A Subsidiary of AT&T

UNIX System Laboratories, Inc.

UNIX® SYSTEM V
RELEASE 4

Programmer’'s Reference Manual

ATel

(W

UNIX System Laboratories, Inc.

A Subsidiary of AT&T

UNIX® SYSTEM V
RELEASE 4

Programmer's Reference Manual

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
Copyright 1986, 1987, 1988, 1989 Sun Microsystems, Inc.
Copyright 1985 Regents of the University of California
All Rights Reserved

Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

ATA&T gratefully acknowledges the X/Open Company Limited for permission to reproduce portions of
its copyrighted X/Open Portability Guide, Issue 3.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T
further assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

WE is a registered trademark of AT&T.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

1098765432

ISBN 0-13-947029-8

UNIX

PRESS
A Prentice Hall Title

P RENTII CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632.

Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIXS System V Release 4 System Administrator’s Guide

UNIX System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer’s Guide: Character User Interface
(FMLI and ETI)
UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces
UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance
UNIX® System V Release 4 Programmer’s Guide: System Services
and Application Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual
System Programmer’s Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel
Interface (DDI / DKI) Reference Manual

UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer’s Guide: STREAMS

Available from Prentice Hall

Introduction

This manual describes the programming features of the UNIX system. It con-
tains individual manual pages that describe commands, system calls, subrou-
tines, file formats, and other useful topics, such as the ASCII table shown on
ascii(5). It provides neither a general overview of the UNIX system nor details
of the implementation of the system.

Not all commands, features, and facilities described in this manual are available
in every UNIX system. Some of the features require additional utilities that may
not exist on your system.

The manual is divided into five sections:

1. Commands

2. System Calls

3. Subroutines:
3C. C Programming Language Library Routines
3S. Standard I/O Library Routines
3E. Executable and Linking Format Library Routines
3G. General Purpose Library Routines
3M. Math Library Routines
3X. Specialized Library Routines

4. File Formats

5. Miscellaneous Facilities

Section 1 (Commands) describes commands that support C and other program-
ming languages.

Section 2 (System Calls) describes the access to the services provided by the
UNIX system kernel, including the C language interface.

Section 3 (Subroutines) describes the available general subroutines. In many
cases, several related subroutines are described on the same manual page. Their
binary versions reside in various system libraries. See intro(3) for descriptions
of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out(4).
Excluded are files used by only one command (for example, the assembler’s
intermediate files, if any). In general, the C language structures corresponding
to these formats can be found in the directories /usr/include and
/usr/include/sys.

Introduction 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is con-
tained in the appropriate section of another manual. References with (1) follow-
ing the command mean that the utility is contained in this manual or the User’s
Reference Manual. In these cases, the SEE ALSO section of the entry in which the
reference appears will point you to the correct book.

Each section consists of a number of independent entries of a page or so each.
Entries within each section are alphabetized, with the exception of the introduc-
tory entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, alphabetized under
its “primary”” name, the name that appears at the upper corners of each manual
page. Subsections 3C and 3S are grouped together because their functions con-
stitute the standard C library.

All entries are based on a common format, not all of whose parts always
appear:

m The NAME part gives the name(s) of the entry and briefly states its pur-
pose.

m The SYNOPSIS part summarizes the use of the program or function being
described. A few conventions are used, particularly in Section 2 (System
Calls):

0 Constant width typeface strings are literals and are to be typed
just as they appear.

o Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the manual.

o Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as name
or file, it always refers to a file name.

o Ellipses ... are used to show that the previous argument prototype
may be repeated.

o A final convention is used by the commands themselves. An argu-
ment beginning with a minus - or plus + sign is often taken to be
some sort of flag argument, even if it appears in a position where a
file name could appear. Therefore, it is unwise to have files whose
names begin with — or +.

2 Programmer’s Reference Manual

Introduction

The DESCRIPTION part describes the utility.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be
produced. Messages that are intended to be self-explanatory are not
listed.

m The NOTES part gives generally helpful hints about the use of the utility.

A “Table of Contents” and a “Permuted Index” derived from that table precede
Section 1. The ‘Permuted Index” is a list of keywords, given in the second of
three columns, together with the context in which each keyword is found. Key-
words are either topical keywords or the names of manual entries. Entries are
identified with their section numbers shown in parentheses. This is important
because there is considerable duplication of names among the sections, arising
principally from commands and functions that exist only to exercise a particular
system call. The right column lists the name of the manual page on which each
keyword may be found. The left column contains useful information about the
keyword.

Introduction 3

Table of Contents

1. Commands

1014 (010 RO introduction to programming commands
AAMUN(L) et sss st ers e sasnns create and administer SCCS files
maintain portable archive or library

.. assembler

. C program beautifier

.............. C compiler

CAC(T) vttt ss s st change the delta comment of an SCCS delta
CfIOW (1) cuurrrnrrrerceressiecsstsesesenee reiere et se bRt s aansnens generate C flowgraph
[71=) 1 1) I —— rereeen s aes COFF to ELF object file translation
COMD (1) currerrrnirieninerinneseesesenssr e ssse st assssesessen s s e ssass s sbssns b sas e sbsses combine SCCS deltas
CSCOPE(L) currrerrrrrrnrerieinetsersssss s ssesssissasenssssstssasssssssassssssssasssasssnes interactively examine a C program
ctrace(1) . C program debugger
CXTEf(1) wurrrrinrrinerenssnrnssnsssssssssssssssssssss s s s aos ... generate C program cross-reference
delta(l) wevierernnrnrrenssersisrsns s st asssssssias make a delta (change) to an SCCS file
QES(1) curruerernersrnrenerr et stsesst sttt ass s R R bR bR s R R s st e p st st st s object code disassembler
dump(1) ceeeevreeeneeiriesnnesnnens rereaer st senes dump selected parts of an object file
BEE(L) ittt et s s s s s get a version of an SCCS file
help(1) cueuee ask for help with message numbers or SCCS commands
INSEAIIIM) ottt s s s st ssrs s s s s s s e s install commands
IA(D) et sn s srasnes link editor for object files
1o 16 Y ¢) I smisoessessesssorme list dynamic dependencies
1X(1) torrrenrrrenretrete s ssasesnnae generate programs for simple lexical tasks
HNE(L) cornrrenctenreinnsenneiencets e et et an s st snt s st ses s s s s st s a C program checker
1order(1) ettt find ordering relation for an object library
IPIOf(1) ettt ettt sases display line-by-line execution count profile data
I (1) ottt st st s s s s s et s a R sne R st s macro processor
make(1) maintain, update, and regenerate groups of programs
10 T5E-] 1 PO manipulate the comment section of an object file
151 (1 0 ORI ... print name list of an object file
PIOF(L) ottt st b e s b s display profile data
PIS(I) ettt st b bR R s print an SCCS file
=740 1 1] o 0 1 OOV OPSPN regular expression compile
004 Te 1= 1 OO remove a delta from an SCCS file

print current SCCS file editing activity
compare two versions of an SCCS file
......................... symbolic debugger
SIZE(1) coreereeereeet e print section sizes in bytes of object files
strip(1) strip symbol table, debugging and line number information from an object file

Table of Contents 1

Table qf Contents

tSOT(1) wveerrrserererenrccerniee, topological sort
unget(l) ..oeeececnnnnee sesurseretssenesaissnssarssesassases e sne R et an s undo a previous get of an SCCS file
;1 (¢) S eensemassansassansonssnnsass validate an SCCS file
.......... version control

............................... print identification strings

. yet another compiler-compiler

introduction to system calls and error numbers
determine accessibility of a file
....... enable or disable process accounting

adjtime(2) trrrrnnerene s correct the time to allow synchronization of the system clock
alarm(2)eieerennceneee fuststressses s s s e sbesb et e s s R s ss Rt arennes set a process alarm clock
brk, sbrk(2) change data segment space allocation
chdir, fEhdir(2) vttt sssaessssssens .. change working directory
chmod, fChMOA(2)uveeerrirrrrrisssssesens s sssssssssssssnns : change mode of file
chown, Ichown, fchown(2) change owner and group of a file
Chroot(2)ccueeerssennines . change root directory
ClOSE(2) wuvrrvrurereneriscsmnicessscise e ssssnsss s ssssessssssssssnsseses close a file descriptor
CrEAL(2) weoererereerrsssiscsssias e nsesceseessssssesnssnnns create a new file or rewrite an existing one
QUP(2) ceorrrrnrresinss s s ss s s ssansssssssesssaes duplicate an open file descriptor
exec: execl, execv, execle, execve, execlp, execvp(2) execute a file
exit, _exit(2) terminate process
fentl(2) ... veerenas s sa s ses file control
13609 J 0. OO et s s e nen Create a new process
fpathconf, pathconf(2)couueeemmreeissmssssrennsnmenssssesessssens get configurable pathname variables
fsync(2) .ceeeseeseninenes synchronize a file’s in-memory state with that on the physical medium
getcontext, SEtCONEEXE (L)uuumrcerccrscnsicescensinscesssnsnersssssanssnsssesans get and set current user context
getdents(2)cuveecnece. read directory entries and put in a file system independent format
getgroups, setgroups(2) get or set supplementary group access list IDs
8EtMSG(2) wnerenrieerenncnsenesensenssnens get next message off a stream
getpid, getpgrp, getppid, getpgnd(Z) get process, process group, and parent process IDs
getrlimit, setrlimit(2) control maximum system resource consumption
BESIA(2) vttt s e sas s Rttt on get session ID
getuid, geteuid, getgid, getegid(2)

... get real user, effective user, real group, and effective group IDs
10Ctl(2) weveereiriirnnens control device
Kill(2) vt niss st smssescnessenenesasseens send a signal to a process or a group of processes
HNK(2) ottt esssenssse s ssssssssssssassssenes link to a file

2 Programmer’s Reference Manual

Table of Contents

1SEEK(2) wevvrecerererererereseseseresesessssssssesssssssssssessssssassanansasssassssssssssssssssssees move read/write file pointer
MEMENEI(2) ceeirrcrreiennrirestnrssrsrs s sesstsstssnsssssssesssssnanes memory management control
1111 (T0) =T/ TR - determine residency of memory pages
101 <o 11 f /) 1O PP make a directory
MNKNOA (2) «.vureeernemseaensinininensensssnssssssssssssssssssssssasses make a directory, or a special or ordinary file
111111 o] 2 VSRSV S S map pages of memory
MOUNE(2) ceuveeerrecrnreniesiesisessssesssssansssessesses mount a file system
1113 {01 7 { . VRO set protection of memory mapping
MSGCI(2) ererrerrereresnneienns message control operations
01 13-4) TR get message queue
msgop: msgsnd, MSGICV(2) cuucemcurenscrassrncrscsnns message operations
IMNUNIMAP(2) cerrrnerennersnnsessasismnsesssessssstastssssssstsisis s s sssssssssnssssssasassssssssans unmap pages of memory
NICE(2) wevrrnrrnirmncserininsntes st ser sttt ssasssssssanesans change priority of a time-sharing process
(4] o153 (1 /2 VTP open for reading or writing
PAUSE(2) cevrvunrrrerimsessensnsssnssssssssessssssssasssassesssssssssssssnsssassssssssssssssssssasssases suspend process until signal
PIPE(2) oottt e s s create an interprocess channel
PIOCK(2) ottt lock into memory or unlock process, text, or data
poll(2) input/output multiplexing
223073 119 L0/ OSSR process scheduler control
PHOCRLISEE(2) verrrreenenscisrrsesensens ettt snssssssnsssssssnees generalized process scheduler control
PIOfIl(2) certiinirinrtet sttt ettt st ssb s e s execution time profile
PACE(2) oueerertrrreet e s aserssrs e tra s s s s s s R R s e process trace
putmsg(2) send a message on a stream
1EAA (2) w.euuinnrncriinnsensnses s e ssssssssss s s ssssses s sassans read from file
1€AAINK(2) wecveiniuririretrtcitee ettt st s asas read the value of a symbolic link
rename(2) change the name of a file
FINAIT(2) ettt e sss s ss s sensnsensssessesess sbsssssssssssanenessaes remove a directory
SEMCEI(2) coveeerrreeerreterrrieirnneenees semaphore control operations
SEIMEGEL(2) wuurvrererruenrersssesssisssenssesssiessssssssasssssssssssssossasstsss s s sasensse s sssenssssessases get set of semaphores
semop(2) semaphore operations
SEEPGIA(2) ouveerrerrnrierrnirtsrt et st cs s s set process group ID
setpgrp(2) set process group ID
SEESIA (2) weumerrerrcerictsien it sis st ses bt ses s s e s sae R R r s R s bR R s s Ren s n e eeen set session ID
setuid, Setgid(2)ocveeveereeeireetet s set user and group IDs
SAMCI(2) ettt s s s nnns shared memory control operations
Shmget(2)oeveervueeeerrneerennnns get shared memory segment identifier
shmop: shmat, shmdt(2) shared memory operations
SIGACHION(2) covererrerernerererne st st sen s s s ses detailed signal management
SIGAItStACK (2) cvueerreeeererereeneeecn sttt set or get signal alternate stack context
signal, sigset, sighold, sigrelse, sigignore, sigpause(2)............... simplified signal management

Table of Contents 3

Table of Contents

sigpending(2) . examine signals that are blocked and pending
SiGProcmask(2)ciereseenneceeensenssenssres oo change or examine signal mask
sigsend, sigsendset(2)cccoeecreerrrcrrerernnns send a signal to a process or a group of processes
SigSUSpPend (2)oueciuinnccerennncennenneenens install a signal mask and suspend process until signal
Stat, Istat, FSEAL(2)cveeierirrineeeecseeececeses st seeecs et eeeseeeesessasessnessseseeseresssssemessen e st sene get file status
statvfs, fstatvfs(2) get file system information
SHIME(2) wonevvreerenirsserssssns st ssssasss s sssssssss s sessss s s ss s s es s s smm s sss s sss s eenne set time
swapctl(2) .. certerre e a st sbs e st aes manage swap space
SYMUNK(2) oot sesenisseeseeeeeneens make a symbolic link to a file
SYNC(2) errerueeetneneessestscerssns s sssessascs s sessssessss s ssssrasssaasss s s ssssssassrssessessesesseeenns update super block
L2261 o1 /) machine-specific functions
)43 £ ¢ get file system type information
SYSINfO(2) oouureieicnrcencnncnrenneenserans get and set system information strings
termios: tcgetattr, tcsetattr, tcsendbreak tcdram tcflush, tcflow, cfgetospeed,

cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid (2)

... .. general terminal interface
HIME(2) oottt sss s s s s et s s s s sn s ea s e s get time
HIMES(2) vttt st sb s sa s seaes get process and child process times
UAAMIN(2) coveeenveetc et ssssesssssss s saens crereens b administrative control
UM (2) coveeiiececcnienecece et get and set user limits
UMASK(2) cuucrverrrncinisecenenecesseaeessssessenns .. set and get file creation mask
umount(2) unmount a file system
UNAME(2) weurveernerernensesssnincssssesasic s essessesenseesasersssees get name of current UNIX system
UNHNK(2) coeecinceceeccensiiesnsses s s ssens s esssnene remove directory entry
USAL(2) oottt get file system statistics
UHME(2) coovorrvrertrnericee s s essssssssseesssssssessaasesn set file access and modification times
22 4.0/ OO spawn new process in a virtual memory efficient way
wait(2) wait for child process to stop or terminate
WAt (2) covverreniceiiertrn st st srasns e wait for child process to change state
Waitpid(2) et wait for child process to change state
WIHEE, WITEEV(2) weueteerreceeceieeecr s eecasesesescncnsssssssssssassssesesssseseessasasssesesememsssssesenes write on a file
3. Functions (.5{0((iémry V‘Ou‘tme&)
INETO(3) trveeettere e st saenes introduction to functions and libraries
a64], 164a(3C) uuueeereeieeeeeceeveeeseane convert between long integer and base-64 ASCII string
abort(3C)verecirrinrceennes generate an abnormal termination signal
DS, 1aDS(BC) ettt st s return integer absolute value
addseverity(3C) build a list of seventy levels for an application for use with fmtmsg
ateXit BC) v ... add program termination routine

4 Programmer’s Reference Manual

Table of Contents

bsearch(3C) rreesseeseasiaer s aae e s binary search a sorted table
catgets(3C) eusseetsess s enn s s sa s ssa s ssasnssas read a program message
catopen, catclose(3C) open/close a message catalogue
CLOCK(BC) cuiruerencncirenerriscssissasaneaseseans e ssssrsssssssssssssssessessessesssss st sus s sesss s sssenss report CPU time used
conv: toupper, tolower, _toupper, _tolower, t0ascii(3C) wowvmrrnerriissinssennes translate characters
crypt, setkey, encrypt(3C) ..ot snss i sssssss generate encryption
Ctermid (3S) ..o s generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C) «...ccccrrmcusseucrsennne convert date and time to string

ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,
isprint, isgraph, isascii(3C) character handling

CUSETIA (3S) ..vruimnrritirerieiiae et e esanssassasins get character login name of the user
decconv: _s2dec, _d2dec, _dec2s, _dec2d(3C)....... convert between binary and decimal values
difftime(BC) v computes the difference between two calendar times
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C) directory operations
diV, IdiV(3C) ittt s ens compute the quotient and remainder
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,

lcong48(3C) generate uniformly distributed pseudo-random numbers
AUP2(BC) ettt ses s s smsensenssasassans duplicate an open file descriptor
ecvt, fovt, BVE(3C) womrinre e convert floating-point number to string
end, etext, €data(3C)uirnniniiirnininin et b s e last locations in program
£Cl0SE, FIIUSR(BS) woeeevveerieeerererrecertesereesneeesserestnssssesassssssesessessssssessssesssnssesseneanes close or flush a stream
ferror, feof, clearerr, fileN0(3S) ..ciivenrrrenereirees st sessessenes stream status inquiries
FES(BC) cureirriritcirerciritnrei s s ettt e s s e s s s s s s e find first set bit
fmtmsg(3C) display a message on stderr or system console
fopen, freopen, fAOPEN(3S) ..ot s ssssescssessenssns open a stream
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky(3C)

.. IEEE floating point environment control
fread, FWTItE(BS) cuureeiireceecrieeeeeerereseeeestesessesaesaesesa e asseen s nsatensesassanssassassssnesne binary input/output
frexp, Idexp, logb, modf, modff, nextafter, scalb(3C)

... manipulate parts of floating-point numbers
fseek, rewind, ftell(3S) reposition a file pointer in a stream
fsetpos, fgetpos(3C) weeseeeenneeene. TEpOsition a file pointer in a stream
ftw, nftw(3QC) e Frgre s s inaty s R R R R RS RS RS s s e s s bR R s walk a file tree
getc, getchar, fgetc, §etw(3S) e get character or word from a stream
8EtCWA (BC) s get path-name of current working directory
8etdate(3C) .ot convert user format date and time
BEtENV(BC) ittt e return value for environment name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent(3C) get group file entry
getitimer, setitimer(3C) ..o get/set value of interval timer
GELIOZIN(BC) ettt s s et s st s e get login name

Table of Contents 5

Table of Contents

getmntent, getmntany (BC)uiivnvnieieennesenessininsissess e ssesssssssssssesssesssseses get mnttab file entry
BOPL(BC) ettt get option letter from argument vector
BELPASS(BC) ettt st e s sas s et st ene e read a password
BEEPWI(BC) ottt ettt sseess e sss s s snese s s saae st sn e snnee e get name from UID
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C)

.................. manipulate password file entry
gets, fgets(3S) ...uuncennernreernrierenresnirennns get a string from a stream
getspent, getspnam, setspent, endspent, fgetspent, Ickpwdf, ulckpwdf(3C)

.................................. manipulate shadow password file entry
getsubopt (3C) SR, parse suboptions from a string
gettimeofday, settimeofday (3C) get or set the date and time
BEXE(BC) et retrieve a text string
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname(3C)

........ access utmp file entry
getutx: getutxent, getutxid, getutxline, pututxline, setutxent, endutxent,

utmpxname, getutmp, getutmpx, updwtmp, updwtmpx(3C) access utmpx file entry
getvfsent, getvfsfile, getvfsspec, getvfsany(3C) cereres bt sas get vfstab file entry
hsearch, hcreate, hdestroy (3C) manage hash search tables
INItGroups(3C) ...u.vuuueicrereiessesnssessssssenssasssanensas mltlahze the supplementary group access list
insque, remQUE(3C)vuvivneueeenerssersssrssssssssesssssessssessns insert/remove element from a queue
isnan, isnand, isnanf, finite, fpclass, unordered (3C)

............................. determine type of floating point number
13t0], ItOI3(3C) wuurrneerrriscenscerreenssesiessseresenne convert between 3-byte integers and long integers
localeconv(3C).......ccceeneuunes get numeric formatting information
10CKE(BC) ovrerereeetmsicisseesicessesssesssssssanesenns ... record locking on files
Isearch, Ifind (3C) ..coeevvveeerererrmrrrmnreene e, cerreer e sae s saees linear search and update
makecontext, swapcontext (3C) manipulate user contexts
makedev, major, minor(3C) cerstesresersreaenaese e sesaeerssansansannenes manage a device number
malloc, free, realloc, calloc, memalign, valloc,(3C)cccvvmererrrvererensensesenenenns memory allocator
mbchar: mbtowc, mblen, wctomb(3C) multibyte character handling
mbstring: mbstowcs, WeStombS(3C)uuuuvvuneereenncereeneeeeeenessesesseeseens multibyte string functions
memory: memccpy, memchr, memcmp, memcpy, memmove, memset(3C)

.................... memory operations
mkfifo(3C) e enaes create a new FIFO
mktemp(3C) ... make a unique file name
MKHMEBC) et csnaresssnssens converts a tm structure to a calendar time
mMIock, MUNIOCK(BC) ...uvuiniirineeceieeeeseeeeseeesseessseneseseesssssssessnae lock (or unlock) pages in memory
mlockall, munlockall(3C) lock or unlock address space
MONItOr (3C) uuueenurueremeeesienrsssnesnessssnseens prepare execution profile
MSYNC(BC) wuuruinnrireneinecerennesserssassssssessssssssesssessanens synchronize memory with physical storage

6 Programmer’s Reference Manual

Table of Contents

nl_1anginfo(3C) .omirnescrnsennssnssensinsinssanrasnans language information
(41 7= 101 {1 offset of structure member
s {03 {10 NPT print system error messages
28] o5 (A 10 [OLT-T () [RU initiate pipe to/from a process
printf, fprintf, Sprintf(35)c.cccvueuniivervsennnsenriessinenns print formatted output
psignal, psiginfo,- system signal messages(3C) psignal, psiginfo,- system signal messages
pute, putchar, fputc, PUtW(3S) wcecuuvcemmiisssiimsssmnssssassanes put character or word on a stream
puts, fPUts(3S) cueererenncusscrsirnsiinnnnnns put a string on a stream
QP L (17T O change or add value to environment
PUtpwent(3C) ..cccneereenemecinscisininniens write password file entry
PULSPENE(BC) covreiinirrrinesieesetse e ssib sttt s write shadow password file entry
(o T10) 1101 USRS R quicker sort
raise(3C) send signal to program
rand, srand (3C) c.vrveveneriisiercenennsnnns simple random-number generator
1EAIPAth (BC) ittt ettt s s ssa s returns the real file name
remove(3C) ..weeceirernnisnenaans remove file
scanf, fscanf, sscanf(3S) convert formatted input
setbuf, SEtVDUS(3S) ittt assign buffering to a stream
setjmp, 1oNGIMPBC) ettt s sssssssnes non-local goto
5etlocale(3C) ...vmiinernsecrissnsisnsasssenssenns modify and query a program’s locale
sigsetimp, siglongimpP(3C) .ceerinnersescncisicrisnissinssissiinscnnnnnes a non-local goto with signal state
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember(3C) manipulate sets of signals
SIEEP(BC) ettt s s s s s ens suspend execution for interval
ssignal, gsignal(3C)coueuerrnrrerencnrerstssrsst st nans software signals
170) o B 110) (< OO ssosesseoon standard interprocess communication package
StAIO(3S) ceviirriiiirirciirennret sttt s standard buffered input/output package
SEECOLL(3C) wurrrrirccriririeinrsinnsinssssss s sssessss st s s s ses s sassassnstasssssssssnssssssanssssenss string collation
SLEEITOT (BC) wuvririrsiniuseiniinininsenisniisesetsnssssssssssssassssasssssesssssassssssssssassssssssssssans get error message string
strftime, cftime, ascftime,(3C) ...ocvvievrrerrrrenccnteeeseneneesenenneses convert date and time to string
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strnepy, strlen, strchr,

strrchr, strpbrk, strspn, strcspn, strtok, strstr(3C) string operations
strtod, atof, (3C) ..t convert string to double-precision number
strtol, strtoul, atol, atoi(BC) ...ccvvererrrneeenenecrrerensecsssnssssnssssnsesssesaesesaes convert string to integer
strxfrm(3C) string transformation
swab(3C)cererrennne .. swap bytes
sysconf(3C) get configurable system variables
SYStEIMI(3S) cuvvivrnreriretrirnteteree et s s st ses st e issue a shell command
tCSEtPETP(BC) vttt set terminal foreground process group ID
tmpfile(3S) create a temporary file
tmpnam, tempnam(35)oerreineneensesissesesiessessssssssssssenes create a name for a temporary file

Table of Contents 7

Table of Contents

truncate, ftruncate(3C)oummvuneiumssnccrnsansreeisssssssssssssssssssssssens set a file to a specified length
tsearch, tfind, tdelete, twalk(3C) ... manage binary search trees
ttyname, isatty (3C) find name of a terminal
ttySlot (BC) .uucueeeieceerene e serenne find the slot in the utmp file of the current user
ungetc(3S) ...reccninniercnnnenne . push character back onto input stream
vprintf, vfprintf, vsprintf(3S)cccoeereerre. print formatted output of a variable argument list
ElE(BE) cuurrrrr sttt s s s en s s sar st st essse s object file access library
€lf_DEZIN(BE) ...uuccouveirrrrtcnrsiirsersssss s sssssss s sssssssssnsssssssensssssnnas make a file descriptor
Elf_CNEIBE) cuuurrrrrrrinnsitccissinsssiscsssssssssssssssssssssssssssssssssssssessans : control a file descriptor
elf end(3E)cccevucerrrrnns e b ss st s s aes finish using an object file
elf_errmsg, €lf_errno(BE)uuucucciussnsienisssssssssssssssssssssssssssssmssssssssssssssssssssnes error handling
elf fill(3E)ccoeruuucennee .. set fill byte
elf flagdata, elf flagehdr, elf flagelf, elf ﬂagphdr, elf _flagscn, elf_flagshdr(3E)

.................. manipulate flags
elf fsize: elf32_fsize(3E)......... return the size of an object file type
elf_getarhdr(3E) Sorstnssnaensssaseassnsesonsessussnsansassussnsssuen retrieve archive member header
elf_getarsyM(3E)cocviiciisccessernnennensinsssssssssssss s s snesssnssssssssees retrieve archive symbol table
elf_getbase(3E) ...mrmrmuinrinsissisisnnisissssssenssessssssssasssssns get the base offset for an object file
elf_getdata, elf newdata, elf_Tawdata(3E)c.ooeuereeersuermmmsessrssensesssssnsssssssmssnsessens get section data
elf_getehdr: elf32_getehdr, elf32_newehdr(3E)........ retrieve class-dependent object file header
elf_getident(3E)ccouuveiviuuiricsnncciscneesssenmsssnssssssssssssssnessssssens retrieve file identification data
elf_getphdr: elf32_getphdr, elf32_newphdr(3E)

... retrieve class-dependent program header table
elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn(3E)oucueervenrvnsennee get section information
elf getshdr: elf32_getshdr(3E) ... retrieve class-dependent section header
€lf_NASN(BE) wuuurvrrueretrrenseisssnns s ssssassscssnssssmsessssssssssssssssssssssasssssssssssssssssssssens compute hash value
Elf_KINA(BE) suuurvruusritinnrinnrssisnsnsssssssssssssssssasssssssssssssssssssssssssssssssssasessssnssssssasses determine file type
€lf NEXE(BE) wouueeeenercnniiiistienscessesssee s asssss s snssssasasssnsnens sequential archive member access
elf_TaNA(BE) wooevrrveerretcitniciiisssisssssssse e ssssssssssassssassssssssenns random archive member access
elf_TaWfleBE) ...ucuiuriciisnsscinseseessssssssssessssssssssssssssssssnnss retrieve uninterpreted file contents
Elf_StIPIT(3E) wuovvrvrrrresneritrressissssassssissnsscssssssssssssssssssssssssss s s sssssssssss make a string pointer
elf_UPAAte(BE)ucrurreeiririnnictscttisins s esssse e cssss s s ss e ssassen update an ELF descriptor
elf_version(3E)cuurinrvncennscrnnenens coordinate ELF library and application versions
elf xlate: elf32_xlatetof, elf32_xlatetom (3E)ccourrmerrremrrennnne class-dependent data translation
1T 21 OO get entries from name list
baseNAME(3G) w...uvvecusursneiiisnsssssssssnssssssseesssssssssssmssssssssess return the last element of a path name
DEELS(3G) cuvuerunrrnsrinesiiniisissssses e sesssssssassssessssenens read stream up to next delimiter
bufsplit(3G)ceu.. split buffer into fields
COPYLISE(BG) wevevnrrirrirncisiniscsnseesessssessssssesensssssssasssassasssasssessssssessasssssassaen copy a file into memory
dirnameBG) ... report the parent directory name of a file path name

8 Programmer’s Reference Manual

Table of Contents

[:3 (XU 116 T@) NIRRT shell global pattern matching
isencrypt(3G) ... determine whether a character buffer is encrypted
mkdirp, rmdirp(3G) ..vceneeeeinecniitisini s create, remove directories in a path
p2open, p2close(3G) ..ueuiveereesenennrstrissssssissiisinnns open, close pipes to and from a command
Pathfind BG) cuuveeeeereeeeeseeriecnserscencniaes erveseemseneenss S€ATCh for named file in named directories
regcmp, T€ZEX(3G) wvmmrriinninrsnrsesessresesssesssssstss s sinnaas compile and execute regular expression
regexpr, compile, step, advance(3G) regular expression compile and match routines
str: strfind, strrspn, strtrns(3G)cceevnerireeseenes ... string manipulations
strcepy: streadd, strcadd, strecpy(3G) .. copy strings, compressing or expanding escape codes
IO (BM) ettt s s s sessnsssseaseasesens introduction to math libraries
bessel: j0, j1, in, Y0, Y1, YNEBM) o Bessel functions
erf, erfc(BM) e error function and complementary error function
exp, expf, cbrt, log, logf, log10, log10f, pow, powf, sqrt, sqrtf(3M)

.. exponential, logarithm, power, square root functions
floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint, remainder(3M)

.. floor, ceiling, remainder, absolute value functions
gamma, 1gamma(BM) ... e log gamma function
RYPOL(BM) oottt sttt sttt s ansssssn e ssess Euclidean distance function
MAthErT(BM) ...ttt ssr s sttt s s eanes error-handling function
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh(3M)c........ hyperbolic functions
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf, atan2,

ALAN2EBM) .ot trigonometric functions
ASSETE(BX) wuvrurrnrrinintciseene st bbb R s s R R e verify program assertion
CIYPLBX) ceieectrtensriser ettt s sssbest s st password and file encryption functions
AICIOSE(BX) wverernrmirrrerniintereninne s st s esb s s sse e s seaes close a shared object
dlerror(3X) cevvrveeerreernrenininencnnens get diagnostic information
AIOPEN(BX) ettt sssr s sssssssssss s s b s sss s sassesaesesasees open a shared object
AISYMBX) cvrrrrreenrerrecreresensnrensssses s snssssssssssssnenens get the address of a symbol in shared object
libwindows(3X)cccceeeremivueerennnes windowing terminal function library
MAIlIOCK(BX) vttt st srassaes manage lockfile for user’s mailbox
mallog, free, realloc, calloc, mallopt, mallinfo(3X)cevvcvsunrivieinsnscnsnscrsenens memory allocator
sputl, sgetl(3X)ceuvevereereerenrnn. access long integer data in a machine-independent fashion

Table of Contents 9

Table of Contents

4. File Formats

1015 (o1 C:) OO introduction to file formats
A.0Ut(4) o ELF (Executable and Linking Format) files
-1 () S archive file format
L0 (=T) v core image file
HMIS(4) coorerenereereeccecnecccnes s snsess s saene header file for implementation-specific constants
Scesfile(d) .uniienecmrerenarnn ; format of SCCS file
SrME(4) coveerreeceninreinse s erreeenr e language specific strings

timezone(4)covcreruuccenncnn set default system time zone
utmp, wtmp(4)coeceeeeene utmp and wtmp entry formats
utmpx, WEmMPpX(4)cueevinneeseessnssseneenenens utmpx and wtmpx entry formats

5. Miscellaneous Facilities

INFO(5) evrvuueirt sttt ses st s ss e s introduction to miscellany
RIS 11) O ... map of ASCII character set
ENVITON (D) weuvirrertrrrrtnssssc st sssssassee s ssssssss s ssses s sassssssssesenns . user environment
FONEI) oottt sveses e ssessss s s sssssssssmsseseseeesessesessesseesesessesmnen file control options
JABENE(S) cevvvrrrreraeetrsess et nes s ssssasst s s sssss e senens host control of windowing terminal
1anginfo(5)ceveirrrccernnnen. language information constants
layers(5)cocoveerrrennene protocol used between host and windowing terminal under layers(1)
11 (E14 (1) O . .. math functions and constants
NLAYPES(S) rvurnrrrrrctinecssesacecmmssssssisssssssnssssssssssssssssssssssmssssssees native language data types
PIOF(S) ettt st ens st st sre e st e profile within a function
regexp: compile, step, advance(5)ccuuu..... regular expression compile and match routines
siginfo(5) signal generation information
signal(5) - . base signals
21 (C) OO data returned by stat system call
StAarg(5) ...eunieeccnnnererssrnnrenns - .. handle variable argument list
1374216 OO primitive system data types
LIS L] () O .. user context
values(5)coevevreererernennnnn. machine-dependent values
Varargs(5) o mccisiesseecnssesersssesnsens handle variable argument list
£ Z:1] () wait status
XEPIOtO (5) weveeererisicreinnencersenseesss s sensesssanee multiplexed channels protocol used by xt driver

10 Programmer’s Reference Manual

Permuted Index

13tol, 1tol3 convert between

integer and base-64 ASCII string
abort generate an

termination signal

value

abs, labs return integer

floor, ceiling, remainder,

utime set file

file

elf_next sequential archive member
elf rand random archive member
elf object file

get or set supplementary group
initialize the supplementary group
machine-independent/ sputl, sgetl
setutent, endutent, utmpname
getutmpx, updwtmp, updwtmpx
access determine

acct enable or disable process
accounting

/cos, cosf, tan, tanf, asin, asinf,

/ cosf, tan, tanf, asin, asinf, acos,
/coshf, tanh, tanhf, asinh,

print current SCCS file editing
atexit

putenv change or

object dlsym get the

mlockall, munlockall lock or unlock
severity levels for an application/
synchronization of the system/
files

admin create and

uadmin

and match/ regexp: compile, step,
and match/ regexpr, compile, step,
alarm set a process

brk, sbrk change data segment space
calloc, memalign, valloc, memory
calloc, mallopt, mallinfo memory
clock adjtime correct the time to
sigaltstack set or get signal

Format) files

/a list of severity levels for an
coordinate ELF library and

library

Permuted Index

absolute value

access

access

access library

access list IDs /setgroups

access list initgroups

accessibility of a file

activity sact

add value to environment

address space
addseverity build a list of

administer SCCS files

alarm clock

allocation

alternate stack context

3-byte integers and long integers .. 13t0l(30)
ab64], 164a convert between long ... a641(30)
abnormal termination signal abort(3C)
abort generate an abnormal abort(3C)
abs, labs return integer absolute abs(30)
abs(3C)

absolute value functions /remainderccccoeconeneees floor(3M)
access and modification times utime(2)
access determine accessibility of a access(2)
elf_next(3E)

elf_rand(3E)

elf(3E)

getgroups(2)

initgroups(3C)

access long integer data in a sputl(3X)
access utmp file entry /pututline, getut(3C)
access utmpx file entry /getutmp, ... getutx(3C)
access(2)

ACCOUNEINEG oueurereerrinnssrernsseersersnsennens acct(2)
acct enable or disable process ... acct(2)
acos, acosf, atan, atanf, atan2,/ trig(3M)
acosf, atan, atanf, atan2, atan2f/c.eevevineerereanenns trig(3M)
acosh, atanh hyperbolic functions sinh(3M)
sact(1)

add program termination routine atexit(3C)
putenv(3C)

address of a symbol in sharedccocveeveeiveinrnniveriennens dlsym(3X)
mlockall(3C)

addseverity(3C)

adjtime correct the time to allow adjtime(2)
admin create and administer SCCScvuerennerceunnnnes admin(1)
admin(1)

administrative control uadmin(2)
advance regular expression compilecocevverereeiienenens regexp(5)
advance regular expression compileccvcuniivenninne regexpr(3G)
.. alarm(2)

alarm set a process alarm clockcvivicrvccicnninninnininn alarm(2)
brk(2)

allocator mallog, free, realloc,cccveverernesenreeeenene malloc(3C)
allocator mallog, free, realloc, malloc(3X)
allow synchronization of the systemccccooeueuruecuneee adjtime(2)
sigaltstack(2)

a.out ELF (Executable and Linkingccceoeeeuncuuecnecncnnns a.out(4)
application for use with fmtmsg ... addseverity(3C)

application versions elf_versionc.....

ar archive file format

elf_version(3E)
ar(4)

ar maintain portable archive or

............................ ar(1)

Permuted Index

ar

elf_next sequential

elf_rand random
elf_getarhdr retrieve

ar maintain portable
elf_getarsym retrieve

stdarg handle variable
varargs handle variable
formatted output of a variable
getopt get option letter from
string strftime, cftime,

ascii map of

between long integer and base-64
time to/ ctime, localtime, gmtime,
/sin, sinf, cos, cosf, tan, tanf,

/sinf, cos, cosf, tan, tanf, asin,
/cosh, coshf, tanh, tanhf,

or SCCS commands help

as

assert verify program

setbuf, setvbuf

tanf, asin, asinf, acos, acosf,
asinf, acos, acosf, atan, atanf,
/acos, acosf, atan, atanf, atan2,
/asin, asinf, acos, acosf, atan,
tanh, tanhf, asinh, acosh,
routine

double-precision number strtod,
strtol, strtoul, atol,

integer strtol, strtoul,
elf_getbase get the

signal

convert between long integer and
a path name

cb C program

bessel: j0, j1, jn, yO, y1, yn

Bessel functions

delimiter

_dec2s, _dec2d convert between
fread, fwrite

bsearch

tfind, tdelete, twalk manage

ffs find first set

sync update super

sigpending examine signals that are

archive file format

ar(4)

archive member access

elf_next(3E)

archive member access

archive member header

elf_rand(3E)
elf getarhdr(3E)

archive or library ar(1)
archive symbol table elf_getarsym(3E)
argument list stdarg(5)
argument list varargs(5)
argument list /vsprintf print vprintf(3S)
argument vector getopt(3C)
ascftime, convert date and time tocccvveeiurrinernnee strftime(3C)
ASCII character set asdi(5)
ascii map of ASCII character set asdii(5)
ASCII string a64l, 164a convert a641(30)
asctime, tzset convert date and ctime(3C)
asin, asinf, acos, acosf, atan,/ trig(3M)
asinf, acos, acosf, atan, atanf,/ trig(3M)
asinh, acosh, atanh hyperbolic/ sinh (3M)
ask for help with message numbers help(1)
assembler as(1)
assert verify program assertion assert(3X)
assertion assert(3X)
assign buffering to a streamccoceeevciricnenssinsisscnsennes setbuf(3S)
atan, atanf, atan2, atan2f/ /tan, trig(3M)
atan2, atan2f trigonometric/ /asin, ... trig(3M)
atan2f trigonometric functions trig(3M)
atanf, atan2, atan2f trigonometric/oceeinrvcennerinenenns trig(3M)
atanh hyperbolic functions /coshf,cccecemrrereeevununne sinh (3M)
atexit add program termination atexit(3C)
atof, convert string to strtod(3C)
atoi convert string to integer strtol(3C)
atol, atoi convert string to strtol(3C)
base offset for an object file elf_getbase(3E)
base signals signal(5)
base-64 ASCII string aé4l, 164a a641(3C)
basename return the last element ofcevcuunnee basename(3G)
beautifier cb(1)
Bessel functions bessel(3M)
bessel: j0, j1, jn, yO, y1, yn ... bessel(3M)
bgets read stream up to next bgets(3G)
binary and decimal values /_d2dec,ccccuuue..... decconv(3C)
binary input/output fread(3S)
binary search a sorted table bsearch(3C)
binary search trees tsearch, tsearch(3C)
bit ffs(3C)
block sync(2)
blocked and pendingcccoeuiunnnee. sigpending(2)

Programmer’s Reference Manual

Permuted Index

allocation

table

bufsplit split

determine whether a character
stdio standard

setbuf, setvbuf assign

an application for use/ addseverity
elf_fill set fill

size print section sizes in

swab swap

cc

cflow generate

cb

lint a

cxref generate

cscope interactively examine a
ctrace

mktime converts a tm structure to a
computes the difference between two
stat data returned by stat system
allocator malloc, free, realloc,
allocator mallog, free, realloc,

intro introduction to system
catclose open/close a message
catalogue catopen,

message catalogue

pow, powf, sqrt, sqrtf/ exp, expf,

SCCS delta

fabs, fabsf, rint,/ floor, floorf,
fabsf, rint,/ floor, floorf, ceil,
/fabs, fabsf, rint, remainder floor,
tcflush, tcflow, cfgetospeed,
/tcdrain, tcflush, tcflow,

tcflow, cfgetospeed, cfgetispeed,
tegetsid/ /cfgetispeed, cfsetispeed,
time to string strftime,

allocation brk, sbrk

chmod, fchmod

putenv

sigprocmask

chown, Ichown, fchown

process nice

Permuted Index

brk, sbrk change data segment space brk(2)
bsearch binary search a sorted bsearch(3C)
buffer into fields bufsplit(3G)
buffer is encrypted isencryptccocveuuneeee. isencrypt(3G)
buffered input/output package stdio(3S)
buffering to a stream setbuf(3S)
bufsplit split buffer into fieldsc.cccumerrrvenrressrrrrnnnes bufsplit(3G)
build a list of severity levels for addseverity(3C)
BYEE cooeernncesmsinscsssssamssnssssssssnsssssssss s sss s snssesssssses elf_fill(3E)
bytes of Object filesmmivmnrnrrisrennicnnseteneecincencsinsnnes size(1)
bytes swab(3C)
C compiler cc(1)
C flOWETaPh .ot nssssansesssssssssssssssssssens cflow(1)
C program beautifieroicoiecnsecssennns cb(1)
C program checker lint(1)
C program cross-reference cxref(1)
C program cscope(1)
C program debugger . ctrace(1)
calendar time mktime(3C)
calendar times difftime difftime(3C)
call stat(5)
calloc, mallopt, mallinfo memory malloc(3X)
calloc, memalign, valloc, memory malloc(3C)
calls and error numbers .. intro(2)
catalogue catopen, . catopen(3C)
catclose open/close a MeSSageceuueeennnes .. catopen(3C)
catgets read a program message ... catgets(30)
catopen, catclose Open/close @ceeereerensenrenseneens catopen(3C)
cb C program beautifier cb(1)
cbrt, log, logf, log10, log10f, exp(3M)
cc C compiler cc(1)
cdc change the delta comment of an cde(1)
ceil, ceilf, copysign, fmod, fmodf, floor(3M)
ceilf, copysign, fmod, fmodf, fabs,c.cccererrierrennne. floor(3M)
ceiling, remainder, absolute value/ floor(3M)
cfgetispeed, cfsetispeed,/ /tcdrain, termios(2)
cfgetospeed, cfgetispeed,/nrenriiiiininiincrennens termios(2)
cflow generate C flowgraphceeeeneennirernceeeeesnenens cflow(1)
cfsetispeed, cfsetospeed,/ /tcflush, . termios(2)
cfsetospeed, tcgetpgrp, tCSetpgrp,ceceeeeeeercenciuennne termios(2)
cftime, ascftime, convert date andc.coeeveenrvennnenee strftime(3C)
change data segment space brk(2)
change mode of file chmod(2)
change or add value to environmentceereureee. putenv(3C)
change or examine signal mask sigprocmask(2)
change owner and group of a file .. cveesenne. Chown(2)
change priority of a time-sharingcccoueuinneineenrnennnns nice(2)

Permuted Index

chroot

waitid wait for child process to
waitpid wait for child process to
delta cdc

rename

delta make a delta

chdir, fchdir

pipe create an interprocess
xtproto multiplexed

ungetc push

isencrypt determine whether a
ispunct, isprint, isgraph, isascii
mbtowc, mblen, wctomb multibyte
cuserid get

getc, getchar, fgetc, getw get
putc, putchar, fputc, putw put
ascii map of ASCII

_tolower, toascii translate
directory

lint a C program

times get process and

waitid wait for

waitpid wait for

wait wait for

and group of a file

/elf32_xlatetof, elf32_xlatetom
/€lf32_newehdr retrieve

table /elf32_newphdr retrieve
elf_getshdr: elf32_getshdr retrieve
inquiries ferror, feof,

allow synchronization of the system
alarm set a process alarm

close
dlclose

fclose, fflush

p2open, p2close open,

/telldir, seekdir, rewinddir,

dis object

compressing or expanding escape
translation

cof2elf

streoll string

change root directory chroot(2)
change state waitid(2)
change state waitpid(2)
change the delta comment of an SCCScccuvcereuvsurncrsee cdc(1)
change the name of a filecvcevnreveeenreccsnccnsecesnensnnonns rename(2)
(change) to an SCCS file delta(1)
change wWorking direCtorycvcceeseccrensscessssnscssessens chdir(2)
channel pipe(2)
channels protocol used by xt driver xtproto(5)
character back onto input streamccceevcuereencenerennes ungetc(3S)
character buffer is encrypted isencrypt(3G)
character handling /iscntrl, w... ctype(30)
character handling mbchar: mbchar(3C)
character login name of the userc.cccevevecrvrrneennee cuserid(3S)
character or word from a stream getc(3S)
character or word on a stream putc(3S)
Character SEtoccriirnemsnisisscesssisscsessssanssssssessssmsssssaseses asdii(5)
characters /tolower, _toupper, conv(3C)
chdir, fchdir change working chdir(2)
checker lint(1)
child process tHmeSccccceerrvmseirneussessensssisneccisssesssnsenes times(2)
child process to change statecoeccrieerusersecereesceseeenes waitid(2)
child process to change state . waitpid(2)

child process to stop or terminateooeeceereceeuesieesees wait(2)

chmod, fchmod change mode of fileccocoveveurrrrrneenees chmod(2)
chown, Ichown, fchown change ownerccoucevuenee chown(2)
chroot change root directory chroot(2)

class-dependent data translationccececersernenene elf_xlate(3E)
class-dependent object file headerccoccoeruuecunee elf_getehdr(3E)
class-dependent program header .. . elf_getphdr(3E)

class-dependent section headerccceecousuvsunennne elf_getshdr(3E)
clearerr, fileno stream Statusccecveeereseneererreeneennnene ferror(3S)
dock adjtime correct the time to adjtime(2)
clock alarm(2)
dock report CPU time usedccverusecesscuessensssssnanse clock(3C)
close a file deSCTIPLOrocveninmcnrseusinsecsssssensensssessssaons close(2)
close a shared object diclose(3X)
close close a file deSCTIPOruuvevueeeeurnrceisnnerisessanenisnes close(2)
close or flush a stream . fclose(3S)
close pipes to and from a commandcceccuninnce. p2open(3G)
closedir directory operations directory(3C)
code disassembler dis(1)
codes /strecpy copy strings, strccpy(3G)
cof2elf COFF to ELF object file cof2elf(1)
COFF to ELF object file translationccceeeruecnnercncnee cof2elf(1)
collation strcoll(3C)
comb combine SCCS deltasuevevinerreerenncncerincnenees comb(1)

Programmer’s Reference Manual

Permuted Index

comb

open, close pipes to and from a
system issue a shell

help with message numbers or SCCS
install install

intro introduction to programming
cdc change the delta

mcs manipulate the

stdipc: ftok standard interprocess
file sccsdiff

expression regcmp, regex

/step, advance regular expression
/step, advance regular expression
regcmp regular expression
expression compile and/ regexp:
expression compile and/ regexpr,
ccC

yacc yet another

erf, erfc error function and
/strcadd, strecpy copy strings,
elf_hash

div, 1div

calendar times difftime
fpathconf, pathconf get

sysconf get

a message on stderr or system
langinfo language information

file for implementation-specific
math math functions and

control maximum system resource
retrieve uninterpreted file
setcontext get and set current user
set or get signal alternate stack
ucontext user

swapcontext manipulate user

elf entl

ioctl

fentl file

IEEE floating point environment
consumption getrlimit, setrlimit
memcntl memory management
jagent host

msgctl message

semctl semaphore

shmctl shared memory

fentl file

priocntl process scheduler

Permuted Index

combine SCCS deltas comb(1)
command p2open, p2close p2open(3G)
command system(3S)
commands help ask for ..., help(1)
COMMANS ..cevenerersssssrnsnmsersessessssssssssssssssisssssssssssssssssssssses install(1M)
commands intro(1)
comment of an SCCS deltacomeieenrcenscsnnseninciiisiennens cdc(1)
comment section of an object file .. mes(1)
communication package .. stdipc(3C)
compare two versions of an SCCSovnemnicissinns scesdiff(1)
compile and execute regular regcmp(3G)
compile and match TOUHNESceereveceerercsciccnciiiinens regexp(5)
compile and match routines regexpr(3G)
compile regemp(1)
compile, step, advance regularcccoeeveererensiscisinncns regexp(5)
compile, step, advance regular regexpr(3G)
compiler ce(1)
COMPIlEr-COMPALET ..vucrvecreirtieisesseseissesiecnn st ssssstssssssnns yacc(1)
complementary error funchoncecveeerceencnmcneccusensenns erf(3M)
compressing or expanding escape/ strecpy(3G)
compute hash value elf_hash(3E)
compute the quotient and remainderccceevveerecrnennes div(30)
computes the difference between twocccueeuneee. difftime(3C)
configurable pathname variables fpathconf(2)
configurable system variables sysconf(3C)
console fmtmsg displaycccecerueeiisisensensensenennsensenes fmtmsg(3C)
CONSLANES ..oecusersrssnssessssassnssssssssssssssssssssssassessasssssasensessassases langinfo(5)
constants limits header limits(4)
CONSEANEScovvererrerrerersesessssersssssssssssssssssarssasaneees math(5)
consumption getrlimit, setrlimitcceevvevereeesrinnnne getrlimit(2)

contents elf_rawfile
context getcontext,
context sigaltstack
context
contexts makecontext,
control a file descriptor

wererennene €lf_rawfile(3E)
................. getcontext(2)
................. sigaltstack(2)
ucontext(5)
makecontext(3C)
.. elf_cntl(3E)

CONIOl AEVICE ...ttt s s ioctl(2)
control fentl(2)
control /fpgetsticky, fpsetsticky fpgetround(3C)
control maximum system resourceccouoeseeseens getrlimit(2)
control memcntl(2)
control of windowing terminalcveirniieeeinenenne. jagent(5)
CONLIOl OPEratioNScccveeereeireenerenreneteieeerensee s enes msgctl(2)
CONLIOl OPETAtioNScceveeerentenreisriniessisesssinssssssessessssesanns semctl(2)
cONtrol Operationsceveeevencecnsisensnsesnsaens shmctl(2)
control options fentl(5)
CONETOL .ouvecviereeeneiineseensessnersesssessesssnesssesseassassssessesssassaesransnne priocntl(2)

Permuted Index

generalized process scheduler
uadmin administrative

vc version

_tolower, toascii translate/

long integers 13tol, ltol3
/_s2dec, _d2dec, _dec2s, _dec2d
base-64 ASCII string a64l, 164a
/localtime, gmtime, asctime, tzset
strftime, cftime, ascftime,

string ecvt, fcvt, gevt

scanf, fscanf, sscanf

number strtod, atof,

strtol, strtoul, atol, atoi

getdate

calendar time mktime
application versions elf_version
copylist

strecpy: streadd, strcadd, strecpy

rint,/ floor, floorf, ceil, ceilf,

core

synchronization of the/ adjtime
acos, acosf,/ trig: sin, sinf,
acosf, atan,/ trig: sin, sinf, cos,
asinh, acosh,/ sinh, sinhf,
acosh,/ sinh, sinhf, cosh,
display line-by-line execution
clock report

an existing one

tmpnam, tempnam

mkfifo

existing one creat

fork

tmpfile

pipe

admin

path mkdirp, rmdirp

umask set and get file

cxref generate C program
functions

encryption

program

terminal

tzset convert date and time to/

isupper, isalpha, isalnum,/

control priocntlset priocntlset(2)
control uadmin(2)
control ve(l)
conv: toupper, tolower, _toupper, conv(3C)
convert between 3-byte integers andcccccevecuneeeernnes 13tol(3C)

convert between binary and decimal/c.cceccveuneee decconv(3C)

convert between long integer and a641(3C)
convert date and time to string ctime(3C)
convert date and time to string strftime(3C)
convert floating-point number to ecvt(3C)
convert formatted input scanf(3S)
convert string to double-precisioncvceecinneniiicennns strtod(3C)
convert string to integer strtol(3C)
convert user format date and timecoccvecuneerreuneces getdate(3C)
converts a tm structure to a mktime(3C)
coordinate ELF library and elf_version(3E)
copy a file into memory copylist(3G)
copy strings, compressing or/ strccpy(3G)
copylist copy a file into MEMOTYcccceeveucenrerereaeennee copylist(3G)
copysign, fmod, fmodf, fabs, fabsf,c.cceersumercerrereennen floor(3M)
core core image file core(4)
core image file core(4)
correct the time to allow adjtime(2)
cos, cosf, tan, tanf, asin, asinf, trig(3M)
cosf, tan, tanf, asin, asinf, acos, trig(3M)
cosh, coshf, tanh, tanhf, sinh (3M)
coshf, tanh, tanhf, asinh, sinh (3M)
count profile data lprof 1prof(1)
CPU time used clock(3C)
creat create a new file or rewrite creat(2)
create a name for a temporary filecccereeecesinnes tmpnam(3S)
create a new FIFO mkfifo(3C)
create a new file or rewrite an creat(2)
Create a new process fork(2)
create a temporary file tmpfile(35)
create an interprocess channel pipe(2)
create and administer SCCS files admin(1)
create, remove directories in a mkdirp(3G)
creation mask umask(2)
cross-reference cxref(1)
crypt password and file encryptioncccecseemecesnenenee crypt(3X)
crypt, setkey, encrypt generate crypt(3C)
cscope interactively examine a C cscope(1)
ctermid generate file name for ctermid(3S)
ctime, localtime, gmtime, asctime,c.ccoceeeneveeernrnes ctime(3C)
ctrace C program debugger ctrace(1)
ctype: isdigit, isxdigit, islower, ctype(3C)

Programmer’s Reference Manual

Permuted Index

sact print

uname get name of

getcontext, setcontext get and set
the slot in the utmp file of the
getcwd get path-name of

the user

cross-reference

between binary/ decconv: _s2dec,
elf_rawdata get section

retrieve file identification

sputl, sgetl access long integer
execution count profile

memory or unlock process, text, or
prof display profile

stat

brk, sbrk change

elf32_xlatetom class-dependent
nl_types native language

types primitive system

getdate convert user format
settimeofday get or set the
gmtime, asctime, tzset convert
strftime, cftime, ascftime, convert
ctrace C program

sdb symbolic

strip strip symbol table,

decconv: _s2dec, _d2dec, _dec2s,
binary/ decconv: _s2dec, _d2dec,
_dec2d convert between binary and/
_dec2d convert between binary and
timezone set

bgets read stream up to next
change the delta comment of an SCCS
delta make a

cdc change the

rmdel remove a

SCCS file

comb combine SCCS

1dd list dynamic

close close a file

dup duplicate an open file

dup? duplicate an open file
elf_begin make a file

elf_cntl control a file

elf_update update an ELF
sigaction

access

Permuted Index

current SCCS file editing activity sact(1)
current UNIX SYStEINccccevuerrscessenscnscnsissessiscesessnnes uname(2)
current user context getcontext(2)
current user ttyslot find ttyslot(3C)
current working directory getcwd(3C)

cuserid get character login name Ofcoccveuneeisvernens cuserid(3S)

cxref generate C Programc.ceecsesssscsscssssisiessssssssssssses cxref(1)
_d2dec, _dec2s, _dec2d convert .. <eeeee decconv(3C)
data elf_getdata, elf newdata,ccccrveivsiinens elf_getdata(3E)
data elf_getident elf_getident(3E)
data in a machine-independent/ sputl(3X)
data lprof display line-by-line 1prof(1)
data plock lock into plock(2)
data prof(1)
data returned by stat system call stat(5)
data segment space allocation brk(2)
data translation /elf32_xlatetof,cccccvereriveveencece elf xlate(3E)
data types nl_types(5)
data types types(5)
date and time getdate(3C)
date and time gettimeofday, gettimeofday(3C)
date and time to string /localtime,ccccoerereicuruenne. ctime(3C)
date and time to sStringcceeeernnee . strftime(3C)
AEDUGEGET ..ottt st sesciscasensians ctrace(1)
debugger ...t sdb(1)
debugging and line number/ strip(1)
_dec2d convert between binary and/ccccceereenene decconv(3C)
_dec2s, _dec2d convert betweencceeueeeescneennens decconv(3C)
decconv: _s2dec, _d2dec, _dec2s, decconv(3C)
decimal values /_d2dec, _dec2s,ccoimevervirinrnnes decconv(3C)
default system Hme ZONEeccoeererierverseneronsernssssesnaennse timezone(4)
AeliMILEr ..ottt snaees bgets(3G)
delta cdc cdc(1)
delta (change) to an SCCS fileccceermrirreernniersrnersrsorissenne delta(1)
delta comment of an SCCS delta cdc(1)
delta from an SCCS file rmdel(1)
delta make a delta (change) to anc.cc.cuu.ee. delta(1)
deltas comb(1)
dependencies 1dd(1)
deSCrIPOT .ottt enaenaens close(2)
AESCTIPLOT .covvircrrreterenenereisersser e e ses st st snsaseses dup(2)
descriptor dup2(30)
dESCTIPEOT .ottt s st s sres elf_begin(3E)
ESCTIPLOT ..ouivirirnicirisrestenrenrensessesnssss st s e ess st anasses elf_cntl(3E)

AESCTIPLOT .ottt sessss s s e ssssnsens elf_update(3E)
detailed signal management sigaction(2)
determine accessibility of a file access(2)

Permuted Index

elf kind

mincore

/isnanf, finite, fpclass, unordered
buffer is encrypted isencrypt
ioctl control

makedev, major, minor manage a
dlerror get

times difftime computes the
between two calendar times
mkdirp, rmdirp create, remove
search for named file in named
chdir, fchdir change working
chroot change root

system independent/ getdents read
unlink remove

get path-name of current working
mkdir make a

dirname report the parent

telldir, seekdir, rewinddir, /
seekdir, rewinddir, closedir

file mknod make a

rmdir remove a

name of a file path name

acct enable or

dis object code

system console fmtmsg
count profile data lprof
prof

hypot Euclidean -

/seed48, lcong48 generate uniformly
remainder

in shared object

strtod, atof, convert string to
mrand48, jrand48, srand48, seed48,/
channels protocol used by xt
object file

file dump

descriptor

descriptor

dup

dup2

1dd list

floating-point number to string

determine file type elf_kind(3E)
determine residency of memory pagescccowssruven. mincore(2)
determine type of floating point/ isnan(3C)
determine whether a characterco.covevcenrernerrenne isencrypt(3G)
device ioctl(2)
device number makedev(3C)
diagnostic information . dlerror(3X)
difference between two calendarccoccmsmeeeerrrennes difftime(3C)
difftime computes the differenceccocooverererrrrnne. difftime(3C)
directories in a path mkdirp(3G)
directories pathfind pathfind(3G)
directory chdir(2)
directory chroot(2)
directory entries and put in a fileceeerrverrnrnnns getdents(2)
directory entry unlink(2)
directory getcwd . getewd(30)
directory mkdir(2)
directory name of a file path nameccccevevererenn. dirname(3G)
directory: opendir, readdir, directory(3C)
directory operations /telldir, directory(3C)
directory, or a special OF OXdinaryececemseessreenns mknod(2)
QITECEOTY eervernreiuneecrsnsnissssisssanssscsssneasnessessssssssssssssssssnsses rmdir(2)
dirname report the parent directoryc..cccovevrvnn. dirname(3G)
dis object code disassemblerocceeerverrrrreesnnerenssrnnsenenns dis(1)
disable Process aCCOUNHNGc.vcemsecemmeresscermsnssssrssemsssasseenns acct(2)
diSASSEMDIETe.ovvcevirinsisscrnissseesessesnsseenssssssssssssssssssssens s sannes dis(1)
display a message on stderr or fmtmsg(3C)
display line-by-line execution ... lprof(1)
display profile data prof(1)
distance function hypot(3M)
distributed pseudo-random numbers drand48(3C)
div, ldiv compute the quotient and div(3C)
diclose close a shared object dlclose(3X)
dlerror get diagnostic informationcceeeeeeceenes dlerror(3X)
dlopen open a shared object dlopen(3X)
dlsym get the address of a symbolcccccerneeeereennn. dlsym(3X)
double-precision number strtod(3C)
drand48, erand48, Irand48, nrand48, drand48(3C)
driver xtproto multiplexed xtproto(5)
dump dump selected parts of anccceereeerverseeneeanns dump(1)
dump selected parts of an ObJECtccverrrerrsnerrrmrensrensrens dump(1)
dup duplicate an open fileccccvcevveeeerrnrrssrnnresnsanernsens dup(2)
dup?2 duplicate an open file dup2(3C)
duplicate an open file descriptor dup(2)
duplicate an open file descriptor dup2(3C)
dynamic dependencies 1dd(1)
ecvt, fcvt, gevt convert ecvt(3C)

Programmer’s Reference Manual

Permuted Index

end, etext,

sact print current SCCS file

1d link

effective user, real group, and
/getgid, getegid get real user,
new process in a virtual memory
insque, remque insert/remove
basename return the last
elf_update update an

files a.out

versions elf_version coordinate

cof2elf COFF to

object file type elf fsize:
retrieve/ elf_getehdr:

retrieve/ elf getphdr:
class-dependent/ elf_getshdr:
elf getehdr: elf32_getehdr,

elf getphdr: elf32_getphdr,
class-dependent data/ elf xlate:
elf_xlate: elf32_xlatetof,

handling
elf_errmsg,

elf_flagelf, elf flagphdr,/
elf_flagphdr,/ elf _flagdata,
elf flagdata, elf_flagehdr,
/elf_flagehdr, elf flagelf,
/elf_flagelf, elf flagphdr,
/elf_flagphdr, elf flagscn,
size of an object file type
member header

symbol table

an object file

elf_rawdata get section data
elf32_newehdr retrieve/
identification data
elf32_newphdr retrieve/
elf_nextscn get section/
class-dependent section header

get section/ elf_getscn,
section data elf getdata,

Permuted Index

edata last locations in program end(3C)
editing activity sact(1)
editor for object files 1d(1)
effective group IDs /get real user,ceunivnninnennnes getuid(2)
effective user, real group, and/ getuid(2)
efficient way vfork spawn vfork(2)
element from a queue insque(3C)
element of a path name basename(3G)

ELF descriptor elf_update(3E)
ELF (Executable and Linking Format)cccccecoscucercueccnecs a.out(4)
ELF library and application elf_version(3E)
elf object file access library elf(3E)
ELF object file translation cof2elf(1)

elf32_fsize return the size of an
elf32_getehdr, elf32_newehdr
elf32_getphdr, elf32_newphdr
elf32_getshdr retrieve
elf32_newehdr retrieve/

................................... elf_fsize(3E)
elf_getehdr(3E)
elf_getphdr(3E)
elf getshdr(3E)
.. elf_getehdr(3E)
elf32_newphdr retrieve/ elf_getphdr(3E)
elf32_xlatetof, elf32_xlatetom elf xlate(3E)
elf32_xlatetom class-dependent data/ccccucueece. elf xlate(3E)
elf_begin make a file descriptorccecevcerunscunece elf begin(3E)
elf_cntl control a file descriptor elf_cntl(3E)
elf_end finish using an object fileccoecrvcrrrveernecennes elf_end(3E)
elf_errmsg, elf_errno error elf_errmsg(3E)
elf_errno error handling elf_errmsg(3E)
elf_fill set fill byte elf_fill(3E)
elf_flagdata, elf _flagehdr, elf_flagdata(3E)
elf flagehdr, elf flagelf, elf flagdata(3E)
elf_flagelf, elf flagphdr,/ elf flagdata(3E)
elf flagphdr, elf _flagscn,/ elf flagdata(3E)
elf flagscn, elf_flagshdr/ elf flagdata(3E)

elf flagshdr manipulate flagscccoeeuuereerrsrnnnnns elf_flagdata(3E)
elf_fsize: elf32_fsize return the elf_fsize(3E)
elf getarhdr retrieve archiveccovverrersnene elf getarhdr(3E)
elf_getarsym retrieve archivecoceeresreneunn. elf_getarsym(3E)

elf_getbase get the base offset for
elf_getdata, elf_newdata,
elf_getehdr: elf32_getehdr, elf_getehdr(3E)
elf_getident retrieve file elf_getident(3E)
elf_getphdr: elf32_getphdr,cccccvremruveenrrcrreennnne elf_getphdr(3E)
elf getscn, elf ndxscn, elf_ newsen, elf_getsen(3E)
elf_getshdr: elf32_getshdr retrieve elf getshdr(3E)
elf_hash compute hash value elf_hash(3E)
elf kind determine file type elf_kind(3E)
elf_ndxscn, elf_newscn, elf_nextscncoceeurenrene.. elf_getscn(3E)
elf newdata, elf rawdata getccoceovreerrrrrreseennns elf_getdata(3E)

.......................... elf_getbase(3E)
elf_getdata(3E)

Permuted Index

elf_getscn, elf_ndxscn,

access

elf_getscn, elf ndxscn, elf_newscn,
access

elf_getdata, elf_newdata,

file contents

and application versions
elf32_xlatetom class-dependent/
accounting acct

crypt, setkey,

whether a character buffer is

crypt, setkey, encrypt generate

crypt password and file

program

/getgrgid, getgrnam, setgrent,
/getpwuid, getpwnam, setpwent,
getspent, getspnam, setspent,
/getutline, pututline, setutent,

/ getutxline, pututxline, setutxent,
getdents read directory

nlist get

utmp, wtmp utmp and wtmp
utmpx, wtmpx utmpx and wtmpx
endgrent, fgetgrent get group file
getmntany get mnttab file

fgetpwent manipulate password file
manipulate shadow password file
endutent, utmpname access utmp file
updwtmp, updwtmpx access utmpx file
getvfsany get vfstab file

putpwent write password file
putspent write shadow password file
unlink remove directory

fpsetsticky IEEE floating point
environ user

getenv return value for

putenv change or add value to
jrand48, srand48, seed48,/ drand48,
complementary error function
complementary error function erf,
error function erf, erfc

error function and complementary
elf_errmsg, elf_errno

strerror get

10

elf newscn, elf nextscn get section/ccceueee. elf_getscn(3E)
elf_next sequential archive memberccceeeeurvenee elf next(3E)
elf nextscn get section informationcceeeuuneee elf_getscn(3E)
elf rand random archive memberccuucerveuvinnees elf_rand(3E)

elf rawdata get section data elf_getdata(3E)
elf rawfile retrieve uninterpreted elf_rawfile(3E)
elf strptr make a string pointercceveeeeeveereennes elf strptr(3E)
elf update update an ELF descriptor .. elf_update(3E)
elf_version coordinate ELF library elf_version(3E)

elf_xlate: elf32_xlatetof, elf_xlate(3E)
enable or disable process acct(2)
encrypt generate encryption crypt(3C)
encrypted isencrypt determinecocuveuveivirnennenne isencrypt(3G)
encryption crypt(3C)
encryption functions crypt(3X)
end, etext, edata last locations in end(30)
endgrent, fgetgrent get group file/cuunee.. getgrent(3C)
endpwent, fgetpwent manipulate/ getpwent(3C)

endspent, fgetspent, Ickpwdf,/ .. getspent(3C)

..................

endutent, utmpname access utmp file/cuvereinnenne getut(3C)
endutxent, utmpxname, getutmp,/ getutx(3C)
entries and put in a file system/ getdents(2)
entries from name list nlist(3E)
entry formats utmp(4)
entry formats utmpx(4)
entry /getgrnam, setgrent, getgrent(3C)
entry getmntent, getmntent(3C)
entry /setpwent, endpwent, getpwent(3C)
entry /fgetspent, Ickpwdf, ulckpwdfcc.ceuue.e. getspent(3C)
entry /pututline, setutent, getut(3C)
entry /getutmp, getutmpx, getutx(3C)
entry /getvfsfile, getvfsspec, getvfsent(3C)
entry putpwent(3C)
entry putspent(3C)
entry unlink(2)
environ user environment environ(5)
environment control /fpgetsticky,c..ceeeeeerueee fpgetround(3C)
environment environ(5)
environment name getenv(3C)
environment putenv(3C)
erand48, Irand48, nrand48, mrand48,cceeeen. drand48(3C)
erf, erfc error function and ... erf(3M)
erfc error function and erf(3M)
error function and complementary erf(3M)
error function erf, erfc erf(3M)
error handling elf_errmsg(3E)
error message string .. strerror(3C)

Programmer’s Reference Manual

perror print system

introduction to system calls and
matherr

strings, compressing or expanding
program end,

hypot

\cscope interactively
sigprocmask change or

and pending sigpending
execlp, execvp execute a file
execlp, execvp execute a/ exec:
execute a file exec: exed, execv,
exec: execl, execv, execle, execve,
files a.out ELF

execle, execve, execlp, execvp
regemp, regex compile and
Iprof display line-by-line

sleep suspend

monitor prepare

profil

execvp execute a file exec: execl,
file exec: execl, execv, execle,
execv, execle, execve, execlp,
create a new file or rewrite an

exit,

log10f, pow, powf, sqrt, sqrtf/
copy strings, compressing or
log10f, pow, powf, sqrt,/ exp,
/log10f, pow, powf, sqrt, sqrtf
/compile, step, advance regular
/compile, step, advance regular
regcmp regular

regex compile and execute regular
/ceil, ceilf, copysign, fmod, fmodf,
/ ceilf, copysign, fmod, fmodf, fabs,
data in a machine-independent
chdir,

chmod,

file chown, Ichown,

stream

number to string ecvt,

fopen, freopen,
status inquiries ferror,
stream status inquiries

Permuted Index

Permuted Index

error messages perror(3C)
error numbers intro intro(2)
error-handling function matherr(3M)
escape codes /strcadd, strecpy copyciinnens strecpy(3G)
etext, edata last locations in end(3C)
Euclidean distance function hypot(3M)
examine a C program cscope(1)
examine signal mask sigprocmask(2)
examine signals that are blockedcccoeuvirenninncen. sigpending(2)
exec: execl, execv, execle, execve, exec(2)
execl, execv, execle, execve, exec(2)
execle, execve, execlp, execvp exec(2)
execlp, execvp execute a file exec(2)
(Executable and Linking Format) a.out(4)
execute a file exec: exed, execv, exec(2)
execute regular expression regemp(3G)
execution count profile data lprof(1)
execution for interval sleep(3C)
execution profile monitor(3C)
execution time profile profil(2)
execv, execle, execve, execlp, exec(2)
execve, execlp, execvp execute a exec(2)
execvp execute a file exec: execl, exec(2)
existing one creat creat(2)
exit, _exit terminate process exit(2)
_exit terminate process exit(2)
exp, expf, cbrt, log, logf, log10, exp(3M)
expanding escape codes /StreCpyeccveeeseecsseennee streepy(3G)
expf, cbrt, log, logf, log10, exp(3M)
exponential, logarithm, power, / exp(3M)
expression compile and match/ regexp(5)
expression compile and match/covvivvivicrneennne regexpr(3G)
expression compile regemp(1)
expression regcmp, regcmp(3G)
fabs, fabsf, rint, remainder floor,/ccoecveeerercrrensnennns floor(3M)
fabsf, rint, remainder floor,/ floor(3M)
fashion /sgetl access long integerccemrrreessrvenenns sputl(3X)
fchdir change working directory chdir(2)
fchmod change mode of fileccooecumerernrrenresnrreneeernene chmod(2)
fchown change owner and group of @cceececessevennes chown(2)
fclose, fflush close or flush a fclose(3S)
fentl file control fentl(2)
fentl file control options fentl(5)
fevt, gevt convert floating-point ecvt(3C)
fdopen open a stream fopen(3S)
feof, clearerr, fileno stream ferror(3S)
ferror, feof, clearerr, fileno ferror(3S)

1"

Permuted Index

fclose,

from a stream getc, getchar,
/getgrnam, setgrent, endgrent,

in a stream fsetpos,

/getpwnam, setpwent, endpwent,
gets,

/getspnam, setspent, endspent,
bufsplit split buffer into

mkfifo create a new

utime set

elf object

access determine accessibility of a
chmod, fchmod change mode of
fchown change owner and group of a
elf_rawfile retrieve uninterpreted
fentl

fentl

core core image

umask set and get

make a delta (change) to an SCCS
close close a

dup duplicate an open

dup2 duplicate an open

elf_begin make a

elf_cntl control a

dump selected parts of an object
sact print current SCCS

elf_end finish using an object

get the base offset for an object
crypt password and

endgrent, fgetgrent get group
getmntent, getmntany get mnttab
fgetpwent manipulate password
ulckpwdf manipulate shadow password
endutent, utmpname access utmp
updwtmp, updwtmpx access utmpx
getvfsspec, getvfsany get vfstab
putpwent write password
putspent write shadow password
execve, execlp, execvp execute a
constants limits header

ar archive

intro introduction to

get get a version of an SCCS
retrieve class-dependent object
elf_getident retrieve

12

fflush close or flush a stream fclose(3S)
ffs find first set bit ffs(3C)
fgetc, getw get character or word getc(3S)
fgetgrent get group file entry getgrent(3C)
fgetpos reposition a file pointer fsetpos(3C)
fgetpwent manipulate password file/ ..o, getpwent(3C)
fgets get a string from a stream gets(3S)
fgetspent, Ickpwdf, ulckpwdf/ccocveuencnnecnssinsinne getspent(3C)
fields bufsplit(3G)
FIFO mkfifo(3C)
file access and modification times utime(2)
file access library elf(3E)
file access(2)
file chmod(2)
file chown, Ichown, chown(2)
file contents elf_rawfile(3E)
file control fentl(2)
file control options fentl(5)
file core(4)
file creation mask umask(2)
file delta delta(1)
file descriptor close(2)
file descriptor dup(2)
file descriptor dup2(3C)
file descriptor elf_begin(3E)
file descriptor elf_cntl(3E)
file dump dump(1)
file editing activity sact(1)
file elf_end(3E)
file elf getbase ... elf_getbase(3E)
file encryption functions crypt(3X)
file entry /getgrnam, setgrent,ceireeseisecenenns getgrent(3C)
file entry getmntent(3C)
file entry /setpwent, endpwent,c.ocvcrvirvernnns getpwent(3C)
file entry /fgetspent, Ickpwdf,ccceccvvrvenennecriencnnee getspent(3C)
file entry /pututline, setutent, getut(3C) |
file entry /getutmp, getutmpx, getutx(3C)
file entry getvfsent, getvfsfile,ccocoerrververirrrennece. getvfsent(3C)
file entry putpwent(3C)
file entry putspent(3C)
file exec: execl, execv, execle, exec(2)
file for implementation-specific limits(4)
file format ar(4)
file formats intro(4)
file get(1)
file header /elf32_newehdr elf_getehdr(3E)
file identification data elf_getident(3E)

Programmer’s Reference Manual

pathfind search for named
copylist copy a

link link to a

the comment section of an object
directory, or a special or ordinary
ctermid generate

mktemp make a unique

realpath returns the real

nm print name list of an object
ttyslot find the slot in the utmp
creat create a new

the parent directory name of a
fseek, rewind, ftell reposition a
fsetpos, fgetpos reposition a

Iseek move read/write

prs print an SCCS

read read from

remove remove

rename change the name of a
rmdel remove a delta from an SCCS
compare two versions of an SCCS
sccsfile format of SCCS

stat, Istat, fstat get

number information from an object
symlink make a symbolic link to a
/read directory entries and put in a
statvfs, fstatvfs get

mount mount a

ustat get

sysfs get

umount unmount a

tmpfile create a temporary

create a name for a temporary
truncate, ftruncate set a

cof2elf COFF to ELF object

ftw, nftw walk a

return the size of an object
elf_kind determine

undo a previous get of an SCCS
val validate an SCCS

write, writev write on a

ferror, feof, clearerr,

admin create and administer SCCS
ELF (Executable and Linking Format)
the physical/ fsync synchronize a
1d link editor for object

lockf record locking on

Permuted Index

Permuted Index

file in named directories pathfind(3G)
file into memory copylist(3G)
file link(2)
file mcs manipulate mcs(1)
file mknod make a mknod(2)
file name for terminal ctermid(3S)
file name mktemp(3C)
file name realpath(3C)
file nm(1)
file of the current user ttyslot(3C)
file or rewrite an existing one creat(2)
file path name dirname reportcccoeceevcseueinccee dirname(3G)
file pointer in a stream fseek(3S)
file pointer in a stream fsetpos(3C)
file pointer Iseek(2)
file prs(1)
file read(2)
file remove(3C)
file rename(2)
file rmdel(1)
file sccsdiff scesdiff(1)
file scesfile(4)
file status stat(2)
file /table, debugging and line strip(1)
file symlink(2)
file system independent format getdents(2)
file system information statvfs(2)
file system mount(2)
file system statistics ustat(2)
file system type information sysfs(2)
file system umount(2)
file tmpfile(3S)
file tmpnam, tempnam tmpnam(3S)
file to a specified length truncate(3C)
file translation cof2elf(1)
file tree ftw(3C)

file type elf fsize: elf32_fsize

elf fsize(3E)

file type

elf_kind(3E)

file unget unget(1)
file val(1)
file write(2)
fileno stream status iNQUIriesceeerreeeneeneresreeresneene ferror(3S)
files admin(1)
files a.out a.out(4)
file’s in-memory state with that on fsync(2)
files 1d(1)
files lockf(3C)

13

Permuted Index

section sizes in bytes of object
elf fill set

ffs

ttyname, isatty

object library lorder

the current user ttyslot

elf_end

determine/ isnan, isnand, isnanf,
elf flagshdr manipulate
/fpgetsticky, fpsetsticky IEEE
unordered determine type of
ecvt, fcvt, gevt convert

scalb manipulate parts of
/fmodf, fabs, fabsf, rint, remainder
copysign, fmod, fmodf, fabs,/
fmod, fmodf, fabs, fabsf,/ floor,
cflow generate C

fclose, fflush close or

/floorf, ceil, ceilf, copysign,

/ ceil, ceilf, copysign, fmod,

for an application for use with
or system console

stream

tesetpgrp set terminal

ar archive file

getdate convert user

a.out ELF (Executable and Linking
put in a file system independent
sccsfile

intro introduction to file

utmp, wtmp utmp and wtmp entry
utmpx, wtmpx utmpx and wtmpx entry
scanf, fscanf, sscanf convert
vprintf, vfprintf, vsprintf print
printf, fprintf, sprintf print
localeconv get numeric
configurable pathname variables
of/ isnan, isnand, isnanf; finite,
fpgetround, fpsetround,

fpsetmask, fpgetsticky,/
/fpsetround, fpgetmask, fpsetmask,
output printf,

fpgetround, fpsetround, fpgetmask,
fpgetsticky,/ fpgetround,
/fpgetmask, fpsetmask, fpgetsticky,
on a stream putc, putchar,

14

files size print size(1)
fill byte elf fill(3E)
find first set bit ffs(3C)
find name of a terminal ttyname(3C)
find ordering relation for an lorder(1)
find the slot in the utmp file of ttyslot(3C)
finish using an object file elf_end(3E)
finite, fpclass, unordered isnan(3C)
flags /elf flagphdr, elf flagscn,ccoverrvecunseees elf flagdata(3E)
floating point environment controlccconennn. fpgetround(3C)
floating point number /fpclass, isnan(3C)
floating-point number to string ecvt(3C)
floating-point numbers /nextafter, .. frexp(3C)
floor, ceiling, remainder, absolute/ floor(3M)
floor, floorf, ceil, ceilf, floor(3M)
floorf, ceil, ceilf, copysign, floor(3M)
flowgraph cflow(1)
flush a stream fclose(35)
fmod, fmodyf, fabs, fabsf, rint,/ floor(3M)
fmodf, fabs, fabsf, rint, remainder/cieiniicnneee floor(3M)
fmtmsg /a list of severity levels addseverity(3C)
fmtmsg display a message on stderrcevconecrunees fmtmsg(3C)
fopen, freopen, fdopen open a fopen(3S)
foreground process group ID tesetpgrp(3C)
fork create a new process fork(2)
format ar(4)
format date and time getdate(3C)
Format) files a.out(4)
format /read directory entries andcveeniinens getdents(2)
format of SCCS file sccsfile(4)
formats intro(4)
formats utmp(4)
formats utmpx(4)
formatted input scanf(35)
formatted output of a variable/ vprintf(3S)
formatted output printf(3S)
formatting information localeconv(3C)
fpathconf, pathconf get fpathconf(2)
fpclass, unordered determine typeccccveieinienenrenns isnan(3C)
fpgetmask, fpsetmask, fpgetsticky,/cecveunee fpgetround(3C)
fpgetround, fpsetround, fpgetmask, .. fpgetround(3C)
fpgetsticky, fpsetsticky IEEE/ccniceevcncnsernunnes fpgetround(3C)
fprintf, sprintf print formatted printf(3S)
fpsetmask, fpgetsticky, fpsetsticky/coveveereene fpgetround(3C)
fpsetround, fpgetmask, fpsetmask, fpgetround(3C)
fpsetsticky IEEE floating point/ecoesverveinnns fpgetround(3C)
fputc, putw put character or word putc(3S)

Programmer’s Reference Manual

puts,

mallinfo memory allocator malloc,
valloc, memory allocator malloc,
fopen,

nextafter, scalb manipulate parts/
input scanf,

file pointer in a stream

pointer in a stream

stat, Istat,

information statvfs,

in-memory state with that on the/
a stream fseek, rewind,
communication package stdipc:
length truncate,

function erf, erfc error

function and complementary error
gamma, lgamma log gamma
hypot Euclidean distance
libwindows windowing terminal
matherr error-handling

prof profile within a

math math

intro introduction to

j0, j1, jn, yO, y1, yn Bessel

crypt password and file encryption
logarithm, power, square root
ceiling, remainder, absolute value
mbstowcs, westombs multibyte string
asinh, acosh, atanh hyperbolic
sys3b machine-specific

atanf, atan2, atan2f trigonometric
fread,

gamma, lgamma log

to string ecvt, fcvt,
/tcgetpgrp, tcsetpgrp, tegetsid
control priocntlset

signal abort

cflow

cxref

crypt, setkey, encrypt

ctermid

lexical tasks lex

/jrand48, srand48, seed48, lcong48
siginfo signal

Permuted Index

Permuted Index

fputs put a string on a stream puts3S)
fread, fwrite binary input/output fread(3S)
free, realloc, calloc, mallopt, malloc(3X)
free, realloc, calloc, memalign,ccccvereerersensenensrnsenee malloc(3C)
freopen, fdopen open a stream fopen(3S)
frexp, Idexp, logb, modf, modff, frexp(3C)
fscanf, sscanf convert formatted scanf(35)
fseek, rewind, ftell reposition a fseek(3S)
fsetpos, fgetpos reposition a file fsetpos(3C)
fstat get file status stat(2)
fstatvfs get file system statvfs(2)
fsync synchronize a file’s fsync(2)
ftell reposition a file pointer in fseek(3S)
ftok standard interprocess stdipc(3C)
ftruncate set a file to a specifiedcccoveerrenirssiiarnneen truncate(3C)
ftw, nftw walk a file tree ftw(3C)
function and complementary error erf(3M)
function erf, erfc error erf(3M)
function gamma(3M)
function hypot(3M)
function library libwindows(3X)
function matherr(3M)
function prof(5)
functions and constants math(5)
functions and libraries intro(3)
functions bessel: bessel(3M)
functions cypt(3X)
functions /sqrt, sqrtf exponential, exp(3M)
functions /rint, remainder floor, floor(3M)
functions mbstring: mbstring(3C)
functions /coshf, tanh, tanhf, sinh(3M)
functions sys3b(2)
functions /acos, acosf, atan, trig(3M)
fwrite binary input/output fread(3S)
gamma function ’ gamma(3M)
gamma, lgamma log gamma functionccooueeuuee gamma(3M)
gevt convert floating-point numberoiiviveincnnenne. ecvt(3C)
general terminal interface termios(2)
generalized process scheduler priocntlset(2)
generate an abnormal terminationccveiveninncnnennens abort(3C)
generate C flowgraph cflow(1)
generate C program cross-reference cxref(1)
generate encryption crypt(3C)
generate file name for terminal ctermid(3S)
generate programs for simple lex(1)
generate uniformly distributed/ouecuvereennnee. drand48(3C)
generation information siginfo(5)

15

Permuted Index

rand, srand simple random-number
character or word from a stream
or word from a stream getc,
current user context

working directory

and time

put in a file system independent/
user,/ getuid, geteuid, getgid,
name

user, effective user, real/ getuid,
effective user,/ getuid, geteuid,
setgrent, endgrent, fgetgrent get/
endgrent, fgetgrent get/ getgrent,
fgetgrent get/ getgrent, getgrgid,
supplementary group access list/
of interval timer

getmntent,

file entry

stream
argument vector

and/ getpid, getpgrp, getppid,
process, process group,/ getpid,
get process, process group, and/
process group,/ getpid, getpgrp,

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent, getpwuid,
endpwent, fgetpwent/ getpwent,
maximum system resource/
stream

getitimer, setitimer

endspent, fgetspent, Ickpwdf,/
fgetspent, Ickpwdyf,/ getspent,
string

set the date and time

get real user, effective user,/
getutline, pututline, setutent,/
pututline, setutent,/ getut:
setutent,/ getut: getutent,

getut: getutent, getutid,

/setutxent, endutxent, utmpxname,
/endutxent, utmpxname, getutmp,
getutxline, pututxline, setutxent,/

16

generator rand(3C)
getc, getchar, fgetc, getw get getc(3S)
getchar, fgetc, getw get character getc(35)

getcontext, setcontext get and setcccoeviecrercnnne getcontext(2)

getcwd get path-name of currentcoc.ccvvecenrrenerennnes getewd(3C)
getdate convert user format dateccoceerrrverrrerernnnne getdate(3C)
getdents read directory entries andccoocemnercrrrrenee getdents(2)
getegid get real user, effective getuid(2)
getenv return value for environmentcccvvevrrenes getenv(3C)
geteuid, getgid, getegid get real getuid(2)
getgid, getegid get real user, getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3C)
getgrnam, setgrent, endgrent,ccocecvcvcercrnrenrennnns getgrent(3C)
getgroups, setgroups get or set ... getgroups(2)
getitimer, setitimer get/set valueccccoeererrrenrrnes getitimer(3C)
getlogin get login name getlogin(3C)
getmntany get mnttab file entryccocvenrcecnnee getmntent(3C)
getmntent, getmntany get mnttabccccccvuneeen. getmntent(3C)
getmsg get next message off a getmsg(2)
getopt get option letter from getopt(3C)

getpass read a passWordccniccssscninsecsesssssensans getpass(3C)

getpgid get process, process group,oesssssssrees getpid(2)
getpgrp, getppid, getpgid get getpid(2)
getpid, getpgrp, getppid, getpgid getpid(2)
getppid, getpgid get process, getpid(2)
getpw get name from UID getpw(30)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
getrlimit, setrlimit control getrlimit(2)
gets, fgets get a string from a gets(3S)
get/set value of interval imerccooeeeveeeensrrernnne getitimer(3C)
getsid get session ID getsid(2)
getspent, getspnam, setspent, getspent(3C)
getspnam, setspent, endspent,c.ccece.. getspent(3C)
getsubopt parse suboptions from a getsubopt(3C)
gettimeofday, settimeofday get orccccuu..... gettimeofday(3C)
gettxt retrieve a text string gettxt(3C)
getuid, geteuid, getgid, getegid getuid(2)
getut: getutent, getutid, getut(3C)
getutent, getutid, getutline, getut(3C)
getutid, getutline, pututline, getut(3C)
getutline, pututline, setutent,/ getut(3C)
getutmp, getutmpx, updwtmp,/ getutx(3C)
getutmpx, updwtmp, updwtmpx access/ getutx(3C)
getutx: getutxent, getutxid,ooeeeeeiriiinciiiininiinees getutx(3C)

Programmer’s Reference Manual

Permuted Index

pututxline, setutxent,/ getutx:
setutxent,/ getutx: getutxent,
getutx: getutxent, getutxid,
getvfsent, getvfsfile, getvfsspec,
getvfsany get vfstab file entry

get vfstab file entry getvfsent,
file entry getvfsent, getvfsfile,
stream getc, getchar, fgetc,
gmatch shell

matching

and time to/ ctime, localtime,
setjmp, longjmp non-local
sigsetjmp, siglongjmp a non-local
setgroups get or set supplementary
initialize the supplementary

/get real user, effective user, real
/getpgid get process, process
setgrent, endgrent, fgetgrent get
setpgid set process

setpgrp set process

set terminal foreground process
user, real group, and effective
setuid, setgid set user and
Ichown, fchown change owner and
send a signal to a process or a
send a signal to a process or a
maintain, update, and regenerate
ssignal,

stdarg

varargs

isprint, isgraph, isascii character
elf_errmsg, elf_errno error
mblen, wctomb multibyte character
hsearch, hcreate, hdestroy manage
elf hash compute

search tables hsearch,

hsearch, hcreate,

retrieve archive member
class-dependent object file
retrieve class-dependent section
implementation-specific/ limits
retrieve class-dependent program
numbers or SCCS commands
commands help ask for

layers protocol used between
jagent

hash search tables

Permuted Index

getutxent, getutxid, getutxline, getutx(3C)
getutxid, getutxline, pututxline, getutx(3C)
getutxline, pututxline, setutxent,/coccecoecerseenssrecunns getutx(3C)
getvfsany get vfstab file entry getvfsent(3C)
getvfsent, getvfsfile, getviSSpec,ccueererssesseneas getvfsent(3C)
getvfsfile, getvfsspec, getvfsanycccoeccecscscrncnne getvfsent(3C)
getvfsspec, getvfsany get vfstabcccoeueeecercnncneee. getvfsent(3C)
getw get character or word from a getc(3S)
global pattern matching gmatch(3G)
gmatch shell global pattern gmatch(3G)
gmtime, asctime, tzset convert dateccccoververernennns ctime(3C)
goto setjimp(3C)
goto with signal state sigsetjmp(3C)
group access list IDs getgroups,ccccoeveesrvernnnne getgroups(2)
group access list initgroups initgroups(3C)
group, and effective group IDs getuid(2)
group, and parent process IDs getpid(2)
group file entry /getgrnam, getgrent(3C)
group ID setpgid(2)
group ID setpgrp(2)
group ID tcsetpgrp tesetpgrp(30)
group IDs /get real user, effectiveccoevvrrerrnrennnnnens getuid(2)
group IDs . setuid(2)
group of a file chown, chown(2)
group of processes kill .. kill2)
group of processes /sigsendset sigsend(2)
groups of programs make .. make(1)
gsignal software signals ssignal(3C)
handle variable argument list stdarg(5)
handle variable argument list varargs(5)
handling /iscntrl, ispunct, ctype(30)
handling elf_errmsg(3E)
handling mbchar: mbtowc, mbchar(3C)
hash search tables hsearch(3C)
hash value elf_hash(3E)
hcreate, hdestroy manage hash hsearch(3C)
hdestroy manage hash search tablesccccevcveuneuecee hsearch(3C)
header elf getarhdr elf_getarhdr(3E)
header /elf32_newehdr retrieveveeeenne elf_getehdr(3E)
header elf getshdr: elf32_getshdrccuveuueune. elf_getshdr(3E)
header file for limits(4)
header table /elf32_newphdrcirvcncenens elf_getphdr(3E)
help ask for help with message help(1)
help with message numbers or SCCSccceceeverinieccnrenee help(1)
host and windowing terminal under/ccocueuucuucnee. layers(5)
host control of windowing terminal jagent(5)
hsearch, hcreate, hdestroy manageccvvuvieincnnee hsearch(3C)

17

Permuted Index

tanhf, asinh, acosh, atanh

getsid get session

setpgid set process group

setpgrp set process group

setsid set session

terminal foreground process group
elf_getident retrieve file

what print

shmget get shared memory segment
set supplementary group access list
process group, and parent process
real group, and effective group
setuid, setgid set user and group
/fpsetmask, fpgetsticky, fpsetsticky
core core

limits header file for

entries and put in a file system
langinfo language

dlerror get diagnostic

elf_newscn, elf_nextscn get section
/table, debugging and line number
localeconv get numeric formatting
nl_langinfo language

siginfo signal generation

statvfs, fstatvfs get file system
sysinfo get and set system

sysfs get file system type
supplementary group access list
access list initgroups

popen, pclose

fsync synchronize a file’s

fscanf, sscanf convert formatted
ungetc push character back onto
fread, fwrite binary

poll

stdio standard buffered

clearerr, fileno stream status
insque, remque

element from a queue

process until signal sigsuspend
install

abs, labs return

ab4l, 164a convert between long
sputl, sgetl access long

atol, atoi convert string to

18

hyperbolic functions /tanh, sinh (3M)
hypot Euclidean distance functioncccoceeeeecssreenns hypot(3M)
ID getsid(2)
ID setpgid(2)
ID setpgrp(2)
ID setsid(2)
ID tcsetpgrp set tesetpgrp(3C)
identification data elf_getident(3E)
identification strings what(1)
identifier shmget(2)
IDs getgroups, setgroups get orccouessecemseennns getgroups(2)
IDs /getppid, getpgid get Process,owemsersrisneees getpid(2)
IDs /get real user, effective USer,ccoocceuemeeeecsererrnnene getuid(2)
IDs setuid(2)
IEEE floating point environment/ fpgetround(3C)
image file core(4)
implementation-specific constants limits(4)
independent format /read directoryeecoeeree getdents(2)
information constants langinfo(5)
information dlerror(3X)
information /elf ndxscn, elf_getscn(3E)
information from an object file strip(1)
information localeconv(3C)
information nl_langinfo(3C)
information siginfo(5)
information statvfs(2)
information strings sysinfo(2)
information sysfs(2)
initgroups initialize the initgroups(3C)
initialize the supplementary groupccoeeccsenens initgroups(3C)
initiate pipe to/from a process popen(3S)
in-memory state with that on the/ fsync(2)
input scanf, scanf(3S)
input stream ungetc(3S)
input/output fread(3S)
input/output multiplexing poll(2)
input/output package stdio(35)
inquiries ferror, feof, ferror(3S)
insert/remove element from a queuecccoocuevcncnnee. insque(3C)
insque, remque insert/remove - insque(3C)
install a signal mask and suspendc...coeeuvserreees sigsuspend(2)
install commands install(1M)
install install commands install(IM)
integer absolute value abs(3C)
integer and base-64 ASCII string a641(30)
integer data in a/ sputl(3X)
integer strtol, strtoul, strtol(3C)

Programmer’s Reference Manual

13tol, 1tol3 convert between 3-byte
between 3-byte integers and long
cscope

tcgetsid general terminal

pipe create an

stdipc: ftok standard

sleep suspend execution for
setitimer get/set value of

libraries
libraries

commands

and error numbers
intro

libraries intro

intro

intro

commands intro
error numbers intro

/islower, isupper, isalpha,
/isxdigit, islower, isupper,

/isentrl, ispunct, isprint, isgraph,
ttyname,

/isupper, isalpha, isalnum, isspace,
isupper, isalpha, isalnum,/ ctype:
character buffer is encrypted
/isspace, iscntrl, ispunct, isprint,
isspace,/ ctype: isdigit, isxdigit,
fpclass, unordered determine type/
unordered determine type of/ isnan,
determine type of/ isnan, isnand,
/isalnum, isspace, iscntrl, ispunct,
/isalpha, isalnum, isspace, iscntrl,
/islower, isupper, isalpha, isalnum,
system

ctype: isdigit, isxdigit, islower,
isalpha, isalnum,/ ctype: isdigit,
functions bessel:

bessel: j0,

terminal

bessel: 0, j1,

/erand48, Irand48, nrand48, mrand48,
a group of processes

integers and long integers

and base-64 ASCII string aé4l,

Permuted Index

integers and long integers

Permuted Index

13tol(3C)

13tol(3C)

integers 13tol, Itol3 convert

interactively examine a C program

interface /tcgetpgrp, tcsetpgrp,

................... cscope(1)

termios(2)

interprocess channel

interprocess communication package
interval

pipe(2)

................. stdipc(3C)

sleep(3C)

interval timer getitimer,

intro introduction to file formats

getitimer(3C)

intro introduction to functions and

intro(4)
intro(3)

intro introduction to math

intro(3M)

intro introduction to miscellany
intro introduction to programming

intro(5)
intro(1)

intro introduction to system calls

intro(2)

introduction to file formats

intro(4)

introduction to functions and

intro(3)

introduction to math libraries

intro(3M)

introduction to miscellany

intro(5)

introduction to programming

intro(1)

introduction to system calls and

intro(2)

ioctl control device

ioctl(2)

isalnum, isspace, iscntrl, ispunct,/
isalpha, isalnum, isspace, iscntrl, /
isascii character handling

isatty find name of a terminal
isentrl, ispunct, isprint, isgraph,/

isdigit, isxdigit, islower,

ctype(30)

isencrypt determine whether acccocovveveveernrnnnennes
isgraph, isascii character handling

islower, isupper, isalpha, isalnum,
isnan, isnand, isnanf, finite,

isencrypt(3G)

. ctype(3C)
ctype(3C)
isnan(3C)

isnand, isnanf, finite, fpclass,
isnanf, finite, fpclass, unordered

isnan(3C)
isnan(3C)

isprint, isgraph, isascii character/

ctype(30)

ispunct, isprint, isgraph, isascii/
isspace, iscntrl, ispunct, isprint,/

ctype(30)
ctype(3C)

issue a shell command

system(3S)

isupper, isalpha, isalnum, isspace,/

isxdigit, islower, isupper,

.................. ctype(3C)

ctype(30)

j0, j1, jn, y0, y1, yn Bessel

bessel(3M)

j1, jn, y0, y1, yn Bessel functions

bessel(3M)

jagent host control of windowing

jagent(5)

jin, Y0, y1, yn Bessel functions

bessel(3M)

jrand48, srand48, seed48, lcong48/

drand48(3C)

kill send a signal to a process or
13tol, 1tol3 convert between 3-byte

kill(2)
13tol(3C)

164a convert between long integer

a641(3C)

19

Permuted Index

abs,

constants

nl_types native

langinfo

nl_langinfo

strftime

and windowing terminal under/
host and windowing terminal under
group of a file chown,

/setspent, endspent, fgetspent,
/mrand48, jrand48, srand48, seed48,

nextafter, scalb manipulate/ frexp,
remainder div,

ftruncate set a file to a specified
getopt get option

with/ /build a list of severity
lexical tasks

lex generate programs for simple
Isearch,

gamma,

intro introduction to functions and
intro introduction to math
elf_version coordinate ELF

ar maintain portable archive or

elf object file access

windowing terminal function
ordering relation for an object
function library
implementation-specific constants
ulimit get and set user

/strip symbol table, debugging and
Isearch, Ifind

profile data lprof display

Id

read the value of a symbolic
link

symlink make a symbolic
a.out ELF (Executable and

1dd

or set supplementary group access
the supplementary group access
nlist get entries from name

nm print name

20

labs return integer absolute value abs(3C)
langinfo language information langinfo(5)
language data types nl_types(5)
language information constants langinfo(5)
language information nl_langinfo(3C)
language specific strings strftime(4)
layers protocol used between host layers(5)
layers(1) /protocol used between layers(5)
Ichown, fchown change owner andccoccoevevcerrsneeneene chown(2)
Ickpwdf, ulckpwdf manipulate shadow/ getspent(3C)
lcongd8 generate uniformly/ drand48(3C)
1d link editor for object files 1d(1)
1dd list dynamic dependendies 1dd(1)
ldexp, logb, modf, modff, frexp(3C)
Idiv compute the quotient and div(3C)
length truncate, truncate(3C)
letter from argument vector getopt(3C)
levels for an application for use addseverity(3C)
lex generate programs for simple lex(1)
lexical tasks lex(1)
Ifind linear search and update Isearch(3C)
Igamma log gamma function gamma(3M)
libraries intro(3)
libraries intro(3M)
library and application versions elf_version(3E)
library ar(1)
library elf(3E)
library libwindows libwindows(3X)
library lorder find lorder(1)
libwindows windowing terminal libwindows(3X)
limits header file for limits(4)
limits ulimit(2)
line number information from an/ strip(1)
linear search and update Isearch(3C)
line-by-line execution count lprof(1)
link editor for object files 1d(1)
link link to a file link(2)
link readlink readlink(2)
link to a file link(2)
link to a file symlink(2)
Linking Format) files a.out(4)
lint a C program checker lint(1)
list dynamic dependencies 1dd(1)
list IDs getgroups, setgroups getc.cvecevverecsuns getgroups(2)
list initgroups initialize initgroups(3C)
list nlist(3E)
list of an object file nm(1)

Programmer’s Reference Manual

application/ addseverity build a
stdarg handle variable argument
varargs handle variable argument
output of a variable argument
modify and query a program’s
information

convert date and time to/ ctime,
end, etext, edata last

text, or data plock

mlockall, munlockall

mlock, munlock

maillock manage

lockf record

gamma, lgamma

powf, sqrt, sqrtf/ exp, expf, cbrt,
sqrtf/ exp, expf, cbrt, log, logf,
exp, expf, cbrt, log, logf, log10,
/pow, powf, sqrt, sqrtf exponential,
manipulate parts of/ frexp, 1dexp,
sqrt, sqrtf/ exp, expf, cbrt, log,
getlogin get

cuserid get character

setjmp,

an object library

execution count profile data
srand48, seed48,/ drand48, erand48,
update

stat,
integers and long integers 13tol,

values

sgetl access long integer data in a
sys3b

mé

maillock manage lockfile for user’s
mailbox

library ar

groups of programs make
makedev,

user contexts

device number

free, realloc, calloc, mallopt,
mallopt, mallinfo memory allocator
memalign, valloc, memory allocator
mallog, free, realloc, calloc,

Permuted Index

Permuted Index

list of severity levels for an addseverity(3C)
list stdarg(5)
list varargs(5)
list /vsprintf print formattedcccooceomeuiiiinsiinininnns vprintf(3S)
locale SEHlOCaleoemmenesermssisssisiisiessnsessasnssensscsane setlocale(3C)
localeconv get numeric formattingcc.ccoeceeuees localeconv(3C)
localtime, gmtime, asctime, tzset ctime(3C)
locations in Programc.ceceeseesesscsssessscnces end(3C)
lock into memory or Unlock Process,cuuuiiisnens plock(2)
lock or unlock address Spacecoeeesercusinsincncnnes mlockall(3C)
lock (or unlock) pages in MEMOTYcccceureemserserseessenscnses mlock(3C)
lockf record locking on filescovceeneueiiciniccninnncns lockf(3C)
lockfile for user’s mailbox maillock(3X)
10cKing ON fileS couuuunerneunrscnrssssssssssssnssssissssssssssisees lockf(3C)
log gamma fUunCHON ...c.cccueureerecesnerecnrecsisisissisianinncinns gamma(3M)
log, logf, log10, log10f, pow, exp(3M)
log10, log10f, pow, powf, Sqrt,cccceseveecueiunens exp(3M)
log10f, pow, powf, sqrt, SQItf/ .ccecnvcomemcenccrsscssiinnininee exp(3M)
logarithm, power, square root/ecceieceess exp(3M)
logb, modf, modff, nextafter, scalbccoeerreumecerrreumencns frexp(30)
logf, log10, log10f, pow, powf, exp(3M)
login name getlogin(3C)
login name of the USerciicersncsienns cuserid(3S)
longjmp non-local goto .. setjmp(3C)
lorder find ordering relation forcccieiseserisencnne lorder(1)
lprof display line-by-line lprof(1)
Irand48, nrand48, mrand48, jrand48,c.cceeeer drand48(3C)
Isearch, Ifind linear search and Isearch(3C)
Iseek move read/write file pointercccocoveviineereeccnncs Iseek(2)
Istat, fstat get file status stat(2)
Itol3 convert between 3-bytec.coe........ 13tol(3C)
M4 MACTO PIOCESSOT .ecverversessessnsensnsssnssans m4(1)
machine-dependent values values(5)
machine-independent fashion sputl,ccoveiecinivennnnae sputl(3X)
machine-specific functionsccccceueeriernrnecs sys3b(2)
macro processor m4(1)
MAIIDOX .voeereertecrrere it siesst s stessesanans maillock(3X)
maillock manage lockfile for user’sccoevereenrennes maillock(3X)
maintain portable archive or ar(1)
maintain, update, and regenerate make(1)
major, minor manage a device number makedev(3C)
makecontext, swapcontext manipulate makecontext(3C)

makedev, major, minor manage a
mallinfo memory allocator malloc,
mallog, free, realloc, calloc,

makedev(3C)
malloc(3X)

mallog, free, realloc, calloc,

malloc(3X)
malloc(3C)

mallopt, mallinfo memory allocator

malloc(3X)

21

Permuted Index

makedev, major, minor

tsearch, tfind, tdelete, twalk
hsearch, hcreate, hdestroy
maillock

swapctl

memcntl memory

sigaction detailed signal

sigpause simplified signal

elf flagsen, elf_flagshdr

/logb, modf, modff, nextafter, scalb
/setpwent, endpwent, fgetpwent
/sigaddset, sigdelset, sigismember
entry /fgetspent, Ickpwdf, ulckpwdf
an object file mcs

makecontext, swapcontext

strfind, strrspn, strtrns string

ascii

mmap

mprotect set protection of memory
signal sigsuspend install a signal
change or examine signal

umask set and get file creation
regular expression compile and
regular expression compile and
gmatch shell global pattern

math

intro introduction to

getrlimit, setrlimit control

multibyte character handling

handling mbchar: mbtowc,

functions mbstring:

multibyte string functions

character handling mbchar:

of an object file

state with that on the physical

mallog, free, realloc, calloc,

elf_next sequential archive

elf rand random archive

elf_getarhdr retrieve archive

offsetof offset of structure

memmove, memset memory/ memory:
memset memory/ memory: memccpy,
memory/ memory: memccpy, memchr,

memory: memccpy, memchr, memcmp,

22

manage a device number makedev(3C)
manage binary search trees tsearch(3C)
manage hash search tables hsearch(3C)

manage lockfile for user’s mailboxccceeeueerrrrenss maillock(3X)

manage swap space swapctl(2)
management control memcntl(2)
management sigaction(2)
management /sigrelse, sigignore, signal(2)
manipulate flags /elf flagphdr, werennenns €lf_flagdata(3E)
manipulate parts of floating-point/c.cceeevceveersrrrenens frexp(3C)
manipulate password file entrycccovcervrcerrrnne. getpwent(3C)
manipulate sets of signals sigemptyset(3C)
manipulate shadow password filec..cceerrverrrens getspent(3C)
manipulate the comment section of mcs(1)
manipulate user contexts makecontext(3C)
manipulations str: str(3G)
map of ASCII character set ascii(5)
map pages of memory mmap(2)
mapping mprotect(2)
mask and suspend process untilcceceevruerrseeees sigsuspend(2)
mask sigprocmask sigprocmask(2)
mask umask(2)
match routines /step, advance regexp(5)
match routines /step, advanceoeoeverresseneene regexpr(3G)
matching gmatch(3G)
math functions and constants math(5)
math libraries intro(3M)
math math functions and constants math(5)

matherr error-handling functionouesren. matherr(3M)
maximum system resource consumption getrlimit(2)

mbchar: mbtowc, mblen, wctombeeeeeeeieeveseeererennne mbchar(3C)
mblen, wctomb multibyte characterc..cooeeueenrrencns mbchar(3C)
mbstowcs, westombs multibyte string mbstring(3C)
mbstring: mbstowcs, westombs —............. .. mbstring(3C)

mbtowc, mblen, wctomb multibyte mbchar(3C)

mcs manipulate the comment Sectionc...coeevseerresererrerene mcs(1)
medium /a file’s in-memory fsync(2)
memalign, valloc, memory allocatoro..ceverserereenes malloc(3C)
member access elf next(3E)
member access elf_rand(3E)
member header elf_getarhdr(3E)
member offsetof(3C)
memccpy, memchr, memcmp, MEMCPY, ...cceeeercernnee memory(3C)
memchr, mememp, memcpy, memmove, . . memory(3C)
memcmp, memcpy, memmove, memset memory(3C)

memcntl memory management control memcntl(2)
memcpy, memmove, memset MEMOTY/ccvueueces memory(3C)

Programmer’s Reference Manual

Permuted Index

/memccpy, memchr, memcmp, memcpy,
realloc, calloc, memalign, valloc,
realloc, calloc, mallopt, mallinfo

shmectl shared

copylist copy a file into

spawn new process in a virtual
mementl

mprotect set protection of
memcpy, memmove, memset memory/
munlock lock (or unlock) pages in
mmap map pages of

munmap unmap pages of
memcmp, memcpy, memmove, memset
shmop: shmat, shmdt shared

data plock lock into

mincore determine residency of
shmget get shared

msync synchronize

memchr, memcmp, memcpy, memmove,
catopen, catclose open/close a
catgets read a program

msgctl

help ask for help with

getmsg get next

putmsg send a

fmtmsg display a

msgop: msgsnd, msgrcv

msgget get

strerror get error

perror print system error

psignal, psiginfo,- system signal
psignal, psiginfo,- system signal
memory pages

makedev, major,

intro introduction to

directories in a path
special or ordinary file
calendar time

pages in memory
address space

getmntent, getmntany get

chmod, fchmod change
manipulate/ frexp, ldexp, logb,

Permuted Index

memmove, memset Memory Operations memory(3C)
memory allocator malloc, free, malloc(3C)
memory allocator mallog, free, malloc(3X)
memory control operations shmctl(2)
memory copylist(3G)
memory efficient way vfork vfork(2)
memory management control memcntl(2)
memory mapping mprotect(2)
memory: memccpy, memchr, MEMCMP, w.vcuevnecreseeese memory(3C)
memory mlock, mlock(3C)
memory mmap(2)
memory munmap(2)
memory operations /memccpy, memchr, memory(3C)
memory operations shmop(2)
memory or unlock process, text, OF .cccccoceuvcviiveirsieirsineens plock(2)
memory pages mincore(2)
memory segment identifier shmget(2)
memory with physical storage msync(3C)
memset memory operations /memccpy,oceseseeee memory(3C)
message catalogue catopen(3C)
message catgets(3C)
message control operations msgctl(2)
message numbers or SCCS commandscceeueee brnsensensenaes help(1)
message off a stream getmsg(2)
message on a stream putmsg(2)

message on stderr or system consolecccoeveereneens fmtmsg(3C)

message operations msgop(2)
message queue msgget(2)
message string strerror(3C)
messages perror(3C)
messages psignal, psiginfo,- system/cccceeereeennes psignal(3C)
messages /system signal messagesoueereenens psignal(3C)
mincore determine residency of mincore(2)
minor manage a device numbercoccoeuvererneneens makedev(3C)
miscellany intro(5)
mkdir make a directory mkdir(2)
mkdirp, rmdirp create, remove mkdirp(3G)
mkfifo create a new FIFOccvevvverervennenes mkfifo(3C)
mknod make a directory, or a mknod(2)

mktemp make a unique file nameciiiciriininnee mktemp(3C)
mktime converts a tm structure to acccecevereveeenee mktime(3C)
mlock, munlock lock (or unlock) mlock(3C)
mlockall, munlockall lock or unlockcccceevereeuneenee mlockall(3C)

mmap map pages of memory mmap(2)
mnttab file entryccenininrinnincnininenn. getmntent(3C)
mode of file chmod(2)
modf, modff, nextafter, scalb frexp(3C)

23

Permuted Index

parts of/ frexp, 1dexp, logb, modf,
utime set file access and
setlocale

mount

Iseek

mapping
drand48, erand48, Irand48, nrand4s,

operations

msgop: msgsnd,

msgop:

physical storage

mbchar: mbtowe, mblen, wctomb
mbstring: mbstowcs, westombs
by xt driver xtproto

poll input/output

memory mlock,

space mlockall,

return the last element of a path
directory name of a file path
tmpnam, tempnam create a
ctermid generate file

getpw get

getenv return value for environment
getlogin get login

nlist get entries from

nm print

mktemp make a unique file
dirname report the parent directory
rename change the

ttyname, isatty find

uname get

cuserid get character login
realpath returns the real file
pathfind search for named file in
pathfind search for

nl_types

bgets read stream up to

getmsg get

frexp, 1dexp, logb, modf, modff,
ftw,

time-sharing process

24

modff, nextafter, scalb manipulateccccc.ueccemrerrrierenrnnene frexp(3C)
modification times utime(2)
modify and query a program’s localeccoeuuren. setlocale(3C)
monitor prepare execution profilecccceeerererennene. monitor(3C)
mount a file system mount(2)
mount mount a file system mount(2)
move read/write file pointer Iseek(2)
mprotect set protection of memorycccocurvirecunenene mprotect(2)
mrand48, jrand48, srand48, seed48,/ . drand48(3C)
msgctl message control operationsoeceerreseeesrenens msgctl(2)
msgget get message queue msgget(2)
msgop: msgsnd, msgrcv message msgop(2)
Isgrcv message operations msgop(2)
msgsnd, msgrcv message operations msgop(2)
msync synchronize memory withcccocccevenernrrennnnne. msync(3C)
multibyte character handling mbchar(3C)
multibyte string functions mbstring(3C)
multiplexed channels protocol usedccoecemsreernrennes xtproto(5)
multiplexing poll(2)
munlock lock (or unlock) pages inccooveeerecenrvenernnens mlock(3C)
munlockall lock or unlock address ... mlockall(3C)
munmap unmap pages of memory munmap(2)
name basename basename(3G)
name dirname report the parentcoceesrerereenrns dirname(3G)
name for a temporary file tmpnam(3S)
name for terminal ctermid(3S)
name from UID getpw(3Q)
NAME cevereereerieraereessessessessesssossossassesnssssssssessesns getenv(30)
name getlogin(3C)
name list nlist(3E)
name list of an object file nm(1)
name mktemp(3C)
name of a file path name dirname(3G)
name of a file rename(2)
name of a terminal ttyname(3C)
name of current UNIX system uname(2)
name of the user cuserid(3S)
name realpath(3C)
named directories pathfind(3G)
named file in named directoriesc.eoeeeueerverenene pathfind(3G)
native language data types nl_types(5)
next delimiter bgets(3G)

next message Off a Streamocccervcuecenscrssenseenssecsens getmsg(2)

nextafter, scalb manipulate parts/cccomnremnrrcerrrens frexp(3C)
nftw walk a file tree ftw(3C)
nice change priority of a nice(2)
nlist get entries from name list ... nlist(3E)

Programmer’s Reference Manual

Permuted Index

file

setjmp, longjmp

sigsetjmp, siglongjmp a

seed48,/ drand48, erand48, lrand48,
/symbol table, debugging and line
determine type of floating point
major, minor manage a device
convert string to double-precision
fcvt, gevt convert floating-point
uniformly distributed pseudo-random
manipulate parts of floating-point
to system calls and error

help ask for help with message
localeconv get

dis

dlclose close a shared

dlopen open a shared

the address of a symbol in shared
elf

dump dump selected parts of an
elf_end finish using an

get the base offset for an

retrieve class-dependent

the comment section of an

nm print name list of an

and line number information from an
cof2elf COFF to ELF

elf32_fsize return the size of an

1d link editor for

print section sizes in bytes of

find ordering relation for an
elf_getbase get the base

offsetof

ungetc push character back
dlopen

fopen, freopen, fdopen
command p2open, p2close
dup duplicate an

dup?2 duplicate an

open
catopen, catclose

rewinddir, closedir/ directory:
rewinddir, closedir directory

Permuted Index

nl_langinfo language informationccccceeeuneer nl_langinfo(3C)
nl_types native language data typesccceveeerunee. nl_types(5)

nm print name list of an object nm(1)
non-local goto setjmp(3C)
non-local goto with signal statecccccccoviicunnneee. sigsetjmp(3C)
nrand48, mrand48, jrand48, srand48, drand48(3C)
number information from an object/cieeercnncniisinnns strip(1)
number /finite, fpclass, unordered vereenee. isNAN3C)
nUMbEr MAKEdEV,cceeeneerererrensennsesssssessssessosusseneens makedev(3C)
number strtod, atof, strtod (3C)
number to string ecvt, ecvt(3C)
numbers /seed48, lcongd8 generateoveiveuunce drand48(3C)
numbers /modff, nextafter, scalbccccceervirciririnnnnne frexp(3C)
numbers intro introduction intro(2)
numbers or SCCS commands help(1)
numeric formatting informationc.cccccecscueien localeconv(3C)
object code disassemblerooveeeecnciiiicuiennns dis(1)
OBJECE wvurtrerenrrnrrenntsntsss s cnssessesssssensenacs weeene. dlclose(3X)
ODJECL .verineinirnrnnntentess s ssissssssssns st st sanns dlopen(3X)
object dlsym get dlsym(3X)
object file access library elf(3E)
object file dump(1)
object file ... elf_end(3E)
object file elf_getbase elf_getbase(3E)
object file header /elf32_newehdrcocoeceeeee elf_getehdr(3E)
object file mcs manipulate mcs(1)
object file ..t senens nm(1)
object file /table, debuggIngcoeverererrrerecrserenenneccnnennes strip(1)
object file translationieeeoeiseissninnsseereesensessenss cof2elf(1)
object file type elf fsize: elf_fsize(3E)
Object fileSomrimrinerrnsennrnsrissssssessisssssss s sens 1d(1)
object files sizecrrrieririerinneens ... size(1)
object library lorder ... <ene. lorder(1)
offset for an object fileccceoueveerrirernnee .. elf_getbase(3E)
offset of structure memberccccevueeune offsetof (3C)

offsetof offset of structure memberccooveerecnirneenn. offsetof(3C)

onto input SIreamcccvivevenesneersensnsesenenseennne ungetc(3S)
open a shared objectcceuveeererrernrnens dlopen(3X)
OPEN @ SITEAMeunerrreererrenrrressesssessesssensas fopen(3S)
open, close pipes to and from accceeevverneineesieennns p2open(3G)
open file descriptor dup(2)
open file descriptor dup2(3C)
open for reading or writingc.......... open(2)

open open for reading or WIitingcccoeeerrereirerscserennnee open(2)

open/close a message catalogue catopen(3C)
opendir, readdir, telldir, seekdir, directory(3C)
operations /telldir, seekdir, directory(3C)

25

Permuted Index

memcpy, memmove, memset memory
msgctl message control

msgop: msgsnd, msgrcv message
semctl semaphore control

semop semaphore

shmctl shared memory control
shmop: shmat, shmdt shared memory
strespn, strtok, strstr string

getopt get

fentl file control

mlock, munlock lock

library lorder find

make a directory, or a special or
/vfprintf, vsprintf print formatted
fprintf, sprintf print formatted
chown, Ichown, fchown change
from a command p2open,

to and from a command

standard buffered input/output
standard interprocess communication
mlock, munlock lock (or unlock)
determine residency of memory
mmap map

munmap unmap

path name dirname report the

get process, process group, and
getsubopt

dump dump selected

/modff, nextafter, scalb manipulate
functions crypt

endpwent, fgetpwent manipulate
Ickpwdf, ulckpwdf manipulate shadow
putpwent write

putspent write shadow

getpass read a

create, remove directories in a
return the last element of a

the parent directory name of a file
variables fpathconf,

named directories

directory getcwd get

pathconf get configurable

gmatch shell global

process popen,
signals that are blocked and

26

operations /memchr, memamp,ceceieriincrecunes memory(3C)
operations msgctl(2)
operations msgop(2)
operations semctl(2)
operations semop(2)
operations shmctl(2)
operations shmop(2)
operations /strpbrk, strspn, string(3C)
option letter from argument vectorcecccovscernner getopt(3C)
options fentl(5)
(or unlock) pages in memory mlock(3C)
ordering relation for an object lorder(1)
ordinary file mknod mknod(2)
output of a variable argument listccocceoseuuecerrrnnne vprintf(3S)
output printf, printf(3S)
owner and group of a file chown(2)
p2close open, close pipes to and p2open(3G)
p2open, p2close open, close pipes p2open(3G)
package stdio stdio(35)
package stdipc: ftok stdipc(3C)
pages in memory mlock(3C)
pages mincore mincore(2)
pages of memory mmap(2)
pages of memory munmap(2)
parent directory name of a fileccccerunercscrererrennnes dirname(3G)
parent process IDs /getpgid getpid(2)
parse suboptions from a Stringeeccsieeennenne getsubopt(3C)
parts of an object file dump(1)
parts of floating-point numbers frexp(3C)
password and file encryption crypt(3X)
password file entry /setpwent, getpwent(3C)
password file entry /fgetspent, ... getspent(3C)
password file entry putpwent(3C)
password file entry putspent(3C)
password getpass(3C)
path mkdirp, rmdirp mkdirp(3G)
path name basename basename(3G)
path name dirname report dirname(3G)
pathconf get configurable pathname fpathconf(2)

pathfind search for named file inccccevvcviunncenene pathfind(3G)

path-name of current working getewd(3C)
pathname variables fpathconf, fpathconf(2)
pattern matching gmatch(3G)
pause suspend process until signalccccvveuuvcinninneee pause(2)
pdlose initiate pipe to/from a popen(3S)
pending sigpending eXamineccccsicrveunsecesnens sigpending(2)
perror print system eITor messagescoeccisenes perror(3C)

Programmer’s Reference Manual

in-memory state with that on the
msync synchronize memory with

popen, pclose initiate

p2open, p2close open, close
process, text, or data
/fpsetsticky IEEE floating
determine type of floating
elf_strptr make a string
rewind, ftell reposition a file
fsetpos, fgetpos reposition a file
1seek move read/write file

a process
ar maintain

/cbrt, log, logf, log10, log10f,
sqrt, sqrtf exponential, logarithm,
/log, logf, log10, logl0f, pow,
monitor

unget undo a

types

prs

activity sact

vprintf, vfprintf, vsprintf
printf, fprintf, sprintf

what

nm

object files size

perror

formatted output

scheduler control

nice change

acct enable or disable

alarm set a

times get

exit, _exit terminate

fork create a new

IDs /getppid, getpgid get process,
setpgid set

setpgrp set

tcsetpgrp set terminal foreground
process, process group, and parent
efficient way vfork spawn new
change priority of a time-sharing
kill send a signal to a

/sigsendset send a signal to a

Permuted Index

Permuted Index

physical medium /a file’s fsync(2)
physical storage msync(3C)
pipe create an interprocess channel pipe(2)
pipe to/from a process popen(3S)
pipes to and from a command p2open(3G)
plock lock into memory or unlock plock(2)
point environment control fpgetround(3C)
point number /fpclass, unorderedcoccniiniens isnan(3C)
pointer elf_strptr(3E)
pointer in a stream fseek, fseek(3S)
pointer in a stream fsetpos(3C)
pointer Iseek(2)
poll input/output multiplexing poll(2)
popen, pclose initiate pipe to/fromocoeeuecuncinscunee popen(3S)
portable archive or library ar(1)
pow, powf, sqrt, sqrtf exponential,/c.cocoiiciniiinnns exp(3M)
power, square root functions /powf,ceeecusniinsece exp(3M)
powf, sqrt, sqrtf exponential,/ exp(3M)
Pprepare execution profile monitor(3C)
previous get of an SCCS file unget(1)
primitive system data types types(5)
print an SCCS file prs(1)
print current SCCS file editing sact(1)
print formatted output of a/ vprintf(3S)
print formatted output printf(3S)
print identification strings what(1)
print name list of an object file nm(1)
print section sizes in bytes of size(1)
print system error messages perror(3C)
printf, fprintf, sprintf print printf(3S)
priocnt] process scheduler controlcccccevessuuecesncens priocntl(2)
priocntlset generalized processcooeescsceeeccene priocntlset(2)
priority of a time-sharing process nice(2)
process accounting acct(2)
process alarm clock alarm(2)
process and child process times times(2)
process exit(2)
process fork(2)
process group, and parent Processcouemmscsssssnes getpid(2)
process group 1D setpgid(2)
process group ID setpgrp(2)
process group ID tesetpgrp(3C)
process IDs /getppid, getpgid get ...oeveeeeeneieriierinnnnn getpid(2)
process in a virtual memory vfork(2)
process nice nice(2)
process or a group of processes kill(2)
process or a group of processes sigsend(2)

27

Permuted Index

pclose initiate pipe to/from a
/getpgrp, getppid, getpgid get
priocntl

priocntlset generalized

plock lock into memory or unlock
times get process and child
waitid wait for child

waitpid wait for child

wait wait for child

ptrace

pause suspend

install a signal mask and suspend
a signal to a process or a group of
a signal to a process or a group of
mé4 macro

line-by-line execution count
prof display

monitor prepare execution
profil execution time

prof

assert verify

cb C

lintaC

cxref generate C

cscope interactively examine a C
ctrace C

end, etext, edata last locations in
retrieve class-dependent

catgets read a

raise send signal to

atexit add

intro introduction to

lex generate

setlocale modify and query a
update, and regenerate groups of
mprotect set

windowing terminal under/ layers
xtproto multiplexed channels

generate uniformly distributed
psignal, psiginfo,-/ psignal,
/system signal messages psignal,
messages psignal, psiginfo,-/
/psiginfo,- system signal messages

28

process popen, popen(3S)
process, process group, and parent/eeerneueennes getpid(2)
process scheduler control priocntl(2)
process scheduler control priocntlset(2)
process, text, or data plock(2)
process times times(2)
process to change state waitid(2)
process to change state waitpid(2)
process to stop or terminate wait(2)
process trace ptrace(2)
process until signal pause(2)
process until signal sigsuspendccoccuvcinncce. sigsuspend(2)
processes Kill SENdccecinsecesranernessessseserssmsnsssssssssssenns kill(2)
processes sigsend, sigsendset sendccoecevereeerrnrens sigsend(2)
processor m4(1)
prof display profile data prof(1)
prof profile within a functonc.cccceeeececcrcrrnnecnrinrennens prof(5)
profil execution time profile profil(2)
profile data lprof displaycocucuienrcenccnsessenssrssnnns lprof(1)
profile data prof(1)
profile monitor(3C)
profile «... profil(2)
profile within a fURCHONcuciicunccencerrsereressanersnerennnns prof(5)
program assertion assert(3X)
program beautifier cb(1)
Program CheCKETccevencuisnsiusemsrenssessesssssssssssnsssssessensnsons lint(1)
program cross-reference cxref(1)
PTOGTAIMN ...ocoureeiisisssensentserensssseesssasssesssssssssesssssssssessesosssnan cscope(1)
Program debUGEETcuceieerecreeunmecessessnsssssssssssssssnssanares ctrace(1)
PIOBIAM ooceeenetsetntetss s s sssssssesssssessssssssssssessssnssssnsans end(3C)
program header table /elf32_newphdr elf_getphdr(3E)
program message .. catgets(3C)
program raise(3C)
program termination routine atexit(3C)
programming commands intro(1)
programs for simple lexical tasks lex(1)
program'’s locale setlocale(3C)
programs make maintain,eocoeceereeeserseneressessenens make(1)
protection of memory mapping . mprotect(2)
protocol used between host andcccceceerveevercrnrvereennrnnes layers(5)
protocol used by xt driver xtproto(5)
prs print an SCCS file .. prs(1)
pseudo-random numbers /lcongd8occcerurerurene drand48(3C)
psiginfo,- system signal messages psignal(3C)
psiginfo,- system signal messagesccosvureceererrenns psignal(3C)

psignal, psiginfo,- system signalcccoceeverreeererannne psignal(3C)
psignal, psiginfo,- system signal/ccocoereererrrrrnnnne psignal(3C)

Programmer’s Reference Manual

Permuted Index

stream ungetc

puts, fputs

putc, putchar, fputc, putw
getdents read directory entries and
character or word on a stream

or word on a stream putc,
environment

stream

entry

/getutent, getutid, getutline,

/ getutxent, getutxid, getutxline,
stream putc, putchar, fputc,

setlocale modify and

remque insert/remove element from a
msgget get message

gsort

div, 1div compute the

generator

elf rand

rand, srand simple

getpass

catgets

file system independent/ getdents
read

bgets

readlink

rewinddir,/ directory: opendir,
open open for

symbolic link

Iseek move

realpath returns the

/get real user, effective user,

/ geteuid, getgid, getegid get
memory allocator malloc, free,
memory allocator mallog, free,

lockf
regular expression

make maintain, update, and
expression regcmp,

Permuted Index

ptrace process trace ptrace(2)
push character back onto input ungetc(3S)
put a string on a stream puts(3S)
put character or word on a stream putc(3S)
put in a file system independent/cocoviieunininnnnns getdents(2)
putc, putchar, fputc, putw put putc(3S)
putchar, fputc, putw put character putc(3S)
putenv change or add value to putenv(3C)
putmsg send a message On a streamcccveevereernennns putmsg(2)
putpwent write password file entrycocciuunee. putpwent(3C)
puts, fputs put a string on a puts(3S)
putspent write shadow password fileccccooeeuens. putspent(3C)
pututline, setutent, endutent,/ getut(30)
pututxline, setutxent, endutxent,/c..ocooveircesiirnens getutx(3C)
putw put character or word on a putc(3S)
gsort quicker sort gsort(3C)
query a program'’s locale setlocale(3C)
queue insque, insque(3C)
queue msgget(2)
quicker sort gsort(3C)
quotient and remainder div(30)
raise send signal to program raise(3C)
rand, srand simple random-number rand(3C)
random archive member accessc.ccveeereerersrrsesenens elf rand(3E)
random-number generator rand(3C)
read a password getpass(3C)
read a program message catgets(3C)
read directory entries and putin aceeeviecnsienne getdents(2)
read from file read(2)
read read from file read(2)
read stream up to next delimiter bgets(3G)
read the value of a symbolic linkcccceeververeercnecnnne readlink(2)
readdir, telldir, seekdir, directory(3C)
reading or writing open(2)
readlink read the value of a readlink(2)
read/write file pointer 1seek(2)
real file name realpath(3C)
real group, and effective group IDscccoeevvvvrenecennennnes getuid(2)
real user, effective user, real/ getuid(2)
realloc, calloc, mallopt, mallinfo malloc(3X)
realloc, calloc, memalign, valloc, malloc(3C)
realpath returns the real file nameccooeeeeenrnneee realpath(3C)
record locking on files lockf(3C)
regcmp, regex compile and executeoeeierieninenne regemp(3G)
regemp regular expression compilecccoeevernireniirernnnn regemp(1)
regenerate groups of programs make(1)
regex compile and execute regularcooeueervvernne regemp(3G)

29

Permuted Index

regular expression compile and/
regular expression compile and/
regexp: compile, step, advance
regexpr, compile, step, advance
regcmp

regemp, regex compile and execute
lorder find ordering

/rint, remainder floor, ceiling,

div, 1div compute the quotient and
/fmod, fmodf, fabs, fabsf, rint,
rmdel

rmdir

mkdirp, rmdirp create,

unlink

remove

queue insque,

clock

a file path name dirname

stream fseek, rewind, ftell

stream fsetpos, fgetpos

mincore determine

setrlimit control maximum system
gettxt

elf_getarhdr

elf_getarsym

file/ /elf32_getehdr, elf32_newehdr
/elf32_getphdr, elf32_newphdr
header elf getshdr: elf32_getshdr
elf_getident

contents elf_rawfile

abs, labs

name basename

type elf fsize: elf32_fsize

getenv

stat data

realpath

pointer in a stream fseek,
/opendir, readdir, telldir, seekdir,
creat create a new file or
/copysign, fmod, fmodf, fabs, fabsf,
file

in a path mkdirp,

chroot change
logarithm, power, square

30

regexp: compile, step, advance regexp(5)
regexpr, compile, step, advanceccceerverrrrrensunnen regexpr(3G)
regular expression compile and/ccceerrcrerrrmnsnnrrrennns regexp(5)
regular expression compile and/ccoeucerrenrreernncs regexpr(3G)
regular expression compile regcmp(1)
regular expression regemp(3G)
relation for an object library lorder(1)
remainder, absolute value functionsc..cccoeesvereerunee. floor(3M)
remainder div(3C)
remainder floor, ceiling, / floor(3M)
remove a delta from an SCCS file rmdel(1)
remove a directory rmdir(2)
remove directories in a path . mkdirp(3G)
remove directory entry unlink(2)
remove file remove(3C)
remove remove file «re. Temove(3C)
remque insert/remove element from acc..ccourreeuen insque(3C)
rename change the name of a file rename(2)
report CPU time used clock(3C)
report the parent directory name ofccoervererunen.. dirname(3G)
reposition a file pointer in @covcveeeeecrnenvenrensensrenninens fseek(3S)
reposition a file pointer in @ccoveerreernerveerrnsennens fsetpos(3C)
residency of memory pages mincore(2)
resource consumption getrlimit, getrlimit(2)
retrieve a text string .. gettxt(3C)
retrieve archive member headercccornue..... elf getarhdr(3E)
retrieve archive symbol table elf_getarsym(3E)
retrieve class-dependent objectc.ceeerreererrreenen. elf_getehdr(3E)
retrieve class-dependent program/coueuuee... elf_getphdr(3E)
retrieve class-dependent sectioncccevsuurerenne elf getshdr(3E)
retrieve file identification datacccceerrrrrcrrrnnen. elf_getident(3E)

retrieve uninterpreted file .. elf_rawfile(3E)
return integer absolute value abs(3C)
return the last element of a pathcccouceeerrrerennnnee basename(3G)

return the size of an object file elf fsize(3E)
return value for environment namecooc.cevvvererrennenne getenv(3C)
returned by stat system callccoeeeomrerrrmnrrrenscsnrernnsrnnssnns stat(5)
returns the real file namecccovcerveereveeeerrinrerrennnn realpath(3C)
rewind, ftell reposition a file ... fseek(3S)
rewinddir, closedir directory/c...ocoeresrrerneee. directory(3C)
rewrite an existing Oneccimiceceerrecnseessrsnssessnsssennees creat(2)
rint, remainder floor, ceiling,/coccoveevverrrrrrnemrercrrsnenns floor(3M)
rmdel remove a delta from an SCCSccoveeeurrerrrerrsereens rmdel(1)
rmdir remove a directory rmdir(2)
rmdirp create, remove directorieso.cuucsserrreenns mkdirp(3G)
root directory chroot(2)
root functions /sqrtf exponential,ccccoeeverveeeeneirrennns exp(3M)

Programmer’s Reference Manual

atexit add program termination
expression compile and match
expression compile and match
convert between binary/ decconv:
editing activity

allocation brk,

logb, modf, modff, nextafter,
formatted input

for help with message numbers or
cdc change the delta comment of an
comb combine

delta make a delta (change) to an
sact print current

get get a version of an

prs print an

rmdel remove a delta from an
scesdiff compare two versions of an
sccsfile format of

unget undo a previous get of an
val validate an

admin create and administer

SCCS file

priocntl process
priocntlset generalized process

bsearch binary

Isearch, Ifind linear

directories pathfind

hcreate, hdestroy manage hash
tfind, tdelete, twalk manage binary
elf newdata, elf rawdata get
retrieve class-dependent
elf_newscn, elf_nextscn get

mcs manipulate the comment

files size print

/nrand48, mrand48, jrand48, srand4$,
/opendir, readdir, telldir,

shmget get shared memory

brk, sbrk change data

dump dump

semctl

semop

semget get set of

Permuted Index

Permuted Index

routine atexit(3C)
routines /step, advance regular regexp(5)
routines /step, advance regular .. regexpr(3G)
_s2dec, _d2dec, _dec2s, _dec2d decconv(3C)
sact print current SCCS file sact(1)
sbrk change data segment space brk(2)
scalb manipulate parts of/ /1dexp,ccecrerrscrvcisiunns frexp(3C)
scanf, fscanf, sscanf convert scanf(3S)
SCCS commands help ask help(1)
SCCS delta cde(1)
SCCS deltas comb(1)
SCCS file delta(1)
SCCS file editing activity sact(1)
SCCS file get(1)
SCCS file prs(1)
SCCS file rmdel(1)
SCCS file scesdiff(1)
SCCS file sccsfile(4)
SCCS file unget(1)
SCCS file val(1)
SCCS files admin(1)
scesdiff compare two versions of anceieeeienncs scesdiff(1)
sccsfile format of SCCS file scesfile(4)
scheduler control priocntl(2)
scheduler control priocntlset(2)
sdb symbolic debugger sdb(1)
search a sorted table bsearch(3C)
search and update Isearch(3C)
search for named file in namedcccoveevevereereerens pathfind(3G)
search tables hsearch, . hsearch(3C)
search trees tSearch,oceceiieencn oo tsearch(3C)

section data elf_getdata,
section header /elf32_getshdrocveeeeurnrennnns
section information /elf ndxscn,

elf_getdata(3E)

elf_getshdr(3E)

elf_getscn(3E)

section of an object file
section sizes in bytes of object

mces(1)
size(1)

seed48, lcong48 generate uniformly /
seekdir, rewinddir, closedir/

drand48(3C)

segment identifier

directory(3C)
shmget(2)

segment space allocation

brk(2)

selected parts of an object file

dump(1)

semaphore control operations
semaphore operations

semctl(2)
semop(2)

semaphores .

semget(2)

semctl semaphore control operations
semget get set of semaphores

semctl(2)
semget(2)

semop semaphore operations

semop(2)

31

Permuted Index

putmsg

group of processes kill

group of/ sigsend, sigsendset
raise

elf next

getsid get

setsid set

truncate, ftruncate

alarm

umask

ascii map of ASCII character
ffs find first

getcontext, setcontext get and
timezone

times utime

elf fill

semget get

context sigaltstack

setpgid

setpgrp

mprotect

setsid

IDs getgroups, setgroups get or
sysinfo get and

group ID tcsetpgrp
gettimeofday, settimeofday get or
stime

setuid, setgid

ulimit get and

a stream

context getcontext,

setuid,

getgrent, getgrgid, getgrnam,
group access list IDs getgroups,
timer getitimer,

crypt,
program’s locale

getpwent, getpwuid, getpwnam,
resource consumption getrlimit,
sigdelset, sigismember manipulate

Ickpwdf,/ getspent, getspnam,

and time gettimeofday,
IDs

32

send a message on a stream putmsg(2)
send a signal to a process or a kill(2)
send a signal to a process or a sigsend(2)
send signal to program raise(3C)
sequential archive member access elf next(3E)
session ID getsid(2)
session ID setsid(2)
set a file to a specified length truncate(3C)
set a process alarm clockouvuceeeseerecnrrernenns alarm(2)
set and get file creation Maskcoeeeeevenerrnreennernsresennnns umask(2)
set asdii(5)
set bit ffs(3C)
set current user context getcontext(2)
set default system time zone timezone(4)
set file access and modification utime(2)
set fill byte elf fill(3E)
set of semaphores semget(2)
set or get signal alternate stackceecoeeeruerrenruennee sigaltstack(2)
set process group ID setpgid(2)
set process group ID setpgrp(2)

set protection of memory mappingcccereessreeerenns mprotect(2)

set SeSSION ID uueceveecteetnccct it sen setsid(2)
set supplementary group access listcooueesrunne getgroups(2)
set system information strings sysinfo(2)
set terminal foreground processccoouveeeesnreenrenns tesetpgrp(3C)
set the date and time gettimeofday(3C)
set time stime(2)
set user and group IDs setuid(2)
set user limits ulimit(2)
setbuf, setvbuf assign buffering toc.cccereervermsrrrenens setbuf(3S)
setcontext get and set current user .. getcontext(2)
setgid set user and group IDs setuid(2)
setgrent, endgrent, fgetgrent get/ccceerrrrrenrrnnne getgrent(3C)
setgroups get or set supplementarycccccceeeeruenr getgroups(2)
setitimer get/set value of intervalccccoveuerrrrennes getitimer(3C)
setimp, longjmp non-local Gotocccceuvvrrrrrrercserrrnnrene. setjimp(3C)
setkey, encrypt generate encryptionccocuemsrveeneneeen crypt(3C)
setlocale modify and query a setlocale(3C)
setpgid set process group ID setpgid(2)
setpgrp set process group ID . setpgrp(2)
setpwent, endpwent, fgetpwent/ccccoerrrerrrrnne.. getpwent(3C)
setrlimit control maximum Systemcocceomsrrervennes getrlimit(2)
sets of signals /sigaddset,cccooecrmreerereranes sigemptyset(3C)
setsid set session ID setsid(2)
setspent, endspent, fgetspent, getspent(3C)

settimeofday get or set the datec.ccoeuuuece.. gettimeofday(3C)
setuid, setgid set user and group setuid(2)

Programmer’s Reference Manual

Permuted Index

/getutid, getutline, pututline,
/getutxid, getutxline, pututxline,
stream setbuf,

for/ addseverity build a list of
machine-independent fashion sputl,
/Ickpwdf, ulckpwdf manipulate
putspent write

shmctl

shmop: shmat, shmdt

shmget get

dlclose close a

dlopen open a

get the address of a symbol in
system issue a

gmatch

operations shmop:

operations

shmop: shmat,

identifier

operations

management

sigemptyset, sigfillset,

alternate stack context
sigemptyset, sigfillset, sigaddset,
sigdelset, sigismember manipulate/
sigismember/ sigemptyset,
sigpause/ signal, sigset,

signal, sigset, sighold, sigrelse,
information

/sigfillset, sigaddset, sigdelset,
signal state sigsetjmp,

generate an abnormal termination
sigaltstack set or get

siginfo

sigaction detailed

sigignore, sigpause simplified

until signal sigsuspend install a
sigprocmask change or examine
system/ psignal, psiginfo,- system
messages psignal, psiginfo,- system
pause suspend process until
sigignore, sigpause simplified /
mask and suspend process until
siglongjmp a non-local goto with
processes Kkill send a

sigsend, sigsendset send a

Permuted Index

setutent, endutent, utmpname access/cceererresreerens getut(3C)
setutxent, endutxent, utmpxname,/ccccveeeerrresernnne getutx(3C)
setvbuf assign buffering to a setbuf(3S)
severity levels for an applicationccceeeeueeneee. addseverity(3C)
sgetl access long integer data in @cccouvriiciiniiennninnnne sputl(3X)
shadow password file entry getspent(3C)
shadow password file entry putspent(3C)
shared memory control Operationseoceeissecsennnns shmctl(2)
shared memory operations . shmop(2)
shared memory segment identifierc..cccovvvervvrunnnene. shmget(2)
shared object dlclose(3X)
shared object ... dlopen(3X)
shared object dlsym dlsym(3X)
shell command system(3S)
shell global pattern matching gmatch(3G)
shmat, shidt shared memory shmop(2)
shmctl shared memory control shmctl(2)
shmdt shared memory operations ccccceverrneurrinnce shmop(2)

shmget get shared memory segment shmget(2)

shmop: shmat, shmdt shared memory shmop(2)
sigaction detailed signal sigaction(2)
sigaddset, sigdelset, sigismember/ sigemptyset(3C)
sigaltstack set or get signalccovvvververiirennnnee. sigaltstack(2)
sigdelset, sigismember manipulate/ . sigemptyset(3C)
sigemptyset, sigfillset, sigaddset,ccccuuunuce. sigemptyset(3C)
sigfillset, sigaddset, sigdelset,ccccecuverrrerrcinnees sigemptyset(3C)
sighold, sigrelse, sigignore, signal(2)
sigignore, sigpause simplified/ signal(2)
siginfo signal generation siginfo(5)
sigismember manipulate sets of /c.ccevuueee sigemptyset(3C)
siglongjmp a non-local goto withcccceuivvrriniinnnae sigsetjmp(3C)
signal abort abort(3C)
signal alternate stack context sigaltstack(2)
signal base signals signal(5)
signal generation information siginfo(5)
signal management sigaction(2)
signal management /sigrelse,c.cmseniericnnne signal(2)
signal mask and suspend processc.ccocreeueeene sigsuspend(2)
signal Maskccervvcinccencrniinnnne. sigprocmask(2)
signal messages psignal, psiginfo,-cceceeveemmeuncunee psignal(3C)
signal messages /system signalcccccccovvunvrvecrrincnnce psignal(3C)
signal pause(2)
signal, sigset, sighold, sigrelse, signal(2)
signal sigsuspend install a signalc.cccoecvenuecneee sigsuspend(2)
signal state sigsetjmp,cuueee. .. sigsetjmp(3C)
signal to a process or a Group Ofcceeeeeerreceeeresersssenserens kill(2)
signal to a process or a group of/cccecovvuveureeeeencenes sigsend(2)

33

Permuted Index

raise send

sigismember manipulate sets of
signal base

ssignal, gsignal software
pending sigpending examine
sighold, sigrelse, sigignore,
blocked and pending

signal mask

signal, sigset, sighold,

to a process or a group of/
process or a group of/ sigsend,
sigignore, sigpause/ signal,
goto with signal state

and suspend process until signal
lex generate programs for

rand, srand

/sigrelse, sigignore, sigpause
asin, asinf, acos, acosf,/ trig:
asinf, acos, acosf,/ trig: sin,
tanh, tanhf, asinh, acosh,/
tanhf, asinh, acosh,/ sinh,
elf_fsize: elf32_fsize return the
of object files

size print section

interval

current user ttyslot find the
ssignal, gsignal

gsort quicker

tsort topological

bsearch binary search a

brk, sbrk change data segment
munlockall lock or unlock address
swapctl manage swap

memory efficient way vfork
mknod make a directory, or a
strftime language

truncate, ftruncate set a file to a
bufsplit

printf, fprintf,

data in a machine-independent/
/logf, log10, log10f, pow, powf,
/10g10, log10f, pow, powf, sqrt,
exponential, logarithm, power,
generator rand,

/Irand48, nrand48, mrand48, jrand48,
scanf, fscanf,

34

signal to program raise(3C)
signals /sigaddset, sigdelset,ccoecrerrvencnnee sigemptyset(3C)
signals signal(5)
signals ssignal(3C)
signals that are blocked and sigpending(2)
sigpause simplified signal/ /sigset,c.ccurinncecunnns signal(2)
sigpending examine signals that are sigpending(2)
sigprocmask change or examineccoccoeeureee. sigprocmask(2)
sigrelse, sigignore, sigpause/ .. signal(2)
sigsend, sigsendset send a signalcccciecrinenecnncn. sigsend(2)
sigsendset send a signal to @ciiniienncnceecinennene sigsend(2)
sigset, sighold, sigrelse, signal(2)
sigsetjmp, siglongjmp a non-localcceevueumecence sigsetjmp(3C)
sigsuspend install a signal maskccccceeerecueeunnes sigsuspend(2)
simple lexical tasks lex(1)
simple random-number generator rand(3C)
simplified signal management signal(2)
sin, sinf, cos, cosf, tan, tanf, trig(3M)
sinf, cos, cosf, tan, tanf, asin, ... trig(3M)
sinh, sinhf, cosh, coshf, sinh (3M)
sinhf, cosh, coshf, tanh,civemniieririrniieneeeninne sinh(3M)
size of an object file typeciiirriircenneiieseericnnen elf_fsize(3E)

size print section sizes in bytes size(1)

sizes in bytes of object files size(1)
sleep suspend execution for sleep(3C)
slot in the utmp file of the ttyslot(3C)
software signals .. ssignal(3C)
SOTE ettt sernneser st e asbr st s s s e e sees gsort(3C)
sort tsort(1)
sorted table bsearch(3C)
space allocation brk(2)
space MIOCKAll,cccovcreriniuicenreecnrrencnrssessesssanssesensns mlockall(3C)
SPACE ...oereeerirereicsinsis e sss st ses s seesasass sensaseessessss sesansesasasn swapctl(2)
Spawn new process in a virtual ..o vfork(2)
special or ordinary file mknod(2)
SPECIfiC SITNGS ..uvrvecirciriserrcctccssesnsesssissosssssesssesionenee strftime(4)
specified 1IeNGthcivciniiviicsnsiecsnseiecnssseseesnsses truncate(3C)
split buffer into fields bufsplit(3G)
sprintf print formatted output printf(3S)
sputl, sgetl access long integer sputl(3X)
sqrt, sqrtf exponential, logarithm,/covvivvinsinrucnnece exp(3M)
sqrtf exponential, logarithm,/ exp(3M)
square root functions /sqrt, sqrtf exp(3M)
srand simple random-number rand(3C)
srand48, seed48, lcong48 generate/ccvuiirenneee drand48(3C)
sscanf convert formatted input scanf(35)
ssignal, gsignal software signalscccceuurinrincnniuncnne ssignal(3C)

Programmer’s Reference Manual

set or get signal alternate
package stdio

package stdipc: ftok
call

stat data returned by

ustat get file system

feof, clearerr, fileno stream

stat, Istat, fstat get file

wstat wait

information

list

fmtmsg display a message on
input/output package
communication package
compile and match/ regexp: compile,
compile and/ regexpr, compile,

wait wait for child process to
synchronize memory with physical
string manipulations

compressing or/ strccpy: streadd,
strncmp, strepy, strnepy,/ string:
copy strings, compressing or/
/strnemp, strepy, strnepy, strlen,
string: strcat, strdup, strncat,

/strdup, strncat, strcmp, strncmp,
/strchr, strrchr, strpbrk, strspn,
strcpy, strncpy,/ string: strcat,

strings, compressing or/ strccpy:

fclose, fflush close or flush a
fopen, freopen, fdopen open a
reposition a file pointer in a
reposition a file pointer in a
getw get character or word from a
getmsg get next message off a
gets, fgets get a string from a
putw put character or word on a
putmsg send a message on a
puts, fputs put a string on a
setvbuf assign buffering to a
ferror, feof, clearerr, fileno

push character back onto input
bgets read

or/ strccpy: streadd, strcadd,

Permuted Index

Permuted Index

stack context sigaltstack sigaltstack(2)
standard buffered input/output stdio(3S)
standard interprocess communicationcccccoceunee stdipc(3C)
stat data returned by stat system stat(5)
stat, Istat, fstat get file status stat(2)
stat system call stat(5)
statistics ustat(2)
status inquiries ferror, ferror(3S)
status stat(2)
status wstat(5)
statvfs, fstatvfs get file system statvfs(2)
stdarg handle variable argument stdarg(5)
stderr or system console fmtmsg(3C)
stdio standard buffered stdio(3S)
stdipc: ftok standard interprocesscoveuerersnennes stdipc(3C)
step, advance regular expression regexp(5)
step, advance regular expressionc.oeeeeeeeuenrernenns regexpr(3G)
stime set time stime(2)
stop or terminate wait(2)
storage msync msync(3C)
str: strfind, strrspn, strtrns str(3G)
strcadd, strecpy copy strings, strccpy(3G)
strcat, strdup, strncat, strcmp, string(3C)
strccpy: streadd, strcadd, strecpycccceereeinennnnnns strccpy(3G)
strchr, strrchr, strpbrk, strspn,/ string(3C)
stremp, strnamp, strepy, strnepy,/ ..eeeecencnneeiinnens string(3C)
strcoll string collation strcoll(3C)
strcpy, strnepy, strlen, strchr, / string(3C)
strespn, strtok, strstr string/ string(3C)
strdup, strncat, stremp, strncmp, string(3C)
streadd, strcadd, strecpy copy strecpy(3G)
stream fclose(3S)
stream fopen(3S)
stream fseek, rewind, ftell fseek(3S)
stream fsetpos, fgetpos fsetpos(3C)
stream getc, getchar, fgetc, getc(3S)
SITEAIM ..ttt ses s ase ssasencns s s sassas s ssssasss getmsg(2)
stream gets(35)
stream putc, putchar, fputc, putc(3S)
stream et bbb s s s s e e are R Resesaane putmsg(2)
stream puts(3S)
stream setbuf, setbuf(3S)
stream status inquiries ferror(3S)
stream ungetc ungetc(3S)
stream up to next delimiter bgets(3G)
strecpy copy strings, compressingcceveeeenceenuennes strccpy(3G)
strerror get error message Stringocervecuviurunnnns strerror(3C)

35

Permuted Index

manipulations str:
date and time to string

long integer and base-64 ASCII
strcoll

tzset convert date and time to
convert floating-point number to
gets, fgets get a

mbstowcs, westombs multibyte
getsubopt parse suboptions from a
gettxt retrieve a text

str: strfind, strrspn, strtrns

puts, fputs put a

strspn, strcspn, strtok, strstr
elf_strptr make a

stremp, strnemp, strepy, strnepy,/
strerror get error message
ascftime, convert date and time to
strtod, atof, convert

strtol, strtoul, atol, atoi convert
strxfrm

/streadd, strcadd, strecpy copy
strftime language specific

get and set system information
what print identification

and line number information from/
line number information from/ strip
/stremp, strncmp, strepy, strncpy,
strnepy,/ string: strcat, strdup,
/strcat, strdup, strncat, strcmp,
/strncat, stremp, strnemp, strepy,
/strnepy, strlen, strchr, strrchr,
/strcpy, strncpy, strlen, strchr,
manipulations str: strfind,
/strlen, strchr, strrchr, strpbrk,
strpbrk, strspn, strcspn, strtok,
double-precision number

/strrchr, strpbrk, strspn, strespn,
string to integer

to integer strtol,

str: strfind, strrspn,

offsetof offset of

mktime converts a tm

getsubopt parse

sync update
getgroups, setgroups get or set

36

strfind, strrspn, strtrns string str(3G)
strftime, cftime, ascftime, CONVertccceeeeverererennens strftime(3C)
strftime language specific strings strftime(4)
string a64l, 164a convert between ab41(30)
string collation strcoll(3C)

string /localtime, gmtime, asctime,ccoocvvrueinenncnnnes ctime(3C)

string ecvt, fcvt, gevt ecvt(3C)
string from a stream gets(3S)
string functions mbstring: mbstring(3C)
string getsubopt(3C)
string gettxt(3C)
string manipulations str(3G)
string on a stream puts(3S)
string operations /strpbrk, string(3C)
string pointer elf_strptr(3E)
string: strcat, strdup, strncat, string(3C)
string strerror(3C)
string strftime, cftime, ... strftime(3C)
string to double-precision numbercoiiinnn. strtod(3C)
string to integer strtol(3C)
string transformation strxfrm(3C)
strings, compressing or expanding/ceeureneenes strecpy(3G)
strings strftime(4)
strings sysinfo sysinfo(2)
strings what(1)
strip strip symbol table, debugging strip(1)
strip symbol table, debugging and strip(1)
strlen, strchr, strrchr, strpbrk,/ string(3C)
strncat, stremp, strncmp, strcpy, string(3C)
strncmp, strepy, strnepy, strlen,/ string(3C)
strnepy, strlen, strchr, strrchr,/ string(3C)
strpbrk, strspn, strespn, strtok,/ string(3C)
strrchr, strpbrk, strspn, strcspn,/ string(3C)
strrspn, strtrns string str(3G)
strspn, strespn, strtok, strstr/ string(3C)
strstr string operations /strrchr, string(3C)
strtod, atof, convert string to strtod(3C)
strtok, strstr string operations string(3C)
strtol, strtoul, atol, atoi convert strtol(3C)
strtoul, atol, atoi convert string strtol(3C)
strtrns string manipulations . str(3G)
structure MEMDETvcveiveniniiisinreesiisinsenensensensensenne offsetof(3C)
structure to a calendar time mktime(3C)
strxfrm string transformation strxfrm(3C)
suboptions from a string getsubopt(3C)
super block sync(2)
supplementary group access list IDsccceverenunne getgroups(2)

Programmer’s Reference Manual

initgroups initialize the
sleep

pause

/install a signal mask and

swab
swapctl manage
contexts makecontext,

dlsym get the address of a
number information/ strip strip
elf_getarsym retrieve archive
sdb

readlink read the value of a
symlink make a

file

adjtime correct the time to allow
state with that on the/ fsync
storage msync

variables

information

information strings

stat data returned by stat

intro introduction to

to allow synchronization of the
display a message on stderr or
types primitive

perror print

directory entries and put in a file
statvfs, fstatvfs get file

sysinfo get and set

mount mount a file

/setrlimit control maximum
psiginfo,-/ psignal, psiginfo,-
signal messages psignal, psiginfo,-
ustat get file

timezone set default

sysfs get file

umount unmount a file

uname get name of current UNIX
sysconf get configurable

bsearch binary search a sorted
information/ strip strip symbol
retrieve archive symbol

Permuted Index

Permuted Index

supplementary group access listccooeuvcconsenuenns initgroups(3C)
suspend execution for interval sleep(3C)
suspend process until signal pause(2)
suspend process until signal sigsuspend(2)
swab swap bytes swab(3C)
swap bytes swab(3C)
swap space swapctl(2)
swapcontext manipulate usercoooeerseeeenes makecontext(3C)
swapctl manage swap space swapctl(2)
symbol in shared object dlsym(3X)
symbol table, debugging and line strip(1)
symbol table elf_getarsym(3E)
symbolic debugger sdb(1)
symbolic link readlink(2)
symbolic link to a file symlink(2)
symlink make a symbolic link to accccevevivericrnnnnns symlink(2)
sync update super block sync(2)
synchronization of the system clockc.cccmnecssieceunees adjtime(2)
synchronize a file’s in-memory fsync(2)
synchronize memory with physicalccoccoevvererenennce. msync(3C)
sys3b machine-specific functions sys3b(2)
sysconf get configurable systemcceeerrereeeenearennns sysconf(3C)
sysfs get file system type sysfs(2)
sysinfo get and set system sysinfo(2)
system call stat(5)
system calls and error numbers intro(2)
system clock /correct the time adjtime(2)
system console fmtmsg fmtmsg(3C)
system data types types(5)
SYStEIM eITOI MESSAZES ...ceevverrersersersassarssssnsssssssssssasssssases perror(3C)
system independent format /readccovemieennenne. getdents(2)
system information statvfs(2)
system information strings sysinfo(2)
system issue a shell command system(35)
system mount(2)
system resource consumption getrlimit(2)
system signal messages psignal,ccccceverinrreniennan psignal(3C)
system signal messages /systemccoceeverennne psignal(3C)
system statistics ustat(2)
system time Zoneceverreeeerreernrnnnns timezone(4)
system type information sysfs(2)
system umount(2)
system uname(2)
system variables sysconf(3C)
table bsearch(3C)
table, debugging and line number strip(1)

table elf getarsym

.. elf_getarsym(3E)

37

Permuted Index

class-dependent program header
hdestroy manage hash search
acosf,/ trig: sin, sinf, cos, cosf,
trig: sin, sinf, cos, cosf, tan,

sinh, sinhf, cosh, coshf,

/sinhf, cosh, coshf, tanh,
programs for simple lexical
tcgetattr, tcsetattr, tesendbreak,
/tcsendbreak, tedrain, teflush,
/tcsetattr, tcsendbreak, todrain,
tedrain, teflush, teflow,/ termios:
general/ /cfsetispeed, cfsetospeed,
/ cfsetospeed, tcgetpgrp, tcsetpgrp,
termios: tcgetattr, tcsetattr,
tcflush,/ termios: tcgetattr,
process group ID

terminal/ /cfsetospeed, tcgetpgrp,
trees tsearch, tfind,

directory: opendir, readdir,
temporary file tmpnam,

tmpfile create a

tmpnam, tempnam create a name for a
ctermid generate file name for

ID tcsetpgrp set

libwindows windowing

tcsetpgrp, tegetsid general

jagent host control of windowing
ttyname, isatty find name of a

used between host and windowing
exit, _exit

wait for child process to stop or
atexit add program

abort generate an abnormal
tcsendbreak, tedrain, tcflush,/

lock into memory or unlock process,
gettxt retrieve a

search trees tsearch,

setitimer get/set value of interval
the difference between two calendar
times

times get process and child process
set file access and modification

nice change priority of a

zone

mktime converts a

temporary file

38

table /elf32 newphdr retrieve elf getphdr(3E)
tables hsearch, hcreate, hsearch(3C)
tan, tanf, asin, asinf, acos, trig(3M)
tanf, asin, asinf, acos, acosf,/ trig(3M)
tanh, tanhf, asinh, acosh,/ sinh(3M)
tanhf, asinh, acosh, atanh/ sinh (3M)
tasks lex generate lex(1)
tedrain, teflush, tcflow,/ termios:vveeicciciincninns termios(2)
tcflow, cfgetospeed, cfgetispeed,/cucunsinncencrccrnns termios(2)
tcflush, teflow, cfgetospeed,/ termios(2)
tcgetattr, tcsetattr, tcsendbreak, termios(2)
tegetpgrp, tcsetpgrp, tegetsid termios(2)
tcgetsid general terminal interfacecccciierencrccunens termios(2)
tcsendbreak, tedrain, teflush,/ termios(2)
tcsetattr, tcsendbreak, tedrain, termios(2)
tcsetpgrp set terminal foregroundcoeeeeernnnns tesetpgrp(3C)
tcsetpgrp, tcgetsid general termios(2)
tdelete, twalk manage binary searchccoecuvverurecns tsearch(3C)
telldir, seekdir, rewinddir,/ directory(3C)
tempnam create a name for a tmpnam(3S)
temporary file tmpfile(3S)
temporary file tmpnam(3S)
terminal ctermid(3S)
terminal foreground process groupccoveueecusens tesetpgrp(3C)
terminal function library libwindows(3X)
terminal interface /tcgetpgrp, termios(2)
terminal jagent(5)
terminal ttyname(3C)
terminal under layers(1) /protocoleereirseeenns layers(5)
terminate process exit(2)
terminate wait wait(2)
termination routine atexit(3C)
termination signal abort(3C)
termios: tcgetattr, tcsetattr, termios(2)
text, or data plock plock(2)
text string gettxt(3C)
tfind, tdelete, twalk manage binarycocecevenecennces tsearch(3C)
timer getitimer, getitimer(3C)
times difftime computes difftime(3C)
times get process and child processccncisiisissnes times(2)
times times(2)
times utime utime(2)
time-sharing process nice(2)
timezone set default system time timezone(4)
tm structure to a calendar timeoevevvenirsisennns mktime(3C)
tmpfile create a temporary file tmpfile(3S)
tmpnam, tempnam create a name for acceeuuer tmpnam(3S)

Programmer’s Reference Manual

Permuted Index

/tolower, _toupper, _tolower,
popen, pclose initiate pipe

conv: toupper, tolower, _toupper,
toascii translate/ conv: toupper,
tsort

translate/ conv: toupper, tolower,
_tolower, toascii translate/ conv:
ptrace process

strxfrm string

_toupper, _tolower, toascii

cof2elf COFF to ELF object file
elf32_xlatetom class-dependent data
ftw, nftw walk a file

tdelete, twalk manage binary search
tanf, asin, asinf, acos, acosf,/

acosf, atan, atanf, atan2, atan2f
specified length

manage binary search trees

terminal

file of the current user
tsearch, tfind, tdelete,

return the size of an object file
elf_kind determine file

sysfs get file system

/fpclass, unordered determine
nl_types native language data

types primitive system data
ctime, localtime, gmtime, asctime,

getpw get name from
file/ /endspent, fgetspent, Ickpwdf,

mask

system

unget

SCGCS file

input stream

/srand48, seed48, lcong48 generate
elf rawfile retrieve

mktemp make a

uname get name of current

mlockall, munlockall lock or

Permuted Index

toasdii translate characters conv(3C)
to/from a process popen(3S)
_tolower, toascii translate/ceocniiciisiinnnns conv(3C)
tolower, _toupper, _tOOWET,coeciveemcrsseinsemssunsenssisnsinncs conv(3C)
topological sort tsort(1)
_toupper, _tolower, toascii conv(3C)
toupper, tolower, _toupper, conv(3C)
trace ptrace(2)
transformation strxfrm(3C)
translate characters /tolower, conv(3C)
translation cof2elf(1)
translation /elf32_xlatetof,cccervereecrncnrcunennces elf xlate(3E)
tree ftw(3C)
trees tsearch, tfind, tsearch(3C)
trig: sin, sinf, cos, cosf, tan, trig(3M)
trigonometric functions /acos, trig(3M)

truncate, ftruncate set a file to @cccoveverecnnerecneruenn. truncate(3C)

tsearch, tfind, tdelete, twalk tsearch(3C)
tsort topological sort tsort(1)
ttyname, isatty find name of a ttyname(3C)
ttyslot find the slot in the utmp ttyslot(3C)
twalk manage binary search treesccoeeinieennnes tsearch(3C)

.. elf fsize(3E)

type elf fsize: elf32_fsize
elf kind(3E)

type

type information sysfs(2)
type of floating point number isnan(3C)
types nl_types(5)
types primitive system data typesoevviieiiiseiseannne types(5)
types types(5)
tzset convert date and time to/ ctime(3C)
uadmin administrative CONtrolcocoeveevveenesseensrnnenne uadmin(2)
ucontext user context ucontext(5)
UID e traset s ens et s s sasen s s e sesens st sesen getpw(30)
ulckpwdf manipulate shadow password getspent(3C)
ulimit get and set user limits ulimit(2)
umask set and get file creation umask(2)

umount unmount a file systemccccoeveeervererirnnnennne umount(2)

uname get name of current UNIX uname(2)
undo a previous get of an SCCS fileoouuvvcervirnercrnns unget(1)
unget undo a previous get of an .. unget(1)
ungetc push character back ontoccceeeeeieieeenenncnnnnene ungetc(3S)
uniformly distributed pseudo-random/ drand48(3C)

uninterpreted file contents elf rawfile(3E)

unique file NAME ...ttt enes mktemp(3C)
UNIX system uname(2)
unlink remove directory entry unlink(2)
unlock address space ... mlockall(3C)

39

Permuted Index

mlock, munlock lock (or unlock) pages in memory mlock(3C)

plock lock into memory or unlock process, text, or data plock(2)
munmap unmap pages of memory munmap(2)

umount unmount a file system umount(2)

isnand, isnanf, finite, fpclass, unordered determine type of/ isnan,cccceceseunee isnan(3C)
pause suspend process until signal pause(2)

a signal mask and suspend process until signal sigsuspend installccccoecreeererenne sigsuspend(2)
elf update update an ELF descriptor elf_update(3E)

programs make maintain, update, and regenerate groups of make(1)
Isearch, Ifind linear search and update Isearch(3C)
sync update super block sync(2)

/utmpxname, getutmp, getutmpx, updwtmp, updwtmpx access utmpx file/coeccuunn. getutx(3C)
/getutmp, getutmpx, updwtmp, updwtmpx access utmpx file entryoceeeeeeeresceceens getutx(3C)
levels for an application for use with fmtmsg /a list of severityc....... addseverity(3C)
setuid, setgid set user and group IDs setuid(2)

setcontext get and set current user context getcontext, getcontext(2)
ucontext user context ucontext(5)

makecontext, swapcontext manipulate user contexts makecontext(3C)
get character login name of the user cuserid cuserid(3S)
/geteuid, getgid, getegid get real user, effective user, real group,/ getuid(2)
environ user environment environ(5)

getdate convert user format date and time getdate(3C)

ulimit get and set user limits ulimit(2)

/ getegid get real user, effective user, real group, and effective/ getuid(2)

in the utmp file of the current user ttyslot find the slot ttyslot(3C)
maillock manage lockfile for user’s mailbox maillock(3X)
elf_end finish using an object file elf_end(3E)

ustat get file system statistics ustat(2)

modification times utime set file access and utime(2)

utmp, wtmp utmp and wtmp entry formats utmp(4)

setutent, endutent, utmpname access utmp file entry /pututline, getut(3C)
ttyslot find the slot in the utmp file of the current user ttyslot(3C)

formats utmp, wtmp utmp and wtmp entrycceiciniiecnnnn. utmp(4)

/pututline, setutent, endutent, utmpname access utmp file entry getut(3C)
utmpx, wtmpx utmpx and wtmpx entry formats utmpx(4)

getutmpx, updwtmp, updwtmpx access utmpx file entry /getutmp, getutx(3C)
formats utmpx, wtmpx utmpx and Wtmpx entry utmpx(4)

/pututxline, setutxent, endutxent, utmpxname, getutmp, getutmpx,/ccceecreeuererecrnns getutx(3C)
val validate an SCCS file val(1)

val validate an SCCS file val(1)

free, realloc, calloc, memalign, valloc, memory allocator malloc,covvvveuviurnnceneees malloc(3C)
abs, labs return integer absolute value abs(3C)
elf hash compute hash value elf_hash(3E)

getenv return value for environment name getenv(3C)

floor, ceiling, remainder, absolute value functions /rint, remainderceciiivciirncuncnne floor(3M)
readlink read the value of a symbolic link readlink(2)

getitimer, setitimer get/set value of interval timer getitimer(3C)

40 Programmer’s Reference Manual

Permuted Index

putenv change or add
convert between binary and decimal

values machine-dependent

list

stdarg handle

varargs handle

print formatted output of a
pathconf get configurable pathname
sysconf get configurable system

get option letter from argument
assert

ve

get get a

ELF library and application
scesdiff compare two

virtual memory efficient way
output of a variable/ vprintf,
getvfsspec, getvfsany get

vfork spawn new process in a
formatted output of a variable/
a variable/ vprintf, vfprintf,
state waitid

state waitpid

terminate wait

wstat

or terminate

change state

change state

ftw, nftw

mbstring: mbstowcs,

mbchar: mbtowc, mblen,
encrypted isencrypt determine
libwindows

jagent host control of

/protocol used between host and
prof profile

fgetc, getw get character or
fputc, putw put character or
chdir, fchdir change

getcwd get path-name of current
write, writev

putpwent

putspent

write,

Permuted Index

value to environment putenv(3C)
values /_d2dec, _dec2s, dec2dciecucnnnnn decconv(3C)
values machine-dependent values values(5)

values . values(5)
varargs handle variable argumentcccccuovuvencurensennee varargs(5)
variable argument list stdarg(5)
variable argument list .. varargs(5)
variable argument list /vSprintfocovivenrisiecunne vprintf(3S)
variables fpathconf, fpathconf(2)
variables sysconf(3C)
vc version control ve(l)
vector getopt ... getopt(3C)
verify program assertion assert(3X)
VErSiON CONLTOL auecveieinriiinenssensenscssenssessnsscssessessenss ve(l)
version of an SCCS file get(1)
versions elf version coordinatecccccincenee elf_version(3E)
versions of an SCCS file scesdiff(1)
vfork spawn new process in a vfork(2)
vfprintf, vsprintf print formattedccccoeeuveerrcererenenee vprintf(3S)
vistab file entry /getvfsfile, getvfsent(3C)
virtual memory efficient Wayccccecveeueereneeneneessassessenes vfork(2)
vprintf, vfprintf, vsprintf print vprintf(3S)

vsprintf print formatted output of . .. vprintf(3S)

wait for child process to changeccoceveernnernssrinnns waitid(2)
wait for child process to change waitpid(2)
wait for child process to stop or . wait(2)
WAL SEALUS oot inecsscescsssessessenssssssssssssssssssaans wstat(5)
wait wait for child process to stop wait(2)
waitid wait for child process to waitid(2)
waitpid wait for child process tocoeeererssrcsseennens waitpid(2)
walk a file tree .. ftw(3C)
wcstombs multibyte string functions ccccoeeueviunes mbstring(3C)
wctomb multibyte character handlingcccoccoevvnen.ee. mbchar(3C)
whether a character buffer is isencrypt(3G)
windowing terminal function library libwindows(3X)
Windowing terminalccocceceeneusseneersesensuenssnssensensseesens jagent(5)
windowing terminal under layers(1)cceueerreerreenuen. layers(5)
within a function prof(5)
word from a stream getc, getchar,cccomrreenrrvensrrenes getc(3S)
word on a stream putc, putchar, . putc(3S)
WOTKING QUTECEOTY ...veeeerecersesece s cte s seeeressesessseesseesseane chdir(2)
WOTKING ATeCtOryeccoiuusiirrecncionccnssesseesiesssssssasssaessens getewd(3C)
WIite ON & file ...ttt ess s write(2)
write password file entrycocoeveevsiernnnn putpwent(3C)
write shadow password file entry putspent(3C)
write, writev write on a file write(2)
Writev write On a fileccurrcecersssreernennrienesin s nseens write(2)

41

Permuted Index

open open for reading or

utmp, wtmp utmp and
utmp,

utmpx, wtmpx utmpx and
utmpx,

channels protocol used by
protocol used by xt driver
bessel: j0, j1, jn,

bessel: j0, j1, jn, yO,

yacc

bessel: j0, j1, jn, y0, y1,
timezone set default system time

42

writing open(2)
wstat wait status wstat(5)
wtmp entry formats utmp(4)
wtmp utmp and wtmp entry formatscceceeeeeeeceneasenne utmp(4)
wtmpx entry formats utmpx(4)
wimpx utmpx and wtmpx entry formatscceecssevneee utmpx(4)
xt driver xtproto multiplexed xtproto(5)
xtproto multiplexed channels xtproto(5)
y0, y1, yn Bessel functions bessel(3M)
y1, yn Bessel functions bessel(3M)
yacc yet another compiler-compiler yacc(1)
yet another compiler-compiler yacc(1)
yn Bessel functions bessel(3M)
zone timezone(4)

Programmer’s Reference Manual

Intro(1) intro(1)

NAME

intro — introduction to programming commands

DESCRIPTION

This section describes the programming commands in alphabetical order. Unless
otherwise noted, the commands accept options and other arguments according to
the following syntax:
name [option(s)] [cmdarg(s)]
where:
name is the name of an executable file.
option is —noargletter(s) or —argletter <> optarg, where:
noargletter is a single letter representing an option without an
option argument;
argletter is a single letter representing an option requiring an option
argument;
<> is optional white space;

optarg is an option argument (character string) satisfying the
preceding argletter.

cmdarg is “=" by itself, which indicates the standard input, or a path name
(or other command argument) not beginning with -,

Throughout the manual pages there are references to TMPDIR, BINDIR, INCDIR,
and LIBDIR. These represent directory names whose value is specified on each
manual page as necessary. For example, TMPDIR might refer to /var/tmp.
These are not environment variables and cannot be set. [There is an environment
variable called TMPDIR which can be set. See tmpnam(3S).] There are also refer-
ences to LIBPATH, the default search path of the link editor and other tools.

SEE ALSO

exit(2), wait(2), getopt(3C).
getopts(l) in the User’s Reference Manual.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of “‘normal’ ter-
mination) one supplied by the program [see wait(2) and exit(2)]. The former
byte is 0 for normal termination; the latter is customarily 0 for successful execu-
tion and non-zero to indicate troubles such as erroneous parameters, or bad or
inaccessible data. It is called variously “exit code,” “exit status,” or “return
code,” and is described only where special conventions are involved.

WARNINGS

10/89

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and there-
fore become confused upon encountering a null character (the string terminator)
within a line.

Page 1

admin (1) admin (1)

NAME

admin - create and administer SCCS files

SYNOPSIS

admin [-n] [-i[name]] [-zrel] [-tiname]] [-£flaglflag-vall] [-dflaglflag-vall] [-alogin]
[-elogin] [-m{mrlist]] [-ylcomment]] [-h] [-z] files

DESCRIPTION

10/89

admin is used to create new SCCS files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu-
ments (that begin with -) and named files (note that SCCS file names must begin
with the characters s.). If a named file does not exist, it is created and its param-
eters are initialized according to the specified keyletter arguments. Parameters
not initialized by a keyletter argument are assigned a default value. If a named
file does exist, parameters corresponding to specified keyletter arguments are
changed, and other parameters are left unchanged.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again, non-SCCS files and
unreadable files are silently ignored.

The keyletter arguments are listed below. Each argument is explained as if only
one named file were to be processed because the effect of each argument applies
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

-i[name] The name of a file from which the text for a new SCCS file is to be
taken. The text constitutes the first delta of the file (see —r keyletter
for delta numbering scheme). If the —i keyletter is used, but the file
name is omitted, the text is obtained by reading the standard input
until an end-of-file is encountered. If this keyletter is omitted, then
the SCCs file is created empty. Only one SCCS file may be created by
an admin command on which the i keyletter is supplied. Using a
single admin to create two or more SCCS files requires that they be
created empty (no —i keyletter). Note that the —i keyletter implies
the -n keyletter.

—rrel The release into which the initial delta is inserted. This keyletter may
be used only if the i keyletter is also used. If the -r keyletter is not
used, the initial delta is inserted into release 1. The level of the initial
delta is always 1 (by default initial deltas are named 1.1).

~t[name] The name of a file from which descriptive text for the SCCS file is to
be taken. If the -t keyletter is used and admin is creating a new
SCCs file (the —n and/or -i keyletters also used), the descriptive text
file name must also be supplied. In the case of existing SCCS files:
(1) a -t keyletter without a file name causes removal of the descrip-
tive text (if any) that is currently in the SCCS file, and (2) a -t
keyletter with a file name causes text (if any) in the named file to
replace the descriptive text (if any) that is currently in the SCCS file.

Page 1

admin(1)

Page 2

~fflag

admin(1)

This keyletter specifies a flag, and, possibly, a value for the flag, to be
placed in the SCCS file. Several —f keyletters may be supplied on a
single admin command line. The allowable flags and their values are:

b

cceil

£floor

dsiD

i[str]

1list

gtext

Allows use of the -b keyletter on a get command to create
branch deltas.

The highest release (i.e., ceiling): a number greater than 0
but less than or equal to 9999 that may be retrieved by a
get command for editing. The default value for an
unspecified c flag is 9999.

The lowest release (i.e., floor): a number greater than 0
but less than 9999 that may be retrieved by a get com-
mand for editing. The default value for an unspecified £
flag is 1.

The default delta number (SID) to be used by a get com-
mand.

Causes the No id keywords (ge6) message issued by
get or delta to be treated as a fatal error. In the absence
of this flag, the message is only a warning. The message is
issued if no SCCS identification keywords [see get(1)] are
found in the text retrieved or stored in the SCCS file. If a
value is supplied, the keywords must exactly match the
given string. The string must contain a keyword, and no
embedded newlines.

Allows concurrent get commands for editing on the same
SID of an SCCS file. This flag allows multiple concurrent
updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be made
(get -e against one of these "locked" releases fails). The
list has the following syntax:

<list> = <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the list is equivalent to specifying all
releases for the named SCCS file.

Causes delta to create a null delta in each of those
releases (if any) being skipped when a delta is made in a
new release (e.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
anchor points so that branch deltas may later be created
from them. The absence of this flag causes skipped
releases to be non-existent in the SCCS file, preventing
branch deltas from being created from them in the future.

User-definable text substituted for all occurrences of the
%Q% keyword in SCCS file text retrieved by get.

10/89

admin (1)

10/89

—dflag

~alogin

~elogin

—m[mrlist]

-ylcomment]

admin(1)

nwnod module name of the SCCS file substituted for all
occurrences of the $M% keyword in SCCS file text retrieved
by get. If the m flag is not specified, the value assigned is
the name of the SCCS file with the leading s. removed.

ttype type of module in the SCCS file substituted for all
occurrences of 3Y% keyword in SCCS file text retrieved by
get.

vlpgm] Causes delta to prompt for Modification Request (MR)
numbers as the reason for creating a delta. The optional
value specifies the name of an MR number validity check-
ing program [see delta(1)]. This program will receive as
arguments the module name, the value of the type flag
(see ttype above), and the mrlist. (If this flag is set when
creating an SCCS file, the m keyletter must also be used
even if its value is null).

Causes removal (deletion) of the specified flag from an SCCS file. The
-d keyletter may be specified only when processing existing SCCS
files. Several —d keyletters may be supplied in a single admin com-
mand. See the —f keyletter for allowable flag names.

(Llist used with -d indicates a list of releases to be unlocked. See the
—f keyletter for a description of the 1 flag and the syntax of a list.)

A login name, or numerical UNIX System group ID, to be added to
the list of users who may make deltas (changes) to the SCCS file. A
group ID is equivalent to specifying all login names common to that
group ID. Several a keyletters may be used on a single admin com-
mand line. As many logins or numerical group IDs as desired may
be on the list simultaneously. If the list of users is empty, then any-
one may add deltas. If login or group ID is preceded by a ! they are
to be denied permission to make deltas.

A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the SCCS file. Specifying a
group ID is equivalent to specifying all login names common to that
group ID. Several —e keyletters may be used on a single admin com-
mand line.

The list of Modification Requests (MR) numbers is inserted into the
SCCs file as the reason for creating the initial delta in a manner ident-
ical to delta. The v flag must be set and the MR numbers are vali-
dated if the v flag has a value (the name of an MR number validation
program). Diagnostics will occur if the v flag is not set or MR valida-
tion fails.

The comment text is inserted into the SCCS file as a comment for the
initial delta in a manner identical to that of delta. Omission of the
-y keyletter results in a default comment line being inserted.

Page 3

admin(1) admin(1)

The -y keyletter is valid only if the —-i and/or -n keyletters are
specified (i.e., a new SCCS file is being created).

-h Causes admin to check the structure of the SCCS file [see
sccsfile(d)], and to compare a newly computed check-sum (the
sum of all the characters in the SCCS file except those in the first line)
with the check-sum that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced. This keyletter inhibits
writing to the file, nullifying the effect of any other keyletters sup-
plied; therefore, it is only meaningful when processing existing files.

-z The SCCS file check-sum is recomputed and stored in the first line of
the SCCS file (see -h, above). Note that use of this keyletter on a
truly corrupted file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file. New SCCS
files are given mode 444 [see chmod(1)]. Write permission in the pertinent direc-
tory is, of course, required to create a file. All writing done by admin is to a tem-
porary x-file, called x.file, [see get(1)], created with mode 444 if the admin com-
mand is creating a new SCCS file, or with the same mode as the SCCS file if it
exists. After successful execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file. This renaming process
ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that
SCCSs files themselves be mode 444. The mode of the directories allows only the
owner to modify SCCS files contained in the directories. The mode of the SCCS
files prevents any modification at all except by SCCS commands.

admin also makes use of a transient lock file (called z.file), which is used to

prevent simultaneous updates to the SCCS file by different users. See get(1) for
further information.

FILES
x-file [see delta(1)]
z-file [see delta(1)]
bdiff Program to compute differences between the “gotten” file and
the g-file [see get(1)].
SEE ALSO

bdif£f(1), ed(1), delta(l), get(1), help(l), prs(1), what(1l), sccsfile(4).
DIAGNOSTICS

Use the help command for explanations.
NOTES

If it is necessary to patch an SCCS file for any reason, the mode may be changed
to 644 by the owner allowing use of a text editor. You must run admin -h on the
edited file to check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the SCCS file is valid.

Page 4 10/89

ar(1) ar(1)

NAME

ar — maintain portable archive or library
SYNOPSIS

ar [V] - key [arg 1 [posname] afile [name. . .]
DESCRIPTION

The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files. However, it can be used for any
similar purpose. The magic string and the file headers used by ar consist of
printable ASCII characters. If an archive is composed of printable files, the entire
archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor 1d
to effect multiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named
file that is always the first file in the archive. This file is never mentioned or
accessible to the user. Whenever the ar command is used to create or update the
contents of such an archive, the symbol table is rebuilt. The s option described
below will force the symbol table to be rebuilt.

The -V option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The
key is formed with one of the following letters: drqtpmx. Arguments to the key,
alternatively, are made with one of more of the following set: vuaibcls.
posname is an archive member name used as a reference point in positioning other
files in the archive. gfile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. This option is useful to
avoid quadratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files
in the archive are listed. If names are given, only those files are listed.

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

10/89 Page 1

ar(1)

SEE ALSO

NOTES

Page 2

X

ar(1)

Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v

Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, print the
filename preceding each extraction.

Suppress the message that is produced by default when afile is created.

This option is obsolete. It is recognized, but ignored, and will be removed
in the next release.

Force the regeneration of the archive symbol table even if ar(1) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

1d(1), lorder(1), strip(1), a.out(4), ar(4).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

Since the archiver no longer uses temporary files, the -1 option is obsolete and
will be removed in the next release.

By convention, archives are suffixed with the characters .a.

10/89

as(1) as(1)

NAME
as — assembler
SYNOPSIS
as [options] file
DESCRIPTION

The as command creates object files from assembly language source files. The

following flags may be specified in any order:

-o objfile Put the output of the assembly in objfile. By default, the output file
name is formed by removing the .s suffix, if there is one, from the
input file name and appending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Obsolete. Assembler issues a warning saying that it is ignoring the
-d1 option.

-T Accept obsolete assembler directives.

-v Write the version number of the assembler being run on the stan-
dard error output.

-0{y |n} If —Qy is specified, place the version number of the assembler being
run in the object file. The default is —Qn.

-Y [md],dir Find the m4 preprocessor (m) and/or the file of predefined macros
(d) in directory dir instead of in the customary place.

FILES

By default, as creates its temporary files in /var/tmp. This location can be
changed by setting the environment variable TMPDIR [see tempnam in tmpnam(3S)].

SEE ALSO
ce(1), 1d(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4).

NOTES
If the —m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)] cannot be used as symbols (variables, functions, labels) in the input file
since m4 cannot determine which keywords are assembler symbols and which
keywords are real m4 macros.

The .align assembler directive may not work in the .text section when
long/short address optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expres-
sion.

Whenever possible, you should access the assembler through a compilation sys-
tem interface program such as cc.

10/89 Page 1

cb (1) cb(1)

NAME

cb — C program beautifier
SYNOPSIS

cb [-s] [-3]1 [-1leng]l [-V1 [file ..]
DESCRIPTION

The cb comand reads syntactically correct C programs either from its arguments
or from the standard input, and writes them on the standard output with spacing
and indentation that display the structure of the C code. By default, cb preserves
all user new-lines.

cb accepts the following options.

-s Write the code in the style of Kernighan and Ritchie found in The C
Programming Language.

-3 Put split lines back together.

-1 leng Split lines that are longer than leng.

-v Print on standard error output the version of cb invoked.

NOTES
cb treats asm as a keyword.

The format of structure initializations is unchanged by cb.

Punctuation that is hidden in preprocessing directives causes indentation errors.

SEE ALSO
ce(1).

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi-
tion, Prentice-Hall, 1988.

10/89 Page 1

cc(1) cc(1)

NAME
cc — C compiler

SYNOPSIS
cc loptions] file ...

DESCRIPTION
cc is the interface to the C compilation system. The compilation tools conceptu-
ally consist of a preprocessor, compiler, optimizer, basic block analyzer, assem-
bler, and link editor. cc processes the supplied options and then executes the
various tools with the proper arguments. cc accepts several types of files as
arguments.

Files whose names end with .c are taken to be C source files and may be prepro-
cessed, compiled, optimized, instrumented for profiling, assembled, and link
edited. The compilation process may be stopped after the completion of any pass
if the appropriate options are supplied. If the compilation process runs through
the assembler, then an object file is produced whose name is that of the source
with .o substituted for .c. However, the .o file is normally deleted if a single C
file is compiled and then immediately link edited. In the same way, files whose
names end in .s are taken to be assembly source files; they may be assembled
and link edited. Files whose names end in .i are taken to be preprocessed C
source files, and they may be compiled, optimized, instrumented for profiling,
assembled, and link edited. Files whose names do not end in .¢, .s, or .i are
handed to the link editor, which produces a dynamically linked executable whose
name by default is a.out.

Since cc usually creates files in the current directory during the compilation pro-
cess, it is necessary to run cc in a directory in which a file can be created.

The following options are interpreted by cc:

~A name| (tokens)]
Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive.

Preassertions: system(unix)
. cpu (M32)
machine (u3b2)

-A - Causes all predefined macros (other than those that begin with __) and
predefined assertions to be forgotten.

-Bc ¢ can be either dynamic or static. -B dynamic causes the link editor to
look for files named 1ibx.so and then for files named 1ibx.a when given
the —-1x option. -B static causes the link editor to look only for files
named libx.a. This option may be specified multiple times on the com-
mand line as a toggle. This option and its argument are passed to 1d.

-C Cause the preprocessing phase to pass along all comments other than
those on preprocessing directive lines.

-c Suppress the link editing phase of the compilation and do not remove any
produced object files.

10/89 Page 1

cc(1)

Page 2

cc(1)

=D name[=tokens]

Associates name with the specified tokens as if by a #define preprocessing direc-
tive. If no =tokens is specified, the token 1 is supplied.

-dc

~H

-1 dir

Predefinitions: u3b2
unix

¢ can be either y or n. —dy specifies dynamic linking, which is the default,
in the link editor. —dn specifies static linking in the link editor. This
option and its argument are passed to 1d.

Only preprocess the named C files and send the result to the standard
output. The output will contain preprocessing directives for use by the
next pass of the compilation system.

This option is obsolete and will be ignored.

Used to direct the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to 1d. It cannot be
used with the —dn option.

Cause the compiler to generate additional information needed for the use
of sdb. Use of sdb on a program compiled with both the -g and -0
options is not recommended unless the user understands the behavior of
optimization.

Print, one per line, the path name of each file included during the current
compilation on the standard error output.

Alter the search for included files whose names do not begin with / to
look in dir prior to the usual directories. The directories for multiple -I
options are searched in the order specified.

-J sfm

Specify the assembly language source math library, libsfm.sa. This
library is searched when its name is encountered, so the placement of this
option is significant. Note that this is a special-purpose library and
should be used only when necessary [see intro(3M)]. This option and its

argument are passed to the optimizer only when both -0 and -Ksd are
also specified.

-K [mode, goal, PIC, minabil

-K mode
mode can be either fpe (software floating point emulation) or mau
(hardware math accelerator unit). Compile with the indicated
floating-point mode.

-K goal
goal can be either sd to optimize for speed, or sz to optimize for
size; either have an effect only if the ~O option is also specified.

-K PIC
Causes position-independent code (PIC) to be generated.

10/89

cc(1) cc(1)

-K minabi
Directs the compilation system to use a version of the C library
that minimizes dynamic linking, without changing the application’s
ABI conformance (or non-conformance, as the case may be).
Applications that use the Network Services Library or the X library
may not use -K minabi.

The —K option can accept multiple arguments. For example,
-K fpe, sz can be used instead of -K fpe K sz.

-Ldir Add dir to the list of directories searched for libraries by 1d. This option
and its argument are passed to 1d.

=1 name
Search the library libname.so or libname.a. Its placement on the com-
mand line is significant as a library is searched at a point in time relative
to the placement of other libraries and object files on the command line.
This option and its argument are passed to 1d.

-0 Arrange for compilation phase optimization. This option has no effect on
.8 files.

-0 pathname
Produce an output object file pathname, instead of the default a.out. This
option and its argument are passed to 1d.

-P Only preprocess the named C files and leave the result in corresponding
files suffixed .i. The output will not contain any preprocessing directives,
unlike -E.

-p Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, profiled versions of
libc.a and libm.a (with the —1m option) are linked if the —dn option is
used. A mon.out file will then be produced at normal termination of exe-
cution of the object program. An execution profile can then be generated
by use of prof.

—Qc¢ ¢ can be either y or n. If ¢ is y, identification information about each
invoked compilation tool will be added to the output files (the default
behavior). This can be useful for software administration. Giving n for ¢
suppresses this information.

-qc ¢ can be either 1 or p. —ql causes the invocation of the basic block
analyzer and arranges for the production of code that counts the number
of times each source line is executed. A listing of these counts can be gen-
erated by use of lprof. —-qp is a synonym for —p.

-S Compile, optimize (if -0 is present), and do not assemble or link edit the
named C files. The assembler-language output is left in corresponding
files suffixed .s.

U name
Causes any definition of name to be forgotten, as if by a #undef prepro-
cessing directive. If the same name is specified for both -D and -U, name is
not defined, regardless of the order of the options.

10/89 Page 3

cc(1) cc(1)

-v Cause each invoked tool to print its version information on the standard
error output.

-v Cause the compiler to perform more and stricter semantic checks, and to
enable certain 1int-like checks on the named C files.

—W tool, argI[, arg, .|
Hand off the argument(s) arg; each as a separate argument to tool. Each
argument must be separated from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character; the backslash is removed from the
resulting argument.) tool can be one of the following:

A synonym for 0
compiler

optimizer

basic block analyzer
assembler

link editor

For example, —Wa, —o, objfile passes —o and objfile to the assembler, in that
order; also -W1,-I,name causes the linking phase to override the default
name of the dynamic linker, /usr/1lib/libc.so.1.

=P O NOT

The order in which the argument(s) are passed to a tool with respect to
the other specified command line options may change.

-Xc¢ Specify the degree of conformance to the ANSI C standard. c can be one
of the following:

t (transition)
The compiled language includes all new features compatible with
older (pre-ANSI) C (the default behavior). The compiler warns
about all language constructs that have differing behavior between
the new and old versions and uses the pre-ANSI C interpretation.
This includes, for example, warning about the use of trigraphs the

new escape sequence \a, and the changes to the integral promotion
rules.

a (ANSI)
The compiled language includes all new features of ANSI C and
uses the new interpretation of constructs with differing behavior.
The compiler continues to warn about the integral promotion rule

changes, but does not warn about trigraph replacements or new
escape sequences.

c (conformance)
The compiled language and associated header files are ANSI C
conforming, but include all conforming extensions of -Xa. Warn-

ings will be produced about some of these. Also, only ANSI
defined identifiers are visible in the standard header files.

Page 4 10/89

cc(1)

FILES

10/89

cc(1)

The predefined macro __STDC__ has the value 0 for -Xt and -Xa, and 1
for —Xc. All warning messages about differing behavior can be eliminated
in -Xa through appropriate coding; for example, use of casts can eliminate

the integral promotion change warnings.

-Y item, dir
Specify a new directory dir for the location of item. item can consist of any
of the characters representing tools listed under the -W option or the foi-
lowing characters representing directories containing special files:

F obsolete. Use -YP instead. For this release, -YF will be simulated
using —YP. -YF will be removed in the next release.

I directory searched last for include files: INCDIR (see -I)

S directory containing the start-up object files: LIBDIR

L obsolete. Use -YP instead. For this release, -YL will be simulated
using -YP. -YL will be removed in the next release.

U obsolete. Use -YP instead. For this release, ~YU will be simulated
using -YP. -YU will be removed in the next release.
P Change the default directories used for finding libraries. dir is a

colon-separated path list.

If the location of a tool is being specified, then the new path name for the
tool will be dir/tool. If more than one -Y option is applied to any one
item, then the last occurrence holds.

cc recognizes -a, -B, e, -h -m, -0, -r, -8, -t, —u, and -z and passes these
options and their arguments to 1d. cc also passes any unrecognized options to
1d without any diagnostic.

When cc is put in a file prefixcc, the prefix will be recognized and used to prefix
the names of each tool executed. For example, OLDcc will execute OLDacomp,
OLDnewoptim OLDbasicblk, OLDas, and OLDld, and will link the object file(s)
with OLDcrtl.o. Therefore, be careful when moving cc around. The prefix
applies to the compiler, optimizer, basic block analyzer, assembler, link editor,
and the start-up routines.

file.c C source file

file.i preprocessed C source file
file.o object file

file.s assembly language file
a.out link-edited output
LIBDIR/*crti.o startup initialization code
LIBDIR/*crtl.o startup routine
LIBDIR/*crtn.o last startup routine
TMPDIR/ * temporary files
LIBDIR/aconp preprocessor and compiler

LIBDIR/newoptim optimizer
LIBDIR /basicblk basic block analyzer
BINDIR/as assembler

Page 5

cc(1) cc(1)
BINDIR/1d link editor
LIBDIR/1ibc.so0 shared standard C library
LIBDIR/1ibc.a archive standard C library
INCDIR usually /usr/include
LIBDIR usually /usr/ccs/1lib
BINDIR usually /usr/ccs/bin
TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR (see tempnam in
tmpnam(35)).
SEE ALSO

NOTES

Page 6

as(1), 1d(1), 1lint(l), lprofFP(1), prof(l), sdb(l), monitor(3C),
tmpnam(3S) .

The ‘‘C Compilation System’’ chapter in the Programmer’s Guide: ANSI C
and Programming Support Tools.

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi-
tion, Prentice-Hall, 1988.

American National Standard for Information Systems — Programming Language
C, X3.159-1989.

Obsolescent but still recognized cc options include -£, -F, -YF, -YL, and -YU. The
-ql and -0 options do not work together; -0 will be ignored.

10/89

cdc(1) cde(1)

NAME

cdc - change the delta comment of an SCCS delta
SYNOPSIS

cdc -r SID [-m[mrlist] 1 [-y[comment]] file...
DESCRIPTION

cdc changes the delta comment, for the SID (SCCS identification string) specified
by the —r keyletter, of each named SCCS file.

The delta comment is the Modification Request (MR) and comment information
normally specified via the -m and -y keyletters of the delta command.

If file is a directory, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see the NOTES section) and each
line of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the SCCS [Dentification (SID) string of a delta for
which the delta comment is to be changed.

-mnrlist If the SCCs file has the v flag set [see admin(1)] then a list of MR
numbers to be added and/or deleted in the delta comment of the
SID specified by the —r keyletter may be supplied. A null MR list
has no effect.

mrlist entries are added to the list of MRs in the same manner as
that of delta. In order to delete an MR, precede the MR number
with the character ! (see the EXAMPLES section). If the MR to be
deleted is currently in the list of MRs, it is removed and changed
into a comment line. A list of all deleted MRs is placed in the
comment section of the delta comment and preceded by a com-
ment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the
prompt MrRs? is issued on the standard output before the stan-
dard input is read; if the standard input is not a terminal, no
prompt is issued. The MRs? prompt always precedes the com-
ments? prompt (see —y keyletter).

mrlist entries in a list are separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is taken to be
the name of a program (or shell procedure) that validates the
correctness of the MR numbers. If a non-zero exit status is
returned from the MR number validation program, cdc ter-
minates and the delta comment remains unchanged.

10/89 Page 1

cdc(1) cdc(1)

—ylcomment]
Arbitrary text used to replace the comment(s) already existing for
the delta specified by the —r keyletter. The previous comments
are kept and preceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped new-line character terminates
the comment text.

If you made the delta and have the appropriate file permissions, you can change
its delta comment. If you own the file and directory you can modify the delta
comment.

EXAMPLES
cdc -rl.6 -m"bl88-12345 !bl87-54321 bl89-00001" —ytrouble s.file
adds bl88-12345 and bl189-00001 to the MR list, removes bl87-54321 from the MR
list, and adds the comment trouble to delta 1.6 of s.file.
Entering:
cdc -rl.6 s.file
MRs? !bl87-54321 bl188-12345 b189-00001
comments? trouble
produces the same result.

FILES
x-file [see delta(l)]
z-file [see delta(1)]

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(l), sccsfile(4).
DIAGNOSTICS

Use help for explanations.
NOTES

If SCCS file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

Page 2 10/89

cflow(1) cflow(1)

NAME

cflow - generate C flowgraph

SYNOPSIS

cflow [~r] [-ix] [-i_] [-dnum] files

DESCRIPTION

10/89

The cflow command analyzes a collection of C, yacc, lex, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with .y, .1, and .c are processed by yacc, lex, and the C compiler as appropri-
ate. The results of the preprocessed files, and files suffixed with .i, are then run
through the first pass of lint. Files suffixed with .s are assembled. Assembled
files, and files suffixed with .o, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references
that is written on the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol followed
by a colon and its definition. Normally only function names that do not begin
with an underscore are listed (see the -i options below). For information
extracted from C source, the definition consists of an abstract type declaration
(e.g., char *), and, delimited by angle brackets, the name of the source file and
the line number where the definition was found. Definitions extracted from
object files indicate the file name and location counter under which the symbol
appeared (e.g., text). Leading underscores in C-style external names are deleted.
Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found.
For undefined references, only <> is printed.

As an example, suppose the following code is in f£ile.c:
int i;

main ()

{
£0:
g();
£0):

£0
{
i=nh(:;
}
The command

cflow -ix file.c
produces the output

main: int(), <file.c 4>
£: int(), <file.c 11>
h: <>
i: int, <file.c 1>
g: <>

U W =

Page 1

cflow(1) cflow (1)

When the nesting level becomes too deep, the output of cflow can be piped to
the pr command, using the —e option, to compress the tab expansion to some-
thing less than every eight spaces.

In addition to the -D, -I, and -U options [which are interpreted just as they are
by cc]), the following options are interpreted by cflow:
-r Reverse the “caller:callee” relationship producing an inverted listing

showing the callers of each function. The listing is also sorted in lexico-
graphical order by callee.

-ix Include external and static data symbols. The default is to include only
functions in the flowgraph.

-i Include names that begin with an underscore. The default is to exclude
these functions (and data if —ix is used).

—dnum The num decimal integer indicates the depth at which the flowgraph is
cut off. By default this number is very large. Attempts to set the cutoff
depth to a nonpositive integer will be ignored.

SEE ALSO

as(1), cc(1), lex(1), 1int(1), nm(1), yacc(1).

pr(1) in the User’s Reference Manual.
DIAGNOSTICS

Complains about multiple definitions and only believes the first.
NOTES

Files produced by lex and yacc cause the reordering of line number declarations,

which can confuse cflow. To get proper results, feed cflow the yacc or lex
input.

Page 2 10/89

cof2elf(1) cof2elf(1)

NAME

cof2elf - COFF to ELF object file translation

SYNOPSIS

cof2elf [-iqV] [—Q{yn}] [-s directory] files

DESCRIPTION

cof2elf converts one or more COFF object files to ELF. This translation occurs
in place, meaning the original file contents are modified. If an input file is an
archive, each member will be translated as necessary, and the archive will be
rebuilt with its members in the original order. cof2elf does not change input
files that are not COFF.

Options have the following meanings.

-i Normally, the files are modified only when full translation occurs.
Unrecognized data, such as unknown relocation types, are treated as
errors and prevent translation. Giving the -i flag ignores these par-
tial translation conditions and modifies the file anyway.

-q Normally, cof2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The —q flag (for quiet)
suppresses these messages.

—Qarg If arg is y, identification information about cof2elf will be added to
the output files. This can be useful for software administration.
Giving n for arg explicitly asks for no such information, which is the
default behavior.

-sdirectory As mentioned above, cof2elf modifies the input files. This option
saves a copy of the original files in the specified directory, which
must exist. cof2elf does not save files it does not modify.

-V This flag tells cof2elf to print a version message on standard error.

SEE ALSO

NOTES

10/89

1d(1), e1£(3E), a.out(4), ar(4).

Some debugging information is discarded. Although this does not affect the
behavior of a running program, it may affect the information available for sym-
bolic debugging.

cof2elf translates only COFF relocatable files. It does not translate executable or
static shared library files for two main reasons. First, the operating system sup-
ports executable files and static shared libraries, making translation unnecessary.
Second, those files have specific address and alignment constraints determined by
the file format. Matching the constraints with a different object file format is
problematic.

When possible, programmers should recompile their source code to build new
object files. cof2elf is provided for those times when source code is unavailable.

Page 1

comb(1) comb (1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [-o0] [-s] [-pSID] [-clist] files

DESCRIPTION

FILES

comb generates a shell procedure [see sh(1)] that, when run, reconstructs the
given SCCS files. The reconstructed files are typically smaller than the original
files. The arguments may be specified in any order, but all keyletter arguments
apply to all named SCCS files. If a directory is named, comb behaves as though
each file in the directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is read; each line
of the input is taken to be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored. The generated shell procedure is
written on the standard output.

The keyletter arguments are as follows. Each argument is explained as if only
one named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-o For each get -e, this argument causes the reconstructed file to be
accessed at the release of the delta to be created, otherwise the recon-
structed file would be accessed at the most recent ancestor. Use of the —o
keyletter may decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

-s This argument causes conb to generate a shell procedure that, when run,
produces a report that gives for each file: the file name, size (in blocks)
after combining, original size (also in blocks), and percentage change com-
puted by:

100 * (original — combined) / original

It is recommended that before any SCCS files are actually combined, one
should use this option to determine exactly how much space is saved by
the combining process.

-pSID The SCCS identification string (SID) of the oldest delta to be preserved. All
older deltas are discarded in the reconstructed file.

—clist A list of deltas to be preserved. All other deltas are discarded. See get(1)
for the syntax of a list.

If no keyletter arguments are specified, comb preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

s.COMB the reconstructed SCCS file
comb????? temporary file

SEE ALSO

10/89

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).
sh(1) in the User’s Reference Manual.

Page 1

comb (1) comb(1)

DIAGNOSTICS
Use help(1) for explanations.

NOTES
comb may rearrange the shape of the tree of deltas.

comb may not save any space; in fact, it is possible for the reconstructed file to be
larger than the original.

Page 2 10/89

cscope(1) cscope(1)

NAME

cscope — interactively examine a C program

SYNOPSIS

cscope [options] files. . .

DESCRIPTION

10/89

cscope is an interactive screen-oriented tool that allows the user to browse
through C source files for specified elements of code.

By default, cscope examines the C (.c and .h), lex (.1), and yacc (.y) source
files in the current directory. cscope may also be invoked for source files named
on the command line. In either case, cscope searches the standard directories for
#include files that it does not find in the current directory. cscope uses a sym-
bol cross-reference, cscope.out by default, to locate functions, function calls,
macros, variables, and preprocessor symbols in the files.

cscope builds the symbol cross-reference the first time it is used on the source
files for the program being browsed. On a subsequent invocation, cscope
rebuilds the cross-reference only if a source file has changed or the list of source
files is different. When the cross-reference is rebuilt, the data for the unchanged
files are copied from the old cross-reference, which makes rebuilding faster than
the initial build.

The following options can appear in any combination:

-b Build the cross-reference only.

-C Ignore letter case when searching.

-c Use only ASCII characters in the cross-reference file, that is, do
not compress the data.

-d Do not update the cross-reference.

-e Suppress the “e command prompt between files.

-£ reffile Use reffile as the cross-reference file name instead of the default
cscope.out.

-1 incdir Look in incdir (before looking in INCDIR, the standard place for

header files, normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on
the command line or in namefile below. (The #include files may
be specified with either double quotes or angle brackets.) The
incdir directory is searched in addition to the current directory
(which is searched first) and the standard list (which is searched
last). If more than one occurrence of —I appears, the directories
are searched in the order they appear on the command line.

-1 namefile Browse through all source files whose names are listed in namefile
(file names separated by spaces, tabs, or new-lines) instead of the
default (cscope.files). If this option is specified, cscope
ignores any files appearing on the command line.

Page 1

cscope(1)

-L

-1
—~num pattern
=P path

_p n

-s dir

-u

-V

cscope (1)

Do a single search with line-oriented output when used with the
—num pattern option.

Line-oriented interface (see “Line-Oriented Interface” below).
Go to input field num (counting from 0) and find pattern.

Prepend path to relative file names in a pre-built cross-reference
file so you do not have to change to the directory where the
cross-reference file was built. This option is only valid with the
-d option.

Display the last 7 file path components instead of the default (1).
Use 0 to not display the file name at all.

Look in dir for additional source files. This option is ignored if
source files are given on the command line.

Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a
period (.) will not match any symbol if its minimum length is
greater than eight characters.

Do not check file time stamps (assume that no files have
changed).

Unconditionally build the cross-reference file (assume that all
files have changed).

Print on the first line of screen the version number of cscope.

The -I, -p, and T options can also be in the cscope. files file.

Requesting the Initial Search
After the cross-reference is ready, cscope will display this menu:

Find this C symbol:

Find this function definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.
SPACE Display next set of matching lines.
+ Display next set of matching lines.

Page 2

10/89

cscope (1)

~e
>
|

cscope(1)

Display previous set of matching lines.
Edit displayed files in order.

Append the displayed list of lines to a file.
Pipe all lines to a shell command.

At any time these single-character commands can also be used:

TAB
RETURN
“n

“p

s

“b

~f

~c

“r
!
~1
?
~d

Move to next input field.

Move to next input field.

Move to next input field.

Move to previous input field.

Search with the last text typed.

Move to previous input field and search pattern.
Move to next input field and search pattern.

Toggle ignore/use letter case when searching. (When ignoring letter
case, search for FILE will match File and file.)
Rebuild the cross-reference.

Start an interactive shell (type ~d to return to cscope).
Redraw the screen.

Give help information about cscope commands.

Exit cscope.

Note: If the first character of the text to be searched for matches one of the above
commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new

text, and then it will display the lines containing the old text. Select the lines to
be changed with these single-character commands:

1-9

*

SPACE

+

a

~d

ESCAPE

!

~1l

?
Special Keys

Mark or unmark the line to be changed.

Mark or unmark all displayed lines to be changed.
Display next set of lines.

Display next set of lines.

Display previous set of lines.

Mark all lines to be changed.

Change the marked lines and exit.

Exit without changing the marked lines.

Start an interactive shell (type ~d to return to cscope).
Redraw the screen.

Give help information about cscope commands.

If your terminal has arrow keys that work in vi(1), you can use them to move

around the input fields. The up-arrow key is useful to move to the previous

input field instead of using the TAB key repeatedly. If you have the CLEAR, NEXT,

or PREV keys they will act as the ~1, +, and - commands, respectively.
Line-Oriented Interface

The -1 option lets you use cscope where a screen-oriented interface would not be
useful, e.g., from another screen-oriented program.

10/89

Page 3

cscope(1) cscope (1)

cscope will prompt with >> when it is ready for an input line starting with the
field number (counting from 0) immediately followed by the search pattern, e.g.,
lmain finds the definition of the main function.

If you just want a single search, instead of the -1 option use the -L and -num
pattern options, and you won't get the >> prompt.
For -1, cscope outputs the number of reference lines

cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func-
tion name, line number, and line text, separated by spaces, e.g.,

main.c main 161 main(argc, argv)
Note that the editor is not called to display a single reference, unlike the screen-
oriented interface.
You can use the r command to rebuild the database.

cscope will quit when it detects end-of-file, or when the first character of an
input line is ~d or q.

ENVIRONMENT VARIABLES

FILES

Page 4

EDITOR Preferred editor, which defaults to vi(1).

INCLUDEDIRS Colon-separated list of directories to search for #include files.

HOME Home directory, which is automatically set at login.

SHELL Preferred shell, which defaults to sh(1).

SOURCEDIRS Colon-separated list of directories to search for additional source
files.

TERM Terminal type, which must be a screen terminal.

TERMINFO Terminal information directory full path name. If your terminal

is not in the standard terminfo directory, see curses(3X) and
terminfo(4) for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /var/tmp.

VIEWER Preferred file display program [such as pg], which overrides EDI-
TOR (see above).

VPATH A colon-separated list of directories, each of which has the same

directory structure below it. If VPATH is set, cscope searches for
source files in the directories specified; if it is not set, cscope
searches only in the current directory.

cscope.files Default files containing -I, -p, and -T options and the list of
source files (overridden by the -i option).

cscope.out Symbol cross-reference file, which is put in the home directory if
it cannot be created in the current directory.

ncscope.out Temporary file containing new cross-reference before it replaces
the old cross-reference.

INCDIR Standard directory for #include files (usually /usz/include).

10/89

cscope (1) cscope(1)

SEE ALSO

NOTES

10/89

The “cscope’ chapter in the Programmer’s Guide: ANSI C and Programming Sup-
port Tools.

cscope recognizes function definitions of the form:
fname blank (args) white arg_decs white {

where:

fname is the function name

blank is zero or more spaces or tabs, not including newlines
args is any string that does not contain a " or a newline
white is zero or more spaces, tabs, or newlines

arg_decs are zero or more argument declarations (arg_decs may include com-
ments and white space)

It is not necessary for a function declaration to start at the beginning of a line.
The return type may precede the function name; cscope will still recognize the
declaration. Function definitions that deviate from this form will not be recog-
nized by cscope.

The Function column of the search output for the menu option Find functions
called by this function: input field will only display the first function
called in the line, that is, for this function
e()
{
return (£() + g());
}

the display would be
Functions called by this function: e

File Function Line
a.c £ 3 return(f() + g()):

Occasionally, a function definition or call may not be recognized because of
braces inside #if statements. Similarly, the use of a variable may be incorrectly
recognized as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recog-
nized as a global definition, e.g.,

LDFILE *

#if AR16WR

Preprocessor statements can also prevent the recognition of a global definition,
e.g.,
char flag
#ifdef ALLOCATE_STORAGE
= -1
#endif

’

Page 5

cscope(1) cscope (1)

Page 6

A function declaration inside a function is incorrectly recognized as a function
call, e.g.,

£0)

{

}
is incorrectly recognized as a call to g().

cscope recognizes C++ classes by looking for the class keyword, but doesn’t
recognize that a struct is also a class, so it doesn’t recognize inline member
function definitions in a structure. It also doesn’t expect the class keyword in a
typedef, so it incorrectly recognizes X as a definition in

typedef class X * Y;

void g():

It also doesn’t recognize operator function definitions

Bool Feature::operator==(const Feature & other)
{

}

10/89

ctrace (1) ctrace (1)

NAME

ctrace — C program debugger

SYNOPSIS

ctrace [options] [file]

DESCRIPTION

10/89

The ctrace command allows the user to monitor the sequential execution of a C
program as each program statement executes. The effect is similar to executing a
shell procedure with the -x option. ctrace reads the C program in file (or from
standard input if the user does not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. The output
of ctrace must be placed into a temporary file because the cc(1) command does
not allow the use of a pipe. This file can then be compiled and executed.

As each statement in the program executes, it will be listed at the terminal, fol-
lowed by the name and value of any variables referenced or modified in the
statement; these variable names and values will be followed by any output from
the statement. Loops in the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements within the loop is exe-
cuted. A warning message is printed after each 1000 loop cycles to help the user
detect infinite loops. The trace output goes to the standard output so the user
can put it into a file for examination with an editor or the bfs(1) or tail(l) com-
mands.

The options commonly used are:

~£ functions Trace only these functions.
-v functions Trace all but these functions.

The user may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. double
variables are printed as floating point numbers in scientific notation. The user

can request that variables be printed in additional formats, if appropriate, with
these options:

-0 Octal

-x Hexadecimal
-u Unsigned

-e Floating point

These options are used only in special circumstances:

-1n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from loops.

-s Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of
the = operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The diagnostics section explains when to use this option.

Page 1

ctrace (1) ctrace(1)

EXAMP

Page 2

-P Preprocess the input before tracing it. The user can also use the -D, -I,
and -U cc(1) options.
-p string

Change the trace print function from the default of print£f. For example,
fprintf (stderr, would send the trace to the standard error output.

-rf Use file f in place of the runtime.c trace function package. This replace-
ment lets the user change the entire print function, instead of just the
name and leading arguments (see the —p option).

-V Prints version information on the standard error.

—Qarg If arg is y, identification information about ctrace will be added to the
output files. This can be useful for software administration. Giving n for
arg exlicitly asks for no such information, which is the default behavior.

LE
If the file 1c.c contains this C program:

1 #include <stdio.h>
2 main() /* count lines in input */

3 {
4 int ¢, nl;
5
6 nl = 0;
7 while ((c = getchar()) != EOF)
8 if (¢ = '\n’)
9 ++nl;
10 printf("$d\n", nl);
11 }
these commands and test data are entered:
cc lc.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will be
the number 2, which is incorrect because there is only one line in the test data.
The error in this program is common, but subtle. If the user invokes ctrace
with these commands:

ctrace lc.c >tenp.c
cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;
/¥ nl = 0 */
7 while ((c = getchar()) != EOF)

10/89

ctrace (1) ctrace(1)

The program is now waiting for input. If the user enters the same test data as
before, the output will be:

/* ¢ =49 or ‘1’ */

8 if (¢ = '\n")
/* ¢ == 10 or '\n’ */
9 ++nl;
/¥ nl =1 */

7 while ((c = getchar()) != EOF)
/* ¢ == 10 or '\n’ */

8 if (¢ = '\n")
/* ¢ =10 or '\n’ */
9 ++nl;
/* nl = 2 %/

7 while ((c = getchar()) != EOF)
If an end-of-file character (cntl-d) is entered, the final output will be:

/* c = -1 */

10 printf£("$d\n", nl);
/* nl == 2 */2
return

Note the information printed out at the end of the trace line for the nl variable
following line 10. Also note the return comment added by ctrace at the end of
the trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable ¢ is assigned the value ‘1’ in line 7, but in
line 8 it has the value ‘\n’. Once user attention is drawn to this if statement, he
or she will probably realize that the assignment operator (=) was used in place of
the equality operator (==). This error can easily be missed during code reading.

EXECUTION-TIME TRACE CONTROL

10/89

The default operation for ctrace is to trace the entire program file, unless the ~£
or -v options are used to trace specific functions. The default operation does not
give the user statement-by-statement control of the tracing, nor does it let the
user turn the tracing off and on when executing the traced program.

The user can do both of these by adding ctroff() and ctron() function calls to
the program to turn the tracing off and on, respectively, at execution time. Thus,
complex criteria can be arbitrarily coded for trace control with if statements, and
this code can even be conditionally included because ctrace defines the CTRACE
preprocessor variable. For example:

#ifdef CTRACE
if (c == "1’ g& i > 1000)
ctron();
#endif

These functions can also be called from sdb(1) if they are compiled with the —g
option. For example, to trace all but lines 7 to 10 in the main function, enter:

Page 3

ctrace(1) . ctrace (1)

sdb a.out
main:7b ctroff ()
main:11lb ctron()
r

The trace can be turned off and on by setting static variable tr_ct_to 0 and 1,
respectively. This on/off option is useful if a user is using a debugger that can
not call these functions directly.

FILES
/usr/ccs/lib/ctrace/runtime.c run-time trace package

SEE ALSO
sdb(1), ctype(3C), £close(3S), print £(3S), string(3C).
bfs(1), tail(l) in the User's Reference Manual.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since the
traced code often gets some cc warning messages. The user can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression” error. Use the -t option to increase
this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that tabs are used
to indent the code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #define
preprocessor statement.

'if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, I, and -U preprocessor options.
NOTES
Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Just use a different name.
ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will
cause a syntax error.

Pointer values are always treated as pointers to character strings.

Page 4 10/89

ctrace (1) ctrace (1)

10/89

ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entire aggregate. ctrace may
choose to print the address of an aggregate or use the wrong format (e.g.,
3.149050e-311 for a structure with two integer members) when printing the
value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file
program. Separate output elimination can result in functions called from a loop
still being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

Page 5

cxref(1) cxref(1)
NAME
cxref — generate C program cross-reference
SYNOPSIS
cxref [options] files
DESCRIPTION

10/89

The cxref command analyzes a collection of C files and builds a cross-reference
table. cxref uses a special version of cc to include #define’d information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each
individual file, or, with the —c option, in combination. The table includes four
fields: NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the
LINE field also show reference marks as appropriate. The reference marks

include:

assignment
declaration
definition

* 10

If no reference marks appear, you can assume a general reference.

OPTIONS
cxref interprets the -D, —I, -U options in the same manner that cc does. In
addition, cxref interprets the following options:

-C

-wnum

Combine the source files into a single report. Without the -c option,
cxref generates a separate report for each file on the command line.

Disables printing declarations, making the report easier to read.

Does not print local variables. Prints only global and file scope statistics.
Direct output to file.

Operates silently; does not print input file names.

Format listing for 80-column width.

Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51.

Runs only the first pass of cxref, creating a .cx file that can later be
passed to cxref. This is similar to the —c option of cc or lint.

Prints the full path of the referenced file names.

Modifies the number of columns in the LINE field. If you do not specify
a number, cxref defaults to five columns.

Prints version information on the standard error.

Page 1

cxref(1) cxref(1)

—Wname file, function, line
Changes the default width of at least one field. The default widths are:

Field Characters
NAME 15
FILE 13
FUNCTION 15
LINE 20 (4 per column)
FILES
TMPDIR/tcx. * temporary files
TMPDIR/cx . * temporary files
LIBDIR/xref accessed by cxref
LIBDIR usually /usr/ccs/1ib
TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam in tmpnam(3S)].
EXAMPLE
a.c
1 main ()
2 {
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8 }
Resulting cross-reference table:
NAME FILE FUNCTION LINE
c a.c - 4- 7=
i a.c main 3* 6= 7
main a.c - 2%
u3b2 predefined ——- 0*
unix predefined -—— 0*
SEE ALSO
cc(1), 1int(1).
DIAGNOSTICS

Error messages usually mean you cannot compile the files.

Page 2 10/89

delta(1) delta(1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [-rSID] [-s] [-n] [-glist] [-m{mrlist]] [-ylcomment]] [-p] files

DESCRIPTION
delta is used to permanently introduce into the named SCCS file changes that
were made to the file retrieved by get -e (called the g-file or generated file).

delta makes a delta to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see the NOTES section); each line of the standard input is taken to
be the name of an SCCS file to be processed.

delta may issue prompts on the standard output depending on certain keyletters
specified and flags [see admin(1)] that may be present in the SCCS file (see -m and
-y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the SCCS
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the same
SCCs file were done by the same person (login name). The
SID value specified with the —r keyletter can be either the
SID specified on the get command line or the SID to be
made as reported by the get command [see get(l)]. A
diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the created
delta’s SID, as well as the number of lines inserted, deleted
and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally removed at
completion of delta processing).
~glist Specify a list [see get(1) for the definition of list] of deltas

that are to be ignored when the file is accessed at the
change level (SID) created by this delta.

-m{mrlist] If the SCCS file has the v flag set [see admin(1)] then a
Modification Request (MR) number must be supplied as the
reason for creating the new delta. If -mis not used and the
standard input is a terminal, the prompt MRs? is issued on
the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments? prompt (see
-y keyletter). MRs in a list are separated by blanks and/or
tab characters. An unescaped new-line character terminates
the MR list. Note that if the v flag has a value [see
admin(1)], it is taken to be the name of a program (or shell

10/89 Page 1

delta(1)

~ylcomment]

-P
FILES
g-file
p-file
q-file
x-file
z-file
d-file
bdiff

SEE ALSO

delta(1)

procedure) that will validate the correctness of the MR
numbers. If a non-zero exit status is returned from the MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment. If -y is
not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before
the standard input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped new-line charac-
ter terminates the comment text.

Causes delta to print (on the standard output) the SCCS
file differences before and after the delta is applied in a
dif£(1) format.

Existed before the execution of delta; removed after comple-
tion of delta.

Existed before the execution of delta; may exist after comple-
tion of delta.

Created during the execution of delta; removed after comple-
tion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after comple-
tion of delta.

Program to compute differences between the “gotten” file and
the g-file.

admin(1), cdc(1), get(1), help(1), prs(1), rmdel(1), sccsfile(4).
bdiff(1) in the User’s Reference Manual.

DIAGNOSTICS

Use help(1) for explanations.

NOTES

A get of many SCCS files, followed by a delta of those files, should be avoided

when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.

If the standard input (-) is specified on the delta command line, the —m (if neces-
sary) and -y keyletters must also be present. Omission of these keyletters causes

an error.

Comments are limited to text strings of at most 1024 characters. Line lengths
greater than 1000 characters cause undefined results.

Page 2

10/89

dis(1) dis(1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-o] [-V] [-L] [-s] [~d sec] [-D sec] [-F function] [t sec] [-1 string] file ...
DESCRIPTION
The dis command produces an assembly language listing of file, which may be
an object file or an archive of object files. The listing includes assembly state-
ments and an octal or hexadecimal representation of the binary that produced
those statements.

The following options are interpreted by the disassembler and may be specified in

any order.

—d sec Disassemble the named section as data, printing the offset of the
data from the beginning of the section.

-D sec Disassemble the named section as data, printing the actual address

of the data.

-F function Disassemble only the named function in each object file specified on
the command line. The -F option may be specified multiple times
on the command line.

-L Lookup source labels for subsequent printing. This option works
only if the file was compiled with additional debugging information
[e.g., the =g option of cc].

-1 string Disassemble the archive file specified by string. For example, one
would issue the command dis -1 x -1 z to disassemble libx.a
and 1libz.a, which are assumed to be in LIBDIR.

-0 Print numbers in octal. The default is hexadecimal.

-s Perform symbolic disassembly where possible. Symbolic disassembly
output will appear on the line following the instruction. Symbol
names will be printed using C syntax.

-t sec Disassemble the named section as text.

-V Print, on standard error, the version number of the disassembler
being executed.

If the —d, -D or -t options are specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections containing
text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
indicates that the break-pointable line number starts with the following instruc-
tion. These line numbers will be printed only if the file was compiled with addi-
tional debugging information [e.g., the —g option of cc]. An expression such as
<40> in the operand field or in the symbolic disassembly, following a relative dis-
placement for control transfer instructions, is the computed address within the
section to which control will be transferred. A function name will appear in the
first column, followed by () if the object file contains a symbol table.

10/89 Page 1

dis(1) dis(1)

FILES

LIBDIR usually /usr/ccs/1lib
SEE ALSO

as(1), cc(1), 1d(1), a.out(4).
DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

NOTES

Since the —da option did not adhere to the command syntax rules, it has been
replaced by -D.

At this time, symbolic disassembly does not take advantage of additional infor-
mation available if the file is compiled with the —g option.

Page 2 10/89

dump (1) dump (1)

NAME
dump — dump selected parts of an object file
SYNOPSIS
dump [options] files
DESCRIPTION
The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following options:

-a Dump the archive header of each member of an archive.

-C Dump decoded C++ symbol table names.

-c Dump the string table(s).

-D Dump debugging information.

-f Dump each file header.

-g Dump the global symbols in the symbol table of an archive.

-h Dump the section headers.

-L Dump dynamic linking information and static shared library infor-
mation, if available.

-1 Dump line number information.

-o Dump each program execution header.

-r Dump relocation information.

-s Dump section contents in hexadecimal.

=T index or -T index1, index2
Dump only the indexed symbol table entry defined by index or a
range of entries defined by index1, index2.

-t Dump symbol table entries.

-u When reading a COFF object file, dump translates the file to ELF inter-
nally (this translation does not affect the file contents). This option
controls how much translation occurs from COFF values to ELF.
Normally (without —u), the COFF values are preserved as much as
possible, showing the actual bytes in the file. If -u is used, dump
updates the values and completes the internal translation, giving a
consistent ELF view of the contents. Although the bytes displayed
under this option might not match the file itself, they show how the
file would look _if it were converted to ELF. (See cof2elf(1) for
more information.)

-V Print version information.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

10/89 Page 1

dump (1)

Page 2

dump(1)

—d number or —d number1, number2

-n name

P
-v

Dump the section number indicated by number or the range of sec-
tions starting at number] and ending at number2. This modifier can
be used with -h, -s, and -r. When —d is used with -h or -s, the
argument is treated as the number of a section or range of sections.
When —d is used with —r, the argument is treated as the number of
the section or range of sections to which the relocation applies. For
example, to print out all relocation entries associated with the .text
section, specify the number of the section as the argument to —d. If
.text is section number 2 in the file, dump -r -d 2 will print all
associated entries. To print out a specific relocation section use
dump -s -n name for raw data output, or dump -sv -n name for
interpreted output.

Dump information pertaining only to the named entity. This
modifier can be used with -h, -s, -r, and —-t. When -n is used
with -h or -s, the argument will be treated as the name of a sec-
tion. When -n is used with -t or -r, the argument will be treated
as the name of a symbol. For example, dump -t -n .text will
dump the symbol table entry associated with the symbol whose
name is .text, where dump -h -n .text will dump the section
header information for the .text section.

Suppress printing of the headings.

Dump information in symbolic representation rather than numeric.
This modifier can be used with -a (date, user id, group id), -f
(class, data, type, machine, version, flags), —h (type, flags), —o (type,
flags), —r (name, type), —s (interpret section contents wherever pos-
sible), -t (type, bind), and -L (value). When -v is used with -s, all
sections that can be interpreted, such as the string table or symbol
table, will be interpreted. For example, dump -sv -n .symtab files
will produce the same formatted output as dump —tv files, but dump
-s -n .symtab files will print raw data in hexadecimal. Without
additional modifiers, dump -sv files will dump all sections in the
files interpreting all those that it can and dumping the rest (such as
.text or .data) as raw data.

The dump command attempts to format the information it dumps in a meaningful

way, printing certain information in character, hexadecimal, octal or decimal
representation as appropriate.

SEE ALSO

a.out(4), ar(4).

10/89

get(1) get(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [-aseq-no.] [-ccutoff] [-ilist] [-xSID] [~wstring] [xlist] [-1[p]] [-b] [-e] [—g]
[-k] [-m] [-n] [-p] [-s] [-t] file...

DESCRIPTION

get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with -. The argu-
ments may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-SCCS files (last com-
ponent of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.

The generated text is normally written into a file called the g-file whose name is
derived from the SCCS file name by simply removing the leading “s.” (see also
the FILES section below).

Each of the keyletter arguments is explained below as though only one SCCS file
is to be processed, but the effects of any keyletter argument apply independently
to each named file.

-rSID The SCCS identification string (SID) of the version (delta) of an
SCCS file to be retrieved. Table 1 below shows, for the most use-
ful cases, what version of an SCCS file is retrieved (as well as the
SID of the version to be eventually created by delta(l) if the —e
keyletter is also used), as a function of the SID specified.

—ccutoff Cutoff date-time, in the form:
YYIMMI[DD[HHIMMI(SS1]

No changes (deltas) to the SCCS file that were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to —~c750228235959.
Any number of non-numeric characters may separate the two-
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form:

-c"77/2/2 9:22:25",

—ilist A list of deltas to be included (forced to be applied) in the crea-
tion of the generated file. The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form shown
in the “’SID Specified”” column of Table 1.

10/89 Page 1

get(1)

Page 2

—xlist

-1[p]

P

-8

-m

-n

get(1)

A list of deltas to be excluded in the creation of the generated file.
See the —i keyletter for the list format.

Indicates that the get is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of delta(l).
The —e keyletter used in a get for a particular version (SID) of the
SCCS file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the SCCS file
[see admin(1)]. Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an —e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the get command with the —k keyletter in place of the
-e keyletter.

SCCs file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file [see admin(1)] are enforced when
the —e keyletter is used.

Used with the —e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table 1. This keyletter
is ignored if the b flag is not present in the file [see admin(1)] or if
the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the SCCS file tree) A branch delta may
always be created from a non-leaf delta. Partial SIDs are inter-
preted as shown in the “SID Retrieved” column of Table 1.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The -k keyletter is implied by
the —e keyletter.

Causes a delta summary to be written into an l-file. If -1p is
used, then an l-file is not created; the delta summary is written on
the standard output instead. See IDENTIFICATION KEYWORDS
for detailed information on the I-file.

Causes the text retrieved from the SCCS file to be written on the
standard output. No g-file is created. All output that normally
goes to the standard output goes to file descriptor 2 instead,
unless the —s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded
by the SID of the delta that inserted the text line in the SCCS file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

Causes each generated text line to be preceded with the M3%
identification keyword value (see below). The format is: 3%M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -n keyletters are used, the format is: *M%

10/89

get(1)

10/89

get(1)

value, followed by a horizontal tab, followed by the -m keyletter
generated format.

-g Suppresses the actual retrieval of text from the SCCs file. It is pri-
marily used to generate an l-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created delta in a given release

(e.g., —rl), or release and level (e.g., ~rl.2).

—w string Substitute string for all occurrences of $W% when getting the file.
Substitution occurs prior to keyword expansion.

—aseq-no. The delta sequence number of the SCCS file delta (version) to be
retrieved. This keyletter is used by the comb command; it is not a
generally useful keyletter. If both the —r and -a keyletters are
specified, only the -a keyletter is used. Care should be taken
when using the -a keyletter in conjunction with the -e keyletter,
as the SID of the delta to be created may not be what one expects.
The -r keyletter can be used with the ~a and —e keyletters to con-
trol the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the -i keyletter is used,
included deltas are listed following the notation “Included”; if the —x keyletter is
used, excluded deltas are listed following the notation “Excluded”.

Page 3

get(1) get(1)
TABLE 1. Determination of SCCS Identification String
SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
none} no R defaults to mR mR.mL mR.(mL+1)
nonet yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R'> mR mR.mL RT™¥
R no R =mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB+1).1
R yes R =mR mR.mL mR.mL.(mB+1).1
_ R <mR and -
R R does not exist hR.mL hR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
RL no No trunk succ. RL R.(L+D)
R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.
RL - in release > R R.L R.L.(mB+1).1
RLB no No branch succ. R.L.B.mS R.L.B.(m5+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.L.B.5 no No branch succ. R.LBS R.L.B.(5+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.LB.S - Branch succ. R.LB.S R.L.(mB+1).1
* “R"”, “L”, "B”, and "S” are the “release”, “level”’, “branch”, and “’sequence”
components of the SID, respectively; “m” means “maximum’. Thus, for
example, “R.mL” means “the maximum level number within release R”;
“R.L.(mB+1).1” means “the first sequence number on the new branch (i.e.,
maximum branch number plus one) of level L within release R”. Note that
if the SID specified is of the form “RL”, “R.L.B”, or “RLL.B.S”, each of the
specified components must exist.
* “hR” is the highest existing release that is lower than the specified, nonex-
istent, release R.
*** This is used to force creation of the first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag [see admin(1)] is present in the
file. An entry of — means “irrelevant”.
i This case applies if the d (default SID) flag is not present in the file. If the d

flag is present in the file, then the SID obtained from the d flag is interpreted
as if it had been specified on the command line. Thus, one of the other cases
in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file by

Page 4

replacing identification keywords with their value wherever they occur. The fol-
lowing keywords may be used in the text stored in an SCCS file:

10/89

get(1)

10/89

get(1)

Keyword Value

M% Module name: either the value of the m flag in the file [see admin(1)],
or if absent, the name of the SCCS file with the leading s. removed.

$I% SCCS identification (SID) ($R%.%L% . %B% . $5%) of the retrieved text.

%R% Release.

3L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

$H% Current date (MM/DD/YY).

3T Current time (HH:MM:SS).

ES Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

$U% Time newest applied delta was created (HH:MM:SS).

Y% Module type: value of the t flag in the SCCS file [see admin(1)].

3F% SCCs file name.

%P% Fully qualified SCCS file name.

%Q% The value of the q flag in the file [see admin(1)].

$C% Current line number. This keyword is intended for identifying mes-

sages output by the program such as “this should not have hap-
pened” type errors. It is not intended to be used on every line to pro-
vide sequence numbers.

$Z% The four-character string @ (#) recognizable by the what command.

W% A shorthand notation for constructing what strings for UNIX System
program files. %W% = %2%%Mi<tab>%I%

%A% Another shorthand notation for constructing what strings for non-

UNIX System program files: $A% = $2%%Y% $M% $I%%2%

Several auxiliary files may be created by get. These files are known generically
as the g-file, 1-file, p-file, and z-file. The letter before the hyphen is called the tag.
An auxiliary file name is formed from the SCCS file name: the last component of
all SCCs file names must be of the form s.module-name, the auxiliary files are
named by replacing the leading s with the tag. The g-file is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The g-file, which contains the generated text, is created in the current directory
(unless the —p keyletter is used). A g-file is created in all cases, whether or not
any lines of text were generated by the get. It is owned by the real user. If the
-k keyletter is used or implied, its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The l-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -1 keyletter is
used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.

Page 5

get(1)

get(1)
Lines in the l-file have the following format:

a. A blank character if the delta was applied; * otherwise.

b. A blank character if the delta was applied or was not applied and
ignored; = if the delta was not applied and was not ignored.

c. A code indicating a “’special’” reason why the delta was or was not
applied: “I” (included), “X” (excluded), or “C” (cut off by a —c
keyletter).

Blank.

SCCS identification (SID).

Tab character.

Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
Blank.

Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one hor-
izontal tab character. A blank line terminates each entry.

SR NS

The p-file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an —e keyletter for the same SID until delta is executed or the joint edit
flag, j, [see admin(1)] is set in the SCCS file. The p-file is created in the directory
containing the SCCS file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The format of
the p-file is: the gotten SID, followed by a blank, followed by the SID that the
new delta will have when it is made, followed by a blank, followed by the login
name of the real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the —i keyletter argument if it was
present, followed by a blank and the —x keyletter argument if it was present, fol-
lowed by a new-line. There can be an arbitrary number of lines in the p-file at
any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its con-
tents are the binary (2 bytes) process ID of the command (i.e., get) that created
it. The z-file is created in the directory containing the SCCS file for the duration
of get. The same protection restrictions as those for the p-file apply for the z-file.
The z-file is created with mode 444.

FILES
g-file Created by the execution of get.
p-file [see delta(1)]
g-file [see delta(1)]
z-file [see delta(1)]
bdiff Program to compute differences between the “gotten” file and
the g-file.
SEE ALSO

Page 6

admin(1), delta(1), help(1), prs(1), what(1).
bdiff(1) in the User’s Reference Manual.

10/89

get(1) get(1)

DIAGNOSTICS
Use help(1) for explanations.
NOTES
If the effective user has write permission (either explicitly or implicitly) in the

directory containing the SCCS files, but the real user does not, then only one file
may be named when the -e keyletter is used.

10/89 Page 7

help(1) help(1)

NAME

help — ask for help with message numbers or SCCS commands

SYNOPSIS

help [args]

DESCRIPTION

FILES

10/89

help finds information to explain a message from a command or explain the use
of a SCCS command. Zero or more arguments may be supplied. If no argu-
ments are given, help will prompt for one.

The arguments may be either information within the parentheses following a
message or SCCS command names.

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try “help stuck”.

LIBDIR/help directory containing files of message text.

LIBDIR/help/helploc file containing locations of help files not in
LIBDIR/help.

LIBDIR usually /usr/ccs/1ib

Page 1

install (1M) install (1M)

NAME

install - install commands

SYNOPSIS

/usr/sbin/install [-c dira] [-£ dirb] [~i] [-n dirc] [-m mode] [~u user] [-g group)
[-o] [~s] file [dirx ...]

DESCRIPTION

10/89

The install command is most commonly used in “makefiles” [see make(1)] to
install a file (updated target file) in a specific place within a file system. Each file
is installed by copying it into the appropriate directory, thereby retaining the
mode and owner of the original command. The program prints messages telling
the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/usr/usr/bin, /usr/usr/usr/bin, /etc, /usr/usr/lib,
and /usr/usr/usr/lib, in that order) for a file with the same name as file.
When the first occurrence is found, install issues a message saying that it is
overwriting that file with file, and proceeds to do so. If the file is not found, the
program states this and exits without further action.

If one or more directories (dirx ...) are specified after file, those directories will
be searched before the directories specified in the default list.

The meanings of the options are:

-c dira Installs a new command (file) in the directory specified by
dira, only if it is not found. If it is found, install issues a
message saying that the file already exists, and exits
without overwriting it. May be used alone or with the ~s
option.

-£ dirb Forces file to be installed in given directory, whether or not
one already exists. If the file being installed does not
already exist, the mode and owner of the new file will be
set to 755 and bin, respectively. If the file already exists,
the mode and owner will be that of the already existing file.
May be used alone or with the —o or —s options.

-i Ignores default directory list, searching only through the
given directories (dirx ...). May be used alone or with any
other options except —c and -f£.

-n dirc If file is not found in any of the searched directories, it is
put in the directory specified in dirc. The mode and owner
of the new file will be set to 755 and bin, respectively.
May be used alone or with any other options except —c and

-£.
-m mode The mode of the new file is set to mode.
-u user The owner of the new file is set to user.

Page 1

install (1M)

—g group
-0
-8
SEE ALSO
make(1).
Page 2

install (1M)

The group id of the new file is set to group. Only available
to the superuser.

If file is found, this option saves the “found” file by copy-
ing it to oLDfile in the directory in which it was found. This
option is useful when installing a frequently used file such
as /usr/bin/sh or /usr/lib/saf/ttymon, where the
existing file cannot be removed. May be used alone or with
any other options except —c.

Suppresses printing of messages other than error messages.
May be used alone or with any other options.

10/89

Id(1) Id(1)

NAME
1d - link editor for object files

SYNOPSIS
1d [options] files ...

DESCRIPTION

The 1d command combines relocatable object files, performs relocation, and
resolves external symbols. 1d operates in two modes, static or dynamic, as
governed by the -d option. In static mode, —dn, relocatable object files given as
arguments are combined to produce an executable object file; if the —r option is
specified, relocatable object files are combined to produce one relocatable object
file. In dynamic mode, -dy, the default, relocatable object files given as argu-
ments are combined to produce an executable object file that will be linked at
execution with any shared object files given as arguments; if the -G option is
specified, relocatable object files are combined to produce a shared object. In all
cases, the output of 1d is left in a.out by default.

If any argument is a library, it is searched exactly once at the point it is encoun-
tered in the argument list. The library may be either a relocatable archive or a
shared object. For an archive library, only those routines defining an unresolved
external reference are loaded. The archive library symbol table [see ar(4)] is
searched sequentially with as many passes as are necessary to resolve external
references that can be satisfied by library members. Thus, the ordering of
members in the library is functionally unimportant, unless there exist multiple
library members defining the same external symbol. A shared object consists of a
single entity all of whose references must be resolved within the executable being
built or within other shared objects with which it is linked.

The following options are recognized by 1d:

-a In static mode only, produce an executable object file; give errors for
undefined references. This is the default behavior for static mode. -a
may not be used with the —r option.

-b In dynamic mode only, when creating an executable, do not do special
processing for relocations that reference symbols in shared objects.
Without the -b option, the link editor will create special position-
independent relocations for references to functions defined in shared
objects and will arrange for data objects defined in shared objects to be
copied into the memory image of the executable by the dynamic linker at
run time. With the -b option, the output code may be more efficient, but
it will be less sharable.

~d[y|n]
When -dy, the default, is specified, 1d uses dynamic linking; when -dn is
specified, 1d uses static linking.

—e epsym
Set the entry point address for the output file to be that of the symbol

epsym.

10/89 Page 1

Id(1)

Page 2

Id(1)

—h name

-m

In dynamic mode only, when building a shared object, record name in the
object’s dynamic section. name will be recorded in executables that are
linked with this object rather than the object’s UNIX System file name.
Accordingly, name will be used by the dynamic linker as the name of the
shared object to search for at run time.

Search a library libx.so or libx.a, the conventional names for shared
object and archive libraries, respectively. In dynamic mode, unless the
-Bstatic option is in effect, 1d searches each directory specified in the
library search path for a file 1ibx.so or libx.a. The directory search
stops at the first directory containing either. 1d chooses the file ending in
.so if —1x expands to two files whose names are of the form libx.so and
libx.a. If no libx.so is found, then 1d accepts libx.a. In static mode,
or when the -Bstatic option is in effect, 1d selects only the file ending in
.a. A library is searched when its name is encountered, so the placement
of -1 is significant.

Produce a memory map or listing of the input/output sections on the
standard output.

-o outfile

-r

-8

-t

Produce an output object file named outfile. The name of the default
object file is a.out.

Combine relocatable object files to produce one relocatable object file. 1d
will not complain about unresolved references. This option cannot be
used in dynamic mode or with —a.

Strip symbolic information from the output file. The debug and line sec-
tions and their associated relocation entries will be removed. Except for
relocatable files or shared objects, the symbol table and string table sec-
tions will also be removed from the output object file.

Turn off the warning about multiply defined symbols that are not the
same size.

-=u symname

Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from an archive library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading of the
first routine. The placement of this option on the command line is
significant; it must be placed before the library that will define the symbol.

-z defs

Force a fatal error if any undefined symbols remain at the end of the link.
This is the default when building an executable. It is also useful when
building a shared object to assure that the object is self-contained, that is,
that all its symbolic references are resolved internally.

-z nodefs

Allow undefined symbols. This is the default when building a shared
object. It may be used when building an executable in dynamic mode and
linking with a shared object that has unresolved references in routines not
used by that executable. This option should be used with caution.

10/89

Id(1)

10/89

1d(1)

-z text
In dynamic mode only, force a fatal error if any relocations against non-
writable, allocatable sections remain.

-B [dynamic|static]
Options governing library inclusion. -Bdynamic is valid in dynamic mode
only. These options may be specified any number of times on the com-
mand line as toggles: if the —-Bstatic option is given, no shared objects
will be accepted until -Bdynamic is seen. See also the -1 option.

-Bsymbolic
In dynamic mode only, when building a shared object, bind references to
global symbols to their definitions within the object, if definitions are
available. Normally, references to global symbols within shared objects
are not bound until run time, even if definitions are available, so that
definitions of the same symbol in an executable or other shared objects
can override the object’s own definition. 1d will issue warnings for
undefined symbols unless -z defs overrides.

-G In dynamic mode only, produce a shared object. Undefined symbols are
allowed.

-1 name
When building an executable, use name as the path name of the interpreter
to be written into the program header. The default in static mode is no
interpreter; in dynamic mode, the default is the name of the dynamic
linker, /usr/lib/libc.so.l. Either case may be overrridden by -I.
exec will load this interpreter when it loads the a.out and will pass con-
trol to the interpreter rather than to the a.out directly.

-L path
Add path to the library search directories. 1d searches for libraries first in
any directories specified with -L options, then in the standard directories.
This option is effective only if it precedes the -1 option on the command
line.

-M mapfile
In static mode only, read mapfile as a text file of directives to 1d. Because
these directives change the shape of the output file created by 1d, use of
this option is strongly discouraged.

—Qly|n]
Under —Qy, an ident string is added to the .comment section of the out-
put file to identify the version of the link editor used to create the file.
This will result in multiple 1d idents when there have been multiple
linking steps, such as when using 1d -r. This is identical with the default
action of the cc command. -Qn suppresses version.

-v Output a message giving information about the version of 1d being used.

-YP, dirlist
Change the default directories used for finding libraries. dirlist is a colon-
separated path list.

Page 3

Id(1) Id(1)

The environment variable ILD_LIBRARY PATH may be used to specify library
search directories. In the most general case, it will contain two directory lists
separated by a semicolon:

dirlist]; dirlist2
If 1d is called with any number of occurences of -L, as in

d .. -Lpathl ...~Lpathn ...
then the search path ordering is

dirlist1 pathl ... pathn dirlist2 LIBPATH

LD_LIBRARY_PATH is also used to specify library search directories to the dynamic
linker at run time. That is, if LD_LIBRARY PATH exists in the environment, the
dynamic linker will search the directories named in it, before its default directory,
for shared objects to be linked with the program at execution.

The environment variable LD_RUN_PATH, containing a directory list, may also be
used to specify library search directories to the dynamic linker. If present and not
null, it is passed to the dynamic linker by 1d via data stored in the output object

file.
FILES

libx.so libraries

libx.a libraries

a.out output file

LIBPATH usually /usr/ccs/lib:/usr/1lib
SEE ALSO

as(1), cc(1), exec(2), exit(2), end(3C), a.out(4), ar(4).
The “C Compilation System” chapter and the ‘“Mapfile Option” appendix in the
Programmer’s Guide: ANSI C and Programming Support Tools.

NOTES

Through its options, the link editor gives users great flexibility; however, those
who use the -M mapfile option must assume some added responsibilities. Use of
this feature is strongly discouraged.

Page 4 10/89

Idd (1) Idd (1)

NAME

1dd - list dynamic dependencies
SYNOPSIS

1dd [-d | -x] file
DESCRIPTION

The 1dd command lists the path names of all shared objects that would be loaded
as a result of executing file. If file is a valid executable but does not require any
shared objects, 1dd will succeed, producing no output.

1dd may also be used to check the compatibility of file with the shared objects it
uses. It does this by optionally printing warnings for any unresolved symbol
references that would occur if file were executed. Two options govern this mode
of 1dd:

-d Causes 1dd to check all references to data objects.
-r Causes 1dd to check references to both data objects and functions.
Only one of the above options may be given during any single invocation of 1dd.

SEE ALSO
cc(1), 1d(1).
The “C Compilation System” chapter in the Programmer’s Guide: ANSI C and Pro-
gramming Support Tools.

DIAGNOSTICS
1dd prints its record of shared object path names to stdout. The optional list of
symbol resolution problems are printed to stderr. If file is not an executable file
or cannot be opened for reading, a non-zero exit status is returned.

NOTES
1dd doesn't list shared objects explicitly attached via dlopen(3X).

1dd uses the same algorithm as the dynamic linker to locate shared objects.

10/89 Page 1

lex(1)

NAME

lex(1)

lex — generate programs for simple lexical tasks

SYNOPSIS

lex [-ctvn -V —QlyIn]] [filel

DESCRIPTION

10/89

The lex command generates programs to be used in simple lexical analysis of
text.

The input files (standard input default) contain strings and expressions to be
searched for and C text to be executed when these strings are found.

lex generates a file named lex.yy.c. When lex.yy.c is compiled and linked
with the lex library, it copies the input to the output except when a string
specified in the file is found. When a specified string is found, then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array. Matching is done in order of the patterns in
the file. The patterns may contain square brackets to indicate character classes, as
in [abx-z] to indicate a, b, x, y, and z; and the operators *, +, and ? mean,
respectively, any non-negative number of, any positive number of, and either zero
or one occurrence of, the previous character or character class. Thus, [a-zA-2Z]+
matches a string of letters. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are
also supported. The notation r{d, e} in a rule indicates between 4 and e instances
of regular expression r. It has higher precedence than |, but lower than *, ?, +,
and concatenation. The character ~ at the beginning of an expression permits a
successful match only immediately after a new-line, and the character $ at the
end of an expression requires a trailing new-line. The character / in an expres-
sion indicates trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must follow in the input
stream. An operator character may be used as an ordinary symbol if it is within
" symbols or preceded by \.

Three macros are expected: input () to read a character; unput (c) to replace a
character read; and output (c) to place an output character. They are defined in
terms of the standard streams, but you can override them. The program gen-
erated is named yylex (), and the lex library contains a main() that calls it. The
action REJECT on the right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore() accumulates additional
characters into the same yytext; and the function yyless(n) pushes back
yyleng —n characters into the input stream. (yyleng is an external int variable
giving the length of yytext.) The macros input and output use files yyin and
yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied;
if it precedes %%, it is copied into the external definition area of the lex.yy.c file.
All rules should follow a %%, as in yacc. Lines preceding %% that begin with a
non-blank character define the string on the left to be the remainder of the line; it
can be called out later by surrounding it with {}. In this section, C code (and
preprocessor statements) can also be included between %{ and %}. Note that
curly brackets do not imply parentheses; only string substitution is done.

Page 1

lex(1) lex(1)

EXAMPLE
D [0-9]
%{
void
skipcommnts (void)
{
for(;;)
{
while (input () I='*")
if (input ()=='/")
return;
else
unput (yytext [yyleng-1]);
}
}
%}
%%
if printf ("IF statement\n");

[a-z]+ printf("tag, value %$s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n");

nyn printf ("binary op\n");

"\n" ;/*no action */
VAL skipcommnts () ;
%%

The external names generated by lex all begin with the prefix yy or YY.
The flags must appear before any files.

-c Indicates C actions and is the default.

-t Causes the lex.yy.c program to be written instead to standard output.
-v Provides a two-line summary of statistics.

-n Will not print out the -v summary.

-v Print out version information on standard error.

—Q[yIn] Print out version information to output file lex.yy.c by using —Qy.
The —Qn option does not print out version information and is the
default.

Multiple files are treated as a single file. If no files are specified, standard input
is used.

Certain default table sizes are too small for some users. The table sizes for the
resulting finite state machine can be set in the definitions section:

Page 2 10/89

lex(1)

spn
snn
%en
%an
sk n
¥on

lex (1)

number of positions is n (default 2500)
number of states is n (500)

number of parse tree nodes is n (1000)
number of transitions is n (2000)

number of packed character classes is n (2500)
size of output array is n (3000)

The use of one or more of the above automatically implies the —v option, unless
the —n option is used.

SEE ALSO
yacc(1).

The “lex” chapter in the Programmer’s Guide: ANSI C and Programming Support

Tools.

10/89

Page 3

lint(1) lint(1)

NAME

lint - a C program checker
SYNOPSIS

lint [options] files
DESCRIPTION

lint detects features of C program files which are likely to be bugs, non-
portable, or wasteful. It also checks type usage more strictly than the compiler.
lint issues error and warning messages. Among the things it detects are
unreachable statements, loops not entered at the top, automatic variables declared
and not used, and logical expressions whose value is constant. lint checks for
functions that return values in some places and not in others, functions called
with varying numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments
whose names end with .1n are taken to be the result of an earlier invocation of
lint with either the —c or the —o option used. The .1n files are analogous to .o
(object) files that are produced by the cc(1) command when given a .c file as
input. Files with other suffixes are warned about and ignored.

lint takes all the .c, .1n, and 11ib-1x.1n (specified by -1x) files and processes
them in their command line order. By default, 1int appends the standard C lint
library (11ib-1c.1n) to the end of the list of files. When the —c option is used,
the .1n and the 11lib-1x.1n files are ignored. When the —c option is not used,
the second pass of lint checks the .1n and the 1lib-1x.1n list of files for
mutual compatibility.

Any number of lint options may be used, in any order, intermixed with file-
name arguments. The following options are used to suppress certain kinds of
complaints:

-a Suppress complaints about assignments of long values to variables that
are not long.

-b Suppress complaints about break statements that cannot be reached.

-h Do not apply heuristic tests that attempt to intuit bugs, improve style, and
reduce waste.

-m Suppress complaints about external symbols that could be declared static.

-u Suppress complaints about functions and external variables used and not
defined, or defined and not used. (This option is suitable for running
lint on a subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.
-x Do not report variables referred to by external declarations but never
used.

10/89 Page 1

lint(1)

Page 2

~1dir

~Ldir
-n
-P

Y

-C

—wfile

lint(1)

The following arguments alter lint’s behavior:

Search for included header files in the directory dir before searching the
current directory and /or the standard place.

Include the lint library 11ib-1x.1n. For example, you can include a lint
version of the math library 11ib~1m.1n by inserting —1m on the command
line. This argument does not suppress the default use of 1lib-lc.ln.
These lint libraries must be in the assumed directory. This option can be
used to reference local lint libraries and is useful in the development of
multi-file projects.

Search for lint libraries in dir before searching the standard place.
Do not check compatibility against the standard C lint library.

Attempt to check portability to other dialects of C. Along with stricter
checking, this option causes all non-external names to be truncated to

eight characters and all external names to be truncated to six characters
and one case.

Produce one-line diagnostics only. lint occasionally buffers messages to
produce a compound report.

Alter the behavior of /*LINTED [message]*/ directives. Normally, lint
will suppress warning messages for the code following these directives.
Instead of suppressing the messages, lint prints an additional message
containing the comment inside the directive.

Specify that the file being linted will be treated as if the /*LINTLIBRARY*/
directive had been used. A lint library is normally created by using the
/*LINTLIBRARY*/ directive.

Print pathnames of files. lint normally prints the filename without the
path.

Cause lint to produce a .1n file for every .c file on the command line.
These .1n files are the product of lint’s first pass only, and are not
checked for inter-function compatibility.

Cause lint to create a lint library with the name 11ib-1x.1n. The —c
option nullifies any use of the —o option. The lint library produced is the
input that is given to lint’s second pass. The —o option simply causes
this file to be saved in the named lint library. To produce a 11ib-1x.1n
without extraneous messages, use of the -x option is suggested. The -v

option is useful if the source file(s) for the lint library are just external
interfaces.

Some of the above settings are also available through the use of "lint com-
ments" (see below).

Write to standard error the product name and release.
Write a . 1n file to file, for use by c£low(1).

10/89

fint(1) lint(1)

-Rfile Write a . 1n file to file, for use by cxre£(1).

lint recognizes many cc(1) command line options, including -D, -U, -g, -0, -Xt,
-Xa, and —Xc, although —g and -0 are ignored. Unrecognized options are warned
about and ignored. The predefined macro lint is defined to allow certain ques-
tionable code to be altered or removed for lint. Thus, the symbol lint should
be thought of as a reserved word for all code that is planned to be checked by
lint.

Certain conventional comments in the C source will change the behavior of 1int:

/*ARGSUSEDn*/
makes lint check only the first n arguments for usage; a missing
n is taken to be 0 (this option acts like the —v option for the next
function).

/*CONSTCOND#*/ or /*CONSTANTCOND#*/ or /*CONSTANTCONDITION*/
suppresses complaints about constant operands for the next
expression.

/*EMPTY*/
suppresses complaints about a null statement consequent on an if
statement. This directive should be placed after the test expres-
sion, and before the semicolon. This directive is supplied to sup-
port empty if statements when a valid else statement follows. It
suppresses messages on an empty else consequent.

/*FALLTHRU*/ or /+*FALLTHROUGH*/
suppresses complaints about fall through to a case or default
labelled statement. This directive should be placed immediately
preceding the label.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused func-
tions and function arguments in this file. This is equivalent to
using the —v and -x options.

/*LINTED [messagel*/

suppresses any intra-file warning except those dealing with unused
variables or functions. This directive should be placed on the line
immediately preceding where the lint warning occurred. The -k
option alters the way in which lint handles this directive. Instead
of suppressing messages, lint will print an additional message, if
any, contained in the comment. This directive is useful in conjunc-
tion with the —s option for post-lint filtering.

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.
[This comment is typically placed just after calls to functions like
exit(2)].

/*PRINTFLIKEn*/
makes lint check the first (n-1) arguments as usual. The nth
argument is interpreted as a printf format string that is used to
check the remaining arguments.

10/89 Page 3

lint(1)

FILES

Page 4

lint(1)

/*PROTOLIBn*/
causes lint to treat function declaration prototypes as function
definitions if n is non-zero. This directive can only be used in con-
junction with the
/* LINTLIBRARY */ directive. If n is zero, function prototypes will
be treated normally.

/*SCANFLIKEn*/
makes lint check the first (n-1) arguments as usual. The nth argu-
ment is interpreted as a scanf format string that is used to check
the remaining arguments.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first n
arguments are checked; a missing 7 is taken to be 0. The use of
the ellipsis terminator (...) in the definition is suggested in new or
updated code.

lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been processed,
if —s is not specified. Finally, if the —c option is not used, information gathered
from all input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question mark.

The behavior of the —c and the -o options allows for incremental use of lint on
a set of C source files. Generally, one invokes lint once for each source file with
the —c option. Each of these invocations produces a .1n file that corresponds to
the .c file, and prints all messages that are about just that source file. After all
the source files have been separately run through lint, it is invoked once more
(without the —c option), listing all the . 1n files with the needed -1x options. This
will print all the inter-file inconsistencies. This scheme works well with make; it
allows make to be used to lint only the source files that have been modified
since the last time the set of source files were linted.

LIBDIR the directory where the lint libraries specified by the
-1x option must exist
LIBDIR/1int [12] first and second passes

LIBDIR/11ib-1c.1n declarations for C Library functions (binary format;
source is in LIBDIR/11ib-1c)

LIBPATH/11ib-1m.1n declarations for Math Library functions (binary format;
source is in LIBDIR/1lib-Im)

TMPDIR/*1int* temporaries
TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam in

tmpnam(3S)].
10/89

fint(1) lint(1)

LIBDIR usually /ccs/1ib
LIBPATH usually /usr/ccs/lib:/usr/1lib
SEE ALSO
cc(1), make().
See the “lint’” chapter in the C Programmer’s Guide: ANSI C and Programming Sup-
port Tools.

10/89 Page 5

lorder (1) lorder (1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive files [see ar(1)]. The standard
output is a list of pairs of object file or archive member names; the first file of the
pair refers to external identifiers defined in the second. The output may be pro-
cessed by tsort(l) to find an ordering of a library suitable for one-pass access by
1d. Note that the link editor 1d is capable of multiple passes over an archive in
the portable archive format [see ar(4)] and does not require that lorder be used
when building an archive. The usage of the lorder command may, however,
allow for a more efficient access of the archive during the link edit process.
The following example builds a new library from existing .o files.

ar -cr library ' lorder *.o | tsort’

FILES
TMPDIR/*symref temporary files
TMPDIR /*symdef temporary files
TMPDIR usually /var/tmp but can be redefined by setting the

environment variable TMPDIR [see tempnam() in
tmpnam(3S)).

SEE ALSO
ar(1), 1d(1), tsort(1), tempnam(3S), tmpname(3S), ar(4).

NOTES

lorder will accept as input any object or archive file, regardless of its suffix, pro-
vided there is more than one input file. If there is but a single input file, its suffix
must be .o.

10/89 Page 1

Iprof(1) Iprof(1)

NAME

lprof - display line-by-line execution count profile data

SYNOPSIS

lprof [-p] [-s] [-x] [-I incdir] [z srcfile] [-c entfile] [-o prog] [-V]
lprof -m filel.cnt file2.cnt filen.cnt [-T] —d destfile.cnt

DESCRIPTION

10/89

lprof reports the execution characteristics of a program on a (source) line by line
basis. This is useful as a means to determine which and how often portions of the
code were executed.

lprof interprets a profile file (prog.cnt by default) produced by the profiled pro-
gram prog (a.out by default). prog creates a profile file if it has been loaded with the
-ql option of cc. The profile information is computed for functions in a source file
if the —q1 option was used when the source file was compiled.

A shared object may also be profiled by specifying —q1 when the shared object is
created. When a dynamically linked executable is run, one profile file is produced
for each profiled shared object linked to the executable. This feature is useful in
building a single report covering multiple and disparate executions of a common
library. For example, if programs progl and prog2 both use library 1ibx.a, run-
ning these profiled programs will produce two profile files, progl.cnt and
prog2.cnt, which cannot be combined. However, if 1ibx is built as a profiled
shared object, libx.so, and progl and prog2 are built as profiled dynamically
linked executables, then running these programs with the merge option will pro-
duce three profile files; one of them, 1ibx.so.cnt, will contain the 1ibx profile
information from both runs.

By default, 1prof prints a listing of source files (the names of which are stored in
the symbol table of the executable file), with each line preceded by its line number
(in the source file) and the number of times the line was executed.

The following options may appear singly or be combined in any order:

-p Print listing, each line preceded by the line number and the number of
times it was executed (default). This option can be used together with
the —s option to print both the source listing and summary information.

-s Print summary information of percentage of lines of code executed per
function.

-x Instead of printing the execution count numbers for each line, print each
line preceded by its line number and a [U] if the line was not executed.
If the line was executed, print only the line number.

~Lincdir Look for source or header files in the directory incdir in addition to the
current directory and the standard place for #include files (usually
/usr/include). The user can specify more than one directory by using
multiple ~I options.

-rsrefile Instead of printing all source files, print only those files named in -r
options (to be used with the —p option only). The user can specify mul-
tiple files with a single —r option.

Page 1

lprof(1) Iprof(1)

—ccntfile Use the file cntfile instead of prog.cnt as the input profile file.

-oprog Use the name of the program prog instead of the name used when creat-
ing the profile file. Because the program name stored in the profile file
contains the relative path, this option is necessary if the executable file
or profile file has been moved.

-V Print, on standard error, the version number of 1prof.

Merging Data Files

lprof can also be used to merge profile files. The -m option must be accompanied

by the ~d option:

-m filel.cnt file2.cnt filen.cnt —d destfile.cnt
Merge the data files filel .cnt through filen .cnt by summing the execu-
tion counts per line, so that data from several runs can be accumulated.
The result is written to destfile.cnt. The data files must contain
profiling data for the same prog (see the —T option below).

-T Time stamp override. Normally, the time stamps of the executable files
being profiled are checked, and data files will not be merged if the time
stamps do not match. If ~T is specified, this check is skipped.

CONTROLLING THE RUN-TIME PROFILING ENVIRONMENT

Page .2

The environment. variable PROFOPTS provides run-time control over profiling.
When a profiled program (or shared object) is about to terminate, it examines the
value of PROFOPTS to determine how the profiling data are to be handled. A ter-
minating shared object will honor every PROFOPTS option except file=filename.

The environment variable PROFOPTS is a comma-separated list of options inter-
preted by the program being profiled. If PROFOPTS is not defined in the environ-
ment, then the default action is taken: The profiling data are saved in a file (with
the default name, prog.cnt) in the current directory. If PROFOPTS is set to the null
string, no profiling data are saved. The following are the available options:

msg=[y|n] If msg=y is specified, a message stating that profile data are being saved
is printed to stderr. If msg=n is specified, only the profiling error mes-
sages are printed. The default is msg=y.

merge=[y|n]
If merge=y is specified, the data files will be merged after successive
runs. If merge=n is specified, the data files are not merged after succes-
sive runs, and the data file is overwritten after each execution. The
merge will fail if the program has been recompiled, and the data file will
be left in TMPDIR. The default is merge=n.

pid=[y|n] If pid=y is specified, the name of the data file will include the process
ID of the profiled program. Inclusion of the process ID allows for the
creation of different data files for programs calling fork. If pid=n is
specified, the default name is used. The default is pid=n. For lprof to
generate its profiling report, the —c option must be specified with lprof
otherwise the default will fail.

10/89

Iprof(1) Iprof(1)

dir=dirname
The data file is placed in the directory dirname if this option is specified.
Otherwise, the data file is created in the directory that is current at the
end of execution.

file=filename
filename is used as the name of the data file in dir created by the profiled
program if this option is specified. Otherwise, the default name is used.
For lprof to generate its profiling report, the —c option must be
specified with 1prof if the file option has been used at execution timg;
otherwise the default will fail.

FILES
prog.cnt profile data
TMPDIR usually /var/tmp but can be redefined by setting the environment
variable TMPDIR [see tempnamin tmpnam(3S)].
SEE ALSO
cc(1), prof(1), fork(2), tmpnam(3S).
The “1prof” chapter in the Programmer’s Guide: ANSI C and Programming Support
Tools.
NOTES

For the —moption, if destfile.cnt exists, its previous contents are destroyed.

Optimized code cannot be profiled; if both optimization and line profiling are
requested, profiling has precedence.

Different parts of one line of a source file may be executed different numbers of
times (e.g., the for loop below); the count corresponds to the first part of the line.

For example, in the following for loop

main()
1 [2] {
int j;
1 [5] for (j = 0; j < 5; j++)
5 [6] sub (j);
[8] }
sub (a)
int a;
5 [12] {
5 [13] printf("a is %d\n", a):;
5 [14] }

line 5 consists of three parts. The line count listed, however, is for the initialization
part, thatis, j = 0.

10/89 Page 3

m4(1) m4(1)

NAME

m4 — macro processor
SYNOPSIS

md [options] [files]
DESCRIPTION

The m4 command is a macro processor intended as a front end for C, assembler,
and other languages. Each of the argument files is processed in order; if there are
no files, or if a file name is -, the standard input is read. The processed text is
written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuf-
fered.
-s Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers from
the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199.
The size should be prime.

-sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, the above flags must appear before any file names and before any
-D or —U flags:
-Dname(=val]

Defines name to val or to null in val’s absence.

—=Uname
undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no
arguments. Potential macro names consist of alphanumeric characters and under-
score (_), where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu-
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses that happen to turn up within the value of a nested call are as
effective as those in the original input text. After argument collection, the value
of the macro is pushed back onto the input stream and rescanned.

10/89 Page 1

m4(1)

Page 2

m4(1)

md makes available the following built-in macros. These macros may be
redefined, but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define

undefine
defn

pushdef
popdef

ifdef

shift

changequote

changecom

divert

undivert

the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the replace-
ment text, where n is a digit, is replaced by the n-th argument.
Argument 0 is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the number of argu-
ments; $* is replaced by a list of all the arguments separated by
commas; $@ is like $*, but each argument is quoted (with the
current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It js useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previ-
ous one, if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is null.
The word unix is predefined.

returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies
the effect of the extra scan that will subsequently be performed.

change quote symbols to the first and second arguments. The sym-
bols may be up to five characters long. changequote without
arguments restores the original values (i.e, ~ ~).

change left and right comment markers from the default # and
new-line. With no arguments, the comment mechanism is effec-
tively disabled. With one argument, the left marker becomes the
argument and the right marker becomes new-line. With two argu-
ments, both markers are affected. Comment markers may be up to
five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output is
the concatenation of the streams in numerical order; initially stream
0 is the current stream. The divert macro changes the current
output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu-
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

10/89

ma(1) ma(1)

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next new-
line.

ifelse has three or more arguments. If the first argument is the same

string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is repeated
with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string as a
decimal number.

decr returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, -, *, /, %, ** (exponentiation), bit-
wise & |, 4, and ~; relationals; parentheses. Octal and hex
numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument may
be used to specify the minimum number of digits in the result.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argu-
ment begins (zero origin), or —1 if the second argument does not
occur.

substr returns a substring of its first argument. The second argument is a

zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

translit transliterates the characters in its first argument from the set given
by the second argument to the set given by the third. No abbrevia-
tions are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inac-
cessible.

syscmd executes the UNIX System command given in the first argument.
No value is returned.

sysval is the return code from the last call to syscmd.

maketemp fills in a string of XXXXX in its argument with the current process
ID.

mdexit causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is 0.

mdwrap argument 1 will be pushed back at final EOF; example:

mdwrap (~ cleanup() -)

10/89 Page 3

ma(1)

errprint

dunmpdef
traceon

traceoff

SEE ALSO

Page 4

as(1), cc(1).

m4(1)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for all
if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

10/89

make(1)

NAME

10/89

make (1)

make — maintain, update, and regenerate groups of programs

SYNOPSIS
make [~f makefile] [—eiknpqrst] [names]

DESCRIPTION
make allows the programmer to maintain, update, and regenerate groups of com-
puter programs. make executes commands in makefile to update one or more tar-
get names (names are typically programs). If the —f option is not present, then
makefile, Makefile, and the Source Code Control System (SCCS) files
s.makefile, and s.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one —£ makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prere-
quisite files of a target are added recursively to the list of targets. Missing files
are deemed to be outdated.

The following list of four directives can be included in makefile to extend the
options provided by make. They are used in makefile as if they were targets:

.DEFAULT:

. IGNORE:
.PRECIOUS:

.SILENT:

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

Same effect as the ~i option.

Dependents of the .PRECIOUS entry will not be removed when
quit or interrupt are hit.

Same effect as the -s option.

The options for make are listed below:

—e
-f makefile

-i
-k

-n
P
-q

-r
-8
-t

Environment variables override assignments within makefiles.

Description filename (makefile is assumed to be the name of a
description file).

Ignore error codes returned by invoked commands.

Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

No execute mode. Print commands, but do not execute them.
Even command lines beginning with an @ are printed.

Print out the complete set of macro definitions and target
descriptions.

Question. make returns a zero or non-zero status code depend-
ing on whether or not the target file has been updated.

Do not use the built-in rules.
Silent mode. Do not print command lines before executing.

Touch the target files (causing them to be updated) rather than
issue the usual commands.

Page 1

make (1) make (1)

Creating the makefile

The makefile invoked with the ~£ option is a carefully structured file of explicit
instructions for updating and regenerating programs, and contains a sequence of
entries that specify dependencies. The first line of an entry is a blank-separated,
non-null list of targets, then a :, then a (possibly null) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin with a tab are
shell commands to be executed to update the target. The first non-empty line
that does not begin with a tab or # begins a new dependency or macro definition.
Shell commands may be continued across lines with a backslash-new-line (\
new-line) sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce
ab
~ exactly the same as the shell would.

Sharp (#) and new-line surround comments including contained \ new-line
sequences.

The following makefile says that pgm depends on two files a.o and b.o, and that
they in turn depend on their corresponding source files (a.c and b.c) and a com-
mon file incl.h:

pgm: a.o b.o

cc a.o b.o -o pgm
a.o: incl.h a.c

cc —c a.c
b.o: incl.h b.c

cc —-c b.c

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to exe-
cute commands. The default is /usr/bin/sh. The first one or two characters in
a command can be the following: @, -, @—, or —@. If @ is present, printing of the
command is suppressed. If - is present, make ignores an error. A line is printed
when it is executed unless the -s option is present, or the entry .SILENT: is
included in makefile, or unless the initial character sequence contains a @. The -n
option specifies printing without execution; however, if the command line has the
string $(MAKE) in it, the line is always executed (see the discussion of the
MAKEFLAGS macro in the “Environment” section below). The -t (touch) option
updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the —i option
is present, if the entry .IGNORE: is included in makefile, or if the initial character
sequence of the command contains -, the error is ignored. If the -k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

Page 2 10/89

make (1) make(1)

Interrupt and quit cause the target to be deleted unless the target is a dependent
of the directive .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be macro
definitions and are processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The —e option causes the environment
to override the macro assignments in a makefile. Suffixes and their associated
rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except —f and -p) defined for the command line. Further,
upon invocation, make “invents’’ the variable if it is not in the environment, puts
the current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This feature proves very
useful for “super-makes”. In fact, as noted above, when the —n option is used,
the command $ (MAKE) is executed anyway; hence, one can perform a make -n
recursively on a whole software system to see what would have been executed.
This result is possible because the -n is put in MAKEFLAGS and passed to further
invocations of $ (MAKE). This usage is one way of debugging all of the makefiles
for a software project without actually doing anything.

Include Files

If the string include appears as the first seven letters of a line in a makefile, and
is followed by a blank or a tab, the rest of the line is assumed to be a filename
and will be read by the current invocation, after substituting for any macros.

Macros

Entries of the form stringl = string2 are macro definitions. string2 is defined as
all characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(stringl[:substl=[subst2]]) are replaced by string2. The
parentheses are optional if a single-character macro name is used and there is no
substitute sequence. The optional :substl=subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are del-
imited by blanks, tabs, new-line characters, and beginnings of lines. An example
of the use of the substitute sequence is shown in the “Libraries” section below.

Internal Macros

10/89

There are five internally maintained macros that are useful for writing rules for
building targets.

$* The macro $* stands for the filename part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module that is outdated with respect to the target (the “manufac-
tured”” dependent file name). Thus, in the .c.o rule, the $< macro would
evaluate to the .c file. An example for making optimized .o files from .c
files is:

Page 3

make (1) make (1)

.c.o:
cc —¢c -0 $*.c
or:
.c.o:
cc ¢ -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are outdated with respect to the
target, and essentially those modules that must be rebuilt.

$¢ The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to 1ib and $%
evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to “directory part”’
for D and “file part” for F. Thus, $(@D) refers to the directory part of the string
$@. If there is no directory part, ./ is generated. The only macro excluded from
this alternative form is $7.

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites
such as .c, .s, etc. If no update commands for such a file appear in makefile, and
if an inferable prerequisite exists, that prerequisite is compiled to make the target.
In this case, make has inference rules that allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .C~ £ £~ .8 .8~ .sh .sh~ .C .C~
.c.a .c.0 .c~.a .c~.c .c~.0 .f.a .f.0 f~.a .f~.f .f~.
.h~.h .l.c .l.0 1~.c .1~.1 .l1~.0 .s.a .8.0 .8~.a .s~.
.8~.8 .sh~.sh .y.c¢ .y.o .y~.c .y~0 .y~y .C.a .C.0 .C~.
.C~.C .C~.0 .L.C .L.o .L~.C .L~.L .L~.0 .Y.C .Y.0 Y~

Y~.0 .Y~.Y

The internal rules for make are contained in the source file rules.c for the make
program. These rules can be locally modified. To print out the rules compiled
into the make on any machine in a form suitable for recompilation, the following
command is used:

make -pf - 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file [see sccsfile(4)]. Thus, the rule
.c~.o0 would transform an SCCS C source file into an object file (.0). Because the
s. of the SCCS files is a prefix, it is incompatible with the make suffix point of
view. Hence, the tilde is a way of changing any file reference into an SCCS file
reference.

A rule with only one suffix (for example, .c:) is the definition of how to build x
from x.c. In effect, the other suffix is null. This feature is useful for building
targets from only one source file, for example, shell procedures and simple C pro-
grams.

Page 4 10/89

QO®mOoo

make (1) make (1)

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant: the first possible name for which both a file and a rule exist is inferred
as a prerequisite. The default list is:

.SUFFIXES: .0 .c .c~ .y .y~ .l .1~ .s .s~ .sh .sh~ .h .h~ .f .f~.C
.C~ .Y .Y~ .L .L~

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules

The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o —o pgm
a.o b.o: incl.h

This abbreviation is possible because make has a set of internal rules for building
files. The user may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(1), 1ex(1), and yacc(l), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with
suffix .o from a file with suffix .c is specified as an entry with .c.o: as the tar-
get and no dependents. Shell commands associated with the target define the
rule for making a .o file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

Libraries

10/89

If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within the
library. Thus, 1ib(file.o) and $ (LIB) (file.o) both refer to an archive library
that contains file.o. (This example assumes the LIB macro has been previously
defined.) The expression $ (LIB) (filel.o file2.0) is not legal. Rules pertain-
ing to archive libraries have the form .XX.a where the XX is the suffix from
which the archive member is to be made. An unfortunate by-product of the
current implementation requires the XX to be different from the suffix of the
archive member. Thus, one cannot have lib(file.o) depend upon file.o
explicitly. The most common use of the archive interface follows. Here, we
assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:

$(CC) —c $(CFLAGS) $<

$(AR) $(ARFLAGS) $@ $*.o0

rm -f $*.0

Page 5

make (1) make (1)

FILES

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) lib $?
rm $?
@echo 1lib is now up-to-date
.c.a:;

Here the substitution mode of the macro expansions is used. The $7? list is
defined to be the set of object filenames (inside 1ib) whose C source files are out-
dated. The substitution mode translates the .o to .c. (Unfortunately, one cannot
as yet transform to .c~; however, this transformation may become possible in the
future.) Also note the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

[Mm]akefile and s. [Mm]akefile
/usr/bin/sh

SEE ALSO

NOTES

Page 6

cc(1), lex(1), yace(l), print£(3S), sccsfile(4).
cd(1), sh(1) in the User’s Reference Manual.

See the “make” chapter in the Programmer’s Guide: ANSI C and Programming Sup-
port Tools.

Some commands return non-zero status inappropriately; use —i or the - com-
mand line prefix to overcome the difficulty.

Filenames with the characters = : @ will not work. Commands that are directly
executed by the shell, notably cd(1), are ineffectual across new-lines in make. The
syntax lib(filel.o file2.o file3.o) is illegal. You cannot build
lib(file.o) from file.o.

10/89

mes(1) mes(1)

NAME

mcs — manipulate the comment section of an object file.

SYNOPSIS

mes [-a string] [-c] [-d] [-n name] [-p] [-V] file ...

DESCRIPTION

The mcs command is used to manipulate a section, by default the .comment sec-
tion, in an ELF object file. It is used to add to, delete, print, and compress the
contents of a section in an ELF object file, and only print the contents of a section
in a COFF object file. mcs must be given one or more of the options described
below. It applies each of the options in order to each file.

The following options are available.

-a string
Append string to the comment section of the ELF object files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section of the ELF object files. All
duplicate entries are removed. The ordering of the remaining entries is
not disturbed.

-d Delete the contents of the comment section from the ELF object files. The
section header for the comment section is also removed.

-n name
Specify the name of the comment section to access if other than .comment.
By default, mes deals with the section named .comment. This option can
be used to specify another section.

-p Print the contents of the comment section on the standard output. Each
section printed is tagged by the name of the file from which it was
extracted, using the format filename [member_name] : for archive files; and
filename: for other files.

-v Print, on standard error, the version number of mcs.

If the input file is an archive [see ar(4)], the archive is treated as a set of indivi-
dual files. For example, if the —a option is specified, the string is appended to the
comment section of each ELF object file in the archive; if the archive member is
not an ELF object file, then it is left unchanged.

If mes is executed on an archive file the archive symbol table will be removed,
unless only the —p option has been specified. The archive symbol table must be
restored by executing the ar command with the —s option before the archive can
be linked by the 1d command. mcs will produce appropriate warning messages
when this situation arises.

EXAMPLES

10/89

mcs —p file # Print file’s comment section

mcs -a string file # Append string to file’s comment section

Page 1

mes(1)

mes(1)
FILES
TMPDIR/mcs* temporary files
TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam() in
tmpnam(3S)].
SEE ALSO
ar(1), as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).
See the “Object Files” chapter in Programmer’s Guide: ANSI C and Programming
Support Tools.
NOTES

mcs cannot add to, delete or compress the contents of a section that is contained
within a segment.

Page 2 10/89

nm(1)

NAME

nm(1)

nm— print name list of an object file

SYNOPSIS

nm [—oxhvnefurplVT] files

DESCRIPTION

The nm command displays the symbol table of each ELF or COFF object file,
specified by file(s). The file may be a relocatable or absolute ELF or COFF object
file; or it may be an archive of relocatable or absolute ELF or COFF object files.
For each symbol, the following information will be printed:

Index
Value

Size

Type

Bind

Other

Name

The index of the symbol. (The index appears in brackets.)

The value of the symbol is one of the following: a section offset for
defined symbols in a relocatable file; alignment constraints for symbols
whose section index is SHN_COMMON; a virtual address in executable and
dynamic library files.

The size in bytes of the associated object.

A symbol is of one of the following types: NOTYPE (no type was
specified), OBJECT (a data object such as an array or variable), FUNC (a
function or other executable code), SECTION (a section symbol), or FILE
(name of the source file).

The symbol’s binding attributes. LOCAL symbols have a scope limited
to the object file containing their definition; GLOBAL symbols are visible
to all object files being combined; and WEAK symbols are essentially glo-
bal symbols with a lower precedence than GLOBAL.

A field reserved for future use, currently containing 0.

Except for three special values, this is the section header table index in
relation to which the symbol is defined. The following special values
exist: ABS indicates the symbol’s value will not change through reloca-
tion; COMMON indicates an unallocated block and the value provides
alignment constraints; and UNDEF indicates an undefined symbol.

The name of the symbol.

The output of nm may be controlled using the following options:

-0
-x
-h
-v
-n
-e
-f

-u

10/89

Print the value and size of a symbol in octal instead of decimal.

Print the value and size of a symbol in hexadecimal instead of decimal.
Do not display the output heading data.

Sort external symbols by value before they are printed.

Sort external symbols by name before they are printed.

See NOTES below.

See NOTES below.

Print undefined symbols only.

Page 1

nm(1)

NOTES

Page 2

-r

nm(1)

Prepend the name of the object file or archive to each output line.

Produce easily parsable, terse output. Each symbol name is preceded
by its value (blanks if undefined) and one of the letters U (undefined), N
(symbol has no type), D (data object symbol), T (text symbol), S (section
symbol), or F (file symbol). If the symbol’s binding attribute is LOCAL,
the key letter is lower case; if the symbol’s binding attribute is WEAK,
the key letter is upper case; if the -1 modifier is specified, the upper
case key letter is followed by a *; if the symbol’s binding attribute is
GLOBAL, the key letter is upper case.

Distinguish between WEAK and GLOBAL symbols by appending a * to the
key letter for WEAK symbols.

Print the version of the nm command executing on the standard error
output.

See NOTES below.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. When conflicting options are specified
(such as nm -v -n) the first is taken and the second ignored with a warning mes-
sage to the user.

SEE ALSO
as(1), cc(1), dump(1), 1d(1), a.out(4), ar(4).

The following options are obsolete because of changes to the object file format
and will be deleted in a future release.

-e

Print only external and static symbols. The symbol table now contains
only static and external symbols. Automatic symbols no longer appear
in the symbol table. They do appear in the debugging information pro-
duced by cc -g, which may be examined using dump(1).

Produce full output. Redundant symbols (such as .text, .data, etc).
which existed previously do not exist and producing full output will be
identical to the default output.

By default, nm prints the entire name of the symbols listed. Since sym-
bol names have been moved to the last column, the problem of
overflow is removed and it is no longer necessary to truncate the sym-
bol name.

10/89

prof(1) prof(1)

NAME

prof — display profile data

SYNOPSIS

prof [t | ¢ | a| nll-o | xl[-g | 1] [-2] [-h] [-8] [-m mdata] -V [prog]

DESCRIPTION

10/89

The prof command interprets a profile file produced by the monitor function.
The symbol table in the object file prog (a.out by default) is read and correlated
with a profile file (mon.out by default). For each external text symbol the percen-
tage of time spent executing between the address of that symbol and the address
of the next is printed, together with the number of times that function was called
and the average number of milliseconds per call.

The mutually exclusive options -t, —c, —a, and -n determine the type of sorting
of the output lines:

-t Sort by decreasing percentage of total time (default).
-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options —o and —x specify the printing of the address of
each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.
-x Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options -g and -1 control the type of symbols to be
reported. The -1 option must be used with care; it applies the time spent in a
static function to the preceding (in memory) global function, instead of giving the
static function a separate entry in the report. If all static functions are properly
located (see example below), this feature can be very useful. If not, the resulting
report may be misleading.

Assume that A and B are global functions and only A calls static function s. If s
is located immediately after A in the source code (that is, if S is properly
located), then, with the -1 option, the amount of time spent in A can easily be
determined, including the time spent in S. If, however, both A and B call s,
then, if the -1 option is used, the report will be misleading; the time spent dur-
ing B's call to s will be attributed to A, making it appear as if more time had
been spent in A than really had. In this case, function S cannot be properly
located.

-g Include static (non-global) functions.
-1 Do not include static (non-global) functions (default).
The following options may be used in any combination:

-z Include all symbols in the profile range, even if associated with zero
number of calls and zero time.

Page 1

prof(1) prof(1)

-h Suppress the heading normally printed on the report. (This is useful if the
report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statistics on
the standard error output.
-m mdata

Use file mdata instead of mon.out as the input profile file.
-V Print prof version information on the standard error output.

A program creates a profile file if it has been link edited with the -p option of
cc. This option to the cc command arranges for calls to monitor at the begin-
ning and end of execution. It is the call to monitor at the end of execution that
causes the system to write a profile file. The number of calls to a function is tal-
lied if the -p option was used when the file containing the function was com-
piled.

The name of the file created by a profiled program is controlled by the environ-
mental variable PROFDIR. If PROFDIR is not set, mon.out is produced in the
directory current when the program terminates. If PROFDIR=string,
string/pid .progname is produced, where progname consists of argv[0] with any
path prefix removed, and pid is the process ID of the program. If PROFDIR is set,
but null, no profiling output are produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro [see pro£(5)].

FILES
mon.out default profile file
a.out default namelist (object) file
SEE ALSO
cc(l), 1pro£(1), exit(2), pro£il(2), monitor(3C), prof(5).
The “lprof” chapter in the Programmer’s Guide: ANSI C and Programming Support
Tools.
NOTES

Page 2

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden back-
ground or asynchronous processes may blur the data. In rare cases, the clock
ticks initiating recording of the program counter may “beat” with loops in a pro-
gram, grossly distorting measurements. Call counts are always recorded pre-
cisely, however.

Only programs that call exit or return from main are guaranteed to produce a
profile file, unless a final call to monitor is explicitly coded.

The times for static functions are attributed to the preceding external text symbol
if the —g option is not used. However, the call counts for the preceding function
are still correct; that is, the static function call counts are not added to the call
counts of the external function.

10/89

prof(1) prof(1)

10/89

If more than one of the options -t, —¢, —a, and -n is specified, the last option
specified is used and the user is warned.

Profiling may be used with dynamically linked executables, but care must be
applied. Currently, shared objects cannot be profiled with prof. Thus, when a
profiled, dynamically linked program is executed, only the “main” portion of the
image is sampled. This means that all time spent outside of the “‘main” object,
that is, time spent in a shared object, will not be included in the profile summary;
the total time reported for the program may be less than the total time used by
the program.

Because the time spent in a shared object cannot be accounted for, the use of
shared objects should be minimized whenever a program is profiled with prof.
If possible, the program should be linked statically before being profiled.

Consider an extreme case. A profiled program dynamically linked with the
shared C library spends 100 units of time in some libc routine, say, malloc.
Suppose malloc is called only from routine B and B consumes only 1 unit of
time. Suppose further that routine A consumes 10 units of time, more than any
other routine in the “main” (profiled) portion of the image. In this case, prof
will conclude that most of the time is being spent in A and almost no time is
being spent in B. From this it will be almost impossible to tell that the greatest
improvement can be made by looking at routine B and not routine A. The value
of the profiler in this case is severely degraded; the solution is to use archives as
much as possible for profiling.

Page 3

prs(1)

NAME

prs(1)

prs — print an SCCS file

SYNOPSIS

prs [-dldataspec]] [-x[SID]] [-e] [-1] [-cldate-time)] [-a] files

DESCRIPTION

prs prints, on the standard output, parts or all of an SCCS file [see sccsfile(4)]
in a user-supplied format. If a directory is named, prs prints the files in that
directory, except the non-SCCS files (last component of the path name does not
begin with s.) and unreadable files. If a name of - is given, the standard input
is read; each line of the standard input is taken to be the name of an SCCS file or
directory to be processed. prs silently ignores non-SCCS files and unreadable

files.

Arguments to prs, which may appear in any order, consist of keyletter argu-

ments and file names.

The keyletter arguments apply independently to each named file:

—dl[dataspec]

-x[SID]

-e

—cldate—time]

-a

DATA KEYWORDS

Specifies the output data specification. The dataspec is a
string consisting of SCCS file data keywords (see the DATA
KEYWORDS section) interspersed with optional user-
supplied text.

Specifies the SCCS identification (SID) string of a delta for
which information is desired. The default is the top delta.

Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter or the
date given by the —c option.

Requests information for all deltas created later than and
including the delta designated via the -r keyletter or the
date given by the —c option.

The cutoff date—time in the form:
YYIMMIDD[HH[MMISS]]]]

Units omitted from the date-time default to their max-
imum possible values; for example, —c7502 is equivalent to
—-c750228235959. Any number of non-numeric characters
may separate the fields of the cutoff date; for example,
"-c77/2/2 9:22:25".

Requests printing of information for both removed, i.e.,
delta type = R, [see rmdel(1)] and existing, i.e., delta type =
D, deltas. If the —a keyletter is not specified, information
for existing deltas only is provided.

Data keywords specify those parts of an SCCS file that are to be retrieved and
output. All parts of an SCCS file [see sccsfile(4)] have an associated data key-
word. There is no limit on the number of times a data keyword may appear in a

dataspec.

10/89

Page 1

prs(1)

prs(1)

The information printed by prs consists of: (1) the user-supplied text; and (2)
appropriate values (extracted from the SCCS file) substituted for the recognized
data keywords in the order of appearance in the dataspec. The format of a data
keyword value is either ““Simple” (S), in which keyword substitution is direct, or
“Multi-line”” (M), in which keyword substitution is followed by a carriage return.

User-supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \n. The default data
keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

Keyword Data Item File Section Value Format
:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta " nnnnn S
:Ld: Lines deleted by Delta " nnnnn S
:Lu: Lines unchanged by Delta " nnnnn S
:DT: Delta type " D or R S

:I: SCCS ID string (SID) " R:.:L:.:B:.:S S
:R: Release number " nnnn S
:L: Level number " nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:D: Date Delta created " :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created " nn S
:Dm: Month Delta created " nn S
:Dd: Day Delta created " nn S
:T: Time Delta created " :Th:::Tm:::Ts: S
:Th: Hour Delta created " nn S
:Tm: Minutes Delta created " nn S
:Ts: Seconds Delta created " nn S
:P: Programmer who created Delta " logname S
:DS: Delta sequence number " nnnn S
:DP: Predecessor Delta seq-no. " nnnn S
:DI: Seg-no. of deltas incl., excl.,, ignored " :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) " :DS: :DS:... S
:Dx: Deltas excluded (seq #) " :DS: :DS:... S
:Dg: Deltas ignored (seq #) " :DS: :DS:... S
:MR: MR numbers for delta " text M
:Cc: Comments for delta " text M
:UN: User names User Names text M
:FL: Flag list Flags text M

Page 2

10/89

prs(1) prs(1)

Keyword Data Item File Section Value Format
:Y: Module type flag " text S
:MF: MR validation flag " yes or no S
:MP: MR validation pgm name " text S
:KF: Keyword error/warning flag " yes Or no S
:kv: Keyword validation string " text S
:BF: Branch flag " yes or no S
:J: Joint edit flag " yes or no S
:LK: Locked releases " R:... S
:Q: User-defined keyword " text S
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " 11z S
:ND: Null delta flag " yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what(1) string N/A 2Z::M:\t:I: S
:A: A form of what(1) string N/A :2Z::¥: :M: :I::2: S
:2: what(1) string delimiter N/A @ (#) S
:F: SCCS file name N/A text S
:PN: SCCS file path name N/A text S
*:Dt: = :DT: :I: :D: :T: :P: :DS: :DP:
EXAMPLES

The command
prs —d"Users and/or user IDs for :F: are:\n:UN:" s.file
may produce on the standard output:

Users and/or user IDs for s.file are:

Xyz
131
abc

The command

prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -r
s.file

may produce on the standard output:
Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
The default case:

prs s.file

10/89 Page 3

prs(1) prs(1)

produces on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl178-12345
bl179-54321
COMMENTS :
this is the comment line for s.file initial delta
for each delta table entry of the “D” type. The only keyletter argument allowed
to be used with the “‘special case” is the —a keyletter.
FILES
/var/tmp/pr2????
SEE ALSO
admin(1), delta(1), get(1), help(1), sccsfile(4).
DIAGNOSTICS
Use help(1) for explanations.

Page 4 10/89

regecmp (1) regemp(1)

NAME

regcmp — regular expression compile
SYNOPSIS

regenp [-] file...
DESCRIPTION

The regcmp command performs a function similar to regcmp and, in most cases,
precludes the need for calling regemp from C programs. Bypassing regcmp saves
on both execution time and program size. The command regecmp compiles the
regular expressions in file and places the output in file.i. If the - option is used,
the output is placed in file.c. The format of entries in file is a name (C variable)
followed by one or more blanks followed by one or more regular expressions
enclosed in double quotes. The output of regemp is C source code. Compiled
regular expressions are represented as extern char vectors. file.i files may thus
be #included in C programs, or file.c files may be compiled and later loaded.
In the C program that uses the regcmp output, regex (abc, line) applies the reg-
ular expression named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name " ([A-Za-z] [A-Za-z0-9_]*)S$0"

telno "\ ({0, 1} ([2-9] [01] [1-9])$0\) {0, 1} *"
"([2-9]1[0-9]1{2})$1[-]1{0,1}"
" ([0-9] {4})$2"

The three arguments to telno shown above must all be entered on one line.
In the C program that uses the regemp output,

regex(telno, line, area, exch, rest)
applies the regular expression named telno to line.

SEE ALSO
regcmp(3G).

10/89 Page 1

rmdel (1) rmdel (1)

NAME
rmdel — remove a delta from an SCCS file

SYNOPSIS
rmdel -rSID files

DESCRIPTION
rmdel removes the delta specified by the SID (SCCS identification string) from
each named SCCS file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named SCCS file. In addition, the
delta specified must not be that of a version being edited for the purpose of mak-
ing a delta; that is, if a p-file exists for the named SCCS file [see get(1)], the delta
specified must not appear in any entry of the p-file.
The -r option specifies the SID level of the delta to be removed.
If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and unread-
able files are silently ignored.
The rules governing the removal of a delta are as follows: if you make a delta
and have appropriate file permissions, you can remove it; if you own the file and
directory in which a new delta file resides, you can remove the delta.

FILES
x file [See delta(l)]
zfile [See delta(1)]

SEE ALSO
delta(l), get(1), help(l), prs(1), sccsfile(4).

DIAGNOSTICS
Use help(1) for explanations.

10/89

Page 1

sact(1)

sact(1)

sact - print current SCCS file editing activity

sact informs the user of any impending deltas to a named SCCS file. This situa-
tion occurs when get with the —e option has been previously executed without a
subsequent execution of delta. If a directory is named on the command line,
sact behaves as though each file in the directory were specified as a named file,
except that non-SCCS files and unreadable files are silently ignored. If a name of
- is given, the standard input is read with each line being taken as the name of
an SCCs file to be processed.

The output for each named file consists of five fields separated by spaces.

specifies the SID of a delta that currently exists in the SCCS file
to which changes will be made to make the new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (i.e,,
executed a get for editing).

contains the date that get —e was executed.
contains the time that get —e was executed.

delta(l), diff(1), get(1), help(1), unget(1).

Use help(1) for explanations.

NAME
SYNOPSIS
sact files
DESCRIPTION
Field 1
Field 2
Field 3
Field 4
Field 5
SEE ALSO
DIAGNOSTICS
10/89

Page 1

scesdiff (1) scesdiff(1)

NAME

sccsdiff — compare two versions of an SCCS file
SYNOPSIS

sccsdiff —rSID1 —xSID2 [-p) [-sn] files
DESCRIPTION

sccsdiff compares two versions of an SCCS file and generates the differences
between the two versions. Any number of SCCS files may be specified, but argu-
ments apply to all files.

-rSID1 -xSID2 SID1 and SID2 specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff in the

order given.

-p pipe output for each file through pr.

-sn n is the file segment size that bdiff will pass to diff.
This option is useful when diff fails due to a high sys-
tem load.

FILES
/var/tmp/get????? temporary files

SEE ALSO
get(1), help(1).

diff(1), bdif£(1), px(1) in the User’s Reference Manual.

10/89 Page 1

sdb(1) sdb (1)

NAME

sdb — symbolic debugger

SYNOPSIS

sdb [~e] [-s signo] [-V] [-W] [-w] [objfile [corfile [directory-list]]]

DESCRIPTION

10/89

sdb is the symbolic debugger for C and assembly programs. sdb may be used to
examine executable program files and core files. It may also be used to examine
live processes in a controlled execution environment.

The objfile argument is the name of an executable program file. To take full
advantage of the symbolic capabilities of sdb, this file should be compiled with
the —g (debug) option. If it has not been compiled with the —g option, the sym-
bolic capabilities of sdb will be limited, but the file can still be examined and the
program debugged. objfile may also be a path name in the /proc directory, in
which case the currently executing process denoted by that path name is con-
trolled by sdb.

The corfile argument is the name of a core image file. A core image file is pro-
duced by the abnormal termination of objfile or by the use of gcore. A core
image file contains a copy of the segments of a program. The default for corfile is
core. A core image file need not be present to use sdb. Using a hyphen (-)
instead of corfile forces sdb to ignore an existing core image file.

The directory-list argument is a colon-separated list of directories that is used by
sdb to locate source files used to build objfile. If no directory list is specified, sdb
will look in the current directory.

The following options are recognized by sdb:

-e Ignore symbolic information and treat nonsymbolic addresses as file
offsets.

-8 signo
Where signo is a decimal number that corresponds to a signal number [see
signal(2)], do not stop live processes under control of sdb that receive
the signal. This option may be used more than once on the sdb command
line.

-V Print version information. If no objfile argument is specified on the com-
mand line, sdb will exit after printing the version information.

-W Suppress warnings about corfile being older than objfile or about source
files that are older than objfile.

-w Allow user to write to objfile or corfile.

sdb recognizes a current line and a current file. When sdb is examining an exe-
cutable program file without a core file, the current line and current file are ini-
tially set to the line and file containing the first line of main. If corfile exists, then
current line and current file are initially set to the line and file containing the
source statement where the process terminated. The current line and current file
change automatically as a live process executes. They may also be changed with
the source file examination commands.

Page 1

sdb (1)

sdb(1)

Names of variables are written as in C. Variables local to a procedure may be
accessed using the form procedure:variable. If no procedure name is given, the
procedure containing the current line is used by default.

Structure members may be referred to as variable.member, pointers to structure
members as variable->member, and array elements as variable[number]. Pointers
may also be dereferenced by using the form pointer [number]. Combinations of
these forms may also be used. The form number->member may be used where
number is the address of a pointer, and number.member where number is inter-
preted as the address of a structure instance. The template of the structure type
used in this case will be the last structure type referenced. When sdb displays
the value of a structure, it does so by displaying the value of all elements of the
structure. The address of a structure is displayed by displaying the address of
the structure instance rather than the addresses of individual elements.

Elements of a multidimensional array may be referred to as wariable
[number] [number]..., or as variable [number,number,..]. In place of number, the
form number; number may be used to indicate a range of values, * may be used to
indicate all legitimate values for that subscript, or subscripts may be omitted
entirely if they are the last subscripts and the full range of values is desired. If
no subscripts are specified, sdb will display the value of all elements of the array.

A particular instance of a variable on the stack is referred to as
procedure: variable, number. The number is the occurrence of the specified pro-
cedure on the stack, with the topmost occurrence being 1. The default procedure
is the one containing the current line.

Addresses may be used in sdb commands as well. Addresses are specified by
decimal, octal, or hexadecimal numbers.

Line numbers in the source program are specified by the form filename : number or
procedure: number. In either case, the number is relative to the beginning of the file
and corresponds to the line number used by text editors or the output of pr. A
number used by itself implies a line in the current file.

While a live process is running under sdb, all addresses and identifiers refer to
the live process. When sdb is not examining a live process, the addresses and
identifiers refer to obffile or corfile.

Commands

Page 2

The commands for examining data in the program are:

t Prints a stack trace of the terminated or halted program. The function
invoked most recently is at the top of the stack. For C programs, the stack
ends with _start, which is the startup routine that invokes main.

T Prints the top line of the stack trace.

variable/clm
Print the value of variable according to length I and format m. The numeric
count c indicates that a region of memory, beginning at the address implied
by variable, is to be displayed. The length specifiers are:

10/89

sdb (1)

10/89

sdb (1)

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for m are:

character

signed decimal

unsigned decimal

octal

hexadecimal

32-bit single precision floating point
64-bit double precision floating point

Assumes that variable is a string pointer and prints characters start-
ing at the address pointed to by the variable.

Prints characters starting at the variable’s address. Do not use this
with register variables.

W Q K ¥ 0 £ A 0

v

P pointer to procedure

i Disassembles machine-language instruction with addresses printed
numerically and symbolically.

I Disassembles machine-language instruction with addresses printed
numerically only.

Length specifiers are effective with formats ¢, 4, u, o, x. The length specifier
determines the output length of the value to be displayed. This value may
be truncated. The count specifier ¢ displays that many units of memory,
starting at the address of the variable. The number of bytes in the unit of
memory is determined by [or by the size associated with the variable. If the
specifiers c, I, and m are omitted, sdb uses defaults. If a count specifier is
used with the s or a command, then that many characters are printed. Oth-
erwise, successive characters are printed until either a null byte is reached
or 128 characters are printed. The last variable may be redisplayed with the
./ command.

For a limited form of pattern matching, use the sh metacharacters * and ?
within procedure and variable names. (sdb does not accept these metachar-
acters in file names, as the function name in a line number when setting a
breakpoint, in the function call command, or as the argument to the e com-
mand.) If no procedure name is supplied, sdb matches both local and glo-
bal variables. If the procedure name is specified, then sdb matches only
local variables. To match global variables only, use :pattern. To print all
variables, use *: *,

Page 3

sdb(1) sdb(1)

linenumber?lm

variable: ?lm
Prints the value at the address from the executable or text space given by
linenumber or variable (procedure name), according to the format Im. The
default format is i.

variable=lm

linenumber=lm

number=Im
Prints the address of variable or linenumber, or the value of number. I specifies
length and m specifies the format. If no format is specified, then sdb uses
1x (four-byte hex). m allows you to convert between decimal, octal, and
hexadecimal.

variable! value

Sets variable to the given value. The value may be a number, a character
constant, or a variable. The value must be well-defined; structures are
allowed only if assigning to another structure variable of the same type.
Character constants are denoted ‘character. Numbers are viewed as integers
unless a decimal point or exponent is used. In this case, they are treated as
having the type double. Registers, except the floating point registers, are
viewed as integers. Register names are identical to those used by the assem-
bler (for example, %regname where regname is the name of a register). If the
address of a variable is given, it is regarded as the address of a variable of
type int. C conventions are used in any type conversions necessary to per-
form the indicated assignment.

x Prints the machine registers and the current machine-language instruction.
X Prints the current machine-language instruction.
The commands for examining source files are:

e

e procedure

e filename

e directory/
e, without arguments, prints the name of the current file. The second form
sets the current file to the file containing the procedure. The third form sets
the current file to filetname. The current line is set to the first line in the
named procedure or file. Source files are assumed to be in the directories in
the directory list. The fourth form adds directory to the end of the directory
list.

/regular expression/

Searches forward from the current line for a line containing a string match-
ing regular expression, as in ed. The trailing / may be omitted, except when
associated with a breakpoint.

?regular expression?
Searches backward from the current line for a line containing a string

matching regular expression, as in ed. The trailing ? may be omitted, except
when associated with a breakpoint.

Page 4 10/89

sdb (1) sdb(1)

P Prints the current line.

z Prints the current line and the following nine lines. Sets the current line to
the last line printed.

w Prints the 10 lines (the window) around the current line.

number
Specifies the current line. Prints the new current line.

count+
Advances the current line by count lines. Prints the new current line.

count—
Resets the current line by count lines back. Prints the new current line.

The commands for controlling the execution of the source program are:

count r args

count R
Runs the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program. The R command
runs the program with no arguments. An argument beginning with < or >
redirects the standard input or output, respectively. Full sh syntax is
accepted. If count is given, it specifies the number of breakpoints to be
ignored.

linenumber c count

linenumber C count
Continues execution. sdb stops when it encounters count breakpoints. The
signal that stopped the program is reactivated with the C command and
ignored with the ¢ command. If a line number is specified, then a tem-
porary breakpoint is placed at the line and execution continues. The break-
point is deleted when the command finishes.

linenumber g count
Continues with execution resumed at the given line. If count is given, it
specifies the number of breakpoints to be ignored.

s count

S count
s single steps the program through count lines or if no count is given, then
the program runs for one line. s will step from one function into a called
function. s also steps a program, but it will not step into a called function.
It steps over the function called.

i count

I count
Single steps by count machine-lariguage instructions. The signal that caused
the program to stop is reactivated with the I command and ignored with
the i command.

10/89 Page 5

sdb(1) sdb(1)

variable$m count

address:m count
Single steps (as with s) until the specified location is modified with a new
value. If count is omitted, it is, in effect, infinity. Variable must be accessible
from the current procedure. This command can be very slow.

level v
Toggles verbose mode. This is for use when single stepping with S, s, or m.
If level is omitted, then just the current source file and/or function name is
printed when either changes. If level is 1 or greater, each C source line is
printed before it executes. If level is 2 or greater, each assembler statement
is also printed. A v turns verbose mode off.

k Kills the program being debugged.

procedure (argl,arg2,...)

procedure (argl,arg2,...) /m
Executes the named procedure with the given arguments. Arguments can
be register names, integer, character, or string constants, or names of vari-
ables accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m. If no
format is given, it defaults to d.

linenumber b commands

Sets a breakpoint at the given line. If a procedure name without a line
number is given (e.g., proc:), a breakpoint is placed at the first line in the
procedure even if it was not compiled with the —g option. If no linenumber
is given, a breakpoint is placed at the current line. If no commands are
given, execution stops at the breakpoint and control is returned to sdb.
Otherwise the commands are executed when the breakpoint is encountered.
Multiple commands are specified by separating them with semicolons.
Nested associated commands are not permitted; setting breakpoints within
the associated environments is permitted.

B Prints a list of the currently active breakpoints.

linenumber d
Deletes a breakpoint at the given line. If no linenumber is given, then the
breakpoints are deleted interactively. Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or 4,
then the breakpoint is deleted.

D Deletes all breakpoints.

1 Prints the last executed line.

linenumber a
Announces a line number. If linenumber is of the form proc:number, the
command effectively does a linenumber:b 1;c. If linenumber is of the form
proc:, the command effectively does a proc:b T;c.

Page 6 10/89

sdb(1) sdb (1)

Miscellaneous commands:

#rest-of-line
The rest-of-line represents comments that are ignored by sdb.

{command
The command is interpreted by sh.

new-line
If the previous command printed a source line, then advance the current
line by one line and print the new current line. If the previous command
displayed a memory location, then display the next memory location. If the

previous command disassembled an instruction, then disassemble the next
instruction.

end-of-file character
Scrolls the next 10 lines of instructions, source, or data depending on which
was printed last. The end-of-file character is usually control-d.

< filename
Read commands from filename until the end of file is reached, and then con-
tinue to accept commands from standard input. Commands are echoed,
preceded by two asterisks, just before being executed. This command may
not be nested; < may not appear as a command in a file.

M Prints the address maps.
" string "
Prints the given string. The C escape sequences of the form \character,

\octaldigits, or \xhexdigits are recognized, where character is a nonnumeric
character. The trailing quote may be omitted.

q Exits the debugger.
vV Prints version stamping information.

SEE ALSO

NOTES

10/89

cc(1), signal(2), a.out(4), core(4), syms(4).

ed(1), gcore(1), sh(1) in the User’s Reference Manual.

The “sdb” chapter in the Programmer’s Guide: ANSI C and Programming Support
Tools.

If objfile is a dynamically linked executable, variables, function names, and so on
that are defined in shared objects may not be referenced until the shared object in
which the variable, etc., is defined is attached to the process. For shared objects
attached at startup (e.g., libc.so.1, the default C library), this implies that such
variables may not be accessed until main is called.

The objfile argument is accessed directly for debugging information while the pro-
cess is created via the PATH variable.

Page 7

size(1) size(1)

NAME

size — print section sizes in bytes of object files

SYNOPSIS

size[-F —f —n —o -V -x] files

DESCRIPTION

10/89

The size command produces segment or section size information in bytes for
each loaded section in ELF or COFF object files. size prints out the size of the
text, data, and bss (uninitialized data) segments (or sections) and their total.

size processes ELF and COFF object files entered on the command line. If an
archive file is input to the size command, the information for each object file in
the archive is displayed.

When calculating segment information, the size command prints out the total
file size of the non-writable segments, the total file size of the writable segments,
and the total memory size of the writable segments minus the total file size of the
writable segments.

If it cannot calculate segment information, size calculates section information.
When calculating section information, it prints out the total size of sections that
are allocatable, non-writable, and not NOBITS, the total size of the sections that
are allocatable, writable, and not NOBITS, and the total size of the writable sec-
tions of type NOBITS. (NOBITS sections do not actually take up space in the file.)

If size cannot calculate either segment or section information, it prints an error
message and stops processing the file.

-F Prints out the size of each loadable segment, the permission flags of the
segment, then the total of the loadable segment sizes. If there is no seg-
ment data, size prints an error message and stops processing the file.

—f Prints out the size of each allocatable section, the name of the section,
and the total of the section sizes. If there is no section data, size prints
out an error message and stops processing the file.

-n Prints out non-loadable segment or non-allocatable section sizes. If seg-
ment data exists, size prints out the memory size of each loadable seg-
ment or file size of each non-loadable segment, the permission flags, and
the total size of the segments. If there is no segment data, size prints
out, for each allocatable and non-allocatable section, the memory size,
the section name, and the total size of the sections. If there is no seg-
ment or section data, size prints an error message and stops processing.

-0 Prints numbers in octal, not decimal.

-V Prints the version information for the size command on the standard
error output.

-x Prints numbers in hexadecimal; not decimal.

Page 1

size(1) size(1)

EXAMPLES
The examples below are typical size output.
size file 2724 + 88 + 0 = 2812
size -f file 26(.text) + 5(.init) + 5(.fini) = 36
size -F file 2724 (r-x) + 88(rwx) + O(rwx) = 2812
SEE ALSO
as(1), cc(1), 1d(1), a.out (4), ar(4).
NOTES

Since the size of bss sections is not known until link-edit time, the size command
will not give the true total size of pre-linked objects.

Page 2 10/89

strip (1) strip(1)

NAME

strip — strip symbol table, debugging and line number information from an
object file.

SYNOPSIS

strip [-blrVx] file ...

DESCRIPTION

The strip command strips the symbol table, debugging information, and line
number information from ELF object files; COFF object files can no longer be
stripped. Once this stripping process has been done, no symbolic debugging
access will be available for that file; therefore, this command is normally run only
on production modules that have been debugged and tested.

If strip is executed on a common archive file [see ar(4)] in addition to process-
ing the members, strip will remove the archive symbol table. The archive sym-
bol table must be restored by executing the ar(l) command with the -s option
before the archive can be linked by the 1d(1) command. strip will produce
appropriate warning messages when this situation arises.

The amount of information stripped from the ELF object file can be controlled by
using any of the following options:

-b Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-1 Strip line number information only; do not strip the symbol table or
debugging information.
-r Same effect as the default behavior. This option is obsolete and will be
removed in the next release.
-V Print, on standard error, the version number of strip.
-x Do not strip the symbol table; debugging and line number information
may be stripped.
strip is used to reduce the file storage overhead taken by the object file.
FILES
TMPDIR/strp* temporary files
TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam() in
tmpnam(3S)].
SEE ALSO

NOTES

10/89

ar(l), as(1), cc(1), 1d(1), tmpnam(3S), a.out(4), ar(4).

The symbol table section will not be removed if it is contained within a segment,
or the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are con-

tained within a segment, or their associated relocation section is contained within
a segment.

Page 1

tsort(1) tsort(1)

NAME
tsort — topological sort

SYNOPSIS
tsort ([file]

DESCRIPTION
The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file. If no
file is specified, the standard input is understood.
The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS

0dd data: there is an odd number of fields in the input file.

10/89 Page 1

unget(1) unget (1)

NAME

unget — undo a previous get of an SCCS file
SYNOPSIS

unget [-xSID] [-s] [-n] files
DESCRIPTION

unget undoes the effect of a get —e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the directory
were specified as a named file, except that non-SCCS files and unreadable files are
silently ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the “new delta”). The
use of this keyletter is necessary only if two or more outstand-
ing gets for editing on the same SCCS file were done by the
same person (login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary and omitted on the com-

mand line.

-s Suppresses the printout, on the standard output, of the
intended delta’s SID.

-n Causes the retention of the gotten file, which would normally

be removed from the current directory.

unget must be performed by the same user who performed the original get -e.
FILES

p-file [see delta(1)]
g-file [see delta(1)]
z-file [see delta(1)]
SEE ALSO
delta(l), get(l), help(1), sact(l).
DIAGNOSTICS

Use help(1) for explanations.

10/89 Page 1

val(1) vail(1)

NAME
val - validate an SCCS file

SYNOPSIS
val -

val [-s] [-xSID] [-mname] [-ytype] files

DESCRIPTION
val determines if the specified file is an SCCS file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments, which begin with a —, and
named files.

val has a special argument, -, which causes reading of the standard input until
an end-of-file condition is detected. Each line read is independently processed as
if it were a command line argument list.

val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code on exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argu-
ment apply independently to each named file on the command line.

-s The presence of this argument silences the diagnostic message nor-
mally generated on the standard output for any error that is
detected while processing each named file on a given command line.

-xSID The argument value SID (SCCS identification string) is an SCCS delta
number. A check is made to determine if the SID is ambiguous (e.
g~ —rl is ambiguous because it physically does not exist but implies
1.1, 1.2, etc,, which may exist) or invalid (e. g, rl.0 or r1.1.0 are
invalid because neither can exist as a valid delta number). If the SID
is valid and not ambiguous, a check is made to determine if it actu-

ally exists.

-mname The argument value name is compared with the SCCS $M% keyword
in file.

-ytype The argument value type is compared with the SCCS $Y% keyword in
file.

The 8-bit code returned by val is a disjunction of the possible errors; it can be
interpreted as a bit string where (moving from left to right) set bits are inter-
preted as follows:

bit 0 = missing file argument

bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted SCCS file

bit 3 = cannot open file or file not SCCS

bit 4 = SID is invalid or ambiguous

bit 5 = SID does not exist

bit 6 = Y%, —y mismatch

bit 7 = $M%, —m mismatch

10/89 Page 1

val(1) val(1)

val can process two or more files on a given command line and in turn can pro-
cess multiple command lines (when reading the standard input). In these cases
an aggregate code is returned: a logical OR of the codes generated for each com-
mand line and file processed.

SEE ALSO

admin(1), delta(1), get(1), help(l, prs(1).
DIAGNOSTICS

Use help(1) for explanations.
NOTES

val can process up to 50 files on a single command line.

Page 2 10/89

ve(1) ve(1)

NAME
vc — version control

SYNOPSIS
ve [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION
This command is obsolete and will be removed in the next release.

The ve command copies lines from the standard input to the standard output
under control of its arguments and of “control statements” encountered in the
standard input. In the process of performing the copy operation, user-declared
keywords may be replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard output is condi-
tional, based on tests (in control statements) of keyword values specified in con-
trol statements or as ve command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon
(3), except as modified by the —c keyletter (see below). Input lines beginning
with a backslash (\) followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines beginning with
a backslash followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed; a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The —a keyletter
(see below) forces replacement of keywords in all lines of text. An uninterpreted
control character may be included in a value by preceding it with \. If a literal \
is desired, then it too must be preceded by \.

" The following options are valid:

-a Forces replacement of keywords surrounded by control characters
with their assigned value in all text lines and not just in vc state-
ments.

-t All characters from the beginning of a line up to and including the

first tab character are ignored for the purpose of detecting a control
statement. If a control statement is found, all characters up to and
including the tab are discarded.

~cchar Specifies a control character to be used in place of the “:” default.

-8 Silences warning messages (not error) that are normally printed on
the diagnostic output.

vc recognizes the following version control statements:

:dcl keyword(, ..., keyword]
Declare keywords. All keywords must be declared.

10/89 Page 1

ve(1) ve(1)

:asg keyword=value
Assign values to keywords. An asg statement overrides the assignment
for the corresponding keyword on the vc command line and all previous

asg statements for that keyword. Keywords that are declared but are not
assigned values have null values.

:if condition

:end

Skip lines of the standard input. If the condition is true, all lines between
the if statement and the matching end statement are copied to the stan-
dard output. If the condition is false, all intervening lines are discarded,
including control statements. Note that intervening if statements and
matching end statements are recognized solely for the purpose of main-
taining the proper if-end matching.

The syntax of a condition is:

<cond> = [“not”] <or>

<or> = <and> | <and> 1"’ <or>

<and> = <exp> | <exp>''&" <and>

<exp> = (" <or>)" | <value> <op> <value>
<0p> := II=II | Il!=ll l Il<ll ‘ II>II

<value> =

<arbitrary ASCII string> | <numeric string>
The available operators and their meanings are:

equal
not equal
and
or
greater than
less than
) used for logical groupings
ot may only occur immediately after the if, and when
present, inverts the value of the entire condition

The > and < operate only on unsigned integer values (e.g.,, : 012 > 12 is

false). All other operators take strings as arguments (e.g., : 012 != 12 is
true).

]

S~AV—r

The precedence of the operators (from highest to lowest) is:
= 1= > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one
blank or tab.

Page 2 10/89

ve(1) ve(1)

s text
Replace keywords on lines that are copied to the standard output. The
two leading control characters are removed, and keywords surrounded by
control characters in text are replaced by their value before the line is
copied to the output file. This action is independent of the —a keyletter.
:on
:off Turn on or off keyword replacement on all lines.
:ctl char
Change the control character to char.
:MSg message
Print message on the diagnostic output.

:err message
Print message followed by :
ERROR: err statement on line ... (915)
on the diagnostic output. vc halts execution, and returns an exit code of 1.
SEE ALSO
help(1).

ed(1) in the User’s Reference Manual.

10/89 Page 3

what (1) what(1)

NAME
what — print identification strings
SYNOPSIS
what [-s] files
DESCRIPTION
what searches the given files for all occurrences of the pattern that the get com-
mand substitutes for %2% (this is @ (#) at this printing) and prints out what fol-
lows until the first ", >, new-line, \, or null character. For example, if the C pro-
gram in file £.c contains
#ident " @ (#)identification information"
and £.c is compiled to yield £.0 and a.out, then the command
what £f.¢c f.0 a.out
prints
f.c:
identification information
f.o:
identification information
a.out:
identification information
what is intended to be used in conjunction with the get command, which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:
-s Quit after finding the first occurrence of pattern in each file.
SEE ALSO
get(1), help(1), mes(1).
DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. See help(1) for explana-
tions.
10/89

Page 1

yacc(1) yacc(1)
NAME
yacc - yet another compiler-compiler
SYNOPSIS
yacc [-vvdlt] [—QlylIn]] file
DESCRIPTION

The yacc command converts a context-free grammar into a set of tables for a

simple automaton that executes an LALR(1) parsing algorithm. The grammar may

be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro-

gram yyparse. This program must be loaded with the lexical analyzer program,

yylex, as well as main and yyerror, an error handling routine. These routines
must be supplied by the user; the lex(1) command is useful for creating lexical
analyzers usable by yacc.

-v Prepares the file y.output, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the gram-
mar.

-d Generates the file y.tab.h with the #define statements that associate
the yacc-assigned “token codes”” with the user-declared “token names.”
This association allows source files other than y.tab.c to access the
token codes.

-1 Specifies that the code produced in y.tab.c will not contain any #line
constructs. This option should only be used after the grammar and the
associated actions are fully debugged.

—Qly|n] The —Qy option puts the version stamping information in y.tab.c.
This allows you to know what version of yacc built the file. The —Qn
option (the default) writes no version information.

-t Compiles runtime debugging code by default. Runtime debugging
code is always generated in y.tab.c under conditional compilation
control. By default, this code is not included when y.tab.c is com-
piled. Whether or not the -t option is used, the runtime debugging
code is under the control of YYDEBUG, a preprocessor symbol. If YYDE—
BUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and execu-
tion time of a program produced without the runtime debugging code
will be smaller and slightly faster.

-V Prints on the standard error output the version information for yacc.

FILES

y.output

y.tab.c

y.tab.h defines for token names

yacc.tmp,

yacc.debug, yacc.acts temporary files

10/89 Page 1

yacc(1) yacc(1)

LIBDIR/yaccpar parser prototype for C programs
LIBDIR usually /usr/ccs/1ib
SEE ALSO
lex(1).
The “‘yacc” chapter in the Programmer’s Guide: ANSI C and Programming Support
Tools.
DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the stan-
dard error output; a more detailed report is found in the y.output file. Simi-

larly, if some rules are not reachable from the start symbol, this instance is also
reported.

NOTES

Because file names are fixed, at most one yacc process can be active in a given
directory at a given time.

Page 2 10/89

intro(2) intro(2)

NAME

intro — introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

10/89

This section describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise impossible
returned value. This is almost always —1 or the NULL pointer; the individual
descriptions specify the details. An error number is also made available in the
external variable errno. errno is not cleared on successful calls, so it should be
tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The fol-
lowing is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to modify a file in some way for-
bidden except to its owner or the super-user. It is also returned for
attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
A file name is specified and the file should exist but doesn’t, or one of the
directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by PID in the
kill or ptrace routine.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execution is
resumed after processing the signal, it will appear as if the interrupted
routine call returned this error condition.

5 10 I/0 error

Some physical /O error has occurred. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or exists
beyond the limit of the device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than ARG_MAX bytes is presented to a member
of the exec family of routines. The argument list limit is the sum of the

size of the argument list plus the size of the environment’s exported shell
variables.

Page 1

intro (2) intro(2)

Page 2

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid format [see a.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read [respectively,
write] request is made to a file that is open only for writing (respectively,
reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
For example, the fork routine failed because the system’s process table is
full or the user is not allowed to create any more processes, or a system
call failed because of insufficient memory or swap space.

12 ENOMEM Not enough space
During execution of an exec, brk, or sbrk routine, a program asks for
more space than the system is able to supply. This is not a temporary
condition; the maximum size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires too
many segmentation registers, or if there is not enough swap space during
the fork routine. If this error occurs on a resource associated with
Remote File Sharing (RFS), it indicates a memory depletion which may be
temporary, dependent on system activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address

The system encountered a hardware fault in attempting to use an argu-
ment of a routine. For example, errno potentially may be set to EFAULT
any time a routine that takes a pointer argument is passed an invalid
address, if the system can detect the condition. Because systems will
differ in their ability to reliably detect a bad address, on some implemen-
tations passing a bad address to a routine will result in undefined
behavior.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required (e.g.,
in a call to the mount routine).

16 EBUSY Device busy
An attempt was made to mount a device that was already mounted or an
attempt was made to unmount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

10/89

intro (2)

10/89

17

18

19

20

21

22

23

24

25

26

27

28

29

intro(2)

EEXIST File exists
An existing file was mentioned in an inappropriate context (e.g., call to
the link routine).

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate operation to a device
(e.g., read a write-only device).

ENOTDIR Not a directory
A non-directory was specified where a directory is required (e.g., in a path
prefix or as an argument to the chdir routine).

EISDIR Is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>