu. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_item_name (3X) menu_item_name (3X)

NAME
menu_item_name: itern_name, item_description - get menus item name and
description

SYNOPSIS
#include <menu.h>

char *item_name(ITEM *item);

char *item_description(ITEM *item);

DESCRIPTION
itern_name returns a pointer to the name of item.

item_description returns a pointer to the description of item.
RETURN VALUE

These routines return NULL on error.

NOTES
The header file menu. h automatically includes the header files eti. h and
curses .h.

SEE ALSO
curses(3X), menus(3X), menu_new(3X)

10/92 Page 1

menu_item _current (3X) menu_item_current (3X)

NAME
menu item_current: set_current_item, current_item, set_top_row,
top_row, i tem_index - set and get current menus items

SYNOPSIS
#include <menu.h>

int set_current_item(MENU *menu, ITEM *item);
ITEM *current_item(MENU *menu);

int set_top_row(MENU *menu, int row);
int top_row(MENU *menu);

int item_index(ITEM *item);

DESCRIPTION
The current item of a menu is the item where the cursor is currently positioned.
set_current_item sets the current item of menu to item. current_item returns a
pointer to the the current item in menu.

set_top_row sets the top row of menu to row. The left-most item on the new top
row becomes the current item. top_row returns the number of the menu row
currently displayed at the top of menu.

i tem_index returns the index to the item in the item pointer array. The value of
this index ranges from 0 through N-1, where N is the total number of items con­
nected to the menu.

RETURN VALUE

NOTES

current_i tern returns NULL on error.

top_row and index_i tern return -1 on error.

set_current_i tern and set_top_row return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_BAD_STATE - The routine was called from an initialization or

termination function.
E_NOT_CONNECTED - No items are connected to the menu.

The header file menu. h automatically includes the header files et i . h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_hook (3X) menu_hook(3X)

NAME
menu_hook: set_itern_init, itern_init, set_itern_tenn,
set_menu_ini t, menu_ini t, set_menu_tenn, menu_ term - assign
specific routines for automatic invocation by menus

itern_term,
application-

SYNOPSIS
#include <menu.h>

int set_itern_init(MENU *menu, void (*func) (MENU*));
void(*) (MENU*) itern_init(MENU *menu);

int set_itern_term(MENU *menu, void (*func) (MENU*));
void(*) (MENU*) iteil\.....term(MENU *menu);

int set_menu_init(MENU *menu, void (*func) (MENU*));
void (*)(MENU*) menu_init(MENU *menu);

int set_menu_term(MENU *menu, void (*func) (MENU*));
void (*) (MENU *) menu_term (MENU *menu) ;

DESCRIPTION
set_itern_init assigns the application-defined function to be called when the
menu is posted and just after the current item changes. i tern_ini t returns a pointer
to the item initialization routine, if any, called when the menu is posted and just
after the current item changes.

set_i tern_ term assigns an application-defined function to be called when the
menu is unposted and just before the current item changes. itern_term returns a
pointer to the termination function, if any, called when the menu is unposted and
just before the current item changes.

set_menu_ini t assigns an application-defined function to be called when the
menu is posted and just after the top row changes on a posted menu. menu_ini t
returns a pointer to the menu initialization routine, if any, called when the menu is
posted and just after the top row changes on a posted menu.

set_menu_term assigns an application-defined function to be called when the
menu is unposted and just before the top row changes on a posted menu.
menu_term returns a pointer to the menu termination routine, if any, called when
the menu is unposted and just before the top row changes on a posted menu.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK
E_SYSTEM_ERROR

- The routine returned successfully.
- System error.

The header file menu. h automatically includes the header files eti . h and
curses.h.

SEE ALSO
curses(3X), menus(3X), menu_control(3X), menu_hook(3X)

10/92 Page 1

menu_format (3X) menu_format (3X)

NAME
menu_format: set_menu_format, menu_format - set and get maximum numbers
of rows and columns in menus

SYNOPSIS
#include <menu.h>

int set_menu_format(MENU *menu, int rows, int cols);

void menu_format(MENU *menu, int *rows, int *cols);

DESCRIPTION
set_menu_format sets the maximum number of rows and columns of items that
may be displayed at one time on a menu. If the menu contains more items than can
be displayed at once, the menu will be scrollable.

menu_format returns the maximum number of rows and columns that may be
displayed at one time on menu. rows and cols are pointers to the variables used to
return these values.

RETURN VALUE

NOTES

set_menu_format returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.

The header file menu. h automatically includes the header files eti. h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

menu_driver(3X) menu_drlver(3X)

NOTES

E_UNKNOWN_COMMAND - An unknown request was passed to the menu
driver.

E_NO_MATCH - The character failed to match.
E_NOT_SELECTABLE - The item cannot be selected.
E_REQUEST_DENIED - The menu driver could not process the request.

Application defined commands should be defined relative to (greater than)
MAX_COMMAND, the maximum value of a request listed above.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

Page 2 10/92

menu_driver(3X) menu_driver(3X)

NAME
menu_dri ver - command processor for the menus subsystem

SYNOPSIS
#include <menu.h>

int menu_driver(MENU *menu, int c);

DESCRIPTION
menu_dri ver is the workhorse of the menus subsystem. It checks to determine
whether the character c is a menu request or data. If c is a request, the menu driver
executes the request and reports the result. If c is data (a printable ASCII character),
it enters the data into the pattern buffer and tries to find a matching item. If no
match is found, the menu driver deletes the character from the pattern buffer and
returns E_NO_MATCH. If the character is not recognized, the menu driver assumes it
is an application-defined command and returns E_UNKNOWN_COMMAND.

Menu driver requests:

REQ_LEFT_ITEM
REQ_RIGHT_ITEM
REQ_UP_ITEM
REQ_DOWN_ITEM

REQ_SCR_ULINE
REQ_SCR_DLINE
REQ_SCR_DPAGE
REQ_SCR_UPAGE

REQ_FIRST_ITEM
REQ_LAST_ITEM
REQ_NEXT_ITEM
REQ_PREV_ITEM

REQ_TOGGLE_ITEM
REQ_CLEAR_PATTERN
REQ_BACK_PATTERN
REQ_NEXT_MATCH
REQ_PREV_MATCH

Move left to an item.
Move right to an item.
Move up to an item.
Move down to an item.

Scroll up a line.
Scroll down a line.
Scroll up a page.
Scroll down a page.

Move to the first item.
Move to the last item.
Move to the next item.
Move to the previous item.

Select/de-select an item.
Clear the menu pattern buffer.
Delete the previous character from pattern buffer.
Move the next matching item.
Move to the previous matching item.

RETURN VALUE
menu_dri ver returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_BAD_STATE - The routine was called from an initialization or

termination function.
E_NOT_POSTED - The menu has not been posted.

10/92 Page 1

menu_cursor(3X) menu_cursor(3X)

NAME
menu_cursor: pos_menu_cursor - correctly position a menus cursor

SYNOPSIS
#include <menu.h>

int pos_menu_cursor(MENU *menu);

DESCRIPTION
pos_menu_cursor moves the cursor in the window of menu to the correct position
to resume menu processing. This is needed after the application calls a curses
library 1/0 routine.

RETURN VALUE

NOTES

This routine returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_NOT_POSTED - The menu has not been posted.

The header file menu. h automatically includes the header files et i. h and
curses.h.

SEE ALSO
curses(3X), menus(3X), panels(3X), panel_update(3X)

10/92 Page 1

menu_attributes (3X) menu_attributes (3X)

NAME
menu_attributes: set_menu_fore, menu_fore, set_menu_back, menu_back,
set_menu_grey, menu_grey, set_menu_pad, menu_pad - control menus display
attributes

SYNOPSIS
#include <menu.h>

int set_menu_fore(MENU *menu, chtype attr);
chtype menu_fore(MENU *menu);
int set_menu_back(MENU *menu, chtype attr);
chtype menu_back(MENU *menu);
int set_menu_grey(MENU *menu, chtype attr);
chtype menu_grey(MENU *menu);
int set_menu_pad(MENU *menu, int pad);
int menu_pad(MENU *menu);

DESCRIPTION
set_menu_fore sets the foreground attribute of menu - the display attribute for
the current item (if selectable) on single-valued menus and for selected items on
multi-valued menus. This display attribute is a curses library visual attribute.
menu_fore returns the foreground attribute of menu.

set_menu_back sets the background attribute of menu - the display attribute for
unselected, yet selectable, items. This display attribute is a curses library visual
attribute.

set_menu_grey sets the grey attribute of menu - the display attribute for non­
selectable items in multi-valued menus. This display attribute is a curses library
visual attribute. menu_grey returns the grey attribute of menu.

The pad character is the character that fills the space between the name and
description of an item. set_menu_pad sets the pad character for menu to pad.
menu_pad returns the pad character of menu.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3X), menus(3X)

10/92 Page 1

memory(3C) (C Development Set) memory(3C)

NAME
memory: mernccpy, mernchr, merncmp, merncpy, mermnove, mernset - memory operations

SYNOPSIS
#include <string.h>

void *mernccpy (void *sl, canst void *s2, int c, size_t n);

void *mernchr (canst void *s, int c, size_t n);

int memcmp (canst void *sl, canst void *s2, size_t n);

void *merncpy (void *sl, const void *s2, size_t n);

void *mermnove (void *sl, const void *s2, size_t n);

void *mernset (void *s, int c, size_t n);

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of bytes
bounded by a count, not terminated by a null character). They do not check for the
overflow of any receiving memory area.

memccpy copies bytes from memory area s2 into s1, stopping after the first
occurrence of c (converted to an unsigned char) has been copied, or after n bytes
have been copied, whichever comes first. It returns a pointer to the byte after the
copy of c in s1, or a null pointer if c was not found in the first n bytes of s2.

memchr returns a pointer to the first occurrence of c (converted to an unsigned
char) in the first n bytes (each interpreted as an unsigned char) of memory areas,
or a null pointer if c does not occur.

memcmp compares its arguments, looking at the first n bytes (each interpreted as an
unsigned char), and returns an integer less than, equal to, or greater than 0,
according as s1 is lexicographically less than, equal to, or greater than s2 when
taken to be unsigned characters.

merncpy copies n bytes from memory area s2 to s1. It returns s1.

mermnove copies n bytes from memory areas s2 to s1. Copying between objects that
overlap will take place correctly. It returns s1.

memset sets the first n bytes in memory areas to the value of c (converted to an
unsigned char). It returns s.

SEE ALSO
string(3C)

10/92 Page 1

memcntl{2) memcntl{2)

The mask argument must be zero; it is reserved for future use.

Locks established with the lock operations are not inherited by a child process after
fork. memcntl fails if it attempts to lock more memory than a system-specific
limit.

Due to the potential impact on system resources, all operations, with the exception
of MC_SYNC, are restricted to processes with superuser effective user ID . The
memcntl function subsumes the operations of plock and mctl.

RETURN VALUE
Upon successful completion, the function memcntl returns a value of O; otherwise,
it returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function memcntl fails and sets errno to:

EAGAIN if some or all of the memory identified by the operation could not be
locked when MC_LOCK or MC_LOCKAS is specified.

EBUSY

EINVAL

EINVAL

EINVAL

EINVAL

ENOMEM

EPERM

if some or all the addresses in the range [addr, addr + len) are locked
and MC_SYNC with MS_INVALIDATE option is specified.

if addr is not a multiple of the page size as returned by sysconf.

if addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS is specified.

if arg is not valid for the function specified.

if invalid selection criteria are specified in attr.

if some or all the addresses in the range [addr, addr + len) are invalid
for the address space of the process or pages not mapped are
specified.

if the process's effective user ID is not superuser and one of MC_LOCK,
MC_LOCKAS, MC_ UNLOCK, MC_UNLOCKAS was specified.

SEE ALSO
mmap(2), mprotect(2), plock(2), sysconf(2), mlock(3C), mlockall(3C), msync(3C)

10/92 Page 3

memcntl(2)

MC_LOCKAS

MC_SYNC

MC_ UNLOCK

MC_UNLOCKAS

Page 2

memcntl (2)

a different mapping in the locking process) is locked in memory
as long as the locking process does neither an implicit nor explicit
unlock operation. If a locked mapping is removed, or a page is
deleted through file removal or truncation, an unlock operation is
implicitly performed. If a writable MAP _PRIVATE page in the
address range is changed, the lock will be transferred to the
private page.

At present arg is unused, but must be 0 to ensure compatibility
with potential future enhancements.

Lock in memory all pages mapped by the address space with
attributes attr. At present addr and len are unused, but must be
NULL and 0 respectively, to ensure compatibility with potential
future enhancements. arg is a bit pattern built from the flags:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

The value of arg determines whether the pages to be locked are
those currently mapped by the address space, those that will be
mapped in the future, or both. If MCL_FUTURE is specified, then
all mappings subsequently added to the address space will be
locked, provided sufficient memory is available.

Write to their backing storage locations all modified pages in the
range with attributes attr. Optionally, invalidate cache copies.
The backing storage for a modified MAP _SHARED mapping is the
file the page is mapped to; the backing storage for a modified
MAP_PRIVATE mapping is its swap area. arg is a bit pattern built
from the flags used to control the behavior of the operation:

MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronous writes
MS_INVALIDATE invalidate mappings

MS_ASYNC returns immediately once all write operations are
scheduled; with MS_SYNC the system call will not return until all
write operations are completed.

MS_INVALIDATE invalidates all cached copies of data in memory,
so that further references to the pages will be obtained by the sys­
tem from their backing storage locations. This operation should
be used by applications that require a memory object to be in a
known state.

Unlock all pages in the range with attributes attr. At present arg
is unused, but must be O to ensure compatibility with potential
future enhancements.

Remove address space memory locks, and locks on all pages in
the address space with attributes attr. At present addr, len, and
arg are unused, but must be NULL, 0 and 0 respectively, to ensure
compatibility with potential future enhancements.

10/92

memcntl(2) memcntl(2)

NAME
memcntl - memory management control

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
int attr, int mask);

DESCRIPTION

10/92

The function memcntl allows the calling process to apply a variety of control opera­
tions over the address space identified by the mappings established for the address
range [addr, addr +Zen).

addr must be a multiple of the pagesize as returned by sysconf(3C). The scope of
the control operations can be further defined with additional selection criteria (in
the form of attributes) according to the bit pattern contained in attr.

The following attributes specify page mapping selection criteria:

SHARED

PRIVATE

Page is mapped shared.

Page is mapped private.

The following attributes specify page protection selection criteria:

PROT_READ

PROT_WRITE

Page can be read.

Page can be written.

PROT_EXEC Page can be executed.

See the System V Application Binary Interface for further information concerning com­
binations of the PROT_READ, PROT_WRITE, and PROT_EXEC flags.

The selection criteria are constructed by an OR of the attribute bits and must match
exactly.

In addition, the following criteria may be specified:

PROC_TEXT

PROC_DATA

process text

process data

where PROC_TEXT specifies all privately mapped segments with read and execute
permission, and PROC_DATA specifies all privately mapped segments with write
permission.

Selection criteria can be used to describe various abstract memory objects within
the address space on which to operate. If an operation shall not be constrained by
the selection criteria, attr must have the value O.

The operation to be performed is identified by the argument cmd. The symbolic
names for the operations are defined in sys /roman. h as follows:

MC_LOCK Lock in memory all pages in the range with attributes attr. A
given page may be locked multiple times through different map­
pings; however, within a given mapping, page locks do not nest.
Multiple lock operations on the same address in the same process
will all be removed with a single unlock operation. A page
locked in one process and mapped in another (or visible through

Page 1

mctl (3) (BSD Compatibility Package) mctl (3)

RETURN VALUE
mctl returns 0 on success, -1 on failure.

ERRORS
mctl fails if:

EA GAIN

EBUSY

EINVAL

EINVAL

EINVAL

EIO

ENOMEM

EPERM

SEE ALSO

Some or all of the memory identified by the operation could
not be locked due to insufficient system resources.

MS_INVALIDATE was specified and one or more of
the pages is locked in memory.

addr is not a multiple of the page size as returned by get­
pagesize.

addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS are specified.

arg is not valid for the function specified.

An 1/0 error occurred while reading from or writing to the
file system.

Addresses in the range [addr, addr + len) are invalid for the
address space of a process, or specify one or more pages
which are not mapped.

The process's effective user ID is not super-user and one of
MC_LOCK, MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS was
specified.

rmnap(2), getpagesize(3), mlock(3C), mlocka11(3C), msync(3C).

Page 2 10/92

mctl (3) (BSD Compatibility Package) mctl (3)

NAME
mctl - memory management control

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/types.h>
#include <sys/mman.h>

mctl(caddr_t addr, size_t len, int function, void *arg);

DESCRIPTION

10/92

mctl applies a variety of control functions over pages identified by the mappings
established for the address range [addr, addr + /en). The function to be performed is
identified by the argument function. Valid functions are defined in mman. h as fol­
lows.

MC_LOCK
Lock the pages in the range in memory. This function is used to support
mlock. See mlock(3) for semantics and usage. arg is ignored.

MC_LOCKAS
Lock the pages in the address space in memory. This function is used to
support mlockall. See mlocka11(3) for semantics and usage. addr and Zen
are ignored. arg is an integer built from the flags:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

MC SYNC
Synchronize the pages in the range with their backing storage. Optionally
invalidate cache copies. This function is used to support msync. See
msync(3) for semantics and usage. arg is used to represent the flags argu­
ment to msync. It is constructed from an OR of the following values:

MS_SYNC Synchronized write
MS_ASYNC Return immediately
MS_INVALIDATE Invalidate mappings

MS_ASYNC returns after all I/O operations are scheduled. MS_SYNC does not
return until all I/O operations are complete. Specify exactly one of
MS_ASYNC or MS_SYNC. MS_INVALIDATE invalidates all cached copies of
data from memory, requiring them to be re-obtained from the object's per­
manent storage location upon the next reference.

MC_UNLOCK
Unlock the pages in the range. This function is used to support mun lock.
See munlock(3) for semantics and usage. arg is ignored.

MC_UNLOCKAS
Remove address space memory lock, and locks on all current mappings.
This function is used to support munlocka11(3). addr and Zen must have the
value 0. arg is ignored.

Page 1

mbstring(3C) (C Programming Language Utilities) mbstring (3C)

NAME
mbstring: mbstawcs, wcstambs - multibyte string functions

SYNOPSIS
#include <stdlib.h>

size_t mbstawcs (wchar_t *pwcs, canst char *s, size_t n);

size_t wcstambs (char *s, canst wchar_t *pwcs, size_t n);

DESCRIPTION
mbstawcs converts a sequence of multibyte characters from the array pointed to by
s into a sequence of corresponding wide character codes and stores these codes into
the array pointed to by pwcs, stopping after n codes are stored or a code with value
zero (a converted null character) is stored. If an invalid multibyte character is
encountered, mbstawcs returns (size_t)-1. Otherwise, mbstawcs returns the
number of array elements modified, not including the terminating zero code, if any.

wcstambs converts a sequence of wide character codes from the array pointed to by
pwcs into a sequence of multibyte characters and stores these multibyte characters
into the array pointed to by s, stopping if a multibyte character would exceed the
limit of n total bytes or if a null character is stored. If a wide character code is
encountered that does not correspond to a valid multibyte character, wcstambs
returns (size_t)-1. Otherwise, wcstambs returns the number of bytes modified,
not including a terminating null character, if any.

SEE ALSO
chrtbl(lM), mbchar(3C), setlacale(3C), environ(5).

10/92 Page 1

mbchar(3C) (C Programming Language Utilities) mbchar(3C)

SEE ALSO
chrtbl(lM), rnbstring(3C), setlocale(3C), environ(S).

Page 2 10/92

mbchar(3C) (C Programming Language Utilities) mbchar(3C)

NAME
mbchar: mbtowc, mblen, wctomb - multibyte character handling

SYNOPSIS
#include <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n);

int mblen (const char *s, size_t n);

int wctomb (char *s, wchar_t wchar);

DESCRIPTION

10/92

Multibyte characters are used to represent characters in an extended character set.
This is needed for locales where 8 bits are not enough to represent all the characters
in the character set.

The multibyte character handling functions provide the means of translating multi­
byte characters into wide characters and back again. Wide characters have type
wchar_t (defined in stdlib.h), which is an integral type whose range of values
can represent distinct codes for all members of the largest extended character set
specified among the supported locales.

A maximum of 3 extended character sets are supported for each locale. The
number of bytes in an extended character set is defined by the LC_CTYPE category
of the locale [see setlocale(3C)]. However, the maximum number of bytes in any
multibyte character will never be greater than MB_LEN_MAX. which is defined in
stdl ib. h. The maximum number of bytes in a character in an extended character
set in the current locale is given by the macro, MB_CUR_MAX, also defined in
stdlib.h.

mbtowc determines the number of bytes that comprise the multibyte character
pointed to by s. Also, if pwc is not a null pointer, mbtowc converts the multibyte
character to a wide character and places the result in the object pointed to by pwc.
(The value of the wide character corresponding to the null character is zero.) At
most n characters will be examined, starting at the character pointed to by s.

Ifs is a null pointer, mbtowc simply returns 0. Ifs is not a null pointer, then, ifs
points to the null character, mbtowc returns O; if the next n or fewer bytes form a
valid multibyte character, mbtowc returns the number of bytes that comprise the
converted multibyte character; otherwise, s does not point to a valid multibyte
character and mbtowc returns -1.

mblen determines the number of bytes comprising the multibyte character pointed
to by s. It is equivalent to

mbtowc ((wchar_t *)O, s, n);

wctomb determines the number of bytes needed to represent the multibyte charac­
ter corresponding to the code whose value is wchar, and, if s is not a null pointer,
stores the multibyte character representation in the array pointed to by s. At most
MB_CUR_MAX characters are stored.

If s is a null pointer, wctomb simply returns 0. If s is not a null pointer, wctomb
returns -1 if the value of wchar does not correspond to a valid multibyte character;
otherwise it returns the number of bytes that comprise the multibyte character
corresponding to the value of wchar.

Page 1

matherr (3M) (Math Libraries) matherr(3M)

M
H
-H
±H

0
x
N

Abbreviations
Message is printed (not with the -Xa or -Xe options).
HUGE is returned (HUGE_ VAL with the -xa or -Xe options).
-HUGE is returned (-HUGE_ VAL with the - Xa or - Xe options).
HUGE or -HUGE is returned.
(HUGE_ VAL or -HUGE_ VAL with the -Xa or -Xe options).
0 is returned.
argl is returned.
NaN is returned.

EXAMPLE

NOTES

10/92

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
matherr(register struct exception *x);
{

switch (x->type)
case OOMAIN:

/* change sqrt to return sqrt(-argl), not 0 *I
if (! strcmp (x->name, "sqrt")) {

x->retval = sqrt(-x->argl);
return (0); /* print message and set errno */

case SING:
/* all other domain or sing errors, print message */
I* and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort() ;

case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g)=%g\n",

x->name, x->argl, x->retval);
return (l); /*take no other action*/

return (0); /*all other errors, execute default procedure*/

Error handling in -Xa and -Xt modes [see cc(l)] is described more completely on
individual math library pages.

Page 3

matherr (3M) (Math Libraries) matherr(3M)

Default Error Handling Procedures
Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

I BESSEL: - - I - - I M,O -
yO, yl, yn (arg::; 0) M,-H - - - - -
EXP,EXPF: - - H 0 - -
LOG,LOGlO:

I
I

LOGF, LOGlOF:

l (arg < 0) M,-H - - - - -

(arg = 0) M,-H - - - - -
POW,POWF: - - ±H I 0 - I -
neg** non-int M,O - - - - -

I 0 ** non-pos M,O - - - - -

SQRT, SQRTF: M,O - - - - -

FMOD,FMODF:

(arg2 = 0) M,X - - - - -

REMAINDER:

(arg2 = 0) M,N - - - - -

GAMMA, LGAMMA: - M,H H - - -
HYPOT:

I - H - - --

SINH, SINHF: - - ±H - - -

COSH, COSHF: - - H - - -
ASIN, ACOS, ATAN2:

ASINF, ACOSF, ATAN2F: M,O - - - - -

ACOSH: M,N - - - - -
ATANH:

(I argl >1) M,N - - - - -
(I argl =1) - M,N - - - -

Page 2 10/92

matherr(3M) (Math Libraries) matherr (3M)

NAME
matherr - error-handling function

SYNOPSIS
cc (flag ...] file . . . - lm [library ...]

#include <math.h>

int matherr (struct exception *x);

DESCRIPTION

10/92

matherr is invoked by functions in the math libraries when errors are detected.
Note that matherr is not invoked when the -Xe compilation option is used. Users
may define their own procedures for handling errors, by including a function
named matherr in their programs. matherr must be of the form described above.
When an error occurs, a pointer to the exception structure x will be passed to the
user-supplied matherr function. This structure, which is defined in the math. h
header file, is as follows:

struct exception
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables argl and arg2 are the arguments with which the
function was invoked. retval is set to the default value that will be returned by
the function unless the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message will be printed,
and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, errno is set to
EDOM or ERANGE and the program continues.

Page 1

math{5) math{5)

NAME
math- math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library (described in
Section 3M), as well as various functions in the C Library (Section 3C) that return
floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling
mechanisms, including the following constant used as a error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).
M_LOG2E

M__LOGlOE

M_LN2

M_LNlO

M_PI

M_PI_2

M_PI_4

M_l_PI

M_2_PI

M_2_SQRTPI

M_SQRT2

M_SQRT1_2

The base-2 logarithm of e.

The base-10 logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

1t, the ratio of the circumference of a circle to its diameter.

1t/2.

1t/4.

l/1t.

2/1t.

2/ .../1t.
The positive square root of 2.

The positive square root of 1/2.

The following mathematical constants are also defined in this header file:

MAXFLOAT

HUGE_ VAL

The maximum value of a non-infinite single-precision floating
point number.

positive infinity.

For the definitions of various machine-dependent constants, see values(S).

SEE ALSO
intro(3), matherr(3M), values(S)

10/92 Page 1

malloc(3X) (Specialized Libraries) malloc(3X)

set.

M_KEEP Preserve data in a freed block until the next malloc, realloc, or
calloc. This option is provided only for compatibility with the
old version of malloc and is not recommended.

These values are defined in the mal loc. h header file.

mallopt may be called repeatedly, but may not be called after the first small block
is allocated.

mallinfo provides instrumentation describing space usage. It returns the struc­
ture:

struct mallinfo
int arena; I* total space in arena */
int ordblks; I* number of ordinary blocks *I
int smblks; I* number of small blocks *I
int hblkhd; I* space in holding block headers *I
int hblks; I* number of holding blocks *I
int usmblks; I* space in small blocks in use *I
int fsmblks; I* space in free small blocks *I
int uordblks; I* space in ordinary blocks in use *I
int fordblks; I* space in free ordinary blocks *I
int keepcost; I* space penalty if keep option */

I* is used */

This structure is defined in the malloc. h header file.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS

NOTES

Page 2

malloc, real loc, and calloc return a NULL pointer if there is not enough available
memory. When realloc returns NULL, the block pointed to by ptr is left intact. If
mallopt is called after any allocation or if cmd or value are invalid, non-zero is
returned. Otherwise, it returns zero.

Note that unlike malloc(3C), this package does not preserve the contents of a block
when it is freed, unless the M_KEEP option of mallopt is used.

Undocumented features of mal loc(3C) have not been duplicated.

Function prototypes for malloc, realloc, calloc and free are also defined in the
<malloc. h> header file for compatibility with old applications. New applications
should include <stdlib. h> to access the prototypes for these functions.

10/92

malloc (3X) (Specialized Libraries) malloc(3X)

NAME
malloc, free, realloc, calloc, mallopt, mall info - memory allocator

SYNOPSIS
cc [flag .. .]file ... -lmalloc [library ...]

#include <stdlib.h>

void *malloc (size_t size)

void free (void *ptr)

void *realloc (void *ptr, size_t size)

void *calloc (size_t nelem, size_t elsize)

#include <malloc.h>

int mallopt (int cmd, int value)

struct mallinfo mallinfo (void)

DESCRIPTION

10/92

malloc and free provide a simple general-purpose memory allocation package.

malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc; after
free is performed this space is made available for further allocation, and its con­
tents have been destroyed (but see mallopt below for a way to change this
behavior). If ptr is a null pointer, no action occurs.

Undefined results occur if the space assigned by malloc is overrun or if some ran­
dom number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents are unchanged up to the lesser
of the new and old sizes. If ptr is a null pointer, realloc behaves like malloc for
the specified size. If size is zero and ptr is not a null pointer, the object it points to is
freed.

calloc allocates space for an array of nelem elements of size elsize. The space is ini­
tialized to zeros.

mallopt provides for control over the allocation algorithm. The available values
for cmd are:

M_MXFAST

M_NLBLKS

M_GRAIN

Set maxfast to value. The algorithm allocates all blocks below the
size of maxfast in large groups and then doles them out very
quickly. The default value for maxfast, a system dependent value,
is 24 on the M68000, and 96 on the M88000 family of processors.

Set numlblks to value. The above mentioned "large groups" each
contain numlblks blocks. numlblks must be greater than 0. The
default value for numlblks is 100.

Set grain to value. The sizes of all blocks smaller than maxfast are
considered to be rounded up to the nearest multiple of grain. grain
must be greater than 0. The default value of grain is the smallest
number of bytes which will allow alignment of any data type.
Value will be rounded up to a multiple of the default when grain is

Page 1

malloc(3C) (C Development Set) malloc(3C)

NAME
malloc, free, realloc, calloc, memalign, valloc, - memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc (size_t size);

void free (void *ptr) ;

void *realloc (void *ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

void *memalign(size_t alignment, size_t size);

void *valloc(size_t size);

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.
malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc, cal­
loc or realloc. After free is performed this space is made available for further
allocation. If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloc is overrun or if some
random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If ptr is NULL, realloc behaves like malloc for the
specified size. If size is zero and ptr is not a null pointer, the object pointed to is
freed.

calloc allocates space for an array of nelem elements of size elsize. The space is ini­
tialized to zeros.

memalign allocates size bytes on a specified alignment boundary, and returns a
pointer to the allocated block. The value of the returned address is guaranteed to
be an even multiple of alignment. Note: the value of alignment must be a power of
two, and must be greater than or equal to the size of a word.

valloc (size) is equivalent to memalign (sysconf (_SC_PAGESIZE), size).

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

malloc, realloc, calloc, memalign, and valloc will fail if there is not enough
available memory.

SEE ALSO
malloc(3X)

DIAGNOSTICS

10/92

If there is no available memory, malloc, realloc, memalign, valloc, and calloc
return a null pointer. When realloc returns NULL, the block pointed to by ptr is
left intact. If size, nelem, or elsize is 0, a unique pointer to the arena is returned.

Page 1

makedev (3C) makedev (3C)

NAME
makedev, major, minor - manage a device number

SYNOPSIS
#include <sys/types.h>
#include <sys/mkdev.h>

dev_t makedev(major_t maj, minor_t min);

major_t major(dev_t device);

minor_t minor(dev_t device);

DESCRIPTION
The makedev routine returns a formatted device number on success and NODEV on
failure. maj is the major number. min is the minor number. makedev can be used to
create a device number for input to mknod(2).

The major routine returns the major number component from device.

The minor routine returns the minor number component from device.

makedev will fail if one or more of the following are true:

EINVAL One or both of the arguments maj and min is too large.

EINVAL The device number created from maj and min is NODEV.

major will fail if one or more of the following are true:

EINVAL The device argument is NODEV.

EINVAL The major number component of device is too large.

minor will fail if the following is true:

EINVAL The device argument is NODEV.

SEE ALSO
stat(2), mknod(2)

DIAGNOSTICS
On failure, NODEV is returned and errno is set to indicate the error.

10/92 Page 1

makecontext (3C) makecontext (3C)

NAME
makecontext, swapcontext - manipulate user contexts

SYNOPSIS
#include <ucontext.h>

void makecontext (ucontext_t *ucp, (void(*) ())func, int argc, ...);

int swapcontext (ucontext_t *oucp, ucontext_t *ucp);

DESCRIPTION
These functions are useful for implementing user-level context switching between
multiple threads of control within a process.

makecontext modifies the context specified by ucp, which has been initialized
using getcontext; when this context is resumed using swapcontext or setcon­
text [see getcontext(2)], program execution continues by calling the function
June, passing it the arguments that follow argc in the makecontext call. The integer
value of argc must match the number of arguments that follow argc. Otherwise the
behavior is undefined.

swapcontext saves the current context in the context structure pointed to by oucp
and sets the context to the context structure pointed to by ucp. swapcontext does
not return; program execution continues at the point specified by the context struc­
ture oucp passed to swapcontext.

These functions will fail if either of the following is true:

ENOMEM

EFAULT

ucp does not have enough stack left to complete the operation.

ucp or oucp points to an invalid address.

SEE ALSO
exit(2), getcontext(2), sigaction(2), sigprocmask(2), ucontext(5).

DIAGNOSTICS

NOTES

10/92

On successful completion, swapcontext does not return. Otherwise, a value of -1
is returned and errno is set to indicate the error.

The size of the ucontext_t structure may change in future releases. To remain
binary compatible, users of these features must always use makecontext or
getcontext to create new instances of them.

Page 1

maillock{3X) maillock{3X)

NAME
rnaillock- manage lockfile for user's mailbox

SYNOPSIS
cc [flag .. .]file ... -lrnail [library ...]
#include <rnaillock.h>

int rnaillock (canst char *user, int retrycnt};

int rnailunlock (void};

DESCRIPTION
The rnaillock function attempts to create a lockfile for the user's mailfile. If a
lockfile already exists, rnaillock assumes the contents of the file is the process ID
(as a null-terminated ASCII string) of the process that created the lockfile (presum­
ably with a call to rnaillock). If the process that created the lockfile is still alive,
rnaillock will sleep and try again retrycnt times before returning with an error indi­
cation. The sleep algorithm is to sleep for 5 seconds times the attempt number.
That is, the first sleep will be for 5 seconds, the next sleep will be for 10 seconds, etc.
until the number of attempts reaches retrycnt. When the lockfile is no longer
needed, it should be removed by calling mail unlock.

user is the login name of the user for whose mailbox the lockfile will be created.
rnaillock assumes that users' mailfiles are in the "standard" place as defined in
rnai llock. h.

RETURN VALUE

FILES

NOTES

10/92

The following return code definitions are contained in rnaillock.h. Only
L_SUCCESS is returned for mail unlock.

#define L_SUCCESS
#define L_NAMELEN
#define L_TMPLOCK
#define L_TMPWRITE
#define L_MAXTRYS
#define L_ERROR

LIBDIR/llib-rnail. ln
LIBDIR/rnail. a
/var /mail I*
/var/rnail/*.lock

0
1
2
3
4
5

I*
I*
I*
I*
I*
I*

Lockfile created or removed */
Recipient name > 13 chars */
Can't create trnp file */
Can't write pid into lockfile */
Failed after retrycnt attempts */
Check errno for reason */

rnailunlock will only remove the lockfile created from the most previous call to
rnaillock. Calling rnaillock for different users without intervening calls to
mail unlock will cause the initially created lockfile(s) to remain, potentially block­
ing subsequent message delivery until the current process finally terminates.

Page 1

lseek(2) lseek(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

off_t lseek (int fildes, off_t offset, int whence);

DESCRIPTION
ft/des is a file descriptor returned from a creat, open, dup, fcntl, pipe, or ioctl
system call. ls eek sets the file pointer associated with fildes as follows:

If whence is SEEK_SET, the pointer is set to offset bytes.

If whence is SEEK_ CUR, the pointer is set to its current location plus offset.

If whence is SEEK_END, the pointer is set to the size of the file plus offset.

On success, lseek returns the resulting pointer location, as measured in bytes from
the beginning of the file. Note that if fildes is a remote file descriptor and offset is
negative, lseek returns the file pointer even if it is negative.

lseek allows the file pointer to be set beyond the existing data in the file. If data are
later written at this point, subsequent reads in the gap between the previous end of
data and the newly written data will return bytes of value 0 until data are written
into the gap.

lseek fails and the file pointer remains unchanged if one or more of the following
are true:

EBADF

ES PIPE

EINVAL

EINVAL

fildes is not an open file descriptor.

fildes is associated with a pipe or fifo.

whence is not SEEK_SET, SEEK_CUR, or SEEK_END. The process also
gets a SIGSYS signal.

fildes is not a remote file descriptor, and the resulting file pointer
would be negative.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2)

DIAGNOSTICS

10/92

Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

Page 1

lsearch (3C) (C Development Set) lsearch (3C)

nel < TABSIZE)
(void) lsearch(line, tab, &nel, ELSIZE, mycmp);

for(i = O; i < nel; i++)
(void)fputs(tab[i], stdout);

return O;

SEE ALSO

NOTES

Page 2

bsearch(3C}, hsearch(3C), string(3C}, tsearch(3C)

If the searched-for datum is found, both lsearch and lfind return a pointer to
it. Otherwise, lfind returns NULL and lsearch returns a pointer to the newly
added element.

Undefined results can occur if there is not enough room in the table to add a
new item.

10/92

I search (3C) (C Development Set) lsearch (3C)

NAME
lsearch, Hind- linear search and update

SYNOPSIS
#include <search.h>

void *lsearch (const void *key, void * base, size_t *nelp,
size_t width, int (*compar) (const void*, const void*));

void *lfind (const void *key, const void *base, size_t *nelp,
size_t width, int (*compar) (const void*, const void*));

DESCRIPTION

NOTES

lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the datum
does not occur, it is added at the end of the table. key points to the datum to be
sought in the table. base points to the first element in the table. nelp points to an
integer containing the current number of elements in the table. The integer is incre­
mented if the datum is added to the table. width is the size of an element in bytes.
compar is a pointer to the comparison function that the user must supply (strcmp,
for example). It is called with two arguments that point to the elements being com­
pared. The function must return zero if the elements are equal and non-zero other­
wise.

lfind is the same as lsearch except that if the datum is not found, it is not added
to the table. Instead, a null pointer is returned.

The pointers to the key and the element at the base of the table may be pointers to
any type.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value returned should be cast into type pointer-to-element.

EXAMPLE
This program will read in less than TABSIZE strings of length less than ELSIZE and
store them in a table, eliminating duplicates, and then will print each entry.

#include <search.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define TABSIZE 50
#define ELSIZE 120

main()
{

char line[ELSIZE]; /* buffer to hold input string */
char tab[TABSIZE] [ELSIZE]; /*table of strings*/
size_t nel = O; /* number of entries in tab */
int i;

while (fgets(line, ELSIZE, stdin) !=NULL &&

10/92 Page 1

locking (2) (Application Compatibility Package) locking (2)

fd=open("datafile" ,O_RDWR);
lseek(fd, 200L, 0);
locking(fd, LK_LOCK, 200L);

Accordingly, to lock or unlock an entire file a seek to the beginning of the file (posi­
tion 0) must be done and then a locking call must be executed with a size of 0.

size is the number of contiguous bytes to be locked for unlocked. The region to be
locked starts at the current offset in the file. If size is 0, the entire file is locked or
unlocked. size may extend beyond the end of the file, in which case only the pro­
cess issuing the lock call may access or add information to the file within the boun­
dary defined by size.

The potential for a deadlock occurs when a process controlling a locked area is put
to sleep by accessing another process's locked area. Thus calls to locking, read, or
write scan for a deadlock prior to sleeping on a locked region. An EDEADLK error
return is made if sleeping on the locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a previously locked
region for the same process. When this occurs, or when adjacent regions are locked,
the regions are combined into a single area if the mode of the lock is the same (that
is, either read permitted or regular lock). If the mode of the overlapping locks
differ, the locked areas will be assigned assuming that the most recent request must
be satisfied. Thus if a read only lock is applied to a region, or part of a region, that
had been previously locked by the same process against both reading and writing,
the area of the file specified by the new lock will be locked for read only, while the
remaining region, if any, will remain locked against reading and writing. There is
no arbitrary limit to the number of regions which may be locked in a file.

Unlock requests may, in whole or part, release one or more locked regions con­
trolled by the process. When regions are not fully released, the remaining areas are
still locked by the process. Release of the center section of a locked area requires an
additional locked element to hold the separated section. If the lock table is full, an
error is returned, and the requested region is not released. Only the process which
locked the file region may unlock it. An unlock request for a region that the pro­
cess does not have locked, or that is already unlocked, has no effect. When a pro­
cess terminates, all locked regions controlled by that process are unlocked.

If a process has done more than one open on a file, all locks put on the file by that
process will be released on the first close of the file.

Although no error is returned if locks are applied to special files or pipes,
read/write operations on these types of files will ignore the locks. Locks may not
be applied to a directory.

SEE ALSO
close(2) creat(2), dup(2), lseek(2), open(2), read(2), write(2)

DIAGNOSTICS

Page 2

locking returns the value (int) -1 if an error occurs. If any portion of the region
has been locked by another process for the LK_LOCK and LK_RLCK actions and the
lock request is to test only, errno is set to EAGAIN. If locking the region would
cause a deadlock, errno is set to EDEADLK If an internal lock cannot be allocated,
errno is set to ENOLCK.

10/92

locking(2) (Application Compatibility Package) locking(2)

NAME
locking - lock or unlock a file region for reading or writing

SYNOPSIS
cc [fiag ...] file ... - lx
locking (int fildes, int mode, long size);

DESCRIPTION

10/92

locking allows a specified number of bytes in a file to be controlled by the locking
process. Other processes which attempt to read or write a portion of the file con­
taining the locked region may sleep until the area become unlocked depending
upon the mode in which the file region was locked.

A process that attempts to write to or read a file region that has been locked against
reading and writing by another process (using the LK_LOCK or LK_NBLCK mode)
with sleep until the region of the file has been released by the locking process.

A process that attempts to write to a file region that has been locked against writing
by another process (using the LK_RLCK or LK_NBRLCK mode) will sleep until the
region of the file has been released by the locking process, but a read request for
that file region will proceed normally.

A process that attempts to lock a region of a file that contains areas that have been
locked by other processes will sleep if it has specified the LK_LOCK or LK_RLCK
mode in its lock request, but will return with the error EACCES if it specified
LK_NBLCK or LK_NBRLCK.

fildes is the value returned from a successful create, open, dup, or pipe system call.

mode specifies the type of lock operation to be performed on the file region. The
available values for mode are:

LK_UNLCK O Unlocks the specified region. The calling process releases a
region of the file it has previously locked.

LK_LOCK 1

LK_NBLCK 2

LK_RLCK 3

LK_NBRLCK 4

Locks the specified region. The calling process will sleep until
the entire region is available if any part of it has been locked by a
different process. The region is then locked for the calling process
and no other process may read or write in any part of the locked
region (lock against read and write).

Locks the specified region. If any part of the region is already
locked by a different process, return the error EACCES instead
of waiting for the region to become available for
locking (nonblocking lockrequest).

Same as LK_LOCK except that the locked region may be read by
other processes (read permitted lock).

Same as LK_NBLCK except that the locked region may be read by
other processes (nonblocking, read permitted lock).

The locking utility uses the current file pointer position as the starting point for
the locking of the file segment. So a typical sequence of commands to lock a
specific range within a file might be as follows:

Page 1

lockf(3C) (C Development Set) lockf(3C)

F _ULOCK requests may, in whole or in part, release one or more locked sections con­
trolled by the process. When sections are not fully released, the remaining sections
are still locked by the process. Releasing the center section of a locked section
requires an additional element in the table of active locks. If this table is full, an
errno is set to ENOLCK and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process's locked resource. Thus calls to lockf or fcntl
scan for a deadlock prior to sleeping on a locked resource. An error return is made
if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm system call may
be used to provide a timeout facility in applications that require this facility.

lockf will fail if one or more of the following are true:

EBADF fildes is not a valid open descriptor.

EA GAIN

EDEADLK

cmd is F _TLOCK or F _TEST and the section is already locked by
another process.

cmd is F _LOCK and a deadlock would occur.

ENOLCK cmd is F _LOCK, F _TLOCK, or F _ULOCK and the number of entries in the
lock table would exceed the number allocated on the system.

ECOMM fildes is on a remote machine and the link to that machine is no longer
active.

SEE ALSO
intro(2), alarm(2), chmod(2), close(2), creat(2), fcntl(2), open(2), read(2),
write(2)

DIAGNOSTICS

NOTES

Page 2

On success, lockf returns 0. On failure, lockf returns -1 and sets errno to indi­
cate the error.

Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard 1/0
package is the most common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN rather than EACCES
when a section of a file is already locked by another process, portable application
programs should expect and test for either value.

10/92

lockf (3C) (C Development Set) lockf (JC)

NAME
lockf - record locking on files

SYNOPSIS
#include <unistd.h>

int lockf (int fildes, int function, long size);

DESCRIPTION

10/92

lockf locks sections of a file. Advisory or mandatory write locks depend on the
mode bits of the file; see chmod(2). Other processes that try to lock the locked file
section either get an error or go to sleep until the resource becomes unlocked. All
the locks for a process are removed when the process terminates. See fcnt1(2) for
more information about record locking.

fildes is an open file descriptor. The file descriptor must have O_WRONLY or O_RDWR
permission in order to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in uni std.has follows:

#define F_ULOCK 0 /* unlock previously locked section */
#define F_LOCK 1 /* lock section for exclusive use */
#define F_TLOCK 2 /* test & lock section for exclusive use */
#define F_TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F _TEST is used to detect if a lock by another process is present on the specified sec­
tion. F _LOCK and F _TLOCK both lock a section of a file if the section is available.
F _ULOCK removes locks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be
locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size (the preceding bytes up to but not
including the current offset). If size is zero, the section from the current offset
through the largest file offset is locked (that is, from the current offset through the
present or any future end-of-file). An area need not be allocated to the file in order
to be locked as such locks may exist past the end-of-file.

The sections locked with F _LOCK or F _TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. Locked sections will
be unlocked starting at the the point of the offset through size bytes or to the end of
file if size is (off_t) 0. When this situation occurs, or if this situation occurs in adja­
cent sections, the sections are combined into a single section. If the request requires
that a new element be added to the table of active locks and this table is already
full, an error is returned, and the new section is not locked.

F _LOCK and F _TLOCK requests differ only by the action taken if the resource is not
available. F _LOCK will cause the calling process to sleep until the resource is avail­
able. F _TLOCK will cause the function to return a -1 and set errno to EACCES if the
section is already locked by another process.

Page 1

lock(2) (Application Compatibility Package) lock(2)

NAME
lock - lock a process in primary memory

SYNOPSIS
cc [flag ...]file ... -lx
int lock(flag);

DESCRIPTION

10/92

If the flag argument is nonzero, the process executing this call will not be swapped
unless it is required to grow. If the argument is zero, the process is unlocked. This
call may only be executed by the super-user. If someone other than the super-user
tries to execute this call, a value of -1 is returned and the errno is set to EPERM.

Page 1

localeconv (3C) (C Programming Language Utilities) localeconv(3C)

FILES

p_sign_posn
n_sign_posn

1
1

/usr I lib/locale/ locale /LC_MONETARY
/usr I lib/locale/ locale /LC_NUMERIC

1
4

SEE ALSO
chrtbl(lM), montbl(lM), setlocale(3C).

Page 4

1
2

1
2

LC_MONETARY database for locale
LC_NUMERIC database for locale

10/92

localeconv (3C) (C Programming Language Utilities) localeconv (3C)

char n_sep_by _space
Set to 1 or 0 if the currency _symbol respectively is or is not separated by a
space from the value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non­
negative formatted monetary quantity. The value of p_sign_posn is inter­
preted according to the following:

0 Parentheses surround the quantity and currency _symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency _symbol.

3 The sign string immediately precedes the currency _symbol.

4 The sign string immediately succeeds the currency _symbol.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a nega­
tive formatted monetary quantity. The value of n_sign_posn is inter­
preted according to the rules described under p_sign_posn.

RETURNS
localeconv returns a pointer to the filled-in object. The structure pointed to by the
return value may be overwritten by a subsequent call to localeconv.

EXAMPLES

10/92

The following table illustrates the rules used by four countries to format monetary
quantities.

Country Positive format Negative format International format

Italy
Netherlands
Norway
Switzerland

L.1.234
F 1.234,56
krl.234,56
SFrs.1,234.56

-L.l.234
F -1.234,56
krl.234,56-
SFrs. l,234.56C

ITL.l.234
NLG 1.234,56
NOK 1.234,56
CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by localeconv are as follows:

Italy Netherlands Norway Switzerland

int_curr_symbol 11 ITL. 11 "NLG " "NOK " "CHF "
currency_symbol llL. II "Fil 11 kr" 11 SFrs."
mon_decimal_point " " " " " " ' ' mon_ thousands _sep " " " " " " " " ' mon_grouping II \3 11 II \3 11 11 \3" II \3 II
positive_sign
negative_sign " - " " - " " - " "C.,
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0

Page 3

localeconv(3C) (C Programming Language Utilities) localeconv (3C)

Page 2

CHAR-MAX No further grouping is to be performed.

O The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

char*int_curr_symbol
The international currency symbol applicable to the current locale, left­
justified within a four-character space-padded field. The character
sequences should match with those specified in: ISO 4217 Codes for the
Representation of Currency and Funds.

char*currency_symbol
The local currency symbol applicable to the current locale.

char*rnon_decirnal_point
The decimal point used to format monetary quantities.

char*rnon_thousands_sep
The separator for groups of digits to the left of the decimal point in format­
ted monetary quantities.

char*rnon_grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted monetary
quantity. The elements of rnon_grouping are interpreted according to the
rules described under grouping.

char *posi ti ve_sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char*negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

charint_frac_digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in an internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in a formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if the currency _symbol respectively precedes or succeeds the
value for a nonnegative formatted monetary quantity.

char p_sep_by _space
Set to 1 or 0 if the currency _symbol respectively is or is not separated by a
space from the value for a nonnegative formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency _symbol respectively precedes or succeeds the
value for a negative formatted monetary quantity.

10/92

localeconv (3C) (C Programming Language Utilities) localeconv (3C)

NAME
localeconv - get numeric formatting information

SYNOPSIS
#include <locale.h>

struct lconv *localeconv (void) ;

DESCRIPTION

10/92

localeconv sets the components of an object with type struct lconv (defined in
locale. h) with the values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale [see
setlocale(3C)]. The definition of struct lconv is given below (the values for the
fields in the c locale are given in comments):

char *decimal_point;
char *thousands _sep;
char *grouping;
char *int _curr_symbol;
char *currency_symbol;
char *mon_decimal_point;
char *mon_ thousands _sep;
char *mon_grouping;
char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by _space;
char n_cs_precedes;
char n_sep_by _space;
char p_sign_posn;

I* " " */
I* (zero
I* *I
I* */
/* *I
I* */
/* */
/* *I
/* */
I* *I
I* CHAR_MAX
/* CHAR_MAX
/* CHAR_MAX
I* CHAR_MAX
I* CHAR_MAX
I* CHAR_MAX
I* CHAR_MAX

length string) */

*I
*I
*I
*I
*I
*I
*I

char n_sign_posn; /* CHAR_MAX */

The members of the structure with type char * are strings, any of which (except
decimal_point) can point to " ", to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in the 1 imi ts . h header file) to
indicate that the value is not available in the current locale. The members are the
following:

char*decimal_point
The decimal-point character used to format non-monetary quantities.

char*thousands_sep
The character used to separate groups of digits to the left of the decimal­
point character in formatted non-monetary quantities.

char *grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted non­
monetary quantity. The elements of grouping are interpreted according to
the following:

Page 1

listen (3N) listen (3N)

NAME
listen - listen for connections on a socket

SYNOPSIS
int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket is first created with socket, a backlog for incoming
connections is specified with listen and then the connections are accepted with
accept. The listen call applies only to sockets of type SOCK_STREAM or
SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connec­
tions may grow to. If a connection request arrives with the queue full, the client
will receive an error with an indication of ECONNREFUSED.

RETURN VALUE
A O return value indicates success; -1 indicates an error.

ERRORS

NOTES

10/92

The call fails if:

EBADF

ENOTSOCK

EOPNOTSUPP

The arguments is not a valid descriptor.

The arguments is not a socket.

The socket is not of a type that supports the operation
listen.

There is currently no backlog limit.

Page 1

link (2)

EXDEV

SEE ALSO
unlink(2)

DIAGNOSTICS

link (2)

The link named by path2 and the file named by pathl are on
different logical devices (file systems).

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2 10/92

link (2) link(2)

NAME
link - link to a file

SYNOPSIS
#include <unistd.h>

int link(const char *pathl, const char *path2);

DESCRIPTION

10/92

pathl points to a path name naming an existing file. path2 points to a path name
naming the new directory entry to be created. link creates a new link (directory
entry) for the existing file and increments its link count by one.

Upon successful completion, link marks for update the st_ctime field of the file.
Also, the st_ctime and st_mtime fields of the directory that contains the new
entry are marked for update.

link will fail and no link will be created if one or more of the following are true:

EACCES A component of either path prefix denies search permission.

EACCES

EEXIST

EFAULT

EINTR

ELOOP

EMLINK

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENO ENT

ENO ENT

ENO ENT

ENO LINK

ENOS PC

EPERM

EROFS

The requested link requires writing in a directory with a
mode that denies write permission.

The link named by path2 exists.

path points outside the allocated address space of the pro­
cess.

A signal was caught during the link system call.

Too many symbolic links were encountered in translating
path.

The maximum number of links to a file would be exceeded.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of the pathl or path2 argument exceeds
{PATH_MAX}, or the length of a pathl or path2 component
exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

A component of either path prefix is not a directory.

pathl or path2 is a null path name.

A component of either path prefix does not exist.

The file named by pathl does not exist.

path points to a remote machine and the link to that machine
is no longer active.

the directory that would contain the link cannot be
extended.

The file named by pathl is a directory and the effective user
ID is not super-user.

The requested link requires writing in a directory on a read­
only file system.

Page 1

libwindows(3X) (Layers Windowing Utilities) libwindows(3X)

10/92

For example, for a terminal with New, New layer, and Reshape minimum values of 8
(pixels) for origin_x and origin_y and maximum values of 792 (pixels) for corner _x
and 1016 (pixels) for corner _y, the minimum layer size is 28 by 28 pixels and the
maximum layer size is 784 by 1008 pixels.

It is recommended that applications use /dev/xt/?? [0-7] instead of
/dev /xt ?? [0-7 J when accessing the xt driver.

Page 3

libwindows (3X) (Layers Windowing Utilities) libwindows(3X)

FILES

The Runlayer routine runs the specified command in the layer associated with the
channel argument chan. This layer is usually a layer previously created with
Newlayer. Any processes currently attached to this layer will be killed, and the
new process will have the environment of the layers process.

The Current routine makes the layer associated with the channel argument chan
current (that is, attached to the keyboard).

The Delete routine deletes the layer associated with the channel argument chan
and kills all host processes associated with the layer.

The Top routine makes the layer associated with the channel argument chan appear
on top of all overlapping layers.

The Bottom routine puts the layer associated with the channel argument chan
under all overlapping layers.

The Move routine moves the layer associated with the channel argument chan from
its current screen location to a new screen location at the origin point (origin_x,
origin_y). The size and contents of the layer are maintained.

The Reshape routine reshapes the layer associated with the channel argument chan.
The arguments origin_x, origin_y, corner _x, and corner _y are the new coordinates of
the layer rectangle. If all the coordinate arguments are 0, the user is allowed to
define the layer's rectangle interactively.

The Exit routine causes the layers program to exit, killing all processes associated
with it.

ULJBDIR/libwindows. a windowing terminal function library
ULIBDIR usually /usr/lib

SEE ALSO
layers(l), close(2), wri te(2), j agent(5).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, Runlayer, Current, Delete, Top, Bottom, Move,
Reshape, and Exit return 0, while openagent, New, New layer, and openchan
return values as described above under each routine. If an error occurs, -1 is
returned.

The values of layer rectangle coordinates are dependent on the type of terminal.
This dependency affects the routines that pass layer rectangle coordinates: Move,
New, Newlayer, and Reshape. Some terminals will expect these numbers to be
passed as character positions (bytes); others will expect the information to be in
pixels (bi ts).

10/92

libwindows (3X) (Layers Windowing Utilities) libwindows (3X)

NAME
libwindows - windowing terminal function library

SYNOPSIS
cc fjlag ...]file ... -lwindows [library ...]

int openagent (void) ;

int New (int cntlfd, int origin_x, int origin_y,
int corner_x, int corner_y) ;

int Newlayer (int cntlfd, int origin_x, int origin_y,
int corner_x, int corner_y) ;

int openchan (int chan);

int Runlayer (int chan, char *cormnand);

int Current (int cntlfd, int chan);

int Delete (int cntlfd, int chan);

int Top (int cntlfd, int chan);

int Bottom (int cntlfd, int chan);

int Move (int cntlfd, int chan, int origin_x, int origin_y);

int Reshape (int cntlfd, int chan, int origin_x, int origin_y,
int corner_x, int corner_y) ;

int Exit (int cntlfd);

DESCRIPTION

10/92

This library of routines enables a program running on a host UNIX system to per­
form windowing terminal functions [see layers(l)].

The openagent routine opens the control channel of the xt(7) channel group to
which the calling process belongs. Upon successful completion, openagent returns
a file descriptor that can be passed to any of the other libwindows routines except
openchan and Runlayer. (The file descriptor can also be passed to the close sys­
tem call.) Otherwise, the value -1 is returned.

The New routine creates a new layer with a separate shell. The origin_x, origin_y,
corner _x, and corner _:y arguments are the coordinates of the layer rectangle. If all the
coordinate arguments are 0, the user must define the layer's rectangle interactively.
The layer appears on top of any overlapping layers. The layer is not made current
(that is, the keyboard is not attached to the new layer). Upon successful comple­
tion, New returns the xt(7) channel number associated with the layer. Otherwise,
the value -1 is returned.

The New layer routine creates a new layer without executing a separate shell. Oth­
erwise it is identical to New, described above.

The openchan routine opens the channel argument chan which is obtained from the
New or Newlayer routine. Upon successful completion, openchan returns a file
descriptor that can be used as input to wri te(2) or close(2). Otherwise, the value
- 1 is returned.

Page 1

lfmt(3C) (C Programming Language Utilities) lfmt(3C)

Major classification
Identifies the source of the condition. Identifiers are:
MM_HARD (hardware), MM_SOFT (software), and MM_FIRM
(firmware).

Message source subclassification
Identifies the type of software in which the problem is
spotted. Identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS (operating system).

STANDARD ERROR MESSAGE FORMAT
lfmt () displays error messages in the following format:

label: severity: text

If no label was defined by a call to set label (),the message is displayed in the for­
mat:

severity: text

If 1 fmt () is called twice to display an error message and a helpful action or
recovery message, the output can look like:

label: severity: text
label: TO FIX: text

RETURN VALUE
Upon success, 1 fmt () returns the number of bytes transmitted. Upon failure, it
returns a negative value:

-1 write error to stream.

-2 cannot log and/or display at console.

EXAMPLES
Example 1:

set label ("UX: test");
lfmt(stderr, MM_ERRORIMM_CONSOLEIMM_SOFTIMM_UTIL,

"test: 2 :Cannot open file: %s\n", strerror (errno));

displays the message to stderr and to the console and makes it available for logging:
UX:test: ERROR: Cannot open file: No such file or directory

Example 2:
set label ("UX: test") ;
lfmt(stderr, MM_INFOIMM_SOFTIMM_UTIL,

"test:23:test facility is enabled\n");

displays the message to stderr and makes it available for logging:
UX:test: INFO: test facility enabled

SEE ALSO

10/92

addsev(3C), environ(S), gettxt(3C), pfmt(3C), lfmt(l), printf(3C), setcat(3C),
setlabel(3C), setlocale(3C).

Page 3

lfmt (3C) (C Programming Language Utilities) lfmt (3C)

Page 2

The flags are composed of several groups, and can take the following values (one
from each group): Output format control

MM_NOSTD

MM_STD

Do not use the standard message format, interpret format
as a printf () format. Only catalog access control flags,
console display control and logging information should be
specified if MM_NOSTD is used; all other flags will be
ignored

Output using the standard message format (default,
value 0).

Catalog access control

MM_NOGET Do not retrieve a localized version of format. In this case,
only the <defmsg> part of the format is specified.

MM_GET Retrieve a localized version of format, from the <catalog>,
using <msgid> as the index and <defmsg> as the default
message (default, value 0).

Severity (standard message format only)

Action

MM_HALT

MM_ERROR

MM_WARNING

MM_INFO

generates a localized version of HALT.

generates a localized version of ERROR (default, value 0).

generates a localized version of WARNING.

generates a localized version of INFO.

Additional severities can be defined. Add-on severities can be defined with
number-string pairs with numeric values from the range [5-255], using
addsev () . The numeric value ORed with other flags will generate the
specified severity.

If the severity is not defined, lfmt () used the string SEV=N where N is
replaced by the integer severity value passed in flags.

Multiple severities passed inf flags will not be detected as an error. Any
combination of severities will be summed and the numeric value will cause
the display of either a severity string (if defined) or the string SEV=N (if
undefined).

MM_ACTION specifies an action message. Any severity value is super­
seded and replaced by a localized version of TO FIX.

Console display control

MM_CONSOLE display the message to the console in addition to the
specified stream.

MM_NOCONSOLE do not display the message to the console in addition to
the specified stream (default, value 0).

Logging information

10/92

lfmt(3C) (C Programming Language Utilities) lfmt(3C)

NAME
lfmt - display error message in standard format and pass to logging and monitoring
services

SYNOPSIS
#include <pfmt.h>

int 1 fmt (FILE *stream, long flags, char *format, . . . I* arg *I) ;

DESCRIPTION

10/92

lfmt () retrieves a format string from a locale-specific message database (unless
MM_NOGET is specified) and uses it for print f (} style formatting of args. The out­
put is displayed on stream. If stream is NULL, no output is displayed.

lfmt () encapsulates the output in the standard error message format (unless
MM_NOSTD is specified, in which case the output is simply printf () like).

lfmt () forwards its output to the logging and monitoring facility, even if stream is
NULL. Optionnally, lfmt () will display the output on the console, with a date and
time stamp.

If the printf (} format string is to be retrieved from a message database, the format
argument must have the following structure:

<catalog> : <msgnum>: <defmsg>.

If MM_NOGET is specified, only the <defmsg> part must be specified.

<catalog> is used to indicate the message database that contains the localized ver­
sion of the format string. <catalog> must be limited to 14 characters. These charac­
ters must be selected from a set of all characters values, excluding \ O (null) and the
ASCII codes for I (slash) and : (colon).

<msgnum> is a positive number that indicates the index of the string into the mes­
sage database.

If the catalog does not exist in the locale (specified by the last call to set locale (}
using the LC_ALL or LC_MESSAGES categories), or if the message number is out of
bound, lfmt (} will attempt to retrieve the message from the C locale. If this
second retrieval fails, 1 fmt () uses the <defmsg> part of the format argument.

If <catalog> is omitted, 1 fmt () will attempt to retrieve the string from the default
catalog specified by the last call to set cat (). In this case, the format argument has
the following structure:

: <msgnum>: <defmsg>.

lfmt () will output Message not found!! \n as format string if <catalog> is not a
valid catalog name, if no catalog is specified (either explicitely or via setcat ()),if
<msgnum> is not a valid number, or if no message could be retrieved from the mes­
sage databases, and <defmsg> was omitted.

The flags determine the type of output (i.e. whether the format should be interpreted
as is or encapsulated in the standard message format), and the access to message
catalogs to retrieve a localized version of format.

Page 1

13tol (3C) (C Development Set) 13tol (3C)

NAME
13tol, lto13 - convert between 3-byte integers and long integers

SYNOPSIS
#include <stdlib.h>

void 13tol (long *lp, const char *cp, int n);

void ltol3 (char *cp, const long *lp, int n);

DESCRIPTION
13tol converts a list of n three-byte integers packed into a character string pointed
to by cp into a list of long integers pointed to by Ip.

1 tol3 performs the reverse conversion from long integers (Ip) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block numbers
are three bytes long.

SEE ALSO
fs(4)

NOTES

10/92

Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

Page 1

killpg (3) (BSD Compatibility Package) killpg (3)

NAME
killpg - send signal to a process group

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTION
killpg sends the signal sig to the process group pgrp. See sigvec(3) for a list of
signals.

The real or effective user ID of the sending process must match the real or saved
set-user ID of the receiving process, unless the effective user ID of the sending pro­
cess is the privileged user. A single exception is the signal SIGCONT, which may
always be sent to any descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
killpg will fail and no signal will be sent if any of the following occur:

EINVAL

ESRCH

EPERM

sig is not a valid signal number.

No processes were found in the specified process group.

The effective user ID of the sending process is not privileged user,
and neither its real nor effective user ID matches the real or saved
set-user ID of one or more of the target processes.

SEE ALSO
kill(2), setpgrp(2), sigaction(2), sigvec(3).

10/92 Page 1

kill(2)

NOTES

kill (2)

sigsend is a more versatile way to send signals to processes. The user is
encouraged to use sigsend instead of kill.

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

kill (2) kill(2)

NAME
ki 11 - send a signal to a process or a group of processes

SYNOPSIS
#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int sig) ;

DESCRIPTION
ki 11 sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to
be sent is specified by sig and is either one from the list given in signal [see sig­
nal(S)], or 0. If sig is 0 (the null signal), error checking is performed but no signal is
actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or saved
[from exec(2)] user ID of the receiving process unless the effective user ID of the
sending process is superuser, [see intro(2)], or sig is SIGCONT and the sending pro­
cess has the same session ID as the receiving process.

The process with llJ 0 and the process with ID 1 are special processes [see intro(2)]
and will be referred to below as procO and procl, respectively.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to
pid. pid may equal 1.

If pid is negative but not (pid_t) -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid and for which the process has permis­
sion to send a signal.

If pid is 0, sig will be sent to all processes excluding procO and procl whose process
group ID is equal to the process group ID of the sender. Permission is needed to
send a signal to process groups.

If pid is (pid_t) -1 and the effective user ID of the sender is not superuser, sig will
be sent to all processes excluding procO and procl whose real user ID is equal to the
effective user ID of the sender.

If pid is (pid_t) -1 and the effective user ID of the sender is superuser, sig will be
sent to all processes excluding procO and procl.

ki 11 will fail and no signal will be sent if one or more of the following are true:

EINVAL

EINVAL

ESRCH

EPERM

sig is not a valid signal number.

sig is SIGKILL and pid is (pid_t) 1 (that is, pid specifies procl).

No process or process group can be found corresponding to that
specified by pid.

The user ID of the sending process is not privileged, and its real or
effective user ID does not match the real or saved user ID of the
receiving process, and the calling process is not sending SIGCONT
to a process that shares the same session ID.

SEE ALSO

10/92

kill(l), getpid(2), getsid(2), intro(2), setpgrp(2), sigaction(2), signal(2),
sigsend(2).

Page 1

isnan (3C) (C Development Set) isnan(3C)

NAME
isnan, isnand, isnanf, finite, fpclass, unordered - determine type of
floating-point number

SYNOPSIS
#include <ieeefp.h>

int isnand (double dsrc);

int isnanf (float fsrc);

int finite (double dsrc);

fpclass_t fpclass (double dsrc) ;

int unordered (double dsrcl, double dsrc2);

#include <math.h>

int isnan (double dsrc);

DESCRIPTION
isnan, isnand, and isnanf return true (1) if the argument dsrc or fsrc is NaN; oth­
erwise they return false (0). The functionality of isnan is identical to that of
isnand.

isnanf is implemented as a macro included in the ieeefp. h header file.

fpclass returns the class the dsrc belongs to. The 10 possible classes are as follows:

FP_SNAN
FP_QNAN
FP_NINF
FP_PINF
FP_NDENORM
FP_PDENORM
FP_NZERO
FP_PZERO
FP_NNORM
FP_PNORM

signaling NaN
quiet NaN
negative infinity
positive infinity
negative denormalized non-zero
positive denormalized non-zero
negative zero
positive zero
negative normalized non-zero
positive normalized non-zero

finite returns true (1) if the argument dsrc is neither infinity nor NaN; otherwise it
returns false (0).

unordered returns true (1) if one of its two arguments is unordered with respect to
the other argument. This is equivalent to reporting whether either argument is
NaN. If neither of the arguments is NaN, false (0) is returned.

None of these routines generate any exception, even for signaling NaNs.

SEE ALSO
fpgetround(3C), intro(3M)

10/92 Page 1

isencrypt (3G) isencrypt (3G)

NAME
isencrypt - determine whether a character buffer is encrypted

SYNOPSIS
cc [flag ...]file ... -lgen [library ...]

#include <libgen.h>

int isencrypt (const char *fbuf, size_t ninbuf);

DESCRIPTION
isencrypt uses heuristics to determine whether a buffer of characters is encrypted.
It requires two arguments: a pointer to an array of characters and the number of
characters in the buffer.

isencrypt assumes that the file is not encrypted if all the characters in the first
block are ASCII characters. If there are non-ASCII characters in the first ninbuf char­
acters, isencrypt assumes that the buffer is encrypted if the set locale LC_CTYPE
category is set to C or ascii.

If the LC_CTYPE category is set to a value other than C or ascii, then isencrypt
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf
has at least 64 characters, a chi-square test is used to determine if the bytes in the
buffer have a uniform distribution; and isencrypt assumes the buffer is encrypted
if it does. If the buffer has less than 64 characters, a check is made for null charac­
ters and a terminating new-line to determine whether the buffer is encrypted.

DIAGNOSTICS
If the buffer is encrypted, 1 is returned; otherwise zero is returned.

SEE ALSO
setlocale(3C)

10/92 Page 1

isastream (3C)

NAME
isastream - test a file descriptor

SYNOPSIS
int isastream(int fildes);

DESCRIPTION

isastream (3C)

The function isastream() determines if a file descriptor represents a STREAMS file.
fildes refers to an open file.

RETURN VALUE
If successful, isastream() returns 1 ifjildes represents a STREAMS file, and 0 if not.
On failure, isastream() returns -1 with errno set to indicate an error.

ERRORS
Under the following conditions, isastream() fails and sets errno to:

EBADF fildes is not a valid open file.

SEE ALSO
streamio(7).

10/92 Page 1

ioctl (2) ioctl(2)

STREAMS errors are described in strearnio(7).

SEE ALSO
s trearnio(7), terrnio(7).

DIAGNOSTICS
Upon successful completion, the value returned depends upon the device control
function, but must be a non-negative integer. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

Page 2 10/92

ioctl (2) ioctl (2)

NAME
ioctl - control device

SYNOPSIS
#include <unistd.h>

int ioctl (int fildes, int request, ... /* arg */);

DESCRIPTION

10/92

ioctl performs a variety of control functions on devices and STREAMS. For non­
STREAMS files, the functions performed by this call are device-specific control func­
tions. request and an optional third argument with varying type are passed to the
file designated by fildes and are interpreted by the device driver. This control is not
frequently used on non-STREAMS devices, where the basic input/output functions
are usually performed through the read(2) and wri te(2) system calls.

For STREAMS files, specific functions are performed by the ioctl call as described
in strearnio(7).

fildes is an open file descriptor that refers to a device. request selects the control
function to be performed and depends on the device being addressed. arg
represents a third argument that has additional information that is needed by this
specific device to perform the requested function. The data type of arg depends
upon the particular control request, but it is either an int or a pointer to a device­
specific data structure.

In addition to device-specific and STREAMS functions, generic functions are pro­
vided by more than one device driver, for example, the general terminal interface
[see termio(7)].

ioctl fails for any type of file if one or more of the following are true:

EBADF

ENOTTY

EINTR

fildes is not a valid open file descriptor.

fildes is not associated with a device driver that accepts control
functions.

A signal was caught during the ioctl system call.

ioctl also fails if the device driver detects an error. In this case, the error is passed
through ioctl without change to the caller. A particular driver might not have all
of the following error cases. Under the following conditions, requests to device
drivers may fail and set errno to:

EFAULT request requires a data transfer to or from a buffer pointed to by
arg, but some part of the buffer is outside the process's allocated
space.

EINVAL

EIO

ENXIO

ENO LINK

request or arg is not valid for this device.

Some physical 1/0 error has occurred.

The request and arg are valid for this device driver, but the service
requested can not be performed on this particular subdevice.

fildes is on a remote machine and the link to that machine is no
longer active.

Page 1

insque(3C) (C Development Set) insque(3C)

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
include <search.h>

void insque(struct qelern *elem, struct qelem *pred);

void remque(struct qelem *elem);

DESCRIPTION

10/92

insque and remque manipulate queues built from doubly linked lists. Each ele­
ment in the queue must be in the following form:

struct qelem
struct qelem *q_forw;
struct qelem *q_back;
char q_data [] ;

} ;

insque inserts elem in a queue immediately after pred. remque removes an entry
elem from a queue.

Page 1

initgroups (3C) initgroups (3C)

NAME
initgroups - initialize the supplementary group access list

SYNOPSIS
#include <grp.h>
#include <sys/types.h>

int initgroups (const char *name, gid_t basegid)

DESCRIPTION
ini tgroups reads the group file, using getgrent, to get the group membership for
the user specified by name and then initializes the supplementary group access list
of the calling process using setgroups. The basegid group ID is also included in the
supplementary group access list. This is typically the real group ID from the pass­
word file.

While scanning the group file, if the number of groups, including the basegid entry,
exceeds {NGROUPS_MAX}, subsequent group entries are ignored.

ini tgroups will fail and not change the supplementary group access list if:

EPERM The effective user ID is not superuser.

SEE ALSO
setgroups(2), getgrent(3C)

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

inet(3N) (User Environment Utilities) inet (3N)

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in a '.' notation may be decimal, octal, or hexade­
cimal, as specified in the C language (that is, a leading Ox or OX implies hexade­
cimal; otherwise, a leading 0 implies octal; otherwise, the number is interpreted as
decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4), networks(4)

DIAGNOSTICS

NOTES

Page 2

The value -1 is returned by inet_addr and inet_network for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A
simple way to specify Class C network addresses in a manner similar to that for
Class B and Class A is needed.

The return value from inet_ntoa points to static information which is overwritten
in each call.

10/92

inet(3N) (User Environment Utilities) inet (3N)

NAME
inet: inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof,
inet_ntoa - Internet address manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(char *cp);

unsigned long inet_network(char *cp);

struct in_addr inet_makeaddr(int net, int lna);

int inet_lnaof(struct in_addr in);

int inet_netof(struct in_addr in);

char *inet_ntoa(struct in_addr in);

DESCRIPTION
The routines inet_addr and inet_network each interpret character strings
representing numbers expressed in the Internet standard '.' notation, returning
numbers suitable for use as Internet addresses and Internet network numbers,
respectively. The routine inet_makeaddr takes an Internet network number and a
local network address and constructs an Internet address from it. The routines
inet_netof and inet_lnaof break apart Internet host addresses, returning the
network number and local network address part, respectively.

The routine inet_ntoa returns a pointer to a string in the base 256 notation
d.d.d.d described below.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine for­
mat integer values.

INTERNET ADDRESSES

10/92

Values specified using the '.' notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit quan­
tity and placed in the right most two bytes of the network address. This makes the
three part address format convenient for specifying Class B network addresses as
128.net.host.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity
and placed in the right most three bytes of the network address. This makes the
two part address format convenient for specifying Class A network addresses as
net.host.

Page 1

index(3) (BSD Compatibility Package) index(3)

NAME
index, rindex - string operations

SYNOPSIS
#include <strings.h>

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;

DESCRIPTION
These functions operate on NULL-terminated strings. They do not check for
overflow of any receiving string.

index and rindex returns a pointer to the first (last) occurrence of character c in
string s, or a NULL pointer if c does not occur in the string. The NULL character ter­
minating a string is considered to be part of the string.

SEE ALSO

NOTES

10/92

bstring(3), string(3C), malloc(3C).

For user convenience, these functions are declared in the optional <strings. h>
header file which is located in /usr/ucbinclude.

You can not use a NULL pointer to indicate a NULL string. A NULL pointer is an error
and results in an abort of the program. If you wish to indicate a NULL string, you
must have a pointer that points to an explicit NULL string. On some implementa­
tions of the C language on some machines, a NULL pointer, if dereferenced, would
yield a NULL string; this highly non-portable trick was used in some programs. Pro­
grammers using a NULL pointer to represent an empty string should be aware of
this portability issue; even on machines where dereferencing a NULL pointer does
not cause an abort of the program, it does not necessarily yield a NULL string.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

Page 1

ifignore(3N) STREAMware 2.0 ifignore (3N)

NAME
if ignore - check for ignored network interface

SYNOPSIS
int if ignore (if_name, serv_name)
char *if_name, *serv_name;

DESCRIPTION

FILES

if ignore provides a filtering mechanism for network applications that would oth­
erwise indiscriminately send packets over all network interfaces attached to the
machine. The function consults the file /etc/if. ignore and returns a value to
indicate whether or not a particular network interface should be "ignored" by the
invoking server. This indication is then used by the server itself in determining
how to deal with the interface in question. if ignore returns a non-zero value if
if_name should be ignored by serv_name; otherwise, zero is returned.

/etc/if.ignore

SEE ALSO
routed(lM), rwhod(lM), timed(lM), if. ignore(4)

10/92 Page 1

ieee _handler (3M) (BSD Compatibility Package) ieee_handler(3M)

EXAMPLE

FILES

A user-specified signal handler might look like this:
void sample_handler(sig, code, scp, addr)
int sig ; /* sig == SIGFPE always */
int code ;
struct sigcontext *scp
char *addr
{

/*

*/

Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

printf ("ieee exception code %x occurred at pc %X \n",
code,scp->sc_pc);

and it might be set up like this:
extern void sample_handler;
main

sigfpe_handler_type hdl, old_handlerl, old_handler2;
/*
* save current overflow and invalid handlers
*/

/*

ieee_handler ("get", "overflow", old_handlerl);
ieee_handler ("get", "invalid", old_handler2) ;

* set new overflow handler to sample_handler and set new
* invalid handler to SIGFPE_ABORT (abort on invalid)
*/

/*

hdl = (sigfpe_handler_type) sample_handler;
if(ieee_handler("set", "overflow",hdl) != 0)

printf("ieee_handler can't set overflow \n");
if (ieee_handler ("set", "invalid", SIGFPE_ABORT) ! = 0)

printf("ieee_handler can't set invalid \n");

* restore old overflow and invalid handlers
*/

ieee_handler ("set", "overflow", old_handlerl) ;
ieee_handler ("set", "invalid", old_handler2) ;

/usr/include/fp.h
/usr/include/signal.h

SEE ALSO

Page 2

signal(2), abort(3C), floatingpoint(3), ieee_handler(3), sigfpe(3), sig­
nal(3), sigvec(3).

10/92

ieee_handler(3M) (BSD Compatibility Package) ieee_handler(3M)

NAME
ieee_handler - IEEE exception trap handler function

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <fp.h>

int ieee_handler(action,exception,hdl)
char action[], exception[];
sigfpe_handler_type hdl;

DESCRIPTION
This function provides easy exception handling to exploit ANSI/IEEE Std 754-1985
arithmetic in a C program. All arguments are pointers to strings. Results arising
from invalid arguments and invalid combinations are undefined for efficiency.

There are three types of action : get, set, and clear. There are five types of excep­
tion:

inexact
division
underflow
overflow
invalid

division by zero exception

all all five exceptions above
common invalid, overflow, and division exceptions

Note: all and common only make sense with set or clear

hdl contains the address of a signal-handling routine. <fp. h> defines
sigfpe_handler _type.

get will get the location of the current handler routine for exception in hdl . set
will set the routine pointed at by hdl to be the handler routine and at the same time
enable the trap on exception, except when hdl == SIGFPE_DEFAULT or
SIGFPE_IGNORE; then ieee_handler will disable the trap on exception. When hdl
== SIGFPE_ABORT, any trap on exception will dump core using abort(3). clear
all disables trapping on all five exceptions.

Two steps are required to intercept an IEEE-related SIGFPE code with
i eee_handl er:

1) Set up a handler with ieee_handler.

2) Perform a floating-point operation that generates the intended IEEE excep-
tion.

Unlike sigfpe(3), ieee_handler also adjusts floating-point hardware mode bits
affecting IEEE trapping. For clear, set SIGFPE_DEFAULT, or set SIGFPE_IGNORE,
the hardware trap is disabled. For any other set, the hardware trap is enabled.

SIGFPE signals can be handled using sigvec(2), signal(3), signal(3F), sigfpe(3),
or ieee_handler(3M). In a particular program, to avoid confusion, use only one of
these interfaces to handle SIGFPE signals.

RETURN VALUE

10/92

ieee_handler normally returns 0. In the case of set, 1 will be returned if the
action is not available (for instance, not supported in hardware).

Page 1

ieee_functions (3M) (BSD Compatibility Package) ieee_functions(3M)

NAME
ieee_functions, fp_class, isnan, copysign, scalbn - miscellaneous functions
for IEEE arithmetic

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <fp.h>
#include <math.h>
#include <stdio.h>

enum fp_class_type fp_class(x)
double x;

int isnan(x)
double x;

double copysign(x,y)
double x, y;

double scalbn(x,n)
double x; int n;

DESCRIPTION

FILES

10/92

Most of these functions provide capabilities required by ANSI/IEEE Std 754-1985 or
suggested in its appendix.

fp_class (x) corresponds to the IEEE's class() and classifies x as zero, subnormal,
normal, 00 , or quiet or signaling NaN; /usr/ucbinclude/sys/ieeefp.h defines
enum fp_class_type. The following function returns 0 if the indicated condition
is not satisfied:

isnan (X) returns 1 if xis NaN

copysign (X, yl returns x with y's sign bit.

scalbn (x, n) returns x* 2 * *n computed by exponent manipulation rather than by
actually performing an exponentiation or a multiplication. Thus

1 ~ scalbn(fabs(x) ,-ilogb(x)) < 2

for every x except 0, =, and NaN.

/usr/ucbinclude/sys/ieeefp.h
/usr/ucbinclude/math.h
/usr/include/values.h

Page 1

hypot(3M) (Math Libraries)

NAME
hypot - Euclidean distance function

SYNOPSIS
cc [flag ...]file ... -lm[library ...]

#include <rnath.h>

double hypot (double x, double y);

DESCRIPTION
hypot returns

sqrt(x * x + y * y)

taking precautions against unwarranted overflows.

SEE ALSO
rnatherr(3M)

DIAGNOSTICS

hypot (3M)

When the correct value would overflow, hypot returns HUGE and sets errno to
ERAN GE.

10/92

Except when the -Xe compilation option is used, these error-handling procedures
may be changed with the function rnatherr. When the -Xa or -Xe compilation
options are used, HUGE_ VAL is returned instead of HUGE.

Page 1

hsearch (3C) (C Development Set) hsearch (3C)

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C)

DIAGNOSTICS

NOTES

10/92

hsearch returns a null pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

hcreate returns zero if it cannot allocate sufficient space for the table.

hsearch and hcreate use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

Page 3

hsearch (3C)

Page 2

(C Development Set)

char string_space[NUM_EMPL*20];
I* space to store employee info */
struct info info_space[NUM_EMPL];
/* next avail space in string_space */
char *str_ptr = string_space;
/* next avail space in info_space */
struct info *info_plr = info_space;
ENTRY item, *found_item;
I* name to look for in table */
char name_to_find[30];
int i = O;

I* create table */
(void) hcreate(NUM_EMPL);

hsearch (3C)

while (scanf("%s%d%d", str_ptr, &info_ptr->age,
&info_ptr->room) ! = EOF && i++ < NUM_EMPL)

/* put info in structure, and structure in item */
item.key = str_ptr;
item.data= (void *)info_ptr;
str_ptr += strlen(str_ptr) + l;
info_ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF)

if ((found_item = hsearch(item, FIND)) !=NULL) {
I* if item is in the table */
(void)printf("found %s, age= %d, room= %d\n",

found_item->key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);

else {
(void)printf ("no such employee %s\n",

name_to_find)

return O;

10/92

hsearch (3C) (C Development Set) hsearch (3C)

NAME
hsearch, hcreatc, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (ENTRY item, ACTION action);

int hcreate (size_t nel);

void hdestroy (void) ;

DESCRIPTION
hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D.
It returns a pointer into a hash table indicating the location at which an entry can be
found. The comparison function used by hsearch is strcmp [see string(3C)].
item is a structure of type ENTRY (defined in the search.h header file) containing
two pointers: item.key points to the comparison key, and item.data points to any
other data to be associated with that key. (Pointers to types other than void should
be cast to pointer-to-void.) action is a member of an enumeration type ACTION
(defined in search. h) indicating the disposition of the entry if it cannot be found
in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. Given a duplicate of an existing item, the new item is not
entered and hsearch returns a pointer to the existing item. FIND indicates that no
entry should be made. Unsuccessful resolution is indicated by the return of a null
pointer.

hcreate allocates sufficient space for the table, and must be called before hsearch
is used. nel is an estimate of the maximum number of entries that the table will
contain. This number may be adjusted upward by the algorithm in order to obtain
certain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another call to
hcreate.

EXAMPLE

10/92

The following example will read in strings followed by two numbers and store
them in a hash table, discarding duplicates. It will then read in strings and find the
matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>

struct info { /* this is the info stored in table */
int age, room; /* other than the key *I

} ;

#define NUM_EMPL 5000 /* # of elements in search table */

main()
{

/* space to store strings */

Page 1

grant pt (3C) grantpt (3C)

NAME
grantpt - grant access to the slave pseudo-terminal device

SYNOPSIS
int grantpt (int fildes);

DESCRIPTION
The function grantpt changes the mode and ownership of the slave pseudo­
terminal device associated with its master pseudo-terminal counter part. fildes is
the file descriptor returned from a successful open of the master pseudo-terminal
device. A setuid root program [see setuid(2)] is invoked to change the permis­
sions. The user ID of the slave is set to the effective owner of the calling process and
the group ID is set to a reserved group. The permission mode of the slave pseudo­
terminal is set to readable, writeable by the owner and writeable by the group.

RETURN VALUE
Upon successful completion, the function grantpt returns O; otherwise it returns -
1. Failure could occur if fildes is not an open file descriptor, if ftldes is not associated
with a master pseudo-terminal device, or if the corresponding slave device could
not be accessed.

SEE ALSO
open(2), setuid(2)

ptsnarne(3C), unlockpt(3C) in the Programmer's Guide: STREAMS

10/92 Page 1

gmatch(3G) (Enhanced Programming Library) gmatch(3G)

NAME
gTilatch - shell global pattern matching

SYNOPSIS
cc [flag ...]file ... -lgen[library ...]

#include <libgen.h>

int gTilatch (const char *str, const char *pattern);

DESCRIPTION
gTilatch checks whether the null-terminated string str matches the null-terminated
pattern string pattern. See the sh(l) section "File Name Generation" for a discus­
sion of pattern matching. gTilatch returns non-zero if the pattern matches the
string, zero if the pattern doesn't. A backslash('\') is used as an escape character in
pattern strings.

EXAMPLE
char *s;

gTilatch (s, "*[a\-]")

gTilatch returns non-zero (true) for all strings with 'a' or' - 'as their last character.

SEE ALSO
sh(l).

10/92 Page 1

getws(3W) getws(3W)

NAME
getws, fgetws - get a wchar_t string from a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

wchar_l *gelws(wchar_t *s);

wchar_t *fgetws (wchar_t *S, int n, FILE *stream) ;

DESCRIPTION (International Functions)
getws () reads EUC characters from stdin, converts them to wchar_t characters, and
places them in the wchar_t array pointed to bys. getws () reads until a new-line
character is read or an end-of-file condition is encountered. The new-line character
is discarded and the wchar_l string is terminated with a wchar_t null character.

fgetws () reads EUC characters from the stream, converts them to wchar_t charac­
ters, and places them in the wchar_t array pointed to by s. fgetws () reads until
n-1 wchar_t characters are transferred to s, or a new-line character or an end-of-file
condition is encountered. The wchar_t string is then terminated with a wchar_t
null character.

DIAGNOSTICS
If end-of-file or a read error is encountered and no characters have been
transformed, no wchar_t characters are transferred to s and a null pointer is
returned and the error indicator for the stream is set. If the read error is an illegal
byte sequence, EILSEQ is set to errno. If end-of-file is encountered, the EOF indicator
for the stream is set. Otherwise, s is returned.

SEE ALSO

10/92

ferror(3S), fopen(3S), fread(3S), getwc(3W), scanf(3S), scanf(3W), stdio(3S),
widec(3W).

Page 1

getwidth (3W) getwidth (3W)

NAME
getwidth - get information of supplementary code sets

SYNOPSIS
#include <sys/euc.h>
#include <getwidth.h>

void get width (eucwidth_t *ptr) ;

DESCRIPTION
getwidth () reads the character class table, which is generated by chrtbl or
wchrtbl, to get information of supplementary code sets, and sets it into the struc­
ture eucwidth_t.

The structure eucwidth_t is defined in the header file /usr I include/ euc. h as
follows:

typedef struct {
short int _eucwl,_eucw2,_eucw3;
short int _scrwl,_scrw2,_scrw3;
short int _pew;
char _multibyte;

eucwidth_t;

Code set width values for three supplementary code sets are set in _eucwl, _eucw2
and _eucw3, respectively. Screen width values for the three supplementary code sets
are set in _scrwl, _scrw2 and _scrw3, respectively. The width of EUC process
code is set in _pew. The maximum width in bytes of EUC is set in _mul t ibyte.

If the cswidth parameter is not set, the system default is required. The system
default is cswidth 1: 1, 0: 0, 0: 0.

SEE ALSO
chrtbl(lM), wchrtbl(lM).

10/92 Page 1

getwd (3) (BSD Compatibility Package)

NAME
getwd - get current working directory pathname

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/pararn.h>

char *getwd(pathname)
char pathname [MAXPATIILEN] ;

DESCRIPTION

getwd (3)

getwd copies the absolute pathname of the current working directory to pathname
and returns a pointer to the result.

RETURN VALUE
getwd returns zero and places a message in pathname if an error occurs.

SEE ALSO
getcwd(3C).

10/92 Page 1

getwc(3W) getwc(3W)

NAME
getwc, getwchar, fgetwc - get wchar_t character from a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int getwc (FILE *stream) ;

int getwchar(void);

int fgetwc (FILE *stream) ;

DESCRIPTION (International Functions)
getwc () transforms the next EUC character from the named input stream into a
wchar_t character, and returns it It also increments the file pointer, if defined, by
one EUC character in the stream. get wchar () is defined as get wc (s tdin) .
getwc () and getwchar () are macros.

fgetwc () behaves like getwc () , however, it is a function.

DIAGNOSTICS
These functions return the constant EOF at the end-of-file or upon an error and set
the EOF or error indicator of stream, respectively. If the error is an illegal sequence,
EILSEQ is set to errno.

WARNINGS
If the value returned by getwc () , getwchar () , or fgetwc () is compared with the
integer constant EOF after being stored in a wchar_t variable, the comparison may
not succeed unless EOF is cast to type wchar_t.

SEE ALSO

10/92

fclose(3S), ferror(3S), fopen(3S), getws(3W), putwc(3W), scanf(3S), scanf(3W),
stdio(3S). widec(3W).

Page 1

getvfsent (3C) getvfsent (3C)

NOTES

Page 2

VFS_TOOLONG

VFS_TOOMANY

VFS_TOOFEW

A line in the file exceeded the internal buffer size of
VFS_LINE_MAX.

A line in the file contains too many fields.

A line in the file contains too few fields.

The members of the vfstab structure point to information contained in a static
area, so it must be copied if it is to be saved.

10/92

getvfsent (3C) getvfsent (3C)

NAME
getvfsent, getvfsfile, getvfsspec, getvfsany - get vfstab file entry

SYNOPSIS
#include <stdio.h>
#include <sys/vfstab.h>

int getvfsent (FILE *fp, struct vfstab *vp);

int getvfsfile (FILE *fp, struct vfstab *vp, char *file);

int getvfsspec (FILE *fp, struct vfstab *vp, char *spec);

int getvfsany (FILE *fp, struct vfstab *vp, struct vfstab *vref) ;

DESCRIPTION

FILES

getvfsent, getvfsfile, getvfsspec, and getvfsany each fill in the structure
pointed to by vp with the broken-out fields of a line in the file JP. Each line in the
file contains a vfstab structure, declared in the sys /vfstab. h header file:

char *vfs_special;
char *vfs_fsckdev;
char *vfs_mountp;
char *vfs_fstype;
char *vfs_fsckpass;
char *vfs_automnt;
char *vfs_mntopts;

The fields have meanings described in vfstab(4).

getvfsent fills vp with the next vfstab structure in JP so successive calls can be
used to search the entire file. getvfsfile searches the file referenced by JP until a
mount point matching file is found and fills vp with the fields from the line in the
file. getvfsspec searches the file referenced by JP until a special device matching
spec is found and fills vp with the fields from the line in the file. spec will try to
match on device type (block or character special) and major and minor device
numbers. If it cannot match in this manner, then it compares the strings.
getvfsany searches the file referenced by JP until a match is found between a line
in the file and vref vref matches the line if all non-null entries in vref match the
corresponding fields in the file.

Lines in JP which are empty or contain a '#' in the first column are skipped.

Note that these routines do not open, close, or rewind the file.

/elc/vfstab

DIAGNOSTICS

10/92

If the next entry is successfully read by getvfsent or a match is found with
getvfsfile, getvfsspec, or getvfsany, 0 is returned. If an end-of-file is encoun­
tered on reading, these functions return -1. If an error is encountered, a value
greater than 0 is returned. The possible error values are:

Page 1

getutx(3C) (C Development Set) getutx(3C)

NOTES

10/92

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. On each call to either getutxid or
getutxline, the routine examines the static structure before performing more I/0.
If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline would
just return the same structure over and over again. There is one exception to the
rule about emptying the structure before further reads are done. The implicit read
done by pututxline (if it finds that it is not already at the correct place in the file)
will not hurt the contents of the static structure returned by the getutxent,
getutxid, or getutxline routines, if the user has just modified those contents and
passed the pointer back to pututxline.

These routines use buffered standard I/O for input, but pututxline uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Page 3

getutx(3C) (C Development Set) getutx(3C)

FILES

matches id->ut_id. If the end of file is reached without a match, it fails.

getutxline searches forward from the current point in the utmpx file until it finds
an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line
string matching the line->ut_line string. If the end of file is reached without a
match, it fails.

pututxline writes out the supplied utmpx structure into the utmpx file. It uses
getutxid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututxline will have
searched for the proper entry using one of the getutx routines. If so, pututxline
will not search. If pututxline does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmpx struc­
ture.

setutxent resets the input stream to the beginning of the file. This should be done
before each search for a new entry if it is desired that the entire file be examined.

endutxent closes the currently open file.

utmpxname allows the user to change the name of the file examined, from
/var I adm/utmpx to any other file. It is most often expected that this other file will
be /var I adm/wtmpx. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. utmpxname does not open the file. It just
closes the old file if it is currently open and saves the new file name. The new file
name must end with the "x" character to allow the name of the corresponding
utmp file to be easily obtainable (otherwise an error code of 1 is returned).

getutmp copies the information stored in the fields of the utmpx structure to the
corresponding fields of the utmp structure. If the information in any field of utmpx
does not fit in the corresponding utmp field, the data is truncated.

getutmpx copies the information stored in the fields of the utmp structure to the
corresponding fields of the utmpx structure.

updwtmp checks the existence of wfile and its parallel file, whose name is obtained
by appending an "x" to wfile. If only one of them exists, the second one is created
and initialized to reflect the state of the existing file. utmp is written to wfile and the
corresponding utmpx structure is written to the parallel file.

updwtmpx checks the existence of wfilex and its parallel file, whose name is obtained
by truncating the final "x" from wfilex. If only one of them exists, the second one is
created and initialized to reflect the state of the existing file. utmpx is written to
wfilex, and the corresponding utmp structure is written to the parallel file.

/var/adm/utmp,/var/adm/utmpx
/var/adm/wtmp,/var/adm/wtmpx

SEE ALSO
ttyslot(3C), utmp(4), utmpx(4)

DIAGNOSTICS

Page 2

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

10/92

getutx(3C) (C Development Set) getutx(3C)

NAME
getutx: getutxent, getutxid,
endutxent, utmpxname, getutmp,
utmpx file entry

getutxline, pututxline, setutxent,
getutmpx, updwtmp, updwtmpx - access

SYNOPSIS
ffinclude <utmpx.h>

struct utmpx *getutxent (void) ;

struct utmpx *getutxid (const struct utmpx *id);

struct utmpx *getutxline (const struct utmpx *line);

struct utmpx *pututxline (const struct utmpx *utmpx);

void setutxent (void) ;

void endutxent (void) ;

int utmpxname (const char *file);

void getutmp (struct utmpx *utmpx, struct utmp *utmp);

void getutmpx (struct utmp *utmp, struct utmpx *utmpx);

void updwtmp (char *wfile, struct utmp *utmp);

void updwtmpx (char *wfilex, struct utmpx *utmpx);

DESCRIPTION

10/92

getutxent, getutxid, and getutxline each return a pointer to a structure of the
following type:

struct utmpx {

} ;

char ut_user[32];
char ut_id[4];

char ut_line[32];
pid_t ut__pid;
short ut_type;
struct exit status

short e_termination;
short

ut_exit;
e_exit;

struct timeval ut_tv;
short ut_syslen;

char ut_host [257];

I*
I*
I*
I*
I*
I*

I*
I*
I*
I*
I*
I*
I*
I*

user login name *I
/etc/inittab id (usually *I
line #) *I
device name (console, lnxx) *I
process id */
type of entry *I

termination status *I
exit status *I
exit status of a process
marked as DEAD_PROCESS *I
time entry was made *I
significant length of ut_host *I
including terminating null *I
host name, if remote *I

getutxent reads in the next entry from a utmpx-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutxid searches forward from the current point in the utmpx file until it finds an
entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_ TIME' OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS' USER_PROCESS, or DEAD_PROCESS, then getutxid will return a
pointer to the first entry whose type is one of these four and whose ut_id field

Page 1

getut(3C) (C Programming Language Utilities) getut(3C)

FILES

search. If pututline does not find a matching slot for the new entry, it will add a
new entry to the end of the file. It returns a pointer to the utmp structure.

setutent resets the input stream to the beginning of the file. This reset should be
done before each search for a new entry if it is desired that the entire file be exam­
ined.

endutent closes the currently open file.

u tmpname allows the user to change the name of the file examined, from
/var I adm/utmp to any other file. It is most often expected that this other file will
be /var I adm/wtmp. If the file does not exist, this will not be apparent until the first
attempt to reference the file is made. utmpname does not open the file. It just closes
the old file if it is currently open and saves the new file name. If the file name given
is longer than 79 characters, utmpname returns 0. Otherwise, it will return 1.

/var/adm/utmp
/var/adm/wtmp

SEE ALSO
ttyslot(3C), uLmp(4)

DIAGNOSTICS

NOTES

Page 2

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. On each call to either getutid or
getutline, the routine examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutline to search for multiple occurrences, it
would be necessary to zero out the static area after each success, or getutline
would just return the same structure over and over again. There is one exception to
the rule about emptying the structure before further reads are done. The implicit
read done by pututline (if it finds that it is not already at the correct place in the
file) will not hurt the contents of the static structure returned by the getutent,
getutid or getutline routines, if the user has just modified those contents and
passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes trying
to modify the utmp and wtmp files.

10/92

getut(3C) (C Programming Language Utilities) getut(3C)

NAME
getut:getutent,getutid, getutline,pututline, setutent, endutent,utmp­
name - access utmp file entry

SYNOPSIS
#include <utmp.h>

struct utmp *getutent (void);

struct utmp *getutid (const struct utmp *id);

struct utmp *getutline

struct utmp *pututline

void setutent (void) ;

void endutenl (void) ;

(const

(const

struct utmp *line) ;

struct utmp *utmp);

int utmpname (const char *file);

DESCRIPTION

10/92

getutent, getutid, getutline, and pututline each return a pointer to a struc­
ture with the following members:

char
char
char
short
short
struct
} ut_exit;

time_t

ut_user[BJ;
ut_id[4];
ut_line[l2];
ut_pid;
ut_type;
exit_status

ut_time;

I* user login name *I
/* /etc/inittab id (usually line#)*/
/*device name (console, lnxx) */
I* process id --*I
I* type of entry *I

I* exit status of a process *I
I* marked as DEAD PROCESS *I
I* time entry was made *I

The structure exit status includes the following members:

short e_termination;
short e_exit;

I* termination status *I
I* exit status *I

getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp file until it finds an
entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then getutid will return a
pointer to the first entry whose type is one of these four and whose ut_id field
matches id->ut_id . If the end of file is reached without a match, it fails.

getutline searches forward from the current point in the utmp file until it finds an
entry of the type LOGIN_PROCESS or USER_PROCESS that also has a ut_line string
matching the line->ut_line string. If the end of file is reached without a match, it
fails.

pututline writes out the supplied utmp structure into the utmp file. It uses getu­
tid to search forward for the proper place if it finds that it is not already at the
proper place. It is expected that normally the user of pututline will have searched
for the proper entry using one of the getut routines. If so, pututline will not

Page 1

getusershell (3) (BSD Compatibility Package) getusershell (3)

NAME
getusershell, setusershell, endusershell - get legal user shells

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

char *getusershell()

setusershell ()
endusershell ()

DESCRIPTION

FILES

getusershell returns a pointer to a legal user shell as defined by the system
manager in the file /etc/shells. If /etc/shells does not exist, the locations of
the standard system shells, /usr /bin/ csh, /usr /bin/ sh, and /usr /bin/ksh are
returned.

getusershell reads the next line (opening the file if necessary); setusershell
rewinds the file; endusershell closes it.

/etc/shells
/usr/bin/csh
/usr/bin/ksh
/usr/bin/sh

RETURN VALUE
The routine getusershell returns a NULL pointer (0) on EOF or error.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

10/92 Page 1

getuid(2) getuid (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

uid_t getuid (void) ;

uid_t geteuid (void);

gid_t getgid (void);

gid_t getegid (void);

DESCRIPTION
getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group JD of the calling process.

SEE ALSO
intro(2), setuid(2)

10/92 Page 1

gettxt(3C) (C Programming Language Utilities) gettxt(3C)

FILES

Upon failure to pass the correct argument to gettxt (),a pointer to the text string
"Message not found!! \n"

is returned.

/usr/lib/locale/C/LC_MESSAGES/*

/usr I lib/ locale/ locale /LC_MESSAGES/ *

Default message files created by
mkmsgs ()

message files for different
languages created by mkmsgs ()

EXAMPLE
In the following code fragment:

gettxt("test:lO", "hello world\n")
gettxt("test:lO", "")
setcat ("test");
gettxt(":lO", "hello world\n")

test is the name of the file that contains the messages; 10 is the message number.

SEE ALSO
environ(S), gettxt(l), mkmsgs(l), setcat(3C), setlocale(3C), srchtxt(l).

Page 2 10/92

gettxt(3C) (C Programming Language Utilities) gettxt(3C)

NAME
gettxt - retrieve a text string

SYNOPSIS
char *gettxt (char *msgid, char *dflt_str);

DESCRIPTION

10/92

The routine gettxt () retrieves a text string from a message file. The arguments to
the function are a message identification msgid and a default string dflt_str to be
used if the retrieval fails.

The text strings are in files created by mkmsgs [see mkmsgs(l)] and installed in
/usr I 1 ib/ locale/ locale /LC_MESSAGES

directories.

The directory locale can be viewed as the language in which the text strings are
written. The user can request that messages be displayed in a specific language by
setting the environment variable LC_MESSAGES. If LC_MESSAGES is not set the
environment variable LANG will be used.

If LANG is not set, the locale in which the strings will be retrieved is the C locale and
the files containing the strings are in

/usr/lib/locale/C/LC_MESSAGES/*.

The user can also change the language in which the messages are displayed by
invoking the setlocale () [see setlocale(3C)] function with the appropriate argu­
ments.

If gettxt () fails to access the message in a specific locale, it will try to retrieve the
same message in the C locale. Upon failure, the processing depends on what the
second argument, dflt_str, points to. A pointer to the second argument is returned
if the second argument is not the null strings. If dflt_str points to the null string, a
pointer to the C locale text string

"Message not found!! \n"
is returned. A pointer to the same string is also returned if the message number is
out of range.

The following depicts the acceptable syntax of msgid for a call to get txt () :
<msgid> => <msgfilename>: <msgnumber>

The first argument consists of two fields separated by a colon. The first field is used
to indicate the file that contains the text strings and must be limited to 14 charac­
ters. These characters must be selected from a set of all character values excluding
\ O (null) and the ASCII code for I (slash) and : (colon). The names of message files
must be the same as the names of files created by mkmsgs () and installed in
/usr/lib/locale/locale/LC_MESSAGES/*. If no file name is specified, gettxt ()
will use the name specified with setcat (). If neither a file name nor a default
catalog is specified, get txt () returns a pointer to the text string

"Message not found! ! \n".
The numeric field indicates the sequence number of the string in the file. The
strings are numbered from 1. If the numeric field is greater than the number of
strings in the file, gettxt () will use the defaulting sequence described above.

Page 1

gettimeofday (3C) gettimeofday (3C)

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
#include <Sys/time.h>

int gettimeofday (struct timeval *tp);

int settimeofday (struct timeval *tp);

DESCRIPTION
gettimeofday gets and settimeofday sets the system's notion of the current time.
The current time is expressed in elapsed seconds and microseconds since 00:00
Universal Coordinated Time, January 1, 1970. The resolution of the system clock is
hardware dependent; the time may be updated continuously or in clock ticks.

tp points to a timeval structure, which includes the following members:

long
long

tv_sec;
tv_usec;

I* seconds since Jan. l, 1970 */
/* and microseconds */

If tp is a null pointer, the current time information is not returned or set.

The TZ environment variable holds time zone information. See timezone(4).

Only the privileged user may set the time of day.

SEE ALSO
adj time(2), ctime(3C), timezone(4)

DIAGNOSTICS

NOTES

10/92

A -1 return value indicates that an error occurred and errno has been set. The fol­
lowing error codes may be set in errno:

EINVAL tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time or time
zone.

The implementation of settimeofday ignores the tv_usec field of tp. If the time
needs to be set with better than one second accuracy, call settimeofday for the
seconds and then adj time for finer accuracy.

Page 1

gettimeofday (3) (BSD Compatibility Package) gettimeofday (3)

NAME
gettimeofday, settimeofday- get or set the date and time

SYNOPSIS
/usr /ucb/ cc [flag . ..] file ...

#include <sys/time.h>

int gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp; /* obsolete */

int settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp; /* obsolete */

DESCRIPTION
The system's notion of the current Greenwich time is obtained with the
gettimeofday call, and set with the settimeofday call. The current time is
expressed in elapsed seconds and microseconds since 00:00 GMT, January 1, 1970
(zero hour). The resolution of the system clock is hardware dependent; the time
may be updated continuously, or in "ticks."

tp points to a t imeval structure, which includes the following members:

long tv_sec; /* seconds since Jan. l, 1970 */
long tv_usec; /* and microseconds */

If tp is a NULL pointer, the current time information is not returned or set.

tzp is an obsolete pointer formerly used to get and set timezone information. tzp is
now ignored. Timezone information is now handled using the TZ environment
variable; see timezone(4).

Only the privileged user may set the time of day.

RETURN VALUE
A -1 return value indicates an error occurred; in this case an error code is stored in
the global variable errno.

ERRORS
The following error codes may be set in errno:

F:INVAL

EPERM

tp specifies an invalid time.

A user other than the privileged user attempted to set the time.

SEE ALSO
date(l), adjtime(2), ctime(3C), gettimeofday(3C), timezone(4).

NOTES
Time is never correct enough to believe the microsecond values.

t zp is ignored.

10/92 Page 1

getsubopt (3C) getsubopt (3C)

break;
default :

break;

if (errflag)

I* process unknown token */
error_bad_token(value);
errflag++;
break;

/* print usage instructions etc. *I

for (; optind<argc; optind++) {
/* process remaining arguments */

SEE ALSO
getopt(3C).

DIAGNOSTICS

NOTES

10/92

getsubopt returns -1 when the token it is scanning is not in the token vector. The
variable addressed by valuep contains a pointer to the first character of the token
that was not recognized rather than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be parsed, or a null
character if there are no more options.

During parsing, commas in the option input string are changed to null characters.
White space in tokens or token-value pairs must be protected from the shell by
quotes.

Page 3

getsubopt (3C) getsubopt (3C)

Page 2

#define WRITESIZE 2
"wsize 11 ,

#define READSIZE 3
"rsize 11 ,

NULL};

main(argc, argv)
int argc;
char **argv;

int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern int optind;

while((c = getopt(argc, argv, "abf:o:")) != -1) {
switch (c) {
case 'a': /* process a option *I

breaki
case 'b': I* process b option *I

break;
case 1 f I:

ofile = optarg;
break;

case , ? , :

errflag++;
break;

case 'o':
options = optarg;
while (*options != '\0') {

switch(getsubopt(&options,myopts,&value)
case READONLY : /* process ro option */

break;
case READWRITE /* process rw option */

break;
case WRITESIZE /* process wsize option */

if (value == NULL) {
error_no_arg();
errflag++;

else
write_size = atoi(value);

break;
case READSIZE : /* process rsize option */

if (value == NULL) {
error_no_arg();
errflag++;

else
read_size atoi (value) ;

10/92

getsubopt (3C) getsubopt (3C)

NAME
getsubopt - parse suboptions from a string

SYNOPSIS
#include <stdlib.h>

int getsubopt (char **optionp, char * const *tokens, char **valuep);

DESCRIPTION
getsubopt parses suboptions in a flag argument that was initially parsed by
getopt. These suboptions are separated by commas and may consist of either a
single token or a token-value pair separated by an equal sign. Since commas delimit
suboptions in the option string, they are not allowed to be part of the suboption or
the value of a suboption. A command that uses this syntax is mount(lM), which
allows the user to specify mount parameters with the -o option as follows:

mount -o rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of
which has an associated value of 1024.

getsubopt takes the address of a pointer to the option string, a vector of possible
tokens, and the address of a value string pointer. It returns the index of the token
that matched the suboption in the input string or -1 if there was no match. If the
option string at optionp contains only one suboption, getsubop~ updates optionp to
point to the null character at the end of the string; otherwise it isolates the subop­
tion by replacing the comma separator with a null character, and updates optionp to
point to the start of the next suboption. If the suboption has an associated value,
getsubopt updates valuep to point to the value's first character. Otherwise it sets
valuep to NULL.

The token vector is organized as a series of pointers to null strings. The end of the
token vector is identified by a null pointer.

When getsubopt returns, if valuep is not NULL, then the suboption processed
included a value. The calling program may use this information to determine if the
presence or lack of a value for this suboption is an error.

Additionally, when getsubopt fails to match the suboption with the tokens in the
tokens array, the calling program should decide if this is an error, or if the unrecog­
nized option should be passed to another program.

EXAMPLE

10/92

The following code fragment shows how to process options to the mount command
using getsubopt.

#include <stdlib.h>

char *myopts[] = {
#define READONLY 0

11 ro 11 ,

#define READWRITE 1
urw.,,

Page 1

getspent (3C) getspent (3C)

FILES

files.

lckpwdf attempts to lock the file /etc/ .pwd. lock within 15 seconds. If unsuc­
cessful, for example, I etc I . pwd. lock is already locked, it returns -1. If successful,
a return code other than -1 is returned.

ulckpwdf attempts to unlock the file /etc/ .pwd. lock. If unsuccessful, for exam­
ple, /etc/ .pwd. lock is already unlocked, it returns -1. If successful, it returns 0.

A call to the setspent routine has the effect of rewinding the shadow password
file to allow repeated searches. The endspent routine may be called to close the
shadow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the stream fp,
which matches the format of /etc/shadow.

/etc/shadow
/etc/passwd
/etc/ .pwd. lock

SEE ALSO
getpwent(3C), putpwent(3C), putspent(3C)

DIAGNOSTICS

NOTES

Page 2

get spent, getspnam, lckpwdf, ulckpwdf, and fgetspent return a null pointer on
EOF or error.

This routine is for internal use only; compatibility is not guaranteed.

All information is contained in a static area, so it must be copied if it is to be saved.

10/92

getspent (3C) getspent (3C)

NAME
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf -
manipulate shadow password file entry

SYNOPSIS
#include <shadow.h>

struct spwd *getspent (void) ;

struct spwd *getspnam (const char *name) ;

int lckpwdf (void) ;

int ulckpwdf (void) ;

void setspent (void) ;

void endspent (void) ;

struct spwd *fgetspent (FILE *fp);

DESCRIPTION

10/92

The getspent and getspnam routines each return a pointer to an object with the
following structure containing the broken-out fields of a line in the I etc/ shadow
file. Each line in the file contains a "shadow password" structure, declared in the
shadow. h header file:

struct spwd{

};

char *sp_namp;
char *sp__pwdp;
long sp_lstchg;
long sp_min;
long sp_max;
long sp_warn;
long sp_inact;
long sp_expire;
unsigned long sp_flag;

The get spent routine when first called returns a pointer to the first spwd structure
in the file; thereafter, it returns a pointer to the next spwd structure in the file; so
successive calls can be used to search the entire file. The getspnam routine searches
from the beginning of the file until a login name matching name is found, and
returns a pointer to the particular structure in which it was found. The getspent
and getspnam routines populate the sp_min, sp_max, sp_lstchg, sp_warn,
sp_inact, sp_expire, or sp_flag field with -1 if the corresponding field in
/etc/shadow is empty. If an end-of-file or an error is encountered on reading, or
there is a format error in the file, these functions return a null pointer and set errno
to EINVAL.

I etc I . pwd. lock is the lock file. It is used to coordinate modification access to the
password files /etc/passwd and /etc/shadow. lckpwdf and ulckpwdf are rou­
tines that are used to gain modification access to the password files, through the
lock file. A process first uses lckpwdf to lock the lock file, thereby gaining
exclusive rights to modify the /etc/passwd or /etc/shadow password file. Upon
completing modifications, a process should release the lock on the lock file via
ulckpwdf. This mechanism prevents simultaneous modification of the password

Page 1

getsockopt (3N)

ENO SR

SEE ALSO

getsockopt (3N)

There were insufficient STREAMS resources available for the
operation to complete.

socket(3N), getprotoent(3N)
close(2), ioctl(2), read(2).

10/92 Page 3

getsockopt (3N) getsockopt (3N)

SO_SNDBUF
SO_RCVBUF
SO_TYPE
SO_ERROR

set buffer size for output
set buffer size for input
get the type of the socket (get only)
get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind call should
allow reuse of local addresses. SO_KEEPALIVE enables the periodic transmission of
messages on a connected socket. If the connected party fails to respond to these
messages, the connection is considered broken and processes using the socket are
notified using a SIGPIPE signal. SO_DONTROUTE indicates that outgoing messages
should bypass the standard routing facilities. Instead, messages are directed to the
appropriate network interface according to the network portion of the destination
address.

SO_LINGER controls the action taken when unsent messages are queued on a socket
and a close is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close attempt until it is
able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when
SO_LINGER is requested). If SO_LINGER is disabled and a close is issued, the sys­
tem will process the close() in a manner that allows the process to continue as
quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. With protocols that support out-of-band data, the SO_OOBINLINE option
requests that out-of-band data be placed in the normal data input queue as
received; it will then be accessible with recv or read calls without the MSG_OOB
flag. SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values.
Finally, SO_TYPE and SO_ERROR are options used only with getsockopt. SO_TYPE
returns the type of the socket (for example, SOCK_STREAM). It is useful for servers
that inherit sockets on startup. SO_ERROR returns any pending error on the socket
and clears the error status. It may be used to check for asynchronous errors on con­
nected datagram sockets or for other asynchronous errors.

RETURN VALUE
A O is returned if the call succeeds, -1 if it fails.

ERRORS

Page 2

The call succeeds unless:

EBl\DF

ENOTSOCK

ENOPROTOOPT

ENOMEM

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The option is unknown at the level indicated.

There was insufficient user memory available for the opera­
tion to complete.

10/92

getsockopt (3N) getsockopt (3N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int
int *optlen);

int setsockopt(int S, int
int optlen) ;

level, int optname, char *optval,

level, int optname, char *optval,

DESCRIPTION

10/92

getsockopt and setsockopt manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the upper­
most socket level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL_SOCKET. To manipulate options at any other level, level is
the protocol number of the protocol that controls the option. For example, to indi­
cate that an option is to be interpreted by the TCP protocol, level is set to the TCP
protocol number [see getprotoent(3N)].

The parameters optval and optlen are used to access option values for setsockopt.
For getsockopt, they identify a buffer in which the value(s) for the requested
option(s) are to be returned. For get sockopt, optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be
supplied or returned, a 0 optval may be supplied.

optname and any specified options are passed uninterpreted to the appropriate pro­
tocol module for interpretation. The include file sys I socket. h contains
definitions for the socket-level options described below. Options at other protocol
levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt, the optval
parameter should be non-zero to enable a boolean option, or zero if the option is to
be disabled. SO_LINGER uses a struct linger parameter that specifies the
desired state of the option and the linger interval (see below). struct linger is
defined in /usr /include/sys/socket. h.

The following options are recognized at the socket level. Except as noted, each may
be examined with getsockopt and set with setsockopt.

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE toggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data is present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

Page 1

getsockname (3N) getsockname (3N)

NAME
getsockname - get socket name

SYNOPSIS
int getsockname(int s, caddr_t name, int *namelen);

DESCRIPTION
getsockname returns the current name for sockets. The name/en parameter should
be initialized to indicate the amount of space pointed to by name. On return it con­
tains the actual size of the name returned (in bytes).

RETURN VALUE
O is returned if the call succeeds; -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOMEM

ENO SR

The arguments is not a valid descriptor.

The argument s is a file, not a socket.

There was insufficient user memory for the operation to
complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

10/92

bind(3N), getpeername(3N), socket(3N)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a socketaddr_un struc­
ture as defined in sys I un. h; Internet domain sockets (address family AF _INET)
require a sockaddr_in structure as defined in netinet I in. h. Other address fami­
lies may require other structures. Use the structure appropriate to the address fam­
ily; cast the structure address to a generic caddr_t in the call to getsockname and
pass the size of the structure in the namelen argument.

The functionality of getsockname is provided by t_getname in TLI. t_getname
will be replaced in the next release of System V.

The syntax for t_getname is as follows:

t_getname(int fd, struct netbuf *name, register int type);

If type is equal to LOCALNAME, then the address of the local side of the connection is
returned; otherwise, the address of the remote side is returned.

Page 1

getsid(2) getsid (2)

NAME
getsid - get session ID

SYNOPSIS
#include <Sys/types.h>

pid_t gets id (pid_t pid);

DESCRIPTION
The function getsid returns the session ID of the process whose process ID is
equal to pid. If pid is equal to (pid_t) 0, getsid returns the session ID of the call­
ing process.

RETURN VALUE
Upon successful completion, the function getsid returns the session ID of the
specified process; otherwise, it returns a value of (pid_t) -1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function gets id fails and sets errno to:

EPERM if the process whose process ID is equal to pid is not in the same session
as the calling process, and the implementation does not allow access to
the session ID of that process from the calling process.

ESRCH if there is no process with a process ID equal to pid.

SEE ALSO
exec(2), fork(2), getpid(2), setpgid(2), setsid(2)

10/92 Page 1

getservent (3N) getservent (3N)

Page 2

A NULL pointer is returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Expecting port numbers to fit in a 32 bit quantity is probably naive.

10/92

getservent (3N) getservent (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent -
get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname(char *name, char *proto);

struct servent *getservbyport(int port, char *proto);

int setservent(int stayopen);

int endservent(void);

DESCRIPTION

FILES

getservent, getservbyname, and getservbyport each return a pointer to an object with
the following structure containing the broken-out fields of a line in the network ser­
vices data base, /etc/services.

The servent structure includes the following members:
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

The members of this structure are:

s_name The official name of the service.

s_aliases

s_port

A zero terminated list of alternate names for the service.

The port number at which the service resides. Port numbers
are returned in network short byte order.

s_proto The name of the protocol to use when contacting the service.

getservent reads the next line of the file, opening the file if necessary.

setservent opens and rewinds the file. If the stayopen flag is non-zero, the net
data base will not be closed after each call to getservent (either directly, or
indirectly through one of the other getserv calls).

endservent closes the file.

getservbyname and getservbyport sequentially search from the beginning of the
file until a matching protocol name or port number is found, or until EOF is encoun­
tered. If a protocol name is also supplied (non-NULL), searches must also match the
protocol.

/etc/services

SEE ALSO
getprotoent(3N), services(4)

DIAGNOSTICS

10/92 Page 1

gets (35) (C Development Set) gets (35)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets (char *s);

char *fgets (char *s, int n, FILE *stream);

DESCRIPTION
gets reads characters from the standard input stream [see intro(3)], stdin, into
the array pointed to bys, until a newline character is read or an end-of-file condi­
tion is encountered. The newline character is discarded and the string is terminated
with a null character.

fgets reads characters from the stream into the array pointed to bys, until n-1 char­
acters are read, or a newline character is read and transferred to s, or an end-of-file
condition is encountered. The string is then terminated with a null character.

When using gets, if the length of an input line exceeds the size of s, indeterminate
behavior may result. For this reason, it is strongly recommended that gets be
avoided in favor of fgets.

SEE ALSO
lseek(2), read(2), ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S),
stdio(3S), ungetc(3S)

DIAGNOSTICS

10/92

If end-of-file is encountered and no characters have been read, no characters are
transferred to s and a null pointer is returned. If a read error occurs, such as trying
to use these functions on a file that has not been opened for reading, a null pointer
is returned and the error indicator for the stream is set. If end-of-file is encoun­
tered, the EOF indicator for the stream is set. Otherwise s is returned.

Page 1

getrusage (3) (BSD Compatibility Package) getrusage(3)

10/92

The way resident set size is calculated is an approximation, and could misrepresent
the true resident set size.

Page faults can be generated from a variety of sources and for a variety of reasons.
The customary cause for a page fault is a direct reference by the program to a page
which is not in memory. Now, however, the kernel can generate page faults on
behalf of the user, for example, servicing read(2) and wri te(2) system calls. Also, a
page fault can be caused by an absent hardware translation to a page, even though
the page is in physical memory.

In addition to hardware detected page faults, the kernel may cause pseudo page
faults in order to perform some housekeeping. For example, the kernel may gen­
erate page faults, even if the pages exist in physical memory, in order to lock down
pages involved in a raw I/0 request.

By definition, major page faults require physical I/0, while minor page faults do not
require physical I/O. For example, reclaiming the page from the free list would
avoid I/0 and generate a minor page fault. More commonly, minor page faults
occur during process startup as references to pages which are already in memory.
For example, if an address space faults on some hot executable or shared library,
this results in a minor page fault for the address space. Also, any one doing a
read(2) or write(2) to something that is in the page cache will get a minor page
fault(s) as well.

There is no way to obtain information about a child process which has not yet ter­
minated.

Page 3

getrusage (3) (BSD Compatibility Package) getrusage (3)

ru_ixrss

ru_idrss

ru_isrss

ru_minflt

Currently returns 0.

An integral value indicating the amount of memory in use by a
process while the process is running. This value is the sum of the
resident set sizes of the process running when a clock tick occurs.
The value is given in pages times clock ticks. Note: it does not
take sharing into account. Also, see NOTES.

Currently returns 0.

The number of page faults serviced which did not require any
physical I/O activity. Also, see NOTES.

ru_maj flt The number of page faults serviced which required physical I/O
activity. This could include page ahead operations by the kernel.
Also, see NOTES.

ru_nswap The number of times a process was swapped out of main memory.

ru_inblock The number of times the file system had to perform input in ser­
vicing a read(2) request.

ru_oublock The number of times the file system had to perform output in ser-
vicing a write(2) request.

ru_msgsnd The number of messages sent over sockets.

ru_msgrcv The number of messages received from sockets.

ru_nsignals The number of signals delivered.

ru_nvcsw The number of times a context switch resulted due to a process
voluntarily giving up the processor before its time slice was com­
pleted (usually to await availability of a resource).

ru_ni vcsw The number of times a context switch resulted due to a higher
priority process becoming runnable or because the current process
exceeded its time slice.

RETURN VALUE
If successful, the value of the appropriate structure is filled in, and 0 is returned. If
the call fails, a -1 is returned.

ERRORS
getrusage will fail if:

EINVAL

EFAULT

The who parameter is not a valid value.

The address specified by the rusage argument is not in a valid portion
of the process's address space.

SEE ALSO

NOTES

Page 2

sar(lM), read(2), times(2), wri te(2), gettimeofday(3), wai t(3).

Only the timeval fields of struct rusage are supported in this implementation.

The numbers ru_inblock and ru_oublock account only for real I/0, and are
approximate measures at best. Data supplied by the caching mechanism is charged
only to the first process to read and the last process to write the data.

10/92

getrusage (3) (BSD Compatibility Package) getrusage (3)

NAME
getrusage - get information about resource utilization

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/time.h>
#include <sys/resource.h>

getrusage(who, rusage)
int who;
struct rusage *rusage;

DESCRIPTION

10/92

getrusage returns information about the resources utilized by the current process,
or all its terminated child processes. The interpretation for some values reported,
such as ru_idrss, are dependent on the clock tick interval. This interval is an
implementation dependent value.

The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN. The buffer to
which rusage points will be filled in with the following structure:

struct rusage {
struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

int ru_rnaxrss; /* maximum resident set size */

int ru_ixrss; /* currently 0 */

int ru_idrss; /* integral resident set size */

int ru_isrss; /* currently 0 */

int ru_minflt; /* page faults not requiring physical I/O */

int ru_majflt; /* page faults requiring physical I/0 */

int ru_nswap; /* swaps */

int ru_inblock; /* block input operations */

int ru_oublock; /* block output operations */

int ru_msgsnd; /* messages sent */

int ru_msgrcv; /* messages received */

int ru_nsignals; /* signals received */

int ru_nvcsw; /* voluntary context switches */

int ru_nivcsw; /* involuntary context switches */

} ;

The fields are interpreted as follows:

ru_utime

ru_stime

ru_maxrss

The total amount of time spent executing in user mode. Time is
given in seconds and microseconds.

The total amount of time spent executing in system mode. Time is
given in seconds and microseconds.

The maximum resident set size. Size is given in pages (the size of
a page, in bytes, is given by the getpagesize(3) system call).
Also, see NOTES.

Page 1

getrlimit (2)

EPERM

SEE ALSO

getrlimit(2)

if the limit specified to setrlimit would have raised the maximum
limit value, and the caller is not the superuser

malloc(3C), open(2), sigaltstack(2), signal(S).

10/92 Page 3

getrlimit (2) getrlimit (2)

Resources

RLIMIT_NOFILE

RLIMIT_STACK

RLIMIT_VMEM

Description
limit of O will prevent the
creation of a file.

The maximum number of
open file descriptors that
the process can have.

The maximum size of a
process's stack in bytes.
The system will not
automatically grow the
stack beyond this limit.

The maximum size of a
process's mapped address
space in bytes.

Action
SIGXFSZ, continued
attempts to increase the
size of a file beyond the
limit will fail with errno
set to EFBIG.

Functions that create new
file descriptors will fail
with errno set to EMF ILE.

SIGSEGV is sent to the pro­
cess. If the process is
holding or ignoring
SIGSEGV, or is catching
SIGSEGV and has not
made arrangements to use
an alternate stack [see
sigaltstack(2)], the
disposition of SIGSEGV
will be set to SIG_DFL
before it is sent.

brk(2) and mrnap(2) func­
tions will fail with errno
set to ENOMEM. In addition,
the automatic stack
growth will fail with the
effects outlined above.

Because limit information is stored in the per-process information, the shell builtin
ulirnit must directly execute this system call if it is to affect all future processes
created by the shell.

The value of the current limit of the following resources affect these implementa­
tion defined constants:

Limit
RLIMIT_FSIZE
RLIMIT_NOFILE

Implementation Defined Constant
FCHR_MAX
OPEN_ MAX

RETURN VALUE
Upon successful completion, the functions getrlirnit and setrlirnit return a
value of O; otherwise, they return a value of -1 and set errno to indicate an error.

ERRORS

Page 2

Under the following conditions, the functions getrlirnit and setrlirnit fail and
set errno to:

EINVAL if an invalid resource was specified; or in a setrlirnit call, the new
rlirn_cur exceeds the new rlirn_rnax.

10/92

rpc_clnt_calls (3N) rpc_clnt_calls(3N)

Page 2

void
clnt_perror(const CLIENT *clnt, const char *s);

char *

Print a message to standard error indicating why an RPC call failed; clnt is
the handle used to do the call. The message is prepended with string s and
a colon. A newline is appended at the end of the message. Normally used
after a procedure call fails, for instance clnt_call.

clnt_sperrno(const enum clnt_stat stat);

char *

Take the same arguments as clnt_perrno, but instead of sending a mes­
sage to the standard error indicating why an RPC call failed, return a
pointer to a string which contains the message.

clnt_sperrno is normally used instead of clnt_perrno when the program
does not have a standard error (as a program running as a server quite likely
does not), or if the programmer does not want the message to be output
with printf [see printf(3S)], or if a message format different than that
supported by clnt_perrno is to be used. Note: unlike clnt_sperror and
clnt_spcreaterror [see rpc_clnt_create(3N)], clnt_sperrno does not
return pointer to static data so the result will not get overwritten on each
call.

clnt_sperror(const CLIENT *clnt, const char *s);

Like clnt_perror, except that (like clnt_sperrno) it returns a string
instead of printing to standard error. However, clnt_sperror does not
append a newline at the end of the message.

Note: returns pointer to static data that is overwritten on each call.

enum clnt_stat
rpc_broadcast(const u_long prognum, const u_long versnum,

const u_long procnum, const xdrproc_t inproc, caddr_t in,
const xdrproc_t outproc, caddr_t out, const resultproc_t eachresult,
const char *nettype);

Like rpc_call, except the call message is broadcast to the connectionless
network specified by nettype. If nettype is NULL, it defaults to netpath. Each
time it receives a response, this routine calls eachresul t, whose form is:

bool_t
eachresult(const caddr_t out, const struct netbuf *addr,

struct netconfig *netconf);

where out is the same as out passed to rpc_broadcast, except that the
remote procedure's output is decoded there; addr points to the address of
the machine that sent the results, and netconf is the netconfig structure of the
transport on which the remote server responded. If eachresult returns 0,
rpc_broadcast waits for more replies; otherwise it returns with appropri­
ate status.

10/92

rpc_clnt_calls (3N) rpc_clnt_calls (3N)

NAME
rpc_clnt_calls: clnt_call, clnt_freeres, clnt_geterr, clnt_perrno,
clnt_perror,clnt_sperrno,clnt_sperror,rpc_broadcast,rpc_call-library
routines for client side calls

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a data
packet to the server. Upon receipt of the packet, the server calls a dispatch routine
to perform the requested service, and then sends back a reply.

The clnt_call, rpc_call and rpc_broadcast routines handle the client side of
the procedure call. The remaining routines deal with error handling in the case of
errors.

Routines

10/92

See rpc(3N) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

enurn clnt_stat
clnt_call(CLIENT *clnt, const u_long procnurn, const xdrproc_t inproc,

caddr_t in, const xdrproc_t outproc, caddr_t out,
const struct timeval tout);

A function macro that calls the remote procedure procnum associated with
the client handle, clnt, which is obtained with an RPC client creation routine
such as clnt_create [see rpc_clnt_create(3N)]. The parameter in is the
address of the procedure's argument(s), and out is the address of where to
place the result(s); inproc is used to encode the procedure's parameters, and
outproc is used to decode the procedure's results; tout is the time allowed for
results to be returned.

If the remote call succeeds, the status is returned in RPC_SUCCESS, other­
wise an appropriate status is returned.

int clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. The parameter out is the address
of the results, and outproc is the XDR routine describing the results. This
routine returns 1 if the results were successfully freed, and O otherwise.

void
clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);

void

A function macro that copies the error structure out of the client handle to
the structure at address errp.

clnt_perrno(const enurn clnt_stat stat);

Print a message to standard error corresponding to the condition indicated
by stat. A newline is appended at the end of the message. Normally used
after a procedure call fails, for instance rpc_call.

Page 1

rpc_clnt_auth (3N) rpc_clnt_auth (3N)

NAME
rpc_clnt_auth: auth_destroy, authnone_create, authsys_create,
authsys_create_default - library routines for client side remote procedure call
authentication

DESCRIPTION
These routines are part of the RPC library that allows C language programs to make
procedure calls on other machines across the network, with desired authentication.
First, the client calls a procedure to send a data packet to the server. Upon receipt
of the packet, the server calls a dispatch routine to perform the requested service,
and then sends back a reply.

These routines are normally called after creating the CLIENT handle. The client's
authentication information is passed to the server when the RPC call is made.

Routines
The following routines require that the header rpc. h be included [see rpc(3N) for
the definition of the AUTH data structure].

#include <rpc/rpc.h>

void
auth_destroy(AUTH *auth);

A function macro that destroys the authentication information associated
with auth. Destruction usually involves deallocation of private data struc­
tures. The use of auth is undefined after calling auth_destroy.

AUTH *
authnone_create(void);

AUTH *

Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call. This is the
default authentication used by RPC.

authsys_create(const char *host, const uid_t uid, const gid_t gid,
const int len, const gid_t *aup_gids);

Create and return an RPC authentication handle that contains AUTH_SYS
authentication information. The parameter host is the name of the machine
on which the information was created; uid is the user's user ID; gid is the
user's current group ID; Zen and aup_gids refer to a counted array of groups
to which the user belongs.

AUTH *
authsys_create_default(void);

Call authsys_create with the appropriate parameters.

SEE ALSO
rpc(3N), rpc_clnt_create(3N), rpc_clnt_calls(3N)

10/92 Page 1

rpc (3N) rpc(3N)

FILES

RPC Routine
svc_unreg
svc_vc_create
svcerr_auth
svcerr_decode
svcerr_noproc
svcerr_noprog
svcerr_progvers
svcerr_systemerr
svcerr_weakauth
user2netname
xdr_accepted_reply
xdr_authsys_parms
xdr_callhdr
xdr_callmsg
xdr_opaque_auth
xdr_rejected_reply
xdr_replymsg
xprt_register
xprt_unregister

/etc/netconfig

Manual Reference Page
rpc_svc_calls(3N)
rpc_svc_create(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
secure_rpc(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_svc_calls(3N)
rpc_svc_calls(3N)

SEE ALSO

Page 6

environ(S), getnetconfig(3N), getnetpath(3N), rpc_clnt_auth(3N),
rpc_clnt_calls(3N), rpc_clnt_create(3N), rpc_svc_calls(3N),
rpc_svc_create(3N), rpc_svc_err(3N), rpc_svc_reg(3N), rpc_xdr(3N),
rpcbind(3N), secure_rpc(3N), xdr(3N), netconfig(4)

10/92

rpc(3N)

10/92

RPC Routine
authnone_create
authsys_create
authsys_create_default
clnt_call
clnt_control
clnt_create
clnt_destroy
clnt_dg_create
clnt_freeres
clnt_geterr
clnt_pcreateerror
clnt_perrno
clnt_perror
clnt_raw_create
clnt_spcreateerror
clnt_sperrno
clnt_sperror
clnt_tli_create
clnt_tp_create
clnt_vc_create
getnetname
host2netname
key_decryptsession
key_encryptsession
key_gendes
key_setsecret
netname2host
netname2user
rpc_broadcast
rpc_call
rpc_reg
svc_create
svc_destroy
svc_dg_create
svc fd_create
svc_freeargs
svc_getargs
svc_getreqset
svc_getrpccaller
svc_raw_create
svc_reg
svc_run
svc_sendreply
svc_tli_create
svc_tp_create

Manual Reference Page
rpc_clnt_auth(3N)
rpc_clnt_auth(3N)
rpc_clnt_auth(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_calls(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_clnt_cal ls(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_calls(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
rpc_clnt_cal) s(3N)
rpc_clnt_calls(3N)
rpc_svc_calls(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_create(3N)
rpc_svc_calls(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)

rpc(3N)

Page 5

rpc (3N) rpc(3N)

/*
* This is the number of bytes per unit of external data.
*/

#define BYTES_PER_XDR_UNIT (4)
#define RNDUP(x) ((((x) + BYTES_PER XDR UNIT - 1) I BYTES_PER_XDR_UNIT) \

* BYTES_PER_XDR_UNIT)

/*
* A xdrproc_t exists for each data type which is to be encoded or decoded.
*
* The second argument to the xdrproc_t is a pointer to an opaque pointer.
* The opaque pointer generally points to a structure of the data type
* to be decoded. If this pointer is 0, then the type routines should
* allocate dynamic storage of the appropriate size and return it.
* bool_t (*xdrproc_t) (XDR *, caddr_t *);
*/

typedef bool_t (*xdrproc_t) ();

/*
* The XDR handle.
* Contains operation which is being applied to the stream,
* an operations vector for the particular implementation (for example,
*see xdr_mem.c), and two private fields for the use of the
* particular impelementation.
*/

typedef struct {
enum xdr_op x_op;
struct xdr_ops {

/* operation; fast additional param */

/* get a long from underlying stream*/
/* put a long to " */

bool_t (*x_getlong) ();
bool_t (*x_putlong) ();
bool_t (*x_getbytes) (); /*
bool_t (*x_putbytes) (); /*
u_int (*x_getpostn) (); /*
bool_L (*x_setpostn) (); /*
long* (*x_inline) (); /*
void (*x_destroy) (); /*

get some bytes from " */
put some bytes to " */
returns bytes off from beginning */
lets you reposition the stream*/
buf quick ptr to buffered data */
free privates of this xdr_stream */

} *x_ops;
caddr_t
caddr_t
caddr_t

x_public;
x_private;
x_base;
x_handy;

/* users' data */
/* pointer to private data */
/* private used for position info */
/* extra private word */ int

XDR;

Index to Routines

Page 4

The following table lists RPC routines and the manual reference pages on which
they are described:

RPC Routine
auth_destroy
authdes_getucred
authdes_seccreate

Manual Reference Page
rpc_clnt_auth(3N)
secure_rpc(3N)
secure_rpc(3N)

10/92

rpc(3N)

caddr_t
char
char

} CLIENT;

cl_private;
*cl_netid;
*cl_tp;

The SVCXPRT Structure
enum xprt_stat {

XPRT_DIED,
XPRT_MOREREQS,
XPRT_IDLE

};

/*
* Server side transport handle
*/

typedef struct
int

#define xp_sock
#endif

u_short

struct xp_ops {
bool_t
enum xprt_stat
bool_t
bool_t
bool_t
void

xp_fd;
xp_fd

xp_port;

(*xp_recv) ();
(*xp_stat) () ;
(*xp_getargs) ();
(*xp_reply) ();
(*xp_freeargs) ();
(*xp_destroy) ();

} *xp_ops;
int
char

xp_addrlen;
*xp_tp;

char
struct
struct
char

*xp_netid;
netbuf xp_ltaddr;
netbuf xp_rtaddr;

xp_raddr[l6];
struct opaque_auth
caddr_t

xp_verf;
xp_pl;
xp_p2;
xp_p3;

caddr_t
caddr_t

SVCXPRT;

The XOR Structure
/*

rpc(3N)

/*private stuff */
/* network token */
/* device name */

/* associated port number.
* Obsolete, but still used to
* specify whether rendezvouser
* or normal connection
*/

/* receive incoming requests */
/* get transport status */
/* get arguments */
/* send reply *I
/* free mem allocated for args */
/* destroy this struct */

/* length of remote addr. Obsolete */
/* transport provider device name */
/* network token */
/* local transport address */
/* remote transport address */
/* remote address. Obsolete */
/* raw response verifier */
/* private: for use by SVC ops */
/* private: for use by SVC ops */
/* private: for use by SVC lib */

* Xdr operations. XDR_ENCODE causes the type to be encoded into the

10/92

* stream. XDR_DECODE causes the type to be extracted from the stream.
* XDR_FREE can be used to release the space allocated by an XDR_DECODE
* request.
*/

enum xdr_op
XDR_ENCODE=O,
XDR_DECODE=l,
XDR_FREE=2

};

Page 3

rpc(3N) rpc(3N)

Data Structures
Some of the data structures used by the RPC package are shown below.

The AUTH Structure
union des_block {

struct {

};

u_int32 high;
u_int32 low;

key;
char c[B];

typedef union des_block des_block;
extern bool_t xdr_des_block();

!*
* Authentication info.
*/

Opaque to client.

struct opaque_auth {
enum_t oa_flavor;
caddr_t oa_base;

/* flavor of auth */
/* address of more auth stuff */
/* not to exceed MAX_AUTH_BYTES */ u_int oa_length;

};

/*
* Auth handle, interface to client side authenticators.
*/

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {

void (* ah_nextverf) () ;
int (*ah_marshal) (); /* nextverf & serialize */
int (*ah_validate) ();
int (*ah_refresh) ();
void (*ah_destroy) ();

*ah_ops;
caddr_t ah_private;

AUTH;

/* validate varifier */
/* refresh credentials */
/* destroy this structure */

The CLIENT Structure

Page 2

/*
* Client rpc handle.
* Created by individual implementations
* Client is responsible for initializing auth, see e.g. auth_none.c.
*/

typedef struct {
AUTH *cl_auth; /* authenticator */
struct clnt_ops {

enum clnt_stat
void
void
bool_t
void
bool_t

*cl_ops;

/* call remote procedure */
/* abort a call */

(*cl_call) ();
(*cl_abort) ();
(*cl_geterr) ();
(*cl_freeres) (); /*
(*cl_destroy) (); /*
(*cl_control) (); /*

/* get specific error code */
frees results */
destroy this structure */
the ioctl() of rpc */

10/92

rpc (3N) rpc (3N)

NAME
rpc - library routines for remote procedure calls

DESCRIPTION
RPC routines allow C language programs to make procedure calls on other
machines across a network. First, the client calls a procedure to send a data packet
to the server. On receipt of the packet, the server calls a dispatch routine to per­
form the requested service, and then sends back a reply.

The following sections describe data objects use by the RPC package.

Nettype

10/92

Some of the high-level RPC interface routines take a nettype string as one of the
parameters [for example, clnt_create, svc_create, rpc_reg, rpc_call]. This
string defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in the NETPATH variable or in top to
down order in the /etc/netconfig file.

nettype can be one of the following:

net path

visible

circuit_v

datagram_v

circuit_n

datagram_n

udp

tcp

raw

Choose from the transports which have been indicated by their
token names in the NETPATH variable. If NETPATH is unset or
NULL, it defaults to visible. netpath is the default nettype.

Choose the transports which have the visible flag (v) set in the
I etc/netconfig file.

This is same as visible except that it chooses only the connec­
tion oriented transports from the entries in I etc /netconf ig file.

This is same as visible except that it chooses only the connec­
tionless datagram transports from the entries in /etc/netconfig
file.

This is same as netpath except that it chooses only the connec­
tion oriented datagram transports

This is same as netpath except that it chooses only the connec­
tionless datagram transports.

It refers to Internet UDP.

It refers to Internet TCP.

This is for memory based RPC, mainly for performance evalua­
tion.

If nettype is NULL, it defaults to netpath.

Page 1

rmdir(2)

ENOTDIR

ENO ENT

EROFS

ENO LINK

DIAGNOSTICS

rmdir(2)

A component of the path prefix is not a directory.

The named directory does not exist or is the null pathname.

The directory entry to be removed is part of a read-only file
system.

path points to a remote machine, and the link to that
machine is no longer active.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
mkdir(l), rm(l), mkdir(2).

Page 2 10/92

rmdir(2) rmdir(2)

NAME
rmdir - remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION

10/92

rmdir removes the directory named by the path name pointed to by path. The
directory must not have any entries other than 11

." and 11
• • ".

If the directory's link count becomes zero and no process has the directory open, the
space occupied by the directory is freed and the directory is no longer accessible. If
one or more processes have the directory open when the last link is removed, the
11

• " and /1
••

/1 entries, if present, are removed before rmdir returns and no new
entries may be created in the directory, but the directory is not removed until all
references to the directory have been closed.

If path is a symbolic link, it is not followed.

Upon successful completion rmdir marks for update the st_ctirne and st_rntirne
fields of the parent directory.

The named directory is removed unless one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix.

EACCES

EACCES

EBUSY

EEXIST

EFAULT

EINVAL

EINVAL

EIO

ELOOP

EMULTIHOP

ENAMETOOLONG

Write permission is denied on the directory containing the
directory to be removed.

The parent directory has the sticky bit set and is not owned
by the user; the directory is not owned by the user and is not
writable by the user; the user is not a super-user.

The directory to be removed is the mount point for a
mounted file system.

The directory contains entries other than those for /1
• " and

II //

path points outside the process's allocated address space.

The directory to be removed is the current directory.

The directory to be removed is the 11
." entry of a directory.

An I/0 error occurred while accessing the file system.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

Page 1

rexec(3N) (Internet Utilities) rexec(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
int rexec (char * *ahost, u_short inport, char *user, char *passwd,

char *Cmd, int *fd2p);

DESCRIPTION
rexec looks up the host ahost using gethostbyname [see gethostent(3N)], return­
ing -1 if the host does not exist. Otherwise ahost is set to the standard name of the
host. If a username and password are both specified, then these are used to authen­
ticate to the foreign host; otherwise, the user's .netrc file in his or her home direc­
tory is searched for appropriate information. If this fails, the user is prompted for
the information.

The port inport specifies which well-known DARPA Internet port to use for the
connection. The protocol for connection is described in detail in rexecd.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and
given to the remote command as its standard input and standard output. If fd2p is
non-zero, then a auxiliary channel to a control process will be setup, and a descrip­
tor for it will be placed infd2p. The control process will return diagnostic output
from the command (unit 2) on this channel, and will also accept bytes on this chan­
nel as signal numbers, to be forwarded to the process group of the command. If
fd2p is 0, then the standard error (unit 2 of the remote command) will be made the
same as its standard output and no provision is made for sending arbitrary signals
to the remote process, although you may be able to get its attention by using out­
of-band data.

SEE ALSO
rexecd(lM) gethostent(3N), getservent(3N), rcmd(3N)

NOTES
There is no way to specify options to the socket call that rexec makes.

10/92 Page 1

resolver (3N) (Internet Utilities) resolver (3N)

The res_search routine will make a query and await a response like res_query,
but in addition, it will implement the default and search rules controlled by the
RES_DEFNAMES and RES_DNSRCH options. Then it will return the first successful
reply.

The remaining routines are lower-level routines used by res_query . The
res_mkquery function will construct a standard query message and then place it in
bu f. It will return the size of the query or -1 if the query is larger than bu f 1 en. The
query type op usually will be QUERY, but it can be any of the query types defined in
<arpa/nameser .h>. The domain name for the query is given by dname. The newrr
argument is currently unused, but is intended for generating update messages.

The res_send routine will send a pre-formatted query and then return an answer.
It will call res_ini t if RES_INIT is not set, send the query to the local name server,
and then handle any timeouts and retries. The length of the reply message will be
returned or -1 if there were any errors.

The dn_comp function will compress the domain name exp_dn and then store it in
comp_dn . The size of the compressed name will be returned or -1 if there were any
errors. The size of the array pointed to by comp_dn will be given by length . The
compression will use an array of pointers dnptrs to previously-compressed names
in the current message. The first pointer will point to to the beginning of the mes­
sage; the list will end with NULL. The limit to the array will be specified by
lastdnptr. A side effect of dn_comp will be to update the list of pointers for labels
inserted into the message as the name is compressed. If dnptr is NULL, the names
will not be compressed. If lastdnptr is NULL, the list of labels will not be updated.

The dn_expand entry will expand the compressed domain name comp_dn to a full
domain name. The compressed name will be contained in a query or reply mes­
sage; msg will be a pointer to the beginning of the message. The uncompressed
name will be placed in the buffer indicated by exp_dn which will be of size length.
The size of the compressed name will be returned or -1 if there was an error.

USER CONSIDERATIONS

FILES

Any program which uses one of the above resolver functions must be linked
dynamically with either /usr I lib/ libsocket. so or /usr I lib/ libresol v. so.

/etc/resolv.conf
/usr/include/arpa/nameserv.h
/usr/include/netinet/in.h
/usr/include/resolv.h
/usr/include/sys/types.h
/usr/lib/libresolv.so
/usr/lib/libsocket.so

SEE ALSO

10/92

named(lM), gethostbyname(3N), re sol v. conf(4).
RFC 1032, RFC 1033, RFC 1034, RFC 1035, RFC 974.

Page 3

resolver(3N) (Internet Utilities) resolver(3N)

Page 2

The structure _res contains the global configuration and state information that is
used by the resolver routines. Most of the values have reasonable defaults and
can be ignored.

The options are stored as a simple bit mask containing the bitwise "or" of the
options enabled. The options stored in _res. options are defined in
/usr /include/resol v .hand are as follows:

RES_INIT True if the initial name server address and default domain name are
initialized (i.e., res_init has been called).

RES_DEBUG Print the debugging messages.

RES_AAONLY
Accept authoritative answers only. With this option, res_send
should continue until it finds an authoritative answer or finds an
error. Currently this is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP datagrams.

RES_STAYOPEN
Used with RES_USEVC to keep the TCP connection open between
queries. This is useful only in programs that regularly do many
queries. UDP should be the normal mode used.

RES_IGNTC Unused currently (ignore truncation errors, i.e., don't retry with TCP).

RES_RECURSE
Set the recursion-desired bit in queries. This is the default value.
res_send will not do iterative queries and thus will expect the name
server to handle recursion.

RES_DEFNAMES

RES_DNSRCH

If set, res_search will append the default domain name to the
"single-component" names (that is, those that do not contain a dot).
This option is enabled by default.

If this option is set, res_search will search for host names in the
current domain and in parent domains [see hostname(7)]. This will
be used by the standard host lookup routine gethostbyname(3N).
This option is enabled by default.

The res_init routine will read the configuration file /etc/resolv.conf [if any;
see resol v. conf (4)] to get the default domain name, search list and the Internet
address of the local name server(s). If no server is configured, the host running the
resolver will be tried. The current domain name will be defined by the hostname if
not specified in the configuration file; it can be overridden by the environment vari­
able LOCALDOMAIN . The initialization normally occurs on the first call to one of the
following routines.

The res_query function provides an interface to the server query mechanism. It
will construct a query, send it to the local server, await a response, and then make
some preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname .
The reply message will be left in the answer buffer with length anslen supplied by
the caller.

10/92

resolver (3N) (Internet Utilities) resolver(3N)

NAME
resolver:res_query,res_search,res_mkquery,res_send,res_init,dn_comp,
dn_expand - resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

"res_query(dname, class, type, answer, anslen)"
char *dname;
int class, type;
u_char *answer;
int anslen;

"res_search(dname, class, type, answer, anslen)"
char *dname;
int class, type;
u_char *answer;
int anslen;

"res_mkquery(op, dname, class, type, data, datalen, newrr, buf,
buflen)"
int op;
char *dname;
int class, type;
char *data;
int datalen;
struct rrec *newrr;
char *buf;
int buflen;

res_send(msg, msglen, answer, anslen)
char *msg;
int msglen;
char *answer;
int anslen;

res_init()

dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
char *exp_dn, *comp_dn;
int length;
char **dnptrs, **lastdnptr;

dn_expand(msg, eomorig, comp_dn, exp_dn, length)
char *msg, *eomorig, *comp_dn, exp_dn;
int length;

DESCRIPTION

10/92

These routines are used for making, sending, and for interpreting query and reply
messages pertaining to Internet domain name servers.

Page 1

rename(2) rename(2)

EI SD IR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENO ENT

ENOLINK

ENOS PC

ENOTDIR

EROFS

new points to a directory but old points to a file that is not a
directory.

Too many symbolic links were encountered in translating old
or new.

Components of pathnames require hopping to multiple
remote machines and the file system type does not allow it.

The length of the old or new argument exceeds {PATH_MAX/,
or the length of a old or new component exceeds {NAME_MAX)
while _POSIX_NO_TRUNC is in effect.

A component of either old or new does not exist, or the file
referred to by either old or new does not exist.

Pathnames point to a remote machine and the link to that
machine is no longer active.

The directory that would contain new is out of space.

A component of either path prefix is not a directory; or the
old parameter names a directory and the new parameter
names a file.

The requested operation requires writing in a directory on a
read-only file system.

EXDEV

DIAGNOSTICS

The links named by old and new are on different file systems.

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

The system can deadlock if there is a loop in the file system graph. Such a loop
takes the form of an entry in directory a, say a/Joo, being a hard link to directory b,
and an entry in directory b, say b/bar, being a hard link to directory a. When such a
loop exists and two separate processes attempt to perform rename a!foo b/bar and
rename b/bar a!foo, respectively, the system may deadlock attempting to lock both
directories for modification. The system administrator should replace hard links to
directories by symbolic links.

SEE ALSO
link(2), unlink(2)

Page 2 10/92

rename(2) rename(2)

NAME
rename - change the name of a file

SYNOPSIS
#include <stdio.h>

int rename(const char *old, const char *new);

DESCRIPTION

10/92

rename renames a file. old is a pointer to the pathname of the file or directory to be
renamed. new is a pointer to the new pathname of the file or directory. Both old
and new must be of the same type (either both files, or both directories) and must
reside on the same file system.

If new already exists, it is removed. Thus, if new names an existing directory, the
directory must not have any entries other than, possibly, "." and " .. ". When
renaming directories, the new pathname must not name a descendant of old. The
implementation of rename ensures that upon successful completion a link named
new will always exist.

If the final component of old is a symbolic link, the symbolic link is renamed, not
the file or directory to which it points.

Write permission is required for both the directory containing old and the directory
containing new. Furthermore, if old and new are directories, write permission is
required for the directory named by old, and if it exists, the directory named by new.
rename fails, old is not changed, and no new file is created if one or more of the fol­
lowing are true:

EACCES A component of either path prefix denies search permission;
one of the directories containing old or new denies write per­
mission; or one of the directories pointed to by old or new
denies write permission.

EBUSY

EDQUOT

EEXIST

EFAULT

EINVAL

EINTR

EIO

new is a directory and the mount point for a mounted file
system.

The directory in which the entry for the new name is being
placed cannot be extended because the user's quota of disk
blocks on the file system containing the directory has been
exhausted.

The link named by new is a directory containing entries other
than "." and " .. ".

old or new points outside the process's allocated address
space.

old is a parent directory of new, or an attempt is made to
rename " . " or 11

• • ".

A signal was caught during execution of the rename system
call.

An 1/0 error occurred while making or updating a directory
entry.

Page 1

remove(3C) remove(3C)

NAME
remove - remove file

SYNOPSIS
#include <Stdio.h>

int remove(const char *path);

DESCRIPTION
remove causes the file or empty directory whose name is the string pointed to by
path to be no longer accessible by that name. A subsequent attempt to open that file
using that name will fail, unless the file is created anew.

For files, remove is identical to unlink. For directories, remove is identical to
rmdir.

See rmdir(2) and unlink(2) for a detailed list of failure conditions.

SEE ALSO
rmdir(2), unlink(2)

RETURN VALUE

10/92

Upon successful completion, remove returns a value of O; otherwise, it returns a
value of -1 and sets errno to indicate an error.

Page 1

regexpr (3G) regexpr (3G)

EXAMPLES
The following is similar to the regular expression code from grep:

SEE ALSO

#include <regexpr.h>

if (compile(*argv, (char *) 0, (char *) 0)
regerr(regerrno);

if (step(linebuf, expbuf))
succeed();

ed(l), grep(l), sed(l), regexp(S).

10/92

(char *) 0)

Page 3

regexpr (3G) regexpr (3G)

Page 2

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \ (\) imbalance.
43 Too many\(.
44 More than 2 numbers given in \ { \ } .
45 } expected after \.
46 First number exceeds second in \ { \}.
49 [J imbalance.
50 Regular expression overflow.

The call to step is as follows:

step (string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a
match. This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the
function compile.

The function step returns non-zero if the given string matches the regular expres­
sion, and zero if the expressions do not match. If there is a match, two external
character pointers are set as a side effect to the call to step. The variable set in step
is locl. locl is a pointer to the first character that matched the regular expression.
The variable loc2 points to the character after the last character that matches the
regular expression. Thus if the regular expression matches the entire line, locl
points to the first character of string and loc2 points to the null at the end of string.

The purpose of step is to step through the string argument until a match is found
or until the end of string is reached. If the regular expression begins with A, step
tries to match the regular expression at the beginning of the string only.

The function advance has the same arguments and side effects as step, but it
always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, locs
should be set equal to loc2, and step should be called with string equal to loc2.
locs is used by commands like ed and sed so that global substitutions like
s/y* I /g do not loop forever, and is NULL by default.

The external variable nbra is used to determine the number of subexpressions in
the compiled regular expression. braslist and braelist are arrays of character
pointers that point to the start and end of the nbra subexpressions in the matched
string. For example, after calling step or advance with string sabcdefg and regu­
lar expression \(abcdef\), braslist[OJ will point at a and braelist[OJ will
point at g. These arrays are used by commands like ed and sed for substitute
replacement patterns that contain the \n notation for subexpressions.

Note that it isn't necessary to use the external variables regerrno, nbra, locl,
loc2 locs, braelist, and braslist if one is only checking whether or not a string
matches a regular expression.

10/92

regexpr (3G) regexpr (3G)

NAME
regexpr: compile, step, advance - regular expression compile and match routines

SYNOPSIS
cc iflag ...] file ... - lgen [library ...]

#include <regexpr.h>

char *compile (const char *instring, char *expbuf, char *endbuf);

int step (const char *string, char *expbuf) ;

int advance (const char *string, char *expbuf) ;

extern char *locl, *loc2, *locs;

extern int nbra, regerrno, reglength;

extern char *braslist[], *braelist[];

DESCRIPTION

10/92

These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions compiled are in the form used by
ed.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf)

The parameter instring is a null-terminated string representing the regular expres­
sion.

The parameter expbuf points to the place where the compiled regular expression is
to be placed. If expbuf is NULL, compile uses malloc to allocate the space for the
compiled regular expression. If an error occurs, this space is freed. It is the user's
responsibility to free unneeded space after the compiled regular expression is no
longer needed.

The parameter endbuf is one more than the highest address where the compiled reg­
ular expression may be placed. This argument is ignored if expbuf is NULL. If the
compiled expression cannot fit in (endbuf-expbuf) bytes, compile returns NULL and
regerrno (see below) is set to 50.

If compile succeeds, it returns a non-NULL pointer whose value depends on expbuf.
If expbuf is non-NULL, compile returns a pointer to the byte after the last byte in the
compiled regular expression. The length of the compiled regular expression is
stored in reglength. Otherwise, compile returns a pointer to the space allocated
bymalloc.

If an error is detected when compiling the regular expression, a NULL pointer is
returned from compile and regerrno is set to one of the non-zero error numbers
indicated below:

Page 1

regexp(5) regexp(5)

in the string at sometime during the backing up process, advance will break out of
the loop that backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

DIAGNOSTICS
The function compile uses the macro RETURN on success and the macro ERROR on
failure (see above). The functions step and advance return non-zero on a success­
ful match and zero if there is no match. Errors are:

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \ (\) imbalance.

43 too many\(.

44 more than 2 numbers given in \ { \}.

45 } expected after \.

46 first number exceeds second in \ { \}.

49 [l imbalance.

50 regular expression overflow.

EXAMPLE

Page 4

The following is an example of how the regular expression macros and calls might
be defined by an application program:

#define INIT
#define GETC
#define PEEKC
#define UNGETC(c)
#define RETURN(*c)
#define ERROR(c)

#include <regexp.h>

register char *sp = instring;
(*sp++)
(*sp)
(--sp)
return;
regerr

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if (step(linebuf, expbuf))
succeed;

10/92

regexp(5) regexp(S)

10/92

ERROR(val) This macro is the abnormal return from the compile routine. The
argument val is an error number [see ERRORS below for meanings].
This call should never return.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf, eofl

The first parameter, instring, is never used explicitly by the compile routine but is
useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call functions
to input characters or have characters in an external array can pass down a value of
(char *) 0 for this parameter.

The next parameter, expbuf, is a character pointer. It points to the place where the
compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled reg­
ular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbuf) bytes, a call to ERROR (50) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a I.

Each program that includes the regexp.h header file must have a #define state­
ment for INIT. It is used for dependent declarations and initializations. Most often
it is used to set a register variable to point to the beginning of the regular expres­
sion so that this register variable can be used in the declarations for GETC, PEEKC,
and UNGETC. Otherwise it can be used to declare external variables that might be
used by GETC, PEEKC and UNGETC. [See EXAMPLE below.]

The first parameter to the step and advance functions is a pointer to a string of
characters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular expression which was
obtained by a call to the function compile.

The function step returns non-zero if some substring of string matches the regular
expression in expbuf and zero if there is no match. If there is a match, two external
character pointers are set as a side effect to the call to step. The variable locl
points to the first character that matched the regular expression; the variable loc2
points to the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire input string, locl will point to the
first character of string and loc2 will point to the null at the end of string.

The function advance returns non-zero if the initial substring of string matches the
regular expression in expbuf. If there is a match, an external character pointer, loc2,
is set as a side effect. The variable loc2 points to the next character in string after
the last character that matched.

When advance encounters a * or \ { \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will recur­
sively call itself trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance will back up along the string
until it finds a match or reaches the point in the string that initially matched the *
or \ { \ } . It is sometimes desirable to stop this backing up before the initial point
in the string is reached. If the external character pointer locs is equal to the point

Page 3

regexp(5) regexp(5)

Page 2

rx

r\{m,n\}

\ (r\)

the occurrence of regular expression r followed by the occurrence of
regular expression x. (Concatenation)

any number of m through n successive occurrences of the regular
expression r. The regular expression r\ {m\} matches exactly m
occurrences; r\ { m, \} matches at least m occurrences.

the regular expression r. When \n (where n is a number greater than
zero) appears in a constructed regu~ar expression, it stands for the
regular expression x where x is the n1 regular expression enclosed in
\ (and \) that appeared earlier in the constructed regular expression.
For example, \ (r\) x\ (y\) z\2 is the concatenation of regular expres­
sions rxyzy.

Characters that have special meaning except when they appear within square
brackets ([J) or are preceded by \ are: . , *, [, \. Other special characters, such as $
have special meaning in more restricted contexts.

The character A at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

Two characters have special meaning only when used within square brackets. The
character - denotes a range, [c-c], unless it is just after the open bracket or before
the closing bracket, [-cl or [c- J in which case it has no special meaning. When
used within brackets, the character A has the meaning complement of if it immedi­
ately follows the open bracket (example: [Ac]); elsewhere between brackets (exam­
ple: [cA]) it stands for the ordinary character A.

The special meaning of the \ operator can be escaped only by preceding it with
another \ , for example, \ \.

Programs must have the following five macros declared before the #include
regexp. h statement. These macros are used by the compile routine. The macros
GETC, PEEKC, and UNGETC operate on the regular expression given as input to com­
pile.

GETC

PEEKC

UNG ETC

RETURN (ptr)

This macro returns the value of the next character (byte) in the
regular expression pattern. Successive calls to GETC should return
successive characters of the regular expression.

This macro returns the next character (byte) in the regular expres­
sion. Immediately successive calls to PEEKC should return the
same character, which should also be the next character returned
byGETC.

This macro causes the argument c to be returned by the next call
to GETC and PEEKC. No more than one character of pushback is
ever needed and this character is guaranteed to be the last charac­
ter read by GETC. The return value of the macro UNGETC (c) is
always ignored.

This macro is used on normal exit of the compile routine. The
value of the argument ptr is a pointer to the character after the last
character of the compiled regular expression. This is useful to pro­
grams which have memory allocation to manage.

10/92

regexp(S) regexp (5)

NAME
regexp: compile, step, advance - regular expression compile and match routines

SYNOPSIS
#define INIT declarations
#define GETC (void) getc code
#define PEEKC(void) peekccode
#define UNGETC (void) ungetc code
#define RETURN (ptr) return code
#define ERROR (val) error code

#include <regexp.h>

char *compile(char *instring, char *expbuf, char *endbuf, int eof);

int step(char *string, char *expbuf);

int advance(char *string, char *expbuf);

extern char *locl, *loc2, *locs;

DESCRIPTION

10/92

These functions are general purpose regular expression matching routines to be
used in programs that perform regular expression matching. These functions are
defined by the regexp. h header file.

The functions step and advance do pattern matching given a character string and
a compiled regular expression as input.

The function compile takes as input a regular expression as defined below and
produces a compiled expression that can be used with step or advance.

A regular expression specifies a set of character strings. A member of this set of
strings is said to be matched by the regular expression. Some characters have spe­
cial meaning when used in a regular expression; other characters stand for them­
selves.

The regular expressions available for use with the regexp functions are constructed
as follows:

Expression

c

\C

$

[S]

r*

Meaning

the character c where c is not a special character.

the character c where c is any character, except a digit in the range
1-9.

the beginning of the line being compared.

the end of the line being compared.

any character in the input.

any character in the sets, wheres is a sequence of characters and/or a
range of characters, for example, [c-c].

any character not in the sets, wheres is defined as above.

zero or more successive occurrences of the regular expression r. The
longest leftmost match is chosen.

Page 1

regex(3) (BSD Compatibility Package) regex (3)

NAME
regex, re_ comp, re_exec - regular expression handler

SYNOPSIS
/usr /ucb/ cc [flag . ..]file ...

char *re_comp(s)
char *s;

re_exec(s)
char *s;

DESCRIPTION
re_comp compiles a string into an internal form suitable for pattern matching.
re_exec checks the argument string against the last string passed to re_comp.

re_comp returns a NULL pointer if the strings was compiled successfully; otherwise
a string containing an error message is returned. If re_comp is passed 0 or a NULL
string, it returns without changing the currently compiled regular expression.

re_exec returns 1 if the string s matches the last compiled regular expression, 0 if
the strings failed to match the last compiled regular expression, and -1 if the com­
piled regular expression was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded
NEWLINE characters; they are terminated by NULL characters. The regular expres­
sions recognized are described in the manual page entry for ed(l), given the above
difference.

SEE ALSO
ed(l), ex(l), grep(l), regcmp(l), regexpr(3G), regcmp(3X), regexpr(S).

RETURN VALUE

10/92

re_exec returns -1 for an internal error.

re_ comp returns one of the following strings if an error occurs:

No previous regular expression
Regular expression too long
unmatched\(
missing J
too many\(\) pairs
unmatched \)

Page 1

regcmp(3G) (Specialized Libraries) regcmp(3G)

(. . .) Parentheses are used for grouping. An operator, for example, *, +, { } ,
can work on a single character or a regular expression enclosed in
parentheses. For example, (a* (cb+) *) $0.

By necessity, all the above defined symbols are special. They must, therefore, be
escaped with a\ (backslash) to be used as themselves.

EXAMPLES
The following example matches a leading newline in the subject string pointed at
by cursor.

char *cursor, *newcursor, *ptr;

newcursor = regex ((ptr = regcmp ("~ \n" , (char *) 0)) , cursor) ;
free (ptr);

The following example matches through the string Testing3 and returns the
address of the character after the last matched character (the" 4"}. The string Test­
ing3 is copied to the character array retO.

char ret0[9];
char *newcursor, *name;

name= regcmp("([A-Za-z] [A-za-z0-9]{0,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", retO);

The following example applies a precompiled regular expression in file. i [see
regcmp(l)] against string.

#include "file.i"
char *string, *newcursor;

newcursor = regex(name, string);

SEE ALSO

NOTES

Page 2

regcmp(l}, ed(l}, malloc(3C).

The user program may run out of memory if regcmp is called iteratively without
freeing the vectors no longer required.

10/92

regcmp(3G) (Specialized Libraries) regcmp(3G)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
#include <libgen.h>

cc (flag ...]file ... -lgen [library ...]

char *regcmp (const char *String1 I*, char *string2, ... *I, (char *) 0) ;

char *regex(const char *re, const char *subject/*, char *retO, ... */);

extern char * __ loc1;

DESCRIPTION

10/92

regcmp compiles a regular expression (consisting of the concatenated arguments)
and returns a pointer to the compiled form. malloc(3C) is used to create space for
the compiled form. It is the user's responsibility to free unneeded space so allo­
cated. A NULL return from regcmp indicates an incorrect argument. regcmp(l) has
been written to generally preclude the need for this routine at execution time.
regcmp is located in library libform.

regex executes a compiled pattern against the subject string. Additional argu­
ments are passed to receive values back. regex returns NULL on failure or a pointer
to the next unmatched character on success. A global character pointer __ locl
points to where the match began. regcmp and regex were mostly borrowed from
the editor, ed(l); however, the syntax and semantics have been changed slightly.
The following are the valid symbols and associated meanings.

[l * . ~ These symbols retain their meaning in ed(l).

$ Matches the end of the string; \n matches a newline.

Within brackets the minus means through. For example, [a -z] is
equivalent to [abed . . . xyz J • The - can appear as itself only if used as
the first or last character. For example, the character class expression
[] -] matches the characters] and - .

+ A regular expression followed by + means one or more times. For exam­
ple, [0-9] +is equivalent to [0-9 l [0-9 l *.

{m} {m,} {m,u}
Integer values enclosed in { } indicate the number of times the preced­
ing regular expression is to be applied. The value m is the minimum
number and u is a number, less than 256, which is the maximum. If only
mis present (that is, {m}), it indicates the exact number of times the reg­
ular expression is to be applied. The value {m,} is analogous to
{ m,infinity} . The plus (+) and star (*) operations are equivalent to { l, }
and { 0, } respectively.

(...) $n
The value of the enclosed regular expression is to be returned. The
value will be stored in the (n+ l)th argument following the subject argu­
ment. At most, ten enclosed regular expressions are allowed. regex
makes its assignments unconditionally.

Page 1

recv(3N) recv(3N)

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

EBADF

ENOTSOCK

EINTR

EWOULDBLOCK

ENOMEM

ENO SR

s is an invalid descriptor.

s is a descriptor for a file, not a socket.

The operation was interrupted by delivery of a signal before
any data was available to be received.

The socket is marked non-blocking and the requested opera­
tion would block.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resouces available for the
operation to complete.

SEE ALSO

NOTES

Page 2

fcntl(2), j_octl(2), read(2), connect(3N), getsockopt(3N), send(3N),
socket(3N).

The type of address structure passed to recv depends on the address family. UNIX
domain sockets (address family AF _UNIX) require a socketaddr_un structure as
defined in sys /un. h; Internet domain sockets (address family AF _INET) require a
sockaddr_in structure as defined in netinet/ in. h. Other address families may
require other structures. Use the structure appropriate to the address family; cast
the structure address to a generic caddr_t in the call to recv and pass the size of
the structure in the fromlen argument.

10/92

recv(3N) recv(3N)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>

int recv(int s, char *buf, int Zen, int flags);

int recvfrom (int s, char *buf, int Zen, int flags, caddr_t from,
int *from/en) ;

int recvmsg(int s, struct msghdr *msg, int flags);

DESCRIPTION

10/92

s is a socket created with socket. recv, recvfrom, and recvmsg are used to
receive messages from another socket. recv may be used only on a connected socket
[see connect(3N)], while recvfrom and recvmsg may be used to receive data on a
socket whether it is in a connected state or not.

Hfrom is not a NULL pointer, the source address of the message is filled in. fromlen is
a value-result parameter, initialized to the size of the buffer associated with from,
and modified on return to indicate the actual size of the address stored there. The
length of the message is returned. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of socket the message
is received from [see socket(3N)].

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking [see fcnt1(2)] in which case -1 is returned
with the external variable errno set to EWOULDBLOCK.

The select call may be used to determine when more data arrives.

The flags parameter is formed by ORing one or more of the following:

MSG_OOB Read any out-of-band data present on the socket rather than the
regular in-band data.

MSG_PEEK Peek at the data present on the socket; the data is returned, but
not consumed, so that a subsequent receive operation will see the
same data.

The recvmsg() call uses a msghdr structure to minimize the number of directly sup­
plied parameters. This structure is defined in sys I socket. h and includes the fol­
lowing members:

caddr_t
int
struct iovec
int
caddr_t
int

msg_name;
msg_namelen;
*msg_iov;
msg_iovlen;
msg_accrights;
msg_accrightslen;

I* optional address *I
I* size of address *I
I* scatter I gather array *I
I* # elements in msg_iov *I
/*access rights sent/received*/

Here msg_name and msg_namelen specify the destination address if the socket is
unconnected; msg_name may be given as a NULL pointer if no names are desired or
required. The msg_iov and msg_iovlen describe the scatter-gather locations, as
described in read. A buffer to receive any access rights sent along with the mes­
sage is specified in msg_accrights, which has length msg_accrightslen.

Page 1

reboot(3) (BSD Compatibility Package) reboot(3)

NAME
reboot - reboot system or halt processor

SYNOPSIS
/usr /ucb/ cc [flag .. .]file ...

#include <sys/reboot.h>

reboot(howto, [bootargs]
int howto;
char *bootargs;

DESCRIPTION
reboot reboots the system, and is invoked automatically in the event of unrecover­
able system failures. howto is a mask of options passed to the bootstrap program.
The system call interface permits only RB_HALT or RB_AUTOBOOT to be passed to the
reboot program; the other flags are used in scripts stored on the console storage
media, or used in manual bootstrap procedures. When none of these options (for
instance RB_AUTOBOOT) is given, the system is rebooted from file I stand/unix. An
automatic consistency check of the disks is then normally performed.

The bits of howto that are used are:

RB_HALT the processor is simply halted; no reboot takes place. RB_HALT
should be used with caution.

RB_ASKNAME Interpreted by the bootstrap program itself, causing it to inquire as
to what file should be booted. Normally, the system is booted
from the file I stand/unix without asking.

RETURN VALUE
If successful, this call never returns. Otherwise, a -1 is returned and an error is
returned in the global variable errno.

ERRORS
EPERM The caller is not the super-user.

FILES
/vrnunix

SEE ALSO

NOTES

10/92

halt(lM) init(lM) reboot(lM)

intro(lM), crash(lM).

Any other howto argument causes I stand/unix to boot.

Only the super-user may reboot a machine.

Page 1

realpath (3C) (C Programming Language Utilities) realpath (3C)

NAME
realpath- returns the real file name

SYNOPSIS
#include <stdlib.h>
#include <sys/pararn.h>

char *realpath (char* file_narne, char* resolved_narne);

DESCRIPTION
realpath resolves all links and references to"." and" .. " infile_name and stores it
in resolved_name.

It can handle both relative and absolute path names. For absolute path names and
the relative names whose resolved name cannot be expressed relatively (for exam­
ple, .. I . . /reldir), it returns the resolved absolute name. For the other relative path
names, it returns the resolved relative name.

resolved_name must be big enough (MAXPATHLEN) to contain the fully resolved path
name.

SEE ALSO
getcwd(3C)

DIAGNOSTICS

NOTES

10/92

If there is no error, realpath returns a pointer to the resolved_name. Otherwise it
returns a null pointer and places the name of the offending file in resolved_name.
The global variable errno is set to indicate the error.

realpath operates on null-terminated strings.

One should have execute permission on all the directories in the given and the
resolved path.

real path may fail to return to the current directory if an error occurs.

Page 1

readlink (2) readlink (2)

NAME
readlink - read the value of a symbolic link

SYNOPSIS
#include <unistd.h>

int readlink(const char *path, void *buf, size_t bufsiz);

DESCRIPTION
readlink places the contents of the symbolic link referred to by path in the buffer
buf, which has size bufsiz. The contents of the link are not null-terminated when
returned.

readl ink fails and the buffer remains unchanged if:

EACCES Search permission is denied for a component of the path
prefix of path.

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

path or buf extends outside the allocated address space of the
process.

The named file is not a symbolic link.

An 1/0 error occurs while reading from or writing to the file
system.

Too many symbolic links are encountered in translating path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

ENO ENT

ENOSYS

DIAGNOSTICS

The named file does not exist.

The file system does not support symbolic links.

Upon successful completion readlink returns the number of characters placed in
the buffer; otherwise, it returns -1 and places an error code in errno.

SEE ALSO
lstat(2), stat(2), symlink(2)

10/92 Page 1

read(2) read (2)

EFAULT

EINVAL

EINVAL

iov points outside the allocated address space.

iovcnt was less than or equal to 0 or greater than 16.

The sum of the iov _len values in the iov array overflowed a 32-bit
integer.

A read from a STREAMS file also fails if an error message is received at the stream
head. In this case, errno is set to the value returned in the error message. If a
hangup occurs on the stream being read, read continues to operate normally until
the stream head read queue is empty. Thereafter, it returns 0.

SEE ALSO
creat(2), dup(2), fcnt1(2), getmsg(2), intro(2), ioctl(2), open(2), pipe(2)
streamio(7), termio(7).

DIAGNOSTICS

Page 4

On success a non-negative integer is returned indicating the number of bytes actu­
ally read. Otherwise, a -1 is returned and errno is set to indicate the error.

10/92

read (2) read(2)

10/92

the zero-byte message back on the stream to be retrieved by the next read or
getmsg [see getmsg(2)]. In the two other modes, a zero-byte message returns a
value of 0 and the message is removed from the stream. When a zero-byte message
is read as the first message on a stream, a value of 0 is returned regardless of the
read mode.

A read or readv from a STREAMS file returns the data in the message at the front of
the stream head read queue, regardless of the priority band of the message.

Normally, a read from a STREAMS file can only process messages with data and
without control information. The read fails if a message containing control infor­
mation is encountered at the stream head. This default action can be changed by
placing the stream in either control-data mode or control-discard mode with the
I_SRDOPT ioctl(2). In control-data mode, control messages are converted to data
messages by read. In control-discard mode, control messages are discarded by
read, but any data associated with the control messages is returned to the user.

read and readv fail if one or more of the following are true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK
was set, and there was a blocking record lock.

EA GAIN

EA GAIN

EA GAIN

EBADF

EBADMSG

EDEADLK

EFAULT

EINTR

EINVAL

EIO

ENOLCK

ENO LINK

ENXIO

Total amount of system memory available when reading via raw
1/0 is temporarily insufficient.

No data is waiting to be read on a file associated with a tty device
and O_NONBLOCK was set.

No message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

ft/des is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data message.

The read was going to go to sleep and cause a deadlock to occur.

buf points outside the allocated address space.

A signal was caught during the read or readv system call.

Attempted to read from a stream linked to a multiplexor.

A physical 1/0 error has occurred, or the process is in a back­
ground process group and is attempting to read from its control-
ling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group of the process is orphaned.

The system record lock table was full, so the read or readv could
not go to sleep until the blocking record lock was removed.

ft/des is on a remote machine and the link to that machine is no
longer active.

The device associated with ftldes is a block special or character spe­
cial file and the value of the file pointer is out of range.

In addition, readv may return one of the following errors:

Page 3

read(2) read(2)

Page 2

is no more data to be retrieved. Byte-stream mode usually ignores message boun­
daries.

In STREAMS message-nondiscard mode, read and readv retrieve data until they
have read nbyte bytes, or until they reach a message boundary. If read or readv
does not retrieve all the data in a message, the remaining data is replaced on the
stream and can be retrieved by the next read or readv call. Message-discard mode
also retrieves data until it has retrieved nbyte bytes, or it reaches a message boun­
dary. However, unread data remaining in a message after the read or readv
returns is discarded, and is not available for a subsequent read, readv, or getmsg
[see getmsg(2)].

When attempting to read from a regular file with mandatory file/record locking set
[see chmod(2)], and there is a write lock owned by another process on the segment
of the file to be read:

If O_NDELAY or O_NONBLOCK is set, read returns -1 and sets errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read sleeps until the blocking
record lock is removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, read returns 0 to indicate end­
of-file.

If some process has the pipe open for writing and O_NDELAY is set, read
returns 0.

If some process has the pipe open for writing and O_NONBLOCK is set, read
returns -1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read blocks until data is written to
the pipe or the pipe is closed by all processes that had opened the pipe for
writing.

When attempting to read a file associated with a terminal that has no data currently
available:

If O_NDELAY is set, read returns 0.

If O_NONBLOCK is set, read returns -1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read blocks until data becomes
available.

When attempting to read a file associated with a stream that is not a pipe or FIFO, or
terminal, and that has no data currently available:

If O_NDELAY or O_NONBLOCK is set, read returns -1 and sets errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read blocks until data becomes
available.

When reading from a STREAMS file, handling of zero-byte messages is determined
by the current read mode setting. In byte-stream mode, read accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte mes­
sage block is encountered. read then returns the number of bytes read, and places

10/92

read(2) read (2)

NAME
read - read from file

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

int read(int fildes, void *buf, unsigned nbyte);

int readv(int fildes, struct iovec *iov, int iovcnt);

DESCRIPTION

10/92

read attempts to read nbyte bytes from the file associated with ftldes into the buffer
pointed to by buf. If nbyte is zero, read returns zero and has no other results. ftldes
is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or ioctl system
call.

On devices capable of seeking, the read starts at a position in the file given by the
file pointer associated with ftldes. On return from read, the file pointer is incre­
mented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

readv performs the same action as read, but places the input data into the iovcnt
buffers specified by the members of the iov array: iov[O], iov[l], ... , iov[iovcnt-1].

For readv, the iovec structure contains the following members:

addr_t
size_t

iov_base;
iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. readv always fills one buffer completely before proceeding
to the next.

On success, read and readv return the number of bytes actually read and placed in
the buffer; this number may be less than nbyte if the file is associated with a com­
munication line [see ioctl(2) and termio(7)], or if the number of bytes left in the
file is less than nbyte, or if the file is a pipe or a special file. A value of 0 is returned
when an end-of-file has been reached.

read reads data previously written to a file. If any portion of an ordinary file prior
to the end of file has not been written, read returns the number of bytes read as 0.
For example, the lseek routine allows the file pointer to be set beyond the end of
existing data in the file. If additional data is written at this point, subsequent reads
in the gap between the previous end of data and newly written data return bytes
with a value of O until data is written into the gap.

A read or readv from a STREAMS [see intro(2)] file can operate in three different
modes: byte-stream mode, message-nondiscard mode, and message-discard mode.
The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request [see strearnio(7)], and can be tested with the I_GRDOPT ioct1(2)
request. In byte-stream mode, read and readv usually retrieve data from the
stream until they have retrieved nbyte bytes, or until there

Page 1

rdchk(2) (Application Compatibility Package)

NAME
rdchk - check to see if there is data to be read

SYNOPSIS
cc [fiag . . .]file . .. -lx
rdchk (int fdes) ;

DESCRIPTION

rdchk(2)

rdchk checks to see if a process will block if it attempts to read the file designated
by fdes. rdchk returns 1 if there is data to be read or if it is the end of the file (EOF).
In this context, the proper sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes);

DIAGNOSTICS
rdchk returns -1 if an error occurs (for example, EBADF), O if the process will block
if it issues a read and 1 if it is okay to read. EBADF is returned if a rdchk is done on
a semaphore file or if the file specified doesn't exist.

SEE ALSO
read(2)

10/92 Page 1

rcmd(3N) (Internet Utilities) rcmd(3N)

/etc/hosts.equiv
.rhosts

SEE ALSO
rlogin(lC), rsh(lC), rexecd(lM), rlogind(lM), rshd(lM), intro(2),
gethostent(3N), rexec(3N)

DIAGNOSTICS

Page 2

rcmd returns a valid socket descriptor on success. It returns -1 on error and prints a
diagnostic message on the standard error.

rresvport returns a valid, bound socket descriptor on success. It returns -1 on
error with the global value errno set according to the reason for failure. The error
code EAGAIN is overloaded to mean: All network ports in use.

10/92

rcmd{3N) {Internet Uti Ii ties) rcmd{3N)

NAME
rcrnd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
int rcmd(char **ahost, unsigned short inport, char *locuser, char *remuser,

char *cmd, int *fd2p);

int rresvport (int * port);

ruserok(char *rhost, int super-user, char *ruser, char *luser);

DESCRIPTION

FILES

10/92

rcmd is a routine used by a privileged user to execute a command on a remote
machine using an authentication scheme based on reserved port numbers.
rresvport is a routine which returns a descriptor to a socket with an address in the
privileged port space. ruserok is a routine used by servers to authenticate clients
requesting service with rcmd. All three functions are present in the same file and
are used by the rshd server (among others).

rcmd looks up the host *ahost using gethostbyname (see gethostent[3N]), return­
ing -1 if the host does not exist. Otherwise *ahost is set to the standard name of the
host and a connection is established to a server residing at the well-known Internet
port inport.

ff the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as its standard input (file
descriptor 0) and standard output (file descriptor 1). If fd2p is non-zero, then an
auxiliary channel to a control process will be set up, and a descriptor for it will be
placed in *fd2p. The control process will return diagnostic output from the com­
mand (file descriptor 2) on this channel, and will also accept bytes on this channel
as signal numbers, to be forwarded to the process group of the command. If fd2p is
0, then the standard error (file descriptor 2) of the remote command will be made
the same as its standard output and no provision is made for sending arbitrary sig­
nals to the remote process, although you may be able to get its attention by using
out-of-band data.

The protocol is described in detail in rshd (see rshd[lM]).

The rresvport routine is used to obtain a socket with a privileged address bound
to it. This socket is suitable for use by rcmd and several other routines. Privileged
Internet ports are those in the range 0 to 1023. Only a user with appropriate
privileges is allowed to bind an address of this sort to a socket.

ruserok takes a remote host's name, as returned by a gethostbyaddr (see
gethostent[3N]) routine, two user names and a flag indicating whether the local
user's name is that of the privileged user. It then checks the files
I etc/hosts.equiv and, possibly, . rhos ts in the local user's home directory to see
if the request for service is allowed. A 0 is returned if the machine name is listed in
the /etc/hosts.equiv file, or the host and remote user name are found in the
.rhosts file; otherwise ruserok returns -1. If the privileged user flag is 1, the
checking of the /etc/hosts .equiv file is bypassed.

Page 1

random(3) (BSD Compatibility Package) random(3)

Once a state array has been initialized, it may be restarted at a different point either
by calling initstate (with the desired seed, the state array, and its size) or by cal­
ling both set state (with the state array) and srandom (with the desired seed). The
advantage of calling both setstate and srandom is that the size of the state array
does not have to be remembered after it is initialized.

With 256 bytee. of state information, the period of the random number generator is
greater than 2 9, which should be sufficient for most purposes.

EXAMPLE
/* Initialize an array and pass it in to initstate. */

static long state1[32] = {
3,
Ox9a319039, Ox32d9c024, Ox9b663182, Ox5dalf342,
Ox7449e56b, OxbebldbbO, Oxab5c5918, Ox946554fd,
Ox8c2e680f, Oxeb3d799f, Oxbllee0b7, Ox2d436b86,
Oxda672e2a, Ox1588ca88, Oxe369735d, Ox904f35f7,
Oxd7158fd6, Ox6fa6f051, Ox616e6b96, Oxac94efdc,
Oxde3b8le0, Oxdf0a6fb5, Oxf103bc02, Ox48f340fb,
Ox36413f93, Oxc622c298, Oxf5a42ab8, Ox8a88d77b,
Oxf5ad9d0e, Ox8999220b, Ox27fb47b9

main()
{

} ;

unsigned seed;
int n;
seed = 1;
n = 128;
initstate(seed, statel, n);
setstate(statel);
printf("%d0,random());

SEE ALSO
rand(3C)
drand48(2), drand(3C), rand(3C), srand(3C)

RETURN VALUE

NOTES

Page 2

If initstate is called with less than 8 bytes of state information, or if setstate
detects that the state information has been garbled, error messages are printed on
the standard error output.

About two-thirds the speed of rand(3C).

10/92

random(3) (BSD Compatibility Package) random(3)

NAME
random, srandom, initstate, setstate - better random number generator; rou­
tines for changing generators

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

long random ()

srandom (seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *setstate(state)
char *state;

DESCRIPTION

10/92

random uses a non-linear additive feedback random number generator employing a
default table of size 31 long integers to return successive pseudo-random numbers
in the range from 0 to 231-1. The period of this random number generator is very
large, approximately 16x(231- l).

random/srandom have (almost) the same calling sequence and initialization pro­
perties as rand/srand [see rand(3C)]. The difference is that rand(3C) produces a
much less random sequence-in fact, the low dozen bits generated by rand go
through a cyclic pattern. All the bits generated by random are usable. For example,

random()&Ol

will produce a random binary value.

Unlike srand, srandom does not return the old seed because the amount of state
information used is much more than a single word. Two other routines are pro­
vided to deal with restarting/changing random number generators. Like rand(3C),
however, random will, by default, produce a sequence of numbers that can be
duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initial­
ized for future use. n specifies the size of state in bytes. initstate uses n to decide
how sophisticated a random number generator it should use-the more state, the
better the random numbers will be. Current "optimal" values for the amount of
state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded
down to the nearest known amount. Using less than 8 bytes will cause an error.
The seed for the initialization (which specifies a starting point for the random
number sequence, and provides for restarting at the same point) is also an argu­
ment. initstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switch­
ing between states. set state returns a pointer to the previous state array; its argu­
ment state array is used for further random number generation until the next call to
initstate or setstate.

Page 1

rand (3C) (BSD Compatibility Package) rand(3C)

NAME
rand, srand - simple random number generator

SYNOPSIS
/usr /ucb/ cc [flag ...]file . ..
srand(seed)
int seed;

rand()

DESCRIPTION
rand uses a multiplicative congruential random number generator with period 232

to return successive pseudo-random numbers in the range from 0 to 231-1.

srand can be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

SEE ALSO

NOTES

10/92

drand48(2), drand(3C), rand(3C), random(3), srand(3C).

The spectral properties of rand leave a great deal to be desired. drand48(2) and
random(3) provide much better, though more elaborate, random-number genera­
tors.

The low bits of the numbers generated are not very random; use the middle bits. In
particular the lowest bit alternates between 0 and 1.

Page 1

rand (3C) (C Development Set) rand (3C)

NAME
rand, srand- simple random-number generator

SYNOPSIS
#include <stdlib.h>

int rand (void) ;

void srand (unsigned int seed);

DESCRIPTION

NOTES

rand uses a multiplicative congruent random-number generator with period 232

that returns successive pseudo-random numbers in the range from 0 to RAND_MAX
(defined in stdlib.h).

The function srand uses the argument seed as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to the function rand.
If the function srand is then called with the same seed value, the sequence of
pseudo-random numbers will be repeated. If the function rand is called before any
calls to srand have been made, the same sequence will be generated as when srand
is first called with a seed value of 1.

The spectral properties of rand are limited. drand48(3C) provides a much better,
though more elaborate, random-number generator.

SEE ALSO
drand48(3C)

10/92 Page 1

raise(3C) (C Development Set)

NAME
raise - send signal to program

SYNOPSIS
#include <signal.h>

int raise (int sig);

DESCRIPTION
raise sends the signal sig to the executing program.

raise(3C)

raise returns zero if the operation succeeds. Otherwise, raise returns -1 and
errno is set to indicate the error. raise uses kill to send the signal to the execut­
ing program:

kill(getpid(), sig);

See kil1(2) for a detailed list of failure conditions. See signal(2) for a list of sig­
nals.

SEE ALSO
getpid(2), kil1(2), signal(2)

10/92 Page 1

qsort(3C) (C Development Set) qsort(3C)

NAME
qsort - quicker sort

SYNOPSIS
#include <stdlib.h>

void qsort (void* base, size_t nel, size_t width, int (*cornpar)
(const void*, const void*));

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in
place. The contents of the table are sorted in ascending order according to the
user-supplied comparison function.

base points to the element at the base of the table. nel is the number of elements in
the table. width specifies the size of each element in bytes. compar is the name of
the comparison function, which is called with two arguments that point to the ele­
ments being compared. The function must return an integer less than, equal to, or
greater than zero to indicate if the first argument is to be considered less than, equal
to, or greater than the second.

The contents of the table are sorted in ascending order according to the user sup­
plied comparison function.

SEE ALSO

NOTES

10/92

sort(l), bsearch(3C), lsearch(3C), string(3C).

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredict­
able.

Page 1

putws(3W) putws(3W)

NAME
putws, fputws - put a wchar_t string on a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int putws(const wchar_t *s);

int fputws (const wchar_t *s, FILE *stream) ;

DESCRIPTION (International Functions)
putws () transforms the wchar_t null-terminated wchar_t string pointed to by s
into a byte string in EUC, and writes the string followed by a new-line character to
stdout.

fputws () transforms the wchar_t null-terminated wchar_t string pointed to bys
into a byte string in EUC, and writes the string to the named output stream.

Neither function writes the terminating wchar_t null character.

DIAGNOSTICS

NOTES

On success both functions return the number of wchar_t characters transformed
and written (not including the new-line character in the case of putws ()); Other­
wise they return EOF.

putws () appends a new-line character while fputws () does not.

SEE ALSO

10/92

ferror(3S), fopen(3S), fread(3S), printf(3W), putwc(3W), printf(3S), stdio(3S),
widec(3W).

Page 1

putwc(3W) putwc(3W)

NAME
putwc, putwchar, fputwc - put wchar_t character on a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int putwc (wchar_t c, FILE *stream);

int putwchar(wchar_tc);

int fputwc (wchar_t c, FILE *Stream) ;

DESCRIPTION (International Functions)
putwc () transforms the wchar_t character c into EUC, and writes it onto the output
stream (at the position where the file pointer, if defined, is pointing). The
putwchar(c) is defined as putwc(c, stdout). putwc() and putwchar() are
macros.

fputwc () behaves like putwc (),but is a function rather than a macro.

DIAGNOSTICS
On success, each of these functions return the value they have written. On failure,
they return the constant EOF.

SEE ALSO

10/92

fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3W), putws(3W), printf(3S),
setbuf(3S), stdio(3S), widec(3W).

Page 1

putspent (3C) putspent (3C)

NAME
put spent - write shadow password file entry

SYNOPSIS
#include <shadow.h>

int putspent (const struct spwd *p, FILE *fp);

DESCRIPTION
The putspent routine is the inverse of get spent. Given a pointer to a spwd struc­
ture created by the get spent routine (or the getspnarn routine), the putspent rou­
tine writes a line on the stream fp, which matches the format of I etc I shadow.

If the sp_min, sp_max, sp_lstchg, sp_warn, sp_inact, or sp_expire field of the
spwd structure is -1, or if sp_flag is 0, the corresponding /etc/shadow field is
cleared.

SEE ALSO
getspent(3C), getpwent(3C), putpwent(3C)

DIAGNOSTICS

NOTES

10/92

The put spent routine returns non-zero if an error was detected during its opera­
tion, otherwise zero.

This routine is for internal use only, compatibility is not guaranteed.

Page 1

puts (3S) (C Development Set) puts(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (const char *s);

int fputs (const char *s, FILE *stream);

DESCRIPTION
puts writes the string pointed to bys, followed by a new-line character, to the stan­
dard output stream stdout [see intro(3)].

fputs writes the null-terminated string pointed to bys to the named output stream.

Neither function writes the terminating null character.

SEE ALSO
exit(2), lseek(2), write(2), abort(3C), fclose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), putc(3S), stdio(3S)

DIAGNOSTICS

NOTES

10/92

On success both routines return the number of characters written; otherwise they
returnEOF.

puts appends a new-line character while fputs does not.

Page 1

putpwent (3C) (C Development Set)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (const struct passwd *p, FILE *f);

DESCRIPTION

putpwent (3C)

putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure
created by getpwent (or getpwuid or getpwnam), putpwent writes a line on the
streamf, which matches the format of /etc/passwd.

SEE ALSO
getpwent(3C)

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its operation, otherwise
zero.

10/92 Page 1

putmsg(2) putmsg(2)

and sets errno to EINVAL. If flags is set to MSG_BAND, then a message is sent in the
priority band specified by band. If a control part and data part are not specified and
flags is set to MSG_BAND, no message is sent and 0 is returned.

Normally, putmsg() will block if the stream write queue is full due to internal flow
control conditions. For high-priority messages, putmsg() does not block on this
condition. For other messages, putmsg() does not block when the write queue is
full and O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets errno to EAGAIN.

putmsg or putpmsg also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the stream, regardless of priority or
whether O_NDELAY or O_NONBLOCK has been specified. No partial message is sent.

putmsg fails if one or more of the following are true:

EA GAIN

EBADF

EFAULT

EINTR

EINVAL

EINVAL

EINVAL

ENO SR

A non-priority message was specified, the O_NDELAY or O_NONBLOCK
flag is set and the stream write queue is full due to internal flow con-
trol conditions.

fd is not a valid file descriptor open for writing.

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or flags is set to RS_HIPRI
and no control part was supplied.

The stream referenced by fd is linked below a multiplexor.

For putpmsg, if flags is set to MSG_HIPRI and band is nonzero.

Buffers could not be allocated for the message that was to be created
due to insufficient STREAMS memory resources.

ENOSTR A stream is not associated withfd.

ENXIO A hangup condition was generated downstream for the specified
stream, or the other end of the pipe is closed.

ERANGE The size of the data part of the message does not fall within the
range specified by the maximum and minimum packet sizes of the
topmost stream module. This value is also returned if the control
part of the message is larger than the maximum configured size of
the control part of a message, or if the data part of a message is
larger than the maximum configured size of the data part of a
message.

putmsg also fails if a STREAMS error message had been processed by the stream
head before the call to putmsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
getmsg(2), intro(2), poll(2), putmsg(2), read(2), write(2).

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

putmsg(2) putmsg(2)

NAME
putrnsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putrnsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putprnsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

DESCRIPTION

10/92

putrnsg creates a message from user-specified buffer(s) and sends the message to a
STREAMS file. The message may contain either a data part, a control part, or both.
The data and control parts to be sent are distinguished by placement in separate
buffers, as described below. The semantics of each part is defined by the STREAMS
module that receives the message.

The function putprnsg does the same thing as putrnsg, but provides the user the
ability to send messages in different priority bands. Except where noted, all infor­
mation pertaining to putrnsg also pertains to putprnsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure, which contains the following members:

int rnaxlen; /* not used */
int len; /* length of data */
void *buf; /* ptr to buffer */

ctlptr points to the structure describing the control part, if any, to be included in the
message. The buf field in the strbuf structure points to the buffer where the con­
trol information resides, and the len field indicates the number of bytes to be sent.
The rnaxlen field is not used in putrnsg [see getmsg(2)]. In a similar manner, dataptr
specifies the data, if any, to be included in the message. flags indicates what type of
message should be sent and is described later.

To send the data part of a message, dataptr must not be NULL and the len field of
dataptr must have a value of 0 or greater. To send the control part of a message, the
corresponding values must be set for ctlptr. No data (control) part is sent if either
dataptr (ctlptr) is NULL or the len field of dataptr (ctlptr) is set to -1.

For putrnsg(), if a control part is specified, and flags is set to RS_HIPRI, a high prior­
ity message is sent. If no control part is specified, and flags is set to RS_HIPRI,
putrnsg fails and sets errno to EINVAL. If flags is set to 0, a normal (non-priority)
message is sent. If no control part and no data part are specified, and flags is set to
0, no message is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by putrnsg
is at least 64 bytes in length.

For putpmsg, the flags are different. flags is a bitmask with the following mutually­
exclusive flags defined: MSG_HIPRI and MSG_BAND. Hflags is set to 0, putpmsg fails
and sets errno to EINVAL. If a control part is specified and flags is set to MSG_HIPRI
and band is set to 0, a high-priority message is sent. If flags is set to MSG_HIPRI and
either no control part is specified or band is set to a non-zero value, putpmsg() fails

Page 1

putenv(3C) (C Development Set) putenv(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
#include <Stdlib.h>

int putenv (char *string);

DESCRIPTION
string points to a string of the form "name=value." putenv makes the value of the
environment variable name equal to value by altering an existing variable or creat­
ing a new one. In either case, the string pointed to by string becomes part of the
environment, so altering the string will change the environment. The space used by
string is no longer used once a new string-defining name is passed to putenv.
Because of this limitation, string should be declared static if it is declared within a
function.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(S)

DIAGNOSTICS

NOTES

10/92

putenv returns non-zero if it was unable to obtain enough space via malloc for an
expanded environment, otherwise zero.

putenv manipulates the environment pointed to by environ, and can be used in
conjunction with getenv. However, envp (the third argument to main) is not
changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order. A
potential error is to call the function putenv with a pointer to an automatic variable
as the argument and to then exit the calling function while string is still part of the
environment.

Page 1

putc(3S) (C Development Set) putc (35)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (int c, FILE *stream);

int putchar (int c);

int fputc (int c, FILE *stream);

int putw (int w, FILE *stream);

DESCRIPTION
putc writes c (converted to an unsigned char) onto the output stream [see
intro(3)] at the position where the file pointer (if defined) is pointing, and
advances the file pointer appropriately. If the file cannot support positioning
requests, or stream was opened with append mode, the character is appended to the
output stream. putchar (c) is defined as putc (c, stdout) . putc and put char
are macros.

fputc behaves like putc, but is a function rather than a macro. fputc runs more
slowly than putc, but it takes less space per invocation and its name can be passed
as an argument to a function.

putw writes the word (that is, integer) w to the output stream (where the file
pointer, if defined, is pointing). The size of a word is the size of an integer and
varies from machine to machine. putw neither assumes nor causes special align­
ment in the file.

SEE ALSO
exit(2), lseek(2), write(2), abort(3C), fclose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), puts(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS

NOTES

10/92

On success, these functions (with the exception of putw) each return the value they
have written. putw returns ferror (stream). On failure, they return the constant
EOF. This result will occur, for example, if the file stream is not open for writing or if
the output file cannot grow.

Because it is implemented as a macro, putc evaluates a stream argument more than
once. In particular, putc (c, * f ++) ; doesn't work sensibly. fputc should be used
instead.

Because of possible differences in word length and byte ordering, files written using
putw are machine-dependent, and may not be read using getw on a different pro­
cessor.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (for example, #undef putc).

Page 1

publickey (3N) publickey(3N)

NAME
publickey: getpublickey, getsecretkey - retrieve public or secret key

SYNOPSIS
#include <rpc/rpc.h>
#include <rpc/key_prot.h>

getpublickey(const char netnarne[MAXNETNAMELEN],
char publickey[HEXKEYBYTES]);

getsecretkey(const char netnarne[MAXNETNAMELEN],
char secretkey[HEXKEYBYTESJ, const char *passwd);

DESCRIPTION
getpublickey and getsecretkey get public and secret keys for netname from the
publickey(4) database.

getsecretkey has an extra argument, passwd, used to decrypt the encrypted secret
key stored in the database.

Both routines return 1 if they are successful in finding the key, O otherwise. The
keys are returned as NULL-terminated, hexadecimal strings. If the password sup­
plied to getsecretkey fails to decrypt the secret key, the routine will return 1 but
the secretkey argument will be a NULL string.

SEE ALSO
publickey(4)

10/92 Page 1

ptsname (3C) ptsname (3C)

NAME
ptsnarne - get name of the slave pseudo-terminal device

SYNOPSIS
#include <stdio.h>
char *ptsnarne (int fildes);

DESCRIPTION
The function ptsnarne () returns the name of the slave pseudo-terminal device
associated with a master pseudo-terminal device. fildes is a file descriptor returned
from a successful open of the master device. ptsnarne() returns a pointer to a string
containing the null-terminated path name of the slave device of the form
/dev/pts/N, where N is an integer between 0 and 255.

RETURN VALUE
Upon successful completion, the function ptsnarne() returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a static
data area that is overwritten by each call to ptsnarne (). Upon failure, ptsnarne()
returns NULL. This could occur if ft/des is an invalid file descriptor or if the slave
device name does not exist in the file system.

SEE ALSO
open(2), grantpt(3C), ttynarne(3C), unlockpt(3C).

10/92 Page 1

ptrace(2) ptrace(2)

6

7

8

9

address of a word. On failure a value of -1 is returned to the parent pro­
cess and the parent's errno is set to EIO.

With this request, some of the process state of the child process can be
written. data gives the value that is to be written. On 68k, addr is the
address of an entry in the user area. On 88k, addr is an offset into the
pt_rrice_user struct. (See request 3 above.) The few entries that can be
written are the general registers and the condition codes of the Processor
Status Word.

This request causes the child to resume execution. If the data argument is
0, all pending signals including the one that caused the child to stop are
canceled before it resumes execution. If the data argument is a valid sig­
nal number, the child resumes execution as if it had incurred that signal,
and any other pending signals are canceled. The addr argument must be
equal to 1 for this request. On success, the value of data is returned to the
parent. This request fails if data is not 0 or a valid signal number, in
which case a value of -1 is returned to the parent process and the parent's
errno is set to EIO.

This request causes the child to terminate with the same consequences as
exit(2).

This request sets the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The trace
bit causes an interrupt on completion of one machine instruction. This
effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent
exec(2) calls. If a traced process calls exec(2), it stops before executing the first
instruction of the new image showing signal SIGTRAP. ptrace in general fails if
one or more of the following are true:

EIO request is an illegal number.

ESRCH

EPERM

pid identifies a child that does not exist or has not executed a ptrace
with request 0.

the invoking subject does not have the appropriate privileges.

SEE ALSO
tbx(l), exec(2), signal(2), wai t(2)

Page 2 10/92

ptrace(2) ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

int ptrace(int request, pid_t pid, int addr, int data);

DESCRIPTION
ptrace allows a parent process to control the execution of a child process. Its pri­
mary use is for the implementation of breakpoint debugging. The child process
behaves normally until it encounters a signal [see signal(S)], at which time it
enters a stopped state and its parent is notified via the wai t(2) system call. When
the child is in the stopped state, its parent can examine and modify its "core image"
using ptrace. Also, the parent can cause the child either to terminate or continue,
with the possibility of ignoring the signal that caused it to stop.

The request argument determines the action to be taken by ptrace and is one of the
following:

O This request must be issued by the child process if it is to be traced by its
parent. It turns on the child's trace flag that stipulates that the child
should be left in a stopped state on receipt of a signal rather than the state
specified by June [see signal(2)]. The pid, addr, and data arguments are
ignored, and a return value is not defined for this request. Peculiar results
ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For each, pid
is the process ID of the child. The child must be in a stopped state before these
requests are made.

1 , 2 With these requests, the word at location addr in the address space of the
child is returned to the parent process. If instruction and data space are
separated, request 1 returns a word from instruction space, and request 2
returns a word from data space. If instruction and data space are not
separated, either request 1 or request 2 may be used with equal results.
The data argument is ignored. These two requests fail if addr is not the
start address of a word, in which case a value of -1 is returned to the
parent process and the parent's errno is set to EIO.

3 This request returns a word of information about the child process to the
parent process. On 68k, addr is the address of a location in the child's user
area in the system's address space [see <sys/user. h>]. On 88k, addr is
the offset of an entry in a ptrace_user struct [see <sys/ptrace. h>].
The data argument is ignored. The request fails if addr is not word
aligned or is outside the appropriate address range, in which case a value
of -1 is returned to the parent process and the parent's errno is set to EIO.

4 , 5 With these requests, the value given by the data argument is written into
the address space of the child at location addr. If instruction and data
space are separated, request 4 writes a word into instruction space, and
request 5 writes a word into data space. If instruction and data space are
not separated, either request 4 or request 5 may be used with equal
results. On success, the value written into the address space of the child
is returned to the parent. These two requests fail if addr is not the start

10/92 Page 1

psignal(3) (BSD Compatibility Package) psignal(3)

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
/usr/ucb/cc [flag ...]file ...
psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist[J;

DESCRIPTION
psignal produces a short message on the standard error file describing the indi­
cated signal. First the argument string s is printed, then a colon, then the name of
the signal and a NEWLINE. Most usefully, the argument string is the name of the
program which incurred the signal. The signal number should be from among
those found in <signal. h>.

To simplify variant formatting of signal names, the vector of message strings
sys_siglist is provided; the signal number can be used as an index in this table
to get the signal name without the newline. The define NSIG defined in
<signal. h> is the number of messages provided for in the table; it should be
checked because new signals may be added to the system before they are added to
the table.

SEE ALSO
signal(3), perror(3C).

10/92 Page 1

psignal (3C) psignal (3C)

NAME
psignal, psiginfo - system signal messages

SYNOPSIS
#include <siginfo.h>

void psignal (int sig, const char *s);

void psiginfo (siginfo_t *pinfo, char *s);

DESCRIPTION
psignal and psiginfo produce messages on the standard error output describing
a signal. sig is a signal that may have been passed as the first argument to a signal
handler. pinfo is a pointer to a siginfo structure that may have been passed as the
second argument to an enhanced signal handler [see sigaction(2)]. The argument
strings is printed first, then a colon and a blank, then the message and a newline.

SEE ALSO
sigaction(2), perror(3), siginfo(S), signal(S)

10/92 Page 1

profil (2) profil (2)

bufsiz can be computed as (size_of_region_to_be_profiled *RATIO).

SEE ALSO

NOTES

Page 2

prof(l), times(2), moni tor(3C)

Profiling is turned off by giving a scale of 0 or 1, and is rendered ineffective by giv­
ing a bufsiz of 0. Profiling is turned off when an exec(2) is executed, but remains on
in both child and parent processes after a fork(2). Profiling is turned off if a buff
update would cause a memory fault.

10/92

profil (2) profil (2)

NAME
profil - execution time profile

SYNOPSIS
#include <unistd.h>

void profil(unsigned short *buff, size_t bufsiz, int offset,
unsigned scale);

DESCRIPTION

10/92

profil provides CPU-use statistics by profiling the amount of CPU time expended
by a program. profil generates the statistics by creating an execution histogram
for a current process. The histogram is defined for a specific region of program
code to be profiled, and the identified region is logically broken up into a set of
equal size subdivisions, each of which corresponds to a count in the histogram.
With each clock tick, the current subdivision is identified and its corresponding his­
togram count is incremented. These counts establish a relative measure of how
much time is being spent in each code subdivision. The resulting histogram counts
for a profiled region can be used to identify those functions that consume a dispro­
portionately high percentage of CPU time.

buff is a buffer of bufsiz bytes in which the histogram counts are stored in an array of
unsigned short int.

offset, scale, and bufsiz specify the region to be profiled.

offset is effectively the start address of the region to be profiled.

scale, broadly speaking, is a contraction factor that indicates how much smaller the
histogram buffer is than the region to be profiled. More precisely, scale is inter­
preted as an unsigned 16-bit fixed-point fraction with the decimal point implied on
the left. Its value is the reciprocal of the number of bytes in a subdivision, per byte
of histogram buffer. Since there are two bytes per histogram counter, the effective
ratio of subdivision bytes per counter is one half the scale.

Several observations can be made:

the maximal value of scale, Oxffff (approximately 1), maps subdivisions 2
bytes long to each counter.

the minimum value of scale (for which profiling is performed), Ox0002
(1/32,768), maps subdivision 65,536 bytes long to each counter.

the default value of scale (currently used by cc -qp), Ox4000, maps subdivi­
sions 8 bytes long to each counter.

The values are used within the kernel as follows: when the process is interrupted
for a clock tick, the value of offset is subtracted from the current value of the pro­
gram counter (pc), and the remainder is multiplied by scale to derive a result. That
result is used as an index into the histogram array to locate the cell to be incre­
mented. Therefore, the cell count represents the number of times that the process
was executing code in the subdivision associated with that cell when the process
was interrupted.

scale can be computed as (RATIO * 0200000L), where RATIO is the desired ratio of
bufsiz to profiled region size, and has a value between 0 and 1. Qualitatively speak­
ing, the closer RATIO is to 1, the higher the resolution of the profile information.

Page 1

prof{5) prof{5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name);

DESCRIPTION
MARK introduces a mark called name that is treated the same as a function entry
point. Execution of the mark adds to a counter for that mark, and program-counter
time spent is accounted to the immediately preceding mark or to the function if
there are no preceding marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in a
single compilation must be unique, but may be the same as any ordinary program
symbol.

For marks to be effective, the symbol MARK must be defined before the header file
prof. h is included, either by a preprocessor directive as in the synopsis, or by a
command line argument:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the source files
containing them and are ignored. prof -g must be used to get information on all
labels.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARK defined on the command line, the
marks are ignored.

#include <prof.h>
foo()
{

int i, j;

MARK (loopl) ;
for (i = O; i < 2000; i++) {

}

MARK (loop2) ;
for (j = O; j < 2000; j++) {

SEE ALSO
prof(l), profi1(2), monitor(3C)

10/92 Page 1

processor_info (2) (Multiprocessing) processor_info (2)

NAME
processor_info - get information about one processor

SYNOPSIS
#include <sys/types.h>
#include <sys/processor.h>

int processor_info (processorid_t processorid, processor_info_t
*infop)

DESCRIPTION
processor_info obtains information about a single processor in the system. The
information is returned in the processor_info_t structure pointed to by infop.
This structure contains the following fields:

int pi_state Either P _ONLINE or P _OFFLINE. If the processor is offline,
the other fields are meaningless.

char pi_processor_type[16)
A null terminated ASCII string specifying the type of proces­
sor; one of P_88100, P_88110, P_68040, or P_68030.

char pi_fputypes[32)

int pi_clock

A null terminated ASCII string specifying the type of float­
ing point hardware available. The string consists of the
floating point identifier string P _FPU.

The frequency of the processor clock, in megahertz, rounded
to the nearest integer.

DIAGNOSTICS
processor_info returns 0 on success, or -1 on failure. Failure may result from:

EFAULT The infop pointer points to an invalid memory address.

EINVAL

EIO

SEE ALSO
pinfo(lM)

10/92

The processor id does not refer to an existing processor.

The processor to which processor id refers is not operational.

Page 1

processor_bind (2)

EFAULT

EIO

SEE ALSO

(Multiprocessing) processor_bind (2)

obind is non-NULL and points to an invalid address.

The specified processor is not operational.

pbind{lM), pexbind(lM)

Page 2 10/92

processor_bind (2) (Multiprocessing) processor_bind (2)

NAME
processor_bind - bind a process to a processor

SYNOPSIS
#include <sys/types.h>
#include <sys/procset.h>
#include <sys/processor.h>

int processor_bind(idtype_t idtype, id_t pid,
processorid_t processorid, processorid_t *obind) ;

DESCRIPTION
processor_bind binds a process to a specific processor. idtype must be set to
P _PID and pid is a process ID specifying the process to be bound. When the pro­
cess identified by pid has been bound, it will execute only on the processor
specified by processorid (even if other processors are available), except briefly, if
the process requires a resource which only another processor can provide. The pro­
cessor may continue to run other processes in addition to the one specified by pid.
The processor_bind call will fail if the process specified by pid is bound
exclusively to another processor or if there are already processes exclusively bound
to the processor specified by processor id.

The processor_bind call is not guaranteed to be synchronous with the binding
operation. If the binding operation cannot be completed immediately the call may
return before the operation completes. Any delay between the return of the func­
tion and the completion of the operation will, typically, be of very short duration.

If processorid is PBIND_NONE, the specified process is unbound; that is, it is made
free to run on any processor.

If the process specified by pid is already bound to a different processor, the binding
for that process will be changed to the processor specified by processorid. If
obind is not NULL and the process is currently bound to a processor, that proces­
sorid is returned by obind.

The bind state of a process is inherited by any children created by a fork{2) call,
and does not change across a call to exec(2).

In order to bind or unbind a process, the real or effective user ID of the caller must
match the real or saved [from exec(2)] user ID of the process being bound or
unbound, or the caller must have superuser privileges.

DIAGNOSTICS

10/92

Returns a value of zero on success, or a negative value on failure. Failure may
result from:

EPERM

EINVAL

ESRCH

EBUSY

The calling process does not have appropriate privileges.

An invalid idtype or processorid was specified, or the specified
processor is currently offline.

No process can be found with a process ID corresponding to pid.

The process specified by pid is bound exclusively to another proces­
sor or there are already processes exclusively bound to the processor
specified by processor id.

Page 1

priocntlset (2) priocntlset (2)

DIAGNOSTICS
priocntlset has the same return values and errors as priocntl.

SEE ALSO
priocntl(l), priocntl(2).

Page 2 10/92

priocntlset (2) priocntlset (2)

NAME
priocntlset - generalized process scheduler control

SYNOPSIS
#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset (procset_t *psp, int cmd, ... /* arg *I) ;
DESCRIPTION

10/92

priocntlset changes the scheduling properties of running processes.
priocntlset has the same functions as the priocntl system call, but a more gen­
eral way of specifying the set of processes whose scheduling properties are to be
changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose
type depends on cmd. See priocntl(2) for the valid values of cmd and the
corresponding arg structures.

psp is a pointer to a procset structure, which priocntlset uses to specify the set
of processes whose scheduling properties are to be changed.

typedef struct procset
idop_t p_op; /* operator connecting left/right sets */
idtype_t p_lidtype; /* left set ID type */
id_t p_lid; /* left set ID */
idtype_t p_ridtype; /* right set ID type */
id_t p_rid; /* right set ID */
procset_t;

p_lidtype and p_lid specify the ID type and ID of one ("left") set of processes;
p_ridtype and p_rid specify the ID type and ID of a second ("right") set of
processes. ID types and IDs are specified just as for the priocntl system call. p_op
specifies the operation to be performed on the two sets of processes to get the set of
processes the system call is to apply to. The valid values for p_op and the processes
they specify are:

set difference: processes in left set and not in right set

set intersection: processes in both left and right sets

set union: processes in either left or right sets or both

POP_DIFF

POP_AND

POP_OR

POP_XOR set exclusive-or: processes in left or right set but not in both

The following macro, which is defined in procset. h, offers a convenient way to
initialize a procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp) ->p_op (op), \
(psp)->p_lidtype (ltype), \
(psp)->p_lid (lid), \
(psp)->p_ridtype (rtype), \
(psp) ->p_rid (rid),

Page 1

priocntl (2) priocntl (2)

The time-sharing user priority and user priority limit are inherited across the fork
and exec system calls.

RETURN VALUE
Unless otherwise noted above, priocntl returns a value of 0 on success. priocntl
returns -1 on failure and sets errno to indicate the error.

ERRORS
priocntl fails if one or more of the following are true:

EPERM The calling process does not have the required permissions as
explained above.

EINVAL

ERANGE

ESRCH

EFAULT

ENOMEM

EAGAIN

The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

The requested time quantum is out of range.

None of the specified processes exist.

All or part of the area pointed to by one of the data pointers is
outside the process's address space.

An attempt to change the class of a process failed because of
insufficient memory.

An attempt to change the class of a process failed because of
insufficient resources other than memory (for example, class­
specific kernel data structures).

SEE ALSO

10/92

dispadmin(lM), exec(2), fork(2), nice(2), priocntl(l), priocntlset(2),
rt_dptbl(4), ts_dptbl(4)

Page 9

priocntl (2) priocntl (2)

Page 8

typedef struct {

short ts_maxupri; /* Limits of user priority range */

tsinfo_t;

The priocntl PC_GETCID and PC_GETCLINFO commands return time-sharing class
attributes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the time­
sharing class. If ts_maxupri is x, the valid range for both user priorities and user
priority limits is from -x to +x.

The following structure (defined in sys/tspriocntl .h) defines the format used to
specify the time-sharing class-specific scheduling parameters of a process.

typedef struct {

short
short

tsparrns_t;

ts_uprilim;
ts_upri;

/* Time-Sharing user priority limit */
/* Time-Sharing user priority */

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the time-sharing class, the data in the pc_clparrns buffer is in this format.

For the priocntl PC_GETPARMS command, if pc_cid specifies the time-sharing
class and more than one time-sharing process is specified, the scheduling parame­
ters of the time-sharing process with the highest ts_upri value among the
specified processes is returned and the process ID of this process is returned by the
priocntl call. If there is more than one process sharing the highest user priority,
the one returned is implementation-dependent.

Any time-sharing process may lower its own ts_uprilim (or that of another pro­
cess with the same user ID). Only a time-sharing process with super-user privileges
may raise a ts_uprilim. When changing the class of a process to time-sharing
from some other class, super-user privileges are required in order to set the initial
ts_uprilim to a value greater than zero. Attempts by a non-super-user process to
raise a ts_uprilim or set an initial ts_uprilim greater than zero fail with a return
value of -1 and errno set to EPERM.

Any time-sharing process may set its own ts_upri (or that of another process with
the same user ID) to any value less than or equal to the process's ts_uprilim.
Attempts to set the ts_upri above the ts_uprilim (and/or set the ts_uprilim
below the ts_upri) result in the ts_upri being set equal to the ts_uprilim.

Either of the ts_uprilim or ts_upri fields may be set to the special value
TS_NOCHANGE (defined in sys/tspriocntl.h) in order to set one of the values
without affecting the other. Specifying TS_NOCHANGE for the ts_upri when the
ts_uprilim is being set to a value below the current ts_upri causes the ts_upri
to be set equal to the ts_uprilim being set. Specifying TS_NOCHANGE for a parame­
ter when changing the class of a process to time-sharing (from some other class)
causes the parameter to be set to a default value. The default value for the
ts_uprilim is 0 and the default for the ts_upri is to set it equal to the
ts_uprilim which is being set.

10/92

priocntl (2) priocntl (2)

RT_TQINF

RT_TQDEF

RT_NOCHANGE

Set an infinite time quantum.

Set the time quantum to the default for this priority [see
rt_dptbl(4)].

Don't set the time quantum. This value is useful when
you wish to change the real-time priority of a process
without affecting the time quantum. Specifying this
value when changing the class of a process to real-time
from some other class is equivalent to specifying
RT_TQDEF.

In order to change the class of a process to real-time (from any other class) the pro­
cess invoking priocntl must have super-user privileges. In order to change the
priority or time quantum setting of a real-time process the process invoking
priocntl must have super-user privileges or must itself be a real-time process
whose real or effective user ID matches the real of effective user ID of the target pro-
cess.

The real-time priority and time quantum are inherited across the fork(2) and
exec(2) system calls.

TIME-SHARING CLASS

10/92

The time-sharing scheduling policy provides for a fair and effective allocation of
the CPU resource among processes with varying CPU consumption characteristics.
The objectives of the time-sharing policy are to provide good response time to
interactive processes and good throughput to CPU-bound jobs while providing a
degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri
below) values that may be assigned to processes within the class. A ts_upri value
of zero is defined as the default base priority for the time-sharing class. User priori­
ties range from -x to +x where the value of xis configurable and can be determined
for a specific installation by using the priocntl PC_GETCID or PC_GETCLINFO com­
mand.

The purpose of the user priority is to provide some degree of user/application con­
trol over the scheduling of processes in the time-sharing class. Raising or lowering
the ts_upri value of a process in the time-sharing class raises or lowers the
scheduling priority of the process. It is not guaranteed, however, that a process
with a higher ts_upri value will run before one with a lower ts_upri value. This
is because the ts_upri value is just one factor used to determine the scheduling
priority of a time-sharing process. The system may dynamically adjust the internal
scheduling priority of a time-sharing process based on other factors such as recent
CPU usage.

In addition to the system-wide limits on user priority (returned by the PC_GETCID
and PC_GETCLINFO commands) there is a per process user priority limit (see
ts_uprilim below), which specifies the maximum ts_upri value that may be set
for a given process; by default, ts_uprilim is zero.

The following structure (defined in sys/tspriocntl .h) defines the format used
for the attribute data for the time-sharing class.

Page 7

priocntl (2) priocntl (2)

Page 6

short
ulong
long

rtparrns_t;

rt_pri;
rt_tqsecs;
rt_tqnsecs;

/* Real-Time priority */
/* Seconds in time quantum */
/* Additional nanoseconds in quantum */

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the real-time class, the data in the pc_clparrns buffer is in this format.

The above commands can be used to set the real-time priority to the specified value
or get the current rt_pri value. Setting the rt_pri value of a process that is
currently running or runnable (not sleeping) causes the process to be placed at the
back of the scheduling queue for the specified priority. The process is placed at the
back of the appropriate queue regardless of whether the priority being set is
different from the previous rt_pri value of the process. Note that a running pro­
cess can voluntarily release the CPU and go to the back of the scheduling queue at
the same priority by resetting its rt_pri value to its current real-time priority
value. In order to change the time quantum of a process without setting the prior­
ity or affecting the process's position on the queue, the rt_pri field should be set to
the special value RT_NOCHANGE (defined in sys/rtpriocntl .h). Specifying
RT_NOCHANGE when changing the class of a process to real-time from some other
class results in the real-time priority being set to zero.

For the priocntl PC_GETPARMS command, if pc_cid specifies the real-time class
and more than one real-time process is specified, the scheduling parameters of the
real-time process with the highest rt_pri value among the specified processes are
returned and the process ID of this process is returned by the priocntl call. If
there is more than one process sharing the highest priority, the one returned is
implementation-dependent.

The rt_tqsecs and rt_tqnsecs fields are used for getting or setting the time
quantum associated with a process or group of processes. rt_tqsecs is the
number of seconds in the time quantum and rt_tqnsecs is the number of addi­
tional nanoseconds in the quantum. For example setting rt_tqsecs to 2 and
rt_tqnsecs to 500,000,000 (decimal) would result in a time quantum of two and
one-half seconds. Specifying a value of l,000,000,000 or greater in the rt_tqnsecs
field results in an error return with errno set to EINVAL. Although the resolution of
the tq_nsecs field is very fine, the specified time quantum length is rounded up by
the system to the next integral multiple of the system clock's resolution. For exam­
ple, the finest resolution currently available on a system is 10 milliseconds (1
"tick"). Setting rt_tqsecs to 0 and rt_tqnsecs to 34,000,000 would specify a
time quantum of 34 milliseconds, which would be rounded up to 4 ticks (40 mil­
liseconds) on that system. The maximum time quantum that can be specified is
implementation-specific and equal to LONG_MAX ticks (defined in limits. h).
Requesting a quantum greater than this maximum results in an error return with
errno set to ERANGE (although infinite quantums may be requested using a special
value as explained below). Requesting a time quantum of zero (setting both
rt_tqsecs and rt_tqnsecs to 0) results in an error return with errno set to EIN­
VAL.

The rt_tqnsecs field can also be set to one of the following special values (defined
in sys/rtpriocntl. h), in which case the value of rt_tqsecs is ignored.

10/92

priocntl(2) priocntl (2)

10/92

For processes in the real-time class, the rt_pri value is, for all practical purposes,
equivalent to the scheduling priority of the process. The rt_pri value completely
determines the scheduling priority of a real-time process relative to other processes
within its class. Numerically higher rt_pri values represent higher priorities.
Since the real-time class controls the highest range of scheduling priorities in the
system it is guaranteed that the runnable real-time process with the highest rt_pri
value is always selected to run before any other process in the system.

In addition to providing control over priority, priocntl provides for control over
the length of the time quantum allotted to processes in the real-time class. The time
quantum value specifies the maximum amount of time a process may run assum­
ing that it does not complete or enter a resource or event wait state (sleep). Note
that if another process becomes runnable at a higher priority the currently running
process may be preempted before receiving its full time quantum.

The system's process scheduler keeps the runnable real-time processes on a set of
scheduling queues. There is a separate queue for each configured real-time priority
and all real-time processes with a given rt_pri value are kept together on the
appropriate queue. The processes on a given queue are ordered in FIFO order (that
is, the process at the front of the queue has been waiting longest for service and
receives the CPU first). Real-time processes that wake up after sleeping, processes
which change to the real-time class from some other class, processes which have
used their full time quantum, and runnable processes whose priority is reset by
priocntl are all placed at the back of the appropriate queue for their priority. A
process that is preempted by a higher priority process remains at the front of the
queue (with whatever time is remaining in its time quantum) and runs before any
other process at this priority. Following a fork(2) system call by a real-time pro­
cess, the parent process continues to run while the child process (which inherits its
parent's rt_pri value) is placed at the back of the queue.

The following structure (defined in sys/rtpriocntl. h) defines the format used
for the attribute data for the real-time class.

typedef struct {

short

rtinfo_t;

rt_maxpri; /* Maximum real-time priority */

The priocntl PC_GETCID and PC_GETCLINFO commands return real-time class
attributes in the pc_clinfo buffer in this format.

rt_maxpri specifies the configured maximum rt_pri value for the real-time class
(if rt_maxpri is x, the valid real-time priorities range from 0 to x).

The following structure (defined in sys/rtpriocntl. h) defines the format used to
specify the real-time class-specific scheduling parameters of a process.

typedef struct {

Page 5

priocntl (2) priocntl (2)

When setting parameters for a set of processes, priocntl acts on the processes
in the set in an implementation-specific order. If priocntl encounters an error
for one or more of the target processes, it may or may not continue through the
set of processes, depending on the nature of the error. If the error is related to
permissions (EPERM), priocntl continues through the process set, resetting the
parameters for all target processes for which the calling process has appropriate
permissions. priocntl then returns -1 with errno set to EPERM to indicate that
the operation failed for one or more of the target processes. If priocntl
encounters an error other than permissions, it does not continue through the set
of target processes but returns the error immediately.

PC_GETPARMS
Get the class and/or class-specific scheduling parameters of a process. arg
points to a structure of type pcparrns_t.

If pc_cid specifies a configured class and a single process belonging to that
class is specified by the idtype and id values or the procset structure, then the
scheduling parameters of that process are returned in the pc_clparrns buffer. If
the process specified does not exist or does not belong to the specified class, the
priocntl call returns -1 with errno set to ESRCH.

If pc_cid specifies a configured class and a set of processes is specified, the
scheduling parameters of one of the specified processes belonging to the
specified class are returned in the pc_clparrns buffer and the priocntl call
returns the process ID of the selected process. The criteria for selecting a process
to return in this case is class dependent. If none of the specified processes exist
or none of them belong to the specified class the priocntl call returns -1 with
errno set to ESRCH.

If pc_cid is PC_CLNULL and a single process is specified the class of the
specified process is returned in pc_cid and its scheduling parameters are
returned in the pc_clparrns buffer.

PC_ADMIN
This command provides functionality needed for the implementation of the
dispadrnin(lM) command. It is not intended for general use by other applica­
tions.

REAL-TIME CLASS

Page 4

The real-time class provides a fixed priority preemptive scheduling policy for those
processes requiring fast and deterministic response and absolute user/application
control of scheduling priorities. If the real-time class is configured in the system it
should have exclusive control of the highest range of scheduling priorities on the
system. This ensures that a runnable real-time process is given CPU service before
any process belonging to any other class.

The real-time class has a range of real-time priority (rt_pri) values that may be
assigned to processes within the class. Real-time priorities range from 0 to x, where
the value of x is configurable and can be determined for a specific installation by
using the priocntl PC_GETCID or PC_GETCLINFO command.

The real-time scheduling policy is a fixed priority policy. The scheduling priority of
a real-time process is never changed except as the result of an explicit request by
the user/application to change the rt_pri value of the process.

10/92

priocntl (2) priocntl (2)

id_t
long

pc_cid;
pc_clparms[PC_CLPARMSZ];

pcparms_t;

/* Process class */
/* Class-specific params */

pc_cid is a class ID (returned by priocntl PC_GETCID). The special class ID
PC_CLNULL can also be assigned to pc_cid when using the PC_GETPARMS comm.and
as explained below.

The pc_clparms buffer holds class-specific scheduling parameters. The format of
this parameter data for a particular class is described under the appropriate head­
ing below. PC_CLPARMSZ is the length of the pc_clparms buffer and is defined in
sys/priocntl. h.

Commands

10/92

Available priocntl commands are:

PC_GETCID
Get class ID and class attributes for a specific class given class name. The idtype
and id arguments are ignored. H arg is non-null, it points to a structure of type
pcinfo_t. The pc_clname buffer contains the name of the class whose attri­
butes you are getting.

On success, the class ID is returned in pc_cid, the class attributes are returned in
the pc_clinfo buffer, and the priocntl call returns the total number of classes
configured in the system (including the sys class). If the class specified by
pc_clname is invalid or is not currently configured the priocntl call returns -1
with errno set to EINVAL. The format of the attribute data returned for a given
class is defined in the sys/rtpriocntl.h or sys/tspriocntl.h header file
and described under the appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the priocntl call still
returns the number of configured classes.

PC_GETCLINFO
Get class name and class attributes for a specific class given class ID. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
pcinfo_t. pc_cid is the class ID of the class whose attributes you are getting.

On success, the class name is returned in the pc_clname buffer, the class attri­
butes are returned in the pc_clinfo buffer, and the priocntl call returns the
total number of classes configured in the system (including the sys class). The
format of the attribute data returned for a given class is defined in the
sys/rtpriocntl .h or sys/tspriocntl .h header file and described under the
appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the priocntl call still
returns the number of configured classes.

PC_SETPARMS
Set the class and class-specific scheduling parameters of the specified
process(es). arg points to a structure of type pcparms_t. pc_cid specifies the
class you are setting and the pc_clparms buffer contains the class-specific
parameters you are setting. The format of the class-specific parameter data is
defined in the sys/rtpriocntl.h or sys/tspriocntl.h header file and
described under the appropriate class heading below.

Page 3

priocntl (2) priocntl (2)

Page 2

P_ALL The priocntl system call applies to all existing processes. The value
of id is ignored. The permission restrictions described below still
apply.

An id value of P _MYID can be used in conjunction with the idtype value to specify
the calling process's process ID, parent process ID, process group ID, session ID, class
ID, user ID, or group ID.

In order to change the scheduling parameters of a process (using the PC_SETPARMS
command as explained below) the real or effective user ID of the process calling
priocntl must match the real or effective user ID of the receiving process or the
effective user ID of the calling process must be super-user. These are the minimum
permission requirements enforced for all classes. An individual class may impose
additional permissions requirements when setting processes to that class and/or
when setting class-specific scheduling parameters.

A special sys scheduling class exists for the purpose of scheduling the execution of
certain special system processes (such as the swapper process). It is not possible to
change the class of any process to sys. In addition, any processes in the sys class
that are included in a specified set of processes are disregarded by priocntl. For
example, an idtype of P _UID and an id value of zero would specify all processes
with a user ID of zero except processes in the sys class and (if changing the parame­
ters using PC_SETPARMS) the ini t process.

The init process is a special case. In order for a priocntl call to change the class
or other scheduling parameters of the init process (process ID 1), it must be the
only process specified by idtype and id. The ini t process may be assigned to any
class configured on the system, but the time-sharing class is almost always the
appropriate choice. Other choices may be highly undesirable.

The data type and value of arg are specific to the type of command specified by
cmd.

The following structure is used by the PC_GETCID and PC_GETCLINFO commands.

typedef struct {

id_t
char
long

pcinfo_t;

pc_cid;
pc_clname[PC_CLNMSZ];
pc_clinfo[PC_CLINFOSZ];

/* Class id */
/* Class name */
/* Class information */

pc_cid is a class ID returned by priocntl PC_GETCID. pc_clname is a buffer of
size PC_CLNMSZ (defined in sys/priocntl. h) used to hold the class name (RT for
real-time or TS for time-sharing).

pc_clinfo is a buffer of size PC_CLINFOSZ (defined in sys/priocntl .h) used to
return data describing the attributes of a specific class. The format of this data is
class-specific and is described under the appropriate heading (REAL-TIME CLASS or
TIME-SHARING CLASS) below.

The following structure is used by the PC_SETPARMS and PC_GETPARMS commands.

typedef struct {

10/92

priocntl (2) priocntl (2)

NAME
priocntl - process scheduler control

SYNOPSIS
#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/procset.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, ... /* arg */);

DESCRIPTION

10/92

priocntl provides for control over the scheduling of active processes.

Processes fall into distinct classes with a separate scheduling policy applied to each
class. The two classes currently supported are the real-time class and the time­
sharing class. The characteristics of these classes are described under the
corresponding headings below. The class attribute of a process is inherited across
the fork and exec(2) system calls. priocntl can be used to dynamically change
the class and other scheduling parameters associated with a running process or set
of processes given the appropriate permissions as explained below.

In the default configuration, a runnable real-time process runs before any other pro­
cess. Therefore, inappropriate use of real-time processes can have a dramatic nega­
tive impact on system performance.

priocntl provides an interface for specifying a process or set of processes to which
the system call is to apply. The priocntlset system call provides the same func­
tions as priocntl, but allows a more general interface for specifying the set of
processes to which the system call is to apply.

For priocntl, the idtype and id arguments are used together to specify the set of
processes. The interpretation of id depends on the value of idtype. The possible
values for idtype and corresponding interpretations of id are as follows:

P_PID id is a process ID specifying a single process to which the priocntl
system call is to apply.

P_PPID

P_PGID

P_SID

P_CID

P_UID

P_GID

id is a parent process ID. The priocntl system call applies to all
processes with the specified parent process ID.

id is a process group ID. The priocntl system call applies to all
processes in the specified process group.

id is a session ID. The priocntl system call applies to all processes in
the specified session.

id is a class ID (returned by priocntl PC_GETCID as explained
below). The priocntl system call applies to all processes in the
specified class.

id is a user ID. The priocntl system call applies to all processes with
this effective user ID.

id is a group ID. The priocntl system call applies to all processes
with this effective group ID.

Page 1

printf (3) (BSD Compatibility Package) printf (3)

printf ("%s, %s %i, %d: % . 2d", weekday, month, day, hour, min) ;

To print 7t to 5 decimal places:

printf("pi = %.Sf", 4 * atan(l. 0));

SEE ALSO
econvert(3) putc(3S), scanf(3S), vprintf(3S), varargs(S).

NOTES
Very wide fields (>128 characters) fail.

Page 4 10/92

printf (3) (BSD Compatibility Package) printf(3)

f

e,E

g,G

precision is 1. The result of converting a zero value with a precision
of zero is a NULL string.

The float or double arg is converted to decimal notation in the style
[-]ddd. ddd where the number of digits after the decimal point is equal
to the precision specification. If the precision is missing, 6 digits are
given; if the precision is explicitly 0, no digits and no decimal point
are printed.

The float or double arg is converted in the style [-]d. ddde±ddd, where
there is one digit before the decimal point and the number of digits
after it is equal to the precision; when the precision is missing, 6 digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing
the exponent. The exponent always contains at least two digits.

The float or double arg is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted:
style e or E will be used only if the exponent resulting from the
conversion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is fol­
lowed by a digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a­
number) as "Infinity" or "NaN" respectively.

c

s

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from
the string are printed until a NULL character (\ O) is encountered or
until the number of characters indicated by the precision specification
is reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first NULL character are printed. A NULL value for
arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Padding takes place only if the specified field width
exceeds the actual width. Characters generated by printf and fprintf are
printed as if putc(3S) had been called.

RETURN VALUE
Upon success, printf and fprintf return the number of characters transmitted,
excluding the null character. vprintf and vfprintf return the number of charac­
ters transmitted. sprintf and vsprintf always return s. If an output error is
encountered, printf, fprint, vprintf, and vfprintf, return EOF.

EXAMPLE

10/92

To print a date and time in the form "Sunday, July 3, 10:02," where weekday and
month are pointers to NULL-terminated strings:

Page 3

printf (3) (BSD Compatibility Package) printf(3)

Page 2

with blanks unless the field width digit string starts with a zero, in
which case the padding is with zeros.

A precision that gives the minimum number of digits to appear for the
d, i, o, u, x, or X conversions, the number of digits to appear after the
decimal point for the e, E, and f conversions, the maximum number
of significant digits for the g and G conversion, or the maximum
number of characters to be printed from a string in s conversion. The
precision takes the form of a period (.) followed by a decimal digit
string; a NULL digit string is treated as zero. Padding specified by the
precision overrides the padding specified by the field width.

An optional 1 (ell) specifying that a following d, i, o, u, x, or x conver­
sion character applies to a long integer arg. An 1 before any other
conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision or both may be indicated by an asterisk (*) instead of a
digit string. In this case, an integer arg supplies the field width or precision. The
arg that is actually converted is not fetched until the conversion letter is seen, so the
args specifying field width or precision must appear before the arg (if any) to be con­
verted. A negative field width argument is taken as a'-' flag followed by a posi­
tive field width. If the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign (+ or
-).

If the first character of a signed conversion is not a sign, a blank will
be prefixed to the result. This implies that if the blank and + flags
both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alternate
form."For c, d, i, s, and u conversions, the flag has no effect. For o
conversion, it increases the precision to force the first digit of the
result to be a zero. For x or x conversion, a non-zero result will have
Ox or OX prefixed to it. For e, E, f, g, and G conversions, the result
will always contain a decimal point, even if no digits follow the point
(normally, a decimal point appears in the result of these conversions
only if a digit follows it). For g and G conversions, trailing zeroes will
not be removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x and
X), respectively; the letters abcdef are used for x conversion and the
letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeroes.
(For compatibility with older versions, padding with leading zeroes
may alternatively be specified by prepending a zero to the field width.
This does not imply an octal value for the field width.) The default

10/92

printf{3) {BSD Compatibility Package) printf (3)

NAME
printf, fprintf, sprintf, vprintf, vfprintf, vsprintf - formatted output
conversion

SYNOPSIS
/usr/ucb/cc [flag ...]file ...
#include <stdio.h>
int printf (format [, arg] . . .)
char *format;

int fprintf (stream, format [, arg J •••)
FILE *stream;
char *format;

char *sprintf (s, format [, arg] ...)
char *s, *format;

int vprintf(format, ap)
char *format;
va_list ap;

int vfprintf(stream, format, ap)
FILE *stream;
char *format;
va_list ap;

char *vsprintf(s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION

10/92

printf places output on the standard output stream stdout. fprintf places out­
put on the named output stream. sprintf places "output," followed by the NULL
character (\0), in consecutive bytes starting at *S; it is the user's responsibility to
ensure that enough storage is available.

vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of argu­
ments, they are called with an argument list as defined by varargs(5).

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string which contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of zero or more args.
The results are undefined if there are insufficient args for the format. If the format is
exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character%. After the%, the fol­
lowing appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will
be padded on the left (or right, if the left-adjustment flag '-',
described below, has been given) to the field width. The padding is

Page 1

printf(3W) printf(3W)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int printf (const char *format [, arg] ...) ;

int fprintf (FILE *stream, const char *format [, arg]) ;

int sprintf (char *S, const char *format [, arg] ...) ;

DESCRIPTION (International Functions)
printf () places output on the standard output stream stdout. fprintf () places
output on the named output stream. sprintf () places output followed by the
NULL character in a character array pointed to by s. Each function returns the
number of bytes transmitted (not including the NULL character in the case of
sprint/), or a negative value if an output error was encountered.

Each of these functions converts, formats and prints its args under control of the for­
mat. The format is a character string that contains two types of object: plain charac­
ters, including ASCII characters and characters in supplementary code sets which
are simply copied to the output stream, and conversion specifications which can
contain only ASCII characters, each of which results in the fetching of zero or more
args.

wc and ws are the new conversion specifications for wchar_t character control.
Both we and ws may be used in all three functions.

wc The wchar_t character arg is transformed into EUC, and then printed. If a
field width is specified and the transformed EUC has fewer bytes than the
field width, it will by padded to the given width. A precision specification
is ignored, if specified.

ws The arg is taken to be a wchar_t string and the wchar_t characters from the
string are transformed into EUC, and printed until a wchar_t null character
is encountered or the number of bytes indicated by the precision
specification is printed. If the precision specification is missing, it is taken
to be infinite, and all wchar_t characters up to the first wchar_t null char­
acter are transformed into EUC and printed. If a field width is specified and
the transformed EUC have fewer bytes than the field width, they are padded
to the given width.

The ASCII space character (Ox2 O) is used as a padding characters.

DIAGNOSTICS
printf, fprintf, and sprintf returns the number of bytes transmitted, or return
a negative value if an error was encountered.

SEE ALSO
printf(3S), scanf(3W), stdio(3S), vprintf(3W), widec(3W).

10/92 Page 1

printf (3S) printf(3S)

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf and fprintf are
printed as if the putc routine had been called.

EXAMPLE
To print a date and time in the form Sunday, July 3, 10: 02, where weekday and
month are pointers to null-terminated strings:

printf(''%s, %s %i, %d:%.2d'',
weekday, month, day, hour, min);

To print 7t to 5 decimal places:

printf("pi =%.Sf", 4 * atan(l.0));

SEE ALSO
exit(2), lseek(2), wri te(2), abort(3C), ecvt(3C), putc(3S), scanf(3S),
setlocale(3C), stdio(3S).

DIAGNOSTICS

10/92

printf, fprintf, and sprintf return the number of characters transmitted, or
return a negative value if an error was encountered.

Page 5

printf(3S) printf(3S)

Page 4

e,E

g,G

c

s

p

n

The double args is converted to the style [- J d. ddde±dd, where
there is one digit before the decimal-point character (which is
non-zero if the argument is non-zero) and the number of digits
after it is equal to the precision. When the precision is missing, six
digits are produced; if the precision is zero and the # flag is not
specified, no decimal-point character appears. The E conversion
character will produce a number with E instead of e introducing
the exponent. The exponent always contains at least two digits.
The value is rounded to the appropriate number of digits.

The double args is printed in style f ore (or in style E in the case of
a G conversion character), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as
one. The style used depends on the value converted: style e (or E)
will be used only if the exponent resulting from the conversion is
less than -4 or greater than or equal to the precision. Trailing zeros
are removed from the fractional part of the result. A decimal­
point character appears only if it is followed by a digit.

The int args is converted to an unsigned char, and the resulting
character is printed.

The args is taken to be a string (character pointer) and characters
from the string are written up to (but not including) a terminating
null character; if the precision is specified, no more than that many
characters are written. If the precision is not specified, it is taken
to be infinite, so all characters up to the first null character are
printed. A NULL value for args will yield undefined results.

The args should be a pointer to void. The value of the pointer is
converted to an implementation-defined set of sequences of print­
able characters, which should be the same as the set of sequences
that are matched by the %p conversion of the scanf function.

The argument should be a pointer to an integer into which is writ­
ten the number of characters written to the output standard 1/0
stream so far by this call to printf, fprintf, or sprintf. No
argument is converted.

% Print a%; no argument is converted.

If the character after the % or %digits$ sequence is not a valid conversion character,
the results of the conversion are undefined.

If a floating-point value is the internal representation for infinity, the output is
[±]inf, where inf is either inf or INF, depending on the conversion character. Print­
ing of the sign follows the rules described above.

If a floating-point value is the internal representation for "not-a-number," the out­
put is [±]nanOxm. Depending on the conversion character, nan is either nan or NAN.
Additionally, Oxm represents the most significant part of the mantissa. Again
depending on the conversion character, x will be x or x, and m will use the letters
abcdef or ABCDEF. Printing of the sign follows the rules described above.

10/92

printf(3S) printf(3S)

10/92

The flag characters and their meanings are:

+

The result of the conversion will be left-justified within the field. (It will be
right-justified if this flag is not specified.)

The result of a signed conversion will always begin with a sign (+ or -). (It
will begin with a sign only when a negative value is converted if this flag is
not specified.)

space If the first character of a signed conversion is not a sign, a space will be
placed before the result. This means that if the space and + flags both
appear, the space flag will be ignored.

The value is to be converted to an alternate form. For c, d, i, s, and u
conversions, the flag has no effect. For an o conversion, it increases the pre­
cision to force the first digit of the result to be a zero. For x (or x) conver­
sion, a non-zero result will have Ox (or ox) prepended to it. For e, E, f, g,
and G conversions, the result will always contain a decimal-point character,
even if no digits follow the point (normally, a decimal point appears in the
result of these conversions only if a digit follows it). For g and G conver­
sions, trailing zeros will not be removed from the result as they normally
are.

0 Ford, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space pad­
ding is performed. If the 0 and flags both appear, the 0 flag will be ignored.
For d, i, o, u, x, and X conversions, if a precision is specified, the O flag will
be ignored. For other conversions, the behavior is undefined.

Each conversion character results in fetching zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), (unsigned
octal (o), unsigned decimal (u), or unsigned hexadecimal notation
(x and x). The x conversion uses the letters abcdef and the X
conversion uses the letters ABCDEF. The precision specifies the
minimum number of digits to appear. If the value being con­
verted can be represented in fewer digits than the specified
minimum, it will be expanded with leading spaces or zeros. The
default precision is 1. The result of converting a zero value with a
precision of zero is no characters.

f The double args is converted to decimal notation in the style
[- l ddd. ddd, where the number of digits after the decimal-point
character [see setlocale(3C)] is equal to the precision
specification. If the precision is omitted from arg, six digits are
output; if the precision is explicitly zero and the # flag is not
specified, no decimal-point character appears. If a decimal-point
character appears, at least 1 digit appears before it. The value is
rounded to the appropriate number of digits.

Page 3

,,

printf(3S) printf (3S)

Page 2

An optional field, consisting of a decimal digit string followed by a $, speci­
fying the next args to be converted. If this field is not provided, the args fol­
lowing the last args converted will be used.

Zero or more flags, which modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum.field width. If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left-adjustment flag(-), described below, has been
given) to the field width.

An optional precision that gives the minimum number of digits to appear
for the d, i, o, u, x, or x conversions (the field is padded with leading zeros),
the number of digits to appear after the decimal-point character for the e, E,
and f conversions, the maximum number of significant digits for the g and
G conversions, or the maximum number of characters to be printed from a
string in s conversion. The precision takes the form of a period (.) followed
by a decimal digit string; a null digit string is treated as zero. Padding
specified by the precision overrides the padding specified by the field
width.

An optional h specifies that a following d, i, o, u, x, or X conversion specifier
applies to a short int or unsigned short int argument (the argument
will be promoted according to the integral promotions and its value con­
verted to short int or unsigned short int before printing); an optional
h specifies that a following n conversion specifier applies to a pointer to a
short int argument. An optional 1 (ell) specifies that a following d, i, o,
u, x, or x conversion specifier applies to a long int or unsigned long
int argument; an optional 1 (ell) specifies that a following n conversion
specifier applies to a pointer to long int argument. An optional L
specifies that a following e, E, f, g, or G conversion specifier applies to a
long double argument. If an h, l, or L appears before any other conver­
sion specifier, the behavior is undefined.

A conversion character (see below) that indicates the type of conversion to
be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer args supplies the field width or precision. The args
that is actually converted is not fetched until the conversion letter is seen, so the
args specifying field width or precision must appear before the args (if any) to be
converted. If the precision argument is negative, it will be changed to zero. A nega­
tive field width argument is taken as a - flag, followed by a positive field width.

In format strings containing the *digits$ form of a conversion specification, a field
width or precision may also be indicated by the sequence *digits$, giving the posi­
tion in the argument list of an integer args containing the field width or precision.

When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N-l)th, be specified in
the format string.

10/92

printf(35) printf(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char *format, ... /* args */);

int fprintf(FILE *strm, const char *format, ... /* args */);

int sprintf(char *s, const char *format, ... /* args */);

DESCRIPTION

10/92

printf places output on the standard output stream stdout.

fprintf places output on strm.
sprintf places output, followed by the null character (\0), in consecutive bytes
starting at s. It is the user's responsibility to ensure that enough storage is available.
Each function returns the number of characters transmitted (not including the \ 0 in
the case of sprintf) or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains three types of objects defined
below:

1. plain characters that are simply copied to the output stream;

2. escape sequences that represent non-graphic characters;

3. conversion specifications.

The following escape sequences produce the associated action on display devices
capable of the action:

\a Alert. Ring the bell.

\b Backspace. Move the printing position to one character before the current
position, unless the current position is the start of a line.

\ f Form feed. Move the printing position to the initial printing position of the
next logical page.

\n Newline. Move the printing position to the start of the next line.

\r Carriage return. Move the printing position to the start of the current line.

\ t Horizontal tab. Move the printing position to the next implementation­
defined horizontal tab position on the current line.

\ v Vertical tab. Move the printing position to the start of the next
implementation-defined vertical tab position.

All forms of the printf functions allow for the insertion of a language-dependent
decimal-point character. The decimal-point character is defined by the program's
locale (category LC_NUMERIC). In the c locale, or in a locale where the decimal­
point character is not defined, the decimal-point character defaults to a period (.).

Each conversion specification is introduced by the character %. After the character
% , the following appear in sequence:

Page 1

popen(3S) (C Development Set) popen(3S)

Page 2

A security hole exists through the IFS and PATH environment variables. Full path­
names should be used (or PATH reset) and IFS should be set to space and tab ("
\t ").

10/92

popen{3S) {C Development Set) popen{3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (const char *command, const char *type);

int pclose (FILE *stream);

DESCRIPTION
popen creates a pipe between the calling program and the command to be exe­
cuted. The arguments to popen are pointers to null-terminated strings. command
consists of a shell command line. type is an 1/0 mode, either r for reading or w for
writing. The value returned is a stream pointer such that one can write to the stan­
dard input of the command, if the 1/0 mode is w, by writing to the file stream [see
intro(3)]; and one can read from the standard output of the command, if the 1/0
mode is r, by reading from the file stream.

A stream opened by popen should be closed by pc lose, which waits for the associ­
ated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and
a type was an output filter.

EXAMPLE
Here is an example of a typical call:

#include <stdio.h>
#include <stdlib.h>

main()
{

char *cmd = "/usr/bin/ls *.c";
char buf[BUFSIZ];
FILE *ptr;

if ((ptr = popen (cmd, "r")) ! = NULL)
while (fgets(buf, BUFSIZ, ptr) !=NULL)

(void) printf ("%s", buf) ;
return O;

This program will print on the standard output [see stdio(3S)] all the file names in
the current directory that have a . c suffix.

SEE ALSO
pipe(2), wai t(2), fclose(3S), fopen(3S), stdio(3S), system(3S)

DIAGNOSTICS

NOTES

10/92

popen returns a null pointer if files or processes cannot be created.

pclose returns -1 if stream is not associated with a popened command.

If the original and popened processes concurrently read or write a common file, nei­
ther should use buffered I/0. Problems with an output filter may be forestalled by
careful buffer flushing, e.g., with fflush [see fclose(3S)].

Page 1

poll(2) poll (2)

POLLNVAL The specified fd value does not belong to an open file. This flag is
only valid in the revents field; it is not used in the events field.

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to be
examined is specified by nfds.

If the value fd is less than zero, events is ignored and revents is set to 0 in that
entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd struc­
ture. Bits are set in the revents bitmask to indicate which of the requested events
are true. This event only examines bands that have been written to at least once. If
none are true, none of the specified bits are set in revents when the poll call
returns. The event flags POLLHUP, POLLERR, and POLLNVAL are always set in
revents if the conditions they indicate are true; this occurs even though these flags
were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll
waits at least timeout milliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is INFTIM (or
-1), poll blocks until a requested event occurs or until the call is interrupted. poll
is not affected by the O_NDELAY and O_NONBLOCK flags.

poll fails if one or more of the following are true:

EA GAIN

EFAULT

EINTR

EINVAL

Allocation of internal data structures failed, but the request may
be attempted again.

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

The argument nfds is greater than {OPEN_MAX}.

SEE ALSO
intro(2), getmsg(2), getrlimit(2), putmsg(2), read(2), wri te(2).

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (that is, file
descriptors for which the revents field is non-zero). A value of 0 indicates that the
call timed out and no file descriptors have been selected. Upon failure, a value of -1
is returned and errno is set to indicate the error.

10/92

poll(2) poll(2)

NAME
poll - input/output multiplexing

SYNOPSIS
#include <stropts.h>
#include <poll.h>

int poll(struct poll *fds, size_t nfds, int timeout);

DESCRIPTION

10/92

poll provides users with a mechanism for multiplexing input/output over a set of
file descriptors that reference open files. poll identifies those files on which a user
can send or receive messages, or on which certain events have occurred.

fds specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one element for each open file
descriptor of interest. The array's elements are pollfd structures, which contain
the following members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

fd specifies an open file descriptor and events and revents are bitmasks con­
structed by an OR of any combination of the following event flags:

POLLIN Data other than high priority data may be read without blocking.
For STREAMS, this flag is set even if the message is of zero length.

POLLRDNORM Normal data (priority band = 0) may be read without blocking.

POLLRDBAND

POLLPRI

POLLO UT

POLLWRNORM

POLLWRBAND

POLLMSG

POLL ERR

POLLHUP

For STREAMS, this flag is set even if the message is of zero length.

Data from a non-zero priority band may be read without blocking
For STREAMS, this flag is set even if the message is of zero length.

High priority data may be received without blocking. For
STREAMS, this flag is set even if the message is of zero length.

Normal data may be written without blocking.

The same as POLLOUT.

Priority data (priority band > 0) may be written.

An M_SIG or M_PCSIG message containing the SIGPOLL signal has
reached the front of the stream head read queue.

An error has occurred on the device or stream. This flag is only
valid in the revents bitmask; it is not used in the events field.

A hangup has occurred on the stream. This event and POLLOUT
are mutually exclusive; a stream can never be writable if a hangup
has occurred. However, this event and POLLIN, POLLRDNORM,
POLLRDBAND, or POLLPRI are not mutually
exclusive. This flag is only valid in the revents bitmask; it is not
used in the events field.

Page 1

plock(2) plock(2)

NAME
plock - lock into memory or unlock process, text, or data

SYNOPSIS
#include <sys/lock.h>

int plock(int op);

DESCRIPTION
plock allows the calling process to lock into memory or unlock its text segment
(text lock), its data segment (data lock), or both its text and data segments (process
lock). Locked segments are immune to all routine swapping. The effective user ID
of the calling process must be super-user to use this call. plock performs the func­
tion specified by op:

PROCLOCK Lock text and data segments into memory (process lock).

TXTLOCK Lock text segment into memory (text lock).

DATLOCK Lock data segment into memory (data lock).

UNLOCK Remove locks.

plock fails and does not perform the requested operation if one or more of the fol­
lowing are true:

EPERM The effective user ID of the calling process is not super-user.

EINVAL

EINVAL

EINVAL

EINVAL

EA GAIN

op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

op is equal to UNLOCK and no lock exists on the calling process.

Not enough memory.

SEE ALSO
exec(2), exi t(2), fork(2), rnemcntl(2)

DIAGNOSTICS

NOTES

10/92

Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

rnerncntl is the preferred interface to process locking.

Page 1

pipe(2) pipe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes [OJ and fildes [1 J . The files associated with fildes [0 J and fildes [1 J are streams
and are both opened for reading and writing. The O_NDELAY and O_NONBLOCK flags
are cleared.

A read from fildes [0 J accesses the data written to fildes [1 J on a first-in-first-out
(FIFO) basis and a read from fildes [1 J accesses the data written to ft Ides [OJ also on a
FIFO basis.

The FD_CLOEXEC flag will be clear on both file descriptors.

Upon successful completion pipe marks for update the st_atirne, st_ctirne, and
st_rntirne fields of the pipe.

pipe fails if:

EMF ILE

ENFILE

If { OPEN_MAX} -1 or more file descriptors are currently open for
this process.

A file table entry could not be allocated.

SEE ALSO
sh(l), fcnt1(2), getrnsg(2), poll(2), putrnsg(2), read(2), wri te(2), strearnio(7).

DIAGNOSTICS

NOTES

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Since a pipe is bi-directional, there are two separate flows of data. Therefore, the
size (st_size) returned by a call to fstat(2) with argumentfildes [OJ orfildes [1] is
the number of bytes available for reading from fildes [OJ or fildes [1 J respectively.
Previously, the size (st_size) returned by a call to fstat() with argumentfildes [1]
(the write-end) was the number of bytes available for reading from fildes [0 J (the
read-end).

Page 1

pfmt(3C) (C Programming Language Utilities) pfmt (3C)

RETURN VALUE
Upon success, pfmt () returns the number of bytes transmitted. Upon failure, it
returns a negative value:

-1 write error to stream.

EXAMPLES
Example 1:

setlabel ("UX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file: %s\n", strerror(errnc

displays the message:
UX:test: ERROR: Cannot open file: No such file or directory

Example 2:
set label ("UX: test") ;
setcat ("test") ;
pfmt (stderr, MM_ERROR, " : 10: Syntax error\n") ;
pfmt (stderr, MM_ACTION, "55: Usage ... \n") ;

displays the message
UX:test: ERROR: Syntax error
UX:test: TO FIX: Usage

SEE ALSO

10/92

addsev(3C), environ(S), gettxt(3C), lfmt(3C), pfmt(l), printf(3C), setcat(3C),
setlabel(3C), setlocale(3C).

Page 3

pfmt(3C)

MM_STD

(C Programming Language Utilities) pfmt(3C)

Output using the standard message format (default,
value 0).

Catalog access control

MM_NOGET Do not retrieve a localized version of format. In this case,
only the <defmsg> part of the format is specified.

MM_ GET Retrieve a localized version of format, from the <catalog>,
using <msgid> as the index and <defmsg> as the default
message (default, value O).

Severity (standard message format only)

Action

MM_HALT

MM_ERROR

MM_WARNING

generates a localized version of HALT.

generates a localized version of ERROR (default, value O).

generates a localized version of WARNING.

MM_INFO generates a localized version of INFO.

Additional severities can be defined. Add-on severities can be defined with
number-string pairs with numeric values from the range [5-255], using
addsev (). The numeric value ORed with other flags will generate the
specified severity.

If the severity is not defined, pfrnt (J used the string SEV=N where N is
replaced by the integer severity value passed in flags.

Multiple severities passed inf flags will not be detected as an error. Any
combination of severities will be summed and the numeric value will cause
the display of either a severity string (if defined) or the string SEV=N (if
undefined).

MM_ACTION specifies an action message. Any severity value is super­
seded and replaced by a localized version of TO FIX.

STANDARD ERROR MESSAGE FORMAT
pfrnt () displays error messages in the following format:

label: severity: text

If no label was defined by a call to setlabel (),the message is displayed in the for­
mat:

severity: text

If pfrnt () is called twice to display an error message and a helpful action or
recovery message, the output can look like:

label : severity: text
label: TO FIX: text

Page 2 10/92

pfmt(3C) (C Programming Language Utilities) pfmt(3C)

NAME
pfmt - display error message in standard format

SYNOPSIS
#include <pfmt.h>

int pfmt(FILE *stream, long flags, char *format, ... /* arg *!);

DESCRIPTION

10/92

pfmt () retrieves a format string from a locale-specific message database (unless
MM_NOGET is specified) and uses it for printf () style formatting of args. The out­
put is displayed on stream.

pfmt () encapsulates the output in the standard error message format (unless
MM_NOSTD is specified, in which case the output is simply printf () like).

If the printf () format string is to be retrieved from a message database, the format
argument must have the following structure:

<catalog> : <msgnum>: <defrnsg>.

If MM_NOGET is specified, only the <defrnsg> part must be specified.

<catalog> is used to indicate the message database that contains the localized ver­
sion of the format string. <catalog> must be limited to 14 characters. These charac­
ters must be selected from a set of all characters values, excluding \ 0 (null) and the
ASCII codes for I (slash) and : (colon).

<msgnum> is a positive number that indicates the index of the string into the mes­
sage database.

If the catalog does not exist in the locale (specified by the last call to setlocale ()
using the LC_ALL or LC_MESSAGES categories), or if the message number is out of
bound, pfmt () will attempt to retrieve the message from the C locale. If this
second retrieval fails, pfmt () uses the <defrnsg> part of the format argument.

If <catalog> is omitted, pfmt () will attempt to retrieve the string from the default
catalog specified by the last call to setcat () . In this case, the format argument has
the following structure:

: <msgnum>: <defrnsg>.

pfmt () will output Message not found!! \n as format string if <catalog> is not a
valid catalog name, if no catalog is specified (either explicitely or via setcat ()),if
<msgnum> is not a valid number, or if no message could be retrieved from the mes­
sage databases, and <defrnsg> was omitted.

The flags determine the type of output (i.e. whether the format should be interpreted
as is or encapsulated in the standard message format), and the access to message
catalogs to retrieve a localized version of format.

The flags are composed of several groups, and can take the following values (one
from each group): Output format control

MM_NOSTD Do not use the standard message format, interpret format
as a printf () format. Only catalog access control flags
should be specified if MM_NOSTD is used; all other flags
will be ignored

Page 1

perror(3C) (C Development Set) perror(3C)

NAME
perror - print system error messages

SYNOPSIS
#include <stdio.h>

void perror (const char *s);

DESCRIPTION
perror produces a message on the standard error output (file descriptor 2),
describing the last error encountered during a call to a system or library function.
The argument string s is printed first, then a colon and a blank, then the message
and a newline. (However, ifs is a null pointer or points to a null string, the colon is
not printed.) To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external vari­
able errno, which is set when errors occur but not cleared when non-erroneous
calls are made.

SEE ALSO
intro(2), fmtmsg(3C), strerror(3C)

10/92 Page 1

pause(2) pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
pause suspends the calling process until it receives a signal. The signal must be
one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function [see signal(2)], the calling process resumes execution
from the point of suspension; with a return value of -1 from pause and errno set to
EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), sigpause(2), wai t(2)

10/92 Page 1

pathfind (3G) pathfind (3G)

NAME
pathfind- search for named file in named directories

SYNOPSIS
cc [f1ag .. .]file ... -lgen [library ...]

#include <libgen.h>

char *pathfind (canst char *path, canst char *name, canst char
*mode);

DESCRIPTION
pathfind searches the directories named in path for the file name. The directories
named in path are separated by semicolons. mode is a string of option letters chosen
from the set rwxfbcdpugks:

Letter Meaning
r readable
w writable
x executable
f normal file
b block special
c character special
d directory
p FIFO(pipe)
u set user ID bit
g set group ID bit
k sticky bit
s size nonzero

Options read, write, and execute are checked relative to the real (not the effective)
user ID and group ID of the current process.

If the file name, with all the characteristics specified by mode, is found in any of the
directories specified by path, then pathfind returns a pointer to a string containing
the member of path, followed by a slash character(/), followed by name.

If name begins with a slash, it is treated as an absolute path name, and path is
ignored.

An empty path member is treated as the current directory .. I is not prepended at
the occurrence of the first match; rather, the unadorned name is returned.

EXAMPLES
To find the ls command using the PATH environment variable:

pathfind (getenv ("PATH"), "ls", "rx")

SEE ALSO
sh(l), test(l), access(2), mknod(2), stat(2), getenv(3C).

DIAGNOSTICS

NOTES

10/92

If no match is found, pathname returns a null pointer, ((char *) O) .

The string pointed to by the returned pointer is stored in a static area that is reused
on subsequent calls to pathfind.

Page 1

panels(3X) panels(3X)

NOTES
The header file panel. h automatically includes the header file curses. h.

SEE ALSO

Page 2

curses(3X), and 3X pages whose names begin with panel_, for detailed routine
descriptions.

10/92

panels(3X) panels(3X)

NAME
panels - character based panels package

SYNOPSIS
#include <panel.h>

DESCRIPTION
The panel library is built using the curses library, and any program using panels
routines must call one of the curses initialization routines such as ini tscr. A
program using these routines must be compiled with - lpanel and - lcurses on
the cc command line.

The panels package gives the applications programmer a way to have depth rela­
tionships between curses windows; a curses window is associated with every
panel. The panels routines allow curses windows to overlap without making
visible the overlapped portions of underlying windows. The initial curses win­
dow, stdscr, lies beneath all panels. The set of currently visible panels is the deck
of panels.

The panels package allows the applications programmer to create panels, fetch
and set their associated windows, shuffle panels in the deck, and manipulate panels
in other ways.

Routine Name Index
The following table lists each panels routine and the name of the manual page on
which it is described.

panels Routine Name

bottom_panel
del_panel
hide_panel
move_panel
new_panel
panel_above
panel_below
panel_hidden
panel_userptr
panel_window
replace_panel
set_panel_userptr
show_panel
top_panel
update_panels

Manual Page Name

panel_top(3X)
panel_new(3X)
panel_show(3X)
panel_move(3X)
panel_new(3X)
panel_above(3X)
panel_above(3X)
panel_show(3X)
panel_userptr(3X)
panel_window(3X)
panel_window(3X)
panel_userptr(3X)
panel_show(3X)
panel_top(3X)
panel_update(3X)

RETURN VALUE

10/92

Each panels routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OK if it executes success­
fully and ERR if it does not.

Page 1

panel_window(3X) panel_window (3X)

NAME
panel_window: panel_window, replace_panel - get or set the current window
of a panels panel

SYNOPSIS
#include <panel.h>

WINDOW *panel_window(PANEL *panel);

int replace_panel(PANEL *panel, WINDOW *win);

DESCRIPTION
panel_window returns a pointer to the window of panel.

replace_panel replaces the current window of panel with win.

RETURN VALUE
panel_window returns NULL on failure.

replace_panel returns OK on successful completion, ERR otherwise.

NOTES
The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3X), panels(3X)

10/92 Page 1

panel_userptr(3X) panel_ userptr (3X)

NAME
panel_userptr: set_panel_userptr, panel_userptr - associate application
data with a panels panel

SYNOPSIS
#include <panel.h>

int set_panel_userptr(PANEL *panel, char *ptr);

char* panel_userptr(PANEL *panel);

DESCRIPTION
Each panel has a user pointer available for maintaining relevant information.

set_panel_userptr sets the user pointer of panel to ptr.
panel_userptr returns the user pointer of panel.

RETURN VALUE
set_panel_userptr returns OK if successful, ERR otherwise.

panel_userptr returns NULL if there is no user pointer assigned to panel.
NOTES

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3X), panels(3X)

10/92 Page 1

panel_update (3X) panel_update (3X)

NAME
panel_update: update_panels - panels virtual screen refresh routine

SYNOPSIS
#include <panel.h>

void update_panels(void);

DESCRIPTION
update_panels refreshes the virtual screen to reflect the depth relationships
between the panels in the deck. The user must use the curses library call doupdate
[see curs_refresh(3X)] to refresh the physical screen.

NOTES
The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3X), panels(3X), curs_refresh(3X)

10/92 Page 1

panel_top (3X) panel_ top (3X)

NAME
panel_top: top__panel, bottom__panel - panels deck manipulation routines

SYNOPSIS
#include <panel.h>

int top__panel(PANEL *panel);

int bottom__panel(PANEL *panel);

DESCRIPTION
top__panel pulls panel to the top of the desk of panels. It leaves the size, location,
and contents of its associated window unchanged.

bottom__panel puts panel at the bottom of the deck of panels. It leaves the size,
location, and contents of its associated window unchanged.

RETURN VALUE

NOTES

All of these routines return the integer OK upon successful completion or ERR upon
error.

The header file panel . h automatically includes the header file curses . h.

SEE ALSO
curses(3X), panels(3X), panel_update(3X)

10/92 Page 1

panel_show (3X) panel_show (3X)

NAME
panel_show: show_panel, hide_panel, panel_hidden - panels deck manipula­
tion routines

SYNOPSIS
#include <panel.h>

int show_panel(PANEL *panel);

int hide_panel(PANEL *panel);

int panel_hidden(PANEL *panel);

DESCRIPTION
show_panel makes panel, previously hidden, visible and places it on top of the
deck of panels.

hide_panel removes panel from the panel deck and, thus, hides it from view. The
internal data structure of the panel is retained.

panel_hidden returns TRUE (1) or FALSE (0) indicating whether or not panel is in
the deck of panels.

RETURN VALUE

NOTES

show_panel and hide_panel return the integer OK upon successful completion or
ERR upon error.

The header file panel . h automatically includes the header file curses . h.

SEE ALSO
curses(3X), panels(3X), panel_update(3X)

10/92 Page 1

panel_new(3X)

NAME
panel_new: new_panel, del_panel - create and destroy panels

SYNOPSIS
#include <panel.h>

PANEL *new_panel(WINDOW *win);

int del_panel(PANEL *panel);

DESCRIPTION

panel_new (3X)

new_panel creates a new panel associated with win and returns the panel pointer.
The new panel is placed on top of the panel deck.

del_panel destroys panel, but not its associated window.

RETURN VALUE
new_panel returns NULL if an error occurs.

del_win returns OK if successful, ERR otherwise.

NOTES
The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3X), panels(3X), panel_update(3X)

10/92 Page 1

panel_move(3X) panel_move (3X)

NAME
panel_move: move_panel - move a panels window on the virtual screen

SYNOPSIS
#include <panel.h>

int move_panel(PANEL *panel, int starty, int startx);

DESCRIPTION
move_panel moves the curses window associated with panel so that its upper
left-hand corner is at starty, startx. See usage note, below.

RETURN VALUE

NOTES

OK is returned if the routine completes successfully, otherwise ERR is returned.

For panels windows, use move_panel instead of the mvwin curses routine. Oth­
erwise, update_panels will not properly update the virtual screen.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3X), panels(3X}, panel_update(3X)

10/92 Page 1

panel_above (3X) panel_above(3X)

NAME
panel_above: panel_above, panel_below - panels deck traversal primitives

SYNOPSIS
#include <panel.h>

PANEL *panel_above(PANEL *panel);

PANEL *panel_below(PANEL *panel);

DESCRIPTION
panel_above returns a pointer to the panel just above panel, or NULL if panel is the
top panel. panel_below returns a pointer to the panel just below panel, or NULL if
panel is the bottom panel.

If NULL is passed for panel, panel_above returns a pointer to the bottom panel in
the deck, and panel_below returns a pointer to the top panel in the deck.

RETURN VALUE
NULL is returned if an error occurs.

NOTES
These routines allow traversal of the deck of currently visible panels.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3X), panels(3X)

10/92 Page 1

p_online (2) (Multiprocessing) p_online(2)

NAME
p_online - turn a processor online or offline

SYNOPSIS
#include <sys/types.h>
#include <sys/processor.h>

p_online (processorid_t processorid, int flag);

DESCRIPTION
p_online brings a processor online or takes it offline. When a processor is online, it
is performing normal operations, scheduling and executing processes, and servic­
ing any 1/0 devices to which it has access.

If flag is P _ONLINE, the named processor is brought online. If the processor was
already online, nothing is done. The previous state of the processor (P _ONLINE or
P_OFFLINE) is returned.

If flag is P _OFFLINE, the named processor is shut down and taken offline. If the
processor was already offline, nothing is done. The previous state of the processor
is returned. An attempt to take a processor offline may fail for several reasons:

One or more processes are bound to the processor.

The processor is the only online processor.

The processor performs some essential system function which cannot be
taken over by another processor.

The calling process must have superuser privileges to bring a processor online or
take it offline.

DIAGNOSTICS
p_online returns P_ONLINE or P_OFFLINE on success, or -1 on failure. Failure
may result from:

EPERM The calling process does not have appropriate privileges.

EINVAL

EBUSY

EIO

The processor id does not refer to an existing processor, or the pro­
cessor for P _OFFLINE cannot be taken offline, or the flag has an
invalid value.

The processorid for P_OFFLINE refers to a processor with processes
bound to it.

The processor to which processor id refers is non-operational.

SEE ALSO
offline(lM), online(lM)

10/92 Page 1

p2open(3G) p2open(3G)

NOTES

Page 2

Buffered writes on fp [O] can make it appear that the command is not listening.
Judiciously placed f flush calls or unbuffering fp [0] can be a big help; see
fclose(3S).

Many commands use buffered output when connected to a pipe. That, too, can
make it appear as if things are not working.

Usage is not the same as for popen, although it is closely related.

10/92

p2open(3G) p2open(3G)

NAME
p2open, p2close - open, close pipes to and from a command

SYNOPSIS
cc (flag .. .]file ... -lgen [library ...]

#include <libgen.h>

int p2open (const char *cmd, FILE *fp[2]);

int p2close (FILE *fp[2]);

DESCRIPTION
p2open forks and execs a shell running the command line pointed to by cmd. On
return, fp [OJ points to a FILE pointer to write the command's standard input and
fp [1 J points to a FILE pointer to read from the command's standard output. In
this way the program has control over the input and output of the command.

The function returns 0 if successful; otherwise it returns -1.

p2close is used to close the file pointers that p2open opened. It waits for the pro­
cess to terminate and returns the process status. It returns 0 if successful; otherwise
it returns -1.

EXAMPLES
#include <stdio.h>
#include <libgen.h>

main(argc,argv)
int argc;
char **argv;

SEE ALSO

FILE *fp[2];
pid_t pid;
char buf [16];

pid=p2open ("/usr /bin/ cat", fp) ;
if (pid == 0) {

fprintf(stderr, "p2open failed\n");
exit(l);

write(fileno(fp[OJ), "This is a test\n", 16);
if(read(fileno(fp[l]), buf, 16) <=0)

fprintf(stderr, "p2open failed\n");
else

write(l, buf, 16);
(void)p2close(fp);

fclose(3S), popen(3S), setbuf(3S)

DIAGNOSTICS
A common problem is having too few file descriptors. p2close returns -1 if the
two file pointers are not from the same p2open.

10/92 Page 1

opensem(2) (Application Compatibility Package) opensem(2)

NAME
opensem - open a semaphore

SYNOPSIS
cc [flag ...] file ... - lx
int opensem(char *sem_name);

DESCRIPTION
opensem opens a semaphore named by sem_name and returns the unique sema­
phore identification number sem_num used by waitsem and sigsem. creatsem
should always be called to initialize the semaphore before the first attempt to open
it.

DIAGNOSTICS
opensem returns a value of -1 if an error occurs. If the semaphore named does not
exist, errno is set to ENOENT. If the file specified is not a semaphore file (that is, a
file previously created by a process using a call to creatsem), errno is set to ENOT­
NAM. If the semaphore has become invalid due to inappropriate use, errno is set to
ENAVAIL.

SEE ALSO

NOTES

10/92

creatsem(2), sigsem(2), wai tsem(2)

It is not advisable to open the same semaphore more than once. Although it is pos­
sible to do this, it may result in a deadlock.

Page 1

open(2) open(2)

NOTE

ENOTDIR

ENXIO

ENXIO

ENXIO

EROFS

A component of the path prefix is not a directory.

The named file is a character special or block special file, and
the device associated with this special file does not exist.

O_NDELAY or O_NONBLOCK is set, the named file is a FIFO,
O_WRONLY is set, and no process has the file open for reading.

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT, or O_TRUNC is set in oflag (if the
file does not exist).

On some previous versions of the UNIX operating system an application could not
open a file for writing which was the executable for a running process. System V
Release 4 does not enforce that restriction.

SEE ALSO
intro(2), chmod(2), close(2), creat(2), dup(2), exec(2), fcntl(2), getrlimi t(2),
lseek(2), read(2), getmsg(2), putmsg(2), stat(2), umask(2), write(2), stat(S)

DIAGNOSTICS

Page 4

Upon successful completion, the file descriptor is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

10/92

open(2) open(2)

10/92

The named file is opened unless one or more of the following are true:

EACCES The file does not exist and write permission is denied by the
parent directory of the file to be created.

EACCES

EA CC ES

EA CC ES

EAGAIN

EA GAIN

EEXIST

EFAULT

EINTR

EIO

EISDIR

ELOOP

EMF ILE

EMULTIHOP

ENAMETOOLONG

ENFILE

ENO ENT

ENO ENT

ENOLINK

ENOMEM

ENOS PC

ENOS PC

ENO SR

O_TRUNC is specified and write permission is denied

A component of the path prefix denies search permission.

oflag permission is denied for an existing file.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod(2)].

O_NDELAY or O_NONBLOCK is set, the named file is a
STREAMS device and there is another process trying to open
it at the same time.

O_CREAT and O_EXCL are set, and the named file exists.

path points outside the allocated address space of the pro­
cess.

A signal was caught during the open system call.

A hangup or error occurred during the open of the
STREAMS-based device.

The named file is a directory and oflag is write or read/write.

Too many symbolic links were encountered in translating
path.

The process has too many open files [see getrlimit(2)].

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

The system file table is full.

O_CREAT is not set and the named file does not exist.

O_CREAT is set and a component of the path prefix does not
exist or is the null pathname.

path points to a remote machine, and the link to that
machine is no longer active.

The system is unable to allocate a send descriptor.

O_CREAT and O_EXCL are set, and the file system is out of
inodes.

O_CREAT is set and the directory that would contain the file
cannot be extended.

Unable to allocate a stream.

Page 3

open(2) open(2)

Page 2

O_CREAT

O_TRUNC

O_EXCL

If the file exists, this flag has no effect, except as noted under
O_EXCL below. Otherwise, the file is created and the owner ID of
the file is set to the effective user ID of the process, the group ID of
the file is set to the effective group ID of the process, or if the
S_ISGID bit is set in the directory in which the file is being created,
the file's group ID is set to the group ID of its parent directory. If
the group ID of the new file does not match the effective group ID
or one of the supplementary groups IDs, the S_ISGID bit is cleared.
The access permission bits of the file mode are set to the value of
mode, modified as follows [see creat(2)]:

All bits set in the file mode creation mask of the process are
cleared [see umask(2)].

The "save text image after execution bit" of the mode is
cleared [see chrnod(2)].

If the file exists, its length is truncated to 0 and the mode and owner
are unchanged. O_TRUNC has no effect on FIFO special files or direc­
tories.

If O_EXCL and O_CREAT are set, open will fail if the file exists. The
check for the existence of the file and the creation of the file if it
does not exist is atomic with respect to other processes executing
open naming the same filename in the same directory with O_EXCL
and O_CREAT set.

When opening a STREAMS file, oflag may be constructed from O_NDELAY or
O_NONBLOCK OR-ed with either O_RDONLY, O_WRONLY ' or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them. The
values of O_NDELAY and O_NONBLOCK affect the operation of STREAMS drivers and
certain system calls [see read(2), getmsg(2), putmsg(2), and wri te(2)]. For drivers,
the implementation of O_NDELAY and O_NONBLOCK is device specific. Each
STREAMS device driver may treat these options differently.

When open is invoked to open a named stream, and the connld module [see
connld(7)] has been pushed on the pipe, open blocks until the server process has
issued an I_RECVFD ioctl [see streamio(7)] to receive the file descriptor.

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.

The file pointer used to mark the current position within the file is set to the begin­
ning of the file.

The new file descriptor is the lowest numbered file descriptor available and is set to
remain open across exec system calls [see fcntl(2)].

Certain flag values can be set following open as described in fcnt1(2).

If O_CREAT is set and the file did not previously exist, upon successful completion
open marks for update the st_atime, st_ctime and st_mtime fields of the file and
the st_ctime and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion open
marks for update the st_ctime and st_mtime fields of the file.

10/92

open (2) open(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *path, int oflag, ... /* mode_t mode*/);

DESCRIPTION

10/92

path points to a path name naming a file. open opens a file descriptor for the
named file and sets the file status flags according to the value of oflag. oflag values
are constructed by OR-ing Flags from the following list (only one of the first three
flags below may be used):

O_RDONLY

O_WRONLY

O_RDWR

Open for reading only.

Open for writing only.

Open for reading and writing.

O_NDELAY or O_NONBLOCK

O_APPEND

O_SYNC

O_NOCTTY

These flags may affect subsequent reads and writes [see read(2)
and write(2)]. If both O_NDELAY and O_NONBLOCK are set,
O_NONBLOCK will take precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY or O_NONBLOCK is set: An open for reading-only
will return without delay; an open for writing-only will return
an error if no process currently has the file open for reading.

If O_NDELAY and O_NONBLOCK are clear: An open for reading­
only will block until a process opens the file for writing; an
open for writing-only will block until a process opens the file
for reading.

When opening a block-special or character-special file:

If O_NDELAY or O_NONBLOCK is set: The open will return
without waiting for the device to be ready or available; subse­
quent behavior of the device is device specific.

If O_NDELAY and O_NONBLOCK are clear: The open will block
until the device is ready or available.

If set, the file pointer will be set to the end of the file prior to each
write.

When opening a regular file, this flag affects subsequent writes. If
set, each wri te(2) will wait for both the file data and file status to
be physically updated.

If set and the file is a terminal, the terminal will not be allocated as
the calling process's controlling terminal.

Page 1

offsetof (3C) (C Development Set)

NAME
offsetof - offset of structure member

SYNOPSIS
#include <stddef.h>

size_t offsetof (type, member-designator) ;

DESCRIPTION

offsetof (3C)

offsetof is a macro defined in stddef. h which expands to an integral constant
expression that has type size_t, the value of which is the offset in bytes, to the
structure member (designated by member-designator), from the beginning of its
structure (designated by type).

10/92 Page 1

nlsrequest (3N) (Networking Support Utilities) nlsrequest (3N)

NAME
nlsrequest - format and send listener service request message

SYNOPSIS
#include <listen.h>

int nlsrequest (int fd, char *service_code);

extern int _nlslog, t_errno;
extern char *_nlsnnsg;

DESCRIPTION
Given a virtual circuit to a listener process lfd) and a service code of a server pro­
cess, nlsrequest formats and sends a service request message to the remote listener
process requesting that it start the given service. nlsrequest waits for the remote
listener process to return a service request response message, which is made available to
the caller in the static, null terminated data buffer pointed to by _nlsnnsg. The ser­
vice request response message includes a success or failure code and a text message.
The entire message is printable.

SEE ALSO

FILES

nlsadrnin(l), t_error(3)

/usr/lib/libnls.a
/usr/lib/libnsl_s.a

DIAGNOSTICS

NOTES

10/92

The success or failure code is the integer return code from nlsrequest. Zero indi­
cates success, other negative values indicate nlsrequest failures as follows:

-1: Error encountered by nlsrequest, see t_errno.

Postive values are error return codes from the listener process. Mnemonics for these
codes are defined in <listen. h>.

2: Request message not interpretable.
3 : Request service code unknown.
4 : Service code known, but currently disabled.

If non-null, _nlsnnsg contains a pointer to a static, null terminated character buffer
containing the service request response message. Note that both _nlsnnsg and the
data buffer are overwritten by each call to nlsrequest.

If _nlslog is non-zero, nlsrequest prints error messages on stderr. Initially,
_nlslog is zero.

nlsrequest cannot always be certain that the remote server process has been suc­
cessfully started. In this case, nlsrequest returns with no indication of an error
and the caller will receive notification of a disconnect event via a T_LOOK error
before or during the first t_snd or t_rcv call.

Page 1

nlsprovider (3N) (Networking Support Utilities)

NAME
nlsprovider - get name of transport provider

SYNOPSIS
char *nlsprovider();

DESCRIPTION

nlsprovider (3N)

nl sprovider returns a pointer to a null terminated character string which contains
the name of the transport provider as placed in the environment by the listener pro­
cess. If the variable is not defined in the environment, a NULL pointer is returned.

The environment variable is only available to server processes started by the
listener process.

SEE ALSO
nlsadmin(lM)

DIAGNOSTICS

FILES

10/92

If the variable is not defined in the environment, a NULL pointer is returned.

/usr/lib/libnls.a
/usr/lib/libnsl_s.a

Page 1

nlsgetcall (3N) (Networking Support Utilities) nlsgetcall (3N)

NAME
nlsgetcall - get client's data passed via the listener

SYNOPSIS
#include <sys/tiuser.h>

struct t_call *nlsgetcall (int fd);

DESCRIPTION

NOTES

nlsgetcall allows server processes started by the listener process to access the
client's t_call structure, that is, the sndcall argument of t_connect(3N).

The t_call structure returned by nlsgetcall can be released using t_free(3N).

nlsgetcall returns the address of an allocated t_call structure or NULL if a
t_call structure cannot be allocated. If the t_alloc succeeds, undefined environ­
ment variables are indicated by a negative Zen field in the appropriate netbuf struc­
ture. A Zen field of zero in the netbuf structure is valid and means that the original
buffer in the listener's t_call structure was NULL.

The Zen field in the netbuf structure is defined as being unsigned. In order to check
for error returns, it should first be cast to an int.

The listener process limits the amount of user data (udata) and options data (opt) to
128 bytes each. Address data addr is limited to 64 bytes. If the original data was
longer, no indication of overflow is given.

Server processes must call t_sync(3N) before calling this routine.

DIAGNOSTICS

FILES

A NULL pointer is returned if a t_call structure cannot be allocated by t_alloc.
t_errno can be inspected for further error information. Undefined environment
variables are indicated by a negative length field (Zen) in the appropriate netbuf
structure.

/usr/lib/libnsl_s.a
/usr/lib/libnls.a

SEE ALSO
nlsadmin(l), getenv(3), t_connect(3N), t_alloc(3N), t_free(3N), t_error(3N)

10/92 Page 1

nlist (3) (BSD Compatibility Package) nlist (3)

NAME
nlist - get entries from symbol table

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <nlist.h>

int nlist(filename, nl)
char *filename;
struct nlist *nl;

DESCRIPTION
nlist examines the symbol table from the executable image whose name is
pointed to by filename, and selectively extracts a list of values and puts them in the
array of nlist structures pointed to by nl. The name list pointed to by nl consists
of an array of structures containing names, types and values. The n_name field of
each such structure is taken to be a pointer to a character string representing a sym­
bol name. The list is terminated by an entry with a NULL pointer (or a pointer to a
NULL string) in the n_name field. For each entry in nl, if the named symbol is
present in the executable image's symbol table, its value and type are placed in the
n_value and n_type fields. If a symbol cannot be located, the corresponding
n_type field of nl is set to zero.

RETURN VALUE
Upon normal completion, nlist returns the number of symbols that were not
located in the symbol table. If an error occurs, nlist returns -1 and sets all of the
n_type fields in members of the array pointed to by nl to zero.

SEE ALSO
a.out(4).

10/92 Page 1

nlist(3E) (ELF Library) nlist(3E)

NAME
nlist - get entries from name list

SYNOPSIS
cc [flag .. .]file ... -lelf [library ...]
#include <nlist.h>

int nlist (const char *filename, struct nlist *nl);

DESCRIPTION
nlist examines the name list in the executable file whose name is pointed to by
filename, and selectively extracts a list of values and puts them in the array of nlist
structures pointed to by nl. The name list nl consists of an array of structures con­
taining names of variables, types, and values. The list is terminated with a null
name, that is, a null string is in the name position of the structure. Each variable
name is looked up in the name list of the file. If the name is found, the type, value,
storage class, and section number of the name are inserted in the other fields. The
type field may be set to 0 if the file was not compiled with the -g option to cc{l).
nlist will always return the information for an external symbol of a given name if
the name exists in the file. If an external symbol does not exist, and there is more
than one symbol with the specified name in the file (such as static symbols defined
in separate files), the values returned will be for the last occurrence of that name in
the file. If the name is not found, all fields in the structure except n_name are set to
0.

This function is useful for examining the system name list kept in the file
/stand/unix. In this way programs can obtain system addresses that are up to
date.

SEE ALSO
a.out(4)

DIAGNOSTICS

10/92

All value entries are set to 0 if the file cannot be read or if it does not contain a valid
name list.

nlist returns 0 on success, -1 on error.

Page 1

nl_types(5) nl_types(5)

NAME
nl_types - native language data types

SYNOPSIS
#include <nl_types.h>

DESCRIPTION
This header file contains the following definitions:

nl_catd used by the message catalog functions catopen, catgets and
catclose to identify a catalog

nl i tern used by nl_langinfo to identify items of langinfo data. Values
for objects of type nl_i t em are defined in 1 ang info . h

NL_SETD used by gencat when no $set directive is specified in a message
text source file. This constant can be used in subsequent calls to
catgets as the value of the set identifier parameter.

NL_MGSMAX maximum number of messages per set

NL_SETMAX maximum number of sets per catalog

NL_TEXTMAX maximum size of a message

DEF _NLSPATH the default search path for locating catalogs

SEE ALSO
gencat(lM), catgets(3C), catopen(3C), nl_langinfo(3C), langinfo(5).

10/92 Page 1

nl_langinfo (3C) nl_langinfo(3C)

NAME
nl_langinfo - language information

SYNOPSIS
#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (nl_item item);

DESCRIPTION
nl_langinfo returns a pointer to a null-terminated string containing information
relevant to a particular language or cultural area defined in the programs locale.
The manifest constant names and values of item are defined by langinfo. h.

For example:

nl_langinfo (ABDAY_l);

would return a pointer to the string "Dim" if the identified language was French
and a French locale was correctly installed; or "Sun" if the identified language was
English.

SEE ALSO
gettxt(3C), localeconv(3C), setlocale(3C), strftime(3C), langinfo(S),
nl_types(S)

DIAGNOSTICS

NOTES

10/92

If setlocale has not been called successfully, or if langinfo data for a supported
language is either not available or item is not defined therein, then nl_langinfo
returns a pointer to the corresponding string in the C locale. In all locales,
nl_langinfo returns a pointer to an empty string if item contains an invalid set­
ting.

The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl_langinfo may overwrite the array.

The nl_langinfo function is built upon the functions localeconv, strftime, and
gettxt [see langinfo(S)]. Where possible users are advised to use these interfaces
to the required data instead of using calls to nl_langinfo.

Page 1

nice(3C) (BSD Compatibility Package) nice(3C)

NAME
nice - change priority of a process

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int nice (incr)
int incr;

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get
less service than normal. Priority 10 is recommended to users who wish to execute
long-running programs without undue impact on system performance.

Negative increments are illegal, except when specified by the privileged user. The
priority is limited to the range -20 (most urgent) to 20 (least). Requests for values
above or below these limits result in the scheduling priority being set to the
corresponding limit.

The priority of a process is passed to a child process by fork(2). For a privileged
process to return to normal priority from an unknown state, nice should be called
successively with arguments -40 (goes to priority -20 because of truncation), 20 (to
get to 0), then 0 (to maintain compatibility with previous versions of this call).

RETURN VALUE
Upon successful completion, nice returns 0. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
The priority is not changed if:

EACCES The value of incr specified was negative, and the effective user ID is not
the privileged user.

SEE ALSO
nice(l), renice(lM), priocnt1(2), fork(2), getpriority(2), priocnt1(2).

10/92 Page 1

nice(2) nice(2)

NAME
nice - change priority of a time-sharing process

SYNOPSIS
#include <unistd.h>

int nice(int incr);

DESCRIPTION
nice allows a process in the time-sharing scheduling class to change its priority.
The priocntl system call is a more general interface to scheduler functions.

nice adds the value of incr to the nice value of the calling process. A process's nice
value is a non-negative number for which a more positive value results in lower
CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the
system. (The default nice value is 20.) Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

EPERM

EINVAL

nice fails and does not change the nice value if incr is negative or
greater than 39 and the effective user ID of the calling process is not
super-user.

nice fails if called by a process in a scheduling class other than
time-sharing.

SEE ALSO
nice(l), exec(2), priocntl(2).

DIAGNOSTICS

10/92

Upon successful completion, nice returns the new nice value minus 20. Otherwise,
a value of-1 is returned and errno is set to indicate the error.

Page 1

11 •

netdir(3N) netdir(3N)

The specific actions of each option follow.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast, if the tran­
sport supports broadcast. fd is a file descriptor into the tran­
sport (that is, the result of a t_open of I dev /udp).
pointer _to _args is not used. If this completes, broadcast
operations may be performed on file descriptor fd.

ND SET_RESERVEDPORT
Allows the application to bind to a reserved port, if that con­
cept exists for the transport provider. fd is a file descriptor
into the transport (it must not be bound to an address). If
pointer _to _args is NULL, fd will be bound to a reserved port. If
pointer _to_args is a pointer to a netbuf structure, an attempt
will be made to bind to a reserved port on the specified
address.

ND_CHECK_RESERVEDPORT

ND_MERGEADDR

Used to verify that an address corresponds to a reserved
port, if that concept exists for the transport provider. fd is
not used. pointer _to_args is a pointer to a netbuf structure
that contains an address. This option returns 0 only if the
address specified in pointer _to _args is reserved.

Used to take a "local address" (like the 0. 0. O. 0 address
that TCP uses) and return a "real address" that client
machines can connect to. fd is not used. pointer_to_args is a
pointer to a struct nd_mergearg, which has the following
members:

char *s_uaddr; /* server's universal address */
char *c_uaddr; /* client's universal address */
char *m_uaddr; /*merged universal address */

s_uaddr is something like O. 0. O. O .1.12, and, if the call is
successful, m_uaddr will be set to something like
192 .11.109. 89 .1.12. For most transports, m_uaddr is
exactly what s_uaddr is.

The netdir__perror() routine prints an error message on the standard output stat­
ing why one of the name-to-address mapping routines failed. The error message is
preceded by the string given as an argument.

The netdir_sperror routine returns a string containing an error message stating
why one of the name-to-address mapping routines failed.

SEE ALSO
getnetpath(3N).

10/92 Page 3

netdir(3N) netdir(3N)

Page 2

HOST_SELF Represents the address to which local programs will bind their end­
points. HOST_SELF differs from the host name provided by gethost­
name(), which represents the address to which remote programs will
bind their endpoints.

HOST_ANY Represents any host accessible by this transport provider. HOST_ANY
allows applications to specify a required service without specifying a
particular host name.

HOST_BROADCAST
Represents the address for all hosts accessible by this transport pro­
vider. Network requests to this address will be received by all
machines.

All fields of the nd_hostserv structure must be initialized.

To find all available transports, call the netdir_getbyname routine with each
netconfig structure returned by the getnetpath call.

The netdir_getbyaddr routine maps addresses to service names. This routine
returns a list of host and service pairs that would yield this address. If more than
one tuple of host and service name is returned then the first tuple contains the pre­
ferred host and service names. The nd_hostservlist structure contains the fol­
lowing members:

int h_cnt;
struct hostserv

/* the number of nd_hostservs */
h_hostservs; / the entries */

The netdir_free structure is used to free the structures allocated by the name to
address translation routines.

The netdir_options routine is used by a network service to return an optimized
network addresses to a client. This routine takes the universal address of the end­
point that the service has bound to, which is pointed to by the s_uaddr parameter,
and the address of the endpoint that a request came in on, which is pointed to by
the c_uaddr paramter, to create an optimized address for communication with the
service. The service address should be an address returned by the
netdir_getbyname call, specified with the special host name HOST_SELF.

The taddr2uaddr and uaddr2taddr routines support translation between univer­
sal addresses and TLI type netbufs. They take and return character string pointers.
The taddr2uaddr routine returns a pointer to a string that contains the universal
address and returns NULL if the conversion is not possible. This is not a fatal condi­
tion as some transports may not support a universal address form.

option, fd, and pointer _to_args are passed to the netdir_options routine for the
transport specified in netconfigp. There are four values for option:

ND_SET_BROADCAST
ND_SET_RESERVEDPORT
ND_CHECK_RESERVEDPORT
ND_MERGEADDR

If a transport provider does not support an option, netdir_options returns -1
and sets _nderror to ND_NOCTRL.

10/92

,,

netdir(3N) netdir(3N)

NAME
netdir_getbyname, netdir_getbyaddr, netdir_free, taddr2uaddr,
uaddr2taddr, netdir_perror, netdir_sperror - generic transport name-to­
address translation

SYNOPSIS
#include <netdir.h>

int netdir_getbyname(struct netconfig *config, struct nd_hostserv
*service, struct nd_addrlist **addrs);

int netdir_getbyaddr(struct netconfig *config, struct
nd_hostservlist **service, struct netbuf *netaddr);

void netdir_free(void *ptr, int ident);

char *taddr2uaddr(struct netconfig *config, struct netbuf *addr);

struct netbuf *uaddr2taddr(struct netconfig *config, char *uaddr);

int netdir_options(struct netconfig *netconfig, int option, int fd,
char *pointer_to_args);

void netdir_perror(char *s);

char *netdir_sperror(void);

DESCRIPTION

10/92

These routines provide a generic interface for name-to-address mapping that will
work with all transport protocols. This interface provides a generic way for pro­
grams to convert transport specific addresses into common structures and back
again.

The netdir_getbyname routine maps the machine name and service name in the
nd_hostserv structure to a collection of addresses of the type understood by the
transport identified in the netconfig structure. This routine returns all addresses
that are valid for that transport in the nd_addrlist structure. The netconfig
structure is described on the netconfig(4) manual page. The nd_hostserv and
nd_addrlist structures have the following elements.

nd_addrlist structure:
int n_cnt;
struct netbuf *n_addrs;

/* number of netbufs */
/* the netbufs */

nd_hostserv structure:
char *h_host; /* the host name */
char *h_serv; /* the service name */

netdir_getbyname accepts some special-case host names. These host names are
hints to the underlying mapping routines that define the intent of the request. This
information is required for some transport provider developers to provide the
correct information back to the caller. The host names are defined in netdir. h.
The currently defined host names are:

Page 1

ndbm(3) ndbm(3)

for (key= dbm_firstkey(db); key.dptr !=NULL; key= dbm_nextkey(db))

dbm_error returns non-zero when an error has occurred reading or writing the
data base. dbm_clearerr resets the error condition on the named data base.

SEE ALSO
open(2), dbm(3X)

RETURN VALUE

NOTES

Page 2

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0) dptr.
If dbm_store is called with a flags value of DBM_INSERT and finds an existing entry
with the same key, it returns 1.

The . pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(l), cat(l), tar(l), ar(l)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key I content pair must not exceed the internal block size
(currently 4096 bytes). Moreover all key I content pairs that hash together must fit
on a single block. dbm_store will return an error in the event that a disk block fills
with inseparable data.

dbm_delete does not physically reclaim file space, although it does make it avail­
able for reuse.

The order of keys presented by dbrn_firstkey and dbm_nextkey depends on a
hashing function.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

10/92

ndbm(3) ndbm(3)

NAME
ndbrn: dbrn_clearerr, dbrn_close, dbrn_delete, dbrn_error, dbrn_fetch,
dbrn_firstkey, dbrn_nextkey, dbrn_open, dbrn_store - data base subroutines

SYNOPSIS
/usr/ucb/cc [flag ...]file

#include <ndbrn.h>

typedef struct {
char *dptr;
int dsize;

datum;
int dbrn_clearerr(DBM *db);
void dbrn_close(DBM *db);
int dbrn_delete(DBM *db, datum key);
int dbrn_error(DBM *db);
datum dbrn_fetch(DBM *db, datum key);
datum dbrn_firstkey(DBM *db);
datum dbrn_nextkey(DBM *db)
DBM *dbrn_open(char *file, int flags, int mode);
int dbrn_store(DBM *db, datum key, datum content, int flags);

DESCRIPTION

10/92

These functions maintain key I content pairs in a data base. The functions will han­
dle very large (a billion blocks) data base and will access a keyed item in one or two
file system accesses. This package replaces the earlier dbrn(3X) library, which
managed only a single data base.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The data base is stored in two files. One file is a directory con­
taining a bit map and has . dir as its suffix. The second file contains all data and
has . pag as its suffix.

Before a data base can be accessed, it must be opened by dbrn_open. This will open
and/or create the files.file.dir and.file.pag depending on the flags parameter [see
open(2)].

A data base is closed by calling dbrn_close.

Once open, the data stored under a key is accessed by dbrn_fetch and data is
placed under a key by dbrn_store. The flags field can be either DBM_INSERT or
DBM_REPLACE. DBM_INSERT will only insert new entries into the data base and will
not change an existing entry with the same key. DBM_REPLACE will replace an exist­
ing entry if it has the same key. A key (and its associated contents) is deleted by
dbrn_delete. A linear pass through all keys in a data base may be made, in an
(apparently) random order, by use of dbrn_firstkey and dbrn_nextkey.
dbrn_firstkey will return the first key in the data base. dbrn_nextkey will return
the next key in the data base. This code will traverse the data base:

Page 1

nap(2) (XENIX Compatibility Package) nap(2)

NAME
nap - suspends execution for a short interval

SYNOPSIS
cc [flag ... J file ... -lx
int nap (long period);

DESCRIPTION
The current process is suspended from execution for at least the number of mil­
liseconds specified by period, or until a signal is received.

DIAGNOSTICS
On successful completion, a long integer indicating the number of milliseconds
actually slept is returned. If the process received a signal while napping, the return
value will be -1, and errno will be set to EINTR.

SEE ALSO
sleep(2)

NOTES

10/92

This function is driven by the system clock, which in most cases has a granularity of
tens of milliseconds.

Page 1

munmap(2) munmap(2)

NAME
munrnap - unmap pages of memory

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int munrnap(caddr_t addr, size_t len);

DESCRIPTION
The function munrnap removes the mappings for pages in the range [addr, addr +
len). Further references to these pages will result in the delivery of a SIGSEGV sig­
nal to the process.

The function mmap often performs an implicit munrnap.

RETURN VALUE
Upon successful completion, the function munrnap returns a value of O; otherwise, it
returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function munrnap fails and sets errno to:

EINVAL

EINVAL

EINVAL

if addr is not a multiple of the page size as returned by sysconf.

if addresses in the range [addr, addr + len) are outside the valid range
for the address space of a process.

The argument len has a value less than or equal to O.

SEE ALSO
mmap(2), sysconf(3C)

10/92 Page 1

msync(3C) msync(3C)

NAME
msync - synchronize memory with physical storage

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int msync(caddr_t addr, size_t len, int flags);

DESCRIPTION
The function msync writes all modified copies of pages over the range [addr, addr +
Zen) to their backing storage locations. msync optionally invalidates any copies so
that further references to the pages will be obtained by the system from their back­
ing storage locations. The backing storage for a modified MAP _SHARED mapping is
the file the page is mapped to; the backing storage for a modified MAP_PRIVATE
mapping is its swap area.

flags is a bit pattern built from the following values:

MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronous writes
MS_INVALIDATE invalidate mappings

If MS_ASYNC is set, msync returns immediately once all write operations are
scheduled; if MS_SYNC is set, msync does not return until all write operations are
completed.

MS_INVALIDATE invalidates all cached copies of data in memory, so that further
references to the pages will be obtained by the system from their backing storage
locations.

The effect of msync (addr, Zen, flags) is equivalent to:

memcntl (addr, Zen, MC_SYNC, flags, 0, 0)

SEE ALSO
memcntl(2), mmap(2), sysconf(3C)

DIAGNOSTICS

NOTES

10/92

Upon successful completion, the function msync returns O; otherwise, it returns -1
and sets errno to indicate the error.

msync should be used by programs that require a memory object to be in a known
state, for example, in building transaction facilities.

Page 1

msgop(2) msgop(2)

EINVAL

EACCES

EINVAL

E2BIG

ENOMSG

EFAULT

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

msgsz is less than 0.

The length of mtext is greater than msgsz and
(msgflg&MSG_NOERROR) is false.

The queue does not contain a message of the desired type and
(msgtyp&IPC_NOWAIT) is true.

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2)).

msg_qnum is decremented by 1.

msg_lrpid is set to the process ID of the calling process.

msg_rtime is set to the current time.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2)

DIAGNOSTICS

10/92

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to
the calling process and errno is set to EINTR. If they return due to removal of msqid
from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of 0.

msgrcv returns the number of bytes actually placed into mtext.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

Page 3

msgop(2) msgop(2)

Page 2

EACCES Operation permission is denied to the calling process [see
intro(2)].

mtype is less than 1. EINVAL

EAGAIN The message cannot be sent for one of the reasons cited above and
(msgflg&IPC_NOWAIT) is true.

EINVAL

EFAULT

msgsz is less than zero or greater than the system-imposed limit.

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro(2)].

msg_qnurn is incremented by 1.

msg_lspid is set to the process ID of the calling process.

msg_stime is set to the current time.

msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user defined structure pointed to by
msgp. The structure must contain a message type field followed by the area for the
message text (see the structure mymsg above). mtype is the received message's type
as specified by the sending process. mtext is the text of the message. msgsz
specifies the size in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg&MSG_NOERROR) is true. The truncated part
of the message is lost and no indication of the truncation is given to the calling pro­
cess.

msgtyp specifies the type of message requested as follows:

If msgtyp is 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than
or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

If (msgflg&IPC_NOWAIT) is true, the calling process returns immediately with
a return value of -1 and sets errno to ENOMSG.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs, errno is set
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes exe­
cution in the manner prescribed in signal(2).

msgrcv fails and receives no message if one or more of the following are true:

10/92

msgop(2) msgop(2)

NAME
msgop: msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp,
size_t msgsz, int msgflg);

int msgrcv(int msqid, void *msgp,
size_t msgsz, long msgtyp, int msgflg);

DESCRIPTION

10/92

msgsnd sends a message to the queue associated with the message queue identifier
specified by msqid. msgp points to a user defined buffer that must contain first a
field of type long integer that will specify the type of the message, and then a data
portion that will hold the text of the message. The following is an example of
members that might be in a user defined buffer.

long mtype; /* message type */
char mtext[J; /*message text*/

mtype is a positive integer that can be used by the receiving process for message
selection. mtext is any text of length msgsz bytes. msgsz can range from 0 to a sys­
tem imposed maximum.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes [see
intro(2)].

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg&IPC_NOWAIT) is true, the message is not sent and the calling pro­
cess returns immediately.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

msqid is removed from the system [see msgctl(2)]. When this
occurs, errno is set to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes execu­
tion in the manner prescribed in signal(2).

msgsnd fails and sends no message if one or more of the following are true:

EINVAL msqid is not a valid message queue identifier.

Page 1

msgget(2) msgget(2)

NAME
rnsgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/rnsg.h>

int rnsgget(key_t key, int rnsgflg);

DESCRIPTION
rnsgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure [see
intro(2)] are created for key if one of the following are true:

key is IPC_PRIVATE.

key does not already have a message queue identifier associated with it, and
(msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is
initialized as follows:

rnsg_perrn. cu id, rnsg_perrn. uid, msg_perrn. cg id, and rnsg_perrn. gid are
set to the effective user ID and effective group ID, respectively, of the calling
process.

The low-order 9 bits of rnsg_perrn.rnode are set to the low-order 9 bits of
msgflg.
rnsg_qnurn, rnsg_lspid, rnsg_lrpid, rnsg_stirne, and rnsg_rtirne are set to 0.

rnsg_ctirne is set to the current time.

rnsg_qbytes is set to the system limit.

rnsgget fails if one or more of the following are true:

EACCES A message queue identifier exists for key, but operation permis­
sion [see intro(2)] as specified by the low-order 9 bits of msgflg
would not be granted.

ENO ENT

ENOS PC

EEXIST

A message queue identifier does not exist for key and
(msgflg&IPC_CREAT) is false.

A message queue identifier is to be created but the system­
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

A message queue identifier exists for key but (msgflg&IPC_CREAT)
and (msgflg&IPC_EXCL) are both true.

SEE ALSO
intro(2), msgct1(2), rnsgop(2), stdipc(3C)

DIAGNOSTICS

10/92

Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

Page 1

msgctl (2)

EPERM

SEE ALSO

msgctl (2)

cmd is IPC_SET, an attempt is being made to increase to the value
of msg_qbytes, and the effective user ID of the calling process is
not that of super user.

intro(2), msgget(2), msgop(2)

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

msgctl (2) msgctl (2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, ... /* struct msqid_ds *buf */);

DESCRIPTION

10/92

msgctl provides a variety of message control operations as specified by cmd. The
following cmds are available:

IPC_STAT Place the current value of each member of the data structure associ­
ated with msqid into the structure pointed to by buf. The contents of
this structure are defined in intro(2).

IPC_SET Set the value of the following members of the data structure associ­
ated with msqid to the corresponding value found in the structure
pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only access permission bits */
msg_qbytes

This cmd can only be executed by a process that has an effective user
ID equal to either that of super user, or to the value of
msg_perm. cu id or msg_perm. uid in the data structure associated
with msqid. Only super user can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the sys­
tem and destroy the message queue and data structure associated
with it. This cmd can only be executed by a process that has an
effective user ID equal to either that of super user, or to the value of
msg_perm. cuid or msg_perm. uid in the data structure associated
with msqid.

msgctl fails if one or more of the following are true:

EACCES cmd is IPC_STAT and operation permission is denied to the calling
process [see intro(2)].

EFAULT

EINVAL

EINVAL

EINVAL

EOVERFLOW

EPERM

buf points to an illegal address.

msqid is not a valid message queue identifier.

cmd is not a valid command.

cmd is IPC_SET and msg_perm. uid ormsg_perm.gid is not valid.

cmd is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by buf

cmd is IPC_RMID or IPC_SET. The effective user ID of the calling
process is not that of super user, or the value of msg_perm. cu id
or msg_perm. uid in the data structure associated with msqid.

Page 1

mprotect (2) mprotect (2)

NAME
mprotect - set protection of memory mapping

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int mprotect(caddr_t addr, size_t len, int prot);

DESCRIPTION
The function mprotect changes the access protections on the mappings specified
by the range [addr, addr +Zen) to be that specified by prot. Legitimate values for prot
are the same as those permitted for mmap and are defined in sys/mman. has:

PROT_READ /* page can be read */
PROT_WRITE /* page can be written */
PROT_EXEC /* page can be executed */
PROT_NONE /* page can not be accessed */

See the System V Application Binary Interface for further information concerning com­
binations of the PROT_READ' PROT_WRITE, and PROT_EXEC flags.

RETURN VALUE
Upon successful completion, the function mprotect returns a value of O; otherwise,
it returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function mprotect fails and sets errno to:

EACCES if prot specifies a protection that violates the access permission the
process has to the underlying memory object.

EA GAIN

EINVAL

EINVAL

ENOMEM

if prot specifies PROT_WRITE over a MAP_PRIVATE mapping and there
are insufficient memory resources to reserve for locking the private
page.

if addr is not a multiple of the page size as returned by sysconf.

The argument Zen has a value less than or equal to 0.

if addresses in the range [addr, addr + Zen) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

When mprotect fails for reasons other than EINVAL, the protections on some of the
pages in the range [addr, addr +Zen) may have been changed. If the error occurs on
some page at addr2, then the protections of all whole pages in the range [addr,
addr2] will have been modified.

SEE ALSO
memcntl(2), mmap(2), plock(2), mlock(3C), mlockall(3C), sysconf(3C)

10/92 Page 1

mp(3) (BSD Compatibility Package) mp(3)

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are
stored using the defined type MINT. Pointers to a MINT should be initialized using
the function i tom, which sets the initial value to n. Alternatively, xtom may be
used to initialize a MINT from a string of hexadecimal digits. mfree may be used to
release the storage allocated by the i tom and xtom routines.

madd, msub and mul t assign to their third arguments the sum, difference, and pro­
duct, respectively, of their first two arguments. mdi v assigns the quotient and
remainder, respectively, to its third and fourth arguments. sdi vis like mdi v except
that the divisor is an ordinary integer. msqrt produces the square root and
remainder of its first argument. mcmp compares the values of its arguments and
returns O if the two values are equal, >0 if the first argument is greater than the
second, and <0 if the second argument is greater than the first. rpow calculates a
raised to the power b, while pow calculates this reduced modulo m. min and mout
do decimal input and output. gcd finds the greatest common divisor of the first
two arguments, returning it in the third argument. mtox provides the inverse of
xtom. To release the storage allocated by mtox, use free [see malloc(3)].

Use the - libmp loader option to obtain access to these functions.

RETURN VALUE
Illegal operations and running out of memory produce messages and core images.

FILES
/usr/ucblib/libmp.a

SEE ALSO
malloc(3)

Page 2 10/92

mp(3)

NAME

(BSD Compatibility Package) mp(3)

mp: madd,msub,mult,mdiv,mcmp,min,mout,pow,gcd, rpow,msqrt, sdiv, itom,
xtom, mtox, mfree - multiple precision integer arithmetic

SYNOPSIS

10/92

cc [flag ...]file ... -lmp

#include <mp.h>

madd(a, b, c)
MINT *a, *b, *c;

msub(a, b, c)
MINT *a, *b, *c;

mult(a, b, c)
MINT *a, *b, *c;

mdiv(a, b, q, r)
MINT *a, *b, *q, *r;

mcmp(a,b)
MINT *a, *b;

min(a)
MINT *a;

mout(a)
MINT *a;

pow(a, b, c, d)
MINT *a, *b, *c, *d;

gcd(a, b, c)
MINT *a, *b, *c;

rpow(a, n, b)
MINT *a, *b;
short n;

msqrt(a, b, r)
MINT *a, *b, *r;

sdiv(a, n, q, r)
MINT *a, *q;
short n, *r;

MINT *itom(n)
short n;

MINT *xtom (s)
char *s;

char *mtox(a)
MINT *a;

void mfree(a)
MINT *a;

Page 1

mount(2)

ENO ENT

ENOTDIR

EPERM

EREMOTE

ENOLINK

EMULTIHOP

ENOTBLK

ENXIO

ENOTDIR

EROFS

ENOS PC

SEE ALSO

mount(2)

None of the named files exists or is a null pathname.

A component of a path prefix is not a directory.

The effective user ID is not super-user.

spec is remote and cannot be mounted.

path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

spec is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

spec is write protected and mflag requests write permission.

The file system state in the super-block is not FsOKAY and
mflag requests write permission.

rnount(lM), sysfs(2), urnount(2), fs(4).

DIAGNOSTICS

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

mount(2) mount(2)

NAME
mount - mount a file system

SYNOPSIS
#include <sys/types.h>
#include <sys/mount.h>

int mount (const char *spec, const char *dir, int mflag,
... /* char *fstyp, const char *dataptr, int datalen*/);

DESCRIPTION

10/92

mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names. fstyp is the file system type number. The sysfs(2) system
call can be used to determine the file system type number. If both the MS_DATA and
MS_FSS flag bits of mfiag are off, the file system type defaults to the root file system
type. Only if either flag is on is fstyp used to indicate the file system type.

If the MS_DATA flag is set in mflag the system expects the dataptr and datalen argu­
ments to be present. Together they describe a block of file-system specific data at
address dataptr of length datalen. This is interpreted by file-system specific code
within the operating system and its format depends on the file system type. If a
particular file system type does not require this data, dataptr and datalen should
both be zero. Note that MS_FSS is obsolete and is ignored if MS_DATA is also set, but
if MS_FSS is set and MS_DATA is not, dataptr and datalen are both assumed to be zero.

After a successful call to mount, all references to the file dir refer to the root direc­
tory on the mounted file system.

The low-order bit of mfiag is used to control write permission on the mounted file
system: if 1, writing is forbidden; otherwise writing is permitted according to indi­
vidual file accessibility.

mount may be invoked only by the super-user. It is intended for use only by the
mount utility.

mount fails if one or more of the following are true:

EBUSY dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

EBUSY

EBUSY

EFAULT

EINVAL

ELOOP

ENAMETOOLONG

The device associated with spec is currently mounted.

There are no more mount table entries.

spec, dir, or datalen points outside the allocated address space
of the process.

The super block has an invalid magic number or the fstyp is
invalid.

Too many symbolic links were encountered in translating
spec or dir.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

Page 1

monitor(3C) (C Development Set) monitor (3C)

FILES

The default call to monitor is shown below:

where:
monitor (&eprol, &etext, wbuf, wbufsz, 600);

eprol is the beginning of the user's program when linked with cc -p [see
end(3C)];

etext is the end of the user's program [see end(3C)];

wbuf is an array of WORD with wbufsz elements;

wbufsz is computed using the bufsize formula shown above with BARSIZE of
8;

600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribu­
tion histogram that uses profil for the entire program, initially reserves room for
600 call count cells in buffer, and provides for enough histogram cells to generate
significant distribution-measurement results. [For more information on the effects
of bufsize on execution-distribution measurements, see profi1(2).]

To stop execution monitoring and write the results to a file, use the following:

monitor((int (*) ()) 0, (int (*) ()) 0, (WORD *) 0, 0, 0);

Use prof to examine the results.

mon.out

SEE ALSO

NOTE

Page 2

cc(l), prof(l), profil(2), end(3C)

Additional calls to monitor after main has been called and before exit has been
called will add to the function-call count capacity, but such calls will also replace
and restart the profil histogram computation.

The name of the file written by monitor is controlled by the environment variable
PRO FD IR. If PRO FD IR does not exist, the file mon. out is created in the current direc­
tory. If PROFDIR exists but has no value, monitor does no profiling and creates no
output file. If PROFDIR is dirname, and monitor is called automatically by compila­
tion with cc -p, the file created is dirname/pid.progname where progname is the
name of the program.

10/92

monltor(3C) (C Development Set) monitor(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (int (*lowpc) (), int (*highpc) (),WORD *buffer,
size_t bufsize, size_t nfunc);

DESCRIPTION

10/92

monitor is an interface to profil, and is called automatically with default parame­
ters by any program created by cc -p. Except to establish further control over
profiling activity, it is not necessary to explicitly call monitor.

When used, monitor is called at least at the beginning and the end of a program.
The first call to monitor initiates the recording of two different kinds of execution­
profile information: execution-time distribution and function call count.
Execution-time distribution data is generated by profil and the function call
counts are generated by code supplied to the object file (or files) by cc -p. Both
types of information are collected as a program executes. The last call to monitor
writes this collected data to the output file man. out.

lowpc and highpc are the beginning and ending addresses of the region to be
profiled.

buffer is the address of a user-supplied array of WORD (WORD is defined in the header
file mon.h). buffer is used by monitor to store the histogram generated by profil
and the call counts.

bufsize identifies the number of array elements in buffer.

nfunc is the number of call count cells that have been reserved in buffer. Additional
call count cells will be allocated automatically as they are needed.

bufsize should be computed using the following formula:

where:

size_of_buffer =
sizeof(struct hdr) +
nfunc * sizeof(struct cnt) +
((highpc-lowpc)/BARSIZE) * sizeof(WORD) +
sizeof(WORD) - 1 ;

bufsize = (size_of_buffer I sizeof(WORD)) ;

lowpc, highpc, nfunc are the same as the arguments to monitor;

BARSIZE is the number of program bytes that correspond to each histogram
bar, or cell, of the profil buffer;

the hdr and cnt structures and the type WORD are defined in the header file
mon.h.

Page 1

mmap(2) mmap(2)

NOTES

ENOMEM MAP_FIXED was specified and the range [addr, addr + len) exceeds that
allowed for the address space of a process, or MAP_FIXED was not
specified and there is insufficient room in the address space to effect
the mapping.

mrnap allows access to resources via address space manipulations instead of the
read/write interface. Once a file is mapped, all a process has to do to access it is
use the data at the address to which the object was mapped. Consider the
following pseudo-code:

fd=open(...)
lseek(fd, offset)
read(fd, buf, len)
/* use data in buf */

Here is a rewrite using mrnap:

fd=open(...)
address= mrnap((caddr_t) 0, len, (PROT_READ I PROT_WRITE),

MAP_PRIVATE, fd, offset)
/* use data at address */

SEE ALSO

10/92

fcnt1(2), fork(2), mprotect(2), munmap(2), plock(2), sysconf(2), lockf(3C),
mlocka11(3C)

Page 3

mmap(2) mmap(2)

Note that the private copy is not created until the first write; until then, other users
who have the object mapped MAP _SHARED can change the object.

MAP_FIXED informs the system that the value of pa must be addr, exactly. The use
of MAP _FIXED is discouraged, as it may prevent an implementation from making
the most effective use of system resources.

When MAP_FIXED is not set, the system uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen will be an area of the address space which
the system deems suitable for a mapping of /en bytes to the specified object. All
implementations interpret an addr value of zero as granting the system complete
freedom in selecting pa, subject to constraints described below. A non-zero value
of addr is taken to be a suggestion of a process address near which the mapping
should be placed. When the system selects a value for pa, it will never place a map­
ping at address 0, nor will it replace any extant mapping, nor map into areas con­
sidered part of the potential data or stack segments.

The parameter off is constrained to be aligned and sized according to the value
returned by sysconf. When MAP _FIXED is specified, the parameter addr must also
meet these constraints. The system performs mapping operations over whole
pages. Thus, while the parameter Zen need not meet a size or alignment constraint,
the system will include, in any mapping operation, any partial page specified by
the range [pa, pa + Zen).

The system will always zero-fill any partial page at the end of an object. Further,
the system will never write out any modified portions of the last page of an object
which are beyond its end. References to whole pages following the end of an object
will result in the delivery of a SIGBUS signal. SIGBUS signals may also be delivered
on various file system conditions, including quota exceeded errors.

RETURN VALUE
On success, mmap returns the address at which the mapping was placed (pa). On
failure it returns (caddr_t) -1 and sets errno to indicate an error.

ERRORS

Page 2

Under the following conditions, mmap fails and sets errno to:

EAGAIN The mapping could not be locked in memory.

EBADF fd is not open.

EACCES

ENXIO

F.1NVAL

EINVAL

EINVAL

ENO DEV

fd is not open for read, regardless of the protection specified, or fd is
not open for write and PROT_WRITE was specified for a MAP _SHARED
type mapping.

Addresses in the range [off, off+ /en) are invalid for fd.

The arguments addr (if MAP_FIXED was specified) or off are not multi­
ples of the page size as returned by sysconf.

The field in flags is invalid (neither MAP _PRIVATE or MAP _SHARED).

The argument /en has a value less than or equal to 0.

fd refers to an object for which mmap is meaningless, such as a termi­
nal.

10/92

mmap(2) mmap(2)

NAME
mmap - map pages of memory

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot,
int flags, int fd, off_t off);

DESCRIPTION

10/92

The function mmap establishes a mapping between a process's address space and a
virtual memory object. The format of the call is as follows:

pa = mmap (addr, Zen, prot, flags, fd, off) ;
mmap establishes a mapping between the process's address space at an address pa
for Zen bytes to the memory object represented by the file descriptor fd at offset off
for Zen bytes. The value of pa is an implementation-dependent function of the
parameter addr and values of flags, further described below. A successful mmap call
returns pa as its result. The address ranges covered by [pa, pa + Zen) and [off, off+
Zen) must be legitimate for the possible (not necessarily current) address space of a
process and the object in question, respectively. mmap cannot grow a file.

The mapping established by mmap replaces any previous mappings for the process's
pages in the range [pa, pa + Zen).

The parameter prot determines whether read, write, execute, or some combination
of accesses are permitted to the pages being mapped. The protection options are
defined in sys/mman.h as:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page can not be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE is
often implemented as PROT_READ I PROT_WRITE and PROT_EXEC as
PROT_READ I PROT_EXEC. However, no implementation will permit a write to
succeed where PROT_WRITE has not been set. The behavior of PROT_WRITE can be
influenced by setting MAP _PRIVATE in the flags parameter, described below. See the
System V Application Binary Interface for further information concerning combina­
tions of the PROT_READ, PROT_WRITE, and PROT_EXEC flags.

The parameter flags provides other information about the handling of the mapped
pages. The options are defined in sys /mman. has:

MAP _SHARED Share changes.
MAP _PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

MAP _SHARED and MAP _PRIVATE describe the disposition of write references to the
memory object. If MAP _SHARED is specified, write references will change the
memory object. If MAP_PRIVATE is specified, the initial write reference will create a
private copy of the memory object page and redirect the mapping to the copy.
Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. The mapping
type is retained across a fork(2).

Page 1

mlockall (3C) mlockall (3C)

NAME
mlockall, munlockall - lock or unlock address space

SYNOPSIS
#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

DESCRIPTION
The function mlockall causes all pages mapped by an address space to be locked
in memory. The effect of mlockall (flags) is equivalent to:

memcntl(O, 0, MC_LOCKAS,flags, 0, 0)

The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

The function munlockall removes address space locks and locks on mappings in
the address space. The effect of munlockall is equivalent to:

memcntl(O, 0, MC_UNLOCKAS, 0, 0, 0)

Locks established with mlockall are not inherited by a child process after a fork
and are not nested.

SEE ALSO
fork(2), memcnt1(2), mlock(3C), mmap(2), plock(2), sysconf(3C)

DIAGNOSTICS

NOTES

10/92

Upon successful completion, the functions mlockall and munlockall return O;
otherwise, they return -1 and set errno to indicate the error.

Use of mlockall and munlockall requires that the user have appropriate
privileges.

Page 1

mlock(3C) mlock(3C)

NAME
mlock, munlock - lock (or unlock) pages in memory

SYNOPSIS
#include <sys/types.h>

int mlock(caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

DESCRIPTION
The function mlock uses the mappings established for the address range [addr, addr
+ Zen) to identify pages to be locked in memory. The effect of mlock (addr, Zen) is
equivalent to memcntl (addr, Zen, MC_LOCK, 0, 0, 0) .

munlock removes locks established with mlock. The effect of munlock (addr, len)
is equivalent to memcntl (addr, len, MC_UNLOCK, 0, 0, 0).

Locks established with mlock are not inherited by a child process after a fork and
are not nested.

SEE ALSO
fork(2), memcntl(2), mmap(2), mlocka11(3C), plock(2), sysconf(3C)

DIAGNOSTICS

NOTES

10/92

Upon successful completion, the functions mlock and munlock return O; otherwise,
they return-1 and set errno to indicate the error.

Use of mlock and munlock requires that the user have appropriate privileges.

Page 1

mktime(3C) (C Development Set) mktime(3C)

#include <time.h>

static char *const wday[] = {

} ;

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

struct tm time_str;
/* ... *I
time_str.tm_year= 2001 - 1900;
time_str.tm_mon = 7 - l;
time_str. tm_mday = 4;
time_str.tm_hour= O;
time_str.trn_rnin = O;
tirne_str.trn_sec l;
tirne_str.trn_isdst -1;
if (rnktime(&tirne_str)== -1)

tirne_str.trn_wday=7;
printf ("%s\n", wday [tirne_str. tm_wday]);

SEE ALSO

NOTES

Page 2

ctirne(3C), getenv(3C), tirnezone(4)

tm_year of the trn structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

10/92

mktime(3C) (C Development Set) mktime(3C)

NAME
mkt ime - converts a tm structure to a calendar time

SYNOPSIS
#include <time.h>

time_t rnktime (struct tm *timeptr);

DESCRIPTION
rnktime converts the time represented by the tm structure pointed to by timeptr into
a calendar time (the number of seconds since 00:00:00 UTC, January 1, 1970).

The tm structure has the following format.

struct tm {
int tm_sec; I* seconds after the minute [O, 61] *I
int tm_min; I* minutes after the hour [0' 59] *I
int tm_hour; I* hour since midnight [0, 23] *I
int tm_mday; I* day of the month [l, 31] *I
int tm_mon; I* months since January [O, 11] *I
int tm_year; I* years since 1900 *I
int tm_wday; I* days since Sunday [0, 6] *I
int tm_yday; I* days since January 1 [0, 365] *I
int tm_isdst; I* flag for daylight savings time *I

} ;

In addition to computing the calendar time, rnktime normalizes the supplied tm
structure. The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not res­
tricted to the ranges indicated in the definition of the structure. On successful com­
pletion, the values of the tm_wday and tm_yday components are set appropriately,
and the other components are set to represent the specified calendar time, but with
their values forced to be within the appropriate ranges. The final value of tm_mday
is not set until tm_mon and tm_year are determined.

The original values of the components may be either greater than or less than the
specified range. For example, a tm_hour of -1 means 1 hour before midnight,
tm_mday of 0 means the day preceding the current month, and tm_mon of -2 means
2 months before January of tm_year.

If tm_isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise, if
tm_isdst is zero, the original values are assumed to be in the main timezone and
are converted to the alternate timezone if the main timezone is not valid. If
tm_isdst is negative, the correct timezone is determined and the components are
not adjusted.

Local timezone information is used as if rnktime had called tzset.

mktime returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-1.

EXAMPLE
What day of the week is July 4, 2001?

#include <stdio.h>

10/92 Page 1

mktemp(3C) (C Development Set)

NAME
mktemp - make a unique file name

SYNOPSIS
#include <stdlib.h>

char *mktemp(char *template);

DESCRIPTION

mktemp(3C)

mktemp replaces the contents of the string pointed to by template with a unique file
name, and returns template. The string in template should look like a file name with
six trailing Xs; mktemp will replace the Xs with a character string that can be used to
create a unique file name.

SEE ALSO
tmpfile(3S), tmpnam(3S)

DIAGNOSTIC
mktemp will assign to template the empty string if it cannot create a unique name.

NOTES
mktemp can create only 26 unique file names per process for each unique template.

10/92 Page 1

mkstemp(3) (BSD Compatibility Package) mkstemp(3)

NAME
rnkstemp - make a unique file name

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

rnkstemp(template)
char *template;

DESCRIPTION
mks temp creates a unique file name, typically in a temporary filesystem, by replac­
ing template with a unique file name, and returns a file descriptor for the template
file open for reading and writing. The string in template should contain a file name
with six trailing xs; mks temp replaces the Xs with a letter and the current process ID.
The letter will be chosen so that the resulting name does not duplicate an existing
file. mks temp avoids the race between testing whether the file exists and opening it
for use.

SEE ALSO
getpid(2), open(2), tmpfile(3S), tmpnam(3S).

RETURN VALUE

NOTES

10/92

mks temp returns -1 if no suitable file could be created.

It is possible to run out of letters.

mks temp actually changes the template string which you pass; this means that you
cannot use the same template string more than once - you need a fresh template
for every unique file you want to open.

When mks temp is creating a new unique filename it checks for the prior existence of
a file with that name. This means that if you are creating more than one unique
filename, it is bad practice to use the same root template for multiple invocations of
mks temp.

Page 1

rpc_clnt_calls (3N) rpc_clnt_calls (3N)

Note: broadcast file descriptors are limited in size to the maximum transfer
size of that transport. For Ethernet, this value is 1500 bytes.

enum clnt_stat
rpc_call(const char *host, const u_long prognum,

const u_long versnum, const u_long procnum,
const xdrproc_t inproc, const xdrproc_t outproc,
const char *in, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure's parameters, and outproc is used to decode
the procedure's results. nettype can be any of the values listed on rpc(3N).
If nettype is NULL, it defaults to netpath. This routine returns O if it
succeeds, or the value of enum clnt_stat cast to an integer if it fails. Use
the clnt_perrno routine to translate failure statuses into messages.

Note: rpc_call uses the first available transport belonging to the class net­
type, on which it can create a connection. You do not have control of
timeouts or authentication using this routine. There is also no way to des­
troy the client handle.

SEE ALSO
printf(3S), rpc(3N), rpc_clnt_auth(3N), rpc_clnt_create(3N)

10/92 Page 3

rpc_clnt_create (3N) rpc_clnt_create (3N)

NAME
rpc_clnt_create: clnt_control,clnt_create,clnt_destroy,
clnt_dg_create,clnt_pcreateerror,clnt_raw_create,
clnt_spcreateerror,clnt_tli_create,clnt_tp_create,clnt_vc_create­
library routines for dealing with creation and manipulation of CLIENT handles

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client
calls a procedure to send a data packet to the server. Upon receipt of the packet,
the server calls a dispatch routine to perform the requested service, and then sends
back a reply.

Routines

10/92

See rpc(3N) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t
clnt_control(CLIENT *clnt, canst u_int req, char *info);

A function macro used to change or retrieve various information about a
client object. req indicates the type of operation, and info is a pointer to the
information. For both connectionless and connection-oriented transports,
the supported values of req and their argument types and what they do are:

CLSET_TIMEOUT struct timeval set total timeout
CLGET_TIMEOUT struct timeval get total timeout

Note: if you set the timeout using clnt_control, the timeout parameter
passed to clnt_call will be ignored in all future calls.

CLGET_FD
CLGET_SVC_ADDR
CLSET_FD_CLOSE

CLSET_FD_NCLOSE

int
struct netbuf
int

int

get the associated file descriptor
get servers address
close the file descriptor when
destroying the client handle
[see clnt_destroy]
do not close the file
descriptor when destroying
the client handle

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control returns 1 on success and O on failure.

Page 1

rpc_clnt_create (3N) rpc_clnt_create (3N)

Page 2

CLIENT *
clnt_create(const char *host, const u_long prognum,

const u_long versnum, const char *nettype);

void

Generic client creation routine for program prognum and version versnum.
host identifies the name of the remote host where the server is located. net­
type indicates the class of transport protocol to use. The transports are tried
in left to right order in NETPATH variable or in top to down order in the
netconfig database.

clnt_create tries all the transports of the nettype class available from the
NETPATH environment variable and the the netconfig database, and chooses
the first successful one. Default timeouts are set, but can be modified using
clnt_control.

clnt_destroy(CLIENT *clnt);

A function macro that destroys the client's RPC handle. Destruction usu­
ally involves deallocation of private data structures, including clnt itself.
Use of clnt is undefined after calling clnt_destroy. If the RPC library
opened the associated file descriptor, or CLSET_FD_CLOSE was set using
clnt_control, it will be closed.

CLIENT *
clnt_dg_create(const int fd, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,

void

const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver­
sion versnum; the client uses a connectionless transport. The remote pro­
gram is located at address svcaddr. The parameter fd is an open and bound
file descriptor. This routine will resend the call message in intervals of 15
seconds until a response is received or until the call times out. The total
time for the call to time out is specified by clnt_call [see clnt_call in
rpc_clnt_calls(3N)]. This routine returns NULL if it fails. The retry time
out and the total time out periods can be changed using clnt_control.
The user may set the size of the send and receive buffers with the parame­
ters sendsz and recvsz; values of O choose suitable defaults.

clnt_pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle could
not be created. The message is prepended with the string s and a colon, and
appended with a newline.

10/92

rpc_clnt_create (3N) rpc_clnt_create (3N)

10/92

CLIENT *
clnt_raw_create(const u_long prognum, const u_long versnum);

char *

This routine creates a toy RPC client for the remote program prognum and
version versnum. The transport used to pass messages to the service is a
buffer within the process's address space, so the corresponding RPC server
should live in the same address space; [see svc_raw_create in
rpc_clnt_calls(3N)]. This allows simulation of RPC and acquisition of
RPC overheads, such as round trip times, without any kernel interference.
This routine returns NULL if it fails. clnt_raw_create should be called
after svc_raw_create.

clnt_spcreateerror(const char *s);

Like clnt_pcreateerror, except that it returns a string instead of printing
to the standard error. A newline is not appended to the message in this
case.

Note: returns a pointer to static data that is overwritten on each call.

CLIENT *
clnt_tli_create(const int fd, const struct netconfig *netconf,

const struct netbuf *svcaddr, u const_long prognum,
const u_long versnum, const u_int sendsz,
const u_int recvsz);

This routine creates an RPC client handle for the remote program prognum
and version versnum. The remote program is located at address svcaddr. If
svcaddr is NULL and it is connection-oriented, it is assumed that the file
descriptor is connected. For connectionless transports, if svcaddr is NULL,
RPC_UNKNOWNADDR error is set. fd is a file descriptor which may be open,
bound and connected. If it is RPC_ANYFD, it opens a file descriptor on the
transport specified by netconf. If netconf is NULL, a RPC_UNKNOWNPROTO error
is set. If fd is unbound, then it will attempt to bind the descriptor. The user
may specify the size of the buffers with the parameters sendsz and recvsz;
values of O choose suitable defaults. Depending upon the type of the tran­
sport (connection-oriented or connectionless), clnt_tli_create calls
appropriate client creation routines. This routine returns NULL if it fails.
The clnt_pcreaterror routine can be used to print the reason for failure.
The remote rpcbind service [see rpcbind(lM)] will not be consulted for the
address of the remote service.

CLIENT *
clnt_tp_create(const char *host, const u_long prognum,

const u_long versnum, const struct netconfig *netconf) ;

clnt_tp_create creates a client handle for the transport specified by
netconf. Default options are set, which can be changed using clnt_control
calls. The remote rpcbind service on the host host is consulted for the
address of the remote service. This routine returns NULL if it fails. The
clnt_pcreaterror routine can be used to print the reason for failure.

Page 3

rpc_clnt_create (3N) rpc_clnt_create(3N)

CLIENT *
clnt_vc_create(const int fd, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,
const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver­
sion versnum; the client uses a connection-oriented transport. The remote
program is located at address svcaddr. The parameter fd is an open and
bound file descriptor. The user may specify the size of the send and receive
buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual
address of the remote program. clnt_vc_create will not consult the
remote rpcbind service for this information.

SEE ALSO
rpcbind(lM), rpc(3N), rpc_clnt_auth(3N), rpc_clnt_calls(3N)

Page 4 10/92

rpc_svc_calls (3N) rpc_svc_calls (3N)

NAME
rpc_svc_calls: rpc_reg,svc_reg,svc_unreg,xprt_register,
xprt_unregister - library routines for registering servers

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to regis­
ter themselves with rpcbind [see rpcbind(lM)], and it associates the given pro­
gram and version number with the dispatch function.

Routines

10/92

See rpc(3N) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int
rpc_reg(const u_long prognum, const u_long versnum,

const u_long procnum, const char *(*procname),
const xdrproc_t inproc, const xdrproc_t outproc,
const char *nettype);

int

Register program prognum, procedure procname, and version versnum with
the RPC service package. If a request arrives for program prognum, version
versnum, and procedure procnum, procname is called with a pointer to its
parameter(s); procname should return a pointer to its static result(s); inproc
is used to decode the parameters while outproc is used to encode the results.
Procedures are registered on all available transports of the class nettype. net­
type defines a class of transports which can be used for a particular applica­
tion. If nettype is NULL, it defaults to net path. This routine returns 0 if the
registration succeeded, -1 otherwise.

svc_reg(const SVCXPRT *xprt, const u_long prognum, const u_long versnum,
const void (*dispatch), const struct netconfig *netconf);

void

Associates prognum and versnum with the service dispatch procedure,
dispatch. If netconf is NULL, the service is not registered with the rpcbind
service. If netconf is non-zero, then a mapping of the triple [prognum, vers-
num, netconf->nc_netid] to xprt->xp_ltaddr is established with the local
rpcbind service.

The svc_reg routine returns 1 if it succeeds, and 0 otherwise

svc_unreg(const u_long prognum, const u_long versnum);

Remove, from the rpcbind service, all mappings of the double [prognum,
versnum] to dispatch routines, and of the triple [prognum, versnum, *] to net­
work address.

Page 1

rpc_svc_calls (3N) rpc_svc_calls(3N)

void
xprt_register(const SVCXPRT *xprt);

void

After RPC service transport handle xprt is created, it is registered with the
RPC service package. This routine modifies the global variable svc_fds.
Service implementors usually do not need this routine.

xprt_unregister(const SVCXPRT *xprt);

Before an RPC service transport handle xprt is destroyed, it unregisters itself
with the RPC service package. This routine modifies the global variable
svc_fds. Service implementors usually do not need this routine.

SEE ALSO

Page 2

rpcbind(lM), rpcbind(3N), rpc(3N), rpc_svc_err(3N), rpc_svc_create(3N),
rpc_svc_reg(3N)

10/92

rpc_svc_create (3N) rpc_svc_create (3N)

NAME
rpc_svc_create: svc_create,svc_destroy,svc_dg_create,svc_fd_create,
svc_raw_create,svc_tli_create,svc_tp_create,svc_vc_create-library
routines for dealing with the creation of server handles

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on servers across the network. These routines deal with the
creation of service handles. Once the handle is created, the server can be invoked
by calling svc_run.

Routines

10/92

See rpc(3N) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int
svc_create(

void

const void (*dispatch) (const struct svc_req * const SVCXPRT *),
const u_long prognum, const u_long versnum,
const char *nettype);

svc_create creates server handles for all the transports belonging to the
class nettype.
nettype defines a class of transports which can be used for a particular appli­
cation. The transports are tried in left to right order in NETPATH variable or
in top to down order in the netconfig database.

If nettype is NULL, it defaults to netpath. svc_create registers itself with
the rpcbind service [see rpcbind(lM)]. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires cal­
ling svc_run [see svc_run in rpc_svc_reg(3N)]. If it succeeds,
svc_create returns the number of server handles it created, otherwise it
returns 0 and the error message is logged.

svc_destroy(SVCXPRT *xprt);

A function macro that destroys the RPC service transport handle xprt. Des­
truction usually involves deallocation of private data structures, including
xprt itself. Use of xprt is undefined after calling this routine.

SVCXPRT *
svc_dg_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connectionless RPC service handle, and returns a
pointer to it. This routine returns NULL if it fails, and an error message is
logged. sendsz and recvsz are parameters used to specify the size of the
buffers. If they are 0, suitable defaults are chosen. The file descriptor fd
should be open and bound.

Note: since connectionless-based RPC messages can only hold limited
amount of encoded data, this transport cannot be used for procedures that
take large arguments or return huge results.

Page 1

rpc_svc_create(3N) rpc_svc_create (3N)

Page 2

SVCXPRT *
svc_fd_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a service on top of any open and bound descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descrip­
tor for a connection-oriented transport. sendsz and recvsz indicate sizes for
the send and receive buffers. If they are 0, a reasonable default is chosen.
This routine returns NULL, if it fails, and an error message is logged.

SVCXPRT *
svc_raw_create(void);

This routine creates a toy RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process's address space,
so the corresponding RPC client should live in the same address space; [see
clnt_raw_create in rpc_clnt_create]. This routine allows simulation of
RPC and acquisition of RPC overheads (such as round trip times), without
any kernel interference. This routine returns NULL if it fails, and an error
message is logged.

SVCXPRT *
svc_tli_create(const int fd, const struct netconfig *netconf,

const struct t_bind *bindaddr, const u_int sendsz,
const u_int recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fd is
the file descriptor on which the service is listening. If fd is RPC_ANYFD, it
opens a file descriptor on the transport specified by netconf. If the file
descriptor is unbound, it is bound to the address specified by bindaddr, if
bindaddr is non-null, otherwise it is bound to a default address chosen by
the transport. In the case where the default address is chosen, the number
of outstanding connect requests is set to 8 for connection-oriented tran­
sports. The user may specify the size of the send and receive buffers with
the parameters sendsz and recvsz; values of O choose suitable defaults. This
routine returns NULL if it fails, and an error message is logged.

SVCPRT *
svc_tp_create(const void (*dispatch) (const RQSTP *, const SVCXPRT *),

const u_long prognum, const u_long versnum,
const struct netconfig *netconf);

svc_tp_create creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is
a remote procedure call for the given prognum and versnum; this requires cal­
ling svc_run. svc_tp_create returns the service handle if it succeeds, oth­
erwise a NULL is returned, and an error message is logged.

10/92

rpc _ svc _create (3N) rpc_svc_create (3N)

SVCXPRT *
svc_vc_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connection-oriented RPC service and returns a pointer
to it. This routine returns NULL if it fails, and an error message is logged.
The users may specify the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. The file
descriptor fd should be open and bound.

SEE ALSO

10/92

rpcbind(lM), rpc(3N), rpc_svc_calls(3N), rpc_svc_err(3N),
rpc_svc_reg(3N)

Page 3

rpc _ svc _err (3N) rpc_svc_err(3N)

NAME
rpc_svc_err: svcerr_auth,svcerr_decode,svcerr_noproc,svcerr_noprog,
svcerr_progvers, svcerr_systemerr, svcerr_weakauth - library routines for
server side remote procedure call errors

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines can be called by the server side dispatch function if there is any error
in the transaction with the client.

Routines

10/92

See rpc(3N) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

void
svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why);

void

Called by a service dispatch routine that refuses to perform a remote pro­
cedure call due to an authentication error.

svcerr_decode(const SVCXPRT *xprt);

void

Called by a service dispatch routine that cannot successfully decode the
remote parameters [see svc_getargs in rpc_svc_reg(3N)].

svcerr_noproc(const SVCXPRT *xprt);

void

Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

svcerr_noprog(const SVCXPRT *xprt);

void

Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

svcerr_progvers(const SVCXPRT *xprt);

void

Called when the desired version of a program is not registered with the
RPC package. Service implementors usually do not need this routine.

svcerr_systemerr(const SVCXPRT *xprt);

Called by a service dispatch routine when it detects a system error not
covered by any particular protocol. For example, if a service can no longer
allocate storage, it may call this routine.

Page 1

rpc_svc_err(3N) rpc_svc_err(3N)

void
svcerr_weakauth(const SVCXPRT *xprt);

Called by a service dispatch routine that refuses to perform a remote pro­
cedure call due to insufficient (but correct) authentication parameters. The
routine calls svcerr_auth (xprt, AUTH_TOOWEAK).

SEE ALSO
rpc(3N), rpc_svc_calls(3N), rpc_svc_create(3N), rpc_svc_reg(3N)

Page 2 10/92

rpc_svc_reg (3N) rpc_svc_reg (3N)

NAME
rpc_svc_reg: svc_freeargs,svc_getargs,svc_getreqset,
svc_getrpccaller, svc_run, svc_sendreply - library routines for RPC servers

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others [such as svc_run]
are called when the server is initiated.

Routines

10/92

#include <rpc/rpc.h>

int
svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, char *in);

int

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the arguments to a service procedure using svc_getargs.
This routine returns 1 if the results were successfully freed, and 0 otherwise.

svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t *in);

void

A function macro that decodes the arguments of an RPC request associated
with the RPC service transport handle xprt. The parameter in is the address
where the arguments will be placed; inproc is the XDR routine used to
decode the arguments. This routine returns 1 if decoding succeeds, and O
otherwise.

svc_getreqset(fd_set *rdfds);

This routine is only of interest if a service implementor does not call
svc_run, but instead implements custom asynchronous event processing.
It is called when poll has determined that an RPC request has arrived on
some RPC file descriptors; rdfds is the resultant read file descriptor bit mask.
The routine returns when all file descriptors associated with the value of
rdfds have been serviced

struct netbuf *
svc_getrpccaller(const SVCXPRT *xprt);

void

The approved way of getting the network address of the caller of a pro­
cedure associated with the RPC service transport handle xprt.

svc_run (void) ;

This routine never returns. It waits for RPC requests to arrive, and calls the
appropriate service procedure using svc_getreqset when one arrives.
This procedure is usually waiting for a poll library call to return.

Page 1

rpc_svc_reg (3N) rpc_svc_reg (3N)

int
svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc,

const caddr_t *out);

Called by an RPC service's dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request's associated transport han­
dle; outproc is the XDR routine which is used to encode the results; and out is
the address of the results. This routine returns 1 if it succeeds, o otherwise.

SEE ALSO
po11(2), rpc(3N), rpc_svc_calls(3N), rpc_svc_create(3N), rpc_svc_err(3N)

Page 2 10/92

rpc_xdr(3N) rpc_xdr(3N)

NAME
rpc_xdr: xdr_accepted_reply,xdr_authsys_parrns,xdr_callhdr,
xdr_callmsg, xdr_opaque_auth, xdr_rej ected_reply, xdr_replymsg - XDR
library routines for remote procedure calls

DESCRIPTION
These routines are used for describing the RPC messages in XDR language. They
should normally be used by those who do not want to use the RPC package.

Routines

10/92

See rpc(3N) for the definition of the XDR data structure.

#include <rpc/rpc.h>

bool t
xdr_accepted_reply(XDR *xdrs, const struct accepted_reply *ar);

bool_t

Used for encoding RPC reply messages. It encodes the status of the RPC
call in the XDR language format, and in the case of success, it encodes the
call results also.

xdr_authsys_parrns(XDR *xdrs, const struct authsys_parrns *aupp);

void

Used for describing operating system credentials. It includes machine­
name, uid, gid list, etc.

xdr_callhdr(XDR *xdrs, const struct rpc_msg *chdr);

bool_t

Used for describing RPC call header messages. It encodes the static part of
the call message header in the XDR language format. It includes informa­
tion such as transaction ID, RPC version number, program and version
number.

xdr_callmsg(XDR *xdrs, const struct rpc_msg *cmsg);

bool_t

Used for describing RPC call messages. This includes all the RPC call infor­
mation such as transaction ID, RPC version number, program number, ver­
sion number, authentication information, etc. This is normally used by
servers to determine information about the client RPC call.

xdr_opaque_auth(XDR *xdrs, const struct opaque_auth *ap);

Used for describing RPC opaque authentication information messages.

bool_t
xdr_rejected_reply(XDR *xdrs, const struct rejected_reply *rr);

Used for describing RPC reply messages. It encodes the rejected RPC mes­
sage in the XDR language format. The message could be rejected either
because of version number mis-match or because of authentication errors.

Page 1

rpc_xdr(3N) rpc_xdr(3N)

bool_t
xdr_replyrnsg(XDR *xdrs, const struct rpc_rnsg *rrnsg);

Used for describing RPC reply messages. It encodes all the RPC reply mes­
sage in the XDR language format This reply could be either an acceptance,
rejection or NULL.

SEE ALSO
rpc(3N)

Page 2 10/92

rpcbi nd (3N) rpcbind (3N)

NAME
rpcbind: rpcb_getmaps,rpcb_getaddr,rpcb_gettime,rpcb_rrntcall,
rpcb_set, rpcb_unset - library routines for RPC bind service

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind [see rpcbind(lM)] maintains a list of mappings between pro­
grams and their universal addresses.

Routines

10/92

#include <rpc/rpc.h>

struct rpcblist *
rpcb_getmaps(const struct netconfig *netconf, const char *host);

bool_t

A user interface to the rpcbind service, which returns a list of the current
RPC program-to-address mappings on the host named. It uses the tran­
sport specified through netconf to contact the remote rpcbind service on
host host. This routine will return NULL, if the remote rpcbind could not be
contacted.

rpcb_getaddr(const u_long prognum, const u_long versnum,
const struct netconfig *netconf, struct netbuf *svcaddr,
const char *host);

bool_t

A user interface to the rpcbind service, which finds the address of the ser­
vice on host that is registered with program number prognum, version vers­
num, and speaks the transport protocol associated with netconf. The address
found is returned in svcaddr. svcaddr should be preallocated. This routine
returns 1 if it succeeds. A return value of O means that the mapping does
not exist or that the RPC system failed to contact the remote rpcbind ser­
vice. In the latter case, the global variable rpc_createerr contains the
RPC status.

rpcb_gettime(const char *host, time_t *timep);

This routine returns the time on host in timep. If host is NULL, rpcb_gettime
returns the time on its own machine. This routine returns 1 if it succeeds, 0
if it fails. rpcb_gettime can be used to synchronize the time between the
client and the remote server. This routine is particularly useful for secure
RPC.

Page 1

rpcbind (3N) rpcbind (3N)

enum clnt_stat
rpcb_rmtcall(const struct netconfig *netconf, const char *host,

const u_long prognum, const u_long versnum, const u_long procnum,
const xdrproc_t inproc, const caddr_t in,
const xdrproc_t outproc, const caddr_t out,
const struct timeval tout, struct netbuf *svcaddr);

bool_t

A user interface to the rpcbind service, which instructs rpcbind on host to
make an RPC call on your behalf to a procedure on that host. The parame­
ter *svcaddr will be modified to the server's address if the procedure
succeeds [see rpc_call and clnt_call in rpc_clnt_calls(3N) for the
definitions of other parameters]. This procedure should normally be used
for a ping and nothing else [see rpc_broadcast in rpc_clnt_calls(3N)].
This routine allows programs to do lookup and call, all in one step.

rpcb_set(const u_long prognum, const u_long versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t

A user interface to the rpcbind service, which establishes a mapping
between the triple [prognum, versnum, netconf->nc_netid] and svcaddr on
the machine's rpcbind service. The value of transport must correspond to a
network token that is defined by the netconfig database. This routine
returns 1 if it succeeds, O otherwise. [See also svc_reg in
rpc_svc_calls(3N)].

rpcb_unset(const u_long prognum, const u_long versnum,
const struct netconfig *netconf);

A user interface to the rpcbind service, which destroys all mapping
between the triple [prognum, versnum, netconf->nc_netid] and the address
on the machine's rpcbind service. If netconf is NULL, rpcb_unset destroys
all mapping between the triple [prognum, versnum, *] and the addresses on
the machine's rpcbind service. This routine returns 1 if it succeeds, O other­
wise. [See also svc_unreg in rpc_svc_calls(3N)].

SEE ALSO
rpc_clnt_calls(3N), rpc_svc_calls(3N), rpcbind(lM), rpcinfo(lM)

Page 2 10/92

rusers(3N) rusers(3N)

NAME
rusers - return information about users on remote machines

SYNOPSIS
#include <rpcsvc/rusers.h>

int rusers(char *host, struct utmpidlearr *up);

rusers fills the utmpidlearr structure with data about host, and returns 0 if suc­
cessful. The function will fail if the underlying transport does not support broad­
cast mode.

SEE ALSO
rusers(l)

10/92 Page 1

rwall (3N)

NAME
rwall - write to specified remote machines

SYNOPSIS
#include <rpcsvc/rwall.h>

rwall (char *host, char *msg);

DESCRIPTION

rwall(3N)

rwall executes wall(lM) on host. host prints the string msg to all its users. It
returns 0 if successful.

SEE ALSO
rwall(lM), rwalld(lM)

10/92 Page 1

scandir(3) (BSD Compatibility Package) scandir(3)

NAME
scandir, alphasort - scan a directory

SYNOPSIS
/usr /ucb/ cc [flag . ..]file .. .

#include <sys/types.h>
#include <sys/dir.h>

scandir(dirnarne, &narnelist, select, cornpar)
char *dirnarne;
struct direct **narnelist;
int (*select) ();
int (*cornpar) ();

alphasort(dl, d2)
struct direct **dl, **d2;

DESCRIPTION
scandir reads the directory dirnarne and builds an array of pointers to directory
entries using rnalloc(3C). The second parameter is a pointer to an array of struc­
ture pointers. The third parameter is a pointer to a routine which is called with a
pointer to a directory entry and should return a non zero value if the directory
entry should be included in the array. If this pointer is NULL, then all the directory
entries will be included. The last argument is a pointer to a routine which is passed
to qsort(3C) to sort the completed array. If this pointer is NULL, the array is not
sorted. alphasort is a routine which will sort the array alphabetically.

scandir returns the number of entries in the array and a pointer to the array
through the parameter namelist.

SEE ALSO
getdents(2), directory(3C), rnalloc(3C), qsort(3C).

RETURN VALUE

10/92

Returns -1 if the directory cannot be opened for reading or if malloc(3C) cannot
allocate enough memory to hold all the data structures.

Page 1

scant (3S) scanf(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE *strm, const char *format, ...) ;

int sscanf(const char *s, const char *format, ...);

DESCRIPTION

10/92

scanf reads from the standard input stream, stdin.

fscanf reads from the stream strm.

sscanf reads from the character strings.

Each function reads characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control string, format,
described below and a set of pointer arguments indicating where the converted
input should be stored. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are simply ignored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) that,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %) that must match the next character of the
input stream.

3. Conversion specifications consisting of the character % or the character
sequence %digits$, an optional assignment suppression character *, a
decimal digit string that specifies an optional numerical maximum field
width, an optional letter 1 (ell), L, or h indicating the size of the receiving
object, and a conversion code. The conversion specifiers d, i, and n
should be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to long
int. Similarly, the conversion specifiers o, u, and x should be preceded
by h if the corresponding argument is a pointer to unsigned short int
rather than a pointer to unsigned int, or by 1 if it is a pointer to
unsigned long int. Finally, the conversion specifiers e, f, and g
should be preceded by 1 if the corresponding argument is a pointer to
double rather than a pointer to float, or by L if it is a pointer to long
double. The h, 1, or L modifier is ignored with any other conversion
specifier.

A conversion specification directs the conversion of the next input field; the result
is placed in the variable pointed to by the corresponding argument unless assign­
ment suppression was indicated by the character*· The suppression of assignment
provides a way of describing an input field that is to be skipped. An input field is
defined as a string of non-space characters; it extends to the next inappropriate
character or until the maximum field width, if one is specified, is exhausted. For all

Page 1

scant (35) scant (35)

descriptors except the character [and the character c, white space leading an input
field is ignored.

Conversions can be applied to the nth argument in the argument list, rather than to
the next unused argument. In this case, the conversion character % (see above) is
replaced by the sequence %digits$ where digits is a decimal integer n, giving the
position of the argument in the argument list. The first such argument, %1$,
immediately follows format. The control string can contain either form of a conver­
sion specification, i.e.,% or %digits$, although the two forms cannot be mixed within
a single control string.

The conversion code indicates the interpretation of the input field; the correspond­
ing pointer argument must usually be of a restricted type. For a suppressed field,
no pointer argument is given. The following conversion codes are valid:

% A single % is expected in the input at this point; no assignment is done.

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 10
for the base argument. The corresponding argument should be a pointer to
integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 10
for the base argument. The corresponding argument should be a pointer to
unsigned integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 8
for the base argument. The corresponding argument should be a pointer to
unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of the strtoul function with the
value 16 for the base argument. The corresponding argument should be a
pointer to unsigned integer.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the strtol function with the value 0 for the base
argument. The corresponding argument should be a pointer to integer.

n No input is consumed. The corresponding argument should be a pointer to
integer into which is to be written the number of characters read from the
input stream so far by the call to the function. Execution of a %n directive
does not increment the assignment count returned at the completion of exe­
cution of the function.

e,f,g Matches an optionally signed floating point number, whose format is the
same as expected for the subject string of the strtod function. The
corresponding argument should be a pointer to floating.

s A character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

Page 2 10/92

scanf(3S) scanf(3S)

10/92

c Matches a sequence of characters of the number specified by the field width
(1 if no field width is present in the directive). The corresponding argument
should be a pointer to the initial character of an array large enough to
accept the sequence. No null character is added. The normal skip over
white space is suppressed.

Matches a nonempty sequence of characters from a set of expected charac­
ters (the scanset). The corresponding argument should be a pointer to the
initial character of an array large enough to accept the sequence and a ter­
minating null character, which will be added automatically. The conversion
specifier includes all subsequent characters in the format string, up to and
including the matching right bracket (l). The characters between the brack­
ets (the scanlist) comprise the scanset, unless the character after the left
bracket is a circumflex (A), in which case the scanset contains all characters
that do not appear in the scanlist between the circumflex and the right
bracket. If the conversion specifier begins with [J or [A J , the right bracket
character is in the scanlist and the next right bracket character is the match­
ing right bracket that ends the specification; otherwise the first right bracket
character is the one that ends the specification.

A range of characters in the scanset may be represented by the construct first
- last; thus [0123456789] maybe expressed [0-9]. Using this convention,
first must be lexically less than or equal to last, or else the dash will stand for
itself. The character - will also stand for itself whenever it is the first or the
last character in the scanlist. To include the right bracket as an element of
the scanset, it must appear as the first character (possibly preceded by a
circumflex) of the scanlist and in this case it will not be syntactically inter­
preted as the closing bracket. At least one character must match for this
conversion to be considered successful.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the %p conversion of
the printf function. The corresponding argument should be a pointer to
void. The interpretation of the input item is implementation-defined. If the
input item is a value converted earlier during the same program execution,
the pointer that results shall compare equal to that value; otherwise, the
behavior of the %p conversion is undefined.

If an invalid conversion character follows the %, the results of the operation may
not be predictable.

The conversion specifiers E, G, and x are also valid and, under the -Xa and -Xe com­
pilation modes [see cc(l)], behave the same as e, g, and x, respectively. Under the
-Xt compilation mode, E, G, and X behave the same as le, lg, and lx, respectively.

Each function allows for detection of a language-dependent decimal point charac­
ter in the input string. The decimal point character is defined by the program's
locale (category LC_NUMERIC). In the "C" locale, or in a locale where the decimal
point character is not defined, the decimal point character defaults to a period (.).

The scanf conversion terminates at end of file, at the end of the control string, or
when an input character conflicts with the control string.

Page 3

scanf(3S) scanf(3S)

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space, where permitted), execution of the current directive ter­
minates with an input failure; otherwise, unless execution of the current directive is
terminated with a matching failure, execution of the following directive (if any) is
terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input char­
acter is left unread in the input stream. Trailing white space (including new-line
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed assignments is not directly determinable other than via
the %n directive.

EXAMPLES
The call to the function scanf:

inti, n; float x; char name[50);
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign ton the value 3, to i the value 25, to x the value 5. 432, and name will
contain thompson \ 0.

The call to the function scanf:

inti; float x; char name[50J;
(void) scanf ("%2d%f%*d % (0-9) ", &i, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789. 0 to x, skip 0123, and place the characters 56\0 in name.
The next character read from stdin will be a.

SEE ALSO
cc(l), printf(3S), strtod(3C), strtol(3C), strtoul(3C)

DIAGNOSTICS

Page 4

These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early matching failure between an
input character and the control string. If the input ends before the first matching
failure or conversion, EOF is returned.

10/92

scanf(3W) scanf(3W)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int scanf (const char *format [, pointer J • • •) ;

int fscanf(FILE *stream, const char *format [,pointer]) ;

int sscanf (char *s, const char *format [, pointer J • • •) ;

DESCRIPTION (International Functions)

10/92

scanf () reads from the standard input stream stdin. fscanf () reads from the
named input stream. sscanf () reads from the character strings. Each function
reads characters (bytes), interprets them according to a control string format, and
stores the results in its arguments.

The control string usually contains conversion specification, which are used to
direct interpretation of input sequences. The control string may contain:

A. White-space characters (characters are defined in isspace () of ctype(3C)).
Except in two cases described below, these cause input to be read up to the
next non-white-space character.

B. An ordinary character (any EUC character , except the ASCII character %),
which must match the next byte of the input stream.

C. Conversion specifications which direct the conversion of the next input
field. Only ASCII characters are allowed as conversion characters.

The conversion code indicates the interpretation of the input field, and the
corresponding pointer argument must match the type being read. wc and ws are
the new conversion specifications for wchar_t character control, and both may be
used in all three functions.

wc A wchar_t character is expected; the character, which should be in EUC, is
transformed into a wchar_t character, and stored in the location pointed to
by the corresponding argument which should be a wchar_t pointer. The
normal skip over white space is suppressed in this case. To read the next
non-space character as the wchar_t character, %lws should be used. If a
field width is given, the corresponding argument should refer to a wchar_t
array; the indicated number of wchar_t characters are read.

ws A wchar_t string is expected; characters in EUC are transformed into
wchar_t characters and stored in the location pointed to by the correspond­
ing argument. The corresponding argument should be a pointer pointing to
a wchar_t array large enough to accept the string and a terminating
wchar_t null character, which is added automatically. wchar_t characters
are read until the number of wchar_t characters specified in the field width,
if supplied, or a white-space character is read.

The conversion of these functions terminate at EOF or a NULL character in the case of
sscanf (),at the end of the control string, or when an input character conflicts with
the control string. In the last case, the offending character is left unread in the input
stream.

Page 1

scanf(3W) scanf(3W)

These functions return the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between an input
character and the control string. If the input ends before the first conflict or conver­
sion, EOF is returned.

WARNING
A character from a supplementary code set in a scanset enclosed in a pair of square
brackets is simply interpreted as a byte string. Each byte of the input field is com­
pared to the byte in the scanset.

SEE ALSO
printf(3W), scanf(3S), stdio(3S), vprintf(3W), widec(3W).

Page 2 10/92

sdenter(2) (Application Compatibility Package) sdenter(2)

NAME
sdenter, sdleave - synchronize access to a shared data segment

SYNOPSIS
cc [flag ...]file ... -lx

#include <sys/sd.h>

int sdenter(char *addr, int flags);

int sdleave(char *addr);

DESCRIPTION
sdenter is used to indicate that the current process is about to access the contents
of a shared data segment. The actions performed depend on the value of flags. flags
values are formed by OR-ing together entries from the following list:

SD_NOWAIT If another process has called sdenter but not sdleave for the indi­
cated segment, and the segment was not created with the SD_UNLOCK
flag set, return an ENAVAIL error instead of waiting for the segment to
become free.

SD_WRITE Indicates that the process wants to write data to the shared data seg­
ment. A process that has attached to a shared data segment with the
SD_ROONLY flag set will not be allowed to enter with the SD_WRITE
flag set.

sdleave is used to indicate that the current process is done modifying the contents
of a shared data segment.

Only changes made between invocations of sdenter and sdleave are guaranteed
to be reflected in other processes. sdenter and sdleave are very fast; conse­
quently, it is recommended that they be called frequently rather than leave
sdenter in effect for any period of time. In particular, system calls should be
avoided between sdenter and sdleave calls.

The fork system call is forbidden between calls to sdenter and sdleave if the seg­
ment was created without the SD_UNLOCK flag.

DIAGNOSTICS
Successful calls return 0. Unsuccessful calls return -1 and set errno to indicate the
error. errno is set to EINVAL if a process does an sdenter with the SD_WRITE flag
set and the segment is already attached with the SD_ROONLY flag set. errno is set to
ENAVAIL if the SD_NOWAIT flag is set for sdenter and the shared data segment is
not free.

SEE ALSO
sdget(2), sdgetv(2)

10/92 Page 1

sdget(2) (Application Compatibility Package) sdget (2)

NAME
sdget, sdfree - attach and detach a shared data segment

SYNOPSIS
cc [flag ...]file ... -lx
#include <sys/sd.h>

char *sdget(char *path, int flags, /*long size, int mode*/);

int sdfree(char *addr);

DESCRIPTION
sdget attaches a shared data segment to the data space of the current process. The
actions performed are controlled by the value of flags. flags values are constructed
by an OR of flags from the following list:

SD_RDONLY Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists and is not in use (active), this flag
will have the same effect as creating a segment from scratch. Other­
wise, the segment is created according to the values of size and mode.
Read and write access to the segment is granted to other processes
based on the permissions passed in mode, and functions the same as
those for regular files. Execute permission is meaningless. The seg­
ment is initialized to contain all zeroes.

SD_UNLOCK If the segment is created because of this call, the segment will be
made so that more than one process can be between sdenter and
sdleave calls.

sdfree detaches the current process from the shared data segment that is attached
at the specified address. If the current process has done sdenter but not an
sdleave for the specified segment, sdleave will be done before detaching the seg­
ment.

When no process remains attached to the segment, the contents of that segment
disappear, and no process can attach to the segment without creating it by using
the SD_CREAT flag in sdget. errno is set to EEXIST if a process tries to create a
shared data segment that exists and is in use. errno is set to ENOTNAM if a process
attempts an sdget on a file that exists but is not a shared data type.

DIAGNOSTICS
On successful completion, the address at which the segment was attached is
returned. Otherwise, -1 is returned, and errno is set to indicate the error. errno is
set to EINVAL if a process does an sdget on a shared data segment to which it is
already attached. errno is set to EEXIST if a process tries to create a shared data
segment that exists an is in use. errno is set to ENOTNAM if a process attempts an
sdget on a file that exists but is not a shared data type.

The mode parameter must be included on the first call of the sdget function.

SEE ALSO
sdenter(2), sdgetv(2)

10/92 Page 1

sdgetv(2) (Application Compatibility Package) sdgetv(2)

NAME
sdgetv - synchronize shared data access

SYNOPSIS
cc [flag ...] file ... - lx

#include <sys/sd.h>

int sdgetv(addr)

int sdwaitv(char *addr, int vnum);

DESCRIPTION
sdgetv and sdwai tv may be used to synchronize cooperating processes that are
using shared data segments. The return value of both routines is the version
number of the shared data segment attached to the process at address addr. The
version number of a segment changes whenever some process does an sdleave for
that segment.

sdgetv simply returns the version number of the indicated segment.

sdwai tv forces the current process to sleep until the version number for the indi­
cated segment is no longer equal to vnum.

DIAGNOSTICS
Upon successful completion, both sdgetv and sdwai tv return a positive integer
that is the current version number for the indicated shared data segment. Other­
wise, a value of -1 is returned, and errno is set to indicate the error.

SEE ALSO
sdenter(2), sdget(2)

10/92 Page 1

secure_rpc (3N) secure_rpc (3N)

NAME
secure_rpc: authdes_seccreate,authdes_gctucred,getnetnarne,
host2netnarne, key __ decryptsession, key _encrypt session, key _gendes,
key_setsecret, netname2host, netnarne2user, user2netnarne - library routines
for secure remote procedure calls

DESCRIPTION
RPC library routines allow C programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a data packet to the
server. Upon receipt of the packet, the server calls a dispatch routine to perform
the requested service, and then sends back a reply.

RPC supports various authentication flavors. Among them are:

AUTH_NONE
AUTH_SYS
AUTH_DES

(none) no authentication.
Traditional UNIX®-style authentication.
DES encryption-based authentication.

The authdes_getucred and authdes_seccreate routines implement the
AUTH_DES authentication flavor. The keyserver daemon keyserv [see
keyserv(lM)] must be running for the AUTH_DES authentication system to work.

Routines

10/92

See rpc(3N) for the definition of the AUTH data structure.

#include <rpc/rpc.h>

int
authdes_getucred(const struct authdes_cred *adc, uid_t *uidp,

gid_t *gidp, short *gidlenp, gid_t *gidlist);

authdes_getucred is the first of the two routines which interface to the
RPC secure authentication system known as AUTH_DES. The second is
authdes_seccreate, below. authdes_getucred is used on the server side
for converting an AUTH_DES credential, which is operating system indepen­
dent, into an AUTH_SYS credential. This routine returns 1 if it succeeds, 0 if
it fails.

*uidp is set to the user's numerical ID associated with adc. *gidp is set to the
numerical ID of the group to which the user belongs. *gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in *gidlist [see netname2user,
below].

Page 1

secure_rpc (3N) secure_rpc (3N)

Page 2

AUTH *
authdes_seccreate(const char *name, const unsigned int window,

const char *timehost, const des_block *ckey);

int

authdes_seccreate, the second of two AUTH_DES authentication routines,
is used on the client side to return an authentication handle that will enable
the use of the secure authentication system. The first parameter name is the
network name, or netname, of the owner of the server process. This field usu­
ally represents a hostname derived from the utility routine host2netname,
but could also represent a user name using user2netname, described
below. The second field is window on the validity of the client credential,
given in seconds. A small window is more secure than a large one, but
choosing too small of a window will increase the frequency of resynchroni­
zations because of clock drift. The third parameter, timehost, the host's
name, is optional. If it is NULL, then the authentication system will assume
that the local clock is always in sync with the timehost clock, and will not
attempt resynchronizations. If a timehost is supplied, however, then the
system will consult with the remote time service whenever resynchroniza­
tion is required. This parameter is usually the name of the RPC server itself.
The final parameter ckey is also optional. If it is NULL, then the authentica -
tion system will generate a random DES key to be used for the encryption of
credentials. If ckey is supplied, then it will be used instead.

getnetname(char name[MAXNETNAMELEN+l]);

int

getnetname installs the unique, operating-system independent netname of
the caller in the fixed-length array name. Returns 1 if it succeeds, and O if it
fails.

host2netname(char name[MAXNETNAMELEN+l], const char *host,
const char *domain);

int

Convert from a domain-specific hostname host to an operating-system
independent netname. Return 1 if it succeeds, and O if it fails. Inverse of
netname2host. If domain is NULL, host2netname uses the default domain
name of the machine. If host is NULL, it defaults to that machine itself.

key_decryptsession(const char *remotename, des_block *deskey);

key _decryptsession is an interface to the keyserver daemon, which is
associated with RPC's secure authentication system (AUTH_DES authentica­
tion). User programs rarely need to call it, or its associated routines
key _encrypt session, key _gendes and key _setsecret.

key_decryptsession takes a server netname remotename and a DES key
deskey, and decrypts the key by using the the public key of the the server
and the secret key associated with the effective UID of the calling process. It
is the inverse of key _encrypt session.

10/92

secure_rpc (3N) secure_rpc (3N)

int
key_encryptsession(const char *remotename, des_block *deskey);

int

key _encryptsession is a keyserver interface routine. It takes a server net­
name remotename and a DES key deskey, and encrypts it using the public key
of the the server and the secret key associated with the effective UID of the
calling process. It is the inverse of key_decryptsession. This routine
returns O if it succeeds, -1 if it fails.

key_gendes(des_block *deskey);

int

key _gendes is a keyserver interface routine. It is used to ask the keyserver
for a secure conversation key. Choosing one at random is usually not good
enough, because the common ways of choosing random numbers, such as
using the current time, are very easy to guess.

key_setsecret(const char *key);

int

key_setsecret is a keyserver interface routine. It is used to set the key for
the effective UID of the calling process. this routine returns O if it succeeds,
-1 if it fails.

netname2host(const char *name, char *host, const int hostlen);

int

Convert from an operating-system independent netname name to a
domain-specific hostname host. host/en is the maximum size of host.
Returns 1 if it succeeds, and O if it fails. Inverse of host2netname.

netname2user(const char *name, uid_t *uidp, gid_t *gidp,
int *gidlenp, gid_t gidlist[NGROUPS]);

int

Convert from an operating-system independent netname to a domain­
specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of
user2netname.

*uidp is set to the user's numerical ID associated with name. *gidp is set to
the numerical ID of the group to which the user belongs. gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in gidlist.

user2netname(char name[MAXNE'INAMELEN+l], const uid_t uid,
const char *domain);

Convert from a domain-specific username to an operating-system indepen­
dent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of
netname2user.

SEE ALSO
chkey(l), keyserv(lM), newkey(lM), rpc(3N), rpc_clnt_auth(3N)

10/92 Page 3

select(3C) select(3C)

NAME
select - synchronous 1/0 multiplexing

SYNOPSIS
#include <sys/time.h>
#include <sys/types.h>

select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct j
timeval *timeout);

FD_SET(int fd, fd_set fdset);
FD_CLR(int fd, fd_set fdset);
FD_ISSET(int fd, fd_set fdset);
FD_ZERO(fd_set fdset);

DESCRIPTION
select examines the 1/0 descriptor sets whose addresses are passed in readfds, wri­
tefds, and exceptfds to see if any of their descriptors are ready for reading, are ready
for writing, or have an exceptional condition pending, respectively. nfds is the
number of bits to be checked in each bit mask that represents a file descriptor; the
descriptors from O to nfds-1 in the descriptor sets are examined. On return,
select replaces the given descriptor sets with subsets consisting of those descrip­
tors that are ready for the requested operation.

The descriptor sets are stored as bit fields in arrays of integers. The following mac­
ros are provided for manipulating such descriptor sets: FD_ZERO (&fdset) initializes
a descriptor set fdset to the null set. FD_SET (jd, &fdset) includes a particular
descriptor fd in fdset. FD_CLR (jd, &fdset) removes fd from fdset. FD_I SSET (jd,
&fdset) is nonzero if fd is a member of fdset, zero otherwise. The behavior of these
macros is undefined if a descriptor value is less than zero or greater than or equal to
FD_SETSIZE. FD_SETSIZE is a constant defined in sys/select .h (included by
sys I types . h) and is normally at least equal to the maximum number of descrip­
tors supported by the system.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a NULL pointer, the select blocks indefinitely.
To effect a poll, the timeout argument should be a non-NULL pointer, pointing to a
zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no descrip­
tors are of interest.

RETURN VALUE

10/92

select returns one of the following quantities:

o M88000 only: number of ready readfds descriptors + number of ready wri­
tefds descriptors + number of ready exceptfds descriptors.

0

0

0

M68000 only: number of ready readfds descriptors + number of ready wri­
tefds descriptors + number of ready exceptfds descriptors - number of
descriptors ready for both reading and writing.

0 if the time limit expired.

-1 if an error occurred.

Page 1

select(3C) select(3C)

Unless select returns -1, select replaces the given descriptor sets with subsets
consisting of those descriptors that are ready for the requested operation.

ERRORS
An error return from select indicates:

EBADF

EFAULT

EINTR

EINVAL

One of the 1/0 descriptor sets specified an invalid 1/0 descriptor.

readfds, writefds, exceptfds or timeout point to an invalid portion of
the process address space. (M88000 only)

A signal was delivered before any of the selected events occurred,
and before the time limit expired.

A component of the pointed-to time limit is outside the acceptable
range: t_sec must be between O and 108, in~lusive. t_usec must
be greater-than or equal to 0, and less than 10 .

SEE ALSO

NOTES

Page 2

poll(2), read(2), write(2)

The default value for FD_SETSIZE (currently 1024) is larger than the default limit
on the number of open files. In order to accommodate programs that may use a
larger number of open files with select, it is possible to increase this size within a
program by providing a larger definition of FD_SETSIZE before the inclusion of
<sys/types. h>.

In future versions of the system, select may return the time remaining from the
original timeout, if any, by modifying the time value in place. It is thus unwise to
assume that the timeout value will be unmodified by the select call.

The M88000 select as defined by the MBBOOO Processor Specific ABI emulates BSD
select functionality and therefore differs slightly in behavior from the original
SVR4 based M68000 select.

10/92

semctl(2) semctl(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {

} ;

int val;
struct semid_ds *buf;
ushort *array;

int semctl (int semid, int semnum, int cmd,
arg */);

. I* union semun

DESCRIPTION

10/92

semct 1 provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid
and semnum:

GE'IVAL Return the value of semval [see intro(2)]. {READ}

SE'IVAL Set the value of semval to arg.val. {ALTER}. When this com­
mand is successfully executed, the semadj value corresponding
to the specified semaphore in all processes is cleared.

GETPID Return the value of (int) sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of sema­
phores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array.
{ALTER}. When this cmd is successfully executed, the semadj
values corresponding to each specified semaphore in all
processes are cleared.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf.
The contents of this structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to by arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode /* only access permission bits */

Page 1

semctl (2) semctl (2)

This command can be executed only by a process that has an
effective user ID equal to either that of super-user, or to the
value of sem_perm. cu id or sem_perm. uid in the data structure
associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This command only be executed only by a
process that has an effective user ID equal to either that of
super-user, or to the value of sem_perm. cu id or sem_perm. uid
in the data structure associated with semid.

semctl fails if one or more of the following are true:

EACCES Operation permission is denied to the calling process [see
intro(2)].

EINVAL

EINVAL

EINVAL

EINVAL

EOVERFLOW

ERAN GE

EPERM

EFAULT

semid is not a valid semaphore identifier.

semnum is less than 0 or greater than sem_nsems.

cmd is not a valid command.

cmd is IPC_SET and sem_perm. uid or sem_perm.gid is not valid.

cmd is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by arg.buf.

cmd is SETVAL or SETALL and the value to which semval is to be
set is greater than the system imposed maximum.

cmd is equal to IPC_RMID or IPC_SET and the effective user ID of
the calling process is not equal to that of super-user, or to the
value of sem_perm. cu id or sem_perm. uid in the data structure
associated with semid.

arg. buf points to an illegal address.

SEE ALSO
intro(2), semget(2), semop(2)

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

GETVAL the value of semval
GETPID the value of (int) sempid
GETNCNT the value of semncnt
GETZCNT the value of semzcnt
all others a value of 0

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 2 10/92

semget(2) semget(2)

NAME
sernget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sern.h>

int sernget(key_t key, int nserns, int semflg);

DESCRIPTION
sernget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro(2)] are created for key if one of the following is true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is ini­
tialized as follows:

sern_perrn.cuid, sern_perrn.uid, sern_perm.cgid, and sem_perm.gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

The access permission bits of sern_perm.rnode are set equal to the access
permission bits of semflg.

sern_nsems is set equal to the value of nsems.

sern_otime is set equal to 0 and sern_ctirne is set equal to the current time.

sernget fails if one or more of the following are true:

EINVAL nsems is either less than or equal to zero or greater than the
system-imposed limit.

EACCES

EINVAL

ENO ENT

ENOS PC

EEXIST

A semaphore identifier exists for key, but operation permission
[see intro(2)] as specified by the low-order 9 bits of semflg would
not be granted.

A semaphore identifier exists for key, but the number of sema­
phores in the set associated with it is less than nsems, and nsems is
not equal to zero.

A semaphore identifier does not exist for key and
(semflg&IPC_CREAT) is false.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphore identifiers
system wide would be exceeded.

A semaphore identifier exists for key but both (semflg&IPC_CREAT)
and (semflg&IPC_EXCL) are true.

SEE ALSO
intro(2), sernctl(2), semop(2), stdipc(3C)

10/92 Page 1

semget(2) semget(2)

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

10/92

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

DESCRIPTION

10/92

semop is used to perform atomically an array of semaphore operations on the set of
semaphores associated with the semaphore identifier specified by semid. sops is a
pointer to the array of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the following
members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding
semaphore specified by semid and sem_num.

sem_op specifies one of three semaphore operations as follows, depending on
whether its value is negative, positive, or zero:

If sem_op is a negative integer, one of the following occurs: {ALTER}

If semval [see intro(2)] is greater than or equal to the absolute value of
sem_op, the absolute value of sem_op is subtracted from semval. Also, if
(sem_jlg&SEM_UNDO) is true, the absolute value of sem_op is added to the
calling process's semadj value [see exit(2)] for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem_flg&IPC_NOWAIT)
is true, semop returns immediately.

If semval is less than the absolute value of sem_op and (sem..Jlg&IPC_NOWAIT)
is false, semop increments the semncnt associated with the specified sema­
phore and suspends execution of the calling process until one of the follow­
ing conditions occur.

semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of semncnt associated with the specified
semaphore is decremented, the absolute value of sem_op is subtracted from
semval and, if (sem_jlg&SEM_UNDO) is true, the absolute value of sem_op is
added to the calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from
the system [see semct1(2)]. When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this
occurs, the value of semncnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(2).

Page 1

semop(2) semop(2)

Page 2

If sem_op is a positive integer, the value of sem_op is added to sernval and, if
(sem_flg&SEM_UNOO) is true, the value of sem_op is subtracted from the calling
process's sernadj value for the specified semaphore. {ALTER}

If sem_op is zero, one of the following occurs: {READ}

If semval is zero, semop returns immediately.

If semval is not equal to zero and (sem_flg&IPC_NOWAIT) is true, sernop
returns immediately.

If semval is not equal to zero and (sem_fig&IPC_NOWAIT) is false, sernop incre­
ments the semzcnt associated with the specified semaphore and suspends
execution of the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated with
the specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from
the system. When this occurs, errno is set equal to EIDRM, and a value of
-1 is returned.

The calling process receives a signal that is to be caught. When this
occurs, the value of sernzcnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(2).

sernop fails if one or more of the following are true for any of the semaphore opera­
tions specified by sops:

EINVAL semid is not a valid semaphore identifier.

EFBIG

E2BIG

EA CC ES

EA GAIN

ENOS PC

EINVAL

ERAN GE

ERAN GE

EFAULT

sem_num is less than zero or greater than or equal to the number of
semaphores in the set associated with semid.

nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process [see
intro(2)].

The operation would result in suspension of the calling process
but (sem_fig&IPC_NOWAIT) is true.

The limit on the number of individual processes requesting an
SEM_UNOO would be exceeded.

The number of individual semaphores for which the calling pro­
cess requests a SEM_UNOO would exceed the limit.

An operation would cause a semval to overflow the system­
imposed limit.

An operation would cause a semadj value to overflow the
system-imposed limit.

sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in
the array pointed to by sops is set equal to the process ID of the calling process.

10/92

semop(2) semop(2)

SEE ALSO
intro(2), exec(2), exit(2), fork(2), semct1(2), semget(2)

DIAGNOSTICS

10/92

If semop returns due to the receipt of a signal, a value of -1 is returned to the calling
process and errno is set to EINTR. If it returns due to the removal of a semid from
the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

send(3N) send(3N)

NAME
send, send to, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>

int send(int s, char *rnsg, int len, int flags);

int sendto(int s, char *rnsg, int len, int flags, caddr_t to,
int tolen);

int sendmsg(int s, rnsghdr *rnsg, int flags);

DESCRIPTION
sis a socket created with socket. send, sendto, and sendmsg are used to transmit
a message to another socket. send may be used only when the socket is in a con­
nected state, while sendto and sendmsg may be used at any time.

The address of the target is given by to with to/en specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through
the underlying protocol, then the error EMSGSIZE is returned, and the message is
not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate
some locally detected errors.

If no buffer space is available at the socket to hold the message to be transmitted,
then send normally blocks, unless the socket has been placed in non-blocking 1/0
mode [see fcntl(2)]. The select call may be used to determine when it is possible
to send more data.

The flags parameter is formed by ORing one or more of the following:

MSG_OOB Send out-of-band data on sockets that support this notion. The
underlying protocol must also support out-of-band data.
Currently, only SOCK_STREAM sockets created in the AF _INET
address family support out-of-band data.

MSG_OONTROUTE The SO_OONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing programs.

See recv(3N) for a description of the rnsghdr structure.

RETURN VALUE
These calls return the number of bytes sent, or -1 if an error occurred.

ERRORS

10/92

The calls fail if:

EBADF

ENOTSOCK

EINVAL

EINTR

s is an invalid descriptor.

s is a descriptor for a file, not a socket.

tolen is not the size of a valid address for the specified
address family.

The operation was interrupted by delivery of a signal before
any data could be buffered to be sent.

Page 1

send(3N) send(3N)

EMSGSIZE

EWOULDBLOCK

ENOMEM

ENO SR

The socket requires that message be sent atomically, and the
message was too long.

The socket is marked non-blocking and the requested opera­
tion would block.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

Page 2

connect(3N), getsockopt(3N), recv(3N), socket(3N) fcnt1(2), write(2).

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a socketaddr_un struc­
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet/in.h. Other address fami­
lies may require other structures. Use the structure appropriate to the address fam­
ily; cast the structure address to a generic caddr_t in the call to send and pass the
size of the structure in the tolen argument.

10/92

setbuf (35) (C Development Set) setbuf(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (FILE *stream, char *buf) ;

int setvbuf (FILE *stream, char *buf, int type, size_t size);

DESCRIPTION
setbuf may be used after a stream [see intro(3)] has been opened but before it is
read or written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is the NULL pointer input/output will be com­
pletely unbuffered.

While there is no limitation on the size of the buffer, the constant BUFSIZ, defined
in the stdio. h header file, is typically a good buffer size:

char buf[BUFSIZ];

setvbuf may be used after a stream has been opened but before it is read or writ­
ten. type determines how stream will be buffered. Valid values for type (defined in
stdio. h) are:

_IOFBF causes input/output to be fully buffered.

IOLBF

_IONBF

causes output to be line buffered; the buffer is flushed when a newline
is written, the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to is used for buffering, instead of
an automatically allocated buffer. size specifies the size of the buffer to be used. If
input/output is unbuffered, buf and size are ignored.

For a further discussion of buffering, see stdio(3S).

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S)

DIAGNOSTICS

NOTES

10/92

If an invalid value for type is provided, setvbuf returns a non-zero value. Other­
wise, it returns zero.

A common source of error is allocating buffer space as an "automatic" variable in a
code block, and then failing to close the stream in the same block.

Parts of buf are used for internal bookkeeping of the stream and, therefore, buf
contains less than size bytes when full. It is recommended that the automatically
allocated buffer is used when using setvbuf.

Page 1

setbuf (3S) (BSD Compatibility Package) setbuf(3S)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
/usr /ucb/ cc [flag ...]file . ..

#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)
FILE *stream;
char *buf;
int size;

setlinebuf(stream)
FILE *stream;

int setvbuf(stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

10/92

The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the desti­
nation file or terminal as soon as written; when it is block buffered many characters
are saved up and written as a block; when it is line buffered characters are saved up
until a NEWLINE is encountered or input is read from stdin. fflush (see
fclose(3S)) may be used to force the block out early. Normally all files are block
buffered. A buffer is obtained from malloc(3C) upon the first getc or putc(3S) on
the file. If the standard stream stdout refers to a terminal it is line buffered. The
standard stream stderr is unbuffered by default.

setbuf can be used after a stream has been opened but before it is read or written.
It causes the array pointed to by buf to be used instead of an automatically allo­
cated buffer. If buf is the NULL pointer, input/output will be completely unbuffered.
A manifest constant BUFSIZ, defined in the <stdio. h> header file, tells how big an
array is needed:

charbuf[BUFSIZ];

setbuffer, an alternate form of setbuf, can be used after a stream has been
opened but before it is read or written. It uses the character array buf whose size is
determined by the size argument instead of an automatically allocated buffer. If buf
is the NULL pointer, input/output will be completely unbuffered.

setvbuf can be used after a stream has been opened but before it is read or written.
type determines how stream will be buffered. Legal values for type (defined in
<stdio.h>) are:

IOFBF fully buffers the input/output.

Page 1

setbuf(3S) (BSD Compatibility Package) setbuf(3S)

NOTE

IOLBF line buffers the output; the buffer will be flushed when a NEWLINE
is written, the buffer is full, or input is requested.

IONBF completely unbuffers the input/output.

If buf is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. size specifies the size of the buffer to be
used.

setlinebuf is used to change the buffering on a stream from block buffered or
unbuffered to line buffered. Unlike setbuf, setbuffer, and setvbuf, it can be
used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using
freopen (see fopen(3S)). A file can be changed from block buffered or line
buffered to unbuffered by using freopen followed by setbuf with a buffer argu­
ment of NULL.

A common source of error is allocating buffer space as an "automatic" variable in a
code block, and then failing to close the stream in the same block.

SEE ALSO
fclose(3S), fopen(3S), fread(3S), getc(3S), malloc(3C), printf(3S), putc(3S),
puts(3S), setbuf(3S).

RETURN VALUE

Page 2

If an illegal value for type or size is provided, setvbuf returns a non-zero value.
Otherwise, the value returned will be zero.

10/92

setbuffer (35) (BSD Compatibility Package) setbuffer (35)

NAME
setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <stdio.h>

setbuffer(stream, buf, size)
FILE *stream;
char *buf;
int size;

setlinebuf(stream)
FILE *stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the desti­
nation file or terminal as soon as written; when it is block buffered many characters
are saved up and written as a block; when it is line buffered characters are saved up
until a NEWLINE is encountered or input is read from any line buffered input
stream. fflush (see fclose(3S)) may be used to force the block out early. Nor­
mally all files are block buffered. A buffer is obtained from malloc(3C) upon the
first getc or putc(3S) on the file.

By default, output to a terminal is line buffered, except for output to the standard
stream stderr which is unbuffered, and all other input/output is fully buffered.

setbuffer can be used after a stream has been opened but before it is read or writ­
ten. It uses the character array buf whose size is determined by the size argument
instead of an automatically allocated buffer. If buf is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined
in the <stdio. h> header file, tells how big an array is needed:

char buf [BUFSIZ];

setlinebuf is used to change the buffering on a stream from block buffered or
unbuffered to line buffered. Unlike setbuffer, it can be used at any time that the
file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using
freopen (see fopen(3S)). A file can be changed from block buffered or line
buffered to unbuffered by using freopen followed by setbuffer with a buffer
argument of NULL.

SEE ALSO
setbuf(3S)

NOTE

10/92

fclose(3S), fopen(3S), fread(3S), getc(3S), malloc(3C), printf(3S), putc(3S),
puts(3S), setbuf(3S).

A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stream in the same block.

Page 1

setcat(3C) (C Programming Language Utilities) setcat(3C)

NAME
setcat - define default catalog

SYNOPSIS
#include <pfmt.h>

char *setcat (const char *catalog);

DESCRIPTION
The routine setcat () defines the default message catalog to be used by subse­
quent calls to pfmt () , lfmt () or gettxt () which do not explicitely specify a
message catalog.

catalog must be limited to 14 characters. These characters must be selected from a
set of all characters values, excluding \0 (null) and the ASCII codes for I (slash)
and : (colon).

setcat () assumes that the catalog exists. No checking is done on the argument.

A NULL pointer passed as an argument will result in the return of a pointer to the
current default message catalog name. A pointer to an empty string passed as an
argument will cancel the default catalog.

If no default catalog is specified, or if catalog is an invalid catalog name, Subsequent
calls to gettxt () , pfmt () or lfmt () that do not explicitely specify a catalog
name will use Message not found!! \n as default string.

RETURN VALUE
Upon success, setcat () returns a pointer to the catalog name. Upon failure,
setcat () returns a NULL pointer.

EXAMPLE
set cat ("test") ;
gettxt (": 10", "hello world\n")

SEE ALSO
environ(S), gettxt(3C), lfmt(3C), pfmt(3C), setlocale(3C).

10/92 Page 1

setjmp(3C) (C Development Set) setjmp(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, jmp_buf, is defined in the
<setjmp.h> header file) for later use by longjmp. It returns the value 0.

longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execution con­
tinues as if the corresponding call of setjmp had just returned the value val. (The
caller of setjmp must not have returned in the interim.) longjmp cannot cause
setjmp to return the value 0. If longjmp is invoked with a second argument of 0,
setjmp will return 1. At the time of the second return from setjmp, all external
and static variables have values as of the time longjmp is called (see example). The
values of register and automatic variables are undefined.

Register or automatic variables whose value must be relied upon must be declared
as volatile.

EXAMPLE

10/92

#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

jmp_buf env;
int i = O;
main ()
{

void exit();

if(setjmp(env) != 0) {
(void) printf("value of ion 2nd return from setjmp: %d\n", i);
exit(O);

}
g ()
{

(void) printf("value of ion 1st return from setjmp: %d\n", i);

i = l;
g();

/* NOTREACHED */

longjmp(env, l);
/* NOTREACHED */

Page 1

setjmp(3C) (C Development Set) setjmp(3C)

If the a. out resulting from this C language code is run, the output will be:

value of ion 1st return from setjmp:O

value of ion 2nd return from setjmp:l

SEE ALSO

NOTES

Page 2

signal(2), sigsetjmp(3C).

If longjmp is called even though env was never primed by a call to setjmp, or
when the last such call was in a function that has since returned, absolute chaos is
guaranteed.

10/92

setjmp(3) (BSD Compatibility Package) setjmp(3)

NAME
setjrnp, longjrnp, _setjrnp, _longjrnp, sigsetjrnp, siglongjrnp - non-local goto

SYNOPSIS
/usr /ucb/ cc [flag .. .]file ...

#include <setjrnp.h>

int setjrnp(env)
jrnp_buf env;

longjrnp(env, val)
jrnp_buf env;
int val;

int _setjrnp(env)
jrnp_buf env;

_longjrnp(env, val)
jrnp_buf env;
int val;

int sigsetjrnp(env, savernask)
sigjrnp_buf env;
int savernask;

siglongjrnp(env, val)
sigjrnp_buf env;
int val;

DESCRIPTION

10/92

setjrnp and longjrnp are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

setjrnp saves its stack environment in env for later use by longjrnp. A normal call
to setjrnp returns zero. setjrnp also saves the register environment. If a longjrnp
call will be made, the routine which called setjrnp should not return until after the
longjrnp has returned control (see below).

longjrnp restores the environment saved by the last call of setjrnp, and then
returns in such a way that execution continues as if the call of setjrnp had just
returned the value val to the function that invoked setjrnp; however, if val were
zero, execution would continue as if the call of setjrnp had returned one. This
ensures that a "return" from setjrnp caused by a call to longjrnp can be dis­
tinguished from a regular return from setjrnp. The calling function must not itself
have returned in the interim, otherwise longjrnp will be returning control to a pos­
sibly non-existent environment. All memory-bound data have values as of the time
longjrnp was called. The CPU and floating-point data registers are restored to the
values they had at the time that setjrnp was called. But, because the register
storage class is only a hint to the C compiler, variables declared as register vari­
ables may not necessarily be assigned to machine registers, so their values are
unpredictable after a longjrnp. This is especially a problem for programmers trying
to write machine-independent C routines.

Page 1

setjmp(3) (BSD Compatibility Package) setjmp(3)

setjrnp and longjrnp save and restore the signal mask (see sigsetrnask(2)), while
_setjrnp and _longjrnp manipulate only the C stack and registers. If the savemask
flag to sigsetjrnp is non-zero, the signal mask is saved, and a subsequent
siglongjrnp using the same env will restore the signal mask. If the savemask flag is
zero, the signal mask is not saved, and a subsequent siglongjrnp using the same
env will not restore the signal mask. In all other ways, _setjrnp and sigsetjrnp
function in the same way that setjrnp does, and _longjrnp and siglongjrnp func­
tion in the same way that longjrnp does.

None of these functions save or restore any floating-point status or control regis­
ters.

EXAMPLE
The following code fragment indicates the flow of control of the setjrnp and
longjrnp combination:

function declaration

jrnp_buf rny_environrnent;

if (setjrnp (rny_environrnent)
/* register variables have unpredictable values */

code after the return from

} else {
/* do not modify register vars in this leg of code */

this is the return from

SEE ALSO

NOTES

Page 2

cc(l), signal(2), setjrnp(3C), signal(3), sigsetrnask(3), sigvec(3).

setjrnp does not save the current notion of whether the process is executing on the
signal stack. The result is that a longjrnp to some place on the signal stack leaves
the signal stack state incorrect.

On some systems setjrnp also saves the register environment. Therefore, all data
that are bound to registers are restored to the values they had at the time that
setjrnp was called. All memory-bound data have values as of the time longjrnp
was called. However, because the register storage class is only a hint to the C
compiler, variables declared as register variables may not necessarily be assigned
to machine registers, so their values are unpredictable after a longjrnp. When using
compiler options that specify automatic register allocation (see cc(lV)), the com­
piler will not attempt to assign variables to registers in routines that call setjrnp.

longjrnp never causes setjrnp to return zero, so programmers should not depend
on longjrnp being able to cause setjrnp to return zero.

10/92

setlabel (3C) (C Programming Language Utilities) setlabel (3C)

NAME
setlabel - define the label for pfrnt () and lfrnt ().

SYNOPSIS
#include <pfrnt.h>

int setlabel (const char *label);

DESCRIPTION
The routine setlabel () defines the label for messages produced in standard for­
mat by subsequent calls to pfrnt () and lfrnt () .

label is a character string no more than 25 characters in length.

No label is defined before set label () is called. A NULL pointer or an empty
string passed as argument will reset the definition of the label.

RETURN VALUE
set label () returns 0 in case of success, non-zero otherwise.

EXAMPLE

USAGE

The following code (without previous call to set label ()):
pfrnt(stderr, MM_ERROR, "test:2:Cannot open file\n");
setlabel("UX:test");
pfrnt(stderr, MM_ERROR, "test:2:Cannot open file\n");

will produce the following output:
ERROR: Cannot open file
UX:test: ERROR: Cannot open file

The label should be set once at the beginning of a utility and remain constant.

getopt () has been modified to report errors using the standard message format. if
setlabel () is called before getopt (), getopt () will use that label. Otherwise,
getopt () will use the name of the utility.

SEE ALSO
getopt(3C), lfmt(3C), pfmt(3C).

10/92 Page 1

setlocale (3C) (C Programming Language Utilities) setlocale (3C)

NAME
set locale - modify and query a program's locale

SYNOPSIS
#include <locale.h>

char *setlocale (int category, const char *locale);

DESCRIPTION

10/92

setlocale selects the appropriate piece of the program's locale as specified by the
category and locale arguments. The category argument may have the following
values: LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY,
LC_MESSAGES and LC_ALL. These names are defined in the locale. h header file.
LC_CTYPE affects the behavior of the character handling functions (isdigit,
to lower, etc.) and the multibyte character functions (such as mbtowc and wctomb).
LC_NUMERIC affects the decimal-point character for the formatted input/output
functions and the string conversion functions as well as the non-monetary format­
ting information returned by localeconv. [See localeconv(3C).] LC_TIME affects
the behavior of ascftime, cftime, getdate and strftime. LC_COLLATE affects
the behavior of strcoll and strxfrm. LC_MONETARY affects the monetary format­
ted information returned by localeconv. LC_MESSAGES affects the behavior of
gettxt, catopen, catclose, and catgets. [See catopen(3C) and catgets(3C).]
LC_ALL names the program's entire locale.

Each category corresponds to a set of databases which contain the relevant infor­
mation for each defined locale. The location of a database is given by the following
path, /usr/lib/locale/locale/category, where locale and category are the names of
locale and category, respectively. For example, the database for the LC_CTYPE
category for the "german" locale would be found in
/usr/lib/locale/german/LC_CTYPE.

A value of "C" for locale specifies the default environment.

A value of "'' for locale specifies that the locale should be taken from environment
variables. The order in which the environment variables are checked for the vari­
ous categories is given below:

Category 1st Env. Var. 2nd Env. Var
LC_CTYPE: LC_CTYPE LANG
LC_COLLATE: LC_COLLATE LANG
LC_TIME: LC_TIME LANG
LC_NUMERIC: LC_NUMERIC LANG
LC_MONETARY: LC_MONETARY LANG
LC_MESSAGES: LC_MESSAGES LANG

At program startup, the equivalent of

setlocale (LC_ALL, "C")

is executed. This has the effect of initializing each category to the locale described
by the environment "C".

If a pointer to a string is given for locale, setlocale attempts to set the locale for
the given category to locale. If set locale succeeds, locale is returned. If setlocale
fails, a null pointer is returned and the program's locale is not changed.

Page 1

setlocale(3C) (C Programming Language Utilities) setlocale (3C)

FILES

For category LC_ALL, the behavior is slightly different. If a pointer to a string is
given for locale and LC_ALL is given for category, setlocale attempts to set the
locale for all the categories to locale. The locale may be a simple locale, consisting of
a single locale, or a composite locale. A composite locale is a string beginning with
a"/" followed by the locale of each category separated by a"/". If setlocale fails
to set the locale for any category, a null pointer is returnedand the program's locale
for all categories is not changed. Otherwise, locale is returned.

A null pointer for locale causes setlocale to return the current locale associated
with the category. The program's locale is not changed.

/usr/lib/locale/C/LC_CTYPE- LC_CTYPE database for the C locale.
/usr I lib/locale/C/LC_NUMERIC - LC_NUMERIC database for the C locale.
/usr /lib/locale/C/LC_TIME - LC_TIME database for the C locale.
/usr I lib/ locale/C/LC_COLLATE - LC_ COLLATE database for the C locale.
/usr /lib/locale/C/LC_MESSAGES - LC_MESSAGES database for the c locale.
/usr!lib!locale/locale/category - files containing the locale specific information
for each locale and category.

SEE ALSO

Page 2

ctime(3C), ctype(3C), getdate(3C), gettxt(3G), localeconv(3C), mbtowc(3C),
printf(3S), strco11(3C), strftime(3C), strtod(3C), strxfrm(3C), wctomb(3C),
environ(S)

10/92

setpgid(2) setpgid(2)

NAME
setpgid - set process group ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
setpgid sets the process group ID of the process with ID pid to pgid. If pgid is equal
to pid, the process becomes a process group leader. If pgid is not equal to pid, the
process becomes a member of an existing process group.

If pid is equal to 0, the process ID of the calling process is used. If pgid is equal to 0,
the process specified by pid becomes a process group leader.

set pg id fails and returns an error if one or more of the following are true:

EACCES pid matches the process ID of a child process of the calling process
and the child process has successfully executed an exec(2) func­
tion.

EINVAL

EINVAL

EPERM

EPERM

EPERM

ESRCH

pgid is less than (pid_t) 0, or greater than or equal to {PID_MAX).

The calling process has a controlling terminal that does not sup­
port job control.

The process indicated by the pid argument is a session leader.

pid matches the process ID of a child process of the calling process
and the child process is not in the same session as the calling pro­
cess.

pgid does not match the process ID of the process indicated by the
pid argument and there is no process with a process group ID that
matches pgid in the same session as the calling process.

pid does not match the process ID of the calling process or of a
child process of the calling process.

SEE ALSO
exec(2), exit(2), fork(2), getpid(2), getpgid(2), setsid(2)

DIAGNOSTICS

10/92

Upon successful completion, setpgid returns a value of 0. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Page 1

setpgrp{2)

NAME
setpgrp - set process group ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t setpgrp (void);

DESCRIPTION

setpgrp{2)

If the calling process is not already a session leader, setpgrp sets the process group
ID and session ID of the calling process to the process ID of the calling process, and
releases the calling process's controlling terminal.

SEE ALSO
intro(2), exec(2), fork(2), getpid(2), kill(2), setsid(2), signal(2)

DIAGNOSTICS
setpgrp returns the value of the new process group ID.

NOTES
setpgrp will be phased out in favor of the setsid(2) function.

10/92 Page 1

setregid (3) (BSD Compatibility Package) setregid (3)

NAME
setregid - set real and effective group IDs

SYNOPSIS
/usr /ucb/ cc [flag . ..]file ...

int setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
setregid is used to set the real and effective group IDs of the calling process. If
rgid is -1, the real GID is not changed; if egid is -1, the effective GID is not changed.
The real and effective GIDs may be set to different values in the same call.

If the effective user ID of the calling process is super-user, the real GID and the
effective GID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real GID can
be set to the saved setGID from execv, or the effective GID can either be set to the
saved setGID or the real GID. Note: if a setGID process sets its effective GID to its real
CID, it can still set its effective GID back to the saved setGID.

In either case, if the real GID is being changed (that is, if rgid is not -1), or the
effective GID is being changed to a value not equal to the real GID, the saved setGID
is set equal to the new effective GID.

If the real GID is changed from its current value, the old value is removed from the
groups access list (see getgroups(2)) if it is present in that list, and the new value is
added to the groups access list if it is not already present and if this would not
cause the number of groups in that list to exceed NGROUPS, as defined in
/usr/include/sys/param.h.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
setregid will fail and neither of the group IDs will be changed if:

EPERM The calling process's effective UID is not the super-user and a
change other than changing the real GID to the saved setGID, or
changing the effective GID to the real GID or the saved GID, was
specified.

SEE ALSO
exec(2), getuid(2), setuid(2), setreuid(3).

10/92 Page 1

setreuid (3) (BSD Compatibility Package) setreuid (3)

NAME
setreuid - set real and effective user IDs

SYNOPSIS
/usr /ucb/ cc [flag . ..] file ...

int setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION
setreuid is used to set the real and effective user IDs of the calling process. If ruid
is -1, the real user ID is not changed; if euid is -1, the effective user ID is not changed.
The real and effective user IDs may be set to different values in the same call.

If the effective user ID of the calling process is super-user, the real user ID and the
effective user ID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user ID
can be set to the effective user ID, or the effective user ID can either be set to the
saved set-user ID from execv or the real user ID. Note: if a set-UID process sets its
effective user ID to its real user ID, it can still set its effective user ID back to the
saved set-user ID.

In either case, if the real user ID is being changed (that is, if ruid is not -1), or the
effective user ID is being changed to a value not equal to the real user ID, the saved
set-user ID is set equal to the new effective user ID.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
setreuid will fail and neither of the user IDs will be changed if:

EPERM The calling process's effective user ID is not the super-user and a
change other than changing the real user ID to the effective user ID,
or changing the effective user ID to the real user ID or the saved
set-user ID, was specified.

SEE ALSO
exec(2), getuid(2), setuid(2), setregid(3).

10/92 Page 1

setsid (2) setsid(2)

NAME
setsid - set session ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
If the calling process is not already a process group leader, sets id sets the process
group ID and session ID of the calling process to the process ID of the calling pro­
cess, and releases the process's controlling terminal.

sets id will fail and return an error if the following is true:

EPERM The calling process is already a process group leader, or there are
processes other than the calling process whose process group ID is
equal to the process ID of the calling process.

SEE ALSO

NOTES

intro(2), exec(2), exit(2), fork(2), getpid(2), getpgid(2), getsid(2), setpgid(2),
setpgrp, signal(2), sigsend(2)

If the calling process is the last member of a pipeline started by a job control shell,
the shell may make the calling process a process group leader. The other processes
of the pipeline become members of that process group. In this case, the call to set -
sid will fail. For this reason, a process that calls setsid and expects to be part of a
pipeline should always first fork; the parent should exit and the child should call
sets id, thereby insuring that the process will work reliably when started by both
job control shells and non-job control shells.

DIAGNOSTICS

10/92

Upon successful completion, setsid returns the calling process's session ID.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

setuid(2) setuid(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

DESCRIPTION
The setuid system call sets the real user ID, effective user ID, and saved user ID of
the calling process. The setgid system call sets the real group ID, effective group
ID, and saved group ID of the calling process.

At login time, the real user ID, effective user ID, and saved user ID of the login pro­
cess are set to the login ID of the user responsible for the creation of the process.
The same is true for the real, effective, and saved group IDs; they are set to the
group ID of the user responsible for the creation of the process.

When a process calls exec(2) to execute a file (program), the user and/or group
identifiers associated with the process can change. If the file executed is a set-user­
ID file, the effective and saved user IDs of the process are set to the owner of the file
executed. If the file executed is a set-group-ID file, the effective and saved group
IDs of the process are set to the group of the file executed. If the file executed is not
a set-user-ID or set-group-ID file, the effective user ID, saved user ID, effective group
ID, and saved group ID are not changed.

The following subsections describe the behavior of setuid and setgid with
respect to the three types of user and group IDs.

setuid
If the effective user ID of the process calling setuid is the superuser, the real,
effective, and saved user IDs are set to the uid parameter.

If the effective user ID of the calling process is not the superuser, but uid is either the
real user ID or the saved user ID of the calling process, the effective user ID is set to
uid.

setgid

10/92

If the effective user ID of the process calling setgid is the superuser, the real,
effective, and saved group IDs are set to the gid parameter.

If the effective user ID of the calling process is not the superuser, but gid is either the
real group ID or the saved group ID of the calling process, the effective group ID is
set to gid.

setuid and setgid fail if one or more of the following is true:

EPERM For setuid, if the effective user ID is not the superuser, and the uid
parameter does not match either the real or saved user IDs. For setgid,
if the effective user ID is not the superuser, and the gid parameter does
not match either the real or saved group IDs.

EINVAL The uid or gid is out of range.

Page 1

setuid (2) setuid (2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), exec(2), getgroups(2), getuid(2), stat(S)

Page 2 10/92

shmctl(2) shmctl (2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION

10/92

shmctl provides a variety of shared memory control operations as specified by
cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data structure asso­
ciated with shmid into the structure pointed to by buf. The con­
tents of this structure are defined in intro(2). {READ}

IPC_SET

IPC_RMID

SHM_LOCK

SHM_UNLOCK

Set the value of the following members of the data structure asso­
ciated with shmid to the corresponding value found in the struc­
ture pointed to by buf:

shm_perm. uid
shm_perm.gid
shm_perm.mode /* only access permission bits */

This command can be executed only by a process that has an
effective user ID equal to that of super-user, or to the value of
shm_perm. cuid or shm_perm. uid in the data structure associ­
ated with shmid.

Remove the shared memory identifier specified by shmid from the
system and destroy the shared memory segment and data struc­
ture associated with it. This command can be executed only by a
process that has an effective user ID equal to that of super-user, or
to the value of shm_perm. cu id or shm_perm. uid in the data
structure associated with shmid.

Lock the shared memory segment specified by shmid in memory.
This command can be executed only by a process that has an
effective user ID equal to super-user.

Unlock the shared memory segment specified by shmid. This com­
mand can be executed only by a process that has an effective user
ID equal to super-user.

shmctl fails if one or more of the following are true:

EACCES cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process [see intro(2)].

EINVAL

EINVAL

EINVAL

shmid is not a valid shared memory identifier.

cmd is not a valid command.

cmd is IPC_SET and shm_perm. uid or shm_perm. gid is not valid.

Page 1

shmctl (2) shmctl (2)

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the struc­
ture pointed to by buf.

EPERM

EPERM

EFAULT

ENOMEM

cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of super-user, or to the value of
shm_perm. cuid or shm_perm. uid in the data structure associated
with shmid.

cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective user ID of
the calling process is not equal to that of super-user.

buf points to an illegal address.

cmd is equal to SHM_LOCK and there is not enough memory.

SEE ALSO
shmget(2), shmop(2)

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference to
them has been removed.

10/92

shmget(2) shmget(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

DESCRIPTION

10/92

shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory seg­
ment of at least size bytes [see intro(2)] are created for key if one of the following
are true:

key is equal to IPC_PRIVATE.

key does not already have a shared memory identifier associated with it, and
(shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier
is initialized as follows:

shm_perm. cuid, shm_perm. uid, shm_perm. cgid, and shm_perm. gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

The access permission bits of shm_perm.rnode are set equal to the access
permission bits of shmflg. shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch shm_atirne, and shm_dtirne are set equal to 0.

shm_ctirne is set equal to the current time.

shmget fails if one or more of the following are true:

EINVAL size is outside the range of the tunable values specified in
/etc/rnaster.d/shm.

EACCES A shared memory identifier exists for key but operation permission
[see intro(2)] as specified by the low-order 9 bits of shmflg would
not be granted.

EINVAL

ENO ENT

ENOS PC

ENOMEM

A shared memory identifier exists for key but the size of the seg­
ment associated with it is less than size and size is not equal to
zero.

A shared memory identifier does not exist for key and
(shmflg&IPC_CREAT) is false.

A shared memory identifier is to be created but the system­
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory seg­
ment are to be created but the amount of available memory is not
sufficient to fill the request.

Page 1

shmget(2) shmget(2)

EEXIST A shared memory identifier exists for key but both
(shmflg&IPC_CREAT) and (shmflg&IPC_EXCL) are true.

SEE ALSO
intro(2), shmctl(2), shmop(2), stdipc(3C).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

The user must explicitly remove shared memory segments after the last reference to
them has been removed.

10/92

shmop(2) shmop(2)

NAME
shmop: shmat, shmdt - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt (void *shmaddr) ;

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The seg­
ment is attached at the address specified by one of the following criteria:

If shmaddr is equal to (void *) 0, the segment is attached at the first avail­
able address as selected by the system.

If shmaddr is not equal to (void *) O and (shniflg&SHM_RND) is true, the seg­
ment is attached at the address given by (shmaddr - (shmaddr modulus
SHMLBA)).

If shmaddr is not equal to (void *) O and (shmjlg&SHM_RND) is false, the
segment is attached at the address given by shmaddr.

shmdt detaches from the calling process's data segment the shared memory seg­
ment located at the address specified by shmaddr.

The segment is attached for reading if (shmjlg&SHM_RDONLY) is true {READ}, other­
wise it is attached for reading and writing {READ/WRITE}.

shmat fails and does not attach the shared memory segment if one or more of the
following are true:

EINVAL shmid is not a valid shared memory identifier.

EACCES Operation permission is denied to the calling process [see
intro(2)].

ENOMEM

EINVAL

EINVAL

EMF ILE

EINVAL

The available data space is not large enough to accommodate the
shared memory segment.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus SHMLBA)) is an illegal address.

shmaddr is not equal to zero, (shmjlg&SHM_RND) is false, and the
value of shmaddr is an illegal address.

The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

shmdt fails and does not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory
segment.

SEE ALSO
intro(2), exec(2), exit(2), fork(2), shmct1(2), shmget(2).

10/92 Page 1

shmop(2) shmop(2)

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared
memory segment.

shmdt returns a value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference to
them has been removed.

10/92

shutdown (3N) shutdown (3N)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown(int s, int how);

DESCRIPTION
The shutdown call shuts down all or part of a full-duplex connection on the socket
associated withs. If how is 0, then further receives will be disallowed. If how is 1,
then further sends will be disallowed. If how is 2, then further sends and receives
will be disallowed.

RETURN VALUE
A O is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

ENOMEM

ENO SR

s is not a valid descriptor.

s is a file, not a socket.

The specified socket is not connected.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO
connect(3N), socket(3N)

NOTES
The how values should be defined constants.

10/92 Page 1

sigaction (2) sigaction (2)

NAME
sigaction - detailed signal management

SYNOPSIS
#include <signal.h>

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact);

DESCRIPTION

10/92

sigaction allows the calling process to examine and/or specify the action to be
taken on delivery of a specific signal. [See signal(S) for an explanation of general
signal concepts.]

sig specifies the signal and can be assigned any of the signals specified in signal(S)
except SIGKILL and SIGSTOP

If the argument act is not NULL, it points to a structure specifying the new action to
be taken when delivering sig. If the argument oact is not NULL, it points to a struc­
ture where the action previously associated with sig is to be stored on return from
sigaction.

The sigaction structure includes the following members:

void (*sa_handler) ();
sigset_t sa_mask;
int sa_flags;

sa_handler specifies the disposition of the signal and may take any of the values
specified in signal(S).

sa_mask specifies a set of signals to be blocked while the signal handler is active.
On entry to the signal handler, that set of signals is added to the set of signals
already being blocked when the signal is delivered. In addition, the signal that
caused the handler to be executed will also be blocked, unless the SA_NODEFER flag
has been specified. SIGSTOP and SIGKILL cannot be blocked (the system silently
enforces this restriction).

sa_flags specifies a set of flags used to modify the delivery of the signal. It is
formed by a logical OR of any of the following values:

SA_ONSTACK

SA_RESETHAND

SA_NODEFER

If set and the signal is caught and an alternate signal stack
has been declared with sigaltstack(2), the signal is
delivered to the calling process on that stack. Otherwise,
the signal is delivered on the same stack as the main
program.

If set and the signal is caught, the disposition of the signal
is reset to SIG_DFL and the signal will not be blocked on
entry to the signal handler (SIGILL, SIGTRAP, and SIGPWR
cannot be automatically reset when delivered; the system
silently enforces this restriction).

If set and the signal is caught, the signal will not be
automatically blocked by the kernel while it is being
caught.

Page 1

sigaction (2) sigaction (2)

SA_RESTART

SA_SIGINFO

SA_NOCLDWAIT

If set and the signal is caught, a system call that is inter­
rupted by the execution of this signal's handler is tran­
sparently restarted by the system. Otherwise, that system
call returns an EINTR error.

If cleared and the signal is caught, sig is passed as the only
argument to the signal-catching function. If set and the sig­
nal is caught, two additional arguments are passed to the
signal-catching function. If the second argument is not
equal to NULL, it points to a siginfo_t structure contain­
ing the reason why the signal was generated [see
siginfo(S)]; the third argument points to a ucontext_t
structure containing the receiving process's context when
the signal was delivered [see ucontext(S)].

If set and sig equals SIGCHLD, the system will not create
zombie processes when children of the calling process exit.
If the calling process subsequently issues a wai t(2), it
blocks until all of the calling process's child processes ter­
minate, and then returns a value of -1 with errno set to
ECHILD.

SA_NOCLDSTOP If set and sig equals SIGCHLD, sig will not be sent to the cal­
ling process when its child processes stop or continue.

sigaction fails if any of the following is true:

EINVAL The value of the sig argument is not a valid signal number or is
equal to SIGKILL or SIGSTOP.

EFAULT

DIAGNOSTICS

act or oact points outside the process's allocated address space.

On success, sigaction returns zero. On failure, it returns -1 and sets errno to
indicate the error.

SEE ALSO

NOTES

Page 2

kill(l) exit(2), intro(2), ki11(2), pause(2), signal(2), sigprocmask(2), sig­
send(2), sigsuspend(2), wait(2), sigsetops(3C), siginfo(S), signal(S), ucon­
text(S)

If the system call is reading from or writing to a terminal and the terminal's NOFLSH
bit is cleared, data may be flushed [see termio(7)].

10/92

sigaltstack (2) sigaltstack (2)

NAME
sigal ts tack - set or get signal alternate stack context

SYNOPSIS
#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

DESCRIPTION

NOTES

10/92

sigaltstack allows users to define an alternate stack area on which signals are to
be processed. If ss is non-zero, it specifies a pointer to, and the size of a stack area
on which to deliver signals, and tells the system if the process is currently executing
on that stack. When a signal's action indicates its handler should execute on the
alternate signal stack [specified with a sigaction(2) call], the system checks to see
if the process is currently executing on that stack. If the process is not currently
executing on the signal stack, the system arranges a switch to the alternate signal
stack for the duration of the signal handler's execution.

The structure sigaltstack includes the following members.

char *ss_sp
int ss_size
int ss_f lags

If ss is not NULL, it points to a structure specifying the alternate signal stack that
will take effect upon return from sigaltstack. The ss_sp and ss_size fields
specify the new base and size of the stack, which is automatically adjusted for
direction of growth and alignment. The ss_flags field specifies the new stack
state and may be set to the following:

SS_DISABLE The stack is to be disabled and ss_sp and ss_size are ignored. If
SS_DISABLE is not set, the stack will be enabled.

If ass is not NULL, it points to a structure specifying the alternate signal stack that
was in effect prior to the call to sigaltstack. The ss_sp and ss_size fields
specify the base and size of that stack. The ss_flags field specifies the stack's
state, and may contain the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the process is
executing on it will fail.

SS_DISABLE The alternate signal stack is currently disabled.

sigaltstack fails if any of the following is true:

EFAULT

EINVAL

ENOMEM

Either ss or ass points outside the process's allocated address space.

An attempt was made to disable an active stack or the ss_flags
field specifies invalid flags.

The size of the alternate stack area is less than MINSIGSTKSZ.

The value SIGSTKSZ is defined to be the number of bytes that would be used to
cover the usual case when allocating an alternate stack area. The value
MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In com­
puting an alternate stack size, a program should add that amount to its stack
requirements to allow for the operating system overhead.

Page 1

sigaltstack (2) sigaltstack(2)

The following code fragment is typically used to allocate an alternate stack.

if ((sigstk.ss_sp = (char *)malloc(SIGSTKSZ)) ==NULL)
/* error return */;

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = O;
if (sigaltstack(&sigstk, (stack_t *)0) < 0)

perror("sigaltstack");

SEE ALSO
getcontext(2), sigaction(2), sigsetjmp(3C), ucontext(S).

DIAGNOSTICS

Page 2

On success, sigaltstack returns zero. On failure, it returns -1 and sets errno to
indicate the error.

10/92

sigblock (3) (BSD Compatibility Package) sigblock (3)

NAME
sigblock, sigmask - block signals

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <signal.h>

sigblock (mask) ;
int mask;

#define sigmask(signum)

DESCRIPTION
sigblock adds the signals specified in mask to the set of signals currently being
blocked from delivery. Signals are blocked if the appropriate bit in mask is a 1; the
macro sigmask is provided to construct the mask for a given signum. The previous
mask is returned, and may be restored using sigsetmask(3).

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigaction(2), sigsetmask(2), signal(2), sigvec(2).

10/92 Page 1

sigfpe(3) (BSD Compatibility Package) sigfpe(3)

NAME
sigfpe - signal handling for specific SIGFPE codes

SYNOPSIS
/usr /ucb/ cc [flag . ..]file ...

#include <signal.h>

#include <floatingpoint.h>

sigfpe_handler_type sigfpe(code, hdl)
sigfpe_code_type code;
sigfpe_handler_type hdl;

DESCRIPTION

10/92

This function allows signal handling to be specified for particular SIGFPE codes. A
call to sigfpe defines a new handler hdl for a particular SIGFPE code and returns
the old handler as the value of the function sigfpe. Normally handlers are
specified as pointers to functions; the special cases SIGFPE_IGNORE,
SIGFPE_ABORT, and SIGFPE_DEFAULT allow ignoring, specifying core dump using
abort(3), or default handling respectively.

For these IEEE-related codes:

FPE_FLTRES
FPE_FLTDIV
FPE_FLTUND
FPE_FLTOVF
FPE_FLTINV

fp_inexact
fp_division
fp _underflow
fp_overflow
fp_invalid

floating inexact result
floating division by zero
floating underflow
floating overflow
floating operand error

default handling is defined to be to call the handler specified to
ieee_handler(3M).

For all other SIGFPE codes, default handling is to core dump using abort(3).

The compilation option - f fpa causes fpa recomputation to replace the default
abort action for code FPE_FPA_ERROR. Note: SIGFPE_DEFAULT will restore abort
rather than FPA recomputation for this code.

Three steps are required to intercept an IEEE-related SIGFPE code with sigfpe:

1. Set up a handler with sigfpe.

2. Enable the relevant IEEE trapping capability in the hardware, perhaps
by using assembly-language instructions.

3. Perform a floating-point operation that generates the intended IEEE
exception.

Unlike ieee_handler(3M), sigfpe never changes floating-point hardware mode
bits affecting IEEE trapping. No IEEE-related SIGFPE signals will be generated
unless those hardware mode bits are enabled.

SIGFPE signals can be handled using sigvec(2), signal(3), sigfpe(3), or
ieee_handler(3M). In a particular program, to avoid confusion, use only one of
these interfaces to handle SIGFPE signals.

Page 1

sigfpe(3) (BSD Compatibility Package) sigfpe(3)

EXAMPLE

FILES

A user-specified signal handler might look like this:

void sarnple_handler(sig, code, scp, addr
int sig ; /* sig == SIGFPE always */
int code ;
struct sigcontext *scp ;
char *addr

/*
Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

*/
printf (" ieee exception code %x occurred at pc %X \n",

code,scp->sc_pc);

and it might be set up like this:

extern void sarnple_handler;
main

sigfpe_handler_type hdl, old_handlerl, old_handler2;
/*

* save current overflow and invalid handlers; set the new
* overflow handler to sarnple_handler and set the new
* invalid handler to SIGFPE_ABORT (abort on invalid)
*/

/*

hdl = (sigfpe_handler_type) sarnple_handler;
old_handlerl sigfpe(FPE_FLTOVF_TRAP, hdl);
old_handler2 = sigfpe(FPE_FLTOPERR_TRAP, SIGFPE_ABORT);

* restore old overflow and invalid handlers
*!

sigfpe(FPE_FLTOVF_TRAP, old_handlerl);
sigfpe(FPE_FLTOPERR_TRAP, old_handler2);

/usr/include/floatingpoint.h
/usr/include/signal.h

SEE ALSO
sigvec(2), abort(3C), floatingpoint(3), ieee_handler(3M), signal(3)

RETURN VALUE
sigfpe returns BADSIG if code is not zero or a defined SIGFPE code.

Page 2 10/92

siginfo(S) siginfo(S)

NAME
siginfo - signal generation information

SYNOPSIS
#include <siginfo.h>

DESCRIPTION

10/92

If a process is catching a signal, it may request information that tells why the sys­
tem generated that signal [see sigaction(2)]. If a process is monitoring its chil­
dren, it may receive information that tells why a child changed state [see
wai tid(2)]. In either case, the system returns the information in a structure of type
siginfo_t, which includes the following information:

int si_signo /* signal nwnber */
int si_errno /* error nwnber */
int si_code /* signal code */

si_signo contains the system-generated signal number. (For the waitid(2) func­
tion, si_signo is always SIGCHLD.)

If si_errno is non-zero, it contains an error number associated with this signal, as
defined in errno. h.

si_code contains a code identifying the cause of the signal. If the value of
si_code is less than or equal to 0, then the signal was generated by a user process
[see kill(2) and sigsend(2)] and the siginfo structure contains the following
additional information:

pid_t si_pid /* sending process ID */
uid_t si_uid /* sending user ID */

Otherwise, si_code contains a signal-specific reason why the signal was generated,
as follows:

Signal Code

SIG ILL ILL_ILLOPC
ILL_PRVOPC
ILL_PRVREG

SIGFPE FPE_INTDIV
FPE_INTOVF
FPE_FLTDIV
FPE_FLTOVF
FPE_FLTUND
FPE_FLTRES
FPE_FLTINV
FPE_FLTSUB
FPE_FTLNAN

SIGSEGV SEGV_MAPERR
SEGV_ACCERR

SIGBUS BUS_ADRALN
BUS PROT

Reason

illegal opcode
privileged opcode
privileged register
integer divide by zero
integer overflow
floating point divide by zero
floating point overflow
floating point underflow
floating point inexact result
invalid floating point operation
subscript out of range
FP NaN operand
address not mapped to object
invalid permissions for mapped object
invalid address alignment
protection violation

Page 1

siginfo(S) siginfo(S)

NOTES

Page 2

SIGTPAP

SIGCHLD

SIGPOLL

TPAP_BRKPT
TPAP_TPACE
trap _number
CLD_EXITED
CLD_KILLED
CLD_DUMPED
CLD_TPAPPED
CLD_STOPPED
CLD_CONTINUED
POLL_IN
POLL_OUT
POLL_MSG
POLL_F:RR
POLL_PRI
POLL_HUP

process breakpoint
process trace trap
traps 504-511
child has exited
child was killed
child terminated abnormally
traced child has trapped
child has stopped
stopped child had continued
data input available
output buffers available
input message available
I/O error
high priority input available
device disconnected

In addition, the following signal-dependent information is available for kernel-
generated signals:

Signal Field
SIGCHLD pid_t si_pid

int si_status
SIG POLL long si_band

Value
child process ID
exit value or signal
band event for POLL_IN, POLL_OUT, or
POLL_MSG

For SIGCHLD signals, if si_code is equal to CLD_EXITED, then si_status is equal
to the exit value of the process; otherwise, it is equal to the signal that caused the
process to change state. If si_ncodes is non zero, the signal was generated as a
result of a machine exception. The signals that an exception may give rise to are
SIGSEGV, SIGILL, SIGBUS, SIGTPAP and SIGFPE. When one of these signals is
delivered as a result of a machine exception, one or more exception blocks contain­
ing relevant information is also made available through the siginfo structure. In
that case si_ncodes contains the number of exception blocks available, and
si_exblks points to an array of exception blocks containing si_ncodes elements.
The contents of each exception block include the signal number, eb_signo, the
exception code, eb_code (one of those listed above), and signal-specific informa­
tion, eb_registers. eb_register contains valid information only for SIGSEGV,
SIGBUS and SIGFPE. When eb_code is FPE_FLTINV, SEGV_MAPERR, SEGV_ACCERR,
BUS __ ADRERR, or BUS_OBJERR the eb_subcode field will contain additional informa­
tion about the cause of the exception:

Code Subcode
FPE_FLTINV

SEGV_MAPERR

FPE_FLTINV_INV
FPE_FLTINV_NAN
SEGV_MAPERR_CODE
SEGV_MAPERR_DATA

Reason
Invalid operand(s)
Floating point NaN operand
Code access
Data access

10/92

siginfo(5) siginfo (5)

SEGV_ACCERR SEGV_ACCERR_CODE Code access
SEGV _ACCERR_DATA Data access

BUS_ADRERR BUS_ADRERR_VME_ERR Non-existent VME address
BUS_OBJERR BUS_OBJERR_CODE Code access

BUS_OBJERR_DATA Data access
BUS_OBJERR_PARITY_ERR Parity error
BUS_OBJERR_SB_HANG Processor scoreboard hang

For SIGSEGV and SIGBUS, the address, transaction and data registers of the faulting
data-pipe stage are available in eb_dma, eb_dmt and eb_dmd, respectively.

For SIGFPE imprecise exception codes, the high and low words of the floating point
result are available in eb_fprh and eb_fprl, and the floating point imprecise
operation type register is available in eb_fpi t.

SEE ALSO
sigaction(2), waitid(2), signal(S)

10/92 Page 3

siginterrupt (3) (BSD Compatibility Package) siginterrupt (3)

NAME
siginterrupt - allow signals to interrupt system calls

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int siginterrupt(sig, flag)
int sig, flag;

DESCRIPTION

NOTES

siginterrupt is used to change the system call restart behavior when a system
call is interrupted by the specified signal. If the flag is false (0), then system calls
will be restarted if they are interrupted by the specified signal and no data has been
transferred yet. System call restart is the default behavior when the signal(3) rou­
tine is used.

If the flag is true (1), then restarting of system calls is disabled. If a system call is
interrupted by the specified signal and no data has been transferred, the system call
will return -1 with errno set to EINTR. Interrupted system calls that have started
transferring data will return the amount of data actually transferred.

Issuing a siginterrupt call during the execution of a signal handler will cause the
new action to take place on the next signal to be caught.

This library routine uses an extension of the sigvec(2) system call that is not avail­
able in 4.2BSD, hence it should not be used if backward compatibility is needed.

RETURN VALUE
A 0 value indicates that the call succeeded. A -1 value indicates that an invalid sig­
nal number has been supplied.

SEE ALSO
signal(2), sigblock(3), sigpause(3), sigsetmask(3), sigvec(3), signal(3).

10/92 Page 1

signal (2) signal (2)

NAME
signal, sigset, sighold, sigrelse, sigignore, sigpause - simplified signal
management

SYNOPSIS
#include <signal.h>

void (*signal(int sig, void (*disp) (int))) (int);

void (*sigset(int sig, void (*disp) (int))) (int);

int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

DESCRIPTION

NOTES

10/92

These functions provide simplified signal management for application processes.
See signal(S) for an explanation of general signal concepts.

signal and sigset are used to modify signal dispositions. sig specifies the signal,
which may be any signal except SIGKILL and SIGSTOP. disp specifies the signal's
disposition, which may be SIG_DFL, SIG_IGN, or the address of a signal handler. If
signal is used, disp is the address of a signal handler, and sig is not SIGILL,
SIGTRAP, or SIGPWR, the system first sets the signal's disposition to SIG_DFL before
executing the signal handler. If sigset is used and disp is the address of a signal
handler, the system adds sig to the calling process's signal mask before executing
the signal handler; when the signal handler returns, the system restores the calling
process's signal mask to its state prior to the delivery of the signal. In addition, if
sigset is used and disp is equal to SIG_HOLD, sig is added to the calling process's
signal mask and the signal's disposition remains unchanged.

sighold adds sig to the calling process's signal mask.

sigrelse removes sig from the calling process's signal mask.

sigignore sets the disposition of sig to SIG_IGN.

sigpause removes sig from the calling process's signal mask and suspends the cal­
ling process until a signal is received.

These functions fail if any of the following are true.

EINVAL

EINTR

The value of the sig argument is not a valid signal or is equal to
SIGKILL or SIGSTOP.

A signal was caught during the system call sigpause.

sighold in conjunction with sigrelse or sigpause may be used to establish criti­
cal regions of code that require the delivery of a signal to be temporarily deferred.

If signal or sigset is used to set SIGCHLD's disposition to a signal handler,
SIGCHLD will not be sent when the calling process's children are stopped or contin­
ued.

Page 1

signal (2) signal (2)

If any of the above functions are used to set SIGCHLD's disposition to SIG_IGN, the
calling process's child processes will not create zombie processes when they ter­
minate [see exi t(2)]. If the calling process subsequently waits for its children, it
blocks until all of its children terminate; it then returns a value of -1 with errno set
to ECHILD [see wai t(2), wai tid(2)].

DIAGNOSTICS
On success, signal returns the signal's previous disposition. On failure, it returns
SIG_ERR and sets errno to indicate the error.

On success, sigset returns SIG_HOLD if the signal had been blocked or the signal's
previous disposition if it had not been blocked. On failure, it returns SIG_ERR and
sets errno to indicate the error.

All other functions return zero on success. On failure, they return -1 and set errno
to indicate the error.

SEE ALSO
kill(2), pause(2), sigaction(2), sigsend(2), wait(2), waitid(2), signal(5)

Page 2 10/92

signal (3) (BSD Compatibility Package) signal (3)

NAME
signal - simplified software signal facilities

SYNOPSIS
/usr /ucb/ cc [flag .. .]file . ..

#include <signal.h>

void (*signal(sig, func)) ()
void (*func) ();

DESCRIPTION

10/92

signal is a simplified interface to the more general sigvec(2) facility. Programs
that use signal in preference to sigvec are more likely to be portable to all sys­
tems.

A signal is generated by some abnormal event, initiated by a user at a terminal
(quit, interrupt, stop), by a program error (bus error, and so on), by request of
another program (kill), or when a process is stopped because it wishes to access its
control terminal while in the background [see termio(4)]. Signals are optionally
generated when a process resumes after being stopped, when the status of child
processes changes, or when input is ready at the control terminal. Most signals
cause termination of the receiving process if no action is taken; some signals instead
cause the process receiving them to be stopped, or are simply discarded if the pro­
cess has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the
signal call allows signals either to be ignored or to interrupt to a specified loca­
tion. The following is a list of all signals with names as in the include file
<signal .h>:

SIGHUP
SIG INT
SIGQUIT
SI GILL
SIGTRAP
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGURG
SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGTTIN
SIGTTOU
SIG IO
SIGXCPU
SIGXFSZ

*
*

*
*

*
*
*

•
t
t
•
•
t
t
•
*
*

hangup
interrupt
quit
illegal instruction
trace trap
abort (generated by abort(3) routine)
emulator trap
arithmetic exception
kill (cannot be caught, blocked, or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe or other socket with no one to read it
alarm clock
software termination signal
urgent condition present on socket
stop (cannot be caught, blocked, or ignored)
stop signal generated from keyboard
continue after stop (cannot be blocked)
child status has changed
background read attempted from control terminal
background write attempted to control terminal
1/0 is possible on a descriptor [see fcnt1(2)]
cpu time limit exceeded [see getrlimit(2)
file size limit exceeded [see getrlimit(2)

Page 1

signal (3) (BSD Compatibility Package) signal (3)

NOTES

SIGVTALRM
SIGPROF
SIGWINCH •
SIGUSRl
SIGUSR2

virtual time alarm [see getitimer(2)
profiling timer alarm [see getitimer(2)]
window changed [see termio(4)]
user-defined signal 1
user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this default is termi­
nation (with a core image for starred signals) except for signals marked with• or t.
Signals marked with• are discarded if the action is SIG_DFL; signals marked with t
cause the process to stop. If June is SIG_IGN the signal is subsequently ignored and
pending instances of the signal are discarded. Otherwise, when the signal occurs
further occurrences of the signal are automatically blocked and June is called.

A return from the function unblocks the handled signal and continues the process
at the point it was interrupted.

If a caught signal occurs during certain system calls, terminating the call prema­
turely, the call is automatically restarted. In particular this can occur during a
read(2) or wri te(2) on a slow device (such as a terminal; but not a file) and during
a wait(2).

The value of signal is the previous (or initial) value of June for the particular sig­
nal.

After a fork(2) or vfork(2) the child inherits all signals. An execve(2) resets all
caught signals to the default action; ignored signals remain ignored.

The handler routine can be declared:

void handler(sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;

Here sig is the signal number; code is a parameter of certain signals that provides
additional detail; scp is a pointer to the sigcontext structure (defined in
<signal .h>), used to restore the context from before the signal; and addr is addi­
tional address information. See sigvec(2) for more details.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and
errno is set to indicate the error.

ERRORS
signal will fail and no action will take place if one of the following occur:

EINVAL sig is not a valid signal number, or is SIGKILL or SIGSTOP.

SEE ALSO

Page 2

kill(l), execve(2), fork(2), getitimer(2), getrlimit(2), ki11(2), ptrace(2),
read(2), sigaction(2) wait(2), write(2), setjrnp(3), sigblock(3), sigpause(3),
sigsetmask(3), sigstack(3), sigvec(3), wait(3), setjrnp(3C), termio(7).

10/92

signal(5) signal(5)

NAME
signal - base signals

SYNOPSIS
#include <signal.h>

DESCRIPTION

10/92

A signal is an asynchronous notification of an event. A signal is said to be gen­
erated for (or sent to) a process when the event associated with that signal first
occurs. Examples of such events include hardware faults, timer expiration and ter­
minal activity, as well as the invocation of the kill or sigsend system calls. In
some circumstances, the same event generates signals for multiple processes. A
process may request a detailed notification of the source of the signal and the rea­
son why it was generated [see siginfo(5)].

Each process may specify a system action to be taken in response to each signal sent
to it, called the signal's disposition. The set of system signal actions for a process is
initialized from that of its parent. Once an action is installed for a specific signal, it
usually remains installed until another disposition is explicitly requested by a call
to either sigaction, signal or sigset, or until the process execs [see sigac­
tion(2) and signal(2)]. When a process execs, all signals whose disposition has
been set to catch the signal will be set to SIG_DFL. Alternatively, a process may
request that the system automatically reset the disposition of a signal to SIG_DFL
after it has been caught [see sigaction(2) and signal(2)].

A signal is said to be delivered to a process when the appropriate action for the pro­
cess and signal is taken. During the time between the generation of a signal and its
delivery, the signal is said to be pending [see sigpending(2)]. Ordinarily, this
interval cannot be detected by an application. However, a signal can be blocked
from delivery to a process [see signal(2) and sigprocmask(2)]. If the action asso­
ciated with a blocked signal is anything other than to ignore the signal, and if that
signal is generated for the process, the signal remains pending until either it is
unblocked or the signal's disposition requests that the signal be ignored. If the sig­
nal disposition of a blocked signal requests that the signal be ignored, and if that
signal is generated for the process, the signal is discarded immediately upon gen­
eration.

Each process has a signal mask that defines the set of signals currently blocked
from delivery to it [see sigprocmask(2)]. The signal mask for a process is initial­
ized from that of its parent.

The determination of which action is taken in response to a signal is made at the
time the signal is delivered, allowing for any changes since the time of generation.
This determination is independent of the means by which the signal was originally
generated.

The signals currently defined in signal.hare as follows:

Page 1

signal (5) signal (5)

Name Value Default Event
SIGHUP 1 Exit Hangup [see termio(7)]
SIG INT 2 Exit Interrupt [see termio(7)]
SIGQUIT 3 Core Quit [see termio(7)]
SIG ILL 4 Core Illegal Instruction
SIGTRAP 5 Core Trace/Breakpoint Trap
SIGABRT 6 Core Abort
SIGEMT 7 Core Emulation Trap
SIGFPE 8 Core Arithmetic Exception
SIGKILL 9 Exit Killed
SIG BUS 10 Core Bus Error
SIGSEGV 11 Core Segmentation Fault
SIGSYS 12 Core Bad System Call
SIGPIPE 13 Exit Broken Pipe
SIGALRM 14 Exit Alarm Clock
SIGTERM 15 Exit Terminated
SIGUSRl 16 Exit User Signal 1
SIGUSR2 17 Exit User Signal 2
SIGCHLD 18 Ignore Child Status Changed
SIGPWR 19 Ignore Power Fail/Restart
SIGWINCH 20 Ignore Window Size Change
SIGURG 33 Ignore Urgent Socket Condition
SIGPOLL 22 Exit Pollable Event [see strearnio(7)]
SIGSTOP 23 Stop Stopped (signal)
SIGTSTP 24 Stop Stopped (user) [see termio(7)]
SIGCONT 25 Ignore Continued
SIGTTIN 26 Stop Stopped (tty input) [see termio(7)]
SIGTTOU 27 Stop Stopped (tty output) [see termio(7)]
SIGVTALRM 37 Exit Virtual Timer Expired
SIG PROF 38 Exit Profiling Timer Expired
SIGXCPU 35 Core CPU time limit exceeded [see getrlimit(2)]
SIGXFSZ 36 Core File size limit exceeded [see getrlimit(2)]
SIG IO 34 Core Socket I/O possible

Using the signal, sigset or sigaction system call, a process may specify one of
three dispositions for a signal: take the default action for the signal, ignore the sig­
nal, or catch the signal.

Default Action: srG_DFL

Page 2

A disposition of SIG_DFL specifies the default action. The default action for each
signal is listed in the table above and is selected from the following:

Exit When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exit(2).

Core

Stop

When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exit(2). In addition, a "core image'' of the
process is constructed in the current working directory.

When it gets the signal, the receiving process is to stop.

10/92

signal{5) signal(5)

Ignore When it gets the signal, the receiving process is to ignore it. This is identi­
cal to setting the disposition to SIG_IGN.

Ignore Signal: SIG_IGN
A disposition of SIG_IGN specifies that the signal is to be ignored.

Catch Signal: fu.nction address

NOTES

10/92

A disposition that is a function address specifies that, when it gets the signal, the
receiving process is to execute the signal handler at the specified address. Nor­
mally, the signal handler is passed the signal number as its only argument; if the
disposition was set with the sigaction function however, additional arguments
may be requested [see sigaction(2)]. When the signal handler returns, the receiv­
ing process resumes execution at the point it was interrupted, unless the signal
handler makes other arrangements. If an invalid function address is specified,
results are undefined.

If the disposition has been set with the sigset or sigaction function, the signal is
automatically blocked by the system while the signal catcher is executing. If a
longjmp [see setjmp(3C)] is used to leave the signal catcher, then the signal must
be explicitly unblocked by the user [see signal(2) and sigprocmask(2)].

If execution of the signal handler interrupts a blocked system call, the handler is
executed and the interrupted system call returns a -1 to the calling process with
errno set to EINTR. However, if the SA_RESTART flag is set the system call will be
transparently restarted.

The dispositions of the SIGKILL and SIGSTOP signals cannot be altered from their
default values. The system generates an error if this is attempted.

The SIGKILL and SIGSTOP signals cannot be blocked. The system silently enforces
this restriction.

If a process receives a SIGSEGV or SIGBUS resulting from an instruction access
while it is blocking or ignoring that signal, the system will set the process's handler
to SIG_DFL before delivering the signal, causing the process to terminate with a
core file.

Whenever a process receives a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal,
regardless of its disposition, any pending SIGCONT signal are discarded.

Whenever a process receives a SIGCONT signal, regardless of its disposition, any
pending SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals is discarded. In addi­
tion, if the process was stopped, it is continued.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a "selectable" event pending. A process must specifically request
that this signal be sent using the I_SETSIG ioctl call. Otherwise, the process will
never receive SIGPOLL.

If the disposition of the SIGCHLD signal has been set with signal or sigset, or
with sigaction and the SA_NOCLDSTOP flag has been specified, it will only be sent
to the calling process when its children exit; otherwise, it will also be sent when the
calling process's children are stopped or continued due to job control.

Page 3

signal (5) signal (5)

The name SIGCLD is also defined in this header file and identifies the same signal as
SIGCHLD. SIGCLD is provided for backward compatibility, new applications should
use SIGCHLD.

The disposition of signals that are inherited as SIG_IGN should not be changed.

SEE ALSO

Page 4

exi t(2), getrlimi t(2), intro(2), ki11(2), pause(2), sigaction(2),
sigal tstack(2), signal(2), sigprocmask(2), sigsend(2), sigsuspend(2), wai t(2),
sigsetops(3C), siginfo(5), ucontext(5)

10/92

sigpause (3) (BSD Compatibility Package) sigpause (3)

NAME
sigpause - automically release blocked signals and wait for interrupt

SYNOPSIS
/usr /ucb/ cc [flag ...]file ...

sigpause(sigmask)
int sigmask;

DESCRIPTION
sigpause assigns sigmask to the set of masked signals and then waits for a signal to
arrive; on return the set of masked signals is restored. sigmask is usually 0 to indi­
cate that no signals are now to be blocked. sigpause always terminates by being
interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(3), to begin a critical section,
variables modified on the occurrence of the signal are examined to determine that
there is no work to be done, and the process pauses awaiting work by using sig­
pause with the mask returned by sigblock.

SEE ALSO
signal(2), sigaction(2), sigblock(3), sigvec(3), signal(3).

10/92 Page 1

sigpending (2) sigpending (2)

NAME
sigpending - examine signals that are blocked and pending

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
The sigpending function retrieves those signals that have been sent to the calling
process but are being blocked from delivery by the calling process's signal mask.
The signals are stored in the space pointed to by the argument set.

sigpending fails if the following is true:

EFAULT The set argument points outside the process's allocated address
space.

SEE ALSO
sigaction(2), sigprocmask(2), sigsetops(3C)

DIAGNOSTICS

10/92

On success, sigpending returns zero. On failure, it returns -1 and sets errno to
indicate the error.

Page 1

sigprocmask (2) sigprocmask (2)

NAME
sigprocmask - change or examine signal mask

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION
The sigprocmask function is used to examine and/or change the calling process's
signal mask. If the value is SIG_BLOCK, the set pointed to by the argument set is
added to the current signal mask. If the value is SIG_UNBLOCK, the set pointed by
the argument set is removed from the current signal mask. If the value is
SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argu­
ment set. If the argument oset is not NULL, the previous mask is stored in the space
pointed to by oset. If the value of the argument set is NULL, the value how is not
significant and the process's signal mask is unchanged; thus, the call can be used to
enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask, at least
one of those signals will be delivered before the call to sigprocmask returns.

It is not possible to block those signals that cannot be ignored [see sigaction(2)];
this restriction is silently imposed by the system.

If sigprocmask fails, the process's signal mask is not changed.

sigprocmask fails if any of the following is true:

ElNVAL

EFAULT

The value of the how argument is not equal to one of the defined
values.

The value of set or oset points outside the process's allocated
address space.

SEE ALSO
sigaction(2), signal(2), sigsetopts(3C), signal(S)

DIAGNOSTICS

10/92

On success, sigprocmask returns zero. On failure, it returns -1 and sets errno to
indicate the error.

Page 1

sigsem(2) (Application Compatibility Package) sigsem(2)

NAME
sigsem - signal a process waiting on a semaphore

SYNOPSIS
cc [flag . . .]file ... -lx
sigsem(int sem_num);

DESCRIPTION
sigsem signals a process that is waiting on the semaphore sem_num that it may
proceed and use the resource governed by the semaphore. sigsem is used in con­
junction with waitsem to allow synchronization of processes wishing to access a
resource. One or more processes may wait sem on the given semaphore and will be
put to sleep until the process which currently has access to the resource issues a
sigsem call. If there are any waiting processes, sigsem causes the process which is
next in line on the semaphore's queue to be rescheduled for execution. The
semaphore's queue is organized in First In, First Out (FIFO) order.

DIAGNOSTICS
sigsem returns the value (int) -1 if an error occurs. If sem_num does not refer to a
semaphore type file, errno is set to ENOTNAM. If sem_num has not been previously
opened by opensem, errno is set to EBADF. If the process issuing a sigsem call is
not the current "owner" of the semaphore (that is, if the process has not issued a
waitsem call before the sigsem), errno is set to ENAVAIL.

SEE ALSO
creatsem(2), opensem(2), wai tsem(2)

10/92 Page 1

sigsend(2) sigsend(2)

NAME
sigsend, sigsendset - send a signal to a process or a group of processes

SYNOPSIS
#include <Sys/types.h>
#include <sys/signal.h>
#include <sys/procset.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t *psp, int sig);

DESCRIPTION

10/92

sigsend sends a signal to the process or group of processes specified by id and
idtype. The signal to be sent is specified by sig and is either zero or one of the values
listed in signal(S). If sig is zero (the null signal), error checking is performed but
no signal is actually sent. This value can be used to check the validity of id and
idtype.

The real or effective user ID of the sending process must match the real or effective
user ID of the receiving process, unless the effective user ID of the sending process is
super-user, or sig is SIGCONT and the sending process has the same session ID as the
receiving process.

If idtype is P _PID, sig is sent to the process with process ID id.

If idtype is P _PGID, sig is sent to any process with process group ID id.

If idtype is P _SID, sig is sent to any process with session ID id.

If idtype is P _UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P _CID, sig is sent to any process with scheduler class ID id [see
priocntl(2)].

If id type is P _ALL, sig is sent to all processes and id is ignored.

If id is P _MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process
ID of 1 is excluded unless idtype is equal to P _PID.

sigsendset provides an alternate interface for sending signals to sets of processes.
This function sends signals to the set of processes specified by psp. psp is a pointer
to a structure of type procset_t, defined in sys/procset .h, which includes the
following members:

idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

p_lidtype and p_lid specify the ID type and ID of one ("left") set of processes;
p_ridtype and p_rid specify the ID type and ID of a second ("right") set of
processes. ID types and IDs are specified just as for the idtype and id arguments to
sigsend. p_op specifies the operation to be performed on the two sets of processes
to get the set of processes the system call is to apply to. The valid values for p_op

Page 1

sigsend (2) sigsend(2)

and the processes they specify are:

POP_DIFF

POP_AND

POP_OR

POP_XOR

set difference: processes in left set and not in right set

set intersection: processes in both left and right sets

set union: processes in either left or right set or both

set exclusive-or: processes in left or right set but not in both

sigsend and sigsendset fail if one or more of the following are true:

EINVAL sig is not a valid signal number.

EINVAL idtype is not a valid idtype field.

EINVAL

ESRCH

sig is SIGKILL, idtype is p _PID and id is 1 (procl).

No process can be found corresponding to that specified by id and
idtype.

EPERM The user ID of the sending process is not super-user, and its real or
effective user ID does not match the real or effective user ID of the
receiving process, and the calling process is not sending SIGCONT
to a process that shares the same session.

In addition, sigsendset fails if:

EFAULT psp points outside the process's allocated address space.

SEE ALSO
kill(l), getpid(2), getpgrp(2), kill(2), priocnt1(2), setpid(2), signal(2), sig­
nal(S).

DIAGNOSTICS

Page 2

On success, sigsend returns zero. On failure, it returns -1 and sets errno to indi­
cate the error.

10/92

sigsetjmp (3C) sigsetjmp(3C)

NAME
sigsetjmp, siglongjmp - a non-local goto with signal state

SYNOPSIS
#include <setjmp.h>

int sigsetjmp (sigjmp_buf env, int savemask);

void siglongjmp (sigjmp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

sigsetjmp saves the calling process's registers and stack environment [see
sigaltstack(2)] in env (whose type, sigjmp_buf, is defined in the <setjmp.h>
header file) for later use by siglongjmp. If savemask is non-zero, the calling
process's signal mask [see sigprocmask(2)] and scheduling parameters [see
priocnt1(2)] are also saved. sigsetjmp returns the value 0.

siglongjmp restores the environment saved by the last call of sigsetjmp with the
corresponding env argument. After siglongjmp is completed, program execution
continues as if the corresponding call of sigsetjmp had just returned the value val.
siglongjmp cannot cause sigsetjmp to return the value zero. If siglongjmp is
invoked with a second argument of zero, sigsetjmp will return 1. At the time of
the second return from sigsetjmp, all external and static variables have values as
of the time siglongjmp is called. The values of register and automatic variables
are undefined. Register or automatic variables whose value must be relied upon
must be declared as volatile.

If a signal-catching function interrupts sleep and calls siglongjmp to restore an
environment saved prior to the sleep call, the action associated with SIGALRM and
time it is scheduled to be generated are unspecified. It is also unspecified whether
the SIGALRM signal is blocked, unless the process's signal mask is restored as part of
the environment.

The function siglongjmp restores the saved signal mask if and only if the env argu­
ment was initialized by a call to the sigsetjmp function with a non-zero savemask
argument.

SEE ALSO

NOTES

10/92

getcontext(2), priocnt1(2), sigaction(2), sigaltstack(2), sigprocmask(2),
setjmp(3C)

If siglongjmp is called even though env was never primed by a call to sigsetjmp,
or when the last such call was in a function that has since returned, the behavior is
undefined.

Page 1

sigsetmask (3) (BSD Compatibility Package)

NAME
sigsetmask - set current signal mask

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <signal.h>

sigsetmask(mask);
int mask;

#define sigmask(signum)

DESCRIPTION

sigsetmask (3)

sigsetmask sets the current signal mask (those signals that are blocked from
delivery). Signals are blocked if the corresponding bit in mask is a 1; the macro sig­
mask is provided to construct the mask for a given sign um.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT from being blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigblock(3), signal(2), signal(3), sigpause(3), sigvec(3).

10/92 Page 1

sigsetops (3C) sigsetops (3C)

NAME
sigemptyset, sigfillset, sigaddset, sigdelset, sigisrnember - manipulate
sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset (sigset_t *set);
int sigfillset (sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset (sigset_t *set, int signo);
int sigisrnember (sigset_t *set, int signo);

DESCRIPTION
These functions manipulate sigset_t data types, representing the set of signals sup­
ported by the implementation.

sigemptyset initializes the set pointed to by set to exclude all signals defined by
the system.

sigfillset initializes the set pointed to by set to include all signals defined by the
system.

sigaddset adds the individual signal specified by the value of signo to the set
pointed to by set.
sigdelset deletes the individual signal specified by the value of signo from the set
pointed to by set.
sigisrnernber checks whether the signal specified by the value of signo is a member
of the set pointed to by set.
Any object of type sigset_t must be initialized by applying either sigemptyset or
sigfillset before applying any other operation.

sigaddset, sigdelset and sigisrnernber will fail if the following is true:

EINVAL The value of the signo argument is not a valid signal number.

sigfillset will dump a core file if the set argument specifies an invalid address.

SEE ALSO
sigaction(2), sigprocrnask(2), sigpending(2), sigsuspend(2), signal(S)

DIAGNOSTICS

10/92

Upon successful completion, the sigisrnernber function returns a value of one if
the specified signal is a member of the specified set, or a value of zero if it is not.
Upon successful completion, the other functions return a value of zero. Otherwise
a value of -1 is returned and errno is set to indicate the error.

Page 1

sigstack (3) (BSD Compatibility Package) sigstack (3)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
/usr /ucb/ cc [flag . ..]file ...

#include <signal.h>

int sigstack (ss, oss)
struct sigstack *ss, *oss;

DESCRIPTION
sigstack allows users to define an alternate stack, called the "signal stack," on
which signals are to be processed. When a signal's action indicates its handler
should execute on the signal stack (specified with a sigvec(2) call), the system
checks to see if the process is currently executing on that stack. If the process is not
currently executing on the signal stack, the system arranges a switch to the signal
stack for the duration of the signal handler's execution.

A signal stack is specified by a sigstack structure, which includes the following
members:

char
int

*ss_sp;
ss_onstack;

/* signal stack pointer */
/* current status */

ss_sp is the initial value to be assigned to the stack pointer when the system
switches the process to the signal stack. Note that, on machines where the stack
grows downwards in memory, this is not the address of the beginning of the signal
stack area. ss_onstack field is zero or non-zero depending on whether the process
is currently executing on the signal stack or not.

If ss is not a NULL pointer, sigstack sets the signal stack state to the value in the
sigstack structure pointed to by ss. Note: if ss_onstack is non-zero, the system
will think that the process is executing on the signal stack. If ss is a NULL pointer,
the signal stack state will be unchanged. If oss is not a NULL pointer, the current sig­
nal stack state is stored in the sigstack structure pointed to by oss.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
sigstack will fail and the signal stack context will remain unchanged if one of the
following occurs.

EFAULT Either ss or oss points to memory that is not a valid part of the pro­
cess address space.

SEE ALSO

NOTES

10/92

sigaltstack(2), sigvec(3), signal(3).

Signal stacks are not "grown" automatically, as is done for the normal stack. If the
stack overflows unpredictable results may occur.

Page 1

sigsuspend (2) sigsuspend (2)

NAME
sigsuspend- install a signal mask and suspend process until signal

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *set);

DESCRIPTION
sigsuspend replaces the process's signal mask with the set of signals pointed to by
the argument set and then suspends the process until delivery of a signal whose
action is either to execute a signal catching function or to terminate the process.

If the action is to terminate the process, sigsuspend does not return. If the action
is to execute a signal catching function, sigsuspend returns after the signal catch­
ing function returns. On return, the signal mask is restored to the set that existed
before the call to sigsuspend.

It is not possible to block those signals that cannot be ignored [see signal(S)]; this
restriction is silently imposed by the system.

sigsuspend fails if either of the following is true:

EINTR A signal is caught by the calling process and control is returned
from the signal catching function.

EFAULT The set argument points outside the process's allocated address
space.

DIAGNOSTICS
Since sigsuspend suspends process execution indefinitely, there is no successful
completion return value. On failure, it returns -1 and sets errno to indicate the
error.

SEE ALSO
sigaction(2), sigprocmask(2), sigpause(2), sigsetops(3C), signal(S)

10/92 Page 1

sigvec(3) (BSD Compatibility Package) sigvec(3)

NAME
sigvec - software signal facilities

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <signal.h>

int sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION

10/92

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is blocked
from further occurrence, the current process context is saved, and a new one is
built. A process may specify a handler to which a signal is delivered, or specify that
a signal is to be blocked or ignored. A process may also specify that a default action
is to be taken by the system when a signal occurs. Normally, signal handlers exe­
cute on the current stack of the process. This may be changed, on a per-handler
basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that
caused their invocation to be blocked, but other signals may yet occur. A global sig­
nal mask defines the set of signals currently blocked from delivery to a process. The
signal mask for a process is initialized from that of its parent (normally 0). It may
be changed with a sigblock(3) or sigsetmask(3) call, or when a signal is delivered
to the process.

A process may also specify a set of flags for a signal that affect the delivery of that
signal.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then it
is delivered to the process. When a signal is delivered, the current state of the pro­
cess is saved, a new signal mask is calculated (as described below), and the signal
handler is invoked. The call to the handler is arranged so that if the signal handling
routine returns normally the process will resume execution in the context from
before the signal's delivery. If the process wishes to resume in a different context,
then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the dura­
tion of the process' signal handler (or until a sigblock or sigsetmask call is
made). This mask is formed by taking the current signal mask, adding the signal to
be delivered, and ORing in the signal mask associated with the handler to be
invoked.

The action to be taken when the signal is delivered is specified by a sigvec struc­
ture, which includes the following members:

void
int
int

(*sv_handler) ();
sv_mask;
sv_flags;

I* signal handler */
I* signal mask to apply */
I* see signal options */

Page 1

sigvec(3) (BSD Compatibility Package) sigvec(3)

Page 2

#define SV_ONSTACK /* take signal on signal stack */
#define SV_INTERRUPT /* do not restart system on signal return */
#define SV_RESETHAND /* reset handler to SIG_DFL when signal taken */

If the SV _ONSTACK bit is set in the flags for that signal, the system will deliver the
signal to the process on the signal stack specified with sigstack(2), rather than
delivering the signal on the current stack.

If vec is not a NULL pointer, sigvec assigns the handler specified by sv_handler,
the mask specified by sv _mask, and the flags specified by sv _flags to the specified
signal. If vec is a NULL pointer, sigvec does not change the handler, mask, or flags
for the specified signal.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT.
The system enforces this restriction silently.

If ovec is not a NULL pointer, the handler, mask, and flags in effect for the signal
before the call to sigvec are returned to the user. A call to sigvec with vec a NULL
pointer and ovec not a NULL pointer can be used to determine the handling informa­
tion currently in effect for a signal without changing that information.

The following is a list of all signals with names as in the include file
/usr/include/signal.h:

SIGHUP hangup
SIG INT interrupt
SIGQUIT * quit
SIGILL * illegal instruction
SIGTRAP * trace trap
SIGABRT * abort (generated by abort(3) routine)
SIGEMT * emulator trap
SIGFPE * arithmetic exception
SIGKILL kill (cannot be caught, blocked, or ignored)
SIGBUS * bus error
SIGSEGV * segmentation violation
SIGSYS * bad argument to system call
SIGPIPE write on a pipe or other socket with no one to read it
SIGALRM alarm clock
SIGTERM software termination signal
SIGURG • urgent condition present on socket
SIGSTOP t stop (cannot be caught, blocked, or ignored)
SIGTSTP t stop signal generated from keyboard
SIGCONT • continue after stop (cannot be blocked)
SIGCHLD • child status has changed
SIGTTIN t background read attempted from control terminal
SIGTTOU t background write attempted to control terminal
SIGIO • I/0 is possible on a descriptor [see fcntl(2)]
SIGXCPU cpu time limit exceeded [see setrlirnit(2)]
SIGXFSZ file size limit exceeded [see setrlirnit(2)]
SIGVTALRM virtual time alarm [see setitirner(2)]
SIGPROF profiling timer alarm [see setitirner(2)]
SIGWINCH • window changed [see terrnio(4)]

10/92

sigvec(3) (BSD Compatibility Package) sigvec(3)

SIGUSRl
SIGUSR2

user-defined signal 1
user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is
made, or an execve(2) is performed, unless the SV _RESETHAND bit is set in the flags
for that signal. In that case, the value of the handler for the caught signal will be set
to SIG_DFL before entering the signal-catching function, unless the signal is
SIGILL, SIGPWR, or SIGTRAP. Also, if this bit is set, the bit for that signal in the sig­
nal mask will not be set; unless the signal mask associated with that signal blocks
that signal, further occurrences of that signal will not be blocked. The
SV_RESETHAND flag is not available in 4.2BSD, hence it should not be used if back­
ward compatibility is needed.

The default action for a signal may be reinstated by setting the signal's handler to
SIG_DFL; this default is termination except for signals marked with• or t. Signals
marked with• are discarded if the action is SIG_DFL; signals marked with t cause
the process to stop. If the process is terminated, a "core image" will be made in the
current working directory of the receiving process if the signal is one for which an
asterisk appears in the above list [see core(4)].

If the handler for that signal is SIG_IGN, the signal is subsequently ignored, and
pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return by set­
ting the SV_INTERRUPT bit in the flags for that signal. The SV_INTERRUPT flag is
not available in 4.2BSD, hence it should not be used if backward compatibility is
needed. The affected system calls are read(2) or wri te(2) on a slow device (such as
a terminal or pipe or other socket, but not a file) and during a wai t(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt and reset-signal-handler flags.

The execve(2) call resets all caught signals to default action and resets all signals to
be caught on the user stack. Ignored signals remain ignored; the signal mask
remains the same; signals that interrupt system calls continue to do so.

The accuracy of addr is machine dependent. For example, certain machines may
supply an address that is on the same page as the address that caused the fault. If
an appropriate addr cannot be computed it will be set to SIG_NOADDR.

RETURN VALUE
A 0 value indicates that the call succeeded. A -1 return value indicates that an error
occurred and errno is set to indicate the reason.

ERRORS

10/92

sigvec will fail and no new signal handler will be installed if one of the following
occurs:

EFAULT Either vec or ovec is not a NULL pointer and points to memory that
is not a valid part of the process address space.

Page 3

sigvec(3) (BSD Compatibility Package) sigvec(3)

EINVAL Sig is not a valid signal number, or, SIGKILL, or SIGSTOP.

SEE ALSO

NOTES

Page 4

exec(2), fcntl(2), fork(2), getrlimit(2), getitimer(2), ioct1(2),
ptrace(2), read(2), sigblock(2), signal(2), sigstack(2), umask(2),
write(2), setjmp(3), signal(3), sigpause(3), sigsetmask(3),
streamio(7), termio(7).

kill(2),
wait(2),
wait(3),

SIGPOLL is a synonym for SIGIO. A SIGIO will be issued when a file descriptor
corresponding to a STREAMS [see intro(2)] file has a "selectable'' event pending.
Unless that descriptor has been put into asynchronous mode [see fcnt1(2)], a pro­
cess must specifically request that this signal be sent using the I_SETSIG ioctl call
[see streamio(4)]. Otherwise, the process will never receive SIGPOLL.

The handler routine can be declared:

void handler(sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;

Here sig is the signal number; code is a parameter of certain signals that provides
additional detail; scp is a pointer to the sigcontext structure (defined in
signal. h), used to restore the context from before the signal; and addr is additional
address information.

The signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

10/92

sinh(3M) (Math Libraries) sinh(3M)

NAME
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh - hyperbolic func­
tions

SYNOPSIS
cc fflag .. .]file ... -lm [library ...]

#include <math.h>

double sinh (doublex);

float sinhf (float x);

double cosh (doublex);

float coshf (float x);

double tanh (doublex);

float tanhf (float x);

double asinh (double x);

double acosh (doublex);

double atanh (doublex);

DESCRIPTION
sinh, cosh, and tanh and the single-precision versions sinhf, coshf, and tanhf
return, respectively, the hyberbolic sine, cosine, and tangent of their argument.

asinh, acosh, and atanh return, respectively, the inverse hyperbolic sine, cosine,
and tangent of their argument.

SEE ALSO
matherr(3M)

DIAGNOSTICS

10/92

sinh, sinhf, cosh, and coshf return HUGE (and sinh and sinhf may return -HUGE
for negative x) when the correct value would overflow and set errno to ERANGE.

acosh returns NaN and sets errno to EDOM when the argument x is less than 1. A
message indicating DOMAIN error is printed on the standard error output.

atanh returns NaN and sets errno to EDOM if I x I ~ 1. If I x I = 1, a message indi­
cating SING error is printed on the standard error output; if I x I > 1 the message
will indicate DOMAIN error.

Except when the -Xe compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xe compilation
options are used, HUGE_ VAL is returned instead of HUGE and no error messages are
printed.

Page 1

sleep(3C) (C Development Set) sleep(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
#include <unistd.h>

unsigned sleep (unsigned seconds);

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested because any caught signal will terminate the sleep following execution
of that signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount because of the scheduling of other activity in the
system. The value returned by sleep will be the "unslept" amount (the requested
time minus the time actually slept) in case the caller had an alarm set to go off ear­
lier than the end of the requested sleep time, or premature arousal because of
another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some
other signal) occurs. The previous state of the alarm signal is saved and restored.
The calling program may have set up an alarm signal before calling sleep. If the
sleep time exceeds the time until such alarm signal, the process sleeps only until
the alarm signal would have occurred. The caller's alarm catch routine is executed
just before the sleep routine returns. But if the sleep time is less than the time till
such alarm, the prior alarm time is reset to go off at the same time it would have
without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2), wai t(2)

10/92 Page 1

sleep(3) (BSD Compatibility Package) sleep(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

sleep(seconds}
unsigned seconds;

DESCRIPTION
sleep suspends the current process from execution for the number of seconds
specified by the argument. The actual suspension time may be up to 1 second less
than that requested, because scheduled wakeups occur at fixed 1-second intervals,
and may be an arbitrary amount longer because of other activity in the system.

sleep is implemented by setting an interval timer and pausing until it expires. The
previous state of this timer is saved and restored. If the sleep time exceeds the time
to the expiration of the previous value of the timer, the process sleeps only until the
timer would have expired, and the signal which occurs with the expiration of the
timer is sent one second later.

SEE ALSO
getitimer(2), sigpause(3), usleep(3).

10/92 Page 1

socket(3N) socket(3N)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

DESCRIPTION

10/92

socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communi­
cation will take place; this selects the protocol family which should be used. The
protocol family generally is the same as the address family for the addresses sup­
plied in later operations on the socket. These families are defined in the include file
sys/socket.h. There must be an entry in the netconfig(4) file for at least each
protocol family and type required. If protocol has been specified, but no exact match
for the tuplet family, type, protocol is found, then the first entry containing the
specified family and type with zero for protocol will be used. The currently under­
stood formats are:

PF_UNIX

PF_INET

UNIX system internal protocols

ARP A Internet protocols

The socket has the indicated type, which specifies the communication semantics.
Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide
a sequenced, reliable, two-way connection-based data transmission path for
datagrams of fixed maximum length; a consumer may be required to read an entire
packet with each read system call. This facility is protocol specific, and presently
not implemented for any protocol family. SOCK_RAW sockets provide access to
internal network interfaces. The types SOCK_RAW, which is available only to the
super-user, and SOCK_RDM, for which no implementation currently exists, are not
described here.

protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type within a given protocol
family. However, multiple protocols may exist, in which case a particular protocol
must be specified in this manner. The protocol number to use is particular to the
communication domain in which communication is to take place. If a protocol is
specified by the caller, then it will be packaged into a socket level option request
and sent to the underlying protocol layers.

Page 1

socket(3N) socket(3N)

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data may be sent or received
on it. A connection to another socket is created with a connect call. Once con­
nected, data may be transferred using read and write calls or some variant of the
send and recv calls. When a session has been completed, a close may be per­
formed. Out-of-band data may also be transmitted as described on the send(3N)
manual page and received as described on the recv(3N) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then
the connection is considered broken and calls will indicate an error with -1 returns
and with ETIMEDOUT as the specific code in the global variable errno. The proto­
cols optionally keep sockets warm by forcing transmissions roughly every minute
in the absence of other activity. An error is then indicated if no response can be eli­
cited on an otherwise idle connection for a extended period (for instance 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets.
The only difference is that read calls will return only the amount of data requested,
and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents
named in sendto calls. Datagrams are generally received with recvfrorn, which
returns the next datagram with its return address.

An fcntl call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. It may also enable non-blocking I/0 and asyn­
chronous notification of I/0 events with SIGIO signals.

The operation of sockets is controlled by socket level options. These options are
defined in the file sys/socket.h. setsockopt and getsockopt are used to set
and get options, respectively.

RETURN VALUE
A -1 is returned if an error occurs. Otherwise the return value is a descriptor
referencing the socket.

ERRORS

Page 2

The socket call fails if:

EPROTONOSUPPORT The protocol type or the specified protocol is not supported
within this domain.

EMF ILE

EACCESS

ENOMEM

ENO SR

The per-process descriptor table is full.

Permission to create a socket of the specified type and/or
protocol is denied.

Insufficient user memory is available.

There were insufficient STREAMS resources available to
complete the operation.

10/92

socket(3N) socket(3N)

SEE ALSO

10/92

close(2), fcntl(2), ioctl(2), read(2), write(2), accept(3N), bind(3N),
connect(3N), getsockname(3N), getsockopt(3N), listen(3N), recv(3N),
send(3N), shutdown(3N), socketpair(3N).

Page 3

socketpair(3N) socketpair(3N)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int d, int type, int protocol, int sv[2]);

DESCRIPTION
The socketpair library call creates an unnamed pair of connected sockets in the
specified address family d, of the specified type, and using the optionally specified
protocol. The descriptors used in referencing the new sockets are returned in sv[O]
and sv(l]. The two sockets are indistinguishable.

RETURN VALUE
socketpair returns a -1 on failure, otherwise it returns the number of the second
file descriptor it creates.

ERRORS
The call succeeds unless:

EMF ILE

EAFNOSUPPORT

EPROTONOSUPPORT

EOPNOSUPPORT

ENOMEM

ENO SR

Too many descriptors are in use by this process.

The specified address family is not supported on this
machine.

The specified protocol is not supported on this machine.

The specified protocol does not support creation of socket
pairs.

There was insufficient user memory for the operation to
complete.

There were insufficient STREAMS resources for the opera­
tion to complete.

SEE ALSO
pipe(2), read(2), write(2).

NOTES
This call is currently implemented only for the AF _UNIX address family.

10/92 Page 1

spray(3N) spray(3N)

NAME
spray - scatter data in order to check the network

SYNOPSIS
#include <rpcsvc/spray.h>

DESCRIPTION
The spray protocol sends packets to a given machine to test the speed and reliabil­
ity of communications with that machine.

The spray protocol is not a C function interface, per se, but can be accessed using
the generic remote procedure calling interface clnt_call() [see
rpc_clnt_calls(3N)]. The protocol sends a packet to the called host. The host
acknowledges receipt of the packet. The protocol counts the number of ack­
nowledgments and can return that count.

The spray protocol currently supports the following procedures, which should be
called in the order given:

SPRAYPROC_CLEAR This procedure clears the counter.

SPRAYPROC_SPRAY This procedure sends the packet.

SPRAYPROC_GET This procedure returns the count and the amount of time
since the last SPRAYPROC_CLEAR.

The following XDR routines are available in librpcsvc:

xdr_sprayarr
xdr_spraycwnul

EXAMPLE

10/92

The following code fragment demonstrates how the spray protocol is used:

#include <rpc/rpc.h>
#include <rpcsvc/spray.h>

spraycwnul spray_result;
sprayarr spray_data;
char buf[lOO]; /*arbitrary data*/
int loop = 1000;
CLIENT *clnt;
struct timeval timeoutO = {0, 0};
struct timeval timeout25 = {25, 0};

spray_data.sprayarr_len
spray_data.sprayarr_val

(u_int)lOO;
buf;

clnt = clnt_create ("somehost", SPRAYPROG, SPRAYVERS, "netpath");
if (clnt == (CLIENT *)NULL) {

/* handle this error */

if (clnt_call(clnt, SPRAYPROC_CLEAR,
xdr_void, NULL, xdr_void, NULL, timeout25)) {

/* handle this error */

Page 1

spray (3N) spray (3N)

SEE ALSO

while (loop-- > 0) {
if (clnt_call(clnt, SPRAYPROC_SPRAY,

xdr_sprayarr, &spray_data, xdr_void, NULL, tirneoutO)) {
/* handle this error */

if (clnt_call(clnt, SPRAYPROC_GET,
xdr_void, NULL, xdr_spraycurnul, &spray_result, tirneout25)) {

/* handle this error */

printf ("Acknowledged %ld of 1000 packets in %d secs %d usecs\n",
spray_result.counter,
spray_result.clock.sec,
spray_result.clock.usec);

rpc_clnt_calls(3N), spray(lM), sprayd(lM)

Page 2 10/92

sputl(3X) (Specialized Libraries) sputl (3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
cc (flag .. .)file ... -lld [library ...]
#include <ldfcn.h>

void sputl (long value, char *buffer);

long sgetl (const char *buffer);

DESCRIPTION

10/92

sputl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

sgetl retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent way of
storing long numeric data in a file in binary form without conversion to characters.

Page 1

sslgnal (3C) (C Development Set) ssignal (3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (int sig, int (*action) (int))) (int);

int gsignal (int sig) ;
DESCRIPTION

ssignal and gsignal implement a software facility similar to signal(2). Iltls
facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1through17. A call to ssignal associates a procedure, action, with
the software signal sig; the software signal, sig, is raised by a call to gsignal. Rais­
ing a software signal causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which
an action is to be established. The second argument defines the action; it is either
the name of a (user-defined) action function or one of the manifest constants
SIG_DFL (default) or SIG_IGN (ignore). ssignal returns the action previously esta­
blished for that signal type; if no action has been established or the signal number is
illegal, ssignal returns SIG_DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to
SIG_DFL and the action function is entered with argument sig. gsignal
returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no
other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig, gsignal
returns the value 0 and takes no other action.

SEE ALSO
signal(2), sigset(2), raise(3C)

10/92 Page 1

stat(2) stat (2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

int lstat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

DESCRIPTION

10/92

path points to a path name naming a file. Read, write, or execute permission of the
named file is not required, but all directories listed in the path name leading to the
file must be searchable. stat obtains information about the named file. Note that
in a Remote File Sharing environment, the information returned by stat depends
on the user I group mapping set up between the local and remote computers.

lstat obtains file attributes similar to stat, except when the named file is a sym­
bolic link; in that case lstat returns information about the link, while stat returns
information about the file the link references.

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which information is placed concerning the
file. The contents of the structure pointed to by buf include the following members:

dev_t st_dev;

ino_t st _ino;
mode_t st__JT\ode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;

off_t st_size;
time_t st_atime;
ulong_t st_ausec;
time_t st_mtime;
ulong_t st_musec;
time_t st_ctime;
ulong_t st_cusec;
timestruct_t st_atim;
timestruct_t st_mtim;
timestruct_t st_ctim;

st_blksize;

/* ID of device containing */
I* a directory entry for this file */
I* Inode number */
I* File mode [see mknod(2)] */
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
I* ID of device */
I* This entry is defined only for */
/* char special or block special files */
/* File size in bytes */
/* Time of last access in seconds */

I* microsecond extension to st_atime (88k only) */
I* Time of last modify in seconds */
/* microsecond extension to st_mtime (88k only) */
/* Time of last status change in secs */
/* microsecond extension to st_ctime (88k only) */
I* Time of last access */
I* Time of last data modification */
I* Time of last file status change */
/* Times measured in seconds since */
I* 00:00:00 urc, Jan. 1, 1970 */
/* Preferred I/0 block size */ long

long
char

st_blocks; /* Number st blksize blocks allocated */
st_fstype[ST_FSTYPSZ];/* File system type name*/

Page 1

stat(2) stat(2)

Page 2

st_dev This field uniquely identifies the file system that contains the file. Its
value may be used as input to the ustat system call to determine more
information about this file system. No other meaning is associated with
this value.

st_ino This field uniquely identifies the file in a given file system. The pair
st_ino and st_dev uniquely identifies regular files.

st_mode The mode of the file as described in mknod(2). In addition to the modes
described in mknod(2), the mode of a file may also be S_IFLNK if the file
is a symbolic link. (Note that S_IFLNK may only be returned by lstat.)

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file's owner.

st_gid The group ID of the file's group.

st_rdev This field should be used only by administrative commands. It is valid
only for block special or character special files and only has meaning on
the system where the file was configured.

st_size For regular files, this is the address of the end of the file. For block spe­
cial or character special, this is not defined. See also pipe(2).

st_atim Time (in seconds and microseconds) when file data was last accessed.
Changed by the following system calls: creat, mknod, pipe, utime, and
read.

st_mtim Time (in seconds and microseconds) when data was last modified.
Changed by the following system calls: creat, mknod, pipe, utime, and
write.

st_ctim Time (in seconds and microseconds) when file status was last changed.
Changed by the following system calls: chmod, chown, creat, link,
mknod, pipe, unlink, utime, and write.

st_atime, st_mtime, st_ctime
These are supplied for backward compatibility and are the same as
st_atim. tv_sec, st_mtim. tv_sec, and st_ctim. tv_sec, respec­
tively. Note that on 68k machines these are #defines whereas on 88k
machines they are part of the stat structure.

st_ausec, st_musec, st_cusec
These are only in the 88k stat structure and correspond to
st_atim.tv_nsec, st_mtim.tv_nsec,and st_ctim.tv_nsec,respec­
tively.

st_blksize

st_blocks

A hint as to the 'best" unit size for 1/0 operations. This field is not
defined for block-special or character-special files.

The total number of physical blocks of size 512 bytes actually allocated
on disk. This field is not defined for block-special or character-special
files.

10/92

stat (2) stat(2)

st_f stype
File system type name of file system associated with the file.

stat and lstat fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix.

EFAULT buf or path points to an invalid address.

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENO ENT

ENOTDIR

ENO LINK

EOVERFLOW

A signal was caught during the stat or lstat system call.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

The named file does not exist or is the null pathname.

A component of the path prefix is not a directory.

path points to a remote machine and the link to that machine
is no longer active.

A component is too large to store in the structure pointed to
by buf.

fstat fails if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EFAULT

EINTR

ENOLINK

EOVERFLOW

buf points to an invalid address.

A signal was caught during the fstat system call.

fildes points to a remote machine and the link to that
machine is no longer active.

A component is too large to store in the structure pointed to
by buf.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fattach(3C), stat(S).

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

stat(S) stat(S)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

10/92

The system calls stat, lstat and fstat return data in a stat structure, which is
defined in stat. h.

The constants used in the st_mode field are also defined in this file:

#define S_IFMT I* type of file *I
#define S_IAMB I* access mode bits *I
#define S_IFIFO /*fifo*/
#define S_IFCHR I* character special *I
#define S_IFDIR I* directory *I
#define S_IFNAM I* XENIX special named file *I
#define S_INSEM I* XENIX semaphore subtype of IFNAM *I
#define S_INSHD I* XENIX shared data subtype of IFNAM *I
#define S_IFBLK I* block special *I
#define S_IFREG I* regular *I
#define S_IFLNK I* symbolic link *I
#define S_ISUID I* set user id on execution *I
#define S_ISGID I* set group id on execution *I
#define S_ISVTX I* save swapped text even after use *I
#define S_IREAD I* read permission, owner *I
#define S_IWRITE I* write permission, owner *I
#define S_IEXEC I* execute I search permission, owner *I
#define S_ENFMT I* record locking enforcement flag *I
#define S_IRWXU I* read, write, execute: owner *I
#define S_IRUSR I* read permission: owner *I
#define S_IWUSR I* write permission: owner *I
#define S_IXUSR I* execute permission: owner *I
#define S_IRWXG I* read, write, execute: group *I
#define S_IRGRP I* read permission: group *I
#define S_IWGRP I* write permission: group *I
#define S_IXGRP /*execute permission: group *I
#define S_IRWXO /*read, write, execute: other *I
#define S_IROTH /* read permission: other *I
#define S_IWOTH /*write permission: other *I
#define S_IXOTH /*execute permission: other *I

Page 1

stat(5) stat(5)

The following macros are for POSIX conformance:

#define S_ISBLK (mode) block special file
#define S_ISCHR(mode) character special file
#define S_ISDIR(mode) directoryfile
#define S_ISFIFO (mode) pipe or fifo file
#define S_ISREG (mode) regular file

SEE ALSO
stat(2), types(S)

Page 2 10/92

stat(2) (Application Compatibility Package) stat(2)
....

NAME
stat, lstat, fstat - get file status

SYNOPSIS
cc [flag ...] file ... - lx

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *buf);

int lstat (const char *path, struct stat *buf);

int fstat (int fildes, struct stat *buf);

DESCRIPTION

10/92

path points to a path name naming a file. Read, write, or execute permission of the
named file is not required, but all directories listed in the path name leading to the
file must be searchable. stat obtains information about the named file.

Note that in a Remote File Sharing environment, the information returned by stat
depends on the user/group mapping set up between the local and remote comput­
ers. [See idload(lM).]

lstat obtains file attributes similar to stat, except when the named file is a sym­
bolic link; in that case lstat returns information about the link, while stat returns
information about the file the link references.

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which information is placed concerning the
file.

The contents of the structure pointed to by buf include the following members:

mode_t st_Jllode;
ino_t st_ino;
dev_t st_dev;

dev_t st_rdev;

nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

I* File mode [see mknod(2)] */
I* !node number */
/* ID of device containing */
/* a directory entry for this file */
I* ID of device */
/* This entry is defined only for */
/* character special files */,
/* XENIX special named files or block
I* special files */
I* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
I* File size in bytes */
I* Time of last access */
I* Time of last data modification */
/* Time of last file status change *I
/* Times measured in seconds since */
I* 00:00:00 GMT, Jan. 1, 1970 */

Page 1

stat(2) (Application Compatibility Package) stat(2)

Page 2

st_mode The mode of the file as described in mknod(2).

st_ino This field uniquely identifies the file in a given file system. The pair
st_ino and st_dev uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the file. Its
value may be used as input to the ustat system call to determine more
information about this file system. No other meaning is associated with
this value.

st_rdev This field should be used only by administrative commands. It is valid
only for block special files or character special files or XENIX special
named files. The st_rdev field for block special and character special files
only has meaning on the system where the file was configured.

If the file is a XENIX special named file, it contains the type code [see
stat(4) for the XENIX semaphore and shared data type code values
S_INSEM and S_INSHD).

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file's owner.

st_gid The group ID of the file's group.

st_size For regular files, this is the address of the end of the file. For pipes or
FIFOs, this is the count of the data currently in the file. For block special
character special, or XENIX special named files. this is not defined.

st_atime Time when file data was last accessed. Changed by the following
system calls: creat, mknod, pipe, utime, read, creatsem, opensem,
sigsem, waitsem, sdget and sdfree.

st_mtime Time when data was last modified. Changed by the following system
calls: creat, mknod, pipe, utime, write.

st_ctime Time when file status was last changed. Changed by the following sys­
tem calls: chmod, chown, creat, link, mknod, pipe, unlink, utime,
write, creatsem, sdget and sdfree.

stat and ls tat fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix.

EBADF

EFAULT

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

fildes is not a valid open file descriptor.

buf or path points to an invalid address.

A signal was caught during the stat system call.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
LPOSIX_NO_TRUNC) is in effect.

10/92

stat(2)

ENO ENT

ENOTDIR

ENOLINK

EOVERFLOW

(Application Compatibility Package) stat(2)

The named file does not exist or is the null pathname.

A component of the path prefix is not a directory.

path points to a remote machine and the link to that machine
is no longer active.

A component is too large to store in the structure pointed to
bybuf

fstat fails if one or more of the following are true:

ENOLINK fildes points to a remote machine and the link to that
machine is no longer active.

EOVERFLOW A component is too large to store in the structure pointed to
bybuf

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), stat(S)

DIAGNOSTICS

10192

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

statvfs(2) statvfs(2)

NAME
statvfs, fstatvfs - get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statvfs.h>

int statvfs (const char *path, struct statvfs *buf);

int fstatvfs (int fildes, struct statvfs *buf);

DESCRIPTION

10/92

statvfs returns a "generic superblock" describing a file system; it can be used to
acquire information about mounted file systems. buf is a pointer to a structure
(described below) that is filled by the system call.

path should name a file that resides on that file system. The file system type is
known to the operating system. Read, write, or execute permission for the named
file is not required, but all directories listed in the path name leading to the file
must be searchable.

The statvfs structure pointed to by buf includes the following members:

ulong f_bsize; /* preferred file system block size */
ulong f_frsize; I* fundamental filesystem block size

(if supported) *I
ulong f_blocks; I* total # of blocks on file system

in units of f_frsize */
ulong f_bfree; I* total # of free blocks *I
ulong f_bavail; I* # of free blocks avail to

non-superuser */
ulong f_files; I* total # of file nodes (inodes) *I
ulong f_ffree; I* total # of free file nodes *I
ulong f_favail; I* # of inodes avail to

non-superuser*/
fsid_t f_fsid; /* file system id (dev for now) */
char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */
ulong f_flag; /* bit mask of flags */
ulong f_namemax; /* maximum file name length */
char f_fstr[32J; /*file system specific string*/
ulong f_filler[16J; /*reserved for future expansion*/

f_basetype contains a null-terminated FSType name of the mounted target (for
example, s5 mounted over rfs will contain s5).

The following flags can be returned in the f_flag field:

ST_RDONLY OxOl
ST_NOSUID Ox02

ST_NOTRUNC Ox04

/* read-only file system */
/* does not support setuid/setgid

semantics */
I* does not truncate file names

longer than {NAME_MAX}*/

Page 1

statvfs(2) statvfs(2)

fstatvfs is similar to statvfs, except that the file named by path in statvfs is
instead identified by an open file descriptor fildes obtained from a successful open,
creat, dup, fcntl, or pipe system call.

statvfs fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EFAULT path or buf points outside the process's allocated address space.

EINTR

EIO

ELOOP

EMULTIHOP

A signal was caught during statvfs execution.

An 1/0 error occurred while reading the file system.

Too many symbolic links were encountered in translating path .

Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of a path component exceeds {NAME_MAX} characters, or
the length of path exceeds {PATH_MAX} characters.

ENO ENT

ENOLINK

EN OT DIR

Either a component of the path prefix or the file referred to by path
does not exist.

path points to a remote machine and the link to that machine is no
longer active.

A component of the path prefix of path is not a directory.

fstatvfs fails if one or more of the following are true:

EFAULT buf points to an invalid address.

EBADF

EINTR

EIO

fildes is not an open file descriptor.

A signal was caught during fstatvfs execution.

An 1/0 error occurred while reading the file system.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

Page 2

chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

10/92

stdarg(5) stdarg (5)

NAME
stdarg- handle variable argument list

SYNOPSIS
#include <stdarg.h>

va_list pvar;

void va_start(va_list pvar, parmN);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable numbers of argu­
ments of variable types to be written. Routines that have variable argument lists
[such as printf] but do not use stdarg are inherently non-portable, as different
machines use different argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start () macro is invoked before any access to the unnamed arguments
and initializes pvar for subsequent use by va_arg () and va_end () . The parame­
ter parmN is the identifier of the rightmost parameter in the variable parameter list
in the function definition (the one just before the , ...). If this parameter is
declared with the register storage class or with a function or array type, or with a
type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

The parameter parmN is required under strict ANSI C compilation. In other compi­
lation modes, parmN need not be supplied and the second parameter to the
va_start () macro can be left empty [for example, va_start (pvar,) ;]. This
allows for routines that contain no parameters before the ... in the variable param­
eter list.

The va_arg () macro expands to an expression that has the type and value of the
next argument in the call. The parameter pvar should have been previously initial­
ized by va_start (). Each invocation of va_arg () modifies pvar so that the
values of successive arguments are returned in tum. The parameter type is the type
name of the next argument to be returned. The type name must be specified in
such a way so that the type of a pointer to an object that has the specified type can
be obtained simply by postfixing a * to type. If there is no actual next argument, or
if type is not compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined.

The va_end () macro is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

10/92

This example gathers into an array a list of arguments that are pointers to strings
(but not more than MAXARGS arguments) with function fl, then passes the array as
a single argument to function f2. The number of pointers is specified by the first
argument to fl.

Page 1

stdarg (5) stdarg (5)

#include <stdarg.h>
#define MAXARGS 31

void fl(int n_ptrs, ...)

va_list ap;
char *array[MAXARGS];
int ptr_no O;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char*);
va_end (ap) ;
f2(n_ptrs, array);

Each call to fl shall have visible the definition of the function or a declaration such
as

void fl(int, ...)

SEE ALSO
vprintf(3S)

NOTES

Page 2

It is up to the calling routine to specify in some manner how many arguments there
are, since it is not always possible to determine the number of arguments from the
stack frame. For example, execl is passed a zero pointer to signal the end of the
list. printf can tell how many arguments there are by the format. It is non­
portable to specify a second argument of char, short, or float to va_arg, because
arguments seen by the called function are not char, short, or float. C converts
char and short arguments to int and converts float arguments to double before
passing them to a function.

10/92

stdio(3S) (C Development Set) stdio(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE*stdin, *stdout, *stderr;

DESCRIPTION

10/92

The functions described in the entries of sub-class 3S of this manual constitute an
efficient, user-level 1/0 buffering scheme. The in-line macros getc and putc handle
characters quickly. The macros getchar and putchar, and the higher-level rou­
tines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite,gets,getw,
printf, puts, putw, and scanf all use or act as if they use getc and putc; they can
be freely intermixed.

A file with associated buffering is called a stream [see intro(3)] and is declared to
be a pointer to a defined type FILE. fopen creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio. h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

The following symbolic values in <unistd.h> define the file descriptors that will
be associated with the C-language stdin, stdout and stderr when the application is
started:

STDIN_FILENO Standard input value, stdin. It has the value of 0.
STOOUT_FILENO Standard output value, stdout. It has the value of 1.
STDERR_FILENO Standard error value, stderr. It has the value of 2.

A constant null designates a null pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

An integer constant FILENAME_MAX specifies the size needed for an array of char
large enough to hold the longest file name string that the implementation guaran­
tees can be opened.

An integer constant FOPEN_MAX specifies the minimum number of files that the
implementation guarantees can be open simultaneously. Note that no more than
255 files may be opened via fopen, and only file descriptors 0 through 255 are valid.

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual
are declared in that header file and need no further declaration. The constants and
the following "functions" are implemented as macros (redeclaration of these names
is perilous): getc, getchar, putc, putchar, ferror, feof, clearerr, and fileno.

Page 1

stdio(3S) (C Development Set) stdio (3S)

There are also function versions of getc, getchar, putc, putchar, ferror, feof,
clearerr, and fileno.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers to
a terminal. The standard error output stream stderr is by default unbuffered, but
use of freopen [see fopen(3S)] will cause it to become buffered or line-buffered.
When an output stream is unbuffered, information is queued for writing on the
destination file or terminal as soon as written; when it is buffered, many characters
are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the destination terminal
as soon as the line is completed (that is, as soon as a new-line character is written or
terminal input is requested). setbuf or setvbuf [both described in setbuf(3S)]
may be used to change the stream's buffering strategy.

SEE ALSO
open(2}, close(2), lseek(2}, pipe(2}, read(2}, write(2}, ctermid(3S), cuserid(3S},
fclose(3S}, ferror(3S}, fopen(3S), fread(3S}, fseek(3S}, getc(3S}, gets(3S},
popen(3S}, printf(3S}, putc(3S}, puts(3S}, scanf(3S}, setbuf(3S}, system(3S},
tmpfile(3S}, tmpnam(3S), ungetc(3S)

DIAGNOSTICS

Page 2

Invalid stream pointers usually cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error condi­
tions.

10/92

stdipc(3C) (C Development Set) stdlpc(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(const char *path, int id);
DESCRIPTION

All interprocess communication facilities require the user to supply a key to be
used by the msgget(2), semget(2), and shmget(2) system calls to obtain interpro­
cess communication identifiers. One suggested method for forming a key is to use
the ftok subroutine described below. Another way to compose keys is to include
the project ID in the most significant byte and to use the remaining portion as a
sequence number. There are many other ways to form keys, but it is necessary for
each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each
other's operation. It is still possible to interface intentionally. Therefore, it is
strongly suggested that the most significant byte of a key in some sense refer to a
project so that keys do not conflict across a given system.

ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. path must be the path name of an existing file
that is accessible to the process. id is a character that uniquely identifies a project.
Note that ftok will return the same key for linked files when called with the same
id and that it will return different keys when called with the same file name but
different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS

NOTES

10/92

ftok returns (key_t) -1 if path does not exist or if it is not accessible to the pro­
cess.

If the file whose path is passed to ftok is removed when keys still refer to the file,
future calls to ftok with the same path and id will return an error. If the same file is
recreated, then ftok is likely to return a different key than it did the original time it
was called.

Page 1

stime(2)

NAME
st ime - set time

SYNOPSIS
#include <unistd.h>

int stime{const time_t *tp};

DESCRIPTION

stime(2)

stime sets the system's idea of the time and date. tp points to the value of time as
measured in seconds from 00:00:00 UTC January 1, 1970.

stime will fail if:

EPERM

SEE ALSO
time(2)

DIAGNOSTICS

the effective user ID of the calling process is not super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92 Page 1

stkprotect (2) stkprotect (2)

NAME
stkprotect - set permissions of stack

SYNOPSIS
#include <sys/types.h>
#include <sys/mrnan.h>

int stkprotect(unsigned perm);

DESCRIPTION
This function sets the permissions of the stack. Perm must be either
PROT_READIPROT_WRITEorPROT_READIPROT_WRITEIPROT_EXEC.

Upon successful completion of an exec(2) function, a process's stack shall have
PROT_READ I PROT_WRITE permissions. A new process created via fork(2) shall
inherit the stack permissions of its parent process.

Under the following conditions, stkprotect fails and sets errno to:

EINVAL perm is invalid.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
csync(2), exec(2), fork(2), mrnap(2)

10/92 Page 1

str(3G)

NAME
str: strfind, strrspn, strtrns - string manipulations

SYNOPSIS
cc [flag ...]file ... -lgen [library ...]

#include <libgen.h>

int strfind (const char *as1, const char *as2);

char *strrspn (const char *String, const char *tc);

str(3G)

char * strtrns (const char *Str, const char *old, const char *new,
char *result) ;

DESCRIPTION
strfind returns the offset of the second string, as2, if it is a substring of string as1.

strrspn returns a pointer to the first character in the string to be trimmed (all char­
acters from the first character to the end of string are in tc).

strtrns transforms strand copies it into result. Any character that appears in old is
replaced with the character in the same position in new. The new result is returned.

EXAMPLES
I* find pointer to substring "hello" in asl */
i = strfind(asl, "hello");

/* trim junk from end of string */
s2 = strrspn(sl, "*?#$%");
*s2 = '\0';

/* transform lower case to upper case */
al[] = "abcdefghijklmnopqrstuvwxyz";
a2[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
s2 = strtrns(sl, al, a2, s2);

SEE ALSO
string(3C)

DIAGNOSTICS
If the second string is not a substring of the first string strfind returns -1.

10/92 Page 1

strccpy (3G) strccpy (3G)

NAME
strccpy: streadd, strcadd, strecpy - copy strings, compressing or expanding
escape codes

SYNOPSIS
cc [flag .. .]file ... -lgen [library ...]

#include <libgen.h>

char *strccpy (char *output, canst char *input);

char *strcadd (char *output, canst char *input);

char *strecpy (char *output, canst char *input, canst char
*exceptions) ;

char *streadd (char *output, canst char *input, canst char
*exceptions) ;

DESCRIPTION
strccpy copies the input string, up to a null byte, to the output string, compressing
the C-language escape sequences (for example, \n, \001) to the equivalent charac­
ter. A null byte is appended to the output. The output argument must point to a
space big enough to accommodate the result. If it is as big as the space pointed to
by input it is guaranteed to be big enough. strccpy returns the output argument.

strcadd is identical to strccpy, except that it returns the pointer to the null byte
that terminates the output.

strecpy copies the input string, up to a null byte, to the output string, expanding
non-graphic characters to their equivalent C-language escape sequences (for exam­
ple, \n, \001). The output argument must point to a space big enough to accommo­
date the result; four times the space pointed to by input is guaranteed to be big
enough (each character could become \ and 3 digits). Characters in the exceptions
string are not expanded. The exceptions argument may be zero, meaning all non­
graphic characters are expanded. strecpy returns the output argument

streadd is identical to strecpy, except that it returns the pointer to the null byte
that terminates the output.

EXAMPLES
I* expand all but newline and tab */
strecpy (output, input, "\n \ t") ;

/* concatenate and compress several strings */
cp strcadd(output, inputl);
cp strcadd(cp, input2) ;
cp strcadd(cp, input3) ;

SEE ALSO
string(3C), str(3G)

10/92 Page 1

strcoll (3C) (C Programming Language Utilities) strcoll (3C)

NAME
strcoll - string collation

SYNOPSIS
#include <string.h>

int strcoll (const char *sl, const char *s2);

DESCRIPTION

FILES

strcoll returns an integer greater than, equal to, or less than zero in direct correla­
tion to whether string sl is greater than, equal to, or less than the string s2. The
comparison is based on strings interpreted as appropriate to the program's locale
for category LC_COLLATE [see setlocale(3C)].

Both strcoll and strxfrm provide for locale-specific string sorting. strcoll is
intended for applications in which the number of comparisons per string is small.
When strings are to be compared a number of times, strxfrm is a more appropriate
utility because the transformation process occurs only once.

/usr /lib/locale/ locale /LC_ COLLATE LC_ COLLATE database for locale.

SEE ALSO
coll tbl(lM), setlocale(3C), string(3C), strxfrm(3C), environ(S).

10/92 Page 1

strerror (3C) (C Development Set)

NAME
strerror - get error message string

SYNOPSIS
#include <string.h>

char *strerror (int errnum);

DESCRIPTION

strerror (3C)

strerror maps the error number in errnum to an error message string, and returns
a pointer to that string. strerror uses the same set of error messages as perror.
The returned string should not be overwritten.

SEE ALSO
perror(3C)

10/92 Page 1

strftime(3C) (C Programming Language Utilities) strftime(3C)

NAME
strftime, cftime, ascftime - convert date and time to string

SYNOPSIS
#include <time.h>

size_t *strftime (char *s, size_t maxsize, const char *format,
const struct tm *timeptr);

int cftime (char *s, char *format, const time_t *clock);

int ascftime (char *s, const char *format, const struct tm
*timeptr);

DESCRIPTION

10/92

strftime, ascftime, and cf time place characters into the array pointed to bys as
controlled by the string pointed to by format. The format string consists of zero or
more directives and ordinary characters. All ordinary characters (including the ter­
minating null character) are copied unchanged into the array. For strftime, no
more than maxsize characters are placed into the array.

If format is (char *)O, then the locale's default format is used. For strftime the
default format is the same as "%c ",for cf time and ascftime the default format is
the same as "%C". cf time and ascftime first try to use the value of the environ­
ment variable CFTIME, and if that is undefined or empty, the default format is used.

Each directive is replaced by appropriate characters as described in the following
list. The appropriate characters are determined by the LC_TIME category of the
program's locale and by the values contained in the structure pointed to by timeptr
for strftime and ascftime, and by the time represented by clock for cf time.

%% same as%
%a locale's abbreviated weekday name
%A locale's full weekday name
%b locale's abbreviated month name
%B locale's full month name
%c locale's appropriate date and time representation
%C locale's date and time representation as produced by date(l)
%d day of month (01 - 31)
%D date as %m/%d/%y
%e day of month (1-31; single digits are preceded by a blank)
%h locale's abbreviated month name.
%H hour (00 - 23)
%I hour (01-12)
%j day number of year (001 - 366)
%m month number (01 - 12)
%M minute (00 - 59)
%n same as \n
%p locale's equivalent of either AM or PM
%r time as %1:%M:%S [AM I PM]
%R time as %H:%M
%S seconds (00 - 61), allows for leap seconds

Page 1

strftlme(3C) (C Programming Language Utilities) strftlme(3C)

%t insert a tab
%T time as %H:%M:%S
%U week number of year (00 - 53), Sunday is the first day of week 1
%w weekday number (0 - 6), Sunday = 0
%W week number of year (00 - 53), Monday is the first day of week 1
%x locale's appropriate date representation
%X locale's appropriate time representation
%y year within century (00 - 99)
%Y year as ccyy (for example, 1986)
%Z time zone name or no characters if no time zone exists

The difference between %U and %W lies in which day is counted as the first of the
week. Week number 01 is the first week in January starting with a Sunday for %U or
a Monday for %W. Week number 00 contains those days before the first Sunday or
Monday in January for %U and %W, respectively.

If the total number of resulting characters including the terminating null character
is not more than maxsize, strftime, cftime and ascftime return the number of
characters placed into the array pointed to by s not including the terminating null
character. Otherwise, zero is returned and the contents of the array are indeter­
minate. cftime and ascftime return the number of characters placed into the
array pointed to by snot including the terminating null character.

Selecting the Output's Language
By default, the output of strftime, cf time, and ascftime appear in US English.
The user can request that the output of strftime, cftime or ascftime be in a
specific language by setting the locale for category LC_TIME in setlocale.

Timezone
The timezone is taken from the environment variable TZ [see ctime(3C) for a
description of TZ].

EXAMPLES

FILES

The example illustrates the use of strftime. It shows what the string in str
would look like if the structure pointed to by tmptr contains the values correspond­
ing to Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %b %d %j", tmptr)

This results in str containing "Thursday Aug 28 240".

/usr/lib/locale/Zocale/LC_TIME - file containing locale specific date and time
information

SEE ALSO
ctime(3C), getenv(3C), setlocale(3C), strftime(4), timezone(4), environ(5)

NOTE
cf time and ascftime are obsolete. strftime should be used instead.

Page 2 10/92

string(3C) (C Development Set) string (3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtak, strstr - string operations

SYNOPSIS
#include <string.h>

char *strcat (char *sl, canst char *s2);

char *strdup (canst char *sl);

char *strncat (char *sl, canst char *s2, size_t n);

int strcmp (canst char *sl, const char *s2);

int strncmp (const char *sl, const char *s2, size_t n);

char *strcpy (char *sl, const char *s2);

char *strncpy (char *sl, const char *s2, size_t n);

size_t strlen (const char *s);

char *strchr (const char *s, int c);

char *strrchr (const char *s, int c);

char *strpbrk (const char *sl, const char *s2);

size_t strspn (const char *sl, const char *s2);

size_t strcspn (const char *sl, const char *s2);

char *strtok (char *sl, const char *s2);

char *strstr (const char *sl, const char *s2);

DESCRIPTION

10/92

The arguments s, s1, and s2 point to strings (arrays of characters terminated by a
null character). The functions strcat, strncat, strcpy, strncpy, and strtok. all
alter s1. These functions do not check for overflow of the array pointed to by s1.

strcat appends a copy of string s2, including the terminating null character, to the
end of string s1. strncat appends at most n characters. Each returns a pointer to
the null-terminated result. The initial character of s2 overrides the null character at
the end of s1.

strcmp compares its arguments and returns an integer less than, equal to, or greater
than 0, based upon whether s1 is lexicographically less than, equal to, or greater
than s2. strncmp makes the same comparison but looks at at most n characters.
Characters following a null character are not compared.

strcpy copies string s2 to s1 including the terminating null character, stopping
after the null character has been copied. strncpy copies exactly n characters, trun­
cating s2 or adding null characters to s1 if necessary. The result will not be null­
terminated if the length of s2 is n or more. Each function returns s1.

strdup returns a pointer to a new string which is a duplicate of the string pointed
to by s1. The space for the new string is obtained using malloc(3C). If the new
string can not be created, a NULL pointer is returned.

Page 1

string (3C) (C Development Set) string(3C)

strlen returns the number of characters ins, not including the terminating null
character.

strchr (or strrchr) returns a pointer to the first (last) occurrence of c (converted
to a char) in strings, or a NULL pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string s1 of any character from
string s2, or a NULL pointer if no character from s2 exists in s1.

strspn (or strcspn) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

strtok considers the string s1 to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer s1 specified) returns a pointer to the first character of the first
token, and will have written a null character into s1 immediately following the
returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argu­
ment a NULL pointer) will work through the string s1 immediately following that
token. In this way subsequent calls will work through the string s1 until no tokens
remain. The separator string s2 may be different from call to call. When no token
remains in s1, a NULL pointer is returned.

strstr locates the first occurrence in string s1 of the sequence of characters
(excluding the terminating null character) in string s2. strstr returns a pointer to
the located string, or a null pointer if the string is not found. If s2 points to a string
with zero length (that is, the string ""),the function returns s1.

SEE ALSO

NOTES

Page 2

malloc(3C), setlocale(3C), strxfrm(3C)

All of these functions assume the default locale "C." For some locales, strxfrm
should be applied to the strings before they are passed to the functions.

10/92

string{3) {BSD Compatibility Package) strlng{3)

NAME
string: strcasecrnp, strncasecrnp - string operations

SYNOPSIS
/usr /ucb/ cc [flag . ..]file . ..
int strcasecrnp(sl, s2)
char *sl, *s2;

int strncasecrnp(sl, s2, n)
char *sl, *s2;
int n;

DESCRIPTION
The strcasecrnp and strncasecrnp routines compare the strings and ignore
differences in case. These routines assume the ASCII character set when equating
lower and upper case characters.

These functions operate on null-terminated strings. They do not check for overflow
of any receiving string.

SEE ALSO

NOTES

10/92

bstring(3), rnalloc(3C), string(3C).

strcasecrnp and strncasecrnp use native character comparison as above and
assume the ASCII character set.

Page 1

strtod (3C) (C Development Set) strtod (3C)

NAME
strtod, atof, - convert string to double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod (const char *nptr, char **endptr);

double atof (const char *nptr);

DESCRIPTION
strtod returns as a double-precision floating-point number the value represented
by the character string pointed to by nptr. The string is scanned up to the first
unrecognized character.

strtod recognizes an optional string of "white-space" characters [as defined by
isspace in ctype(3C)], then an optional sign, then a string of digits optionally con­
taining a decimal point character, then an optional exponent part including an e or
E followed by an optional sign, followed by an integer.

If the value of endptr is not (char * *) NULL, a pointer to the character terminating
the scan is returned in the location pointed to by endptr. If no number can be
formed, *endptr is set to nptr, and zero is returned.

atof (nptr) is equivalent to:
strtod(nptr, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C)

DIAGNOSTICS

10/92

If the correct value would cause overflow, ±HUGE is returned (according to the sign
of the value), and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.
When the -Xe or -xa compilation options are used, HUGE_ VAL is returned instead of
HUGE.

Page 1

strtol (3C) (C Programming Language Utilities) strtol (3C)

NAME
strtol, strtoul, atol, atoi - convert string to integer

SYNOPSIS
#include <stdlib.h>

long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (const char *str, char **ptr, int base);

long atol (const char *str);

int atoi (const char *str);

DESCRIPTION
strtol returns as a long integer the value represented by the character string
pointed to by str. The string is scanned up to the first character inconsistent with
the base. Leading "white-space" characters [as defined by isspace in ctype(3C)]
are ignored.

If the value of ptr is not (char * *) NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and "Ox" or "OX" is
ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading "Ox" or "OX"
hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

If the value represented by str would cause overflow, LONG_MAX or LONG_MIN is
returned (according to the sign of the value), and errno is set to the value, ERANGE.

strtoul is similar to strtol except that strtoul returns as an unsigned long
integer the value represented by str. If the value represented by str would cause
overflow, ULONG_MAX is returned, and errno is set to the value, ERANGE.

Except for behavior on error, atol (str) is equivalent to: strtol (str, (char
* *) NULL, 10) .

Except for behavior on error, atoi(str) is equivalent to: (int) strtol(str,
(char **)NULL, 10).

DIAGNOSTICS
If strtol is given a base greater than 36, it returns 0 and sets errno to EINVAL.

SEE ALSO

NOTES

10/92

ctype(3C), scanf(3S), strtod(3C)

strtol no longer accepts values greater than LONG_MAX as valid input. Use
strtoul instead.

Page 1

strxfrm (3C) (C Development Set) strxfrm (3C)

NAME
strxfi:m - string transformation

SYNOPSIS
#include <string.h>

size_t strxfi:m (char *sl, const char *s2, size_t n);

DESCRIPTION
strxfi:m transforms the string s2 and places the resulting string into the array s1.
The transformation is such that if strcmp is applied to two transformed strings, it
returns a value greater than, equal to, or less than zero, corresponding to the result
of the strcoll function applied to the same two original strings. The transforma­
tion is based on the program's locale for category LC_COLLATE [see
setlocale(3C)].

No more than n characters will be placed into the resulting array pointed to by s1,
including the terminating null character. If n is 0, then s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is
undefined.

strxfi:m returns the length of the transformed string (not including the terminating
null character). If the value returned is n or more, the contents of the array s1 are
indeterminate.

EXAMPLE

FILES

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfi:m(NULL, s, 0);

/usr/lib/locale/locale/LC_COLLATE LC_COLLATE database for locale.
SEE ALSO

colltbl(lM). setlocale(3C), strco11(3C), string(3C), environ(S).

DIAGNOSTICS
Onfailure,strxfi:mretums (size_t) -1.

10/92 Page 1

swab(3C)

NAME
swab - swap bytes

SYNOPSIS
#include <stdlib.h>

(C Development Set)

void swab (const char *from, char *to, int nbytes);

DESCRIPTION

swab(3C)

swab copies nbytes bytes pointed to by from to the array pointed to by to, exchang­
ing adjacent even and odd bytes. nbytes should be even and non-negative. If nbytes
is odd and positive, swab uses nbytes-1 instead. If nbytes is negative, swab does
nothing.

10/92 Page 1

swapctl (2) swapctl (2)

NAME
swapctl - manage swap space

SYNOPSIS
#include <sys/stat.h>
#include <sys/swap.h>

int swapctl(int cmd, void *arg);

DESCRIPTION
swapctl adds, deletes, or returns information about swap resources. cmd specifies
one of the following options contained in sys I swap . h:

SC_ADD /* add a resource for swapping */
SC_LIST /* list the resources for swapping */
SC_REMOVE /* remove a resource for swapping */
SC_GE'INSWP /* return number of swap resources */

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure
containing the following members:

char
of f_t
of f_t

*sr_name;
sr_start;
sr_length;

!* pathname of resource */
/* offset to start of swap area */
/* length of swap area */

sr_start and sr_length are specified in 512-byte blocks. When SC_LIST is
specified, arg is a pointer to a swaptable structure containing the following
members:

int swt_n; /* number of swapents following */
structswapent swt_ent[J;/* array of swt_n swapents */

A swapent structure contains the following members:

char
off_t
off_t
long
long
long

*ste_path;
ste_start;
ste_length;
ste_pages;
ste_free;
ste_flags;

/* name of the swap file */
/* starting block for swapping */
/* length of swap area */
/* number of pages for swapping */
/* number of ste_pages free */
/* ST_INDEL bit set if swap file */
/* is now being deleted */

SC LIST causes swapctl to return at most swt_n entries. The return value of
swapctl is the number actually returned. The ST_INDEL bit is turned on in
ste_flags if the swap file is in the process of being deleted. When SC_GE'INSWP is
specified, swapctl returns as its value the number of swap resources in use. arg is
ignored for this operation. The SC_ADD and SC_REMOVE functions will fail if calling
process does not have appropriate privileges.

RETURN VALUE

10/92

Upon successful completion, the function swapctl returns a value of 0 for SC_ADD
or SC_REMOVE, the number of struct swapent entries actually returned for
SC_LIST, or the number of swap resources in use for SC_GE'INSWP. Upon failure,
the function swapctl returns a value of -1 and sets errno to indicate an error.

Page 1

swapctl (2) swapctl (2)

ERRORS

Page 2

Under the following conditions, the function swapctl fails and sets errno to:

EEXIST Part of the range specified by sr_start and sr_length is
already being used for swapping on the specified resource
(SC_ADD).

EFAULT

EINVAL

EI SD IR

ELOOP

ENAMETOOLONG

ENO ENT

ENOMEM

ENO SYS

EN OTO IR

EPERM

EROFS

arg, sr_name, or ste_path points outside the allocated
address space.

The specified function value is not valid, the path specified is
not a swap resource (SC_REMOVE), part of the range specified
by sr_start and sr_length lies outside the resource
specified (SC_ADD), or the specified swap area is less than one
page (SC_ADD).

The path specified for SC_ADD is a directory.

Too many symbolic links were encountered in translating the
pathname provided to SC_ADD or SC_REMOVE .

The length of a component of the path specified for SC_ADD
or SC_REMOVE exceeds {NAME_MAX} characters or the length
of the path exceeds {PATH_MAX} characters and
{_POSIX_NO_TRUNC} is in effect.

The pathname specified for SC_ADD or SC_REMOVE does not
exist.

An insufficient number of struct swapent structures were
provided to SC_LIST, or there were insufficient system
storage resources available during an SC_ADD or SC_REMOVE,
or the system would not have enough swap space after an
SC_REMOVE.

The pathname specified for SC_ADD or SC_REMOVE is not a file
or block special device.

Pathname provided to SC_ADD or SC_REMOVE contained a
component in the path prefix that was not a directory.

The process does not have appropriate privileges.

The pathname specified for SC_ADD is a read-only file system.

10/92

symlink(2) symlink(2)

NAME
syrnlink - make a symbolic link to a file

SYNOPSIS
#include <unistd.h>
int syrnlink(const char *narnel, const char *narne2);

DESCRIPTION

10/92

syrnlink creates a symbolic link name2 to the file name1. Either name may be an
arbitrary pathname, the files need not be on the same file system, and name1 may be
nonexistent.

The file to which the symbolic link points is used when an open(2) operation is per­
formed on the link. A stat(2) on a symbolic link returns the linked-to file, while an
lstat returns information about the link itself. This can lead to surprising results
when a symbolic link is made to a directory. To avoid confusion in programs, the
readlink(2) call can be used to read the contents of a symbolic link.

H the file named by name2 does not exist, it is created. The permission mode of
name2 is 777 [see creat(2)].

The symbolic link is made unless one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix of name2.

EDQUOT

EEXIST

EFAULT

EIO

ELOOP

ENAMETOOLONG

ENO ENT

ENOS PC

ENOS PC

ENOS PC

ENO SYS

The user's quota of inodes on the file system on which the
file is being created has been exhausted.

The file referred to by name2 already exists.

name1 or name2 points outside the allocated address space
for the process.

An 1/0 error occurs while reading from or writing to the file
system.

Too many symbolic links are encountered in translating
name2.

The length of the name1 or name2 argument exceeds
{PATH_MAX}, or the length of a name1 or name2 component
exceeds {NAME_MAX} while (_POSIX_NO_TRUNC) is in effect.

A component of the path prefix of name2 does not exist.

The directory in which the entry for the new symbolic link is
being placed cannot be extended because no space is left on
the file system containing the directory.

The new symbolic link cannot be created because no space is
left on the file system which will contain the link.

There are no free inodes on the file system on which the file
is being created.

The file system does not support symbolic links

Page 1

symlink(2)

ENOTDIR

EROFS

DIAGNOSTICS

symlink(2)

A component of the path prefix of name2 is not a directory.

The file name2 would reside on a read-only file system.

Upon successful completion symlink returns a value of O; otherwise, it returns -1
and places an error code in errno.

SEE ALSO
cp(l), link(2), readlink(2), unlink(2).

Page 2 10/92

sync(2)

NAME
sync - update super block

SYNOPSIS
#include <unistd.h>

void sync(void);

DESCRIPTION

sync(2)

sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs that examine a file system, such as fsck(lM),
df(lM), and so on. It is mandatory before a re-boot.

The writing, although scheduled, is not necessarily completed before sync returns.
The fsync system call completes the writing before it returns.

SEE ALSO
fsync(2)

10/92 Page 1

syscall(3) (BSD Compatibility Package) syscall(3)

NAME
syscall - indirect system call

SYNOPSIS
/usr /ucb/ cc [flag . ..] file ...

#include <sys/syscall.h>

int syscall (number, arg, ...)

DESCRIPTION
syscall performs the system call whose assembly language interface has the
specified number, and arguments arg Symbolic constants for system calls can be
found in the header file /usr/include/sys/syscall .h.

RETURN VALUE
When the C-bit is set, syscall returns -1 and sets the external variable errno [see
intro(2)].

SEE ALSO
intro(2), pipe(2).

10/92 Page 1

sysconf (3C) (Multiprocessing) sysconf(3C)

NAME
sysconf - retrieves configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION

10/92

Multiprocessing supports the following new name values:

_SC_NPROC_CONF Number of currently configured processors.

_SC_NPROC_ONLN Number of processors currently online.

The sysconf function provides a method for the application to determine the
current value of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following
table lists the minimal set of system variables from limits.hand unistd.h that
can be returned by sysconf, and the symbolic constants, defined in unistd.h that
are the corresponding values used for name.

NAME

_SC_ARG_MAX
_SC_CHILD_MAX
_sc_CLK_TCK
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PASS_MAX
_SC_PAGESIZE
_SC_JOB_CONTROL
_SC_SAVED_IDS
SC VERSION
_SC_XOPEN_VERSION
_SC_LOGNAME_MAX
_SC_NPROC_CONF
_SC_NPROC_ONLN

RETURN VALUE

ARG_MAX
CHILD_MAX
CLK_TCK
NGROUPS_MAX
OPEN_ MAX
PASS_MAX
PAGESIZE
_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS
_POSIX_VERSION
_XOPEN_VERSION
LOGNAME_MAX
configured processors
processors online

The value of CLK_TCK may be variable and it should not be assumed that CLK_TCK
is a compile-time constant. The value of CLK_TCK is the same as the value of
sysconf(_SC_CLK_TCK).

The unique system identifier returned by sysconf (_SC_BCS_SYS_ID) is equal to
the lower four bytes of the unique Ethernet address of the Ethernet board with the
lowest board number. If two or more Ethernet boards have the same lowest board
number, the address of the board with the lowest board number in the lowest slot
will be returned.

Page 1

sysconf(3C) (Multiprocessing) sysconf(3C)

For example, given this configuration:

Board Slot Address
376 13 OxlOOOOOOO
374 15 Ox20000000

sysconf (_SC_BCS_SYS_ID) returns: Ox20000000

This algorithm can be overridden by uadmin{lM) as follows: uadmin
A_SET_SYS_ID address This will set the unique system identifier to address if an Eth­
ernet board with an Ethernet address equal to address exists in the system.

For example, given this configuration:

Board Slot Address
376 13 OxlOOOOOOO
374 15 Ox20000000
374 14 Ox30000000

sysconf(_SC_BCS_SYS_ID) returns: Ox30000000

But after entering uadmin A_SET_SYS_ID Ox20000000
sysconf (_SC_BCS_SYS_ID) returns: Ox20000000

DIAGNOSTICS

NOTES

sysconf returns the appropriate value on success, or a negative value on failure.

Failure may result from:

EINVAL The name argument is invalid.

If name is an invalid value, sysconf will return -1 and set errno to indicate the
error. If sysconf fails due to a value of name that is not defined on the system, the
function will return a value of -1 without changing the value of errno.

A call to setrlirnit may cause the value of OPEN_MAX to change.

SEE ALSO
pathconf{3C)

Page 2 10/92

sysfs(2) sysfs(2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs(int opcode, const char *fsname);

int sysfs(int opcode, int fs_index, char *buf);

int sysfs(int opcode);

DESCRIPTION
sysfs returns information about the file system types configured in the system.
The number of arguments accepted by sysfs varies and depends on the opcode.
The currently recognized opcodes and their functions are:

GETFSIND Translate fsname, a null-terminated file-system type identifier, into a
file-system type index.

GETFSTYP

GETNFSTYP

Translate fs_index, a file-system type index, into a null-terminated
file-system type identifier and write it into the buffer pointed to by
buf; this buffer must be at least of size FSTYPSZ as defined in
sys/fstyp.h.

Return the total number of file system types configured in the sys­
tem.

sysfs fails if one or more of the following are true:

EINVAL fsname points to an invalid file-system identifier;fs_index is zero, or
invalid; opcode is invalid.

EFAULT buf or fsname points to an invalid user address.

DIAGNOSTICS

10/92

Upon successful completion, sysfs returns the file-system type index if the opcode
is GETFSIND, a value of O if the opcode is GETFSTYP, or the number of file system
types configured if the opcode is GETNFSTYP. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

Page 1

sysinfo(2) sysinfo(2)

NAME
sysinfo - get and set system information strings

SYNOPSIS
#include <sys/systerninfo.h>

long sysinfo (int command, char *buf, long count);

DESCRIPTION
sysinfo copies information relating to the UNIX system on which the process is
executing into the buffer pointed to by buf; sysinfo can also set certain informa­
tion where appropriate commands are available. count is the size of the buffer.

The POSIX P1003.l interface sysconf [see sysconf(2)] provides a similar class of
configuration information, but returns an integer rather than a string.

The commands available are:

SI_SYSNAME

SI_HOSTNAME

Copy into the array pointed to by buf the string that would be
returned by unarne [see unarne(2)] in the sysname field. This is
the name of the implementation of the operating system, for
example, System V or UTS.

Copy into the array pointed to by buf a string that names the
present host machine. This is the string that would be
returned by unarne [see unarne(2)] in the nodename field. This
hostname or nodename is often the name the machine is
known by locally.

The hostname is the name of this machine as a node in some
network; different networks may have different names for the
node, but presenting the nodename to the appropriate net­
work Directory or name-to-address mapping service should
produce a transport end point address. The name may not be
fully qualified.

Internet host names may be up to 256 bytes in length (plus the
terminating null).

SI_SET_HOSTNAME Copy the null-terminated contents of the array pointed to by
buf into the string maintained by the kernel whose value will
be returned by succeeding calls to sysinfo with the com­
mand SI_HOSTNAME. This command requires that the
effective-user-id be super-user.

SI_RELEASE Copy into the array pointed to by buf the string that would be
returned by unarne [see unarne(2)] in the release field. Typical
values might be 4.0 or 3.2.

SI_ VERSION Copy into the array pointed to by buf the string that would be
returned by unarne [see unarne(2)] in the version field. The
syntax and semantics of this string are defined by the system
provider.

SI_MACHINE Copy into the array pointed to by buf the string that would be
returned by unarne [see unarne(2)] in the machine field, for
example, 3b2 or 580.

10/92 Page 1

sysinfo(2) sysinfo(2)

SI_ARCHITECTURE Copy into the array pointed to by buf a string describing the
instruction set architecture of the current system, for example,
mc68030, m32100, or i80486. These names may not match
predefined names in the C language compilation system.

SI_HW_PROVIDER Copies the name of the hardware manufacturer into the array
pointed to by buf

SI_HW_SERIAL Copy into the array pointed to by buf a string which is the
ASCII representation of the hardware-specific serial number
of the physical machine on which the system call is executed.
Note that this may be implemented in Read-Only Memory,
via software constants set when building the operating sys­
tem, or by other means, and may contain non-numeric charac­
ters. It is anticipated that manufacturers will not issue the
same "serial number'' to more than one physical machine.
The pair of strings returned by SI_HW_PROVIDER and
SI_HW_SERIAL is likely to be unique across all vendor's Sys­
tem V implementations.

SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain name into
the array pointed to by buf

SI_SET_SRPC_DOMAIN
Set the string to be returned by sysinfo with the
SI_SRPC_DOMAIN command to the value contained in the
array pointed to by buf This command requires that the
effective-user-id be super-user.

sys info will fail if one or both of the following are true:

EPERM

EINVAL

The process does not have appropriate privilege for a SET
commands.

buf does not point to a valid address, or the data for a SET com­
mand exceeds the limits established by the implementation.

DIAGNOSTICS

USAGE

Page 2

Upon successful completion, the value returned indicates the buffer size in bytes
required to hold the complete value and the terminating null character. If this
value is no greater than the value passed in count, the entire string was copied; if
this value is greater than count, the string copied into buf has been truncated to
count-1 bytes plus a terminating null character.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

There is in many cases no corresponding programmatic interface to set these
values; such strings are typically settable only by the system administrator modify­
ing entries in the master. d directory or the code provided by the particular
OEM reading a serial number or code out of read-only memory, or hard-coded in
the version of the operating system.

A good starting guess for count is 257, which is likely to cover all strings returned
by this interface in typical installations.

10/92

sysinfo(2) sysinfo(2)

SEE ALSO
uname(2), sysconf(3C)
BSD compatibility package interfaces gethostname(3), gethostid(3)

10/92 Page 3

syslog(3) (BSD Compatibility Package) syslog(3)

NAME
syslog, openlog, closelog, setlogrnask - control system log

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <syslog.h>

openlog(ident, logopt, facility)
char *ident;

syslog(priority, message, parameters ...)
char *message;

closelog()

setlogrnask(maskpri)

DESCRIPTION

10/92

sys log passes message to syslogd(lM), which logs it in an appropriate system log,
writes it to the system console, forwards it to a list of users, or forwards it to the
syslogd on another host over the network. The message is tagged with a priority
of priority. The message looks like a print f(3S) string except that %mis replaced by
the current error message (collected from errno). A trailing NEWLINE is added if
needed.

Priorities are encoded as a facility and a level. The facility describes the part of the
system generating the message. The level is selected from an ordered list:

LOG_EMERG

LOG_ALERT

LOG_CRIT

LOG_ERR

LOG_WARNING

LOG_NOTICE

LOG_INFO

LOG_DEBUG

A panic condition. This is normally broadcast to all
users.

A condition that should be corrected immediately,
such as a corrupted system database.

Critical conditions, such as hard device errors.

Errors.

Warning messages.

Conditions that are not error conditions, but that
may require special handling.

Informational messages.

Messages that contain information normally of use
only when debugging a program.

If special processing is needed, openlog can be called to initialize the log file. The
parameter ident is a string that is prepended to every message. logopt is a bit field
indicating logging options. Current values for logopt are:

LOG_PID Log the process ID with each message. This is useful
for identifying specific daemon processes (for dae­
mons that fork).

LOG_CONS Write messages to the system console if they cannot
be sent to syslogd. This option is safe to use in dae­
mon processes that have no controlling terminal,
since syslog forks before opening the console.

Page 1

syslog (3) (BSD Compatibility Package) syslog (3)

LOG_NDELAY

LOG_NOWAIT

Open the connection to syslogd immediately. Nor­
mally the open is delayed until the first message is
logged. This is useful for programs that need to
manage the order in which file descriptors are allo­
cated.

Do not wait for child processes that have been forked
to log messages onto the console. This option should
be used by processes that enable notification of child
termination using SIGCHLD, since sys log may other­
wise block waiting for a child whose exit status has
already been collected.

The facility parameter encodes a default facility to be assigned to all messages that
do not have an explicit facility already encoded:

LOG_KERN

LOG_ USER

LOG_MAIL

LOG_DAEMON

LOG_AUTH

LOG_LPR

LOG_NEWS

LOG_UUCP

LOG_CRON

LOG_LOCAL0-7

Messages generated by the kernel. These cannot be
generated by any user processes.

Messages generated by random user processes. This
is the default facility identifier if none is specified.

The mail system.

System daemons, such as ftpd(lM), routed(lM),
etc.

The authorization system:
get ty(lM), etc.

login(l), su(l),

The line printer spooling system: lpr(l), lpc(lM),
etc.

Reserved for the USENET network news system.

Reserved for the UUCP system; it does not currently
use syslog.

The cron/ at facility; crontab(l), at(l), cron(lM),
etc.

Reserved for local use.

close log can be used to close the log file.

setlogmask sets the log priority mask to maskpri and returns the previous mask.
Calls to sys log with a priority not set in maskpri are rejected. The mask for an indi­
vidual priority pri is calculated by the macro LOG_MASK (pri) ; the mask for all prior­
ities up to and including toppri is given by the macro LOG_UPTO (toppri) . The
default allows all priorities to be logged.

EXAMPLE

Page 2

This call logs a message at priority LOG_ALERT:

syslog(LOG_ALERT, "who: internal error 23");

The FTP daemon, ftpd, would make this call to openlog to indicate that ell mes­
sages it logs should have an identifying string of ftpd, should be treated by sys­
logd as other messages from system daemons are, and should include the process
ID of the process logging the message:

10/92

syslog{3) {BSD Compatibility Package) syslog{3)

openlog("ftpd", LOG_PID, LOG_DAEMON);

Then it would make the following call to setlogmask to indicate that messages at
priorities from LOG_EMERG through LOG_ERR should be logged, but that no mes­
sages at any other priority should be logged:

setlogmask (LOG_UPTO(LOG_ERR));

Then, to log a message at priority LOG_INFO, it would make the following call to
sys log:

syslog(LOG_INFO, "Connection from host %d", CallingHost);

A locally-written utility could use the following call to sys log to log a message at
priority LOG_INFO, to be treated by syslogd as other messages to the facility
LOG_LOCAL2 are treated:

sys log (LOG_INFO I LOG_LOCAL2, "error: %m") ;

SEE ALSO

10/92

at(l), cron(lM), crontab(l), ftpd(lM), getty(lM), logger(l), login(l), lpc(lM),
lpr(l), routed(lM), su(l), syslogd(lM), printf(3S).

Page 3

sysm68k(2) sysm68k(2)

NAME
sysm68k- machine-specific functions

SYNOPSIS
#include <sys/types.h>
#include <sys/sysm68k.h>

int sysm68k(intcmd, ...);

DESCRIPTION
sysm68k implements machine-specific functions. The cmd argument determines
the function performed. The type and number of arguments expected depends on
the function.

Command RTODC
When cmd is RTODC, an argument of type time_t *is expected.

This function reads the hardware time-of-day clock and returns the number of
seconds since midnight, January 1, 1970, in the time_t structure referred to by the
argument. This command is available only to the super-user.

Command SM68KSYM

10/92

When cmd is SM68KSYM, the symbol table created when a new bootable operating
system is configured may be accessed. The symbols available via this command are
defined in one of two places: the driver routines loaded or the variable
specifications in the files in the /etc/master .d directory. Two arguments are
expected: the first must be a pointer to a buffer into which the symbol table is
copied, and the second must be an integer containing the total size of the buffer.
The format of the symbol table is:

int size;
int count;

/* symbol size in bytes */
/* total number of symbols */

/* Each symbol is stored as: */
/* char name[]; (padded*/
I* with '\0' to next */
/* sizeof(long) boundary*/
I* long value; the symbol's value */

The SM6 8KSVAL macro in sys I sysm6 8k. h takes a pointer to a symbol name in the
table and returns its value. The SM68KNXTSYM macro takes a pointer to a symbol
name in the table and returns a pointer to the next entry.

Typically, the symbol table would be retrieved with two calls to sysm68k. First, the
size of the symbol table is obtained by calling sysm68k with a buffer of one integer.
This integer is then used to obtain a buffer large enough to contain the entire sym­
bol table. The second invocation of sysm68k with this newly obtained buffer
retrieves the entire symbol table.

#include <sys/sysm68k.h>

int size;
struct sm68ksym *buffer;

/* size of buffer needed */
/* buffer pointer */

sysm68k(SM68KSYM, (struct sm68ksym *) &size, sizcof(size)) ;
buffer= (struct sm68ksym *) malloc(size) ;
sysm68k(SM68KSYM, buffer, size) ;

Page 1

sysm68k(2) sysm68k(2)

Command SMCONF
When cmd is SMCONF, the configuration table created during the configuration of a
new bootable operating system may be accessed. This table contains the names and
locations of the devices supported by the currently running UNIX system, the
names of all software modules included in the system, and the names of all devices
in the EDT that were ignored. Two arguments are expected: the first must be a
pointer to a buffer into which the configuration table is copied, and the second
must be an integer containing the total size of the buffer. The format of the
configuration table is:

int count; I* total nwnber of entries */

I*
time_t timestamp; /*
char name[DIRSIZ] ;/*
unsigned char flag; /*

I*
I*
I*

for each entry ... *I
f_timdat from file header */
name of device/module */
configuration information */

Ox80: device ignored */
Ox40: name[] is a driver */
Ox20: name[] is a software module */

unsigned char mmajor;/* external major device nwnber*/

Typically, the configuration table would be retrieved with two calls to sysm68k.
First, the number of entries is obtained by calling sysm68k with a buffer of one
integer. This integer is then used to calculate and obtain a buffer large enough to
contain the entire configuration table. The second invocation of sysm6 Bk with this
newly obtained buffer retrieves the configuration table.

#include <sys/sysm68k.h>

int count;
int size;
struct smconf *buffer;

I* total nwnber of devices */
I* size of buffer needed */
/* buffer pointer */

sysm68k(SMCONF, (struct smconf *)&count, sizeof(count));
size= sizeof(int);
size+= count* sizeof(struct smc);
buffer= (struct smconf *)malloc(size);
sysm68k(SMCONF, buffer, size);

Command XGETEDT
When cmd is XGETEDT, the extended EDT table (XEDT) for a specified device con­
troller is returned. This table contains the names and locations of the devices
attached to the argument controller. Three arguments are expected: the first must
be a dev_t that specifies the controller to be accessed, the second is a pointer to a
buffer into which the extended EDT table is copied, and the third must be an
integer containing the total size of the buffer. The format of the extended EDT table
is:

int count; /* total nwnber of entries */

I* for each entry ... *I
char x_name[X_XNAMLEN};/*device name/information*/
int x_unit; /*unit nwnber on controller */
u_int x_ksize; /*size in kbytes */

Page 2 10/92

sysm68k(2) sysm68k(2)

Typically, the extended EDT table would be retrieved with two calls to sysm68k.
First, the number of extended EDT entries for the controller specified by the device
argument is obtained by calling sysm68k with a buffer of one integer. This integer
is then used to calculate how large a buffer is needed to contain the entire extended
EDT table for the controller, and that buffer is then obtained. The second invoca­
tion of sysm68k with this newly obtained buffer retrieves the extended EDT table.

#include <sys/sysm68k.h>
#include <sys/edt.h>

int count;
int size;
struct kxedt *buffer;

/* Lolal number of devices */
/* size of buffer needed */
/* buffer pointer */

sysm68k(XGETEDT, dev, &count, sizeof(count)) ;
size = sizeof(int);
size+= count * sizeof(struct xedt);
buffer= (struct kxedt *)malloc(size);
sysm68k(XGETEDT, dev, buffer, size);

Command GET_MR_TBL
When cmd is XGET_MR_TBL, the memory region table for the kernel is returned. This
table contains the names, location, ID, and attribute IDs for each memory region
configured into the kernel. Two arguments are expected: the first is a pointer to a
buffer into which the memory region table is copied, and the second must be an
integer containing the total size of the buffer.

Typically, the memory region table would be retrieved with two calls to sysm68k.
First, the number of memory regions is obtained by calling sysm68k with a buffer of
one integer. This integer is then used to calculate how large a buffer is needed to
contain the entire memory region table, and that buffer is then obtained. The
second invocation of sysm68k with this newly obtained buffer retrieves the
memory region table.

#include <sys/mrt.h>
#include <Sys/sysm68k.h>

int count;
int size;
struct mrt_x*buffer;

I* total number of entries */
I* size of buffer needed */
/* buffer pointer */

sysm68k(GET_MR_TBL, &count, sizeof(count));
size= sizeof(int);
size+= count * sizeof(struct mrt);
buffer= (struct mrt_x *)malloc(size);
sysm68k(GET_MR_TBL, buffer, size);

Command GET_MA_TBL

10/92

When cmd is XGET_MA_TBL, the memory attribute table for the kernel is returned.
This table contains the attributes associated with the memory regions configured
into the kernel. Two arguments are expected: the first is a pointer to a buffer into
which the memory attribute table is copied, and the second must be an
integer containing the total size of the buffer.

Page 3

sysm68k(2) sysm68k(2)

Typically, the memory attribute table would be retrieved with two calls to
sysm68k. First, the number of attributes is obtained by calling sysm68k with a
buffer of one integer. This integer is then used to calculate how large a buffer is
needed to contain the entire memory attribute table, and that buffer is then
obtained. The second invocation of sysm68k with this newly obtained buffer
retrieves the memory attribute table.

#include <sys/mrt.h>
#include <sys/sysm68k.h>

int count;
int size;
struct matr_x*buffer;

I* total number of entries */
/* size of buffer needed */
I* buffer pointer */

sysm68k(GET_MA_TBL, &count, sizeof(count));
size= sizeof(int);
size+= count* sizeof(struct mrt);
buffer= (struct matr_x *)malloc(size);
sysm68k(GET_MA_TBL, buffer, size);

Command MDRVRINFO
When cmd is MDRVRINFO, a command may be issued directly to a device driver.

Three arguments are expected: the first must be a dev_t that specifies the device
the command is for, second is the command to send to the device driver, and the
third is command specific.

Command SM68KBOOT
When cmd is SM68KBOOT, the timestamp and path name of the program last used to
bootstrap the machine may be accessed. The path name of the a.out format file
which was booted, and the timestamp from the file header [see a. out(4)] are saved.
One argument is expected: a pointer to a buffer into which the information is
copied. The format of this information is:

time_t timestamp;
char path[lOOJ;

/* f timdat from file header */
I* path name */

This information would be retrieved with a single call to sysm68k.

#include <sys/sysm68k.h>

struct sm68kboot buffer; /* buffer */

sysm68k(SM68KBOOT, &buffer);

Command SM6 SKAUTO

Page 4

When cmd is SM68KAUTO, no arguments are expected. This function returns a
boolean value in answer to the question, "Was the operating system reconfigured
during the last boot, or was an existing bootable operating system booted?" The
value returned is zero if an existing bootable (such as I stand/ stand/unix or
I stand/unix) was booted. The integer value 1 is returned if the bootable operat­
ing system was configured during the preceding boot process. This command is
available only to the super-user.

10/92

sysm68k(2) sysm68k(2)

Command SM68KSWPI
NOTE: This cmd is compatible with UNIX System V Release 2.1 and Release 3
software. Its function is subsumed by the swap command; see swap(lM).

When cmd is SM68KSWPI, individual swapping areas may be added, deleted or the
current areas determined. The address of an appropriately primed swap buffer is
passed as the only argument. (Refer to the sys I swap. h header file for details of
loading the buffer.)

The format of the swap buffer is:

struct swapint {
char si_cmd;
char *si_buf;
int si_swplo;
int si_nblks;

/*command: list, add, delete*/
/*swap file path pointer*/
/*start block*/
/*swap size*/

Note that the add and delete options of the command may be exercised only by the
super-user.

Typically, a swap area is added by a single call to sysm68k. First, the swap buffer is
primed with appropriate entries for the structure members. Then sysm6 Bk is
invoked.

#include <sys/sysm68k.h>
#include <sys/swap.h>

struct swapint swapbuf; /*swap into buffer ptr*/

sysm68k(SM68KSWPI, &swapbuf);

If this command succeeds, it returns 0 to the calling process. It fails and returns -1
if one or more of the following is true:

EFAULT swapbuf points to an invalid address.

EFAULT

ENOTBLK

EEXIST

ENOS PC

ENOMEM

ENOMEM

swapbuf. si_buf points to an invalid address.

The swap area specified is not a block special device.

The swap area specified has already been added.

Too many swap areas are in use (if adding).

The swap area specified is the last remaining swap area.

There is no place to put swapped pages when deleting a swap area.

EINVAL An argument is invalid.

Command STIME
When cmd is STIME, an argument of type long is expected. This function sets the
system time and date. The argument contains the time as measured in seconds
from 00:00:00 UTC January 1, 1970. This command is available only to the super­
user.

Command SM68KTRAPLOCORE

10/92

Prior to release 4.0, user processes could read low memory (for example, read
accesses using NULL pointers were permitted from user programs). When cmd is
SM6 BKTRAPLOCORE, user level access permission on low core memory can be
changed and user accesses of low core memory can be trapped. Only read access is

Page 5

sysm68k(2) sysm68k(2)

affected; user level write access to low core is not allowed under any circumstances.

A single argument of type int is expected. This argument may have one of the fol­
lowing five values, defined in <sys/sysm68k. h>:

SM68KTLC_DISABLE
Disable low core trapping. Read accesses to low core are allowed from user
processes.

SM68KTLC_SIGNAL
Trap low core accesses. Any user process which attempts to read low core
will be sent a SIGSEGV signal with si_code set to SEGV_MAPERR.

SM68KTLC_PRINT
Trap low core accesses. Any user process which attempts to read low core
will be sent a SIGSEGV signal with si_code set to SEGV_MAPERR. In addi­
tion, a message will be printed on the system console each time a process
attempts to read low core.

SM68KTLC_WARN
Trap low core accesses and print a message on the system console identify­
ing the process and the address accessed. Do not send signals to the pro­
cess.

SM68KTLC_STATUS
Return current state of low core trapping. The state of low core trapping is
unchanged.

If this command succeeds, it returns one of SM68KTLC_DISABLE,
SM68KTLC_SIGNAL, SM68KTLC_PRINT, to indicate the setting of low core protection
prior to the call. NOTE: this command changes behavior for all processes, not just
for the current process. The command fails and returns -1 if one or more of the fol­
lowing is true:

EPERM The caller is not super-user (not required for SM68KTLC_STATUS).

EINVAL An argument is invalid.

Command CRASHDUMP

Page 6

When cmd is CRASHDUMP, two arguments are expected - pathname and flag. This
function enables crash dumps to the special device defined by the pathname and
sets the mode of crash dumps per the value of the flag. If pathname is NULL, then
crash dumps are disabled.

The flag must be 0 or joined by an "or'' with any of the following values (defined in
crash.h):

CRASH_DUMPS_ASK - the crash dump system prompts the user for preparing the
dump device and to resolve errors

The default action unless modified by one of the above is that the crash dump sys­
tem does not prompt the user to prepare the dump device and fails if an error
occurs.

The special device used for crash dumps must have sufficient room to hold an
image of physical memory or not all of the crash dump will be saved. If the device
is a disk-drive slice, it must be tagged with V_SWAP. If the device is currently used
for swapping, it must have sufficient room to allow the system to be rebooted and
the crash dump to be retrieved before it is corrupted. The crash dump is stored at

10/92

sysm68k(2) sysm68k(2)

the rear of a slice if possible to facilitate some swapping.

Command SETNAME
When cmd is SETNAME, an argument of type char * is expected. This function sets
the new node name and can consist of alphanumeric and the special characters
dash, underbar, and dollar sign. The node name argument is restricted to
SYS_NMLN characters. SYS_NMLN is an implementation specific value defined in
<sys/utsname.h>. This command is available only to the superuser.

Command SETSYSNAME
When cmd is SETSYSNAME, an argument of type char * is expected. This function
sets the new system name and can consist of alphanumeric and the special charac­
ters dash, underbar, and dollar sign. The system name argument is restricted to
SYS_NMLN characters. SYS_NMLN is an implementation specific value defined in
<sys/utsname.h>. This command is available only to the superuser.

DIAGNOSTICS
On success, sysm68k returns a value that depends on cmd as follows:

SM68KSYM A value of zero.
SM68KCONF A value of zero.
SM68KBOOT A value of zero.
CRASHDUMP A value of zero.
SM68KAUTO A value of zero if an existing bootable operating system

(such as /stand/stand/unix or /stand/unix) was last
booted. A value of one if a new bootable operating sys­
tem was configured during the last boot process.

SM68KTRAPLOCORE
Returns the setting of low core protection prior to the call.

Otherwise, a value of -1 is returned and errno is set to indicate the error. When
cmd is invalid, errno is set to EINVAL on return.

SEE ALSO
cunix(lM), swap(lM), sync(2), a. out(4).

10/92 Page 7

sysm88k(2) sysm88k(2)

NAME
sysm88k- machine-specific functions

SYNOPSIS
#include <sys/types.h>
#include <sys/sysm88k.h>

int sysm88k(int cmd, ...) ;

DESCRIPTION
sysm88k implements machine-specific functions. The cmd argument determines
the function performed. The type and number of arguments expected depends on
the function.

Command RTODC
When cmd is RTODC, an argument of type time_t *is expected.

struct todc {
short htenths;
short hhours;
short hmonth;
} ;

short hsecs;
short hdays;
short hyear;

short hmins;
short hweekday;

This function reads the hardware time-of-day clock and returns the number of
seconds since midnight, January 1, 1970, in the time_t structure referred to by the
argument. This command is available only to the super-user.

Command SM88KSVM

10/92

When cmd is SM88KSYM, the symbol table created when a new bootable operating
system is configured may be accessed. The symbols available via this command are
defined in one of two places: the driver routines loaded or the variable
specifications in the files in the I etc/master. d directory. Two arguments are
expected: the first must be a pointer to a buffer into which the symbol table is
copied, and the second must be an integer containing the total size of the buffer.
The format of the symbol table is:

int size;
int count;

I* symbol size in bytes */
I* total number of symbols */

/* Each symbol is stored as: */
/* char name[]; (padded*/
I* with '\0' to next *I
I* sizeof(long) boundary*/
I* long value; the symbol's value */

The SM88KSVAL macro in sys/sysm88k.h takes a pointer to a symbol name in the
table and returns its value. The SM88KNXTSYM macro takes a pointer to a symbol
name in the table and returns a pointer to the next entry.

Typically, the symbol table would be retrieved with two calls to sysm88k. First, the
size of the symbol table is obtained by calling sysm88k with a buffer of one integer.
This integer is then used to obtain a buffer large enough to contain the entire sym­
bol table. The second invocation of sysm88k with this newly obtained buffer
retrieves the entire symbol table.

Page 1

sysm88k(2) sysm88k(2)

#include sys/sysm88k.h

int size;
struct sm88ksym *buffer;

/* size of buffer needed */
/* buffer pointer */

sysm88k(SM88KSYM, (struct sm88ksym *) &size, sizeof(size)) ;
buffer= (struct sm88ksym *) malloc(size) ;
sysm88k(SM88KSYM, buffer, size);

Command SMCONF
When cmd is SMCONF, the configuration table created during the configuration of a
new bootable operating system may be accessed. This table contains the names and
locations of the devices supported by the currently running UNIX system, the
names of all software modules included in the system, and the names of all devices
in the EDT that were ignored. Two arguments are expected: the first must be a
pointer to a buffer into which the configuration table is copied, and the second
must be an integer containing the total size of the buffer. The format of the
configuration table is:

int count; /* total number of entries */

I* for each entry ... *I
time_t timestamp; /* f_timdat from file header */
char name[DIRSIZ];/* name of device/module*/
unsigned char flag; /* configuration information */

/* Ox80: device ignored */
/* Ox40: name[] is a driver */
I* Ox20: name[] is a software module *I

unsigned char nmajor;/* external major device number*/

Typically, the configuration table would be retrieved with two calls to sysm88k.
First, the number of entries is obtained by calling sysm88k with a buffer of one
integer. This integer is then used to calculate and obtain a buffer large enough to
contain the entire configuration table. The second invocation of sysm88k with this
newly obtained buffer retrieves the configuration table.

#include sys/sysm88k.h

int count; I* total number of devices */
int size; /* size of buffer needed */
struct sm88kconf *buffer;/* buffer pointer*/

sysm88k(SMCONF, (struct sm88kconf *)&count, sizeof(count));
size = sizeof(int);
size += count * sizeof(struct sm88kc);
buffer= (struct sm88kconf *)malloc(size);
sysm88k(SMCONF, buffer, size);

Command XGETEDT

Page 2

When cmd is XGETEDT, the extended EDT table (XEDT) for a specified device con­
troller is returned. This table contains the names and locations of the devices
attached to the argument controller. Three arguments are expected: the first must
be a dev_t that specifies the controller to be accessed, the second is a pointer to a
buffer into which the extended EDT table is copied, and the third must be an

10/92

sysm88k(2) sysm88k(2)

integer containing the total size of the buffer. The format of the extended EDT table
is:

int count; /* total number of entries */

char
int

/* for each entry ... *I
x_name[X_XNAMLEN};/*device name/information*/
x_unit; /*unit number on controller */

u_int x_ksize; /*size in kbytes */

Typically, the extended EDT table would be retrieved with two calls to sysm88k.
First, the number of extended EDT entries for the controller specified by the device
argument is obtained by calling sysm88k with a buffer of one integer. This integer
is then used to calculate how large a buffer is needed to contain the entire extended
EDT table for the controller, and that buffer is then obtained. The second invoca­
tion of sysm88k with this newly obtained buffer retrieves the extended EDT table.

#include <sys/sysm88k.h>
#include <sys/edt.h>

int count;
int: size;
struct kxedt *buffer;

/* total number of devices */
I* size of buffer needed */
/* buffer pointer */

sysm88k(XGETEDT, dev, &count, sizeof (count)) ;
size= sizeof(int);
size += count * sizeof(struct xedt);
buffer= (struct kxedt *)malloc(size);
sysm88k(XGETEDT, dev, buffer, size);

Command GET_MR_TBL

10/92

When cmd is XGE'r_MR_'rBL, the memory region table for the kernel is returned. This
table contains the names, location, ID, and attribute IDs for each memory region
configured into the kernel. Two arguments are expected: the first is a pointer to a
buffer into which the memory region table is copied, and the second must be an
integer containing the total size of the buffer.

Typically, the memory region table would be retrieved with two calls to sysm88k.
First, the number of memory regions is obtained by calling sysm88k with a buffer of
one integer. This integer is then used to calculate how large a buffer is needed to
contain the entire memory region table, and that buffer is then obtained. The
second invocation of sysm88k with this newly obtained buffer retrieves the
memory region table.

#include <sys/mrt.h>
#include <sys/sysm88k.h>

int count;
int size;
struct mrt_x*buffer;

/* total number of entries */
/* size of buffer needed */
/* buffer pointer */

sysm88k(GET_MR_TBL, &count, sizeof(count)) ;
size= sizeof(int);
size += count * sizeof(struct mrt);
buffer= (struct mrt_x *)malloc(size);
sysm88k(GET_MR_TBL, buffer, size);

Page 3

sysm88k(2) sysm88k(2)

Command GET_MA_TBL
When cmd is XGET_MA_TBL, the memory attribute table for the kernel is returned.
This table contains the attributes associated with the memory regions configured
into the kernel. Two arguments are expected: the first is a pointer to a buffer into
which the memory attribute table is copied, and the second must be an
integer containing the total size of the buffer.

Typically, the memory attribute table would be retrieved with two calls to
sysm88k. First, the number of attributes is obtained by calling sysm88k with a
buffer of one integer. This integer is then used to calculate how large a buffer is
needed to contain the entire memory attribute table, and that buffer is then
obtained. The second invocation of sysm88k with this newly obtained buffer
retrieves the memory attribute table.

#include <sys/mrt.h>
#include <sys/sysm88k.h>

int count;
int size;
struct matr_x*buffer;

/* total number of entries */
/* size of buffer needed */
/* buffer pointer */

sysm88k(GET_MA_TBL, &count, sizeof(count));
size = sizeof(int);
size +=count * sizeof(struct mrt);
buffer= (struct matr_x *)malloc(size);
sysm88k(GET_MA_TBL, buffer, size);

Command MDRVRINFO
When cmd is MDRVRINFO, a command may be issued directly to a device driver.

Three arguments are expected: the first must be a dev _t that specifies the device
the command is for, second is the command to send to the device driver, and the
third is command specific.

Command SM88KBOOT
When cmd is SM88KBOOT, the timestamp and path name of the program last used to
bootstrap the machine may be accessed. The path name of the a. out format file
which was booted, and the timestamp from the file header [see a. out(4)] are saved.
One argument is expected: a pointer to a buffer into which the information is
copied. The format of this information is:

time_t timestamp; /* f_timdat from file header */
char path[lOO]; /* path name */

This information would be retrieved with a single call to sysm88k.

#include sys/sysm88k.h

struct sm88kboot buffer; /* buffer */

sysm88k(SM88KBOOT, &buffer);

Command SM88KAUTO

Page 4

When cmd is SM88KAUTO, no arguments are expected. This function returns a
boolean value in answer to the question, "Was the operating system reconfigured
during the last boot, or was an existing bootable operating system booted?" The
value returned is zero if an existing bootable (such as /stand/stand/unix or
/stand/unix) was booted. The integer value 1 is returned if the bootable

10/92

sysm88k(2) sysm88k(2)

operating system was configured during the preceding boot process. The value is
undefined if the system was booted in "magic mode." This command is available
only to the super-user.

Command SM88KTODEBUG
When cmd is SMB BKTODEBUG, no arguments are expected. This function allows
entry into the kernel debugger from any port. This differs from the current use of
@@P to enter the kernel debugger from the console. If no debugger exists, this func­
tion sets errno to EINVAL. This command is available only to the super-user.

Command SM88KSWPI

10/92

NOTE: This cmd is available only with UNIX System V Release 2.1 and Release 3
software. Its function is subsumed by the swap command; see swap(lM).

When cmd is SM88KSWPI, individual swapping areas may be added, deleted or the
current areas determined. The address of an appropriately primed swap buffer is
passed as the only argument. (Refer to the sys I swap. h header file for details of
loading the buffer.)

The format of the swap buffer is:

struct swapint {
char si_cmd;
char *si_buf;
int si_swplo;
int si_nblks;

/*command: list, add, delete*/
/*swap file path pointer*/
/*start block*/
/*swap size*/

Note that the add and delete options of the command may be exercised only by the
super-user.

Typically, a swap area is added by a single call to sysm88k. First, the swap buffer is
primed with appropriate entries for the structure members. Then sysm88k is
invoked.

#include sys/sysm88k.h
#include sys/swap.h

struct swapint swapbuf;

sysm88k(SM88KSWPI, &swapbuf);

/*swap into buffer ptr*/

If this command succeeds, it returns 0 to the calling process. It fails and returns -1 if
one or more of the following is true:

EFAULT swapbuf points to an invalid address.

swapbuf. si_buf points to an invalid address.

The swap area specified is not a block special device.

The swap area specified has already been added.

Too many swap areas are in use (if adding).

The swap area specified is the last remaining swap area.

EFAULT

ENOTBLK

EEXIST

ENOS PC

ENOMEM

ENOMEM There is no place to put swapped pages when deleting a swap area.

Page 5

sysm88k(2) sysm88k(2)

EINVAL An argument is invalid.

Command STIME
When cmd is STIME, an argument of type long is expected. This function sets the
system time and date. The argument contains the time as measured in seconds
from 00:00:00 UTC January 1, 1970. This command is available only to the super­
user.

Command SM88KTRAPLOCORE
Prior to Release 4.0, user processes could read low memory (for example, read
accesses using NULL pointers were permitted from user programs). When cmd is
SMS BKTRAPLOCORE, user level access permission on low core memory can be
changed and user accesses of low core memory can be trapped. Only read access is
affected; user level write access to low core is not allowed under any circumstances.

A single argument of type int is expected. This argument may have one of the fol­
lowing four values, defined in sys/sysm88k.h:

SM88KTLC_DISABLE
Disable low core trapping. Read accesses to low core are allowed from user
processes.

SM88KTLC_SIGNAL
Trap low core accesses. Any user process which attempts to read low core
will be sent a SIGSEGV signal with si_code set to SEGV_MAPERR.

SM88KTLC_PRINT
Trap low core accesses. Any user process which attempts to read low core
will be sent a SIGSEGV signal with si_code set to SEGV_MAPERR. In addi­
tion, a message will be printed on the system console each time a process
attempts to read low core.

SM88KTLC_STATUS
Return current state of low core trapping. The state of low core trapping is
unchanged.

If this command succeeds, it returns one of SM88KTLC_DISABLE,
SM88KTLC_SIGNAL, SM88KTLC_PRINT, to indicate the setting of low core protection
prior to the call. NOTE: This command changes behavior for all processes, not just
for the current process. The command fails and returns -1 if one or more of the fol­
lowing is true:

EPERM The caller is not super-user (not required for SM88KTLC_STATUS).

EINVAL An argument is invalid.

Command CRASHDUMP

Page 6

When cmd is CRASHDUMP, two arguments are expected - pathname and flag. This
function enables crash dumps to the special device defined by the pathname and
sets the mode of crash dumps per the value of the flag. If pathname is NULL, then
crash dumps are disabled.

The flag must be 0 or joined by an "or" with any of the following values (defined in
crash.h):

CRASH_DUMPS_ASK - the crash dump system prompts the user for preparing the
dump device and to resolve errors

10/92

sysm88k(2) sysm88k(2)

The default action unless modified by one of the above is that the crash dump sys­
tem does not prompt the user to prepare the dump device and fails if an error
occurs.

The special device used for crash dumps must have sufficient room to hold an
image of physical memory or not all of the crash dump will be saved. If the device
is a disk-drive partition, it must be tagged with V_SWAP. If the device is currently
used for swapping, it must have sufficient room to allow the system to be rebooted
and the crash dump to be retrieved before it is corrupted. The crash dump is stored
at the rear of a partition if possible to facilitate some swapping.

Command SETNAME
When cmd is SETNAME, an argument of type char * is expected. This function sets
the new node name and can consist of alphanumeric and the special characters
dash, underbar, and dollar sign. The node name argument is restricted to
SYS_NMLN characters. SYS_NMLN is an implementation specific value defined in
<sys/utsname.h>. This command is available only to the superuser.

Command SETSYSNAME
When cmd is SETSYSNAME, an argument of type char * is expected. This function
sets the new system name and can consist of alphanumeric and the special charac­
ters dash, underbar, and dollar sign. The system name argument is restricted to
SYS_NMLN characters. SYS_NMLN is an implementation specific value defined in
<sys/utsname.h>. This command is available only to the superuser.

DIAGNOSTICS
On success, sysm88k returns a value that depends on cmd as follows:

SMSSKSYM A value of zero.
SMS SKCONF A value of zero.
SMS SKBOOT A value of zero.
CRASHDUMP A value of zero.
SM88KAUTO A value of zero if an existing bootable operating sys­

tem (such as /stand/stand/unix or /stand/unix)
was last booted. A value of one if a new bootable
operating system was configured during the last boot
process.

SMSSKTRAPLOCORE Returns the setting of low core protection prior to the
call.

Otherwise, a value of -1 is returned and errno is set to indicate the error. When
cmd is invalid, errno is set to EINVAL on return.

SEE ALSO
cunix(lM), swap(lM), sync(2), a. out(4)

10/92 Page 7

system(3S) (C Development Set) system(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdlib.h>

int system (const char *string);

DESCRIPTION
system causes the string to be given to the shell [see sh(l)] as input, as if the string
had been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell in the format specified
by wai tpid(2).

If string is a NULL pointer, system checks if I sbin/ sh exists and is executable. If
I sbin/ sh is available, system returns non-zero; otherwise it returns zero.

system fails if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

EINTR

ENOMEM

system was interrupted by a signal.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

SEE ALSO
sh(l), exec(2), wai tpid(2).

DIAGNOSTICS

10/92

system forks to create a child process that in turn execs /sbin/sh in order to exe­
cute string. If the fork or exec fails, system returns -1 and sets errno.

Page 1

t_accept (3N) (Networking Support Utilities) t_accept (3N)

NAME
t_accept - accept a connect request

SYNOPSIS
#include <tiuser.h>

int t_accept(int fd, int resfd, struct t_call *call);

DESCRIPTION

10/92

This function is issued by a transport user to accept a connect request. fd identifies
the local transport endpoint where the connect indication arrived, resfd specifies
the local transport endpoint where the connection is to be established, and call
contains information required by the transport provider to complete the connec­
tion. call points to a t_call structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3N). In call, addr is the address of the caller, opt
indicates any protocol-specific parameters associated with the connection, udata
points to any user data to be returned to the caller, and sequence is the value
returned by t_listen that uniquely associates the response with a previously
received connect indication.

A transport user may accept a connection on either the same, or on a different, local
transport endpoint from the one on which the connect indication arrived. If the
same endpoint is specified (that is, resfd=fd), the connection can be accepted
unless the following condition is true: The user has received other indications on
that endpoint but has not responded to them (with t_accept or t_snddis). For
this condition, t_accept will fail and set t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpoint must be
bound to a protocol address and must be in the T_IDLE state [see t_getstate(3N)]
before the t_accept is issued.

For both types of endpoints, t_accept will fail and set t_errno to TLOOK if there
are indications (for example, a connect or disconnect) waiting to be received on that
endpoint.

The values of parameters specified by opt and the syntax of those values are proto­
col specific. The udata argument enables the called transport user to send user
data to the caller and the amount of user data must not exceed the limits supported
by the transport provider as returned in the connect field of the info argument of
t_open or t_getinfo. If the len [see netbuf in intro(3N)] field of udata is zero,
no data will be sent to the caller.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end­
point, or the user is invalidly accepting a connection on the
same transport endpoint on which the connect indication
arrived.

Page 1

t_accept(3N) (Networking Support Utilities) t_accept (3N)

TOUT STATE

TACCES

TBADOPT

TBADDATA

TBADSEQ

TLOOK

TNOTSUPPORT

TSYSERR

The function was issued in the wrong sequence on the tran­
sport endpoint referenced by fd, or the transport endpoint
referred to by resfd is not in the T_IDLE state.

The user does not have permission to accept a connection on
the responding transport endpoint or use the specified
options.

The specified options were in an incorrect format or contained
invalid information.

The amount of user data specified was not within the bounds
supported by the transport provider as returned in the con -
nect field of the info argument of t_open or t_getinfo.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport end­
point referenced by fd and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this function.

SEE ALSO
intro(3N), t_connect(3N), t_getstate(3N), t_listen(3N), t_open(3N),
t_rcvconnect(3N).

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and t_errno is set to indicate the error.

10/92

t_alloc (3N) (Networking Support Utilities) t_alloc (3N)

NAME
t_alloc - allocate a library structure

SYNOPSIS
#include <tiuser.h>

char *t_alloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION

10/92

The t_alloc function dynamically allocates memory for the various transport
function argument structures as specified below. This function will allocate
memory for the specified structure, and will also allocate memory for buffers refer­
enced by the structure.

The structure to allocate is specified by struct_type, and can be one of the follow­
ing:

T_BIND struct t_bind

T_CALL struct t - call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t info

where each of these structures may subsequently be used as an argument to one or
more transport functions.

Each of the above structures, except T_INFO, contains at least one field of type
struct netbuf. netbuf is described in intro(3N). For each field of this type, the
user may specify that the buffer for that field should be allocated as well. The
fields argument specifies this option, where the argument is the bitwise-OR of any
of the following:

T_ADDR The addr field of the t_bind, t_call, t_uni tdata, or t_uderr struc­
tures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr struc-
tures.

T_UDATA The udata field of the t_call, t_discon, or t_unitdata structures.

T_ALL All relevant fields of the given structure.

For each field specified in fields, t_alloc will allocate memory for the buffer
associated with the field, and initialize the buf pointer and maxlen [see netbuf in
intro(3N) for description of buf and maxlen] field accordingly. The length of the
buffer allocated will be based on the same size information that is returned to the
user on t_open and t_getinfo. Thus, fd must refer to the transport endpoint
through which the newly allocated structure will be passed, so that the appropriate
size information can be accessed. If the size value associated with any specified
field is -1, t_alloc will allocate the buffer with the size of 1024 bytes. If the size

Page 1

t_alloc (3N) (Networking Support Utilities) t_alloc (3N)

value is -2, t_alloc will set the buffer pointer to NULL and the buffer maximum size
to 0 and will return with success. For any field not specified in fields, buf will be
set to NULL and maxlen will be set to zero.

Use of t_alloc to allocate structures will help ensure the compatibility of user pro­
grams with future releases of the transport interface.

On failure, t_errno may be set to one of the following:

TBADF

TSYSERR

The specified file descriptor does not refer to a transport endpoint.

A system error has occurred during execution of this function.

SEE ALSO
intro(3N), t_free(3N), t_getinfo(3N), t_open(3N).

DIAGNOSTICS

Page 2

On successful completion, t_alloc returns a pointer to the newly allocated struc­
ture. On failure, NULL is returned.

10/92

t_bind(3N) (Networking Support Utilities) t_bind (3N)

NAME
t_bind - bind an address to a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_bind (fd, req, ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

DESCRIPTION

10/92

This function associates a protocol address with the transport endpoint specified by
fd and activates that transport endpoint. In connection mode, the transport pro­
vider may begin accepting or requesting connections on the transport endpoint. In
connectionless mode, the transport user may send or receive data units through the
transport endpoint.

The req and ret arguments point to a t_bind structure containing the following
members:

struct netbuf addr;
unsigned qlen;

netbuf is described in intro(3N). The addr field of the t_bind structure specifies
a protocol address and the qlen field is used to indicate the maximum number of
outstanding connect indications.

req is used to request that an address, represented by the netbuf structure, be
bound to the given transport endpoint. len [see netbuf in intro(3N); also for buf
and maxlen] specifies the number of bytes in the address and buf points to the
address buffer. maxlen has no meaning for the req argument. On return, ret con­
tains the address that the transport provider actually bound to the transport end­
point; this may be different from the address specified by the user in req. In ret,
the user specifies maxlen, which is the maximum size of the address buffer, and
buf, which points to the buffer where the address is to be placed. On return, len
specifies the number of bytes in the bound address and buf points to the bound
address. If maxlen is not large enough to hold the returned address, an error will
result.

If the requested address is not available, or if no address is specified in req (the len
field of addr in req is zero) the transport provider may assign an appropriate
address to be bound, and will return that address in the addr field of ret. The user
can compare the addresses in req and ret to determine whether the transport pro­
vider bound the transport endpoint to a different address than that requested.

req may be NULL if the user does not wish to specify an address to be bound. Here,
the value of qlen is assumed to be zero, and the transport provider must assign an
address to the transport endpoint. Similarly, ret may be NULL if the user does not
care what address was bound by the provider and is not interested in the nego­
tiated value of qlen. It is valid to set req and ret to NULL for the same call, in
which case the provider chooses the address to bind to the transport endpoint and
does not return that information to the user.

Page 1

t_bind (3N) (Networking Support Utilities) t_bind(3N)

The qlen field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connect indications the transport provider
should support for the given transport endpoint. An outstanding connect indica­
tion is one that has been passed to the transport user by the transport provider. A
value of qlen greater than zero is only meaningful when issued by a passive tran­
sport user that expects other users to call it. The value of qlen will be negotiated
by the transport provider and may be changed if the transport provider cannot sup­
port the specified number of outstanding connect indications. On return, the qlen
field in ret will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the same
protocol address (however, the transport provider must support this capability
also), but it is not allowable to bind more than one protocol address to the same
transport endpoint. If a user binds more than one transport endpoint to the same
protocol address, only one endpoint can be used to listen for connect indications
associated with that protocol address. In other words, only one t_bind for a given
protocol address may specify a value of qlen greater than zero. In this way, the
transport provider can identify which transport endpoint should be notified of an
incoming connect indication. If a user attempts to bind a protocol address to a
second transport endpoint with a value of qlen greater than zero, the transport
provider will assign another address to be bound to that endpoint. If a user accepts
a connection on the transport endpoint that is being used as the listening endpoint,
the bound protocol address will be found to be busy for the duration of that con­
nection. No other transport endpoints may be bound for listening while that initial
listening endpoint is in the data transfer phase. This will prevent more than one
transport endpoint bound to the same protocol address from accepting connect
indications.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end­
point.

[TOUTSTATE]

[TBADADDR]

[TNOADDR]

[TACCES]

[TBUFOVFLW]

TSYSERR

The function was issued in the wrong sequence.

The specified protocol address was in an incorrect format or
contained illegal information.

The transport provider could not allocate an address.

The user does not have permission to use the specified
address.

The number of bytes allowed for an incoming argument is not
sufficient to store the value of that argument. The provider's
state will change to [T_IDLE] and the information to be
returned in ret will be discarded.

A system error has occurred during execution of this function.

SEE ALSO
t_open(3N), t_optmgmt(3N), t_unbind(3N).

DIAGNOSTICS

Page 2

t_bind returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10/92

t_close (3N) (Networking Support Utilities) t_close (3N)

NAME
t_close - close a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_close(fd)
int fd;

DESCRIPTION
The t_close function informs the transport provider that the user is finished with
the transport endpoint specified by fd, and frees any local library resources associ­
ated with the endpoint. In addition, t_close closes the file associated with the
transport endpoint.

t_close should be called from the T_UNBND state [see t_getstate(3N)]. How­
ever, this function does not check state information, so it may be called from any
state to close a transport endpoint. If this occurs, the local library resources associ­
ated with the endpoint will be freed automatically. In addition, close(2) will be
issued for that file descriptor; the close will be abortive if no other process has that
file open, and will break any transport connection that may be associated with that
endpoint.

On failure, t_errno may be set to the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

SEE ALSO
t_getstate(3N), t_open(3N), t_unbind(3N).

DIAGNOSTICS

10/92

t_close returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

Page 1

t_connect (3N) (Networking Support Utilities) t_ connect (3N)

NAME
t_connect - establish a connection with another transport user

SYNOPSIS
#include <tiuser.h>

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call *sndcall;
struct t_call *rcvcall;

DESCRIPTION

10/92

This function enables a transport user to request a connection to the specified desti­
nation transport user. fd identifies the local transport endpoint where communica­
tion will be established, while sndcall and rcvcall point to a t_call structure
that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

sndcall specifies information needed by the transport provider to establish a con­
nection and rcvcall specifies information that is associated with the newly esta­
blished connection.

netbuf is described in intro(3N). In sndcall, addr specifies the protocol address
of the destination transport user, opt presents any protocol-specific information
that might be needed by the transport provider, udata points to optional user data
that may be passed to the destination transport user during connection establish­
ment, and sequence has no meaning for this function.

On return in rcvcall, addr returns the protocol address associated with the
responding transport endpoint, opt presents any protocol-specific information
associated with the connection, udata points to optional user data that may be
returned by the destination transport user during connection establishment, and
sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed to the
transport provider. The transport provider is free to specify the structure of any
options passed to it. These options are specific to the underlying protocol of the
transport provider. The user may choose not to negotiate protocol options by set­
ting the len field of opt to zero. In this case, the provider may use default options.

The udata argument enables the caller to pass user data to the destination tran­
sport user and receive user data from the destination user during connection estab­
lishment. However, the amount of user data must not exceed the limits supported
by the transport provider as returned in the connect field of the info argument of
t_open or t_getinfo. If the len [see netbuf in intro(3N)] field of udata is zero
in sndcall, no data will be sent to the destination transport user.

On return, the addr, opt, and udata fields of rcvcall will be updated to reflect
values associated with the connection. Thus, the maxlen [see netbuf in
intro(3N)] field of each argument must be set before issuing this function to indi­
cate the maximum size of the buffer for each. However, rcvcall may be NULL, in
which case no information is given to the user on return from t_connect.

Page 1

t_connect (3N) (Networking Support Utilities) t_connect (3N)

By default, t_connect executes in synchronous mode, and will wait for the desti­
nation user's response before returning control to the local user. A successful
return (that is, return value of zero) indicates that the requested connection has
been established. However, if O_NDELAY or O_NONBLOCK is set (via t_open or
fcntl), t_connect executes in asynchronous mode. In this case, the call will not
wait for the remote user's response, but will return control immediately to the local
user and return -1 with t_errno set to TNODATA to indicate that the connection has
not yet been established. In this way, the function simply initiates the connection
establishment procedure by sending a connect request to the destination transport
user.

On failure, t_errno may be set to one of the following:

TBADF

TOUT STATE

TNODATA

TBADADDR

TBADOPT

TBADDATA

TACCES

TBUFOVFLW

TLOOK

TNOTSUPPORT

TSYSERR

The specified file descriptor does not refer to a transport end­
point.

The function was issued in the wrong sequence.

O_NDELAY or O_NONBLOCK was set, so the function success­
fully initiated the connection establishment procedure, but
did not wait for a response from the remote user.

The specified protocol address was in an incorrect format or
contained invalid information.

The specified protocol options were in an incorrect format or
contained invalid information.

The amount of user data specified was not within the bounds
supported by the transport provider as returned in the con -
nect field of the info argument of t_open or t_getinfo.

The user does not have permission to use the specified
address or options.

The number of bytes allocated for an incoming argument is
not sufficient to store the value of that argument. If executed
in synchronous mode, the provider's state, as seen by the
user, changes to T_DATAXFER, and the connect indication
information to be returned in rcvcall is discarded.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this function.

SEE ALSO
intro(3N), t_accept(3N), t_getinfo(3N), t_listen(3N), t_open(3N),
t_optmgrnt(3N), t_rcvconnect(3N).

DIAGNOSTICS

Page 2

t_connect returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10/92

t_error (3N) (Networking Support Utilities) t_error(3N)

NAME
t_error - produce error message

SYNOPSIS
#include <tiuser.h>

void t_error(errmsg)
char *errmsg;
extern int t_errno;
extern char *t_errlist[];
extern int t_nerr;

DESCRIPTION
t_error produces a message on the standard error output which describes the last
error encountered during a call to a transport function. The argument string
errmsg is a user-supplied error message that gives context to the error.

t_error prints the user-supplied error message followed by a colon and the stan­
dard transport function error message for the current value contained in t_errno.
If t_errno is TSYSERR, t_error will also print the standard error message for the
current value contained in errno [see intro(2)].

t_errlist is the array of message strings, to allow user message formatting.
t_errno can be used as an index into this array to retrieve the error message string
(without a terminating newline). t_nerr is the maximum index value for the
t_errlist array.

t_errno is set when an error occurs and is not cleared on subsequent successful
calls.

EXAMPLE

10/92

If a t_connect function fails on transport endpoint fd2 because a bad address was
given, the following call might follow the failure:

t_error ("t_connect failed on fd2");

The diagnostic message would print as:

t_connect failed on fd2: Incorrect transport address format

where "t_connect failed on fd2" tells the user which function failed on which
transport endpoint, and "Incorrect transport address format" identifies the specific
error that occurred.

Page 1

t_free(3N) (Networking Support Utilities) t_free(3N)

NAME
t_free - free a library structure

SYNOPSIS
#include <tiuser.h>

int t_free(ptr, struct_type)
char *ptr;
int struct_type;

DESCRIPTION
The t_free function frees memory previously allocated by t_alloc. This function
will free memory for the specified structure, and will also free memory for buffers
referenced by the structure.

ptr points to one of the six structure types described for t_alloc, and
struct_type identifies the type of that structure, which can be one of the follow­
ing:

T_BIND struct t_bind

T_CALL struct t - call

T_OPTMGMT struct t_optrngmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t info

where each of these structures is used as an argument to one or more transport
functions.

t_free will check the addr, opt, and udata fields of the given structure (as
appropriate), and free the buffers pointed to by the buf field of the netbuf [see
intro(3N)] structure. If buf is NULL, t_free will not attempt to free memory.
After all buffers are freed, t_free will free the memory associated with the struc­
ture pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated by t_alloc.

On failure, t_errno may be set to the following:

TSYSERR A system error has occurred during execution of this function.

SEE ALSO
intro(3N), t_alloc(3N).

DIAGNOSTICS

10/92

t free returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

Page 1

t_getinfo(3N) (Networking Support Utilities) t_getinfo (3N)

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include <tiuser.h>

int t_getinfo(fd, info)
int fd;
struct t_info *info;

DESCRIPTION

10/92

This function returns the current characteristics of the underlying transport proto­
col associated with file descriptor fd. The info structure is used to return the same
information returned by t_open. This function enables a transport user to access
this information during any phase of communication.

This argument points to a t_info structure, which contains the following
members:

long addr;
long options;
long tsdu;
long etsdu;

/* max size of the transport protocol address *I
/* max number of bytes of protocol-specific options *I
/*max size of a transport service data unit (TSDU) * /
I* max size of an expedited transport service data unit (ETSDU) *I

long connect; I* max amount of data allowed on connection establishment functions *I
long discon; /*max amount of data allowed on t_snddis and t_rcvdis functions* I
long servtype; /*service type supported by the transport provider* I

The values of the fields have the following meanings:

addr

options

tsdu

etsdu

A value greater than or equal to zero indicates the maximum size of
a transport protocol address; a value of -1 specifies that the size of
the field will be set to the default of 1024 bytes by t_alloc; and a
value of -2 specifies that the transport provider does not provide
user access to transport protocol addresses.

A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by the pro­
vider; a value of -1 specifies that the size of the field will be set to
the default of 1024 bytes by t_alloc; and a value of -2 specifies that
the transport provider does not support user-settable options.

A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does
support the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that the size of
the field will be set to the default of 1024 bytes by t_alloc; and a
value of -2 specifies that the transfer of normal data is not sup­
ported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept
of ETSDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connec­
tion; a value of -1 specifies that the size of the field will be set to the

Page 1

t_getinfo (3N) (Networking Support Utilities) t_getinfo (3N)

connect

dis con

servtype

default of 1024 bytes by t_alloc; and a value of -2 specifies that the
transfer of expedited data is not supported by the transport pro­
vider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection establish­
ment functions; a value of -1 specifies that the size of the field will
be set to the default of 1024 bytes by t_alloc; and a value of -2
specifies that the transport provider does not allow data to be sent
with connection establishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t_snddis and
t_rcvdis functions; a value of -1 specifies that the size of the field
will be set to the default of 1024 bytes by t_alloc; and a value of -2
specifies that the transport provider does not allow data to be sent
with the abortive release functions.

This field specifies the service type supported by the transport pro­
vider, as described below.

If a transport user is concerned with protocol independence, the above sizes may be
accessed to determine how large the buffers must be to hold each piece of informa­
tion. Alternatively, the t_alloc function may be used to allocate these buffers. An
error will result if a transport user exceeds the allowed data size on any function.
The value of each field may change as a result of option negotiation, and
t_getinfo enables a user to retrieve the current characteristics.

The servtype field of info may specify one of the following values on return:

T_COTS

T_COTS_ORD

T_CLTS

The transport provider supports a connection-mode service but
does not support the optional orderly release facility.

The transport provider supports a connection-mode service with
the optional orderly release facility.

The transport provider supports a connectionless-mode service.
For this service type, t_open will return -2 for etsdu, connect,
and discon.

On failure, t_errno may be set to one of the following:

TBADF

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport endpoint.

A system error has occurred during execution of this function.

t_open(3N).

DIAGNOSTICS
t_getinfo returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

Page 2 10/92

t _getstate (3N) (Networking Support Utilities) t_getstate (3N)

NAME
t_getstate - get the current state

SYNOPSIS
#include <tiuser.h>

int t_getstate(fd)
int fd;

DESCRIPTION
The t_getstate function returns the current state of the provider associated with
the transport endpoint specified by fd.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end­
point.

TSTATECHNG

TSYSERR

SEE ALSO

The transport provider is undergoing a state change.

A system error has occurred during execution of this function.

t_open(3N).

DIAGNOSTICS

10/92

t_getstate returns the current state on successful completion and -1 on failure
and t_errno is set to indicate the error. The current state may be one of the follow­
ing:
T_UNBND

T_IDLE

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

T_INREL

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release indication)

incoming orderly release (waiting for an orderly release request)

If the provider is undergoing a state transition when t_getstate is called, the
function will fail.

Page 1

t_listen (3N) (Networking Support Utilities) t_listen (3N)

NAME
t_listen - listen for a connect request

SYNOPSIS
#include <tiuser.h>

int t_listen(fd, call)
int fd;
struct t_call *call;

DESCRIPTION

10/92

This function listens for a connect request from a calling transport user. fd
identifies the local transport endpoint where connect indications arrive, and on
return, call contains information describing the connect indication. call points to
a t_call structure, which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3N). In call, addr returns the protocol address of
the calling transport user, opt returns protocol-specific parameters associated with
the connect request, udata returns any user data sent by the caller on the connect
request, and sequence is a number that uniquely identifies the returned connect
indication. The value of sequence enables the user to listen for multiple connect
indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of call, the
maxlen [see netbuf in intro(3N)] field of each must be set before issuing
t listen to indicate the maximum size of the buffer for each.

By default, t_listen executes in synchronous mode and waits for a connect indi­
cation to arrive before returning to the user. However, if O_NDELAY or O_NONBLOCK
is set (via t_open or fcntl), t_listen executes asynchronously, reducing to a poll
for existing connect indications. If none are available, it returns -1 and sets
t_errno to TNODATA.

On failure, t_errno may be set to one of the following:

TBADF

TBUFOVFLW

TNODATA

TLOOK

The specified file descriptor does not refer to a transport
endpoint.

The number of bytes allocated for an incoming argument is
not sufficient to store the value of that argument. The
provider's state, as seen by the user, changes to T_INCON,
and the connect indication information to be returned in
call is discarded.

O_NDELAY or O_NONBLOCK was set, but no connect indica­
tions had been queued.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

Page 1

t_listen (3N) (Networking Support Utilities) t_listen (3N)

NOTES

TNOTSUPPORT

TSYSERR

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

If a user issues t_listen in synchronous mode on a transport endpoint that was
not bound for listening (that is, qlen was zero on t_bind), the call will wait forever
because no connect indications will arrive on that endpoint.

SEE ALSO
intro(3N), t_accept(3N), t_bind(3N), t_connect(3N), t_open(3N),
t_rcvconnect(3N).

DIAGNOSTICS

Page 2

t listen returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10/92

t_look(3N) (Networking Support Utilities) t_look(3N)

NAME
t_look - look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_look (fd)
int fd;

DESCRIPTION
This function returns the current event on the transport endpoint specified by fd.
This function enables a transport provider to notify a transport user of an asynchro­
nous event when the user is issuing functions in synchronous mode. Certain
events require immediate notification of the user and are indicated by a specific
error, TLOOK, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint periodically
for asynchronous events.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TSYSERR

SEE ALSO

A system error has occurred during execution of this function.

t_open(3N).

DIAGNOSTICS

10/92

Upon success, t_look returns a value that indicates which of the allowable events
has occurred, or returns zero if no event exists. One of the following events is
returned:

T_LISTEN

T_CONNECT

T_DATA

T_EXDATA

T_DISCONNECT

T_UDERR

T_ORDREL

connection indication received

connect confirmation received

normal data received

expedited data received

disconnect received

datagram error indication

orderly release indication

On failure, -1 is returned and t_errno is set to indicate the error.

Page 1

t_open(3N) (Networking Support Utilities) t_open(3N)

NAME
t_open - establish a transport endpoint

SYNOPSIS
#include <tiuser.h>

#include <fcntl.h>

int t_open (char path, int oflag, struct t_info *info);

DESCRIPTION

10/92

t_open must be called as the first step in the initialization of a transport endpoint.
This function establishes a transport endpoint by opening a UNIX file that
identifies a particular transport provider (that is, transport protocol) and returning
a file descriptor that identifies that endpoint. For example, opening the file
I dev I iso_cots identifies an OSI connection-oriented transport layer protocol as
the transport provider.

path points to the path name of the file to open, and oflag identifies any open
flags [as in open(2)]. oflag may be constructed from O_NDELAY or O_NONBLOCK
OR-ed with O_RDWR. These flags are defined in the header file <fcntl. h>. t_open
returns a file descriptor that will be used by all subsequent functions to identify the
particular local transport endpoint.

t_open also returns various default characteristics of the underlying transport pro­
tocol by setting fields in the t_info structure. The t_info argument points to a
t_info structure that contains the following members:

long addr;
long options;
long tsdu;
long etsdu;
long connect;

/*maximum size of the transport protocol address* I
/*maximum number of bytes of protocol-specific options* I
/*maximum size of a transport service data unit (TSDU) *I
/*maximum size of an expedited transport service data unit (ETSDU) *I
/*maximum amount of data allowed on connection establishment

functions *I
long discon; /*maximum amount of data allowed on t_snddis and t_rcvdis

functions *I
long servtype; /*service type supported by the transport provider*/

The values of the fields have the following meanings:

addr

options

ts du

A value greater than or equal to zero indicates the maximum size of
a transport protocol address; a value of -1 specifies that the size of
the field will be set to the default of 1024 bytes by t_alloc(); and a
value of -2 specifies that the transport provider does not provide
user access to transport protocol addresses.

A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by the pro­
vider; a value of -1 specifies that the size of the field will be set to
the default of 1024 bytes by t_alloc(); and a value of -2 specifies that
the transport provider does not support user-settable options.

A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does
support the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that the size of

Page 1

t_open(3N) (Networking Support Utilities) t_open(3N)

Page 2

etsdu

connect

discon

servtype

the field will be set to the default of 1024 bytes by t_alloc(); and a
value of -2 specifies that the transfer of normal data is not sup­
ported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept
of ETSDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connec­
tion; a value of -1 specifies that the size of the field will be set to the
default of 1024 bytes by t_alloc(); and a value of -2 specifies that the
transfer of expedited data is not supported by the transport pro­
vider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection establish­
ment functions; a value of -1 specifies that the size of the field will
be set to the default of 1024 bytes by t_alloc(); and a value of -2
specifies that the transport provider does not allow data to be sent
with connection establishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t_snddis and
t_rcvdi s functions; a value of -1 specifies that the size of the field
will be set to the default of 1024 bytes by t_alloc(); and a value of -2
specifies that the transport provider does not allow data to be sent
with the abortive release functions.

This field specifies the service type supported by the transport pro­
vider, as described below.

If a transport user is concerned with protocol independence, the above sizes may be
accessed to determine how large the buffers must be to hold each piece of informa­
tion. Alternatively, the t_alloc function may be used to allocate these buffers. An
error will result if a transport user exceeds the allowed data size on any function.

The servtype field of info may specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service but
does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with
the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service.
For this service type, t_open will return -2 for etsdu, connect, and
disc on.

A single transport endpoint may support only one of the above services at one
time.

If info is set to NULL by the transport user, no protocol information is returned by
t_open.

10/92

t_open(3N) (Networking Support Utilities) t_open(3N)

On failure, t_errno may be set to the following:

TSYSERR A system error has occurred during execution of this func­
tion.

TBADFLAG

DIAGNOSTICS

An invalid flag is specified.

NOTES

t_open returns a valid file descriptor on success and -1 on failure and t_errno is
set to indicate the error.

If t_open is used on a non-TU-conforming STREAMS device, unpredictable events
may occur.

SEE ALSO
open(2).

10/92 Page 3

t_ optmgmt (3N) (Networking Support Utilities) t_optmgmt (3N)

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_optmgmt (int fd, struct t_optmgmt *req, struct t_optmgmt *ret);

DESCRIPTION

10/92

The t_optmgmt function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider. fd identifies a bound transport end­
point.

The req and ret arguments point to a t_optmgmt structure containing the
following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is used to specify the
action to take with those options.

The options are represented by a netbuf [see intro(3N); also for len, buf, and
maxlen] structure in a manner similar to the address in t_bind. req is used to
request a specific action of the provider and to send options to the provider. len
specifies the number of bytes in the options, buf points to the options buffer, and
maxlen has no meaning for the req argument. The transport provider may return
options and flag values to the user through ret. For ret, maxlen specifies the max­
imum size of the options buffer and buf points to the buffer where the options are
to be placed. On return, len specifies the number of bytes of options returned.
maxlen has no meaning for the req argument, but must be set in the ret argument
to specify the maximum number of bytes the options buffer can hold. The actual
structure and content of the options is imposed by the transport provider.

The flags field of req can specify one of the following actions:

T_NEGOTIATE This action enables the user to negotiate the values of the options
specified in req with the transport provider. The provider will
evaluate the requested options and negotiate the values, returning
the negotiated values through ret.

T_CHECK This action enables the user to verify whether the options
specified in req are supported by the transport provider. On
return, the flags field of ret will have either T_SUCCESS or
T_FAILURE set to indicate to the user whether the options are sup­
ported. These flags are only meaningful for the T_CHECK request.

T_DEFAULT This action enables a user to retrieve the default options sup­
ported by the transport provider into the opL field of ret. In req,
the len field of opt must be zero and the buf field may be NULL.

If issued as part of the connectionless-mode service, t_optmgmt may block due to
flow control constraints. The function will not complete until the transport pro­
vider has processed all previously sent data units.

Page 1

t_optmgmt(3N) (Networking Support Utilities) t_ optmgmt (3N)

On failure, t_errno may be set to one of the following:

TBADF

TOUT STATE

TACCES

TBADOPT

TBADFLAG

TBUFOVFLW

TSYSERR

The specified file descriptor does not refer to a transport
endpoint.

The function was issued in the wrong sequence.

The user does not have permission to negotiate the specified
options.

The specified protocol options were in an incorrect format or
contained illegal information.

An invalid flag was specified.

The number of bytes allowed for an incoming argument is
not sufficient to store the value of that argument. The infor­
mation to be returned in ret will be discarded.

A system error has occurred during execution of this func­
tion.

SEE ALSO
intro(3N), t_getinfo(3N), t_open(3N).

DIAGNOSTICS

Page 2

t_optmgrnt returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10/92

t_rcv(3N) (Networking Support Utilities) t_rcv(3N)

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv (int fd, char *buf, unsigned nbytes, int *flags);

DESCRIPTION
This function receives either normal or expedited data. fd identifies the local tran­
sport endpoint through which data will arrive, but points to a receive buffer where
user data will be placed, and nbytes specifies the size of the receive buffer. flags
may be set on return from t_rcv and specifies optional flags as described below.

By default, t_rcv operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O_NDELAY or O_NONBLOCK is set (via
t_open or fcntl), t_rcv will execute in asynchronous mode and will fail if no data
is available. (See TNODATA below.)

On return from the call, if T_MORE is set in flags, this indicates that there is more
data and the current transport service data unit (TSDU) or expedited transport ser­
vice data unit (ETSDU) must be received in multiple t_rcv calls. Each t_rcv with
the T_MORE flag set indicates that another t_rcv must follow to get more data for
the current TSDU. The end of the TSDU is identified by the return of a t_rcv call
with the T_MORE flag not set. If the transport provider does not support the concept
of a TSDU as indicated in the info argument on return from t_open or t_getinfo,
the T_MORE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T_EXPEDITED is set in flags. If
the number of bytes of expedited data exceeds nbytes, t_rcv will set
T_EXPEDITED and T_MORE on return from the initial call. Subsequent calls to
retrieve the remaining ETSDU will have T_EXPEDITED set on return. The end of the
ETSDU is identified by the return of a t_rcv call with the T_MORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed. Only
after the full ETSDU has been retrieved (T_MORE not set) will the remainder of the
TSDU be available to the user.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end­
point.

TNODATA

TLOOK

TNOTSUPPORT

TSYSERR

O_NDELAY or O_NONBLOCK was set, but no data is currently
available from the transport provider.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this function.

SEE ALSO
t_open(3N), t_snd(3N).

10/92 Page 1

t_rcv(3N) (Networking Support Utilities) t_rcv(3N)

DIAGNOSTICS
On successful completion, t_rcv returns the number of bytes received, and it
returns -1 on failure and t_errno is set to indicate the error.

Page 2 10/92

t_rcvconnect (3N) (Networking Support Utilities) t_rcvconnect (3N)

NAME
t_rcvconnect - receive the confirmation from a connect request

SYNOPSIS
#include <tiuser.h>

int t_rcvconnect (int fd, struct t_call *call);

DESCRIPTION

10/92

This function enables a calling transport user to determine the status of a previ­
ously sent connect request and is used in conjunction with t_connect to establish
a connection in asynchronous mode. The connection will be established on suc­
cessful completion of this function.

fd identifies the local transport endpoint where communication will be established,
and call contains information associated with the newly established connection.
call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3N). In call, addr returns the protocol address asso­
ciated with the responding transport endpoint, opt presents any protocol-specific
information associated with the connection, udata points to optional user data that
may be returned by the destination transport user during connection establishment,
and sequence has no meaning for this function.

The maxlen [see netbuf in intro(3N)] field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each. However,
call may be NULL, in which case no information is given to the user on return from
t_rcvconnect. By default, t_rcvconnect executes in synchronous mode and
waits for the connection to be established before returning. On return, the addr,
opt, and udata fields reflect values associated with the connection.

If O_NDELAY or O_NONBLOCK is set (via t_open or fcntl), t_rcvconnect executes
in asynchronous mode, and reduces to a poll for existing connect confirmations. If
none are available, t_rcvconnect fails and returns immediately without waiting
for the connection to be established. (See TNODATA below.) t_rcvconnect must be
re-issued at a later time to complete the connection establishment phase and
retrieve the information returned in call.

On failure, t_errno may be set to one of the following:

TBADF

TBUFOVFLW

The specified file descriptor does not refer to a transport
endpoint.

The number of bytes allocated for an incoming argument is
not sufficient to store the value of that argument and the
connect information to be returned in call will be dis­
carded. The provider's state, as seen by the user, will be
changed to DATAXFER.

Page 1

t_rcvconnect (3N) (Networking Support Utilities) t_rcvconnect (3N)

TNODATA

TLOOK

TNOTSUPPORT

TSYSERR

O_NDELAY or O_NONBLOCK was set, but a connect
confirmation has not yet arrived.

An asynchronous event has occurred on this transport con­
nection and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
intro(3N), t_accept(3N), t_bind(3N), t_connect(3N), t_listen(3N),
t_open(3N).

DIAGNOSTICS

Page 2

t_rcvconnect returns 0 on success and -1 on failure and t errno is set to indicate
the error.

10/92

t_rcvdis (3N) (Networking Support Utilities) t_rcvdis (3N)

NAME
t_rcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser.h>

t_rcvdis (int fd, struct t_discon *discon);

DESCRIPTION

10/92

This function is used to identify the cause of a disconnect, and to retrieve any user
data sent with the disconnect. fd identifies the local transport endpoint where the
connection existed, and discon points to a t_discon structure containing the fol­
lowing members:

struct netbuf udata;
int reason;
int sequence;

netbuf is described in intro(3N). reason specifies the reason for the disconnect
through a protocol-dependent reason code, udata identifies any user data that was
sent with the disconnect, and sequence may identify an outstanding connect indi­
cation with which the disconnect is associated. sequence is only meaningful when
t_rcvdis is issued by a passive transport user who has executed one or more
t_listen functions and is processing the resulting connect indications. If a
disconnect indication occurs, sequence can be used to identify which of the out­
standing connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the
value of reason or sequence, discon may be NULL and any user data associated
with the disconnect will be discarded. However, if a user has retrieved more than
one outstanding connect indication (via t_listen) and discon is NULL, the user
will be unable to identify which connect indication the disconnect is associated
with.

On failure, t_errno may be set to one of the following:

TBADF

TNODIS

TBUFOVFLW

TNOTSUPPORT

TSYSERR

The specified file descriptor does not refer to a transport
endpoint.

No disconnect indication currently exists on the specified
transport endpoint.

The number of bytes allocated for incoming data is not
sufficient to store the data. The provider's state, as seen by
the user, will change to T_IDLE, and the disconnect indica­
tion information to be returned in discon will be discarded.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

Page 1

t_rcvdis (3N) (Networking Support Utilities) t_rcvdis (3N)

SEE ALSO
intro(3N), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N).

DIAGNOSTICS

Page 2

t_rcvdis returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10/92

t_rcvrel (3N) (Networking Support Utilities) t_rcvrel (3N)

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <tiuser.h>

t_rcvrel (int fd);

DESCRIPTION
This function is used to acknowledge receipt of an orderly release indication. fd
identifies the local transport endpoint where the connection exists. After receipt of
this indication, the user should not attempt to receive more data because such an
attempt will block forever. However, the user may continue to send data over the
connection if t_sndrel has not been issued by the user.

This function is an optional service of the transport provider, and is only supported
if the transport provider returned service type T_COTS_ORD on t_open or
t_getinfo.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport
endpoint.

TN OREL

TLOOK

TNOTSUPPORT

TSYSERR

No orderly release indication currently exists on the
specified transport endpoint.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
t_open(3N), t_sndrel(3N).

DIAGNOSTICS
t_rcvrel returns 0 on success and -1 on failure t_errno is set to indicate the error.

10/92 Page 1

t_rcvudata (3N) (Networking Support Utilities) t_rcvudata (3N)

NAME
t_rcvudata - receive a data unit

SYNOPSIS
#include <tiuser.h>

int t_rcvudata (int fd, struct t_unitdata *unitdata, int *flags);

DESCRIPTION

10/92

This function is used in connectionless mode to receive a data unit from another
transport user. fd identifies the local transport endpoint through which data will
be received, unitdata holds information associated with the received data unit,
and flags is set on return to indicate that the complete data unit was not received.
unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The rnaxlen [see netbuf in intro(3N)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user,
opt identifies protocol-specific options that were associated with this data unit,
and udata specifies the user data that was received.

By default, t_rcvudata operates in synchronous mode and will wait for a data
unit to arrive if none is currently available. However, if O_NDELAY or O_NONBLOCK
is set (via t_open or fcntl), t_rcvudata will execute in asynchronous mode and
will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the
current data unit, the buffer will be filled and T_MORE will be set in flags on return
to indicate that another t_rcvudata should be issued to retrieve the rest of the
data unit. Subsequent t_rcvudata call(s) will return zero for the length of the
address and options until the full data unit has been received.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport
endpoint.

TNODATA

TBUFOVFLW

TLOOK

TNOTSUPPORT

O_NDELAY or O_NONBLOCK was set, but no data units are
currently available from the transport provider.

The number of bytes allocated for the incoming protocol
address or options is not sufficient to store the information.
The unit data information to be returned in unitdata will
be discarded.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

Page 1

t_rcvudata (3N)

TSYSERR

SEE ALSO

(Networking Support Utilities) t_rcvudata (3N)

A system error has occurred during execution of this func­
tion.

intro(3N), t_rcvuderr(3N), t_sndudata(3N).

DIAGNOSTICS

Page 2

t_rcvudata returns 0 on successful completion and -1 on failure and t_errno is
set to indicate the error.

10/92

t_rcvuderr (3N) (Networking Support Utilities) t_rcvuderr (3N)

NAME
t_rcvuderr - receive a unit data error indication

SYNOPSIS
#include <tiuser.h>

int t_rcvuderr (int fd, struct t_uderr *uderr);

DESCRIPTION
This function is used in connectionless mode to receive information concerning an
error on a previously sent data unit, and should be issued only after a unit data
error indication. It informs the transport user that a data unit with a specific desti­
nation address and protocol options produced an error. fd identifies the local tran­
sport endpoint through which the error report will be received, and uderr points to
a t_uderr structure containing the following members:

struct netbuf addr;
struct netbuf opt;
long error;

netbuf is described in intro(3N). The maxlen [see netbuf in intro(3N)] field of
addr and opt must be set before issuing this function to indicate the maximum size
of the buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies protocol-specific
options that were associated with the data unit, and error specifies a protocol­
dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may
be set to NULL and t_rcvuderr will simply clear the error indication without
reporting any information to the user.

On failure, t_errno may be set to one of the following:

TBADF

TNOUDERR

TBUFOVFLW

TNOTSUPPORT

TSYSERR

The specified file descriptor does not refer to a transport end­
point.

No unit data error indication currently exists on the specified
transport endpoint.

The number of bytes allocated for the incoming protocol
address or options is not sufficient to store the information.
The unit data error information to be returned in uderr will be
discarded.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this function.

SEE ALSO
intro(3N), t_rcvudata(3N), t_sndudata(3N).

DIAGNOSTICS

10/92

t_rcvuderr returns 0 on successful completion and -1 on failure and t_errno is
set to indicate the error.

Page 1

t_snd(3N) (Networking Support Utilities) t_snd(3N)

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS
#include <tiuser.h>

int t_snd (int fd, char *buf, unsigned nbytes, int flags);

DESCRIPTION

10/92

This function is used to send either normal or expedited data. fd identifies the
local transport endpoint over which data should be sent, buf points to the user
data, nbytes specifies the number of bytes of user data to be sent, and flags
specifies any optional flags described below.

By default, t_snd operates in synchronous mode and may wait if flow control res­
trictions prevent the data from being accepted by the local transport provider at the
time the call is made. However, if O_NDELAY or O_NONBLOCK is set (via t_open or
fcntl), t_snd will execute in asynchronous mode, and will fail immediately if
there are flow control restrictions.

Even when there are no flow control restrictions, t_snd will wait if STREAMS inter­
nal resources are not available, regardless of the state of O_NDELAY or O_NONBLOCK.

On successful completion, t_snd returns the number of bytes accepted by the tran­
sport provider. Normally this will equal the number of bytes specified in nbytes.
However, if O_NDELAY or O_NONBLOCK is set, it is possible that only part of the data
will be accepted by the transport provider. In this case, t_snd will set T_MORE for
the data that was sent (see below) and will return a value less than nbytes. If
nbytes is zero and sending of zero bytes is not supported by the underlying tran­
sport provider, t_snd() will return -1 with t_errno set to TBADDATA. A return
value of zero indicates that the request to send a zero-length data message was sent
to the provider.

If T_EXPEDITED is set in flags, the data will be sent as expedited data, and will be
subject to the interpretations of the transport provider.

If T_MORE is set in flags, or is set as described above, an indication is sent to the
transport provider that the transport service data unit (TSDU) or expedited tran­
sport service data unit (ETSDU) is being sent through multiple t_snd calls. Each
t_snd with the T_MORE flag set indicates that another t_snd will follow with more
data for the current TSDU. The end of the TSDU (or ETSDU) is identified by a t_snd
call with the T_MORE flag not set. Use of T_MORE enables a user to break up large
logical data units without losing the boundaries of those units at the other end of
the connection. The flag implies nothing about how the data is packaged for
transfer below the transport interface. If the transport provider does not support
the concept of a TSDU as indicated in the info argument on return from t_open or
t_getinfo, the T_MORE flag is not meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider
as returned by t_open or t_getinfo. If the size is exceeded, a TSYSERR with sys­
tem error EPROTO will occur. However, the t_snd may not fail because EPROTO
errors may not be reported immediately. In this case, a subsequent call that
accesses the transport endpoint will fail with the associated TSYSERR.

Page 1

t_snd(3N) (Networking Support Utilities) t_snd(3N)

NOTES

If t_snd is issued from the T_IDLE state, the provider may silently discard the data.
If t_snd is issued from any state other than T_DATAXFER, T_INREL or T_IDLE, the
provider will generate a TSYSERR with system error EPROTO (which may be
reported in the manner described above).

On failure, t_errno may be set to one of the following:

TBADF

TFLOW

TNOTSUPPORT

TSYSERR

TBADDATA

The specified file descriptor does not refer to a transport
endpoint.

O_NDELAY or O_NONBLOCK was set, but the flow control
mechanism prevented the transport provider from accepting
data at this time.

This function is not supported by the underlying transport
provider.

A system error [see intro(2)] has been detected during exe­
cution of this function.

nbytes is zero and sending zero bytes is not supported by
the transport provider.

The t_snd routine does not look for a disconnect indication (showing that the con­
nection was broken) before passing data to the provider.

SEE ALSO
t_open(3N), t_rcv(3N).

DIAGNOSTICS

Page 2

On successful completion, t_snd returns the number of bytes accepted by the tran­
sport provider, and it returns -1 on failure and t_errno is set to indicate the error.

10/92

t_snddis (3N) (Networking Support Utilities) t_snddis (3N)

NAME
t_snddis - send user-initiated disconnect request

SYNOPSIS
#include <tiuser.h>

int t_snddis (int fd, struct t_call *call):

DESCRIPTION

10/92

This function is used to initiate an abortive release on an already established con­
nection or to reject a connect request. fd identifies the local transport endpoint of
the connection, and call specifies information associated with the abortive release.
call points to a t_call structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3N). The values in call have different semantics,
depending on the context of the call to t_snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to identify
uniquely the rejected connect indication to the transport provider. The addr and
opt fields of call are ignored. In all other cases, call need only be used when
data is being sent with the disconnect request. The addr, opt, and sequence fields
of the t_call structure are ignored. If the user does not want to send data to the
remote user, the value of call may be NULL.

udata specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider as returned in the
discon field of the info argument of t_open or t_getinfo. If the len field of
udata is zero, no data will be sent to the remote user.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end­
point.

TOUT STATE

TBADDATA

TBADSEQ

TLOOK

The function was issued in the wrong sequence. The tran­
sport provider's outgoing queue may be flushed, so data may
be lost.

The amount of user data specified was not within the bounds
supported by the transport provider as returned in the dis­
con field of the info argument of t_open or t_getinfo. The
transport provider's outgoing queue will be flushed, so data
maybe lost.

An invalid sequence number was specified, or a NULL call
structure was specified when rejecting a connect request. The
transport provider's outgoing queue will be flushed, so data
maybe lost.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

Page 1

t_snddis (3N)

TNOTSUPPORT

TSYSERR

SEE ALSO

(Networking Support Utilities) t_ snddis (3N)

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this function.

intro(3N), t_connect(3N), t_getinfo(3N), t_listen(3N), t_open(3N).

DIAGNOSTICS

Page 2

t snddis returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10/92

t_sndrel (3N) (Networking Support Utilities) t_sndrel (3N)

NAME
t_sndrel - initiate an orderly release

SYNOPSIS
#include <tiuser.h>

int t_sndrel (int fd);

DESCRIPTION
This function is used to initiate an orderly release of a transport connection and
indicates to the transport provider that the transport user has no more data to send.
fd identifies the local transport endpoint where the connection exists. After issuing
t_sndrel, the user may not send any more data over the connection. However, a
user may continue to receive data if an orderly release indication has not been
received.

This function is an optional service of the transport provider, and is only supported
if the transport provider returned service type T_COTS_ORD on t_open or
t_getinfo.

If t_sndrel is issued from an invalid state, the provider will generate an EPROTO
protocol error; however, this error may not occur until a subsequent reference to the
transport endpoint.

On failure, t_errno may be set to one of the following:

TBADF

TFLOW

TNOTSUPPORT

TSYSERR

The specified file descriptor does not refer to a transport
endpoint.

O_NDELAY or O_NONBLOCK was set, but the flow control
mechanism prevented the transport provider from accepting
the function at this time.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
t_open(3N), t_rcvrel(3N).

DIAGNOSTICS

10/92

t_sndrel returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

Page 1

t_sndudata (3N) (Networking Support Utilities) t_sndudata (3N)

NAME
t_sndudata - send a data unit

SYNOPSIS
#include <tiuser.h>

int t_sndudata (int fd, struct t_unitdata *unitdata);

DESCRIPTION

10/92

This function is used in connectionless mode to send a data unit to another tran­
sport user. fd identifies the local transport endpoint through which data will be
sent, and unitdata points to a t_unitdata structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

netbuf is described in intro(3N). In uni tdata, addr specifies the protocol
address of the destination user, opt identifies protocol-specific options that the
user wants associated with this request, and udata specifies the user data to be
sent. The user may choose not to specify what protocol options are associated with
the transfer by setting the len field of opt to zero. In this case, the provider may
use default options.

If the len field of udata is zero, and the sending of zero bytes is not supported by
the underlying transport provider, t_sndudata will return -1 with t_errno set to
TBADDATA.

By default, t_sndudata operates in synchronous mode and may wait if flow con­
trol restrictions prevent the data from being accepted by the local transport pro­
vider at the time the call is made. However, if O_NDELAY or O_NONBLOCK is set (via
t_open or fcntl), t_sndudata will execute in asynchronous mode and will fail
under such conditions.

If t_sndudata is issued from an invalid state, or if the amount of data specified in
udata exceeds the TSDU size as returned in the tsdu field of the info argument of
t_open or t_getinfo, the provider will generate an EPROTO protocol error. (See
TSYSERR below.) If the state is invalid, this error may not occur until a subsequent
reference is made to the transport endpoint.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end­
point.

TFLOW

TNOTSUPPORT

TSYSERR

TBADDATA

O_NDELAY or O_NONBLOCK was set, but the flow control
mechanism prevented the transport provider from accepting
data at this time.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this function.

nbytes is zero and sending zero bytes is not supported by the
transport provider.

Page 1

t_sndudata (3N) (Networking Support Utilities) t_sndudata (3N)

SEE ALSO
intro(3N), t_rcvudata(3N), t_rcvuderr(3N).

DIAGNOSTICS
t_sndudata returns 0 on successful completion and -1 on failure t_errno is set to
indicate the error.

Page 2 10/92

t_sync(3N) (Networking Support Utilities) t_sync(3N)

NAME
t_sync - synchronize transport library

SYNOPSIS
#include <tiuser.h>

int t_sync (int fd);

DESCRIPTION
For the transport endpoint specified by fd, t_sync synchronizes the data structures
managed by the transport library with information from the underlying transport
provider. In doing so, it can convert a raw file descriptor [obtained via open(2),
dup(2), or as a result of a fork(2) and exec(2)] to an initialized transport endpoint,
assuming that file descriptor referenced a transport provider. This function also
allows two cooperating processes to synchronize their interaction with a transport
provider.

For example, if a process forks a new process and issues an exec, the new process
must issue a t_sync to build the private library data structure associated with a
transport endpoint and to synchronize the data structure with the relevant pro­
vider information.

It is important to remember that the transport provider treats all users of a tran­
sport endpoint as a single user. If multiple processes are using the same endpoint,
they should coordinate their activities so as not to violate the state of the provider.
t_sync returns the current state of the provider to the user, thereby enabling the
user to verify the state before taking further action. This coordination is only valid
among cooperating processes; it is possible that a process or an incoming event
could change the provider's state after a t_sync is issued.

If the provider is undergoing a state transition when t_sync is called, the function
will fail.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end­
point.

TSTATECHNG

TSYSERR

The transport provider is undergoing a state change.

A system error has occurred during execution of this function.

SEE ALSO
dup(2), exec(2), fork(2), open(2).

DIAGNOSTICS

10/92

t_sync returns the state of the transport provider on successful completion and -1
on failure and t_errno is set to indicate the error. The state returned may be one of
the following:

Page 1

t_sync(3N)

Page 2

T_UNBND

T_IDLE

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

T_INREL

(Networking Support Utilities)

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

t_sync(3N)

outgoing orderly release (waiting for an orderly release indi­
cation)

incoming orderly release (waiting for an orderly release
request)

10/92

t_unbind (3N) (Networking Support Utilities) t_unbind (3N)

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_unbind (int fd);

DESCRIPTION
The t_unbind function disables the transport endpoint specified by fd which was
previously bound by t_bind(3N). On completion of this call, no further data or
events destined for this transport endpoint will be accepted by the transport pro­
vider.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TOUTS TATE

TLOOK

TSYSERR

The function was issued in the wrong sequence.

An asynchronous event has occurred on this transport endpoint.

A system error has occurred during execution of this function.

SEE ALSO
t_bind(3N).

DIAGNOSTICS
t_unbind returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

10192 Page 1

tam(3X) tam(3X)

NAME
tarn - TAM transition libraries

SYNOPSIS
#include <tarn.h>

cc -I /usr/include/tarn [flags]files -ltarn -lcurses [libraries]

DESCRIPTION
These routines are used to port UNIX PC character-based TAM programs so that
they will run using any terminal supported by curses(3X), the low-level ETI
library. Once a TAM program has been changed to remove machine-specific code, it
can be recompiled with the standard TAM header file <tarn. h> and linked with the
TAM transition and curses(3X) libraries.

Note that TAM will probably not be supported in future releases.

FUNCTIONS

10/92

The following is a list of TAM routines supplied in the transition library. Those rou­
tines marked with a dagger (t) are macros and do not return a value.

addch (c) t See curses(3X).
char c;

addstr (s)t
char *s;

int adf_gttok (ptr, tbl)
char *ptr;
struct s_kwtbl *tbl;

char *adf_gtwrd (sptr, dptr)
char *sptr, *dptr;

char *adf_gtxcd (sptr, dptr)
char *sptr, *dptr;

int attroff (attrs)
long attrs;

int attron(attrs)
long attrs;

int baudrate ()

int beep()

int cbreak ()

int clear()

clearok (dummy, dummy)t
int dummy;

int clrtobot ()

int clrtoeol ()

int delch()

See paste(3X).

See curses(3X).

Page 1

tam(3X)

int deleteln ()

int echo ()

int endwin ()

erase()t

int exhelp (hfile, htitle) .

char *hfile, *htitle;

int fixterm ()

flash() t

int flushinp ()

int form (form, op)
form_t *form;
int op;

int getch()

getyx(win, r, c)t
int win, r, c;

int initscr ()

int insch(ch)
char ch;

int insertln ()

tam(3X)

See message(3T).

See curses(3X).

See form(3X).

See curses(3X).

int iswind () See tam(3X); always returns 0.

Page 2

char *kcodemap (code).
unsigned char code;

int keypad (dummy, flag)
int dummy, flag;

leaveok (dummy, dummy)t
int dummy;

int menu (menu, op)
menu_t *menu;
int op;

See curses(3X).

See menu(3X).

int message (mtype, hfile, htitle, format [, arg ...]
See message(3X).

int mtype;
char *hfile, *htitle, *format;

move(r, c)t
int r, c;

mvaddch (r, c, ch)t
int r, c;
char ch;

See curses(3X).

10/92

tam(3X)

10/92

rnvaddstr (r, c, s)t
int r, c;
char *s;

unsigned long rnvinch(r, c)
int r, c;

nl () t

int nocbreak ()

int nodelay (dummy, bool)
int dummy, bool;

int noecho ()

nonl()t

int pb_check (stream)
FILE *stream;

int pb_ernpty (stream)
FILE *stream;

int pb_gbuf (ptr, n, fn, stream)
char *ptr;
int n;
int (*fn) ();

FILE *stream;

char *pb_gets (ptr, n, stream)
char *ptr;
int n;
FILE *stream;

char *pb_name ()

FILE *pb_open ()

int pb_puts (ptr, stream)
char *ptr;
FILE *stream;

int pb_seek (stream)
FILE *stream;

int pb_weof (stream)
FILE *stream;

int printw (frnt [, argl . . . argn])
char *frnt;

refresh()t

int reset term ()

int resetty ()

int savetty ()

Not supported

NOT SUPPORTED

See paste(3X).

See curses(3X).

tam(3X)

Page 3

tam(3X} tam(3X}

Page 4

int track (w, trk, op, butptr, whyptr)

int w, op, *butptr, *whyptr;
track_t *trk;

See wgetc().

int wcmd (wn, cp) See tam(3X). Outputs a null-
short wn; terminated string to the entry I
char *cp; echo line.

int wcreate (row, col, height, width, flags)

short row, col, height, width;
unsigned short flags;

int wdelete (wn)
short wn;

void wexit(ret)
int ret;

int wgetc (wn)
short wn;

int wgetmouse (wn, ms)
short wn;
struct umdata *ms;

int wgetpos (wn, rowp, colp)
short wn;
int *rowp, *colp;

int wgetsel ()

int wgetstat (wn, wstatp)
short wn;
WSTAT *wstatp;

int wgoto (wn, row, col)
short wn, row, col;

void wicoff (wn, row, col, icp)
short wn, row, col;
struct icon *icp;

void wicon (wn, row, col, icp)
short wn, row, col;
struct icon *icp;

Creates a window.

Deletes the specified window.

See tam(3X).

no-op; returns 0.

Gets the current position (row,
column) of the cursor in the
specified window (wn).

Returns the currently selected
window.

Returns the information in
WSTAT for a window.

Moves the window's cursor to
a specified row, column.

no-op. returns 0.

no-op. returns 0.

int wind (type, height, width, flags, pfont)

int type, height, width;
short flags;
char *pfont [) ;

void wini t ()

See wind(3X).

Sets up the process for window
access. See tam(3X).

10/92

tam(3X) tam(3X)

10/92

int wlabel (wn, cp)
short wn;
char *cp;

int wndelay (wn, bool)
int wn, bool;

void wnl (wn, flag)
short wn;
int flag;

int wpostwait ()

int wprexec ()

int wprintf (wn, fmt [, argl ... argn])
short wn;
char *fmt;

int wprompt (wn, cp)
short wn;
char *cp;

int wputc (wn, c)
short wn;
char c;

int wputs (wn, cp)
short wn;
char *cp;

Outputs a null-terminated
string to the window label
area.

Reverses the effects of wprexec().

Performs the appropriate actions
for passing a window to a child
process.

Outputs a null-terminated
string to the prompt line.

Outputs a character
to a window (wn).

Outputs a character string
to a window.

int wrastop (w, srcbase, srcwidth, dstbase

int w;

dstwidth, srcx, srcy, dstx,
dsty, width, height, srcop,
dstop, pattern)

NOT SUPPORTED.

unsigned short *srcbase, *dstbase, *pattern;
unsigned short srcwidth, dswidth, width, height;
unsigned short srcx, srcy, dstx, dsty;
char srcop, dstop;

int wreadmouse (wn, xp, yp, bp, rp)
short wn;
int *xp, *yp, *bp, *rp;

int wrefresh (wn)
short wn;

no-op; returns 0.

Flushes all output
to the window.

int wselect (wn)
short wn;

Selects the specified window
as the current or active one.

int wsetmouse (wn, ms) no-op; returns 0.

Page 5

tam(3X) tam(3X)

short wn;
struct urndata *ms;

int wsetstat (wn, wstatp)
short wn;
WSTAT *wstatp;

Sets the status for a window.

int wslk (wn, 0, slongl, slong2, sshort)

short wn;
char *slongl,

int wslk (wn,
short wn, kn;

*slong2, *sshort;

kn, llabel, slabel)

char *llabel, *slabel;

int wuser (wn, cp)
short wn;
char *cp;

SEE ALSO
curses(3X)

Page 6

Writes a null-terminated string
to a set of screen-labeled keys.

Writes a null-terminated string
to a screen-labeled key. The
alternate form writes all the
screen-labeled keys at once
more efficiently.

Not supported

10/92

tcsetpgrp (3C) tcsetpgrp(3C)

NAME
tcsetpgrp - set terminal foreground process group id

SYNOPSIS
#include <unistd.h>

int tcsetpgrp (int fildes, pid_t pgid)

DESCRIPTION
tcsetpgrp sets the foreground process group ID of the terminal specified by fildes
to pgid. The file associated with fildes must be the controlling terminal of the calling
process and the controlling terminal must be currently associated with the session
of the calling process. The value of pgid must match a process group ID of a process
in the same session as the calling process.

tcsetpgrp fails if one or more of the following is true:

EBADF The fildes argument is not a valid file descriptor.

EINVAL

ENOTTY

EPERM

The fildes argument is a terminal that does not support
tcsetpgrp, or pgid is not a valid process group ID.

The calling process does not have a controlling terminal, or the file
is not the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

pgid does not match the process group ID of an existing process in
the same session as the calling process.

SEE ALSO
tcsetpgrp(3C), tcsetsid(3C), termio(7).

DIAGNOSTICS

10/92

Upon successful completion, tcsetpgrp returns a value of 0. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Page 1

termios{2) termios{2)

NAME
termios: tcgetattr, tcsetattr, tcsendbreak,
cfgetospeed, cfgetispeed, cfsetispeed,
tcsetpgrp, tcgetsid - general terminal interface

tcdrain, tcflush, tcf low,
cfsetospeed, tcgetpgrp,

SYNOPSIS
#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_selector);

int tcflow(int fildes, int action);

speed_t cfgetospeed(const struct termios *termios_p);

int cfsetospeed(struct termios *termios_p, speed_t speed);

speed_t cfgetispeed(const struct termios *termios_p);

int cfsetispeed(struct termios *termios_p, speed_t speed);

#include <sys/types.h>
#include <termios.h>

pid_t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

DESCRIPTION
These functions describe a general terminal interface for controlling asynchronous
communications ports. A more detailed overview of the terminal interface can be
found in termio(7), which also describes an ioct1(2) interface that provides the
same functionality. However, the function interface described here is the preferred
user interface.

Many of the functions described here have a termios__p argument that is a pointer to
a termios structure. This structure contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCSJ; /*control chars*/

These structure members are described in detail in termio(7).

Get and Set Terminal Attributes

10/92

The tcgetattr function gets the parameters associated with the object referred by
fildes and stores them in the termios structure referenced by termios__p. This

Page 1

termios(2) termios(2)

function may be invoked from a background process; however, the terminal attri­
butes may be subsequently changed by a foreground process.

The tcsetattr function sets the parameters associated with the terminal (unless
support is required from the underlying hardware that is not available) from the
tennios structure referenced by termios_p as follows:

If optional_actions is TCSANOW, the change occurs immediately.

If optional_actions is TCSADRAIN, the change occurs after all output written
to fildes has been transmitted. This function should be used when changing
parameters that affect output.

If optional_actions is TCSAFLUSH, the change occurs after all output written
to the object referred by fildes has been transmitted, and all input that has
been received but not read is discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in tennios. h.

Line Control
If the terminal is using asynchronous serial data transmission, the tcsendbreak
function causes transmission of a continuous stream of zero-valued bits for a
specific duration. If duration is zero, it causes transmission of zero-valued bits for at
least 0.25 seconds, and not more than 0.5 seconds. If duration is not zero, it behaves
in a way similar to tcdrain.

If the terminal is not using asynchronous serial data transmission, the tcsend­
break function sends data to generate a break condition or returns without taking
any action.

The tcdrain function waits until all output written to the object referred to by
fildes has been transmitted.

The tcflush function discards data written to the object referred to by fildes but
not transmitted, or data received but not read, depending on the value of
queue_ selector:

If queue_selector is TCIFLUSH, it flushes data received but not read.

If queue_selector is TCOFLUSH, it flushes data written but not transmitted.

If queue_selector is TCIOFLUSH, it flushes both data received but not read, and
data written but not transmitted.

The tcflow function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action:

If action is TCOOFF, it suspends output.

If action is TCOON, it restarts suspended output.

If action if TCIOFF, the system transmits a STOP character, which causes the
terminal device to stop transmitting data to the system.

If action is TCION, the system transmits a START character, which causes the
terminal device to start transmitting data to the system.

Get and Set Baud Rate

Page 2

The baud rate functions get and set the values of the input and output baud rates in
the tennios structure. The effects on the terminal device described below do not
become effective until the tcsetattr function is successfully called.

10/92

termios (2) termios(2)

The input and output baud rates are stored in the termios structure.
shown in the table are supported. The names in this table are
termios.h.

Name Descrirtion Name Descrirtion
BO Hangup B600 600baud
BSD 50baud B1200 1200baud
B75 75 baud B1800 1800baud
BllO 110baud B2400 2400baud
B134 134.5 baud B4800 4800baud
B150 150baud B9600 9600baud
B200 200baud Bl9200 19200baud
B300 300baud B38400 38400baud

The values
defined in

cfgetospeed gets the output baud rate stored in the termios structure pointed to
by termios_p.

cfsetospeed sets the output baud rate stored in the termios structure pointed to
by termios_p to speed. The zero baud rate, BO, is used to terminate the connection. If
BO is specified, the modem control lines are no longer asserted. Normally, this
disconnects the line.

cfgetispeed gets the input baud rate and stores it in the termios structure
pointed to by termios_p.

cfsetispeed sets the input baud rate stored in the termios structure pointed to
by termios_p to speed. If the input baud rate is set to zero, the input baud rate is
specified by the value of the output baud rate. Both cfsetispeed and
cfsetospeed return a value of zero if successful and -1 to indicate an error.
Attempts to set unsupported baud rates are ignored. This refers both to changes to
baud rates not supported by the hardware, and to changes setting the input and
output baud rates to different values if the hardware does not support this.

Get and Set Terminal Foreground Process Group ID
tcsetpgrp sets the foreground process group ID of the terminal specified by fildes
to pgid. The file associated with fildes must be the controlling terminal of the calling
process and the controlling terminal must be currently associated with the session
of the calling process. f2pgid must match a process group ID of a process in the same ses­
sion as the calling process.

tcgetpgrp returns the foreground process group ID of the terminal specified by
fildes. tcgetpgrp is allowed from a process that is a member of a background pro­
cess group; however, the information may be subsequently changed by a process
that is a member of a foreground process group.

Get Terminal Session ID
tcgetsid returns the session ID of the terminal specified by fildes.

DIAGNOSTICS

10/92

On success, tcgetpgrp returns the process group ID of the foreground process
group associated with the specified terminal. Otherwise, it returns -1 and sets
errno to indicate the error.

Page 3

termios(2) termios(2)

Page 4

On success, tcgetsid returns the session ID associated with the specified terminal.
Otherwise, it returns -1 and sets errno to indicate the error.

On success, cfgetispeed returns the input baud rate from the termios structure.

On success, cfgetospeed returns the output baud rate from the termios
structure.

On success, all other functions return a value of 0. Otherwise, they return -1 and
set errno to indicate the error.

All of the functions fail if one of more of the following is true:

EBADF

ENOTTY

The fildes argument is not a valid file descriptor.

The file associated with fildes is not a terminal.

tcsetattr also fails if the following is true:

EINVAL The optional_actions argument is not a proper value, or an attempt
was made to change an attribute represented in the termios
structure to an unsupported value.

tcsendbreak also fails if the following is true:

EINVAL The device does not support the tcsendbreak function.

tcdrain also fails if one or more of the following is true:

EINTR A signal interrupted the tcdrain function.

EINVAL The device does not support the tcdrain function.

tcflush also fails if the following is true:

EINVAL The device does not support the tcflush function or the
queue_selector argument is not a proper value.

tcflow also fails if the following is true:

EINVAI. The device does not support the tcflow function or the action
argument is not a proper value.

tcgetpgrp also fails if the following is true:

ENOTTY the calling process does not have a controlling terminal, or fildes
does not refer to the controlling terminal.

tcsetpgrp also fails if the following is true:

EINVAL pgid is not a valid process group ID .

ENOTTY the calling process does not have a controlling terminal, or fildes
does not refer to the controlling terminal, or the controlling termi­
nal is no longer associated with the session of the calling process.

EPERM pgid does not match the process group of an existing process in the
same session as the calling process.

tcgetsid also fails if the following is true:

EACCES fildes is a terminal that is not allocated to a session.

10/92

termios(2) termios(2)

SEE ALSO
setpgid(2), setsid(2), termio(7).

10/92 Page 5

time(2)

NAME
time - get time

SYNOPSIS
#include <sys/types.h>
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION

time(2)

time returns the value of time in seconds since 00:00:00 UTC, January 1, 1970.

If tloc is non-zero, the return value is also stored in the location to which tloc points.

SEE ALSO
stime(2), ctime(3C)

NOTES
time fails and its actions are undefined if tloc points to an illegal address.

DIAGNOSTICS

10/92

Upon successful completion, time returns the value of time. Otherwise, a value of
(time_t) -1 is returned and errno is set to indicate the error.

Page 1

times (2) times (2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
times fills the tms structure pointed to by buffer with time-accounting information.
The tms structure is defined in sys/times.has follows:

struct tms {
clock_t

} ;

clock_t
clock_t
clock_t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait routine. All times are reported in clock
ticks per second. Clock ticks are a system-dependent parameter. The specific value
for an implementation is defined by the variable CLK_TCK, found in the include file
limits.h.

tms_utime is the CPU time used while executing instructions in the user space of
the calling process.

tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utime and the tms cutime of the child
processes.

tms_cstime is the sum of the tms stime and the tms_cstime of the child
processes.

times fails if:

EFAULT buffer points to an illegal address.

SEE ALSO
time(l), timex(l), exec(2), fork(2), time(2), wait(2), waitid(2), waitpid(3C).

DIAGNOSTICS

10/92

Upon successful completion, times returns the elapsed real time, in clock ticks per
second, from an arbitrary point in the past (for example, system start-up time).
This point does not change from one invocation of times to another. If times fails,
a -1 is returned and errno is set to indicate the error.

Page 1

times(3C) (BSD Compatibility Package) times(3C)

NAME
times - get process times

SYNOPSIS
/usr/ucb/cc [flag ...]file ...
#include <sys/types.h>
#include <sys/times.h>

times (buffer)
struct tms *buffer;

DESCRIPTION
times returns time-accounting information for the current process and for the ter­
minated child processes of the current process. All times are in l/HZ seconds,
where HZ is 60.

This is the structure returned by times:
struct tms {

} ;

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

/* user time */
/* system time */
/* user time, children */
/* system time, children */

The children's times are the sum of the children's process times and their children's
times.

SEE ALSO
time{l), wait(2), getrusage(3), time{3), wait(3).

NOTES
times has been superseded by getrusage.

10/92 Page 1

timezone (3C) (BSD Compatibility Package) timezone (3C)

NAME
timezone - get time zone name given offset from GMT

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

char *timezone(zone, dst)

int zone
int dst

DESCRIPTION
timezone attempts to return the name of the time zone associated with its first
argument, which is measured in minutes westward from Greenwich. If the second
argument is 0, the standard name is used, otherwise the Daylight Savings Time ver­
sion. If the required name does not appear in a table built into the routine, the
difference from GMT is produced; for instance, in Afghanistan
timezone (- (6 O * 4 + 3 O) , O) is appropriate because it is 4:30 ahead of GMT and the
string GMT+4: 30 is produced.

SEE ALSO
ctime(3).

NOTES

10/92

The offset westward from Greenwich and an indication of whether Daylight Sav­
ings Time is in effect may not be sufficient to determine the name of the time zone,
as the name may differ between different locations in the same time zone. Instead
of using timezone to determine the name of the time zone for a given time, that
time should be converted to a struct tm using local time [see ctime(3)] and the
tm_zone field of that structure should be used. timezone is retained for compati­
bility with existing programs.

Page 1

tmpfile (3S) (C Development Set) tmpfile (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <Stdio.h>

FILE *tmpfile (void);

DESCRIPTION
tmpfile creates a temporary file using a name generated by the tmpnam routine
and returns a corresponding FILE pointer. If the file cannot be opened, a NULL
pointer is returned. The file is automatically deleted when the process using it ter­
minates or when the file is closed. The file is opened for update ("w+").

SEE ALSO

10/92

creat(2), open(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), stdio(3S),
tmpnam(3S)

Page 1

tmpnam(3S) (C Development Set) tmpnam(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (char *s);

char *tempnam (canst char *dir, canst char *pfx);

DESCRIPTION

FILES

These functions generate file names that can safely be used for a temporary file.

tmpnam always generates a file name using the path-prefix defined as P _tmpdir in
the <stdio. h> header file. Ifs is NULL, tmpnam leaves its result in an internal static
area and returns a pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the address of an array of at
least L_tmpnam bytes, where L_tmpnam is a constant defined in <stdio. h>; tmpnam
places its result in that array and returns s.

tempnam allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is NULL or
points to a string that is not a name for an appropriate directory, the path-prefix
defined as P_tmpdir in the <stdio. h> header file is used. If that directory is not
accessible, /tmp will be used as a last resort. This entire sequence can be up-staged
by providing an environment variable TMPDIR in the user's environment, whose
value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter
sequences in their names. Use the pfx argument for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few charac­
ters of the temporary-file name.

tempnam uses malloc to get space for the constructed file name, and returns a
pointer to this area. Thus, any pointer value returned from tempnam may serve as
an argument to free [see malloc(3C)]. If tempnam cannot return the expected
result for any reason- for example, malloc failed-or none of the above men­
tioned attempts to find an appropriate directory was successful, a NULL pointer will
be returned.

tempnam fails if there is not enough space.

p_tmpdir /var/tmp

SEE ALSO

NOTES

10/92

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S)

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only in
the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user's responsibility to remove the file when its use is
ended.

Page 1

tmpnam{3S) {C Development Set) tmpnam{3S)

Page 2

If called more than TMP_MAX (defined in stdio.h) times in a single process, these
functions start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that
other process is using these functions or mktemp and the file names are chosen to
render duplication by other means unlikely.

10/92

trig(3M) (Math Libraries) trig(3M)

NAME
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf,
atan2, atan2f - trigonometric functions

SYNOPSIS
cc [flag ...] file ... - lm [library ...]
cc -0 -Ksd [flag ...]file ... -J sfm [library ...]

#include <math.h>

double sin (double x);

float sinf (float X);

double cos (double x);

float cosf (float x);

double tan (double x);

float tanf (float x);

double asin (double X);

float asinf (float X);

double acos (double x);

float acosf (float x);

double atan (double X);

float atanf (float x) ;

double atan2 (doubley, doublex);

float atan2 f (float y, float x) ;

DESCRIPTION
sin, cos, and tan and the single-precision versions sinf, cosf, and tanf return,
respectively, the sine, cosine, and tangent of their argument, x, measured in radi­
ans.

as in and as inf return the arcsine of x, in the range [-7t/2,+7t/2].

acos and acosf return the arccosine of x, in the range [0,+7t].

atan and atanf return the arctangent of x, in the range (-7t/2,+7t/2).

atan2 and atan2f return the arctangent of y Ix, in the range (-7t,+7t], using the
signs of both arguments to determine the quadrant of the return value.

SEE ALSO
matherr(3M)

DIAGNOSTICS

10/92

If the magnitude of the argument of asin, asinf, acos, or acosf is greater than 1,
or if both arguments of atan2 or atan2f are 0, 0 is returned and errno is set to
EDOM. In addition, a message indicating DOMAIN error is printed on the standard
error output.

Page 1

trig (3M) (Math Libraries) trig(3M)

Page 2

Except when the -Xe compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -xa or -Xe compilation
options are used, no error messages are printed.

10/92

truncate (3C) (C Development Set) truncate (3C)

NAME
truncate, ftruncate - set a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate (canst char *path, off_t length);

int ftruncate (int fildes, off_t length);

DESCRIPTION

10/92

The file whose name is given by path or referenced by the descriptor fildes has its
size set to length bytes.

If the file was previously longer than length, bytes past length will no longer be
accessible. If it was shorter, bytes from the EOF before the call to the EOF after the
call will be read in as zeros. The effective user ID of the process must have write
permission for the file, and for ftruncate the file must be open for writing.

truncate fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES Write permission is denied for the file referred to by path.

EFAULT

EINTR

EINVAL

EIO

EI SD IR

ELOOP

EMF ILE

EMULTIHOP

ENAMETOOLONG

ENFILE

ENO ENT

ENOLINK

ENOTDIR

EROFS

ETXTBSY

path points outside the process's allocated address space.

A signal was caught during execution of the truncate routine.

path is not an ordinary file.

An I/0 error occurred while reading from or writing to the file
system.

The file referred to by path is a directory.

Too many symbolic links were encountered in translating path.

The maximum number of file descriptors available to the pro­
cess has been reached.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of a path component exceeds {NAME_MAX} char­
acters, or the length of path exceeds {P ATH_MAX} characters.

Could not allocate any more space for the system file table.

Either a component of the path prefix or the file referred to by
path does not exist.

path points to a remote machine and the link to that machine is
no longer active.

A component of the path prefix of path is not a directory.

The file referred to by path resides on a read-only file system.

The file referred to by path is a pure procedure (shared text) file
that is being executed.

Page 1

truncate (3C) (C Development Set) truncate (3C)

ftruncate fails if one or more of the following are true:

EAGAIN The file exists, mandatory file/record locking is set, and there
are outstanding record locks on the file [see chrnod(2)].

EBADF

EINTR

EIO

ENO LINK

fildes is not a file descriptor open for writing.

A signal was caught during execution of the ftruncate rou­
tine.

An 1/0 error occurred while reading from or writing to the file
system.

fildes points to a remote machine and the link to that machine is
no longer active.

EINVAL

SEE ALSO

fildes does not correspond to an ordinary file.

fcntl(2), open(2)

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

tsearch (3C) (C Development Set) tsearch (3C)

NAME
tsearch, tfind, tdelete, twalk- manage binary search trees

SYNOPSIS
#include <search.h>

void *tsearch (const void *key, void **rootp, int (*compar)
(const void*, const void*));

void *tfind (const void *key, void * const *rootp, int (*compar)
(const void *, const void *));

void *tdelete (const void *key, void **rootp, int (*compar)
(const void*, const void*));

void twalk (void *root, void(*action) (void*, VISIT, int));

DESCRIPTION

10/92

tsearch, tfind, tdelete, and twalk are routines for manipulating binary
search trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All com­
parisons are done with a user-supplied routine. This routine is called with two
arguments, the pointers to the elements being compared. It returns an integer less
than, equal to, or greater than 0, according to whether the first argument is to be
considered less than, equal to or greater than the second argument. The com­
parison function need not compare every byte, so arbitrary data may be contained
in the elements in addition to the values being compared.

tsearch is used to build and access the tree. key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to *key (the value pointed
to by key), a pointer to this found datum is returned. Otherwise, *key is inserted,
and a pointer to it returned. Only pointers are copied, so the calling routine must
store the data. rootp points to a variable that points to the root of the tree. A NULL
value for the variable pointed to by rootp denotes an empty tree; in this case, the
variable will be set to point to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if
found. However, if it is not found, tfind will return a NULL pointer. The argu­
ments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same as
for tsearch. The variable pointed to by rootp will be changed if the deleted node
was the root of the tree. tdelete returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree to be traversed.
(Any node in a tree may be used as the root for a walk below that node.) action is
the name of a routine to be invoked at each node. This routine is, in turn, called
with three arguments. The first argument is the address of the node being visited.
The second argument is a value from an enumeration data type typedef enum {
preorder, postorder, endorder, leaf } VISIT; (defined in the search. h header file),
depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node
is a leaf. The third argument is the level of the node in the tree, with the root being
level zero.

Page 1

tsearch (3C) (C Development Set) tsearch (3C)

The pointers to the key and the root of the tree should be of type pointer-to­
element, and cast to type pointer-to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast into type pointer-to­
element.

EXAMPLE

Page 2

The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.

#include <string.h>
#include <stdio.h>
#include <Search.h>

struct node {

} ;

char *string;
int length;

char string_space[lOOOO];
struct node nodes[SOO];
void *root = NULL;

int node_compare(const void *nodel, const void *node2) {
return strcmp(((const struct node*) nodel)->string,

((const struct node*) node2)->string);

void print_node(void **node, VISIT order, int level)
if (order == preorder I I order == leaf) {

printf("length=%d, string=%20s\n",
(*(struct node **)node)->length,
(*(struct node **)node)->string);

main()
char *strptr = string_space;
struct node *nodeptr = nodes;
int i = O;

while (gets(strptr) !=NULL && i++ < 500)
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch((void *)nodeptr,

&root, node_compare);
strptr += nodeptr->length + l;
nodeptr++;

twalk(root, print_node);

10/92

tsearch(3C) (C Development Set) tsearch(3C)

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C)

DIAGNOSTICS

NOTES

10/92

A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.
A NULL pointer is returned by tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not, tfind
returns NULL, and tsearch returns a pointer to the inserted item.

The root argument to twalk is one level of indirection less than the rootp argu­
ments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are
visited. tsearch uses preorder, postorder and endorder to refer respectively to
visiting a node before any of its children, after its left child and before its right, and
after both its children. The alternate nomenclature uses preorder, inorder and pos­
torder to refer to the same visits, which could result in some confusion over the
meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Page 3

ttyname(3C) (C Development Set)

NAME
ttynarne, isatty - find name of a terminal

SYNOPSIS
#include <stdlib.h>

char *ttynarne (int fildes);

int isatty (int fildes);

DESCRIPTION

ttyname (3C)

ttynarne returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

isatty returns 1 iffildes is associated with a terminal device, 0 otherwise.

FILES
/dev/*

DIAGNOSTICS
t tynarne returns a NULL pointer if fildes does not describe a terminal device in direc­
tory /dev.

SEE ALSO
ttysrch(4)

NOTES
The return value points to static data whose content is overwritten by each call.

10/92 Page 1

ttyslot(3C) (C Development Set) ttyslot(3C)

NAME
ttys lot - find the slot in the utmp file of the current user

SYNOPSIS
#include <stdlib.h>

int ttyslot (void);

DESCRIPTION

FILES

ttys lot returns the index of the current user's entry in the /var I aclrn/utmp file.
The returned index is accomplished by scanning files in I dev for the name of the
terminal associated with the standard input, the standard output, or the standard
error output (0, 1, or 2).

/var/adrn/utmp

SEE ALSO
getut(3C), ttyname(3C)

DIAGNOSTICS

10/92

A value of -1 is returned if an error was encountered while searching for the termi­
nal name or if none of the above file descriptors are associated with a terminal dev­
ice.

Page 1

types(5) types (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION

10/92

The data types defined in types. h are used in UNIX System code. Some data of
these types are accessible to user code:

typedef struct { intr[l]; } *physadr;
typedef long clock_t;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef unsigned long ino_t;
typedef long uid_t;
typedef long gid_t;
typedef ulong nlink_t;
typedef ulong mode_t;
typedef short cnt _t;
typedef long time_t;
typedef int label _t [24];
typedef ulong dev_t;
typedef long off_t;
typedef long pid_t;
typedef unsigned long paddr_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysid_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;

The form daddr_t is used for disk addresses except in an i-node on disk, see fs(4).
Times are encoded in seconds since 00:00:00 UTC, January 1, 1970. The major and
minor parts of a device code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the beginning of a file.
The label_t variables are used to save the processor state while another process is
running.

Page 1

uadmin(2) uadmin (2)

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin(int cmd, int fen, int mdep);

DESCRIPTION
uadmin provides control for basic administrative functions. This system call is
tightly coupled to the system administrative procedures and is not intended for
general use. The argument mdep is provided for machine-dependent use and is not
defined here.

As specified by emd, the following commands are available:

A_SHUTOOWN The system is shut down. All user processes are killed, the buffer
cache is flushed, and the root file system is unmounted. The
action to be taken after the system has been shut down is specified
by fen. The functions are generic; the hardware capabilities vary
on specific machines.

A_REBOOT

A_REMOUNT

AD_HALT Halt the processor and turn off the power.

AD_BOOT Reboot the system, using /stand/unix.

AD_IBOOT Interactive reboot; user is prompted for bootable
program name.

The system stops immediately without any further processing.
The action to be taken next is specified by fen as above.

The root file system is mounted again after having been fixed.
This should be used only during the startup process.

uadmin fails if any of the following are true:

EPERM The effective user ID is not super-user.

DIAGNOSTICS

10/92

Upon successful completion, the value returned depends on emd as follows:

A_SHUTOOWN Never returns.
A_REBOOT
A_REMOUNT

Never returns.
0

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

ualarm(3) (BSD Compatibility Package) ualarm(3)

NAME
ualarrn - schedule signal after interval in microseconds

SYNOPSIS
/usr /ucb/ cc [flag . ..]file ...

unsigned ualarrn(value, interval)

unsigned value;
unsigned interval;

DESCRIPTION

NOTES

ualarrn sends signal SIGALRM [see signal(3)], to the invoking process in a number
of microseconds given by the value argument. Unless caught or ignored, the signal
terminates the process.

If the interval argument is non-zero, the SIGALRM signal will be sent to the process
every interval microseconds after the timer expires (for instance, after value
microseconds have passed).

Because of scheduling delays, resumption of execution of when the signal is caught
may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 microseconds.

The return value is the amount of time previously remaining in the alarm clock.

ualarrn is a simplified interface to setitirner; see geti tirner(2).

SEE ALSO
alarrn(2), getitirner(3), signa1(3), sigpause(3), sigvec(3), sleep(3), usleep(3).

10/92 Page 1

ucontext (5) ucontext (5)

NAME
ucontext - user context

SYNOPSIS
#include <ucontext.h>

DESCRIPTION
The ucontext structure defines the context of a thread of control within an execut­
ing process.

This structure includes at least the following members:

ucontext_t
sigset_t
stack_t
mcontext_t

*uc_link
uc_sigmask
uc_stack
uc_mcontext

uc_link is a pointer to the context that to be resumed when this context returns. If
uc_link is equal to 0, then this context is the main context, and the process exits
when this context returns.

uc_sigmask defines the set of signals that are blocked when this context is active
[see sigprocmask(2)].

uc_stack defines the stack used by this context [see sigaltstack(2)].

uc_mcontext contains the saved set of machine registers and any implementation
specific context data. Portable applications should not modify or access
uc_mcontext.

SEE ALSO

10/92

getcontext(2), sigaction(2), sigprocmask(2), sigaltstack(2),
makecontext(3C)

Page 1

ulimit(2) ulimit(2)

NAME
ulimi t - get and set user limits

SYNOPSIS
#include <ulimit.h>

long ulimit(int cmd, ... /* newlimit */);

DESCRIPTION
This function provides for control over process limits. The cmd values available
are:

UL_GETFSIZE Get the regular file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of any
size can be read.

UL_SETFSIZE Set the regular file size limit of the process to the value of newlimit,
taken as a long. Any process may decrease this limit, but only a
process with an effective user ID of super-user may increase the
limit.

UL_GMEMLIM Get the maximum possible break value [see brk(2)].

UL_GDESLIM Get the current value of the maximum number of open files per
process configured in the system.

The getrlimit system call provides a more general interface for controlling
process limits.

ulimit fails if the following is true:

EINVAL

EPERM

The cmd argument is not valid.

A process with an effective user ID other than super user attempts
to increase its file size limit.

SEE ALSO

NOTES

brk(2), getrlimi t(2), wri te(2)

ul imi t is effective in limiting the growth of regular files. Pipes are currently lim­
ited to {PIPE_MAX).

DIAGNOSTICS

10/92

Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

Page 1

umask(2)

NAME
wnask - set and get file creation mask

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

mode_t wnask(mode_t cmask);

DESCRIPTION

umask(2)

wnask sets the process's file mode creation mask to cmask and returns the previous
value of the mask. Only the access permission bits of cmask and the file mode crea­
tion mask are used.

SEE ALSO
mkdir(l), sh(l), chmod(2), creat(2), mknod(2), open(2), stat(S).

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

10/92 Page 1

umount(2) umount(2)

NAME
umount - unmount a file system

SYNOPSIS
#include <sys/mount.h>

int umount(const char *file);

DESCRIPTION
umount requests that a previously mounted file system contained on the block spe­
cial device or directory identified by file be unmounted. file is a pointer to a path
name. After unmounting the file system, the directory upon which the file system
was mounted reverts to its ordinary interpretation.

umount may be invoked only by the super-user.

umount will fail if one or more of the following are true:

EPERM

ENO ENT

ELOOP

ENAMETOOLONG

ENOTBLK

EINVAL

EBUSY

EFAULT

EREMOTE

ENO LINK

EMULTIHOP

The process's effective user ID is not super-user.

file does not exist.

Too many symbolic links were encountered in translating
the path pointed to by file.

The length of the file argument exceeds {PATH_MAX}, or the
length of a file component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

file is not a block special device.

file is not mounted.

A file on file is busy.

file points to an illegal address.

file is remote.

file is on a remote machine, and the link to that machine is no
longer active.

Components of the path pointed to by file require hopping to
multiple remote machines.

SEE ALSO
mount(2).

DIAGNOSTICS

10/92

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

uname(2) uname(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);

DESCRIPTION
uname stores information identifying the current UNIX system in the structure
pointed to by name.

uname uses the structure utsname defined in sys/utsname. h whose members are:

char sysname [SYS_NMLN] ;
char nodename [SYS_NMLN] ;
char release [SYS_NMLN] ;
char version [SYS_NMLNJ ;
char machine [SYS_NMLNJ ;

uname returns a null-terminated character string naming the current UNIX system in
the character array sysname. Similarly, nodename contains the name that the system
is known by on a communications network. release and version further identify the
operating system. machine contains a standard name that identifies the hardware
that the UNIX system is running on.

EFAULT

SEE ALSO

uname fails if name points to an invalid address.

uname(l).

DIAGNOSTICS

10/92

Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

Page 1

ungetc(3S) (C Development Set) ungetc(3S)

NAME
ungetc - push character back onto input stream

SYNOPSIS
#include <stdio.h>

int ungetc (int c, FILE *stream);

DESCRIPTION
ungetc inserts the character specified by c (converted to an unsigned char) into
the buffer associated with an input stream [see intro(3)]. That character, c, will be
returned by the next getc(3S) call on that stream. ungetc returns c, and leaves the
file corresponding to stream unchanged. A successful call to ungetc clears the EOF
indicator for stream.

Four bytes of pushback are guaranteed.

The value of the file position indicator for stream after reading or discarding all
pushed-back characters will be the same as it was before the characters were
pushed back.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

fseek, rewind [both described on fseek(3S)], and fsetpos erase the memory of
inserted characters for the stream on which they are applied.

SEE ALSO
fseek(3S), fsetpos(3C), getc(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS
ungetc returns EOF if it cannot insert the character.

10/92 Page 1

ungetwc (3W) ungetwc(3W)

NAME
ungetwc - push wchar_t character back into input stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int ungetwc (wchar_t c, FILE *stream) ;
DESCRIPTION (International Functions)

ungetwc () inserts the wchar_t character c into the buffer associated with the input
stream. That character, c, will be returned by the next getwc call on that stream.
ungetwc () returns c.

One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered.

If c equals (wchar_t) EOF, ungetwc () does nothing to the buffer and returns EOF.

f seek () erases all memory of inserted characters.

DIAGNOSTICS
ungetwc () returns EOF if it cannot insert a wchar_t character.

SEE ALSO
fseek(3S), getwc(3W), setbuf(3S), stdio(3S), widec(3W).

10/92 Page 1

unlink(2) unlink(2)

NAME
unlink - remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

DESCRIPTION

10/92

unlink removes the directory entry named by the path name pointed to by path.
and decrements the link count of the file referenced by the directory entry. When
all links to a file have been removed and no process has the file open, the space
occupied by the file is freed and the file ceases to exist. If one or more processes
have the file open when the last link is removed, space occupied by the file is not
released until all references to the file have been closed. If path is a symbolic link,
the symbolic link is removed. path should not name a directory unless the process
has appropriate privileges. Applications should use rmdir to remove directories.

Upon successful completion unlink marks for update the st_ctime and st_mtime
fields of the parent directory. Also, if the file's link count is not zero, the st_ctime
field of the file is marked for update.

The named file is unlinked unless one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix.

EACCES

EACCES

EBUSY

EFAULT

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENO ENT

ENOTDIR

EPERM

Write permission is denied on the directory containing the
link to be removed.

The parent directory has the sticky bit set and the file is not
writable by the user; the user does not own the parent direc­
tory and the user does not own the file;

The entry to be unlinked is the mount point for a mounted
file system.

path points outside the process's allocated address space.

A signal was caught during the unlink system call.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

The named file does not exist or is a null pathname. The
user is not a super-user.

A component of the path prefix is not a directory.

The named file is a directory and the effective user ID of the
process is not super-user.

Page 1

unlink(2)

ETXTBSY

EROFS

ENO LINK

SEE ALSO

unlink(2)

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only file
system.

path points to a remote machine and the link to that machine
is no longer active.

rm(l), close(2), link(2), open(2), rmdir(2).

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/92

unlockpt (3C) unlockpt (3C)

NAME
unlockpt - unlock a pseudo-terminal master/slave pair

SYNOPSIS
int unlockpt (int fildes);

DESCRIPTION
The function unlockpt() clears a lock flag associated with the slave pseudo­
terminal device associated with its master pseudo-terminal counterpart so that the
slave pseudo-terminal device can be opened. fildes is a file descriptor returned from
a successful open of a master pseudo-terminal device.

RETURN VALUE
Upon successful completion, the function unlockpt() returns O; otherwise it
returns -1. A failure may occur if fildes is not an open file descriptor or is not associ­
ated with a master pseudo-terminal device.

SEE ALSO
open(2), grantpt(3C), ptsname(3C).

10/92 Page 1

usleep(3) (BSD Compatibility Package) usleep(3)

NAME
usleep - suspend execution for interval in microseconds

SYNOPSIS
/usr /ucb/ cc [flag . ..]file . ..
usleep(useconds)
unsigned useconds;

DESCRIPTION
Suspend the current process for the number of microseconds specified by the argu­
ment. The actual suspension time may be an arbitrary amount longer because of
other activity in the system, or because of the time spent in processing the call.

The routine is implemented by setting an interval timer and pausing until it occurs.
The previous state of this timer is saved and restored. If the sleep time exceeds the
time to the expiration of the previous timer, the process sleeps only until the signal
would have occurred, and the signal is sent a short time later.

This routine is implemented using setitimer [see getitimer(2)]; it requires eight
system calls each time it is invoked.

SEE ALSO
alarm(2), getitimer(3), sigpause(3), sleep(3), ualarm(3).

10/92 Page 1

ustat (2) ustat (2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat(dev_t dev, struct ustat *buf);

DESCRIPTION
ustat returns information about a mounted file system. dev is a device number
identifying a device containing a mounted file system [see makedev(3C)]. buf is a
pointer to a us tat structure that includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name*/
char f_fpack[6]; /* Filsys pack name*/

ustat fails if one or more of the following are true:

EINVAL dev is not the device number of a device containing a mounted file
system.

EFAULT buf points outside the process's allocated address space.

EINTR

ENOLINK

ECO MM

A signal was caught during a us tat system call.

dev is on a remote machine and the link to that machine is no
longer active.

dev is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
stat(2), statvfs(2), makedev(3C), fs(4)

NOTES
us tat will be phased out in favor of the statvfs function.

DIAGNOSTICS

10/92

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

utime (2) utime(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION

10/92

path points to a path name naming a file. utime sets the access and modification
times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure (defined
in utime. h) and the access and modification times are set to the values contained
in the designated structure. Only the owner of the file or the super-user may use
utime this way.

The times in the following structure are measured in seconds since 00:00:00 UTC,
Jan. 1, 1970.

struct utimbuf{

} ;

time_t actime;
time_t modtime;

/* access time */
I* modification time */

utime also causes the time of the last file status change (st_ctime) to be updated.

utime will fail if one or more of the following are true:

EACCES Search permission is denied by a component of the path
prefix.

EACCES

EFAULT

EFAULT

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENO ENT

The effective user ID is not super-user and not the owner of
the file and times is NULL and write access is denied.

times is not NULL and points outside the process's allocated
address space.

path points outside the process's allocated address space.

A signal was caught during the utime system call.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX), or the
length of a path component exceeds (NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

The named file does not exist or is a null pathname.

Page 1

utime(2)

ENO LINK

ENOTDIR

EPERM

EROFS

SEE ALSO
stat(2)

DIAGNOSTICS

utime(2)

path points to a remote machine and the link to that machine
is no longer active.

A component of the path prefix is not a directory.

The effective user ID is not super-user and not the owner of
the file and times is not NULL.

The file system containing the file is mounted read-only.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2 10/92

utimes(3) (BSD Compatibility Package) utimes(3)

NAME
utimes - set file times

SYNOPSIS
/usr /ucb/ cc [flag ...]file ...

#include <sys/types.h>

int utimes(file, tvp)
char *file;
struct timeval *tvp;

DESCRIPTION
utimes sets the access and modification times of the file named by file.

If tvp is NULL, the access and modification times are set to the current time. A pro­
cess must be the owner of the file or have write permission for the file to use
utimes in this manner.

If tvp is not NULL, it is assumed to point to an array of two timeval structures. The
access time is set to the value of the first member, and the modification time is set to
the value of the second member. Only the owner of the file or the privileged user
may use utimes in this manner.

In either case, the inode-changed time of the file is set to the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS

10/92

utimes will fail if one or more of the following are true:

ENOTDIR A component of the path prefix of file is not a directory.

ENAMETOOLONG

ENO ENT

EACCES

ELOOP

EPERM

EA CC ES

EIO

EROFS

EFAULT

The length of a component of file exceeds 255 characters, or
the length of file exceeds 1023 characters.

The file referred to by file does not exist.

Search permission is denied for a component of the path
prefix of file.

Too many symbolic links were encountered in translating
file.

The effective user ID of the process is not privileged user and
not the owner of the file, and tvp is not NULL.

The effective user ID of the process is not privileged user and
not the owner of the file, write permission is denied for the
file, and tvp is NULL.

An I/O error occurred while reading from or writing to the
file system.

The file system containing the file is mounted read-only.

file or tvp points outside the process's allocated address
space.

Page 1

utimes(3) (BSD Compatibility Package) utimes(3)

SEE ALSO
stat(2), utime(2).

NOTES
utimes is a library routine that calls the utime system call.

Page 2 10/92

values(S) values(S)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for particular
processor architectures.

The model assumed for integers is binary representation (one's or two's comple­
ment), where the sign is represented by the value of the high-order bit.

BITS (type) The number of bits in a specified type (for example, int).

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

The value of a short integer with only the high-order bit set.

The value of a long integer with only the high-order bit set.

The value of a regular integer with only the high-order bit set.

The maximum value of a signed short integer.

The maximum value of a signed long integer.

MAXINT The maximum value of a signed regular integer.

MAXFLOAT,LN_MAXFLOAT
The maximum value of a single-precision floating-point number,
and its natural logarithm.

MAXDOUBLE,LN_MAXDOUBLE
The maximum value of a double-precision floating-point number,
and its natural logarithm.

MINFLOAT,LN_MINFLOAT
The minimum positive value of a single-precision floating-point
number, and its natural logarithm.

MINDOUBLE,LN_MINDOUBLE

FSIGNIF

DSIGNIF

The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

The number of significant bits in the mantissa of a single-precision
floating-point number.

The number of significant bits in the mantissa of a double-precision
floating-point number.

SEE ALSO
intro(3), math(S)

10/92 Page 1

varargs(5) varargs(5)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_dcl

va_list pvar;

void va_start(va_list pvar);

type va_arg (va_list pvar, type);
void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists to
be written. Routines that have variable argument lists [such as printf(3S)] but do
not use varargs are inherently non-portable, as different machines use different
argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the type
the argument is expected to be. Different types can be mixed, but it is up to the
routine to know what type of argument is expected, as it cannot be determined at
runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

10/92

This example is a possible implementation of execl [see exec(2)].

#include <unistd.h>
#include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ... , (char *)0);

*I
execl(va_alist)
va_dcl
{

va_list ap;
char *file;
char *args[MAXARGS];
int argno = O;

/* assumed big enough*/

va_start (ap);

Page 1

varargs(S) varargs(S)

file= va_arg(ap, char*);
while ((args[argno++] = va_arg(ap, char *)) != 0)

va_end(ap);
return execv(file, args);

SEE ALSO

NOTES

Page 2

exec(2), printf(3S), vprintf(3S), stdarg(S)

It is up to the calling routine to specify in some manner how many arguments there
are, since it is not always possible to determine the number of arguments from the
stack frame. For example, execl is passed a zero pointer to signal the end of the
list. printf can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or float.
C converts char and short arguments to int and converts float arguments to
double before passing them to a function.

stdarg is the preferred interface.

10/92

vfork(2) vfork(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
#include <unistd.h>

pid_t vfork (void) ;

DESCRIPTION
vfork can be used to create new processes without fully copying the address space
of the old process. It is useful when the purpose of fork would have been to create
a new system context for an execve. vfork differs from fork in that the child bor­
rows the parent's memory and thread of control until a call to execve or an exit
(either by a call to exit or abnormally.) The parent process is suspended while the
child is using its resources.

vfork returns 0 in the child's context and (later) the process ID (PID of the child in
the parent's context.

vfork can normally be used just like fork. It does not work, however, to return
while running in the child's context from the procedure which called vfork since
the eventual return from vfork would then return to a no longer existent stack
frame. Be careful, also, to call _exit rather than exit if you cannot execve, since
exit will flush and close standard I/O channels, and thereby mess up the parent
processes standard I/O data structures. Even with fork it is wrong to call exit
since buffered data would then be flushed twice.

DIAGNOSTICS
Upon successful completion, vfork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned to the parent process, no child process is created, and the global
variable errno is set to indicate the error.

vfork will fail and no child process will be created if one or more of the following
are true:

EA GAIN

EAGAIN

ENOMEM

The system-imposed limit on the total number of processes under
execution would be exceeded. This limit is determined when the
system is generated.

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. This limit is deter­
mined when the system is generated.

There is insufficient swap space for the new process.

SEE ALSO

NOTES

10/92

exec(2), exi t(2), fork(2), ioct1(2), wai t(2)

This system call will be eliminated in a future release. System implementation
changes are making the efficiency gain of vfork over fork smaller. The memory
sharing semantics of vfork can be obtained through other mechanisms.

To avoid a possible deadlock situation, processes that are children in the middle of
a vfork are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are
allowed and input attempts result in an EOF indication.

Page 1

vfork(2) vfork (2)

Page 2

On some systems, the implementation of vfork causes the parent to inherit register
values from the child. This can create problems for certain optimizing compilers if
uni std. h is not included in the source calling vfor k.

10/92

vlfmt(3C) {C Programming Language Utilities) vlfmt{3C)

NAME
vlfmt - display error message in standard format and pass to logging and monitor­
ing services

SYNOPSIS
#include <stdarg.h>
#include <pfmt.h>

int vlfmt(FILE *stream, long flags, char *format, va_list ap);

DESCRIPTION
vlfmt () is the same as lfmt () except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the
<stdarg. h> header file.

The <stdarg .h> header file defines the type va_list and a set of macros for
advancing through a list of arguments whose number and types may vary. The
argument ap to vlfmt () is of type va_list. This argument is used with the
<Stdarg. h> header file macros va_start (), va_arg () and va_end () [see
va_start (), va_arg (),and va_end () in stdarg(5)]. The EXAMPLE section below
shows their use with v lfmt () .

The macro va_alist is used as the parameter list in a function definition as in the
function called err log () in the example below. The macro va_start (ap,) ,
where ap is of type va_list, must be called before any attempt to traverse and
access unnamed arguments. Calls to va_arg (ap, atype) traverse the argument list.
Each execution of va_arg () expands to an expression with the value and type of
the next argument in the list ap, which is the same object initialized by va_start.
The argument atype is the type that the returned argument is expected to be. The
va_end(ap) macro must be invoked when all desired arguments have been
accessed. (The argument list in ap can be traversed again if va_start () is called
again after va_end () .) In the example below, va_arg () is executed first to
retrieve the format string passed to err log (). The remainting err log () argu­
ments, argl, arg2, ... , are given to vlfmt() in the argument ap.

RETURN VALUE
Upon success, 1 fmt () returns the number of bytes transmitted. Upon failure, it
returns a negative value:

-1 write error to stream.

-2 cannot log and/or display at console.

EXAMPLE

10/92

The following demonstrates how v lfmt () could be used to write an err log ()
routine:

#include <pfmt.h>
#include <stdarg.h>
I*
*
*
*I

errlog should be called like
errlog(log_info, format, argl, ...);

void errlog(long log_info, ...)

Page 1

vlfmt (3C)

SEE ALSO

(C Programming Language Utilities)

va_list ap;
char * forrna t;

va_start (ap,) ;
format = va_arg(ap, char *);

vlfmt (3C)

(void) vlfmt(stderr, log_infolMM_ERROR, format, ap);
va_end(ap);
(void) abort();

lfmt(3C), stdarg(S).

Page 2 10/92

vpfmt(3C) (C Programming Language Utilities) vpfmt(3C)

NAME
vpfmt - display error message in standard format and pass to logging and monitor­
ing services

SYNOPSIS
#include <stdarg.h>
#include <pfmt.h>

int vpfmt(FILE *stream, long flags, char *format, va_list ap);

DESCRIPTION
vpfmt () is the same as lfmt () except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the
<stdarg .h> header file.

The <stdarg. h> header file defines the type va_list and a set of macros for
advancing through a list of arguments whose number and types may vary. The
argument ap to vpfmt () is of type va_list. This argument is used with the
<stdarg. h> header file macros va_start (), va_arg () and va_end () [see
va_start (), va_arg (),and va_end () in stdarg(S)]. The EXAMPLE section below
shows their use with vpfmt () .

The macro va_alist is used as the parameter list in a function definition as in the
function called error () in the example below. The macro va_start (ap,) ,
where ap is of type va_list, must be called before any attempt to traverse and
access unnamed arguments. Calls to va_arg (ap, a type) traverse the argument list.
Each execution of va_arg () expands to an expression with the value and type of
the next argument in the list ap, which is the same object initialized by va_start.
The argument atype is the type that the returned argument is expected to be. The
va_end (ap) macro must be invoked when all desired arguments have been
accessed. (The argument list in ap can be traversed again if va_start () is called
again after va_end () .) In the example below, va_arg () is executed first to
retrieve the format string passed to error () . The remaining error () arguments,
argl, arg2, ... ,are given to vpfmt() in the argument ap.

RETURN VALUE
Upon success, 1 fmt () returns the number of bytes transmitted. Upon failure, it
returns a negative value:

-1 write error to stream.

EXAMPLE

10/92

The following demonstrates how vpfmt () could be used to write an error ()
routine:

#include <pfmt.h>
#include <stdarg.h>
/*

*
*
*/

error should be called like
error(format, argl, ...);

void error (...)

va_list ap;

Page 1

vpfmt(3C)

SEE ALSO

(C Programming Language Utilities)

char *format;

va_start (ap,) ;
format = va_arg(ap, char *);
(void) vpfmt(stderr, MM_ERROR, format, ap);
va_end (ap) ;
(void) abort();

pfmt(3C), stdarg(S).

Page 2

vpfmt(3C)

10/92

vprintf {3S) {C Development Set) vprintf {3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a variable argument list

SYNOPSIS
#include <stdio.h>
#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf(FILE *stream, const char *format, va_list ap);

int vsprintf(char *S, const char *format, va_list ap);
DESCRIPTION

vprintf, vfprintf and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of argu­
ments, they are called with an argument list as defined by the stdarg. h header file.

The stdarg. h header file defines the type va_list and a set of macros for advanc­
ing through a list of arguments whose number and types may vary. The argument
ap to the vprint family of routines is of type va_list. This argument is used with
the stdarg. h header file macros va_start, va_arg and va_end [see va_start,
va_arg, and va_end in stdarg(S)]. The EXAMPLE section below shows their use
with vprintf.

EXAMPLE
The following demonstrates how vfprintf could be used to write an error rou­
tine:

#include <stdio.h>
#include <stdarg.h>
!*

* error should be called like
* error(function_name, format, argl, ...);
*!

void error(char *function_name, char *format, ...)

va_list ap;

va_start(ap, format);
/* print out name of function causing error */
(void) fprintf(stderr, "ERR in %s: ", function_name);
/* print out remainder of message */
(void) vfprintf(stderr, format, ap);
va_end(ap);
(void) abort;

SEE ALSO
printf(3S), stdarg(S).

DIAGNOSTICS

10/92

vprintf and vfprintf return the number of characters transmitted, or return -1 if
an error was encountered.

Page 1

vprintf (3W) vprintf(3W)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a variable argument list

SYNOPSIS
#include <stdia.h>
#include <stdarg.h>
#include <widec.h>

int vprintf (canst char *format, va_listap);

int vfprintf (FILE *Stream, canst char *format, va_list ap) ;

int vsprintf (char *S, canst char *format, va_listap);

DESCRIPTION (International Functions)
vprintf (), vfprint (),and vsprintf () are the same as printf (), fprintf (),
and sprintf () respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by the
<stdarg. h> header file.

we and ws are the new conversion specifications for wchar t character control.
Both we and ws may be used in all three functions.

we The wchar_t character arg is transformed into EUC, and then printed. If a
field width is specified and the transformed EUC has fewer bytes than the
field width, it will by padded to the given width. A precision specification
is ignored, if specified.

ws The arg is taken to be a wchar_t string and the wchar_t characters from the
string are transformed into EUC, and printed until a wchar_t null character
is encountered or the number of bytes indicated by the precision
specification is printed. If the precision specification is missing, it is taken
to be infinite, and all wchar_t characters up to the first wchar_t null char­
acter are transformed into EUC and printed. If a field width is specified and
the transformed EUC have fewer bytes than the field width, they are padded
to the given width.

The ASCII space character (Ox20) is used as a padding characters.

SEE ALSO
printf(3W), scanf(3W), stdio(3S), vprintf(3S), widec(3W), stdarg(S).

10/92 Page 1

wait(2) wait(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat_loc);

DESCRIPTION
wait suspends the calling process until one of its immediate children terminates or
until a child that is being traced stops because it has received a signal. The wait
system call will return prematurely if a signal is received. If all child processes
stopped or terminated prior to the call on wait, return is immediate.

If wait returns because the status of a child process is available, it returns the pro­
cess ID of the child process. If the calling process had specified a non-zero value for
stat_loc, the status of the child process will be stored in the location pointed to by
stat_loc. It may be evaluated with the macros described on wstat(S). In the follow­
ing, status is the object pointed to by stat_loc:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8 bits
will be set equal to WSTOPFLG.

If the child process terminated due to an exit call, the low order 8 bits of
status will be 0 and the high order 8 bits will contain the low order 8 bits of
the argument that the child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status
will be 0 and the low order 8 bits will contain the number of the signal that
caused the termination. In addition, if WCOREFLG is set, a "core image" will
have been produced; see signal(2).

If wait returns because the status of a child process is available, then that status
may be evaluated with the macros defined by wstat(S).

If a parent process terminates without waiting for its child processes to terminate,
the parent process ID of each child process is set to 1. This means the initialization
process inherits the child processes; see intro(2).

wait will fail if one or both of the following is true:

ECHILD

EINTR

The calling process has no existing unwaited-for child processes.

The function was interrupted by a signal.

SEE ALSO

NOTES

exec(2), exi t(2), fork(2), intro(2), pause(2), ptrace(2), signal(2),
signal(S), wstat(S)

See NOTES in signal(2)

If SIGCLD is held, then wait does not recognize death of children.

DIAGNOSTICS

10/92

If wait returns due to a stopped or terminated child process, the process ID of the
child is returned to the calling process. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

Page 1

wait(3) (BSD Compatibility Package) wait (3)

NAME
wait, wait3, WIFSTOPPED, WIFSIGNALED, WIFEXITED - wait for process to ter­
minate or stop

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/wait.h>

int wait(statusp)
union wait *statusp;

#include <sys/tirne.h>
#include <sys/resource.h>

int wait3(statusp, options, rusage)
union wait *statusp;
int options;
struct rusage *rusage;

WIFSTOPPED(status)
union wait status;

WIFSIGNALED(status)
union wait status;

WIFEXITED(status)
union wait status;

DESCRIPTION

10/92

wait delays its caller until a signal is received or one of its child processes ter­
minates or stops due to tracing. If any child has died or stopped due to tracing and
this has not been reported using wait, return is immediate, returning the process ID
and exit status of one of those children. If that child had died, it is discarded. If
there are no children, return is immediate with the value -1 returned. If there are
only running or stopped but reported children, the calling process is blocked.

If status is not a NULL pointer, then on return from a successful wait call the status
of the child process whose process ID is the return value of wait is stored in the
wait union pointed to by status. The w_status member of that union is an int; it
indicates the cause of termination and other information about the terminated pro­
cess in the following manner:

If the low-order 8 bits of w_status are equal to 0177, the child process has
stopped; the 8 bits higher up from the low-order 8 bits of w_status contain
the number of the signal that caused the process to stop. See ptrace(2) and
sigvec(3).

If the low-order 8 bits of w_status are non-zero and are not equal to 0177,
the child process terminated due to a signal; the low-order 7 bits of
w_status contain the number of the signal that terminated the process. In
addition, if the low-order seventh bit of w_status (that is, bit 0200) is set, a
"core image" of the process was produced; see sigvec(3).

Otherwise, the child process terminated due to an exit call; the 8 bits
higher up from the low-order 8 bits of w_status contain the low-order 8
bits of the argument that the child process passed to exit; see exi t(2).

Page 1

wait(3) (BSD Compatibility Package) wait (3)

Other members of the wait union can be used to extract this information more con­
veniently:

If the w_stopval member has the value WSTOPPED, the child process has
stopped; the value of the w_stopsig member is the signal that stopped the
process.

If the w_termsig member is non-zero, the child process terminated due to a
signal; the value of the w_termsig member is the number of the signal that
terminated the process. If the w_coredump member is non-zero, a core
dump was produced.

Otherwise, the child process terminated due to an exit call; the value of the
w_retcode member is the low-order 8 bits of the argument that the child
process passed to exit.

The other members of the wait union merely provide an alternate way of analyzing
the status. The value stored in the w_status field is compatible with the values
stored by other versions of the UNIX system, and an argument of type int * may
be provided instead of an argument of type union wait * for compatibility with
those versions.

wai t3 is an alternate interface that allows both non-blocking status collection and
the collection of the status of children stopped by any means. The status parameter
is defined as above. The options parameter is used to indicate the call should not
block if there are no processes that have status to report (WNOHANG), and/or that
children of the current process that are stopped due to a SIGTTIN, SIGTTOU,
SIGTSTP, or SIGSTOP signal are eligible to have their status reported as well (WUN­
TRACED). A terminated child is discarded after it reports status, and a stopped pro­
cess will not report its status more than once. If rusage is not a NULL pointer, a sum­
mary of the resources used by the terminated process and all its children is
returned. Only the user time used and the system time used are currently available.
They are returned in rusage. ru_utime and rusage. ru_stime, respectively.

When the WNOHANG option is specified and no processes have status to report,
wait 3 returns 0. The WNOHANG and WUNTRACED options may be combined by ORing
the two values.

WIFSTOPPED, WIFSIGNALED, WIFEXITED, are macros that take an argument status, of
type 'union wait', as returned by wait, or wait3. WIFSTOPPED evaluates to true
(1) when the process for which the wait call was made is stopped, or to false (0)
otherwise. WIFSIGNALED evaluates to true when the process was terminated with a
signal. WIFEXITED evaluates to true when the process exited by using an exit(2)
call.

RETURN VALUE

Page 2

If wait returns due to a stopped or terminated child process, the process ID of the
child is returned to the calling process. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

wai t3 returns 0 if WNOHANG is specified and there are no stopped or exited children,
and returns the process ID of the child process if it returns due to a stopped or ter­
minated child process. Otherwise, wait3 returns a value of -1 and sets errno to
indicate the error.

10/92

wait (3) (BSD Compatibility Package) wait (3)

ERRORS
wait, or wai t3 will fail and return immediately if one or more of the following are
true:

ECHILD

EFAULT

The calling process has no existing unwaited-for child processes.

The status or rusage arguments point to an illegal address.

wait, and wait3 will terminate prematurely, return -1, and set errno to EINTR
upon the arrival of a signal whose SV_INTERRUPT bit in its flags field is set [see
sigvec(3) and siginterrupt(3)]. signa1(3), in the System V compatibility
library, sets this bit for any signal it catches.

SEE ALSO

NOTES

10/92

exit(2), ptrace(2), signal(2), wait(2), waitpid(2), getrusage(3), siginter­
rupt(3), signal(3), sigvec(3).

If a parent process terminates without waiting on its children, the initialization pro­
cess (process ID = 1) inherits the children.

wait, and wait3 are automatically restarted when a process receives a signal while
awaiting termination of a child process, unless the SV _INTERRUPT bit is set in the
flags for that signal.

Calls to wait with an argument of O should be cast to type 'union wait *',as in:

wait((union wait *)0)

Otherwise lint will complain.

Page 3

waitid (2) waitid(2)

NAME
wait id- wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int
options);

DESCRIPTION

10/92

waitid suspends the calling process until one of its children changes state. It
records the current state of a child in the structure pointed to by inf op. If a child
process changed state prior to the call to waitid, wait id returns immediately.

The idtype and id arguments specify which children wai tid is to wait for.

If idtype is P_PID, waitid waits for the child with a process ID equal to
(pid_t) id.

If idtype is P_PGID, wait id waits for any child with a process group ID equal
to (pid_t) id.

If idtype is P_ALL, wait id waits for any children and id is ignored.

The options argument is used to specify which state changes waitid is to wait for. It
is formed by an OR of any of the following flags:

WEXITED

WTRAPPED

WSTOPPED

WCONTINUED

WNO HANG

Wait for process(es) to exit.

Wait for traced process(es) to become trapped or reach a break­
point [see ptrace(2)].

Wait for and return the process status of any child that has
stopped upon receipt of a signal.

Return the status for any child that was stopped and has been
continued.

Return immediately.

WNOWAIT Keep the process in a waitable state.

infop must point to a siginfo_t structure, as defined in siginfo(S). siginfo_t is
filled in by the system with the status of the process being waited for.

wait id fails if one or more of the following is true.

EFAULT infop points to an invalid address.

EINTR

EINVAL

EINVAL

ECHILD

waitid was interrupted due to the receipt of a signal by the cal­
ling process.

An invalid value was specified for options.

idtype and id specify an invalid set of processes.

The set of processes specified by idtype and id does not contain any
unwaited-for processes.

Page 1

waitid (2) waitid (2)

DIAGNOSTICS
If wait id returns due to a change of state of one of its children, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

Page 2

intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(2),
sigaction(2), wait(2), siginfo(S)

10/92

waitpid(2) waitpid(2)

NAME
waitpid- wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid (pid_t pid, int *stat_loc, int options);

DESCRIPTION

10/92

waitpid suspends the calling process until one of its children changes state; if a
child process changed state prior to the call to waitpid, return is immediate. pid
specifies a set of child processes for which status is requested.

If pid is equal to (pid_t) -1, status is requested for any child process.

If pid is greater than (pid_t) O, it specifies the process ID of the child pro­
cess for which status is requested.

If pid is equal to (pid_t) O status is requested for any child process whose
process group ID is equal to that of the calling process.

If pid is less than (pid_t) -1, status is requested for any child process
whose process group ID is equal to the absolute value of pid.

If wai tpid returns because the status of a child process is available, then that status
may be evaluated with the macros defined by wstat(5) . If the calling process had
specified a non-zero value of stat_loc, the status of the child process will be stored
in the location pointed to by stat_loc.

The options argument is constructed from the bitwise inclusive OR of zero or more of
the following flags, defined in the header file sys/wait .h:

WCONTINUED

WNO HANG

WNOWAIT

WUNTRACED

the status of any continued child process specified by pid, whose
status has not been reported since it continued, shall also be
reported to the calling process.

waitpid will not suspend execution of the calling process if status
is not immediately available for one of the child processes
specified by pid.
keep the process whose status is returned in stat_loc in a waitable
state. The process may be waited for again with identical results.

the status of any child processes specified by pid that are stopped,
and whose status has not yet been reported since they stopped,
shall also be reported to the calling process.

waitpid with options equal to WUNTRACED and pid equal to (pid_t)-1 is identical to
a call to wait(2).

waitpid will fail if one or more of the following is true:

EINTR wai tpid was interrupted due to the receipt of a signal sent by the
calling process.

EINVAL An invalid value was specified for options.

Page 1

waitpid(2) waitpid(2)

ECHILD The process or process group specified by pid does not exist or is
not a child of the calling process or can never be in the states
specified by options.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2), sigaction(2),
siginfo(S), wstat(S)

DIAGNOSTICS

Page 2

If waitpid returns because the status of a child process is available, this function
shall return a value equal to the process ID of the child process for which status is
reported. If wai tpid returns due to the delivery of a signal to the calling process, a
value of -1 shall be returned and errno shall be set to EINTR. If this function was
invoked with WNOHANG set in options, it has at least one child process specified by
pid for which status is not available, and status is not available for any process
specified by pid, a value of 0 shall be returned. Otherwise, a value of -1 shall be
returned, and errno shall be set to indicate the error.

10/92

waitsem(2) (Application Compatibility Package) waitsem(2)

NAME
waitsem, nbwaitsem - await and check access to a resource governed by a sema­
phore

SYNOPSIS
cc [flag ...]file . .. -lx

wai tsem (int sem_num);

nbwai ts em (int sem_num);

DESCRIPTION
waitsem gives the calling process access to the resource governed by the sema­
phore sem_num. If the resource is in use by another process, waitsem will put the
process to sleep until the resource becomes available; nbwaitsem will return the
error ENAVAIL. waitsem and nbwaitsem are used in conjunction with sigsem to
allow synchronization of processes waiting to access a resource. One or more
processes may waitsem on the given semaphore and will be put to sleep until the
process which currently has access to the resource issues sigsem. sigsem causes
the process which is next in line on the semaphore's queue to be rescheduled for
execution. The semaphore's queue is organized in First In, First Out (FIFO) order.

DIAGNOSTICS
waitsem returns the value (int) -1 if an error occurs. If sem_num has not been previ­
ously opened by a call to opensem or creatsem, errno is set to EBADF. If sem_num
does not refer to a semaphore type file, errno is set to ENOTNAM. All processes wait­
ing (or attempting to wait) on the semaphore return with errno set to ENAVAIL
when the process controlling the semaphore exits without relinquishing control
(thereby leaving the resource in an undeterminate state). If a process does two
wai tsems in a row without doing a intervening sigsem, errno is set to EINVAL.

SEE ALSO
opensem(2), creatsem(2)

10/92 Page 1

wconv(3W) wconv(3W)

NAME
wconv: towupper, towlower - translate characters

SYNOPSIS
#include <ctype.h>
#include <widec.h>
#include <wctype.h>

wchar_t towupper(wchar_tc);

wchar_t towlower(wchar_tc);

DESCRIPTION
If the argument to towupper () represents a lower-case letter of the ASCII or supple­
mentary code sets, the result is the corresponding upper-case letter. If the argument
to tow lower () represents an upper-case letter of the ASCII or supplementary code
sets, the result is the corresponding lower-case letter.

In the case of all other arguments, the return value in unchanged. The table which
is used for translation is generated by wchrtbl (lM).

SEE ALSO
wchrtbl(lM), ctype(3C), wctype(3W).

10/92 Page 1

wctype(3W) wctype(3W)

NAME
wctype: iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,
iswpunct, iswprint, iswgraph, iswcntrl, iswascii, isphonogram, isideogram, isen­
glish, isnumber, isspecial - classify ASCII and supplemetary code set characters

SYNOPSIS
#include <Ctype.h>
#include <widec.h>
#include <wctype.h>

int iswalpha(wchar_tc);

DESCRIPTION
These functions classify character-coded wchar_t values by table lookup. Each is a
predicate returning nonzero for true, zero for false. The lookup table is generated
by wchrtbl (lM) . Each of these functions operates on both ASCII and supplemen­
tary code sets unless otherwise indicated.

iswalpha (c) c is an English letter.

iswupper (c) c is an English upper-case letter.

iswlower (c) c is an English lower-case letter.

iswdigit(c) cisadigit [0-9].

iswxdigit(c) cisahexadecimaldigit [0-9], [A-Fl or [a-f].

iswalnwn (c) c is an alphanumeric (letter or digit).

iswspace (c) c is a space character or a tab, carriage return, new line, vertical
tab or form-feed.

iswpunct (c) c is a punctuation character (neither control nor alphanumeric).

iswprint (c) c is a printing character including space.

iswgraph (c) c is a printing character, like iswprint () except false for
space.

iswcntrl (c) c is a delete character (0177), an ordinary control character
(less than 040) or other control character of a supplementary
code set.

i swas c ii (c) c is an ASCII character code less than O 2 O O.

isphonogram(c) c is a phonogram in a supplementary code set.

isideogram(c) c is an ideogram in a supplementary code set.

isenglish (c) c is an English letters in a supplementary code set.

isnumber (c) c is a digit of a supplementary code set.

isspecial (c) c is a special character in a supplementary code set.

SEE ALSO
wchrtbl(lM), ctype(3C).

10/92 Page 1

widec(3W) widec(3W)

NAME
widec - multibyte character 1/0 routines

SYNOPSIS
#include <stdio.h>
#include <widec.h>

DESCRIPTION (International Functions)

10/92

The functions that the multibyte character library provides for wchar_t string
operations correspond to those provided by the stdio(3S) as shown in the figure
below:

character I/O

string I/O

formatted I/O

character based byte based function
function
getwc
getwchar
fgetwc
ungetwc
putwc
putwchar
fputwc
getws
fgetws
putws
fputws

getc
get char
fgetc
ungetc
putc
put char
fputc
gets
fgets
puts
fputs

character and byte
based

printf
fprintf
sprintf
vprintf
vfprintf
vsprintf
scanf
fscanf
sscanf

The character based input and output routines provides the ability to work in units
of a characters instead of bytes. C programs using these routines can handle any
character, from any of the four EUC code sets as the same size by using the wchar_t
representation.

getwc () returns a value of type wchar_t, which corresponds to the EUC represen­
tation of a character read from the input stream. getwc () uses the cswidth param­
eter in the character class table to determin the width of the character in its EUC form.

putwc () transforms a wchar_t character into the EUC, and writes it to the named
output stream. putwc () also uses the cswidth parameter for determining the
widths of characters in EUC.

Page 1

widec(3W) widec(3W)

The macros getwchar () and putwchar (); the functions fgetwc (), fputwc (),
getws (), fgetws (), putws () and fputws ();and the format specifications %we and
%ws of the functions printf (), fprintf (), sprintf (), vprintf (), vfprintf (),
vsprintf (), scanf (), fscanf (), and sscanf ();act as if they had made succes­
sive calls to either getwc () or putwc () .

The character based routines use the existing byte based routines internally, so the
buffering scheme is the same.

Any program that uses these routines must include the following header files:

#include <stdio.h>
#include <widec.h>

SEE ALSO

Page 2

open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S),
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getwc(3W), getws(3W),
mbchar(3C), mbstring(3C), popen(3S), printf(3S), printf(3W), putwc(3W),
putws(3W), scanf(3S), scanf(3W), setbuf(3S), stdio(3S), system(3S), tmpfile(3S),
tmpnam(3S), ungetwc(3W), vprintf(3W), wstring(3W).

10/92

write(2) write(2)

NAME
write, writev - write on a file

SYNOPSIS
#include <unistd.h>
int write(int fildes, canst void *buf, unsigned nbyte);

#include <sys/types.h>
#include <sys/uio.h>

int writev(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION

10/92

write attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with fildes. If nbyte is zero and the file is a regular file, write returns zero
and has no other results. fildes is a file descriptor obtained from a creat, open, dup,
fcntl, pipe, or ioctl system call.

writev performs the same action as write, but gathers the output data from the
iovcnt buffers specified by the members of the iov array: iov[O], iov[l],
iov[iovcnt-1]. The iovcnt is valid if greater than 0 and less than or equal to
{IOV_MAX}.

Forwritev, the iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. writev always writes a complete area before
proceeding to the next.

On devices capable of seeking, the actual writing of data proceeds from the posi­
tion in the file indicated by the file pointer. On return from write, the file pointer is
incremented by the number of bytes actually written. On a regular file, if the incre­
mented file pointer is greater than the length of the file, the length of the file is set to
the new file pointer.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer is set to the end of
the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, write does not
return until both the file data and file status have been physically updated. This
function is for special applications that require extra reliability at the cost of perfor­
mance. For block special files, if O_SYNC is set, write does not return until the data
has been physically updated.

A write to a regular file is blocked if mandatory file/record locking is set [see
chmod(2)], and there is a record lock owned by another process on the segment of
the file to be written:

If O_NDELAY or O_NONBLOCK is set, write returns -1 and sets errno to
EAGAIN.

Page 1

write(2) write(2)

Page 2

If O_NDELAY and O_NONBLOCK are clear, write sleeps until all blocking locks
are removed or the write is terminated by a signal.

If a write requests that more bytes be written than there is room for-for example,
if the write would exceed the process file size limit [see getrlimit(2) and
ulimit(2)], the system file size limit, or the free space on the device-only as many
bytes as there is room for will be written. For example, suppose there is space for
20 bytes more in a file before reaching a limit. A write of 512-bytes returns 20. The
next write of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

Write requests to a pipe or FIFO are handled the same as a regular file with the fol­
lowing exceptions:

There is no file offset associated with a pipe, hence each write request
appends to the end of the pipe.

Write requests of {PIPE_BUF} bytes or less are guaranteed not to be inter­
leaved with data from other processes doing writes on the same pipe.
Writes of greater than {PIPE_BUF} bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether or not the
O_NONBLOCK or O_NDELAY flags are set.

If O_NONBLOCK and O_NDELAY are clear, a write request may cause the pro­
cess to block, but on normal completion it returns nbyte.

If O_NONBLOCK is set, write requests are handled in the following way: the
write does not block the process; write requests for {PIPE_BUF} or fewer
bytes either succeed completely and return nbyte, or return -1 and set errno
to EAGAIN. A write request for greater than {PIPE_BUF} bytes either
transfers what it can and returns the number of bytes written, or transfers
no data and returns -1 with errno set to EAGAIN. Also, if a request is
greater than {PIPE_BUF} bytes and all data previously written to the pipe
has been read, write transfers at least { PIPE_BUF} bytes.

If O_NDELAY is set, write requests are handled in the following way: the
write does not block the process; write requests for {PIPE_BUF} or fewer
bytes either succeed completely and return nbyte, or return 0. A write
request for greater than { PIPE_BUF} bytes either transfers what it can and
returns the number of bytes written, or transfers no data and returns 0.
Also, if a request is greater than {PIPE_BUF} bytes and all data previously
written to the pipe has been read, write transfers at least {PIPE_BUF}
bytes.

When attempting to write to a file descriptor (other than a pipe or FIFO) that sup­
ports nonblocking writes and cannot accept the data immediately:

If O_NONBLOCK and O_NDELAY are clear, write blocks until the data can be
accepted.

If O_NONBLOCK or O_NDELAY is set, write does not block the process. If
some data can be written without blocking the process, write writes what
it can and returns the number of bytes written. Otherwise, if O_NONBLOCK is
set, it returns -1 and sets errno to EAGAIN or if O_NDELAY is set, it returns O.

10/92

write(2) write(2)

10/92

For STREAMS files [see intro(2)], the operation of write is determined by the
values of the minimum and maximum nbyte range ("packet size") accepted by the
stream. These values are contained in the topmost stream module. Unless the user
pushes the topmost module [see I_PUSH in streamio(7)], these values can not be
set or tested from user level. If nbyte falls within the packet size range, nbyte bytes
are written. If nbyte does not fall within the range and the minimum packet size
value is zero, write breaks the buffer into maximum packet size segments prior to
sending the data downstream (the last segment may be smaller than the maximum
packet size). If nbyte does not fall within the range and the minimum value is non­
zero, write fails and sets errno to ERANGE. Writing a zero-length buffer (nbyte is
zero) to a STREAMS device sends a zero length message with zero returned. How­
ever, writing a zero-length buffer to a pipe or FIFO sends no message and zero is
returned. The user program may issue the I_SWROPT ioctl(2) to enable zero­
length messages to be sent across the pipe or FIFO [see streamio(7)].

When writing to a stream, data messages are created with a priority band of zero.
When writing to a stream that is not a pipe or FIFO:

If O_NDELAY and O_NONBLOCK are not set, and the stream cannot accept data
(the stream write queue is full due to internal flow control conditions),
write blocks until data can be accepted.

If O_NDELAY or O_NONBLOCK is set and the stream cannot accept data, write
returns -1 and sets errno to EAGAIN.

If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been
written when a condition occurs in which the stream cannot accept addi­
tional data, write terminates and returns the number of bytes written.

write and writev fail and the file pointer remains unchanged if one or more of the
following are true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is
set, and there is a blocking record lock.

EAGAIN

EA GAIN

EA GAIN

EBADF

EDEADLK

EFAULT

EFBIG

EINTR

Total amount of system memory available when writing via raw
1/0 is temporarily insufficient.

An attempt is made to write to a stream that can not accept data
with the O_NDELAY or O_NONBLOCK flag set.

If a write to a pipe or FIFO of { PIPE_BUF} bytes or less is
requested and less than nbytes of free space is available.

fildes is not a valid file descriptor open for writing.

The write was going to go to sleep and cause a deadlock situation
to occur.

buf points outside the process's allocated address space.

An attempt is made to write a file that exceeds the process's file
size limit or the maximum file size [see getrlimit(2) and
ulimit(2)].

A signal was caught during the write system call.

Page 3

write (2) write(2)

EINVAL

EIO

ENOLCK

ENO LINK

ENO SR

ENOS PC

An attempt is made to write to a stream linked below a multi­
plexor.

The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set; the process is nei­
ther ignoring nor blocking SIGTTOU signals, and the process group
of the process is orphaned.

The system record lock table was full, so the write could not go to
sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

During a write to an ordinary file, there is no free space left on the
device.

ENXIO A hangup occurred on the stream being written to.

EPIPE and SIGPIPE signal

EPIPE

EPIPE

ERANGE

ENOLCK

An attempt is made to write to a pipe that is not open for reading
by any process.

An attempt is made to write to a FIFO that is not open for reading
by any process.

An attempt is made to write to a pipe that has only one end open.

An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

Enforced record locking was enabled and {LOCK_MAX} regions are
already locked in the system.

In addition, writev may return one of the following errors:

EINVAL iovcnt was less than or equal to 0, or greater than 16.

EINVAL

EINVAL

One of the iov _len values in the iov array was negative.

The sum of the iov_len values in the iov array overflowed a 32-bit
integer.

A write to a STREAMS file can fail if an error message has been received at the
stream head. In this case, errno is set to the value included in the error message.

Upon successful completion write and writev mark for update the st_ctirne and
st_rntirne fields of the file.

SEE ALSO
intro(2), creat(2), dup(2), fcnt1(2), getrlirnit(2), lseek(2), open(2), pipe(2),
ulirnit(2)

DIAGNOSTICS

Page 4

On success, write returns the number of bytes actually written. Otherwise, it
returns -1 and sets errno to indicate the error.

10/92

wstat(S) wstat (5)

NAME
wstat - wait status

SYNOPSIS
#include <sys/wait.h>

DESCRIPTION
When a process waits for status from its children via either the wait or waitpid
function, the status returned may be evaluated with the following macros, defined
in sys/wait.h. These macros evaluate to integral expressions. The stat argument
to these macros is the integer value returned from wait or wai tpid.

WIFEXITED (stat) Evaluates to a non-zero value if status was returned for a
child process that terminated normally.

WEXITSTATUS (stat) If the value of WIFEXITED (stat) is non-zero, this macro
evaluates to the exit code that the child process passed to
_exit or exit, or the value that the child process returned
from main.

WIFSIGNALED (stat) Evaluates to a non-zero value if status was returned for a
child process that terminated due to the receipt of a signal.

WTERMSIG (stat) If the value of WIFSIGNALED (stat) is non-zero, this macro
evaluates to the number of the signal that caused the ter­
mination of the child process.

WIFSTOPPED (stat) Evaluates to a non-zero value if status was returned for a
child process that is currently stopped.

WSTOPSIG (stat) If the value of WIFSTOPPED (stat) is non-zero, this macro
evaluates to the number of the signal that caused the child
process to stop.

WIFCONTINUED(stat) Evaluates to a non-zero value if status was returned for a
child process that has continued.

WCOREDUMP(stat) If the value of WIFSIGNALED (stat) is non-zero, this macro
evaluates to a non-zero value if a core image of the ter­
minated child was created.

SEE ALSO
exit(2), wait(2), waitpid(3C)

10/92 Page 1

wstring (3W) wstring (3W)

NAME
wstring: wscat, wsncat, wscmp, wsncmp, wscpy, wsncpy, wslen, wschr, wsrchr,
wspbrk, wsspn, wscspn, wstok, wstostr, strtows - wchar_t string operations and
type transformation

SYNOPSIS
#include <widec.h>

wchar_t *wscat(wchar_t *sl, wchar_t *s2J;

wchar_t *wsncat (wchar_t *sl, wchar_t *s2, int n) ;

int wscmp(wchar_t *sl, wchar_t *S2);

int wsncmp (wchar_t *Sl, wchar_t *S2, int n) ;

wchar_t *wscpy(wchar_t *sl, wchar_t *s2);

wchar_t *wsncpy (wchar_t *sl, wchar_t *s2, int n) ;

int wslen(wchar_t *s);

wchar_t *wschr(wchar_t *S, intc);

wchar_t *wsrchr(wchar_t *S, intc);

wchar_t *wspbrk(wchar_t *Sl, wchar_t *S2);

int wsspn(wchar_t *Sl, wchar_t *S2);

int wscspn(wchar_t *sl, wchar_t *S2);

wchar_t *wstok(wchar_t *Sl, wchar_t *s2);

char *wstostr(char *Sl, wchar_t *S2);

wchar_t *strtows(wchar_t *sl, char *s2J;

DESCRIPTION (International Functions)

10/92

The arguments sl, s2 and s point to wchar_t strings (that is, arrays of wchar_t
characters terminated by a wchar_t null character). The functions wscat (),
wsncat (), wscpy () and wsncpy () all modify sl. These functions do not check for
an overflow condition of the array pointed to by sl.

wscat () appends a copy of the wchar_t string s2 to the end of the wchar_t string
sl. wsncat () appends at most n wchar_t characters. Each function returns sl.

wscmp () compares its arguments and returns an integer less than, equal to, or
greater than 0, depending on whether sl is less than, equal to, or greater than s2.
wsncmp () makes the same comparison but looks at most n wchar_t characters.

wscpy () copies wchar_t string s2 to sl, stopping after the wchar_t null character
has been copied. wsncpy () copies exactly n wchar_t characters, truncating s2 or
adding wchar_t null characters to sl, if necessary. The result will not be wchar_t
null-terminated if the length of s2 is nor more. Each function returns s1.

wslen () returns the number of wchar_t characters ins, not inducing the termnat­
ing wchar_t null character.

Page 1

wstring (3W) wstring (3W)

wschr () [wsrchr ()] returns a pointer to the first [last] occurrence of wchar_t
character c in wchar_t string s, or a null pointer, if c does not occur in the string.
The wchar_t null character terminating a string is considered to be part of the
string.

wspbrk () returns a pointer to the first occurrence in wchar_t string s1 of any
wchar_t character from wchar_t string s2, or a null pointer if there is no wchar_t
character from s2 in s1.

wsspn () [wscspn ()] returns the length of the initial segment of wchar_t string sl,
which consists [does not consist] entirely of wchar_t characters from wchar_t
string s2.

wstok () considers the wchar_t string s1 to consist of a sequence of zero or more
text tokens, separated by spans of one or more wchar_t characters from the separa­
tor wchar_t string s2. The first call (with the pointer sl specified) returns a pointer
to the first wchar_t character of the first token, and writes a wchar_t null character
into sl immediately following the returned token. The function keeps track of its
position in the wchar_t string between separate calls, so that subsequent calls
(which must be made with the first argument a null pointer) will progress through
the wchar_t string sl immediately following that token. Similarly, subsequent
calls will progress through the wchar_t string sl until no tokens remain. The
wchar_t separator string s2 may be different from call to call. A null pointer is
returned when no token remains in sl.

wstostr () transforms wchar_t characters in wchar_t string s2 into EUC, and
transfers them to character string sl, stopping after the wchar_t null character has
been processed.

strtows () transforms EUC in character string s2 into the wchar_t characters, and
transfers those to wchar_t string sl, stopping after the null character has been pro­
cessed.

DIAGNOSTICS
On success, wstostr () and strtows () return sl. If an illegal byte sequence is
detected, a null pointer is returned and EILSEQ is set to errno.

SEE ALSO
malloc(3C), malloc(3X), widec(3W).

Page 2 10/92

xdr(3N) xdr(3N)

NAME
xdr - library routines for external data representation

DESCRIPTION
XDR routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Data for remote procedure calls (RPC) are transmit­
ted using these routines.

Index to Routines
The following table lists XDR routines and the manual reference pages on which
they are described:

XDR Routine
xdr_array
xdr_bool
xdr_bytes
xdr_char
xdr_destroy
xdr_double
xdr_enum
xdr_f loat
xdr_free
xdr_getpos
xdr_inline
xdr_int
xdr_long
xdr_opaque
xdr_pointer
xdr_reference
xdr_setpos
xdr_short
xdr_string
xdr_u_char
xdr_u_long
xdr_u_short
xdr_union
xdr_vector
xdr_void
xdr_wrapstring
xdrmem_create
xdrrec_create
xdrrec_eof
xdrstdio_create

Manual Reference Page
xdr_complex(3N)
xdr_simple(3N)
xdr_complex(3N)
xdr_simple(3N)
xdr_create(3N)
xdr_simple(3N)
xdr_simple(3N)
xdr_simple(3N)
xdr_simple(3N)
xdr _admin(3N)
xdr_admin(3N)
xdr_simple(3N)
xdr_simple(3N)
xdr_complex(3N)
xdr_complex(3N)
xdr_complex(3N)
xdr_admin(3N)
xdr_simple(3N)
xdr_complex(3N)
xdr_s imple(3N)
xdr_simple(3N)
xdr_simple(3N)
xdr_complex(3N)
xdr_complex(3N)
xdr_simple(3N)
xdr_complex(3N)
xdr_create(3N)
xdr_create(3N)
xdr_admin(3N)
xdr_create(3N)

SEE ALSO
xdr_admin(3N), xdr_complex(3N), xdr_create(3N), xdr_simple(3N), rpc(3N)

10/92 Page 1

xdr_admin (3N) xdr_admin(3N)

NAME
xdr_admin: xdr_getpos, xdr_inline, xdrrec_eof, xdr_setpos - library rou­
tines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

Routines

10/92

See rpc(3N) for the definition of the XOR data structure.

#include <rpc/xdr.h>

u_int
xdr_getpos(const XOR *xdrs);

long *

A macro that invokes the get-position routine associated with the XDR
stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is that
simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for porta­
bility should not depend on this feature.

xdr_inline(XOR *xdrs; const int len);

bool t

A macro that invokes the in-line routine associated with the XDR stream,
xdrs. The routine returns a pointer to a contiguous piece of the stream's
buffer; Len is the byte length of the desired buffer. Note: pointer is cast to
long *.

Note: xdr_inline may return NULL (0) if it cannot allocate a contiguous
piece of a buffer. Therefore the behavior may vary among stream instances;
it exists for the sake of efficiency, and applications written for portability
should not depend on this feature.

xdrrec_eof(XOR *xdrs);

bool_t

This routine can be invoked only on streams created by xdrrec_create.
After consuming the rest of the current record in the stream, this routine
returns 1 if the stream has no more input, O otherwise.

xdr_setpos(XOR *xdrs, const u_int pos);

A macro that invokes the set position routine associated with the XDR
stream xdrs. The parameter pas is a position value obtained from
xdr_getpos. This routine returns 1 if the XDR stream was repositioned,
and O otherwise.

Note: it is difficult to reposition some types of XDR streams, so this routine
may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

Page 1

xdr_admin (3N) xdr_admin (3N)

SEE ALSO
rpc(3N), xdr_cornplex(3N), xdr_create(3N), xdr_sirnple(3N)

Page 2 10/92

xdr_complex (3N) xdr _complex (3N)

NAME
xdr_complex: xdr_array,xdr_bytes,xdr_opaque,xdr_pointer,
xdr_reference,xdr_string,xdr_union,xdr_vector,xdr_wrapstring-library
routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe complex data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data. These routines are the XDR library
routines for complex data structures. They require the creation of XDR stream [see
xdr_create(3N)].

Routines

10/92

See rpc(3N) for the definition of the XDR data structure.

#include <rpc/xdr.h>

bool_t
xdr_array(XDR *xdrs, caddr_t *arrp, u_int *sizep,

const u_int maxsize, const u_int elsize,
const xdrproc_t elproc);

bool_t

xdr_array translates between variable-length arrays and their correspond­
ing external representations. The parameter arrp is the address of the
pointer to the array, while sizep is the address of the element count of the
array; this element count cannot exceed maxsize. The parameter elsize is the
sizeof each of the arrays elements, and elproc is an XDR routine that
translates between the array elements' C form and their external representa­
tion. This routine returns 1 if it succeeds, O otherwise.

xdr_bytes(XDR *xdrs, char **sp, u_int *sizep,
const u_int maxsize);

bool_t

xdr_bytes translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns 1 if it succeeds, 0 otherwise.

xdr_opaque(XDR *xdrs, caddr_t cp, const u_int cnt);

bool_t

xdr_opaque translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and
cnt is its size in bytes. This routine returns 1 if it succeeds, 0 otherwise.

xdr_pointer(XDR *xdrs, char **objpp, u_int objsize,
const xdrproc_t xdrobj);

Like xdr_reference except that it serializes NULL pointers, whereas
xdr_reference does not. Thus, xdr_pointer can represent recursive data
structures, such as binary trees or linked lists.

Page 1

xdr_complex (3N) xdr _complex (3N)

Page 2

bool_t
xdr_reference(XDR *xdrs, caddr_t *pp, u_int size,

canst xdrproc_t proc);

bool_t

xdr_reference provides pointer chasing within structures. The parameter
pp is the address of the pointer; size is the sizeof the structure that *pp
points to; and proc is an XDR procedure that translates the structure
between its C form and its external representation. This routine returns 1 if
it succeeds, O otherwise.

Note: this routine does not understand NULL pointers. Use xdr_pointer
instead.

xdr_string(XDR *xdrs, char **sp, canst u_int maxsize);

bool_t

xdr_string translates between C strings and their corresponding external
representations. Strings cannot be longer than rnaxsize. Note: sp is the
address of the string's pointer. This routine returns 1 if it succeeds, O
otherwise.

xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,
canst struct xdr_discrim *choices,
canst bool_t (*defaultarm) (canst XDR *, canst char*,

bool_t

canst int));

xdr_union translates between a discriminated C union and its correspond­
ing external representation. It first translates the discriminant of the union
located at dscrnp. This discriminant is always an enum_t. Next the union
located at unp is translated. The parameter choices is a pointer to an array of
xdr_discrim structures. Each structure contains an ordered pair of [value,
proc]. If the union's discriminant is equal to the associated value, then the
proc is called to translate the union. The end of the xdr_discrim structure
array is denoted by a routine of value NULL. If the discriminant is not found
in the choices array, then the defaultarrn procedure is called (if it is not NULL).
Returns 1 if it succeeds, O otherwise.

xdr_vector(XDR *xdrs, char *arrp, canst u_int size,
canst u_int elsize, canst xdrproc_t elproc);

xdr_vector translates between fixed-length arrays and their corresponding
external representations. The parameter arrp is the address of the pointer to
the array, while size is is the element count of the array. The parameter elsize
is the sizeof each of the array's elements, and elproc is an XDR routine that
translates between the array elements' C form and their external representa­
tion. This routine returns 1 if it succeeds, O otherwise.

10/92

xdr_complex (3N) xdr_complex(3N)

bool_t
xdr_wrapstring(XDR *xdrs, char **sp);

A routine that calls xdr_string (xdrs, sp, maxuint) ; where maxuint is the
maximum value of an unsigned integer.

Many routines, such as xdr_array, xdr_pointer and xdr_vector take a
function pointer of type xdrproc_t, which takes two arguments.
xdr_string, one of the most frequently used routines, requires three argu­
ments, while xdr_wrapstring only requires two. For these routines,
xdr_wrapstring is desirable. This routine returns 1 if it succeeds, O other­
wise.

SEE ALSO
rpc(3N), xdr_admin(3N), xdr_create(3N), xdr_simple(3N)

10/92 Page 3

xdr_create (3N) xdr_create (3N)

NAME
xdr_create: xdr_destroy,xdrmern_create,xdrrec_create,
xdrstdio_create - library routines for external data representation stream crea­
tion

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be
created before any data can be translated into XDR format.

Routines

10/92

See rpc(3N) for the definition of the XDR, CLIENT, and SVCXPRT data structures.

#include <rpc/xdr.h>

void
xdr_destroy(XDR *xdrs);

void

A macro that invokes the destroy routine associated with the XDR stream,
xdrs. Destruction usually involves freeing private data structures associated
with the stream. Using xdrs after invoking xdr_destroy is undefined.

xdrmern_create(XDR *xdrs, const caddr_t addr,
const u_int size, const enurn xdr_op op);

void

This routine initializes the XDR stream object pointed to by xdrs. The
stream's data is written to, or read from, a chunk of memory at location addr
whose length is no more than size bytes long. The op determines the direc­
tion of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

xdrrec_create(XDR *xdrs, const u_int sendsz,
const u_int recvsz, const caddr_t handle,
const int (*readit) (const void*, char *, const int),
const int (*writeit) (const void*, const char*, const int));

This routine initializes the XDR stream object pointed to by xdrs. The
stream's data is written to a buffer of size sendsz; a value of O indicates the
system should use a suitable default. The stream's data is read from a buffer
of size recvsz; it too can be set to a suitable default by passing a O value.
When a stream's output buffer is full, writeit is called. Similarly, when a
stream's input buffer is empty, readit is called. The behavior of these two
routines is similar to the system calls read and write [see read(2) and
wri te(2), respectively], except that handle (CLIENT, or SVCXPRT) is passed to
the former routines as the first parameter instead of a file descriptor. Note:
the XDR stream's op field must be set by the caller.

Note: this XDR stream implements an intermediate record stream. There­
fore there are additional bytes in the stream to provide record boundary
information.

Page 1

xdr_create (3N) xdr_create(3N)

void
xdrstdio_create(XDR *xdrs, FILE *file, const enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the standard 1/0 stream file. The
parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Note: the destroy routine associated with such XDR streams calls fflush
on the file stream, but never fclose [see fclose(3S)].

SEE ALSO

Page 2

fclose(3S), read(2), rpc(3N), write(2), xdr_admin(3N), xdr_complex(3N),
xdr_simple(3N)

10/92

xdr_simple {3N) xdr_simple {3N)

NAME
xdr_simple: xdr_bool,xdr_char,xdr_double,xdr_enwn,xdr_float,
xdr_free,xdr_int,xdr_long,xdr_short,xdr_u_char,xdr_u_long,
xdr_u_short, xdr_void- library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(3N)].

Routines

10/92

See rpc(3N) for the definition of the XDR data structure.

#include <rpc/xdr.h>

bool t
xdr_bool(XDR *xdrs, bool_t *bp);

bool_t

xdr_bool translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either 1
or 0. This routine returns 1 if it succeeds, O otherwise.

xdr_char(XDR *xdrs, char *cp);

bool_t

xdr_char translates between C characters and their external representa­
tions. This routine returns 1 if it succeeds, O otherwise. Note: encoded
characters are not packed, and occupy 4 bytes each. For arrays of characters,
it is worthwhile to consider xdr_bytes, xdr_opaque or xdr_string [see
xdr_bytes, xdr_opaque and xdr_string in xdr_complex(3N)].

xdr_double(XDR *xdrs, double *dp);

bool_t

xdr_double translates between C double prec1s1on numbers and their
external representations. This routine returns 1 if it succeeds, O otherwise.

xdr_enwn(XDR *xdrs, enwn_t *ep);

bool_t

xdr_enwn translates between C enums (actually integers) and their external
representations. This routine returns 1 if it succeeds, O otherwise.

xdr_float(XDR *xdrs, float *fp);

void

xdr_float translates between C floats and their external representations.
This routine returns 1 if it succeeds, O otherwise.

xdr_free(xdrproc_t proc, char *objp);

Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed
(recursively).

Page 1

xdr_simple(3N) xdr_simple(3N)

bool_t
xdr_int(XDR *xdrs, int *ip);

bool_t

xdr_int translates between C integers and their external representations.
This routine returns 1 if it succeeds, O otherwise.

xdr_long(XDR *xdrs, long *lp);

bool_t

xdr_long translates between C long integers and their external representa­
tions. This routine returns 1 if it succeeds, O otherwise.

xdr_short(XDR *xdrs, short *sp);

bool t

xdr_short translates between C short integers and their external represen­
tations. This routine returns 1 if it succeeds, O otherwise.

xdr_u_char(XDR *xdrs, char *ucp);

bool_t

xdr_u_char translates between unsigned C characters and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_u_long(XDR *xdrs, unsigned long *ulp);

bool_t

xdr_u_long translates between C unsigned long integers and their exter­
nal representations. This routine returns 1 if it succeeds, O otherwise.

xdr_u_short(XDR *xdrs, unsigned short *usp);

xdr_u_short translates between C unsigned short integers and their
external representations. This routine returns 1 if it succeeds, O otherwise.

bool_t
xdr_void(void);

This routine always returns 1. It may be passed to RPC routines that
require a function parameter, where nothing is to be done.

SEE ALSO
rpc(3N), xdr_admin(3N), xdr_complex(3N), xdr_create(3N)

Page 2 10/92

ypclnt(3N) ypclnt(3N)

NAME
ypclnt, yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first,
yp_next, yp_all, yp_order, yp_master, yperr_string, ypprot_err - NIS client
interface

SYNOPSIS
#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

DESCRIPTION
This package of functions provides an interface to the NIS network lookup service.
The package can be loaded from the standard library, /usr/lib/libnsl. {so, a}.
Refer to ypfiles(4) and ypserv(lM) for an overview of the NIS name services,
including the definitions of map and domain, and a description of the various
servers, databases, and commands that comprise the NIS name service.

All input parameter names begin with in. Output parameters begin with out. Out­
put parameters of type char * * should be addresses of uninitialized character
pointers. Memory is allocated by the NIS client package using malloc(3), and may
be freed if the user code has no continuing need for it. For each outkey and outval,
two extra bytes of memory are allocated at the end that contain newline and NULL,
respectively, but these two bytes are not reflected in outkeylen or outvallen. indomain
and inmap strings must be non-NULL and NULL-terminated. String parameters
which are accompanied by a count parameter may not be NULL, but may point to
NULL strings, with the count parameter indicating this. Counted strings need not be
NULL-terminated.

All functions in this package of type int return 0 if they succeed, and a failure code
(YPERR_xxxx) otherwise. Functions requiring a full YP map name cannot use nick­
names. For example, hosts .byname must be used instead of the nickname hosts.
Failure codes are described under DIAGNOSTICS below.

Routines

10/92

int yp_bind (char *indomain);

To use the NIS name services, the client process must be bound to a NIS
server that serves the appropriate domain using yp_bind. Binding need not
be done explicitly by user code; this is done automatically whenever a NIS
lookup function is called. yp_bind can be called directly for processes that
make use of a backup strategy (for example, a local file) in cases when NIS
services are not available.

void yp_unbind (char *indomain);

Each binding allocates (uses up) one client process socket descriptor; each
bound domain costs one socket descriptor. However, multiple requests to
the same domain use that same descriptor. yp_unbind is available at the
client interface for processes that explicitly manage their socket descriptors
while accessing multiple domains. The call to yp_unbind make the domain
unbound, and free all per-process and per-node resources used to bind it.

If an RPC failure results upon use of a binding, that domain will be unbound
automatically. At that point, the ypclnt layer will retry forever or until the
operation succeeds, provided that ypbind is running, and either the client
process cannot bind a server for the proper domain or RPC requests to the
server fail.

Page 1

ypclnt(3N) ypclnt(3N)

Page 2

If an error is not RPC-related, or if ypbind is not running, or if a bound
ypserv process returns any answer (success or failure), the ypclnt layer
will return control to the user code, either with an error code, or a success
code and any results.

int yp_get_default_domain (char **outdomain);

The NIS lookup calls require a map name and a domain name, at minimum.
It is assumed that the client process knows the name of the map of interest.
Client processes should fetch the node's default domain by calling
yp_get_defaul t_domain, and use the returned outdomain as the indomain
parameter to successive NIS name service calls.

int yp_match(char *indomain, char *inmap, char *inkey,
int inkeylen, char **outval, int *outvallen);

yp_match returns the value associated with a passed key. This key must be
exact; no pattern matching is available.

int yp_first(char *indomain, char *inmap, char **outkey,
int *outkeylen, char **outval, int *outvallen);

yp_first returns the first key-value pair from the named map in the
named domain.

int yp_next(char *indomain, char *inmap, char *inkey,
int inkeylen, char **outkey, int *outkeylen,
char **outval, int *outvallen);

yp_next returns the next key-value pair in a named map. The inkey param­
eter should be the outkey returned from an initial call to yp_first (to get
the second key-value pair) or the one returned from the nth call to yp_next
(to get the nth+ second key-value pair).

The concept of first (and, for that matter, of next) is particular to the struc­
ture of the NIS map being processing; there is no relation in retrieval order
to either the lexical order within any original (non-NIS name service) data
base, or to any obvious numerical sorting order on the keys, values, or key­
value pairs. The only ordering guarantee made is that if the yp_first func­
tion is called on a particular map, and then the yp_next function is repeat­
edly called on the same map at the same server until the call fails with a rea­
son of YPERR_NOMORE, every entry in the data base will be seen exactly once.
Further, if the same sequence of operations is performed on the same map at
the same server, the entries will be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for the
domain to become unbound, then bound once again (perhaps to a different
server) while a client is running. This can cause a break in one of the
enumeration rules; specific entries may be seen twice by the client, or not at
all. This approach protects the client from error messages that would other­
wise be returned in the midst of the enumeration. The next paragraph
describes a better solution to enumerating all entries in a map.

int yp_all(char *indomain, char *inmap,
struct ypall_callback *incallback);

10/92

ypclnt(3N) ypclnt(3N)

10/92

yp_all provides a way to transfer an entire map from server to client in a
single request using TCP (rather than UDP as with other functions in this
package). The entire transaction take place as a single RPC request and
response. yp_all can be used just like any other NIS name service pro­
cedure, identify the map in the normal manner, and supply the name of a
function which will be called to process each key-value pair within the
map. The call to yp_all returns only when the transaction is completed
(successfully or unsuccessfully), or the foreach function decides that it
does not want to see any more key-value pairs.

The third parameter to yp_all is
struct ypall_callback *incallback
int (*foreach) ();
char *data;
} ;

The function foreach is called
int foreach(int instatus, char *inkey, int inkeylen,

char *inval, int invallen, char *indata);

The instatus parameter will hold one of the return status values defined in
rpcsvc/yp__prot. h-either YP_TRUE or an error code. (See ypprot_err,
below, for a function which converts a NIS name service protocol error code
to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined in the
SYNOPSIS section above. First, the memory pointed to by the inkey and inval
parameters is private to the yp_all function, and is overwritten with the
arrival of each new key-value pair. It is the responsibility of the foreach
function to do something useful with the contents of that memory, but it
does not own the memory itself. Key and value objects presented to the
foreach function look exactly as they do in the server's map-if they were
not newline-terminated or NULL-terminated in the map, they will not be
here either.

The indata parameter is the contents of the incallback->data element
passed to yp_all. The data element of the callback structure may be used
to share state information between the foreach function and the mainline
code. Its use is optional, and no part of the NIS client package inspects its
contents-cast it to something useful, or ignore it.

The foreach function is a Boolean. It should return zero to indicate that it
wants to be called again for further received key-value pairs, or non-zero to
stop the flow of key-value pairs. If foreach returns a non-zero value, it is
not called again; the functional value of yp_all is then 0.

int yp_order(char *indomain, char *inmap, int *outorder);

yp_order returns the order number for a map.

Page 3

ypclnt(3N) ypclnt(3N)

FILES

int yp_master(char *indomain, char *inmap, char **outname);

yp_master returns the machine name of the master NIS server for a map.

char *yperr_string(int incode);

yperr_string returns a pointer to an error message string that is NULL­
terminated but contains no period or newline.

int ypprot_err (unsigned int incode);

ypprot_err takes a NIS name service protocol error code as input, and
returns a ypclnt layer error code, which may be used in tum as an input to
yperr_string.

/usr/lib/libyp.a

SEE ALSO
ypserv(lM), malloc(3), ypupdate(3N), ypfiles(4)

DIAGNOSTICS

Page 4

All integer functions return 0 if the requested operation is successful, or one of the
following errors if the operation fails.

1 YPERR_BADARGS args to function are bad
2 YPERR_RPC RPC failure - domain has been unbound
3 YPERR_DOMAIN can't bind to server on this domain
4 YPERR_MAP no such map in server's domain
5 YPERR_KEY no such key in map
6 YPERR_YPERR internal NIS server or client error
7 YPERR_RESRC resource allocation failure
8 YPERR_NOMORE no more records in map database
9 YPERR_PMAP can't communicate with RPC binder

10 YPERR_YPBIND can't communicate with ypbind
11 YPERR_YPSERV can't communicate with ypserv
12 YPERR_NOOOM local domain name not set
13 YPERR_BADDB NIS database is bad
14 YPERR_VERS NIS version mismatch
15 YPERR_ACCESS access violation
16 YPERR_BUSY database busy

10/92

ypupdate (3N) ypupdate (3N)

NAME
yp_update - change NIS information

SYNOPSIS
#include <rpcsvc/ypclnt.h>

yp_update(char *domain, char *map, unsigned ypop, char *key,
int keylen, char *data, int datalen);

DESCRIPTION
yp_update is used to make changes to the NIS database. The syntax is the same as
that of yp_match except for the extra parameter ypop, which may take on one of
four values. If it is YPOP _CHANGE then the data associated with the key will be
changed to the new value. If the key is not found in the database, then yp_update
will return YPERR_KEY. If ypop has the value YPOP_INSERT then the key-value pair
will be inserted into the database. The error YPERR_KEY is returned if the key
already exists in the database. To store an item into the database without concern
for whether it exists already or not, pass ypop as YPOP _STORE and no error will be
returned if the key already or does not exist. To delete an entry, the value of ypop
should be YPOP _DELETE.

This routine depends upon secure RPC, and will not work unless the network is
running secure RPC.

SEE ALSO
secure_rpc(3N)

10/92 Page 1

Permuted Index

13tol, ltol3 convert between
integer and base-64 ASCII string

abort generate an
termination signal

value
abs, labs return integer

floor, ceiling, remainder,
t_accept

accept
socket

utime set file
file

elf_next sequential archive member
elf_rand random archive member

elf object file
get or set supplementary group

initialize the supplementary group
machine-independent/ sputl, sgetl

sdgetv synchronize shared data
waitsem, nbwaitsem await and check

sdenter, sdleave synchronize
device grantpt grant

setutent, endutent, utmpname
getutmpx, updwtmp, updwtmpx

access determine
acct enable or disable process

accounting
release indication t_rcvrel

I cos, cosf, tan, tanf, asin, asinf,
I cosf, tan, tanf, asin, asinf, acos,
I cosh, coshf, tanh, tanhf, asinh,

to a/ /mvwaddch, echochar, wechochar
/mvaddnstr, mvwaddstr, mvwaddnstr

/mvaddnwstr, mvwaddwstr, mvwaddnwstr
/mvwaddwch, echowchar, wechowchar

atexit
/mvwaddchstr, mvwaddchnstr

(and/ /mvwaddwchstr, mvwaddwchnstr
putenv change or

echochar, wechochar/ curs_addch:
curs_addchstr: addchstr,

waddchnstr,/ curs_addchstr:
addsev define

mvaddstr,/ curs_addstr: addstr,
mvaddwstr,/ curs_addwstr: addwstr,

inet_netof, inet_ntoa Internet
ethers Ethernet

Permuted Index

3-byte integers and long integers .. 13tol(3C)
a641, 164a convert between long .. a641(3C)
abnormal termination signal ... abort(3C)
abort generate an abnormal ... abort(3C)
abs, labs return integer absolute ... abs(3C)
absolute value ... abs(3C)
absolute value functions /remainder floor(3M)
accept a connect request ... t_accept(3N)
accept a connection on a socket .. accept(3N)
accept accept a connection on a .. accept(3N)
access and modification times ... utime(2)
access determine accessibility of a access(2)
access .. elf_next(3E)
access ... elf_rand(3E)
access library ... elf(3E)
access list IDs /setgroups .. getgroups(2)
access list initgroups ... initgroups(3C)
access long integer data in a ... sputl(3X)
access ... sdgetv(2)
access to a resource governed by a/ waitsem(2)
access to a shared data segment ... sdenter(2)
access to the slave pseudo-terminal grantpt(3C)
access utmp file entry /pututline, getut(3C)
access utmpx file entry /getutmp, getutx(3C)
accessibility of a file .. access(2)
accounting ... acct(2)
acct enable or disable process ... acct(2)
acknowledge receipt of an orderly t_rcvrel(3N)
acos, acosf, atan, atanf, atan2,/ .. trig(3M)
acosf, atan, atanf, atan2, atan2f/ ... trig(3M)
acosh, atanh hyperbolic functions sinh(3M)
add a character (with attributes) curs_addch(3X)
add a string of characters to a/ curs_addstr(3X)
add a string of wchar_t characters/ curs_addwstr(3X)
add a wchar_t character (with/ curs_addwch(3X)
add program termination routine atexit(3C)
add string of characters (and/ curs_addchstr(3X)
add string of wchar_t characters curs_addwchstr(3X)
add value to environment ... putenv(3C)
addch, waddch, mvaddch, mvwaddch, curs_addch(3X)
addchnstr, waddchstr, waddchnstr,/ curs_addchstr(3X)
addchstr, addchnstr, waddchstr, curs_addchstr(3X)
additional severities ... addsev(3C)
addnstr, waddstr, waddnstr, curs_addstr(3X)
addnwstr, waddwstr, waddnwstr, curs_addwstr(3X)
address manipulation /inet_lnaof, inet(3N)
address mapping operations ... ethers(3N)

1

Permuted Index

object dlsym get the
mlockall, munlockall lock or unlock

t_bind bind an

severity levels for an application/
mvaddstr, mvaddnstr,/ curs_addstr:

mvwaddwch, echowchar,/ curs_addwch:
curs_addwchstr: addwchstr,

waddwchnstr,/ curs_addwchstr:

waddnwstr,/ curs_addwstr:
synchronization of the system/

uadmin
attributes) to a curses window and
characters to a curses window and
attributes) to a curses window and
characters to a curses window and

and match/ regexp: compile, step,
and match/ regexpr: compile, step,

if forms field has off-screen data
alarm set a process

t_alloc
brk, sbrk change data segment space

alloca memory
calloc, memalign, valloc, memory
calloc, mallopt, mallinfo memory

calls siginterrupt
clock adjtime correct the time to

scandir,
sigaltstack set or get signal

window /get a string of characters
/get a string of wchar_t characters

I add string of characters
/add string of wchar_t characters

sigstack set
I field_just format the general

panel /panel_userptr associate
/field_userptr associate
/form_userptr associate
/item_userptr associate

/menu_userptr associate
/a list of severity levels for an

coordinate ELF library and
/set_menu_term, menu_term assign

2

address of a symbol in shared .. dlsym(3X)
address space .. mlockall(3C)
address to a transport endpoint .. t_bind(3N)
addsev define additional severities addsev(3C)
addseverity build a list of ... addseverity(3C)
addstr, addnstr, waddstr, waddnstr, curs_addstr(3X)
addwch, waddwch, mvaddwch, curs_addwch(3X)
addwchnstr, waddwchstr,/ curs_addwchstr(3X)
addwchstr, addwchnstr, waddwchstr,
.. curs_addwchstr(3X)
addwstr, addnwstr, waddwstr, curs_addwstr(3X)
adjtime correct the time to allow adjtime(2)
administrative control ... uadmin(2)
advance cursor /a character (with curs_addch(3X)
advance cursor /add a string of curs_addstr(3X)
advance cursor /character (with curs_addwch(3X)
advance cursor /a string of wchar_t curs_addwstr(3X)
advance regular expression compile regexp(5)
advance regular expression compile regexpr(3G)
ahead or behind /data_behind tell form_data(3X)
alarm clock .. alarm(2)
alarm set a process alarm clock .. alarm(2)
alloca memory allocator ... alloca(3)
allocate a library structure .. t_alloc(3N)
allocation .. brk(2)
allocator .. alloca(3)
allocator malloc, free, realloc, ... malloc(3C)
allocator malloc, free, realloc, .. malloc(3X)
allow signals to interrupt system siginterrupt(3)
allow synchronization of the system adjtime(2)
alphasort scan a directory .. scandir(3)
alternate stack context .. sigaltstack(2)
(and attributes) from a curses curs_inchstr(3X)
(and attributes) from a curses/ curs_inwchstr(3X)
(and attributes) to a curses window curs_addchstr(3X)
(and attributes) to a curses window curs_addwchstr(3X)
and/or get signal stack context ... sigstack(3)
appearance of forms .. form_field_just(3X)
application data with a panels panel_userptr(3X)
application data with forms form_field_userptr(3X)
application data with forms form_userptr(3X)
application data with menus items
... menu_item_userptr(3X)
application data with menus menu_userptr(3X)
application for use with frntmsg addseverity(3C)
application versions elf_ version elf_ version(3E)
application-specific routines for I menu_hook(3X)

System Calls and Library Functions Reference Manual

/set_field_term, field_term assign
elf_next sequential

elf_rand random
elf _getarhdr retrieve

elf_getarsym retrieve
stdarg handle variable

varargs handle variable
formatted output of a variable
formatted output of a variable

getopt get option letter from
miscellaneous functions for IEEE
mfree multiple precision integer

string strftime, cftime,
/isnumber, isspecial classify

between long integer and base-64
time to/ ctime, localtime, gmtime,

/sin, sinf, cos, cosf, tan, tanf,
/sinf, cos, cosf, tan, tanf, asin,

/sinhf, cosh, coshf, tanh, tanhf,

assert verify program
/menu_init, set_menu_term, menu_term

I set_field _term, field_ term
/setbuffer, setlinebuf, setvbuf

setbuf, setvbuf
setbuffer, setlinebuf

/set_panel_userptr, panel_userptr
/set_field_userptr, field_userptr

/set_form_userptr, form_userptr
/set_item_userptr, item_userptr

/set_menu_userptr, menu_userptr
write or erase forms from

write or erase menus from
forms window and subwindow

menus window and subwindow
tanf, asin, asinf, acos, acosf,

asinf, acos, acosf, atan, atanf,
/acos, acosf, atan, atanf, atan2,

/asin, asinf, acos, acosf, atan,
coshf, tanh, tanhf, asinh, acosh,

routine
double-precision number strtod,

strtol, strtoul, ato!,
integer strtol, strtoul,

descriptor to an object in/ fattach
segment sdget, sdfree

I curses character and window

Permuted Index

Permuted Index

application-specific routines for I form_hook(3X)
archive member access ... elf_next(3E)
archive member access .. elf_rand(3E)
archive member header .. elf_getarhdr(3E)
archive symbol table .. elf_getarsym(3E)
argument list .. stdarg(S)
argument list .. varargs(S)
argument list /vsprintf print ... vprintf(3S)
argument list /vsprintf print ... vprintf(3W)
argument vector ... getopt(3C)
arithmetic /isnan, copysign, scalbn ieee_functions(3M)
arithmetic /sdiv, itom, xtom, mtox, .. mp(3)
ascftime convert date and time to strftime(3C)
ASCII and supplemetary code set/ wctype(3W)
ASCII string a641, 164a convert .. a641(3C)
asctime, tzset convert date and ... ctime(3C)
asin, asinf, acos, acosf, atan,/ ... trig(3M)
asinf, acos, acosf, atan, atanf,/ ... trig(3M)
asinh, acosh, atanh hyperbolic/ ... sinh(3M)
assert verify program assertion .. assert(3X)
assertion ... assert(3X)
assign application-specific/ menu_hook(3X)
assign application-specific/ form_hook(3X)
assign buffering to a stream .. setbuf(3S)
assign buffering to a stream .. setbuf(3S)
assign buffering to a stream ... setbuffer(3S)
associate application data with a/ panel_userptr(3X)
associate application data with/ form_field_userptr(3X)
associate application data with/ form_userptr(3X)
associate application data with/ menu_item_userptr(3X)
associate application data with/ menu_userptr(3X)
associated subwindows /unpost_form form_post(3X)
associated subwindows /unpost_menu menu_post(3X)
association routines /scale_form form_win(3X)
association routines /scale_menu menu_win(3X)
atan, atanf, atan2, atan2f/ /tan, ... trig(3M)
atan2, atan2f trigonometric/ /asin, trig(3M)
atan2f trigonometric functions .. trig(3M)
atanf, atan2, atan2f trigonometric/ trig(3M)
atanh hyperbolic functions /cosh, sinh(3M)
atexit add program termination ... atexit(3C)
atof, convert string to ... strtod(3C)
atoi convert string to integer .. strtol(3C)
atol, atoi convert string to ... strtol(3C)
attach a STREAMS-based file ... fattach(3C)
attach and detach a shared data ... sdget(2)
attribute control routines ... curs_attr(3X)

3

Permuted Index

set and get forms field
/mvwinch get a character and its

I get a string of characters (and
/get a wchar_t character and its

/a string of wchar_t characters (and
menu_pad control menus display

format the general display
/wechochar add a character (with

/add a wchar_t character (with
I add string of characters (and

string of wchar_t characters (and
attrset, wattrset,/ curs_attr:

curs_attr: attroff, wattroff,
/attroff, wattroff, attron, wattron,

secure_rpc: authdes_seccreate,
authdes_getucred,/ secure_rpc:
authsys_create,/ rpc_clnt_auth:
client side remote procedure call

rpc_clnt_auth: auth_destroy,
auth_destroy, authnone_create,

/authnone_create, authsys_create,
/application-specific routines for
and wait for interrupt sigpause
resource/ waitsem, nbwaitsem

/mvwgetch, ungetch get (or push
/mvwgetwch, ungetwch get (or push

/wbkgdset, bkgd, wbkgd curses window
elf_getbase get the

signal
delete, firstkey, nextkey data

convert between long integer and
forms character

menus character
panels character

a pathname

4

has_il, killchar,/ curs_termattrs:
operations bstring: bcopy,
string operations bstring:
flash routines curs_beep:

field has off-screen data ahead or
curs_beep: beep, flash curses

bessel: jO, jl, jn, yO, yl, yn
Bessel functions

/srandom, initstate, setstate
delimiter

fread, fwrite
bsearch

attributes /set_max_field form_field_buffer(3X)
attributes from a curses window curs_inch(3X)
attributes) from a curses window curs_inchstr(3X)
attributes from a curses window curs_inwch(3X)
attributes) from a curses window curs_inwchstr(3X)
attributes /set_menu_pad, menu_attributes(3X)
attributes of forms /field_pad form_field_attributes(3X)
attributes) to a curses window and/ curs_addch(3X)
attributes) to a curses window and/ curs_addwch(3X)
attributes) to a curses window curs_addchstr(3X)
attributes) to a curses window /add curs_addwchstr(3X)
attroff, wattroff, attron, wattron, curs_attr(3X)
attron, wattron, attrset, wattrset,/ curs_attr(3X)
attrset, wattrset, standend,/ .. curs_attr(3X)
authdes_getucred, getnetname,/ secure_rpc(3N)
authdes_seccreate, ... secure_rpc(3N)
auth_destroy, authnone_create, rpc_clnt_auth(3N)
authentication /routines for rpc_clnt_auth(3N)
authnone_create, authsys_create,/ rpc_clnt_auth(3N)
authsys_create,/ rpc_clnt_auth: rpc_clnt_auth(3N)
authsys_create_default library I rpc_clnt_auth(3N)
automatic invocation by menus menu_hook(3X)
automically release blocked signals sigpause(3)
await and check access to a ... waitsem(2)
back) characters from curses/ curs_getch(3X)
back) wchar_t characters from/ curs_getwch(3X)
background manipulation routines curs_bkgd(3X)
base offset for an object file .. elf_getbase(3E)
base signals .. signal(S)
base subroutines /fetch, store, ... dbm(3)
base-64 ASCII string a641, 164a .. a641(3C)
based forms package ... forms(3X)
based menus package ... menus(3X)
based panels package panels(3X)
basename return the last element of basename(3G)
baudrate, erasechar, has_ic, curs_termattrs(3X)
bcmp, bzero, bit and byte string .. bstring(3)
bcopy, bcmp, bzero, bit and byte .. bstring(3)
beep, flash curses bell and screen curs_beep(3X)
behind /data_behind tell if forms form_data(3X)
bell and screen flash routines curs_beep(3X)
Bessel functions bessel(3M)
bessel: jO, jl, jn, yO, yl, yn .. bessel(3M)
better random number generator;/ random(3)
bgets read stream up to next .. bgets(3G)
binary input/output ... fread(3S)
binary search a sorted table ... bsearch(3C)

System Calls and Library Functions Reference Manual

tfind, tdelete, twalk manage
creatsem create an instance of a

bind
processor_ bind

endpoint t_bind

rpcb_unset library routines for RPC
bstring: bcopy, bcmp, bzero,

ffs find first set
curs_bkgd: bkgdset, wbkgdset,

curses window I curs_bkgd:
sigblock, sigmask

sync update super
sigpending examine signals that are

sigpause automically release
whline, vline, wvline/ curs_border:
/whline, vline, wvline create curses

manipulation/ panel_top: top_panel,
curs_border: border, wborder,

allocation
table

and byte string operations
bufsplit split

determine whether a character
set and get menus pattern match

stdio standard
setlinebuf, setvbuf assign

setbuf, setvbuf assign
setbuffer, setlinebuf assign

an application for use/ addseverity
elf_ fill set fill

values between host and network
bcopy, bcmp, bzero, bit and

ntohs convert values between host/
swab swap

operations bstring: bcopy, bcmp,
mktime converts a tm structure to a

computes the difference between two
for client side remote procedure

for server side remote procedure
stat data returned by stat system

syscall indirect system
allocator malloc, free, realloc,
allocator malloc, free, realloc,

intro introduction to system
routines for remote procedure

Permuted Index

Permuted Index

binary search trees tsearch, ... tsearch(3C)
binary semaphore ... creatsem(2)
bind a name to a socket .. bind(3N)
bind a process to a processor processor_bind(2)
bind an address to a transport .. t_bind(3N)
bind bind a name to a socket .. bind(3N)
bind service /rpcb_set, ... rpcbind(3N)
bit and byte string operations .. bstring(3)
bit ... ffs(3C)
bkgd, wbkgd curses window I curs_bkgd(3X)
bkgdset, wbkgdset, bkgd, wbkgd curs_bkgd(3X)
block signals .. sigblock(3)
block .. sync(2)
blocked and pending ... sigpending(2)
blocked signals and wait for/ .. sigpause(3)
border, wborder, box, hline, curs_border(3X)
borders, horizontal and vertical/ curs_border(3X)
bottom_panel panels deck ... panel_top(3X)
box, hline, whline, vline, wvline/ curs_border(3X)
brk, sbrk change data segment space .. brk(2)
bsearch binary search a sorted .. bsearch(3C)
bstring: bcopy, bcmp, bzero, bit .. bstring(3)
buffer into fields ... bufsplit(3G)
buffer is encrypted isencrypt isencrypt(3G)
buffer /menu_pattern .. menu_pattern(3X)
buffered input/output package .. stdio(3S)
buffering to a stream /setbuffer, setbuf(3S)
buffering to a stream ... setbuf(3S)
buffering to a stream .. setbuffer(3S)
bufsplit split buffer into fields .. bufsplit(3G)
build a list of severity levels for addseverity(3C)
byte .. elf_fill(3E)
byte order /ntohl, ntohs convert byteorder(3N)
byte string operations bstring: ... bstring(3)
byteorder, htonl, htons, ntohl, byteorder(3N)
bytes swab(3C)
bzero, bit and byte string .. bstring(3)
calendar time .. mktime(3C)
calendar times difftime .. difftime(3C)
call authentication /routines rpc_clnt_auth(3N)
call errors /library routines rpc_svc_err(3N)
call ... stat(5)
call .. syscall(3)
calloc, mallopt, mallinfo memory malloc(3X)
calloc, memalign, valloc, memory malloc(3C)
calls and error numbers .. intro(2)
calls rpc library ... rpc(3N)

5

Permuted Index

library routines for client side
routines for remote procedure

for secure remote procedure
allow signals to interrupt system
/init_pair, init_color, has_colors,

catclose open/close a message
setcat define default

catalog catopen,

message catalog
halfdelay, intrflush,/ curs_inopts:
pow, powf, sqrt, sqrtf/ exp, expf,

fabs, fabsf, rint,/ floor, floorf,
fabsf, rint,/ floor, floorf, ceil,

/fabs, fabsf, rint, remainder floor,
tcflush, tcflow, cfgetospeed,

I tcdrain, tcflush, tcflow,
tcflow, cfgetospeed, cfgetispeed,

tcgetsid/ /cfgetispeed, cfsetispeed,
time to string strftime,

allocation brk, sbrk
chmod, fchmod

yp_update
putenv

sigprocmask
chown, lchown, fchown

nice
process nice

chroot
waitid wait for child process to

waitpid wait for child process to
rename

chsize
chdir, fchdir

number generator; routines for
pipe create an interprocess

/inch, winch, mvinch, mvwinch get a
/mvinwch, mvwinwch get a wchar_t

control/ /standout, wstandout curses
ungetwc push wchar_t

ungetcpush
forms

menus
panels

/winsch, mvinsch, mvwinsch insert a
under I /mvwinswch insert a wchar_t

isencrypt determine whether a

6

calls /rpc_broadcast, rpc_call rpc_clnt_calls(3N)
calls /xdr_replymsg XDR library rpc_xdr(3N)
calls /library routines ... secure_rpc(3N)
calls siginterrupt .. siginterrupt(3)
can_ change_ color, color_ content,/ curs_color(3X)
catalog catopen, .. catopen(3C)
catalog .. setcat(3C)
catclose open/close a message catopen(3C)
catgets read a program message catgets(3C)
catopen, catclose open/close a catopen(3C)
cbreak, nocbreak, echo, noecho, curs_inopts(3X)
cbrt, log, logf, log IO, loglOf, .. exp(3M)
ceil, ceilf, copysign, fmod, fmodf, floor(3M)
ceilf, copysign, fmod, fmodf, fabs, floor(3M)
ceiling, remainder, absolute value/ floor(3M)
cfgetispeed, cfsetispeed,/ /tcdrain, termios(2)
cfgetospeed, cfgetispeed,/ .. termios(2)
cfsetispeed, cfsetospeed,/ I tcflush, termios(2)
cfsetospeed, tcgetpgrp, tcsetpgrp, termios(2)
cftime, ascftime convert date and strftime(3C)
change data segment space ... brk(2)
change mode of file .. chmod(2)
change NIS information ... yp_update(3N)
change or add value to environment putenv(3C)
change or examine signal mask sigprocmask(2)
change owner and group of a file .. chown(2)
change priority of a process nice(3C)
change priority of a time-sharing ... nice(2)
change root directory .. chroot(2)
change state .. waitid(2)
change state ... waitpid(2)
change the name of a file ... rename(2)
change the size of a file ... chsize(2)
change working directory .. chdir(2)
changing generators /better random random(3)
channel .. pipe(2)
character and its attributes from a/ curs_inch(3X)
character and its attributes from a/ curs_inwch(3X)
character and window attribute curs_attr(3X)
character back into input stream ungetwc(3W)
character back onto input stream ungetc(3S)
character based forms package forms(3X)
character based menus package menus(3X)
character based panels package panels(3X)
character before the character I curs_ insch(3X)
character before the character curs_inswch(3X)
character buffer is encrypted .. isencrypt(3G)

System Calls and Library Functions Reference Manual

getwc, getwchar, fgetwc get wchar_t
ispunct, isprint, isgraph, isascii

mbtowc, mblen, wctomb multibyte
widec multibyte

cuserid get
putwc, putwchar, fputwc put wchar_t

getc, getchar, fgetc, getw get
putc, putchar, fputc, putw put

terminal/ /mvwgetstr, mvwgetnstr get
/mvwgetwstr, mvwgetnwstr get wchar_t

wdelch, mvdelch, mvwdelch delete
I insert a character before the

/mvwinsnstr insert string before
/insert wchar_t string before

/a wchar t character before the
/mvwaddch, echochar, wechochar add a
/echowchar, wechowchar add a wchar_t

dynamic_field_info get forms field
curses/ /mvwinchnstr get a string of

curses/ /get a string ofwchar_t
curses/ /mvwaddchnstr add string of

/mvwaddwchnstr add string of wchar_t
_tolower, toascii translate

/mvwinstr, mvwinnstr get a string of
/mvwinnwstr get a string of wchar_t

/ungetch get (or push back)
/ungetwch get (or push back) wchar_t

advance/ /mvwaddnstr add a string of
/mvwaddnwstr add a string of wchar_t

wconv: towupper, towlower translate
ASCII and supplemetary code set

directory
by a/ waitsem, nbwaitsem await and

ifignore
spray scatter data in order to

read rdchk
times get process and

waitid wait for
waitpid wait for

wait wait for

and group of a file

/elf32_xlatetof, elf32_xlatetom
/elf32_newehdr retrieve

table /elf32_newphdr retrieve

Permuted Index

Permuted Index

character from a stream .. getwc(3W)
character handling /iscntrl, ctype(3C)
character handling mbchar: ... mbchar(3C)
character 1/0 routines .. widec(3W)
character login name of the user cuserid(3S)
character on a stream ... putwc(3W)
character or word from a stream ... getc(3S)
character or word on a stream ... putc(3S)
character strings from curses curs_getstr(3X)
character strings from curses/ curs_getwstr(3X)
character under cursor in a/ /delch, curs_delch(3X)
character under the cursor in a/ curs_insch(3X)
character under the cursor in a/ curs_instr(3X)
character under the cursor in a/ curs_instr(3X)
character under the cursor in a/ curs_inswch(3X)
character (with attributes) to a/ curs_addch(3X)
character (with attributes) to a/ curs_addwch(3X)
characteristics /field_info, form_field_info(3X)
characters (and attributes) from a curs_inchstr(3X)
characters (and attributes) from a curs_inwchstr(3X)
characters (and attributes) to a curs_addchstr(3X)
characters (and attributes) to a/ curs_addwchstr(3X)
characters /tolower, _toupper, ... conv(3C)
characters from a curses window curs_instr(3X)
characters from a curses window curs_inwstr(3X)
characters from curses terminal/ curs_getch(3X)
characters from curses terminal/ curs_getwch(3X)
characters to a curses window and curs_addstr(3X)
characters to a curses window and/ curs_addwstr(3X)
characters ... wconv(3W)
characters /isspecial classify .. wctype(3W)
chdir, fchdir change working .. chdir(2)
check access to a resource governed waitsem(2)
check for ignored network interface ifignore(3N)
check the network ... spray(3N)
check to see if there is data to be ... rdchk(2)
child process times ... times(2)
child process to change state .. waitid(2)
child process to change state .. waitpid(2)
child process to stop or terminate ... wait(2)
chmod, fchmod change mode of file chmod(2)
chown, lchown, fchown change owner chown(2)
chroot change root directory ... chroot(2)
chsize change the size of a file .. chsize(2)
class-dependent data translation elf_xlate(3E)
class-dependent object file header elf_getehdr(3E)
class-dependent program header elf_getphdr(3E)

7

Permuted Index

elf_getshdr: elf32_getshdr retrieve
/isenglish, isnumber, isspecial
/wclrtobot, clrtoeol, wclrtoeol

curs_clear: erase, werase,
inquiries ferror, feof,

leaveok, setscrreg,/ curs_outopts:
with creation and manipulation of

yperr_string, ypprot_err NIS
rpc_call library routines for

/library routines for
listener nlsgetcall get

clnt_geterr,/ rpc_clnt_calls:
clnt_destroy,/ rpc_clnt_create:

rpc_clnt_create: clnt_control,
/clnt_control, clnt_create,
/clnt_create, clnt_destroy,

rpc_clnt_calls: clnt_call,
/clnt_call, clnt_freeres,

/clnt_destroy, clnt_dg_create,
/clnt_freeres, clnt_geterr,
I clnt_geterr, clnt_perrno,

clnt_dg_create, clnt_pcreateerror,
/clnt_pcreateerror, clnt_raw _create,

/clnt_perrno, clnt_perror,
/clnt_perror, clnt_sperrno,

clnt_ vc_create/ I clnt_spcreateerror,
library routines/ /clnt_tli_create,

/clnt_tli_create, clnt_tp_create,
allow synchronization of the system

alarm set a process alarm

8

close
dlclose
t_close

fclose, £flush
p2open, p2close open,

/telldir, seekdir, rewinddir,
/telldir, seekdir, rewinddir,

log syslog, openlog,
/erase, werase, clear, wclear,

/clear, wclear, clrtobot, wclrtobot,
classify ASCII and supplemetary

get information of supplementary
signal handling for specific SIGFPE

compressing or expanding escape
strcoll string

class-dependent section header elf_getshdr(3E)
classify ASCII and supplemetary I wctype(3W)
clear all or part of a curses I curs_ clear(3X)
clear, wclear, clrtobot, wclrtobot,/ curs_clear(3X)
clearerr, fileno stream status .. ferror(3S)
clearok, idlok, idcok immedok, curs_outopts(3X)
CLIENT handles /for dealing rpc_clnt_create(3N)
client interface /yp_master, ... ypclnt(3N)
client side calls /rpc_broadcast, rpc_clnt_calls(3N)
client side remote procedure call/ rpc_clnt_auth(3N)
client's data passed via the .. nlsgetcall(3N)
clnt_call, clnt_freeres, .. rpc_clnt_calls(3N)
clnt_control, clnt_create, rpc_clnt_create(3N)
clnt_create, clnt_destroy,/ rpc_clnt_create(3N)
clnt_destroy, clnt_dg_create,/ rpc_clnt_create(3N)
clnt_dg_create, clnt_pcreateerror,/ rpc_clnt_create(3N)
clnt_freeres, clnt_geterr,/ rpc_clnt_calls(3N)
clnt_geterr, clnt_perrno,/ rpc_clnt_calls(3N)
clnt_pcreateerror, clnt_raw _create,/ rpc_clnt_create(3N)
clnt_perrno, clnt_perror,/ rpc_clnt_calls(3N)
clnt_perror, clnt_sperrno,/ rpc_clnt_calls(3N)
clnt_raw_create,/ /clnt_destroy, rpc_clnt_create(3N)
clnt_spcreateerror,/ .. rpc_clnt_create(3N)
clnt_sperrno, clnt_sperror,/ rpc_clnt_calls(3N)
clnt_sperror, rpc_broadcast,/ rpc_clnt_calls(3N)
clnt_tli_create, clnt_tp_create, rpc_clnt_create(3N)
clnt_tp_create, clnt_ vc_create rpc_clnt_create(3N)
clnt_ vc_create library routines for/ rpc_clnt_create(3N)
clock adjtime correct the time to adjtime(2)
clock .. alarm(2)
clock report CPU time used ... clock(3C)
close a file descriptor ... close(2)
close a shared object .. dlclose(3X)
close a transport endpoint ... t_close(3N)
close close a file descriptor ... close(2)
close or flush a stream ... fclose(3S)
close pipes to and from a command p2open(3G)
closedir directory operations .. directory(3C)
closedir directory operations ... opendir(3)
closelog, setlogmask control system syslog(3)
clrtobot, wclrtobot, clrtoeol,/ curs_clear(3X)
clrtoeol, wclrtoeol clear all or I curs_clear(3X)
code set characters /isspecial wctype(3W)
code sets getwidth .. getwidth(3W)
codes sigfpe ... sigfpe(3)
codes /strecpy copy strings, ... strccpy(3G)
collation .. strcoll(3C)

System Calls and Library Functions Reference Manual

/color_content, pair_content curses
/has_colors, can_change_color,

and get maximum numbers of rows and
open, close pipes to and from a

subsystem form_driver
subsystem menu_driver

for returning a stream to a remote
rexec return stream to a remote

system issue a shell
stdipc: ftok standard interprocess

socket create an endpoint for
expression regcmp, regex

/step, advance regular expression
/step, advance regular expression
expression compile and/ regexp:

expression compile and/ regexpr:
erf, erfc error function and

entry corresponding to NETP ATH
/strcadd, strecpy copy strings,

elf_hash
div, !div

calendar times difftime
fpathconf, pathconf get

sysconf retrieves
getnetconfig get network

doconfig execute a
t_rcvconnect receive the

and from/ /menu_items, item_ count
/field_count, move_field

socket
t_accept accept a

t_listen listen for a
receive the confirmation from a

getpeername get name of
socketpair create a pair of

establish an outgoing terminal line
accept accept a

connect initiate a
shut down part of a full-duplex

data or expedited data sent over a
send data or expedited data over a

user t_connect establish a
listen listen for

a message on stderr or system
math math functions and

control maximum system resource
retrieve uninterpreted file

Permuted Index

Permuted Index

color manipulation routines curs_color(3X)
color_ content, pair_content curses/ curs_color(3X)
columns in menus /menu_format set menu_format(3X)
command p2open, p2close ... p2open(3G)
command processor for the forms form_driver(3X)
command processor for the menus menu_driver(3X)
command /ruserok routines .. rcmd(3N)
command rexec(3N)
command ... system(3S)
communication package ... stdipc(3C)
communication ... socket(3N)
compile and execute regular ... regcmp(3G)
compile and match routines .. regexp(S)
compile and match routines .. regexpr(3G)
compile, step, advance regular .. regexp(S)
compile, step, advance regular regexpr(3G)
complementary error function .. erf(3M)
component getnetpath get netconfig getnetpath(3N)
compressing or expanding escape/ strccpy(3G)
compute hash value .. elf_hash(3E)
compute the quotient and remainder div(3C)
computes the difference between two difftime(3C)
configurable pathname variables fpathconf(2)
configurable system variables ... sysconf(3C)
configuration database entry getnetconfig(3N)
configuration script ... doconfig(3N)
confirmation from a connect request t_rcvconnect(3N)
connect and disconnect items to menu_items(3X)
connect fields to forms ... form_field(3X)
connect initiate a connection on a connect(3N)
connect request ... t_accept(3N)
connect request ... t_listen(3N)
connect request t_rcvconnect t_rcvconnect(3N)
connected peer getpeername(3N)
connected sockets socketpair(3N)
connection dial dial(3C)
connection on a socket .. accept(3N)
connection on a socket .. connect(3N)
connection shutdown ... shutdown(3N)
connection t_rcv receive ... t_rcv(3N)
connection t_snd .. t_snd(3N)
connection with another transport t_connect(3N)
connections on a socket .. listen(3N)
console fmtmsg display .. fmtmsg(3C)
constants .. math(S)
consumption getrlimit, setrlimit getrlimit(2)
contents elf_rawfile .. elf_rawfile(3E)

9

Permuted Index

setcontext get and set current user
set or get signal alternate stack

set and/or get signal stack
ucontext user

swapcontext manipulate user
elf_cntl

ioctl
fcntl file

IEEE floating-point environment
consumption getrlimit, setrlimit

mctl memory management
memcntl memory management

/menu_grey, set_menu_pad, menu_pad
msgctl message

semctl semaphore
shmctl shared memory

fcntl file
priocntl process scheduler

generalized process scheduler
character and window attribute

curses terminal input option
non! curses terminal output option

is_wintouched curses refresh
openlog, closelog, setlogmask

uadmin administrative
_tolower, toascii translate/
sfconvert, sgconvert output

vfprintf, vsprintf formatted output
long integers 13tol, ltol3

base-64 ASCII string a64l, l64a
/localtime, gmtime, asctime, tzset

strftime, cftime, ascftime
floating-point/ I decimal_to_extended

string ecvt, fcvt, gcvt
decimal record /extended_to_decimal

/wscanw, mvscanw, mvwscanw, vwscanw
scanf, fscanf, sscanf
scanf, fscanf, sscanf

number strtod, atof,
strtol, strtoul, atol, a toi

getdate
network/ /htonl, htons, ntohl, ntohs

calendar time mktime
application versions elf_ version

get curses cursor and window
copylist

strccpy: streadd, strcadd, strecpy

10

context getcontext, ... getcontext(2)
context sigaltstack .. sigaltstack(2)
context sigstack ... sigstack(3)
context ... ucontext(S)
contexts makecontext, ... makecontext(3C)
control a file descriptor .. elf_cnt1(3E)
control device ... ioctl(2)
control ... fcntl(2)
control I fpgetsticky, fpsetsticky fpgetround(3C)
control maximum system resource getrlimit(2)
control ... mctl(3)
control memcntl(2)
control menus display attributes menu_attributes(3X)
control operations ... msgctl(2)
control operations ... semctl(2)
control operations ... shmctl(2)
control options ... fcntl(S)
control ... priocntl(2)
control priocntlset .. priocntlset(2)
control routines /wstandout curses curs_attr(3X)
control routines /typeahead curs_inopts(3X)
control routines /scrollok, nl, curs_outopts(3X)
control routines /is_linetouched, curs_touch(3X)
control system log syslog, .. syslog(3)
control ... uadmin(2)
conv: toupper, tolower, _toupper, conv(3C)
conversion /gconvert, seconvert, econvert(3)
conversion /sprintf, vprintf, ... printf(3)
convert between 3-byte integers and 13tol(3C)
convert between long integer and ... a641(3C)
convert date and time to string ... ctime(3C)
convert date and time to string strftime(3C)
convert decimal record to decimal_to_floating(3)
convert floating-point number to .. ecvt(3C)
convert floating-point value to floating_to_decimal(3)
convert formatted input from a/ curs_scanw(3X)
convert formatted input ... scanf(3S)
convert formatted input ... scanf(3W)
convert string to double-precision strtod(3C)
convert string to integer .. strtol(3C)
convert user format date and time getdate(3C)
convert values between host and byteorder(3N)
converts a trn structure to a ... mktime(3C)
coordinate ELF library and .. elf_ version(3E)
coordinates /getbegyx, getmaxyx curs__getyx(3X)
copy a file into memory ... copylist(3G)
copy strings, compressing or I ... strccpy(3G)

System Calls and Library Functions Reference Manual

____________________________ ___ Permuted Index

rint,/ floor, floorf, ceil, ceilf,
ieee_functions, fp _class, isnan,

curs_overlay: overlay, overwrite,
synchronization of the/ adjtime
menu_cursor: pos_menu_cursor

getnetpath get netconfig entry
acos, acosf,/ trig: sin, sinf,

acosf, atan,/ trig: sin, sinf, cos,
acosh, atanh/ sinh, sinhf,
atanh/ sinh, sinhf, cash,

clock report
an existing one

tmpnam, tempnam
mkfifo

existing one creat
fork

socketpair
tmpfile

communication socket
semaphore creatsem

pipe
I dup _field, link_field, free_field,
form_new: new _form, free_form

menu_item_new: new _item, free_item
menu_new: new_menu, free_menu

panel_new: new _panel, del_panel
/pnoutrefresh, pechochar, pechowchar

/box, hline, whline, vline, wvline
syncok, wcursyncup, wsyncdown

path mkdirp, rmdirp
/library routines for dealing with

umask set and get file
routines for dealing with the

external data representation stream
binary semaphore

optimization package curses
functions

encryption
safe for execution

terminal
tzset convert date and time to/

isupper, isalpha, isalnum,/
endpoint t_look look at the

gethostid get unique identifier of
sethostname get/set name of

Permuted Index

copylist copy a file into memory copylist(3G)
copysign, fmod, fmodf, fabs, fabsf, floor(3M)
copysign, scalbn miscellaneous/ ieee_functions(3M)
copywin overlap and manipulate/ curs_overlay(3X)
correct the time to allow .. adjtime(2)
correctly position a menus cursor menu_cursor(3X)
corresponding to NETP ATH component getnetpath(3N)
cos, cosf, tan, tanf, asin, asinf, ... trig(3M)
cosf, tan, tanf, asin, asinf, acos, .. trig(3M)
cosh, coshf, tanh, tanhf, asinh, .. sinh(3M)
coshf, tanh, tanhf, asinh, acosh, .. sinh(3M)
CPU time used clock(3C)
creat create a new file or rewrite ... creat(2)
create a name for a temporary file tmpnam(3S)
create a new FIFO .. mkfifo(3C)
create a new file or rewrite an ... creat(2)
create a new process ... fork(2)
create a pair of connected sockets socketpair(3N)
create a temporary file .. tmpfile(3S)
create an endpoint for ... socket(3N)
create an instance of a binary ... creatsem(2)
create an interprocess channel ... pipe(2)
create and destroy forms fields form_field_new(3X)
create and destroy forms ... form_new(3X)
create and destroy menus items menu_item_new(3X)
create and destroy menus .. menu_new(3X)
create and destroy panels ... panel_new(3X)
create and display curses pads curs_pad(3X)
create curses borders, horizontal/ curs_border(3X)
create curses windows /wsyncup, curs_ window(3X)
create, remove directories in a .. mkdirp(3G)
creation and manipulation of CLIENT I
... rpc_clnt_create(3N)
creation mask .. umask(2)
creation of server handles /library rpc_svc_create(3N)
creation /library routines for xdr_create(3N)
creatsem create an instance of a creatsem(2)
CRT screen handling and .. curses(3X)
crypt password and file encryption crypt(3X)
crypt, setkey, encrypt generate .. crypt(3C)
csync designate portions of memory csync(2)
ctermid generate file name for ... ctermid(3S)
ctime, localtime, gmtime, asctime, ctime(3C)
ctype: isdigit, isxdigit, islower, ... ctype(3C)
current event on a transport .. t_look(3N)
current host ... gethostid(3)
current host gethostname, gethostname(3)

11

Permuted Index

top_row, item_index set and get

/field_index set forms
sigsetmask set

t _gets ta te get the
uname get name of

getcontext, setcontext get and set
the slot in the utmp file of the
/replace_panel get or set the

getcwd get pathname of
getwd get

/form_page, set_current_field,
item_index set/ /set_current_item,

mvwaddch, echochar, wechochar add/
waddchstr, waddchnstr, mvaddchstr,/

waddstr, waddnstr, mvaddstr,/
mvaddwch, mvwaddwch, echowchar,/

addwchnstr, waddwchstr,/
waddwstr, waddnwstr, mvaddwstr,/

attron, wattron, attrset,/
and screen flash routines

wbkgd curses window background/
hline, whline, vline, wvline/
wclear, clrtobot, wclrtobot,/

init_color, has_ colors,/
mvwdelch delete character under I

insdelln, winsdelln, insertln,/
routines curs_beep: beep, flash

/hline, whline, vline, wvline create
/wstandend, standout, wstandout

/color_content, pair_content
optimization package

getparyx, getbegyx, getmaxyx get
/longname, termattrs, termname

/tgetnum, tgetstr, tgoto, tputs
/tigetflag, tigetnum, tigetstr

pechowchar create and display
I is _linetouched, is_ win touched

curs_set, napms low-level
/scr_init, scr_set read (write) a
/isendwin, set_term, delscreen

/slk_attrset, slk_attroff
/timeout, wtimeout, typeahead

get (or push back) characters from
/get character strings from

push back) wchar_t characters from

12

current menus items /set_top_row,
... menu_item_current(3X)
current page and field ... form_page(3X)
current signal mask .. sigsetmask(3)
current state .. t_getstate(3N)
current UNIX system ... uname(2)
current user context ... getcontext(2)
current user ttyslot find ... ttyslot(3C)
current window of a panels panel panel_ window(3X)
current working directory getcwd(3C)
current working directory pathname getwd(3)
current_field, field_index set/ form_page(3X)
current_item, set_top_row, top_row,
... menu_item_current(3X)
curs_addch: addch, waddch, mvaddch, curs_addch(3X)
curs_addchstr: addchstr, addchnstr, curs_addchstr(3X)
curs_addstr: addstr, addnstr, curs_addstr(3X)
curs_addwch: addwch, waddwch, curs_addwch(3X)
curs_addwchstr: addwchstr, curs_addwchstr(3X)
curs_addwstr: addwstr, addnwstr, curs_addwstr(3X)
curs_attr: attroff, wattroff, .. curs_attr(3X)
curs_beep: beep, flash curses bell curs_beep(3X)
curs_bkgd: bkgdset, wbkgdset, bkgd, curs_bkgd(3X)
curs_border: border, wborder, box, curs_border(3X)
curs_clear: erase, werase, clear, curs_clear(3X)
curs_color: start_color, init_pair, curs_color(3X)
curs_delch: delch, wdelch, mvdelch, curs_delch(3X)
curs_deleteln: deleteln, wdeleteln, curs_deleteln(3X)
curses bell and screen flash .. curs_beep(3X)
curses borders, horizontal and/ curs_border(3X)
curses character and window I curs_attr(3X)
curses color manipulation routines curs_color(3X)
curses CRT screen handling and curses(3X)
curses cursor and window I /getyx, curs_getyx(3X)
curses environment query routines curs_termattrs(3X)
curses interfaces (emulated) to the/ curs_termcap(3X)
curses interfaces to terminfo/ curs_terminfo(3X)
curses pads /pechochar, .. curs_pad(3X)
curses refresh control routines curs_touch(3X)
curses routines /ripoffline, curs_kemel(3X)
curses screen from (to) a file curs_scr_dump(3X)
curses screen initialization and/ curs_initscr(3X)
curses soft label routines ... curs_slk(3X)
curses terminal input option/ curs_inopts(3X)
curses terminal keyboard /ungetch curs_getch(3X)
curses terminal keyboard ... curs_getstr(3X)
curses terminal keyboard /get (or curs_getwch(3X)

System Calls and Library Functions Reference Manual

/get wchar_t character strings from
/wsetscrreg, scrollok, nl, nonl

/flushinp miscellaneous
/a character (with attributes) to a

I add a string of characters to a
/character (with attributes) to a

I a string of wchar_t characters to a
/bkgdset, wbkgdset, bkgd, wbkgd
of characters (and attributes) to a

characters (and attributes) to a
wclrtoeol clear all or part of a

delete character under cursor in a
delete and insert lines in a

character and its attributes from a
characters (and attributes) from a

the character under the cursor in a
character under the cursor in a

get a string of characters from a
character under the cursor in a

the character under the cursor in a
character and its attributes from a
characters (and attributes) from a

string of wchar_t characters from a
curs_move: move, wmove move

convert formatted input from a
scroll, srcl, wscrl scroll a

redrawwin, wredrawln refresh
overlap and manipulate overlapped
vwprintw print formatted output in

wcursyncup, wsyncdown create
mvwgetch, ungetch get (or push/

wgetstr, wgetnstr, mvgetstr,/
mvgetwch, mvwgetwch, ungetwch get/

wgetwstr, wgetnwstr, mvgetwstr,/
getbegyx, getmaxyx get curses/

mvwinch get a character and its/
winchstr, winchnstr, mvinchstr,/

endwin, isendwin, set_ term,/
echo, noecho, halfdelay,/

mvwinsch insert a character before/
winsstr, winsnstr, mvinsstr,/
winnstr, mvinstr, mvinnstr,/

winswstr, winsnwstr, mvinswstr,/
mvinswch, mvwinswch insert a/

mvwinwch get a wchar_t character I
winwchstr, winwchnstr, mvinwchstr,/

winwstr, winnwstr, mvinwstr,/

Permuted Index

Permuted Index

curses terminal keyboard .. curs_getwstr(3X)
curses terminal output option/ curs_outopts(3X)
curses utility routines .. curs_util(3X)
curses window and advance cursor curs_addch(3X)
curses window and advance cursor curs_addstr(3X)
curses window and advance cursor curs_addwch(3X)
curses window and advance cursor curs_addwstr(3X)
curses window background/ curs_bkgd(3X)
curses window /add string curs_addchstr(3X)
curses window /string of wchar_t curs_addwchstr(3X)
curses window /wclrtobot, clrtoeol, curs_clear(3X)
curses window /mvdelch, mvwdelch curs_delch(3X)
curses window /winsertln curs_deleteln(3X)
curses window /mvwinch get a curs_inch(3X)
curses window /get a string of curs_inchstr(3X)
curses window /a character before curs_insch(3X)
curses window /insert string before curs_instr(3X)
curses window /mvwinstr, mvwinnstr curs_instr(3X)
curses window /string before curs_instr(3X)
curses window /character before curs_inswch(3X)
curses window /get a wchar_t curs_inwch(3X)
curses window /a string of wchar_t curs_inwchstr(3X)
curses window /mvwinnwstr get a curs_inwstr(3X)
curses window cursor ... curs_move(3X)
curses window /mvwscanw, vwscanw curs_scanw(3X)
curses window curs_scroll: curs_scroll(3X)
curses windows and lines /doupdate, curs_refresh(3X)
curses windows /overwrite, copywin curs_overlay(3X)
curses windows /mvwprintw, curs_printw(3X)
curses windows /wsyncup, syncok, curs_window(3X)
curs_getch: getch, wgetch, mvgetch, curs_getch(3X)
curs_getstr: getstr, getnstr, ... curs_getstr(3X)
curs_getwch: getwch, wgetwch, curs_getwch(3X)
curs_getwstr: getwstr, getnwstr, curs_getwstr(3X)
curs_getyx: getyx, getparyx, curs_getyx(3X)
curs_inch: inch, winch, mvinch, curs_inch(3X)
curs_inchstr: inchstr, inchnstr, curs_inchstr(3X)
curs_initscr: initscr, newterm, curs_initscr(3X)
curs_inopts: cbreak, nocbreak, curs_inopts(3X)
curs_insch: insch, winsch, mvinsch, curs_insch(3X)
curs_instr: insstr, insnstr, .. curs_instr(3X)
curs_instr: instr, innstr, winstr, curs_instr(3X)
curs_instr: inswstr, insnwstr, curs_instr(3X)
curs_inswch: inswch, winswch, curs_inswch(3X)
curs_inwch: inwch, winwch, mvinwch, curs_inwch(3X)
curs_inwchstr: inwchstr, inwchnstr, curs_inwchstr(3X)
curs_inwstr: inwstr, innwstr, curs_inwstr(3X)

13

Permuted Index

def_shell_mode, reset_prog_mode,/
window cursor

/getbegyx, getmaxyx get curses
to a curses window and advance
to a curses window and advance
to a curses window and advance
to a curses window and advance

move, wmove move curses window
position forms window

/mvwdelch delete character under
/before the character under the

string before character under the
string before character under the

/before the character under the
correctly position a menus

immedok, leaveok, setscrreg,/
copywin overlap and manipulate/

pnoutrefresh, pechochar,/
mvprintw, mvwprintw, vwprintw I

wnoutrefresh, doupdate, redrawwin,/
mvwscanw, vwscanw convert/

scr_restore, scr_init, scr_set/
scroll a curses window

I getsyx, setsyx, ripoffline,
slk_refresh, slk_noutrefresh,/

erasechar, has_ic, has_il,/
tgetnum, tgetstr, tgoto, tputs/

set_ curterm, del_ curterm,/
untouchwin, wtouchln,/

use_env, putwin, getwin,/
subwin, derwin, mvderwin, dupwin,/

the user
sdgetv synchronize shared

tell if forms field has off-screen
store, delete, firstkey, nextkey

elf_rawdata get section
retrieve file identification
t_rcvuderr receive a unit

sputl, sgetl access long integer
spray scatter

connection t_snd send
connection t_rcv receive

t_snd send data or expedited
nlsgetcall get client's

memory or unlock process, text, or
/library routines for external

xdr library routines for external

14

curs_kernel: def_prog_mode, curs_kernel(3X)
curs_move: move, wmove move curses curs_move(3X)
cursor and window coordinates curs_getyx(3X)
cursor /character (with attributes) curs_addch(3X)
cursor I add a string of characters curs_addstr(3X)
cursor /character (with attributes) curs_addwch(3X)
cursor /of wchar_t characters curs_addwstr(3X)
cursor curs_move: .. curs_move(3X)
cursor /pos_form_cursor form_cursor(3X)
cursor in a curses window .. curs_delch(3X)
cursor in a curses window curs_insch(3X)
cursor in a curses window /insert curs_instr(3X)
cursor in a curses window /wchar_t curs_instr(3X)
cursor in a curses window curs_inswch(3X)
cursor /pos_menu_cursor menu_cursor(3X)
curs_outopts: clearok, idlok, idcok curs_outopts(3X)
curs_overlay: overlay, overwrite, curs_overlay(3X)
curs_pad: newpad, subpad, prefresh, curs_pad(3X)
curs_printw: printw, wprintw, curs_printw(3X)
curs_refresh: refresh, wrefresh, curs_refresh(3X)
curs_scanw: scanw, wscanw, mvscanw, curs_scanw(3X)
curs_scr_dump: scr_dump, curs_scr_dump(3X)
curs_scroll: scroll, srcl, wscrl curs_scroll(3X)
curs_set, napms low-level curses/ curs_kernel(3X)
curs_slk: slk_init, slk_set, .. curs_slk(3X)
curs_termattrs: baudrate, curs_termattrs(3X)
curs_termcap: tgetent, tgetflag, curs_termcap(3X)
curs_terminfo: setupterm, setterm, curs_terminfo(3X)
curs_touch: touchwin, touchline, curs_touch(3X)
curs_util: unctrl, keyname, filter, curs_util(3X)
curs_ window: newwin, delwin, mvwin, curs_window(3X)
cuserid get character login name of cuserid(3S)
data access .. sdgetv(2)
data ahead or behind /data_ behind form_data(3X)
data base subroutines /fetch, ... dbm(3)
data elf_getdata, elf_newdata, elf_getdata(3E)
data elf_getident ... elf_getident(3E)
data error indication .. t_rcvuderr(3N)
data in a machine-independent/ ... sputl(3X)
data in order to check the network spray(3N)
data or expedited data over a ... t_snd(3N)
data or expedited data sent over a t_rcv(3N)
data over a connection ... t_snd(3N)
data passed via the listener .. nlsgetcall(3N)
data plock lock into ... plock(2)
data representation stream creation xdr_create(3N)
data representation ... xdr(3N)

System Calls and Library Functions Reference Manual

library routines for external
library routines for external
library routines for external

stat
synchronize access to a shared

sdfree attach and detach a shared
brk, sbrk change

t_rcv receive data or expedited
rdchk check to see if there is

elf32_xlatetom class-dependent
/field_type, field_arg forms field

nl_types native language
types primitive system

t_rcvudata receive a
t_sndudata send a

/panel_userptr associate application
field_userptr associate application
form_userptr associate application

/item_userptr associate application
menu_userptr associate application

forms field has/ form_data:
curses interfaces to terminfo

get network configuration
off-screen/ form_data: data_ahead,

ftime get
getdate convert user format

settimeofday get or set the
settimeofday get or set the

gmtime, asctime, tzset convert
strftime, cftime, ascftime convert

ftime get time and
store, delete, firstkey, nextkey I

firstkey, nextkey I dbm: dbminit,
delete, firstkey, nextkey I dbm:

/clnt_ vc_create library routines for
/svc_ vc_create library routines for

convert floating-point value to

value /decimal_to_extended convert
I decimal_ to _single,

record to/ /decimal_to_double,

decimal_ to_single, I
decimal_to_floating:

/hide_panel, panel_hidden panels
/top_panel, bottom_panel panels

/panel_above, panel_below panels

Permuted Index

Permuted Index

data representation /xdr_setpos xdr_admin(3N)
data representation /xdr_wrapstring xdr_complex(3N)
data representation /xdr_void xdr_simple(3N)
data returned by stat system call .. stat(S)
data segment sdenter, sdleave .. sdenter(2)
data segment sdget, .. sdget(2)
data segment space allocation ... brk(2)
data sent over a connection .. t_rcv(3N)
data to be read ... rdchk(2)
data translation /elf32_xlatetof, elf_xlate(3E)
data type validation form_field_ validation(3X)
data types .. nl_types(S)
data types .. types(S)
data unit .. t_rcvudata(3N)
data unit .. t_sndudata(3N)
data with a panels panel panel_userptr(3X)
data with forms /set_field_userptr, form_field_userptr(3X)
data with forms /set_form_userptr, form_userptr(3X)
data with menus items menu_item_userptr(3X)
data with menus /set_menu_userptr, menu_userptr(3X)
data_ahead, data_behind tell if form_data(3X)
database /tigetnum, tigetstr curs_terminfo(3X)
database entry getnetconfig getnetconfig(3N)
data_behind tell if forms field has form_data(3X)
date and time .. ftime(3C)
date and time ... getdate(3C)
date and time gettimeofday, gettimeofday(3)
date and time gettimeofday, gcttimeofday(3C)
date and time to string /localtime, ctime(3C)
date and time to string ... strftime(3C)
date ... ftime(2)
dbm: dbminit, dbmclose, fetch, ... dbm(3)
dbmclose, fetch, store, delete, .. dbm(3)
dbminit, dbmclose, fetch, store, ... dbm(3)
dealing with creation and/ rpc_clnt_create(3N)
dealing with the creation of server I rpc_svc_create(3N)
decimal record /extended_to_decimal

decimal record to floating-point
decimal_to_double,/
decimal_to_extended convert decimal

floating_to_decimal(3)
decimal_to_floating(3)
decimal _to _floating(3)

.. decimal_to_floating(3)
decimal_to_floating: decimal_to_floating(3)
decimal_to_single,/ decimal_to_floating(3)
deck manipulation routines panel_show(3X)
deck manipulation routines .. panel_top(3X)
deck traversal primitives .. panel_above(3X)

15

Permuted Index

setcat define
addsev

setcat
lfmt() setlabel

floatingpoint IEEE floating point
reset_prog_mode,/ curs_kernel:

curs_kernel: def_prog_mode,
filter, use_env, putwin, getwin,

delete character under I curs_ delch:
/setupterm, setterm, set_curterm,

/winsdelln, insertln, winsertln
/delch, wdelch, mvdelch, mvwdelch

/dbminit, dbmclose, fetch, store,
winsdelln,/ curs_ deleteln:

bgets read stream up to next
panel_new: new _panel,

endwin, isendwin, set_ term,
mvderwin,/ curs_ window: newwin,

/newwin, delwin, mvwin, subwin,
get menus item name and

close close a file
dup duplicate an open file

dup2 duplicate an open file
elf_begin make a file
elf_cntl control a file

elf_update update an ELF
a name from a STREAMS-based file

isastream test a file
getdtablesize get

fattach attach a STREAMS-based file
for execution csync

link_field, free_field, create and
new _form, free_form create and
new _item, free_item create and

new _menu, free_menu create and
new_panel, del_panel create and

file descriptor fdetach
sdget, sdfree attach and

sigaction
access

elf_kind
min core

/isnanf, finite, fpclass, unordered
buffer is encrypted isencrypt

access to the slave pseudo-terminal
ioctl control

16

default catalog .. setcat(3C)
define additional severities ... addsev(3C)
define default catalog ... setcat(3C)
define the label for pfmt() and ... setlabel(3C)
definitions ... floatingpoint(3)
def_prog_mode, def_shell_mode, curs_kernel(3X)
def_shell_mode, reset_prog_mode,/ curs_kernel(3X)
delay_output, flushinp/ /keyname, curs_util(3X)
delch, wdelch, mvdelch, mvwdelch curs_delch(3X)
del_curterm, restartterm, tparm,/ curs_terminfo(3X)
delete and insert lines in a curses/ curs_deletcln(3X)
delete character under cursor in a/ curs_delch(3X)
delete, firstkey, nextkey data base/ .. dbm(3)
deleteln, wdeleteln, insdelln, curs_deleteln(3X)
delimiter ... bgets(3G)
del_panel create and destroy panels panel_new(3X)
delscreen curses screen/ /newterm, curs_initscr(3X)
delwin, mvwin, subwin, derwin, curs_ window(3X)
derwin, mvderwin, dupwin, wsyncup,/ curs_window(3X)
description /item_description menu_item_name(3X)
descriptor ... close(2)
descriptor .. dup(2)
descriptor ... dup2(3C)
descriptor .. elf_begin(3E)
descriptor .. elf_cnt1(3E)
descriptor .. elf_update(3E)
descriptor fdetach detach .. fdetach(3C)
descriptor ... isastream(3C)
descriptor table size ... getdtablesize(3)
descriptor to an object in the file/ fattach(3C)
designate portions of memory safe csync(2)
destroy forms fields /dup_field, form_field_new(3X)
destroy forms form_new: ... form_new(3X)
destroy menus items menu_item_new:
... menu_item_new(3X)
destroy menus menu_new: menu_new(3X)
destroy panels panel_ new: panel_new(3X)
detach a name from a STREAMS-based fdetach(3C)
detach a shared data segment .. sdget(2)
detailed signal management .. sigaction(2)
determine accessibility of a file ... access(2)
determine file type .. elf_kind(3E)
determine residency of memory pages mincore(2)
determine type of floating-point/ isnan(3C)
determine whether a character isencrypt(3G)
device grantpt grant grantpt(3C)
device ... ioctl(2)

System Calls and Library Functions Reference Manual

makedev, major, minor manage a
name of the slave pseudo-terminal

dlerror get
line connection

times difftime computes the
between two calendar times

mkdirp, rmdirp create, remove
search for named file in named

chdir, fchdir change working
chrootchangeroot

system independent/ getdents read
unlink remove

get pathname of current working
mkdirmake a

dirname report the parent
telldir, seekdir, rewinddir,/
seekdir, rewinddir, closedir
seekdir, rewinddir, closedir

file mknod make a
file mknod make a

getwd get current working
rmdir remove a

scandir, alphasort scan a
name of a file path name

t_unbind
acct enable or

/menu_items, item_count connect and
t_snddis send user-initiated

t_rcvdis retrieve information from
system console fmtmsg

menu_pad control menus
/field_pad format the general

pechochar, pechowchar create and
format and pass to logging/ lfmt

format and pass to logging/ vlfmt
format and pass to logging/ vpfmt

format pfmt
hypot Euclidean

/seed48, lcong48 generate uniformly
remainder

in shared object
/res_mkquery, res_send, res_init,

/res_send, res_init, dn_comp,
script

Permuted Index

Permuted Index

device number ... makedev(3C)
device ptsname get .. ptsname(3C)
diagnostic information ... dlerror(3X)
dial establish an outgoing terminal dial(3C)
difference between two calendar difftime(3C)
difftime computes the difference difftime(3C)
directories in a path ... mkdirp(3G)
directories pathfind .. pathfind(3G)
directory .. chdir(2)
directory .. chroot(2)
directory entries and put in a file getdents(2)
directory entry ... unlink(2)
directory getcwd ... getcwd(3C)
directory .. mkdir(2)
directory name of a file path name dirname(3G)
directory: opendir, readdir, ... directory(3C)
directory operations /telldir, directory(3C)
directory operations /telldir, ... opendir(3)
directory, or a special or ordinary mknod(2)
directory, or a special or ordinary mknod(2)
directory pathname ... getwd(3)
directory ... rmdir(2)
directory .. scandir(3)
dirname report the parent directory dirname(3G)
disable a transport endpoint .. t_unbind(3N)
disable process accounting .. acct(2)
disconnect items to and from/ menu_items(3X)
disconnect request ... t_snddis(3N)
disconnect ... t_rcvdis(3N)
display a message on stderr or .. fmtmsg(3C)
display attributes /set_menu_pad, menu_attributes(3X)
display attributes of forms form_field_attributes(3X)
display curses pads /pnoutrefresh, curs_pad(3X)
display error message in standard lfmt(3C)
display error message in standard vlfmt(3C)
display error message in standard vpfmt(3C)
display error message in standard pfmt(3C)
distance function .. hypot(3M)
distributed pseudo-random numbers drand48(3C)
div, !div compute the quotient and .. div(3C)
dlclose close a shared object .. dlclose(3X)
dlerror get diagnostic information dlerror(3X)
dlopen open a shared object .. dlopen(3X)
dlsym get the address of a symbol dlsym(3X)
dn_comp, dn_expand resolver/ resolver(3N)
dn_expand resolver routines ... resolver(3N)
doconfig execute a configuration doconfig(3N)

17

Permuted Index

strtod, atof, convert string to
/single_ to_ decimal,

/refresh, wrefresh, wnoutrefresh,
mrand48, jrand48, srand48, seed48,/

interface to EUC handling TTY
descriptor
descriptor

create/ form_field_new: new_field,
dup

dup2
mvwin, subwin, derwin, mvderwin,

form_field_info: field_info,
curs_inopts: cbreak, nocbreak,

/addch, waddch, mvaddch, mvwaddch,
/waddwch, mvaddwch, mvwaddwch,

18

seconvert, sfconvert, sgconvert/
floating-point number to string

end, etext,
effective user, real group, and

setregid set real and
setreuid set real and

I getgid, getegid get real user,
new process in a virtual memory

insque, remque insert/remove
basename return the last

elf_update update an
versions elf_ version coordinate

object file type elf_fsize:
retrieve/ elf_getehdr:
retrieve/ elf_getphdr:

class-dependent/ elf_getshdr:
elf_getehdr: elf32_getehdr,
elf_getphdr: elf32_getphdr,

class-dependent data/ elf_xlate:
elf_xlate: elf32_xlatetof,

handling
elf_errmsg,

elf_flagelf, elf_flagphdr,/
elf_flagphdr,/ elf_flagdata,

elf_flagdata, elf_flagehdr,
/elf_flagehdr, elf_flagelf,

double-precision number .. strtod(3C)
double_to_decimal,/ floating_to_decimal(3)
doupdate, redrawwin, wredrawln/ curs_refresh(3X)
drand48, erand48, lrand48, nrand48, drand48(3C)
drivers and modules /generic .. eucioctl(S)
dup duplicate an open file ... dup(2)
dup2 duplicate an open file .. dup2(3C)
dup_field, link_field, free_field, form_field_new(3X)
duplicate an open file descriptor .. dup(2)
duplicate an open file descriptor .. dup2(3C)
dupwin, wsyncup, syncok,/ /delwin, curs_window(3X)
dynamic_field_info get forms field/ form_field_info(3X)
echo, noecho, halfdelay, intrflush,/ curs_inopts(3X)
echochar, wechochar add a character/ curs_addch(3X)
echowchar, wechowchar add a wchar_t/
... curs_addwch(3X)
econvert, £convert, gconvert, .. econvert(3)
ecvt, fcvt, gcvt convert ecvt(3C)
edata last locations in program .. end(3C)
effective group IDs /get real user, getuid(2)
effective group IDs ... setregid(3)
effective user IDs .. setreuid(3)
effective user, real group, and/ .. getuid(2)
efficient way vfork spawn ... vfork(2)
element from a queue ... insque(3C)
element of a path name .. basename(3G)
ELF descriptor ... elf_update(3E)
ELF library and application elf_ version(3E)
elf object file access library elf(3E)
elf32_fsize return the size of an elf_fsize(3E)
elf32_getehdr, elf32_newehdr elf_getehdr(3E)
elf32_getphdr, elf32_newphdr elf_getphdr(3E)
elf32_getshdr retrieve ... elf_getshdr(3E)
elf32_newehdr retrieve/ .. elf_getehdr(3E)
elf32_newphdr retrieve/ ... elf_getphdr(3E)
elf32_xlatetof, elf32_xlatetom .. elf_xlate(3E)
elf32_xlatetom class-dependent data/ elf_xlate(3E)
elf_begin make a file descriptor elf_begin(3E)
elf_cntl control a file descriptor elf_cntl(3E)
elf_end finish using an object file elf_end(3E)
elf_errmsg, elf_errno error .. elf_errmsg(3E)
elf_errno error handling .. elf_errmsg(3E)
elf_fill set fill byte .. elf_fill(3E)
elf_flagdata, elf_flagehdr, ... elf_flagdata(3E)
elf_flagehdr, elf_flagelf, ... elf_flagdata(3E)
elf_flagelf, elf_flagphdr,/ .. elf_flagdata(3E)
elf_flagphdr, elf_flagscn,/ ... elf_flagdata(3E)

System Calls and Library Functions Reference Manual

I elf_flagelf, elf_flagphdr,
/elf_flagphdr, elf_flagscn,

size of an object file type
member header

symbol table
an object file

elf_rawdata get section data
elf32_newehdr retrieve/

identification data
elf32_newphdr retrieve/
elf_nextscn get section/

class-dependent section header

get section/ elf_getscn,
section data elf_getdata,

elf_getscn, elf_ndxscn,
access

elf_getscn, elf_ndxscn, elf_newscn,
access

elf_getdata, elf_newdata,
file contents

and application versions
elf32_xlatetom class-dependent/

I tgoto, tputs curses interfaces
accounting acct

crypt, setkey,
whether a character buffer is

crypt, setkey, encrypt generate
crypt password and file

program
/getgrgid, getgmam, setgrent,

entry /gethostbyname, sethostent,
/getnetbyname, setnetent,

group I getnetgrent, setnetgrent,
socket create an

bind an address to a transport
t_close close a transport

at the current event on a transport
t_open establish a transport

manage options for a transport
t_unbind disable a transport

I getprotobyname, setprotoent,
/getpwuid, getpwnam, setpwent,

I getservbyname, setservent,

Permuted Index

Permuted Index

elf_flagscn, elf_flagshdr I .. elf_flagdata(3E)
elf_flagshdr manipulate flags elf_flagdata(3E)
elf_fsize: elf32_fsize return the elf_fsize(3E)
elf_getarhdr retrieve archive elf_getarhdr(3E)
elf_getarsym retrieve archive elf_getarsym(3E)
elf_getbase get the base offset for elf_getbase(3E)
elf_getdata, elf_newdata, ... elf_getdata(3E)
elf_getehdr: elf32_getehdr, .. elf_getehdr(3E)
elf_getident retrieve file .. elf_getident(3E)
elf_getphdr: elf32_getphdr, elf_getphdr(3E)
elf_getscn, elf_ndxscn, elf_newscn, elf_getscn(3E)
elf_getshdr: elf32_getshdr retrieve elf_getshdr(3E)
elf_hash compute hash value ... elf_hash(3E)
elf_kind determine file type .. elf_kind(3E)
elf_ndxscn, elf_newscn, elf_nextscn elf_getscn(3E)
elf_newdata, elf_rawdata get elf_getdata(3E)
elf_newscn, elf_nextscn get section/ elf_getscn(3E)
elf_next sequential archive member elf_next(3E)
elf_nextscn get section information elf_getscn(3E)
elf_rand random archive member elf_rand(3E)
elf_rawdata get section data elf_getdata(3E)
elf_rawfile retrieve uninterpreted elf_rawfile(3E)
elf_strptr make a string pointer elf_strptr(3E)
elf_update update an ELF descriptor elf_update(3E)
elf_ version coordinate ELF library elf_ version(3E)
elf_xlate: elf32_xlatetof, ... elf_xlate(3E)
(emulated) to the termcap library curs_termcap(3X)
enable or disable process .. acct(2)
encrypt generate encryption .. crypt(3C)
encrypted isencrypt determine isencrypt(3G)
encryption .. crypt(3C)
encryption functions .. crypt(3X)
end, etext, edata last locations in ... end(3C)
endgrent, fgetgrent get group file/ getgrent(3C)
endhostent, herror get network host gethostent(3N)
endnetent get network entry .. getnetent(3N)
endnetgrent, innetgr get network getnetgrent(3N)
endpoint for communication ... socket(3N)
endpoint t_bind .. t_bind(3N)
endpoint .. t_close(3N)
endpoint t_look look .. t_look(3N)
endpoint .. t_open(3N)
endpoint t_optmgmt .. t_optmgmt(3N)
endpoint .. t_unbind(3N)
endprotoent get protocol entry getprotoent(3N)
endpwent, fgetpwent manipulate/ getpwent(3C)
endservent get service entry getservent(3N)

19

Permuted Index

getspent, getspnam, setspent,
getusershell, setusershell,

/getutline, pututline, setutent,
/getutxline, pututxline, setutxent,

curs_initscr: initscr, newterm,
getdents read directory

nlist get
nlist get

component getnetpath get netconfig
endgrent, fgetgrent get group file

endhostent, herror get network host
getmntany get mnttab file

get network configuration database
setnetent, endnetent get network

innetgr get network group
endprotoent get protocol

fgetpwent manipulate password file
setservent, endservent get service
manipulate shadow password file

endutent, utmpname access utmp file
updwtmp, updwtmpx access utmpx file

getvfsany get vfstab file
putpwent write password file

putspent write shadow password file
unlink remove directory

fpsetsticky IEEE floating-point
getenv return value for

putenv change or add value to
/termattrs, termname curses

jrand48, srand48, seed48,/ drand48,
/post_form, unpost_form write or

/post_menu, unpost_menu write or
clrtobot, wclrtobot,/ curs_clear:

curs_termattrs: baudrate,
complementary error function

complementary error function erf,
error function erf, erfc

error function and complementary
elf_errmsg, elf_errno

t_rcvuderr receive a unit data
and pass to logging/ lfmt display

and pass to logging/ vlfmt display
and pass to logging/ vpfmt display

pfmt display
strerror get

t_error produce
perror print system

20

endspent, fgetspent, lckpwdf,/ getspent(3C)
endusershell get legal user shells getusershell(3)
endutent, utmpname access utmp file/ getut(3C)
endutxent, utmpxname, getutmp,/ getutx(3C)
endwin, isendwin, set_term,/ curs_initscr(3X)
entries and put in a file system/ getdents(2)
entries from name list .. nlist(3E)
entries from symbol table .. nlist(3)
entry corresponding to NETPATH getnetpath(3N)
entry /getgrnam, setgrent, .. getgrent(3C)
entry /gethostbyname, sethostent, gethostent(3N)
entry getmntent, .. getmntent(3C)
entry getnetconfig getnetconfig(3N)
entry /getnetbyaddr, getnetbyname, getnetent(3N)
entry /setnetgrent, endnetgrent, getnetgrent(3N)
entry /getprotobyname, setprotoent, getprotoent(3N)
entry /setpwent, endpwent, getpwent(3C)
entry /getservbyname, .. getservent(3N)
entry I fgetspent, lckpwdf, ulckpwdf getspent(3C)
entry /pututline, setutent, ... getut(3C)
entry /getutmp, getutmpx, .. getutx(3C)
entry /getvfsfile, getvfsspec, getvfsent(3C)
entry putpwent(3C)
entry .. putspent(3C)
entry ... unlink(2)
environment control /fpgetsticky, fpgetround(3C)
environment name getenv(3C)
environment ... putenv(3C)
environment query routines curs_termattrs(3X)
erand48, lrand48, nrand48, mrand48, drand48(3C)
erase forms from associated/ form_post(3X)
erase menus from associated/ menu_post(3X)
erase, werase, clear, wclear, .. curs_clear(3X)
erasechar, has_ic, has_il,/ curs_termattrs(3X)
erf, erfc error function and erf(3M)
erfc error function and .. erf(3M)
error function and complementary .. erf(3M)
error function erf, erfc erf(3M)
error handling .. elf_errmsg(3E)
error indication ... t_rcvuderr(3N)
error message in standard format ... lfmt(3C)
error message in standard format vlfmt(3C)
error message in standard format vpfmt(3C)
error message in standard format pfmt(3C)
error message string .. strerror(3C)
error message ... t_error(3N)
error messages perror(3C)

System Calls and Library Functions Reference Manual

introduction to system calls and
matherr

server side remote procedure call
strings, compressing or expanding

transport user t_connect
t_open

connection dial
program end,

ethers
operations

eucioctl generic interface to
handling TTY drivers and modules

hypot
t_look look at the current

sigprocmask change or
and pending sigpending

ieee_handler IEEE
execlp, execvp execute a file

execlp, execvp execute a/ exec:
execute a file exec: execl, execv,

exec: execl, execv, execle, execve,
doconfig

execle, execve, execlp, execvp
regcmp, regex compile and

portions of memory safe for
nap suspends

microseconds usleep suspend
sleep suspend
sleep suspend

monitor prepare
profil

execvp execute a file exec: execl,
file exec: execl, execv, execle,
execv, execle, execve, execlp,

create a new file or rewrite an

exit,
loglOf, pow, powf, sqrt, sqrtf/

copy strings, compressing or
t_snd send data or

connection t_rcv receive data or
loglOf, pow, powf, sqrt,/ exp,
/loglOf, pow, powf, sqrt, sqrtf

/compile, step, advance regular
/compile, step, advance regular
regex, re_comp, re_exec regular

regex compile and execute regular

Permuted Index

Permuted Index

error numbers intro .. intro(2)
error-handling function .. matherr(3M)
errors /library routines for rpc_svc_err(3N)
escape codes /strcadd, strecpy copy strccpy(3G)
establish a connection with another t_connect(3N)
establish a transport endpoint .. t_open(3N)
establish an outgoing terminal line dial(3C)
etext, edata last locations in .. end(3C)
Ethernet address mapping operations ethers(3N)
ethers Ethernet address mapping ethers(3N)
EUC handling TTY drivers and/ eucioctl(5)
eucioctl generic interface to EUC eucioctl(5)
Euclidean distance function ... hypot(3M)
event on a transport endpoint ... t_look(3N)
examine signal mask ... sigprocmask(2)
examine signals that are blocked sigpending(2)
exception trap handler function ieee_handler(3M)
exec: execl, execv, execle, execve, .. exec(2)
execl, execv, execle, execve, .. exec(2)
execle, execve, execlp, execvp .. exec(2)
execlp, execvp execute a file ... exec(2)
execute a configuration script doconfig(3N)
execute a file exec: execl, execv, ... exec(2)
execute regular expression .. regcmp(3G)
execution csync designate ... csync(2)
execution for a short interval ... nap(2)
execution for interval in .. usleep(3)
execution for interval .. sleep(3)
execution for interval ... sleep(3C)
execution profile .. monitor(3C)
execution time profile .. profil(2)
execv, execle, execve, execlp, ... exec(2)
execve, execlp, execvp execute a ... exec(2)
execvp execute a file exec: execl, ... exec(2)
existing one creat .. creat(2)
exit, _exit terminate process .. exit(2)
_exit terminate process ... exit(2)
exp, expf, cbrt, log, logf, loglO, .. exp(3M)
expanding escape codes /strecpy strccpy(3G)
expedited data over a connection t_snd(3N)
expedited data sent over a ... t_rcv(3N)
expf, cbrt, log, logf, loglO, ... exp(3M)
exponential, logarithm, power,/ ... exp(3M)
expression compile and match/ ... regexp(5)
expression compile and match/ regexpr(3G)
expression handler ... regex(3)
expression regcmp, .. regcmp(3G)

21

Permuted Index

floating-point/ /double_to_decimal,
creation /library routines for

xdr library routines for
/xdr_setpos library routines for

/xdr_ wrapstring library routines for
/xdr_ void library routines for

/ceil, ceilf, copysign, fmod, fmodf,
I ceilf, copysign, fmod, fmodf, fabs,

signal simplified software signal
sigvec software signal

data in a machine-independent
descriptor to an object in the I

chdir,
chmod,

file chown, lchown,
stream

sfconvert, sgconvert/ econvert,
number to string ecvt,

STREAMS-based file descriptor
fopen, freopen,
fopen, freopen,

status inquiries ferror,
stream status inquiries

nextkey I dbm: dbminit, dbmclose,

22

fclose,

from a stream getc, getchar,
I getgrnam, setgrent, endgrent,

in a stream fsetpos,
/getpwnam, setpwent, endpwent,

gets,
I getspnam, setspent, endspent,

stream getwc, getwchar,
stream getws,

set_max_field set and get forms
dynamic_field_info get forms

/field_type, field_arg forms
set forms current page and

behind /data_behind tell if forms
/field_opts_off, field_opts forms

/set_field_type, field_type,
I field_ fore, set_field_back,

field_status,/ /set_field_buffer,
/set_form_fields, form_ fields,
field_back,/ /set_field_fore,

extended_to_decimal convert floating_to_decimal(3)
external data representation stream xdr_create(3N)
external data representation ... xdr(3N)
external data representation xdr_admin(3N)
external data representation xdr_complex(3N)
external data representation xdr_simple(3N)
fabs, fabsf, rint, remainder floor,/ floor(3M)
fabsf, rint, remainder floor,/ .. floor(3M)
facilities .. signal(3)
facilities .. sigvec(3)
fashion /sgetl access long integer sputl(3X)
fattach attach a STREAMS-based file fattach(3C)
fchdir change working directory .. chdir(2)
fchmod change mode of file ... chmod(2)
fchown change owner and group of a chown(2)
fclose, fflush close or flush a ... fclose(3S)
fcntl file control ... fcntl(2)
fcntl file control options ... fcntl(S)
fconvert, gconvert, seconvert, ... econvert(3)
fcvt, gcvt convert floating-point .. ecvt(3C)
fdetach detach a name from a .. fdetach(3C)
fdopen open a stream .. fopen(3S)
fdopen open a stream .. fopen(3S)
feof, clearerr, fileno stream ... ferror(3S)
£error, feof, clearerr, fileno .. ferror(3S)
fetch, store, delete, firstkey, .. dbm(3)
fflush close or flush a stream .. fclose(3S)
ffs find first set bit .. ffs(3C)
fgetc, getw get character or word .. getc(3S)
fgetgrent get group file entry getgrent(3C)
fgetpos reposition a file pointer fsetpos(3C)
fgetpwent manipulate password file/ getpwent(3C)
fgets get a string from a stream .. gets(3S)
fgetspent, lckpwdf, ulckpwdf/ getspent(3C)
fgetwc get wchar_t character from a getwc(3W)
fgetws get a wchar_t string from a getws(3W)
field attributes /field_status, form_field_buffer(3X)
field characteristics I field_info, form_field_info(3X)
field data type validation form_field_ validation(3X)
field /current_field, field_index form_page(3X)
field has off-screen data ahead or form_data(3X)
field option routines ... form_field_opts(3X)
field_arg forms field data type/ form_field_ validation(3X)
field_back, set_field_pad,/ form_field_attributes(3X)
field_buffer, set_field_status, form_field_buffer(3X)
field_ count, move_field connect/ form_field(3X)
field_fore, set_field_back, form_field_attributes(3X)

System Calls and Library Functions Reference Manual

/set_current_field, current_field,
forms field/ form_field_info:

I form_term, set_field_init,
form_field_just: set_field_just,
I field_opts_on, field_opts_off,
/set_field_opts, field_opts_on,

form_field_opts: set_field_opts,
display I /field_back, set_field_pad,

bufsplit split buffer into
create and destroy forms

field_ count, move_field connect
/field_buffer, set_field_status,

field_init, set_field_term,
data type/ /set_field_type,

/link_fieldtype forms
data with forms /set_field_userptr,

mkfifo create a new
utime set
elf object

access determine accessibility of a
chmod, fchmod change mode of

fchown change owner and group of a
chsize change the size of a

elf_rawfile retrieve uninterpreted
fen ti
fen ti

umask set and get
(write) a curses screen from (to) a

close close a
dup duplicate an open

dup2 duplicate an open
elf_begin make a
elf_cntl control a

detach a name from a STREAMS-based
isastream test a

fattach attach a STREAMS-based
elf_end finish using an object

get the base offset for an object
crypt password and

endgrent, fgetgrent get group
getmntent, getmntany get mnttab
fgetpwent manipulate password

ulckpwdf manipulate shadow password
endutent, utmpname access utmp

updwtmp, updwtmpx access utmpx
getvfsspec, getvfsany get vfstab

putpwent write password

Permuted Index

Permuted Index

field_index set forms current page/ form_page(3X)
field_info, dynamic_field_info get form_field_info(3X)
field_init, set_field_term,/ ... form_hook(3X)
field_just format the general/ form_field_just(3X)
field_opts forms field option/ form_field_opts(3X)
field_opts_off, field_opts forms/ form_field_opts(3X)
field_opts_on, field_opts_off,/ form_field_opts(3X)
field_pad format the general form_field_attributes(3X)
fields ... bufsplit(3G)
fields /link_field, free_field, form_field_new(3X)
fields to forms /form_fields, form_field(3X)
field_status, set_max_field set and/ form_field_buffer(3X)
field_term assign/ /set_field_init, form_hook(3X)
field_type, field_arg forms field form_field_ validation(3X)
fieldtype routines .. form_fieldtype(3X)
field_userptr associate application form_field_userptr(3X)
FIFO .. mkfifo(3C)
file access and modification times .. utime(2)
file access library .. elf(3E)
file ... access(2)
file .. chmod(2)
file chown, lchown, ... chown(2)
file ... chsize(2)
file contents .. elf_rawfile(3E)
file control ... fcntl(2)
file control options .. fcntl(S)
file creation mask .. umask(2)
file /scr_init, scr_set read curs_scr_dump(3X)
file descriptor .. close(2)
file descriptor .. dup(2)
file descriptor .. dup2(3C)
file descriptor .. elf_begin(3E)
file descriptor ... elf_cntl(3E)
file descriptor £detach fdetach(3C)
file descriptor .. isastream(3C)
file descriptor to an object in the/ fattach(3C)
file ... elf_end(3E)
file elf_getbase ... elf_getbase(3E)
file encryption functions crypt(3X)
file entry /getgrnam, setgrent, getgrent(3C)
file entry getmntent(3C)
file entry /setpwent, endpwent, getpwent(3C)
file entry I fgetspent, lckpwdf, getspent(3C)
file entry /pututline, setutent, .. getut(3C)
file entry /getutmp, getutmpx, .. getutx(3C)
file entry getvfsent, getvfsfile, getvfsent(3C)
file entry ... putpwent(3C)

23

Permuted Index

putspent write shadow password
execve, execlp, execvp execute a

retrieve class-dependent object
elf_getident retrieve

pathfind search for named
copylist copy a

link link to a
directory, or a special or ordinary
directory, or a special or ordinary

ctermid generate
mkstemp make a unique
mktemp make a unique
realpath returns the real

ttyslot find the slot in the utmp
creat create a new

the parent directory name of a
fseek, rewind, ftell reposition a

fsetpos, fgetpos reposition a
!seek move read/write

read read from
locking lock or unlock a

remove remove
rename change the name of a

stat, !stat, fstat get
stat, !stat, fstat get

sym!ink make a symbolic link to a
/read directory entries and put in a

statvfs, fstatvfs get
mount mount a

/file descriptor to an object in the
ustat get
sysfs get

umount unmount a
utimes set

tmpfile create a temporary
create a name for a temporary

truncate, ftruncate set a
ftw, nftw walk a

return the size of an object
elf_kind determine

write, writev write on a
£error, feof, clearerr,

the physical/ fsync synchronize a
lockf record locking on

elf_fill set
curs_util: unctrl, keyname,

ffs

24

file entry putspent(3C)
file exec: execl, execv, execle, .. exec(2)
file header /elf32_newehdr elf_getehdr(3E)
file identification data .. elf_getident(3E)
file in named directories ... pathfind(3G)
file into memory .. copylist(3G)
file .. link(2)
file mknod make a .. mknod(2)
file mknod make a .. mknod(2)
file name for terminal .. ctermid(3S)
file name .. mkstemp(3)
file name ... mktemp(3C)
file name ... realpath(3C)
file of the current user .. ttyslot(3C)
file or rewrite an existing one .. creat(2)
file path name dirname report dirname(3G)
file pointer in a stream ... fseek(3S)
file pointer in a stream fsetpos(3C)
file pointer ... lseek(2)
file ... read(2)
file region for reading or writing .. locking(2)
file remove(3C)
file ... rename(2)
file status .. stat(2)
file status .. stat(2)
file .. symlink(2)
file system independent format .. getdents(2)
file system information .. statvfs(2)
file system ... mount(2)
file system name space ... fattach(3C)
file system statistics ... ustat(2)
file system type information .. sysfs(2)
file system .. umount(2)
file times ... utimes(3)
file ... tmpfile(3S)
file tmpnam, tempnam .. tmpnam(3S)
file to a specified length ... truncate(3C)
file tree .. ftw(3C)
file type elf_fsize: elf32_fsize .. elf_fsize(3E)
file type .. elf_kind(3E)
file ... write(2)
fileno stream status inquiries ... ferror(3S)
file's in-memory state with that on .. fsync(2)
files ... lockf(3C)
fill byte .. elf_fill(3E)
filter, use_env, putwin, getwin,/ curs_util(3X)
find first set bit ffs(3C)

System Calls and Library Functions Reference Manual

ttyname, isatty
the current user ttyslot

elf_end
determine/ isnan, isnand, isnanf,

I dbmclose, fetch, store, delete,
elf_flagshdr manipulate

routines curs_beep: beep,
beep, flash curses bell and screen

floatingpoint IEEE
I fpgetsticky, fpsetsticky IEEE

definitions
unordered determine type of

ecvt, fcvt, gcvt convert
scalb manipulate parts of

/convert decimal record to
record /extended to decimal convert

single_to_decimal,/
/ fmodf, fabs, fabsf, rint, remainder

copysign, fmod, fmodf, fabs,/
fmod, fmodf, fabs, fabsf,/ floor,

fclose, fflush close or
/putwin, getwin, delay _output,

I floorf, ceil, ceilf, copysign,
/ceil, ceilf, copysign, fmod,

for an application for use with
or system console

stream
stream

tcsetpgrp set terminal

/display error message in standard
/display error message in standard
/display error message in standard

request message nlsrequest
getdate convert user

put in a file system independent
display error message in standard

forms /set_field_just, field_just
/set_field_pad, field_pad

/mvscanw, mvwscanw, vwscanw convert
scanf, fscanf, sscanf convert
scanf, fscanf, sscanf convert

/vprintf, vfprintf, vsprintf
/mvprintw, mvwprintw, vwprintw print

vprintf, vfprintf, vsprintf print
vprintf, vfprintf, vsprintf print

printf, fprintf, sprintf print

Permuted Index

Permuted Index

find name of a terminal ... ttyname(3C)
find the slot in the utmp file of .. ttyslot(3C)
finish using an object file ... elf_end(3E)
finite, fpclass, unordered .. isnan(3C)
firstkey, nextkey data base/ ... dbm(3)
flags /elf_flagphdr, elf_flagscn, elf_flagdata(3E)
flash curses bell and screen flash curs_beep(3X)
flash routines curs_beep: .. curs_beep(3X)
floating point definitions ... floatingpoint(3)
floating-point environment control fpgetround(3C)
floatingpoint IEEE floating point floatingpoint(3)
floating-point number I fpclass, .. isnan(3C)
floating-point number to string ... ecvt(3C)
floating-point numbers /nextafter, frexp(3C)
floating-point value decimal_to_floating(3)
floating-point value to decimal floating_to_decimal(3)
floating_to_decimal: floating_to_decimal(3)
floor, ceiling, remainder, absolute/ floor(3M)
floor, floorf, ceil, ceilf, .. floor(3M)
floorf, ceil, ceilf, copysign, .. floor(3M)
flush a stream .. fclose(3S)
flushinp miscellaneous curses/ curs_util(3X)
fmod, fmodf, fabs, fabsf, rint,/ .. floor(3M)
fmodf, fabs, fabsf, rint, remainder I floor(3M)
fmtmsg /a list of severity levels addseverity(3C)
fmtmsg display a message on stderr fmtmsg(3C)
fopen, freopen, fdopen open a ... fopen(3S)
fopen, freopen, fdopen open a ... fopen(3S)
foreground process group id .. tcsetpgrp(3C)
fork create a new process ... fork(2)
format and pass to logging and/ .. lfmt(3C)
format and pass to logging and/ .. vlfmt(3C)
format and pass to logging and/ vpfmt(3C)
format and send listener service nlsrequest(3N)
format date and time ... getdate(3C)
format /read directory entries and getdents(2)
format pfmt .. pfmt(3C)
format the general appearance of form_field_just(3X)
format the general display I form_field_attributes(3X)
formatted input from a curses/ curs_scanw(3X)
formatted input ... scanf(3S)
formatted input ... scanf(3W)
formatted output conversion ... printf(3)
formatted output in curses windows curs_printw(3X)
formatted output of a variable/ vprintf(3S)
formatted output of a variable/ vprintf(3W)
formatted output .. printf(3S)

25

Permuted Index

printf, fprintf, sprintf print
localeconv get numeric

position forms window cursor
tell if forms field has off-screen/

the forms subsystem
form_fields, field_ count,/
set_field_fore, field_fore,/

set_field_buffer, field_buffer,/
dynamic_field_info get forms field/

field_just format the general/
dup _field, link_field, free_field,/

field_opts_on, field_opts_off,/
form_field: set_form_fields,

free_fieldtype, set_fieldtype_arg,/
set_field_userptr, field_userptr I

set_field_type, field_type,/
form_init, set_form_term,/

form_hook: set_form_init,
create and destroy forms

new _page forms pagination
/form_opts_on, form_opts_off,
form_opts_on, form_ opts_ off,/
/set_ form_ opts, form_ opts_ on,

form_opts: set_form_opts,
form_page: set_form_page,

form_page, set_current_field,/
write or erase forms from/

/current_field, field_index set
/set_max_field set and get

/field_info, dynamic_field_info get
/field_type, field_arg

/data_ahead, data_behind tell if
/field_opts_off, field_opts

free_field, create and destroy
/link_fieldtype

move_field connect fields to
the general display attributes of

format the general appearance of
associate application data with

routines for invocation by
free_form create and destroy

associate application data with
/unpost_form write or erase

/form_opts_off, form_opts
forms character based

set_new _page, new _page

26

formatted output .. printf(3W)
formatting information ... localeconv(3C)
form_cursor: pos_form_cursor form_cursor(3X)
form_data: data_ahead, data_behind form_data(3X)
form_driver command processor for form_driver(3X)
form_field: set_form_fields, .. form_field(3X)
form_field_attributes: form_field_attributes(3X)
form_field_buffer: .. form_field_buffer(3X)
form_field_info: field_info, form_field_info(3X)
form_field_just: set_field_just, form_field_just(3X)
form_field_new: new _field, form_field_new(3X)
form_field_opts: set_field_opts, form_field_opts(3X)
form_fields, field_ count,/ ... form_field(3X)
form_ field type: new _field type, form_fieldtype(3X)
form_field_userptr: form_field_userptr(3X)
form_field_ validation: form_field_ validation(3X)
form_hook: set_form_init, .. form_hook(3X)
form_init, set_form_term,/ .. form_hook(3X)
form_new: new_form, free_form form_new(3X)
form_ new _page: set_new _page, form_new _page(3X)
form_opts forms option routines form_opts(3X)
form_opts: set_form_opts, ... form_opts(3X)
form_opts_off, form_opts forms/ form_opts(3X)
form_ opts_ on, form_ opts_ off,/ form_opts(3X)
form_page, set_current_field,/ form_page(3X)
form_page: set_form_page, .. form_page(3X)
form_post: post_form, unpost_form form_post(3X)
forms character based forms package forms(3X)
forms current page and field form_page(3X)
forms field attributes form_field_buffer(3X)
forms field characteristics form_field_info(3X)
forms field data type validation form_field_ validation(3X)
forms field has off-screen data/ form_data(3X)
forms field option routines form_field_opts(3X)
forms fields /link_ field, form_field_new(3X)
forms fieldtype routines form_fieldtype(3X)
forms /form_fields, field_count, form_field(3X)
forms /field_pad format form_field_attributes(3X)
forms /set_field_just, field_just form_field_just(3X)
forms /field_userptr form_field_userptr(3X)
forms /application-specific form_hook(3X)
forms form_new: new_form, form_new(3X)
forms /form_userptr ... form_userptr(3X)
forms from associated subwindows form_post(3X)
forms option routines ... form_opts(3X)
forms package forms(3X)
forms pagination form_ new _page: form_new _page(3X)

System Calls and Library Functions Reference Manual

command processor for the
/set_form_sub, form_sub, scale_form

pos_form_cursor position
and/ /form_ win, set_form_sub,

I form_init, set_form_term,
form_userptr: set_form_userptr,

form_userptr associate application/
scale_form/ form_ win: set_form_win,

set_form_sub, form_sub, scale_form/
configurable pathname variables
miscellaneous/ ieee_functions,
of/ isnan, isnand, isnanf, finite,

fpgetround, fpsetround,
fpsetmask, fpgetsticky,/

I fpsetround, fpgetmask, fpsetmask,
output printf,
output printf,

vfprintf, vsprintf/ printf,
fpgetround, fpsetround, fpgetmask,

fpgetsticky, I fpgetround,
I fpgetmask, fpsetmask, fpgetsticky,

on a stream putc, putchar,
puts,

stream putwc, putwchar,
stream putws,

t_free
mallinfo memory allocator malloc,

valloc, memory allocator malloc,
/new_field, dup_field, link_field,

form_fieldtype: new _fieldtype,
form_new: new _form,

items menu_item_new: new _item,
menu_new: new _menu,

fop en,
fop en,

nextafter, scalb manipulate parts/
input scanf,
input scanf,

file pointer in a stream
pointer in a stream

stat, !stat,
stat, !stat,

information statvfs,
in-memory state with that on the/

a stream fseek, rewind,

Permuted Index

__ _____ __ ___ _ ___ _ _______ Permuted Index

forms subsystem form_driver form_driver(3X)
forms window and subwindow I form_ win(3X)
forms window cursor form_cursor: form_cursor(3X)
form_sub, scale_form forms window form_win(3X)
form_term, set_field_init,/ .. form_hook(3X)
form_userptr associate application/ form_userptr(3X)
form_userptr: set_form_userptr, form_userptr(3X)
form_ win, set_form_sub, form_sub, form_win(3X)
form_ win: set_form_win, form_ win, form_win(3X)
fpathconf, pathconf get .. fpathconf(2)
fp_class, isnan, copysign, scalbn ieee_functions(3M)
fpclass, unordered determine type isnan(3C)
fpgetmask, fpsetmask, fpgetsticky,/ fpgetround(3C)
fpgetround, fpsetround, fpgetmask, fpgetround(3C)
fpgetsticky, fpsetsticky IEEE/ fpgetround(3C)
fprintf, sprintf print formatted .. printf(3S)
fprintf, sprintf print formatted .. printf(3W)
fprintf, sprintf, vprintf, .. printf(3)
fpsetmask, fpgetsticky, fpsetsticky I fpgetround(3C)
fpsetround, fpgetmask, fpsetmask, fpgetround(3C)
fpsetsticky IEEE floating-point/ fpgetround(3C)
fputc, putw put character or word ··-······ putc(3S)
fputs put a string on a stream .. puts(3S)
fputwc put wchar_t character on a putwc(3W)
fputws put a wchar_t string on a putws(3W)
fread, fwrite binary input/output fread(3S)
free a library structure ... t_free(3N)
free, realloc, calloc, mallopt, .. malloc(3X)
free, realloc, calloc, memalign, ... malloc(3C)
free_ field, create and destroy I form_field_new(3X)
free_fieldtype, set_fieldtype_arg,/ form_fieldtype(3X)
free_form create and destroy forms form_new(3X)
free_item create and destroy menus menu_item_new(3X)
free_menu create and destroy menus menu_new(3X)
£reopen, fdopen open a stream .. fopen(3S)
freopen, fdopen open a stream .. fopen(3S)
frexp, ldexp, logb, modf, modff, .. frexp(3C)
fscanf, sscanf convert formatted .. scanf(3S)
fscanf, sscanf convert formatted .. scanf(3W)
fseek, rewind, ftell reposition a .. fseek(3S)
fsetpos, fgetpos reposition a file fsetpos(3C)
fstat get file status ... stat(2)
fstat get file status ... stat(2)
fstatvfs get file system .. statvfs(2)
fsync synchronize a file's .. fsync(2)
ftell reposition a file pointer in ... fseek(3S)
ftime get date and time ... ftime(3C)

27

Permuted Index

communication package stdipc:
length truncate,

shutdown shut down part of a
function erf, erfc error

function and complementary error
gamma, !gamma log gamma

hypot Euclidean distance
IEEE exception trap handler

libwindows windowing terminal
matherr error-handling

prof profile within a
mathmath

intro introduction to
jO, jl, jn, yO, yl, yn Bessel

crypt password and file encryption
logarithm, power, square root

ceiling, remainder, absolute value
I copysign, scalbn miscellaneous

mbstowcs, wcstombs multibyte string
asinh, acosh, atanh hyperbolic

sysm68k machine-specific
sysm88k machine-specific

atanf, atan2, atan2f trigonometric
fread,

gamma, !gamma log

/mult, mdiv, mcmp, min, mout, pow,
sgconvert/ econvert, fconvert,

to string ecvt, fcvt,
I field_just format the

/set_field_pad, field_pad format the

/tcgetpgrp, tcsetpgrp, tcgetsid
control priocntlset

signal abort
crypt, setkey, encrypt

ctermid
/jrand48, srand48, seed48, lcong48

siginfo signal
rand, srand simple random number
rand, srand simple random-number

/setstate better random number
generator; routines for changing

TTY drivers and modules eucioctl

28

ftime get time and date .. ftime(2)
ftok standard interprocess .. stdipc(3C)
£truncate set a file to a specified truncate(3C)
ftw, nftw walk a file tree .. ftw(3C)
full-duplex connection ... shutdown(3N)
function and complementary error .. erf(3M)
function erf, erfc error .. erf(3M)
function gamma(3M)
function ... hypot(3M)
function ieee_handler ... ieee_handler(3M)
function library libwindows(3X)
function .. matherr(3M)
function ... prof(S)
functions and constants .. math(S)
functions and libraries .. intro(3)
functions bessel: .. bessel(3M)
functions ... crypt(3X)
functions I sqrt, sqrtf exponential, exp(3M)
functions /rint, remainder floor, floor(3M)
functions for IEEE arithmetic ieee_functions(3M)
functions mbstring: mbstring(3C)
functions /coshf, tanh, tanhf, .. sinh(3M)
functions ... sysm68k(2)
functions ... sysm88k(2)
functions /acos, acosf, atan, .. trig(3M)
fwrite binary input/output ... fread(3S)
gamma function .. gamma(3M)
gamma, !gamma log gamma function gamma(3M)
gcd, rpow, msqrt, sdiv, itom, xtom,/ mp(3)
gconvert, seconvert, sfconvert, ... econvert(3)
gcvt convert floating-point number ecvt(3C)
general appearance of forms form_field_just(3X)
general display attributes of forms
... form_field_attributes(3X)
general terminal interface ... termios(2)
generalized process scheduler priocntlset(2)
generate an abnormal termination abort(3C)
generate encryption ... crypt(3C)
generate file name for terminal ctermid(35)
generate uniformly distributed/ drand48(3C)
generation information ... siginfo(S)
generator ... rand(3C)
generator ... rand(3C)
generator; routines for changing/ random(3)
generators /better random number random(3)
generic interface to EUC handling eucioctl(S)

System Calls and Library Functions Reference Manual

____________________________ Permuted Index

/netdir_perror, netdir_sperror

curs_getyx: getyx, getparyx,
character or word from a stream

ungetch get (or push/ curs_getch:
or word from a stream getc,

current user context
working directory

and time
put in a file system independent/

size
user,/ getuid, geteuid, getgid,

name
user, effective user, real/ getuid,
effective user, I getuid, geteuid,

setgrent, endgrent, fgetgrent get/
endgrent, fgetgrent get/ getgrent,
fgetgrent get I getgrent, getgrgid,
supplementary group access list/

sethostent, I gethostent,
gethostent, gethostbyaddr,

gethostbyname, sethostent,/
current host

name of current host
of interval timer

window I I getyx, getparyx, getbegyx,
getmntent,

file entry
stream

setnetent, endnetent/ getnetent,
get/ getnetent, getnetbyaddr,

configuration database entry
getnetbyname, setnetent, endnetent/

endnetgrent, innetgr get network/
I authdes_getucred,

corresponding to NETPATH component
mvgetstr,/ curs_getstr: getstr,

mvgetwstr,/ curs_getwstr: getwstr,
argument vector

curses cursor I curs _getyx: getyx,

peer
and/ getpid, getpgrp, getppid,

process, process group,/ getpid,
get process, process group, and/

Permuted Index

generic transport name-to-address/
.. netdir_getbyname(3N)
getbegyx, getmaxyx get curses/ curs_getyx(3X)
getc, getchar, fgetc, getw get ... getc(3S)
getch, wgetch, mvgetch, mvwgetch, curs_getch(3X)
getchar, fgetc, getw get character ... getc(3S)
getcontext, setcontext get and set getcontext(2)
getcwd get pathname of current getcwd(3C)
getdate convert user format date getdate(3C)
getdents read directory entries and getdents(2)
getdtablesize get descriptor table getdtablesize(3)
getegid get real user, effective .. getuid(2)
getenv return value for environment getenv(3C)
geteuid, getgid, getegid get real ... getuid(2)
getgid, getegid get real user, ... getuid(2)
getgrent, getgrgid, getgrnam, ... getgrent(3C)
getgrgid, getgrnam, setgrent, ... getgrent(3C)
getgrnam, setgrent, endgrent, .. getgrent(3C)
getgroups, setgroups get or set getgroups(2)
gethostbyaddr, gethostbyname, gethostent(3N)
gethostbyname, sethostent,/ gethostent(3N)
gethostent, gethostbyaddr, ... gethostent(3N)
gethostid get unique identifier of gethostid(3)
gethostname, sethostname get/set gethostname(3)
getitimer, setitimer get/set value getitimer(3C)
getlogin get login name ... getlogin(3C)
getmaxyx get curses cursor and curs_getyx(3X)
getmntany get mnttab file entry getmntent(3C)
getmntent, getmntany get mnttab getmntent(3C)
getmsg get next message off a ... getmsg(2)
getnetbyaddr, getnetbyname, getnetent(3N)
getnetbyname, setnetent, endnetent getnetent(3N)
getnetconfig get network ... getnetconfig(3N)
getnetent, getnetbyaddr, ... getnetent(3N)
getnetgrent, setnetgrent, .. getnetgrent(3N)
getnetname, host2netname,/ secure_rpc(3N)
getnetpath get netconfig entry getnetpath(3N)
getnstr, wgetstr, wgetnstr, .. curs_getstr(3X)
getnwstr, wgetwstr, wgetnwstr, curs_getwstr(3X)
getopt get option letter from .. getopt(3C)
getpagesize get system page size getpagesize(3)
getparyx, getbegyx, getmaxyx get curs_getyx(3X)
getpass read a password ... getpass(3C)
getpeername get name of connected getpeername(3N)
getpgid get process, process group, getpid(2)
getpgrp, getppid, getpgid get ... getpid(2)
getpid, getpgrp, getppid, getpgid .. getpid(2)

29

Permuted Index

process group,/ getpid, getpgrp,
program scheduling priority

getprotoent, getprotobynumber,
setprotoent, I getprotoent,

getprotobyname, setprotoent,/
public or secret key publickey:

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent, getpwuid,
endpwent, fgetpwent/ getpwent,

maximum system resource/
resource utilization

stream
secret/ publickey: getpublickey,

getservent, getservbyport,
setservent, endservent/ getservent,

getservbyname, setservent,/
gethostname, sethostname

getpriority, setpriority
getitimer, setitimer

options on sockets
endspent, fgetspent, lckpwdf,/
fgetspent, lckpwdf,/ getspent,

mvgetstr, mvgetnstr,/ curs_getstr:
string

/reset_shell_mode, resetty, savetty,
set the date and time
set the date and time

get real user, effective user,/
endusershell get legal user shells

getutline, pututline, setutent,/
pututline, setutent,/ getut:
setutent,/ getut: getutent,

getut: getutent, getutid,
/setutxent, endutxent, utmpxname,
/endutxent, utmpxname, getutmp,
getutxline, pututxline, setutxent,/

pututxline, setutxent,/ getutx:
setutxent,/ getutx: getutxent,

getutx: getutxent, getutxid,
getvfsent, getvfsfile, getvfsspec,

getvfsany get vfstab file entry
get vfstab file entry getvfsent,
file entry getvfsent, getvfsfile,

30

getppid, getpgid get process, .. getpid(2)
getpriority, setpriority get/set getpriority(3)
getprotobyname, setprotoent,/ getprotoent(3N)
getprotobynumber, getprotobyname, getprotoent(3N)
getprotoent, getprotobynumber, getprotoent(3N)
getpublickey, getsecretkey retrieve publickey(3N)
getpw get name from UID getpw(3C)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
getrlimit, setrlimit control ... getrlimit(2)
getrusage get information about getrusage(3)
gets, fgets get a string from a .. gets(3S)
getsecretkey retrieve public or publickey(3N)
getservbyname, setservent,/ getservent(3N)
getservbyport, getservbyname, getservent(3N)
getservent, getservbyport, getservent(3N)
get/set name of current host gethostname(3)
get/set program scheduling priority getpriority(3)
get/set value of interval timer getitimer(3C)
getsid get session ID .. getsid(2)
getsockname get socket name getsockname(3N)
getsockopt, setsockopt get and set getsockopt(3N)
getspent, getspnam, setspent, .. getspent(3C)
getspnam, setspent, endspent, getspent(3C)
getstr, getnstr, wgetstr, wgetnstr, curs_getstr(3X)
getsubopt parse suboptions from a getsubopt(3C)
getsyx, setsyx, ripoffline,/ ... curs_kernel(3X)
gettimeofday, settimeofday get or gettimeofday(3)
gettimeofday, settimeofday get or gettimeofday(3C)
gettxt retrieve a text string gettxt(3C)
getuid, geteuid, getgid, getegid .. getuid(2)
getusershell, setusershell, .. getusershell(3)
getut: getutent, getutid, ... getut(3C)
getutent, getutid, getutline, .. getut(3C)
getutid, getutline, pututline, .. getut(3C)
getutline, pututline, setutent,/ .. getut(3C)
getutmp, getutmpx, updwtmp,/ getutx(3C)
getutmpx, updwtmp, updwtmpx access/ getutx(3C)
getutx: getutxent, getutxid, .. getutx(3C)
getutxent, getutxid, getutxline, ... getutx(3C)
getutxid, getutxline, pututxline, getutx(3C)
getutxline, pututxline, setutxent,/ getutx(3C)
getvfsany get vfstab file entry getvfsent(3C)
getvfsent, getvfsfile, getvfsspec, getvfsent(3C)
getvfsfile, getvfsspec, getvfsany getvfsent(3C)
getvfsspec, getvfsany get vfstab getvfsent(3C)

System Calls and Library Functions Reference Manual

stream getc, getchar, fgetc,
character from a stream

mvwgetwch, ungetwch/ curs_getwch:
character from a stream getwc,

pathname
supplementary code sets

/keyname, filter, use_env, putwin,
from a stream

wgetnwstr,/ curs_getwstr:
get curses cursor and/ curs_getyx:

timezone get time zone name
gmatch shell

matching
time zone name given offset from

and time to/ ctime, localtime,
sigsetjmp, siglongjmp non-local

setjmp, longjmp non-local
sigsetjmp, siglongjmp a non-local

and check access to a resource
pseudo-terminal device grantpt

pseudo-terminal device
setgroups get or set supplementary

initialize the supplementary
I get real user, effective user, real

/getpgid get process, process
endnetgrent, innetgr get network
setgrent, endgrent, fgetgrent get

setpgid set process
setpgrp set process

set terminal foreground process
user, real group, and effective
setregid set real and effective

setuid, setgid set user and
killpg send signal to a process

lchown, fchown change owner and
send a signal to a process or a
send a signal to a process or a

ssignal,
/cbreak, nocbreak, echo, noecho,

reboot reboot system or
stdarg

varargs
ieee_handler IEEE exception trap

re_comp, re_exec regular expression
creation and manipulation of CLIENT

dealing with the creation of server
curses CRT screen

Permuted Index

--·--··- ___ -~ Permuted Index

getw get character or word from a .. getc(3S)
getwc, getwchar, fgetwc get wchar_t getwc(3W)
getwch, wgetwch, mvgetwch, curs_getwch(3X)
getwchar, fgetwc get wchar_t ... getwc(3W)
getwd get current working directory getwd(3)
getwidth get information of ... getwidth(3W)
getwin, delay_output, flushinp/ curs_util(3X)
getws, fgetws get a wchar_t string getws(3W)
getwstr, getnwstr, wgetwstr, curs_getwstr(3X)
getyx, getparyx, getbegyx, getmaxyx curs_getyx(3X)
given offset from GMT .. timezone(3C)
global pattern matching ... gmatch(3G)
gmatch shell global pattern ... gmatch(3G)
GMT timezone get .. timezone(3C)
gm time, asctime, tzset convert date ctime(3C)
goto /longjmp, _setjmp, _longjmp, setjmp(3)
goto ... setjmp(3C)
goto with signal state ... sigsetjmp(3C)
governed by a semaphore /await waitsem(2)
grant access to the slave .. grantpt(3C)
grantpt grant access to the slave grantpt(3C)
group access list IDs getgroups, getgroups(2)
group access list initgroups initgroups(3C)
group, and effective group IDs ... getuid(2)
group, and parent process IDs ... getpid(2)
group entry /setnetgrent, .. getnetgrent(3N)
group file entry /getgrnam, .. getgrent(3C)
group ID .. setpgid(2)
group ID .. setpgrp(2)
group id tcsetpgrp .. tcsetpgrp(3C)
group IDs /get real user, effective getuid(2)
group IDs ... setregid(3)
group IDs ... setuid(2)
group ... killpg(3)
group of a file chown, .. chown(2)
group of processes kill .. kill(2)
group of processes /sigsendset .. sigsend(2)
gsignal software signals ... ssignal(3C)
halfdelay, intrflush, keypad, meta,/ curs_inopts(3X)
halt processor ... reboot(3)
handle variable argument list ... stdarg(S)
handle variable argument list .. varargs(S)
handler function .. ieee_handler(3M)
handler regex, .. regex(3)
handles /routines for dealing with rpc_clnt_create(3N)
handles /library routines for rpc_svc_create(3N)
handling and optimization package curses(3X)

31

Permuted Index

isprint, isgraph, isascii character
elf_errmsg, elf_errno error

sigfpe signal
mblen, wctomb multibyte character

eucioctl generic interface to EUC
/start_color, init_pair, init_color,

hsearch, hcreate, hdestroy manage
elf_hash compute

termattrs,/ /baudrate, erasechar,
/baudrate, erasechar, has_ic,

search tables hsearch,
hsearch, hcreate,

retrieve archive member
class-dependent object file

retrieve class-dependent section
retrieve class-dependent program

/sethostent, endhostent,
deck/ panel_ show: show _panel,

curs_border: border, wborder, box,
/wvline create curses borders,

ntohl, ntohs convert values between
endhostent, herror get network
get unique identifier of current

sethostname get/set name of current
/authdes_getucred, getnetname,

hash search tables
values between host and/ byteorder,
between host and/ byteorder, htonl,

tanh, tanhf, asinh, acosh, atanh

getsid get session
setpgid set process group
setpgrp set process group

setsid set session
terminal foreground process group

curs_outopts: clearok, idlok,
elf_getident retrieve file

gethostid get unique
shmget get shared memory segment

setscrreg,/ curs_outopts: clearok,
set supplementary group access list

process group, and parent process
real group, and effective group

set real and effective group
set real and effective user

setuid, setgid set user and group
scalbn miscellaneous functions for

32

handling /iscntrl, ispunct, .. ctype(3C)
handling .. elf_errmsg(3E)
handling for specific SIGFPE codes sigfpe(3)
handling mbchar: mbtowc, .. mbchar(3C)
handling TTY drivers and modules eucioctl(S)
has_ colors, can_ change_ color,/ curs_color(3X)
hash search tables .. hsearch(3C)
hash value ... elf_hash(3E)
has_ic, has_il, killchar, longname, curs_termattrs(3X)
has_il, killchar, longname,/ curs_termattrs(3X)
hcreate, hdestroy manage hash hsearch(3C)
hdestroy manage hash search tables hsearch(3C)
header elf_getarhdr ... elf_getarhdr(3E)
header /elf32_newehdr retrieve elf_getehdr(3E)
header elf_getshdr: elf32_getshdr elf_getshdr(3E)
header table /elf32_newphdr elf_getphdr(3E)
herror get network host entry gethostent(3N)
hide_panel, panel_hidden panels panel_show(3X)
hline, whline, vline, wvline create/ curs_border(3X)
horizontal and vertical lines curs_border(3X)
host and network byte order /htons, byteorder(3N)
host entry /sethostent, .. gethostent(3N)
host gethostid gethostid(3)
host gethostname, .. gethostname(3)
host2netname, key_decryptsession,/ secure_rpc(3N)
hsearch, hcreate, hdestroy manage hsearch(3C)
htonl, htons, ntohl, ntohs convert byteorder(3N)
htons, ntohl, ntohs convert values byteorder(3N)
hyperbolic functions /cosh, coshf, sinh(3M)
hypot Euclidean distance function hypot(3M)
ID ... getsid(2)
ID .. setpgid(2)
ID .. setpgrp(2)
ID ... setsid(2)
id tcsetpgrp set .. tcsetpgrp(3C)
idcok immedok, leaveok, setscrreg,/ curs_outopts(3X)
identification data ... elf_getident(3E)
identifier of current host ... gethostid(3)
identifier .. shmget(2)
idlok, idcok immedok, leaveok, curs_outopts(3X)
IDs getgroups, setgroups get or getgroups(2)
IDs /getppid, getpgid get process, getpid(2)
IDs /get real user, effective user, getuid(2)
IDs setregid .. setregid(3)
IDs setreuid ... setreuid(3)
IDs ... setuid(2)
IEEE arithmetic /isnan, copysign, ieee_functions(3M)

System Calls and Library Functions Reference Manual

-- ---------

function ieee_handler
floatingpoint

I fpsetmask, fpgetsticky, fpsetsticky
copysign, scalbn miscellaneous/

handler function
interface

ifignore check for
curs_outopts: clearok, idlok, idcok

character and its/ curs_inch:
mvinchstr,/ curs_inchstr: inchstr,

winchnstr,/ curs_inchstr:
entries and put in a file system

receipt of an orderly release
receive a unit data error

syscall
inet_makeaddr, inet_lnaof,/

inet_makeaddr, inet_lnaof,/ inet:
/inet_network, inet_makeaddr,

inet: inet_addr, inet_network,
address/ /inet_makeaddr, inet_lnaof,

inet_lnaof,/ inet: inet_addr,
/inet_lnaof, inet_netof,

processor_infoget
utilization getrusage get

machines rusers return
dlerror get diagnostic

elf_newscn, elf_nextscn get section
t_rcvdis retrieve

localeconv get numeric formatting
nl_langinfo language

sets getwidth get
siginfo signal generation

statvfs, fstatvfs get file system
sysinfo get and set system

sysfs get file system type
get protocol-specific service

yp_update change NIS
curs_color: start_color, init_pair,
supplementary group access list

/set_ term, delscreen curses screen
access list initgroups

connect
t_sndrel

popen, pclose
curs_color: start_color,

set_term, delscreen/ curs_initscr:

Permuted Index

Permuted Index

IEEE exception trap handler ieee_handler(3M)
IEEE floating point definitions floatingpoint(3)
IEEE floating-point environment/ fpgetround(3C)
ieee_functions, fp_class, isnan, ieee_functions(3M)
ieee_handler IEEE exception trap ieee_handler(3M)
ifignore check for ignored network ifignore(3N)
ignored network interface ... ifignore(3N)
immedok, leaveok, setscrreg,/ curs_outopts(3X)
inch, winch, mvinch, mvwinch get a curs_inch(3X)
inchnstr, winchstr, winchnstr, curs_inchstr(3X)
inchstr, inchnstr, winchstr, curs_inchstr(3X)
independent format /read directory getdents(2)
index, rindex string operations .. index(3)
indication t_rcvrel acknowledge t_rcvrel(3N)
indication t_rcvuderr .. t_rcvuderr(3N)
indirect system call ... syscall(3)
inet: inet_addr, inet_network, .. inet(3N)
inet_addr, inet_network, ... inet(3N)
inet_lnaof, inet_netof, inet_ntoa/ ... inet(3N)
inet_makeaddr, inet_lnaof,/ .. inet(3N)
inet_netof, inet_ntoa Internet .. inet(3N)
inet_network, inet_makeaddr, ... inet(3N)
inet_ntoa Internet address/ .. inet(3N)
information about one processor processor_info(2)
information about resource ... getrusage(3)
information about users on remote rusers(3N)
information ... dlerror(3X)
information /elf_ndxscn, .. elf_getscn(3E)
information from disconnect .. t_rcvdis(3N)
information .. localeconv(3C)
information ... nl_langinfo(3C)
information of supplementary code getwidth(3W)
information .. siginfo(S)
information sta tvfs(2)
information strings .. sysinfo(2)
information .. sysfs(2)
information t_getinfo .. t_getinfo(3N)
information ... yp_update(3N)
init_color, has_colors,/ .. curs_color(3X)
initgroups initialize the ... initgroups(3C)
initialization and manipulation/ curs_initscr(3X)
initialize the supplementary group initgroups(3C)
initiate a connection on a socket connect(3N)
initiate an orderly release ... t_sndrel(3N)
initiate pipe to/from a process .. popen(3S)
init_pair, init_color, has_colors,/ curs_color(3X)
initscr, newterm, endwin, isendwin, curs_initscr(3X)

33

Permuted Index

number generator;/ random, srandom,
fsync synchronize a file's

I setnetgrent, endnetgrent,
mvinnstr,/ curs_instr: instr,

mvinwstr,/ curs_inwstr: inwstr,
/mvwscanw, vwscanw convert formatted

/wtimeout, typeahead curses terminal
fscanf, sscanf convert formatted
fscanf, sscanf convert formatted
ungetc push character back onto

push wchar_t character back into
fread, fwrite binary

poll
stdio standard buffered

clearerr, fileno stream status
insert a character I curs_insch:

curs_deleteln: deleteln, wdeleteln,
/insch, winsch, mvinsch, mvwinsch

the/ /winswch, mvinswch, mvwinswch
I insertln, winsertln delete and

/mvinsnstr, mvwinsstr, mvwinsnstr
/mvinsnwstr, mvwinswstr, mvwinsnwstr

/wdeleteln, insdelln, winsdelln,
insque, remque

mvinsstr,/ curs_instr: insstr,
mvinswstr,/ curs_instr: inswstr,

element from a queue
mvinsstr, mvinsnstr,/ curs_instr:

process until signal sigsuspend
creatsem create an

mvinstr, mvinnstr,/ curs_instr:
mvwinswch insert a/ curs_inswch:
winsnwstr, mvinswstr,/ curs_instr:

abs, labs return
a641, 164a convert between long
mtox, mfree multiple precision

sputl, sgetl access long
atol, atoi convert string to

13tol, ltol3 convert between 3-byte
between 3-byte integers and long

ifignore check for ignored network
tcgetsid general terminal

drivers and/ eucioctl generic
yperr_string, ypprot_err NIS client

/tgetstr, tgoto, tputs curses
I tigetnum, tigetstr curses

/inet_lnaof, inet_netof, inet_ntoa

34

initstate, setstate better random .. random(3)
in-memory state with that on the/ .. fsync(2)
innetgr get network group entry getnetgrent(3N)
innstr, winstr, winnstr, mvinstr, curs_instr(3X)
innwstr, winwstr, winnwstr, curs_inwstr(3X)
input from a curses window curs_scanw(3X)
input option control routines curs_inopts(3X)
input scanf, .. scanf(3S)
input scanf, scanf(3W)
input stream .. ungetc(3S)
input stream ungetwc .. ungetwc(3W)
input/output .. fread(3S)
input/output multiplexing .. poll(2)
input/output package .. stdio(3S)
inquiries ferror, feof, .. ferror(3S)
insch, winsch, mvinsch, mvwinsch curs_insch(3X)
insdelln, winsdelln, insertln,/ curs_deleteln(3X)
insert a character before the/ curs_insch(3X)
insert a wchar_t character before curs_inswch(3X)
insert lines in a curses window curs_deleteln(3X)
insert string before character I curs_instr(3X)
insert wchar_t string before/ curs_instr(3X)
insertln, winsertln delete and/ curs_deleteln(3X)
insert/remove element from a queue insque(3C)
insnstr, winsstr, winsnstr, .. curs_instr(3X)
insnwstr, winswstr, winsnwstr, curs_instr(3X)
insque, remque insert/remove .. insque(3C)
insstr, insnstr, winsstr, winsnstr, curs_instr(3X)
install a signal mask and suspend sigsuspend(2)
instance of a binary semaphore creatsem(2)
instr, innstr, winstr, winnstr, curs_instr(3X)
inswch, winswch, mvinswch, curs_inswch(3X)
inswstr, insnwstr, winswstr, .. curs_instr(3X)
integer absolute value ... abs(3C)
integer and base-64 ASCII string .. a641(3C)
integer arithmetic /itom, xtom, ... mp(3)
integer data in a/ .. sputl(3X)
integer strtol, strtoul, .. strtol(3C)
integers and long integers .. 13tol(3C)
integers 13tol, ltol3 convert ... 13tol(3C)
interface ifignore(3N)
interface /tcgetpgrp, tcsetpgrp, termios(2)
interface to EUC handling TTY ... eucioctl(S)
interface /yp_order, yp_master, ypclnt(3N)
interfaces (emulated) to the/ curs_termcap(3X)
interfaces to terminfo database curs_terminfo(3X)
Internet address manipulation .. inet(3N)

System Calls and Library Functions Reference Manual

_______ __ _ __ __ __ ___ __ __ _ __ Permuted Index

pipe create an
stdipc: ftok standard

blocked signals and wait for
siginterrupt allow signals to
ualarm schedule signal after

usleep suspend execution for
nap suspends execution for a short

sleep suspend execution for
sleep suspend execution for

setitimer get/set value of
/nocbreak, echo, noecho, halfdelay,

intro
libraries
libraries

and error numbers
libraries intro

intro
intro

error numbers intro
application-specific routines for

/routines for automatic
get a wchar_t/ curs_inwch:

curs_inwchstr: inwchstr,
winwchnstr,/ curs_inwchstr:

mvinwstr, mvinnwstr,/ curs_inwstr:
select synchronous

widec multibyte character

/islower, isupper, isalpha,
/isxdigit, islower, isupper,

/iscntrl, ispunct, isprint, isgraph,

ttyname,
/isupper, isalpha, isalnum, isspace,
isupper, isalpha, isalnum,/ ctype:

character buffer is encrypted
curses/ /initscr, ncwtcrm, endwin,
/iswascii, isphonogram, isideogram,

/isspace, iscntrl, ispunct, isprint,
/iswcntrl, iswascii, isphonogram,

/touchline, untouchwin, wtouchln,
isspace,/ ctype: isdigit, isxdigit,

ieee_functions, fp_class,
fpclass, unordered determine type/

unordered determine type of I isnan,

Permuted Index

interprocess channel ... pipe(2)
interprocess communication package stdipc(3C)
interrupt /automically release sigpause(3)
interrupt system calls ... siginterrupt(3)
interval in microseconds .. ualarm(3)
interval in microseconds ... usleep(3)
interval ... nap(2)
interval ... sleep(3)
interval .. sleep(3C)
interval timer getitimer, ... getitimer(3C)
intrflush, keypad, meta, nodelay,/ curs_inopts(3X)
intro intro ... intro(2)
intro ... intro(2)
intro introduction to functions and .. intro(3)
intro introduction to math .. intro(3M)
intro introduction to miscellany ... intro(S)
intro introduction to system calls ... intro(2)
introduction to functions and .. intro(3)
introduction to math libraries ... intro(3M)
introduction to miscellany ... intro(S)
introduction to system calls and ... intro(2)
invocation by forms /assign form_hook(3X)
invocation by menus .. menu_hook(3X)
inwch, winwch, mvinwch, mvwinwch curs_inwch(3X)
inwchnstr, winwchstr, winwchnstr,/ curs_inwchstr(3X)
inwchstr, inwchnstr, winwchstr, curs_inwchstr(3X)
inwstr, innwstr, winwstr, winnwstr, curs_inwstr(3X)
I/O multiplexing ... select(3C)
I/0 routines .. widec(3W)
ioctl control device .. ioctl(2)
isalnum, isspace, iscntrl, ispunct,/ ctype(3C)
isalpha, isalnum, isspace, iscntrl,/ ctype(3C)
isascii character handling ... ctype(3C)
isastream test a file descriptor isastream(3C)
isatty find name of a terminal .. ttyname(3C)
iscntrl, ispunct, isprint, isgraph,/ ctype(3C)
isdigit, isxdigit, islower, ... ctype(3C)
isencrypt determine whether a isencrypt(3G)
isendwin, set_term, delscreen curs_initscr(3X)
isenglish, isnumber, isspecial/ wctype(3W)
isgraph, isascii character handling ctype(3C)
isideogram, isenglish, isnumber,/ wctype(3W)
is_linetouched, is_wintouched/ curs_touch(3X)
islower, isupper, isalpha, isalnum, ctype(3C)
isnan, copysign, scalbn/ ieee_functions(3M)
isnan, isnand, isnanf, finite, .. isnan(3C)
isnand, isnanf, finite, fpclass, ... isnan(3C)

35

Permuted Index

determine type of/ isnan, isnand,
/isphonogram, isideogram, isenglish,

/iswgraph, iswcntrl, iswascii,
/isalnum, isspace, iscntrl, ispunct,
/isalpha, isalnum, isspace, iscntrl,

/islower, isupper, isalpha, isalnum,
I isideogram, isenglish, isnumber,

system
ctype: isdigit, isxdigit, islower,
/iswlower, iswdigit, iswxdigit,
iswdigit, iswxdigit,/ wctype:
/iswprint, iswgraph, iswcntrl,

/iswpunct, iswprint, iswgraph,
/iswalpha, iswupper, iswlower,
/iswspace, iswpunct, iswprint,

control/ /wtouchln, is_linetouched,
wctype: iswalpha, iswupper,

/iswalnum, iswspace, iswpunct,
/iswxdigit, iswalnum, iswspace,
/iswdigit, iswxdigit, iswalnum,
iswxdigit,/ wctype: iswalpha,
/iswupper, iswlower, iswdigit,

isalpha, isalnum,/ ctype: isdigit,
item_ visible tell if menus

I item_description get menus
item_opts_off, item_opts menus

item_ value set and get menus
items/ /set_menu_items, menu_items,
name/ menu_item_name: item_name,

/current_item, set_top_row, top_row,
menu_hook: set_item_init,

menus item name/ menu_item_name:
/item_opts_on, item_opts_off,
/set_item_opts, item_opts_on,

menu_item_opts: set_item_opts,
set and get current menus

free_item create and destroy menus
application data with menus

/item_count connect and disconnect
/item_init, set_item_term,

data with menus/ /set_item_userptr,

menu_item_ value: set_item_ value,

visible menu_item_ visible:
/mout, pow, gcd, rpow, msqrt, sdiv,

36

isnanf, finite, fpclass, unordered ... isnan(3C)
isnumber, isspecial classify ASCII/ wctype(3W)
isphonogram, isideogram, isenglish,/ wctype(3W)
isprint, isgraph, isascii character/ ctype(3C)
ispunct, isprint, isgraph, isascii/ .. ctype(3C)
isspace, iscntrl, ispunct, isprint,/ .. ctype(3C)
isspecial classify ASCII and/ wctype(3W)
issue a shell command system(3S)
isupper, isalpha, isalnum, isspace,/ ctype(3C)
iswalnum, iswspace, iswpunct,/ wctype(3W)
iswalpha, iswupper, iswlower, wctype(3W)
iswascii, isphonogram, isideogram,/ wctype(3W)
iswcntrl, iswascii, isphonogram,/ wctype(3W)
iswdigit, iswxdigit, iswalnum,/ wctype(3W)
iswgraph, iswcntrl, iswascii,/ .. wctype(3W)
is_wintouched curses refresh curs_touch(3X)
iswlower, iswdigit, iswxdigit,/ wctype(3W)
iswprint, iswgraph, iswcntrl,/ wctype(3W)
iswpunct, iswprint, iswgraph,/ wctype(3W)
iswspace, iswpunct, iswprint,/ wctype(3W)
iswupper, iswlower, iswdigit, .. wctype(3W)
iswxdigit, iswalnum, iswspace,/ wctype(3W)
isxdigit, islower, isupper, ... ctype(3C)
item is visible menu_item_visible: menu_item_visible(3X)
item name and description menu_item_name(3X)
item option routines /item_opts_on, menu_item_opts(3X)
item values /set_item_value, menu_item_value(3X)
item_ count connect and disconnect menu_items(3X)
item_ description get menus item menu_item_name(3X)
item_index set and get current/ menu_item_current(3X)
item_init, set_item_term,/ menu_hook(3X)
item_name, item_ description get menu_item_name(3X)
item_opts menus item option/ menu_item_opts(3X)
item_opts_off, item_opts menus item/
... menu_item_opts(3X)
item_opts_on, item_opts_off,/ menu_item_opts(3X)
items /top_row, item_index menu_item_current(3X)
items menu_item_new: new _item, menu_item_new(3X)
items /item_userptr associate menu_item_userptr(3X)
items to and from menus ... menu_items(3X)
item_term, set_menu_init,/ menu_hook(3X)
item_userptr associate application
... menu_item_userptr(3X)
item_ value set and get menus item/
.. menu_item_value(3X)
item_ visible tell if menus item is menu_item_ visible(3X)
itom, xtom, mtox, mfree multiple/ .. mp(3)

System Calls and Library Functions Reference Manual

__ __ __ _____ __ _______________ ______________ ___ _ Permuted Index

functions bessel:
bessel: jO,

bessel: jO, jl,
/erand48, lrand48, nrand48, mrand48,

retrieve public or secret
characters from curses terminal

strings from curses terminal
characters from curses terminal

strings from curses terminal
I getnetname, host2netname,

/host2netname, key _decryptsession,
netname2host, I /key_ encryptsession,

getwin,/ curs_util: unctrl,
/echo, noecho, halfdelay, intrflush,
/key _encryptsession, key _gendes,

a group of processes
/erasechar, has_ic, has_il,

group
integers and long integers

and base-64 ASCII string a641,
setlabel define the

slk_attroff curses soft
abs,

nl_types native
nl_langinfo

group of a file chown,
/setspent, endspent, fgetspent,

/mrand48, jrand48, srand48, seed48,
nextafter, scalb manipulate/ frexp,

remainder div,
I clearok, idlok, idcok immedok,

setusershell, endusershell get
ftruncate set a file to a specified

getopt get option
with/ /build a list of severity

!search,
standard format and pass to/
define the label for pfmt() and

gamma,
intro introduction to functions and

intro introduction to math
tam TAM transition

elf_ version coordinate ELF
(emulated) to the termcap

elf object file access
windowing terminal function

calls /rpc_broadcast, rpc_call

Permuted Index

jO, jl, jn, yO, yl, yn Bessel .. bessel(3M)
jl, jn, yO, yl, yn Bessel functions bessel(3M)
jn, yO, yl, yn Bessel functions ... bessel(3M)
jrand48, srand48, seed48, lcong48/ drand48(3C)
key /getpublickey, getsecretkey publickey(3N)
keyboard /get (or push back) curs_getch(3X)
keyboard /mvwgetnstr get character curs_getstr(3X)
keyboard /(or push back) wchar_t curs_getwch(3X)
keyboard /get wchar_t character curs_getwstr(3X)
key _decryptsession,/ .. secure_rpc(3N)
key _encryptsession, key _gendes,/ secure_rpc(3N)
key _gendes, key _setsecret, .. secure_rpc(3N)
keyname, filter, use_env, putwin, curs_util(3X)
keypad, meta, nodelay, notimeout,/ curs_inopts(3X)
key _setsecret, netname2host,/ secure_rpc(3N)
kill send a signal to a process or .. kill(2)
killchar, longname, termattrs,/ curs_termattrs(3X)
killpg send signal to a process ... killpg(3)
13tol, ltol3 convert between 3-byte 13tol(3C)
164a convert between long integer .. a641(3C)
label for pfmt() and lfmt() .. setlabel(3C)
label routines /slk_attrset, ... curs_slk(3X)
labs return integer absolute value .. abs(3C)
language data types .. nl_types(5)
language information ... nl_langinfo(3C)
lchown, fchown change owner and chown(2)
lckpwdf, ulckpwdf manipulate shadow I getspent(3C)
lcong48 generate uniformly I ... drand48(3C)
ldexp, logb, modf, modff, ... frexp(3C)
!div compute the quotient and .. div(3C)
leaveok, setscrreg, wsetscrreg,/ curs_outopts(3X)
legal user shells getusershell, getusershell(3)
length truncate, .. truncate(3C)
letter from argument vector ... getopt(3C)
levels for an application for use addseverity(3C)
!find linear search and update .. lsearch(3C)
lfmt display error message in .. lfmt(3C)
lfmt() setlabel .. setlabel(3C)
!gamma log gamma function ... gamma(3M)
libraries ... intro(3)
libraries ... intro(3M)
libraries ... tam(3X)
library and application versions elf_ version(3E)
library I tputs curses interfaces curs_termcap(3X)
library ... elf(3E)
library libwindows ... libwindows(3X)
library routines for client side rpc_clnt_calls(3N)

37

Permuted Index

remote/ /authsys_create_default
/clnt_tp_create, clnt_vc_create

the/ /svc_tp_create, svc_vc_create
/xdrrec_create, xdrstdio_create

representation xdr
/xdr_inline, xdrrec_eof, xdr_setpos

/xdr_ vector, xdr_ wrapstring
/xdr_u_long, xdr_u_short, xdr_ void

/xprt_register, xprt_umegister
procedure calls rpc

procedure calls /xdr_replymsg XDR
/rpcb_rmtcall, rpcb_set, rpcb_unset

/svc_run, svc_sendreply
/netname2user, user2netname

/svcerr_systemerr, svcerr_weakauth
t_alloc allocate a

t _free free a
t_sync synchronize transport

function library
ulimi t get and set user

dial establish an outgoing terminal
!search, !find

borders, horizontal and vertical
refresh curses windows and

winsertln delete and insert

read the value of a symbolic
link

symlink make a symbolic
destroy I /new _field, dup _field,
routines /set_fieldtype_choice,

or set supplementary group access
the supplementary group access

nlist get entries from name
application/ addseverity build a
stdarg handle variable argument

varargs handle variable argument
output of a variable argument
output of a variable argument

t_listen
listen

socket
get client's data passed via the

38

nlsrequest format and send
modify and query a program's

information
convert date and time to/ ctime,

library routines for client side rpc_clnt_auth(3N)
library routines for dealing with/ rpc_clnt_create(3N)
library routines for dealing with rpc_svc_create(3N)
library routines for external data/ xdr_create(3N)
library routines for external data ... xdr(3N)
library routines for external data/ xdr_admin(3N)
library routines for external data/ xdr_complex(3N)
library routines for external data/ xdr_simple(3N)
library routines for registering/ rpc_svc_calls(3N)
library routines for remote .. rpc(3N)
library routines for remote .. rpc_xdr(3N)
library routines for RPC bind/ rpcbind(3N)
library routines for RPC servers rpc_svc_reg(3N)
library routines for secure remote/ secure_rpc(3N)
library routines for server side/ rpc_svc_err(3N)
library structure ... t_alloc(3N)
library structure ... t_free(3N)
library ... t_sync(3N)
libwindows windowing terminal libwindows(3X)
limits ... ulimit(2)
line connection dial(3C)
linear search and update ... lsearch(3C)
lines /vline, wvline create curses curs_border(3X)
lines /redrawwin, wredrawln curs_refresh(3X)
lines in a curses window /insertln, curs_deleteln(3X)
link link to a file .. link(2)
link readlink .. readlink(2)
link to a file .. link(2)
link to a file .. symlink(2)
link_field, free_field, create and form_field_new(3X)
link_fieldtype forms fieldtype form_fieldtype(3X)
list IDs getgroups, setgroups get getgroups(2)
list initgroups initialize .. initgroups(3C)
list .. nlist(3E)
list of severity levels for an addseverity(3C)
list stdarg(S)
list ... varargs(S)
list /vsprintf print formatted ... vprintf(3S)
list /vsprintf print formatted ... vprintf(3W)
listen for a connect request ... t_listen(3N)
listen for connections on a socket listen(3N)
listen listen for connections on a listen(3N)
listener nlsgetcall .. nlsgetcall(3N)
listener service request message nlsrequest(3N)
locale setlocale setlocale(3C)
localeconv get numeric formatting localeconv(3C)
localtime, gmtime, asctime, tzset ctime(3C)

System Calls and Library Functions Reference Manual

end, etext, edata last
lock

text, or data plock
memory

reading or writing locking
mlockall, munlockall

mlock, munlock

maillock manage
region for reading or writing

lockf record
gamma, !gamma

powf, sqrt, sqrtf/ exp, expf, cbrt,
closelog, setlogmask control system

sqrtf/ exp, expf, cbrt, log, logf,
exp, expf, cbrt, log, logf, loglO,

/pow, powf, sqrt, sqrtf exponential,
manipulate parts of/ frexp, ldexp,

sqrt, sqrtf/ exp, expf, cbrt, log,
/in standard format and pass to
/in standard format and pass to
/in standard format and pass to

getlogin get
cuserid get character

setjmp,
sigsetjmp, siglongjmp/ setjmp,

setjmp, longjmp, _setjmp,
curses/ /has_ic, has_il, killchar,

transport endpoint t_look
setsyx, ripoffline, curs_set, napms

srand48, seed48,/ drand48, erand48,
update

stat,
stat,

integers and long integers 13tol,
values

sgetl access long integer data in a
information about users on remote

rwall write to specified remote
sysm68k
sysm88k

mout, pow, gcd, rpow, msqrt,/ mp:
maillock manage lockfile for user's

mailbox
makedev,

user contexts

Permuted Index

_____________________ __ Permuted Index

locations in program .. end(3C)
lock a process in primary memory .. lock(2)
lock into memory or unlock process, plock(2)
lock lock a process in primary .. lock(2)
lock or unlock a file region for .. locking(2)
lock or unlock address space ... mlockall(3C)
lock (or unlock) pages in memory mlock(3C)
lockf record locking on files lockf(3C)
lockfile for user's mailbox maillock(3X)
locking lock or unlock a file ... locking(2)
locking on files ... lockf(3C)
log gamma function .. gamma(3M)
log, logf, loglO, loglOf, pow, .. exp(3M)
log syslog, openlog, ... syslog(3)
loglO, loglOf, pow, powf, sqrt, ... exp(3M)
loglOf, pow, powf, sqrt, sqrtf/ ... exp(3M)
logarithm, power, square root/ ... exp(3M)
logb, modf, modff, nextafter, scalb frexp(3C)
logf, loglO, loglOf, pow, powf, ... exp(3M)
logging and monitoring services ... lfmt(3C)
logging and monitoring services .. vlfmt(3C)
logging and monitoring services vpfmt(3C)
login name getlogin(3C)
login name of the user .. cuserid(3S)
longjmp non-local goto ... setjmp(3C)
longjmp, _setjmp, _longjmp, .. setjmp(3)
_longjmp, sigsetjmp, siglongjmp/ setjmp(3)
longname, termattrs, termname curs_termattrs(3X)
look at the current event on a .. t_look(3N)
low-level curses routines /getsyx, curs_kemel(3X)
lrand48, nrand48, mrand48, jrand48, drand48(3C)
!search, !find linear search and lsearch(3C)
!seek move read/write file pointer .. lseek(2)
!stat, fstat get file status ... stat(2)
!stat, fstat get file status ... stat(2)
ltol3 convert between 3-byte ... 13tol(3C)
machine-dependent values ... values(S)
machine-independent fashion sputl, sputl(3X)
machines rusers return rusers(3N)
machines .. rwall(3N)
machine-specific functions .. sysm68k(2)
machine-specific functions .. sysm88k(2)
madd, msub, mult, mdiv, mcmp, min, mp(3)
mailbox ... maillock(3X)
maillock manage lockfile for user's maillock(3X)
major, minor manage a device number makedev(3C)
makecontext, swapcontext manipulate makecontext(3C)

39

Permuted Index

device number
free, realloc, calloc, mallopt,

mallopt, mallinfo memory allocator
memalign, valloc, memory allocator

malloc, free, realloc, calloc,
makedev, major, minor

tsearch, tfind, tdelete, twalk
hsearch, hcreate, hdestroy

maillock
endpoint t_optmgmt

swapctl
met! memory

memcntl memory
sigaction detailed signal

sigpause simplified signal
elf_flagscn, elf_flagshdr

/overwrite, copywin overlap and
/logb, modf, modff, nextafter, scalb

/setpwent, endpwent, fgetpwent
/sigaddset, sigdelset, sigismember

entry I fgetspent, lckpwdf, ulckpwdf
makecontext, swapcontext
inet_ntoa Internet address

/for dealing with creation and
wbkgd curses window background

/pair_content curses color
curses screen initialization and

pancl_hidden panels deck
top_panel, bottom_panel panels deck

strfind, strrspn, strtrns string
mmap

mprotect set protection of memory
ethers Ethernet address

set_menu_mark, menu_mark menus
signal sigsuspend install a signal

change or examine signal
sigsetmask set current signal

umask set and get file creation
unlockpt unlock a pseudo-terminal

set and get menus pattern
regular expression compile and
regular expression compile and

gmatch shell global pattern
math

intro introduction to

40

makedev, major, minor manage a makedev(3C)
mallinfo memory allocator malloc, malloc(3X)
malloc, free, realloc, calloc, .. malloc(3X)
malloc, free, realloc, calloc, .. malloc(3C)
mallopt, mallinfo memory allocator malloc(3X)
manage a device number .. makedev(3C)
manage binary search trees tsearch(3C)
manage hash search tables ... hsearch(3C)
manage lockfile for user's mailbox maillock(3X)
manage options for a transport t_optmgmt(3N)
manage swap space ... swapctl(2)
management control .. mctl(3)
management control .. memcntl(2)
management .. sigaction(2)
management /sigrelse, sigignore, signal(2)
manipulate flags /elf_flagphdr, elf_flagdata(3E)
manipulate overlapped curses/ curs_overlay(3X)
manipulate parts of floating-point/ frexp(3C)
manipulate password file entry getpwent(3C)
manipulate sets of signals .. sigemptyset(3C)
manipulate shadow password file getspent(3C)
manipulate user contexts .. makecontext(3C)
manipulation /inet_netof, .. inet(3N)
manipulation of CLIENT handles rpc_clnt_create(3N)
manipulation routines /bkgd, curs_bkgd(3X)
manipulation routines ... curs_color(3X)
manipulation routines /delscreen curs_initscr(3X)
manipulation routines /hide_panel, panel_show(3X)
manipulation routines panel_ top: panel_top(3X)
manipulations str: ... str(3G)
map pages of memory ... mmap(2)
mapping ... mprotect(2)
mapping operations ... ethers(3N)
mark string routines menu_mark: menu_mark(3X)
mask and suspend process until sigsuspend(2)
mask sigprocmask ... sigprocmask(2)
mask .. sigsetmask(3)
mask .. umask(2)
master/slave pair .. unlockpt(3C)
match buffer /menu_pattern menu_pattern(3X)
match routines /step, advance .. regexp(5)
match routines /step, advance regexpr(3G)
matching .. gmatch(3G)
math functions and constants ... math(5)
math libraries .. intro(3M)
math math functions and constants math(5)
matherr error-handling function matherr(3M)

System Calls and Library Functions Reference Manual

in !Tlenus /menu_format set and get

getrlimit, setrlimit control
multibyte character handling
handling mbchar: mbtowc,

functions mbstring:
multibyte string functions

character handling mbchar:
msqrt,/ mp: madd, msub, mult, mdiv,

rpow, msqrt,/ mp: madd, msub, mult,
state with that on the physical

malloc, free, realloc, calloc,
elf_next sequential archive

elf_rand random archive
elf_getarhdr retrieve archive

offsetof offset of structure
memmove, memset memory I memory:
memset memory I memory: memccpy,

memory I memory: memccpy, memchr,

memory:memccpy,memchr,memcmp,
/memccpy, memchr, memcmp, memcpy,

alloca
realloc, calloc, memalign, valloc,
realloc, calloc, mallopt, mallinfo

shmctl shared
copylist copy a file into

spawn new process in a virtual
lock lock a process in primary

met!
memcntl

mprotect set protection of
memcpy, memmove, memset memory I

munlock lock (or unlock) pages in
mmap map pages of

munmap unmap pages of
memcmp, memcpy, memmove, memset

shmop: shmat, shmdt shared
data plock lock into

mincore determine residency of
csync designate portions of

shmgetgetshared
msync synchronize

memchr, memcmp, memcpy, memmove,
menu_fore, set_menu_back,/
/menu_fore, set_menu_back,

Permuted Index

_ Permuted Index

maximum numbers of rows and columns
... menu_format(3X)
maximum system resource consumption getrlimit(2)
mbchar: mbtowc, mblen, wctomb mbchar(3C)
mblen, wctomb multibyte character mbchar(3C)
mbstowcs, wcstombs multibyte string mbstring(3C)
mbstring: mbstowcs, wcstombs mbstring(3C)
mbtowc, mblen, wctomb multibyte mbchar(3C)
mcmp, min, mout, pow, gcd, rpow, ... mp(3)
met! memory management control .. mctl(3)
mdiv, mcmp, min, mout, pow, gcd, ... mp(3)
medium /a file's in-memory ... fsync(2)
memalign, valloc, memory allocator malloc(3C)
member access .. elf_next(3E)
member access ... elf_rand(3E)
member header elf_getarhdr(3E)
member offsetof(3C)
memccpy, memchr, memcmp, memcpy, memory(3C)
memchr, memcmp, memcpy, memmove, memory(3C)
memcmp, memcpy, memmove, memset memory(3C)
memcntl memory management control memcntl(2)
memcpy, memmove, memset memory I memory(3C)
memmove, memset memory operations memory(3C)
memory allocator ... alloca(3)
memory allocator malloc, free, malloc(3C)
memory allocator malloc, free, malloc(3X)
memory control operations .. shmctl(2)
memory ... copylist(3G)
memory efficient way vfork .. vfork(2)
memory ... lock(2)
memory management control .. mctl(3)
memory management control ... memcntl(2)
memory mapping .. mprotect(2)
memory: memccpy, memchr, memcmp, memory(3C)
memory mlock, ... mlock(3C)
memory ... mmap(2)
memory .. munmap(2)
memory operations /memccpy, memchr, memory(3C)
memory operations .. shmop(2)
memory or unlock process, text, or plock(2)
memory pages .. mincore(2)
memory safe for execution ... csync(2)
memory segment identifier shmget(2)
memory with physical storage .. msync(3C)
memset memory operations /memccpy, memory(3C)
menu_attributes: set_menu_fore, menu_attributes(3X)
menu_back, set_menu_grey,/ menu_attributes(3X)

41

Permuted Index

correctly position a menus cursor
the menus subsystem

menu_attributes: set_menu_fore,
menu_format: set_menu_format,

menu_format set and get maximum/
control/ /menu_back, set_menu_grey,

item_init, set_item_term,/
assign/ /item_term, set_menu_init,

set_current_item, current_item,/
item_ description get menus item/

create and destroy menus items

item_opts_on, item_opts_off,/
menu_items: set_menu_items,

menu_items, item_count connect and/
set_item_userptr, item_userptr I

item_ value set and get menus item/
tell if menus item is visible

routines menu_mark: set_menu_mark,
menus mark string routines

create and destroy menus
/menu_opts_on, menu_opts_off,
menu_opts_on, menu_opts_off,/
/set_menu_opts, menu_opts_on,

menu_opts: set_menu_opts,
/menu_grey, set_menu_pad,

menu_pattem: set_menu_pattem,
menu_pattem set and get menus/

write or erase menus from/

correctly position a
/set_menu_pad, menu_pad control

/unpost_menu write or erase
I item_ visible tell if

/item_name, item_description get
/item_opts_off, item_opts

item_ value set and get

item_index set and get current

free_item create and destroy
associate application data with

menu_mark: set_menu_mark, menu_mark
numbers of rows and columns in

for automatic invocation by

42

menu_cursor: pos_menu_cursor menu_cursor(3X)
menu_driver command processor for menu_driver(3X)
menu_fore, set_menu_back,/ menu_attributes(3X)
menu_format set and get maximum/ menu_format(3X)
menu_format: set_menu_format, menu_format(3X)
menu_grey, set_menu_pad, menu_pad
.. menu_attributes(3X)
menu_hook: set_item_init, menu_hook(3X)
menu_init, set_menu_term, menu_term menu_hook(3X)
menu_item_current: menu_item_current(3X)
menu_item_name: item_name, menu_item_name(3X)
menu_item_new: new _item, free_item
... menu_item_new(3X)
menu_item_opts: set_item_opts, menu_item_opts(3X)
menu_items, item_ count connect and/ menu_items(3X)
menu_items: set_menu_items, menu_items(3X)
menu_item_userptr: menu_item_userptr(3X)
menu_item_ value: set_item_ value, menu_item_ value(3X)
menu_item_ visible: item_ visible menu_item_ visible(3X)
menu_mark menus mark string menu_mark(3X)
menu_mark: set_menu_mark, menu_mark
... menu_mark(3X)
menu_new: new _menu, free_menu menu_new(3X)
menu_ opts menus option routines menu_opts(3X)
menu_opts: set_menu_opts, menu_opts(3X)
menu_opts_off, menu_opts menus/ menu_opts(3X)
menu_opts_on, menu_opts_off,/ menu_opts(3X)
menu_pad control menus display I menu_attributes(3X)
menu_pattem set and get menus/ menu_pattem(3X)
menu_pattem: set_menu_pattem, menu_pattem(3X)
menu_post: post_menu, unpost_menu menu_post(3X)
menus character based menus package menus(3X)
menus cursor /pos_menu_cursor menu_cursor(3X)
menus display attributes menu_attributes(3X)
menus from associated subwindows menu_post(3X)
menus item is visible menu_item_ visible(3X)
menus item name and description menu_item_name(3X)
menus item option routines menu_item_opts(3X)
menus item values /set_item_ value,
.. menu_item_value(3X)
menus items /set_top_row, top_row,
... menu_item_current(3X)
menus items /new _item, menu_item_new(3X)
menus items /item_userptr menu_item_userptr(3X)
menus mark string routines menu_mark(3X)
menus /set and get maximum menu_format(3X)
menus /routines ... menu_hook(3X)

System Calls and Library Functions Reference Manual

and disconnect items to and from
free_menu create and destroy

associate application data with
/menu_opts_off, menu_opts

menus character based
/menu_pattem set and get

command processor for the
/set_menu_sub, menu_sub, scale_menu

and/ /menu_ win, set_menu_sub,
menu_init, set_menu_term,

menu_userptr: set_menu_userptr,
menu_userptr associate application/

scale_menu/ menu_ win: set_menu_win,
set_menu_sub, menu_sub, scale_menu/

catopen, catclose open/close a
catgets read a program

msgctl
recv, recvfrom, recvmsg receive a

send, sendto, sendmsg send a
to logging and/ lfmt display error

to logging and/ vlfrnt display error
to logging and/ vpfrnt display error

pfmt display error
and send listener service request

getmsg get next
putrnsg send a

frntmsg display a
msgop: msgsnd, msgrcv

msggetget
strerror get error

t_error produce error
perror print system error

psignal, sys_siglist system signal
psignal, psiginfo system signal

/halfdelay, intrflush, keypad,
/msqrt, sdiv, itom, xtom, mtox,
schedule signal after interval in

suspend execution for interval in
mp: madd, msub, mult, mdiv, mcmp,

memory pages
makedev, major,

/getwin, delay_output, flushinp
I fp _class, isnan, copysign, scalbn

intro introduction to

directories in a path

Permuted Index

_ Permuted Index

menus /item_count connect menu_items(3X)
menus menu_new: new _menu, menu_new(3X)
menus /menu_userptr .. menu_userptr(3X)
menus option routines .. menu_opts(3X)
menus package ... menus(3X)
menus pattern match buffer menu_pattem(3X)
menus subsystem menu_driver menu_driver(3X)
menus window and subwindow I menu_ win(3X)
menu_sub, scale_menu menus window menu_win(3X)
menu_term assign/ /set_menu_init, menu_hook(3X)
menu_userptr associate application/ menu_userptr(3X)
menu_userptr: set_menu_userptr, menu_userptr(3X)
menu_ win, set_menu_sub, menu_sub, menu_win(3X)
menu_ win: set_menu_win, menu_ win, menu_win(3X)
message catalog ... catopen(3C)
message ... catgets(3C)
message control operations .. msgctl(2)
message from a socket .. recv(3N)
message from a socket ... send(3N)
message in standard format and pass lfrnt(3C)
message in standard format and pass vlfmt(3C)
message in standard format and pass vpfmt(3C)
message in standard format ... pfrnt(3C)
message nlsrequest format nlsrequest(3N)
message off a stream ... getrnsg(2)
message on a stream .. putrnsg(2)
message on stderr or system console fmtrnsg(3C)
message operations .. msgop(2)
message queue ... msgget(2)
message string strerror(3C)
message ... t_error(3N)
messages perror(3C)
messages .. psignal(3)
messages ... psignal(3C)
meta, nodelay, notimeout, raw,/ curs_inopts(3X)
mfree multiple precision integer/ .. mp(3)
microseconds ualarm .. ualarm(3)
microseconds usleep ... usleep(3)
min, mout, pow, gcd, rpow, msqrt,/ .. mp(3)
mincore determine residency of mincore(2)
minor manage a device number makedev(3C)
miscellaneous curses utility I .. curs_util(3X)
miscellaneous functions for IEEE/ ieee_functions(3M)
miscellany .. intro(S)
mkdir make a directory .. mkdir(2)
mkdirp, rmdirp create, remove mkdirp(3G)
mkfifo create a new FIFO ... mkfifo(3C)

43

Permuted Index

special or ordinary file
special or ordinary file

calendar time
pages in memory

address space

getmntent, getmntany get
chmod, fchmod change

manipulate/ frexp, ldexp, logb,
parts of/ frexp, ldexp, logb, modf,

utime set file access and
setlocale

to EUC handling TTY drivers and

format and pass to logging and
format and pass to logging and
format and pass to logging and

mount

/madd, msub, mult, mdiv, mcmp, min,
screen panel_move: move_panel

curs_move: move, wmove
lseek

cursor curs_move:
/form_fields, field_count,

the virtual screen panel_move:
min, mout, pow, gcd, rpow, msqrt,/

mapping
drand48, erand48, lrand48, nrand48,

operations
msgop: msgsnd,

msgop:
/mcmp, min, mout, pow, gcd, rpow,
pow, gcd, rpow, msqrt,/ mp: madd,

physical storage
/gcd, rpow, msqrt, sdiv, itom, xtom,

gcd, rpow, msqrt,/ mp: madd, msub,
mbchar: mbtowc, mblen, wctomb

widec
mbstring: mbstowcs, wcstombs

sdiv, itom, xtom, mtox, mfree
poll input/output

select synchronousl/0

44

mknod make a directory, or a ... mknod(2)
mknod make a directory, or a ... mknod(2)
mkstemp make a unique file name mkstemp(3)
mktemp make a unique file name mktemp(3C)
mktime converts a tm structure to a mktime(3C)
mlock, munlock lock (or unlock) mlock(3C)
mlockall, munlockall lock or unlock mlockall(3C)
mmap map pages of memory .. mmap(2)
mnttab file entry .. getmntent(3C)
mode of file .. chmod(2)
modf, modff, nextafter, scalb ... frexp(3C)
modff, nextafter, scalb manipulate frexp(3C)
modification times ... utime(2)
modify and query a program's locale setlocale(3C)
modules eucioctl generic interface eucioctl(S)
monitor prepare execution profile monitor(3C)
monitoring services /in standard lfmt(3C)
monitoring services /in standard vlfmt(3C)
monitoring services /in standard vpfmt(3C)
mount a file system .. mount(2)
mount mount a file system ... mount(2)
mout, pow, gcd, rpow, msqrt, sdiv,/ .. mp(3)
move a panels window on the virtual panel_move(3X)
move curses window cursor curs_move(3X)
move read/write file pointer ... lseek(2)
move, wmove move curses window curs_move(3X)
move_field connect fields to forms form_field(3X)
move_panel move a panels window on panel_move(3X)
mp: madd, msub, mult, mdiv, mcmp, mp(3)
mprotect set protection of memory mprotect(2)
mrand48, jrand48, srand48, seed48,/ drand48(3C)
msgctl message control operations msgctl(2)
msgget get message queue .. msgget(2)
msgop: msgsnd, msgrcv message msgop(2)
msgrcv message operations ... msgop(2)
msgsnd, msgrcv message operations msgop(2)
msqrt, sdiv, itom, xtom, mtox,/ .. mp(3)
msub, mult, mdiv, mcmp, min, mout, mp(3)
msync synchronize memory with msync(3C)
mtox, mfree multiple precision/ ... mp(3)
mult, mdiv, mcmp, min, mout, pow, mp(3)
multibyte character handling .. mbchar(3C)
multibyte character 1/0 routines widec(3W)
multibyte string functions ... mbstring(3C)
multiple precision integer/ /msqrt, mp(3)
multiplexing ... poll(2)
multiplexing ... select(3C)

System Calls and Library Functions Reference Manual

memory mlock,
space mlockall,

curs_addch: addch, waddch,
/waddchstr, waddchnstr, mvaddchstr,

addchnstr, waddchstr, waddchnstr,
add a/ /waddstr, waddnstr, mvaddstr,

/waddwstr, waddnwstr, mvaddwstr,

/addstr, addnstr, waddstr, waddnstr,
curs_addwch: addwch, waddwch,

/waddwchnstr, mvaddwchstr,
/waddwchstr, waddwchnstr,

/addnwstr, waddwstr, waddnwstr,

tputs, putp, vidputs, vidattr,
under/ curs_delch: delch, wdelch,

/delwin, mvwin, subwin, derwin,
push/ curs_getch: getch, wgetch,

get/ /wgetstr, wgetnstr, mvgetstr,
/wgetwstr, wgetnwstr, mvgetwstr,

/getstr, getnstr, wgetstr, wgetnstr,
(or/ curs_getwch: getwch, wgetwch,

/getnwstr, wgetwstr, wgetnwstr,
its/ curs_inch: inch, winch,

/winchstr, winchnstr, mvinchstr,
/inchnstr, winchstr, winchnstr,

/innstr, winstr, winnstr, mvinstr,
get a/ /winwstr, winnwstr, mvinwstr,

curs_insch: insch, winsch,
/winsstr, winsnstr, mvinsstr,

/winswstr, winsnwstr, mvinswstr,
/insstr, insnstr, winsstr, winsnstr,

/instr, innstr, winstr, winnstr,
curs_inswch: inswch, winswch,

/insnwstr, winswstr, winsnwstr,
curs_inwch: inwch, winwch,

/winwchstr, winwchnstr, mvinwchstr,
inwchnstr, winwchstr, winwchnstr,

/inwstr, innwstr, winwstr, winnwstr,
curs_printw: printw, wprintw,

curs_scanw: scanw, wscanw,

curs_addch: addch, waddch, mvaddch,
/mvaddchnstr, mvwaddchstr,

string of/ /mvaddchstr, mvaddchnstr,

Permuted Index

____ . _______ _____ Permuted Index

munlock lock (or unlock) pages in mlock(3C)
munlockall lock or unlock address mlockall(3C)
munmap unmap pages of memory munmap(2)
mvaddch, mvwaddch, echochar,/ curs_addch(3X)
mvaddchnstr, mvwaddchstr,/ curs_addchstr(3X)
mvaddchstr, mvaddchnstr,/ /addchstr, curs_addchstr(3X)
mvaddnstr, mvwaddstr, mvwaddnstr curs_addstr(3X)
mvaddnwstr, mvwaddwstr, mvwaddnwstr/
... curs_addwstr(3X)
mvaddstr, mvaddnstr, mvwaddstr,/ curs_addstr(3X)
mvaddwch, mvwaddwch, echowchar,/ curs_addwch(3X)
mvaddwchnstr, mvwaddwchstr,/ curs_addwchstr(3X)
mvaddwchstr, mvaddwchnstr,/ curs_addwchstr(3X)
mvaddwstr, mvaddnwstr, mvwaddwstr,/
... curs_addwstr(3X)
mvcur, tigetflag, tigetnum,/ /tparm, curs_terminfo(3X)
mvdelch, mvwdelch delete character curs_delch(3X)
mvderwin, dupwin, wsyncup, syncok,/ curs_window(3X)
mvgetch, mvwgetch, ungetch get (or curs_getch(3X)
mvgetnstr, mvwgetstr, mvwgetnstr curs_getstr(3X)
mvgetnwstr, mvwgetwstr, mvwgetnwstr I
.. curs_getwstr(3X)
mvgetstr, mvgetnstr, mvwgetstr,/ curs_getstr(3X)
mvgetwch, mvwgetwch, ungetwch get curs_getwch(3X)
mvgetwstr, mvgetnwstr, mvwgetwstr,/ curs_getwstr(3X)
mvinch, mvwinch get a character and curs_inch(3X)
mvinchnstr, mvwinchstr, mvwinchnstr I curs_inchstr(3X)
mvinchstr, mvinchnstr, mvwinchstr,/ curs_inchstr(3X)
mvinnstr, mvwinstr, mvwinnstr get a/ curs_instr(3X)
mvinnwstr, mvwinwstr, mvwinnwstr curs_inwstr(3X)
mvinsch, mvwinsch insert a/ curs_insch(3X)
mvinsnstr, mvwinsstr, mvwinsnstr/ curs_instr(3X)
mvinsnwstr, mvwinswstr, mvwinsnwstr/ curs_instr(3X)
mvinsstr, mvinsnstr, mvwinsstr,/ curs_instr(3X)
mvinstr, mvinnstr, mvwinstr,/ curs_instr(3X)
mvinswch, mvwinswch insert a/ curs_inswch(3X)
mvinswstr, mvinsnwstr, mvwinswstr,/ curs_instr(3X)
mvinwch, mvwinwch get a wchar_t/ curs_inwch(3X)
mvinwchnstr, mvwinwchstr,/ curs_inwchstr(3X)
mvinwchstr, mvinwchnstr,/ /inwchstr, curs_inwchstr(3X)
mvinwstr, mvinnwstr, mvwinwstr,/ curs_inwstr(3X)
mvprintw, mvwprintw, vwprintw print/ curs_printw(3X)
mvscanw, mvwscanw, vwscanw convert/
.. curs_scanw(3X)
mvwaddch, echochar, wechochar add a/ curs_addch(3X)
mvwaddchnstr add string of/ curs_addchstr(3X)
mvwaddchstr, mvwaddchnstr add curs_addchstr(3X)

45

Permuted Index

/mvaddstr, mvaddnstr, mvwaddstr,
/mvaddwstr, mvaddnwstr, mvwaddwstr,

of/ /waddnstr, mvaddstr, mvaddnstr,
add a/ /addwch, waddwch, mvaddwch,

/mvaddwchnstr, mvwaddwchstr,

string/ /mvaddwchstr, mvaddwchnstr,

/waddnwstr, mvaddwstr, mvaddnwstr,
curs_delch: delch, wdelch, mvdelch,
curs_getch: getch, wgetch, mvgetch,

/mvgetstr, mvgetnstr, mvwgetstr,
/mvgetwstr, mvgetnwstr, mvwgetwstr,

/wgetnstr, mvgetstr, mvgetnstr,
back)/ /getwch, wgetwch, mvgetwch,

/wgetnwstr, mvgetwstr, mvgetnwstr,

curs_ window: newwin, delwin,
curs_inch: inch, winch, mvinch,

/mvinchstr, mvinchnstr, mvwinchstr,
/winchnstr, mvinchstr, mvinchnstr,

mvinstr, mvinnstr, mvwinstr,
/mvinwstr, mvinnwstr, mvwinwstr,
curs_insch: insch, winsch, mvinsch,

/mvinsstr, mvinsnstr, mvwinsstr,
/mvinswstr, mvinsnwstr, mvwinswstr,

/winsnstr, mvinsstr, mvinsnstr,
/winstr, winnstr, mvinstr, mvinnstr,

/inswch, winswch, mvinswch,
/winsnwstr, mvinswstr, mvinsnwstr,

curs_inwch: inwch, winwch, mvinwch,
wchar_t/ /mvinwchnstr, mvwinwchstr,

string of/ /mvinwchstr, mvinwchnstr,
of/ /winnwstr, mvinwstr, mvinnwstr,
output/ /printw, wprintw, mvprintw,
curs_scanw: scanw, wscanw, mvscanw,

item_description get menus item
return the last element of a path

directory name of a file path
tmpnam, tempnam create a

ctermid generate file
descriptor £detach detach a

getpw get
getenv return value for environment

getlogin get login
getsockname get socket

46

mvwaddnstr add a string of/ curs_addstr(3X)
mvwaddnwstr add a string of wchar_t/ curs_addwstr(3X)
mvwaddstr, mvwaddnstr add a string curs_addstr(3X)
mvwaddwch, echowchar, wechowchar curs_addwch(3X)
mvwaddwchnstr add string of wchar_t/

curs_addwchstr(3X)
mvwaddwchstr, mvwaddwchnstr add
.. curs_addwchstr(3X)
mvwaddwstr, mvwaddnwstr add a/ curs_addwstr(3X)
mvwdelch delete character under/ curs_delch(3X)
mvwgetch, ungetch get (or push/ curs_getch(3X)
mvwgetnstr get character strings/ curs_getstr(3X)
mvwgetnwstr get wchar_t character I curs_getwstr(3X)
mvwgetstr, mvwgetnstr get character I curs_getstr(3X)
mvwgetwch, ungetwch get (or push curs_getwch(3X)
mvwgetwstr, mvwgetnwstr get wchar_t/
.. curs_getwstr(3X)
mvwin, subwin, derwin, mvderwin,/ curs_window(3X)
mvwinch get a character and its/ curs_inch(3X)
mvwinchnstr get a string of/ curs_inchstr(3X)
mvwinchstr, mvwinchnstr get a/ curs_inchstr(3X)
mvwinnstr get a string of/ /winnstr, curs_instr(3X)
mvwinnwstr get a string of wchar_t/ curs_inwstr(3X)
mvwinsch insert a character before/ curs_insch(3X)
mvwinsnstr insert string before/ curs_instr(3X)
mvwinsnwstr insert wchar_t string/ curs_instr(3X)
mvwinsstr, mvwinsnstr insert string/ curs_instr(3X)
mvwinstr, mvwinnstr get a string of/ curs_instr(3X)
mvwinswch insert a wchar_t/ curs_inswch(3X)
mvwinswstr, mvwinsnwstr insert/ curs_instr(3X)
mvwinwch get a wchar_t character I curs_inwch(3X)
mvwinwchnstr get a string of curs_inwchstr(3X)
mvwinwchstr, mvwinwchnstr get a curs_inwchstr(3X)
mvwinwstr, mvwinnwstr get a string curs_inwstr(3X)
mvwprintw, vwprintw print formatted curs_printw(3X)
mvwscanw, vwscanw convert formatted/
.. curs_scanw(3X)
name and description /item_name, menu_item_name(3X)
name basename .. basename(3G)
name dirname report the parent dimame(3G)
name for a temporary file .. tmpnam(3S)
name for terminal ... ctermid(3S)
name from a STREAMS-based file fdetach(3C)
name from UID ... getpw(3C)
name ... getenv(3C)
name .. getlogin(3C)
name ... getsockname(3N)

System Calls and Library Functions Reference Manual

----------------------------- ----------------- Permuted Index

timezone get time zone
nlist get entries from

mkstemp make a unique file
mktemp make a unique file

dirname report the parent directory
rename change the
ttyname, isatty find

getpeername get
gethostname, sethostname get/set

unameget
device ptsname get

cuserid get character login
nlsprovider get

realpath returns the real file
to an object in the file system

bind bind a
pathfind search for named file in

pathfind search for
/netdir_sperror generic transport

interval
/setsyx, ripoffline, curs_set,

nl_types
a resource governed by a/ waitsem,

NETPATH component getnetpath get
netdir_getbyname, netdir__getbyaddr,

taddr2uaddr,/ netdir__getbyname,
netdir_free, taddr2uaddr,/

generic/ /taddr2uaddr, uaddr2taddr,
/uaddr2taddr, netdir_perror,
/key __gentles, key _setsecret,

/key _setsecret, netname2host,
netconfig entry corresponding to
convert values between host and

entry getnetconfig get
setnetent, endnetent get
endnetgrent, innetgr get

sethostent, endhostent, herror get
ifignore check for ignored

scatter data in order to check the
free_field, create/ form_field_new:
set_fieldtype_arg,/ form_fieldtype:

destroy forms form_new:
destroy menus items menu_item_new:

destroy menus menu_new:
pnoutrefresh, pechochar,/ curs_pad:

form_new _page: set_new _page,

Permuted Index

name given offset from GMT timezone(3C)
name list ... nlist(3E)
name ... mkstemp(3)
name .. mktemp(3C)
name of a file path name .. dirname(3G)
name of a file .. rename(2)
name of a terminal .. ttyname(3C)
name of connected peer ... getpeername(3N)
name of current host ... gethostname(3)
name of current UNIX system ... uname(2)
name of the slave pseudo-terminal ptsname(3C)
name of the user .. cuserid(3S)
name of transport provider nlsprovider(3N)
name .. realpath(3C)
name space /file descriptor ... fattach(3C)
name to a socket .. bind(3N)
named directories .. pathfind(3G)
named file in named directories pathfind(3G)
name-to-address translation netdir__getbyname(3N)
nap suspends execution for a short .. nap(2)
napms low-level curses routines curs_kernel(3X)
native language data types .. nl_types(S)
nbwaitsem await and check access to waitsem(2)
netconfig entry corresponding to getnetpath(3N)
netdir_free, taddr2uaddr,/ netdir__getbyname(3N)
netdir_getbyaddr, netdir_free, netdir__getbyname(3N)
netdir__getbyname, netdir__getbyaddr,
.. netdir_getbyname(3N)
netdir_perror, netdir_sperror netdir_getbyname(3N)
netdir_sperror generic transport/ netdir_getbyname(3N)
netname2host, netname2user,/ secure_rpc(3N)
netname2user, user2netname library I secure_rpc(3N)
NETPATH component getnetpath get getnetpath(3N)
network byte order /ntohl, ntohs byteorder(3N)
network configuration database getnetconfig(3N)
network entry /getnetbyname, getnetent(3N)
network group entry /setnetgrent, getnetgrent(3N)
network host entry I gethostbyname, gethostent(3N)
network interface .. ifignore(3N)
network spray .. spray(3N)
new _field, dup_field, link_field, form_field_new(3X)
new _fieldtype, free_fieldtype, form_fieldtype(3X)
new _form, free_form create and form_new(3X)
new _item, free_item create and menu_item_new(3X)
new _menu, free_menu create and menu_new(3X)
newpad, subpad, prefresh, .. curs_pad(3X)
new _page forms pagination form_new _page(3X)

47

Permuted Index

destroy panels panel_new:
set_term,/ curs_initscr: initscr,

derwin, mvderwin,/ curs_ window:
bgets read stream up to

getmsgget
frexp, ldexp, logb, modf, modff,

I fetch, store, delete, firstkey,
ftw,

time-sharing process
yp_master, yperr_string, ypprot_err

yp_update change
I setscrreg, wsetscrreg, scrollok,

via the listener
provider

service request message

intrflush,/ curs_inopts: cbreak,
/halfdelay, intrflush, keypad, meta,
keypad,/ /cbreak, nocbreak, echo,
control/ /wsetscrreg, scrollok, nl,

_longjmp, sigsetjmp, siglongjmp
setjmp, longjmp

sigsetjmp, siglongjmp a
nodelay, notimeout, raw, noraw,
/meta, nodelay, notimeout, raw,

I intrflush, keypad, meta, nodelay,
seed48,/ drand48, erand48, lrand48,

host and/ byteorder, htonl, htons,
byteorder, htonl, htons, ntohl,

rand, srand simple random
I initstate, setstate better random
determine type of floating-point

major, minor manage a device
convert string to double-precision

fcvt, gcvt convert floating-point
uniformly distributed pseudo-random

manipulate parts of floating-point
to system calls and error

/menu_format set and get maximum
localeconv get

dlclose close a shared
dlopen open a shared

the address of a symbol in shared

48

new _panel, del_panel create and panel_new(3X)
newterm, end win, isendwin, curs_initscr(3X)
newwin, delwin, mvwin, subwin, curs_window(3X)
next delimiter .. bgets(3G)
next message off a stream .. getmsg(2)
nextafter, scalb manipulate parts/ frexp(3C)
nextkey data base subroutines ... dbm(3)
nftw walk a file tree ... ftw(3C)
nice change priority of a process ... nice(3C)
nice change priority of a ... nice(2)
NIS client interface /yp_order, ypclnt(3N)
NIS information ... yp_update(3N)
nl, non! curses terminal output/ curs_outopts(3X)
nlist get entries from name list .. nlist(3E)
nlist get entries from symbol table .. nlist(3)
nl_langinfo language information nl_langinfo(3C)
nlsgetcall get client's data passed nlsgetcall(3N)
nlsprovider get name of transport nlsprovider(3N)
nlsrequest format and send listener nlsrequest(3N)
nl_types native language data types nl_types(S)
nocbreak, echo, noecho, halfdelay, curs_inopts(3X)
nodelay, notimeout, raw, noraw,/ curs_inopts(3X)
noecho, halfdelay, intrflush, curs_inopts(3X)
non! curses terminal output option curs_outopts(3X)
non-local goto /longjmp, _setjmp, setjmp(3)
non-local goto ... setjmp(3C)
non-local goto with signal state sigsetjmp(3C)
noqiflush, qiflush, timeout,/ /meta, curs_inopts(3X)
noraw, noqiflush, qiflush, timeout,/ curs_inopts(3X)
notimeout, raw, noraw, noqiflush,/ curs_inopts(3X)
nrand48, mrand48, jrand48, srand48, drand48(3C)
ntohl, ntohs convert values between byteorder(3N)
ntohs convert values between host/ byteorder(3N)
number generator rand(3C)
number generator; routines for I random(3)
number /finite, fpclass, unordered isnan(3C)
number makedev, ... makedev(3C)
number strtod, atof, .. strtod(3C)
number to string ecvt, .. ecvt(3C)
numbers /seed48, lcong48 generate drand48(3C)
numbers /modff, nextafter, scalb frexp(3C)
numbers intro introduction .. intro(2)
numbers of rows and columns in/ menu_format(3X)
numeric formatting information localeconv(3C)
object .. dklose(3X)
object .. dlopen(3X)
object dlsym get dlsym(3X)

System Calls and Library Functions Reference Manual

elf
elf_end finish using an

get the base offset for an
retrieve class-dependent

elf32_fsize return the size of an
STREAMS-based file descriptor to an

p_online turn a processor online or
/data behind tell if forms field has

elf_getbase get the base
timezone get time zone name given

offsetof

p_online turn a processor
ungetc push character back

opensem
dlopen

fopen, £reopen, fdopen
fopen, freopen, fdopen

command p2open, p2close
dup duplicate an

dup2 duplicate an
open

catopen, catclose
rewinddir, closedir I directory:

rewinddir, closedir directory I
control system log syslog,

/wstostr, strtows wchar_t string
bcmp, bzero, bit and byte string

rewinddir, closedir directory
ethers Ethernet address mapping

index, rindex string
memcpy, memmove, memset memory

msgctl message control
msgop: msgsnd, msgrcv message

rewinddir, closedir directory
semctl semaphore control

semop semaphore
shmctl shared memory control

shmop: shmat, shmdt shared memory
strcasecmp, strncasecmp string

strcspn, strtok, strstr string
curses CRT screen handling and
typeahead curses terminal input
/nl, non! curses terminal output

getopt get

Permuted Index

___ ________ _ ___ ___________________ Permuted Index

object file access library .. elf(3E)
object file ... elf_end(3E)
object file elf_getbase ... elf_getbase(3E)
object file header /elf32_newehdr elf_getehdr(3E)
object file type elf_fsize: ... elf_fsize(3E)
object in the file system name/ /a fattach(3C)
offline ... p_online(2)
off-screen data ahead or behind form_data(3X)
offset for an object file ... elf_getbase(3E)
offset from GMT .. timezone(3C)
offset of structure member ... offsetof(3C)
offsetof offset of structure member offsetof(3C)
online or offline ... p_online(2)
onto input stream ... ungetc(3S)
open a semaphore .. opensem(2)
open a shared object dlopen(3X)
open a stream .. fopen(3S)
open a stream .. fopen(3S)
open, close pipes to and from a p2open(3G)
open file descriptor ... dup(2)
open file descriptor .. dup2(3C)
open for reading or writing ... open(2)
open open for reading or writing ... open(2)
open/close a message catalog ... catopen(3C)
opendir, readdir, telldir, seekdir, directory(3C)
opendir, readdir, telldir, seekdir, opendir(3)
openlog, closelog, setlogmask ... syslog(3)
opensem open a semaphore ... opensem(2)
operations and type transformation wstring(3W)
operations bstring: bcopy, .. bstring(3)
operations /telldir, seekdir, .. directory(3C)
operations .. ethers(3N)
operations ... index(3)
operations /memchr, memcmp, memory(3C)
operations ... msgctl(2)
operations ... msgop(2)
operations /telldir, seekdir, .. opendir(3)
operations ... semctl(2)
operations ... semop(2)
operations ... shmctl(2)
operations .. shmop(2)
operations string: .. string(3)
operations /strpbrk, strspn, ... string(3C)
optimization package .. curses(3X)
option control routines /wtimeout, curs_inopts(3X)
option control routines .. curs_outopts(3X)
option letter from argument vector getopt(3C)

49

Permuted Index

field_opts forms field
form_opts_off, form_ opts forms

item_opts_off, item_opts menus item
menu_opts_off, menu_opts menus

fcntl file control
t_optrngmt manage

getsockopt, setsockopt get and set
/mvgetch, mvwgetch, ungetch get

/mvgetwch, mvwgetwch, ungetwch get
mlock, munlock lock

between host and network byte
spray scatter data in

t_rcvrel acknowledge receipt of an
t_sndrel initiate an

make a directory, or a special or
make a directory, or a special or

dial establish an
seconvert, sfconvert, sgconvert

vfprintf, vsprintf formatted
mvwprintw, vwprintw print formatted

/vfprintf, vsprintf print formatted
/vfprintf, vsprintf print formatted
/scrollok, nl, nonl curses terminal

fprintf, sprintf print formatted
fprintf, sprintf print formatted

curses/ /overlay, overwrite, copywin
/copywin overlap and manipulate

and manipulate/ curs_overlay:
manipulate/ curs_overlay: overlay,

chown, lchown, fchown change
from a command p2open,

to and from a command
screen handling and optimization

forms character based forms
menus character based menus
panels character based panels

standard buffered input/output
standard interprocess communication

create and display curses
field_index set forms current

getpagesize get system
mlock, munlock lock (or unlock)
determine residency of memory

mmapmap
munmap unmap

set_ new _page, new _page forms
socketpair create a

50

option routines /field_opts_off, form_field_opts(3X)
option routines /form_opts_on, form_opts(3X)
option routines /item_opts_on, menu_item_opts(3X)
option routines /menu_opts_on, menu_opts(3X)
options ... fcntl(S)
options for a transport endpoint t_optrngmt(3N)
options on sockets .. getsockopt(3N)
(or push back) characters from/ curs_getch(3X)
(or push back) wchar_t characters/ curs_getwch(3X)
(or unlock) pages in memory ... mlock(3C)
order /ntohl, ntohs convert values byteorder(3N)
order to check the network .. spray(3N)
orderly release indication .. t_rcvrel(3N)
orderly release ... t_sndrel(3N)
ordinary file mknod ... mknod(2)
ordinary file mknod ... mknod(2)
outgoing terminal line coru1ection .. dial(3C)
output conversion /gconvert, ... econvert(3)
output conversion /vprintf, .. printf(3)
output in curses windows /mvprintw, curs_printw(3X)
output of a variable argument list vprintf(3S)
output of a variable argument list vprintf(3W)
output option control routines curs_outopts(3X)
output printf, ... printf(3S)
output printf, ... printf(3W)
overlap and manipulate overlapped curs_overlay(3X)
overlapped curses windows curs_overlay(3X)
overlay, overwrite, copywin overlap curs_overlay(3X)
overwrite, copywin overlap and curs_overlay(3X)
owner and group of a file .. chown(2)
p2close open, close pipes to and p2open(3G)
p2open, p2close open, close pipes p2open(3G)
package curses CRT .. curses(3X)
package .. forms(3X)
package .. menus(3X)
package ... panels(3X)
package stdio .. stdio(3S)
package stdipc: ftok .. stdipc(3C)
pads /pechochar, pechowchar curs_pad(3X)
page and field /current_field, form_page(3X)
page size .. getpagesize(3)
pages in memory .. mlock(3C)
pages mincore ... mincore(2)
pages of memory ... mmap(2)
pages of memory .. munmap(2)
pagination form_new _page: form_new _page(3X)
pair of connected sockets .. socketpair(3N)

System Calls and Library Functions Reference Manual

a pseudo-terminal master/slave
/can_change_color, color_content,

application data with a panels
set the current window of a panels

panel_below panels deck traversal/
deck traversal/ panel_above:

panel_above: panel_above,
panel_show: show_panel, hide_panel,

panels window on the virtual/
create and destroy panels

package
/hide_panel, panel_hidden

panel_top: top_panel, bottom_panel
/panel_above, panel_below

panels character based
associate application data with a

get or set the current window of a
del_panel create and destroy

panel_update: update_panels
panel_move: move_panel move a

panel_hidden panels deck/
panels deck manipulation routines

virtual screen refresh routine
panel_userptr: set_panel_userptr,

panel_userptr associate I
replace_panel get or set the/

set the current/ panel_ window:
path name dirname report the
get process, process group, and

getsubopt
clrtoeol, wclrtoeol clear all or

shutdown shut down
/modff, nextafter, scalb manipulate

/message in standard format and
/message in standard format and
/message in standard format and

nlsgetcall get client's data
functions crypt

endpwent, fgetpwent manipulate
lckpwdf, ulckpwdf manipulate shadow

putpwent write
putspent write shadow

getpass read a
create, remove directories in a

return the last element of a
the parent directory name of a file

variables fpathconf,

Permuted Index

Permuted Index

pair unlockpt unlock ... unlockpt(3C)
pair_content curses color I .. curs_color(3X)
panel /panel_userptr associate panel_userptr(3X)
panel /replace_panel get or panel_ window(3X)
panel_above: panel_above, panel_above(3X)
panel_above, panel_below panels panel_above(3X)
panel_below panels deck traversal/ panel_above(3X)
panel_hidden panels deck/ panel_show(3X)
panel_move: move_panel move a panel_move(3X)
panel_new: new _panel, del_panel panel_new(3X)
panels character based panels panels(3X)
panels deck manipulation routines panel_show(3X)
panels deck manipulation routines panel_top(3X)
panels deck traversal primitives panel_above(3X)
panels package panels(3X)
panels panel /panel_userptr panel_userptr(3X)
panels panel /replace_panel panel_window(3X)
panels panel_new: new _panel, panel_new(3X)
panels virtual screen refresh/ panel_update(3X)
panels window on the virtual screen panel_move(3X)
panel_show: show _panel, hide_panel, panel_show(3X)
panel_top: top_panel, bottom_panel panel_top(3X)
panel_ update: update_panels panels panel_update(3X)
panel_userptr associate application/ panel_userptr(3X)
panel_userptr: set_panel_userptr, panel_userptr(3X)
panel_window: panel_ window, panel_window(3X)
panel_ window, replace_panel get or panel_window(3X)
parent directory name of a file dirname(3G)
parent process IDs /getpgid ... getpid(2)
parse suboptions from a string getsubopt(3C)
part of a curses window /wclrtobot, curs_clear(3X)
part of a full-duplex connection shutdown(3N)
parts of floating-point numbers .. frexp(3C)
pass to logging and monitoring/ .. lfmt(3C)
pass to logging and monitoring/ .. vlfmt(3C)
pass to logging and monitoring/ vpfmt(3C)
passed via the listener ... nlsgetcall(3N)
password and file encryption ... crypt(3X)
password file entry /setpwent, getpwent(3C)
password file entry I fgetspent, getspent(3C)
password file entry .. putpwent(3C)
password file entry .. putspent(3C)
password .. getpass(3C)
path mkdirp, rmdirp ... mkdirp(3G)
path name basename .. basename(3G)
path name dirname report ... dirname(3G)
pathconf get configurable pathname fpathconf(2)

51

Permuted Index

named directories
getwd get current working directory

directory getcwd get
pathconf get configurable

/menu_pattern set and get menus
gmatch shell global

process popen,
/subpad, prefresh, pnoutrefresh,

/prefresh, pnoutrefresh, pechochar,
getpeername get name of connected

signals that are blocked and
stkprotect set

setlabel define the label for
standard format

in-memory state with that on the
msync synchronize memory with

popen, pclose initiate
p2open, p2close open, close

process, text, or data
curs_pad: newpad, subpad, prefresh,

floatingpoint IEEE floating
elf_strptr make a string

rewind, ftell reposition a file
fsetpos, fgetpos reposition a file

!seek move read/write file

offline
a process

execution csync designate
window cursor form_cursor:

/pos_menu_cursor correctly
form_cursor:pos_form_cursor
a menus cursor menu_cursor:
erase forms from/ form_post:

erase menus from/ menu_post:
/msub, mult, mdiv, mcmp, min, mout,

/cbrt, log, logf, loglO, loglOf,
sqrt, sqrtf exponential, logarithm,

/log, logf, loglO, loglOf, pow,
itom, xtom, mtox, mfree multiple

curs_pad: newpad, subpad,
monitor

lock lock a process in
types

52

pathfind search for named file in pathfind(3G)
pathname .. getwd(3)
pathname of current working .. getcwd(3C)
pathname variables fpathconf, fpathconf(2)
pattern match buffer .. menu_pattern(3X)
pattern matching .. gmatch(3G)
pause suspend process until signal pause(2)
pclose initiate pipe to/from a ... popen(3S)
pechochar, pechowchar create and/ curs_pad(3X)
pechowchar create and display I curs_pad(3X)
peer getpeername(3N)
pending sigpending examine sigpending(2)
permissions of stack ... stkprotect(2)
perror print system error messages perror(3C)
pfmt() and lfmt() .. setlabel(3C)
pfmt display error message in .. pfmt(3C)
physical medium /a file's .. fsync(2)
physical storage .. msync(3C)
pipe create an interprocess channel .. pipe(2)
pipe to/from a process .. popen(3S)
pipes to and from a command .. p2open(3G)
plock lock into memory or unlock .. plock(2)
pnoutrefresh, pechochar, pechowchar/ curs_pad(3X)
point definitions .. floatingpoint(3)
pointer .. elf_strptr(3E)
pointer in a stream fseek, ... fseek(3S)
pointer in a stream .. fsetpos(3C)
pointer .. lseek(2)
poll input/output multiplexing ... poll(2)
p _online turn a processor online or p _online(2)
popen, pclose initiate pipe to/from popen(3S)
portions of memory safe for ... csync(2)
posJorm_cursor position forms form_cursor(3X)
position a menus cursor ... menu_cursor(3X)
position forms window cursor form_cursor(3X)
pos_menu_cursor correctly position menu_cursor(3X)
post_form, unpost_form write or form_post(3X)
post_menu, unpost_menu write or menu_post(3X)
pow, gcd, rpow, msqrt, sdiv, itom,/ ... mp(3)
pow, powf, sqrt, sqrtf exponential,/ exp(3M)
power, square root functions /powf, exp(3M)
powf, sqrt, sqrtf exponential,/ ... exp(3M)
precision integer arithmetic /sdiv, .. mp(3)
prefresh, pnoutrefresh, pechochar,/ curs_pad(3X)
prepare execution profile .. monitor(3C)
primary memory ... lock(2)
primitive system data types ... types(S)

System Calls and Library Functions Reference Manual

panel_below panels deck traversal
/mvprintw, mvwprintw, vwprintw

vprintf, vfprintf, vsprintf
vprintf, vfprintf, vsprintf

printf, fprintf, sprintf
printf, fprintf, sprintf

perror
formatted output
formatted output

vfprintf, vsprintf formatted/
mvwprintw, vwprintw I curs_printw:

scheduler control
get/set program scheduling

nice change
nice change

/routines for client side remote
routines for server side remote
rpc library routines for remote

XDR library routines for remote
library routines for secure remote

acct enable or disable
alarm set a

times get
exit, _exit terminate

fork create a new
IDs /getppid, getpgid get process,

setpgid set
setpgrp set

tcsetpgrp set terminal foreground
killpg send signal to a

process, process group, and parent
efficient way vfork spawn new

lock lock a
change priority of a time-sharing

nice change priority of a
kill send a signal to a

/sigsendset send a signal to a
pclose initiate pipe to/from a

/getpgrp, getppid, getpgid get
priocntl

priocntlset generalized
plock lock into memory or unlock

times get process and child
times get

processor_bind bind a
waitid wait for child

Permuted Index

Permuted Index

primitives /panel_above, panel_above(3X)
print formatted output in curses/ curs_printw(3X)
print formatted output of a/ ... vprintf(3S)
print formatted output of a/ ... vprintf(3W)
print formatted output .. printf(3S)
print formatted output .. printf(3W)
print system error messages .. perror(3C)
printf, fprintf, sprintf print ... printf(3S)
printf, fprintf, sprintf print ... printf(3W)
printf, fprintf, sprintf, vprintf, .. printf(3)
printw, wprintw, mvprintw, curs_printw(3X)
priocntl process scheduler control priocntl(2)
priocntlset generalized process priocntlset(2)
priority getpriority, setpriority getpriority(3)
priority of a process ... nice(3C)
priority of a time-sharing process .. nice(2)
procedure call authentication rpc_clnt_auth(3N)
procedure call errors /library rpc_svc_err(3N)
procedure calls ... rpc(3N)
procedure calls /xdr_replymsg rpc_xdr(3N)
procedure calls /user2netname secure_rpc(3N)
process accounting .. acct(2)
process alarm clock .. alarm(2)
process and child process times ... times(2)
process .. exit(2)
process ... fork(2)
process group, and parent process getpid(2)
process group ID ... setpgid(2)
process group ID ... setpgrp(2)
process group id tcsetpgrp(3C)
process group .. killpg(3)
process IDs /getppid, getpgid get getpid(2)
process in a virtual memory ... vfork(2)
process in primary memory .. lock(2)
process nice ... nice(2)
process .. nice(3C)
process or a group of processes .. kill(2)
process or a group of processes .. sigsend(2)
process popen, .. popen(3S)
process, process group, and parent/ getpid(2)
process scheduler control ... priocntl(2)
process scheduler control .. priocntlset(2)
process, text, or data ... plock(2)
process times .. times(2)
process times ... times(3C)
process to a processor .. processor_bind(2)
process to change state ... waitid(2)

53

Permuted Index

waitpid wait for child
wait wait for child

/WIFSIGNALED, WIFEXITED wait for
ptrace

pause suspend
install a signal mask and suspend

sigsem signal a
a signal to a process or a group of
a signal to a process or a group of

form_driver command
menu_driver command

p_online tum a
processor_bind bind a process to a

get information about one
reboot reboot system or halt

processor
about one processor

t_error

monitor prepare execution
profil execution time

prof
assert verify

end, etext, edata last locations in
retrieve class-dependent

catgets read a
raise send signal to

getpriority, setpriority get/set
atexit add

setlocale modify and query a
mprotect set

setprotoent, endprotoent get
information t_getinfo get

nlsprovider get name of transport
generate uniformly distributed

grantpt grant access to the slave
ptsname get name of the slave

unlockpt unlock a
psignal,

messages
messages

pseudo-terminal device
getpublickey, getsecretkey retrieve

getsecretkey retrieve public or/
/mvgetch, mvwgetch, ungetch get (or

54

process to change state .. waitpid(2)
process to stop or terminate ... wait(2)
process to terminate or stop ... wait(3)
process trace ptrace(2)
process until signal .. pause(2)
process until signal sigsuspend sigsuspend(2)
process waiting on a semaphore ... sigsem(2)
processes kill send ... kill(2)
processes sigsend, sigsendset send sigsend(2)
processor for the forms subsystem form_driver(3X)
processor for the menus subsystem menu_driver(3X)
processor online or offline ... p_online(2)
processor ... processor_bind(2)
processor processor_info processor_info(2)
processor ... reboot(3)
processor_bind bind a process to a processor_bind(2)
processor_info get information processor_info(2)
produce error message .. t_error(3N)
prof profile within a function ... prof(S)
profil execution time profile ... profil(2)
profile ... monitor(3C)
profile .. profil(2)
profile within a function .. prof(S)
program assertion .. assert(3X)
program ... end(3C)
program header table /elf32_newphdr elf_getphdr(3E)
program message .. catgets(3C)
program ... raise(3C)
program scheduling priority .. getpriority(3)
program termination routine .. atexit(3C)
program's locale ... setlocale(3C)
protection of memory mapping mprotect(2)
protocol entry /getprotobyname, getprotoent(3N)
protocol-specific service .. t_getinfo(3N)
provider ... nlsprovider(3N)
pseudo-random numbers /lcong48 drand48(3C)
pseudo-terminal device .. grantpt(3C)
pseudo-terminal device .. ptsname(3C)
pseudo-terminal master /slave pair unlockpt(3C)
psiginfo system signal messages psignal(3C)
psignal, psiginfo system signal .. psignal(3C)
psignal, sys_siglist system signal psignal(3)
ptrace process trace ... ptrace(2)
ptsname get name of the slave ptsname(3C)
public or secret key publickey: publickey(3N)
publickey: getpublickey, .. publickey(3N)
push back) characters from curses/ curs_getch(3X)

System Calls and Library Functions Reference Manual

curses/ /mvwgetwch, ungetwch get (or
stream ungetc

input stream ungetwc
puts, fputs

putws, fputws
putc, putchar, fputc, putw

getdents read directory entries and
putwc, putwchar, fputwc

character or word on a stream
or word on a stream putc,

environment

/restartterm, tparm, tputs,

stream
entry

/getutent, getutid, getutline,
/getutxent, getutxid, getutxline,

stream putc, putchar, fputc,
character on a stream

character on a stream putwc,
/unctrl, keyname, filter, use_env,

ona stream
/notimeout, raw, noraw, noqiflush,

setlocale modify and
termname curses environment

remque insert/remove element from a
msgget get message

qsort
div, !div compute the

generator
generator

elf_rand
rand, srand simple

/srandom, initstate, setstate better
setstate better random number I

rand, srand simple
/keypad, meta, nodelay, notimeout,
for returning a stream to a remote/

to be read
getpass
catgets

file system independent/ getdents
read

check to see if there is data to be

Permuted Index

Permuted Index

push back) wchar_t characters from curs_getwch(3X)
push character back onto input ... ungetc(3S)
push wchar_t character back into ungetwc(3W)
put a string on a stream ... puts(3S)
put a wchar_t string on a stream putws(3W)
put character or word on a stream .. putc(3S)
put in a file system independent/ getdents(2)
put wchar_t character on a stream putwc(3W)
putc, putchar, fputc, putw put ... putc(3S)
putchar, fputc, putw put character putc(3S)
putenv change or add value to .. putenv(3C)
putmsg send a message on a stream putmsg(2)
putp, vidputs, vidattr, mvcur,/ curs_terminfo(3X)
putpwent write password file entry putpwent(3C)
puts, fputs put a string on a .. puts(3S)
putspent write shadow password file putspent(3C)
pututline, setutent, endutent,/ .. getut(3C)
pututxline, setutxent, endutxent,/ getutx(3C)
putw put character or word on a .. putc(3S)
putwc, putwchar, fputwc put wchar_t putwc(3W)
putwchar, fputwc put wchar_t .. putwc(3W)
putwin, getwin, delay _output,/ curs_util(3X)
putws, fputws put a wchar_t string putws(3W)
qiflush, timeout, wtimeout,/ curs_inopts(3X)
qsort quicker sort .. qsort(3C)
query a program's locale ... setlocale(3C)
query routines /termattrs, curs_termattrs(3X)
queue insque, .. insque(3C)
queue .. msgget(2)
quicker sort ... qsort(3C)
quotient and remainder .. div(3C)
raise send signal to program ... raise(3C)
rand, srand simple random number rand(3C)
rand, srand simple random-number rand(3C)
random archive member access elf_rand(3E)
random number generator .. rand(3C)
random number generator; routines/ random(3)
random, srandom, initstate, ... random(3)
random-number generator .. rand(3C)
raw, noraw, noqiflush, qiflush,/ curs_inopts(3X)
rcmd, rresvport, ruserok routines rcmd(3N)
rdchk check to see if there is data ... rdchk(2)
read a password ... getpass(3C)
read a program message .. catgets(3C)
read directory entries and put in a getdents(2)
read from file ... read(2)
read rdchk .. rdchk(2)

55

Permuted Index

bgets
readlink

/scr_restore, scr_init, scr_set
rewinddir,/ directory: opendir,

rewinddir, closedir I opendir,
lock or unlock a file region for

open open for
symbolic link

lseekmove
setregid set
setreuid set

realpath returns the
I get real user, effective user,
I geteuid, getgid, getegid get

memory allocator malloc, free,
memory allocator malloc, free,

processor
reboot

indication t_rcvrel acknowledge
t_rcvudata

recv,recvfrom,recvmsg
indication t_rcvuderr

over a connection t_rcv
connect request t_rcvconnect

handler regex,
floating-point value to decimal

lockf
/decimal_to_extended convert decimal

message from a socket
from a socket recv,

socket recv,recvfrom,
/wrefresh, wnoutrefresh, doupdate,

regex, re_ comp,
I is wintouched curses

/doupdate, redrawwin, wredrawln
update_panels panels virtual screen

doupdate, redrawwin,/ curs_refresh:
regular expression

expression regcmp,
expression handler

regular expression compile and/
regular expression compile and/

locking lock or unlock a file
/library routines for

56

read read from file .. read(2)
read stream up to next delimiter .. bgets(3G)
read the value of a symbolic link readlink(2)
read (write) a curses screen from/ curs_scr_dump(3X)
readdir, telldir, seekdir, .. directory(3C)
readdir, telldir, seekdir, ... opendir(3)
reading or writing locking ... locking(2)
reading or writing .. open(2)
readlink read the value of a ... readlink(2)
read/write file pointer .. lseek(2)
real and effective group IDs ... setregid(3)
real and effective user IDs .. setreuid(3)
real file name ... realpath(3C)
real group, and effective group IDs getuid(2)
real user, effective user, real/ ... getuid(2)
realloc, calloc, mallopt, mallinfo malloc(3X)
realloc, calloc, memalign, valloc, malloc(3C)
realpath returns the real file name realpath(3C)
reboot reboot system or halt ... reboot(3)
reboot system or halt processor .. reboot(3)
receipt of an orderly release .. t_rcvrel(3N)
receive a data unit ... t_rcvudata(3N)
receive a message from a socket ... recv(3N)
receive a unit data error ... t_rcvuderr(3N)
receive data or expedited data sent t_rcv(3N)
receive the confirmation from a t_rcvconnect(3N)
re_comp, re_exec regular expression regex(3)
record /extended_to_decimal convert
.. floating_to_decimal(3)
record locking on files .. lockf(3C)
record to floating-point value decimal_to_floating(3)
recv, recvfrom, recvmsg receive a .. recv(3N)
recvfrom, recvmsg receive a message recv(3N)
recvmsg receive a message from a recv(3N)
redrawwin, wredrawln refresh curses/ curs_refresh(3X)
re_exec regular expression handler regex(3)
refresh control routines ... curs_touch(3X)
refresh curses windows and lines curs_refresh(3X)
refresh routine panel_ update: panel_update(3X)
refresh, wrefresh, wnoutrefresh, curs_refresh(3X)
regcmp, regex compile and execute regcmp(3G)
regex compile and execute regular regcmp(3G)
regex, re_comp, re_exec regular .. regex(3)
regexp: compile, step, advance ... regexp(S)
regexpr: compile, step, advance regexpr(3G)
region for reading or writing .. locking(2)
registering servers ... rpc_svc_calls(3N)

System Calls and Library Functions Reference Manual

regexp: compile, step, advance
regexpr: compile, step, advance

regex,re_comp,re_exec
regcmp, regex compile and execute
for interrupt sigpause automically
acknowledge receipt of an orderly

t_sndrel initiate an orderly
/rint, remainder floor, ceiling,

div, !div compute the quotient and
I fmod, fmodf, fabs, fabsf, rint,

for returning a stream to a
rexec return stream to a

return information about users on
rwall write to specified

/library routines for client side
/library routines for server side

rpc library routines for
/XDR library routines for

/library routines for secure
rmdir

mkdirp, rmdirp create,
unlink

remove

queue insque,

panel_ window: panel_window,
clock

a file path name dirname
stream fseek, rewind, ftell

stream fsetpos, fgetpos
/library routines for external data
library routines for external data
library routines for external data
library routines for external data
library routines for external data
format and send listener service

t_accept accept a connect
t_listen listen for a connect

the confirmation from a connect
send user-initiated disconnect

/def_prog_mode, def_shell_mode,
/def_shell_mode, reset_prog_mode,

/reset_prog_mode, reset_shell_mode,
mincore determine

/res_search, res_mkquery, res_send,
resolver: res_query, res_search,

Permuted Index

Permuted Index

regular expression compile and/ regexp(S)
regular expression compile and/ regexpr(3G)
regular expression handler ... regex(3)
regular expression ... regcmp(3G)
release blocked signals and wait sigpause(3)
release indication t_rcvrel ... t_rcvrel(3N)
release ... t_sndrel(3N)
remainder, absolute value functions floor(3M)
remainder .. div(3C)
remainder floor, ceiling,/ ... floor(3M)
remote command /ruserok routines rcmd(3N)
remote command ... rexec(3N)
remote machines rusers .. rusers(3N)
remote machines .. rwall(3N)
remote procedure call/ ... rpc_clnt_auth(3N)
remote procedure call errors rpc_svc_err(3N)
remote procedure calls ... rpc(3N)
remote procedure calls .. rpc_xdr(3N)
remote procedure calls ... secure_rpc(3N)
remove a directory ... rmdir(2)
remove directories in a path .. mkdirp(3G)
remove directory entry .. unlink(2)
remove file ... remove(3C)
remove remove file .. remove(3C)
remque insert/remove element from a insque(3C)
rename change the name of a file rename(2)
replace_panel get or set the/ panel_ window(3X)
report CPU time used .. clock(3C)
report the parent directory name of dirname(3G)
reposition a file pointer in a fseek(3S)
reposition a file pointer in a .. fsetpos(3C)
representation stream creation xdr_create(3N)
representation xdr ... xdr(3N)
representation /xdr_setpos xdr_admin(3N)
representation /xdr_wrapstring xdr_complex(3N)
representation /xdr_void .. xdr_simple(3N)
request message nlsrequest nlsrequest(3N)
request .. t_accept(3N)
request .. t_listen(3N)
request t_rcvconnect receive t_rcvconnect(3N)
request t_snddis .. t_snddis(3N)
reset_prog_mode, reset_shell_mode,/ curs_kernel(3X)
reset_shell_mode, resetty, savetty,/ curs_kernel(3X)
resetty, savetty, getsyx, setsyx,/ curs_kernel(3X)
residency of memory pages ... mincore(2)
res_init, dn_comp, dn_expand/ resolver(3N)
res_mkquery, res_send, res_init,/ resolver(3N)

57

Permuted Index

res_mkquery, res_send, res_init,/
res_init, dn_comp, dn_expand

setrlimit control maximum system
/await and check access to a

getrusage get information about
res_send, res_init,/ resolver:

res_init,/ resolver: res_query,
/res_query, res_search, res_mkquery,

/setterm, set_curterm, del_curterm,
gettxt

elf_getarhdr
elf_getarsym

file/ /elf32_getehdr, elf32_newehdr
/elf32_getphdr, elf32_newphdr

header elf_getshdr: elf32_getshdr
elf_getident

disconnect t_rcvdis
I getpublickey, getsecretkey

contents elf_rawfile
variables sysconf

remote machines rusers
abs, labs

rexec
name basename

type elf_fsize: elf32_fsize
getenv

stat data
/rresvport, ruserok routines for

realpath
pointer in a stream fseek,

/opendir, readdir, telldir, seekdir,
opendir, readdir, telldir, seekdir,

creat create a new file or
command

index,
/copysign, fmod, fmodf, fabs, fabsf,

/resetty, savetty, getsyx, setsyx,

in a path mkdirp,
chroot change

logarithm, power, square
atexit add program termination

panels virtual screen refresh
and window attribute control

flash curses bell and screen flash
window background manipulation

curses color manipulation

resolver: res_query, res_search, resolver(3N)
resolver routines /res_send, ... resolver(3N)
resource consumption getrlimit, getrlimit(2)
resource governed by a semaphore waitsem(2)
resource utilization ... getrusage(3)
res_query, res_search, res_mkquery, resolver(3N)
res_search, res_mkquery, res_send, resolver(3N)
res_send, res_init, dn_comp,/ resolver(3N)
restartterm, tparm, tputs, putp,/ curs_terminfo(3X)
retrieve a text string .. gettxt(3C)
retrieve archive member header elf_getarhdr(3E)
retrieve archive symbol table elf_getarsym(3E)
retrieve class-dependent object elf_getehdr(3E)
retrieve class-dependent program/ elf_getphdr(3E)
retrieve class-dependent section elf_getshdr(3E)
retrieve file identification data elf_getident(3E)
retrieve information from ... t_rcvdis(3N)
retrieve public or secret key .. publickey(3N)
retrieve uninterpreted file ... elf_rawfile(3E)
retrieves configurable system .. sysconf(3C)
return information about users on rusers(3N)
return integer absolute value .. abs(3C)
return stream to a remote command rexec(3N)
return the last element of a path basename(3G)
return the size of an object file .. elf_fsize(3E)
return value for environment name getenv(3C)
returned by stat system call ... stat(S)
returning a stream to a remote/ ... rcmd(3N)
returns the real file name .. realpath(3C)
rewind, ftell reposition a file ... fseek(3S)
rewinddir, closedir directory I directory(3C)
rewinddir, closedir directory I ... opendir(3)
rewrite an existing one .. creat(2)
rexec return stream to a remote .. rexec(3N)
rindex string operations .. index(3)
rint, remainder floor, ceiling,/ ... floor(3M)
ripoffiine, curs_set, napms/ curs_kernel(3X)
rmdir remove a directory ... rmdir(2)
rmdirp create, remove directories mkdirp(3G)
root directory .. chroot(2)
root functions /sqrtf exponential, exp(3M)
routine .. atexit(3C)
routine /update_panels panel_update(3X)
routines /curses character .. curs_attr(3X)
routines curs_beep: beep, ... curs_beep(3X)
routines /bkgd, wbkgd curses curs_bkgd(3X)
routines /pair_content ... curs_color(3X)

58 System Calls and Library Functions Reference Manual

initialization and manipulation
terminal input option control

curs_set, napms low-level curses
terminal output option control

slk_attroff curses soft label
termname curses environment query

curses refresh control
miscellaneous curses utility

by I /assign application-specific
/better random number generator;

/rpc_broadcast, rpc_call library
/authsys_create_default library

and/ /clnt_vc_create library
creation of/ /svc_ vc_create library

/xdrstdio_create library
representation xdr library

/xdrrec_eof, xdr_setpos library
/xdr_ vector, xdr_ wrapstring library

/xdr_u_short, xdr_ void library
/assign application-specific

/xprt_unregister library
rpc library

/xdr_replymsg XOR library
a remote/ rcmd, rresvport, ruserok

/rpcb_set, rpcb_unset library
/svc_run, svc_sendreply library

/netname2user, user2netname library
procedure/ /svcerr_weakauth library

field_opts forms field option
link_fieldtype forms fieldtype

form_opts forms option
window and subwindow association

item_opts menus item option
menu_mark menus mark string

menu_opts menus option
window and subwindow association

panels deck manipulation
panels deck manipulation

expression compile and match
expression compile and match
dn_comp, dn_expand resolver
widec multibyte character 1/0

/set and get maximum numbers of
rpcb_unset library routines for

procedure calls
svc_sendreply library routines for

rpcbind: rpcb_getmaps,

Permuted Index

_____ ___ Permuted Index

routines I delscreen curses screen curs_initscr(3X)
routines /typeahead curses curs_inopts(3X)
routines /setsyx, ripoffline, curs_kernel(3X)
routines /nl, non! curses curs_outopts(3X)
routines /slk_attron, slk_attrset, curs_slk(3X)
routines /longname, termattrs, curs_termattrs(3X)
routines /is_wintouched .. curs_touch(3X)
routines /delay_output, flushinp curs_util(3X)
routines for automatic invocation menu_hook(3X)
routines for changing generators random(3)
routines for client side calls rpc_clnt_calls(3N)
routines for client side remote/ rpc_clnt_auth(3N)
routines for dealing with creation rpc_clnt_create(3N)
routines for dealing with the rpc_svc_create(3N)
routines for external data/ ... xdr_create(3N)
routines for external data .. xdr(3N)
routines for external data/ .. xdr_admin(3N)
routines for external data/ xdr_complex(3N)
routines for external data/ xdr_simple(3N)
routines for invocation by forms form_hook(3X)
routines for registering servers rpc_svc_calls(3N)
routines for remote procedure calls rpc(3N)
routines for remote procedure calls rpc_xdr(3N)
routines for returning a stream to rcmd(3N)
routines for RPC bind service ... rpcbind(3N)
routines for RPC servers .. rpc_svc_reg(3N)
routines for secure remote/ secure_rpc(3N)
routines for server side remote rpc_svc_err(3N)
routines /field_opts_off, form_field_opts(3X)
routines /set_fieldtype_choice, form_fieldtype(3X)
routines /form_opts_off, ... form_opts(3X)
routines /scale_form forms .. form_win(3X)
routines /item_opts_off, menu_item_opts(3X)
routines menu_mark: set_menu_mark, menu_mark(3X)
routines /menu_opts_off, .. menu_opts(3X)
routines /scale_menu menus menu_win(3X)
routines /hide_panel, panel_hidden panel_show(3X)
routines /top_panel, bottom_panel panel_top(3X)
routines /step, advance regular .. regexp(5)
routines /step, advance regular regexpr(3G)
routines /res_send, res_init, ... resolver(3N)
routines .. widec(3W)
rows and columns in menus menu_format(3X)
RPC bind service /rpcb_set, .. rpcbind(3N)
rpc library routines for remote ... rpc(3N)
RPC servers /svc_run, .. rpc_svc_reg(3N)
rpcb_getaddr, rpcb_gettime,/ .. rpcbind(3N)

59

Permuted Index

rpcb_gettime,/ rpcbind:
/rpcb_getmaps, rpcb_getaddr,
rpcb_getaddr, rpcb_gettime,/
/rpcb _getaddr, rpcb _gettime,

/clnt_spermo, clnt_sperror,
/rpcb_gettime, rpcb_rmtcall,

bind/ /rpcb_rmtcall, rpcb_set,
/clnt_sperror, rpc_broadcast,

authnone_create, authsys_create,/
cln t _ freeres, cln t _geterr ,/

clnt_create, clnt_destroy,/
xprt_register,/ rpc_svc_calls:

svc_unreg, xprt_register,/
svc_destroy, svc_dg_create,/

svcerr_decode, svcerr_noproc,/
svc_getargs, svc_getreqset,/

xdr_authsys_parms, xdr_callhdr,/
/mdiv, mcmp, min, mout, pow, gcd,

returning a stream to a/ rcmd,
stream to a/ rcmd, rresvport,

users on remote machines
machines

csync designate portions of memory
/reset_shell_mode, resetty,

allocation brk,
logb, modf, modff, nextafter,

IEEE/ /fp_class, isnan, copysign,
/form_ win, set_form_sub, form_sub,

/menu_ win, set_menu_sub, menu_sub,
scandir, alphasort

formatted input
formatted input

vwscanw convert/ curs_scanw:
network spray

microseconds ualarm
priocntl process

priocn tis et generalized process
setpriority get I set program

scr_set read/ curs_scr_dump:
beep, flash curses bell and

scr_set read (write) a curses
package curses CRT

/set_term, delscreen curses
move a panels window on the virtual

/update_panels panels virtual
curses/ /scr_dump, scr_restore,

60

rpcb_getmaps, rpcb_getaddr, ... rpcbind(3N)
rpcb_gettime, rpcb_rmtcall,/ ... rpcbind(3N)
rpcbind: rpcb_getmaps, ... rpcbind(3N)
rpcb_rmtcall, rpcb_set, rpcb_unset/ rpcbind(3N)
rpc_broadcast, rpc_call library I rpc_clnt_calls(3N)
rpcb_set, rpcb_unset library I ... rpcbind(3N)
rpcb_unset library routines for RPC rpcbind(3N)
rpc_call library routines for I rpc_clnt_calls(3N)
rpc_clnt_auth: auth_destroy, rpc_clnt_auth(3N)
rpc_clnt_calls: clnt_call, .. rpc_clnt_calls(3N)
rpc_clnt_create: clnt_control, rpc_clnt_create(3N)
rpc_reg, svc_reg, svc_unreg, rpc_svc_calls(3N)
rpc_svc_calls: rpc_reg, svc_reg, rpc_svc_calls(3N)
rpc_svc_create: svc_create, rpc_svc_create(3N)
rpc_svc_err: svcerr_auth, ... rpc_svc_err(3N)
rpc_svc_reg: svc_freeargs, rpc_svc_reg(3N)
rpc_xdr: xdr_accepted_reply, ... rpc_xdr(3N)
rpow, msqrt, sdiv, itom, xtom,/ .. mp(3)
rresvport, ruserok routines for .. rcmd(3N)
ruserok routines for returning a ... rcmd(3N)
rusers return information about .. rusers(3N)
rwall write to specified remote ... rwall(3N)
safe for execution .. csync(2)
savetty, getsyx, setsyx,/ .. curs_kernel(3X)
sbrk change data segment space .. brk(2)
scalb manipulate parts of/ /ldexp, frexp(3C)
scalbn miscellaneous functions for ieee_functions(3M)
scale_form forms window and/ form_win(3X)
scale_menu menus window and/ menu_ win(3X)
scan a directory .. scandir(3)
scandir, alphasort scan a directory scandir(3)
scanf, fscanf, sscanf convert .. scanf(3S)
scanf, fscanf, sscanf convert scanf(3W)
scanw, wscanw, mvscanw, mvwscanw, curs_scanw(3X)
scatter data in order to check the spray(3N)
schedule signal after interval in ... ualarm(3)
scheduler control .. priocntl(2)
scheduler control ... priocntlset(2)
scheduling priority getpriority, getpriority(3)
scr_dump, scr_restore, scr_init, curs_scr_dump(3X)
screen flash routines curs_beep: curs_beep(3X)
screen from (to) a file /scr_init, curs_scr_dump(3X)
screen handling and optimization curses(3X)
screen initialization and/ .. curs_initscr(3X)
screen panel_move: move_panel panel_move(3X)
screen refresh routine ... panel_update(3X)
scr_init, scr_set read (write) a curs_scr_dump(3X)

System Calls and Library Functions Reference Manual

doconfig execute a configuration
curs_scroll: scroll, srcl, wscrl

window curs_scroll:
/leaveok, setscrreg, wsetscrreg,

(write) a/ curs_scr_dump: scr_dump,
/scr_dump, scr_restore, scr_init,

to a shared data segment
data segment sdget,
shared data segment

access
/min, mout, pow, gcd, rpow, msqrt,

shared data segment sdenter,
bsearch binary

!search, !find linear
directories pathfind

hcreate, hdestroy manage hash
tfind, tdelete, twalk manage binary

econvert, £convert, gconvert,
getsecretkey retrieve public or
elf_newdata, elf_rawdata get

retrieve class-dependent
elf_newscn, elf_nextscn get

/user2netname library routines for
authdes_getucred, getnetname,/

/mand48, mrand48, jrand48, srand48,
I opendir, readdir, telldir,
opendir, readdir, telldir,

shmget get shared memory
synchronize access to a shared data

attach and detach a shared data
brk, sbrk change data

semctl
create an instance of a binary

opensem open a
semop

signal a process waiting on a
access to a resource governed by a

semget get set of

t_sndudata
send, sendto, sendmsg

putmsg
group of processes kill

group of/ sigsend, sigsendset

Permuted Index

Permuted Index

script ... doconfig(3N)
scroll a curses window .. curs_scroll(3X)
scroll, srcl, wscrl scroll a curses curs_scroll(3X)
scrollok, nl, non! curses terminal/ curs_outopts(3X)
scr_restore, scr_init, scr_set read curs_scr_dump(3X)
scr_set read (write) a curses/ curs_scr_dump(3X)
sdenter, sdleave synchronize access sdenter(2)
sdfree attach and detach a shared ... sdget(2)
sdget, sdfree attach and detach a ... sdget(2)
sdgetv synchronize shared data .. sdgetv(2)
sdiv, itom, xtom, mtox, mfree/ ... mp(3)
sdleave synchronize access to a .. sdenter(2)
search a sorted table .. bsearch(3C)
search and update ... lsearch(3C)
search for named file in named pathfind(3G)
search tables hsearch, hsearch(3C)
search trees tsearch, tsearch(3C)
seconvert, sfconvert, sgconvert/ econvert(3)
secret key /getpublickey, ... publickey(3N)
section data elf_getdata, ... elf_getdata(3E)
section header /elf32_getshdr elf_getshdr(3E)
section information /elf_ndxscn, elf_getscn(3E)
secure remote procedure calls secure_rpc(3N)
secure_rpc: authdes_seccreate, secure_rpc(3N)
seed48, lcong48 generate uniformly I drand48(3C)
seekdir, rewinddir, closedir I .. directory(3C)
seekdir, rewinddir, closedir I ... opendir(3)
segment identifier .. shmget(2)
segment sdenter, sdleave ... sdenter(2)
segment sdget, sdfree ... sdget(2)
segment space allocation ... brk(2)
select synchronous I/O multiplexing select(3C)
semaphore control operations .. semctl(2)
semaphore creatsem .. creatsem(2)
semaphore .. opensem(2)
semaphore operations ... semop(2)
semaphore sigsem .. sigsem(2)
semaphore /await and check .. waitsem(2)
semaphores ... semget(2)
semctl semaphore control operations semctl(2)
semget get set of semaphores .. semget(2)
semop semaphore operations .. semop(2)
send a data unit ... t_sndudata(3N)
send a message from a socket .. send(3N)
send a message on a stream .. putmsg(2)
send a signal to a process or a .. kill(2)
send a signal to a process or a .. sigsend(2)

61

Permuted Index

connection t_snd
message nlsrequest format and

message from a socket
killpg
raise

request t_snddis
socket send, sendto,

a socket send,
receive data or expedited data

elf_next
for dealing with the creation of

errors /library routines for
library routines for registering

library routines for RPC
setservent, endservent get

t_getinfo get protocol-specific
nlsrequest format and send listener

library routines for RPC bind
and pass to logging and monitoring
and pass to logging and monitoring
and pass to logging and monitoring

getsid get
setsid set

truncate, ftrunca te
alarm

/set_top_row, top_row, item_index
umask

I field_status, set_max_field
and/ /set_menu_format, menu_format

/set_item_ value, item_ value
/set_menu_pattem, menu_pattern

sigstack
ffs find first

ASCII and supplemetary code
sigsetmask

getcontext, setcontext get and
times utime

utimes
elf_fill

I current_field, field_index

62

semget get
getsockopt, setsockopt get and

context sigaltstack
stkprotect

setpgid
setpgrp

mprotect

send data or expedited data over a t_snd(3N)
send listener service request nlsrequest(3N)
send, send to, sendmsg send a .. send(3N)
send signal to a process group ... killpg(3)
send signal to program raise(3C)
send user-initiated disconnect t_snddis(3N)
sendmsg send a message from a send(3N)
sendto, sendmsg send a message from send(3N)
sent over a connection t_rcv ... t_rcv(3N)
sequential archive member access elf_next(3E)
server handles /library routines rpc_svc_create(3N)
server side remote procedure call rpc_svc_err(3N)
servers /xprt_unregister rpc_svc_calls(3N)
servers /svc_run, svc_sendreply rpc_svc_reg(3N)
service entry /getservbyname, getservent(3N)
service information ... t_getinfo(3N)
service request message nlsrequest(3N)
service /rpcb_set, rpcb_unset rpcbind(3N)
services /in standard format ... lfmt(3C)
services /in standard format ... vlfmt(3C)
services /in standard format .. vpfmt(3C)
session ID ... getsid(2)
session ID ... setsid(2)
set a file to a specified length .. truncate(3C)
set a process alarm clock .. alarm(2)
set and get current menus items menu_item_current(3X)
set and get file creation mask ... umask(2)
set and get forms field attributes form_field_buffer(3X)
set and get maximum numbers of rows menu_format(3X)
set and get menus item values menu_item_ value(3X)
set and get menus pattern match/ menu_pattern(3X)
set and/ or get signal stack context sigstack(3)
set bit .. ffs(3C)
set characters /isspecial classify wctype(3W)
set current signal mask .. sigsetmask(3)
set current user context ... getcontext(2)
set file access and modification ... utime(2)
set file times ... utimes(3)
set fill byte .. elf_fill(3E)
set forms current page and field form_page(3X)
set of semaphores ... semget(2)
set options on sockets getsockopt(3N)
set or get signal alternate stack sigaltstack(2)
set permissions of stack ... stkprotect(2)
set process group ID ... setpgid(2)
set process group ID ... setpgrp(2)
set protection of memory mapping mprotect(2)

System Calls and Library Functions Reference Manual

setregid
setreuid

sets id
IDs getgroups, setgroups get or

sysinfo get and
group id tcsetpgrp

/panel_ window, replace_panel get or
gettimeofday, settimeofday get or
gettimeofday, settimeofday get or

stime
setuid, setgid

ulimit get and
setvbuf assign buffering to a I

a stream
buffering to a stream

assign buffering to a/ setbuf,

context getcontext,
/set_form_page, form_page,

set_top_row,/ menu_item_current:
curs_terminfo: setupterm, setterm,

/set_field_fore, field_fore,
form_field_buffer:

form_field_attributes:
/set_form_term, form_term,

the general/ form_field_just:
field_opts_off,/ form_field_opts:

/set_field_back, field_back,

/set_field_buffer, field_buffer,
/set_field_init, field_init,

field_arg/ form_field_ validation:
new _field type, free_fieldtype,

/free_fieldtype, set_fieldtype_arg,
associate/ form_field_userptr:

field_count,/ form_field:
set_form_term,/ form_hook:

form_opts_off,/ form_opts:
set_current_field,/ form_page:

form_ win: set_form_win, form_ win,
/set_form_init, form_init,
associate/ form_userptr:

set_form_sub, form_sub,/ form_ win:
setuid,

getgrent,getgrgid,getgrnam,
group access list IDs getgroups,
/gethostbyaddr, gethostbyname,

Permuted Index

Permuted Index

set real and effective group IDs ... setregid(3)
set real and effective user IDs .. setreuid(3)
set session ID ... setsid(2)
set supplementary group access list getgroups(2)
set system information strings .. sysinfo(2)
set terminal foreground process tcsetpgrp(3C)
set the current window of a panels/ panel_window(3X)
set the date and time .. gettimeofday(3)
set the date and time ... gettimeofday(3C)
set time .. stime(2)
set user and group IDs .. setuid(2)
set user limits .. ulimit(2)
setbuf, setbuffer, setlinebuf, ... setbuf(3S)
setbuf, setvbuf assign buffering to setbuf(3S)
setbuffer, setlinebuf assign ... setbuffer(3S)
setbuffer, setlinebuf, setvbuf ... setbuf(3S)
setcat define default catalog .. setcat(3C)
setcontext get and set current user getcontext(2)
set_current_field, current_field,/ form_page(3X)
set_current_item, current_item, menu_item_current(3X)
set_curterm, del_curterm,/ curs_terminfo(3X)
set_field_back, field_back,/ form_field_attributes(3X)
set_field_buffer, field_buffer,/ form_field_buffer(3X)
set_field_fore, field_fore,/ form_field_attributes(3X)
set_field_init, field_init,/ .. form_hook(3X)
set_field_just, field_just format form_field_just(3X)
set_field_opts, field_opts_on, form_field_opts(3X)
set_field_pad, field_pad format the/
... forrn_field_attributes(3X)
set_field_status, field_status,/ form_field_buffer(3X)
set_field_terrn, field_term assign/ form_hook(3X)
set_field_type, field_type, forrn_field_ validation(3X)
set_fieldtype_arg,/ forrn_fieldtype: forrn_fieldtype(3X)
set_fieldtype_choice,/ ... form_fieldtype(3X)
set_field_userptr, field_userptr form_field_userptr(3X)
set_form_fields, forrn_fields, form_field(3X)
set_form_init, form_init, ... form_hook(3X)
set_form_opts, form_opts_on, form_opts(3X)
set_form_page, forrn_page, .. forrn_page(3X)
set_forrn_sub, form_sub, scale_form/ forrn_win(3X)
set_forrn_term, form_ term,/ form_hook(3X)
set_form_userptr, form_userptr form_userptr(3X)
set_form_ win, form_ win, ... form_ win(3X)
setgid set user and group IDs .. setuid(2)
setgrent, endgrent, fgetgrent get/ getgrent(3C)
setgroups get or set supplementary getgroups(2)
sethostent, endhostent, herror get/ gethostent(3N)

63

Permuted Index

host gethostname,
set_item_term,/ menu_hook:

item_opts_off,/ menu_item_opts:
/set_item_init, item_init,

associate/ menu_item_userptr:
get menus item/ menu_item_ value:

timer getitimer,

sigsetjmp, siglongjmp non-local/
siglongjmp/ setjmp, longjmp,

crypt,
pfmt() and lfmt()

stream setbuffer,
buffering to a/ setbuf, setbuffer,

program's locale
syslog, openlog, closelog,

/set_field_status, field_status,
/set_menu_fore, menu_fore,

set_menu_back,/ menu_attributes:
and get maximum/ menu_format:

/set_menu_back, menu_back,
/set_item_term, item_term,

item_ count connect and/ menu_items:
string routines menu_mark:

menu_opts_off,/ menu_opts:
menus/ /set_menu_grey, menu_grey,

and get menus/ menu_pattern:
menu_ win: set_menu_win, menu_ win,

/set_menu_init, menu_init,
associate I menu_ userptr:

set_menu_sub, menu_sub,/ menu_ win:
entry /getnetbyaddr, getnetbyname,

get network group I getnetgrent,
pagination form_new _page:

associate/ panel_userptr:

scheduling priority getpriority,
I getprotobynumber, getprotobyname,

getpwent, getpwuid, getpwnam,
group IDs

user IDs
resource consumption getrlimit,

information of supplementary code
sigdelset, sigismember manipulate

nl,/ /idlok, idcok immedok, leaveok,

64

sethostname get/set name of current gethostname(3)
set_item_init, item_init, .. menu_hook(3X)
set_item_opts, item_opts_on, menu_item_opts(3X)
set_item_term, item_term,/ menu_hook(3X)
set_item_userptr, item_userptr menu_item_userptr(3X)
set_item_ value, item_ value set and menu_ item_ value(3X)
setitimer get/set value of interval getitimer(3C)
setjmp, longjmp non-local goto .. setjmp(3C)
setjmp, longjmp, _setjmp, _longjmp, setjmp(3)
_setjmp, _longjmp, sigsetjmp, .. setjmp(3)
setkey, encrypt generate encryption crypt(3C)
setlabel define the label for .. setlabel(3C)
setlinebuf assign buffering to a setbuffer(3S)
setlinebuf, setvbuf assign ... setbuf(3S)
setlocale modify and query a setlocale(3C)
setlogmask control system log .. syslog(3)
set_max_field set and get forms/ form_field_buffer(3X)
set_menu_back, menu_back,/ menu_attributes(3X)
set_menu_fore, menu_fore, menu_attributes(3X)
set_menu_format, menu_format set menu_format(3X)
set_menu_grey, menu_grey,/ menu_attributes(3X)
set_menu_init, menu_init,/ menu_hook(3X)
set_menu_items, menu_items, menu_items(3X)
set_menu_mark, menu_mark menus mark
... menu_mark(3X)
set_menu_opts, menu_opts_on, menu_opts(3X)
set_menu_pad, menu_pad control menu_attributes(3X)
set_menu_pattern, menu_pattern set menu_pattern(3X)
set_menu_sub, menu_sub, scale_menu/ menu_win(3X)
set_menu_term, menu_term assign/ menu_hook(3X)
set_menu_userptr, menu_userptr menu_userptr(3X)
set_menu_win, menu_ win, .. menu_win(3X)
setnetent, endnetent get network getnetent(3N)
setnetgrent, endnetgrent, innetgr getnetgrent(3N)
set_new _page, new _page forms form_new _page(3X)
set_panel_userptr, panel_userptr panel_userptr(3X)
setpgid set process group ID ... setpgid(2)
setpgrp set process group ID .. setpgrp(2)
setpriority get/set program .. getpriority(3)
setprotoent, endprotoent get/ getprotoent(3N)
setpwent, endpwent, fgetpwent/ getpwent(3C)
setregid set real and effective .. setregid(3)
setreuid set real and effective .. setreuid(3)
setrlimit control maximum system getrlimit(2)
sets getwidth get ... getwidth(3W)
sets of signals /sigaddset, sigemptyset(3C)
setscrreg, wsetscrreg, scrollok, curs_outopts(3X)

System Calls and Library Functions Reference Manual

I getservbyport, getservbyname,

sockets getsockopt,
lckpwdf,/ getspent, getspnam,

random, srandom, initstate,
/resetty, savetty, getsyx,

I initscr, newterm, end win, isendwin,
curs_terminfo: setupterm,

and time gettimeofday,
and time gettimeofday,

/set_current_item, current_item,

IDs
del_curterm,/ curs_terminfo:
legal user shells getusershell,
I getutid, getutline, pututline,

/getutxid, getutxline, pututxline,
stream setbuf,

setbuf, setbuffer, setlinebuf,
addsev define additional

for I addseverity build a list of
I fconvert, gconvert, seconvert,

/gconvert, seconvert, sfconvert,
machine-independent fashion sputl,

/lckpwdf, ulckpwdf manipulate
putspent write

sdgetv synchronize
sdleave synchronize access to a

sdget, sdfree attach and detach a
shmctl

shmop: shmat, shmdt
shmgetget

dlclose close a
dlopen open a

get the address of a symbol in
system issue a

gmatch
endusershell get legal user

operations shmop:
operations

shmop: shmat,
identifier

operations
nap suspends execution for a

panel_hidden panels/ panel_show:
connection shutdown
full-duplex connection

Permuted Index

Permuted Index

setservent, endservent get service/ getservent(3N)
setsid set session ID ... setsid(2)
setsockopt get and set options on getsockopt(3N)
setspent, endspent, fgetspent, .. getspent(3C)
setstate better random number I random(3)
setsyx, ripoffline, curs_set, napms/ curs_kernel(3X)
set_ term, delscreen curses screen/ curs_initscr(3X)
setterm, set_curterm, del_curterm,/ curs_terminfo(3X)
settimeofday get or set the date gettimeofday(3)
settimeofday get or set the date gettimeofday(3C)
set_top_row, top_row, item_index/
... menu_item_current(3X)
setuid, setgid set user and group .. setuid(2)
setupterm, setterm, set_curterm, curs_terminfo(3X)
setusershell, endusershell get getusershell(3)
setutent, endutent, utmpname access/ getut(3C)
setutxent, endutxent, utmpxname,/ getutx(3C)
setvbuf assign buffering to a ... setbuf(3S)
setvbuf assign buffering to a/ ... setbuf(3S)
severities ... addsev(3C)
severity levels for an application addseverity(3C)
sfconvert, sgconvert output/ econvert(3)
sgconvert output conversion .. econvert(3)
sgetl access long integer data in a .. sputl(3X)
shadow password file entry ... getspent(3C)
shadow password file entry .. putspent(3C)
shared data access .. sdgetv(2)
shared data segment sdenter, .. sdenter(2)
shared data segment ... sdget(2)
shared memory control operations shmctl(2)
shared memory operations .. shmop(2)
shared memory segment identifier shmget(2)
shared object ... dlclose(3X)
shared object dlopen(3X)
shared object dlsym .. dlsym(3X)
shell command ... system(3S)
shell global pattern matching .. gmatch(3G)
shells getusershell, setusershell, getusershell(3)
shmat, shmdt shared memory ... shmop(2)
shmctl shared memory control .. shmctl(2)
shmdt shared memory operations shmop(2)
shmget get shared memory segment shmget(2)
shmop: shmat, shmdt shared memory shmop(2)
short interval ... nap(2)
show _panel, hide_panel, .. panel_show(3X)
shut down part of a full-duplex shutdown(3N)
shutdown shut down part of a shutdown(3N)

65

Permuted Index

library routines for client
/library routines for client

/library routines for server
management

sigemptyset, sigfillset,
alternate stack context

sigemptyset, sigfillset, sigaddset,
sigdelset, sigismember manipulate/

sigismember I sigemptyset,
sigfpe signal handling for specific

SIGFPE codes
sigpause/ signal, sigset,

signal, sigset, sighold, sigrelse,
information

interrupt system calls
I sigfillset, sigaddset, sigdelset,

signal state sigsetjmp,
_setjmp, _longjmp, sigsetjmp,

sigblock,
semaphore sigsem

generate an abnormal termination
microseconds ualarm schedule

sigaltstack set or get

66

signal simplified software
sigvec software

siginfo
codes sigfpe

sigaction detailed
sigignore, sigpause simplified

until signal sigsuspend install a
sigprocmask change or examine

sigsetmask set current
psignal, sys_siglist system

psignal, psiginfo system
pause suspend process until

sigignore, sigpause simplified/
mask and suspend process until

facilities
sigstack set and/or get

siglongjmp a non-local goto with
killpg send

processes kill send a
sigsend, sigsendset send a

raise send
/automically release blocked

side calls /rpc_broadcast, rpc_call rpc_clnt_calls(3N)
side remote procedure call/ rpc_clnt_auth(3N)
side remote procedure call errors rpc_svc_err(3N)
sigaction detailed signal .. sigaction(2)
sigaddset, sigdelset, sigismember I sigemptyset(3C)
sigaltstack set or get signal .. sigaltstack(2)
sigblock, sigmask block signals ... sigblock(3)
sigdelset, sigismember manipulate/ sigemptyset(3C)
sigemptyset, sigfillset, sigaddset, sigemptyset(3C)
sigfillset, sigaddset, sigdelset, sigemptyset(3C)
SIGFPE codes .. sigfpe(3)
sigfpe signal handling for specific .. sigfpe(3)
sighold, sigrelse, sigignore, .. signal(2)
sigignore, sigpause simplified/ .. signal(2)
siginfo signal generation ... siginfo(5)
siginterrupt allow signals to siginterrupt(3)
sigismember manipulate sets of/ sigemptyset(3C)
siglongjmp a non-local goto with sigsetjmp(3C)
siglongjmp non-local goto /longjmp, setjmp(3)
sigmask block signals .. sigblock(3)
signal a process waiting on a ... sigsem(2)
signal abort abort(3C)
signal after interval in ... ualarm(3)
signal alternate stack context .. sigaltstack(2)
signal base signals .. signal(5)
signal facilities .. signal(3)
signal facilities .. sigvec(3)
signal generation information ... siginfo(5)
signal handling for specific SIGFPE sigfpe(3)
signal management .. sigaction(2)
signal management /sigrelse, .. signal(2)
signal mask and suspend process sigsuspend(2)
signal mask ... sigprocmask(2)
signal mask .. sigsetmask(3)
signal messages .. psignal(3)
signal messages ... psignal(3C)
signal ... pause(2)
signal, sigset, sighold, sigrelse, .. signal(2)
signal sigsuspend install a signal sigsuspend(2)
signal simplified software signal .. signal(3)
signal stack context .. sigstack(3)
signal state sigsetjmp, .. sigsetjmp(3C)
signal to a process group .. killpg(3)
signal to a process or a group of .. kill(2)
signal to a process or a group of/ sigsend(2)
signal to program raise(3C)
signals and wait for interrupt ... sigpause(3)

System Calls and Library Functions Reference Manual

sigblock, sigmask block
sigismember manipulate sets of

signal base
ssignal, gsignal software

pending sigpending examine
siginterrupt allow

blocked signals and wait for I
sighold, sigrelse, sigignore,

blocked and pending
signal mask

signal, sigset, sighold,
a semaphore

to a process or a group of/
process or a group of/ sigsend,

sigignore, sigpause/ signal,
goto with signal state

setjmp, longjmp, _setjmp, _longjmp,

stack context
and suspend process until signal

rand, srand
rand, srand

/sigrelse, sigignore, sigpause
facilities signal

asin, asinf, acos, acosf,/ trig:
asinf, acos, acosf,/ trig: sin,

floating_ to _decimal:
tanhf, asinh, acosh, atanh/
asinh, acosh, atanh/ sinh,

getdtablesize get descriptor table
getpagesize get system page

chsize change the
elf_fsize: elf32_fsize return the

grantpt grant access to the
ptsname get name of the

interval
interval

/slk_touch, slk_attron, slk_attrset,
/slk_clear, slk_restore, slk_touch,

/slk_restore, slk_touch, slk_attron,
/slk_noutrefresh, slk_label,

slk_noutrefresh,/ curs_slk:
/slk_refresh, slk_noutrefresh,
/slk_init, slk_set, slk_refresh,

curs_slk: slk_init, slk_set,
slk_attrset,/ /slk_label, slk_clear,

Permuted Index

_________ Permuted Index

signals ... sigblock(3)
signals /sigaddset, sigdelset, sigemptyset(3C)
signals ... signal(5)
signals .. ssignal(3C)
signals that are blocked and ... sigpending(2)
signals to interrupt system calls siginterrupt(3)
sigpause automically release .. sigpause(3)
sigpause simplified signal/ /sigset, signal(2)
sigpending examine signals that are sigpending(2)
sigprocmask change or examine sigprocmask(2)
sigrelse, sigignore, sigpause/ .. signal(2)
sigsem signal a process waiting on sigsem(2)
sigsend, sigsendset send a signal sigsend(2)
sigsendset send a signal to a ... sigsend(2)
sigset, sighold, sigrelse, ... signal(2)
sigsetjmp, siglongjmp a non-local sigsetjmp(3C)
sigsetjmp, siglongjmp non-local/ setjmp(3)
sigsetmask set current signal mask sigsetmask(3)
sigstack set and/ or get signal .. sigstack(3)
sigsuspend install a signal mask sigsuspend(2)
sigvec software signal facilities .. sigvec(3)
simple random number generator rand(3C)
simple random-number generator rand(3C)
simplified signal management .. signal(2)
simplified software signal .. signal(3)
sin, sinf, cos, cosf, tan, tanf, ... trig(3M)
sinf, cos, cosf, tan, tanf, asin, ... trig(3M)
single_to_decimal,/ floating_to_decimal(3)
sinh, sinhf, cosh, coshf, tanh, ... sinh(3M)
sinhf, cosh, coshf, tanh, tanhf, ... sinh(3M)
size ... getdtablesize(3)
size getpagesize(3)
size of a file .. chsize(2)
size of an object file type .. elf_fsize(3E)
slave pseudo-terminal device .. grantpt(3C)
slave pseudo-terminal device ptsname(3C)
sleep suspend execution for .. sleep(3)
sleep suspend execution for ... sleep(3C)
slk_attroff curses soft label/ ... curs_slk(3X)
slk_attron, slk_attrset,/ .. curs_slk(3X)
slk_attrset, slk_attroff curses/ .. curs_slk(3X)
slk_clear, slk_restore, slk_touch,/ curs_slk(3X)
slk_init, slk_set, slk_refresh, ... curs_slk(3X)
slk_label, slk_clear, slk_restore,/ curs_slk(3X)
slk_noutrefresh, slk_label,/ .. curs_slk(3X)
slk_refresh, slk_noutrefresh,/ .. curs_slk(3X)
slk_restore, slk_touch, slk_attron, curs_slk(3X)

67

Permuted Index

curs_slk: slk_init,
/slk_label, slk_clear, slk_restore,

current user ttyslot find the
accept accept a connection on a

bind bind a name to a
connect initiate a connection on a

communication
listen listen for connections on a

getsockname get
recvmsg receive a message from a

sendmsg send a message from a
connected sockets

setsockopt get and set options on
create a pair of connected

slk_attrset, slk_attroff curses
signal simplified

sigvec
ssignal, gsignal

qsort quicker
bsearch binary search a

brk, sbrk change data segment
an object in the file system name

munlockall lock or unlock address
swapctl manage swap

memory efficient way vfork
mknod make a directory, or a
mknod make a directory, or a

sigfpe signal handling for
truncate, £truncate set a file to a

rwall write to
bufsplit

check the network
printf, fprintf,
printf, fprintf,

vsprintf I printf, fprintf,
data in a machine-independent/
/logf, loglO, loglOf, pow, powf,
/loglO, loglOf, pow, powf, sqrt,
exponential, logarithm, power,

generator rand,
generator rand,

/lrand48, nrand48, mrand48, jrand48,
random number generator;/ random,

curs _scroll: scroll,
scanf, fscanf,
scanf, fscanf,

68

slk_set, slk_refresh,/ ... curs_slk(3X)
slk_touch, slk_attron, slk_attrset,/ curs_slk(3X)
slot in the utmp file of the ... ttyslot(3C)
socket .. accept(3N)
socket bind(3N)
socket ... connect(3N)
socket create an endpoint for ... socket(3N)
socket listen(3N)
socket name .. getsockname(3N)
socket recv, recvfrom, ... recv(3N)
socket send, sendto, .. send(3N)
socketpair create a pair of ... socketpair(3N)
sockets getsockopt, .. getsockopt(3N)
sockets socketpair ... socketpair(3N)
soft label routines /slk_attron, curs_slk(3X)
software signal facilities ... signal(3)
software signal facilities ... sigvec(3)
software signals ... ssignal(3C)
sort qsort(3C)
sorted table bsearch(3C)
space allocation ... brk(2)
space I file descriptor to ... fattach(3C)
space mlockall, .. mlockall(3C)
space .. swapctl(2)
spawn new process in a virtual .. vfork(2)
special or ordinary file .. mknod(2)
special or ordinary file .. mknod(2)
specific SIGFPE codes ... sigfpe(3)
specified length ... truncate(3C)
specified remote machines .. rwall(3N)
split buffer into fields .. bufsplit(3G)
spray scatter data in order to .. spray(3N)
sprintf print formatted output ... printf(3S)
sprint£ print formatted output ... printf(3W)
sprint£, vprintf, vfprintf, .. printf(3)
sputl, sgetl access long integer ... sputl(3X)
sqrt, sqrtf exponential, logarithm,/ exp(3M)
sqrtf exponential, logarithm,/ ... exp(3M)
square root functions /sqrt, sqrtf ... exp(3M)
srand simple random number .. rand(3C)
srand simple random-number .. rand(3C)
srand48, seed48, lcong48 generate/ drand48(3C)
srandom, initstate, setstate better random(3)
srcl, wscrl scroll a curses window curs_scroll(3X)
sscanf convert formatted input .. scanf(3S)
sscanf convert formatted input .. scanf(3W)
ssignal, gsignal software signals ssignal(3C)

System Calls and Library Functions Reference Manual

set or get signal alternate
sigstack set and/ or get signal
stkprotect set permissions of

package stdio
and/ lfmt display error message in

and/ vlfmt display error message in
and/ vpfmt display error message in

pfmt display error message in
package stdipc: ftok

/attron, wattron, attrset, wattrset,
/wattrset, standend, wstandend,

has_colors,/ curs_color:
call

stat data returned by
ustat get file system

feof, clearerr, fileno stream
stat, !stat, fstat get file
stat, !stat, fstat get file

wstat wait
information

list
fmtmsg display a message on

input/output package
communication package

compile and match/ regexp: compile,
compile and/ regexpr: compile,

wait wait for child process to
wait for process to terminate or

synchronize memory with physical
dbm: dbminit, dbmclose, fetch,

string manipulations
compressing or I strccpy: streadd,

operations string:
strncmp, strcpy, strncpy,/ string:

copy strings, compressing or/
/strncmp, strcpy, strncpy, strlen,

string: strcat, strdup, strncat,

/strdup, strncat, strcmp, strncmp,
/strchr, strrchr, strpbrk, strspn,
strcpy, strncpy,/ string: strcat,

strings, compressing or I strccpy:
for external data representation

Permuted Index

_ Permuted Index

stack context sigaltstack ... sigaltstack(2)
stack context .. sigstack(3)
stack ... stkprotect(2)
standard buffered input/output ... stdio(3S)
standard format and pass to logging lfmt(3C)
standard format and pass to logging vlfmt(3C)
standard format and pass to logging vpfmt(3C)
standard format ... pfmt(3C)
standard interprocess communication stdipc(3C)
standend, wstandend, standout,/ curs_attr(3X)
standout, wstandout curses/ .. curs_attr(3X)
start_color, init_pair, init_color, curs_color(3X)
stat data returned by stat system .. stat(5)
stat, !stat, fstat get file status .. stat(2)
stat, !stat, fstat get file status .. stat(2)
stat system call .. stat(5)
statistics .. ustat(2)
status inquiries £error, ... ferror(3S)
status ... stat(2)
status ... stat(2)
status .. wstat(5)
statvfs, fstatvfs get file system .. statvfs(2)
stdarg handle variable argument ... stdarg(5)
stderr or system console ... fmtmsg(3C)
stdio standard buffered .. stdio(3S)
stdipc: ftok standard interprocess stdipc(3C)
step, advance regular expression .. regexp(5)
step, advance regular expression regexpr(3G)
stime set time ... stime(2)
stkprotect set permissions of stack stkprotect(2)
stop or terminate ... wait(2)
stop /WIFSIGNALED, WIFEXITED wait(3)
storage msync ... msync(3C)
store, delete, firstkey, nextkey I ... dbm(3)
str: strfind, strrspn, strtrns ... str(3G)
strcadd, strecpy copy strings, ... strccpy(3G)
strcasecmp, strncasecmp string ... string(3)
strcat, strdup, strncat, strcmp, .. string(3C)
strccpy: streadd, strcadd, strecpy strccpy(3G)
strchr, strrchr, strpbrk, strspn,/ .. string(3C)
strcmp, strncmp, strcpy, strncpy,/ string(3C)
strcoll string collation .. strcoll(3C)
strcpy, strncpy, strlen, strchr,/ ... string(3C)
strcspn, strtok, strstr string/ ... string(3C)
strdup, strncat, strcmp, strncmp, string(3C)
streadd, strcadd, strecpy copy ... strccpy(3G)
stream creation /library routines xdr_create(3N)

69

Permuted Index

£close, £flush close or flush a
fopen, freopen, fdopen open a
fopen, freopen, fdopen open a

reposition a file pointer in a
reposition a file pointer in a

getw get character or word from a
getmsg get next message off a
gets, fgets get a string from a

fgetwc get wchar_t character from a
fgetws get a wchar_t string from a

putw put character or word on a
putmsg send a message on a
puts, fputs put a string on a

fputwc put wchar_t character on a
fputws put a wchar_t string on a

setvbuf assign buffering to a
setvbuf assign buffering to a

setlinebuf assign buffering to a
ferror, feof, clearerr, fileno

/ruserok routines for returning a
rexec return

push character back onto input
wchar_t character back into input

bgetsread
fdetach detach a name from a
object in the I fa ttach attach a
or I strccpy: streadd, strcadd,

manipulations str:
date and time to string

long integer and base-64 ASCII
/mvwinsstr, mvwinsnstr insert

cursor I /mvwinsnwstr insert wchar_t
strcoll

tzset convert date and time to
convert floating-point number to

gets, fgets get a
getws, fgetws get a wchar_t

mbstowcs, wcstombs multibyte
getsubopt parse suboptions from a

gettxt retrieve a text
str: strfind, strrspn, strtrns

/mvwinchstr, mvwinchnstr get a
/mvwaddchstr, mvwaddchnstr add

/mvinnstr, mvwinstr, mvwinnstr get a
window I /mvwaddstr, mvwaddnstr add a

/mvwinwchstr, mvwinwchnstr get a

70

stream ... fclose(3S)
stream ... fopen(3S)
stream ... fopen(3S)
stream fseek, rewind, ftell fseek(3S)
stream fsetpos, fgetpos ... fsetpos(3C)
stream getc, getchar, fgetc, .. getc(3S)
stream ... getmsg(2)
stream .. gets(3S)
stream getwc, getwchar, ... getwc(3W)
stream getws, .. getws(3W)
stream putc, putchar, fputc, ... putc(3S)
stream .. putmsg(2)
stream .. puts(3S)
stream putwc, putwchar, ... putwc(3W)
stream putws, ... putws(3W)
stream I setbuffer, setlinebuf, .. setbuf(3S)
stream setbuf, ... setbuf(3S)
stream setbuffer, .. setbuffer(3S)
stream status inquiries .. ferror(3S)
stream to a remote command rcmd(3N)
stream to a remote command rexec(3N)
stream ungetc .. ungetc(3S)
stream ungetwc push ungetwc(3W)
stream up to next delimiter ... bgets(3G)
STREAMS-based file descriptor fdetach(3C)
STREAMS-based file descriptor to an fattach(3C)
strecpy copy strings, compressing strccpy(3G)
strerror get error message string strerror(3C)
strfind, strrspn, strtrns string .. str(3G)
strftime, cftime, ascftime convert strftime(3C)
string a641, 164a convert between .. a641(3C)
string before character under the/ curs_instr(3X)
string before character under the curs_instr(3X)
string collation ... strcoll(3C)
string /localtime, gmtime, asctime, ctime(3C)
string ecvt, fcvt, gcvt ecvt(3C)
string from a stream gets(3S)
string from a stream getws(3W)
string functions mbstring: mbstring(3C)
string ... getsubopt(3C)
string gettxt(3C)
string manipulations .. str(3G)
string of characters (and/ .. curs_inchstr(3X)
string of characters (and/ curs_addchstr(3X)
string of characters from a curses/ curs_instr(3X)
string of characters to a curses curs_addstr(3X)
string of wchar_t characters (and/ curs_inwchstr(3X)

System Calls and Library Functions Reference Manual

/mvwaddwchstr, mvwaddwchnstr add
curses/ /mvwinwstr, mvwinnwstr get a

/mvwaddwstr, mvwaddnwstr add a
puts, fputs put a

putws, fputws put a wchar_t
wstok, wstostr, strtows wchar_t

bcopy, bcmp, bzero, bit and byte
index, rindex

string: strcasecmp, stmcasecmp
strspn, strcspn, strtok, strstr

elf_strptr make a
set_menu_mark, menu_mark menus mark

string operations
strcmp, strncmp, strcpy, stmcpy,/

strerror get error message
ascftime convert date and time to

strtod, atof, convert
strtol, strtoul, atol, atoi convert

strxfrm
/streadd, strcadd, strecpy copy

/mvwgetstr, mvwgetnstr get character
/mvwgetnwstr get wchar_t character

get and set system information
/strcmp, strncmp, strcpy, strncpy,

string: strcasecmp,
strncpy,/ string: strcat, strdup,
/strcat, strdup, strncat, strcmp,

/strncat, strcmp, strncmp, strcpy,
/strncpy, strlen, strchr, strrchr,
/strcpy, strncpy, strlen, strchr,

manipulations str: strfind,
/strlen, strchr, strrchr, strpbrk,
strpbrk, strspn, strcspn, strtok,

double-precision number
/strrchr, strpbrk, strspn, strcspn,

string to integer
to integer strtol,

and/ /wsspn, wscspn, wstok, wstostr,
str: strfind, strrspn,

offsetof offset of
t_alloc allocate a library

t_free free a library
mktime converts a tm

getsubopt parse
pechochar,/ curs_pad: newpad,

delete, firstkey, nextkey data base

Permuted Index

___ __ _ ___ __ ___ ___ Permuted Index

string of wchar_t characters (and/ curs_addwchstr(3X)
string of wchar_t characters from a curs_inwstr(3X)
string of wchar_t characters to a/ curs_addwstr(3X)
string on a stream ... puts(3S)
string on a stream .. putws(3W)
string operations and type/ /wscspn, wstring(3W)
string operations bstring: .. bstring(3)
string operations ... index(3)
string operations ... string(3)
string operations /strpbrk, .. string(3C)
string pointer .. elf_strptr(3E)
string routines menu_mark: menu_mark(3X)
string: strcasecmp, strncasecmp .. string(3)
string: strcat, strdup, stmcat, .. string(3C)
string strerror(3C)
string strftime, cftime, ... strftime(3C)
string to double-precision number strtod(3C)
string to integer ... strtol(3C)
string transformation ... strxfrm(3C)
strings, compressing or expanding/ strccpy(3G)
strings from curses terminal/ curs_getstr(3X)
strings from curses terminal/ curs_getwstr(3X)
strings sysinfo ... sysinfo(2)
strlen, strchr, strrchr, strpbrk,/ ... string(3C)
strncasecmp string operations ... string(3)
strncat, strcmp, strncmp, strcpy, .. string(3C)
strncmp, strcpy, strncpy, strlen,/ string(3C)
strncpy, strlen, strchr, strrchr,/ .. string(3C)
strpbrk, strspn, strcspn, strtok,/ ... string(3C)
strrchr, strpbrk, strspn, strcspn,/ string(3C)
strrspn, strtrns string str(3G)
strspn, strcspn, strtok, strstr I string(3C)
strstr string operations /strrchr, string(3C)
strtod, atof, convert string to ... strtod(3C)
strtok, strstr string operations ... string(3C)
strtol, strtoul, atol, atoi convert ... strtol(3C)
strtoul, atol, atoi convert string ... strtol(3C)
strtows wchar_t string operations wstring(3W)
strtrns string manipulations ... str(3G)
structure member offsetof(3C)
structure .. t_alloc(3N)
structure .. t_free(3N)
structure to a calendar time mktime(3C)
strxfrm string transformation .. strxfrm(3C)
suboptions from a string .. getsubopt(3C)
subpad, prefresh, pnoutrefresh, curs_pad(3X)
subroutines /fetch, store, .. dbm(3)

71

Permuted Index

command processor for the forms
command processor for the menus

curs_ window: newwin, delwin, mvwin,
/scale form forms window and

/scale_ menu menus window and
or erase forms from associated

or erase menus from associated
sync update

getwidth get information of
getgroups, setgroups get or set

initgroups initialize the
/isspecial classify ASCII and

microseconds usleep
sleep
sleep

pause
/install a signal mask and

interval nap
svc_dg_create,/ rpc_svc_create:

rpc_svc_create: svc_create,
/svc_create, svc_destroy,

svcerr_noproc,/ rpc_svc_err:
rpc_svc_err:svcerr_auth,

/svcerr_auth, svcerr_decode,
/svcerr_decode, svcerr_noproc,
/svcerr_noproc, svcerr_noprog,

I svcerr_noprog, svcerr_progvers,
/svcerr_progvers, svcerr_systemerr,

/svc_destroy, svc_dg_create,
svc_getreqset,/ rpc_svc_reg:

rpc_svc_reg: svc_freeargs,
/svc_freeargs, svc_getargs,

/svc_getargs, svc_getreqset,
/svc_dg_create, svc_fd_create,

rpc_svc_calls: rpc_reg,
/svc_getreqset, svc_getrpccaller,

RPC/ /svc_getrpccaller, svc_run,
/svc_fd_create, svc_raw _create,
/svc_raw _create, svc_tli_create,
rpc_svc_calls: rpc_reg, svc_reg,

/svc_tli_create, svc_tp_create,

swab
swapctl manage

contexts makecontext,

dlsym get the address of a

72

subsystem form_driver ... form_driver(3X)
subsystem menu_driver menu_driver(3X)
subwin, derwin, mvderwin, dupwin,/ curs_window(3X)
subwindow association routines form_win(3X)
subwindow association routines menu_win(3X)
subwindows /unpost_form write form_post(3X)
subwindows /unpost_menu write menu_post(3X)
super block ... sync(2)
supplementary code sets .. getwidth(3W)
supplementary group access list IDs getgroups(2)
supplementary group access list initgroups(3C)
supplemetary code set characters wctype(3W)
suspend execution for interval in .. usleep(3)
suspend execution for interval ... sleep(3)
suspend execution for interval .. sleep(3C)
suspend process until signal .. pause(2)
suspend process until signal .. sigsuspend(2)
suspends execution for a short .. nap(2)
svc_create, svc_destroy, rpc_svc_create(3N)
svc_destroy, svc_dg_create,/ rpc_svc_create(3N)
svc_dg_create, svc_fd_create,/ rpc_svc_create(3N)
svcerr_auth, svcerr_decode, rpc_svc_err(3N)
svcerr_decode, svcerr_noproc,/ rpc_svc_err(3N)
svcerr_noproc, svcerr_noprog,/ rpc_svc_err(3N)
svcerr_noprog, svcerr_progvers,/ rpc_svc_err(3N)
svcerr_progvers, svcerr_systemerr,/ rpc_svc_err(3N)
svcerr_systemerr, svcerr_weakauth/ rpc_svc_err(3N)
svcerr_weakauth library routines/ rpc_svc_err(3N)
svc_fd_create, svc_raw _create,/ rpc_svc_create(3N)
svc_freeargs, svc_getargs, .. rpc_svc_reg(3N)
svc_getargs, svc_getreqset,/ rpc_svc_reg(3N)
svc_getreqset, svc_getrpccaller,/ rpc_svc_reg(3N)
svc_getrpccaller, svc_run,/ rpc_svc_reg(3N)
svc_raw _create, svc_tli_create,/ rpc_svc_create(3N)
svc_reg, svc_unreg, xprt_register,/ rpc_svc_calls(3N)
svc_run, svc_sendreply library I rpc_svc_reg(3N)
svc_sendreply library routines for rpc_svc_reg(3N)
svc_tli_create, svc_tp_create,/ rpc_svc_create(3N)
svc_tp_create, svc_ vc_create/ rpc_svc_create(3N)
svc_unreg, xprt_register,/ rpc_svc_calls(3N)
svc_ vc_create library routines for I rpc_svc_create(3N)
swab swap bytes ... swab(3C)
swap bytes ... swab(3C)
swap space ... swapctl(2)
swapcontext manipulate user makecontext(3C)
swapctl manage swap space .. swapctl(2)
symbol in shared object ... dlsym(3X)

System Calls and Library Functions Reference Manual

elf_getarsym retrieve archive
nlist get entries from

readlink read the value of a
symlink make a

file

adjtime correct the time to allow
state with that on the/ fsync

segment sdenter, sdleave
storage msync

sdgetv
t_sync
select

/derwin, mvderwin, dupwin, wsyncup,

system variables
information

information strings
setlogmask control system log

psignal,
stat data returned by stat

syscall indirect
intro introduction to

allow signals to interrupt
to allow synchronization of the
display a message on stderr or

types primitive
perror print

directory entries and put in a file
statvfs, fstatvfs get file

sysinfo get and set

closelog, setlogmask control
mount mount a file

descriptor to an object in the file
reboot reboot

getpagesize get
/setrlimit control maximum

psignal, sys_siglist
psignal, psiginfo

us tat get file
sysfs get file

umount unmount a file
uname get name of current UNIX

sysconf retrieves configurable

Permuted Index

Permuted Index

symbol table ... elf_getarsym(3E)
symbol table ... nlist(3)
symbolic link .. readlink(2)
symbolic link to a file .. symlink(2)
symlink make a symbolic link to a symlink(2)
sync update super block .. sync(2)
synchronization of the system clock adjtime(2)
synchronize a file's in-memory ... fsync(2)
synchronize access to a shared data sdenter(2)
synchronize memory with physical msync(3C)
synchronize shared data access ... sdgetv(2)
synchronize transport library .. t_sync(3N)
synchronous 1/0 multiplexing ... select(3C)
syncok, wcursyncup, wsyncdown/ curs_window(3X)
syscall indirect system call ... syscall(3)
sysconf retrieves configurable ... sysconf(3C)
sysfs get file system type .. sysfs(2)
sysinfo get and set system .. sysinfo(2)
syslog, openlog, closelog, ... syslog(3)
sysm68k machine-specific functions sysm68k(2)
sysmSSk machine-specific functions sysm88k(2)
sys_siglist system signal messages psignal(3)
system call .. stat(S)
system call .. syscall(3)
system calls and error numbers .. intro(2)
system calls siginterrupt .. siginterrupt(3)
system clock /correct the time ... adjtime(2)
system console fmtmsg ... fmtmsg(3C)
system data types .. types(S)
system error messages ... perror(3C)
system independent format /read getdents(2)
system information ... statvfs(2)
system information strings .. sysinfo(2)
system issue a shell command .. system(3S)
system log syslog, openlog, ... syslog(3)
system ... mount(2)
system name space /file ... fattach(3C)
system or halt processor .. reboot(3)
system page size .. getpagesize(3)
system resource consumption .. getrlimit(2)
system signal messages .. psignal(3)
system signal messages ... psignal(3C)
system statistics .. ustat(2)
system type information ... sysfs(2)
system ... umount(2)
system uname(2)
system variables ... sysconf(3C)

73

Permuted Index

bsearch binary search a sorted
retrieve archive symbol

class-dependent program header
nlist get entries from symbol
getdtablesize get descriptor

hdestroy manage hash search

/netdir_getbyaddr, netdir_free,
structure

tam
acosf,/ trig: sin, sinf, cos, cosf,

trig: sin, sinf, cos, cosf, tan,
sinh, sinhf, cosh, coshf,

sinh, sinhf, cosh, coshf, tanh,
transport endpoint

tcgetattr, tcsetattr, tcsendbreak,
/tcsendbreak, tcdrain, tcflush,

/tcsetattr, tcsendbreak, tcdrain,
tcdrain, tcflush, tcflow ,/ termios:

general/ /cfsetispeed, cfsetospeed,
/cfsetospeed, tcgetpgrp, tcsetpgrp,

with another transport user
termios: tcgetattr, tcsetattr,

tcflush,/ termios: tcgetattr,
process group id

terminal/ /cfsetospeed, tcgetpgrp,
trees tsearch, tfind,

form_data: data_ahead, data_behind
menu_item_ visible: item_ visible

directory: opendir, readdir,
closedir/ opendir, readdir,

temporary file tmpnam,
tmpfile create a

tmpnam, tempnam create a name for a
/has_ic, has_il, killchar, longname,
curses interfaces (emulated) to the

ctermid generate file name for
id tcsetpgrp set

libwindows windowing
/timeout, wtimeout, typeahead curses

tcsetpgrp, tcgetsid general
push back) characters from curses

get character strings from curses
wchar_t characters from curses

character strings from curses

74

table ... bsearch(3C)
table elf_getarsym ... elf_getarsym(3E)
table /elf32_newphdr retrieve elf_getphdr(3E)
table .. nlist(3)
table size ... getdtablesize(3)
tables hsearch, hcreate, ... hsearch(3C)
t_accept accept a connect request t_accept(3N)
taddr2uaddr, uaddr2taddr,/ netdir_getbyname(3N)
t_alloc allocate a library ... t_alloc(3N)
tam TAM transition libraries .. tam(3X)
TAM transition libraries .. tam(3X)
tan, tanf, asin, asinf, acos, .. trig(3M)
tanf, asin, asinf, acos, acosf,/ .. trig(3M)
tanh, tanhf, asinh, acosh, atanh/ .. sinh(3M)
tanhf, asinh, acosh, atanh/ .. sinh(3M)
t_bind bind an address to a ... t_bind(3N)
tcdrain, tcflush, tcflow,/ termios: termios(2)
tcflow, cfgetospeed, cfgetispeed,/ termios(2)
tcflush, tcflow, cfgetospeed,/ ... termios(2)
tcgetattr, tcsetattr, tcsendbreak, ... termios(2)
tcgetpgrp, tcsetpgrp, tcgetsid ... termios(2)
tcgetsid general terminal interface termios(2)
t_close close a transport endpoint t_close(3N)
t_connect establish a connection t_connect(3N)
tcsendbreak, tcdrain, tcflush,/ ... termios(2)
tcsetattr, tcsendbreak, tcdrain, ... termios(2)
tcsetpgrp set terminal foreground tcsetpgrp(3C)
tcsetpgrp, tcgetsid general .. termios(2)
tdelete, twalk manage binary search tsearch(3C)
tell if forms field has off-screen/ form_data(3X)
tell if menus item is visible menu_ item_ visible(3X)
telldir, seekdir, rewinddir,/ .. directory(3C)
telldir, seekdir, rewinddir, .. opendir(3)
tempnam create a name for a ... tmpnam(35)
temporary file ... tmpfile(3S)
temporary file .. trnpnam(3S)
termattrs, termname curses/ curs_termattrs(3X)
termcap library /tgoto, tputs curs_termcap(3X)
terminal .. ctermid(3S)
terminal foreground process group tcsetpgrp(3C)
terminal function library .. libwindows(3X)
terminal input option control/ curs_inopts(3X)
terminal interface /tcgetpgrp, .. termios(2)
terminal keyboard /ungetch get (or curs_getch(3X)
terminal keyboard /mvwgetnstr curs_getstr(3X)
terminal keyboard /(or push back) curs_getwch(3X)
terminal keyboard /get wchar_t curs_getwstr(3X)

System Calls and Library Functions Reference Manual

__ Permuted Index

dial establish an outgoing
/scrollok, nl, non! curses

ttyname, isatty find name of a
WIFEXITED wait for process to

exit, _exit
wait for child process to stop or

atexit add program
abort generate an abnormal
tigetstr curses interfaces to

tcsendbreak, tcdrain, tcflush, I
/killchar, longname, termattrs,

isastream
lock into memory or unlock process,

gettxt retrieve a
search trees tsearch,

tgetstr, tgoto,/ curs_termcap:
tputs/ curs_termcap: tgetent,

service information
curs_termcap: tgetent, tgetflag,

I tgetent, tgetflag, tgetnum,
I tgetflag, tgetnum, tgetstr,

/putp, vidputs, vidattr, mvcur,
vidputs, vidattr, mvcur, tigetflag,

/mvcur, tigetflag, tigetnum,
/raw, noraw, noqiflush, qiflush,

setitimer get/set value of interval
the difference between two calendar

times

times get process and child process
times get process

set file access and modification
utimes set file

nice change priority of a
offset from GMT

request
a transport endpoint

mktime converts a

temporary file
read (write) a curses screen from

/tolower, _toupper, _tolower,
popen, pclose initiate pipe

conv: toupper, tolower, _toupper,

Permuted Index

terminal line connection .. dial(3C)
terminal output option control/ curs_outopts(3X)
terminal ttyname(3C)
terminate or stop /WIFSIGNALED, wait(3)
terminate process ... exit(2)
terminate wait ... wait(2)
termination routine ... atexit(3C)
termination signal .. abort(3C)
terminfo database /tigetnum, curs_terminfo(3X)
termios: tcgetattr, tcsetattr, ... termios(2)
termname curses environment query I curs_termattrs(3X)
t_error produce error message ... t_error(3N)
test a file descriptor .. isastream(3C)
text, or data plock .. plock(2)
text string .. gettxt(3C)
tfind, tdelete, twalk manage binary tsearch(3C)
t_free free a library structure .. t_free(3N)
tgetent, tgetflag, tgetnum, curs_termcap(3X)
tgetflag, tgetnum, tgetstr, tgoto, curs_termcap(3X)
t_getinfo get protocol-specific t_getinfo(3N)
tgetnum, tgetstr, tgoto, tputs/ curs_termcap(3X)
t_getstate get the current state t_getstate(3N)
tgetstr, tgoto, tputs curses/ curs_termcap(3X)
tgoto, tputs curses interfaces/ curs_termcap(3X)
tigetflag, tigetnum, tigetstr I curs_terminfo(3X)
tigetnum, tigetstr curses/ /putp, curs_terminfo(3X)
tigetstr curses interfaces to I curs_terminfo(3X)
timeout, wtimeout, typeahead curses/ curs_inopts(3X)
timer getitimer, .. getitimer(3C)
times difftime computes .. difftime(3C)
times get process and child process times(2)
times get process times ... times(3C)
times .. times(2)
times ... times(3C)
times utime .. utime(2)
times .. utimes(3)
time-sharing process ... nice(2)
timezone get time zone name given timezone(3C)
t_listen listen for a connect ... t_listen(3N)
t_look look at the current event on t_look(3N)
tm structure to a calendar time mktime(3C)
trnpfile create a temporary file ... trnpfile(3S)
tmpnam, tempnam create a name for a tmpnam(3S)
(to) a file /scr_init, scr_set curs_scr_dump(3X)
toascii translate characters .. conv(3C)
to/from a process .. popen(3S)
_tolower, toascii translate/ ... conv(3C)

75

Permuted Index

toascii translate/ conv: toupper,
endpoint

manipulation routines panel_top:
current/ /current_item, set_top_row,

transport endpoint
curs_touch: touchwin,

wtouchln,/ curs_touch:
translate/ conv: toupper, tolower,
_tolower, toascii translate/ conv:

wconv: towupper,
characters wconv:

vidattr,/ /del_curterm, restartterm,
/tgetflag, tgetnum, tgetstr, tgoto,

/del_curterm, restartterm, tparm,
ptrace process
strxfrm string

wchar_t string operations and type
tam TAM

_toupper, _tolower, toascii
wconv: towupper, towlower

elf32_xlatetom class-dependent data
generic transport name-to-address

t_bind bind an address to a
t_close close a

look at the current event on a
t_open establish a

t_optmgmt manage options for a
t_unbind disable a
t_sync synchronize

translation /netdir_sperror generic
nlsprovider get name of

establish a connection with another
ieee_handler IEEE exception

panel_below panels deck
data sent over a connection

confirmation from a connect/
disconnect

orderly release indication

error indication
ftw, nftw walk a file

tdelete, twalk manage binary search
tanf, asin, asinf, acos, acosf,/

acosf, atan, atanf, atan2, atan2f
specified length

manage binary search trees
over a connection

76

tolower, _toupper, _tolower, .. conv(3C)
t_open establish a transport .. t_open(3N)
top_panel, bottom_panel panels deck panel_top(3X)
top_row, item_index set and get menu_item_current(3X)
t_optmgmt manage options for a t_optmgmt(3N)
touchline, untouchwin, wtouchln,/ curs_touch(3X)
touchwin, touchline, untouchwin, curs_touch(3X)
_toupper, _tolower, toascii .. conv(3C)
toupper, tolower, _toupper, .. conv(3C)
towlower translate characters ... wconv(3W)
towupper, towlower translate ... wconv(3W)
tparm, tputs, putp, vidputs, curs_terminfo(3X)
tputs curses interfaces (emulated)/ curs_termcap(3X)
tputs, putp, vidputs, vidattr,/ curs_terminfo(3X)
trace .. ptrace(2)
transformation .. strxfrm(3C)
transformation /wstostr, strtows wstring(3W)
transition libraries ... tam(3X)
translate characters /tolower, .. conv(3C)
translate characters .. wconv(3W)
translation /elf32_xlatetof, ... elf_xlate(3E)
translation /netdir_sperror netdir_getbyname(3N)
transport endpoint ... t_bind(3N)
transport endpoint .. t_close(3N)
transport endpoint t_look ... t_look(3N)
transport endpoint .. t_open(3N)
transport endpoint .. t_optmgmt(3N)
transport endpoint .. t_unbind(3N)
transport library ... t_sync(3N)
transport name-to-address netdir_getbyname(3N)
transport provider nlsprovider(3N)
transport user t_connect ... t_connect(3N)
trap handler function .. ieee_handler(3M)
traversal primitives /panel_above, panel_above(3X)
t_rcv receive data or expedited ... t_rcv(3N)
t_rcvconnect receive the ... t_rcvconnect(3N)
t_rcvdis retrieve information from t_rcvdis(3N)
t_rcvrel acknowledge receipt of an t_rcvrel(3N)
t_rcvudata receive a data unit t_rcvudata(3N)
t_rcvuderr receive a unit data t_rcvuderr(3N)
tree .. ftw(3C)
trees tsearch, tfind, tsearch(3C)
trig: sin, sinf, cos, cosf, tan, .. trig(3M)
trigonometric functions /acos, ... trig(3M)
truncate, £truncate set a file to a truncate(3C)
tsearch, tfind, tdelete, twalk .. tsearch(3C)
t_snd send data or expedited data t_snd(3N)

System Calls and Library Functions Reference Manual

disconnect request
release

library
generic interface to EUC handling

terminal
file of the current user

endpoint
p_online

tsearch, tfind, tdelete,
return the size of an object file

elf_kind determine file
sysfs get file system

I fpclass, unordered determine
wchar_t string operations and

field_arg forms field data
option/ /qiflush, timeout, wtimeout,

nl_types native language data

types primitive system data
ctime, localtime, gmtime, asctime,

/netdir_free, taddr2uaddr,

interval in microseconds

getpw get name from
file/ /endspent, fgetspent, lckpwdf,

mask

system
putwin, getwin,/ curs_util:

input stream
/getch, wgetch, mvgetch, mvwgetch,

into input stream
/wgetwch, mvgetwch, mvwgetwch,

/srand48, seed48, lcong48 generate
elf_rawfile retrieve

mkstemp make a
mktemp make a

gethostid get
t_rcvuderr receive a

t_rcvudata receive a data
t_sndudata send a data

uname get name of current

writing locking lock or

Permuted Index

-·----------·· ·----- Permuted Index

t_snddis send user-initiated .. t_snddis(3N)
t_sndrel initiate an orderly ... t_sndrel(3N)
t_sndudata send a data unit t_sndudata(3N)
t_sync synchronize transport .. t_sync(3N)
TTY drivers and modules eucioctl eucioctl(S)
ttyname, isatty find name of a .. ttyname(3C)
ttyslot find the slot in the utmp ... ttyslot(3C)
t_unbind disable a transport .. t_unbind(3N)
turn a processor online or offline ,_ p_online(2)
twalk manage binary search trees tsearch(3C)
type elf_fsize: elf32_fsize ... elf_fsize(3E)
type ... elf_kind(3E)
type information ... sysfs(2)
type of floating-point number ... isnan(3C)
type transformation /strtows wstring(3W)
type validation /field_ type, form_field_ validation(3X)
typeahead curses terminal input curs_inopts(3X)
types ... nl_types(S)
types primitive system data types ... types(S)
types ... types(S)
tzset convert date and time to/ .. ctime(3C)
uaddr2taddr, netdir_perror,/ netdir_getbyname(3N)
uadmin administrative control ... uadmin(2)
ualarm schedule signal after ... ualarm(3)
ucontext user context ... ucontext(S)
UID .. getpw(3C)
ulckpwdf manipulate shadow password getspent(3C)
ulimit get and set user limits ... ulimit(2)
umask set and get file creation .. umask(2)
umount unmount a file system ... umount(2)
uname get name of current UNIX uname(2)
unctrl, keyname, filter, use_env, curs_util(3X)
ungetc push character back onto ungetc(3S)
ungetch get (or push back)/ curs_getch(3X)
ungetwc push wchar_t character back ungetwc(3W)
ungetwch get (or push back) wchar_t/ curs_getwch(3X)
uniformly distributed pseudo-random/ drand48(3C)
uninterpreted file contents .. elf_rawfile(3E)
unique file name .. mkstemp(3)
unique file name ... mktemp(3C)
unique identifier of current host gethostid(3)
unit data error indication ... t_rcvuderr(3N)
unit .. t_rcvudata(3N)
unit ... t_sndudata(3N)
UNIX system ... uname(2)
unlink remove directory entry ... unlink(2)
unlock a file region for reading or locking(2)

77

Permuted Index

master/slave pair unlockpt
mlockall, munlockall lock or

mlock, munlock lock (or
plock lock into memory or

master /slave pair
munmap

umount
isnand, isnanf, finite, fpclass,

from/ form_post: post_form,
from/ menu_post: post_menu,

pause suspend process
a signal mask and suspend process

curs_touch: touchwin, touchline,
elf_update

!search, !find linear search and
sync

refresh routine panel_ update:
/utmpxname, getutmp, getutmpx,

/getutmp, getutmpx, updwtmp,
levels for an application for

curs_util: unctrl, keyname, filter,
setuid, setgid set

setcontext get and set current
ucontext

makecontext, swapcontext manipulate
get character login name of the

I geteuid, getgid, getegid get real
getdate convert

setreuid set real and effective
ulimit get and set

I getegid get real user, effective
endusershell get legal

a connection with another transport
in the utmp file of the current

secure/ /netname2host, netname2user,
t_snddis send

maillock manage lockfile for
rusers return information about

elf_end finish
interval in microseconds

flushinp miscellaneous curses
get information about resource

modification times

setutent, endutent, utmpname access
ttyslot find the slot in the

78

unlock a pseudo-terminal .. unlockpt(3C)
unlock address space mlockall(3C)
unlock) pages in memory mlock(3C)
unlock process, text, or data ... plock(2)
unlockpt unlock a pseudo-terminal unlockpt(3C)
unmap pages of memory ... munmap(2)
unmount a file system ... umount(2)
unordered determine type of/ isnan, isnan(3C)
unpost_form write or erase forms form_post(3X)
unpost_menu write or erase menus menu_post(3X)
until signal ... pause(2)
until signal sigsuspend install sigsuspend(2)
untouchwin, wtouchln,/ .. curs_touch(3X)
update an ELF descriptor .. elf_update(3E)
update .. lsearch(3C)
update super block ... sync(2)
update_panels panels virtual screen panel_update(3X)
updwtmp, updwtmpx access utmpx file/ getutx(3C)
updwtmpx access utmpx file entry getutx(3C)
use with fmtmsg /a list of severity addseverity(3C)
use_env, putwin, getwin,/ ... curs_util(3X)
user and group IDs .. setuid(2)
user context getcontext, .. getcontext(2)
user context .. ucontext(S)
user contexts makecontext(3C)
user cuserid cuserid(3S)
user, effective user, real group,/ .. getuid(2)
user format date and time .. getdate(3C)
user IDs .. setreuid(3)
user limits .. ulimit(2)
user, real group, and effective/ .. getuid(2)
user shells /setusershell, .. getusershell(3)
user t_connect establish .. t_connect(3N)
user ttyslot find the slot ttyslot(3C)
user2netname library routines for secure_rpc(3N)
user-initiated disconnect request t_snddis(3N)
user's mailbox maillock(3X)
users on remote machines .. rusers(3N)
using an object file .. elf_end(3E)
usleep suspend execution for ... usleep(3)
ustat get file system statistics .. ustat(2)
utility routines /delay_output, curs_util(3X)
utilization getrusage ... getrusage(3)
utime set file access and .. utime(2)
utimes set file times ... utimes(3)
utmp file entry /pututline, ... getut(3C)
utmp file of the current user .. ttyslot(3C)

System Calls and Library Functions Reference Manual

/pututline, setutent, endutent,
getutmpx, updwtmp, updwtmpx access

/pututxline, setutxent, endutxent,
field_arg forms field data type
free, realloc, calloc, memalign,

abs, labs return integer absolute
decimal record to floating-point

elf_hash compute hash
getenv return

floor, ceiling, remainder, absolute
readlink read the

getitimer, setitimer get/set
I convert floating-point
putenv change or add

/htonl, htons, ntohl, ntohs convert

item_ value set and get menus item
values machine-dependent

list
stdarg handle

varargs handle
print formatted output of a
print formatted output of a

pathconf get configurable pathname
retrieves configurable system

get option letter from argument
assert

ELF library and application
curses borders, horizontal and
virtual memory efficient way
printf, fprintf, sprintf, vprintf,
output of a variable/ vprintf,
output of a variable/ vprintf,

getvfsspec, getvfsany get
nlsgetcall get client's data passed

/tparm, tputs, putp, vidputs,
/restartterm, tparm, tputs, putp,

vfork spawn new process in a
move a panels window on the

panel_ update: update_panels panels
item_visible tell if menus item is

standard format and pass to/
/wborder, box, hline, whline,
standard format and pass to/

printf, fprintf, sprintf,
formatted output of a variable/

Permuted Index

-~~-----~- Permuted Index

utmpname access utmp file entry getut(3C)
utmpx file entry /getutmp, .. getutx(3C)
utmpxname, getutmp, getutmpx,/ getutx(3C)
validation I field_type, form_field_ validation(3X)
valloc, memory allocator malloc, malloc(3C)
value ... abs(3C)
value /decimal_to_extended convert
.. decimal_to_floating(3)
value .. elf_hash(3E)
value for environment name ... getenv(3C)
value functions /rint, remainder floor(3M)
value of a symbolic link ... readlink(2)
value of interval timer ... getitimer(3C)
value to decimal record floating_to_decimal(3)
value to environment ... putenv(3C)
values between host and network/ byteorder(3N)
values machine-dependent values values(5)
values /set_item_ value, menu_item_ value(3X)
values ... values(5)
varargs handle variable argument varargs(5)
variable argument list .. stdarg(5)
variable argument list .. varargs(5)
variable argument list /vsprintf vprintf(3S)
variable argument list /vsprintf vprintf(3W)
variables fpathconf, ... fpathconf(2)
variables sysconf ... sysconf(3C)
vector getopt getopt(3C)
verify program assertion .. assert(3X)
versions elf_ version coordinate elf_ version(3E)
vertical lines /wvline create curs_border(3X)
vfork spawn new process in a .. vfork(2)
vfprintf, vsprintf formatted output/ printf(3)
vfprintf, vsprintf print formatted vprintf(3S)
vfprintf, vsprintf print formatted vprintf(3W)
vfstab file entry I getvfsfile, ... getvfsent(3C)
via the listener .. nlsgetcall(3N)
vidattr, mvcur, tigetflag,/ curs_terminfo(3X)
vidputs, vidattr, mvcur, tigetflag,/ curs_terminfo(3X)
virtual memory efficient way ... vfork(2)
virtual screen /move_panel panel_move(3X)
virtual screen refresh routine panel_update(3X)
visible menu_item_ visible: menu_item_ visible(3X)
vlfmt display error message in ... vlfmt(3C)
vline, wvline create curses/ curs_border(3X)
vpfmt display error message in ... vpfmt(3C)
vprintf, vfprintf, vsprintf/ .. printf(3)
vprintf, vfprintf, vsprintf print .. vprintf(3S)

79

Permuted Index

formatted output of a variable/
sprintf, vprintf, vfprintf,

a variable/ vprintf, vfprintf,
a variable/ vprintf, vfprintf,

/wprintw, mvprintw, mvwprintw,
/scanw, wscanw, mvscanw, mvwscanw,

echochar,/ curs_addch: addch,
/addchstr, addchnstr, waddchstr,

curs_addchstr: addchstr, addchnstr,
/addstr, addnstr, waddstr,

/addwstr, addnwstr, waddwstr,

curs_addstr: addstr, addnstr,
echowchar,/ curs_addwch: addwch,

/addwchstr, addwchnstr, waddwchstr,
/addwchstr, addwchnstr,

curs_addwstr: addwstr, addnwstr,
state waitid

state waitpid
terminate wait

release blocked signals and
/WIFSTOPPED, WIFSIGNALED, WIFEXITED

wstat
or terminate

WIFSIGNALED, WIFEXITED wait for I
WIFEXITED wait for process/ wait,

change state
sigsem signal a process

change state
access to a resource governed by a/

ftw, nftw
wattrset,/ curs_attr: attroff,

/attroff, wattroff, attron,
/wattroff, attron, wattron, attrset,

curs_bkgd: bkgdset, wbkgdset, bkgd,
background/ curs_bkgd: bkgdset,

wvline create/ curs_border: border,
winwch, mvinwch, mvwinwch get a

stream ungetwc push
/mvinswch, mvwinswch insert a

getwc, getwchar, fgetwc get
putwc, putwchar, fputwc put

curses/ /mvwgetwstr, mvwgetnwstr get
to a/ /echowchar, wechowchar add a
from/ /mvwinwchnstr get a string of
to a/ /mvwaddwchnstr add string of
window /mvwinnwstr get a string of

80

vprintf, vfprintf, vsprintf print .. vprintf(3W)
vsprintf formatted output/ /fprintf, printf(3)
vsprintf print formatted output of vprintf(3S)
vsprintf print formatted output of vprintf(3W)
vwprintw print formatted output in/ curs_printw(3X)
vwscanw convert formatted input/ curs_scanw(3X)
waddch, mvaddch, mvwaddch, curs_addch(3X)
waddchnstr, mvaddchstr,/ curs_addchstr(3X)
waddchstr, waddchnstr, mvaddchstr,/ curs_addchstr(3X)
waddnstr, mvaddstr, mvaddnstr,/ curs_addstr(3X)
waddnwstr, mvaddwstr, mvaddnwstr,/
... curs_addwstr(3X)
waddstr, waddnstr, mvaddstr,/ curs_addstr(3X)
waddwch, mvaddwch, mvwaddwch, curs_addwch(3X)
waddwchnstr, mvaddwchstr,/ curs_addwchstr(3X)
waddwchstr, waddwchnstr,/ curs_addwchstr(3X)
waddwstr, waddnwstr, mvaddwstr,/ curs_addwstr(3X)
wait for child process to change .. waitid(2)
wait for child process to change .. waitpid(2)
wait for child process to stop or .. wait(2)
wait for interrupt /automically sigpause(3)
wait for process to terminate or I .. wait(3)
wait status .. wstat(S)
wait wait for child process to stop .. wait(2)
wait, wait3, WIFSTOPPED, .. wait(3)
wait3, WIF$TOPPED, WIFSIGNALED, wait(3)
waitid wait for child process to ... waitid(2)
waiting on a semaphore .. sigsem(2)
waitpid wait for child process to waitpid(2)
waitsem, nbwaitsem await and check waitsem(2)
walk a file tree .. ftw(3C)
wattroff, attron, wattron, attrset, curs_attr(3X)
wattron, attrset, wattrset,/ ... curs_attr(3X)
wattrset, standend, wstandend,/ curs_attr(3X)
wbkgd curses window background/ curs_bkgd(3X)
wbkgdset, bkgd, wbkgd curses window curs_bkgd(3X)
wborder, box, hline, whline, vline, curs_border(3X)
wchar_t character and its/ /inwch, curs_inwch(3X)
wchar _t character back into input ungetwc(3W)
wchar_t character before the/ curs_inswch(3X)
wchar_t character from a stream getwc(3W)
wchar_t character on a stream ... putwc(3W)
wchar_t character strings from curs_getwstr(3X)
wchar_t character (with attributes) curs_addwch(3X)
wchar_t characters (and attributes) curs_inwchstr(3X)
wchar_t characters (and attributes) curs_addwchstr(3X)
wchar_t characters from a curses curs_inwstr(3X)

System Calls and Library Functions Reference Manual

/ungetwch get (or push back)
window I /mvwaddnwstr add a string of

/mvwinswstr, mvwinsnwstr insert
getws, fgetws get a

putws, fputws put a
/wscspn, wstok, wstostr, strtows

curs_clear: erase, werase, clear,
/werase, clear, wclear, clrtobot,

I clrtobot, wclrtobot, clrtoeol,
characters

mbstring: mbstowcs,
mbchar: mbtowc, mblen,

iswlower, iswdigit, iswxdigit,/
/mvderwin, dupwin, wsyncup, syncok,

character under I curs_delch: delch,
insertln,/ curs_deleteln: deleteln,
/mvaddch, mvwaddch, echochar,

/mvaddwch, mvwaddwch, echowchar,
wclrtobot,/ curs_clear: erase,

get (or push/ curs_getch: getch,
/getstr, getnstr, wgetstr,

/getwstr, getnwstr, wgetwstr,
curs_getstr: getstr, getnstr,

ungetwch get/ curs_getwch: getwch,
curs_getwstr: getwstr, getnwstr,
encrypted isencrypt determine

/border, wborder, box, hline,
routines

/wait3, WIFSTOPPED, WIFSIGNALED,
process/ wait, wait3, WIFSTOPPED,

wait for process to/ wait, wait3,
character and its/ curs_inch: inch,

/inchstr, inchnstr, winchstr,
curs_inchstr: inchstr, inchnstr,
I (with attributes) to a curses

a string of characters to a curses
I (with attributes) to a curses

of wchar_t characters to a curses
/form_sub, scale_form forms

/menu_sub, scale_menu menus
/wstandout curses character and
/wbkgdset, bkgd, wbkgd curses
getmaxyx get curses cursor and

(and attributes) to a curses
(and attributes) to a curses
clear all or part of a curses

Permuted Index

Permuted Index

wchar_t characters from curses/ curs_getwch(3X)
wchar_t characters to a curses curs_addwstr(3X)
wchar_t string before character I curs_instr(3X)
wchar_t string from a stream .. getws(3W)
wchar_t string on a stream .. putws(3W)
wchar_t string operations and type/ wstring(3W)
wclear, clrtobot, wclrtobot,/ curs_clear(3X)
wclrtobot, clrtoeol, wclrtoeol/ curs_clear(3X)
wclrtoeol clear all or part of a/ curs_clear(3X)
wconv: towupper, towlower translate wconv(3W)
wcstombs multibyte string functions mbstring(3C)
wctomb multibyte character handling mbchar(3C)
wctype: iswalpha, iswupper, .. wctype(3W)
wcursyncup, wsyncdown create curses/
... curs_window(3X)
wdelch, mvdelch, mvwdelch delete curs_delch(3X)
wdeleteln, insdelln, winsdelln, curs_deleteln(3X)
wechochar add a character (with/ curs_addch(3X)
wechowchar add a wchar_t character I curs_addwch(3X)
werase, clear, wclear, clrtobot, curs_clear(3X)
wgetch, mvgetch, mvwgetch, ungetch curs_getch(3X)
wgetnstr, mvgetstr, mvgetnstr,/ curs_getstr(3X)
wgetnwstr, mvgetwstr, mvgetnwstr,/ curs_getwstr(3X)
wgetstr, wgetnstr, mvgetstr,/ curs_getstr(3X)
wgetwch, mvgetwch, mvwgetwch, curs_getwch(3X)
wgetwstr, wgetnwstr, mvgetwstr,/ curs_getwstr(3X)
whether a character buffer is .. isencrypt(3G)
whline, vline, wvline create curses/ curs_border(3X)
widec multibyte character I/0 ... widec(3W)
WIFEXITED wait for process to/ .. wait(3)
WIFSIGNALED, WIFEXITED wait for wait(3)
WIFSTOPPED, WIFSIGNALED, WIFEXITED wait(3)
winch, mvinch, mvwinch get a ···--············ curs_inch(3X)
winchnstr, mvinchstr, mvinchnstr,/ curs_inchstr(3X)
winchstr, winchnstr, mvinchstr,/ curs_inchstr(3X)
window and advance cursor curs_addch(3X)
window and advance cursor /add curs_addstr(3X)
window and advance cursor curs_addwch(3X)
window and advance cursor /a string curs_addwstr(3X)
window and subwindow association/ form_win(3X)
window and subwindow association/ menu_win(3X)
window attribute control routines curs_attr(3X)
window background manipulation/ curs_bkgd(3X)
window coordinates /getbegyx, curs_getyx(3X)
window /add string of characters curs_addchstr(3X)
window /of wchar_t characters curs_addwchstr(3X)
window /clrtoeol, wclrtoeol curs_clear(3X)

81

Permuted Index

under cursor in a curses
delete and insert lines in a curses

and its attributes from a curses
(and attributes) from a curses

under the cursor in a curses
under the cursor in a curses

string of characters from a curses
under the cursor in a curses
under the cursor in a curses

and its attributes from a curses
(and attributes) from a curses

of wchar_t characters from a curses
curs_move: move, wmove move curses

pos_form_cursor position forms
formatted input from a curses

scroll, srcl, wscrl scroll a curses
I get or set the current

/move_panel move a panels
libwindows

redrawwin, wredrawln refresh curses
and manipulate overlapped curses

print formatted output in curses
wcursyncup, wsyncdown create curses

curs_instr: instr, innstr, winstr,
/inwstr, innwstr, winwstr,

character I curs_insch: insch,
I deleteln, wdeleteln, insdelln,
/insdelln, winsdelln, insertln,

/insstr, insnstr, winsstr,
/inswstr, insnwstr, winswstr,

curs_ instr: insstr, insnstr,
curs_instr: instr, innstr,

a wchar_t/ curs_inswch: inswch,
curs_instr: inswstr, insnwstr,

wchar_t/ curs_inwch: inwch,
/inwchstr, inwchnstr, winwchstr,

curs_inwchstr: inwchstr, inwchnstr,
curs_inwstr: inwstr, innwstr,

/echochar, wechochar add a character
/wechowchar add a wchar_t character

prof profile
curs_move: move,

curs_refresh: refresh, wrefresh,
fgetc, getw get character or

fputc, putw put character or
chdir, fchdir change

getcwd get pathname of current

82

window /mvwdelch delete character curs_delch(3X)
window /insertln, winsertln curs_deleteln(3X)
window /mvwinch get a character curs_inch(3X)
window /get a string of characters curs_inchstr(3X)
window /before the character curs_insch(3X)
window /string before character curs_instr(3X)
window /mvwinstr, mvwinnstr get a curs_instr(3X)
window /string before character curs_instr(3X)
window /before the character curs_inswch(3X)
window /get a wchar_t character curs_inwch(3X)
window /of wchar_t characters curs_inwchstr(3X)
window /mvwinnwstr get a string curs_inwstr(3X)
window cursor .. curs_move(3X)
window cursor form_cursor: form_cursor(3X)
window /mvwscanw, vwscanw convert curs_scanw(3X)
window curs_scroll: ... curs_scroll(3X)
window of a panels panel panel_window(3X)
window on the virtual screen panel_move(3X)
windowing terminal function library libwindows(3X)
windows and lines /doupdate, curs_refresh(3X)
windows /overwrite, copywin overlap curs_overlay(3X)
windows /mvwprintw, vwprintw curs_printw(3X)
windows /dupwin, wsyncup, syncok, curs_window(3X)
winnstr, mvinstr, mvinnstr,/ curs_instr(3X)
winnwstr, mvinwstr, mvinnwstr,/ curs_inwstr(3X)
winsch, mvinsch, mvwinsch insert a curs_insch(3X)
winsdelln, insertln, winsertln/ curs_deleteln(3X)
winsertln delete and insert lines/ curs_deleteln(3X)
winsnstr, mvinsstr, mvinsnstr,/ curs_instr(3X)
winsnwstr, mvinswstr, mvinsnwstr,/ curs_instr(3X)
winsstr, winsnstr, mvinsstr,/ curs_instr(3X)
winstr, winnstr, mvinstr, mvinnstr,/ curs_instr(3X)
winswch, mvinswch, mvwinswch insert curs_inswch(3X)
winswstr, winsnwstr, mvinswstr,/ curs_instr(3X)
winwch, mvinwch, mvwinwch get a curs_inwch(3X)
winwchnstr, mvinwchstr,/ curs_inwchstr(3X)
winwchstr, winwchnstr, mvinwchstr,/ curs_inwchstr(3X)
winwstr, winnwstr, mvinwstr,/ curs_inwstr(3X)
(with attributes) to a curses/ curs_addch(3X)
(with attributes) to a curses/ curs_addwch(3X)
within a function ... prof(S)
wmove move curses window cursor curs_move(3X)
wnoutrefresh, doupdate, redrawwin,/ curs_refresh(3X)
word from a stream getc, getchar, getc(3S)
word on a stream putc, putchar, ... putc(3S)
working directory .. chdir(2)
working directory ... getcwd(3C)

System Calls and Library Functions Reference Manual

getwd get current
vwprintw I curs_printw: printw,

/wnoutrefresh, doupdate, redrawwin,
redrawwin,/ curs_refresh: refresh,

/scr_restore, scr_init, scr_set read
write, writev

form_post: post_form, unpost_form
menu_post: post_menu, unpost_menu

putpwent
putspent

rwall

write,
unlock a file region for reading or

open open for reading or
convert/ curs_scanw: scanw,

wscpy, wsncpy, wslen,/ wstring:
/wsncmp, wscpy, wsncpy, wslen,
wslen,/ wstring: wscat, wsncat,

/wscat, wsncat, wscmp, wsncmp,
curs_scroll: scroll, srcl,

/wschr, wsrchr, wspbrk, wsspn,
/idcok immedok, leaveok, setscrreg,

/wscmp, wsncmp, wscpy, wsncpy,
wsncpy, wslen,/ wstring: wscat,

wstring: wscat, wsncat, wscmp,
/wsncat, wscmp, wsncmp, wscpy,

/wsncpy, wslen, wschr, wsrchr,
/wscpy, wsncpy, wslen, wschr,
/wslen, wschr, wsrchr, wspbrk,

I attrset, wattrset, standend,
/standend, wstandend, standout,

/wsrchr, wspbrk, wsspn, wscspn,
/wspbrk, wsspn, wscspn, wstok,

wsncmp, wscpy, wsncpy, wslen,/
/wsyncup, syncok, wcursyncup,

/subwin, derwin, mvderwin, dupwin,
/noraw, noqiflush, qiflush, timeout,
/touchwin, touchline, untouchwin,
/wborder, box, hline, whline, vline,

data representation
/xdr_rejected_reply, xdr_replymsg

xdr_authsys_parms,/ rpc_xdr:
xdrrec_eof, xdr_setpos library I

xdr_pointer,/ xdr_complex:

Permuted Index

Permuted Index

working directory pathname .. getwd(3)
wprintw, mvprintw, mvwprintw, curs_printw(3X)
wredrawln refresh curses windows/ curs_refresh(3X)
wrefresh, wnoutrefresh, doupdate, curs_refresh(3X)
(write) a curses screen from (to) a/ curs_scr_dump(3X)
write on a file .. write(2)
write or erase forms from/ ... form_post(3X)
write or erase menus from/ menu_post(3X)
write password file entry ... putpwent(3C)
write shadow password file entry putspent(3C)
write to specified remote machines rwall(3N)
write, writev write on a file ... write(2)
writev write on a file .. write(2)
writing locking lock or .. locking(2)
writing .. open(2)
wscanw, mvscanw, mvwscanw, vwscanw
.. curs_scanw(3X)
wscat, wsncat, wscmp, wsncmp, wstring(3W)
wschr, wsrchr, wspbrk, wsspn,/ wstring(3W)
wscmp, wsncmp, wscpy, wsncpy, wstring(3W)
wscpy, wsncpy, wslen, wschr,/ wstring(3W)
wscrl scroll a curses window curs_scroll(3X)
wscspn, wstok, wstostr, strtows/ wstring(3W)
wsetscrreg, scrollok, nl, non!/ curs_outopts(3X)
wslen, wschr, wsrchr, wspbrk,/ wstring(3W)
wsncat, wscmp, wsncmp, wscpy, wstring(3W)
wsncmp, wscpy, wsncpy, wslen,/ wstring(3W)
wsncpy, wslen, wschr, wsrchr,/ wstring(3W)
wspbrk, wsspn, wscspn, wstok,/ wstring(3W)
wsrchr, wspbrk, wsspn, wscspn,/ wstring(3W)
wsspn, wscspn, wstok, wstostr,/ wstring(3W)
wstandend, standout, wstandout/ curs_attr(3X)
wstandout curses character and/ curs_attr(3X)
wstat wait status ... wstat(5)
wstok, wstostr, strtows wchar_t/ wstring(3W)
wstostr, strtows wchar_t string/ wstring(3W)
wstring: wscat, wsncat, wscmp, wstring(3W)
wsyncdown create curses windows curs_ window(3X)
wsyncup, syncok, wcursyncup,/ curs_window(3X)
wtimeout, typeahead curses terminal/ curs_inopts(3X)
wtouchln, is_linetouched,/ .. curs_touch(3X)
wvline create curses borders,/ curs_border(3X)
xdr library routines for external ... xdr(3N)
XDR library routines for remote/ rpc_xdr(3N)
xdr_accepted_reply, ... rpc_xdr(3N)
xdr_admin: xdr_getpos, xdr_inline, xdr_admin(3N)
xdr_array, xdr_bytes, xdr_opaque, xdr_complex(3N)

83

Permuted Index

rpc_xdr: xdr_accepted_reply,
xdr_enum, xdr_float,/ xdr_simple:

xdr_complex: xdr_array,
/xdr_authsys_parms,

/xdr_authsys_parms, xdr_callhdr,
xdr_float,/ xdr_simple: xdr_bool,

xdr_opaque, xdr_pointer,/
xdrmem_create, xdrrec_create,/

xdrrec_create,/ xdr_create:
xdr_simple: xdr_bool, xdr_char,

/xdr_bool, xdr_char, xdr_double,
/xdr_char, xdr_double, xdr_enum,
/xdr_double, xdr_enum, xdr_float,

xdr_setpos library I xdr_admin:
library I xdr_admin: xdr_getpos,

/xdr_enum, xdr_float, xdr_free,
/xdr_float, xdr_free, xdr_int,

xdr_create: xdr_destroy,
xdr_complex: xdr_array, xdr_bytes,

/xdr_callhdr, xdr_callmsg,
/xdr_array, xdr_bytes, xdr_opaque,

/xdr_destroy, xdrmem_create,
xdr_admin: xdr_getpos, xdr_inline,

/xdr_bytes, xdr_opaque, xdr_pointer,
XDR/ /xdr_callmsg, xdr_opaque_auth,

for remote/ /xdr_rejected_reply,
/xdr_getpos, xdr_inline, xdrrec_eof,

/xdr_free, xdr_int, xdr_long,
xdr_double, xdr_enum, xdr_float,/

for I /xdrmem_create, xdrrec_create,
/xdr_pointer, xdr_reference,
xdr_int, xdr_long, xdr_short,

/xdr_long, xdr_short, xdr_u_char,
/xdr_reference, xdr_string,

/xdr_short, xdr_u_char, xdr_u_long,
routines/ /xdr_string, xdr_union,

external/ /xdr_u_long, xdr_u_short,
/xdr_string, xdr_union, xdr_ vector,

/rpc_reg, svc_reg, svc_unreg,
/svc_reg, svc_unreg, xprt_register,
pow, gcd, rpow, msqrt, sdiv, itom,

bessel: jO, jl, jn,

84

bessel: jO, jl, jn, yO,
bessel: jO, jl, jn, yO, yl,

/yp_match, yp_first, yp_next,
ypclnt, yp_get_default_domain,

yp_bind, yp_unbind, yp_match,/

xdr_authsys_parms, xdr_callhdr,/ rpc_xdr(3N)
xdr_bool, xdr_char, xdr_double, xdr_simple(3N)
xdr_bytes, xdr_opaque, xdr_pointer,/ xdr_complex(3N)
xdr_callhdr, xdr_callmsg,/ ... rpc_xdr(3N)
xdr_callmsg, xdr_opaque_auth,/ rpc_xdr(3N)
xdr_char, xdr_double, xdr_enum, xdr_simple(3N)
xdr_complex: xdr_array, xdr_bytes, xdr_complex(3N)
xdr_create: xdr_destroy, ... xdr_create(3N)
xdr_destroy, xdrmem_create, xdr_create(3N)
xdr_double, xdr_enum, xdr_float,/ xdr_simple(3N)
xdr_enum, xdr_float, xdr_free,/ xdr_simple(3N)
xdr_float, xdr_free, xdr_int,/ xdr_simple(3N)
xdr_free, xdr_int, xdr_long,/ xdr_simple(3N)
xdr_getpos, xdr_inline, xdrrec_eof, xdr_admin(3N)
xdr_inline, xdrrec_eof, xdr_setpos xdr_admin(3N)
xdr_int, xdr_long, xdr_short,/ xdr_simple(3N)
xdr_long, xdr_short, xdr_u_char,/ xdr_simple(3N)
xdrmem_create, xdrrec_create,/ xdr_create(3N)
xdr_opaque, xdr_pointer,/ xdr_complex(3N)
xdr_opaque_auth,/ .. rpc_xdr(3N)
xdr_pointer, xdr_reference,/ xdr_complex(3N)
xdrrec_create, xdrstdio_create/ xdr_create(3N)
xdrrec_eof, xdr_setpos library I xdr_admin(3N)
xdr_reference, xdr_string,/ xdr_complex(3N)
xdr_rejected_reply, xdr_replymsg rpc_xdr(3N)
xdr_replymsg XDR library routines rpc_xdr(3N)
xdr_setpos library routines for I xdr_admin(3N)
xdr_short, xdr_u_char, xdr_u_long,/ xdr_simple(3N)
xdr_simple: xdr_bool, xdr_char, xdr_simple(3N)
xdrstdio_create library routines xdr_create(3N)
xdr_string, xdr_union, xdr_ vector,/ xdr_complex(3N)
xdr_u_char, xdr_u_long,/ /xdr_free, xdr_simple(3N)
xdr_u_long, xdr_u_short, xdr_ void/ xdr_simple(3N)
xdr_union, xdr_ vector,/ .. xdr_complex(3N)
xdr_u_short, xdr_ void library I xdr_simple(3N)
xdr_ vector, xdr_ wrapstring library xdr_complex(3N)
xdr_ void library routines for xdr_simple(3N)
xdr_wrapstring library routines for/ xdr_complex(3N)
xprt_register, xprt_unregister I rpc_svc_calls(3N)
xprt_unregister library routines/ rpc_svc_calls(3N)
xtom, mtox, mfree multiple/ /mout, mp(3)
yO, yl, yn Bessel functions .. bessel(3M)
yl, yn Bessel functions .. bessel(3M)
yn Bessel functions bessel(3M)
yp_all, yp_order, yp_master,/ .. ypclnt(3N)
yp_bind, yp_unbind, yp_match,/ ypclnt(3N)
ypclnt, yp_get_default_domain, ypclnt(3N)

System Calls and Library Functions Reference Manual

/yp_all, yp_order, yp_rnaster,
/yp _bind, yp _unbind, yp _rnatch,
yp_unbind, yp_rnatch,/ ypclnt,

NIS/ /yp_next, yp_all, yp_order,
yp_all,/ /yp_bind, yp_unbind,

/yp_unbind, yp_rnatch, yp_first,
/yp _first, yp _next, yp _all,

/yp_order, yp_rnaster, yperr_string,
/yp_get_default_dornain, yp_bind,

timezone get time

Permuted Index

______ Permuted Index

yperr_string, ypprot_err NIS client/ ypclnt(3N)
yp_first, yp_next, yp_all,/ ... ypclnt(3N)
yp_get_default_dornain, yp_bind, ypclnt(3N)
yp_master, yperr_string, ypprot_err ypclnt(3N)
yp_match, yp_first, yp_next, ... ypclnt(3N)
yp_next, yp_all, yp_order,/ ... ypclnt(3N)
yp_order, yp_rnaster, yperr_string,/ ypclnt(3N)
ypprot_err NIS client interface ... ypclnt(3N)
yp_unbind, yp_rnatch, yp_first,/ ypclnt(3N)
yp_update change NIS information yp_update(3N)
zone name given offset from GMT timezone(3C)

85

®MOTOROLA

•

The reference manual set for UNIX System V Release 4 for Motorola Processors
is the definitive source for complete and detailed specifications for all System V
interfaces. Retitled and reorganized, this edition makes finding the manual
page you need fast and easy. The following table reflects these changes.

Commands Reference Manual Volumes 1 and 2

• General-purpose user commands
• Basic networking commands
• Form and Menu Language Interpreter

(FMLI)

• System maintenance commands
• Enhanced networking commands
• Miscellaneous reference information

related to commands

System Files and Devices Reference Manual

• System file formats
• Special files (devices)

Device Driver Interface/Driver-Kernel
Interface Reference Manual

• Driver Data Definitions
• Driver Entry Point Routines
• Kernel Utility Routines
• Kernel Data Structures
• Kernel Defines

Motorola and @ are registered
trademarks of Motorola, Inc.

UNIX
PRESS

A Prentice Hall Title

System Calls and Library Functions Reference
Manual

• System calls
• BSD system compatibility library
• Standard C library
• Executable and linking format library
• General-purpose library
• Math library .
• Networking library
• Standard I/O library
• Specialized library
• Miscellaneous reference information

related to programming

Master Permuted Index

• Permuted index of all manual pages

ISBN 0-13-035841-X

90000

9 78013 35841

•

