

UNIX System Laboratories, Inc.
A Subsidiary of AT&T

UNIX@ SYSTEM V
RELEASE 4

Programmer's Guide:
Networking Interfaces

Copyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T
Copyright 1986,1987,1988,1989 Sun Microsystems, Inc.
Copyright 1985 Regents of the University of California
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell eqUipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

UNIX is a registered trademark of UNIX System laboratories, Inc.

LEGAL NOTICE TO USERS

"Yellow Pages" is a registered trademark in the United Kingdom of British Telecommunications pic,
and may also be a trademark of other telephone companies around the world.

AT&T is revising future versions of software and documentation to replace all references to "Yellow
Pages" and "YP" with "Network Information Service" and "NIS" respectively. The functionality of the
two is the same; only the name is being changed.

10 9 8 7 6 5 4 3

ISBN 0-13-947078-6

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632.
Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator's Guide

®
UNIX System V Release 4 System Administrator's Reference Manual
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: System Services

and Application Packaging Tools
UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Device Driver Interface / Driver-Kernel

Interface (DDI / DKI) Reference Manual
UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall.

Contents of Volume

TLI and Sockets Programming
Introduction
Transport Interface Programming
The Sockets Interface
Sockets Migration and Sockets-to-TLI Conversion
Index: TLI and Sockets Programming

Remote Procedure Calls
Introduction to Remote Procedure Calls
rpcgen Programming Guide
Remote Procedure Call Programming Guide
Extemal Data Representation Standard: Protocol

Specification
Remote Procedure Calls: Protocol Specification
RPC Administration
The YP Service
Index: Remote Procedure Calls

Network Selection and Name-to-Address
Mappping
Network Selection and Name-to-Address Mapping
Index: Network Selection and Name-to-Address Mapping

Contents of Volume

Table of Contents _____________________ _

ii

Writing a Port Monitor for the Service
Access Facility
Writing a Port Monitor for the Service Access Facility
Index: Writing a Port Monitor for the Service Access Facility

Appendix A: Manual Pages

Programmer's Guide: Networking Interfaces

1

2

3

Contents

Introduction
Introduction

Transport Interface Programming
Introduction
Background
Document Organization
Overview of the Transport Interface
Introduction to Connection-Mode Service
Introduction to Connectionless-Mode Service
A ReadiWrite Interface
Advanced Topics
State Transitions
Guidelines for Protocol Independence
Some Examples
Glossary

The Sockets Interface
Background
Basics
Supporting Routines
Client/Server Model
Advanced Topics

Table of Contents

1-1

2-1
2-2
2-5
2-6
2-16
2-40
2-47
2-51
2-61
2-69
2-71
2-88

3-1
3-2
3-23
3-30
3-41

Table of Contents _____________________ _

4

I

II

Sockets Migration and Sockets-to-TLI
Conversion .
Sockets· Migration and Sockets-to-TLI Conversion

Index
Index

4-1

1-1

Programmer's Guide: Networking Interfaces

Figures and Tables

Figure 2-1: OSI Reference Model
Figure 2-2: Transport Interface
Figure 2-3: Channel Between User and Provider
Figure 2-4: Transport Connection
Figure 2-5: Listening and Responding Transport Endpoints
Figure 3-1: Initiating an Internet Domain Stream Connection
Figure 3-2: Accepting an Internet Domain Stream Connection
Figure 3-3: Reading Internet Domain Datagrams
Figure 3-4: Sending an Internet Domain Datagram
Figure 3-5: Using select () to Check for Pending Connections
Figure 3-6: Remote Login Client Code
Figure 3-7: Remote Login Server
Figure 3-8: Output of ruptime Program
Figure 3-9: rwho Server
Figure 3-10: Flushing Terminal 110 on Receipt of Out Of Band Data
Figure 3-11: Use of Asynchronous Notification of 110 Requests
Figure 3-12: Use of the SIGCHLD Signal
Figure 4-1: Client Side of Stream-Oriented Application
Figure 4-2: TLI Client Code
Figure 4-3: Sockets Server Code
Figure 4-4: TLI Server Code
Figure 4-5: Sending Internet Domain Datagram
Figure 4-6: TLI Datagram Code
Table 2-1: Local Management Routines of the Transport Interface
Table 2-2: Routines for Establishing a Transport Connection
Table 2-3: Connection Mode Data Transfer Routines
Table 2-4: Connection Release Routines
Table 2-5: Routines for Connectionless-Mode Data Transfer
Table 2-6: States Describing Transport Interface State Transitions
Table 2-7: Outgoing Events
Table 2-8: Incoming Events
Table 2-9: Common Local Management State Table
Table 2-10: Connectionless-Mode State Table
Table 2-11: Connection-Mode State Table
Table 3-1: Run-Time Library Routines

Table of Contents

2-2
2-6
2-8
2-11
2-31
3-10
3-12
3-15
3-16
3-20
3-28
3-31
3-37
3-38
3-42
3-45
3-47
4-2
4-4
4-6
4-7
4-10
4-12
2-9
2-12
2-12
2-13
2-14
2-61
2-62
2-64
2-67
2-67
2-68
3-27

iii

Table of Contents

Table 4-1: Table of TU/Sockets Equivalents.
Table 4-2: Differences in SoCkets Implementations

4-16
4-18

Iv Programmer's Guide: Networking Interfaces

1 Introduction

Introduction 1-1
Organization of the Document 1-1
Network Selection and Name-to-Address Mapping 1-2

Table of Contents

Introduction

The AT&T Transport Interface (TLI) was introduced in UNIX System V Release
3 as a standard transport-independent programming interface. The Network
Selection and Name-to-Address Mapping facilities have been added to Release
4.0 to provide a means of guaranteeing media and protocol independence for
transport applications. Network Selection and Name-to-Address Mapping allow
programmers to get transport-specific information to network applications in a
transport-independent ~ay.

As part of the unification of UNIX System V and Berkeley UNIX, the sockets
interface and support for the DARPA protocols (the TCP lIP Internet Package)
have also been added to System V Release 4.0.

Both TLI and sockets provide a programming interface to the transport layer.
In System V Release 4.0, both are implemented within the STREAMS frame­
work. They differ in the following ways:

• TLI is media- and protocol-independent. It allows applications to run
over any transport protocol that supports the TLI interface.

• The sockets interface has historically been tied to the Internet protocol
suite, TCP lIP and UDP lIP.

It is expected that new applications will take advantage of TLI's protocol
independence and that the socket interface will be used primarily in expanding
and maintaining existing sockets-based applications.

Organization of the Document

The document contains this Introduction and three major chapters. Chapter 2,
"Transport Interface Programming," describes the UNIX System Transport
Interface (TLI).

Chapter 3, "The Sockets Interface," describes the socket-based interface to the
transport layer.

Chapter 4, "Sockets Migration and Sockets-to-TLI Conversion," describes the
differences between the TLI and sockets interfaces and shows how BSD sockets
applications can be adapted to System V Release 4, and how sockets applica­
tions, whether Berkeley- or System V -based, can be modified to run under TLI.
The chapter includes parallel code examples and tables of equivalent sockets
and TLI functions.

Introduction 1-1

Introduction

Network Selection and Name-to-Address Mapping

TUapplications require an understanding of the Network Selection and Name­
to-Address Mapping facilities provided with this release if they are to run as
media- and protocol-independent applications. Network Seleetion provides a
standard interface to the networks available in any current environment.
Narne-to-Address Mapping allows applications to translate transport-specific
addresses. The following material is available:

1-2

• Programmer's Guide: Networking Interfaces. Chapter 8, ''Network Selection
and Name-to-Address Mapping." This chapter provides comprehensive
coverage of these facilities.

• System Administrator's Guide. Chapter 10, "Network Services." The
description of the Network Selection and Name-to-Address Mapping facil­
ities is intended for administrators and does not include complete descrip­
tions of the library routines.

• Programmer's Guide: Networking Interfaces. The following manual pages are
included at the end of the Network Selection and Name-to-Address Map­
ping chapter:

D getnetconfig(3N). Describes the Network Selection library routines
that manipulate the network configuration administrative file,
netconfig.

D getnetpath(3N). Describes the routines that manipulate the NET­
PATH variable. The NETPATH environment variable allows pro­
grammers to choose the networks in. the netc6nfig file that an
application is to try.

D netconfig(4). Describes the network configuration database file.

D environ(5). Describes the NETP A TH environment variable.

D netdir(3N). Contains descriptions of the Name-to-Address Map­
ping library functions.

Programmer's Guide: Networking Interfaces

2 Transport Interface Programming

Introduction 2-1

Background 2-2

Document Organization 2-5

Overview of the Transport Interface 2-6
Modes of Service 2-7

• Connection-Mode Service 2-8
• Connectionless-Mode Service 2-14

State Transitions 2-14

Introduction to Connection-Mode Service 2-16
Local Management 2-16

• The Client 2-18
• The Server 2-20

Connection Establishment 2-23
• The Client 2-24
• Event Handling 2-26
• The Server 2-27

Data Transfer 2-31
• The Client 2-33
• The Server 2-34

Connection Release 2-36
.' The Server 2-37
• The Client 2-38

Table of Contents

Table of Contents _____________________ _

Introduction to Connectionless-Mode
~~~ ~ 
Local Management 2-40 
Data Transfer 2-43 
Datagram Errors 2-45 

A Read/Write Interface 2-47 
write 2-48 
read 2-49 
~~ ~9 

Advanced Topics 2-51 
Asynchronous Execution Mode 2-51 
Advanced Programming Example 2-52 

State Transitions 2-61 
Transport Interface States 2-61 
Outgoing Events 2-62 
Incoming Events 2-64 
Transport User Actions 2-65 
State Tables 2-65 

Guidelines for Protocol Independence 2-69 

II Programmer's Guide: Networking Interfaces 



______________________ Table of Contents 

Some Examples 
Connection-Mode Client 
Connection-Mode Server 
Connectionless-Mode Transaction Server 
ReadlWrite Client 
Event-Driven Server 

Glossary 

Table of Contents 

2-71 
2-71 
2-73 
2-77 
2-79 
2-81 

2-88 

Iii 





Introduction 

This chapter provides detailed information, with various examples, on the UNIX 
system Transport Interface. This interface is intended to supersede the socket­
based interprocess communications mechanisms as the standard means of gain­
ing direct access to transport services. 

The following discussion assumes a working knowledge of UNIX system and C 
language programming and data communication concepts. Familiarity with the 
Reference Model of Open Systems Interconnection (051) is required as well. 

Transport Interface Programming 2-1 



Background 

To place the Transport Interface in perspective, a discussion of the OSI Reference 
Model is first presented. The Reference Model partitions networking functions 
into seven layers, as depicted in FigtJre 2-1. 

Figure 2-1: 051 Reference Model 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

2-2 

Layer 7 

Layer 6 

Layer 5 

Layer 4 

Layer 3 

Layer 2 

Layer 1 

application 

presentation 

session 

transport 

network 

data link 

physical 

The physical layer is responsible for the transmission of raw 
data over a communication medium. 

The data link layer provides the exchange of data between net­
work layer entities. It detects and corrects any errors that may 
occur in the physical layer transmission. 

The network layer manages the operation of the network. In 
particular, it is responsible for the routing and management of 
data exchange between transport layer entities within the net­
work. 

The transport layer provides transparent data transfer services 
between session layer entities by relieving them from concerns 
of how reliable and cost-effective transfer of data is achieved. 

Programmer's Guide: Networking Interfaces 



Layer 5 

Layer 6 

Layer 7 

Background 

The session layer provides the services needed by presentation 
layer entities that enable them to organize and synchronize their 
dialogue and manage their data exchange. 

The presentation layer manages the representation of informa­
tion that application layer entities either communicate or refer­
ence in their communication. 

The application layer serves as the window between correspond­
ing application processes that are exchanging information. 

A basic principle of the Reference Model is that each layer provides services 
needed by the next higher layer in a way that frees the upper layer from con­
cern about how these services are provided. This approach simplifies the design 
of each particular layer. 

Industry standards either have been or are being defined at each layer of the 
Reference Model. Two standards are defined at each layer: one that specifies an 
interface to the services of the layer, and one that defines the protocol by which 
services are provided. A service interface standard at any layer frees users of 
the service from details of how that layer's protocol is implemented, or even 
which protocol is used to provide the service. 

The transport layer is important because it is the lowest layer in the Reference 
Model that provides the basic service of reliable, end-to-end data transfer 
needed by applications and higher layer protocols. In doing so, this layer hides 
the topology and characteristics of the underlying network from its users. More 
important, however, the transport layer defines a set of services common to 
layers of many contemporary protocol suites, including the International Stan­
dards Organization (ISO) protocols, the Transmission Control Protocol and Inter­
net Protocol (TCP/IP) of the ARPANET, Xerox Network Systems (XNS), and the 
Systems Network Architecture (SNA). 

A transport service interface, then, enables applications and higher layer proto­
cols to be implemented without knowledge of the underlying protocol suite. 
That is a principle goal of the UNIX system Transport Interface. Also, because 
an inherent characteristic of the transport layer is that it hides details of the 
physical medium being used, the Transport Interface offers both protocol and 
medium independence to networking applications and higher layer protocols. 

Transport Interface Programming 2-3 



Background 

The UNIX system Transport Interface was modeled after the industry standard 
ISO Transport Service Definition (ISO 8072). As such, it is intended for those 
applications and protocols that require transport services. Because the Tran­
sport Interface provides reliable data transfer, and because its services are com­
mon to several protocol suites, many networking applications will find these 
services useful. 

The Transport Interface is implemented as a user library using the Sf REAMS 
input/output mechanism. Therefore, many services available to Sf REAMS appli­
cations are also available to users of the Transport Interface. These services will 
be highlighted throughout this guide. For detailed information about Sf REAMS, 
see the DDI Driver-Kernel Interface (DDI/DKl) Reference Manual or the 
Programmer's Guide: STREAMS. 

2-4 Programmer's Guide: Networking Interfaces 



Document Organization 

This chapter is organized as follows: 

• "Overview of the Transport Interface," a summary of the basic services 
available to Transport Interface users and a presentation of the back­
ground information needed for the remainder of the section. 

• "Introduction to Connection-Mode Service," a description of the services 
associated with connection-based (or virtual circuit) communication. 

• ''Introduction to Connectionless-Mode Service," a description of the ser­
vices associated with connectionless (or datagram) communication. 

• "A Read/Write Interface," a description of how users can use the services 
of read(2) and write(2) to communicate over a transport connection. 

• "Advanced Topics," a discussion of important concepts not covered in 
earlier sections. These include asynchronous event handling and process­
ing of multiple, simultaneous connect requests. 

• "State Transitions," which defines the allowable state transitions associ­
ated with the Transport Interface. 

• "Guidelines for Protocol Independence," which establishes necessary 
guidelines for developing software that can be run without change over 
any transport protocol developed for the Transport Interface. 

• ''Examples,'' which presents the full listing of each programming example 
used throughout the guide. 

• "Glossary," a definition of the Transport Interface terms and acronyms 
used in this section. 

This section describes the more important and common facilities of the Tran­
sport Interface, but is not meant to be exhaustive. Appendix A of this docu­
ment contains manual pages giving complete descriptions of each Transport 
Interface routine. 

Transport Interface Programming 



Overview of the Transport Interface 

This section presents a high level overview of the services of the Transport 
Interface, which supports the transfer of data between two user processes. Fig­
ure 2-2 illustrates the Transport Interface. 

Figure 2-2: Transport Interface 

transport 
user 

ice serv 
req uests 

t ....... . . . . . . . . . . . . . . Transport Interface ....... ] 
e events 
ndications 

servlC 
and i 

transport 
provider 

The transport provider is the entity that provides the services of the Transport 
Interface, and the transport user is the entity that requires these services. An 
example of a transport provider is the ISO transport protocol, while a transport 
user may be a networking application or session layer protocol. 

The transport user accesses the services of the transport provider by issuing the 
appropriate service requests. One example is a request to transfer data over a 
connection. Similarly, the transport provider notifies the user of various events, 
such as the arrival of data on a connection. 

The Network Services Library of UNIX System V includes a set of functions that 
support the services of the Transport Interface for user processes (see intro(3». 
These functions enable a user to make requests to the provider and process 
incoming events. Programs using the Transport Interface can link the appropri­
ate routines as follows: 

2-6 Programmer's Guide: Networking Interfaces 



Overview of the Transport Interface 

Modes of Service 

The Transport Interface provides two modes of service: 

• connection-mode 

• connectionless-moct.e 

Connection-mode is circuit-oriented· and enables the transmission of data over 
an established cOnnection iJ;l a reliable, sequenced manner. It alSo provides an 
identification procedure that avoids the overheaq of iiddress resolution and 
transmission during the data transfer phase. This service is attractive for appli­
cations that requfrerelatively long-lived, datastream-oriented interactions. 

Connectionless-mode, by contrast, is m,essage-oriented and supports data 
transfer in self-contained units with no logicaltelationship required among mul­
tiple units. This service requires only a preexisting associatiQn between the peer 
users involved, which determines the characteristics of the diita to be transmit­
ted. All the information required to deliver a unit of data (for example, the des­
tination address) is presented to the transport provider, together with the data 
to be transmitted, in one service access (which need not relate to any other ser­
vice·access). Each.unit of data transmitted is entirely self-contained. 
Connectionless-mode service is attractive for applications that: 

• involve short-term request/response interactions 

• exhibit a, high level of redundancy 

• aredyt)8mically r~nfigurable 

• do not require guaranteed, in-sequence delivery of data 

Transport Interface Programming 2-7 



OVerview of the Transport Interface 

Connection-Mode Service 

The connection-mode transport service is characterized by four phases: 

• local management 

• connection establishment 

• data transfer 

• connection release 

Local Manag~ment 
The local management phase defines local operations between a transport user 
and a transport provider. For example, a user must establish a channel of com­
munication with the transport provider, as illustrated in Figure 2-3. Each chan­
nel between a transport user and transport provider is a unique endpoint of 
communication, and will be called the transport endpoint. The t _open (3N) 
routine enables a user to choose a particular transport provider that will supply 
the connection-mode services, and establishes the transport endpoint. 

Figure 2-3: Channel Between User and Provider 

transport 
user 

~ transport endpoint 

.......... .......... . . . . . . . . . . . . . . Transport Interface 

transport 
provider 

2-8 programmer's Guide: Networking Interfaces 



Overview of the Transport Interface 

Another necessary local function for each user is to establish an identity with 
the transport provider. Each user is identified by a transport address. More 
accurately, a transport address is associated with each transport endpoint, and 
one user process may manage several transport endpoints. In connection-mode 
service, one user requests a connection to another user by specifying that user's 
address. The structure of a transport address is defined by the address space of 
the transport provider. An address may be as simple as a random character 
string (for example, "file _server"), or as complex as an encoded bit pattern that 
specifies all information needed to route data through a network. Each tran­
sport provider defines its own mechanism for identifying users. Addresses may 
be assigned to each transport endpoint by t _ bind(3N). 

In addition to t _open and t _bind, several routines are available to support 
local operations. Table 2-1 summarizes all local management routines of the 
Transport Interface. 

Table 2-1: Local Management Routines of the Transport Interface 

Command Description 

t alloc Allocates Transport Interface data structures. 

t bind Binds a transport address to a transport endpoint. 

t close Ooses a transport endpoint. 

t error Prints a Transport Interface error message. 

t free Frees structures allocated using t_alloc. 

t_getinfo Returns a set of parameters associated with a particular 
transport provider. 

t _get state Returns the state of a transport endpoint. 

Transport Interface Programming 2-9 



Overview of the Transport Interface 

Table 2-1: Local Management Routines of the Transport Interface (continued) 

Command 

t look 

t_optmgmt 

t_sync 

t unbind 

Description 

Returns the current event on a transport endpoint. 

Establishes a transport endpoint connected to a chosen 
transport provider. 

Negotiates protocol-specific options with the transport 
provider. 

Synchronizes a transport endpoint with the transport 
provider. 

Unbinds a transport address from a transport end­
point. 

Connection Establishment 
The connection establishment phase enables two users to create a connection, or 
virtual circuit, between them, as demonstrated in Figure 2-4. 

2-10 Programmer's Guide: Networking Interfaces 



Overview of the Transport Interface 

Figure 2-4: Transport Connection 

user 1 user 2 

. . . . . . . . .. ...................................... Transport Interface 

(_---1--- Transport Connection 

t 

transport provider 

This phase is illustrated by a client-server relationship between two transport 
users. One user, the server, typically advertises some service to a group of 
users, and then listens for requests from those users. As each client requires the 
service, it attempts to connect itself to the server using the server's advertised 
transport address. The t _connect (3N) routine initiates the connect request. 
One argument to t_connect, the transport address, identifies the server the 
client wishes to access. The server is notified of each incoming request using 
t_listen(3N), and may call t_accept(3N) to accept the client's request for 
access to the service. If the request is accepted, the transport connection is esta­
blished. 

Table 2-2 summarizes all routines available for establishing a transport connec­
tion. 

Transport Interface Programming 2-11 



Overview of the Transport Interface 

Table 2·2: Routines for Establishing a Transport Connection 

Command Description 

t _accept Accepts a request for a transport connection. 

t connect Establishes a connection with the transport user at a 
specified destination. 

t listen Retrieves an indication of a connect request from 
another transport user. 

t rcvconnect Completes connection establishment if t _connect was 
called in asynchronous mode (see the section 
"Advanced Topics"). 

Data Transfer 

The data transfer phase enables users to transfer data in both directions over an 
established connection. Two routines, t snd(3N) and t rcv(3N), send and 
receive data over this connection. All data sent by a user is guaranteed to be 
delivered to the user on the other end of the connection in the order in which it 
was sent. Table 2-3 summarizes the connection mode data transfer routines. 

Table 2·3: Connection Mode Data Transfer Routines 

Command Description 

t rcv Retrieves data that has arrived over a transport connec­
tion. 

t snd Sends data over an established transport connection. 

2·12 Programmer's Guide: Networking Interfaces 



Overview of the Transport Interface 

Connection Release 
The connection release phase allows you to break an established connection. 
When you decide that a conversation should end, you can request that the pro­
vider release the transport connection. Two types of connection release are sup­
ported by the Transport Interface. The first is an abortive release, which directs 
the transport provider to release the connection immediately. Any previously 
sent data that has not yet reached the other transport user may be discarded by 
the transport provider. The t_snddis(3N) routine initiates this abortive 
disconnect, and t_rcvdis(3N) processes the incoming indication for an abor­
tive disconnect. 

All transport providers must support the abortive release procedure. In addi­
tion, some transport providers may also support an orderly release facility that 
enables users to terminate communication gracefully with no data loss. The 
functions t_sndrel(3N) and t_rcvrel(3N) support this capability. Table 2-4 
summarizes the connection release routines. 

Table 2-4: Connection Release Routines 

Command Description 

t rcvdis Returns an indication of an aborted connection, includ­
ing a reason code and user data. 

t rcvrel Returns an indication that the remote user has 
requested an orderly release of a connection. 

t snddis Aborts a connection or rejects a connect request. 

t sndrel Requests the orderly release of a .connection. 

Transport Interface Programming 2-13 



OVerview of the Transport Interface 

Connection less-Mode Service 

The connectionless-mode transport service is characterized by two phases: local 
management and data transfer. The local management phase defines the same 
local operations described above for the connection-mode service. 

The data transfer phase enables a user to transfer data units (sometimes called 
datagrams) to the specified peer user. Each data unit must be accompanied by 
the transport address of the destination user. Two routines, t_sndudata(3N) 
and t_rcvudata(3N), support this message-based data transfer facility. Table 
2-5 summarizes all routines associated with connectionless-mode data transfer. 

Table 2-5: Routines for Connectlonless·Mode Data Transfer 

Command Description 

t_rcvudata Retrieves a message sent by another transport user. 

t rcvuderr Retrieves error information associated with a previ­
ously sent message. 

t_sndudata Sends a message to the specified destination user. 

State Transitions 

The Transport Interface has two components: 

• the library routines that provide the transport services to users 

• the state transition rules that define the sequence in which the transport 
routines may be invoked 

The state transition rules can be found later in this chapter in the state tables in 
the section "State Transitions." The state tables define the legal sequence of 
library calls based on state information and the handling of events. These 
events include user-generated library calls, as well as provider-generated event 
indications. 

2·14 Programmer's Guide: Networking Interfaces 



Overview of the Transport Interface 

, Any user of the Transport Interface must completely understand all possible 
state transitions before writing software using the interface. 

Transport Interface Programming 2-15 



Introduction to Connection-Mode Service 

This section describes the connection-mode service of the Transport Interface. 
As discussed in the previous section, the connection-mode service can be illus­
trated using a client-server paradigm. The important concepts of connection­
mode service will be presented using two programming examples. The exam­
ples are related: the first example illustrates how a client establishes a connec­
tion to a server and then communicates with it; the second example shows the 
server's side of the interaction. All examples discussed in this chapter are 
presented complete later in the section "Some Examples." 

In the examples, the client establishes a connection with a server process. The 
server then transfers a file to the client. The client, in turn, receives the data 
from the server and writes it to its standard output file. 

Local Management 

Before the client and server can establish a transport connection, each must first 
establish a local channel (the transport endpoint) to the transport provider using 
t_open, and establish its identity (or address) using t_bind. 

The set of services supported by the Transport Interface may not be imple­
mented by all transport protocols. Each transport provider has a set of charac­
teristics associated with it that determines the services it offers and the limits 
associated with those services. This information is returned to the user by 
t _open, and consists of the following: 

addr 

options 

tsdu 

etsdu 

connect 

2-16 

maximum size of a transport address 

maximum bytes of protocol-specific options that may be passed 
between the transport user and transport provider 

maximum message size that may be transmitted in either 
connection-mode or connectionless-mode 

maximum expedited data message size that may be sent over a 
transport connection 

maximum number of bytes of user data that may be passed 
between users during connection establishment 

Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

discon maximum bytes of user data that may be passed between users 
during the abortive release of a connection 

servtype the type of service supported by the transport provider 

The three service types defined by the Transport Interface are: 

T COTS The transport provider supports connection-mode service but 
does not provide the optional orderly release facility. 

T _ COTS _ORO The transport provider supports connection-mode service with 
the optional orderly release facility. 

T CLTS The transport provider supports connectionless-mode service. 
Only one such service can be associated with the transport pro­
vider identified by t _open. 

t_open returns the default provider characteristics associated with a tran­
sport endpoint. However, some characteristics may change after an end­
point has been. opened .. This will occur if the characteristics are associated 
with negotiated options (option negotiation is described later in this section). 
For example, if the support of expedited data transfer is a negotiated option, 
the value of this characteristic may change. t qetinfo may be called to 
retrieve the current characteristics of a transport endpoint. 

Once a user establishes a transport endpoint with the chosen transport provider, 
it must establish its identity. As mentioned earlier, t _bind does this by bind­
ing a transport address to the transport endpoint. In addition, for servers, this 
routine informs the transport provider that the endpoint will be used to listen 
for incoming connect indications, also called connect requests. 

An optional facility, t _ optmgmt (3N), is also available during the local manage­
ment phase. It enables a user to negotiate the values of protocol options with 
the transport provider. Each transport protocol is expected to define its own set 
of negotiable protocol options, which may include such information as Quality­
of-Service parameters. Because of the protocol-specific nature of options, only 
applications written for a particular protocol environment are expected to use 
this facility. 

Transport Interface Programming 2-17 



Introduction to Connection-Mode Service 

The Client 

The local management requirements of the example client and server are used 
to discuss details of these facilities. The following are the definitions needed by 
the client program, followed by its necessary local management steps. 

The first argument to t _open is the pathname of a file system node that 
identifies the transport protocol that will supply the transport service. In this 
example, /dev/tivc is a STREAMS clone device node that identifies a generic, 
connection-based transport protocol (see clone(4». The clone device finds an 
available minor device of the transport provider for the user. It is opened for 
both reading and writing, as specified by the 0_ RDWR open flag. The third 
argument may be used to return the service characteristics of the transport pro­
vider to the user. This information is useful when writing protocol-independent 
software (discussed in the section "Guidelines for Protocol Independence," 
below). For Simplicity, the client and server in this example ignore this informa­
tion and assume the transport provider has the following characteristics: 

2-18 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

• The transport address is an integer value that uniquely identifies each 
user. 

• The transport provider supports the T _COTS_ORO service type, and the 
example will use the orderly release facility to release the connection. 

• User data may not be passed between users during either connection 
establishment or abortive release. 

• The transport provider does not support protocol-specific options. 

Because these characteristics are not needed by the user, NULL is specified in the 
third argument to t_open. If the user needed a service other than 
T_COTS_ORO, another transport provider would be opened. An example of the 
T _ CLTS service invocation is presented in the section '1ntroduction to 
Connectionless-Mode Service." 

The return value of t_open is an identifier for the transport endpoint that will 
be used by all subsequent Transport Interface function" calls. This identifier is 
actually a file descriptor obtained by opening the transport protocol file (see 
open(2». The significance of this fact is highlighted in the section II A 
Read/Write Interface." 

After the transport endpoint is created, the client calls t _bind to assign an 
address to the endpoint. The first argument identifies the transport endpoint. 
The second argument describes the address the user would like to bind to the 
endpoint, and the third argument is set on return from t _bind to specify the 
address that the provider bound. 

The address associated with a server's transport endpoint is important, because 
that is the address used by all clients to access the server. However, the typical 
client does not care what its own address is, because no other process will try to 
access it. That is the case in this example, where the second and third argu­
ments to t_bind are set to NULL. A NULL second argument directs the tran­
sport provider to choose an address for the user. A NULL third argument 
specifies that the user does not care what address was assigned to the endpoint. 

If either t_open or t_bind fail, the program will call t_error(3N) to print an 
appropriate error message to stderr. If any Transport Interface routine fails, 
the global integer t_errno will be assigned a transport error value. A set of 
error values has been defined (in <tiuser. h» for the Transport Interface, and 
t_error will print an error message corresponding to the value in t_errno. 
This routine is analogous to perror(3), which prints an error message based on 

Transport Interface Programming 2-19 



Introduction to Connection-Mode Service 

the value of errno. If the error associated with a transport function is a system 
error, t _ errno will be set to TSYSERR, and errno will be set to the appropri­
ate value. 

The Server 
The server in this example must take similar local management steps before 
communication can begin. The server must establish a transport endpoint 
through which it will listen for connect indications. The necessary definitions 
and local management steps are shown below: 

2-20 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

As with the client, the first step is to call t _open to establish a transport end­
point with the desired transport provider. This endpoint, listen_fd, will be 
used to listen for connect indications. Next, the server must bind its well­
known address to the endpoint. This address is used by each client to access 
the server. The second argument to t _bind requests that a particular address 
be bound to the transport endpoint. This argument points to a t _bind struc­
ture with the following format: 

where addr describes the address to be bound, and qlen specifies the max­
imum outstanding connect indications that may arrive at this endpoint. All 
Transport Interface structure and constant definitions are found in 
<tiuser. h>. 

Transport Interface Programming 2-21 



Introduction to Connection-Mode Service 

The address is specified using a netbuf structure that contains the following 
members: 

where buf points to a buffer containing the data, len specifies the bytes of data 
in the buffer, and maxI en specifies the maximum bytes the buffer can hold (and 
need only be set when data is returned to the user by a Transport Interface rou­
tine). For the t_bind structure, the data pointed to by buf identifies a tran­
sport address. It is expected that the structure of addresses will vary among 
each protocol implementation under the Transport Interface. The netbuf struc­
ture is intended to support any address structure. 

If the value of qlen is greater than 0, the transport endpoint may be used to 
listen for connect indications. In such cases, t _bind directs the transport pro­
vider to begin queueing connect indications destined for the bound address 
immediately. Furthermore, the value of qlen specifies the maximum outstand­
ing connect indications the server wishes to process. The server must respond 
to each connect indication, either accepting or rejecting the request for connec­
tion. An outstanding connect indication is one to which the server has not yet 
responded. Often, a server will fully process a single connect indication and 
respond to it before receiving the next indication. When this occurs, a value of 
1 is appropriate for qlen. However, some servers may wish to retrieve several 
connect indications before responding to any of them. In such cases, qlen 
specifies the maximum number of outstanding indications the server will pro­
cess. An example of a server that manages multiple outstanding connect indica­
tions is presented in the section /I Advanced Topics." 

t_alloc(3N) is called to allocate the t_bind structure needed by t_bind. 
t _ alloc takes three arguments. The first is a file deSCriptor that references a 
transport endpoint. This is used to access the characteristics of the transport 
provider (see t_open(3N». The second argument identifies the appropriate 
Transport Interface structure to be allocated. The third argument specifies 
which, if any, netbuf buffers should be allocated for that structure. T_ALL 
specifies that all netbuf buffers associated with the structure should be 

2-22 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

allocated, and causes the addr buffer to be allocated in this example. The size 
of this buffer is determined from the transport provider characteristic that 
defines the maximum address size. The maxlen field of this netbuf structure 
will be set to the size of the newly allocated buffer by t_alloc. The use of 
t_alloc helps ensure the compatibility of user programs with future releases 
of the Transport Interface. 

The server in this example processes connect indications one at a time, so qlen 
is set to 1. The address information is then assigned to the newly allocated 
t _bind structure. This t _bind structure passes information to t _bind in the 
second argument and returns information to the user in the third argument. 

On return, the t _bind structure contains the address that was bound to the 
transport endpoint. If the provider could not bind the requested address 
(perhaps because it had been bound to another transport endpoint), it will 
choose another appropriate address. 

, Each transport provider manages its address space differently. Some tran­
sport providers may allow a single transport address to be bound to several 
transport endpoints, while others may reqiJire a unique address per endpoint. 
The Transport Interface supports either choice. Based on its address 
management rules, a provider will determine if it can bind the requested 
address. If not, it will choose another valid address from its address space 
and bind it to the transport endpoint. 

The server must check the bound address to ensure that it is the one previously 
advertised. to clients. Otherwise, the clients will be unable to reach the server. 

If t _bind succeeds, the provider will begin queueing connect indications. 
entering the next phase of communication/connection establishment. 

Connection Establishment 

The connection establishment procedures highlight the distinction between 
clients and servers. The Transport Interface imposes a different set of pro­
cedures in this phase for each type of transport user. The client starts the con­
nection establishment procedure by requesting a connection to a particular 
server using t_conriect(3N'). The server is then notified of the client's request 
by calling t_listen(3N). The server may either accept or reject the client's 
request. It will call t _accept (3N) to establish the connection, or call 

Transport Interface Programming 2-23 



Introduction to Connection·Mode Service 

t_snddis(3N) to reject the request. The client will be notified of the server's 
decision when t _connect completes. 

The Transport Interface supports two facilities during connection establishment 
that may not be supported by all transport providers: 

• The ability to transfer data between the client and server when establish­
ing the connection. 

The client may send data to the server when it requests a connection. 
This data will be passed to the server by t_listen. Similarly, the server 
can send data to the client when it accepts or rejects the connection. The 
connect characteristic returned by t _open determines how much data, if 
any, two users may transfer during connect establishment. 

• The negotiation of protocol options. 

The client may specify protocol options that it would like the transport 
provider and/or the remote user to support. The Transport Interface sup­
ports both local and remote option negotiation. As discussed earlier, 
option negotiation is inherently a protocol-specific function. Use of this 
facility is discouraged if protocol independent software is a goal (see the 
section "Guidelines for Protocol Independence"). 

The Client 

Continuing with the client/server example, the steps needed by the client to 
establish a connection are shown next: 

2·24 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

The t _connect call establishes the connection with the server. The first argu­
ment to t _connect identifies the transport endpoint through which the con­
nection is established, and the second argument identifies the destination server. 
This argument is a pointer to a t_call structure with the following format: 

addr identifies the address of the server, opt may be used to specify protocol­
specific options that the client would like to associate with the corinection, and 
udata identifies user data that may be sent with the connect request to the 
server. The sequence field has no meaning for t _connect. 

t_alloc is called above to allocate the t_call structure dynamically. Once 
allocated, the appropriate values are assigned. In this example, no options or 
user data are associated with the t connect call, but the server's address must 
be set. The third argument to t_alloc is set to T_ADDR to specify that an 
appropriate netbuf buffer should be allocated for the address. The server's 
address is then assigned to buf, and len is set accordingly. 

Transport Interface Programming 2-25 



Introduction to Connection-Mode Service 

The third argument to t _connect can be used to return information about the 
newly established connection to the user, and may retrieve any user data sent 
by the server in its response to the connect request. It is set to NULL by the . 
client here to indicate that this information is not needed. The connection will 
be established on successful return of t _connect. If the server rejects the con­
nect request, t_connect will fail and set t_er:rno to TLOOK. 

Event Handling 

The TLOOK error has special significance in the Transport Interface. TLOOK 
notifies the user if a Transport Interface routine is interrupted by an unexpected 
asynchronous transport event on the given transport endpoint. As such, TLOOK 
does not report an error with a Transport Interface routine, but the normal pro­
cessing of that routine will not be done because of the pending event. The 
events defined by the Transport Interface are listed here: 

T....:.LISTEN A request for a connection, called a connect indication, 
has arrived at the transport endpoint. 

T CONNECT 

T DATA 

T EXDATA 

T DISCONNECT 

T ORDREL 

2-26 

The confirmation of a previously sent connect request, 
called a connect confirmation, has arrived at the tran­
sport endpoint. The confirmation is generated when a 
server accepts a connect request. 

User data has arrived at the transport endpoint. 

Expedited user data has arrived at the transport end­
point. Expedited data will be discussed later in this sec­
tion. 

A notification that the connection was aborted or that 
the server rejected a connect request, called a disconnect 
indication, has arrived at the transport: endpoint. 

A request for the orderly release of a connection, called 
an orderly release indication, has arrived at the tran­
sport endpoint. 

The notification of an error in a previously sent 
datagram, called a unitdata error indication, has arrived 
at the transport endpoint (see the section "Introduction 
to Connectionless-Mode Service"). 

Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

It is possible in some states to receive one of several asynchronous events, as 
described in the state tables of the section "State Transitions." The t look (3N) 
routine enables a user to determine what event has occurred if a TLOOK error is 
returned. The user can then process that event accordingly. In the example, if a 
connect request is rejected, the event passed to the client will be a disconnect 
indication. The client will exit if its request is rejected. 

The Server 
Returning to the example, when the client calls t _connect, a connect indica­
tion will be generated on the server's listening transport endpoint. The steps 
required by the server to process the event are discussed below. For each client, 
the server accepts the connect request and spawns a server process to manage 
the connection. 

The server will loop forever, processing each connect indication. First, the 
server calls t listen to retrieve the next connect indication. When one 
arrives, the server calls accept _call to accept the connect request. 
accept_call accepts the connection on an alternate transport endpoint (as dis­
cussed below) and returns the value of that endpoint. conn_fd is a global vari­
able that identifies the transport endpoint where the connection is established. 
Because the connection is accepted on an alternate endpoint, the server may 
continue listening for connect indications on the endpoint that was bound for 
listening. If the call is accepted without error, run_server will spawn a pro­
cess to manage the connection. 

Transport Interface Programming 2-27 



Introduction to Connection-Mode Service 

The server allocates a t_call structure to be used by t_listen. The third 
argument to t_alloc, T_ALL, specifies that all necessary buffers should be 
allocated for retrieving the caller's address, options, and user data. As men­
tioned earlier, the transport provider in this example does not support the 
transfer of user data during connection establishment, and also does not support 
any protocol options. Therefore, t_alloc will not allocate buffers for the user 
data and options. It must, however, allocate a buffer large enough to store the 
address of the caller. t alloc determines the buffer size from the addr 
characteristic returned by t _open. The maxlen field of each netbuf structure 
will be set to the size of the newly allocated buffer by t_alloc (maxlen is 0 
for the user data and options buffers). 

Using the t_call structure, the server calls t_listen to retrieve the next con­
nect indication. If one is currently available, it is returned to the server immedi­
ately. Otherwise, t_listen will block until a connect indication arrives. r, Th~ Transport Int.~ace supports an :'"Ynch,!,nous m~. ror these !outines, 
=:NMI=: which prevents a process from blocking. ThiS feature IS discussed In the :::r::rrr sedion "Advanced Topics." 

When a connect indication arrives, the server calls accept_call to accept the 
client's request, as follows: 

2-28 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

accept _call takes two arguments . 

• listen_fd identifies the transport endpoint where the connect indication 
arrived 

• call is a pointer to a t _call structure that contains all information 
associated with the connect indication. 

Transport Interface Programming 2-29 



Introduction to Connection-Mode Service 

The server first establishes another transport endpoint by opening the clone dev­
ice node of the transport provider and binding an address. As with the client, a 
NULL value is passed to t _bind to specify that the user does not care what 
address is bound by the provider. The newly established transport endpoint, 
resfd, is used to accept the client's connect request. 

The first two arguments of t_accept specify the listening transport endpoint 
and the endpoint where the connection will be accepted, respectively. A con­
nection may be accepted on the listening endpoint, but this prevents other 
clients from accessing the server for the duration of the connection. 

The third argument of t_accept points to the t_call structure associated 
with the connect indication. This structure should contain the address of the 
calling user and the sequence number returned by t_listen. The value of 
sequence is significant if the server manages multiple outstanding connect 
indications. The "Advanced Topics" section presents an example of this situa­
tion. Also, the t _call structure should identify protocol options the user 
would like to specify, and user data that may be passed to the client. Because 
the transport provider in this example does not support protocol options or the 
transfer of user data during connection establishment, the t _call structure 
returned by t_Iisten may be passed without change to t_accept. 

For simplicity in the example, the server will exit if either the t _open or 
t_hind call fails. exit (2) will close the transport endpoint associated with 
listen_fd, causing the transport provider to pass a disconnect indication to 
the client that requested the connection. This disconnect indication notifies the 
client that the connection was not established; t _connect will fail, setting 
t errno to TLOOK. 

t_accept may fail if an asynchronous event has occurred on the listening tran­
sport endpoint before the connection is accepted, and t _ errno will be set to 
TLOOK. The state transition table in the "State Transitions" section shows that 
the only event that may occur in this state with only one outstanding connect 
indication is a disconnect indication. This event may occur if the client decides 
to undo the connect request it had previously sent. If a disconnect indication 
arrives, the server must retrieve the disconnect indication using t _ rcvdi s . 
This routine takes a pointer to a t_discon structure as an argument, which is 
used to retrieve information associated with a disconnect indication. In this 
example, however, the server does not care to retrieve this information, so it 
sets the argument to NULL. After receiving the disconnect indication, 

2·30 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

accept_call closes the responding transport endpoint and returns DISCON­
NECT, which informs the server that the connection was disconnected by the 
client. The server then listens for further connect indications. 

Figure 2-5 illustrates how the server establishes connections. 

Figure 2-5: Listening and Responding Transport Endpoints 

client 

responding~ __ ~ 
- ~ endpoint 

server 

listening 
... EE---- endpoint 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ........ Transport Interface 

transport 
~---t--- connection 

transport provider 

The transport connection is established on the newly created responding end­
point, and the listening endpoint is freed to retrieve further connect indications. 

Data Transfer 

Once the connection has been established, both the client and server may begin 
transferring data over the connection using t _ snd and t _ rcv. The Transport 
Interface does not differentiate the client from the server from this point on. 
Either user may send and receive data, or release the connection. The Transport 
Interface guarantees reliable, sequenced delivery of data over an existing con­
nection. 

Transport Interface Programming 2-31 



Introduction to Connection-Mode Service 

Two classes of data may be transferred over a transport connection: 

• normal data 

• expedited data 

Expedited data is typically associated with urgent information. The exact 
semantics of expedited data are subject to the interpretations of the transport 
provider. Furthermore, not all transport protocols support the notion of an 
expedited data class (see t_open(3N». 

All transport protocols support the transfer of data in byte stream mode, where 
''byte stream" implies no concept of message boundaries on data that are 
transferred over a connection. However, some transport protocols support the 
preservation of message boundaries over a transport connection. This service is 
supported by the Transport Interface, but protocol-independent software must 
not rely on its existence. 

The message interface for data transfer is supported by a special flag of t _ snd 
and t_rev called T_MORE. The messages, called Transport Service Data Units 
(TSDU), may be transferred between two transport users as distinct units. The 
maximum size of a TSDU is a characteristic of the underlying transport protocol. 
This information is available to the user from t open and t getinfo. 
Because the maximum TSDU size can be large <possibly unlir~ited), the Tran­
sport Interface allows a user to transmit a message in multiple units. 

To send a message in multiple units over a transport connection, the user must 
set the T_MORE flag on every t_snd call except the last. This flag specifies that 
the user will send more data associated with the message in a subsequent call to 
t _ snd. The last message unit should be transmitted with T _MORE turned off to 
specify that this is the end of the TSDU. 

Similarly, a TSDU may be passed in multiple units to the receiving user. Again, 
if t _rev returns with the T _MORE flag set, the user should continue calling 
t _rev to retrieve the remainder of the message. Th~ last unit in the message 
will be identified by a call to t _rev that does not set T _MORE. 

2-32 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

T Tho T MORE flag implios nothing about how tho data may be packaged 
i .•. I below the Transport Interface or how the data m~y be delive~ed to the 

< remote user. Each transport protocol, and each Implementation of that 
protocol, may package and deliver the data differently. 

For example, if a user sends a complete message in a single call to 
t snd, there is no guarantee that the transport provider will deliver the 
data in a single unit to the remote transport user. Similarly, a TSDU 
transmitted in two message units may be delivered in a single unit to the 
remote transport user. The message boundaries may only be preserved 
by noting the value of the T MORE flag on t snd and t rev. This will 
guarantee that the receiving-user will see a message wiiii the same con­
tents and message boundaries as was sent by the remote user. 

The Client 

Continuing with the client/server example, the server will transfer a log file to 
the client over the transport connection. The client receives this data and writes 
it to its standard output file. A byte stream interface is used by the client and 
server, where message boundaries (that is, the T _MORE flag) are ignored. The 
client receives data using the following instructions: 

The client continuously calls t _rev to process incoming data. If no data is 
currently available, t _rev blocks until data arrives. t _rev retrieves the avail­
able data up to 1024 bytes, which is the size of the client's input buffer, and 
returns the number of bytes received. The client then writes this data to stan­
dard output and continues. The data transfer phase will complete when t _rev 
fails. t _rev will fail if an orderly release or disconnect indication arrives, as 
discussed later in this section. If the fwrite(3S) call fails for any reason, the 
client will exit, closing the transport endpoint. If the transport endpoint is 
closed (either by exit or t_elose) during the data transfer phase, the connec­
tion will be aborted and the remote user will receive a disconnect indication. 

Transport Interface Programming 2-33 



Introduction to Connection-Mode Service 

The Server 
Looking now at the other side of the connection, the server manages its data 
transfer by spawning a child process to send the data to the client. The parent 
process then loops back to listen for further connect indications. run server 
is called by the server to spawn this child process as follows: 

2-34 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

After the fork, the parent process returns to the main processing loop and 
listens for further connect indications. Meanwhile, the child process will 
manage the newly established transport connection. If the fork call fails, exit 
closes the transport endpoint associated with listen_fd, sending a disconnect 
indication to the client, and the client's t_connect call will fail. 

The server process reads 1024 bytes of the log file at a time and sends that data 
to the client using t_snd. buf points to the start of the data buffer, and 
nbytes specifies the number of bytes to be transmitted. The fourth argument 
can contain one of the two optional flags below: 

• T_EXPEDITED specifies that the data is expedited 

• T _MORE defines message boundaries when transmitting messages over a 
connection. 

Neither flag is set by the server in this example. 

Transport Interface Programming 2-35 



Introduction to Connection-Mode Service 

If the user floods the transport provider with data, the provider may exert back 
pressure to provide flow control. In such cases, t _ snd will block until the flow 
control is relieved, and will then resume its operation. t _ snd will not complete 
until nbyte bytes have been passed to the transport provider. 

The t_snd routine does not look for a disconnect indication (showing that the 
connection was broken) before passing data to the provider. Also, because the 
data traffic flows in one direction, the user will never look for incoming events. 
If the connection is aborted, the user should be notified since data may be lost. 
The user can invoke t _look, which checks for incoming events before each 
t _ snd call. A more efficient solution is presented in the example. The 
STREAMS I_SETSIG ioctl enables a user to request a signal when a given 
event occurs (see streamio(5) and signal(2». S_INPUT causes a signal to be 
sent to the user if any input arrives on the Stream referenced by eonn_fd. If a 
disconnect indication arrives, the signal catching routine (eonnrelease) prints 
an error message and then exits. 

If the data traffic flowed in both directions in this example, the user would not 
have to monitor the connection for disconnects. If the client alternated t snd 
and t _rev calls, it could rely on t _rev to recognize an incoming disconnect 
indication. 

Connection Release 

At any point during data transfer, either user may release the transport connec­
tion and end the conversation. As mentioned earlier, two forms of connection 
release are supported by the Transport Interface: 

• Abortive release breaks a connection immediately and may result in the 
loss of any data that has not yet reached the destination user. 

2-36 

Either user may call t_snddis to generate an abortive release. Also, the 
transport provider may abort a connection if a problem occurs below the 
Transport Interface. t_snddis enables a user to send data to the remote 
user when aborting a connection. Although the abortive release is sup­
ported by all transport providers, the ability to send data when aborting a 
connection is not. 

When the remote user is notified of the aborted connection, t revdis 
must be called to retrieve the disconnect indication. This call returns a 
reason code that identifies why the connection was aborted, and returns 

Programmer's Guide: Networking Interfaces 



Introduction to Connectlon·Mode Service 

any user data that may have accompanied the disconnect indication (if the 
abortive release was initiated by the remote user). This reason code is 
specific to the underlying transport protocol, and should not be inter· 
preted by protocol.independent software. 

• Orderly release gracefully terminates a connection and guarantees that no 
data will be lost. 

All transport providers must support the abortive release procedure, but orderly 
release is an optional facility that is not supported by all transport protocols. 

The Server 
The client-server example in this section assumes that the transport provider 
supports the orderly release of a connection. When all the data has been 
transferred by the server, the connection may be released as follows: 

The orderly release procedure consists of two steps by each user. The first user 
to complete data transfer may initiate a release using t_sndrel, as illustrated 
in the example. This routine informs the client that no more data will be sent 
by the server. When the client receives this indication, it may continue sending 
data back to the server if desired. When all data have been transferred, how­
ever, the client must also call t_sndrel to indicate that it is ready to release 
the connection. The connection is released only after both users have requested 
an orderly release and received the corresponding indication from the other 
user. 

In this example, data is transferred in one direction from the server to the client, 
so the server does not expect to receive data from the client after it has initiated 
the release procedure. Thus, the server simply calls pause(2) after initiating the 
release. Eventually, the remote user responds with its orderly release request, 
which generates a signal that will be caught by connrelease. Remember that 
the server earlier issued an I_SETSIG ioctl call to generate a signal on any 

Transport Interface Programming 2·37 



Introduction to Connection-Mode Service 

incoming event. Since the only possible Transport Interface events that can 
occur in this situation are a disconnect indication or orderly release indication, 
connrelease terminates normally when the orderly release indication arrives. 
The exit call in connrelease will close the transport endpoint, freeing the 
bound address for another user. If a user process wants to close a transport 
endpoint without exiting, it may call t_close. 

The Client 

The client's view of connection release is similar to that of the server. As men­
tioned earlier, the client continues to process incoming data until t _ rcv fails. If 
the server releases the connection (using either t_snddis or t_sndrel), 
t_rcv will fail and set t_errno to TLOOK. The client then processes the con­
nection release as follows: 

When an event occurs on the client's transport endpoint, the client checks 
whether the expected orderly release indication has arrived. If so, it proceeds 
with the release procedures by calling t_rcvrel to process the indication and 
t _ sndrel to inform the server that it is also ready to release the connection. 
At this point the client exits, closing its transport endpoint. 

Because not all transport providers support the orderly release facility just 
described, users may have to use the abortive release facility provided by 
t_snddis and t_rcvdis. However, steps must be taken by each user to 
prevent data loss. For example, a special byte pattern may be inserted in the 

2-38 Programmer's Guide: Networking Interfaces 



Introduction to Connection-Mode Service 

data stream to indicate the end of a conversation. There are many possible rou­
tines for preventing data loss. Each application and high level protocol must 
choose an appropriate routine given the target protocol environment and 
requirements. 

Transp()rt Interface Programming 2-39 



Introduction to Connectionless-Mode Service 

This section describes the connectionless-mode service of the Transport Inter­
face. Connectionless-mode service is appropriate for short-term 
request/response interactions, such as transaction processing applications. Data 
are transferred in self-contained units with no logical relationship required 
among multiple units. 

The connectionless-mode services will be described using a transaction server as 
an example. This server waits for incoming transaction queries, and processes 
and responds to each query. 

Local Management 

Just as with connection-mode service, the transport users must do appropriate 
local management steps before transferring data. A user must choose the 
appropriate connectionless service provider using t _open and establish its 
identity using t _bind. 

t _ optrngmt may be used to negotiate protocol options associated with the 
transfer of each data unit. As with the connection-mode service, each transport 
provider specifies the options, if any, that it supports. Option negotiation is 
therefore a protocol-specific activity. 

In the example, the definitions and local management calls needed by the tran­
saction server are as follows: 

2-40 Programmer's Guide: Networking Interfaces 



Introduction to Connectlonless-Mode Service 

Transport Interface Programming 2-41 



Introduction to Connectlonless-Mode Service 

The local management steps should look familiar by now. The server estab­
lishes a transport endpoint with the desired transport provider using t_open. 
Each provider has an associated service type, so the user may choose a particu­
lar service by opening the appropriate transport provider file. This 
connectionless-mode server ignores the characteristics of the provider retQ.med 
by t _open in the same way as the users in the connection-mode example, by 
setting the third argument to NULL. For simplicity, the transaction server 
assumes the transport provider has the following characteristics: 

• The transport address is an integer value that uniquely identifies each 
user. 

• The transport provider supports the T_CLTS service type (connectionless 
transport service, or datagram). 

• The transport provider does not support any protocol-specific options. 

The connectionless server also binds a transport address to the endpoint so that 
potential clients may identify and access the server. A t _bind structure is allo­
cated using t _ alloe and the buf and len fields of the address are set accord­
ingly. 

One important difference between the connection-mode server and this 
connectionless-mode server is that the qlen field of the t _bind structure has 
no meaning for connectionless-mode service, since all users are capable of 
receiving datagrams once they have bound an address. The Transport Interface 
defines an inherent client-server relationship between two users while establish­
ing a transport connection in the connection-mode service. However, no such 
relationship exists in the connectionless-mode service. It is the context of this 
example, not the Transport Interface, that defines one user as a server and 
another as a client. 

Because the address of the server is known by all potential clients, the server 
checks the bound address returned by t _bind to ensure it is correct. 

2-42 Programmer's Guide: Networking Interfaces 



Introduction to Connection less-Mode Service 

Data Transfer 

Once a user has bound an address to the transport endpoint, datagrams may be 
sent or received over that endpoint. Each outgoing message is accompanied by 
the address of the destination user. In addition, the Transport Interface enables 
a user to specify protocol options that should be associated with the transfer of 
the data unit (for example, transit delay). As discussed earlier, each transport 
provider defines the set of options, if any, that may accompany a datagram. 
When the datagram is passed to the destination user, the associated protocol 
options may be returned as well. 

The following sequence of calls illustrates the data transfer phase of the 
connectionless-mode server: 

Transport Interface Programming 2-43 



Introduction to Connectlonless-Mode Service 

The server must first allocate a t_unitdata structure for storing datagrams, 
which has the following format: 

addr holds the source address of incoming datagrams and the destination 
address of outgoing datagrams, opt identifies any protocol options associated 
with the transfer of the datagram, and udata holds the data itself. The addr I 
opt, and udata fields must all be allocated with buffers large enough to hold 
any possible incoming values. As described in the previous section, the T _ALL 
argument to t_alloc will ensure this and will set the maxlen field of each 
netbuf structure accordingly. Because the provider does not support protocol 
options in this example, no options buffer will be allocated, and maxlen will be 

2-44 Programmer's Guide: Networking Interfaces 



Introduction to Connectionless·Mode Service 

set to zero in the netbuf structure for options. The server also allocates a 
t _ uderr structure for processing any datagram errors, as discussed later in this 
section. 

The transaction server loops forever, receiving queries, processing the queries, 
and responding to the clients. It first calls t _ rcvudata to receive the next 
query. t_rcvudata will retrieve the next available incoming datagram. If 
none is currently available, t_rcvudata will block, waiting for a datagram to 
arrive. The second argument of t_rcvudata identifies the t_unitdata struc­
ture in which the datagram should be stored. 

The third argument, flags, must point to an integer variable and may be set to 
T_MORE on return from t_rcvudata to specify that the user's udata buffer 
was not large enough to store the full datagram. In this case, subsequent calls 
to t_rcvudata will retrieve the remainder of the datagram. Because t_alloc 
allocates a udata buffer large enough to store the maximum datagram size, the 
transaction server does not have to check the value of flags. 

If a datagram is received successfully, the transaction server calls the query 
routine to process the request. This routine will store the response in the struc­
ture pointed to by ud, and will set ud->udata .len to specify the number of 
bytes in the response. The source address returned by t _ rcvudata in 
ud->addr will be used as the destination address by t_sndudata. 

When the response is ready, t_sndudata is called to return the response to the 
client. The Transport Interface prevents a user from flooding the transport pro­
vider with datagrams using the same flow control mechanism described for the 
connection-mode service. In such cases, t_sndudata will block until the flow 
control is relieved, and will then resume its operation. 

Datagram Errors 

If the transport provider cannot process a datagram that was passed to it by 
t sndudata, it will return a unit data error event, T UDERR, to the user. This 
e;ent includes the destination address and options asSOciated with the 
datagram, plus a protocol-specific error value that describes what may be wrong 
with the datagram. The reason a datagram could not be processed is 
protocol-specific. One reason may be that the transport provider could not 
interpret the destination address or options. Each transport protocol is expected 
to specify all reasons why it is unable to process a datagram. 

Transport Interface Programming 2·45 



Introduction to Connectlonless-Mode Service 

The transaction server will be notified of this error event when it attempts to 
receive another datagram. In this case, t_rcvudata will fail, setting t_errno 
to TLOOK. If TLOOK is set, the only possible event is T_UDERR, so the server 
calls t_rcvuderr to retrieve the event. The second argument to t_rcvuderr 
is the t_uderr structure that was allocated earlier. This structure is filled in by 
t_rcvuderr and has the following format: 

where addr and opt identify the destination address and protocol options as 
specified in the bad datagram, and error is a protocol-specific error code that 
specifies why the provider could not process the datagram. The transaction 
server prints the error code and then continues by entering the processing loop 
again. 

2-46 Programmer's Guide: Networking Interfaces 



A ReadlWrite Interface 

A user may wish to establish a transport connection and then exec(2) an exist­
ing user program such as cat(l) to process the data as it arrives over the con­
nection. However, existing programs use read(2) and write(2) for their 
input! output needs. The Transport Interface does not directly support a 
read/write interface to a transport prOvider, but one is available with UNIX Sys­
tem v. This interface enables a user to issue read and write calls over a tran­
sport connection that is in the data transfer phase. This section describes the 
read/write interface to the connection-mode service of the Transport Interface. 
This interface is not available with the connectionless-mode service. 

The read/write interface is presented using the client example of the '1ntroduc­
tion to Connection-Mode Service" section with some minor modifications. The 
clients are identical until the data transfer phase is reached. At that point, this 
client will use the read/write interface and cat (1) to process incoming data. 
cat can be run without change over the transport connection. Only the differ­
ences between this client and that of the example in the '1ntroduction to 
Connection-Mode Service" section are shown below. 

The client invokes the read/write interface by pushing the tirdw;d7) module 
onto the Stream associated with the transport endpoint where the connection 
was established (see I PUSH in streamio(5». This module converts the Tran­
sport Interface above the transport provider into a pure read/write interface. 

Transport Interface Programming 2-47 



A Read/Write Interface 

With the module in place, the client calls close(2) and dup(2) to establish the 
transport endpoint as its standard input file, and uses /usr/bin/cat to pro­
cess the input. Because the transport endpoint identifier is a file descriptor, the 
facility for duping the endpoint is available to users. 

Because the Transport Interface uses STREAMS, the facilities of this character 
input/ output mechanism can be used to provide enhanced user services. By 
pushing the tirdwr module above the transport provider, the user's interface is 
effectively changed. The semantics of read and write must be followed, and 
message boundaries will not be preserved. T The tirdvr module may on~ be pushed onto a Stream when the tran­
··>H .•..•. </ sport endpoin. t is in the data transfer phase. Onc~ t.he module is pushed, 

? the user may not call any Transport Interface routines. If a Transport 
Interface routine is invoked, tirdwr will generate a fatal protocol error, 
EPROTO, on that Stream, rendering it unusable. Furthermore, if the user 
pops the tirdwr module off the Stream (see I pop in streamio(5)), 
the transport connection will be aborted. -

The exact semantics of write, read, and close using tirdwr are described 
below. To summarize, tirdwr enables a user to send and receive data over a 
transport connection using read and write. This module will translate all 
Transport Interface indications into the appropriate actions. The connection can 
be released with the close system call. 

write 

The user may transmit data over the transport connection using write. The 
tirdwr module will pass data through to the transport provider. However, if 
a user attempts to send a zero-length data packet, which the STREAMS mechan­
ism allows, tirdwr will discard the message. If the transport connection is 
aborted (for example, because the remote user aborts the connection using 
t_snddis), a STREAMS hangup condition will be generated on that Stream, and 
further write calls will fail and set errno to ENXIO. The user can still retrieve 
any available data after a hangup. 

2-48 Programmer's Guide: Networking Interfaces 



A Read/Wrlte Interface 

read 

read may be used to retrieve data that has arrived over the transport connec­
tion. The tirdwr module will pass data through to the user from the transport 
provider. However, any other event or indication passed to the user from the 
provider will be processed by tirdwr as follows: 

• read cannot process expedited data because it cannot distinguish 
expedited data from normal data for the user. If an expedited data indi­
cation is received, tirdwr will generate a fatal protocol error, EPROTO, 
on that Stream. This error causes further system calls to fail. You should 
therefore not communicate with a process that is sending expedited data. 

• If an abortive disconnect indication is received, tirdwr will discard it 
and generate a STREAMS hangupcondition on that Stream. Subsequent 
read calls will retrieve any remaining data, and then read will return 
zero for all further calls (indicating end-of-file). 

• If an orderly release indication is received, tirdwr will discard the indi­
cation and deliver a zero-length STREAMS message to the user. As 
described in read(2}, this notifies the user of end-of-file by returning O. 

• If any other Transport Interlace indication is received, tirdwr generates a 
fatal protocol error, EPROTO, on that Stream. This causes further system 
calls to fail. If a user pushes tirdwr onto a Stream after the connection 
has been established, no indication will be generated. 

close 

With tirdwr on a Stream, the user can send and receive data over a transport 
connection for the duration of that connection. Either user may terminate the 
connection by dosing the file descriptor associated with the transport endpoint 
or by popping the tirdwr module off the Stream. In either case, tirdwr will 
take the following actions: 

• If an orderly release indication was previously received by tirdwr, an 
orderly release request will be passed to the transport provider to com­
plete the orderly release of the connection. The remote user who initiated 
the orderly release procedure will receive the expected indication when 
data transfer completes. 

Transport Interface Programming 2-49 



A ReadlWrite Interface 

• If a disconnect indication was previously received by tirdwr, no special 
action is taken. 

• If neither an orderly release indication nor disconnect indication previ­
ously received by tirdwr, a disconnect request will be passed to the tran­
sport provider to abort the connection. 

• If an error previously occurred on the Stream and a disconnect indication 
has not been received by tirdwr, a disconnect request will be passed to 
the transport provider. 

A process may not initiate an orderly release after tirdwr is pushed onto a 
Stream, but tirdwr will handle an orderly release properly if it is initiated by 
the user on the other side of a transport connection. If the client in this section 
is communicating with the server program in the ilIntroduction to Connection­
Mode Service" section, that server will terminate the transfer of data with an 
orderly release request. The server then waits for the corresponding indication 
from the client. At that point, the client exits and the transport endpoint is 
closed. As explained in the first list item above, when the file descriptor is 
closed, tirdwr will initiate the orderly release request from the client's side of 
the connection. This will generate the indication that the server is expecting, 
and the connection will be released properly. 

2-50 Programmer's Guide: Networking Interfaces 



Advanced Topics 

This section presents the following important concepts of the Transport Interface 
that have not been covered in the previous section: 

• an optional non-blocking (asynchronous) mode for some library calls 

• an advanced programming example that defines a server supporting mul­
tiple outstanding connect indications and operating in an event driven 
manner 

Asynchronous Execution Mode 

Many Transport Interface library routines may block waiting for an incoming 
event or the relaxation of flow control. However, some time-critical applications 
should not block for any reason. Similarly, an application may wish to do local 
processing while waiting for some asynchronous transport interface event. 

Support for asynchronous processing of Transport Interface events is available 
to applications using a combination of the STREAMS asynchronous features and 
the non-blocking mode of the Transport Interface library routines. Earlier exam­
ples in this guide have illustrated the use of the poll system call and the 
I_SETSIG ioctl command for processing events asynchronously. 

In addition, each Transport Interface routines that may block waiting for some 
event can be run in a special non-blocking mode. For example, t_listen will 
normally block, waiting for a connect indication. However, a server can period­
ically poll a transport endpoint for existing connect indications by calling 
t_listen in the non-blocking (or asynchronous) mode. The asynchronous 
mode is enabled by setting O_NDELAY or O_NONBLOCK on the file descriptor. 
These can be set as a flag on t_open, or by calling fcntl(2) before calling the 
Transport Interface routine. fcntl can be used to enable or disable this mode 
at any time. All programming examples in this chapter use the default synchro­
nous processing mode. 

0_ NDELAY or 0_ NONBLOCK affect each Transport Interface routine differently. 
To determine the exact semantics of O_NDELAY or O_NONBLOCK for a particular 
routine, see the relevant pages in Appendix A of this document. 

Transport Interface Programming 2·51 
\ 



Advanced Topics 

Advanced Programming Example 

The following example demonstrates two important concepts. The first is a 
server's ability to manage multiple outstanding connect indications. The second 
is an illustration of the ability to write event-driven software using the Tran­
sport Interface and the STREAMS system call interface. 

The server example in the '1ntroduction to Connection-Mode Service" section is 
capable of supporting only one outstanding connect indication, but the Tran­
sport Interface supports the ability to manage multiple outstanding connect 
indications. One reason a server might wish to receive several simultaneous 
connect indications is to impose a priority scheme on each client. A server may 
retrieve several connect indications, and then accept them in an order based on 
a priority associated with each client. A second reason for handling several out­
standing connect indications is that the single-threaded scheme has some limita­
tions. Depending on the implementation of the transport provider, it is possible 
that while the server is processing the current connect indication, other clients 
will find it busy. If, however, multiple connect indications can be processed 
simultaneously, the server will be found to be busy only if the maximum 
allowed number of clients attempt to call the server simultaneously. 

The server example is event-driven: the process polls a transport endpoint for 
incoming Transport Interface events, and then takes the appropriate actions for 
the current event. The example demonstrates the ability to poll multiple tran­
sport endpoints for incoming events. 

The definitions and local management functions needed by this example are 
similar to those of the server example in the section "Introduction to 
Connectionless-Mode Service." 

2-52 Programmer's Guide: Networking Interfaces 



Advanced Topics 

Transport Interface Programming 2·53 



Advanced Topics 

The file descriptor returned by t_open is stored in a pollfd structure (see 
poll (2» that polls the transport endpoint for incoming data. Notice that only 
one transport endpoint is established in this example. However, the remainder 
of the example is written to manage multiple transport endpoints. Several end­
points could be supported with minor changes to the above code. 

An important aspect of this server is that it sets qlen to a value greater than 1 
for t _bind. This specifies that the server is willing to handle multiple out­
standing connect indications. Remember that the earlier examples single­
threaded the connect indications and responses. The server would accept the 
current connect indication before retrieving additional connect indications. This 
example, however, can retrieve up to MAX_CONN _ IND connect indications at one 
time before responding to any of them. The transport provider may negotiate 
the value of qlen downward if it cannot support MAX_CONN_IND outstanding 
connect indications. 

Once the server has bound its address and is ready to process incoming connect 
requests, it does the following: 

2-54 Programmer's Guide: Networking Interfaces 



_________________________ Advanced Topics 

The events field of the pollfd structure is set to POLLIN, which will notify 
the server of any incoming Transport Interface events. The server then enters 
an infinite loop, in which it polls the transport endpoint(s) for events, and then 
processes those events as they occur. 

The poll call will block indefinitely, waiting for an incoming event. On return, 
each entry (corresponding to each transport endpoint) is checked for an existing 
event. If revents is set to 0, no event has occurred on that endpoint. In this 
case, the server continues to the next transport endpoint. If revent s is set to 
POLLIN, an event does exist on the endpoint. In this case, do_event is called 
to process the event. If revents contains any other value, an error must have 
occurred on the transport endpoint, and the server will exit. 

For each iteration of the loop, if any event is found on the transport endpoint, 
service_conn_ind is called to process any outstanding connect indications. 
However, if another connect indication is pending, service_conn_ind will 
save the current connect indication and respond to it later. This routine will be 
explained shortly. 

Transport Interface Programming 2·55 



Advanced Topics 

If an incoming event is discovered, the following routine is called to process it: 

2-56 Programmer's Guide: Networking Interfaces 



Advanced Topics 

This routine takes a number, slot, and a file descriptor, fd, as arguments. 
slot is used as an index into the global array calls. This array contains an 
entry for each polled transport endpoint, where each entry consists of an array 
of t _call structures that hold incoming connect indications for that transport 
endpoint. The value of slot is used to identify the transport endpoint. 

do_event calls t_Iook to determine the Transport Interface event that has 
occurred on the transport endpoint specified by fd. If a connect indication 
(T_LISTEN event) or disconnect indication (T_DISCONNECT event) has arrived, 
the event is processed. Otherwise, the server prints an appropriate error mes­
sage and exits. 

For connect indications, do_event scans the array of outstanding connect indi­
cations looking for the first free entry. A t _call structure is then allocated for 
that entry, and the connect indication is retrieved using t_Iisten. There must 
always be at least one free entry in the connect indication array, because the 
array is large enough to hold the maximum number of outstanding connect 
indications as negotiated by t_bind. The processing of the connect indication 
is deferred until later. 

Transport Interface Programming 2-57 



Advanced Topics 

If a disconnect indication arrives, it must correspond to a previously received 
connect indication. This occurs if a client attempts to undo a previous connect 
request. In this case, do_event allocates a t_discon structure to retrieve the 
relevant disconnect information. This structure has the following members: 

where udata identifies any user data that might have been sent with the 
disconnect indication, reason contains a protocol-specific disconnect reason 
code, and sequence identifies the outstanding connect indication that matches 
this disconnect indication. 

Next, t_rcvdis is called to retrieve the disconnect indication. The array of 
connect indications for slot is then scanned for one that contains a sequence 
number that matches the sequence number in the disconnect indication. 
When the connect indication is found, it is freed and the corresponding entry is 
set to NULL. 

As mentioned earlier, if any event is found on a transport endpoint, 
service_conn_ind is called to process all currently outstanding connect indi­
cations associated with that endpoint as follows: 

2-58 Programmer's Guide: Networking Interfaces 



Advanced Topics 

For the given slot (the transport endpoint), the array of outstanding connect 
indications is scanned. For each indication, the server will open a responding 
transport endpoint, bind an address to the endpoint, and then accept the con­
nection on that endpoint. If another event (connect indication or disconnect 
indication) arrives before the current indication is accepted, t _accept will fail 
and set t errno to TLOOK. 

Transport Interface Programming 2-59 



Advanced Topics 

•••••.•.. N .••••• Q. t .••.•. E............. connect indi?ation events or disconnect indication events exist on that tran­
}:;.... sport endpoInt. 

tuw;""'1 The u.er cannot accept an outstanding connect indication ~ any pending 

If this error occurs, the responding transport endpoint is closed and 
service_conn_ind will return immediately (saving the current connect indi­
cation for later processing). This causes the server's main processing loop to be 
entered, and the new event will be discovered by the next call to poll. In this 
way, multiple connect indications may be queued by the user. 

Eventually, all events will be processed, and service_conn_ind will be able 
to accept each connect indication in turn. Once the connection has been esta­
blished, the run_server routine used by the server in the ''Introduction to 
Connection-Mode Service" section is called to manage the data transfer. 

2-60 Programmer's Guide: Networking Interfaces 



State Transitions 

These tables describe all state transitions associated with the Transport Interface. 
First, however, the states and events will be described. 

Transport Interface States 

Table 2-6 defines the states used to describe the Transport Interface state transi­
tions. 

Table 2·6: States Describing Transport Interface State Transitions 

State Description Service Type 
T UNINIT uninitialized - initial and T _COTS, 

final state of interface T_COTS_ORO, T CLTS -
T UNBND initialized but not bound T_COTS, -

T_COTS_ORO, T CLTS -
T IDLE no connection established T_COTS, 

T_COTS_ORO, T CLTS 

T OUTCON outgoing connection T_COTS, T COTS ORO - - -pending for client 

T INCON incoming connection T_COTS, T COTS ORO - -
pending for server 

T DATAXFER data transfer T COTS, T COTS ORO 
T OUTREL outgoing orderly release T COTS ORO - -(waiting for orderly 

release indication) 

T INREL incoming orderly release T COTS ORO - -(waiting to send orderly 
release request) 

Transport Interface Programming 2-61 



State Transitions 

Outgoing Events 

The outgoing events described in Table 2-7 correspond to the return of the 
specified transport routines, where these routines send a request or response to 
the transport provider. 

In the table, some events (such as acceptN) are distinguished by the context in 
which they occur. The context is based on the values of the following variables: 

ocnt 

fd 

resfd 

count of outstanding connect indications 

file descriptor of the current transport endpoint 

file descriptor of the transport endpoint where a connection will 
be accepted 

Table 2-7: Outgoing Events 

Event Description Service Type 
opened successful return of t_open T _COTS, 

T_COTS_ORD, T CLTS -

bind successful return of t bind T_COTS, -
T_COTS_ORD, T CLTS -

optmgmt successful return of t _ optmgmt T_COTS, 
T_COTS_ORD, T CLTS -

unbind successful return of t unbind T_COTS, 
T_COTS_ORD, T CLTS -

closed successful return of t close T_COTS, -
T_COTS_ORD, T CLTS -

connect! successful return of t connect in T_COTS, T COTS ORD - - -
synchronous mode 

2-62 Programmer's Guide: Networking Interfaces 



State Transitions 

Table 2-7: Outgoing Events (continued) 

Event Description Service Type 
connect2 TNODATA error on t connect in T _COTS, T COTS ORO - -

asynchronous mode, or TLOOK error 
due to a disconnect indication arriv-
ing on the transport endpoint 

accept 1 successful return of t_accept with T_COTS, T COTS ORO - -
ocnt == 1, fd == resfd 

accept2 successful return of t _accept with T_COTS, T COTS ORO - -
ocnt = 1, fd != resfd 

accept3 successful return of T_COTS, T COTS ORO - -
t_accept with ocnt > 1 

snd successful return of t snd T_COTS, T COTS ORO - - -

snddisl successful return of T_COTS, T COTS ORO - -
t snddis with ocnt <= 1 -

snddis2 successful return of T_COTS, T COTS ORO - -
t snddis with ocnt > 1 -

sndrel successful return of t sndrel T COTS ORO - - -

sndudata successful return of t sndudata T CLTS -

Transport Interface Programming 2-63 



State Transitions 

Incoming Events 

The incoming events correspond to the successful return of the specified rou­
tines, where these routines retrieve data or event information from the transport 
provider. The only incoming event not associated directly with the return of a 
routine is pass conn, which occurs when a user transfers a connection to 
another transport endpoint. This event occurs on the endpoint that is being 
passed the connection, despite the fact that no Transport Interface routine is 
issued on that endpoint. pass_conn is included in the state tables to describe 
the behavior when a user accepts a connection on another transport endpoint. 

In Table 2-8, the rcvdis events are distinguished by the context in which they 
occur. The context is based on the value of ocnt, which is the count of out­
standing connect indications on the transport endpoint. 

Table 2-8: Incoming Events 

Incoming 
Event Description Service Type 

listen successful return of t listen T _COTS, T COTS ORD - - -

rcvconnect successful return of t rcvconnect T_COTS, T COTS ORD - - -
rcv successful return of t rcv T_COTS, T COTS ORD - - -

rcvdisl successful return of t rcvdis T_COTS, T COTS ORD - -
with ocnt <= 0 

rcvdis2 successful return of t rcvdis T_COTS, T COTS ORD - - -
with ocnt == 1 

rcvdis3 successful return of t rcvdis T_COTS, T COTS ORD - - -
with ocnt > 1 

rcvrel successful return of t rcvrel T COTS ORD - - -

2-64 Programmer's Guide: Networking Interfaces 



State Transitions 

Table 2-8: Incoming Events (continued) 

Incoming 
Event 

rcvudata 

rcvuderr 

Description 
successful return of t rcvudata 

successful return of t rcvuderr 

receive a passed connection 

Transport User Actions 

Service Type 
T CLTS 

T CLTS 

In the state tables that follow, some state transitions are accompanied by a list of 
actions the transport user must take. These actions are represented by the nota­
tion [n], where n is the number of the specific action as described below. 

Set the count of outstanding connect indications to zero. 

Increment the count of outstanding connect indications. 

Decrement the count of outstanding connect indications. 

[1] 

[2] 

[3] 

[4] Pass a connection to another transport endpoint as indicated in 
t_accept. 

State Tables 

The following tables describe the Transport Interface state transitions. Given a 
current state and an event, the transition to the next state is shown, as well as 
any actions that must be taken by the transport user (indicated by [n]). The 
state is that of the transport provider as seen by the transport user. 

The contents of each box represent the next state, given the current state 
(column) and the current incoming or outgoing event (row). An empty box 
represents a state/event combination that is invalid. Along with the next state, 
each box may include an action list (as specified in the previous section). The 

Transport Interface Programming 2-65 



Statit Transitions 

transport user must take the specific actions in the order specified in the state 
table. 

The following should be understood when studying the state tables: 

• The t_close routine is referenced in the state tables (see closed event 
in Table 2-9), but may be called from any state to close a transport end­
point. If t _close is called when a transport address is bound to an end­
point, the address will be unbound. Also, if t _close is called when the 
transport connection is still active, the connection will be aborted. 

• If a transport user issues a routine out of sequence, the transport provider 
will recognize this and the routine will fail, setting t_errno to TOUT­
STATE. The state will not change. 

• If any other transport error occurs, the state will not change unless expli­
citly stated on the manual page for that routine. The exception to this is a 
TLOOK or TNODATA error on t connect, as described in Table 2-1. The 
state tables assume correct use of the Transport Interface. 

• The support routines t_getinfo, t_getstate, t_alloc, t_free, 
t_sync, t_look, and t_error are excluded from the state tables 
because they do not affect the state. 

A separate table is shown for common local management steps, data transfer in 
connectionless-mode, and connection-establishment/ connection-release/ data­
transfer in connection-mode. 

2-66 Programmer's Guide: Networking Interfaces 



State Transitions 

Table 2-9: Common Local Management State Table 

~ event 
T_UNINIT T_UNBND T_IDLE 

opened T_UNBND 

bind T_IDLE 11] 

optrngmt T IDLE 

unbind T UNBND 

closed T_UNINIT 

Table 2-10: Connectlonless-Mode State Table 

~ event 
T IDLE 

sndudata T_IDLE 

rcvudata T_IDLE 

rcvuderr T IDLE 

Transport Interface Programming 2-67 



State Transitions 

Table 2-11: Connection-Mode State Table 

I~ event T_IDLil T_OUTCON T_INCON T _ DATAXFER T_OOTRJ:L T_INREL 

connectl T JlATAXFER 

connect2 T_OUTCON 

rcvconnect T_DATAXFER 

liaten T_INCON [2J T_INCON [2J 

aeeeptl T_DATAXFER[3J 

aeeept2 T_IDLil [3J [4J 

aeeept3 T_INCON [3J [4J 

and T_DATAXFER T_INRJ:L 

rev T_DATAXFER T_OUTRJ:L 

anddisl T_IDLil T_IDLE [3J T_IDLE T_IDLE T_IDLE 

anddis2 T_INCON [3J 

revdisl T_IDLE T_IDLE T_IDLE T_IDLE 

rcvdis2 T_IDLE [3J 

revdia3 T_INCON [3J 

andrel T_OUTRJ:L T_IDLE 

rcvrel T_INRJ:L T_IDLE 

pass conn T_DATAXFER 

2-68 Programmer's Guide: Networking Interfaces 



Guidelines for Protocol Independence 

By defining a set of services common to many transport protocols, the Transport 
Interface offers protocol independence for user software. However, not all tran­
sport protocols support the services supported by the Transport Interface. If 
software must be run in a variety of protocol environments, only the common 
services should be accessed. The following guidelines highlight services that 
may not be common to all transport protocols. 

• In the connection-mode service, the concept of a transport service data 
unit (TSDU) may not be supported by all transport providers. The user 
should make no assumptions about the preservation of logical data boun­
daries across a connection. If messages must be transferred over a con­
nection, a protocol should be implemented above the Transport Interface 
to support message boundaries. 

• Protocol and implementation specific service limits are returned by the 
t open and t get info routines. These limits are useful when allocat­
ing buffers to Store protocol-specific transport addresses and options. It is 
the responsibility of the user to access these limits and then adhere to the 
limits throughout the communication process. 

• User data should not be transmitted with connect requests or disconnect 
requests (see t_connect(3N) and t_snddis(3N». Not all transport pro­
tocols support this capability. 

• The buffers in the t_call structure used for t_listen must be large 
enough to hold any information passed by the client during connection 
establishment. The server should use the T_ALL argument to t_alloc, 
which determines the maximum buffer sizes needed to store the address, 
options, and user data for the current transport provider. 

• The user program should not look at or change options that are associated 
with any Transport Interface routine. These options are specific to the 
underlying transport protocol. The user should not pass options with 
t_connect or t_sndudata. In such cases, the transport provider will 
use default values. Also, a server should use the options returned by 
t_listen when accepting a connection. 

• Protocol-specific addressing issues should be hidden from the user pro­
gram. A client should not specify any protocol address on t_bind, but 
instead should allow the transport provider to assign an appropriate 
address to the transport endpoint. Similarly, a server should retrieve i~ 
address for t _bind in such a way that it does not require knowledge of 

Transport Interface Programming 2-69 



Guidelines for Protocol Independence 

the transport provider's address space. Such addresses should not be 
hard-coded into a program. A name server procedure could be useful in 
this situation, but the details for providing this service are outside the 
scope of the Transport Interface. Detailed information about Network 
Selection and Name-to-Address Mapping can be found in the ''Network 
Selection and Name-to-Address Mapping" chapter. 

• The reason codes associated with t_rcvdis are protocol-dependent. The 
user should not interpret this information if protocol-independence is 
important. 

• The error codes associated with t_rcvuderr are protocol-dependent. 
The user should not interpret this information if protocol-independence is 
a concern. 

• The names of devices should not be hard-coded into programs, because 
the device node identifies a particular transport provider, and is not pro­
tocol independent. 

• The optional orderly release facility of the connection-mode service (pro­
vided by t_sndrel and t_rcvrel) should not be used by programs tar­
geted for multiple protocol environments. This facility is not supported 
by all connection-based transport protocols. In particular, its use will 
prevent programs from successfully communicating with ISO open sys­
tems. 

2-10 Programmer's Guide: Networking Interfaces 



Some Examples 

The examples presented throughout this guide are shown in their entirety in 
this section. 

Connection-Mode Client 

The following code represents the connection-mode client program described in 
the section "Introduction to Connection-Mode Service." This client establishes a 
transport connection with a server, and then receives data from the server and 
writes it to its standard output. The connection is released using the orderly 
release facility of the Transport Interface. This client communicates with each of 
the connection-mode servers presented in the guide. 

Transport Interface Programming 2-71 



Some Examples 

2-72 Programmer's Guide: Networking Interfaces 



Some Examples 

Connection-Mode Server 

The following code represents the connection-mode server program described in 
the "Introduction to Connection-Mode Service" section. This server establishes 
a transport connection with a client, and then transfers a log file to the client on 
the other side of the connection. The connection is released using the orderly 
release facility of the Transport Interface. The connection-mode client presented 
earlier will communicate with this server. 

Transport Interface Programming 2·73 



Some Examples 

2-74 Programmer's Guide: Networking Interfaces 



Some Examples 

Transport Interface Programming 2-75 



Some Examples 

2·76 Programmer's Guide: Networking Interfaces 



Some Examples 

Connectionless-Mode Transaction Server 

The following code represents the connectionless-mode transaction server pro­
gram described in the section "Introduction to Connectionless-Mode Service." 
This server waits for incoming datagram queries, and then processes each query 
and sends a response. 

Transport Interface Programming 2-77 



Some Examples 

2-78 Programmer's Guide: Networking Interfaces 



Some Examples 

Read/Write Client 

The following code represents the connection-mode read/write client program 
described in the section 1/ A Read/Write Interface." This client establishes a tran­
sport connection with a server, and then uses cat (1) to retrieve the data sent by 
the server and write it to its standard output. This client will communicate with 
each of the connection-mode servers presented in the guide. 

Transport Interface Programming 2-79 



Some Examples 

2-80 Programmer's Guide: Networking Interfaces 



Some Examples 

Event-Driven Server 

The following code represents theconneetion-mode server program described in 
the section /I Advanced Topics." This server manages multiple connect indica­
tions in an event-driven manner. Either connection-mode client presented ear­
lier will communicate with this server. 

Transport Interface Programming 2-81 



Some Examples 

2-82 Programmer's Guide: Networking Interfaces 



Some Examples 

Transport Interface Programming 2-83 



Some Examples 

2-84 Programmer's Guide: Networking Interfaces 



Some Examples 

Transport Interface Programming 2-85 



Some Examples 

2-86 Programmer's Guide: Networking Interfaces 



Some Examples 

Transport Interface Programming 2-87 



Glossary 

The following terms apply to the Transport Interface: 

Abortive release 
An abrupt termination of a transport connection, which may 
result in the loss of data. 

Asynchronous execution 

Client 

The mode of execution in which Transport Interface routines 
will never block while waiting for specific asynchronous events 
to occur, but instead will return immediately if the event is not 
pending. 

The transport user in connection-mode that requests a transport 
connection. 

Connection establishment 

Connection-mode 

The phase in connection-mode that enables two transport users 
to create a transport connection between them. 

A circuit-oriented mode of transfer in which data are passed 
from one user to another over an established connection in a 
reiiable, Sequenced manner. 

Connectionless-mode 
A mode of transfer in which data are passed from one user to 
another in self-contained units with no logical relationship 
required among multiple units. 

Connection release 

Datagram 

The phase in connection-mode that terminates a previously esta­
blished transport connection between two users. 

A unit of data transferred between two users of the 
connectionless-mode service. 

Data transfer The phase in connection-mode or connectionless-mode that sup­
ports the transfer of data between two transport users. 

Expedited data Data that are considered urgent. The specific semantics of 
expedited data are defined by the transport protocol that pro­
vides the transport service. 

2·88 Programmer's Guide: Networking Interfaces 



Glossary 

Expedited transport service data 
The amount of expedited user data the identity of which is 
preserved from one end of a transport connection to the other 
(that is, an expedited message). 

Local management 

Orderly release 

Peer user 

Server 

The phase in either connection-mode or connectionless-mode in 
which a transport user establishes a transport endpoint and 
binds a transport address to the endpoint. Functions in this 
phase perform local operations, and require no transport layer 
traffic over the network. 

A procedure for gracefully terminating a transport connection 
with no loss of data. 

The user with whom a given user is communicating above the 
Transport Interface. 

The transport user in connection-mode that offers services to 
other users (clients) and enables these clients to establish a tran­
sport connection to it. 

Service indication 
The notification of a pending event generated by the provider to 
a user of a particular service. 

Service primitive 
The unit of information passed across a service interface that 
contains either a service request or service indication. 

Service request A request for some action generated by a user to the provider of 
a particular service. 

Synchronous execution 
The mode of execution in which Transport Interface routines 

··maybiock while waiting for specific asynchronous events to 
occur. 

Transport address 
The identifier used to differentiate and locate specific transport 
endpoints in a network. 

Transport Interface Programming 2-89 



Glossary 

Transport connection 
The communication circuit that is established between two tran­
sport users in connection-mode. 

Transport endpoint 
The local communication channel between a transport user and 
a transport provider. 

Transport Interface 
The library routines and state transition rules that support the 
services of a transport protocol. 

Transport provider 
The transport protocol that provides the services of the Tran­
sport Interface. 

Transport service data unit 
The amount of user data whose identity is preserved from one 
end of a transport connection to the other (that is, a message). 

Transport user The user-level application or protocol that accesses the services 
of the Transport Interface. 

Virtual drcuit A transport connection established in connection-mode. The fol­
lowing acronyms are used throughout this guide: 

2·90 

CLTS 

COTS 

ETSDU 

TSDU 

Connectionless Transport Service 

Connection Oriented Transport Service 

Expedited Transport Service Data Unit 

Transport Service Data Unit 
\ 

Programmer's Guide: Networking Interfaces 







3 The Sockets Interface 

Background 

Basics 
Socket Types 
Socket Creation 
Binding Local Names 
Connection Establishment 
Data Transfer 
Closing Sockets 
Connectionless Sockets 
InpuVOutput Multiplexing 

Supporting Routines 
Host Names 
Network Names 
Protocol Names 
Service Names 
Miscellaneous 

Client/Server Model 
Servers 
Clients 
Connectionless Servers 

Table of Contents 

3-1 

3-2 
3-2 
3-3 
3-4 
3-6 
3-9 
3-10 
3-13 
3-17 

3-23 
3-24 
3-24 
3-25 
3-26 
3-27 

3-30 
3-31 
3-34 
3-36 



Table of Contents 

Advanced Topics 3-41 
Out Of Band Data 3-41 
Non-Blocking Sockets 3-43 
Interrupt Driven Socket 1/0 3-44 
Signals and Process Groups 3-45 
Selecting SpecHic Protocols 3-47 
Address Binding 3-48 
Broadcasting and Determining Network Configuration 3-51 
Socket Options 3-55 
inetd 3-57 

II Programmer's Guide: Networking Interfaces 



Background 

Sockets was first introduced in 1981 as part of the Berkeley 4.2 Software Distri­
bution. A significant application base has been written using this interface. 
Sockets has now been added to UNIX System V Release 4 as part of the 
BSD /System V unification. 

Different approaches are possible within the sockets framework. This chapter 
discusses these approaches and then illustrates them with a series of sample 
programs. The programs demonstrate the use of both datagram socket and 
stream socket communication. The chapter is divided into the following sec­
tions: The "Basics" section introduces the sockets routines and the basic model 
of communication. "Supporting Routines" describes some of the library func­
tions that may be used to build distributed applications. The section on the 
"Client/Server Model" discusses the model used in developing applications and 
includes examples of the two major types of servers. II Advanced Topics" 
discusses issues that may be relevant for more sophisticated users. 

The Sockets Interface 3-1 



Basics 

A basic building block for communication is the socket. A socket is an endpoint 
of communication to which a name may be bound. Each socket in use has a 
type and one or more associated processes. Sockets exist within communica­
tions domains. Domains are abstractions that imply both an addressing struc­
ture (address family) and a set of protocols which implement socket types 
within the domain (protocol family). Communications domains are introduced 
to bundle common properties of processes communicating through sockets. 
One such property is the scheme used to name sockets. In the UNIX domain, 
sockets are named with UNIX pathnames; for example, a socket may be named 
/dev/foo. Sockets normally exchange data only with sockets in the same 
domain (it may be possible to cross between communications domains, but only 
if some translation process is performed). The UNIX system socket interface 
facilities support several separate communications domains: for example, the 
UNIX domain, for on-system communication; and the Internet domain, which is 
used by processes that communicate using the DARPA standard communication 
protocols. The underlying communication facilities provided by the~ domains 
have a significant influence on the internal system implementation as well as the 
interface to socket facilities available to a user. For example, a socket operating 
in the UNIX domain sees a subset of the error conditions that are possible when 
operating in the Internet domain. 

Socket Types 

Sockets have types that reflect the communication properties visible to a user. 
Processes are presumed to communicate only between sockets of the same type, 
although there is nothing that prevents communication between sockets of dif­
ferent types should the underlying communication protocols support this. 

There are several types of sockets currently available: 

3-2 

• A stream socket provides for the bidirectional, reliable, sequenced, and 
unduplicated flow of data without record boundaries. A pair of con­
nected stream sockets provides an interface nearly identical to that of 
pipes. 

• A datagram socket supports bidirectional flow of data that is not prom­
ised to be sequenced, reliable, or unduplicated. That is, a process receiv­
ing messages on a datagram socket may find messages duplicated and 
possibly in an order different from the order in which they were sent. An 
important characteristic of a datagram socket is that record boundaries in 

Programmer's Guide: Networking Interfaces 



Basics 

the data are preserved. Datagram sockets closely model the facilities 
found in many contemporary packet switched networks such as the Ether­
net. 

• A raw socket provides access to the underlying communication protocols 
that support socket abstractions. These sockets are normally datagram 
oriented, although their exact characteristics are dependent on the inter­
face provided by the protocol. Raw sockets are not intended for the gen­
eral user; they have been provided mainly for users interested in develop­
ing new communication protocols, or gaining access to some of the more 
esoteric facilities of an existing protocol. The use of raw sockets is con­
sidered under "Advanced Topics" below. 

Socket Creation 

The socket () system call is used to create a socket: 

s = socket(domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of 
the specified type. If the protocol is left unspecified (a value of 0), the system 
will select an appropriate protocol from those that comprise the domain and 
that may be used to support the requested socket type. A descriptor (a small 
integer) that may be used in later system calls that operate on sockets is 
returned. The domain is specified as one of the manifest constants defined in 
the file <sys/ socket. h>. For the UNIX domain the constant is AF _UNIX; for the 
Internet domain, it is AF _ INET. 

I,~II ~~i:~~~~:. named AF _ what_ show Ihe address formal 10 use in inler­

The socket types are also defined in <sys/ socket. h> and one of 
SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW must be specified. To create a 
stream socket in the Internet domain the following call might be used: 

s = socket (AF _ INET , SOCK_STREAM, 0); 

The Sockets Interface 3-3 



Basics 

This call would result in a stream socket being created with the TCP protocol 
providing the underlying communication support. To create a datagram socket 
for on-machine use the call might be: 

s - socket(AF_UNIX, SOCK_DGRAM, O)i 

The default protocol (used when the protocol argument to the socket () call is 
0) should be correct for most situations. However, it is possible to specify a 
protocol other than the default; this will be covered in the II Advanced Topics" 
section below. 

A socket call may fail for several reasons. Aside from the rare occurrence of 
lack of memory (ENOBUFS), a socket request may fail because the request is for 
an unknown protocol (EPROTONOSUPPORT), or because the request is for a type 
of socket for which there is no supporting protocol (EPROTOTYPE). 

Binding Local Names 

A socket is created without a name. Until a name is bound to a socket, 
processes have no way to reference it and consequently no messages may be 
received on it. Communicating processes are bound by an association. In the 
Internet domain, an association is composed of locl11 and foreign addresses, and 
local and foreign ports, while in the UNIX domain, an association is composed 
of local and foreign pathnames. 

ITt:!))'1 The phrase ''foreign pathname". mea. ns a path name created by a foreign pro­;nn'i cess, not a path name on a foreIgn system. 
~rHfrH/i 

In most domains, associations must be unique. In the Internet domain there 
may never be duplicate tuples, such as: 

<protocol, local address, local port, foreign address, for~ign port> 

UNIX domain sockets need not always be bound to a name, but when bound 
there may never be duplicate tuples of the type: 

<protocol, local pathname, foreign pathname> 

Currently, the pathnames may not refer to files already existing on the system, 
though this may change in future releases. 

3-4 Programmer's Guide: Networking Interfaces 



The bind 0 system call allows a process to specify half of an association, for 
example 

<local address, local port> (or <local pathname» 

Basics 

while the connect 0 and accept 0 primitives are used to complete a socket's 
association. 

The bind () system call is used as follows: 

bind(s, name, namelen)i 

The bound name is a variable length byte string that is interpreted by the sup­
porting protocol(s). Its interpretation may vary between communication 
domains (this is one of the properties that comprises a domain). Whereas Inter­
net domain names contain an Internet address and port number, UNIX domain 
names contain a pathname and a family. The family is always AF_UNIX. The 
following code would be used to bind the name /trrp/foo to a UNIX domain 
socket: 

Note that in determining the size of a UNIX domain address, null bytes are not 
counted, which is why strlen 0 is used. The file name referred to in 
addr. sunyath is created as a socket in the system file space. The caller 
must, therefore, have write permission in the directory where addr. sunyath 
is to reside, and the file should be deleted by the caller when it is no longer 
needed. 

In binding an Internet address things become more complicated. The call itself 
is similar, 

The Sockets Interface 3·5 



Basics 

but the selection of what to place in the address sin requires some discussion. 
We will come back to the problem of formulating Internet addresses in the 
"Supporting Routines" section when the library routines used in name resolu­
tion are discussed. 

Connection Establishment 

Connection establishment is usually asymmetric, with one process a client and 
the other a server. The server, when willing to offer its advertised services, 
binds a socket to a well-known address associated with the service and then 
passively listens on its socket. It is then possible for an unrelated process to 
rendezvous with the server. The client requests services from the server by ini­
tiating a connection to the server's socket. On the client side the connect () 
call is used to initiate a connection. In the UNIX domain, this might appear as: 

while in the Internet domain, it might be: 

3-6 Programmer's Guide: Networking Interfaces 



Basics 

server would contain either the UNIX pathname, or the Internet address and 
port number of the server to which the client process wishes to speak. If the 
client process's socket is unbound at the time of the connect call, the system will 
automatically select and bind a name to the socket if necessary. See "Signals 
and Process Groups" below. This is the usual way that local addresses are 
bound to a socket. 

An error is returned if the connection was unsuccessful (however, any name 
automatically bound by the system remains). Otherwise, the socket is associated 
with the server and data transfer may begin. Some of the more common errors 
returned when a connection attempt fails are: 

ETlMEDOUT 

ECONNREFUSE 

After failing to establish a connection over a period of time, the 
system stopped attempting the connection. This may occur 
when the destination host is down or when problems in the net­
work result in lost transmissions. 

The host refused service. This usually occurs when a server 
process is not present at the requested name. 

ENETDOWN or EHOSTDOWN 
These operational errors are returned based on status informa­
tion delivered to the client host by the underlying communica­
tion services. 

ENETUNREACHor EHOSTUNREACH 
These operational errors can occur either because the network or 
host is unknown (no route to the network or host is present), or 
because of status information returned by intermediate gateways 
or switching nodes. The status returned is not always sufficient 
to distinguish between a network that is down and a host that is 
down. 

For a server to receive a client's connection it must perform two steps after 
binding its socket. The first is to listen for incoming connection requests. With 
a socket marked as listening, the second step is to accept () a connection: 

The Sockets Interface 3-7 



Basics 

The first parameter to the listen () call is the socket on which the connection 
is to be established. The second parameter to the listen () call specifies the 
maximum number of outstanding connections that may be queued awaiting 
acceptance by the server process. (For the UNIX domain, from would be 
declared as a structsockaddr_un but nothing different would need to be done 
as far as fromlen is concerned. In the examples that follow, only Internet rou­
tines will be discussed.) A new descriptor is returned on receipt of a connection 
(along with a new socket). If the server wishes to find out who its client is, it 
may supply a buffer for the client socket's name. The value-result parameter 
fromlen is initialized by the server to indicate how much space is associated 
with from. It is then modified on return to reflect the true size of the name. If 
the client's name is not of interest, the second parameter may be a null pointer. 

accept () normally blocks. That is, accept () will not return until a connec­
tion is available or the system call is interrupted by a signal to the process. 
Further, there is no way for a process to indicate that it will accept connections 
only from a specific individual or individuals. It is up to the user process to 
consider who the connection is from and close down the connection if it does 
not wish to speak to the process. If the server process wants to accept connec­
tions on more than one socket, or wants to avoid blocking on the accept call, 
there are alternatives; they will be considered in the "Advanced Topics" section 
below. 

3-8 Programmer's Guide: Networking Interfaces 



Basics 

Data Transfer 

With a connection established, data may begin to flow. There are several calls 
for sending and receiving data. With the peer entity at each end of a connection 
anchored, a user can send or receive a message without specifying the peer. 
Here, the normal read () and write 0 system calls are usable: 

In addition to read () and write () , the calls send () and recv () may be 
used: 

send(s, buf, sizeof buf, flags); 
recv(s, buf, sizeof buf, flags); 

While send 0 and recv () are virtually identical to read 0 and write 0 , 
the extra flags argument is important. The flags, defined in 
<sys/ socket. h>, may be specified as a non-zero value if one or more of the 
following is required: 

MSG OOB send/receive out-of-band data 
MSG PEEK look at data without reading 
MSG DONTROUTE send data without routing packets 

Out-of-band data is specific to stream sockets. The option to have data sent 
without routing applied to the outgoing packets is currently used only by the 
routing table management process and is unlikely to be of interest to most 
users. However, the ability to preview data is of interest. When MSG_PEEK is 
Specified with a recv () call, any data present is returned to the user but 
treated as still unread. That is, the next read () or recv () call applied to the 
socket will return the data previously previewed. 

The Sockets Interface 3-9 



Basics 

Closing Sockets 

Once a socket is no longer of interest, it may be discarded by applying a 
close () to the descriptor, 

close(s); 

If data is associated with a socket that promises reliable delivery (for example, a 
stream socket) when a close takes place, the system will continue to attempt to 
transfer the data. However, if the data is still undelivered after a fairly long 
period of time, it will be discarded. If a user has no use for pending data, a 
shutdQwn () may be performed on the socket before closing it. This call is of 
the form:'~ 

shutdown(s, how); 

where how is 0 if the user is no longer interested in reading data, 1 if no more 
data will be sent, and 2 if no data is to be sent or received. 

The following two code samples illustrate how to initiate and accept an Internet 
domain stream connection. 

Figure 3-1: Initiating an Internet Domain Stream Connection 

3-10 Programmer's Guide: Networking Interfaces 



Basics 

Figure 3-1: Initiating an Internet Domain Stream Connection (continued) 

The Sockets Interface 3-11 



Basics 

Figure 3·2: Accepting an Internet Domain Stream Connection 

3·12 Programmer's Guide: Networking Interfaces 



Basics 

Figure 3-2: Accepting an Internet Domain Stream Connection (continued) 

Connection less Sockets 

Up to this point we have been concerned primarily with connection-oriented 
sockets. However, connectionless interactions typical of the datagram facilities 
found in contemporary packet switched networks are also supported. A 
datagram socket provides a symmetric interface to data exchange. While 
processes are still likely to be client and server process, there is no requirement 
for connection establishment. Instead, each message includes the destination 
address. 

The Sockets Interface 3-13 



Basics 

Datagram sockets are created as described above under "Socket Creation." If a 
particular local address is needed, the bind () operation must precede the first 
data transmission. Otherwise, the system will set the local address and/or port 
when data is first sent. To send data, the sendto () call is used: 

sendto(s, buf, buflen, flags, (struct sockaddr *) 
&to, tolen); 

The s, buf, buflen, and flags parameters are used the same as with 
connection-oriented sockets. The to and tolen values are used to indicate the 
address of the intended recipient of the message. When using an unreliable 
datagram interface, it is unlikely that any errors will be reported to the sender. 
When information is present locally that allows the system to recognize a mes­
sage that can not be delivered (for instance when a network is unreachable), the 
call will return -1 and the global value errno will contain the error number. 

To receive messages on an unconnected datagram socket, the recvfrom () call 
is used: 

recvfrom(s, buf, buflen, flags, (struct sockaddr *) 
&from, &fromlen); 

The fromlen parameter initially contains the size of the from buffer; it is 
modified on return to show the size of the address from which the datagram 
was received. 

In addition to the two calls mentioned above, datagram sockets may also use 
the connect () call to associate a socket with a specific destination address. 
Here, any data sent on the socket without explicitly specifying the destination 
address will automatically be addressed to the connected peer, and only data 
received from that peer will be delivered to the user. Only one connected 
address is permitted for each socket at one time. A second connect will change 
the destination address, and a connect to a null address (domain AF UNSPEC) 
will disconnect. Connect requests on datagram sockets return immediately; the 
system simply records the peer's address. By contrast, a connection request on 
a stream socket initiates establishment of an end-to-end connection. 

accept () and listen () are not used with datagram sockets. 

While a datagram socket is connected, errors from recent send () calls may be 
returned asynchronously. These errors may be reported on subsequent opera­
tions on the socket, or a special socket option used with getsockopt, 
SO_ERROR, may be used to interrogate the error status. 

3-14 Programmer's Guide: Networking Interfaces 



Basics 

Figure 3·3: Reading Internet Domain Datagrams 

The Sockets Interface 3·15 



Basics 

Figure 3-3: Reading Internet Domain Datagrams (continued) 

Figure 3-4: Sending an Internet Domain Datagram 

3-16 Programmer's Guide: Networking Interfaces 



Basics 

Figure 3-4: Sending an Internet Domain Datagram (continued) 

Input/Output Multiplexing 

The ability to multiplex I/O requests among multiple sockets or files is a facility 
that is often used in developing applications. The select () call is used for 
this type of input/output multiplexing: 

The Sockets Interface 3-17 



Basics 

select () takes pointers to three sets as arguments. One pointer is to the set 
of file descriptors on which the caller wishes to be able to read data; one is to 
those descriptors to which data is to be written; anq one is to pending excep­
tional conditions. Out-of-band data is the only exceptional condition currently 
implemented. If the user is not interested in certain conditions (i.e., read, write, 
or exceptions), the corresponding argument to the select () should be a prop­
erly cast null pointer. 

Each set is a structure containing an array of long integer bit masks. The size of 
the array is set by FD_SETSIZE. The array is long enough to hold one bit for 
each of FD_SETSIZE file descriptors. 

The macros FD _SET (fd, & mask) , and FD _ CLR (fd, &mask) have been provided 
for adding and removing file descriptor fd in the set mask. The set should be 
zeroed before use, and the macro FD_ZERO(&mask) has been provided to clear 
the set mask. 

The nfds argument specifies the range of file descriptors (i.e., One plus the 
value of the largest descriptor) to be examined in a set. 

A timeout value maybe specified if the selection is not to last more than a 
predetermined period of time. If the fields in timeout are set to 0, the selec­
tion takes the form of a poll, returning immediately. If the last parameter is a 
NULL pointer, the selection will blocJ< indefinitely. . 

3-18 Programmer's Guide: Networking Interfaces 



1 .................. 

1 

.... ).<.1 To be more specific. H ,helw parameter is a NUll pointer,.a reM" take. 
NOTE place only when a deSCriptor IS selectable, or when a signal IS received by 

/ the caller, interrupting the system call. 

Basics 

select () normally returns the number of file descriptors selected. If the 
select () call returns because the timeout has expired, the value 0 is returned. 
If the select () terminates because of an error or interrupt, a -1 is returned 
with the error number in errno, and with the file descriptor masks unchanged. 

Assuming a successful return, the three sets will indicate which file descriptors 
are ready to be read from, written to, or have exceptional conditions pending. 

The status of a file descriptor in a select mask may be tested with the 
FD_ISSET (fd, &mask) macro, which returns a non-zero value if fd is a 
member of the set mask, and 0 if it is not. 

To determine if there are connections waiting on a socket to be used with an 
accept () call, select () can be used, followed by a FD_ISSET (fd, &mask) 
macro to check for read readiness on the appropriate socket. If FD_ISSET 
returns a non-zero value, indicating permission to read, then a connection is 
pending on the socket. 

As an example, to read data from two sockets, sl and s2, as it is available from 
each and with a five-second timeout, the following code might be used: 

The Sockets Interface 3-19 



Basics 

Figure 3·5: Using select () to Check for Pending Connections 

3·20 Programmer's Guide: Networking Interfaces 



Basics 

Figure 3-5: Using select () to Check for Pending Connections (continued) 

In previous versions of select (), its arguments were pointers to integers 
instead of pointers to fd_sets. This type of call will still work as long as the 
number of file deSCriptors being examined is less than the number of bits in an 
integer; however, the methods illustrated above should be used in all current 
programs. 

The Sockets Interface 3-21 



Basics 

select 0 provides a synchronous multiplexing scheme. The SIGIO and 
SIGURG signals described in the "Advanced Topics" section below may be used 
to provide asynchronous notification of output completion, input availability, 
and exceptional conditions. 

3-22 Programmer's Guide: Networking Interfaces 



Supporting Routines 

The discussion in the "Basics" section above mentions the possible need to 
locate and construct network addresses when using the communication facilities 
in a distributed environment. To aid in this task several routines have been 
added to the standard C run-time library. In this section we will consider the 
new routines provided to manipulate network addresses. 

Locating a service on a remote host requires many levels of mapping before 
client and server may communicate. A service is assigned a name that is 
intended for human consumption; e.g., the login server on host monet. This 
name, and the name of the peer host, must then be translated into network 
addresses that are not necessarily suitable for human consumption. Finally, the 
address must then be used in locating a physical location and route to the ser­
vice. The specifics of these three mappings are likely to vary between network 
architectures. For instance, it is desirable for a network not to require hosts to 
be named in such a way that their physical location is known by the client host. 
Instead, underlying services in the network may discover the location of the 
host at the time a client host wishes to communicate. This ability to have hosts 
named independent of their location may induce overhead in connection estab­
lishment, as a discovery process must take place, but allows a host to be physi­
cally mobile without requiring it to notify its clientele of its current location. 

Standard routines are provided for mapping host names to network addresses, 
network names to network numbers, protocol names to protocol numbers, and 
service names to port numbers and the appropriate protocol to use in communi­
cating with the server process. The file <netdb . h> must be included when 
using any of these routines. 

The Sockets Interface 3-23 



Supporting Routines 

Host Names 

An Internet host name to address mapping is represented by the hostent 
structure: 

The routine gethostbyname(3N) takes an Internet host name and returns a 
hostent structure, while the routine gethostbyaddr(3N) maps Internet host 
addresses into a hostent structure. The routine inet_ntoa(3N) maps an 
Internet host address into an ASCII string for printing by log and error mes­
sages. 

The official name of the host and its public aliases are returned by these rou­
tines, along with the address type (domain) and a null terminated list of vari­
able length addresses. This list of addresses is required because it is possible for 
a host to have many addresses, all having the same name. The h_addr 
definition is provided for backward compatibility, and is defined to be the first 
address in the list of addresses in the hostent structure. 

Network Names 

As for host names, routines for mapping network names to numbers, and back, 
are provided. These routines return a netent structure: 

3-24 Programmer's Guide: Networking Interfaces 



Supporting Routines 

The routines getnetbyname(3N), getnetbyaddr (3N), and getnetent (3N) 

are the network counterparts to the host routines described above. 

Protocol Names 

For protocols, the protoent structure defines the protocol-name mapping used 
with the routines getprotobyname(3N), getprotobynumber(3N), and 
getprotoent (3N): 

The Sockets Interface 3-25 



Supporting Routines 

Service Names 

Information regarding services is a bit more complicated. A service is expected 
to reside at a specific port and use a particular communication protocol. This 
view is consistent with the Internet domain, but inconsistent with other network 
architectures. Further, a service may reside on multiple ports. If this occurs, the 
higher level library routines will have to be bypassed or extended. 

A service mapping is described by the servent structure: 

The routine getservbyname(3N) maps service names to a sarvent structure 
by specifying a service name and, optionally, a qualifying protocol. Thus the 
call 

sp = getservbyname("telnet", (char *) 0); 

returns the service specification for a telnet server using any protocol, while the 
call 

sp = getservbyname("telnet", "tcp"); 

returns only that telnet server that uses the TCP protocol. The routines 
getservbyport(3N) and getservent(3N) are also provided. The get­
servbyport () routine has an interface similar to that provided by get­
servbyname () ; an optional protocol name may be specified to qualify lookups. 

3-26 Programmer's Guide: Networking Interfaces 



Supporting Routines 

Miscellaneous 

With the support routines described above, an Internet application program 
should rarely have to deal directly with addresses. This allows services to be 
developed as much as possible in a network independent fashion. It is clear, 
however, that purging all network dependencies is very difficult. So long as the 
user is required to supply network addresses when naming services and sockets 
there will always be some network dependency in a program. For example, the 
normal code included in client programs, such as the remote login program, is 
of the form shown in Figure 3-6. (This example will be considered in more 
detail in the "0ient/Server Model" section below.) 

Aside from the address-related database routines, there are several other rou­
tines available in the run-time library that are of interest to users. These are 
intended mostly to simplify manipul(ition of names and addresses. Table 3-1 
summarizes the routines for manipull1ting variable length byte strings and han­
dling byte swapping of network addresses and values. 

Table 3-1: Run-Time Library Routines 

Call 
memcmp(sl, s2, n) 
memcpy(sl, s2, n) 
memset(base, value, n) 
htonl (val) 
htons(val) 
ntohl(val) 
ntohs (val) 

Synopsis 
Compare byte-strings; 0 if same, not 0 otherwise 
Copy n bytes from s2 to s1 
Set n bytes to value starting at base 
32-bit quantity from host into network byte order 
16-bit quantity from host into network byte order 
32-bit quantity from network into host byte order 
16-bit quantity from network into host byte order 

The byte swapping routines are provided because the operating system expects 
addresses to be supplied in network order. On some architeCtures, such as the 
VAX, host byte ordering is different from network byte ordering. Consequently, 
programs are sometimes required to byte swap quantities. The library routines 
that return network addresses provide them in network order so that they may 
simply be copied into the structures provided to the system. Users should 
therefore encounter byte swapping problems only when interpreting network 

The Sockets Interface 3-27 



Supporting Routines 

addresses. For example, the following code will print out an Internet port: 

printf("port number %d\n", ntohs(sp->syort)); 

On certain machines, where these routines are not needed, they are defined as 
null macros. 

Figure 3-6: Remote Login Client Code 

3-28 Programmer's Guide: Networking Interfaces 



Supporting Routines 

Figure 3-6: Remote Login Client Code (continued) 

The Sockets Interface 3-29 



Client/Server Model 

The most commonly used. paradigm in building distributed applications is the 
client! server model. In this scheme client applications request services from a 
server process. This implies an asymmetry in establishing communication 
between the client and server that has been examined in the "Basics" section 
above. In this section we will look more closely at the interactions between 
client and server, and consider some of the problems in developing client and 
server applications. 

The client and server require a well known set of conventions before service 
may be rendered (and accepted). This set of conventions comprises a protocol 
that must be implemented at both ends of a connection. Depending on the 
situation, the protocol may be symmetric or asymmetric. In a symmetric proto­
col, either side may play the master or slave roles. In an asymmetric protocol, 
one side is immutably recognized as the master, with the other as the slave. An 
example of a symmetric protocol is the TELNET protocol used. in the Internet for 
remote terminal emulation. An example of an asymmetric protocol is the Inter­
net file transfer protocol, FI'P. No matter whether the specific protocol used. in 
obtaining a service is symmetric or asymmetric, when accessing a service there 
is a client process and a server process. We will first consider the properties of 
server processes, then client processes. 

A server process normally listens at a well known address for service requests. 
That is, the server process remains dormant until a connection is requested by a 
client's connection to the server's address. At such a time the server process 
"wakes up" and services the client, performing whatever appropriate actions 
the client requests of it. 

Alternative schemes that use a service server may be used. to eliminate a flock of 
server processes clogging the system while remaining dormant most of the time. 
For Internet servers, this scheme has been implemented via inetd, the so called 
"internet super-server." inetd listens at a variety of ports, determined at 
start-up by reading a configuration file. When a connection is requested to a 
port on which inetd is listening, inetd executes the appropriate server pro­
gram to handle the client. With this method, clients are unaware that an 
intermediary such as inetd has played any part in the connection. inetd will 
be described in more detail in the "Advanced Topics" section below. 

3-30 Programmer's Guide: Networking Interfaces 



Client/Server Model 

Servers 

In the UNIX system, most servers are accessed at well known Internet addresses 
or UNIX domain names. The form of their main loop is illustrated by the fol­
lowing code form the remote-login server: 

Figure 3-7: Remote Login Server 

The Sockets Interface 3-31 



Client/Server Model 

Figure 3·7: Remote login Server (continued) 

The first step taken by the server is look up its service definition: 

The result of the getservbyname () call is used in later portions of the code to 
define the Internet port at which it listens for service requests (indicated by a 
connection). Some standard port numbers are given in the file 
/usr/include/netinet/in. h for backward compatibility purposes. 

Step two is to disassociate the server from the controlling terminal of its 
invoker: 

3·32 Programmer's Guide: Networking Interfaces 



Client/Server Model 

This step is important as the server will likely not want to receive signals 
delivered to the process group of the controlling terminal. Note, however, that 
once a server has disassociated itself it can no longer send reports of errors to a 
terminal, and must log errors via syslog () . 

Once a server has established a pristine environment, it creates a socket and 
begins accepting service requests. The bind () call is required to insure the 
server listens at its expected location. Note that the remote login server listens 
at a restricted port number, and must therefore be run with a user-id of root. 
This concept of a "restricted port number" is covered in the 11 Advanced Topics" 
section below. 

The main body of the loop is simple: 

The Sockets Interface 3-33 



Client/Server Model 

An accept () call blocks the server until a client requests service. This call 
could return a failure status if the call is interrupted by a signal such as 
SIGCHLD (to be discussed in the "Advanced Topics" section below). Therefore, 
the return value from accept () is checked to insure a connection has been 
established, and an error report is logged via syslog () if an error has 
occurred. 

With a connection in hand, the server then forks a child process and invokes the 
main body of the remote login protocol processing. Note how the socket used 
by the parent for queuing connection requests is closed in the child, while the 
socket created as a result of the accept () is closed in the parent. The address 
of the client is also handed the doit () routine because it requires it in authen­
ticating clients. 

Clients 

The client side of the remote login service was shown earlier in Figure 3-6. One 
can see the separate, asymmetric roles of the client and server clearly in the 
code. The server is a passive entity, listening for client connections, while the 
client process is an active entity, initiating a connection when invoked. 

3-34 Programmer's Guide: Networking Interfaces 



Client/Server Model 

Let us consider more closely the steps taken by the client remote login process. 
As in the server process, the first step is to locate the service definition for a 
remote login: 

Next the destination host is looked up with a gethostbyname () call: 

With this done, all that is required is to establish a connection to the server at 
the requested host and start up the remote login protocol. The address buffer is 
cleared, then filled in with the Internet address of the foreign host and the port 
number at which the login process resides on the foreign host: 

A socket is created, and a connection initiated. Note that connect () implicitly 
performs a bind () call, since s is unbound. 

The Sockets Interface 3-35 



Client/Server Model 

The details of the remote login protocol will not be considered here. 

Connection less Servers 

While connection-based services are the norm, some services are based on the 
use of datagram sockets. One, in particular, is the rwho service, which provides 
users with status information for hosts connected to a local area network. This 
service, while predicated on the ability to broadcast information to all hosts con­
nected to a particular network, is of interest as an example usage of datagram 
sockets. 

A user on any machine running the rwho server may find out the current status 
of a machine with the ruptime program. The output generated is illustrated in 
Figure 3-8. 

3-36 Programmer's Guide: Networking Interfaces 



Client/Server Model 

Figure 3-8: Output of ruptime Program 

Status information for each host is periodically broadcast by rwho server 
processes on each machine. The same server process also receives the status 
information and uses it to update a database. This database is then interpreted 
to generate the status information for each host. Servers operate autonomously, 
coupled only by the local network and its broadcast capabilities. 

Note that the use of broadcast for such a task is fairly inefficient, as all hosts 
must process each message, whether or not using an rwho server. Unless such 
a service is sufficiently universal and is frequently used, the expense of periodic 
broadcasts outweighs the simplicity. 

The rwho server, in a simplified form, is pictured below. It performs two 
separate tasks. The first is to act as a receiver of status information broadcast by 
other hosts on the network. This job is carried out in the main loop of the pro­
gram. Packets received at the rwho port are interrogated to insure they've been 
sent by another rwho server process, then are time stamped with their arrival 
time and used to update a file indicating the status of the host. When a host 
has not been heard from for an extended period of time, the database interpreta­
tion routines assume the host is down and report this information on the status 
reports. This algorithm is prone to error, as a server may be down while a host 
is up. 

The Sockets Interface 3-37 



Client/Server Model 

Figure 3·9: rwho Server 

3·38 Programmer's Guide: Networking Interfaces 



Client/Server Model 

Figure 3-9: rwho Server (continued) 

The second task performed by the server is to supply information regarding the 
status of its host. This involves periodically acquiring system status informa­
tion, packaging it up in a message and broadcasting it on the local network for 
other rwho servers to hear. The supply function is triggered by a timer and 
runs off a signal. Locating the system status information is somewhat involved, 
but uninteresting. Deciding where to transmit the resultant packet is somewhat 
problematic, however. 

Status information must be broadcast on the local network. For networks that 
do not support the notion of broadcast another scheme must be used to simu­
late or replace broadcasting. One possibility is to list the known neighbors 
(based on the status messages received from other rwho servers). This, unfor­
tunately, requires some bootstrapping information, for a server will have no 
idea what machines are its neighbors until it receives status messages from 
them. Therefore, if all machines on a net are freshly booted, no machine will 
have any known neighbors and thus never receive, or send, any status informa­
tion. This is the identical problem faced by the routing table management pro­
cess in propagating routing status information. The standard solution, unsatis­
factory as it may be, is to inform one or more servers of known neighbors and 
request that they always communicate with these neighbors. If each server has 
at least one neighbor supplied to it, status information may then propagate 
through a neighbor to hosts that are not (possibly) directly neighbors. If the 
server is able to support networks that provide a broadcast capability, as well as 
those that do not, then networks with an arbitrary topology may share status 
information. 

The Sockets Interface 3-39 



Client/Server Model 

•.•.••. ~I.E .••• ·.•••. nected to multiple networks, it will receive stat~s infor~ation from itself. This 
:'::""" can lead to an endless, wasteful, exchange of information. 

I'ZI"'I Programmers must be concemed about loops, however. ~ a host is con-

It is important that software operating in a distributed environment not have 
any site-dependent information compiled into it. This would require a separate 
copy of the server at each host and make maintenance a severe headache. The 
UNIX system attempts to isolate host-specific information from applications by 
providing system calls that return the necessary information. (An example of 
such a system call is the gethostname(3N) call that returns the host's official 
name.) The ioctl () call allows you to find the collection of networks to 
which a host is directly connected. Further, a local network broadcasting 
mechanism has been implemented at the socket level. Combining these two 
features allows a process to broadcast on any directly connected local network 
that supports the notion of broadcasting in a site independent manner. This 
solves the problem of deciding how to propagate status information with rwho, 
or more generally in broadcasting. Such status information is broadcast to con­
nected networks at the socket level, where the connected networks have been 
obtained via the appropriate ioct 1 () calls. The specifics of such broadcastings 
are complex, however, and will be covered in the 1/ Advanced Topics" section 
below. 

3-40 Programmer's Guide: Networking Interfaces 



Advanced Topics 

Several facilities have yet to be discussed. For most programmers, the mechan­
isms already described will suffice in building distributed applications. How­
ever, others will find the need to use some of the features that we consider in 
this section. 

Out Of Band Data 

The stream socket abstraction includes the notion of out of band data. Out of 
band data is a logically independent transmission channel associated with each 
pair of connected stream sockets. Out of band data is delivered to the user 
independently of normal data. The abstraction defines that the out of band data 
facilities must support the reliable delivery of at least one out of band message 
at a time. This message may contain at least one byte of data, and at least one 
message may be pending delivery to the user at anyone time. For communica­
tions protocols (such as TCP) that support only in-band signaling (Le., the urgent 
data is delivered in sequence with the normal data), the system normally 
extracts the data from the normal data stream and stores it separately. This 
allows users to choose between receiving the urgent data in order and receiving 
it out of sequence without having to buffer all the intervening data. It is possi­
ble to "peek" (via MSG_PEEK) at out of band data. If the socket has a process 
group, a SIGURG signal is generated when the protocol is notified of its 
existence. A process can set the process group or process id to be informed by 
the SIGURG signal via the appropriate fcntl () call, as described below for 
SIGIO. If multiple sockets may have out of band data awaiting delivery, a 
select () call for exceptional conditions may be used to determine those sock­
ets with such data pending. Neither the signal nor the select show the arrival of 
the out-of-band data, but only notification that it is pending. 

In addition to the information passed, a logical mark is placed in the data 
stream to specify the point at which the out of band data was sent. The remote 
login and remote shell applications use this facility to propagate signals between 
client and server processes. When a signal flushes any pending output from the 
remote process(es), all data up to the mark in the data stream is discarded. 

To send an out of band message the MSG _ OOB flag is supplied to a send () or 
sendto () calls, while to receive out of band data MSG _ OOB should be specified 
when doing a recvfrom () or recv () call (unless out of band data is taken in 
line, in which case the MSG_OOB flag is not needed). To find out if the read 

The Sockets Interface 3-41 



Advanced Topics 

pointer is currently pointing at the mark in the data stream, the SIOCATMARK 
ioctl is provided: 

ioctl(s, SIOCATMARK, &yes); 

If yes is 1 on return, the next read will return data after the mark. Otherwise 
(assuming out of band data has arrived), the next read will provide data sent by 
the client before transmission of the out of band signal. The routine used in the 
remote login process to flush output on receipt of an interrupt or quit signal is 
shown in the following example. This code reads the normal data up to the 
mark (to discard it), then reads the out-of-band byte. 

Figure 3-10: Flushing Terminal 110 on Receipt of Out Of Band Data 

3-42 Programmer's Guide: Networking Interfaces 



Advanced Topics 

A process may also read or peek at the out-of-band data without first reading 
up to the mark. This is more difficult when the underlying protocol delivers the 
urgent data in-band with the normal data, and only sends notification of its 
presence ahead of time (e.g., the Tep protocol used to provide socket streams in 
the Internet domain). With such protocols, the out-of-band byte may not yet 
have arrived when a recv () is done with the MSG_OOB flag. In that case, the 
call will return an error of EWOULDBLOCK. Worse, there may be enough in-band 
data in the input buffer that normal flow control prevents the peer from sending 
the urgent data until the buffer is cleared. The process must then read enough 
of the queued data before the urgent data may be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multi­
ple urgent signals (e.g., telnet (1)) need to retain the position of urgent data 
within the socket stream. This treatment is available as a socket-level option, 
SO_OOBINLINE; see setsockopt(3N) for usage. With this option, the position 
of urgent data (the "mark") is retained, but the urgent data immediately follows 
the mark within the normal data stream returned without the MSG _ OOB flag. 
Reception of multiple urgent indications causes the mark to move, but no out­
of-band data are lost. 

Non-Blocking Sockets 

It is occasionally convenient to make use of sockets that do not block; that is, 
I/O requests that cannot complete immediately and would therefore cause the 
process to be suspended awaiting completion are not executed, and an error 
code is returned. Once a socket has been created via the socket () call, it may 
be marked as non-blocking by fcntl () as follows: 

The Sockets Interface 3-43 



Advanced Topics 

When perfonning non-blocking I/O on sockets, one must be careful to check for 
the error EWOULDBLOCK (stored in the global variable errno), which occurs 
when an operation would normally block, but the socket it was performed on is 
marked as non-blocking. In particular, accept (), connect (), send () , 
recv (), read (), and write () can all return EWOULDBLOCK, and processes 
should be prepared to deal with such return codes. If an operation such as a 
send () cannot be done in its entirety, but partial writes are sensible (for exam­
ple, when using a stream sockeO, the data that can be sent immediately will be 
processed, and the return value will show the amount actually sent. 

Interrupt Driven Socket I/O 

The SIGIO signal allows a process to be notified via a signal when a socket (or 
more generally, a file descriptor) has data waiting to be read. Use of the SIGIO 
facility requires three steps: First, the process must set up a SIGIO signal 
handler by use of the signal () or sigvec () calls. Second, it must set the 
process id or process group id that is to receive notification of pending input to 
its own process id, or the process group id of its process group (note that the 
default process group of a socket is group zero). This can be done by using a 
fcntl () call. Third, it must enable asynchronous notification of pending I/O 
requests with another fcntl () call. Sample code to allow a given process to 
receive information on pending I/O requests as they occur for a socket s is 
given in Figure 3-11 With the addition of a handler for SIGURG, this code can 
also be used to prepare for receipt of SIGURG signals. 

3-44 Programmer's Guide: Networking Interfaces 



Advanced Topics 

Figure 3·11: Use of Asynchronous Notification of 1/0 Requests 

Signals and Process Groups 

Because of the existence of the SIGURG and SIGIO signals, each socket has an 
associated process number, just as is done for terminals. This value is initialized 
to zero, but may be redefined at a later time with the F_SETOWN fcntl (), such 
as was done in the code above for SIGIO. 

To set the socket's process id for signals, positive arguments should be given to 
the fcntl () call. To set the socket's process group for signals, negative argu­
ments should be passed to fcntl () . 

The only acceptable arguments to these system calls are the caller's process id or 
a negative process group having the same absolute value as the caller's process 
id (the process must be the process group leader of its own process group). 
Therefore, the only allowed recipient of SIGURG and SIGIO signals is the cal­
ling process. 

The Sockets Interface 3-45 



Advanced Topics 

Note that the process number shows either the associated process id or the asso­
ciated process group; it is impossible to specify both at the same time. A similar 
fcntl (), F_GETOWN, is available for determining the current process number 
of a socket. 

Note that the receipt of SIGURG and SIGIO can also be enabled by using the 
ioctl () call to assign the socket to the user's process group: 

Another signal that is useful when building server processes is SIGCHLD. This 
signal is delivered to a process when any child processes have changed state. 
Normally servers use the signal to "reap" child processes that have exited 
without explicitly awaiting their termination or periodically polling for exit 
status. For example, the remote login server loop shown in Figure 3-7 may be 
augmented as follows: 

3·46 Programmer's Guide: Networking Interfaces 



Advanced Topics 

Figure 3·12: Use of the SIGCHLD Signal 

If the parent server process fails to reap its children, several zombie processes 
may be created. 

Selecting Specific Protocols 

If the third argument to the socket () call is 0, socket () will select a default 
protocol to use with the returned socket of the type requested. The default pro­
tocol is usually correct, and alternate choices are not usually available. How­
ever, when using "raw" sockets to communicate directly with lower-level proto­
cols or hardware interfaces, the protocol argument may be important for setting 
up demultiplexing. For example, raw sockets in the Internet domain may be 
used to implement a new protocol above IP, and the socket will receive packets 
only for the protocol specified. To obtain a particular protocol one determines 

The Sockets Interface 3·47 



Advanced Topics 

the protocol number as defined within the protocol domain. For the Internet 
domain one may use one of the library routines discussed in the "Supporting 
Routines" section above, such as getprotobyname () : 

This would result in a socket s using a stream based connection, but with pro­
tocol type of newtcp instead of the default tcp. 

Address Binding 

As was mentioned in the "Basics" section, binding addresses to sockets in the 
Internet domain can be complex. As a brief reminder, these associations are 
composed of local and foreign addresses, and local and foreign ports. Port 
numbers are allocated out of separate spaces, one for each system and one for 
each domain on that system. Through the bind () system call, a process may 
specify half of an association, the <local address, local port> part, while the con­
nect () and accept () primitives are used to complete a socket's association 
by specifying the <foreign address, foreign port> part. Since the association is 
created in two steps the association uniqueness requirement mentioned previ­
ously could be violated unless care is taken. Further, it is unrealistic to expect 
user programs always to know proper values to use for the local address and 
local port since a host may reside on multiple networks and the set of allocated 
port numbers is not directly accessible to a user. 

To simplify local address binding in the Internet domain the notion of a wild­
card address has been provided. When an address is specified as INADDR_ANY 
(a manifest constant defined in <netinet/in. h», the system interprets the 
address as any valid address. For example, to bind a specific port number to a 
socket, but leave the local address unspecified, the following code might be 
used: 

3-48 Programmer's Guide: Networking Interfaces 



Advanced Topics 

Sockets with wildcarded local addresses may receive messages directed to the 
specified port number, and sent to any of the possible addresses assigned to a 
host. For example, if a host has addresses 128.32.0.4 and 10.0.0.78, and a socket 
is bound as above, the process will be able to accept connection requests that 
are addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow 
hosts on a given network connect to it, it would bind the address of the host on 
the appropriate network. 

In a similar fashion, a local port may be left unspecified (specified as zero), in 
which case the system will select an appropriate port number for it. For exam­
ple, to bind a specific local address to a socket, but to leave the local port 
number unspecified: 

The system selects the local port number based on two criteria. The first is that 
Internet ports below IPPORT_RESERVED (1024) are reserved for privileged 
users (Le., the super user); Internet ports above IPPORT _ USERRESERVED 
(5000) are reserved for non-privileged servers. The second is that the port 
number is not currently bound to some other socket. To find a free Internet 

The Sockets Interface 3-49 



Advanced Topics 

port number in the privileged range the rresvport () library routine may be 
used as follows to return a stream socket in with a privileged port number: 

This restriction was placed on port allocation to allow processes executing in a 
"secure" environment to do authentication based on the originating address and 
port number. For example, the rlogin (1) command allows users to log in 
across a network without being asked for a password, provided that two condi­
tions are met: First, the name of the system the user is logging in from must be 
in the file /etc/hosts. equiv on the system being logged in to (or the system 
name and the user name must be in the user's. rhosts file in the user's home 
directory). Second, the user's rlogin process must come from a privileged port 
on the machine from which the user is logging in. The port number and net­
work address of the machine from which the user is logging in can be deter­
mined either from the accept () call (the from result), or the getpeername () 
call. 

In certain cases the algorithm used by the system in selecting port numbers is 
unsuitable for an application. This is because associations are created in a two 
step process. For example, the Internet file transfer protocol, FfP, specifies that 
data connections must always originate from the same local port. However, 
duplicate associations are avoided by connecting to different foreign ports. In 
this situation the system would disallow binding the same local address and 
port number to a socket if a previous data connection's socket still existed. To 
override the default port selection algorithm, an option call must be performed 
before address binding: 

3-50 Programmer's Guide: Networking Interfaces 



Advanced Topics 

With the above call, local addresses may be bound that are already in use. This 
does not violate the uniqueness requirement as the system still checks at connect 
time to be sure any other sockets with the same local address and port do not 
have the same foreign address and port. If the association already exists, the 
error EADDRlNUSE is retUrned. 

Broadcasting and Determining Network Configuration 

By using a datagram socket, it is possible to send broadcast packets on many 
networks connected to the system. The network itself must support broadcast; 
the system provides no simulation of broadcast in software. Broadcast messages 
can place a high load on a network since they force every host on the network 
to service them. Consequently, the ability to send broadcast packets has been 
limited to sockets that are explicitly marked as allowing broadcasting. Broad­
cast is typically used for one of two reasons: it is desired to find a resource on a 
local network without prior knowledge of its address, or important functions 
such as routing require that information be sent to all accessible neighbors. 

To send a broadcast message, a datagram socket should be created: 

s - socket(AF_INET, SOCK_OGRAM, 0); 

The socket is marked as allowing broadcasting, 

int on ... 1; 
setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on); 

and at least a port number should be bound to the socket: 

The Sockets Interface 3·51 



Advanced Topics 

The destination address of the message to be broadcast depends on the 
network(s) on which the message is to be broadcast. The Internet domain sup­
ports a shorthand notation for broadcast on the local network, the address 
INADDR BROADCAST (defined in <netinet/in.h>. To determine the list of 
addresses for all reachable neighbors requires knowledge of the networks to 
which the host is connected. Since this information should be obtained in a 
host-independent fashion and may be impossible to derive, the UNIX system 
provides a method of retrieving this information from the system data struc­
tures. The SIOCGIFCONF ioctl call returns the interface configuration of a 
host as a single ifconf structure; this structure contains a "data area" that is 
made up of an array of ifreq structures, one for each address domain sup­
ported by each network interface to which the host is connected. These struc­
tures are defined in <net / if. h> as follows: 

3·52 Programmer's Guide: Networking Interfaces 



Advanced Topics 

The call that obtains the interface configuration is: 

After this call buf will contain a list of ifreq structures, one for each network 
to which the host is connected. These structures will be ordered first by inter­
face name and then by supported address families. ifc. ifc_len will have 
been modified to reflect the number of bytes used by the ifreq structures. 

The Sockets Interface 3-53 



Advanced Topics 

For each structure there exists a set of "interface flags" that tell whether the net­
work corresponding to that interface is up or down, point to point or broadcast, 
etc. The SIOCGIFFLAGS ioctl retrieves these flags for an interface specified 
by an ifreq structure as follows: 

Once the flags have been obtained, the broadcast address must be obtained. 
With broadcast networks this is done via the SIOCGIFBRDADDR ioctl, while 
for point-to-point networks the address of the destination host is obtained with 
SIOCGIFDSTADDR. 

3·54 Programmer's Guide: Networking Interfaces 



Advanced Topics 

After the appropriate ioctl () s have obtained the broadcast or destination 
address (now in dst), the sendto () call may be used: 

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, 
sizeof dst); 

In the above loop one sendto () occurs for every interface to which the host is 
connected that supports the notion of broadcast or point-to-point addressing. If 
a process only wished to send broadcast messages on a given network, code 
similar to that outlined above would be used, but the loop would need to find 
the correct destination address. 

Received broadcast messages contain the sender's address and port, as datagram 
sockets are bound before a message is allowed to go out. 

Socket Options 

It is possible to set and get several options on sockets via the set sockopt () 
and getsockopt () system calls. These options include such things as marking 
a socket for broadcasting, not to route, to linger on close, etc. The general forms 
of the calls are: 

setsockopt(s, level, optname, optval, optlen); 

The Sockets Interface 3·55 



Advanced Topics 

and 

qetsockopt(s, level, optname, optval, optlen)i 

The parameters to the calls are as follows: s is the socket on which the option is 
to be applied. level specifies the protocol layer on which the option is to be 
applied; usually this is the "socket level," indicated by the symbolic constant 
SOL_SOCKET, defined in <sys / socket. h>. The option is specified in 
optname, and is a symbolic constant also defined in <sys/socket .h>. 
opt val and optlen point to the value of the option (usually, whether the 
option is to be turned on or off), and the length of the value of the option, 
respectively. For qetsockopt (), optlen is a value-result parameter, initially 
set to the size of the storage area pointed to by optval, and modified on return 
to show the amount of storage used. 

An example should help clarify things. It is sometimes useful to determine the 
type (e.g., stream, datagram, etc.) of an existing socket; programs invoked by 
inetd (described below) may need to do this task using the SO_TYPE socket 
option and the qet sockopt () call: 

After the qetsockopt () call, type will be set to the value of the socket type, 
as defined in <sys/socket. h>. If, for example, the socket were a datagram 
socket, type would have the value corresponding to SOCK_DGRAM. 

3·56 Programmer's Guide: Networking Interfaces 



Advanced Topics 

inetd 

One of the daemons provided with the UNIX sytem is inetd, the so called 
'1ntemet super-server." inetd is invoked at boot time by the Service AccesS 
Controller, and determines the services for which it is to listen from the file 
/etc/inetd. conf. Once this information has been read and a pristine 
environment created, inetd proceeds to create one socket for each service it is 
to listen for, binding the appropriate port number to each socket. 

inetd then performs a select () on all these sockets for read availability, 
waiting for somebody wishing a connection to the service corresponding to that 
socket. inetd then performs an accept () on the socket in question, 
fork () s, dup () s the new socket to file descriptors 0 and 1 (stdin and stdout), 
closes other open file descriptors, and exec () s the appropriate server. 

Servers making use of inetd are considerably simplified, as inetd takes care 
of most of the communication work required in establishing a connection. The 
server invoked by inetd expects the socket connected to its client to be on file 
descriptors 0 and 1, and may immediately do operations such as read () , 
write (), send (), or recv (). Indeed, servers may use buffered I/O as pro­
vided by the stdio conventions, as long as they remember to use fflush () 
when appropriate. 

One call that may be of interest to individuals writing servers to be invoked by 
inetd is the getpeername () call, which returns the address of the peer (pro­
cess) connected on the other end of the socket. For example, to log the Internet 
address in "dot notation" (e.g., "128.32.0.4") of a client connected to a server 
under inetd, the following code might be used: 

The Sockets Interface 3·57 



Advanced Topics 

While the getpeername () call is especially useful when writing programs to 
run with inetd, it can be used under other circumstances. 

3-58 Programmer's Guide: Networking Interfaces 







4 Sockets Migration and Sockets­
to-TLI Conversion 

Sockets Migration and Sockets-to-TLI 
Conversion 4-1 
Connection Mode 4-2 

• Establishing Socket Connections: Client Code 4-2 
• Establishing TLI Connections: Client Code 4-4 
• Establishing Socket Connections: Server Code 4-6 
• Establishing TLI Connections: Server Code 4-7 

Connectionless Mode 4-9 
• Socket-Based Datagrams 4-9 
• TLI Datagrams 4-11 

Synchronous and Asynchronous Modes 4-14 
Error Handling 4-15 
Sockets-to-TLI Conversion 4-16 
Moving Sockets Applications to System V Release 4 4-18 

Table of Contents 





Sockets Migration and Sockets-to-TLI 
Conversion 

This chapter provides an introduction to the issues involved in porting a sockets 
application to TLI and includes notes on the differences between BSO sockets 
and System V Release 4 sockets that programmers must be aware of. Although 
existing sockets applications can be rewritten for TLI relatively easily, such ports 
are not necessary for sockets applications that are to run only over TCP lIP or 
UDPjlP networks. However, TLI is the preferred programming interface for 
accessing transport services and it is recommended that programmers writing 
new applications for System V Release 4 use TLI. 

Both TLI and sockets routines are defined in terms of communications paths 
identified by file descriptors. These file descriptors are known as "transport 
endpoints" for TLI and as "sockets" for the socket interface. In most cases, 
there are parallel routines for each transport function. For example, the TLI rou­
tine t_open() returns a file descriptor that identifies a transport endpoint; the 
routine socket () returns a file descriptor that identifies a socket. Table 4-1 at 
the end of this section shows the parallels among TLI and sockets interface rou­
tines. 

This chapter will highlight the areas in which there is no direct correspondence 
between TLI and sockets routines. The examples will first show code that uses 
the socket interface and then show how to rewrite the program using TLI. 

The last section of the chapter documents differences between System V Release 
4 sockets and BSO sockets. Programmers must be aware of these differences 
before moving BSO sockets applications to System V Release 4. 

System V socket calls are implemented as library routines. Application pro­
grams that use sockets should be compiled and linked with socket libraries: 

Sockets Migration and Sockets-to-TLI Conversion 4-1 



Sockets Migration and Sockets-to-TLI Conversion 

Connection Mode 

Both TLI and sockets support two distinct types of service: connection oriented 
and connectionless. 

Establishing Socket Connections: Client Code 

When creating a socket, the type of service must be specified (for example, 
SOCK_STREAM, SOCK_DGRAM, SOCK_RAW). The service type determines 
whether connection-oriented or connectionless semantics are used. For a simple 
example of connection establishment, consider the client side of a stream­
oriented application, as in Figure 4-1. It must initiate a connection by first creat­
ing a stream socket and then using the connect () call to establish communica­
tion with a preexisting socket on a server machine. 

Figure 4-1: Client Side of Stream-Oriented Application 

4-2 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Figure 4-1: Client Side of Stream-Oriented Application (continued) 

Notice the calls to gethostbyname () and getservbyname (). These are the 
socket-oriented network directory services described under "Socket-Based 
Datagrams." They take a host and service name, respectively, and return the 
host network address and the service port. The service port number can be 
thought of as a machine-specific service address. Certain well-known services 
are assumed to have specific TCP port numbers in the 1-t0-1023 range. Some 
applications hard code these port numbers rather than using get­
servbyname () . 

When porting sockets applications to TLI, calls to gethostbyname () and get­
servbyname () , as well as hard-coded TCP port numbers, should be replaced 
by calls to the netdir_getbyname () routine. 

If the target socket exists and is prepared to handle a connection, the connection 
will complete successfully and the program can begin to send messages. Mes­
sages will be delivered in order without message boundaries. The connection is 
destroyed when both sockets are closed. 

Sockets Migration and Sockets-to-TLI Conversion 



Sockets Migration and Sockets-to-TU Conversion 

1';181 Some'ransports hold the connadion open briefly incase more data are "dm::: sent. The user may also have directed the system to wait. For more infor-
:;:.:.::(:: mation, see the discussion of the so LINGER option on the 
. ..... getsockopt (3N) manual page. -

Establishing TLI Connections: Client Code 
The TLI connection mode transport service is also circuit (stream) oriented, ena­
bling data to be transferred over an established connection in a reliable, 
sequenced manner. Typical TLI client code is shown in Figure 4-2. 

Figure 4-2: TU Client Code 

4-4 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Figure 4-2: TLI Cnent Code (continued) 

Network selection is used by TLI applications to find the device filename associ­
ated with the requested transport protocol. The device filename that matches 
the protocol is passed to t _open (). t _open () then returns a file descriptor 
that identifies a new transport endpoint, and optionally (by way of its third 
argument), the default characteristics of the transport provider associated with 
that endpoint (and indirectly specified by the first argument). t _bind () then 
binds the new transport endpoint to the transport address contained in its 
second argument. The typical client doesn't care what its own address is 
because no other process will try to access it. The second and third arguments 
in the example are therefore NULL. 

Sockets Migration and Sockets-to-TLI Conversion 4-5 



Sockets Migration and Sockets.to-TLI Conversion 

Establishing Socket Connections: Server Code 

Connection establishment for a server process is slightly different. The process 
must bind itself to an address and wait for clients to connect to it. Figure 4-3 
shows how a sockets server is bound to its known address: 

Figure 4-3: Sockets Server Code 

In the example, the server explicitly asks to be bound to port SRV _PORT. 

4-6 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Establishing TLI Connections: Server Code 

The equivalent code for a TLI server process is shown in Figure 4-4. 

Figure 4-4: TLI Server Code 

Sockets Migration and Sockets-to-TLI Conversion 4-7 



Sockets Migration and Socket.to-TLI Conversion 

Figure 4-4: TLI Server Code (continued) 

4-8 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets·to· TLI Conversion 

The examples show two significant differences between sockets and TLI. First, 
since TLI server applications work over any transport provider, they use the 
Network Selection and Name-to-Address Mapping features in order to be proto­
col independent; sockets applications use fixed addresses. 

A second difference is in the behavior of the TLI and sockets bind routines when 
an address is invalid or unavailable. The sockets b:i..nd () routine fails. The TLI 
t _bind () routine may bind to another address instead. For this reason, TLI 
servers should check that the address returned by t _bind () as its third argu­
ment is correct. 

Connectionless Mode 

Connectionless-mode transport services, in contrast to connection-oriented ser­
vices, are message-oriented and support transfer in self-contained units 
(datagrams) with no necessary logical relationship to each other. Sockets and 
TLI both provide connectionless-mode service. 

All the information required to deliver a datagram (for example, a destination 
address) is presented to the transport provider, together with the data to be 
transmitted, in a single service access. A given service access need not relate to 
any other service access. Each unit of data transmitted is entirely self-contained, 
and can be independently routed by the transport provider. 

Socket-Based Datagrams 
The differences between socket library datagrams and the connectionless service 
provided by TLI parallel the differences between sockets and TLI connection­
oriented service described above. Figure 4-5 gives the code necessary to send 
an Internet domain datagram to a receiver whose host and service names are 
given as command line arguments. 

Sockets Migration and Sockets-to· TLI Conversion 4·9 



Sockets Migration and Sockets-to-TLI Conversion 

Figure 4-5: Sending Internet Domain Datagram 

4-10 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Figure 4-5: Sending Internet Domain Datagram (continued) 

The program looks up the host address and the service port (both given on the 
command line) by calling qethostbyname () and qetservbyname (). The 
host network address and service port number are in the structures returned by 
these two library routines. They are copied into the structure that specifies the 
destination of the message. 

TLI Datagrams 
TLI connectionless service is functionally similar to sockets datagram service. 
The sockets address management routines qethostbyname () and qet­
servbyname () are replaced by netdir_qetbyname () for both connection­
oriented ,md connectionless service. 

The TLl code in Figure 4-6 sends a datagram to a receiver whose host and ser­
vice na~es are given on the command line: 

Sockets Migration and Sockets-to-TLI Conversion 4-11 



Sockets Migration and Socket.to-TLI Conversion 

Figure 4-6: TLI Datagram Code 

4-12 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Figure 4-6: TLI Datagram Code (continued) 

For more information about the functions t open, t bind, and t sndudata, 
see the manual pages t_open(3N), t_bind(3N), and-t_sndudata<3N). 

Sockets Migration and Sockets-to-TLI Conversion 4-13 



Sockets Migration and Sockets-to-TLI Conversion 

Synchronous and Asynchronous Modes 

Transport services are inherently asynchronous, with events occurring indepen­
dently of the actions of the transport user. For example, a user may be sending 
data over a transport connection when an asynchronous disconnect indication 
arrives. The user must somehow be informed that the connection has been bro­
ken. Both the socket interface and TLI provide an asynchronous mode for 
managing such events. Asynchronous mode is most useful for applications that 
expect long delays between events and have other tasks that they can perform 
in the meantime. 

A socket is put into asynchronous mode by calling fentl () and specifying 
O_NDELAY or O_NONBLOCK. Once in asynchronous mode, all relevant primi­
tives - send (), read (), etc. - return EWOULDBLOCK whenever they 
encounter situations that would have caused them to block if they had been in 
synchronous mode. 

The TLI non-blocking mode is also specified with the O_NDELAY or 
O_NONBLOCK flag. The O_NDELAY and O_NONBLOCK flags can be used when 
the transport provider is initially opened with the t _open () function, or later 
with the fentl 0 call. If the TLI blocking mode is used, these cause the error 
code EAGAIN to be returned (see the Programmer's Reference Manual, Section 2, 
Introduction). 

There are different levels of asynchronous operation. Specifying 0_ NDELAY or 
0_ NONBLOCK puts a socket into non-blocking mode. For true asynchronous 
operation, however, it is also necessary to test for asynchronous events. Socket­
based applications normally use select (3N) to test for asynchronous events. 

TLI-based applications should use poll(2) to test for asynchronous events. 
select 0 is supported only for compatibility with older applications. 

Both TLI and sockets provide mechanisms for asynchronous event notification. 
Sockets uses fentl () to request that the system issue a SIGIO signal when it 
becomes possible to perform I/O on a given file descriptor. TLI uses the 
I_SETSIG ioetl. This causes the system to send the process a SIGPOLL sig­
nal when the I/O event specified actually occurs. The TLI mechanism is the 
more powerful of the two, since it allows users to specify the precise kind of 
I/O event they want to be signaled on (see the streamio(7) manual page for 
the possible kinds of events). 

4-14 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

A process that issues functions in synchronous mode must still be able to recog­
nize certain asynchronous events immediately and act on them if necessary. 
Eight such asynchronous events are specified for TLI and cover both 
connection-oriented and connectionless modes (see the t look (3N) manual 
page). TLI routines that encounter trouble return the spCdal transport error 
TLOOK. The user can then use the t_look () function to identify the event that 
generated the error. Alternatively, the transport user can use t_look () to poll 
the transport endpoint periodically for asynchronous events. If a sockets func­
tion encounters trouble, the primitive will return an errno value directly. 

Error Handling 

TLI attempts to separate communications errors from system errors by defining 
two levels of errors: 

• Library level errors. Each library function has one or more error returns 
and indicates failure with a -1. An external integer, t_errno, holds the 
specific error number when such an failure occurs. This value is set when 
errors occur but is not cleared by successful library calls. It should there­
fore be tested only after an error has been indicated. A diagnostic func­
tion, t_error () , is provided for printing out information on the current 
transport error . 

• System errors. The standard external variable errno, is used to report 
system errors. Such errors can, of course, affect TLI functioning. When 
they do, t_errno is set to TSYSERR and errno is set to indicate the 
specific system error that occurred. The state of the transport provider 
may change if a transport error occurs. 

The socket interface provides a similar facility with qetsockopt () when called 
with an option of SO_ERROR. 

Sockets Migration and Sockets-to-TLI Conversion 4-15 



Sockets Migration and Socket.to-TU Conversion 

Sockets-to-TLI Conversion 

Table 4-1 shows some approximate TLI/-sockets equivalents. The comment 
field describes the differences. Where there is no comment, either the functions 
are the same or there is no equivalent function in one or the other interface. 

Table 4-1: Table of TU!Sockets Equivalents. 

TUfunction Socket fundion Comments 
t openO socket 0 

- socketpair () 

t_bindO bind 0 t_bindO sets the queue depth for passive 
sockets, but bind () doesn't. For sockets, the 
queue length is specified in the call to 
listen ( ). 

t _ optmgmt () getsockopt () t _ optmgmt () manages only transport options. 
setsockopt () getsockopt () and setsockopt () can 

manage.options at the transport layer, but also 
at the socket layer and at arbitrary protocol 
layers. 

t unbind 0 -
t close () close 0 
t _get info () getsockopt () t_getinfo 0 returns information about the 

transport. getsockopt () can return informa-
tion about the transport and the socket. 

t_getstate () -
t getname() getsockname () 

t sync 0 -
t allocO -
t free 0 -
t_lookO - getsockopt with the SO_ERROR option 

returns the same kind of error information as 
t_lookO. 

t_errorO perrorO 

4-16 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Table 4-1: Table of TUlSockets Equivalents. (continued) 

TU function Socket function Comments 

t _connect () connect () A connect () can be done without first bind-
ing the local endpoint. The endpoint must be 
bound before calling t_connect O. A con-
nect () can be done on a connectionless end-
point to set the default destination address for 
datagrams. 

t rcvconnect() -
t_listenO listen() t listen 0 waits for connection indications. -

listen() merely sets the queue depth. 

t accept 0 accept 

t_sndO send() sendto() and sendmsg () operate in connec-
sendto() tion mode as well as datagram mode. 
sendmsg () 

t_rcvO recv() recvfrom 0 and recvmsg 0 operate in con-
recvfrom() nection mode as well as datagram mode. 
recvmsgO 

t_snddis 0 -
t rcvdis 0 -
t sndrel () shutdown() 

t_rcvrelO -
t_sndudata 0 sendto() 

sendmsg() 

t_rcvudata 0 recvfrom() 
recvmsgO 

t rcvuderr 0 -
read 0 read() In TLI, you must push the tirdwr module 
write 0 write 0 before calling read () or write () ; in sockets, 

it is sufficient just to call read 0 or write 0 . 

Sockets Migration and Sockets-to-TLI Conversion 4-17 



Sockets Migration and Sockets-to-TLI Conversion 

Moving Sockets Applications to System V Release 4 

Although System V Release 4 sockets and the BSD sockets implementation are 
largely compatible, there are some differences an application programmer must 
be aware of before moving a BSD sockets-based application to System V 
Release 4. These differences are described in Table 4-2. 

Table 4-2: Differences In Sockets Implementations 

BSD UNIX System V Release 4.0 

Connection-Mode Primitives 

connect() 

If connect() is called on an unbound When connect(), is called on an 
socket, the protocol determines unbound socket, that socket is always 
whether or not the endpoint will be bound to an address selected by the 
bound before the connection takes transport provider. 
place. 

Data Transfer Primitives 

write() 

write() will fail with errno set to A call to writeO will appear to 
ENOTCONN if it is used on an uncon- succeed, but the data will be discarded. 
nected socket. The socket error option SO_ERROR will 

be set to ENOTCONN if this occurs. 

write () can be used on type A call to write () will return -I, with 
SOCK_DGRAM sockets (either AF_UNIX errno set to ERANGE. The functions 
or AF INET domains) to send zero send () , sendto () , or sendmsg () 
length data. should be used to send zero length 

data. 

4-18 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Table ~2: Differences In Sockets Implementations (continued) 

BSD UNIX System V Release 4.0 

read() 

A call to read() will fail with errno A call to read() will return zero bytes 
set to ENOTCONN if read () is used on read if the socket is in blocking mode. 
an unconnected socket which needs to If the socket is in non-blocking mode, it 
be connected. will return a -1 with errno set to 

EAGAIN. 

sendmsg() and readmsg() 

If the MSG_PEEK flag has been set If the MSG _PEEK flag is specified in a 
when sendmsg () is called, and access call to recvmsg () , and access rights 
rights are available, the access rights are available, the access rights will be 
will be copied, leaving them available transferred to the user buffer associated 
for reading by a subsequent call to with the receiving socket. They are 
recvmsg() . then destroyed, and the transferring 

socket has no further access to them. 
They are therefore unavailable to a 
subsequent call to recvmsg (). Any 
data associated with the access rights 
will also be copied to the user buffer 
and will not be available to 
recvmsgO. 

Information Primitives 

getsockname() 

getsocknameO will work when a pre- ge~sockname() will return -1 and 
viously existing connection has been errno will be set to EPIPE if a previ-
closed. ously existing connection has been 

closed. 

Sockets Migration and Sockets-to-TLI Conversion 4-19 



Sockets Migration and Sockets-to-TLI Conversion 

Table 4-2: Differences In Sockets Implementations (continued) 

BSD UNIX System V Release 4.0 

iodZ( ) and JentZ( ) 

SIOCSPGRP/FIOSETOWN/F_SETOWN() 

The This is not the case in SVR4. The only 
SIOCSPGRP/FIOSETOWN/F_SETOWN acceptable arguments to these system 
ioctl 0 's and the F_SETOWN calls is the caller's process id ora nega-
fcntlO take as argument a positive tive process group which has the same 
process id or negative process group absolute value as the caller's process id. 
indentifying the intended recipient list In other words, the only recipient of 
of subsequent SIGURG and SIGIO sig- SIGURG and SIGIO signals is the cal-
nals. ling process. 

Local~anag~nt 

bind 0 

bind () uses the credentials of the user A call to socket () causes the user's 
at the time of the bind () call to deter- credentials to be remembered and used 
mine whether the port requested to validate addresses used in bind () . 
should be allocated or not. 

setsockopt 0 

set sockopt () can be used at any Because of the state diagram specified 
time during the life of a socket. by the Transport Provider Interface 

(TPI), a setsockopt ()operation on a 
transport provider conforming to this 
specification will fail if issued on a 
socket that is not bound to a local 
address. 

4-20 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Table 4-2: Differences In Sockets Implementations (continued) 

BSD UNIX System V Release 4.0 

Specifically, if a socket is unbound and 
setsockopt () is used, then the 
operation will succeed in the AF _ INET 
domain, but will fail in the AF _UNIX 

shutdown () 

If shutdown is called with the value of Calling shutdown with the value of 
how equal to zero, further attempts to how equal to zero will not cause further 
receive data will return zero bytes attempts to receive data to return zero 
(EOF). bytes if the read(2) system call is used 

and the socket is in nonblocking mode. 
In this case read will return -1 with 
errno set to EAGAIN. If one of the 
socket receive primitives is used, the 
correct result (EOF) will be returned. 

If shutdown () is called with the value The same results will occur, except that 
of how equal to 2, further atempts to attempts to send data using the write 
receive data will return EOF. Attempts system call will cause errno to be set 
to send data will return -1 with errno to EIO. As in the above case, if a 
set to EPIPE with a SIGPIPE issued. socket primitive is used, the correct 

errno will be returned. 

If shutdown () is called with a value The same results will occur, except that 
of two for how, further attempts to attempts to send data using the 
receive data will return EOF, and write () system call will cause errno 
attempts to send data will return -1 to be set to EIO. If a socket primitive 
with errno set to EPIPE with a SIG- is used, the correct errno will be 
PIPE issued. returned. 

Sockets Migration and Sockets-to-TLI Conversion 4-21 



Sockets Migration and Socket.to-TLI Conversion 

Table 4-2: Differences In Sockets Implementations (continued) 

BSD UNIX System V Release 4.0 

Signals 

SIGIO 

S IG 10 is delivered every time new SIGIO is delivered only when data are 
data are appended to the socket input appended to a socket queue that was 
queue. previously empty. 

SIGURG 

A SIGURG is delivered every time new A SUGURG is delivered only when there 
data is anticipated or actually arrives. is no urgent data already pending. 

S ISSOCK -
The ISSOCK macro takes the mode of The ISSOCK macro does not exist. In 
a file as an argument. It returns 1 if SVR4, a socket is defined as a file 
the file represents a socket and 0 other- descriptor associated with a streams 
wise. character device that has the socket 

module pushed onto it. 

S IFSOCK() -
This file type identifies a socket There is no socket file type, and this 
descriptor. 'define does not exist. 

Miscellllneous 

If an invalid buffer is specified in a If an invalid buffer is specified in a 
function, the function will normally function, the user's program will prob-
return -1 with errno set to EFAULT. ably coredump. 

If Is -1 is executed on a directory If Is -1 is executed on a directory 
that contains a UNIX domain socket, an that contains a UNIX domain socket, a 
s will be printed on the left side of the p will be printed on the left side of the 
mode field. mode field. 

4-22 Programmer's Guide: Networking Interfaces 



Sockets Migration and Sockets-to-TLI Conversion 

Table ~2: Differences In Sockets Implementations (continued) 

BSD UNIX System V Release 4.0 

Executing Is -F will cause an equals 
sign (=) to be printed after any 
filename that represents a UNIX 
domain socket. 

Nothing will be printed after a 
filename that represents a UNIX 
domain socket. 

Sockets Migration and Sockets-to-TLI Conversion 4-23 









Index 

A 
abortive release 2: 13, 36 

accept (3N) 3: 7,34 

address 
binding 3: 48 
wildcard 3: 48 

asynchronous mode 2: 28, 51,63, 
4: 14-15 

authentication 3: 50 

B 
bind(3N) 3: 52 

binding local names 3: 4 

broadcasting 3: 51 

byte swapping 3: 27 

c 
clients 2: ii, 16,24-26,38-39, 4: 2 

client/ server model 3: 29 
close(2) 2: 48-50 

communication, C run-time routines 
3:27 

connect requests 2: 11-13, 17, 20-31, 
34-35, 51-65, 69 

multiple 2: 81 

connection errors 3: 7 

connection establishment 2: 10-12, 
23-31 

using sockets 3: 6 

connection release 2: 13, 36-39 

table of routines 2: 13 

connectionless sockets 3: 13 

connectionless-mode 2: 7, 14, 40-47, 

4:9-13 

Index 

example of transaction server 
2: 77-79 

servers 3: 36 
state table 2: 67 

connection-mode 2: 7-13,16-39,47, 

4: 2-9 

client side 4: 4-5 

example of client 2: 71-72 

example of server 2: 73-76, 81-87 
server side 4: 6-9 
state table 2: 68 

D 
data transfer 2: 12, 31-36, 43-45, 3: 9 

during connection 2: 24 
in byte stream mode 2: 32 

message interface 2: 32 
table of routines 2: 12 

datagram 
errors 2: 45-46 

Internet domain 3: 15-16 

socket 3: 2 
device names 2: 70, 4: 5 

disconnect requests 2: 26-31,33, 
35-38,49-51,57-60,63,69 

E 
event handling 2: 26-27 

event-driven TLI software, example 
of 2: 52-60 

expedited data 2: 35 

1-1 



Index 

F 
FD CLR macro 3: 18 
FD SET macro 3: 18 

G 
gethostbyaddr function 3: 24 
gethostbynarne function 3: 24 

H 
host names 3: 24 

incoming events 2: 64-65 
inetd(1M) 3: 30, 57 
inet ntoa function 3: 24 
Internet, Domain Stream Connection 

3: 10 
interrupt-driven socket I/O 3: 44 

I/O multiplexing 3: 17 
I/O requests, asynchronous 

notification 3: 45 
IPC (sockets) 

basics 3: 2 

Internet domain datagrams 3: 15 

Internet Domain Stream Connec-
tion 3: 12 

multiplexing 3: 17 
select(3C) 3: 20 
socket naming 3: 2 

UNIX domain 3: 2 

1-2 

L 
libraries, sockets 3: 23 
listen(3N) 3: 7 

local names 3: 4 

local transport interface management 
2:8-10,16-23,40-42 

M 
message boundaries 2: 35, 4: 3 

MSG 008 3: 41 
MSG PEEK 3: 41 
multiplexing 3: 17 

N 
name binding 3: 4 

names 
host 3: 24 
network 3: 24 
protocol 3:25 

name-to-address mapping 4: 9 

network 
configuration 3: 51 
names 3:24 

network selection 4: 5 
non-blocking sockets 3: 43 

o 
option negotiation 2: 40 
orderly release 2: 13, 33, 37, 70- 71 

OSI (Open Systems Interconnection) 
2: 1-4 

Reference Model 2: 2-4 
out of band data 3: 41 

Programmer's Guide: Networking Interfaces 



outgoing events 2: 62-63 

p 
port allocation 3: 50 
portability 3: 40 
process group 3: 45 
protocol 

independence 2: 69-70, 4: 9 
names 3: 25 
negotiation of options 2: 24 
selecting specific 3: 47 

R 
raw sockets 3: 3 
read(2) 2: 47, 49 
read/write interface 2: 47-50 

example of client program 2: 79-81 
ruptirne(1) 3: 36 

s 
select(3C) 3: 17; 19,47 

connection 3: 20 
sendto function 3: 55 . 
servers 2: 11,16,20,24,27-31,34-38 

connectionless-mode 3: 36 

setsockopt function 3: 51, 55 
SIGCHLD 3: 47 

signals, and process groups 3: 45 
socket 3: 1, 4: 1 

dosing 3: 10 
connectionless 3: 13 
conversio~ to Til 4: 1-23 
creation 3, 3 

Index 

Index 

datagram 3:2,14 
differences between BSD and UNIX 

System V 4: 1 

failure 3: 4 
flags 3:9 
non-blocking 3: 43 
options 3: 55 
raw 3:3 
stream 3: 2 
table of differences in implementa­

tions 4: 18-23 
table of TLI eqUivalents 4: 16 
types 3:2 

socket-based datagrams 4: 9-11 
state transitions 2: 14-15,61-68 

transport interface 2: 66-68 
stream sockets 3: 2 

STREAMS 
asynchronous feature 2: 51 
input/ output mechanism 2: 4, 48 
system call interface 2: 52 

synchronous mode 4: 14-15 
system errors 4: 15 

T 
tirdwr(7) 2: 47-50 
TU (Transport-Level Interface) (see 

transport interface) 
transport endpoints 2: 9, 48, 52-50, 64, 

69, 4: 1 

polling multiple endpoints 2: 52, 54 
transport interface 4: 1, 9 

datagrams 4: 11-13 
error handling 4: 15 
examples of 2: 71-87 
local management 2: 8-10, 16-23, 

40-42 

1-3 



Index 

local management common state 
table 2:66 

states 2: 61 
transport provider 2: 6, 42,45,47-48, 

52, 62, 69-70 
transport user 2: 6, 65 
transport-level programming 2: 1-90 
TSDU (transport service data unit) 

2:~2-33,69 

w 
wildc:ard address 3: 48 
write(2) 2: 47-48 

1-4 Programmer's Guide: Networking Interfaces 







5 

6 

7 

8 

Contents 

Introduction to Remote Procedure Calls 
Introduction to RPC 
RPC Overview 

rpcgen Programming Guide 
Introduction 
An rpcgen Tutorial 
Common RPC Programming Techniques 
RPC Language Reference 

Remote Procedure Call Programming 
Guide 
Introduction 
The Simplified Interface to RPC 
The Lower Levels of RPC 
Low-level Data Structures 
Low-level Program Testing Using Raw RPC 
Advanced RPC Programming Techniques 
Advanced Examples 

External Data Representation Standard: 
Protocol Specification 
Introduction to XDR 
XDR Data Type Declarations 
Other XDR Declarations 

Table of Contents 

5-1 
5-4 

6-1 
6-3 
6-21 
6-30 

7-1 
7-6 
7-17 
7-33 
7-36 
7-39 
7-59 

8-1 
~-3 
8-17 



Table of Contents _____________________ _ 

9 

10 

11 

II 

The XDR language Specification 
An Example of an XDR Data Description 
References 

Remote Procedure Calls: Protocol 
Specification 
Introduction 
RPe Protocol Requirements 
The RPC Message Protocol 
Authentication Protocols 
Record Marking Standard 
The RPC language 
rpcbind Protocol 
References 

RPC Administration 
Introduction to RPe Administration 
RPe Administration Files 
Secure RPe Overview 
Secure RPC Administration 

The YP Service 
Introduction to YP Service 
Implementing the YP Service 
Administering YP Maps 
Adding a New YP Server to the Original Set 
Summary of YP-Related Commands 
Fixing YP Problems 
Turning Off YP Services 

8-20 
8-24 
8-26 

9-1 
9-5 
9-10 
9-14 
9-22 
9-23 
9-26 
9-31 

10-1 
10-2 
10-7 
10-9 

11-1 
11-7 
11-23 
11-31 
11-35 
11-37 
11-46 

Programmer's Guide: Networking Interfaces 



_____________________ Tabla of Contents 

Index: Remote Procedure Calls 

Table of Contents III 





Figures and Tables 

FIgure 5-1: Network Communication with the Remote Procedure Can 
FIgure 5-2: Client-Side RPC Lower Levels 
FIgure 5-3: Server-Side RPC Lower Levels 

Table of Contents 

5-5 
5-14 
5-15 

v 









5 Introduction to Remote 
Procedure Calls 

Introduction to RPC 
Organization of Technical Information 
Definitions 

RPC Overview 
RPC Versions and Numbers 
Network Selection 

• Name-to-Address Translation 
The rpcbind Facility 

• Address Registration 
• The rpcinfo Command 

The Lower RPC Levels 
External Data Representation 

Table of Contents 

5-1 
5-1 
5-1 

5-4 
5-6 
5-7 
5-10 
5-11 
5-11 
5-13 
5-13 
5-15 





Introduction to RPe 

The Remote Procedure Calls (RPC) mechanism is a high-level communications 
paradigm for network applications. By use of RPC, programs on networked 
platforms can communicate with remote (and local) resources. 

Organization of Technical Information 

This chapter, '1ntroduction to Remote Procedure Calls", provides an overview 
of the RPC mechanism and the programming tools and protocols that support 
RPc. Terms used throughout this section are defined. 

The "rpcgen Programming Guide" chapter provides instruction on the use of 
rpcgen, the compiler used for creating C-language programs that use RPc. The 
RPC programming language is described in this chapter. 

The "Remote Procedure Call Programming Guide" chapter describes in detail 
the C-language interface to the RPC environment. The RPC interface allows 
programmers access to RPC at various levels, from high to low. High level RPC 
provides transparency and portability. Lower levels offer greater control of the 
communications. This chapter includes guidan~e on selecting an appropriate 
level for a given application. 

External Data Representation (XDR) is the protocol used by RPC for platform­
independent data communications. The "External Data Representation Stan­
dard: Protocol Specification" chapter is an XDR reference for RPC program­
mers. 

The "Remote Procedure Calls; Protocol Specification" chapter is a complete 
RPC programming reference. 

Definitions 

Bottom Level Lowest of the four lower RPC levels; programs 
written to this level can control many transport­
specific details. 

connection-oriented transport Connection-oriented transports are reliable and 
support byte-stream deliveries of unlimited data 
size. 

Introduction to Remote Procedure Calls 5-1 



Introduction to RPC 

connectionless transport 

datagram transport 

deserializing 

Expert Level 

Intermediate Level 

network client 

network service 

ping 

remote program 

RPC language 

RPC Package 

RPC Protocol 

5·2 

Connectionless transports have less overhead 
than connection-orient transports but are less 
reliable and maximum data transmissions are 
limited by buffer sizes. 

See connectionless transport. 

Converting data from XDR format to a 
machine-s~ific representation. 

Second-lowest of the four lower RPC levels; pro­
grams written to this level can: control client 
and server characteristics; interface with 
rpcbind; manipulate service dispatch. 

Second-highest of the four lower RPC levels; 
programs written to this level specify the tran­
sport they require. 

A process that makes remote procedure calls to 
services. 

A collection of one or more remote programs. 

A call to procedure 0 of an RPC program. Ping­
ing is used to verify the existence and accessibil­
ity of a remote program. Pinging can also be 
used to time network communications. 

Software that implements one or more remote 
procedures. 

A C-like programming language recognized by 
the rpcgen compiler. 

The collection of software and documentation 
used to implement and support remote pro­
cedure calls in System V. The RPC Package 
implements and is a superset of the functionality 
of the RPC Protocol. 

The message-passing protocol that is the basis of 
the RPC package. 

Programmer's Guide: Networking Interfaces 



RPC/XDR 

serializing 

server 

Simplified Interface 

transport 

Top Level 

universal address 

virtual circuit transport 

XDR language 

Introduction to RPC 

See RPC language. 

Converting data from a machine-specific 
representation to XDR format. 

Software that implements network services. 

The simplest level of the RPC package. 

Refers to the fourth layer of the Reference 
Model of Open Systems Interconnection (OSI). 

Highest of the four lower RPC levels; programs 
written to this level specify the type of transport 
they require. 

A machine-independent representation of a net-
work address. . 

See connection-oriented transport. 

A protocol specification language for data 
representation. RPC language builds on and is a 
superset of XDR. 

Introduction to Remote Procedure calls 5-3 



RPC Overview 

RPC allows network applications to use specialized kinds of procedure calls 
designed to hide the details of underlying networking mechanisms. RPC is 
transport independent, able to take advantage of whatever kinds of networking 
mechanisms (such as TCP lIP or ISO) may be available. RPC implements a logi­
cal client-to-server communications system designed specifically for the sup­
port of network applications. Generic facilities, such as rpcbind, associate net­
work services with universal network addresses. 

Refer to Figure 5-1. With RPC, the client makes a procedure call that sends data 
packets to the server, as necessary. When these packets arrive, the server calls a 
dispatch routine, performs whatever service is requested, sends back the reply, 
and the procedure call returns to the client. 

5-4 Programmer's Guide: Networking Interfaces 



RPC Overview 

Figure 5-1: Network Communication with the Remote Procedure Call 

client 
program 

Machine A 

program 
continues 

RPCCall 

return 

I 
I 
I 

service: 
daemon: 

invoke 
service 

request 
completed 

I 
I 

I 
I 
I 
I 
I 
I 
I 

V 

Machine B 

call 
service 

RPC Return 

service 
executes 

Programming with RPC produces programs that are designed to run within a 
client/ server network model. Such programs use RPC mechanisms to avoid the 
details of interfacing to the network, and provide network services to their call­
ers without requiring that the caller be aware of the existence and function of 
the underlying network. For example, a program can simply call rusersO, a C 
routine that returns the number of users on a remote machine. The caller is not 

Introduction to Remote Procedure Calls 5-5 



RPe Overview 

explicitly aware of using RPC - the call to rusers() is as simple as a call to 
mallocO. 

This section addresses only the C interface to RPC, but remote procedure calls 
can be made from any language. Note too that although this section describes 
the use of RPC for communication between processes on different machines, 
RPC works just as well for communication between different processes on the 
same machine. 

The following paragraphs provide capsule overviews of the key components 
and leading characteristics of RPC. Descriptions will address: 

• ''RPC Versions and Numbers" - RPC uses a program number, program 
version, procedure number tuple to uniquely identify procedures that can 
be called via RPc. 

• "Network Selection" - Programs can be written to operate over specific 
transports and transport types, or can be written to operate over system­
or user-chosen transports. 

• liThe rpcbind Facility" - rpcbind is a facility used to associate network 
services with universal network addresses. 

• liThe Lower RPC Levels" - The lower RPC levels available to client and 
server programs allow for greater control of RPC communications. 

• "External Data Representation (XDR)" - Data transmitted between RPC 
clients and servers is encoded in XDR transfer syntax. 

RPC Versions and Numbers 

Each RPC procedure is uniquely identified by a program number, version 
number, and procedure number. 

The program number identifies a group of related remote procedures, each of 
which has a different procedure number. Each program also has a version 
number, so when a minor change is made to a remote service (adding a new 
procedure, for example), a new program number does not have to be assigned. 

5-6 Programmer's Guide: Networking Interfaces 



RPe Overview 

To call a procedure to find the number of remote users, for example, you would 
look up the appropriate program, version and procedure number in a reference 
manual (just as you would look up the name of a memory allocator if you 
wanted to allocate memory). 

RPC programs should be assigned program numbers according to rules detailed 
in the "Program Number Assignment" sub-section of the "Remote Procedure 
Calls: Protocol Specification" chapter in this guide. 

Network Selection 

Network selection is a simple way by which users and applications may dynam­
ically select transports, according to both their preferences and the available 
transports. It is based on two mechanisms, the /etc/netconfig database, 
which lists the transports available on the host and identifies them by type, and 
the optional environmental variable NETPATH, which allows the user to specify 
preferences among the transports available in /etc/netconfig that are accept­
able to the application. 

To create a service for a particular transport, an application must interface to 
RPC at a level below the top level, i.e., the level composed of 
clnt create () and its associated routines. Only then can it specify the 
types-of transports that it prefers. See below for details about the various 
RPC levels. 

The /etc/netconfig file contains several lines, each of which corresponds to 
an available transport. Here are some possible entries: 

Introduction to Remote Procedure calls 5-7 



RPC OVerview 

For the details about /etc/netconfiq, and about the applications interface to 
it, see the qetnetconfiq(3N) manual page and the "Network Services" 
Chapter in the System Administrator's Guide. Here, we just want to mention a 
few points: 

• Each entry contains an identifier (the first field) which gives the network 
identifier by which the transport is commonly known. 

• Each entry also contains a flag or set of flags (the third field) that 
identifies it by type - the v flag, for example, identifies any transport 
that is 'visible.' 

• The last field names a run-time linkable module that contains the name­
to-address translation routines associated with the transport. (See below). 

• The loopback transports are required for registering services with 
rpcbind. They are local transports, available only to local clients and 
servers, and hence are more secure than other transports. 

The format of NETP ATH is simple: an ordered list of network identifiers 
separated by colons (:) (for example: udp: tcp: starlan). By setting NETPATH, 
the user can specify the order in which the application should try the various 
networks. If NETPATH is not set, the system defaults to all visible transports 
specified in /etc/netconfiq, in the order they appear. 

5-8 Programmer's Guide: Networking Interfaces 



RPC Overview 

1 .................. 

1 

•••.•.....•..•. 1 Applications can choose to Ignore a use(s N,TPATH. 
NQTJ; 
«<~«>: 

RPC divides selectable transports into the following types: 

netpath 

"" 

visible 

circuit v 

datagrarn_v 

circuit n 

udp 

tcp 

Choose from those transports that have been specified in the 
NETPATH environment variable. If NETPATH is not set, the sys­
tem defaults to all visible transports specified in 
/etc/netconfig, in the order they appear. 

(null) - same as selecting netpath. 

Choose those transports that have the visible flag ('v') set in 
their /etc/netconfig entries. 

Same as visible, but restricted to connection-oriented tran­
sports. 

Same as visible, but restricted to connectionless transports. 

Choose from whatever is defined in NETPATH, but restrict to 
connection-oriented transports. 

Choose from whatever is defined in NETPATH, but restrict to 
connectionless transports. 

(Obsolete. For backwards compatibility.) - specifies Internet 
User Datagram Protocol (UDP). 

(Obsolete. For backwards compatibility.) - specifies Internet 
Transmission Control Protocol (TCP). 

When a transport-dependent application begins execution, it begins by calling 
the setnetconfigO, getnetconfigO and endnetconfigO routines, using 
them to search /etc/netconfig for a transport of appropriate type. This 
information is then stored in local data structures of type struct netconfig 
and is available for later use. setnetconfigO, getnetconfigO, and end­
netconfigO are described on the getnetconfig(3N) manual page; the Net­
work Selection Administrative file /etc/netconfig is described on the 
netconfig(4) manual page. 

Introduction to Remote Procedure Calls 5-9 



RPC OVerview 

Taken together, these mechanisms allow a fine degree of control over network 
selection: a user can specify a preferred transport, and if it is reasonable, appli­
cations will use it. In cases where the specified transport is inappropriate (as, 
for example, when a remote server does not support a specified transport) the 
application should automatically try others with the right characteristics. 

Name-to-Address Translation 
Each transport has an associated set of routines that convert between universal 
network addresses (string representations of transport addresses) and their local 
address representation. These universal addresses are passed around within the 
RPC system (for example, between rpcbind and a client). When any program­
ming interface to the transport layer is made, a transport-specific name-to- . 
address translation routine is called to convert the universal address into local 
form. Each transport has associated with it a run-time loadable library that con­
tains the name-to-address translation routines associated with it. The main 
translation routines are: 

netdir_getbyname: 

netdir_getbyaddr: 

Translates from host/ service pairs and a 
netconfig structure (e.g. server!, rpcbind) 
to a set of netbuf addresses. netbuf's are 
Transport Layer Interface (TLI) structures that 
are used at run-time to contain transport-specific 
addresses. 

Translates from netbuf addresses and a 
netconfig structure into host/service pairs. 

uaddr2taddr: Translates from universal addresses anq a 
netconfig structure to netbuf addresses. 

taddr2uaddr: Translates from netbuf addresses and a 
netconfig structure to universal addresses. 

For more details on these routines, see the netdir(3N) manual page. 

5·10 Programmer's Guide: Networking Interfaces 



RPC Overview 

The rpcbind Facility 

Client programs need a way to find server programs; that is, they need a way to 
look up the addresses of server programs. Network transport services do not 
themselves provide such a service; they merely provide process-to-process mes­
sage transfer across a network. A message is sent to a transport-specific net­
work address. A network address is a logical communications channel; by wait­
ing on a network address, a process receives messages from the network. 

RPC, being transport independent, makes no assumptions about the structure of 
a network address. It deals with universal addresses, specified only as null­
terminated strings of characters. RPC translates universal addresses into local 
transport addresses by using routines specific to each transport provider. For 
more details on these routines, see the netdir(3N) manual page. 

Operating systems provide (differing) mechanisms by which a process can wait 
on a network address, i.e, synchronize its activity with arriving messages. Thus, 
messages are not sent across networks to receiving processes, but rather to the 
transport address at which receiving processes pick them up. Transport 
addresses are valuable because they allow message receivers to be specified in a 
way that is independent of the conventions of the receiving operating system. 
The rpcbind protocol defines a network service that provides a standard way 
for clients to look up the transport address of any remote program supported 
by a server. Because the rpcbind protocol can be implemented for any tran­
sport, it provides a single solution to a general problem that works for all 
clients, all servers and all networks. 

Address Registration 

Because rpcbind is responsible for mapping network services to their 
addresses, its address must be well known. The name-to-address translation 
routines for any particular transport should know and reserve a particular 
address for rpcbind. 

In the Internet domain, this problem is solved by always assigning rpcbind the 
port number 111. Unfortunately, this simple solution is not acceptable on all 
transports. 

rpcbind begins each session by registering its location on each of the tran­
sports supported by the host. rpcbind is the only network service that must 
have such a well-known address. The address must be well-known for a given 
transport because rpcbind is responsible for registering the addresses of other 

Introduction to Remote Procedure Calls 5-11 



RPC Overview 

network services and making those addresses available to network clients. 
Thus, services make their addresses available to clients by registering their 
addresses with their host's rpcbind daemon. Thereafter, the addresses of the 
services are available to rpcinfo(1M) and to programs using library routines 
specified in rpcbind(3N). 

RPC-based servers typically get mapped to network addresses at run time, and 
then they register with rpcbind, and neither they nor their clients can make 
any assumptions about what those network addresses will be. 

rpcbind is started by the system or RPC administrator. Both server programs 
and client programs call rpcbind. 

1 .•. N .••.•.•. O .•. ;~ .• ~ .••.••. il ~~~~i~:::. ~::::yS~=J ~';''':''l :~~~~:~~:mS~:::,e~~~n:scl:~ < program, as when an NFS server calls an rpcbind server. LikeWise, when 
a client program directs a "remote" procedure call to its own machine, the 
machine acts as both client and server. 

As part of its initialization, a server program calls its host's rpcbind daemon to 
register itself in the host's registered-address map. Whereas server programs 
call rpcbind to update address maps, clients call them to query those maps. 
To find a remote program's address, a client sends an RPC call message to a 
server machine's rpcbind daemon; if the remote program is on the server, the 
daemon returns the relevant address in an RPC reply message. The client pro­
gram can then send RPC call messages to that address. 

The rpcbind protocol (for details, see the "Remote Procedure Calls: Protocol 
Specification" chapter) provides a procedure, RPCBPROC_CALLITO, with which 
rpcbind can assist a client in making a remote procedure call. A client pro­
gram passes the target procedure's program number, version number, pro­
cedure number (for a discussion of these numbers, see the "Remote Procedure 
Call Programming Guide" chapter) and arguments in an RPC call message. 
rpcbind then looks up the target procedure's address in the address map and 
sends an RPC call message, including the arguments received from the client, to 
the target procedure. 

When the target procedure returns results, RPCBPROC_CALLITO passes them on 
to the client program. It also returns the target procedure's address so the client 
can later call it directly. 

5·12 Programmer's Guide: Networking Interfaces 



RPC Overview 

The RPC library provides an interface to all rpcbind procedures. Some of the 
RPC library procedures also call rpcbind automatically for client and server 
programs. 

The rpcinfo Command 

rpcinfo is a shell command that reports current RPC registration information 
known to rpcbind (and can be used, by administrators, to delete registrations). 
rpcinfo can be used to find all the RPC services registered on a specified host 
and to report their universal addresses and the transports for which they are 
registered. It can also be used to call (ping) a specific version of a specific pro­
gram on a specific host using a TCP or UDP transport, and to report whether a 
response is received. For details, see rpcinfo(1M). 

The Lower RPe Levels 

There are various levels at which it is possible to interface to the RPC library 
services. These levels are described in detail in the "Remote Procedure Call 
Programming Guide" chapter. Understanding the lower levels of RPC is help­
ful but not necessary if you plan to use rpcgen to generate your RPC applica­
tions. For usage of rpcgen, refer to the "rpcgen Programming Guide" 
chapter. 

Figure 5-2 illustrates client-side lower level interfaces, that are available for 
transport-handle creation. Figure 5-3 illustrates transport-handle creation for an 
RPC server. Note the similarity of hierarchies on each side. 

Introduction to Remote Procedure Calls 5-13 



RPC Overview 

Figure 5·2: Cllent-8lde RPC Lower Levels 

5-14 

clnt create(host, proq, vers, nettype) 
"ToP Level" - transport is selected by network type. 

I 
I 

(Network Selection) 
Application controls transport selection beluw this point. 

I 
I 

clnt tp create(host, proq, vers, netconfiq) 
"Intermediate Level" - application knows what transport it will use. 

I 
I 

(Name-to-Address Translation) 
I 
I 

clnt tli create(fd, netconfiq, ... ) 
"Expert Level" -AppliCation can nuw directly manipulate the transport. 

I 
I 

clnt dq create() clnt vc create() 
"Bottom Level" ~Only very specialized applications neeiaccess to this level. 

Programmer's Guide: Networking Interfaces 



RPC Overview 

Figure 5-3: Server-Side RPC Lower Levels 

svc create(dispatch, proq, vers, nettype) 
"Top Level" - transport is selected by network type. 

I 
I 

(Network Selection) 
Application controls transport selection beluw this point. 

I 
I 

svc tp create (dispatch, proq, vers, netconfiq) 
"Intermediate Level" - application knuws what transport it will use. 

I 
I 

(Name-to-Address Translation) 
I 
I 

svc tli create(fd, netconfiq, ... ) 
"Expert Level" ~ Appiication can nuw directly manipulate the transport. 

I 
I 

svc dq create() svc vc create() 
"Bottom r.evel"-- Only very specialized applications need access to this level. 

External Data Representation 

RPC uses External Data Representation (XDR), a protocol for the machine­
independent description and encoding of data. XDR is useful for transferring 
data between different computer architectures. 

RPC can handle arbitrary data structures, regardless of different machines' byte 
orders or structure layout conventions, by always converting them to XDR 
representation sending them over the wire. The process of converting from a 
particular machine representation to XDR format is called serializing, and the 

Introduction to Remote Procedure Calls 5-15 



RPC OVerview 

reverse process is called deserializing. For a detailed discussion of XDR, see the 
"External Data Representation Standard: Protocol Specification" chapter. 

5-16 Programmer's Guide: Networking Interfaces 







6 rpcgen Programming Guide 

Introduction 6-1 
An Overview of rpcgen 6-1 
Organization of Technical Information 6-2 

An rpcgen Tutorial 6-3 
Converting Local Procedures into Remote Procedures 6-3 
Generating XDR Routines with rpcgen 6-12 
Using Preprocessing Directives 6-19 

Common RPC Programming Techniques 6-21 
Network Types (transport selection) 6-21 
Timeout Changes 6-22 
Client Authentication 6-23 
rpcgen Command-line Define Statements 6-24 
Server Response to Broadcast Calls 6-25 
Port Monitor Support 6-26 
Dispatch Tables 6-27 
Debugging with rpcgen 6-29 

RPC Language Reference 6-30 
Definitions 6-30 
Enumerations 6-31 
Constants 6-31 
Typedefs 6-32 
Declarations 6-32 
Structures 6-34 

Table of Contents 



Table of Contents _______________________ _ 

II 

Unions 
programs 
Special Cases 

6-34 
6-35 
6-37 

Programmer's Guide: Networking Interfaces 



Introduction 

An Overview of rpcgen 

rpcgen is a compiler. It accepts a remote program interface definition written 
in a language, called RPC Language. RPC Language is similar to C. rpcgen 
produces a C language output for RPC programs. This output includes: 

• stub versions of the client routines 

• a server skeleton 

• XDR filter routines for both parameters and results 

• a header file that contains common definitions 

• (optionally) dispatch tables that the server can use to check authorizations 
and then invoke service routines. 

rpcgen's output files can be compiled and linked in the usual way. 

The client stubs interface with the RPC library and effectively hide the transport 
from their callers. The server skeleton similarly hides the transport from the 
server procedures that are to be invoked by remote clients. 

The developer writes server procedures (in any language that observes system 
calling conventions) and links them with the server skeleton produced by 
rpcgen to get an executable server program. To use a remote program, the pro­
grammer writes an ordinary main program that makes local procedure calls to 
the client stubs produced by rpcgen. Linking this program with stubs pro­
duced by rpcgen creates an executable program. (At present the main program 
must be written in C.) 

rpcgen options can be used to suppress stub generation and to specify the tran­
sport to be u~d by the server skeleton. 

rpcgen reduces the development time that would otherwise be spent coding 
and debugging low-level routines, at a small cost in efficiency and flexibility. 
For speed-critical applications, though, rpcgen allows programmers to mix 
low-level code with high-level code. Hand-written routines can be linked with 
the rpcgen output without any difficulty. Also, one may proceed by using 
rpcgen output as a starting point, and then rewriting it as necessary. (For a 
discussion of RPC programming without rpcgen, see the "Remote Procedure 
Call Programming Guide" chapter.) 

rpcgen Programming Guide 6·1 



Introduction 

Organization of Technical Information 

This chapter provides rpcgen tutorial and user information. 

The section titled II An rpcgen Tutorial" describes through examples how a pro­
grammer can use rpcgen to do such things as: 

• convert an application to run over a network 

• use rpcgen to create XDR routines 

• make use of rpcgen-supported preprocessing directives. 

The "Common RPC Programming Techniques" section suggests some coding 
and rpcgen usage techniques. 

Finally, the "RPC Language Reference" provides a complete description of the 
RPC programming language recognized by the rpcgen compiler. 

6-2 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

The details of programming applications to use Remote Procedure Calls can be 
overwhelming. Perhaps most daunting is the writing of the XDR routines 
necessary to convert procedure arguments and results into their XDR format 
and vice-versa. 

Fortunately, rpcgen(1) exists to help programmers write RPC applications sim­
ply and directly. rpcgen does most of the dirty work, allowing programmers 
to debug the main features of their application, instead of requiring them to 
spend most of their time on their transport interface code. 

This section presents some basic rpcgen programming examples. 

Converting Local Procedures into Remote Procedures 

Assume an application that runs on a single machine. Suppose we want to con­
vert it to run over the network. Here we will show such a conversion by way 
of a simple example program that prints a message to the console. The source 
file for the original program might look like: 

rpcgen Programming Guide 6-3 



An rpcgen Tutorial 

For local use on a single machine, this program could be compiled and executed 
as follows: 

6-4 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

If the printmessage () function were turned into a remote procedure, it could 
be called from anywhere in the network. It is not difficult to make a procedure 
remote. 

In the context of RPC programming. it has become acceptable to use the 
term procedure to refer to a C-Ianguage function. The terms are used inter­
changeably in this guide. 

In general, it is necessary to figure out what the types are for all procedure 
inputs and outputs. Here, the procedure printmessage () takes a string as 
input, and returns an integer as output. Knowing this, we can write a protocol 
specification in RPC language that describes the remote version of printmes­
sage () . The RPC language source code for such a Specification might look 
like: 

Remote procedures are always declared as being part of remote programs. The 
above is actually a declaration for an entire remote program, one that contains 
the single procedure P RINTMES SAGE • 

rpcgen Programming Guide 6-5 



An rpcgen Tutorial 

I •...........•...•.. · ..•............... 1 ••.••.•.•.••.•.•.•.•.••. 
1

In the context of RPe programming, the term "",moleprog ... m" actual~ t.lQtE refers to a collection of (related) procedures. 
:~:::::\::::::::::::: 

In this example, the PRINTMESSAGE procedure is declared to be procedure 1, in 
version 1 of the remote program whose number is Ox20000001. [Refer to 
"Program Number Assignment" in the "Remote Procedure Calls: Protocol 
Specification" chapter for guidance on choice of program numbers.] 

By convention, all RPC services provide for a procedure 0; a call to a remote 
program's procedure 0 should do nothing (a "no-op") except succeed. To ping 
means to call procedure 0 of a remote program. Pinging is used to verify the 
existence and accessibility of a remote program. 

Using rpcgen, no null procedure (procedure 0) need be written because 
rpcgen generates it automatically. 

Notice that the program and procedure names are declared with all capital 
letters. This is not required, but is a good convention to follow. 

Notice also that the argument type is string and not char * as it would be 
in C. This is because a char * in C is ambiguous. Programmers usually 
intend it to mean a null-terminated string of characters, but it could also 
represent a pointer to a single character or a pointer to an array of characters. 
In RPC language, a null-terminated string is unambiguously called a string. 

There are just two more things to write: 

• the remote procedure itself 

• the main client program that calls it 

Here's one possible definition of a remote procedure to implement the 
PRINTMESSAGE procedure we declared above: 

6-6 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

Notice that the declaration of the remote procedure printmessage_l () differs 
from that of the local procedure printmessage () in three ways: 

• It takes a pointer to a string instead of a string itself. This is true of all 
remote procedures: they always take pointers to their arguments rather 
than the arguments themselves . 

• It returns a pointer to an integer instead of an integer itself. This is also 
characteristic of remote procedures: they return pointers to their results. 

rpcgen Programming Guide 6-7 



An rpcgen Tutorial 

When rpcgen is used, it is essential to have result (in this 
example) declared as static. 

In the code generated by rpcqen, the result address is converted to XDR 
fonnat after the remote procedure returns. If the result were declared 
local to the remote procedure, references to its address would be invalid 
after the remote procedure returned. So the result must be declared 
static when rpcqen is used. 

• It has _1 appended to its name. In general, all remote procedures called 
by rpcqen are named by the following rule: the procedure name in the 
program definition (here PRINTMESSAGE) is converted to alllower-case 
letters, an underbar C) is appended to it, and the version number (here 1) 
is appended. 

The last thing to do is declare the main client program that will call the remote 
procedure. Here is one possibility: 

6-8 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

rpcgen Programming Guide 6-9 



An rpcgen Tutorial 

There are four things to note here: 

• First a client handle is created using the RPC library routine 
clnt_create () . This client handle will be passed to the stub routines 
that call the remote procedure. (The client handle can be created in other 
ways as well, see the "Remote Procedure Call Programming Guide" 
chapter for details.) 

• The last parameter to clnt_create () is ' 'visible' " which specifies 
that any transport noted as visible in /etc/netconfig can be used. 

• The remote procedure printmessage_l () is called exactly the same 
way as it is declared in msgyroc . c except for the inserted client handle 
as the second argument. It also returns a pointer to the result instead of 
the result itself. 

• The remote procedure call can fail in two ways. The RPC mechanism 
itself can fail or, alternatively, there can be an error in the execution of the 
remote procedure. In the former case, the remote procedure [in this case 
print message 10] returns with a NULL. In the later case, however, 
the details of error reporting are application dependent. Here, the error is 
being reported via *result. 

Here's how to put all the pieces together: 

6-10 Programmer's Guide: Networking Interfaces 



An rpcgan Tutorial 

Two programs are compiled here: the client program rprintmsg and the 
server program msg_server. Before doing this, rpcgen was used to fill in the 
missing pieces. 

Here is what rpcgen (called without any flags) did with the input file msg. x: 

1. It created a header file called msg. h that contained 'define statements 
for MESSAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in the 
other modules. 

2. It created the client "stub" routines in the msg clnt. c file. Here there 
is only one, the printmessage_1 () routine, that was called from the 
rprintmsg client program. If the name of an rpcgen input file is 
FOO . x, the client stubs output file is called roo _ clnt . c. 

3. It created the server program in msg_svc. c that calls printmes-
sage _1 () from msgyroc . c. The rule for naming the server output file 
is similar to the previous one: for an input file called FOO. x, the output 
server file is named FOO svc. c. 

If invoked with the -T argument, rpcqen creates an additional output file 
that contains index information used for the dispatching of service routines. 

Once created, the server should be copied to a remote machine and run. (If the 
machines are homogeneous, the server can be copied as a binary. Otherwise, 
the source files will need to be copied to and compiled on the remote machine.) 
For this example, the remote machine is called remote and the local machine is 
called local. The server is started from the shell on the remote system: 

rpcgan Programming Guida 6-11 



An rpcgen Tutorial 

li;1 Server processe., like msq_.e~er, created whh rpcqen alway. run in the 
>Nqri background. It is not necessary to follow the server's invocation with an 

y ampersand (&). Servers generated by rpcgen can also be invoked with 
port monitors like listen and inetd, instead of from the command line. 

Thereafter, a user on local can print a message on the console of system 
remote as follows: 

Using rprintmsg, a user can print a message on any system console (including 
the local console) if the server msg_server is running on the target system. 

Generating XDR Routines with rpcgen 

The previous example illustrated the automatic generation of client and server 
RPC code. rpcgen may also be used to generate XDR routines, i.e., the rou­
tines necessary to convert local data structures into XDR format and vice-versa. 

This example presents a complete RPC service: a remote directory listing ser­
vice, built using rpcgen not only to generate stub routines, but also to generate 
the XDR routines. 

Here is the protocol description file: 

6·12 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

Types (like readdir_res in the example above) can be defined using the 
struct, union and enum keywords. These keywords should not be used 
in later declarations of variables of those types. For example, if you define a 
union foo, you should declare using only foo and not union foo. 

rpcqen compiles RPC unions into C structures. It is an error to declare 
RPC unions using the union keyword. 

rpcgen Programming Guide 6·13 



An rpcgen Tutorial 

Running rpcgen on dir . x creates four output files. First are the basic three 
described previously: those containing the header file, client stub routines and 
server skeleton. 

The fourth contains the XDR routines necessary for converting instances of 
declared data types from host platform representation into XDR fonnat, and 
vice-versa. TheSe routines are output in the file dir_xdr. c. 

For each data type used in the . x file, rpcgen assumes that the RPC/XDR 
library contains a routine whose name is the name of the datatype, prepended 
by xdr _ (e.g. xdr _ int). If a data type is defined in the . x file, then rpcgen 
generates the required xdr _ routine. 

If there are no such data types definitions, in an RPC source file (e.g. msg.x), 
then an _ xdr . c file will not be generated. 

An RPC programmer may write a . x sou.rce file that uses a data type not sup­
ported by the RPC/XDR library, and deliberately omit defining the type (in the 
. x file); if so, the programmer has to provide that xdr _ routine. This is a way 
for programm~rs to provide their own customized xdr _ routines. See the 
"Remote Proc~ure Call Programming Guide" chapter for more details on pass­
ing arbitrary data types. 

Here is the server-side implementation of the READDIR procedure. 

6-14 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

rpcgen Programming Guide 6-15 



An rpcgen Tutorial 

Here is the client side program to call the server: 

6-16 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

rpcgen Programming Guide 6-17 



An rpcgen Tutorial 

Again using the hypothetical systems named local and remote, the files can 
be compiled and run as follows: 

After installing an executable copy of rls on system local, a user on that sys­
tem can list the contents of /usr/share/lib on system remote as follows: 

6-18 Programmer's Guide: Networking Interfaces 



An rpcgen Tutorial 

Using Preprocessing Directives 

The rpcqen compiler supports C and other preprocessing features. 

C-preprocessing is performed on rpcqen input files before they are compiled. 
All C-preprocessing directives are legal within a . x file. Five symbols may be 
defined by rpcqen, depending on the type of output file being generated. The 
symbols are: 

Symbol Usage 
RPC HDR For header-file output-
RPC XDR For XDR routine output 
RPC SVC For server-skeleton output 
RPC CLNT For client stub output 
RPC TBL For index table output 

The rpcqen compiler provides an additional preprocessing feature: any line 
that begins with a percent sign (%) is passed directly into the output file, 
without any interpretation of the line. 

rpcgen Programming Guide 6·19 



An rpcgen Tutorial 

:::::::::::.111::::): compiler may not place the lines where the programmer intended. 
T The , feature is not always useful, owing 10 a limilation: The rpcgen 

Here is a simple example that illustrates rpcgen preprocessing features: 

6-20 Programmer's Guide: Networking Interfaces 



Common RPC Programming Techniques 

This section suggests some coding and rpcqen usage techniques. 

network types rpcqen can produce for specific transport types 
(or even specific transports) 

timeout changes 

authentication 

define statements 

broadcast calls 

port monitor support 

dispatch tables 

debugging 

client default timeout periods can be changed 

clients may authenticate themselves to servers; 
interested servers can examine client authentica­
tion information 

C-preprocessing symbols can be defined on 
rpcqen command lines 

servers need not send NULL replies to broadcast 
calls 

port monitors can '1isten" for RPC servers 

programs can access server dispatch tables 

clients and servers created with rpcqen can be 
linked and run on a single system for debugging 
purposes 

Network Types (transport selection) 

The rpcqen compiler takes optional arguments that allow a programmer to 
specify a desired network type or even a specific network identifier. (For details 
about network selection, see the "Remote Procedure Call Progr~rnrning Guide" 
chapter.) 

i71'n the context 01 APe programming, the term ",,,,,,,,* is frequent~ used <as ... ~i;.. here) as a synonym for transport or transport type. 
)i~i~j~ j~i~:~:jjjj~ jjfjj 

The -s flag creates a server that responds to requests on all transports of a 
specified type. For example, the invocation . 

rpcqen -s dataqram_n prot.x 

writes a server to standard output that responds to any of the connectionless 

rpcgen Programming Guide 6-21 



Common RPC Programming Techniques 

transports specified in the NETP ATH environment variable (or in 
/etc/netconfiq, if NETPATH is not defined or does not specify any connec­
tionless transports). 

Similarly, the -n flag creates a server that responds only to requests from the 
transport specified by a single network identifier. 

::::~:}}}) network identifiers are host-specific. the server produced may not run on 
T Be caref~1 usi~g servers created by <pC- with the -n flag. Because 

::'!) other hosts in the expected way. 

Timeout Changes 

After sending a request to the server, a client program waits for a default 
amount of time (25 seconds) to receive a reply. This timeout may be changed 
using the clnt_control 0 routine. [See rpc(3N).] 

:::!F!/ amount of time required for "round trip" communications over the net-
T When conside'ing timeout periods, be su,e to allow fo, the minimal 

.:::::):: work. 

Here is a small code fragment to illustrate the use of clnt _control () : 

6·22 Programmer's Guide: Networking Interfaces 



Common RPC Programming Techniques 

Client Authentication 

The client create routines do not, by default, have any facilities for client authen­
tication, but the client may sometimes want (or be required) to authenticate 
itself to the server. Doing so is trivial, and looks about like this: 

The following example illustrates one of the least secure authentication 
methods in common use. See the "Remote Procedure Call Programming 
Guide" for information on the more secure DES authentication technique. 

Servers that want to know more about an RPC call can check authentication 
information. For example, getting authentication information is important to 
servers that want to achieve some level of security. This extra information is 
actually supplied to the server as a second argument. (For details, see the struc­
ture of sve req, in the "Authentication" section of the "Remote Procedure 
Call Prograii'uning Guide" chapter. 

Here is an example of a remote procedure whose server checks client authenti­
cation information. This is a rewrite of the printmessage 1 () that is 
developed in the "An rpegen Tutorial" section. The rewritten procedure will 
only allow root users to print a message to the console: 

rpcgen Programming Guide 6-23 



Common RPC Programming Techniques 

rpcgen Command-line Define Statements 

The rpcgen compiler provides a means for defining C-preprocessing symbols 
and assigning values to them from the command line. Command-line define 
statements can, for example, be used to compile conditional debugging code 
that is compiled only when the DEBUG symbol is defined. For example: 

6-24 Programmer's Guide: Networking Interfaces 



Common RPe Programming Techniques 

Server Response to Broadcast Calls 

When a procedure is known to have been called via broadcast RPC, and the 
called procedure determines that it cannot provide the client with a useful 
response, it is usually best for the server to send no reply back to the client. 
This reduces network traffic. 

To prevent the server from replying, a remote procedure can return NULL as its 
result. The server code generated by rpcgen will detect this and not send out 
a reply. 

Here is an example of a procedure that replies only if it thinks it is an NFS 
server: 

If a procedure returns type void *, it must return a non-NULL pointer if it 
wants RPe to send a reply. 

rpcgen Programming Guide 6-25 



Common RPC Programming Technlql!es 

Port Monitor Support 

Port monitors such as inetd and listen can monitor network addresses for 
specified RPC services. Whenever a request comes in for a particular service, 
the port monitor spawns a server process to provide for it. After the call has 
been serviced, the server can exit. This has the advantage of conserving system 
resources: fewer blocked processes waiting for work. 

It may be useful for services to wait for a specified interval after satisfying a ser­
vice request, on the chance that another request will follow. If there is no call 
within the specified time, the server will exit and some port monitors, like 
inetd, will continue to monitor for the server. If a later request for the service 
occurs, the port monitor will give the request to a waiting server process (if 
any), rather than spawning a new process. 

<} spawn a n~w process i~ response to ~ service request. If it is ~~own t~at 
T When monitoring for a server, some port monitors, like listen, alway< 

<» a server Will be used with such a mOnitor, the server should eXit Immedl-
. ately on completion. 

By default, services created using rpcgen wait for 120 seconds after servicing a 
request before exiting. The programmer can, however, change that interval with 
the -K flag. 

Here the server will wait only for 20 seconds before exiting. To create a server 
that exits immediately, -K 0 can be used. To create a server that never exits (a 
normal server), the appropriate argument is -K -l. 

All servers generated by rpcgen assume the following support from port moni­
tors: 

• the name of the transport provider is passed through the environment 
variable NLS PROVIDER 

• the connection is passed on an open TLI file descriptor 0 

6-26 Programmer's Guide: Networking Interfaces 



Common RPe Programming Techniques 

See the "Using Port Monitors" section of the "Remote Procedure Call Program­
ming Guide" chapter for a further discussion of port monitors. 

Dispatch Tables 

It is sometimes useful for programs to have access to dispatch tables used. by the 
RPC package. For example, the server dispatch routine may need. to check 
authorization and then invoke the service routine; or a client library may want 
to deal with the details of storage management and XDR data conversion. 

When invoked with the -T option, rpcqen generates RPC dispatch tables for 
each program defined in the protocol description file, proto. x, in the file 
proto _ tbl . i. For sample protocol description file, dir . x, given in the "Gen­
erating XDR Routines with rpcqen" section, above, a dispatch table file created 
by rpcqen would be called dir_tbl. 1. The suffix. i stands for "index." 

Each entry in the dispatch table is a struct rpcqen_table, defined in the 
header file proto. h as follows: 

where 

proc 

xdr_arq 

len_arq 

xdr res 

len res 

is a pointer to the service routine, 

is a pointer to the input (argument) xdr _ routine, 

is the length in bytes of the input argument, 

is a pointer to the output (result) xdr_ routine, and 

is the length in bytes of the output result. 

rpcgen Programming Guide 6·27 



Common RPC Programming Techniques 

The table, named dirprog_l_table for the example, is indexed by procedure 
number. The variable dirprog 1 nproc contains the number of entries in the 
table. - -

An example of how to locate a procedure in the dispatch tables is shown by the 
routine findyroc () : 

Each entry in the dispatch table contains a pointer to the corresponding service 
routine. However, that service routine is usually not defined in the client code. 
To avoid generating unresolved external references, and to require only one 
source file for the dispatch table, the rpcgen service routine initializer is 
RPCGEN_ACTION(proc_ver). 

This way, the same dispatch table can be included in both the client and the 
server. Use the following define when compiling the client: 

and use this define when compiling the server: 

6-28 Programmer's Guide: Networking Interfaces 



Common RPe Programming Techniques 

Debugging with rpcgen 

When programming with rpcgen, the client program and the server procedure 
can be tested together as a single program by linking them with each other 
rather than with the client and server stubs. To do this, calls to RPC library 
routines [e.g. clnt_create 0], have to be commented out, and client-side 
routines have to call server routines directly. The procedure calls will be exe­
cuted as ordinary local procedure calls and the program can be debugged with 
a local debugger. After the program is working, the client program can be 
linked to the rpcgen-created client stubs and the server procedures can be 
linked to the rpcgen-created server skeleton. 

rpegen Programming Guide 6-29 



RPe Language Reference 

RPC language is an extension of the XDR language. The sole extension is the 
addition of the program and version types. 

For a complete description of the XDR language syntax, see the "External Data 
Representation: Protocol Specification" chapter. For a description of the RPC 
extensions to the XDR language, see the "Remote Procedure Calls: Protocol 
Specification" chapter. 

RPC language is similar to C language. We describe here the syntax of the RPC 
language, showing a few examples along the way. We also show how the vari­
ous RPC and XDR type definitions get compiled into C type definitions in the 
output header file. 

Definitions 

An RPC language file consists of a series of definitions. 

definition-list: 
definition ; 
definition ; definition-list 

It recognizes six types of definitions. 

6·30 

definition: 
enum-definition 
const-definition 
typedef-definition 
struct-definition 
union-definition 
program-definition 

Programmer's Guide: Networking Interfaces 



RPe Language Reference 

Enumerations 

RPC/XDR enumerations have the same syntax as C enumerations. 

enum-definition: 
enum enum-ident { 

enum-value-list 

enum-value-list: 
enum-value 
enum-value , enum-value-list 

enum-value: 
enum-value-ident 
enum-value-ident == value 

Here is a short example of an RCP /XDR enum, and the C enum to which it gets 
compiled. 

enum colortype { 
RED - 0, 
GREEN - 1, 
BLUE = 2 

} ; 

Constants 

--> 

enum colortype { 
RED - 0, 
GREEN - 1, 
BLUE ... 2, 

}; 
typedef anum colortype coiortype; 

RPC/XDR symbolic constants may be used wherever an integer constant is 
used, for example, in array size Specifications. 

canst-definition: 
const const-ident = integer 

For example, the following defines a constant, DOZEN, equal to 12. 

const DOZEN - 12; --> 'define DOZEN 12 

rpcgen Programming Guide &-31 



RPC Language Reference 

Typedefs 

RPC/XDR typedefs have the same syntax as C typedefs. 

typedef-definition: 
typedef declaration 

Here is an example that defines an fname_type used for declaring file name 
strings that have a maximum length of 255 characters. 

typedef string fname_type<255>; --> typedef char *fname_type; 

Declarations 

In RPC/XDR, there are four kinds of declarations. 

declaration: 
simple-declaration 
fixed-array-declaration 
variable-array-declaration 
pointer-declaration 

Simple Declarations: Simple declarations are just like simple C declarations. 

simple-declaration: 
type-ident variable-ident 

Example: 

colortype color; --> colortype color; 

Fixed-length Array Declarations: Fixed-length array declarations are just like C 
array declarations: 

fixed-array-declaration: 
type-ident variable-ident [ value ] 

Example: 

colortype palette[8]; --> colortype palette[8]; 

6-32 Programmer's Guide: Networking Interfaces 



RPC Language Reference 

Variable-Length Array Declarations: Variable-length array declarations have no 
explicit syntax in C. The RPC/XDR does have a syntax; it uses angle-brackets. 

variable-array-declaration: 
type-ident variable-ident < value> 
type-ident variable-ident < > 

The maximum size is specified between the angle brackets. The size may be 
omitted, indicating that the array may be of any size. 

int heights<12>; 
int widths<>; 

1* at most 12 items *1 
1* any number of items *1 

Because variable-length arrays have no explicit syntax in C, these declarations 
are compiled into struct declarations. For example, the heights declaration 
gets compiled into the following struct: 

struct { 
u_int heights_len; 
int *heights_val; 

heights; 

1* t of items in array *1 
1* pointer to array *1 

Note that the number of items in the array is stored in the _len component 
and the pointer to the array is stored in the _val component. The first part of 
each of these component's names is the same as the name of the declared 
RPC/XDR variable. 

Pointer Declarations: Pointer declarations are made in RPC/XDR exactly as 
they are in C. Address pointers cannot really be sent over the network, but 
RPC/XDR pointers are useful for sending recursive data types such as lists and 
trees. The type is actually called "optional-data," not "pointer," in XDR 
language. 

pointer-declaration: 
type-ident *variable-ident 

Example: 

listitem *next; --> listitem *next; 

rpcgen Programming Guide 6-33 



RPC Language Reference 

Structures 

An RPC/XDR struct is declared almost exactly like its C counterpart. It looks 
like the following: 

struct-definition: 
struct struct-ident { 

declaration-list 

declaration-list: 
declaration ; 
declaration ; declaration-list 

As an example, here is an RPC/XDR structure for a two-dimensional coordi­
nate, and the C structure that it gets compiled into in the output header file. 

struct coord 
int x; 
int y; 

} ; 

--> 
struct coord 

int x; 
int y; 

} ; 

typedef struct coord coord; 

The output is identical to the input, except for the added typedef at the end of 
the output. This allows one to use coord instead of struct coord when 
declaring items. 

Unions 

RPC/XDR unions are discriminated unions, and look different from C unions. 
They are more analogous to Pascal variant records than they are to C unions. 

6·34 

union-definition: 

case-list: 

union union-ident switch ( simple declaration) { 
case-list 

case value: declaration; 
case value : declaration ; case-list 
default : declaration; 

Programmer's Guide: Networking Interfaces 



RPe Language Reference 

Here is an example of a type that might be returned as the result of a "read 
data" operation: if there is no error, return a block of data; otherwise, don't 
return anything. 

union read_result switch (int errno) ( 
case 0: 

opaque data[1024]; 
default: 

void; 
) ; 

It gets compiled into the following: 

struct read_result 
int errno; 
union { 

} ; 

char data[1024]; 
} read_result_u; 

typedef struct read_result read_result; 

Notice that the union component of the output struct has the name as the type 
name, except for the trailing _u. 

Programs 

RPC/XDR programs are declared using the following syntax: 

rpcgen Programming Guide 6·35 



RPC Language Reference 

program-definition: 
program program-ident { 

version-list 
} - value 

version-list: 

version: 

version; 
version ; version-list 

version version-ident { 
procedure-list 

} - value 

procedure-list: 
procedure; 
procedure ; procedure-list 

procedure: 
type-ident procedure-ident ( type-ident) - value 

For example: 

/* 
* time.x: Get or set the time. Time is represented as seconds 
* since 0:00, January 1, 1970. 
*/ 

program TIMEPROG ( 
version TIMEVERS 

} ... 1; 

unsigned int TIMEGET(void) = 1; 
void TIMESET(unsigned) - 2; 

} ... Ox20000044; 

This file compiles into these 'defines in the output header file: 

'define TIMEPROG 0x20000044 
'define TIMEVERS 1 
.define TIMEGET 1 
'define TIME SET 2 

6-36 Programmer's Guide: Networking Interfaces 



RPe Language Reference 

Special Cases 

There are a few exceptions to the rules described above. 

Booleans: C has no built-in boolean type. However, the RPC library uses a 
boolean type called bool_t that is either TRUE or FALSE. Things declared as 
type bool in RPC/XDR hmguage are compiled into bool_ t in the output 
header file. 

Example: 

bool married; --> bool_t married; 

Strings: C has no built-in string type, but instead uses the null-terminated char 
* convention. In RPC/XDR language, strings are declared using the string 
keyword, and compiled into type char * in the output header file. The max­
imum size contained in the angle brackets specifies the maximum number of 
characters allowed in the strings (not counting the NULL character). The max­
imum size may be left off, indicating a string of arbitrary length. 

Examples: 

string name<32>; --> char *name; 
string longname<>; --> char *longname; 

Opaque Data: Opaque data is used in RPC/XDR to describe untyped data, that 
is, just sequences of arbitrary bytes. It may be declared either as a fixed or vari­
able length array. Examples: 

opaque diskblock[512]; --> char diskblock{512]; 

opaque filedata<1024>; --> struct { 
u_int filedata_len; 
char *filedata_val; 
filedata; 

Voids: In a void declaration, the variable is not named. The declaration is just 
void and nothing else. Void declarations can only Occur in two places: union 
definitions and program definitions (as the argument or result of a remote pro­
cedure). 

rpcgen Programming Guide 6-37 









7 Remote Procedure Call 
Programming Guide 

Introduction 
An Overview of the RPC Package 
Organization of Technical Information 

The Simplified Interface to RPC 
RPC Library-based Network Services 
Remote Procedure Call and Registration 

• The rpc _ caliO Routine 
• The rpc _regO Routine 
• Passing Arbitrary Data Types 

The Lower Levels of RPC 
The Top Level 

• Top Level: The Client Side 
• Top Level: The Server Side 

The Intermediate Level 
• Intermediate Level: The Client Side 
• Intermediate Level: The Server Side 

The Expert Level 
• Expert Level: The Client Side 
• Expert Level: The Server Side 

The Bottom Level 
• Bottom Level: The Client Side 
• Bottom Level: The Server Side 

Table of Contents 

7-1 
7-1 
7-4 

7-6 
7-6 
7-8 
7-9 
7-11 
7-12 

7-17 
7-18 
7-18 
7-20 
7-22 
7-22 
7-24 
7-25 
7-25 
7-28 
7-31 
7-31 
7-32 



Table of Contents _____________________ _ 

Low-level Data Structures 7-33 

Low-level Program Testing Using Raw 
RPC ~6 

Advanced RPC Programming Techniques 7-39 
selectO on the Server Side 7-39 
Broadcast RPC 7-40 
Batching 7-42 

• Batching Performance 7-46 
Authentication 7-46 

• AUTH NONE: The Client Side 7-47 
• AUTH-NONE: The Server Side 7-48 
• AUTH-SYS Authentication 7-49 
• AUTH -DES Authentication 7-51 

Using Port Monitors 7-55 
• Using inetd 7-56 
• Using the listener 7-57 

Advanced Examples 7-59 
Versions 7-59 
Connection-Oriented Transports 7-61 
Callback Procedures 7-64 
Memory Allocation with XDR 7-69 

II Programmer's Guide: Networking Interfaces 

/ 



Introduction 

The RPC package provides a multi-level application programming interface for 
development of network applications using remote procedure calls. 

At the simplified interface (the highest leveD, the package provides great tran­
sparency, but offers only limited control over the underlying communications 
mechanisms. Program development at the simplified interface can be rapid, and 
is directly supported by the rpcgen compiler - a C-Ianguage code generator 
that supports remote procedure call program development. 

The "Generating XDR Routines with rpcqen" section of the "rpcgen Pro­
gramming Guide" contains the complete source for a working RPe service: 
a remote directory listing service that uses rpcqen to generate XDR routines 
as well as client and server stubs. For most applications, rpcqen and its 
facilities are fully adequate and the detailed information in this chapter is not 
required. 

Interfaces to lower levels of the RPC package provide increasing control over 
remote procedure call communications. Programs that exercise this control pay 
for the power in terms of greater complexity of code. Effective programming at 
the lower levels requires knowledge of computer network fundamentals. 

In order of increasing control and complexity, these levels are called the Top 
Level, Intermediate Level, Expert Level and Bottom Level. 

This chapter is intended for programmers who wish to write network applica­
tions using remote procedure calls, and who want to use or understand the RPC 
mechanisms usually hidden by the rpcgen(1) protocol compiler. 

An Overview of the RPe Package 

The RPC interface can be seen as being divided into several distinct levels. The 
highest level is general, and provides for no fine control of any kind. The lower 
levels (four can be usefully distinguished) are available for use as necessary, and 
provide increasingly detailed levels of control. 

Remote Procedure can Programming Guide 7·1 



Introduction 

For a complete specification of the routines in the RPe library, see the 
xpc(3N) and related manual pages. 

The Simplified Interface: Here, the programmer doesn't need to consider the 
characteristics of the underlying transport, operating system, or other low-level 
implementation mechanisms. Programmers simply make remote procedure calls 
to routines on other machines, and need specify only the type of transport that 
they wish to use. The selling point here is simplicity. It is this level that allows 
RPC to pass the "hello world" test - that simple things should be simple. The 
routines at this level are used for most applications. 

Included in the simplified interface are only three basic RPC routines: 

rpc_regO rpc_regO registers a routine as an RPC routine and 
obtains a unique, system-wide procedure-identification 
number for it. 

rpc_call 0 Given .such a unique, system-wide procedure-identification 
number, rpc call 0 uses it to make a remote call to that 
routine on a specified host. 

rpc _broadcast 0 Like rpc _ call 0 , except that it broadcasts its call message 
across all transports of the specified type. 

The Top Level: At the top level, the interface is still simple, but the program­
mer does have to create client and server handles before making a call. Like the 
routines in the simplified interface, the routines here require a nettype argu­
ment that specifies a general class (type) of transports. 

The top level essentially consists of two routines: 

7-2 

The generic client creation. The programmer tells 
clnt _create 0 where the server is located and the type 
of transport to use to get to it. 

Creates server handles for all the transports of the 
specified nettype. The programmer tells svc_create 0 
which dispatch function should be used. 

Programmer's Guide: Networking Interfaces 



__________________________ Introduction 

The simplified interface and the top level of RPC, while simple, are also 
inefficient. They do not allow the choice of a specific transport (but see the dis­
cussion of NTEPATH, below). At these levels, all routines just take a nettype 
argument, which serves to define the class of transport to be used. On the client 
side, programs do network selection, and hence may be slightly inefficient 
depending on the nettype. On the server side, programs may have to listen on 
many transports, and hence may waste system resources. 

In both of these cases, however,.efficiency can be improved by judicious assign­
ment to the NETPATH environment variable. If the programmer wishes the 
application to run on all transports, this is the interface that should be used. 

The In~ediate Level: The intermediate interlace of RPC, and the two inter­
faces beiow it, allow many details to be controlled by the programmer; and for 
that reason their use is neCessary for ~pecial applications. Programmers should 
only go down to the level necessary for the control needed. Programs written 
at these lower levels are more complicated, but alsO more efficient. 

The intermediate differs frorn the two levels above it in that it allows the pro­
grcmuner to specify directly the transport to be used. It consists of two routines: 

Creat~ a client handle for a specified transport. 

Likewise, ave tp create () creates a server handle for 
a s~ified trclnsp'Ort. 

The Expert Level: The expert level conSists of a larger set of routines with 
which the programmer can specify more parameters, put those parameters are 
still all directly transport related. It includes the following routines: . 

~reates a client handle for a specified transport, allow­
ing fine control of the client characteristics. 

Creates a server handle for a specified trcm~port, allow­
ing nne control of the serVer chclracteristics. 

Provides a prograII\ll'\atic interface to i:pqbind, one that 
establishes a InaPping between an RPC service and a 
network address. 

Destroys a Illapping of the type established by 
%pcb_set. . .. 

Remote Procecil,lre can Programming Guide 7-3 



Introduction 

Provides a programmatic interface to rpcbind, one that 
returns the transport address of specified RPC service. 

Associates a given program and version number paf.r 
with a given dispatch routine. 

Destroys an associ,,~on of the type established by 
sve_reg. 

The BoHom Level: The bottom level consists of routines called when the pro­
grammer requires full control, even down to the smallest details of transport 
options. It consists of the following routin~s: 

Creates an RPC client for the specified remote program, 
using a connectionless transport. 

Creates an RPC server handle, using a connectionless 
transport. 

Creates an RPC client for the specified remote program, 
using a connection-oriented transport. . 

Creates an RPC server handle, using a connection­
oriented transport. 

Organization of Technical Information 

"The Simplified Interface to RPC" section describes programming with RPC 
library-based services, and calling RPC functions using the simplest RPC inter­
faces. Programming with arbitrary data types is also addressed. 

The next three sections serve as a general reference to the lower levels of the 
RPC package. 

''The Lower Levels of RPC" section illustrates the dient- and server-side pro­
gramming interfaces of each of the four lower levels of the RPC package. 

The ''Low-level Data Structures" section provides reference information on RPC 
handles and the authentication structure used for secure RPC communications. 

/ 

7-4 I 

/ Programmer', Guide: Networking Interfaces 



___________________________ Introduction 

The "Low-level Program Testing Using Raw RPC" section describes pseudo-RPC 
interfaces that are provided by the package for testing purposes. 

The remaining sections focus on particular aspects of low-level RPC program­
ming. 

The "Advanced RPC Programming Techniques," comments on developing RPC 
applications programs that take advantage of the lower level interfaces. 

The "Advanced Examples" section illustrates how some important program­
ming tasks are done using the RPC low-level interfaces. 

Remote Procedure Call Programming Guide 7-5 



The Simplified Interface to RPe 

The easiest interface to RPC does not require the programmer to use the inter­
face at all. "RPC Library-based Network Services" describes using functions 
that hide all details of the RPC package. 

Some RPC services are not available as C functions, but are available as RPC 
programs. "Remote Procedure Call and Registration" shows how easy it is to 
use these services, and how easy it is to create new services that are equally 
simple to use. 

Data types passed to and received from remote procedures can be any of a set 
of predefined types, or can be programmer-defined types. "Passing Arbitrary 
Data Types" explains how such types are declared and used. 

RPC Library-based Network Services 

Imagine writing a program that needs to know how many users are logged into 
a remote machine. This can be done by calling an RPC library routine, 
rusers 0 , as illustrated below: 

7-6 Programmer's Guide: Networking Interfaces 



The Simplified Interface to RPC 

1:,,'1 ~~~~.er. () to woII<. the =sers daemon m"t be ,"nn;ng on the ,emote 

RPC library routines such as rusers () are in the RPC services library 
librpcsvc. a. Thus, the program above should be compiled with 

$ cc program.c -lrpcsvc -lnsl 

Here are some of the RPC service library routines available to the C program­
mer: 

Remote Procedure Call Programming Guide 7-7 



The Simplified Interface to RPe 

Routine 

rusers 0 
rwall () 
spray () 

Description 

Return information about users on remote machine 
Write to specified remote machines 
Spray packets to a specific machine 

Remote Procedure Call and Registration 

The simplest interface to the RPC functions is based on the routines 
rpc_callO, rpc_regO, and rpc_broadcast O. These functions provide 
direct access to the RPC facilities, and are appropriate for programs that do not 
require fine levels of control. 

Using the simplified interface, the number of remote users can be gotten as fol­
lows: 

7-8 Programmer's Guide: Networking Interfaces 



The Simplified Interface to RPC 

The rpc caliO Routine 

The simplest way of making remote procedure calls is with the RPC library rou­
tine rpc _call (). It has nine parameters. 

• The first is the name of the remote server machine. 

• The next three parameters are the program, version, and procedure 
numbers. Together, they identify the remote procedure to be called. 

• The fifth and sixth parameters are an XDR filter for encoding and an 
argument that has to be passed to the remote procedure .. 

Remote Procedure Call Programming Guide 7-9 



The Simplified Interface to RPC 

• The next two parameters are an XDR filter for decoding the results 
returned by the remote procedure and a pointer to the place where the 
procedure's results are to be stored . 

• Finally, there is the nettype specifier. 

Multiple arguments and results are handled by embedding them in structures. 
If rpc _call () completes successfully, it returns zero; otherwise, it returns a 
nonzero value. The return codes (of type enum clnt_stat, cast to an int in 
the previous example) are found in <rpc/ clnt . h>. 

Because data types may be represented differently on different machines, 
rpc _call () needs both the type of, and a pointer to, the RPC argument (simi­
larly for the result). For RUSERSPROC_NUM, the return value is an unsigned 
long, so rpc _ 9all () has xdr _ u _long () as its first return parameter, which 
says that the result is of type unsigned long; and &nusers as its second 
return parameter, which is a pointer to where the long result will be placed. 
Because RUSERSPROC_NUM takes no argument, the argument parameter of 
rpc _call () is xdr _void () . 

If rpc _call () gets no answer within a certain time period, it returns with an 
error code. In the example, it tries all the transports listed in /etc/netconfig 
that are flagged as visible. Adjusting the number of retries requires use of the 
lower levels of the RPC library, discussed later in this chapter. The remote 
server procedure corresponding to the above might look like this: 

7·10 Programmer's Guide: Networking Interfaces 



The Simplified Interface to RPC 

It takes one argument, which is a pointer to the input of the remote procedure 
call (ignored in our example), and it returns a pointer to the result. In many 
versions of C, character pointers are the generic pointers, so both the input 
argument and the return value are cast to char * 

The rpcJeg() Routine 
Normally, a server registers all the RPC calls it plans to handle, and then goes 
into an infinite loop waiting to service requests. If rpcqen is used to provide 
this functionality, it will generate much code, including a server dispatch func­
tion and support for port monitors. But programmers can also write servers 
themselves using rpc_req (), and it is appropriate that they do so if they have 
simple applications, like the one shown as an example here. In this example, 
there is only a single procedure to register, so the main body of the server 
would look like this: 

The rpc _ req () routine registers a ~ procedure as corresponding to a given 
RPC procedure number. The registration is done for each of the transports of 
the specified type, or if the type parameter is NULL, fo~ all the transports named 
in NETPATH. The first three parameters, RUSERPROG, RUSERSVERS, al)d. 
R,USERSPROC _ NOM are the program, version, and proc¢ure numbers of the 
remote procedure to be registered~ rusers is the name of the local procedure 
that implements the remote procedure; and xdr_void and xdr_u_long name 

Remote Procedure Call Programming Guide 7-11 



The Simplified Interface to RPC 

the XDR filters for the remote procedure's arguments and results, respectively. 
(Multiple arguments or multiple results are passed as structures.) The last 
parameter specifies the desired nettype. Note that, when using rpc_reg 0, 
programmers are not required to write their own dispatch routines. 

rim~jtl Tha BVO_run () routlnal. used aid la .. ls of APe programming. Strict~ 
NOTE speaking, it does not "belong" to this or to any other level. 

f~::H]:rr~f 

After registering the local procedure, the server program's main procedure calls 
svc_run 0, the RPC library's remote procedure dispatcher. It is this function 
that calls the remote procedures in response to RPC call messages. Note that 
the dispatcher in rpc _reg () takes care of decoding remote procedure argu­
ments and encoding results, using the XDR filters specified when the remote 
procedure was registered. 

Passing Arbitrary Data Types 
In the previous example, the RPC call returned a single unsigned long. RPC 
can handle arbitrary data structures, regardless of different machines' byte ord­
ers or structure layout conventions, by always converting them to a standard 
transfer syntax called External Data Representation (XDR) before sending them 
over the transport. The process of converting from a particular machine 
representation to XDR format is called serializing, and the reverse process is 
called deserializing. 

The type field parameters of rpc _call () and rpc _reg () can name an XDR 
primitive procedure, like xdr_u_Iong () in the previous example, or a pro­
grammer supplied procedure (that may take a maximum of two parameters). 
XDR has these "built-in" primitive type routines: 

7-12 

xdr_int 0 
xdr_Iong() 
xdr_short () 
xdr char () 

xdr_u_int () 
xdr_u_Iong () 
xdr_u_short () 
xdr u char () 

xdr_enum() 
xdr_l:>ool () 
xdr_wrapstring() 

Programmer's Guide: Networking Interfaces 



The SlmplHled Interface to RPC 

,
...• ...•.•.. The routine xdr string() exists, but takes more than two parameters. It 
NoTe cannot, therefore, be used with rpc call 0 and rpc reg 0 , which only 

/.... pass two parameters to their XDR routines. xdr_wrapstring() has only 
two parameters, and is thus OK. h, in turn, calls xdr_string 0 . 

As an example of a user-defined type routine, if a programmer wanted to send 
the structure: 

then rpc _call () would be called as: 

where xdr_simple () is written as: 

Remote Procedure Call Programming Guide 7-13 



The Simplified Interface to RPe 

An XDR routine returns nonzero (true in the C sense) if it completes success­
fully; cind zero otherwise. A complete description of XDR is provided in the 
"External Data Representation Standard: Protocol Specification" chapter. Note 
that the above routine could have been generated automatically by using the 
rpcqen compiler. . 

In addition to the bUilt-in primitives, there are also some prefabricated building 
bloCks: . 

xdr_array () 
xdr _vector () 
xdr strinqO 

xdr_bytes () 
xdr_unionO 
xdr opaque ( ) 

xdr_reference () 
xdryointer () 

To send a variable array of integers, the attay might be packaged as a structure 
like·this: 

and sent by an RPC call such as: 

with xdr _ varintarr 0 defined as: 

7-14 Programmer's Guide: Networking Interfaces 



The Simplified Interface to RPe 

The xdr_array () routine takes as parameters the XDR handle, a pointer to the 
array, a pointer to the size of the array, the maximum allowable array size, the 
size of each array element, and an XDR routine for handling each array element. 

If the size of the array is known in advance, one can use xdr _vector () , which 
serializes fixed-length arrays. 

XDR always converts quantities to 4-byte multiples when serializing. Thus, if 
either of the examples above involved characters instead of integers, each char­
acter would occupy 32 bits. That is the reason for the XDR routine 
xdr _bytes 0 , which is like xdr _array () except that it packs characters; 
xdr_bytes () has four parameters, similar to the first four parameters of 
xdr_array () . 

For null-terminated strings, there is the xdr _string () routine, which is the 
same as xdr_bytes 0 without the length parameter. On serializing it gets the 
string length from strIen () ,and on deserializing it creates a null-terminated 
string. 

Remote Procedure Call Programming Guide 7-15 



The Simplified Interface to RPC 

Here is a final example that calls the previously written xdr_simple () as well 
as the built-in functions xdr_strinq() and xdr_reference (), which chases 
pointers: 

Note that we could as easily call xdr_simple () here instead of 
xdr_reference(). 

7·16 Programmer's Guide: Networking Interfaces 



The Lower Levels of RPe 

In the examples given for programming at the simplied interface, RPC takes 
care of almost as many details as would the rpcgen compiler. RPC does so by 
choosing defaults for almost everything, including the transport protocol. 

This section shows how to control these details by using lower levels of the RPC 
library. The reader is assumed to be familiar with the Transport Level Interface 
(TLI). 

There are several reasons for using lower levels of RPC: 

• A program may need to directly control the selection of the transport pro­
tocol, which at the simplified interface level, can be done only by use of 
the NETI?ATH variable. 

• A program may need to allocate and free memory while serializing or 
deserializing with XDR routines. There are no facilities for doing so avail­
able at the higher level. (For details, see ''Memory Allocation with XDR" 
in the "Advanced Examples" section of this chapter. 

The following sections illustrate programming at the lower levels of RPc. 

"The Top Level" describes RPC interfaces that allow for control of transport 
selection by type. 

''The Intermediate Level" section describes those interfaces that allow a pro­
grammer to choose a specific transport. 

''The Expert Level" section describes routines that: 

• allow program control of client and server characteristics 

• provide an interface to rpcbind 

Finally, the section on ''The Bottom Level" describes routines that control most 
details of transport options. 

For detailed descriptions of RPC routines, see rpc(3N). 

Remote Procedure Call Programming Guide 7·17 



The Lower Levels of RPC 

The Top Level 

At the top level, the application can specify the type of transport that it wants to 
use, but not an individual transport. This level differs from the simplified inter­
face to RPC in that the application is responsible for creating its own transport 
handles, on both the client and server sides. 

Top Level: The Client Side 

Assume we have the following header file: 

The following code implements the client side of a trivial date service, written at 
the top level: 

7-18 Programmer's Guide: Networking Interfaces 



_____________________ The Lower Levels of RPe 

Remote Procedure call Programming Guide 7-19 



The Lower Levels of RPC 

Note that, when this program is run, if nettype is not given on the command 
line, the code assigns it to point to the string "netpath". Whenever the rou­
tines in the RPC libraries encounter this string, they consult the NETP ATH 
environment variable for the user's list of acceptable network identifiers. 

If the client handle cannot be created, the reason for the failure can be printed 
using clnt _pcreateerror () , or the error status can be obtained via the glo­
bal variable rpc _ createerr. 

After the client handle is created, clnt call () is used to make the remote 
call. It takes as arguments the remote procedure number, an XDR filter for the 
input argument and the argument pointer, an XDR filter for the result and the 
result pointer, and the time-out period of the call. Normally, this last should 
not be o. In this particular example there are no arguments, and thus 
xdr _void () has been specified. 

Top Level: The Server Side 

Here's the code for the time server: 

7-20 Programmer's Guide: Networking Interfaces 



The Lower Levels of RPC 

svc_create () returns the number of transports on which it could create 
server handles. time _prog () is the dispatch function called by svc _run () 
whenever there's a request for its given program and version number. 

Remote Procedure Call Programming Guide 7-21 



The Lower Levels of RPC 

Here the remote procedure takes no arguments. Had arguments been required, 

svc_getargs(transport, XDR_filter, argurnent-POinter) 

could have been used to deserialize (XDR decode) the arguments .. In such cases, 
svc_freeargs () should be used to free up the arguments after the actual call 
has been made. The server reply results are sent back to the client using 
svc_sendreply(). 

it is recommended that rpcgen be used to generate the dispatch function which 
can later be customized. 

When rpcgen is used to generate the dispatch function, 
svc sendreply () is called only after the actual procedure has 
returned,. and hence it is essential to have rslt (in this example) 
declared as static within that actual procedure. 

In this example, rslt is not declared as static because svc_sendreply () is 
called from within the dispatch function. 

The Intermediate Level 

At the intermediate level, the application directly chooses the transport it wishes 
to use, factoring the value of NETPATH and the contents of/etc/netconfig 
into the choice as it sees fit. 

Intermediate Level: The Client Side 

The following code implements the client side of the same time service shown 
above, but written to the intermediate level of the RPC package. 

Here, the programmer requires the user to name, on the command line, the 
transport over which· the call will be made: 

7·22 Programmer's Guide: Networking Interfaces 



The Lower Levels of RPC 

The netconfig structure can be obtained by a call to 
getnetconfigent (nettype). (See getnetconfig(3N) for more details.} 

At this level, the program must explicitly make all decisions about network­
selection. 

Remote Procedure Call Programming Guide 7-23 



The Lower Levels of RPe 

Intermediate Level: The Server Side 

Here's the corresponding server. The administrator who starts the service is 
required to name, on the command line, the transport over which the service is 
provided: 

7-24 Programmer's Guide: Networking Interfaces 



_____________________ The Lower Levels of RPC 

The Expert Level 

At the expert level, network selection is done exactly as at the intermediate 
level. The only difference here is in the level of control that the application has 
over the details of the transport's configuration. Control at this level is much 
greater. These examples illustrate that control, which is exercised using the 
cInt_tIi_create () and svc_tIi_create () routines. 

Expert Level: The Client Side 
Here is the client side of some code that implements a version of 
cIntudp_create () (the client-side creation routine for the UDP transport) in 
terms of cInt_tIi_create (). The example shows how to do network selec­
tion based on the family of the transport one wishes to use. 

cInt_tIi_create () is normally used to create a client handle when: 

• the application wants to pass an open file descriptor, which mayor may 
not be bound 

• the programmer wants to feed the server's address to the client 

• the programmer wants to specify the send and receive buffer size (here, 
8800 bytes) 

Remote Procedure Call Programming Guide 7-25 



The Lower Levels of RPC 

7·26 Programmer'. Guide: Networking Interface. 



The Lower Levels of RPC 

Remote Procedure Call Programming Guide 7-27 



The Lower Levels of RPC 

The network selection is done using the library functions setnetconfiq () , 
qetnetconfiq () , and endnetconfiq (). (Note that endnetconfiq () is 
not called until after the call to clnt tli create () , near the end of the 
example.} - -

clnt udp _create () can be passed an open fd, but if not (fd == 
RPC_ANYSOCK), it will open its own using the netconfiq structure for UDP. 

If the remote address is not known, (raddr->sinyort -- 0), then it is 
obtained from the remote rpcbind. Note the call to bind clnt resv () , 
which serves to bind a transport endpoint to a reserved address. This call is 
necessary because there is no notion of a reserved address in RPC under TLI, as 
there is in both TCP and UDP. The implementation of this routine is of no 
interest here, because it is entirely transport specific. What is of interest is the 
scaffolding necessary to call it. 

After the client handle has been created, the programmer can suitably customize 
it using calls to clnt_control (). Here, the RPC library closes the file 
descriptor while destroying the handle (as it usually does with a call to 
cInt_destroy () when it opens the fd itselO and sets the retry timeout 
period. 

Expert Level: The Server Side 
Below is the corresponding server code. It implements svcudp _create () in 
terms of svc_tli_create (), and calls the user provided bind_resv () to 
bind the transport endpoint to a reserved address. 

7-28 Programmer's Guide: Networking Interfaces 



The Lower Levels of RPe 

svc_tli_create () is normally used when the application needs a fine degree 
of control, and especially if it is necessary to: 

• pass an open file descriptor to the application 

• pass the user's bind address 

• set the send and receive buffer sizes (here being set to 8800 bytes) 

The fd argument may be unbound when passed in. If it is, then it is bound to 
a given address, and the address is stored in a handle. If the bind address is set 
to NULL, and if the fd is initially unbound, it will be bound to any suitable 
address. 

I+£II'I tt is the r~ponsibil~y 01 the programmer to use rpcb _set () to reg~ter the 
~OT~ service With rpcbind. 

"::]:':~:(::~:::~::::-

Remote Procedure Call Programming Guide 1-29 



The Lower Leve .. of RPC 

7·30 Programmer's Guide: Networking Interfaces 



The Lower Levels of RPC 

The network selection here is done in a similar way as in cInt udp _create () . 

svcudp _create () is set up to receive an open fd, but if it does not, it will 
open one itself using the selected netconfig structure. 

bind_resv () is a user-provided function that binds the fd to a reserved port 
if the caller is a superuser. 

The Bottom Level 

At the bottom-level interface to RPC, the application can control all options, 
transport-related and otherwise. cInt_tli_create () , and the other expert­
level RPC interface routines are implemented on top of these bottom-level rou­
tines. 

The programmer should not normally be using these low-level routines. 

These routines are responsible for creating their own data structures, their own 
buffer management, the creation of their own RPC headers, etc. 

Callers of these routines [like the expert level routine cInt_tIi_create () ] 
are responsible for initializing the cI_netid and cl_tp fields within the client 
handle. The bottom level routines cInt _ dg_ create () and 
cInt_vc_create() are themselves responsible for populating the cInt_ops 
and clyrivate fields. 

For a created handle, cl_netid is the network identifier (e.g. udp) of the tran­
sport and cl_tp is the device name of that transport (e.g. /dev/udp). 

Bottom Level: The Client Side 

The example here shows the use of local variables to control the exact details of 
the calls to cInt vc create () and cInt dg create (). Thus, these rou­
tines allow contrOl of the transport to the lowest level: 

Remote Procedure Call Programming Guide 7-31 



The Lower Levels of RPe 

Bottom Level: The Server Side 
And, again, on the server side: 

7·32 Programmer's Guide: Networking Interfaces 



Low-level Data Structures 

For reference, here are the client- and server-side RPC handles, as well as an 
authentication structure. 

The client-side handle contains an authentication structure. For a client pro­
gram authenticate itself, it must initialize the cl_auth field to an appropriate 
authentication structure: 

Remote Procedure Call Programming Guide 1-33 



Low-level Data Structures 

Within the AUTH structure, ah cred contains the caller's credentials, and 
ah_verf contains the information necessary to verify those credentials. (See 
II Authentication" in the II Advanced RPC Programming Techniques" section for 
more details.) 

Here is the server-side transport handle: 

7-34 Programmer's Guide: Networking Interfaces 



Low-level Data Structures 

xp_fd is the file descriptor associated with the handle. Two or more server 
handles can share the same file descriptor. 

xp_netid is the network identifier (e.g. uc:ip) of the transport on which this 
handle was created and xp_tp is the device name associated with that tran­
sport. 

xp Itaddr is the server's own bind address, while xp rtaddr is the address 
of the remote caller and hence may change from call to Call. 

xp_netid, xp_tp and xp_ltaddr are initialized by svc_tli_create () and 
other expert-level routines. 

The rest of the fields are initialized by the bottom-level server routines 
svc_d9_create () and svc_vc_create 0 . 

Remote Procedure can Programming Guide 7-35 



Low-level Program Testing Using Raw RPe 

There are two pseudo-RPC interface routines provided to support program test­
ing. These routines, clnt_raw_createO and svc_raw_createO, do not 
involve the use of any real transport. They exist to help the developer debug 
and test the non-communications-oriented aspe<;ts of an application before run­
ning it over a real network. 

Here's an example of their use: 

7-36 Programmer's Guide: Networking Interfaces 



Low-level Program Testing Using Raw RPe 

Note the following points: 

• The server is not registered with rpcbind, and svc_run () is not called. 
The last parameter to svc _reg () is 0, which means that it will not regis­
ter with rpcbind. 

• All the RPC calls occur within the same thread of control. 

Remote Procedure Call Programming Guide 7-37 



Low-level Program Testing Using Raw RPC 

• It is necessary that the server be created before the client. 

• svc_raw_create 0 takes no parameters. 

• The server dispatch routine is the same as it is for normal RPC servers. 

7-38 Programmer's Guide: Networking Interfaces 



Advanced RPC Programming Techniques 

This section addresses areas of occasional interest to programmers using the 
lower level interfaces of the RPC package. The topics discussed are: 

select () on the server side if calling svc_run () is not feasible, a server 
can call the dispatcher directly 

broadcast RPC details of the broadcast mechanism are 
described 

batching efficiency is gained if a series of calls can be 
batched 

authentication two methods in common use are described 

port details are provided for interfacing with the 
inetd and listener port monitors 

versions how programs with multiple versions are ser­
viced 

selectO on the Server Side 

Suppose a process is processing RPC requests while perfonning some other 
activity. If the other activity involves periodically updating a data structure, the 
process can set an alann signal before calling svc_run () . 

If the other activity involves waiting on a file descriptor, however, the 
svc _run () call will not work. 

Below is the code for svc run (). Note that svc fdset is a bit mask of all 
the file descriptors that RPC is using for services. The mask can change every 
time any RPC library routine is called, because descriptors are constantly being 
opened and closed: 

Remote Procedure Call Programming Guide 7-39 



Advanced RPC Programming Techniques 

A process can bypass svc_run () and call svc_getreqset () (the dispatcher) 
directly. Given the file descriptors of the transport endpoints associated with 
the programs being waited on, the process can have its own select () that 
waits on both the RPC file descriptors, and its own descriptors. 

Broadcast RPC 

rpcbind is a daemon that converts RPC program numbers into network 
addresses comprehensible to any transport provider. rpcbind supports broad­
cast RPc. Here are the main differences between broadcast RPC and normal 
RPC calls: 

7·40 Programmer's Guide: Networking Interfaces 



Advanced RPe Programming Techniques 

• Nonnal RPC expects one answer, whereas broadcast RPC expects many 
answers (one or more answer from each responding machine). 

• Broadcast RPC can only be perfonned on connectionless protocols that 
support broadcasting, such as UDP. 

• The implementation of broadcast RPC treats all unsuccessful responses as 
garbage by filtering them out. Thus, if there is a version mismatch 
between the broadcaster and a remote service, the user of broadcast RPC 
never knows. 

• All broadcast messages are sent to rpcbind's network address. Thus, 
only services that register themselves with rpcbind are accessible via the 
broadcast RPC mechanism. 

• The size of broadcast requests is limited to the MTU (Maximum Transfer 
Unit) of the local network. For Ethernet, the MTU is 1500 bytes. 

The following illustrates how rpc _broadcast () is used and describes its 
arguments: 

The procedure eachresult () is called each time a valid result is obtained. It 
returns a boolean that specifies whether the user wants more responses. 

Remote Procedure Call Programming Guide 7-41 



Advanced RPC Programming Techniques 

If done is TRUE, then broadcasting stops and rpc_broadcast 0 returns suc­
cessfully. Otherwise, the routine waits for another response. The request is 
rebroadcast after a few seconds of waiting. If no responses come back, the rou­
tine returns with RPC TlMEDOUT. 

Batching 

The RPC architecture is designed so that clients send a call message, and wait 
for servers to reply that the call succeeded. This implies that clients do not 
compute while servers are processing a call. This is inefficient if the client does 
not want or need an acknowledgement for every message sent. It is possible for 
clients to continue computing while waiting for a response, using RPC batch 
facilities. 

RPC messages can be placed in a "pipeline" of calls to a desired server; this is 
called batching. Batching assumes that: 

• each RPC call in the pipeline requires no response from the server, and 
the server does not send a response message 

• the pipeline of calls is transported on a reliable byte stream transport such 
as TCP/IP 

Because the server does not respond to every call, the client can generate new 
calls in parallel with the server executing previous calls. Furthermore, the 
TCP lIP implementation can buffer up many call messages, and send them to 
the server in one write () system call. This overlapped execution greatly 
decreases the interprocess communication overhead of the client and server 
processes, and the total elapsed time of a series of calls. 

7-42 Programmer's Guide: Networking Interfaces 



________________ Advanced RPC Programming Techniques 

Because the batched calls are buffered, the client should eventually do a non­
batched call to flush the pipeline. 

An example of batching follows. Assume a string rendering service (like a win­
dow system) has two similar calls: one renders a string and returns void 
results, while the other renders a string and remains silent. The service (using 
the TCP lIP transport) may look like: 

Remote Procedure Call Programming Guide 7-43 



Advanced RPC Programming Techniques 

Of course, the service could have one procedure that takes the string and a 
boolean that specifies whether the procedure should respond. 

To take advantage of batching (using the code above), the client must make RPC 
calls on a TCP-based transport. The calls must have the following attributes: 

• the XDR routine for the result must be zero (NULL) 

• the RPC call's timeout must be zero 

7-44 Programmer's Guide: Networking Interfaces 



Advanced RPC Programming Techniques 

Here is an example of a client that uses batching to render a bunch of strings; 
the batching is flushed when the client gets a null string (EOF): 

Because the server sends no message, the clients cannot be notified of any of the 
failures that may occur. 

Remote Procedure Call Programming Guide 7-45 



Advanced RPe Programming Techniques 

Batching Performance 
The following illustrates the benefits that may be gained from batching. 

The above example was completed to render all the lines in a 2000 line file. The 
rendering service did nothing but throw the lines away. 

The example was run in four configurations, with the following results: 

Configuration 
machine to itself, regular RPC 
machine to itself, batched RPC 
machine to another, regular RPC 
machine to another, batched RPC 

Time 
50 seconds 
16 seconds 
52 seconds 
10 seconds 

Running fscanf () on the same file only requires six seconds. These timings 
show the advantage of protocols that allow for overlapped execution. 

Authentication 

In the examples presented so far, the caller never identified itself to the server, 
and the server never required an ID from the caller. Some network services, 
such as a network filesystem, require stronger security than what has been 
presented so far. 

Every RPC call is subjected to a style of authentication by the RPC package on 
the server. Similarly, the RPC client package generates and sends authentication 
parameters suitable for the style of authentication in effect. The default authen­
tication style is AUTH_ NONE (none). 

Just as different transports can be used when creating RPC clients and servers, 
different forms of authentication can be associated with RPC clients. 

The authentication subsystem of the RPC package is open ended. That is, 
numerous styles of authentication are easy to support; programmers can design 
their own authentication style and easily configure the RPC package to support 
it. 

7-46 Programmer's Guide: Networking Interfaces 



Advanced RPe Programming Techniques 

In addition to AUTH_NONE, the RPC package already supports the following 
authentication styles: 

AUTH_SYS An authentication style based on traditional System V operating 
system process permissions authentication. 

AUTH SHORT An alternate form of AUTH_SYS used by some servers for 
efficiency. Client programs using AUTH_SYS authentication 
should be prepared to receive AUTH _SHORT response verifiers 
from some servers. See /I Authentication Protocols" in the 
"Remote Procedure Calls: Protocol Specification" chapter for 
details. 

AUTH DES An authentication style based on DES encryption techniques. 

AUTH NONE: The Client Side 

When a caller creates a new RPC client handle as in: 

the appropriate transport instance defaults the associated authentication handle 
to be 

If the programmer creates a new style of authentication, the programmer is 
responsible for destroying it with auth destroy(clnt->cl auth). This 
should always be done, to conserve memory. -

Remote Procedure Call Programming Guide 7-47 



Advanced RPC Programming Techniques 

AUTH NONE: The Server Side 

Service implementors have a harder time dealing with authentication issues 
because the RPC package passes the service dispatch routine a request that has 
an arbitrary authentication style associated with it. Consider the fields of a 
request handle passed to a service dispatch routine: 

The r~ cred is mostly opaque, except for one field of interest: the style or 
flavor of authentication credentials: 

The RPC package guarantees the following to the service dispatch routine: 

• The request's r~cred is well formed. Thus the service implementor 
may inspect the request's r~cred.oa_flavor to determine the style of 
authentication the caller used. The service implementor may also wish to 
inspect the other fields of r~ cred if the style is not one supported by 
the RPC package. 

7-48 Programmer's Guide: Networking Interfaces 



Advanced RPC Programming Techniques 

• The request's rCLclntcred field is either NULL or points to a well 
formed structure that corresponds to a supported style of authentication 
credentials. Remember that only AUTH_NONE, AUTH_SYS, AUTH_SHORT 
and AUTH_DES styles are currently supported, so (currently) 
rCLclntcred could be cast only as a pointer to an authsysyarms, 
short_hand_verf, or authdes_cred structure. If rCLclntcred is 
NULL, the service implementor may wish to inspect the other (opaque) 
fields of rCL cred if the service knows about a new type of authentication 
that the RPC package does not know about. 

AUTH SYS Authentication 

The RPC client can choose to use AUTH _ SYS style authentication by setting 
clnt->cl_auth after creating the RPC client handle: 

This causes each RPC call associated with clnt to carry with it the following 
authentication credentials structure: 

These fields are set by authsys_create_default () by invoking the 
appropriate system calls. 

Remote Procedure Call Programming Guide 7-49 



Advanced RPe Programming Techniques 

The following shows the server for a remote procedure, RUSERPROC_n, that 
computes the number of users on the network. As a trivial demonstration of 
authentication usage, this server checks AUTH _ SYS credentials and does not ser­
vice requests from callers whose uid is 16: 

7-50 Programmer's Guide: Networking Interfaces 



Advanced RPC Programming Techniques 

A few things should be noted here: 

• It is customary not to check the authentication parameters associated with 
the NULLPROC (procedure number zero). 

• The server should call svcerr_weakauth () if the authentication 
parameter's type is not suitable for the service. 

• The service protocol itself should return status for access denied; in this 
example, the protocol does not have such a status, so the service primitive 
svcerr _ systemerr () is called instead. 

The last point underscores the relation between the RPC authentication package 
and the services: RPC deals only with authentication and not with individual ser­
vices' access control. The services themselves must establish access control poli­
cies and reflect these policies as return statuses in their protocols. 

AUTH DES Authentication 

AUTH_DES authentication is recommended for programs that require more secu­
rity than that offered by the AUTH_SYS style of authentication. 

AUTH _ SYS authentication is easy to defeat. For example, instead of using 
authsys_create_default (), a program could call authsys_create (), 
and then change the RPC authentication handle to give itself any desired user 
ID and hostname. 

Remote Procedure Call Programming Guide 7·51 



Advanced RPC Programming Techniques 

The details of the AUTH_DES authentication protocol are complicated and are 
not explained here. See the ((Remote Procedure Calls: Protocol SpecificationU 

chapter for the details. 

For AUTH_DES authentication to work, the keyserv(1M) daemon must be run­
ning on both the server and client machines. The users on these machines need 
publici secret key pairs assigned by the network administrator in the pub­
lickey(4) database. And, they need to have decrypted their secret keys using 
the keylogin(1) command. 

AUTH DES: The Client Side 

If a client wishes to use AUTH DES authentication, it must set its authentication 
handle appropriately. Here is-an example: 

The first argument is the network name or "netname" of the owner of the server 
process. Typically, server processes are root processes and their netname can be 
derived using the following call: 

Here, rhostname is the hostname of the machine the server process is running 
on. host2netname 0 populates servername to contain this root process's 
netname. If the server process was run by a regular user, one could use the call 
user2netname () instead. Here is an example for a server process with the 
same user ID as the client: 

7-52 Programmer's Guide: Networking Interfaces 



Advanced RPe Programming Techniques 

The last argument to both of these calls, user2netname () and 
host2netname () , is the name of the naming domain where the server is 
located. The NULL used here means "use the local domain name." 

The second argument to authdes_seccreate () is a lifetime for the creden­
tial. Here it is set to sixty seconds. What that means is that the credential will 
expire 60 seconds from now. If some mischievous program tries to reuse the 
credential, the server RPC subsystem will recognize that it has expired and will 
not grant any requests. If the same mischievous program tries to reuse the 
credential within the sixty second lifetime, it will still be rejected, because the 
server RPC subsystem remembers credentials it has seen in the near past, and 
will not grant requests to duplicates. 

The third argument to authdes_seccreate () is the name of the host to syn­
chronize with. For AUTH DES authentication to work, the server and client 
must agree on the time. Here we pass the hostname of the server itself, so the 
client and server will both be using the same time: the server's time. The argu­
ment can be NULL, which means "don't bother synchronizing." A program 
should pass NULL only if sure the client and server are already synchronized. 

The final argument to authdes_seccreate () is the address of a DES encryp­
tion key to use for encrypting timestamps and data. If this argument is NULL, 
as it is in this example, a random key will be chosen. The client may find out 
the encryption key being used by consulting the ah _key field of the authentica­
tion handle. 

AUTH DES: The Server Side 

The server side is simpler than the client side. Here is the previous example 
rewritten to use the AUTH_DES style instead of AUTH_SYS: 

Remote Procedure Call Programming Guide 7-53 



Advanced RPe Programming Technique. 

7-54 Programmer'. Guide: Networking Interfaces 



Advanced RPC Programming Techniques 

Note the use of the routine netnarne2user () , the inverse of 
user2netnarne () : it takes a network 10 and converts to a local system 10. 
netnarne2user () also supplies the group IDs, not used in this example, but 
which may be useful to other programs. 

Using Port Monitors 

An RPC server can be started from port monitors such as inetd and 
listener. These port monitors listen for requests for the services, and spawn 
servers in response to those requests. The forked server process is passed the 
file descriptor 0 on which the request has been accepted. For inetd, after the 
server has serviced the request, it may exit immediately or wait a given interval 
of time for another service request to come in. 

I~'I ~r ~~~; • .';:.:,r ~ ':;'·=~~;~~iu.~~~~:~ ~u:,.:: ~!H~~ner 
,}}}}""",:, server process. 

The following routine can be used to create a service: 

neon! is the netconfig structure of the transport on which the request came in. 

Because the port monitors have already registered the service with rpcbind, 
there is no need for the service to register itself. Nevertheless, it must call 
svc_regO: 

The netconfig structure here is NULL. 

Remote Procedure Call Programming Guide 7-55 



Advanced RPC Programming Techniques 

l'iN:::'1 Programm~rs should study ~c .. nileneraled .e",er stub. to better seethe 
NQ1~ sequence In which these routines are called. 

::~ ~::::::::::::1:111:1:1: 

For connection-oriented transports, the following routine provides a lower level 
interface: 

The file descriptor passed here is O. The user may set the value of recvsize or 
sendsize to any appropriate buffer size. If they use a 0 in either case, a system 
default size will be chosen. This routine should be used by application servers 
that do not do any listening of their own, i.e., servers that simply do their job 
and return. 

USing inetd 

The format of entries in /etc/inetd. conf for RPC services is as follows: 

rpc yrog/vers socket_type rpc/proto flags uid pathname args 

where rpcyrog is the symbolic name of the program as it appears in rpc(4), 
vers is the version number, socket_type is one of dgram or stream for connec­
tionless or virtual circuit transport, respectively, proto is transport protocol, such 
as tcp or udp and must make sense with respect to the specified socket_type; 
flags is one of wait or nowait, uid must exist in /etc/passwd, pathname is 
the full path name of the server daemon and args are arguments to be passed to 
the daemon when it is invoked. For example: 

For more information, see inetd. conf(4). 

7·56 Programmer's Guide: Networking Interfaces 



________________ Advanced RPe Programming Techniques 

Using the listener 
We will assume here that the reader already knows the details of setting up the 
listener process and of using pmadm. The following shows how to use pmadm 
to add RPC services: 

pmadm -a -p pm_tag -s svctag -i id -v ver \ 
-m 'nlsadmin -c command -D -R prog:vers' 

Here -a means to add a service, -p pm_tag specifies a tag associated with the 
port monitor providing access to the service, -s svctag is the server's identifying 
code, -i id is the /etc/passwd user ID assigned to service svctag, -v ver is 
the version number for the port monitor's database file and -m specifies the 
nlsadmin command for invoking the service. nlsadmin may have additional 
arguments. For example, to add version 1 of a remote program server named 
rusersd the pmadm command might be: 

Here, the command is given root permissions, installed in version 4 of the 
listener database file, and is made available over TCP transports. 

rJl, Because of tho co~pI.~ity of tho argum~nts and options that can rollow tho .... N9t~.. pmadm -a inVocation, It may be convenient to use a command SCript or the 
::m:m.:mi menu system to add RPe services. H you use the menu system, enter 
..... ...... sysadm ports, then choose the port_services option. 

After adding a service, the listener must be reinitialized before the service 
will be available. This is accomplished by stopping, then retarting the listener, 
as follows (note that rpcbind must be running): 

Remote Procedure Call Programming Guide 7-57 



Advanced RPe Programming Technique. 

For more infonnation, see the listen(1M), pmadm(1M), sacadm(1M) and 
sysadm(1M) manual pages and the System Administrator's Guide. 

7-58 Programmer'. Guide: Networking Interfaces 



Advanced Examples 

This section contains examples. 

"Versions" shows how to register multiple versions of a remote procedure. 

"Connection-oriented Transports" shows a remote copy program. 

"Callback Procedures" shows how a server can be made to place a "client call" 
back to a client that calls it. 

"Memory Allocation With XDR" illustrates how this is done. 

Versions 

By convention, the first version number of program PROG is PROGVERS_ORIG 
and the most recent version is PROGVERS. 

Suppose there is a new version of the ruser program that returns an 
unsigned short rather than a long. If we name this version 
RUSERSVERS_SHORT, then a server that wants to support both versions would 
do a double register. The same server handle would be used for both of these 
registrations. 

Both versions can be handled by the same C procedure: 

Remote Procedure Call Programming Guide 7-59 



Advanced Examples 

7-60 Programmer's Guide: Networking Interfaces 



Advanced Examples 

Connection-Oriented Transports 

Here is an example that copies a file from one system to another. The initiator 
of the RPC send call takes its standard input and sends it to the server 
receive, which prints it on standard output. This also illustrates an XDR pro­
cedure that behaves differently on serialization than on deserialization. 

Remote Procedure Call Programming Guide 7-61 



Advanced Examples 

Note that in the following two screens, the serializing and deserializing is done 
only by xdr_bytes () . 

7·62 Programmer's Guide: Networking Interfaces 



Advanced Examples 

Remote Procedure Call Programming Guide 7-63 



Advanced Examples 

Note that on the server side no explicit action was taken after receiving the 
arguments. This is because xdr _rep () did all the necessary dirty work 
automatically. 

Callback Procedures 

Occasionally, it is useful to have a server become a client, and make an RPC call 
back to the client process. An example is remote debugging, where the client is 
a window system program, and the server is a debugger running on the remote 
machine. Most of the time, the user clicks a mouse button at the debugging 
window, which converts this to a debugger command, and then makes an RPC 
call to the server (where the debugger is actually running), telling it to execute 
that command. However, when the debugger hits a breakpoint, the roles are 
reversed, and the debugger wants to make an rpc call to the window program, 
so that it can inform the user that a breakpoint has been reached. 

To do an RPC callback, a program number is needed to make the RPC call. 
Because this will be a dynamically generated program number, it should be in 
the transient range, Ox40000000 - OxSfffffff. In the following example, 
the routine gettransient () returns a valid program number in the transient 
range, and registers it with rpebind. The call to rpeb_set () is a test and set 
operation, in that it indivisibly tests whether a program number has already 
been registered, and if it has not, then reserves it. 

7-64 Programmer's Guide: Networking Interfaces 



Advanced Examples 

The following program illustrates how to use the gettransient() routine. 
The client makes an RPC call to the server, passing it a transient program 
number. Then the client waits around to receive a callback from the server at 
that program number. The server registers the program EXAMPLEPROG, so that 
it can receive the RPC call informing it of the callback program number. Then 
at some random time (on receiving an ALRM signal in this example), it sends a 
callback RPC call, using the program number it received earlier. 

Remote Procedure Call Programming Guide 7-65 



Advanced Example. 

7-66 Programmer'. Guide: Networking Interface. 



Advanced Examples 

This example shows how svc_tli_create () can be used when it is necessary 
to explicitly chose the program number by calling rpcb _set () until it 
succeeds. (Here it was not required that a service be registered on a given tran­
sport, and the example could simply have used a "generic" network type.) 
After creating the handle, svc_regO is called (with the last parameter given as 
NULL) to register the dispatch function with the dispatcher. Once the server 
side is ready, it then notifies the actual server of its dynamic program number 
with rpc_call (). On success it then waits for requests from the remote 
server. 

In the following example, the server makes an RPC call to the client on an 
ALARM signal, but only if the client has passed the program number to the 
server. This server example illustrates the simplicity of the code when one is 
using rpc _reg () . 

Remote Procedure Call Programming Guide 7-67 



Advanced Examples 

7-68 Programmer's Guide: Networking Interfaces 



Advanced Examples 

Memory Allocation with XDR 

XDR routines not only do input and output, they also do memory allocation. 

The second parameter of xdr_array () is a pointer to an array, rather than the 
array itself. 

1 ........................ 
1 

..••..•.•.•.••..•..•.•. 1 This is tru~ for most XDR routines. The indirection is nooossary because 
~()TE these routines often allocate memory. 

~ : ~ :: : ~ : : : : : : . : : : : ~ : : : :. : 

If it is NULL, then xdr_array () allocates space for the array and returns a 
pointer to it, putting the size of the array in the third argument. As an exam­
ple, consider the following XDR routine xdr_chararrl () , which deals with a 
fixed array of bytes with length SIZE: 

Remote Procedure Call Programming Guide 7-69 



Advanced Examples 

If space has already been allocated in chararr, it can be called from a server 
like this: 

To have XDR to do the allocation, this routine must be rewritten in the follow­
ing way: 

Then the RPC call might look like this: 

Note that, after being used, the character array should normally be freed with 
svc_freearqs O. svc_freearqs 0 will not attempt to free any memory if 
the variable indicating it is NULL. For example, in the routine 
xdr_finalexample 0, given earlier, if finalp->strinq were NULL, then it 
would not be freed. The same is true for finalp->simplep. 

7·70 Programmer's Guide: Networking Interfaces 



Advanced Examples 

To summarize: 

• Each XDR routine is responsible for serializing, deserializing, and freeing 
memory. 

• When an XDR routine is called from rpc _call () , the serializing part is 
used. 

• When called from svc _getargs () , the deserializer is used. 

• When called from svc_freeargs (), the memory deallocator is used. 

When building simple programs like those given as examples in this section, a 
programmer does not have to worry about the three modes. 

Remote Procedure Call Programming Guide 7-71 









8 External Data Representation 
Standard: Protocol Specification 

Introduction to XDR 
Basic Block Size 
Organization of Technical Information 

XDR Data Type Declarations 
Integer 

• Description 
• Declaration 
• Encoding 

Unsigned Integer 
• Description 
• Declaration 
• Encoding 

Enumeration 
• Description 
• Declaration 
• Encoding 

Boolean 
• Description 
• Declaration 
• Encoding 

Hyper Integer and Unsigned Hyper Integer 
• Description 
• Declaration 
• Encoding 

Floating-point 
• Description 
• Declaration 
• Encoding 

Double-Precision Floating-point 
• Description 
• Declaration 

8-1 
8-1 
8-2 

8-3 
8-3 
8-3 
8-3 
8-4 
8-4 
8-4 
8-4 
8-4 
8-5 
8-5 
8-5 
8-5 
8-5 
8-5 
8-5 
8-6 
8-6 
8-6 
8-6 
8-6 
8-7 
8-7 
8-7 
8-7 
8-8 
8-8 
8-9 

Table of Contents 



Table of Contents 

• Encoding 
Fixed-length Opaque Data 

• Description 
• Declaration 
• Encoding 

Variable-length Opaque Data 
• Description . 
• Declaration 
• Encoding 

String 
• Description 
• Declaration 
• Encoding 

Fixed-length Array 
• Description 
• Declaration 

Variable-length Array 
• Description 
• Declaration 
• Encoding 

Structure 
• Description 
• Declaration 
• Encoding 

Discriminated Union 
• Description 
• Declaration 
• Encoding 

Void 
• Description 
iii Declaration 
• Encoding 

Other XDR Declarations 
Constant. 
typedef 
Optional-data 

8-9 
8-9 
8-9 
8-10 
8-10 
8-10 
8-10 
8-11 
8-11 
8-11 
8-11 
8-12 
8-12 
8-12 
8-12 
8-13 
8-13 
8-13 
8-13 
8-14 
8-14 
8-14 
8-14 
8-14 
8-15 
8-15 
8-15 
8-15 
8-16 
8-16 
8-16 
8-16 

8-17 
8-17 
8-17 
8-18 

Ii Programmer's Guide: Networking Interfaces 



_____________________ Table of Contents 

The XDR Language Specification 8-20 
Notational Conventions 8-20 
Lexical Notes 8-20 
Syntax Information 8-21 

• Syntax Notes 8-23 

An Example of an XDR Data Description 8-24 

References 8-26 

Table of Contents iii 





Introduction to XDR 

XDR is a standard for the description and encoding of data. The XDR protocol 
is useful for transferring data between different computer architectures and has 
been used to communicate data between such diverse machines as the 3B2, Sun 
Workstation, V AX, IBM-PC, and Cray. XDR fits into the ISO presentation layer 
and is roughly analogous in purpose to X.409, ISO Abstract Syntax Notation. 
The major difference between the two is that XDR uses implicit typing, while 
X.409 uses explicit typing. 

XDR uses a language to describe data formats and can only be used to describe 
data; it is not a programming language. This language makes it possible to 
describe intricate data formats in a concise manner. The XDR language is simi­
lar to the C language. Protocols such as RPC (Remote Procedure Call) and the 
NFS (Network File System) use XDR to describe the format of their data. 

The XDR standard makes the following assumption: that bytes (or octets) are 
portable, where a byte is defined to be 8 bits of data. 

Basic Block Size 

The representation of all items requires a multiple of four bytes (or 32 bits) of 
data. The bytes are numbered 0 through n-1. The bytes are read or written to 
some byte stream such that byte m always precedes byte mH. The n bytes are 
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count 
a multiple of four. 

Choosing the XDR block size requires a tradeoff. Choosing a small size such as 
two makes the encoded data small, but causes alignment problems for machines 
that are not aligned on these boundaries. A large size such as eight means the 
data will be aligned on virtually every machine, but causes the encoded data to 
grow too large. Four was chosen as a compromise. Four is big enough to sup­
port most architectures efficiently, except for rare machines such as the eight­
byte aligned Cray. Four is also small enough to keep the encoded data res­
tricted to a reasonable size. 

The same data should encode into the same thing on all machines, so that 
encoded data can be significantly compared or checksummed. Forcing the pad­
ded bytes to be zero ensures this. 

External Data Representation Standard: Protocol Specification 8-1 



Introduction to XDR 

This chapter uses graphic box notation for illustration and comparison. In most 
illustrations, each box (delimited by a plus sign at the 4 corners and vertical 
bars and dashes) depicts a byte. Ellipses ( ... ) between boxes show zero or 
more additional bytes where required: 

A Block 

+--------+--------+ ... +--------+--------+ ... +--------+ 
1 byte 0 1 byte 1 I ... Ibyte n-ll 0 I ... 1 0 
+--------+--------+ ... +--------+--------+ ... +--------+ 
I<-----------n bytes---------->I<------r bytes------>I 
I<-----------n+r (where (n+r) mod 4 = 0»----------->1 

Organization of Technical Information 

The "XDR Data Type Declarations" section describes each atomic data type that 
can be represented using XDR 

"Other XDR Declarations" describe constants, type definitions, and optional 
data (an alternate way to express certain kinds of unions). 

liThe XDR Language Specification" section provides a formal definition of the 
XDR langUage. 

"An Example of an XDR Data Description" shows how XDR might be used to 
describe a file. 

8-2 Programmer's Guide: Networking Interfaces 



XDR Data Type Declarations 

Each of the sections that follow: 

• describe a data type defined in the XDR standard 

• show how that data type is declared in the language 

• include a graphic illustration of the encoding 

For each data type in the language we show a general paradigm declaration. 
Note that angle brackets « and » denote variable length sequences of data and 
square brackets ([ and ]) denote fixed-length sequences of data. n, m and r 
denote integers. For the full language specification and more formal definitions 
of terms such as identifier and declaration, refer to ''The XDR Language 
Specification", below. 

For some data types, more specific examples are included. A more extensive 
example of a data description is in the section II An Example of XDR Data 
Representation" . 

Integer 

Description 
An XDR signed integer is a 32-bit datum that encodes an integer in the range [-
2147483648,2147483647]. The integer is represented in two's complement nota­
tion; the most and least significant bytes are 0 and 3, respectively. 

Declaration 
Integers are declared as follows: 

int identifier; 

External Data Representation Standard: Protocol Specification 8-3 



XDR Data Type Declarations 

Encoding 
Integer 

(MBB) (LSB) 

+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 I 
+-------+-------+-------+-------+ 
<------------32 bits------------> 

Unsigned Integer 

Description 
An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer 
in the range [0,4294967295]. The integer is represented by an unsigned binary 
number whose most and least significant bytes are 0 and 3, respectively. 

Declaration 
An unsigned integer is declared as follows: 

unsigned int identifier; 

Encoding 
Unsigned Integer 

(MBB) (LSB) 

+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 I 
+-------+-------+-------+-------+ 
<------------32 bits------------> 

8-4 Programmer's Guide: Networking Interfaces 



___________________ XDR Data Type Declarations 

Enumeration 

Description 
Enumerations have the same representation as signed integers and are handy 
for describing subsets of the integers. 

Declaration 
Enumerated data is declared as follows: 

enum { name-identifier .. constant, ... } identifier; 

For example, an enumerated type could represent the three colors red, yellow, 
and blue as follows: 

enum { RED - 2, YELLOW - 3, BLUE = 5 } colors; 

It is an error to assign to an enum an integer that has not been assigned in the 
enum declaration. 

Encoding 
See "Integer," above. 

Boolean 

Description 
Booleans are important enough and occur frequently enough to warrant their 
own explicit type in the standarq. Booleans are integers of value 0 or 1. 

Declaration 
Booleans are declared as follows: 

bool identifier; 

This is equivalent to: 

enum { FALSE = 0, TRUE = 1 } identifier; 

External Data Representation Standard: Protocol Specification 8-5 



XDR Data Type Declarations 

Encoding 
See "Integer," above. 

Hyper Integer and Unsigned Hyper Integer 

Description 
The standard also defines 64-bit (8-byte) numbers called hyper int and 
unsigned hyper int whose representations are the obvious extensions of 
integer and unsigned integer, defined above. They are represented in two's 
complement notation; the most and least significant bytes are 0 and 7, respec­
tively. 

Declaration 
Hyper integers are declared as follows: 

hyper int identifier; 

unsigned hyper int identifier; 

Encoding 

8-6 

Hyper Integer 

(MSB) (LSB) 

+-------+-------+-------+-------+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 Ibyte 4 Ibyte 5 Ibyte 6 Ibyte 7 I 
+-------+-------+-------+-------+-------+-------+-------+-------+ 
<----------------------------64 bits----------------------------> 

Programmer's Guide: Networking Interfaces 



XDR Data Type Declarations 

Floati ng-poi nt 

Description 

The standard defines the floating-point data type float (32 bits or 4 bytes). 
The encoding used is the IEEE standard for nonnalized single-precision 
floating-point numbers [1]. The following three fields describe the single­
precision floating-point number: 

5: The sign of the number. Values 0 and 1 represent positive and negative, 
respectively. One bit. 

E: The exponent of the number, base 2. Eight bits are devoted to this field. 
The exponent is biased by 127. 

F: The fractional part of the number's mantissa, base 2. 23 bits are devoted 
to this field. 

Therefore, the floating-point number is described by: 

(-1)**5 * 2** (E-Bias) * 1.F 

Declaration 

Single-precision floating-point data is declared as follows: 

float identifier; 

Encoding 
Single-Precision Floating Point 

+-------+-------+-------+-------+ 
Ibyte 0 Ibyte 1 Ibyte 2 Ibyte 3 I 

SI ElF I 
+-------+-------+-------+-------+ 
11<- 8 ->1<-------23 bits------>I 
<------------32 bits------------> 

Just as the most and least significant bytes of an integer are 0 and 3, the most 
and least siSOificant bits of a single-precision floating-point number are 0 and 

External Data Representation Standard: Protocol Specification 8-7 



XDR Data Type Declarations 

31. The beginning bit (and most significant bit) offsets of 5, E, and Fare 0, 1, 
and 9, respectively. 

These offsets refer to the logical positions of the bits, not to their physical 
locations (which vary from medium to medium). 

The IEEE specifications should be consulted about the encoding for signed zero, 
signed infinity (overflow), and denormalized numbers (underflow) [1]. Accord­
ing to IEEE specifications, the NaN (not a number) is system dependent and 
should not be used externally. 

Double-Precision Floating-point 

Description 
The standard defines the encoding for the double-precision floating-point data 
type double (64 bits or 8 bytes). The encoding used is the IEEE standard for 
normalized double-precision floating-point numbers [1]. The standard encodes 
the following three fields, which describe the double-precision floating-point 
number: 

5: The sign of the number. Values 0 and 1 represent positive and negative, 
respectively. One bit. 

E: The exponent of the number, base 2. 11 bits are devoted to this field. 
The exponent is biased by 1023. 

F: The fractional part of the number's mantissa, base 2. 52 bits are devoted 
to this field. 

Therefore, the floating-point number is described by: 

(-1)**5 * 2**(E-Bias) * 1.F 

8-8 Programmer's Guide: Networking Interfaces 



XDR Data Type Declarations 

Declaration 
double identifier; 

Encoding 
Double-Precision Floating Point 

+------+------+------+------+------+------+------+------+ 
Ibyte Olbyte 11byte 21byte 31byte 41byte 51byte 61byte 71 
81 ElF 1 
+------+------+------+------+------+------+------+------+ 
11<--11-->1<-----------------52 bits------------------->1 
<-----------------------64 bits-------------------------> 

Just as the most and least significant bytes of an integer are 0 and 3, the most 
and least significant bits of a double-precision floating- point number are 0 and 
63. The beginning bit (and most significant bit) offsets of 5, E , and Fare 0, 1, 
and 12, respectively. 

1 .......... 

1

> .•....•. 1 Thes.e offs~ refer to the logicru poskions ?f the bks, not to their phyocal 
filqrE locations (which vary from medium to medium). 

~:~::: [:[:~:f ::: ::[~:::::~ 

The IEEE specifications should be consulted about the encoding for signed zero, 
signed infinity (overflow), and denormalized numbers (underflow) [1]. Accord­
ing to IEEE specifications, the NaN (not a number) is system dependent and 
should not be used externally. 

Fixed-length Opaque Data 

Description 
At times, fixed-length uninterpreted data needs to be passed among machines. 
This data is called opaque. 

External Data Representation Standard: Protocol Specification 8-9 



XDR Data Type Declarations 

Declaration 
Opaque data is declared as follows: 

opaque identifier[n]; 

where the constant n is the (static) number of bytes necessary to contain the 
opaque data. 

Encoding 
The n bytes are followed by enough (0 to 3) residual zero bytes, r, to make the 
total byte count of the opaque object a multiple of four. 

Fixed-Length Opaque 

o 1 

+--------+--------+ ... +--------+--------+ ... +--------+ 
I byte 0 1 byte 1 I ... 1 byte n-ll 0 1 ... 1 0 
+--------f--------+ ... +--------+--------+ ... +--------+ 
I<-----------n bytes---------->I<------r bytes------>1 
I<-----------n+r (where (n+r) mod 4 = 0)------------>1 

Variable-length Opaque Data 

Description 

The standard also provides for variable-length (counted) opaque data, defined 
as a sequence of n (numbered 0 through n-1) arbitrary bytes to be the number 
n encoded as an unsigned integer (as described below), and followed by the n 
bytes of the sequence. 

Byte b of the sequence always precedes byte b+ 1 of the sequence, and byte 0 of 
the sequence always follows the sequence's length (count). The n bytes are fol­
lowed by enough (0 to 3) residual zero bytes, r, to make the total byte count a 
multiple of four. 

8-10 Programmer's Guide: Networking Interfaces 



___________________ XDR Data Type Declarations 

Declaration 
Variable-length opaque data is declared in the following way: 

opaque identijier<m>; 

or 

opaque identijier<>; 

The constant m denotes an upper bound of the number of bytes that the 
sequence may contain. If m is not specified, as in the second declaration, it is 
assumed to be (2**32) - I, the maximum length. For example, a filing proto­
col may state that the maximum data transfer size is 8192 bytes, as follows: 

opaque filedata<8192>; 

Encoding 
Variable-Length Opaque 

o 1 2 3 4 5 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
I length n IbyteO Ibyte11 ... 1 n-1 1 0 1 ... 1 0 1 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
1<-------4 bytes------->I<------n bytes------>I<---r bytes--->1 

I<----n+r (where (n+r) mod 4 = 0)---->1 

It is an error to encode a length greater than the maximum described in the 
specification. 

String 

Description 
The standard defines a string of n (numbered 0 through n-l) ASCII bytes to be 
the number n encoded as an unsigned integer (as described above), and fol­
lowed by the n bytes of the string. Byte b of the string always precedes byte 
b+ 1 of the string, and byte 0 of the string always follows the string's length. 
The n bytes are followed by enough (0 to 3) residual zero bytes, r, to make the 
total byte count a multiple of four. 

External Data Representation Standard: Protocol Specification 8-11 



XDR Data Type Declarations 

Declaration 
Counted byte strings are declared as follows: 

strinq object<m>; 

or 

strinq object<>; 

The constant m denotes an upper bound of the number of bytes that a string 
may contain. If m is not specified, as in the second declaration, it is assumed to 
be (2**32) - 1, the maximum length. The constant m would normally be 
found in a protocol specification. For example, a filing protocol may state that a 
file name can be no longer than 255 bytes, as follows: 

strinq filename<255>; 

Encoding 
String 

o 1 2 3 4 5 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 

lengthn IbyteOlbytell ... 1 n-ll 0 1 ... 1 0 
+-----+-----+-----+-----+-----+-----+ ... +_._---+-----+ ... +-----+ 
1<-------4 bytes------->I<------n bytes------>I<---r bytes--->I 

I<----n+r (where (n+r) mod 4 - 0)---->1 

It is an error to encode a length greater than the maximum described in the 
specification. 

Fixed-length Array 

Description 
Fixed-length arrays of elements numbered 0 through n-l are encoded by indivi­
dually encoding the elements of the array in their natural order, 0 through n-l. 
Each element's size is a multiple of four bytes. Though all elements are of the 
same type, the elements may have different sizes. For example, in a fixed­
length array of strings, all elements are of type strinq, yet each element will 
vary in its length. 

8-12 Programmer's Guide: Networking Interfaces 



XDR Data Type Declarations 

Declaration 
Declarations for fixed-length arrays of homogeneous elements are in the follow­
ing form: 

type-name identifier [n] ; 

Fixed-Length Array 

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
element 0 element 1 I ... I element n-l I 

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
I<--------------------n elements------------------->I 

Variable-length Array 

Description 
Counted arrays provide the ability to encode variable-length arrays of homo­
geneous elements. The array is encoded as the element count n (an unsigned 
integer) followed by the encoding of each of the array's elements, starting with 
element 0 and progressing through element n-1. 

Declaration 

The declaration for variable-length arrays follows this form: 

type-name identifier<m>; 

or 

type-name identifier<>; 

The constant m specifies the maximum acceptable element count of an array. 
Note that if m is not specified, as is the case in the second declaration format 
above, it is assumed to be (2**32) - 1. 

External Data Representation Standard: Protocol Specification 8-13 



XDR Data Type Declarations 

Encoding 
Counted Array 

012 3 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 

n I element 0 I element 1 I ... 1 element n-ll 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +-~--+--+--+ 
1<-4 bytes->I<--------------n elements------------->1 

It is an error to encode a value of n that is greater than the maximum described 
in the specification. 

Structure 

Description 
The components of the structure are encoded in the order of their declaration in 
the structure. Each component's size is a multiple of four bytes, though the 
components may be different sizes. 

Declaration 
Structures are dedared as follows: 

struct{ 
component-declaration-A; 
component-dec1aration-B; 

} identifier; 

Encoding 
Structure 

+----~--------+-------------+ .. . 
1 carponent A 1 conponent B I .. . 
+-------------+-------------+ .. . 

8-14 Programmer's Guide: Networking Interfaces 



XDR Data Type Declarations 

Discriminated Union 

Description 
A discriminated union is a type composed of a discriminant followed by a type 
selected from a set of prearranged types according to the value of the discrim­
inant. The type of discriminant is either int, unsigned int, or an enumerated 
type, such as bool. The component types are called arms of the union, and are 
preceded by the value of the discriminant which implies their encoding. 

Declaration 
Discriminated unions are declared as follows: 

union switch (discriminant-declaration) 
case discriminant-value-A: 

arm-declaration-A; 
case discriminant-value-B: 

arm-declaration-B ; 

default: 
default-declaration; 

identifier; 

Each case keyword is followed by a legal value of the discriminant. The 
default arm is optional. If it is not specified, then a valid encoding of the union 
cannot take on unspecified discriminant values. The size of the implied arm is 
alw~ys a multiple of four bytes. 

Encoding 

The discriminated union is e,pcoded as its discriminant followed by the encoding 
of the implied arm. . 

Discriminated Union 

o 1 2 3 
+---+---+---+---+---+---+---+---+ 
I discriminant I inplied axm I 
+---+---+---+---+---+---+---+---+ 
1<---4 bytes--->I 

External Data Representation Standard: Protocol Specification 8-15 



XDR Data Type Declarations 

Void 

Description 
An XDR void is a O-byte quantity. Voids are useful for describing operations 
that take no data as input or no data as output. They are also useful in unions, 
where some arms may contain data and others do not. 

Declaration 
The declaration is simply as follows: 

void; 

Encoding 
Voids are illustrated as follows: 

++ 
II 
++ 

-x- 0 bytes 

8-16 Programmer's Guide: Networking Interfaces 



Other XDR Declarations 

Constant 

The declaration for a constant follows this form: 

const name-identifier - n; 

const is used to define a symbolic name for a constant; it does not declare any 
data. The symbolic constant may be used anywhere a regular constant may be 
used. 

The following example defines a symbolic constant DOZEN, equal to 12. 

const DOZEN - 12; 

typedef 

typedef does not declare any data either, but serves to define new identifiers 
for declaring data. The syntax is: 

typedef declaration; 

The new type name is actually the variable name in the declaration part of the 
typedef. 

The following example defines a new type called eqgbox using an existing type 
called egg and the symbolic constant DOZEN: 

typedef egg eggbox [DOZEN] ; 

Variables declared using the new type name have the same type as the new 
type name would have in the typedef, if it was considered a variable. For 
example, the following two declarations are equivalent in declaring the variable 
fresheggs: 

eqgbox fresheggs; 
egg fresheggs [DOZEN] ; 

When a typedef involves a struct, enum, or union definition, there is another 
(preferred) syntax that may be used to define the same type. In general, a 
typedef of the following form: 

typedef <<struct, union, or enum definition» identifier; 

External Data Representation Standard: Protocol Specification 8-17 



J 

Other XDR Declarations 

may be converted to the alternative fonn by removing the typedef part and 
placing the identifier after the struct, enum, or union keyword, instead of at 
the end. For example, here are the two ways to define the type b001: 

typedef enum { 
FALSE" 0, 
TRUE = 1 

} bool; 

/* using typedef */ 

enum bool /* preferred alternative */ 
FALSE = 0, 
TRUE = 1 

} ; 

This syntax is preferred because one does not have to go to the end of a declara­
tion to learn the name of the new type. 

Optional-data 

Optional-data is a fonn of union. Because it occurs frequently, it has been 
given its own declaration syntax. It is declared as follows: 

type-name *identifier; 

This is equivalent to the following union: 

union switch (bool opted) { 
case TRUE: 

type-name element; 
case FALSE: 

void; 
identifier ; 

It is also equivalent to the following variable-length array declaration, because 
the boolean opted can be interpreted as the length of the array: 

type-name identifier<l>; 

8-18 Programmer's Guide: Networking Interfaces 



Other XDR Declarations 

Optional-data is useful for describing recursive data-structures such as linked­
lists and trees. For example, the following defines a type stringlist that 
encodes lists of arbitrary length strings: 

struct *stringlist { 
string item<>; 
stringlist next; 

} ; 

It could have been equivalently declared as the following union: 

union stringlist switch (bool opted) { 

}; 

case TRUE: 
struct 

string item<>; 
stringlist next; 

element; 
case FALSE: 

void; 

or as a variable-length array: 

struct stringlist<l> 
string item<>; 
stringlist next; 

} ; 

Both of these declarations obscure the intention of the stringlist type, so the 
optional-data declaration is preferred over both of them. The optional-data type 
also has a dose correlation to how recursive data structures are represented in 
high-level languages such as Pascal or C by use of pointers. The syntax is the 
same as that of the C language for pointers. 

External Data Representation Standard: Protocol Specification 8·19 



The XDR Language Specification 

Notational Conventions 

This specification uses a modified Backus-Naur Form notation for describing the 
XDR language. Here is a brief description of the notation: 

1. The characters I, (, ), [, ], and * are special. 

2. Terminal symbols are strings of any characters in a font. 

3. Non-terminal symbols are strings of non-special italic characters. 

4. Alternative items are separated by a vertical bar ( I ). 
5. Optional items are enclosed in brackets. 

6. Items are grouped together by enclosing them in parentheses. 

7. A * following an item means 0 or more occurrences of the item. 

For example, consider the following pattern: 

a very (, very)* [cold and] rainy (day I night) 

An infinite number of strings match this pattern. A few of them are: 

a very rainy day 
a very, very rainy day 
a very cold and rainy day 
a very, very, very cold and rainy night 

Lexical Notes 

1. Comments begin with / * and end with * / . 
2. White space serves to separate items and is otherwise ignored. 

3. An identifier is a letter followed by an optional sequence of letters, digits 
or underbars (_). The case of identifiers is not ignored. 

4. A constant is a sequence of one or more decimal digits, optionally pre­
ceded by a minus-sign ( - ). 

8-20 Programmer's Guide: Networking Interfaces 



_________________ The XDR Language Specification 

Syntax Information 

declaration: 

value: 

type-specifier identifier 
I type-specifier identifier [ value ] 
I type-specifier identifier < [ value J > 
I opaque identifier [ value ] 
I opaque identifier < [ value J > 
I strinq identifier < [ value J > 
I type-specifier * identifier 
I void 

constant 
I identifier 

type-specifier: 
[ un~igned J int 

I [unsigned J hyper 
I float· 
I double 
I bool 
I enum-type-spec 
I struct-type-spec 
I union-type-spec 
I identifier 

enum-type-spec: 
enum enum-body 

enum-body: 
{ 

( identifier - value ) 
( , identifier - value ) .. 
} 

struct-type-spec: 
struet struct-body 

External Data Representation Standard: Protocol Specification 8-21 



The XDR Language Specification 

8·22 

struct-body: 
{ 

( declaration ; ) 
( declaration ; )* 
} 

union-type-spec: 
union union-body 

union-body: 
switch ( declaration) { 
( case value : declaration ; ) 
( case value : declaration ; )* 
[default : declaration ; 1 
} 

constant-de[: 
const identifier = constant ; 

type-deft 
. typedef declaration ; 
I enum identifier enum-body ; 
I struct identifier struct-body ; 
I union identifier union-body ; 

definition: 
type-det 
I constant-de[ 

specification: 
definition * 

Programmer's Guide: Networking Interfaces 



The XDR Language Specification 

Syntax Notes 

1. The following are keywords and cannot be used as identifiers: 

bool 
case 
char 

const 
default 
double 

enum 
float 
hyper 

int 
opaque 
string 

struct 
switch 
typedef 

union 
unsigned 
void 

2. Only unsigned constants may be used as size specifications for arrays. If 
an identifier is used, it must have been declared previously as an 
unsigned constant in a const definition. 

3. Constant and type identifiers within the scope of a specification are in the 
same name space and must be declared uniquely within this scope. 

4. Similarly, variable names must be unique within the scope of struct and 
union declarations. Nested struct and union declarations create new 
scopes. 

5. The discriminant of a union must be of a type that evaluates to an 
integer. That is, int, unsigned int, bool, an enum type or any 
typedefed type that evaluates to one of these. Also, the case values must 
be legal discriminant values. Finally, a case value may not be specified 
more than once within the scope of a union declaration. 

External Data Representation Standard: Protocol Specification 8-23 



An Example of an XDR Data Description 

Here is a short XDR data description of a thing called a file, which might be 
used to transfer files from one machine to another: 

Suppose now that there is a user named john who wants to store his lisp pro­
gram sillyprog that contains just the data (quit). His file would be 
encoded as follows: 

8-24 Programmer's Guide: Networking Interfaces 



An Example of an XDR Data Description 

Offset Hex Bytes ASCII Description 
0 00 00 00 09 .... Length of filename = 9 
4 73 69 6c 6c sill Filename characters 
8 79 70 72 6f ypro ... and more characters ... 

12 67 00 00 00 g ... ... and 3 zero-bytes of fill 
16 00 00 00 02 .... Filekind is EXEC = 2 
20 00 00 00 04 .... Length of interpretor = 4 
24 6c 69 73 70 lisp Interpretor characters 
28 00 00 00 04 .... Length of owner = 4 
32 6a 6f 68 6e john Owner characters 
36 00 00 00 06 .... Length of file data = 6 
40 28 71 75 69 (qui File data bytes ... 
44 74 29 00 00 t) .. ... and 2 zero-bytes of fill 

External Data Representation Standard: Protocol Specification 8-25 



References 

[1] "IEEE Standard for Binary Floating-Point Arithmetic," ANSI/IEEE Stan­
dard 754-1985, Institute of Electrical and Electronics Engineers, August 
1985. 

8-26 Programmer's Guide: Networking Interfaces 







9 Remote Procedure Calls: 
Protocol Specification 

Introduction 
Terminology 
General Attributes of the Protocol 

• The RPC Model 
• Transports and Semantics 
• Binding and Rendezvous Independence 
• Authentication 

Organization of Technical Information 

RPC Protocol Requirements 
Programs and Procedures 
Authentication 
Program Number Assignment 
Other Uses of the RPe Protocol 

• Batching 
• Broadcast RPC 

The RPC Message Protocol 

Authentication Protocols 
AUTH NONE Authentication 
AUTH SYS Authentication 

• The AUTH _SHORT Verifier 
AUTH DES Authentication 

• Naming 
• AUTH DES Authentication Verifiers 
• Nicknames and Clock Synchronization 
• DES Authentication Protocol (in XDR language) 

Table of Contents 

9-1 
9-1 
9-1 
9-1 
9-2 
9-3 
9-3 
9-4 

9-5 
9-5 
9-6 
9-7 
9-9 
9-9 
9-9 

9-10 

9-14 
9-14 
9-14 
9-15 
9-15 
9-16 
9-16 
9-17 
9-18 



Table of Contents _____________________ . 

• Diffie-Hellman Encryption 9-20 

Record Marking Standard 9-22 

The RPC Language 9-23 
An Example Service Described in the RPe Language 9-23 
The RPe Language Specification 9-24 
Syntax Notes 9-25 

rpcbind Protocol 9-26 
rpcbind Protocol Specification (in RPe Language) 9-26 
rpcbind Operation 9-28 

• The RPCBPROC NULL Procedure 9-28 
• The RPCBPROC -SET Procedure 9-28 
• The RPCBPROC-UNSET Procedure 9-29 
• The RPCBPROC-GETADDR Procedure 9-29 
, The RPCBPROC=DUMP Procedure 9-29 
• The RPCBPROC CALLIT Procedure 9-29 
• The RPCBPROC - GETTIME Procedure 9-30 
• The RPCBPROC-UADDR2TADDR Procedure 9-30 
• The RPCBPROC-TADDR2UADDR Procedure 9-30 

References 9-31 

II Programmer's Guide: Networking Interfaces 



Introduction 

This chapter specifies a message protocol used in implementing the Remote Pro­
cedure Call (RPC) package. (The message protocol is specified with the External 
Data Representation (XDR) language. This chapter assumes the reader is fami­
liar with XDR. See the "External Data Representation Standard: Protocol 
Specification" chapter for details.) 

Terminology 

This chapter discusses servers, services, programs, procedures, clients, and ver­
sions. 

A seraer is a process that provides remote services to clients. 

A network service is a collection of one or more remote programs. 

A remote program implements one or more remote procedures; the procedures, 
their parameters, and results are documented in the specific program's protocol 
specification (see the "rpcbind Protocol" below, for an example). 

Network clients are processes that make remote procedure calls to servers. A 
server may support more than one version of a remote program to be forward 
compatible with changing protocols. 

As an example of how theSe terms are used, consider a network file service 
composed of two programs. One program may deal with high-level applica­
tions such as file system access control and locking. The other may deal with 
low-level file 10 and have procedures like "read" and "Write." A client machine 
of the network file service would call the procedures associated with the two 
programs of the service on behalf of some user on the client machine. 

General Attributes of the Protocol 

The RPC Model 

The remote procedure call model is similar to the local procedure call modei. In 
the local case, the caller places arguments toa procedure in some well-specified 
location. It then transfers control to the procedure, and eventually gains back 
control. At that point, the results of the procedure are extracted from a well­
specified location, and the caller continues execution. 

Remote Procedure Calls: Protocol SpecHlcation 9-1 



Introduction 

The remote procedure call is similar, in that one thread of control logically 
winds through two processes. One is the caller's process, the other is a server's 
process. Conceptually, the caller process sends a call message to the server pro­
cess and waits (blocks) for a reply message. The call message contains the 
procedure's parameters, among other things. The reply message contains the 
procedure's results, among other things. Once the reply message is received, 
the results of the procedure are extracted, and the caller's execution is resumed. 

On the server side, a process is dormant awaiting the arrival of a call message. 
When one arrives, the server process extracts the procedure's parameters, com­
putes the results, sends a reply message, and then awaits the next call message. 

Note that in this description, only one of the two processes is active at any 
given time. However, this need not be the case. The RPC protocol makes no 
restrictions on the concurrency model implemented. For example, an imple­
mentation may choose to have RPC calls be asynchronous, so that the client 
may do useful work while waiting for the reply from the server. Another possi­
bility is to have the server create a task to process an incoming request, so that 
the server can be free to receive other requests. 

Transports and Semantics 
The RPC protocol is independent of transport protocols. That is, RPC does not 
care how a message is passed from one process to another. The protocol deals 
only with specification and interpretation of messages. 

It is important to point out that RPC does not attempt to ensure transport relia­
bility. In this regard, the application must be aware of the type of transport 
protocol underneath RPC. If the RPC service knows it is running on top of a 
reliable transport such as TCP lIP, then most of the work is already done for it. 
On the other hand, if RPC is running on top of an unreliable transport such as 
UDP lIP, the service must devise its own retransmission and time-out policy. 
RPC does not provide this service. 

Because of transport independence, the RPC protocol does not attach specific 
semantics to the remote procedures or their execution. Semantics can be 
inferred from (but should be explicitly Specified by) the underlying transport 
protocol. For example, consider RPC running on top of an unreliable transport 
such as UDP lIP. If an application retransmits RPC messages after short time­
outs, the only thing it can infer if it receives no reply is that the procedure was 
executed zero or more times. If it does receive a reply, then it can infer that the 
procedure was executed at least once. 

9-2 Programmer's Guide: Networking Interfaces 



Introduction 

A server may wish to remember previously granted requests from a client and 
not regrant them to insure some degree of execute-at-most-once semantics. A 
server can do this by taking advantage of the transaction ID that is packaged 
with every RPC request. The main use of this transaction ID is by the RPC 
client for matching replies to requests. However, a client application may 
choose to reuse its previous transaction 10 when retransmitting a request. The 
server application, knowing this fact, may choose to remember this ID after 
granting a request and not regrant requests with the same 10. The server is not 
allowed to examine this 10 in any other way except as a test for equality. 

On the other hand, if using a reliable transport such as TCP lIP, the application 
can infer from a reply message that the procedure was executed exactly once, 
but if it receives no reply message, it cannot assume the remote procedure was 
not executed. Note that even if a connection-oriented protocol like TCP is used, 
an application still needs time-outs and reconnection to handle server crashes. 

Binding and Rendezvous Independence 
The act of binding a client to a service is not part of the remote procedure call 
specification. This important and necessary function is left up to some higher­
level software. (The software may use RPCitself; see the "rpcbind Protocol" 
section, below.) 

Implementors should think of the RPC protocol as the jump-subroutine instruc­
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader 
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful, 
using RPC to accomplish this task. 

Authentication 

The RPC protocol provides the fields necessary for a client to identify itself to a 
service and vice-versa. Security and access control mechanisms can be built on 
top of the message authentication. Several different authentication protocols can 
be supported. A field in the RPC header specifies the protocol being used. 
More information on authentication protocols can be found in the II Authentica­
tion Protocols" section, below. 

Remote Procedure Calls: Protocol Specification 9-3 



Introduction 

Organization of Technical Information 

The "RPC Protocol Requirements" section outlines the inherent features of the 
RPC protocol and additional features provided by the RPC package. 

The "RPC Message Protocol" section defines the RPC message protocol in terms 
of the XDR language. 

The "Authentication Protocols" section describes authentication features sup­
ported by the RPC package. 

The "Record Marking Standard" section describes how RPC messages are 
delimited from each other when operating over a byte stream protocol transport 
like TPC/IP. 

"The RPC Language" section provides an example of an RPC service followed 
by a formal definition of the RPC language. 

The "rpcbind Protocol" section describes the interface to the rpcbind service. 

9-4 Programmer's Guide: Networking Interfaces 



RPC Protocol Requirements 

The RPC protocol provides for the following: 

• Unique specification of a procedure to be called. 

• Provisions for matching response messages to request messages. 

• Provisions for authenticating the caller to service and vice-versa. 

In addition, the RPC package provides features that detect the following: 

• RPC protocol mismatches. 

• Remote program protocol version mismatches. 

• Protocol errors (such as misspecification of a procedure's parameters). 

• Reasons why remote authentication failed. 

Programs and Procedures 

The RPC call message has three unsigned fields: 

• remote program number 

• remote program version number 

• remote procedure number 

The three fields uniquely identify the procedure to be called. 

Program numbers are administered by a central authority (see below). 

The first implementation of a program will most likely have version number 1. 
Because most new protocols evolve into better, stable, and mature protocols, a 
version field of the call message identifies the version of the protocol the caller 
is using. Version numbers make speaking old and new protocols through the 
same server process possible. 

The procedure number identifies the procedure to be called. These numbers are 
documented in the specific program's protocol specification. For example, a file 
service's protocol specification may state that its procedure number 5 is "read" 
and procedure number 12 is "write." 

Remote Procedure Calls: Protocol Specification 9-5 



RPC Protocol Requirements 

Just as remote program protocols may change over several versions, the RPC 
message protocol itself may change. Therefore, the call message also has in it 
the RPC version number, which is always equal to 2 for the version of RPC 
described here. 

The reply message to a request message has enough information to distinguish 
the following error conditions: 

• The remote implementation of RPC does not speak protocol version 2. 
The lowest and highest supported RPC version numbers are returned. 

• The remote program is not available on the remote system. 

• The remote program does not support the requested version number. The 
lowest and highest supported remote program version numbers are 
returned. 

• The requested procedure number does not exist. (This is usually a caller 
side protocol or programming error.) 

• The parameters to the remote procedure appear to be garbage from the 
server's point of view. (Again, this is usually caused by a disagreement 
about the protocol between client and service.) 

Authentication 

Provisions for authentication of caller to service and vice-versa are provided as a 
part of the RPC protocol. The call message has two authentication fields, the 
credentials and verifier. The reply message has one authentication field, the 
response verifier. The RPC protocol specification defines all three fields to be 
the following opaque type: 

9-6 Programmer's Guide: Networking Interfaces 



RPe Protocol Requirements 

In simple English, any opaque_auth structure is an auth_flavor enumera­
tion followed by bytes that are opaque to the RPC protocol implementation. 

The interpretation and semantics of the data contained within the authentication 
fields is specified by individual, independent authentication protocol 
specifications. (See II Authentication Protocols," below, for definitions of the 
various authentication protocols.) 

If authentication parameters are rejected, the response message contains infor­
mation stating why they are rejected. 

Program Number Assignment 

Program numbers are given out in groups of Ox20000000 according to the fol­
lowing chart: 

Remote Procedure Cells: Protocol Specification 9-7 



RPC Protocol Requirements 

Program Numbers Description 

0 - lfffffff Defined by Sun 
20000000 - 3fffffff Defined by user 
40000000 - Sfffffff Transient 
60000000 - 7Ufffff Reserved 
80000000 - 9fffffff Reserved 
aOOOOOOO - bfffffff Reserved 
cOOOOOOO - dfffffff Reserved 
eOOOOOOO - ffffffff Reserved 

Sun Microsystems administers the first group of numbers, which should be 
identical for all UNIX® System V customers. If a customer develops an applica­
tion that might be of general interest, that application should be given an 
assigned number in the first range. 

The second group of numbers is reserved for specific customer applications. 
This range is intended primarily for debugging new programs. 

The third group is reserved for applications that generate program numbers 
dynamically. 

The final groups are reserved for future use, and should not be used. 

To register a protocol specification, send a request by email torpc@sun.com. 
or write to: 

RPC Administrator 
Sun Microsystems 
2550 Garcia Ave. 
Mountain View, CA 94043 

Please include a compilable rpcgen . x file describing your protocol. You will 
be given a unique program number in return. 

The RPC program numbers and protocol specifications of standard RPC services 
can be found in the include files in /usr/include/rpcsvc. These services, 
however, constitute only a small subset of those that have been registered. 

9-8 Programmer's Guide: Networking Interfaces 



RPC Protocol Requirements 

Other Uses of the RPe Protocol 

The intended use of this protocol is for calling remote procedures. That is, each 
call message is matched with a response message. However, the protocol itself 
is a message-passing protocol with which other (non-RPC) protocols can be 
implemented. Some of the non-RPC protocols supported by the RPC package 
are: 

Batching 

Batching allows a client to send an arbitrarily large sequence of call messages to 
a server; batching typically uses reliaqle byte stream protocols (like TCP lIP) for 
its transport. In batching, the client never waits for a reply from the server, and 
the server does not send replies to batch requests. A sequence of batch calls is 
usually finished by a non-batch RPC call to flush the pipeline (with positive ack­
nowledgement). 

Broadcast RPC 
In broadcast RPC-based protocols, the client sends a broadcast packet to the net­
work and waits for numerous replies. Broadcast RPC uses unreliable, packet­
based protocols (like UDP lIP) as its transports. Servers that support broadcast 
protocols only respond when the request is successfully processed, and are 
silent in the face of errors. Broadcast RPC uses the rpcbind service to achieve 
its semantics. See the " rpcbind Protocol" below, for more information. 

Remote Procedure Calls: Protocol Specification 9-9 



The RPe Message Protocol 

This section defines the RPC message protocol in the XDR data description 
language. The message is defined in a top-down style. 

9-10 Programmer's Guide: Networking Interfaces 



The RPC Message Protocol 

Remote Procedure Calls: Protocol Specification 9-11 



The RPC Message Protocol 

9-12 Programmer's Guide: Networking Interfaces 



The RPC Message Protocol 

Remote Procedure calls: Protocol Specification 9-13 



Authentication Protocols 

As previously stated, authentication parameters are opaque, but open-ended to 
the rest of the RPC protocol. This section defines some flavors of authentication 
that have already been implemented. Other sites are free to invent new authen­
tication types, with the same rules of flavor number assignment as there is for 
program number assignment. 

AUTH NONE Authentication 

Calls are often made where the caller does not authenticate itself and the server 
does not care who the caller is. In these cases, the flavor value <the "discrim­
inant" of the opaque_auth "union") of the RPC message's credentials, verifier, 
and response verifier is AUTH _NONE. The bytes of the body field in the 
opaque_auth structure are undefined. It is recommended that the body 
length be zero when AUTH_NONE authentication is used. 

AUTH SYS Authentication 

The caller of a remote procedure may wish to identify itself using traditional 
System V process permissions authentication. The flavor of the 
opaque_auth of such an RPC call message is AUTH_SYS. The bytes of the 
body encode the following structure: 

stamp 

machinename 

9-14 

is an arbitrary ID that the caller machine may generate. 

is the name of the caller's machine (like "krypton"). 

Programmer's Guide: Networking Interfaces 



Authentication Protocols 

uid 

gid 

gids 

is the caller's effective user 10. 

is the caller's effective group !D. 

is a counted array of groups in which the caller is a 
member. 

The flavor of the verifier accompanying the credentials should be 
AUTH NONE. (defined above). 

The AUTH SHORT Verifier 

When using AUTH_SYS authentication, the flavor of the response verifier 
received in the reply message from the server may be AUTH _NONE or 
AUTH SHORT. 

If AUTH_SHORT, the bytes of the response verifier's string encode a 
short_hand_verf structure. This opaque structure may now be passed to the 
server instead of the original AUTH _ SYS credentials. 

The server keeps a cache that maps shorthand opaque structures (passed back 
by way of an AUTH _SHORT style response verifier) to the original credentials of 
the caller. The caller can save network bandwidth and server cpu cycles by 
using the new credentials. 

The server may flush the shorthand opaque structure at any time. If this hap­
pens, the remote procedure call message will be rejected owing to an authentica­
tion error. The reason for the failure will be AUTH REJECTEDCRED. At this 
point, the caller may wish to try the original AUTH _ SYS style of credentials. 

AUTH DES Authentication 

AUTH _ SYS authentication suffers from the following problems: 

• Caller identification can not be guaranteed to be unique if machines with 
differing operating systems are on the same network. 

• There is no verifier, so credentials can easily be faked. 

AUTH_DES authentication attempts to fix these two problems. 

Remote Procedure Calls: Protocol Specification 9-15 



Authentication Protocols 

Naming 

The first problem is handled by addressing the caller by a simple string of char­
acters instead of by an operating system specific integer. This string of charac­
ters is known as the netname or network name of the caller. The server should 
not interpret the caller's name in any way other than as the identify of the 
caller. Thus, netnames should be unique for every caller in the naming domain. 

It is up to each operating system's implementation of AUTH_DES authentication 
to generate netnames for its users that insure this uniqueness when they call 
remote servers. Operating systems already know how to distinguish userS local 
to their systems. It is usually a simple matter to extend this mechanism to the 
network. For example, a user with a user 10 of 515 might be assigned the fol­
lowing netname: "UNIX. 515@sun . com". This netname contains three items 
that serve to insure it is unique. Going backwards, there is only one naming 
dOn1ain called sun. com in the internet. Within this domain, there is only one 
UNIX user with user ID 515. However, there may be another user on another 
operating system, for example VMS, within the same naming domain that, by 
coincidence, happens to have the same user 10. To insure that these two users 
can be distinguished we add the operating system name. So one user is 
"UNIX. 515@sun. com" and the other is "VMS. 515@sun. com". 

I#A~"""""I1he first field is actuai~ a naming rnathod Ta. ther than an operating system 
HOff name. It just happens that today there is almost a one-to-one correspon-
.::}}}: dence between naming methods and operating systQms. If the world could 

agree on a naming standard, the first field could be a name from that stan­
dard, instead of an operating system name. 

AUTH DES Authentication Verifiers 

Unlike AUTH SYS authentication, AUTH DES authentication does have a verifier 
so the server-can validate the client's credential (and vice-versa). The contents 
of this verifier is primarily an encrypted timestamp. The server can decrypt this 
timestamp, and if it is close to what the real time is, then the client must have 
encrypted it correctly. The only way the client could encrypt it correctly is to 
know the conversation key of the RPC session. If the client knows the conversa­
tion key, then it must be the real client. 

The conversation key is a DES [5] key that the client generates and notifies the 
server of in its first RPC call. The conversation key is encrypted using a public 
key scheme in this first transaction. The particular public key scheme used in 

9-16 Programmer's Guide: Networking Interfaces 



Authentication Protocols 

AUTH_DES authentication is Diffie-Hellman [3] with 192-bit keys. The details of 
this encryption method are described later. 

The client and the server need the same notion of the current time for this to 
work. If network time synchronization cannot be guaranteed, then client can 
synchronize with the server before beginning the conversation, perhaps by con­
sulting the Internet Time Server [4]. 

A server can determine if a client timestamp is valid. For any transaction after 
the first, the server checks for two things: 

• the timestamp is greater than the one previously seen from the same 
client 

• the timestamp has not expired 

A timestamp is expired if the server's time is later than the sum of the client's 
timestamp plus what is known as the client's window. The window is a number 
the client passes (encrypted) to the server in its first transaction. The window 
can be thought of as a lifetime for the credential. 

For the first transaction, the server checks that the timestamp has not expired. 
As an added check, the client sends an encrypted item in the first transaction 
known as the window verifier which must be equal to the window minus 1, or 
the server will reject the credential. 

The client must check the verifier returned from the server to be sure it is legiti­
mate. The server sends back to the client the encrypted timestamp it received 
from the client, minus one second. If the client gets anything other than this, it 
will reject it. 

Nicknames and Clock Synchronization 

After the first transaction, the server's AUTH_DES authentication subsystem 
returns in its verifier to the client an integer nickname that the client may use in 
its further transactions instead of passing its netname, encrypted DES key and 
window every time. The nickname is most likely an index into a table on the 
server that stores for each client its netname, decrypted DES key and window. 

Though originally synchronized, client and server clocks can get out of sync. If 
this happens, the client RPC subsystem most likely will get back 
RPC_AUTHERROR at which point it should resynchronize. 

Remote Procedure Calls: Protocol Specification 9-17 



Authentication Protocols 

A client may still get the RPC_AUTHERROR error even though it is synchronized 
with the server. The reason is that the server's nickname table is a limited size, 
and it may flush entries whenever it wants. The client should resend its origi­
nal credential and the server will give it a new nickname. If a server crashes, 
the entire nickname table may get flushed, and all clients will have to resend 
their original credentials. 

DES Authentication Protocol (in XDR language) 

9-18 Programmer's Guide: Networking Interfaces 



Authentication Protocols 

Remote Procedure Calls: Protocol Specification 9-19 



Authentication Protocols 

Diffie-Hellman Encryption 

In this scheme, there are two constants, PROOT and HEXMODULUS. The particu­
lar values chosen for these for the DES authentication protocol are: 

The way this scheme works is best explained by an example. Suppose there are 
two people "A" and "B" who want to send encrypted messages to each other. 
So, A and B each generate a random secret key that they do not disclose to any­
one. Let these keys be represented as SK (A) and SK (B) . They also publish in 
a public directory their public keys. These keys are computed as follows: 

PK(A) = ( PROOT ** SK(A) ) mod HEXMODULUS 
PK(B) = ( PROOT ** SK(B) ) mod HEXMODULUS 

The * * notation is used here to represent exponentiation. 

Now, both A and B can arrive at the common key between them, represented 
here as CK (A, B) , without disclosing their secret keys. 

A computes: 

CK(A, B) = ( PK(B) ** SK(A» mod HEXMODULUS 

while B computes: 

CK(A, B) = ( PK(A) ** SK(B» mod HEXMODULUS 

These two can be shown to be equivalent: 

(PK(B)**SK(A» mod HEXMODULUS = (PK(A)**SK(B» mod HEXMODULUS 

We drop the mod HEXMODULUS parts and assume modulo arithmetic to sim­
plify things: 

PK(B) ** SK(A) = PK(A) ** SK(B) 

Then, replace PK (B) by what B computed earlier and likewise for PK (A) . 

9-20 Programmer's Guide: Networking Interfaces 



Authentication Protocols 

«PROOT ** SK(B» ** SK(A) - (PROOT ** SK(A» ** SK(B) 

which leads to: 

PROOT ** (SK(A) * SK(B» - PROOT ** (SK(A) * SK(B» 

This common key CK (A, B) is not used to encrypt the timestamps used in the 
protocol. It is used only to encrypt a conversation key that is then used to 
encrypt the timestamps. The reason for doing this is to use the common key as 
little as possible, for fear that it could be broken. Breaking the conversation key 
is a far less serious offense, because conversations are comparatively short-lived. 

The conversation key is encrypted using 56-bit DES keys, yet the common key is 
192 bits. To reduce the number of bits, 56 bits are selected from the common 
key as follows. The middle-most 8-bytes are selected from the common key, 
and then parity is added to the lower order bit of each byte, producing a 56-bit 
key with 8 bits of parity. 

Remote Procedure Calls: Protocol Specification 9·21 



Record Marking Standard 

When RPC messages are passed on top of a byte stream protocol (like TCP lIP), 
it is necessary, or at least desirable, to delimit one message from another to 
detect and possibly recover from user protocol errors. This is called record 
marking (RM). One RPC message fits into one RM record. 

A record is composed of one or more record fragments. A record fragment is a 
four-byte header followed by 0 to (2 * * 31) - 1 bytes of fragment data. The 
bytes encode an unsigned binary number; as with XDR integers, the byte order 
is from highest to lowest. 

The header encodes two values 

• a boolean that specifies whether the fragment is the last fragment of the 
record (bit value 1 implies the fragment is the last fragment) 

• a 31-bit unsigned binary value that is the length in bytes of the fragment's 
data. 

The boolean value is the highest-order bit of the header; the length is the 31 
low-order bits. 

I. \:;·//··.1 This 'ea>,d specification ~ not in XDR standard fo,m. 
NOTE 

:CiHt{f{ 

9·22 Programmer's Guide: Networking Interfaces 



The RPC Language 

Just as there was a need to describe the XDR data-types in a formal language, 
there is also need to describe the procedures that operate on these XDR data­
types in a fonnallanguage as well. We use the RPC Language for this purpose. 
It is an extension to the XDR language. The following example is used to 
describe the essence of the language. 

An Example Service Described in the RPe Language 

Here is an example of the specification of a simple ping program. 

Remote Procedure Calls: Protocol Specification 9-23 



The RPC Language 

The first version described. is PING_VERS_PINGBACK with two procedures, 
PINGPROC_NULL and PINGPROC_PINGBACK. . 

PINGPROC_NULL takes no arguments and returns no results, but it is useful for 
such things as computing round-trip times from the client to the server and 
back again. 13y convention, procedure 0 of any RPC protocol should have the 
same Semantics, and never require authentication. 

The second procedure is used for the client to have the server do a reverse ping 
operation back to the client, and it rebrrns the amount. of time (in microseconds) 
that the operation used. 

The next version, PING_VERS_ORIG, is the original version of the protocol and 
it does. not contain PINGPROC_PI:NGBACK procedure. It is useful for compatibil­
ity with old client programs, and as this program matures it may be dropped 
from the protocol entirely. 

The RPe Language Specification 

The RPC language is identical to the XDR language, except for the added 
definitions described below. 

9-24 Programmer's Guide: Networking Interfaces 



The RPC Language 

program-definition: 
program program-ident { 

version-list 
} = value 

version-list: 

version: 

version; 
version ; version-list 

version version-ident { 
procedure-list 

} = value 

procedure-list: 
procedure; 
procedure ; procedure-list 

procedure: 
type-ident procedure-ident ( type-ident ) = value 

Syntax Notes 

1. The following keywords are added and cannot be used as identifiers: 

I program version I 
2. A version name cannot occur more than once within the scope of a pro­

gram definition. Nor can a version number occur more than once within 
the scope of a program definition. 

3. A procedure name cannot occur more than once within the scope of a 
version definition. Nor can a procedure number occur more than once 
within the scope of version definition. 

4. Program identifiers are in the same name space as constant and type 
identifiers. 

5. Only unsigned constants can be assigned to programs, versions and pro­
cedures. 

Remote Procedure Calls: Protocol Specification 9-25 



rpcbind Protocol 

rpcbind maps RPC program and version numbers to universal addresses, thus 
making dynamic binding of remote programs possible. 

rpcbind is run at a well-known universal address, and other programs register 
their dynamically allocated transport addresses with it. It then makes those 
addresses publically available. Universal addresses are defined by the address­
ing authority of the given transport. They are string representations of the tran­
sport address. 

rpcbind also aids in broadcast RPc. There is no fixed relationship between 
the addresses that a given RPC program will have on different machines, so 
there is no way to broadcast directly to all these programs. rpcbind, however, 
has a universal address. So, to broadcast to a given program, the client actually 
sends its message to the rpcbind process on the machine it wishes to reach. 
rpcbind picks up the broadcast and calls the local service specified by the 
client. When rpcbind gets a reply from the local service, it passes it on to the 
client. 

rpcbind Protocol Specification (in RPe Language) 

9-26 Programmer's Guide: Networking Interfaces 



rpcblnd Protocol 

Remote Procedure Calls: Protocol Specification 9-27 



rpcblnd Protocol 

rpcbind Operation 

rpcbind is contacted by way of an assigned address specific to the transport 
being used. For IP, for example, it is port number 111. Each transport has such 
an assigned well known address. The following is a description of each of the 
procedures supported by rpcbind. 

The RPCBPROC NULL Procedure 

This procedure does no work. By convention, procedure zero of any protocol 
takes no parameters and returns no results. 

The RPCBPROC SET Procedure 

When a program first becomes available on a machine, it registers itself with the 
rpcbind program running on the same machine. The program passes its pro­
gram number prog, version number vers, network identifier netid, and the 
universal address uaddr on which it awaits service requests. 

The procedure returns a boolean response whose value is TRUE if the procedure 
successfully established the mapping and FALSE otherwise. The procedure 
refuses to establish a mapping if one already exists for the tuple (prog, vers, 
netid). 

9-28 Programmer's Guide: Networking Interfaces 



rpcblnd Protocol 

Note that neither netid nor uaddr can be NULL, and that netid should be a valid 
network identifier on the machine making the call. 

The RPCBPROC UNSET Procedure 
When a program becomes unavailable, it should unregister itself with the 
rpcbind program on the same machine. 

The parameters and results have meanings identical to those of RPCBPROC _SET. 

The mapping of the (prog, vers, netid) tuple with uaddr is deleted. 

If netid is NULL, all mappings specified by the tuple (prog, vers, *) and the 
corresponding universal addresses are deleted. 

The RPCBPROC GETADDR Procedure 

Given a program number prog, version number vers, and network identifier 
netid, this procedure returns the universal address on which the program is 
awaiting call requests. 

The netid field of the argument is ignored and the netid is inferred from the netid 
of the transport on which the request came in. 

The RPCBPROC DUMP Procedure 

This procedure lists all entries in rpcbind's database. 

The procedure takes no parameters and returns a list of program, version, netid, 
and universal addresses. 

The RPCBPROC CALLIT Procedure 

This procedure allows a caller to call another remote procedure on the same 
machine without knowing the remote procedure's universal address. It is 
intended for supporting broadcasts to arbitrary remote programs via rpcbind's 
universal address. 

The parameters prog, vers, proc, and the argsytr are the program number, ver­
sion number, procedure number, and parameters of the remote procedure. 

Remote Procedure Calls: Protocol Specification 9-29 



rpcbind Protocol 

1 ..................... 
1 

•••••••••.•..•.••..•.. 1 This procodur~ o~ly sends a response if the. procedure was .uccessful~ IOT'E< executed and IS silent (no response) otherwise. 

The procedure returns the remote program's universal address, and the results 
of the remote procedure. 

The RPCBPROC GETTIME Procedure 

This procedure returns the local time on its own machine. 

The RPCBPROC UADDR2TADDR Procedure 

This procedure converts universal addresses to transport (netbuf) addresses. 
RPCBPROC_UADDR2TADDR is equivalent to uaddr2taddrO [see netdir(3N)]. 

1 ........ · .... :1: ........ 1 Only processes that can not link to the name-to-address library modules 
IliOTE should use RPCBPROC UADDR2TADDR. 

:\:H):/:>.: -

The RPCBPROC TADDR2UADDR Procedure 

This procedure converts transport (netbuf) addresses to universal addresses. 
RPCBPROC_TADDR2UADDR is equivalent to taddr2uaddrO [see netdir(3N)]. 

• ~ 

9-30 

Only processes that can not link to the name-to-address library modules 
should use RPCBPROC TADDR2UADDR. 

Programmer's Guide: Networking Interfaces 



References 

[1] Birrell, Andrew D. & Nelson, Bruce Jay; "Implementing Remote Pro­
cedure Calls," XEROX CSL-83-7, October 1983. 

[2] Cheriton, D.; "VMTP: Versatile Message Transaction Protocol," Prelim­
inary Version 0.3; Stanford University, January 1987. 

[3] Diffie & Hellman; "New Directions in Cryptography," IEEE Transactions 
on Information Theory IT-22, November 1976. 

[4] Harrenstien, K.; "Time Server," RFC 738; Information Sciences Institute, 
October 1977. 

[5] National Bureau of Standards; "Data Encryption Standard," Federal 
Information Processing Standards Publication 46, January 1977. 

[6] Postel, J.; "Transmission Control Protocol - DARPA Internet Program 
Protocol Specification," RFC 793; Information Sciences Institute, Sep­
tember 1981. 

[7] Postel, J.; "User Datagram Protocol," RFC 768; Information Sciences 
Institute, August 1980. 

Remote Procedure Calls: Protocol Specification 9-31 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

I 

I 
I 
I 
I 







1 0 RPC Administration 

Introduction to RPC Administration 

RPC Administration Files 
Name-to-Address Mapping 
System RC File letclrc2.d/s75rpc 
The letc/publickey File 
The letc/master.d/kernel File 

Secure RPC Overview 
RPC Domains 

Secure RPC Administration 
Establishing Secure RPC Domains 
Master letc/publickey File 

• Adding RPC Users with the newkey Command 
• Network Passwords and the chkey Command 

Troubleshooting Note 

Table of Contents 

10-1 

10-2 
10-2 
10-2 
10-5 
10-5 

10-7 
10-8 

10-9 
10-9 
10-10 
10-11 
10-12 
10-13 





Introduction to RPe Administration 

RPC administration consists of configuring administration files that: 

• Establish name-to-address mapping relationships 

• Start server daemons at boot time 

• Prompt users for a network password at login (secure RPC) 

• Edit a master machine /ete/publiekey file that determines who can 
access secure RPC services (secure RPC) 

• Start ypdaemons 

Servers are started at boot time by editable system RC scripts. The file 
jete/profile is edited to call keylogin to query for a network password at 
login time. 

YP is currently the recommended default mechanism for administering secure 
RPC (see Chapter 11, ''The yP Service"). 

RPe Administration 10-1 



RPe Administration Files 

Name-ta-Address Mapping 

Name-to-address mapping must be in effect for RPC (secure or otherwise) to 
work. Refer to the "Network Services" chapter of the System Administrator's 
Guide for name-to-address mapping administrative procedures. 

System RC File letc/rc2.d/s75rpc 

RPC servers can be started at system boot time. When the system comes up in 
init state 2, all of the scripts in / etc/ rc2 . d are executed. One of these scripts, 
/etc/rc2.d/s75rpc, starts the RPC servers. 

The system administrator can edit the script to start additional servers. For 
reference, the default script, shipped with new systems, is shown here: 

10-2 Programmer's Guide: Networking Interfaces 



RPC Administration Files 

RPC Administration 10-3 



RPe Administration Flies 

10-4 Programmer's Guide: Networking Interfaces 



RPC Administration Files 

,
...••. •...•.•.•... .•. The server keyserv must also be running for secure RPC to work properly. 
~6tt Administrators may wish to edit the RPC RC script to start keyserv at boot 
? time. If not, keyserv will have to be started manually or by other means. 

The letc/publickey File 

Secure RPC information is kept in this file, which is controlled by a domain 
master server. For each secure RPC user known to a master, this file contains: 

• operating system name 

• user 10 

• RPC domain name 

• public key 

• secret key 

The triple (operating system, user JD, domain) forms a unique key into this data­
base of publici secret key pairs that are required by the RPC built-in security 
protocol. 

:.:.:.:.".:.;.;.;.;.;. I ..•..••..•.....•...•..•...•...•.... • .. · .. •• .. 1.·.· .. ·.·.• .. · .. ·.• .. ·.· .. • .• •· .. • .. ··· .. ··• .. ·.·.1 Tha usar .10 fiald in letc/public'ey m.~ also be. host nama. This NQJI;> allows more than one root user per domain. 

The letc/master.d/kernel File 

All machines supporting secure RPC must have what is known as a secure RPC 
domain name. By default, a machine's secure RPC domain name is null and 
(because it is null), secure RPC will not work on the machine. 

A domain name can be set using the domainname(lM) command, but it will 
not be remembered across reboots. For preservation of the name across reboots, 
administrators need to edit their /ete/master. d/kerhel file to set the 
SRPC DOMAIN tunable to their desired secure RPC domain name. For example, 

RPC Administration 10-5 



RPC Administration Flies 

to change a machine's domain name from null to finance, the system adminis­
trator would find the line: 

SRPC_DOMAIN""" 

in /ete/master. d/kernel and change it to 

S~PC_DOMAIN=="finanee" 

10-6 Programmer's Guide: Networking Interfaces 



Secure RPe Overview 

There is a security protocol, based on DES encryption, built into the RPC pack­
age. Remote programs that use secure RPC expect client users to have a 
public/secret key entry in a shared master /etc/publickey file. Access to 
secure RPC programs is controlled by the keyserv daemon which accesses the 
/etc/publickey file when users invoke keylogin. One /etc/publickey 
database exists for each secure RPC domain. In large domains (many 
machines), multiple physical copies of the database may exist for performance 
reasons. If multiple copies exist, updates will be made to the copy on the 
domain's master server, and copies of the master /ete/publiekey will be 
propagated to slave servers. 

Secure RPC users must be given entries in this file on the master 
/ete/publickey server machine by the system administrator before they can 
use secure RPC programs (in that domain). These users must also be given 
logins on the master server machine. 

In addition, the administrator of every client machine should edit 
Jete/profile to remove the comment character that has commented out the 
key login command; in this way, keylogin will be invoked for each user at 
login time. Thereafter secure RPC commands and programs can be used in the 
same way ordinary commands and programs are used. 

1.\.;;. / .. 1 ~very machine that allows use of secure RPC is a client machine, even if it 
NOTE IS also a master or slave server. 

Hi:!:C!H:/?: 

One of the secure RPC commands, chkey, allows users who are logged onto 
only the master server machine to change their secure RPC passwords. 

The . profile files of secure RPC users should be set up to call key logout 
automatically at the end of a terminal session. For example: 

RPe Administration 10-7 



Secure RPC OVerview 

A secure RPC user should always execute keylogout before logging off 
the system. Failure to do so is a serious security infraction. 

[See sh(l) for details on use of trap for executing commands at the end of a 
terminal session.] 

1.I'i11 The presence of secure RPC has no effect on remote programs that do no! 
'Nw:i use the secure protocol. Such programs work normally, whether or not the 
nco: user is also a secure RPC user. 

RPe Domains 

All machines using secure RPC must have a secure RPC domain name. One 
machine per domain acts as master server for the domain. The 
domainname(lM) command is used to set a machine's domain name. The 
machine's SRPC DOMAIN tunable should also be set to the secure RPC domain 
name. Otherwise, the name is forgotten across reboots. 

Secure RPC identifies users using a triple (operating system, uid, domain). Thus, 
users may have multiple registrations with RPC, provided all such triples are 
unique. For example, a user may belong to more than one domain, with operat­
ing system and uid identical for each. 

By default, master servers know about users in their own domain. However, 
master servers may export their I domainkeys directories to other master 
servers to acquire information about users in other domains. If those other mas­
ter servers have an lete/masters file listing the local master server, they will 
periodically mount the local master's Idomainkeys directory and copy their 
domain key data to a file named Idomainkeyslmaster_X (path as seen by the 
local master) where master _Xis the secure RPC domain name of the other mas­
ter server. 

Given this information, the local master server can periodically update its own 
lete/publiekey file to include key information records from files in 
I domainkeys. 

10-8 Programmer's Guide: Networking Interfaces 



Secure RPC Administration 

In general, administering secure RPC is accomplished as follows: 

1. A domain name is chosen (for multiple domains, more than one domain 
name is chosen). Secure RPC domain names are set on participating 
machines, using the domainname(1M) command, and the SRPC_DOMAIN 
tunable is set to the secure RPC domain name. 

2. For each user or host to be allowed access to secure RPC services, domain 
master machine administrators add entries to their master 
/etc/publickey file. 

3. keyserv and YP daemons are started. 

4. Administrators start keyserv, either manually or by means of a boot­
time script. 

5. Administrators of client machines mount the master (or a slave) 
/etc/publickey file and link it as their local /etc/publickey file. 
They remove the comment character that has commented out the keylo­
gin command from their machine's /etc/profile and they direct their 
secure RPC users to add a trap to their $HOME/ . profile so that keylo­
gout will be called when their sessions end. 

The following sections detail this procedure. 

, ~:::s.slave se."."s .. e in use, master servers may have clients as well as 

Establishing Secure RPe Domains 

For many networked systems, a single secure RPC domain will suffice. 
Administrators are notified of the domain name, and they use the 
domainname (1M) command to establish that name as the secure RPC domain 
name for their machine. For example, to set the a machine's domain name to 
research: 

RPe Administration 10-9 



Secure RPC Administration 

For networked systems having multiple domains, the process is the same, except 
that two or more different domains will be in use in the network. 

Administrators should also set their machine's SRPC DOMAIN tunable to their 
secure RPC domain name, as described in liThe /ete/master. d/kernel File" 
section, above. If this is not done, the domain name will be forgotten across 
reboots. 

A machine can be part of only one domain at any given time. The decision to 
use single or multiple domains depends on need. In general, the advantages of 
multiple domains include: 

• Duplicate operating system/user ID pairs can be using secure RPC (pro­
vided they are in different domains). 

• Access to secure RPC programs can be made selective, if some programs 
are not available to all domains. 

The primary advantage of using a single domain is simplified administration. 

Master letc/publickey File 

The /etc/pubHckey file is a database of public/secret key pairs. The file 
contains pairs for users and hosts authorized to use secure RPc. Remote pro­
cedures that use the DES authentication protocol (built into the RPC package) 
expect to find public/secret key pairs (for the processes that call them) in 
/etc/pubHckey. A system administrator must therefore add an entry to 
/etc/publickey for each user/host to be granted access to secure RPC 
resources. A single /etc/publickey file (on a master server or on a collection 
of master and slave servers) is used and shared over the network by machines 
having access to the file. 

10-10 Programmer's Guide: Networking Interfaces 



Secure RPC Administration 

1.' .... '.' ......•.•.. ' •. ·.1 ..•• ,···.···.··'.'·· •. ··.1 Socure RPC programs are not required to be hosted by the same machine NOTE: that hosts the master /etc/publickey file. The master 
< /etc/publickey machine is not necessarily the server for any of the 
. ... secure RPe application programs or commands. 

Adding RPC Users with the newkey Command 

On the domain master server machine (only), the system administrator grants a 
user or host access to secure RPC in that domain by adding an entry to the 
/etc/publickey file. This is accomplished using the newkey(1M) command. 

For example, to add an entry for the user alice the system administrator 
would enter the following on the master server: 

The -u option signifies that alice is a user ID. The domain field for this entry 
is the domain of the master server on which this command is executed. This is 
the only way that user alice can get access to this particular secure RPC 
domain. 

The newkey command can also be used with the -h option to give access to 
hosts, i.e., to root users on hosts on the network: 

RPC Administration 10-11 



Secure RPe Administration 

Within the domain of secure RPC uSers havIng entries·in a master . 
/ete/publiekey file, all user names and IDs must be unique. The -h option 
is provided to allow. more than one root user to have access to secure RPC. 
BecaUse root users on different inachines have the same name and 10, it would 
be impossible for more than one of them to be a secure RPC user. The-h 
option solves this problem, allowing root users to use their unique machine 
name and address as a user name and 10 for RPC purposes. 

Network Passwords and the chkey Command 
If using the yP service, client users should be notified of their passwords when 
they are given access to secure RPc. Their. profile files should be modified 
to execute keylogout when they log off. 

Users are prompted for their secure RPC passwords when keylogin is exe­
cuted by /ete/profile. After gaining access, secure RPt users logged onto 
the master server machine may invoke the ehkey command to assign them­
selves a different secret password. 

For example, a user can set up a password as follows: 

10-12 

Users logged onto client machines and on slave server machines cannot 
change their passwords in this way. Users should login to their master 
server to change their network password. 

Programmer's Guide: Networking Interfaces 



Secure RPC Administration 

Troubleshooting Note 

If all administration procedures have been performed correctly and trouble 
occurs, suspect that an RPC server daemon process (in particular, rpcbind) 
may not have been started, may have died, or may have been killed. 

RPC Administration 10-13 









11 The YP Service 

Introduction to YP Service 
What Is YP? 
The YP Elements 
The YP Environment 

• The YP Domain 
• YP Machine Types 
• YP Maps 

Implementing the YP Service 
Establishing the Domain 
Preparing the Maps 

• The publickey Map 
• Other Maps 

Making the Maps 
• The Default Makefile 
• Modifying the Makefile 

Setting the Master Server 
Starting Daemons in the Master Server 
Setting Slave Servers 
Starting Slave Server Daemons 
Setting Up a YP Client 

Administering YP Maps 
Updating Existing Maps 

• Modifying Standard Maps 
• Creating and Modifying Non-Standard Maps 

Propagating a YP Map 
• Using crontab with ypxfr 
• Using Shell Scripts with ypxfr 
• Directly Invoking ypxfr 

Table of Contents 

11-1 
11-1 
11-1 
11-2 
11-3 
11-3 
11-6 

11-7 
11-7 
11-8 
11-9 
11-11 
11-12 
11-12 
11-14 
11-15 
11-17 
11-18 
11-21 
11-21 

11-23 
11-23 
11-23 
11-24 
11-27 
11-27 
11-28 
11-29 



Table of Contents _____________________ _ 

• Logging ypxfr's Activities 11-29 
Adding New YP Maps to the Makefile 11-29 

Adding a New YP Server to the Original 
Set 11-31 
Changing a Map's Master Server 11-32 

Summary of YP-Related Commands 11-35 

Fixing YP Problems 11-37 
Debugging a YP Client 11-37 

• Hanging Commands on the Client 11-37 
• YP Service Is Unavailable 11-40 
• ypbind Crashes 11-41 
• ypwhich Displays Are Inconsistent 11-42 

Debugging a YP Server 11-42 
• Servers Have Different Versions of a YP Map 11-43 
• ypserv Crashes 11-44 

Turning Off YP Services 11-46 

ii Programmer's Guide: Networking Interfaces 



Introduction to YP Service 

This chapter explains how to administer the YP distributed network lookup ser­
vice. Information in the chapter includes: 

• The yP environment 

• Setting up YP servers 

• Setting up a yP client 

• Creating and updating maps 

• YP-related commands 

• Fixing YP problems 

What Is YP? 

YP is a distributed name service designed to meet the administrative needs of 
large, diverse, and evolving computing communities. It is a mechanism for 
identifying and locating objects and resources accessible to the community. It 
provides a uniform, network-wide storage and retrieval method that is both 
protocol- and media-independent. 

By running the yP service, the system administrator can distribute administra­
tive databases (maps) among a variety of machines and qm update those data­
bases from a centralized location in an automatic and reliable fashion, ensuring 
that all clients share in the same databases in a consistent manner throughout 
the network. Furthermore, the use of the YP "publickey" map permits running 
secure RPC and secure NFS across the network of machines. 

The YP Elements 

The YP service is composed of the following elements: 

• domains 

• maps 

• daemons: 

The YP Service 11-1 



Introduction to YP Service 

o ypserv - server process 

o ypbind - binding process 

o ypupdated - ~rver for changing map entries 

• utilities: 

o ypcat - lists data in a map 

o ypwhich - lists name of YP server 

o ypmatch - finds a key in a map 
, 

o ypinit - builds and installs a YP database, or initializes a client 

o yppoll - gets protocol version from server 

o yppush - propagates data from master to slave YP server 

o ypset - sets binding to a particular server 

o ypxfr - transfers data from master to slave yP server 

o mak~dbm - creates dbm file for a yP map 

The YP Environment 

yP service is based on information contained in YP maps. Maps are non-ASCII 
administrative files, which usually derive from ASCII files traditionally found in 
the /etc directory~ Each yP map has a mapname used by programs to access 
it. On a network running YP, at least one YP server per domain maintains a set 
of YP maps for other hosts in the domain to query. 

The service is mediated by the daemons ypserv and ypbind, and updates are 
facilitated by the daemon. ypupdated. 

11-2 Programmer's Guide: Networking Interfaces 



Introduction to YP Service 

The YP Domain 

A YP domain is an arbitrary name that designates which machines will make 
use of a common set of maps. Maps for each domain are located in separate 
directories, /var/yp/domainname, on the YP server (see "YP Servers"). For 
example, the maps for machines that belong to the domain accounting will be 
located in the directory /var/yp/accounting on their corresponding yP server. 

No restrictions are placed on whether a machine can belong to a given domain. 
Assignment to a domain is done at the local level of each machine by the sys­
tem administrator logged in as superuser; it can be done in any of the following 
three ways: modify /etc/rc2. d/s7Sppc; modify /etc/master. d/kernel; or by 
entering the command 

where name is the name of the domain to which you want the machine to 
belong. 

YP Machine Types 

There are three types of YP machines: 

• master server 

• slave server 

• client 

Any machine can be a YP client, but only machines with disks should be YP 
servers, either master or slave. Servers are generally also clients. 

YP Servers 

By definition, a YP server is a machine with a disk storing a set of YP maps that 
it makes available to network hosts. The YP server does not have to be the 
same machine as the file server, unless, of course, it is the only machine on the 
network with a disk. 

The YP Service 11-3 



Introduction to YP Service 

YP servers come in two varieties, master and slave. The machine designated as 
YP master server contains the master set of maps that are updated as necessary. 
If you have only one YP server on your network, designate it as the lllCister 
server. Otherwise, designate the machine you think will be best able to pro­
pagate yP updates with the least performance degradation. 

You can designate additional yP servers on your network as slave servers~ A 
slave server has a complete copy of the master's set of YP maps: Whenever the 
master server's maps are updated, it propagates the updates among the slave 
servers. The existence of slave servers allows the system administrator to distri­
bute evenly the load implied in answering YP requests. The following diagram 
is a stylized representation of the relationship between master, slaves and 
clients: 

[ Yf ~s~ J I-------i;;..j [ Yf slaw J ioE-----I ( client J 

A server may be a Iriaster in regard to one map, and a slave in regar~ to 
another. However, randomly assigning maps to yP servers can cause a great 
deal of administrative confusion. You are strongly urged to make a single server 
the master for all the maps you create within a single domain. The examples in 
this chapter assume that one server is the master for all maps in the domain. 

11-4 Programmer's Guide: Networking Interfaces 



Introduction to YP Service 

YP Clients 

YP clients run processes that request data from maps on the servers. Clients do 
not care which server is the master in a given domain, since all yP servers have 
the same information. The distinction between master and slave server only 
applies to where you make the updates. 

YP Binding 
YP clients get information from the YP server through the binding process. 
Here is what happens during YP binding: 

1. A program running on the client (that is, a client process) and needing 
information that is normally provided by a YP map, asks ypbind for the 
name of a server. 

2. ypbind looks in the file /var/yp/binding/domainname/ypservers to 
get a list of the servers for the domain (see "Establishing the Domain" 
later in this chapter). 

3. ypbind initiates binding to the first server on the list. If the server does 
not respond, it tries the next, and so on until it finds a server or exhausts 
the list. 

4. ypbind tells the client process which server to talk to. The client then 
forwards the request directly to the server. 

5. The ypserv daemon on the YP server handles the request by consulting 
the appropriate map. 

6. ypserv then sends the requested information back to the client. 

The binding between a client and a server can change with the network's load 
as the service tries to compensate for current activity; that is, a client may get 
information from one server at one time and from another server at a different 
time. 

To find out which YP server is currently providing service to a client, use the 
ypwhich command 

The YP Service 11-5 



Introduction to YP Service 

where hostname is the name of the client. If no host name is mentioned, 
ypwhich defaults to the local host (the machine on which the command is 
entered). 

YP Maps 

YP maps are one type of implementation of System V Release 4.0 administrative 
databases. (The other implementation is the ASCII files generally found in the 
/etc directory.) Information in yP maps is organized in a format similar to 
System V Release 4.0 dbm files. The manual pages for ypfiles(5) and dbm(3) 
completely explain the dbm file format. Input to makedbm must be in the form 
of key/value pairs, where key is the first word of each line and value is whatever 
follows in that line. The input can be from a file or from standard input (as 
when modified through a script; see below, "Making the Maps"). After passing 
through makedbm the data is collected in non-ASCII form in two files, 
mapname. dir and mapname. pag, both in the /var /yp/ domainname directory. 

The pairs of keys and values are preserved in the YP maps, so programs can use 
the keys to look up the values. 

The System V Release 4.0 package includes a default yP map, 
publickey. byname, and a default makefile for that map. 

11-6 Programmer's Guide: Networking Interfaces 



Implementing the VP Service 

Implementation of the YP service consists of the following steps: 

1. Establishing the domain(s) for your machines 

2. Writing or preparing the maps in ASCII form 

3. Running the ASCII files through makedbm 

4. Setting the master server 

5. Starting daemons in the master server 

6. Setting the slave server(s) 

7. Starting daemons in the slave server(s) 

8. Initializing the clients 

The following sections will describe each of these steps. 

Establishing the Domain 

Before you configure machines as YP servers or clients, you must prepare the 
YP domain by: 

• Giving it a name. 

A domain name can be up to 256 characters long. However, because your 
/var/yp directory may reside in an s5 file system, and the domain name 
you select may be longer than the 14-character limit that s5 imposes on 
filenames, the program ypinit makes a shortened domain name and 
stores it in the /var/yp/aliases file. The name of the database direc­
tory /var/yp/domainname will correspond to the shortened alias for the 
domain name. 

• Designating which machines will serve or be served by the YP domain. 

Once you have chosen a domain name, make a list of network hosts that 
will give or receive YP service within that domain. 

• Determining which machine should be master server (you can always 
change this at a later date). 

The YP Service 11-7 



Implementing the YP Service 

• Listing which hosts on the network, if any, are to be slave servers. 

• Finally, listing all the hosts that are to be yP clients. 

You will probably want all hosts in your network's administrative domain to 
receive YP services, although this is not strictly necessary. If this is the case, 
give the YP domain the same name as the network administrative domain. 

Log in as superuser to all servers, whether master or slave(s), and all clients of 
the yP domain. Enter the command 

where name is the name of the domain. 

The above is a temporary measure; edit the file in / etc/ re2 . d/ s 7 5 rpe that 
initiates YP service or edit /ete/master. d/kernel. 

where name is the name of the domain. 

Preparing the Maps 

System V Release 4.0 enables a site to use public key encryption as one of the 
methods for providing secure networking. If you are planning on running 
secure RPC or secure NFS, you may use YP to administer the 
/ete/publiekey file. 

11-8 Programmer's Guide: Networking Interfaces 



Implementing the YP Service 

The publickey Map 

This file consists of three fields in the following fonnat: 

where user name may be the name of a user or of a machine, user public key is 
that key in hexadecimal notation, and user secret key is that key also in hexade­
cimal notation. 

Since nobody expects you to be conversant in hexadecimal notation, the pro­
gram newkey is provided to make things easier. Simply become superuser at 
the master server and invoke newkey for a given user by typing 

or for the superuser on a given host machine by typing the following: 

At the prompt enter the appropriate secure RPC or network password. The 
program will then create a new public/secret key pair in /etc/publickey, 
encrypted with the secure RPC or network password of the given user. 

Users can later modify their own entries, or can even create them, by using the 
program chkey. The user simply types: 

The YP Service 11-9 



Implementing the YP Service 

and then responds to prompts from the command. A typical chkey session 
would look like this: 

Note that in order for newkey and chkey to run properly, the daemon ypup­
dated must be running in the master server. If it is not running at this point, 
enter the following: 

You must also make sure that the appropriate file in /etc/rc?d contains the 
lines 

The ypupdated daemon consults the file /var/yp/updaters for information 
about which maps should be updated and how to go about it. In the case of the 
publickey map, changes to /etc/publickey affected through newkey or 
chkey are mediated by /usr/sbin/udpublickey. 

11-10 Programmer's Guide: Networking Interfaces 



Implementing the YP Service 

Other Maps 

Other maps do not need the assistance of special programs for their creation or 
modification. For instance, if you are planning on having distributed auto­
mounter files, all you have to do is write the automounter files as they would 

. reside in a machine's lete directory. (For more information on the auto­
mounter, see the chapter on the automounter in the "Network File System 
Administrator's Guide" in the Network User's and Administrator's Guide.) 

A typical auto. master file would contain 

A typical auto. home map would contain the following: 

The following would be a typical lete/auto.direet map: 

The YP Service 11-11 



Implementing the YP ServIce 

A full explanation of what these files mean can be found in the chapter on the 
automounter in the Network User's and Administrator's Guide. 

Note that these files are all in the directory fete. These are not the maps, these 
are the files that you will use in order to make the maps. 

The automounter recognizes the notation + at the beginning of a line as an indi­
cation to consult the corresponding YP map; this notation is permissible in a 
client's file in the fete directory. 

Making the Maps 

Your next step, after creating the maps, is to convert these ASCII files into the 
non-ASCII files in dbm format that the yP service expects. The prescribed 
method is to use the make (1) program through a permanent Makefile. 

The Default Makefile 

A makefile is provided in the directory /var/yp. It contains the commands 
needed to transform /ete/publiekey into the desired dbm format and is simi­
lar to the following: 

11-12 Programmer's GuIde: NetworkIng Interfaces 



Implementing the YP Service 

The YP Service 11·13 



Implementing the VP Service 

This makefile first creates an entry in /var/yp/aliases which translates the 
mapname into a shorter name to be used for the dbm file name (this is done to 
accornodate the 14-character limitation that s5 file systems impose on file 
names.) Then it eliminates all lines in /etc/publickey that start with a # 
(that is, comment lines) and passes the rest to makedbm. makedbm creates the 
files publickey. paq and publickey. dir. Both of these files are in the 
directory /var/yp/domain.name. The makefile then touches a file called 
publickey . time (to keep track of updates) and calls the yppush program, if 
applicable, to propagate the changes to all slave servers. 

It is inappropriate to call make until you have set the slave servers. 

Modifying the Makefile 
In order for the makefile to work on the automounter files (or any other files) 
that you wish to propagate through YP, the following modifications must be 
made: 

1. Modify the line that says 

to say the following: 

The order is not relevant. 

2. Add the following lines at the end of the makefile: 

11-14 Programmer's Guide: Networking Interfaces 



Implementing the YP Service 

3. Add the following entry for the auto. direct map in the middle of the 
file, after the entry for publickey. time and before the line that reads 
publickey: publickey.time: 

Create similar entries for auto. home and auto.master. 

Setting the Master Server 

The program that helps you establish the master and slave servers, and permits 
the initial mapping of ASCII files and their propagation, is 
/usr/lib/netsvc/yp/ypinit. 

You use the shell script ypinit to build a fresh set of YP maps on the master 
server in the following way: 

The YP Service 11-15 



Implementing the YP Service 

1. Bring the machine that is going to be your master server to single-user 
mode, or to a mode that is not defined as running the yP service, and log 
in as superuser. 

2. Type 

3. ypinit prompts for a list of other hosts that are to become YP servers. 
Enter the name of the server you are working on and the names of all 
other yP servers. 

4. ypini t asks whether you want the procedure to die at the first non-fatal 
error or to continue despite non-fatal errors. 

If you choose the first option, ypinit will exit at the first problem; you 
can then fix the problem and restart ypini t. This is recommended if 
you are running ypinit for the first time. If you prefer to continue, you 
can try to fix by hand all problems that may occur, then restart ypinit. 

Once ypinit has constructed the list of servers, it calls up make(t). This 
program uses the instructions contained in the makefile (either the default 
one or the one you modified) located in /var/yp. It cleans all comment 
lines from the files you designated and runs makedbrn on them, creating 
the appropriate pairs of maps and establishing the name of the master 
server for each map. 

rY>;Mlj For security roasons, you may want to rostrid. access to the master YP 
<NOTE server. 
~~~r~:%:jt11r) 

11-16 Programmer's Guide: Networking Interfaces

Implementing the YP Service

Starting Daemons in the Master Server

The success of the remaining procedures depends on the presence of the
ypserv daemon in the master server.

If your master server is still in single-user mode or at an inappropriate
run-level, bring it to the run-level that is defined as allowing YP services to run.
This entails having the following or similar lines in the appropriate file in the
/etc/rc? . d directory:

Once you have made sure that these lines are in the file, and that there is an
executable file called /usr/lib/netsvc/yp/ypserv and a directory under
/var/yp named after the domain name, log in as root and enter the command

where f: is at least run-level 2.

The YP Service 11-17

Implementing the YP Service

Setting Slave Servers

Your network can have one or more YP slave servers. Before actually running
ypinit to create the slave servers, you should take several precautions.

The domain name for each YP slave must be the same as the domain name of
the yP master server. Use the domainname command on each YP slave to
make sure it is consistent with the master server. Make any necessary changes
to the domain name, as described in the previous section, "Setting Up the YP
Domain." Do not forget to set each slave server's host name.

Make sure that the network is working properly before you set up a slave YP
server. In particular, check that you can use rcp to send files from the master
YP server to YP slaves. If you cannot, follow the procedures outlined in the
Network User's and Administrator's Guide to permit the use of rcp.

Now you are ready to create a new slave server.

1. Log in to each slave server as superuser and bring the slave server to a
run-level, preferably single user, that does not imply running the YP ser­
vice. ypserv must not be running.

2. Change directory to /var/yp.

3. Type the following:

11-18

Enter the names of the YP servers in order of preference; that is, enter
first the names of the servers that are physically closest to the machine in
the network. If the client is also a server, enter its name first. This initial­
izes the client and establishes its servers for binding.

Programmer's Guide: Networking Interfaces

Implementing the YP Service

4. Type the following:

5. Type

where master is the host name of the existing yP master server. Ideally,
the named host is the master server, but it can be any host with a stable
set of yP maps, such as another slave server.

6. ypinit will not prompt you for a list of other servers, as it does when
you create the master server, nor will it run make again. However, it will
stop executing if you have not used ypihit -e to initialize the list of
servers, and it lets you choose whether or not to halt at the first non-'fatal
error. ypinit then calls the program ypxfr, which transfers a copy of
the master's YP map set to the slave server's Ivar/ypldomainname direc­
tory.

7. When ypinit terminates in each slave, make sure that the ASGI files in
the lete directory direct whichever program reads them to the YP maps,
thus ensuring homogeneity across the network. For instance, if you have
added the maps auto. master, auto. home, and auto. direct to the
yP maps, make a copy of each of these fiies in each slave by typing

or the following:

The YP Service 11-19

Implementing the YP Service

Note that in the particular case of the automounter, if the invocation does
nOt contain the -m option; then it will automatically look for a YP .
auto.master map. You can therefore move the auto.master file into
another file:

8. Edit the original files (not those with the - or . old extension) and make
them refer to the YP maps. For instance, the file fete/auto. direct
should contain, as its last line, something Sinrllar to the following:

Thus, Whenever the automounter reads this file, it will consult the YP
auto. direct map upon reaching this line.

9. The preceding procedures ensure that processes on the slave server actu­
ally use the VI' services,rather than files in the local /etc. In this way,
you ensure that the yP slave server is also a YP client.

10. Back up copies of the edited files. For instance, you nrlght type the fol-
lowing: .

11-20 Programmer's Guide: Networking Interfaces

Implementing the YP Service

Repeat the procedures above for each machine you want configured as a YP
slave server.

Starting Slave Server Daemons

The procedure for starting the YP daemons in a slave server is exactly the same
as that used for starting the YP daemons in the master server, as explained in
"Starting Daemons in the Master Server."

Setting Up a YP Client

To establish a machine as a YP client, do the following:

1. Edit the client's local files, as you did for the local files in the slave
servers, so that processes consulting those files are sent to the YP maps.

2. Run

to initialize the client.

3. Bring the client to the run-level defined as permitting the running of YP
services, after making sure that the appropriate file in the
/etc/rc2. d/s75rpc directory contains lines similar to the following:

The YP Service 11-21

Implementing the YP Service

4. Type

to confirm that /usr/lib/netsve/yp/ypbind is running.

With the relevant files in fete abbreviated and ypbind running, the processes
on the machine will be clients of the YP servers.

At this point, you must have configured a yP server on the network and have
given that server's name to ypinit. Otherwise, processes on the client hang if
no YP server is available while ypbind is running.

11·22 Programmer's Guide: Networking Interfaces

Administering YP Maps

This section describes how to maintain the maps of an existing YP domain.
Subjects discussed include:

• Updating YP maps

• Propagating a yP map

• Adding maps to an additional YP server

• Moving the master map set to a new server

Updating Existing Maps

After you have installed YP, you will discover that some maps require frequent
updating while others never need to change. For example, the publickey map
may change frequently on a large company's network. On the other hand, the
auto. master map probably will change little, if at all.

When you need to update a map, you can use one of two updating procedures,
depending on whether the map is standard or non-standard. A standard map is
a map in the default set created by ypinit from the network databases. Non­
standard maps may be any of the following:

• A map included with an application purchased from a vendor

• A map created specifically for your site

• A map existing in a form other than ASCII

The following text explains how to use various updating tools. In practice, you
probably will use them only if you add non-standard maps or change the set of
YP servers after the system is up and running.

Modifying Standard Maps

Use the following procedure for updating all standard maps:

1. Become superuser on the master server. (Always modify YP maps on the
master server.)

The YP Service 11-23

Administering YP Maps

2. Edit the file in fete that has the same name as the map you want to
change.

3. Type the following:

The make command will then update your map according to the changes
you made in its corresponding file. It will also propagate it among the
servers (see the section "Propagating a YP Map" for more information).

li .. · .. }:;il] 00 nol use Ihis procedure wRh Ihe publi~key map.. Inslead, use Ihe new­
NQT~ key and chkey commands, as descnbed In "Prepanng the Maps."

:~; :;:~:::~[:~:::::::j:~::

Creating and Modifying Non-Standard Maps

To update a non-standard map, you edit its corresponding ASOI file. Then you
rebuild the updated map using the /usr/sbin/makedbm command. [The
makedbm(lM) manual page fully describes this command.] If the map has an
entry in the /var/yp/Makefile, simply run make. If the map does not have
an entry, try to create one following the instructions in "Making the Maps,"
above. Using make is the preferred method; otherwise, you will have to use
makedbm by hand.

There are two different methods for using makedbm:

• Redirect the command's output to a temporary file, modify the file, then
use the modified file as input to makedbm.

• Have the output of makedbm operated on within a pipeline that feeds into
makedbm again directly. This is appropriate if you can update the
disassembled map with either awk,. sed, or a eat append.

11-24 Programmer's Guide: Networking Interfaces

_____________________ Administering YP Maps

You can use either of two possible procedures for creating new maps. The first
uses an existing ASCII file as input; the second uses standard input.

In all cases, if /var /yp resides in an s5 file system, you have to create an alias
for the map to deal with the 14-character limitation for file names (which, in the
case of map names, is actually an 8-character limitation because of the suffixes
that makedbm creates). To do this, change directory to /var/yp and enter the
command:

Updating Maps Built from Existing ASCII Flies

Assume that an ASCII file /var/yp/mymap. asc was created with an editor or
a shell script on the YP master. You want to create a YP map from this file, and
locate it in the home_domain subdirectory. To do this, you type the following
on the master server:

The mymap map now exists in the directory home_domain.

Adding entries to mymap is simple. First, you must modify the ASCII file
mymap. asc. (If you modify the actual dbm files without modifying the
corresponding ASCII file, the modifications are lost.) Type the following:

When you finish updating the map, propagate it to the slave servers, as
described in the section i'Propagating a YP Map."

The YP Service 11-25

Administering YP Maps

Updating Maps Built from Standard Input
When no original ASCII file exists, create the yP map from the keyboard by
typing input to makedbm, as shown below:

If later you need to modify a map that is not based on an existing file, you can
use makedbm -u to disassemble the map and create a temporary ASCII inter­
mediate file. You type the following:

The resulting temporary file mymap. temp has one entry per line. You can edit
it as needed, using your preferred editing tools.

To update the map, you give the name of the modified temporary file to mak­
edbm as follows:

When makedbm finishes, propagate the map to the slave servers, as described in
the section ''Propagating a YP Map."

The preceding paragraphs explained how to use some tools. In reality, almost
everything you have to do can be done by ypinit and /var/yp/Makefile,
unless you add non-standard maps to the database or change the set of YP
servers after the system is already up and running.

11-26 Programmer's Guide: Networking Interfaces

Administering YP Maps

Whether you use the makefile in /var/yp or some other procedure, a new pair
of well-formed dbm files must end up in the domain directory on the master YP
server.

Propagating a YP Map

When you propagate a yP map, you move it from place to place-most often
from the master to all YP slave servers. Initially ypinit propagates the maps
from master to slaves, as described previously. From then on, you must
transfer updated maps from master to slaves by running the ypxfr command.
You can run ypxfr three different ways: periodically through the root cron­
tab file; by the ypserv daemon; and interactively on the command line.

ypxfr handles map transference in tandem with the yppush program.
yppush should always be run from the master server. The makefile in the
/var/yp directory automatically runs yppush after you change the master set
of maps.

yppush's function is to copy, or "push," a new version of a YP map from the
YP master to the slave(s). After making a list of YP servers from the
ypservers map built by ypinit, yppush contacts each slave server in the
list and sends it a "transfer map" request. When the request is acknowledged
by the slave, the ypxfr program transfers the new map to the slave.

Using crontab with ypxfr

Maps have differing rates of change. For instance, auto. master may not
change for months at a time, but publickey may change several times a day in
a large organization. When you schedule map transference through the cron­
tab command, you can designate the intervals at which individual maps are to
be propagated.

To run ypxfr periodically ~t a rate appropriate for your map set, edit root's
crontab file on each slave server and put the appropriate ypxfr entries in it
[see the manual page for crontab(1)]. ypxfr contacts the master server and
transfers the map only if the master's copy is more recent than the local copy.

The YP Service 11-27

Administering YP Maps

Using Shell Scripts with ypxfr

As an alternative to creating separate crontab entries for each map, you may
prefer to have root's crontab periodically run shell scripts that update the
maps. You can easily modify these shell scripts to fit your site's requirements
or replace them. Here is an example shell script:

This shell script will update once per day the maps mentioned in it, as long as
root's crontab executes it once a day (preferably at times of low network
load). You can also have scripts update maps once a week, once a month, once
every hour, and so on, but be aware of the performance degradation implied in
propagating the maps.

Run the same shell scripts through root's crontab on each slave server
configured for the yP domain. Alter the exact time of execution from one
server to another to avoid bogging down the master.

If you want to transfer the map from a particular slave server, use the -h host
option of ypxfr within the shell script. The syntax of the commands you put
in the script is

where host is the name of the server with the maps you want to transfer, and
mapname is the name of the requested map. If you use the -h option without
specifying host, ypxfr will try to get the map from the master server.

11·28 Programmer's Guide: Networking Interfaces

Administering YP Maps

You can use the -8 domain option to transfer maps from another domain to
your local domain. These maps should be essentially the same across domains.

Directly Invoking ypxfr
The third method of invoking ypxfr is to run it as a command. Typically, you
do this only in exceptional situations - for example, when setting up a tem­
porary YP server to create a test environment, or when trying to make a YP
server that has been out of service consistent with the other servers.

Logging ypxfr's Activities
ypxfr's transfer attempts and the results can be captured in a log file. If a file
called /var/yp/ypxfr .log exists, results are appended to it. No attempt to
limit the size of the log file is made. To prevent it from growing indefinitely,
empty it from time to time by entering

You can have crontab execute these commands once a week.

To tum off lOgging, remove the log file.

Adding New YP Maps to the Makefile

Adding a new YP map entails getting copies of the map's dbm files into the
/var/yp/domain_name directory on each of the YP servers in the domain. The
actual mechanism is described above in ''Propagating a yP Map." This section
only describes how to update the makefile so that propagation works correctly.

After deciding which YP server is the master of the map, modify
/var/yp/Makefile on the master server so that you can conveniently rebuild
the map. As indicated previously, different servers can be masters of different
maps. This can, however, lead to administrative confusion, and it is strongly
recommended that you set only one server as the master of all maps. Actual
case-by-case modification is too varied to describe here, but typically a human­
readable ASCII file is filtered through awk, sed, and/or grep to make it

The YP Service 11-29

Administering YP Maps

suitable for input to makedbm. Refer to the existing /var/yp/Makefile for
examples and to the previous section, "Modifying the Makefile."

Use the mechanisms already in place in /var/yp/Makefile when deciding
how to create dependencies that make will recognize; specifically, the use of
. time files allows you to see when the makefile was last run for the map.

To get an initial copy of the map, you can have make run yppush on the YP
master server. The map must be available globally before clients begin to access
it.

11-30

H the map is available from some YP servers, but not all, you will encounter
unpredictable behavior from client programs.

Programmer's Guide: Networking Interfaces

Adding a New YP Server to the Original Set

After yP is running, you may need to create a yP slave server that you did not
include in the initial set given to ypinit. The following procedure explains
how to do this:

1. Log in to the master server as superuser.

2. Go to the yP domain directory by typing:

3. Disassemble ypservers, as follows:

makedbm converts ypservers from dbm format to the temporary ASCII
file /tmp/fempYle.

4. Edit /tmp/tempyle using your preferred text editor. Add the new slave
server's name to the list of servers. Then save and close the file.

5. Run the makedbm command with temp_file as the input file and
ypservers as the output file.

Here makedbm converts ypservers back into dbm format.

6. Verify that the ypservers map is correct (since there is no ASCII file for
ypservers) by typing the following:

The VP Service 11-31

Adding a New YP Server to the Original Set

I~t' Wa host name is not in YI""""". h wHI not be wamed of upd_ to
NQte: the YP map files.

\[f[({(f[{j

Here makedbm will display each entry in ypservers on your screen.

7. Set up the new slave server's YP domain directory by copying the YP
map set from the master.server. To do this, log in to the new YP slave as
superuser and run the ypini t command:

When you are finished, complete Steps 5 and 6 in the "Setting Slave
Servers" section.

Changing a Map's Master Server

To change a map's master, you first have to build it on the new yP master. The
old master's name occurs as a key-value pair in the existing map (this pair is
inserted automatically by makedbm). Therefore, using the existing copy at the
new master or transferring a copy to the new master with ypxfr is insufficient.
You have to reassociate the key with the new master's name. If the map has an
ASCII source file, you should copy it in its current version to the new master.

11-32 Programmer's Guide: Networking Interfaces

Adding a New YP Server to the Original Set

Here are instructions for remaking a sample YP map called
jokes.bypunchline.

1. Log in to the new master as superuser and type the following:

2. /var/yp/Makefile must have an entry for the new map before you
specify the map to make. If this isn't the case, edit the makefile now (see
''Making the Maps").

3. Type the following:

4. If the old master will remain a YP server, rlogin in to it and edit
/var/yp/Makefile. Comment out the section of /var/YP/Makefile
that made jokes. bypunchline so that it is no longer made there.

5. If jokes. bypunchline only exists as a dbm file, remake it on the new
master by disassembling a copy from any YP server, then running the
disassembled version through makedbm:

Don't forget that jokes. bypunchline should be in the alias file too.

After making the map on the new master, you must send a copy of it to the
other slave servers. However, do not use yppush, as the other slaves will try to
get new copies from the old master, rather than the new one. A typical method
for circumventing this is to transfer a copy of the map from the new master
back to the old master. Become superuser on the old master server and type:

The YP Service 11-33

Adding a New YP Server to the Original Set

Now it is safe to run yppush. The remaining slave servers still believe that the
old master is the current master. They will attempt to get the current version of
the map from the old master. When they do so, they will get the new map,
which names the new master as the current master ..

If this method fails, you can try this cumbersome but sure-fire option. Log in as
superuser on each YP server and execute the ypxfr command shown.above.

11-34 Programmer's Guide: Networking Interfaces

Summary of YP-Related Commands

In addition to maps, YP service also includes specialized daemons, system pro­
grams, and commands, which are summarized below.

ypserv Looks up requested information in a map. ypserv is a daemon
that runs on YP servers with a complete set of maps. At least
one ypserv daemon must be present on the network for YP
service to function.

ypbind Initiates binding. ypbind is the YP binder daemon. It must be
present on both clients and servers. It initiates binding by
finding a ypserv process that serves maps within the domain
of the requesting client. ypserv must run on each YP server.
ypbind must run on all servers and clients.

ypinit Automatically creates maps for a YP server from files located in
fete. ypinit also constructs the initial maps that are not built
from files in fete, such as ypservers. Use ypinit to set up
the master YP server and the slave YP servers for the first time,
as well as to initialize all clients.

make Updates YP maps by reading the Makefile in /var/yp. You
can use make to update all maps based on the files in fete or
to update individual maps. The manual page ypmake(1M)
describes make functionality for YP.

makedbm Takes an input file and converts it into dbm . dir and . pag'
files--valid dbm files that YP can use as maps. You can also use
makedbm -u to "disassemble" a map, so that you can see the
key-value pairs that comprise it. .

ypxfr MoveS a YP map from one server to another, using YP itself as
the transport medium. You can run ypxfr interactively, or
periodically from a erontab file. It is also called by ypserv to
initiate a transfer.

yppush Copies a new version of a YP map from the YP master server to
its slaves. You run it on the master yP server.

ypset Tells a ypbind process to bind to a named yP server. ypset is
not for casual use.

The YP Service 11·35

Summary of YP-Related Commands

yppoll Tells which version of a YP map is running on a server that you
specify. It also lists the master server for the map.

ypcat Displays the contents of a YP map.

ypmatch Prints the value for one or more specified keys in a YP map.
You cannot specify which YP server's version of the map you
are seeing.

ypwhich Shows which YP server a client is using at the moment for yP

services, or, if invoked with the -m mapname option, which YP
server is master of each of the maps.

ypupdated Facilitates the updating of YP information.

11-36 Programmer's Guide: Networking Interfaces

Fixing YP Problems

This section explains how to clear problems encountered on networks running
YP. It has two parts, one covering problems seen on a yP client and another
covering problems seen on a YP server.

Debugging a YP Client

Before trying to debug a yP client, review the first part of the chapter, which
explains the YP environment. Then look for the subheading in this section that
best describes your problem.

Hanging Commands on the Client
The most common problem of YP clients is for a command to hang and gen­
erate console messages such as:

Sometimes many commands begin to hang, even though the system as a whole
seems normal and you can run new commands.

The message above indicates that ypbind on the local machine is unable to
communicate with ypserv in the domain domainname. This happens when a
machine running ypserv has crashed or is down or unavailable for any reason.
It may also occur if the network or YP server is so overloaded that ypserv can­
not get a response back to the client's ypbind within the timeout period.

Under these circumstances, every client on the network will experience the same
or similar problems. The condition is temporary in most cases. The messages
will usually go away when the YP server reboots and restarts ypserv, or when
the load on the yP server or network itself decreases.

However, commands may hang and require direct action to clear them. The fol­
lowing list describes the causes of such problems and gives suggestions for
fixing them:

The YP Service 11-37

Fixing YP Problems

• The YP client has not set, or has incorrectly set, the machine's domain
name. Oients must use a domain name that the yP servers know.

• On the cl,ient, type domainname to see which domain name is set. Com­
pare that with the actual domain name in /var/yp on the YP master
server. If a machine's domain name is not the same as the server's, the
machine's domain name entry in its installation scripts is incorrect. Log in
as superuser, edit the client's installation scripts, and correct the domain­
name entry. This assures the domain name is correct every time the
machine boots. Then set domainname manually by typing the following:

• If commands still hang, make sure the server is up and running. Check
other machines on your local network. If several clients also have prob­
lems, suspect a server problem. Try to find a client machine behaving
normally, and type the ypwhich command on it. If ypwhich does not
respond, kill it and go to a terminal on the yP server. Type the following:

11-38

Look for ypserv and ypbind processes. If a ypserv process is running,
type

on the yP server. If ypwhich does not respond, ypserv has probably
hung, and you should restart it. Type the following while logged in as
superuser:

Programmer's Guide: Networking Interfaces

Fixing YP Problems

If ps shows no ypserv process running, start one up .

• If the server's ypbind daemon is not running, start it up by typing the
following:

Notice that if you run ypbind and you type ypwhich immediately,
ypwhich will return the error message not found in all cases. Run
ypwhich again; it should now return the name of a server.

• If commands still hang, you may try the following:

1. Kill the existing ypbind:

2. Restart ypbind with the ypset option that permits root to
change the server:

3. Reset the server to one you know is reliable:

The YP Service 11-39

Fixing YP Problems

YP Service Is Unavailable
When most machines on the network appear to be behaving normally, but one
client cannot receive YP service, that client may experience many different
symptoms. For example, some commands appear to operate correctly while
others terminate with an error message about the unavailability of YP. Other
commands limp along in a backup-strategy mode particular to the program
involved. Still other commands or daemons crash with obscure messages or no
message at all. Here are messages a client in this situation may receive:

These symptoms usually indicate that the client's ypbind process is not run­
ning. Run ps -ef and check for ypbind. If it you do not find it, log in as
superuser and start by typing the following:

11-40 Programmer's Guide: Networking Interfaces

Fixing YP Problems

YP problems should disappear.

ypbind Crashes

If ypbind crashes almost immediately each time it is started, look for a problem
in some other part of the system. Check for the presence of the rpcbind dae­
mon by typing the following:

If it is not running, reboot.

If rpcbind itself will not stay up or behaves strangely, look for more funda­
mental problems. Check the network software in the ways suggested in the
TCP/IP section in the Network User's and Administrator's Guide.

You may be able to communicate with rpcbind on the problematic client from
a machine operating normally. From the functioning machine, type:

If rpcbind on the problematic machine is running normally, rpcinfo should
produce an output similar to the following:

The YP Service 11-41

Fixing YP Problems

There should be one entry per transport; in the preceding example, the entry for
udp is missing. Because ypbind was not registered for it in this case, ypbind
cannot run on udp. As long as there are other transports to run on, ypbind
should run but the omission may indicate some kind of a problem. Reboot the
machine and run rpcinfo again. If the ypbind processes are there and they
change each time you try to restart /usr/lib/netsvc/yp/ypbind, reboot the
system, even if the rpcbind daemon is running.

ypwhich Displays Are Inconsistent

When you use ypwhich several times on the same client, the resulting display
may vary because the YP server changes. This is normal. The binding of YP
client to yP server changes over time when the network or the yP servers are
busy. Whenever possible, the network stabilizes at a point where all clients get
acceptable response time from the YP servers. As long as your client machine
gets YP service, it does not matter where the service comes from. For example,
one YP server machine can get its own YP services from another yP server on
the network.

Debugging a YP Server

Before trying to debug your YP server, read about the yP environment at the
beginning of this chapter. Then look in this subsection for the heading that
most closely describes the server's problem.

11-42 Programmer's Guide: Networking Interfaces

Fixing YP Problems

Servers Have Different Versions of a YP Map

Because YP propagates maps among servers, occasionally you find different ver­
sions of the same map at YP servers on the network. This version discrepancy
is normal if transient, but abnormal otherwise.

Most commonly, normal map propagation is prevented if it occurs when a YP
server or router between YP servers is down. When all YP servers and the
routers between them are running, ypxfr should succeed.

If a particular slave server has problems updating maps, log in to that server
and run ypxfr interactively. If ypxfr fails, it will tell you why it failed, and
you can fix the problem. If ypxfr succeeds, but you suspect it has occasionally
failed, create a log file to enable logging of messages. As superuser type the fol­
lowing:

This saves all output from ypxfr. The output resembles the output ypxfr
displays when run interactively, but each line in the log file is time-stamped.
You may see unusual orderings in the timestamps. This is normal - the time­
stamp tells you when ypxfr started to run. If copies of ypxfr ran simultane­
ously but their work took different amounts of time, they may actually write
their summary status line to the log files in an order different from that in
which they were invoked. Any pattern of intermittent failure shows up in the
log. When you have fixed the problem, turn off logging by removing the log
file. If you forget to remove it, it will grow without limit.

While still logged in to the problem YP slave server, inspect the root's crontab
file and the ypxfr* shell scripts it invokes. Typos in these files cause propaga­
tion problems, as do failures to refer to a shell script within
/var/spool/cron/crontabs/root, or failures to refer to a map within any
shell script.

Also, make sure that the YP slave server is in the map ypservers within the
domain. If it is not, it still operates perfectly as a server, but yppush will not
tell it when a new copy of a map exists.

The YP Service 11-43

Fixing YP Problems

If the YP slave server's problem is not obvious, you can work around it while
you debug it using rep or tftp to copy a recent.version of the inconsistent
map from any healthy YP server. You must not do this remote copy as root,
but you can probably do it while logged in as daemon. For instance, here is
how you might transfer the map busted:

Here the * character has been escaped in the command line so that it will be
expanded on ypmaster, instead of locally on yps!ave. Notice that the map
files should be owned by root, so you must their change ownership after the
transfer.

ypserv Crashes
When the ypserv process crashes almost immediately and does not stay up
even with repeated activations, the debug process is virtually identical to that
previously described in the subsection "ypbind Crashes." Check for the
existence of the rpebind daemon as follows:

Reboot the server if you do not find the daemon. If it is there, type

11-44 Progr~mmer's Guide: Networking Interfaces

Fixing YP Problems

and look for output similar to the following:

Your machine will have different port numbers. As in the case of ypbind,
there should be one entry per transport. If a transport is missing, ypserv has
been unable to register its services with it. Reboot the machine. If the ypserv
processes are there, and they change each time you try to restart
/usr/lib/netsvc/yp/ypserv, reboot the machine.

The YP Service 11-45

Turning Off YP Services

If ypserv on the master is disabled, you can no longer update any of the YP
maps. On the other hand, if there is no ypserv daemon running but clients
have ypbind running, machines may hang indefinitely until they find a
ypserv.

To tum off yP services safely, make sure all the clients stop running ypbind
before ypserv in the master and slave servers is turned off.

11·46 Programmer's Guide: Networking Interfaces

Index

A
authentication 7: 46, 9: 3,6, 14

AUTH_DES 7: 51-53, 9: 15-18,20
AUTH_NONE 7: 47-48, 9: 14

AUTIL SHORT 9: 15
AUTH _ SYS 7: 49, 9: 14

clock synchronization 9: 17
nicknames 9: 17

B
batch RPC 7: 42, 9: 9
binding, YP 11: 5-6

broadcast RPC 6: 25, 7: 40, 9: 9

synopsis 7: 41

c
circuit_n transport type 5: 9

circuit_v transport type 5: 9
clients 5: 2

handle used by rpcgen(1) 6: 10

RPC 5: 12

clnt _create function 7: 2
clnt _ dg_ create functi()n 7: 4

clnt _stat type (in RPC program-
ming) 7: 10

clnt _ tli _create function 7: 3

clnt _ tp _create fUilction 7: 3

clnt _ vc _create function 7: 4

connection-oriented transports 7: 61

D
datagram _ n transport type 5: 9

Index

datagram _v transport type 5: 9

debugging with raw RPC 7: 36
debugging with rpcgen(1) 6: 29

tdefine, with rpcgen(1) 6: 24

deserialize 5: 2, 16
discriminated union (XDR) 8: 15
domain, YP 11: 3, 7-8

domain names, YP 11 : 3

E
External Data Representation (see

XDR)

inetd(1M) 6: 12, 7: 55-56

L
listen(1M) 6: 12, 7: 55, 57

loopback transport 5: 8

M
makedbm(1M) 11: 24-27
maps (YP) 11: 2, 6, 8-16,23-30

adding to makefile 11: 29-30

changing server 11: 32-34

creating 11: 24-25
makefiles 11: 12-15

propagating 11: 27- 29

updating 11: 23-27
master server (YP) 11: 3-6

map changing 11: 32-34

1-1

Index

set with ypinit 11: 15-16
start daemons 11: 17

N
name-to-address translation 5: 8,10
netconfig(4) 5: 7-9
netdir getbyaddr function 5: 10
netdir -getbyname function 5: 10

NETPATH environment variable
5:7-9,7:3,11,17,20,22

net path transport type 5: 9
nettype, and rpcgen(1) 6: 10
network

identifier 5: 8

selection 5: 6
type 5:9
type flag 5: 8

newkey(lM), yP 11: 9

p
ping(lM) 5: 2
port monitor 7: 55

inetd(1M) 6: 12
listen(1M) 6: 12

publickey map 11: 9

R
remote procedure naming conven-

tions 6: 8

remote program 5:2
RPC Language Reference 6: 30
RPC lower levels 5: 6, 13, 7: 1, 17

bottom level 5: 1, 7: 31

1-2

client-side 5: 13, 7: 18, 22, 25, 31, 47
expert level 5: 2, 7: 25
intermediate Level 5: 2,7
intermediate level 7: 22
server-side 5: 14, 7: 20, 24, 28, 32, 48,

53
top Level 5: 3
top level 7: 18

RPC Programming Guide 7: 1
RPC (Remote Procedure Call)

administration 9: 8, 10: 1-13
AUTH DES 7: 51
authentication 7: 46,51
batching 7: 42
bottom level 7: 4

broadcast 7: 40
broadcast synopsis 7: 41
built-in routines 7: 12
callback procedures 7: 64

characteristics of RPC 5: 6
client-side structure 7: 33
data passing 7: 12
DES 7: 51
expert level 7: 3

guarantees 7: 48
intermediate level 7: 3
language 5: 2, 9: 23-25
library based network services 7: 6

package 5: 2, 7: 1
program number assignment 9: 7
protocol 5: 2

raw 7: 36
record marking 9: 22
select(3C) 7: 39
server-side structure 7: 33
simplified interface 5: 3, 7: 2, 6
top level 7: 2
versions 5: 6, 7: 59

Programmer's Guide: Networking Interfaces

rpcb _getaddr function 7: 3

rpcbind(1M) 5: 2, 4, 6, 8,10-13

address registration 5: 11

operation 9: 28

protocol 9: 26

RPCBPROC UADDR2TADDR 9: 30

RPCPROC CALLIT 9: 29

RPCPROC DUMP 9:29

RPCPROC GETADDR 9: 29

RPCPROC GETTIME 9: 30

RPCPROC NULL 9: 28

RPCPROC SET 9: 28

RPCPRQC TADDR2UADDR 9: 30

RPCPROC UNSET 9: 29

rpc _broadcast function 7: 2

rpcb _set function 7: 3

rpcb_unset function 7: 3

rpc _call function 7: 2, 9
rpcgen(1) 5: 1-2, 13, 6: 1-3, 11-12,21,

25-26

broadcast RPC 6: 25

client authentication 6: 23

command line define statements
6: 21, 24

constants 6: 31

C-preprocessing 6: 19

debugging 6: 29

declarations 6: 32

definitions 6: 30

dispatch index output 6: 11

dispatch tables 6: 27

enumerations 6: 31

generating XDR routines 6: 12,27

local procedures 6: 3

-n option 6: 22

network types 6: 21

null procedures 6: 6
options 6: 1

Index

output 6: 1, 14

output file names 6: 11

overview 6: 1

Index

port monitor support 6: 26
preprocessing directives 6: 19-20

procedure naming conventions 6: 8

programs 6: 35
remote procedures 6: 3
RPC Language 6: 30
server wait before exit 6: 26

service routine initializer 6: 28

special cases 6: 37

static results 6: 8
structures 6: 34

-T option 6: 11, 27

timeout changes 6: 22

transport-specific servers 6: 22

tutorial 6: 3

typedef 6: 32

unions 6: 13, 34

xdr functions 6: 14
rpc _reg function 7: 2, 11

RPC/XDR library 6: 14

s
Secure NFS, YP 11 : 8

Secure RPC, YP 11: 8

select(3c) 7: 40

on the server side 7: 39

serialize 5: 3, 15

servers 5:3

RPC 5: 12

servers (YP) 11: 3-6,15-21

slave server (YP) 11: 3-6, 31-32

set with ypinit 11: 18-21

start daemons 11: 21

1-3

Index

STARLAN 5: 4, 8

svc create function 7: 2
svc _ dg_ create function 7: 4

svc _reg function 7: 4
svc _ tli _create function 7: 3

svc_tp_create function 7: 3
svc _ unreg function 7: 4

svc vc create function 7: 4

T
taddr2uaddr function 5: 10

tcp transport type 5: 9
TCP lIP 5: 4, 8-9

u
uaddr2taddr function 5: 10

udp transport type 5: 9

UDP (User Datagram Protocol)
5: 8-9

universal address 5: 3-4, 6, 10-11, 13,

9: 26, 28-30

v
visible transport type 5: 9

x
XDR (External Data Representation)

5: 3, 6, 6: 1-3, 12, 14, 8: 1

array, fixed length 8: 12

array, variable length 8: 13

basic block size 8: 1
block size 8: 1

1-4

boolean 8: 5

constant 8: 17
data, optional 8: 18

data types 8: 3

discriminated union 8: 15

double-precision floating-point
integer 8: 8

enumeration 8: 5

fixed-length array 8: 12

fixed-length opaque data 8: 9

floating-point integer 8: 7
hyper integer 8: 6
integer 8: 3

integer, double-precision floating
point 8: 8

integer, floating point 8: 7
integer, hyper 8: 6
integer, unsigned 8: 4

language 5: 3, 6: 30, 8: 20

language, notation 8: 20

language, syntax 8: 21, 2:3

memory allocation 7: 69

opaque data, fixed length 8: 9

opaque data, variable length 8: 10

optional data 8: 18

string 8: 11

structure 8: 14

typedef 8: 17
unsigned integer 8: 4

variable-length array 8: 13

variable-length opaque data 8: 10

void 8: 16

y
Yellow Pages Service (see YP)
YP (Yellow Pages Service)

Programmer's Guide: Networking Interfaces

binding 11: 5-6
client 11: 5, 21- 22
debugging 11: 37-46
domain 11: 3, 7-8
machine types 11: 3

maps (see maps (YP»
master server 11: 15-17
servers 11:3-6,31-32
slave server 11: 18-21
steps to implement 11: 7-22
turning off 11 : 46

ypbind(1M) 11: 2-6
ypinit(1M) 11: 15-22
ypserv(lM) 11: 2-6
ypxfr(1M) 11: 27- 29

Index

Index

1·5

12

Contents

Network Selection and Name-to-Address
Mapping
Network Selection
Name-to-Address Mapping

Index: Network Selection and Name-to­
Address Mapping

Table of Contents

12-1
12-13

Figures and Tables

Figure 12-1: The netconfig Structure 12-4
Figure 12-2: Sample values for a NETPATH environment variable. 12-5
Figure 12-3: Sample code using setnetpath (). getnetpath (), and

endnetpath(). 12-7
Figure 12-4: Sample code using setnetconfig () . getnetconfig (). and

endnetconfig () . 12-9
Figure 12-5: Sample Code Using getnetconfigent 0 and freenetconfigent 0 12-9
Figure 12-6: Sample code using getnetconfigent () and freenetconfigent () . 12-10
Figure 12-7: Code example: Using Network Selection and Name-to-Address

M~~~. 1~O

Table of Contents iii

1 2 Network Selection and Name-to­
Address Mapping

Network Selection
How Network Selection Works
The netconfig File
The NETPATH Environment Variable
Routines That Access netconfig via NETPATH
Routines That Access netconfig Directly
Code Examples

• Looping through All "Visible" netconfig Entries
• Looping through User-defined netconfig Entries
• Looping through All netconfig Entries
• Specifying a Single Transport Provider

Name-to-Address Mapping
The Name-to-Address Mapping Libraries
Using the Name-to-Address Mapping Routines

• netdir_getbyname
• netdir_getbyaddr
• netdir free
• taddr2uaddr
• uaddr2taddr
• netdir_options
• netdirJ'error
• netdir_sperror

Table of Contents

12-1
12-1
12-2
12-4
12-5
12-7
12-10
12-11
12-11
12-12
12-12

12-13
12-14
12-16
12-17
12-17
12-17
12-17
12-18
12-18
12-19
12-19

Network Selection

In order for network applications to be portable to different environments, the
application process must have a standard interface into the number and types of
networks available in any current environment. Network Selection provides a
simple and consistent interface that allows user applications to select networks
(at the transport level) that exist in an environment, thus enabling applications
to be protocol- and media-independent. System V Networking Services applica­
tions that allow the user to influence the choice of networks will use the stan­
dard interface outlined here.

Network Selection routines may be employed by the client portion of an appli­
cation when the application initiates communication with its peer application on
another machine; they may also be used by the server portion of an application
when it offers its service. On a machine connected to a single network, Net­
work Selection makes it possible for the application to make use of that network
without requiring application-specific action by the administrator or user. On a
machine connected to multiple networks, Network Selection makes it easy for
the application to try each alternative network in tum, until it succeeds in estab­
lishing communication, and to try them either in the order specified as the local
"default" sequence established by the system administrator or in the order pre­
ferred by the user. It also allows server-side applications to accept requests over
multiple networks.

Choosing among the available networks is the responsibility of the application.
The Network Selection mechanism is intended to make that selection uniform
and simple.

How Network Selection Works

The Network Selection component is built around

• a network configuration database (the /etc/netconfig file) that contains
an entry for each network on the system, and

• an optional NETPATH environment variable, set by a user and containing
an ordered list of network identifiers. These network identifiers match the
netconfig network ID field and are used as links to the records in the
netconfig file. The netconfig file is described in the next section.

The Network Selection application programming interface consists of a set of
network configuration database access routines. One set of library routines
accesses only the netconfig entries identified by the NETPATH environment

Network Selection and Name-to-Address Mapping 12-1

Network Selection

variable. These routines are described below under "Routines That Access
netconfiq via NETPATH," and on the qetnetpath(3N) manual page.

setnetpath ()
qetnetpath ()
endnetpath ()

Applications should use these routines that access NETPATH. They allow users
to influence the selection of transports used by the application. If an application
does not want the user to influence its decision, then the routines that access the
netconfiq database directly should be used.

There is also another group of routines that accesses netconfiq directly. These
routines are described below under ''Routines That Access netconfiq Directly,"
and on the qetnetconfiq(3N) manual page.

setnetconfiq ()
qetnetconfiq ()
endnetconfiq ()

qetnetconfiqent()
freenetconfiqent()

In addition to this chapter, the System V Network Selection component is
described in the System Administrator's Guide.

The netconfig File

The netconfiq file is the database that describes all networks on a given
machine. Entries in the netconfiq file contain the following fields:

network semantics
ID

network ID

12-2

flag protocol protocol network directory
family name device lookup

libraries

A locally meaningful representation of a network
name (for example, tcp or starlan). Applications
that require the name of a transport provider will
obtain the name from this field.

Programmer's Guide: Networking Interfaces

semantics

Network Selection

The semantics of the particular network. Valid seman­
tics are:

connectionless

connection-oriented

connection-oriented with orderly
release

Applications that require certain semantics, such as
virtual circuit establishment, can use this field to deter­
mine if the transport provider has the required seman­
tics.

flag A string of flags associated with the transport. The
only flag currently defined is a "visible" flag, which is
described under ''The NETPATH Environment Vari­
able." flag may take one of two values, v or a hyphen
(-).

protocol family The protocol family name of the transport provider,
for example, inet or osinet. See the netconfig(4)
manual page.

protocol name The protocol name of the transport provider. If proto­
col family is inet, then protocol name is tcp, udp, or
icrrp. Otherwise the value of protocol name is a hyphen
(-). See the netconfig(4) manual page.

network device The full pathname of the device file to open when
accessing the transport provider. .

directory lookup libraries Names of the shared libraries. This field contains the
comma-separated full pathnames of the directory
lookup libraries that contain Name-to-Address Map­
ping routines. The libraries must be shared objects.

The fields correspond to elements of the struct netconfig structure. Pointers
returned by Network Selection library routines are pointers to netconfig
entries in struct netconfig format. The netconfig structure is shown in
Figure 12-1. .

Network Selection and Name-ta-Address Mapping 12-3

Network Selection

Figure 12-1: The netconfiq Structure

Valid network IDs are defined by the system administrator, who is responsible
for ensuring that network IDs are locally unique. If they are not, some Network
Selection routines ~nnot operate in a well-defined manner. For example, it is
not possible to know which network qetnetconfiqent ("starlan") will use
if there are two netconfiq entries with the network 10 starlan.

The system administrator also determines the order of the entries in the
netconfiq database. The routines that retrieve entries from
/etc/netconfiq return entries in order, beginning at the top of the file. The
order of netwprks in the netconfiq file therefore becomes the default network
search path for applications using the routines described in the next section.

The netconfiq file aIld the struct netconfiq structure are described in
greater detail on the netconfiq(4) manual page.

The NETPATH Environment Variable

In most cases the user isn't interested in which network is used for a network
operation. Typically an application uses the default network search path esta­
biished by the system administrator to locate an available network. However,
when a user wants to influence the choices made by an application, the appUca­
tion can modify the interface by using the shell variable NETP ATH and the rou­
tines described in the next section. These routines access only the networks
specified in the NETP ATH variable.

12-4 Programmer's Guide: Networking Interfaces

Network Selection

NETPATH is similar to the PATH variable. It consists of a colon-separated list of
network IDs. Each network 10 in the NETPATH variable corresponds to the net­
work 1D field of a record in the netconfig file. A literal colon can be embed­
ded as ',\:" and a literal backslash as ''\\''. NETPATH is described on the
environ(S) manual page in the User's Reference Manual.

Figure 12-2: Sample values for a NETPATH environment variable.

The set of default networks is different for the routines that access netconfig
via the NETPATH environment variable (described in the next section) and the
routines that access netconfig directly (described later in this chapter). The
set of default networks for routines that access netconfig via NETPATH con­
sists of the "visible" networks in the netconfig file. For routines that access
netconfig directly, the set of default networks is the entire netconfig file.
A network is "visible" if the system administrator has included a v flag in the
flag field of that network's netconfig entry.

Routines That Access netconfig via NETPATH

The three routines described in this section access the network configuration
database indirectly through the NETPATH environment variable. The user is
thus able to specify the network or networks the application is to use and, if
more than one network is specified, in what order they are to be tried. These
routines have the following syntax:

Network Selection and Name-to-Address Mapping 12-5

Network Selection

A call to setnetpath () has the effect of initializing NETPATH. It returns a
pointer to a database that contains the entries specified in a NETPATH variable.
The pointer, called a "handle," is used when traversing this database with get­
netpath O. Each call to setnetpathO returns a different database pointer.
setnetpath () must be called before the first call to getnetpath () and may
be called at any other time. setnetpath () returns NULL if the netconfig
database is not present. setnetpath () takes no arguments.

When first called, getnetpath () returns a pointer to to the netconfig data­
base entry that corresponds to the first component of the NETPATH variable (the
instance described by the handle). NETPATH components are read from left to
right. The netconfig entry is formatted as a struct netconfig. On each
subsequent call, getnetpath () returns a pointer to the netconfig entry that
corresponds to the next component of the NETPATH variable. getnetpath ()
returns NULL on end of file. A call to getnetpath 0 without an initial call to
set net path 0 will produce an error. getnetpath 0 takes a handle as an
argument.

getnetpath () silently ignores invalid NETPATH components. A NETPATH
component is invalid if there is no corresponding entry in the netconfig data-
base. .

If the NETPATH variable is unset, getnetpath 0 behaves as if NETPATH were
set to the sequence of "default" or "visible" networks in the netconfig data­
base, in the order in which they are listed.

12-6 Programmer's Guide: Networking Interfaces

Network Selection

endnetpath () is called to "free" the database pointer to elements in the NET­
PATH variable when processing is complete. It returns 0 on success and -1 on
failure. endnetpath 0 will fail if setnetpath 0 was not called previously.
endnetpath () takes the instance handlep as an argument.

Figure 12-3: Sample code using setnetpath (), qetnetpath (), and endnetpath ().

Routines That Access netconfig Directly

Five functions access the network configuration database file,
/etc/netconfiq. They have the following syntax:

Network Selection and Name-to-Addre .. Mapping 12·7

Network Selection

A call to setnetconfig () initializes the database routines. It returns a data­
base pointer to be used when traversing the database with getnetconfig 0 .
This database pointer is also called a handle; Each call to setnetconfig ()
returns a different database pointer. Each call to getnetconfig 0 returns the
next entry in netconfig associated with the "handle" returned by set­
netconfig 0 .

When first called, getnetconfig () returns a pointer to the first entry in the
netconfig database, formatted as a struct netconfig. On each subsequent
call, getnetconfig 0 returns a pointer to the next entry in the database; it can
thus be used to search the entire netconfig file. getnetconfig () returns
NULL to the calling routine at end of file.

endnetconfig () may be called to "free" the database pointer when process­
ing is complete. endnetconfig 0 may not be called before setnetcon-
fig O. endnetconfig 0 returns 0 on success and -1 on failure (for example,
if setnetconfig () was not called previously).

12-8 Programmer's Guide: Networking Interfaces

Network Selection

Figure 12-4: Sample code using setnetconfig () , getnetconfig (), and
endnetconfig ().

Figure 12-5: Sample Code Using getnetconfigent () and freenetconfigent 0

Network Selection and Name-to-Address Mapping 12-9

Network Selection

getnetconfigent () returns a pointer to the struct netconfig structure
corresponding to netid. It returns NULL if netid is invalid (that is, does not
name an entry in the netconfig database),

freenetconfigent () frees the structure returned by getnetconfigent () .

~<>TE
1 ...•.......................

1

.•.....•..••..•......•....••.....••• 1 setneteonfi, () need not be called before getneteonfi.ent () .

Figure 12-6: Sample code using getnetconfigent () and freenetconfigent 0 .

Code Examples

The following code examples are taken from the larger program at the end of
this section. They show several of the ways in which the Network Selection
facility may be used.

12·10 Programmer's Guide: Networking Interfaces

Network Selection

Looping through All "Visible" netconfig Entries

In the examples, the set net path () call initializes the Network Selection rou­
tines and returns a database pointer.

The getnetpath () call returns each visible entry in the /etc/netconfig file
(that is, each entry that contains a v flag). Entries are returned in the order in
which they appear in the file.

Looping through User-defined netconfig Entries

Users can also manipulate the loop by setting the NETl?ATH environment vari­
able to a colon-separated list of transport provider names (transport provider
names are given in the first field of the /etc/netconfig file). If the value of
NETl?ATH is set as follows:

then the loop will first return the entry corresponding to tcp, and then the
entry corresponding to starlan. If NETPATH is not set in the environment, the
above loop will return all visible entries in the netconfig file in the order in
which they appear there.

Network Selection and Name-to-Address Mapping 12-11

Network Selection

The NETPATH environment variable allows users to define the order in which
client-side applications attempt to make connections to a service. It also allows
the administrator of the server machine to restrict which transport providers a
service will loop through and bind to.

Looping through All netconfig Entries

An application can ignore the NETPATH variable and loop through all entries in
the netconfig file - even those without a v flag:

Specifying a Single Transport Provider

The following call will obtain information about a single, named transport pro­
vider:

12-12 Programmer's Guide: Networking Interfaces

Name-ta-Address Mapping

The Name-to-Address Mapping feature allows an application to obtain the
address of a service on a specified machine in a transport-independent manner.
The Name-to-Address Mapping feature consists of the following routines:

netdir_getbyname
netdir_getbyaddr
netdir free
netdir_mergeaddr
taddr2uaddr
uaddr2taddr
netdir_options

Each routine takes a pointer to a struct netconfig, which describes a tran­
sport provider. Using the directory lookup library element of the netconfig
structure, the routine can obtain a list of shared libraries that contains
transport-specific versions of itself. It will call each of these in tum until the call
succeeds. For example, in UNIX System V Release 4.0, the full libraries are pro­
vided to support the Internet protocols, the ISO ST ARLAN protocols, and the
loopback protocols.

The libraries are:

tcpip. so Contains the Name-to-Address Mapping routines for the Inter­
net protocol suite.

straddr. so Contains the Name-to-Address Mapping routines for any proto­
col that accepts strings as addresses. ISO and the loopback pro­
tocols are examples.

The routines are described below under liThe Name-to-Address Mapping Rou­
tines," and on the netdir(3N) manual page. The struct netconfig struc­
ture is described on the netconfig(4) manual page.

Network Selection and Name-to-Address Mapping 12-13

Name-to-Address Mapping

The Name-to-Address Mapping Libraries

Files for each of the libraries must be created and maintained by the system
administrator.

tepip.so

The routines in this dynamic library creat~ addresses from the fete/hosts and
/ete/serviees files available with the Tep/IP package. The fete/hosts
file contains two fields, the machine's IP address and the machine name. For
example:

The /ete/serviees file contains two fields, a service name and a port number
with one of two protocol specifications, either tep or udp. For example:

When an application uses this library to request the address of a service on a
particular host, the host name must appear in the fete/hosts file and the ser­
vice name must appear in the /ete/serviees file. If one or the other does
not appear, an error will be returned by the Name-to-Address Mapping rou­
tines.

straddr.so

The routines in this dynamic library create addresses from files that have the
same format as the tepip. so files described above. The straddr. so files are
/ete/net/transport/hosts and /ete/net/transport/serviees. transport is
the local name of the transport provider that accepts string addresses (specified
in the network ID field of the /ete/neteonfig file). For example, the host file
for starlan would be /ete/net/starlan/hosts, and the service file for

12-14 Programmer's Guide: Networking Interfaces

Name-to-Address Mapping

starlan would be /etc/net/starlan/services. For starlandg, the files
would be /etc/net/starlandg/hosts and
/etc/net/starlandg/services.

Even though most string addresses do not distinguish between "host" and "ser­
vice," separating the string into a host part and a service part provides con­
sistency with other transport providers. The /etc/net/transport/hosts file
will therefore contain a string that is considered to be the machine address, fol­
lowed by the machine name. For example:

The /etc/net/transport/services file contains service names followed by
strings identifying the service ports. For example:

The routines create the full string address by combining the "host address" and
the "service port," separating the two with a dot ("."). For example, the
address of the ''listen'' service on bilbo would be bilboaddr. serve, and the
address of the "rpcbind" service on bilbo would be bilboaddr. rpc.

When an application requests the address of a service on a particular host on a
transport provider that uses this library, the host name must appear in
/etc/net/transport/hosts and the service name must appear in
/etc/net/transport/servlces. If one or the other does not appear, the
Name-to-Address Mapping routines will return an error.

Network Selection and Name-lo-Address Mapping 12-15

Name-to-Address Mapping

Using the Name-to-Address Mapping Routines

12·16 Programmer's Guide: Networking Interfaces

Name-to-Address Mapping

netdir_getbyname
The netdir_getbyname () routine maps the machine and service name
specified in the nd_hostserv structure to a collection of addresses of the type
understood by the transport identified in the netconfig structure. The
nd_addrlist parameter returns a pointer to the addresses. To find all
addresses of a machine and service (on all available transports), repeatedly call
the netdir getbyname () routine with each netconfig structure returned
by the getn~tpath(3N) call.

netdir_getbyaddr
The netdir_getbyaddr () routine maps addresses into machine and service
names. Given an address in the netbuf parameter, this routine returns a list of
machine name and service name pairs that would yield that address (a pointer
to the list of machine and service name pairs is returned in the
nd_hostservlist parameter.)

netdir free
The netdir_free () routine frees the structures allocated by the name-to­
address translation routines. The parameters can take the following values:

T e Pointer

NO HOSTSERVLIST pointer to
nd hostservlist struc­
ture allocated by
netdir_getbyaddr()

NO ADORLIST pointer to nd_addrlist
structure allocated by
netdir_getbyname()

taddr2uaddr

The taddr2uaddr () routine translates the address given in the netbuf struc­
ture (which is an address for the transport provider given in the netconfig
structure) and returns a "universal address" representation of the address. A
"universal address" is a machine architecture-independent character representa­
tion of the address.

Network Selection and Name-to-Address Mapping 12-17

Name-to-Address Mapping

uaddr2taddr
The uaddr2taddr routine takes a "universal address" and translates it back
into a netbuf structure. The netconfig parameter specifies which transport
provider the address is valid for.

netdir_options
The netdir_options 0 routine provides an interface to transport specific
capabilities (for example, applications can take advantage of the "broadcast
address" and "reserved port" facilities provided by the User Datagram Protocol
(UDP».

The netconfig structure specifies a transport provider. The option argument
specifies the transport-specific action to take. The third argument is a file
descriptor (which mayor may not be used depending upon option). The fourth
argument is a a pointer to operation-specific data.

The following values may be used for option:

12-18

This option sets the transport provider up to
allow for broadcast (if the transport provider
supports broadcast). fd is a file descriptor into
the transport provider (for example, the result of
a t_openO of /dev/udp). pointer_to_args is
not used. If successful, broadcast operations
may be done on fd.

Allows the application to bind to a reserved
port, if allowed by the transport provider
specified. fd is a file descriptor into the tran­
sport (it must not be bound to an address). If
pointer_to _args is NULL, fd will be bound to a
reserved port. If pointer_to _args is a pointer to a
netbuf structure, an attempt will be made to
bind to a reserved port on the specified address.

If the concept of a reserved port exists for a
transport provider, ND _CHECK _ RESERVEDPORT
is used to verify that an address corresponds to
a reserved port. fd is not used. pointer_to _args
is a pointer to a netbuf structure that contains
an address. This option returns 0 only if the

Programmer's Guide: Networking Interfaces

NO MERGEADOR

netdiryerror

Name-to-Address Mapping

address specified in pointer_to _args is reserved.

Used to transform a locally meaningful address
into an address that client machines can connect
to. For example, the Transmission Control Pro­
tocol (Tep) has the concept of 0 . 0 . 0 . 0 as a
locally meaningful address. NO _ MERGEADOR can
be used to translate the 0 . 0 . 0 . 0 address into a
"real" address that is understood by client
machines. fd is not used with this option.
pointer_to _args is a pointer to a nd _ mergearg
structure, which has the following form:

The netdir_perror () routine prints onto standard output the error message
stating why one of the name-to-address mapping routines failed. The error
message is preceded by the string given as an argument.

netdir_sperror

The netdir_sperrbr () routine returns a string containing the error message
stating why one of the name-to-address mapping routines failed.

Network Selection and Name-ta-Address Mapping 12-19

Name-to-Address Mapping

Figure 12-7: Code example: Using Network Selection and Name-to-Address
Mapping.

12-20 Programmer's Guide: Networking Interfaces

Name-to-Addre •• Mapping

Figure 12-7: Code example: Using Network Selection and Name-to-Address
Mapping. (continued)

Network Selection and Name-to-Address Mapping 12-21

I
I
I

I

I
I
I
I

I
I

i
i
I
I

I

I
I
I
I
I

I
I

I

I
I
I
I

Index

Internet, support for protocols 12: 13

N
name-to-address mapping 12: 13-21

routines 12: 16-21

netconfig(4) 12: 2-10, 12

netdir free function 12: 17

netdir_getbyaddr function 12: 17
netdir _getbyname function 12: 17

netdir _options function 12: 18
netdiryerror function 12: 19

netdir_sperror function 12: 19

NETPATH environment variable 12: 2,
4-7, 12

network, configuration file 12: 2-10,
12

network addressing 12: 13-21

string address providers 12: 14

TCP lIP 12: 14
network selection 12: 1-15

code examples 12: 10-12

s
services(4) 12: 14

STARLAN, support for protocols
12: 13

straddr.so file 12: 14-15

T
taddr2uaddr function 12: 17
TCP (Transmission Control Protocol)

12: 14, 19

Index

TCP lIP, network addressing 12: 14
tcpip. so file 12: 14

u
uaddr2taddr function 12: 18

1-1

13

Contents

Writing a Port Monitor for the Service
Access Facility
Introduction
Overview of the Service Access Facility
Basic Port Monitor Functions
The Service Access Controller/Port Monitor Interface
The Port Monitor Administrative Interface
Port Monitor Requirements
Configuration Files and the Configuration Language
Sample Port Monitor Code
The Header File sac. h
Service Access Facility Logic Diagram and Directory

Structure

Index: Writing a Port Monitor for the
Service Access Facility

Table of Contents

13-1
13-2
13-4
13-8
13-12
13-18
13-21
13-27
13-32

13-35

Table of Contents

II Programmer's Guide: Networking Interfaces

Figures and Tables

Figure 13-1: Service Access Facility logical framework.
Figure 13-2: Service Access Facility directory structure.

Table of Contents

13-35
13-36

iii

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 3 Writing a Port Monitor for the
Service Access Facility

Introduction 13-1

Overview of the Service Access Facility 13-2
The Service Access Controller 13-2

Basic Port Monitor Functions 13-4
Port Management 13-4
Activity Monitoring 13-5
Other Port Monitor Functions 13-5

• Restricting Access to the System: Enabling and Disabling
Port Monitors and Ports 13-5

• Creating utllp Entries 13-6
• Port Monitor Process IDs and Lock Files 13-6
• Changing the Service Environment: Running doconfigO 13-6
• Files: The Port Monitor Administrative File 13-6
• Files: Per-service Configuration Files 13-7
• Private Port Monitor Files 13-7
• Terminating a Port Monitor 13-7

The Service Access Controller/Port
Monitor Interface 13-8
Message Formats 13-8

• sac Messages 13-8
• Port Monitor Messages 13-9

Message Classes 13-10

Table of Contents

Table of Contents

The Port Monitor Administrative Interface 13-12
The SAC Administrative File sactab 13-12
The Port Monitor Administrative File _pmtab 13-13
The SAC Administrative Command sacadm 13-15
The Port Monitor Administrative Command pmadm 13-16
A Port Monitor's "Port Monitor-Specific" Administrative

Command 13-16
The Port Monitor/Service Interface 13-17

• New Service Invocations 13-17
• Standing Service Invocations 13-17

Port Monitor Requirements 13-18
I nitial Environment 13-18
Important Files 13-18
Responsibilities 13-19

• Miscellaneous Tasks 13-19
• Service Related Tasks 13-19

Configuration Files and the Configuration
Language 13-21
Configuration Files 13-21

• The Per-System Configuration File 13-21
• Per-Port Monitor Configuration Files 13-21
• Per-Service Configuration Files 13-21

The Configuration Language 13-22
Printing, Installing. and Replacing Configuration Scripts 13-23

• Per-System Configuration Scripts 13-23
• Per-Port Monitor Configuration Scripts 13-24
• Per-Service Configuration Scripts 13-24

Interpreting Configuration Scripts: doconfig() 13-25
Sample Configuration Scripts 13-26

• Sample Per-System Configuration Script 13-26
• Sample Per-Port Monitor Configuration Script 13-26

Ii Programmer's Guide: Networking Interfaces

____________________ Table of Contents

• Sample Per-Service Configuration Script 13-26

Sample Port Monitor Code 13-27

The Header File sac.h 13-32

Service Access Facility Logic Diagram and
Directory Structure . 13-35

Table of Contents IIi

I ntrod uction

The Service Access Facility (SAF) generalizes the procedures for service access so
that login access on the local system and network access to local services are
managed in similar ways. Under the SAF, systems may access services using a
variety of port monitors, including ttym::>n, the listener, and port monitors writ­
ten expressly for a user's application. The Service Access Facility is fully docu­
mented in the "Service Access" chapter of the System Administrator's Guide. It is
assumed that programmers who are writing port monitors to be used on a Sys­
tem V Release 4 system are familiar with that chapter.

Beginning with System V Release 4, ttym::>n replaces getty and uugetty for
local access to login service and is available for other types of access to the local
system. The "Service Access" chapter of the System Administrator's Guide
describes managing ttym::>n port monitors (''The Port Monitor ttym::>n") and
defining terminal line settings for 1TY ports ("Terminal Line Settings").

The Hstener provides network access over any network that conforms to the
Transport Interface (TLI) protocol. The listener is also documented in the Ser­
vice Access chapter of the System Administrator's Guide. TLI is documented in
Chapter 2 of this volume, ''Transport Interface Programming."

Service Access Facility manual pages are included in the System Administrator's
Reference Manual and in Appendix A of this volume.

Programmers of networking applications should also see Chapter 12 of this
volume, ''Network Selection and Name-to-Address Mapping."

This chapter gives a brief description of the functions a port monitor must per­
form to run under the Service Access Facility; the message format required for
port monitor interface with the SAF; the way in which ~e SAF administers port
monitors; and the requirements for port monitors registered with the SAF. The
chapter also contains a section on configuration files, the language in which
configuration scripts are written, and the doconfiq() function, which interprets
these scripts. Finally, it includes code for a simple port monitor that may be
used as a model.

Writing a Port Monitor for the Service Access Facility 13-1

Overview of the Service Access Facility

The manner in which a port monitor monitors and manages access ports is
specific to the port monitor and not to any component of the Service Access
Facility. Users may therefore extend their systems by developing and installing
their own port monitors. It is one of the important features of the Service
Access Facility that it can be extended in this way by users.

From the point of view of the Service Access Facility, a service is a process that
is started. There are no restrictions on the functions a service may provide.

The Service Access Facility consists of a controlling process, the Service Access
Controller (SAC), and two administrative levels corresponding to two levels in
the supporting directory structure. The top administrative level is concerned
with port monitor administration, the lower level with service administration.

From an administrative point of view, the Service Access Facility consists of the
following components:

• The Service Access Controller

• A per-system configuration script

• The SAC administrative file

• The SAC administrative command sacadm

• Port monitors

• Optional per-port monitor configuration scripts

• An administrative file for each port monitor, named ..J>Intab

• The administrative command pmadm

• Optional per-service configuration scripts

The Service Access Controller

The Service Access Controller is the Service Access Facility's controlling process.
The SAC is started by init(lM) by means of an entry in /etc/inittab. Its
function is to maintain the port monitors on the system in the state specified by
the system adtninistrator.

13-2 Programmer's Guide: Networking Interfaces

OVerview of the Service Access Facility

The administrative command sacadm is used to tell the SAC to change the state
of a port monitor. sacadm can also be used to add or remove a port monitor
from SAC supervision and to list information about port monitors known to the
SAC.

The SAC's administrative file contains a unique tag for each port monitor known
to the SAC and the pathname of the command used to start each port monitor.

The SAC performs three main functions. Briefly:

• it customizes its own environment

• it starts the appropriate port monitors

• it polls its port monitors and initiates recovery procedures when necessary

Writing a Port Monitor for the Service Access Facility 13-3

Basic Port Monitor Functions

A port monitor is a process that is responsible for monitoring a set of homo­
geneous, incoming ports on a machine. A port monitor's major purpose is to
detect incoming service requests and to dispatch them appropriately.

A port is an externally-seen access point on a system. A port may be an
address on a network (TSAP or PSAP), a hardwired terminal line, an incoming
phone line, etc. The definition of what constitutes a port is strictly a function of
the port monitor itself.

A port monitor performs certain basic functions. Some of these are required to
conform to the Service Access Facility (SAF)i others may be specified by the
requirements and design of the port monitor itself.

Port monitors have two main functions:

• managing ports and

• monitoring ports for indications of activity

Port Management

The first function of a port monitor is to manage a port. The actual details of
how a port is managed are defined by the person who defines the port monitor.
A port monitor is not restricted to handling a single porti it may handle multi­
ple ports simultaneously. I, Some example. of port management are setting the line speed on incoming
·~i~:: phone connections: bindin~ an appropri~e network address, reinitializing the
:::;:;:;:;:;:;:;:;:;:;:;:; port when the service terminates, outputting a prompt, etc.

13-4 Programmer's Guide: Networking Interfaces

Basic Port Monitor Functions

Activity Monitoring

The second function of a port monitor is to monitor the port or ports for which
it is responsible for indications of activity. Two types of activity may be
detected.

• The first is an indication to the port monitor to take some port monitor­
specific action. Pressing the <break> key to indicate that the line speed
should be cycled is an example of a port monitor-specific activity. Not all
port monitors need to recognize and respond to the same indications. The
indication used to attract the attention of the port monitor is defined by
the person who defines the port monitor.

• The second is an incoming service request. When a service request is
received, a port monitor must be able to determine which service is being
requested from the port on which the request is received. Note that the
same service may be available on more than one port.

Other Port Monitor Functions

Restricting Access to the System: Enabling and Disabling Port
Monitors and Ports
A port monitor must be able to restrict access to the system without disturbing
services that are still running. In order to do this, a port monitor must maintain
two internal states: enabled and disabled. The port monitor starts in the state
indicated by the ISTATE environment variable provided by the sac. (See liThe
Service Access Controller/Port Monitor Interface," below.)

Enabling and Disabling a Port Monitor

Enabling or disabling a port monitor affects all ports for which the port monitor
is responsible. If a port monitor is responsible for a single port, only that port
will be affected. If a port monitor is responsible for multiple ports, the entire
collection of ports will be affected.

Enabling or disabling a port monitor is a dynamic operation: it causes the port
monitor to change its internal state. The effect does not persist across new invo­
cations of the port monitor.

Writing a Port Monitor for the Service Access Facility 13-5

Basic Port Monitor Functions

Enabling and Disabling a Port

Enabling or disabling an individual port, however, is a static operation: it causes
a change to an administrative file. The effect of this change will persist across
new invocations of the port monitor.

Creating utmp Entries

Port monitors are responsible for creating utrrp entries with the type field set to
USER_PROCESS for services they start, if this action has been specified (that is, if
-fu was specified in the pmadm line that added the service). These utrrp entries
may in turn be modified by the service. When the service terminates, the utrrp
entry must be set to DEAD_PROCESS.

Port Monitor Process IDs and lock Files

When a port monitor starts, it writes its process id into a file named yid in the
current directory and places an advisory lock on the file.

Changing the Service Environment: Running doconfig ()

Before invoking the service designated in the port monitor administrative file,
ymtab, a port monitor must arrange for the per-service configuration script to
be run (if one exists) by calling the library function doconfig (3N). Because the
per-service configuration script may specify the execution of restricted com­
mands, as well as for other security reasons, port monitors are invoked with
root permissions. The details of how services are invoked are specified by the
person who defines the port monitor.

Files: The Port Monitor Administrative File

A port monitor's current directory contains an administrative file named
ymtab. ymtab is maintained by the pmadm command in conjunction with a
port monitor-specific administrative command. Port monitor-specific commands
are discussed below.

I.' , ... ,•. , ... ; ..•.•. ' .•. ·.··.·'.··1 The port mon'or-specific administrative command for a listen port mon'or IIIQ1'£ is nlsadmin(1 M); the port monitor-specific administrative command for
') ttym:>n is ttyadm. Any port monitor written by a user must be provided with
. an administrative command specific to that port monitor to perform similar

functions.

13-6 Programmer's Guide: Networking Interfaces

Basic Port Monitor Functions

Files: Per-service Configuration Files

A port monitor's current directory also contains the per-service configuration
scripts, if they exist. The names of the per-service configuration scripts
correspond to the service tags in the J>mtab file.

Private Port Monitor Files

A port monitor may create private files in the directory /var/saf/tag, where tag
is the name of the port monitor. Examples of private files are log files or tem­
porary files.

Terminating a Port Monitor

A port monitor must terminate itself gracefully on receipt of the signal SIGTERM.

The termination sequence is the following:

• The port monitor enters the stopping state; no further service requests are
accepted.

• Any attempt to re-enable the port monitor will be ignored.

• The port monitor yields control of all ports for which it is responsible. It
must be possible for a new instantiation of the port monitor to start
correctly while a previous instantiation is stopping.

• The advisory lock on the process id file is released. Once this lock is
released, the contents of the process id file are undefined and a new invo­
cation of the port monitor may be started.

Writing a Port Monitor for the Service Access Facility 13-7

The Service Access Controller/Port Monitor
Interface

The sac creates two environment variables for each port monitor it starts:

• PMl'AGand

• ISTATE

PMl'AG is set to a unique port monitor tag by the sac. The port monitor uses
this tag to identify itself in response to sac messages. ISTATE is used to indi­
cate to the port monitor what its initial internal state should be. ISTATE is set to
"enabled" or "disabled" to indicate that the port monitor is to start in the
enabled or disabled state, respectively. The sac performs a periodic sanity poll of
the port monitors.

The sac communicates with port monitors through FIFOs. A port monitor
should open ynpipe, in the current directory, to receive messages from the sac
and .. / _ sacpipe to send return messages to the sac.

Message Formats

This section describes the messages that may be sent from the sac to a port
monitor (sac messages), and from a port monitor to the sac (port monitor mes­
sages). These messages are sent through FIFOs and are in the form of C struc­
tures (see the section liThe Header File sac. h").

sac Messages

The format of messages from the sac is defined by the structure saansg:

struct saansg {

};

int
char

sc_size;
sc_type;

/* size of optional data portion */
/* type of message */

The sac may send four types of messages to port monitors. The type of mes­
sage is indicated by setting the sc_type field of the saansq structure to one of
the following:

13-8 Programmer's Guide: Networking Interfaces

The Service Access Controller/Port Monitor Interface

se STATUS
se ENABLE
se DISABLE
se READDB

status request
enable message
disable message
message indicating that the port monitor's
J>mtab file should be read

sc _size indicates the size of the optional data part of the message. It is dis­
cussed under "Message Classes," below. For System V Release 4, sc_size
should always be set to o.
A port monitor must respond to every message sent by the sac.

Port Monitor Messages
The format of messages from a port monitor to the sac is defined by the struc­
ture pnmsg:

struct pnIIISg {

} ;

char pm_type; 1* type of message *1
unchar
char

char

int

pm_state; 1* current state of port IIPnitor */
pm_maxclass; 1* maximum message class this

port IIPnitor understands *1
pm_tag[PMTAGSIZE + 1];

1* port IIPnitor's tag *1
/* size of optional data portion */

Port monitors may send two types of messages to the sac. The type of message
is indicated by setting the pm_type field of the pnmsg structure to one of the fol­
lowing:

PM STATUS state information
PM UNKNOWN negative acknowledgement

For both types of messages, the pm_tag field is set to the port monitor's tag and
the pm_state field is set to the port monitor's current state. Valid states are:

PM STARTING starting
PM ENABLED enabled
PM DISABLED disabled
PM STOPPING stopping

The current state reflects any changes caused by the last message from the sac.

Writing a Port Monitor for the Service Access Facility 13-9

The Service Access Controller/Port Monitor Interface

The status message is the normal return message. The negative acknowledg­
ment should be sent only when the message received is not understood.

pm_size indicates the size of the optional data part of the message.
pm _ maxclass is used to specify a message class. Both are discussed under
"Message Gasses" below. For System V Release 4, pm_maxclass should always
be set to 1 and sc_size should always be set to O.

Port monitors may never initiate messages; they may only respond to messages
that they receive.

Message Classes

The concept of "message class" has been included to accommodate possible SAF
extensions. The messages described above are all "class 1" messages. None of
these messages co:ntains a variable data portion; all pertinent information is con­
tained in the message header.

If new messages are added to the protocol, they will be defined as new message
classes (for example, class 2). The first message the sac sends to a port monitor
will always be a class 1 message. Since all port mohitors, by definition, under­
stand class 1 messages, the first message the sac sends is guaranteed to be
understood. In its response to the sac, the port monitor sets the pm _ maxclass
field to the maximum message class number for that port monitor. The sac will
not send messages to a port monitor from a class with a larger number than the
value of pm_maxclass. Requests that require messages of a higher class than
the port monitor can understand will fail. For System V Release 4,
pm_maxclass should always be set to 1.

r1i?1 For any given port mon~or. messages of class pm maxclass and messages
~otE of all classes with values lower than pIli maxclass are valid. Thus, if the

U ~~s=cf.a;,s :~~~~s set to 3, the port monitbr understands messages of

Port monitors may not generate messages; they may only respond to messages.
A port monitor's response must be of the same class as the originating message.

Since only the sac can generate messages, this protocol will function even if the
port monitor is capable of dealing with messages of a higher class than the sac
can generate.

13-10 Programmer's Guide: Networking Interfaces

The Service Access Controller/Port Monitor Interface

pm_size (an element of the pmnsg structure) and sc_size (an element of the
sacmsg structure) indicate the size of the optional data part of the message. The
format of this part of the message is undefined. Its definition is inherent in the
type of message. For System V Release 4, both sc_size and pm_size should
always be set to o.

Writing a Port Monitor for the Service Access Facility 13-11

The Port Monitor Administrative Interface

The SAC Administrative File sactab

The SAC's administrative file contains information about all the port monitors
for which the SAC is responsible. This file exists on the delivered system. Ini­
tially, it is empty except for a single comment line which contains the version
number of the Service Access Controller. Port monitors are added to the system
by making entries in the SAC's administrative file. These entries should be
made using the administrative command sacadm with a -a option. sacadm is
also used to remove entries from the SAC's administrative file.

Each entry in the SAC's administrative file contains the following information:

PMTAG

PMTYPE

FLGS

RCNT

13-12

A unique tag that identifies a particular port monitor. The sys­
tem administrator is responsible for naming a port monitor.
This tag is then used by the Service Access Controller (SAC) to
identify the port monitor for all administrative purposes.

PMTAG may consist of up to 14 alphanumeric characters.

The type of the port monitor. In addition to its unique tag, each
port monitor has a type designator. The type designator
identifies a group of port monitors that are different invocations
of the same entity. ttymon and listen are examples of valid
port monitor types. The type designator is used to facilitate the
administration of groups of related port monitors. Without a
type designator, the system administrator has no way of know­
ing which port monitor tags correspond to port monitors of the
same type.

PMTYPE may consist of up to 14 alphanumeric characters.

The flags that are currently defined are:

d When started, do not enable the port monitor.

x Do not start the port monitor.

If no flag is specified, the default action is taken. By default a
port monitor is started and enabled.

The number of times a port monitor may fail before being
placed in a failed state. Once a port monitor enters the failed
state, the SAC will not try to restart it. If a count is not specified
when the entry is created, this field is set to o. A restart count

Programmer's Guide: Networking Interfaces

COMMAND

The Port Monitor Administrative Interface

of 0 indicates that the port monitor is not to be restarted when it
fails.

A string representing the command that will start the port mon­
itor. The first component of the string, the command itself,
must be a full pathname.

The Port Monitor Administrative File _pmtab

Each port monitor will have two directories for its exclusive use. The current
directory will contain files defined by the SAF (yntab, J>id) and the per­
service configuration scripts, if they exist. The directory /var/saf/pmtag,
where pmtag is the tag of the port monitor, is available for the port monitor's
private files.

Each port monitor has its own administrative file. The pmadm command should
be used to add, remove, or modify service entries in this file. Each time a
change is made using pmadm, the corresponding port monitor rereads its admin­
istrative file. Each entry in a port monitor's administrative file defines how the
port monitor treats a specific port and what service is to be invoked on that
port.

Some fields must be present for all types of port monitors. Each entry must
include a service tag to identify the service uniquely and an identity to be
assigned to the service when it is started (for example, root).

I .••.•. ~ .•.••. OT .••.••• I .••.••. E .••. · •.••••• II;":.::~r":t~e".v~~ s~"':.: :.'!~.""~ :Oa~~~ ':e~n~u~~~::;~es:~
i vice under a different port monitor.

The record must also contain port monitor specific data (for example, for a
ttym:m port monitor, this will include the prompt string which is meaningful to
ttyroon). Each type of port monitor must provide a command that takes the
necessary port monitor-specific data as arguments and outputs these data in a
form suitable for storage in the file. The ttyadm(lM) command does this for
ttyroon and nlsadmin(1M) does it for listen. For a user-defined port monitor,
a similar administrative command must also be supplied.

Writing a Port Monitor for the Service Access Facility 13-13

The Port Monitor Administrative Interface

Each service entry in the port monitor administrative file must have the follow­
ing format and contain the information listed below:

svctag: figs: id : reserved: reserved: reserved: pmspecifict comment

SVCfAG A unique tag that identifies a service. This tag is unique only
for the port monitor through which the service is available.
Other port monitors may offer the same or other services with
the same tag. A service requires both a port monitor tag and a
service tag to identify it uniquely.

SVCfAG may consist of up to 14 alphanumeric characters.

FLGS Flags with the following meanings may currently be included in
this field:

x Do not enable this port.
By default the port is enabled.

u Create a utnp entry for this service.
By default no utnp entry is created for the service.

Note that port monitors may ignore the u flag if creating a utnp
entry for the service is not appropriate to the manner in which
the service is to be invoked. Some services may not start prop­
erly unless utnp entries have been created for them (for exam­
ple, loqin).

ID The identity under which the service is to be started. The iden­
tity has the form of a login name as it appears in /etc/passwd

PMSPECIFIC Examples of port monitor-specific information are addresses, the
name of a process to execute, or the name of a STREAMS pipe to
pass a connection through. This information will vary to meet
the needs of each different type of port monitor.

COMMENT A comment associated with the service entry.

13-14 Programmer's Guide: Networking Interfaces

The Port Monitor Administrative Interface

Each port monitor administrative file must contain one special comment of
the form:

VERSION=value

where value is an integer that represents the port monitor's version number.
The version number defines the format of the port monitor administrative file.
This comment line is created automatically when a port monitor is added to
the system. It appears on a line by itself, before the service entries.

The SAC Administrative Command sacadm

sacadm is the administrative command for the upper level of the Service Access
Facility hierarchy, that is, for port monitor administration (see the sacadm(lM)
manual page and the "Service Access" chapter of the System Administrator's
Guide}. Under the Service Access Facility, port monitors are administered by
using the sacadm command to make changes in the SAC's administrative file.
sacadm performs the functions listed below.

• print requested port monitor information from the SAC administrative file

• add or remove a port monitor

• enable or disable a port monitor

• start or stop a port monitor

• install or replace a per-system configuration script

• install or replace a per-port monitor configuration script

• ask the SAC to reread its administrative file

Writing a Port Monitor for the Service Access Facility 13-15

The Port Monitor Administrative Interface

The Port Monitor Administrative Command pmadm

pmadm is the administrative command for the lower level of the Service Access
Facility hierarchy, that is, for service administration (see the manual page
pmadm(lM) and the "Service Access" chapter of the System Administrator's
Guide). A port may have only one service associated with it although the same
service may be available through more than one port. pmadm performs the fol­
lowing functions:

• print service status information from the port monitor's administrative file

• add or remove a service

• enable or disable a service

• install or replace a per-service configuration script

Note that in order to identify an instance of a service uniquely, the pmadm com­
mand must identify both the service (-s) and the port monitor or port monitors
through which the service is available (-p or -t).

A Port Monitor's "Port Monitor-Specific"
Administrative Command

In the previous section, two pieces of information included in the ymtab file
were described: the port monitor's version number and the port monitor-specific
part of the service entries in the port monitor's...,l)llltab file. When a new port
monitor is added, the version number must be known so that the ymtab file
can be correctly initialized. When a new service is added, the port monitor­
specific part of the ...,l)IIltab entry must be formatted correctly.

Each port monitor must have an administrative command to perform these two
tasks. The person who defines the port monitor must also define such an
administrative command and its input options. When the command is invoked
with these options, the information required for the port monitor-specific part of
the service entry must be correctly formatted for inclusion in the port monitor's
ymtab file and must be written to the standard output. To request the version
number the command must be invoked with a -v option; when it is invoked in
this way, the port monitor's current version number must be written to the stan­
dard output.

13-16 Programmer's Guide: Networking Interfaces

The Port Monitor Administrative Interface

If the command fails for any reason during the execution of either of these
tasks, nothing should be written to standard output.

The Port Monitor/Service Interface

The interface between a port monitor and a service is determined solely by the
service. Two mechanisms for invoking a service will be presented here as exam­
ples.

New Service Invocations
The first interface is for services that are started anew with each request. This
interface requires the port monitor to first fork (2) a child process. The child
will eventually become the designated service by performing an exec (2) .
Before the exec (2) happens, the port monitor may take some port monitor­
specific action; however, one action that must occur is the interpretation of the
per-service configuration script, if one is present. This is done by calling the
library routine doconfig (3N) •

Standing Service Invocations
The second interface is for invocations of services that are actively running. To
use this interface, a service must have one end of a stream pipe open and be
prepared to receive connections through it.

Writing a Port Monitor for the Service Access Facility 13-17

Port Monitor Requirements

To implement a port monitor, several generic requirements must be met. This
section summarizes these requirements. In addition to the port monitor itself,
an administrative command must be supplied.

Initial Environment

When a port monitor is started, it expects an initial execution environment in
which:

• it will have no file descriptors open

• it will not be a process group leader

• it will have an entry in /etc/utmp of type LOGIN_PROCESS

• an environment variable, ISTATE, will be set to "enabled" or "disabled"
to indicate the port monitor's correct initial state

• an environment variable, PMl'AG, will be set to the port monitor's assigned
tag

• the directory that contains the port monitor's administrative files will be
its current directory

• the port monitor will be able to create private files in the directory
/var/saf/tag, where tag is the port monitor's tag

• the port monitor will be running with user id 0 (root)

Important Files

Relative to its current directory, the following key files exist for a port monitor:

_config The port monitor's configuration script. The port monitor
configuration script is run by the Service Access Controller. The
Service Access Controller is started by init(1M) as a result of
an entry in /etc/inittab that calls sac(1M).

J>id The file into which the port monitor writes its process id.

13-18 Programmer's Guide: Networking Interfaces

Port Monitor Requirements

ymtab The port monitor's administrative file. This file contains infor­
mation about the ports and services for which the port monitor
is responsible.

yrrpipe The FIFO through which the port monitor will receive messages
from the sac.

svctag The per-service configuration script for the service with the tag
svctag .

. . / _ sacpipe The FIFO through which the port monitor will send messages to
the sac.

Responsibilities

A port monitor is responsible for performing the tasks described below in addi­
tion to its port monitor-specific function.

Miscellaneous Tasks

A port monitor must perform the following miscellaneous tasks during its nor­
mal operation:

• Write its process id into the file yid and place an advisory lock on the
file.

• Terminate gracefully on receipt of the signal SIGTERM.

• Follow the protocol for message exchange with the sac.

Service Related Tasks

A port monitor must perform the following tasks during service invocation:

• Create a ut.r!p entry if the requested service has the /lu" flag set in
ymtab.

Writing a Port Monitor for the Service Access Facility 13-19

Port Monitor Requirements

I ·•.•.•...•.... ; ·.·.·· .. ·•··.•·· .. ·····.1 Port monitors may ignore this flag II creating a ~ ent~ for the .er· NOTE vice does not make sense because of the manner In which the ser-
H vice is to be invoked. On the other hand, some services may not
... start properly unless utrlp entries have been created for them.

• Interpret the per-service configuration script for the requested service, if it
exists, by calling the doconfig (3N) library routine.

13-20 Programmer's Guide: Networking Interfaces

Configuration Files and the Configuration
Language

Configuration Files

The Per-System Configuration File

The per-system configuration file, /ete/saf/ _syseonfig, is delivered empty. It
may be used to customize the environment for all services on the system by
writing a command script in the interpreted language described in this chapter
and on the doconfig(3N) manual page. When the SAC is started, it calls the
doconfig () function to interpret the per-system configuration script. The SAC
is started when the system enters multi-user mode.

Per-Port Monitor Configuration Files

Per-port monitor configuration scripts (/ete/saf/pmfag/ _eonfig) are optional.
They allow the user to customize the environment for any given port monitor
and for the services that are available through the ports for which that port
monitor is responsible. Per-port monitor configuration scripts are written in the
same language used for per-system configuration scripts.

The per-port monitor configuration script is interpreted when the port monitor
is started. The port monitor is started by the Service Access Controller after the
SAC has itself been started and after it has run its own configuration script,
/ete/saf/_sysconfig.

The per-port monitor configuration script may override defaults provided by
the per-system configuration script.

Per-Service Configuration Files

Per-service configuration files allow the user to customize the environment for a
specific service. For example, a service may require special privileges that are
not available to the general user. Using the language described in the
doeonfig(3N) manual page, the programmer can write a script that will grant
or limit such special privileges to a particular service offered through a particu­
lar port monitor.

The per-service configuration may override defaults provided by higher-level
configuration scripts. For example, the per-service configuration script may
specify a set of STREAMS modules other than the default set.

Writing a Port Monitor for the Service Access Facility 13-21

Configuration Flies and the Configuration Language

The Configuration Language

The language in which configuration scripts are written consists of a sequence of
commands, each of which is interpreted separately. The following reserved key­
words are defined: aSSign, push, pop, runwait, and run. The comment char­
acter is f. Blank lines are not significant. No line in a command script may
exceed 1024 characters.

assign variable=value
Used to define environment variables. variable is the name of the
environment variable and value is the value to be assigned to it. The
value assigned must be a string constant; no form of parameter substitu­
tion is available. value may be quoted. The quoting rules are those
used by the shell for defining environment variables. assign will fail if
space cannot be allocated for the new variable or if any part of the
specification is invalid.

push module1[, module2, module3, ...]
Used to push STREAMS modules onto the stream designated by fd (see
doconfig(3N». modulel is the name of the first module to be pushed,
module2 is the name of the second module to be pushed, etc. The com­
mand will fail if any of the named modules cannot be pushed. If a
module cannot be pushed, the subsequent modules on the same com­
mand line will be ignored and modules that have already been pushed
will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If
an argument is given, modules will be popped one at a time until the
named module is at the top of the stream. If the named module is not
on the designated stream, the stream is left as it was and the command
fails. If module is the special keyword ALL, then all modules on the
stream will be popped. Note that only modules above the topmost
driver are affected.

runwait command

13-22

The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is
run with /bin/ sh -c prepended to it; shell scripts may thus be exe­
cuted from configuration scripts. The runwait command will fail if

Programmer's Guide: Networking Interfaces

Configuration Flies and the Configuration Language

command cannot be found or cannot be executed, or if command exits
with a non-zero status.

run command
The run command is identical to runwait except that it does not wait
for command to complete. command is the pathname of the command to
be run. run will not fail unless it is unable to create a child process to
execute the command.

Although they are syntactically indistinguishable, some of the commands avail­
able to run and runwait are interpreter built-in commands. Interpreter built-ins
are used when it is necessary to alter the state of a process within the context of
that process. The doconfig interpreter built-in commands are similar to the
shell special commands and, like these, they do not spawn another process for
execution. See sh(1). The initial set of built-in commands is:

cd
ulimit
umask

Printing, Installing, and Replacing Configuration
Scripts

This section describes the form of the SAC and port monitor administrative com­
mands used to install the three types of configuration scripts. Per-system and
per-port monitor configuration scripts are administered using the sacadm com­
mand. Per-service configuration scripts are administered using the pmadm com­
mand.

Per-System Configuration Scripts
sacadm -G [-z script]

The -G option is used to print or replace the per-system configuration script.
The -G option by itself prints the per-system configuration script. The -G option
in combination with a -z option replaces !etc!saf!_sysconfig with the con­
tents of the file script. Other combinations of options with a -G option are
invalid.

Writing a Port Monitor for the Service Access Facility 13-23

Configuration Flies and the Configuration Language

Per-Port Monitor Configuration Scripts
sacadm -q -p pmtag [-z script]

The -q option is used to print, instali, or replace the per-port monitor
configuration script. A -q option requires a -p option. The -q option with only
a -p option prints the per-port monitor configuration script for port monitor
pmtag. The -q option with a -p option and a -z option installs the file script as
the per-port monitor configuration script for port monitor pmtag, or, if
/etc/saf/pmtag/ _config exists, it replaces _config with the contents of script.
Other combinations of options with -q are invalid.

Per-Service Configuration Scripts
pmadm -q -p pmtag -s svctag [-z script]
pmadm -q -s svctag -t type -z script

Per-service configuration scripts are interpreted by the port monitor before the
service is invoked.

1""""""1"'''''''1 The SAC interprets both its own contiguration file, ayaconfiq, and the pM ~gT~ monitor configuration fi!es. Only the per-service cOnfiguration files are inter-
:::::::::::::::::::::::::: preted by the port mOnitors.

The -q option is used to print, install, or replace a per-service configtiration
script. The -q option with a -p option and a -s option prints the per-service
configuration script for service svctag available through port monitor pmtag. The
-q option with a -p option, a -s option, and a -z option installs the per-service
configuration script contained in the file script as the per-service configuration
script for service svctag available through port monitor pm tag. The -q option
with a -s option, a -t option, and a -z option installs the file script as the per­
service configuration script for service svctag available through any port monitor
of type type. Other combinations of options with -q are invalid.

13-24 Programmer's Guide: Networking Interfaces

Configuration Flies and the Configuration Language

Interpreting Configuration Scripts: doconfigO

The library routine doconfiq (), defined in libnsl. so, interprets the
configuration scripts contained in the files /etc/saf/pmtag/ _sysconfiq (the
per-system configuration file), and /etc/saf/ _confiq (per-port monitor
configuration files); and in /etc/saf/pmtag/svctag (per-service configuration
files). Its syntax is:

t include <sac.h>

int doconfiq (int fd, char *script, lonq rflag);

script is the name of the configuration script; fd is a file descriptor that desig­
nates the stream to which stream manipulation operations are to be applied;
rflag is a bitmask that indicates the mode in which script is to be interpreted.
rflag may take two values, NORUN and NOASSIGN, which may be or'd. If rflag
is zero, all commands in the configuration script are eligible to be interpreted.
If rflag has the NOASSIGN bit set, the assign command is considered illegal and
will generate an error return. If rflag has the NORUN bit set, the run and
runwait commands are considered illegal and will generate error returns.

If a command in the script fails, the interpretation of the script ceases at that
point and a positive integer is returned; this number indicates which line in the
script failed. If a system error occurs, a value of -1 is returned.

If a script fails, the process whose environment was being established should not
be started.

In the example, doconfiq () is used to interpret a per-service configuration
script.

Writing a Port MonRor for the Service Access FaeliRy 13-25

Configuration Flies and the Configuration Language

Sample Configuration Scripts

Sample Per-8ystem Configuration Script
Th~ _sysconfig file in the example sets the time zone variable, TZ.

Sample Per-Port Monitor Configuration Script
In the hypothetical _ config file in the figure, the command
/usr/bin/daemon is assumed to start a daemon process that builds and holds
together a SfREAMS multiplexor. By installing this configuration script, the
command can be executed just before starting the port monitor that requires it.

Sample Per-Service Configuration Script
The following per-service configuration script does two things: It specifies the
maximum file size for files created by a process by setting the process's ulimit
to 4096. It also specifies the protection mask to be applied to files created by
the process by setting umask to 077.

13-26 Programmer's Guide: Networking Interfaces

Sample Port Monitor Code

The following is an example of a "null" port monitor which does nothing
except respond to messages from the Service Access Controller (sac).

Writing a Port Monitor for the Service Access Facility 13-27

Sample Port Monitor Code

13-28 Programmer's Guide: Networking Interfaces

Sample Port Monitor Code

Writing a Port Monitor for the Service Access Facility 13-29

Sample Port Monitor Code

13·30 Programmer's Guide: Networking Interfaces

Sample Port Monitor Code

Writing a Port Monitor for the Service Access Facility 13-31

The Header File sac.h

13-32 Programmer's Guide: Networking Interfaces

The Header File sac.h

Writing a Port Monitor for the Service Access Facility 13-33

The Header File sac.h

13·34 Programmer's Guide: Networking Interfaces

Service Access Facility Logic Diagram and
Directory Structure

The first figure below is a logical diagram of the Service Access Facility. The
second figure is the corresponding directory structure diagram; the list follow­
ing it describes each of the files and directories.

Figure 13-1: Service Access Facility logical framework.

Port Monitor 1
Configuration

Service Access Facility

Per-System
Configuration

Port Monitor 2
Configuration

Writing a Port Monitor for the Service Access Facility

Port Monitor 3
Configuration

88---

13·35

Service ACC8S8 Facility Logic Diagram and Directory Structure

Figure 13·2: Service Access Facility directory structure.

I
I

I
etc var

1 I
saf

I
I I

I I I I I I
_sysconfig _ sactab pmtagl pmtagN Jog pmtagl pmtagN

I I I I I I
_config J'mtab svctag _config J'mtab svctag

lete/saf/ _syseonfig The per-system configuration script.

/ete/saf/ _saetab The SAC's administrative file. Contains informa­
tion about the port monitors for which the SAC
is responsible.

/ete/saf/pmtag The home directory for port monitor pmtag.

/ete/saf/pmtag/ _eonfig The per-port monitor configuration script for
port monitor pm tag.

/ete/saf/pmtag/ ymtab Port monitor pmtag's administrative file. Con­
tains information about the services for which
pmtag is responsible.

/ete/saf/pmtag/svctag The file in which the per-service configuration
script for service svctag (available through port
monitor pmtag) is placed.

/var/saf/ _log The SAC's log file.

13·36 Programmer's Guide: Networking Interfaces

/var/saf/pmtag

Service Access Facility Logic Diagram and Directory Structure

The directory for files created by port monitor
pmtag, for example its log file.

Writing a Port Monitor for the Service Access Facility 13-37

Index

c
_ config 13: 21, 24, 26

D
doconfig 0 13: 6, 21-23, 25

L
listen 13: 1

p
~cbn 13: 2, 16, 24

prrmsg, SAF port monitor message
structure 13:9,32

~ab 13:2,6,13-15

port, enabling and disabling 13: 6
port monitor 13: 1-37

activity monitoring 13: 5
changing service environment 13: 6
creating utmp entries 13: 6
enabling and disabling 13: 5
functions 13: 4-7

J>id file 13: 6
port management 13: 4

private files 13: 7
terminating 13: 7

s
sacacbn 13: 2-3, 15,23-24

sacmsg, SAF sac message structure
13:8,33

sactab 13: 2-3,12-13

Index

SAF (Service Access Facility) 13: 1-37

configuration language 13: 22-23

configuration script, per-port moni­
tor 13: 21, 24

configuration script, per-port moni­
tor, sample 13: 26

configuration script, per-service
13: 6-7, 21,24

configuration script, per-service,
sample 13: 26

configuration script, per-system
13:2,21,23

configuration script, per-system,
sample 13: 26

configuration scripts 13: 2,21

configuration scripts, printing, ins­
talling, replacing 13: 23-24

configuration scripts, sample
13: 26-27

directory structure 13: 35-37
header file sac. h 13: 32-34

interpreting configuration scripts
13:25

logic diagram 13: 35
message classes 13: 10-11

message formats 13: 8-10
new service invocation 13: 17
port monitor, sample code

13: 27-31

port monitor administrative com­
mand pmacbn 13: 2, 16

port monitor administrative file
J>mtab 13: 2, 6,13-15

port monitor messages 13: 9-10

port monitor requirements
13: 18-20

port monitor requirements, environ­
ment 13: 18

1-1

Index

port monitor requirements, files
13: 18-19

"port monitor-specific" administra­
tive command 13: 16-17

SAC administrative command
sacadm 13: 2-3, 15

SAC administrative file sactab
13:2-3,12-13

sac messages 13: 8-9
Service Access Controller, environ­

ment variables 13: 8
Service Access Controller (sac)

13: 2-3, 8-11

standing service invocation 13: 17
Service Access Controller (SAC) 13: 2
Service Access Facility (see SAP)
_sysconfig 13: 21,23-24,26

T
ttyroon 13: 1

1-2 Programmer's Guide: Networking Interfaces

Manual Pages

Appendix A contains all Section 3N (Network Programming) manual pages for
UNIX System V Release 4.0. Most of the manual pages correspond to the docu­
ments in this volume: TLI and Sockets, RPC (including XDR, secure RPC, and
RPC services), and Network Selection and Name-to-Address Mapping. Other
manual pages related to network programming but not specific to the contents
of the volume are also included, however. The documentation that corresponds
to these manual pages appears in other parts of the document set, for example,
in the Network User's and Administrator's Guide (TCP) or the System
Administrator's Guide (listen).

Appendix A: Manual Pages A-1

Table of Contents

1. Commands
chkey(1) ... change user encryption key
keylogin(1) .. decrypt and store secret key
rpcgen(1) .. an RPC protocol compiler
rusers(l) .. who's logged in on local machines
ypcat(l) ... print values in a yP data base
ypmatch(1) ... print the value of one or more keys from a yP map
ypwhich(l) .. return name of yP server or map master
bootparamd (lM) ... boot parameter server
domainname(lM) ... get/set name of current secure RPC domain
inetd(lM) ... Internet services daemon
keyserv(lM) ... server for storing public and private keys
makedbm(lM) ... make a yP dbm file
newkey(lM) .. create a new key in the publickey database
pmadm(lM) ... port monitor administration
rpcbind(lM) .. universal addresses to RPC program number mapper
rpcinfo(lM) ... report RPC information
rpc.rusersd(1M) ... network username server
rwall(lM) ... write to all users over a network
rpc.rwalld(lM) ... network rwall server
sac(lM) .. service access controller
sacadm(lM) .. service access controller administration
spray(1M) .. spray packets
rpc.sprayd(1M) ... spray server
ypinit(lM) .. 'T build and install yP database
ypmake(lM) .. rebuild yP database
yppoll(lM) ... return current version of a yP map at a yP server host
yppush(1M) .. force propagation of a changed yP map
ypserv, ypbind(1M) .. yP server and binder processes
ypset(1M) ... point ypbind at a particular server
ypupdated(1M) .. server for changing yP information
ypxfr(lM) ... transfer yP map from a yP server to host

Table of Contents 1

Table of Contents

3. Functions

dbm(3) ... database subroutines
select(3Q ... synchronous I/O multiplexing
accept(3N) .. accept a connection on a socket
bind (3N) .. bind a name to a socket
byteorder(3N) .. convert values between host and network byte order
connect(3N) .. initiate a connection on a socket
dial(3C) ... establish an outgoing terminal line connection
doconfig(3N) ... execute a configuration script
ethers(3N) ... Ethernet address mapping operations
gethostent(3N) .. get network host entry
getnetconfig(3N) .. get network configuration database entry
getnetent(3N) .. get network entry
getnetpath(3N) get /etc/netconfig entry corresponding to NETPATH component
getpeername(3N) ... get name of connected peer
getprotoent (3N) get protocol entry
getservent(3N) ... get service entry
getsockname(3N) ... get socket name
getsockopt (3N) get and set options on sockets
inet(3N) .. Internet address manipulation
listen(3N) .. listen for connections on a socket
netdir-setbyname(3N) .. generic transport name-to-address translation
nlsgetcall(3N) .. get client's data passed via the listener
nlsprovider(3N) ... get name of transport provider
nlsrequest(3N) .. format and send listener service request message
publickey(3N) .. retrieve public or secret key
recv(3N) .. receive a message from a socket
resolver(3N) ... resolver routines
rexec(3N) ... return stream to a remote command
rpc(3N) ... library routines for remote procedure calls
rpc_clnt_auth(3N) library routines for client side remote procedure call authentication
rpc_clnt_calls(3N) ... library routines for client side calls
rpc _ clnt _ create(3N)

............... library routines for dealing with creation and manipulation of CLIENT handles
rpc_svc_calls(3N) .. library routines for registering servers
rpc_svc_create(3N) library routines for dealing with the creation of server handles
rpc _svc_ err(3N) library routines for server side remote procedure call errors
rpc_svc_reg(3N) ... library routines for RPC servers
rpc _ xdr(3N) .. XDR library routines for remote procedure calls

2 Programmer's Guide: Networking Interfaces

Table of Contents

rpcbind (3N) library routines for RPC bind service
rusers(3N) .. return information about users on remote machines
rwall(3N) .. write to specified remote machines
secureJPC(3N) .. library routines for secure remote procedure calls
send(3N) .. send a message from a socket
shutdown(3N) .. shut down part of a full-duplex connection
socket(3N) .. create an endpoint for communication
socketpair(3N) ... create a pair of connected sockets
spray(3N) .. scatter data in order to check the network
t_accept(3N) ... accept a connect request
t_alloc(3N) .. allocate a library structure
t_bind(3N) .. bind an address to a transport endpoint
t_close(3N) .. close a transport endpoint
t_connect(3N) ... establish a connection with another transport user
t_error(3N) .. produce error message
t_free(3N) ... free a library structure
t-setinfo(3N) .. get protocol-specific service information
t-setstate(3N) .. get the current state
t_listen(3N) .. listen for a connect request
tJook(3N) .. look at the current event on a transport endpoint
t_open(3N) .. establish a transport endpoint
t_optmgmt(3N) ... manage options for a transport endpoint
tJcv(3N) ... receive data or expedited data sent over a connection
t Jcvconnect (3N) receive the confirmation from a connect request
t_rcvdis(3N) ... retrieve information from disconnect
tJcvre1(3N) .. acknowledge receipt of an orderly release indication
t_rcvudata(3N) ... receive a data unit
t_rcvtiderr(3N) .. receive a unit data error indication
t_snd(3N) ... send data or expedited data over a connection
t_snddis(3N) ... send user-initiated disconnect request
t_sndrel(~N) ... initiate an orderly release
t_sndudata(3N) .. send a data unit
t_sync(3N) .. synchronize transport library
t_unbind(3N) ; ... disable a transport endpoint
xdr(3N) .. library routines for external data representation
xdr_admin(3N) ... library routines for external data representation
xdr_complex(3N) ... library routines for external data representation
xdr _ create(3N) library routines for external data representation stream creation
xdr _simple(3N) .. library routines for external data representation
ypclnt(3N) ... yP client interface

Table of Contents 3

Table of Contents

yp_update(3N) .. changes yp information

4. File Formats
hosts(4) .. host name data base
netconfig(4) ... network configuration database
publickey(4) .. public key database
rpc (4) ... rpc program number data base
ttydefs(4) .. file contains terminal line settings information for ttymon
updaters(4) .. configuration file for yP updating
ypfiles(4) .. the yP database and directory structure

5. Miscellaneous Facilities
environ(S) ... user environment

7. Special Files

ICMP(7) ... Internet Control Message Protocol
IP(7) .. Internet Protocol
sockio(7) ... ioctls that operate directly on sockets
TCP(7) ... Internet Transmission Control Protocol
tic1ts(7) .. loopback transport providers
UDP(7) ... Internet User Datagram Protocol

4 Programmer's Guide: Networking Interfaces

Permuted Index

t_accept
accept
socket

sacadm service
sac service

release indication tJcvre1
inet _ netof, inet_ ntoa Internet

ethers Ethernet
t_ bind bind an

mapper rpcbind universal
pmadm port monitor

sacadm service access controller
t_alloc

secure _ rpc: authdes _ seccreate,
authdes -»,tucred,1 secure _ rpc:
authsys_create,1 rpc_clnt_auth:

client side remote procedure call
rpc _ clnt_ auth: auth _destroy,

auth_destroy, authnone_create,
I authnone _create, authsys _create,

hosts host name data
rpc rpc program number data

ypcat print values in a yP data
bind

endpoint t_bind

rpcb _unset library routines for RPC
ypserv, ypbind yP server and

bootparamd

ypinit
values between host and network

ntohs convert values between hostl
for client side remote procedure

for server side remote procedure
routines for remote procedure
library routines for client side
routines for remote procedure

for secure remote procedure
chkey

yppush force propagation of a
yp_update

ypupdated server for
spray scatter data in order to

with creation and manipulation of
yperr _string, ypprot _ err yP

Permuted Index

accept a connect request ... t _accept(3N)
accept a connection on a socket accept(3N)
accept accept a connection on a..................................... accept(3N)
access controller administration sacadm(1M)
access controller .. sac(1M)
acknowledge receipt of an orderly t_rcvre1(3N)
address manipulation linet}naof, inet(3N)
address mapping operations ... ethers(3N)
address to a transport endpoint t_bind(3N)
addresses to RPC program number rpcbind(1M)
administration .. pmadm(lM)
administration ... sacadm(1M)
allocate a library structure .. t _ alloc(3N)
authdes -»,tucred, getnetname,/ secure _ rpc(3N)
authdes seccreate, ... secure rpc(3N)
auth_d~troy, authnone_create, rpc_dnt_i"uth(3N)
authentication Iroutines for rpc_clnt_auth(3N)
authnone _create, authsys _create,! rpc _ dnt _ auth(3N)
authsys _ create, I rpc _ clnt_ auth: rpc _ clnt_ auth(3N)
authsys _create_default library I rpc _ clnt_ auth(3N)
base ... hosts(4)
base ... rpc(4)
base ... ypcat(l)
bind a name to a socket .. bind(3N)
bind an address to a transport t_bind(3N)
bind bind a name to a socket .. bind(3N)
bind service Irpcb_set, .. rpcbind(3N)
binder processes ... ypserv(lM)
boot parameter server ... bootparamd(1M)
bootparamd boot parameter server bootparamd(1M)
build and install yP database ... ypinit(1M)
byte order Intohl, ntohs convert byteorder(3N)
byteorder, htonl, htons, ntohl, byteorder(3N)
call authentication Iroutines rpc_dnt_auth(3N)
call errors llibrary routines rpc _svc _ err(3N)
calls rpc library .. rpc(3N)
calls Irpc_broadcast, rpc_call rpc_clnt_calls(3N)
calls IxdrJeplymsg XDR library rpc_xdr(3N)
calls llibrary routines ... secure _ rpc(3N)
change user encryption key .. chkey(1)
changed yP map .. yppush(1M)
changes yp information ... yp _ update(3N)
changing YP information .. ypupdated(1M)
check the network .. spray(3N)
chkey change user encryption key.................................... chkey(1)
CLIENT handles Ifor dealing rpc_clnt_create(3N)
client interface Iyp_master, ... ypclnt(3N)

1

Permuted Index

rpc_calllibrary routines for
llibrary routines for

listener nlsgetcall get
c1nt;err,1 rpc_c1nt_calls:

c1nt_destroy,1 rpc_c1nt_create:
rpc_c1nt_create: c1nt_conb'ol,

I c1nt control, c1nt create,
I c1n("create, c1nUiestroy,

rpc_c1nt_calls: c1nt_call,
I c1nt call, c1nt freeres,

/ c1nt_ destroy, clnt_ dg_ create,
lc1nt_freeres, clnt...seterr,
lc1nt...seterr, c1nt..J'eIl1lo,

c1nt_ dlL create, c1ntJ'Cl'eateerror,
I c1ntJ'Cl'eateerror, c1ntJaw _create,

I c1nt..J'eIl1lo, c1nt--PeIl"or,
lc1nt--PeIl"or, c1nt_sperrno,

c1nt_vc_createl lc1nt_spcreateerror,
library routinesl Ic1nUli_create,

Ic1nUli_create, c1nt_tp_create,
t close

rexec return stream to a remote
socket create an endpoint for

rpcgen an RPC protocol
entry corresponding to NETP ATH

getnetconfig get network
netconfig network

updaters
doconfig execute a

tJcvconnect receive the
socket

t_accept accept a
t _listen listen for a

receive the confirmation from a
getpeername get name of
socketpair create a pair of

establish an outgoing terminal line
accept accept a

connect initiate a
shut down part of a full-duplex

data or expedited data sent over a
send data or expedited data over a

user t connect establish a

2

- listen listen for
information forI ttydefs file

ICMP Internet
TCP Internet Transmission

client side calls Irpc_broadcast, rpc_c1nt_calls(3N)
client side remote procedure callI rpc_c1nt_auth(3N)
client's data passed via the .. nlsgetcall(3N)
clnt_ca11, c1nt_freeres, ... rpc_c1nt_calls(3N)
c1nt_control, c1nt_create, rpc_c1nt_create(3N)
clnt_create, c1nt_destroy,1 rpc_c1nt_create(3N)
clnt_destroy, c1nt_dlLcreate,1 rpc_c1nt_create(3N)
clnt_dg_create, c1nt.J'Cl'e8teerror,1 rpc_c1nt_create(3N)
clnt_freeres, c1nt...seterr,1 rpc_c1nt_calls(3N)
clnt...seterr, clnt...permo,1 rpc_c1nt_ca1ls(3N)
c1nt...pcreateerror, c1ntJaw_create,1 rpc_c1nt_create(3N)
clnt...permo, c1nt..J'E!flOl,/ rpc_c1nt_calls(3N)
clnt...perror, c1nt_sperrno,1 rpc_c1nt_calls(3N)
clntJaw_create,1 lc1nt_destroy, rpc_c1nt_create(3N)
clnt_spcreateerror,1 ... rpc _ c1nt_ create(3N)
clnt_sperrno, c1nt_sperror,1 rpc_c1nt_ca1ls(3N)
clnt_sperror, rpc_broadcast,1 rpc_c1nt_calls(3N)
clnUltcreate, c1nt_tp_create, rpc_c1nt_create(3N)
clnt_ tp _create, c1nt_ vc _create rpc _ c1nt_ create(3N)
clnt_vc_create library routines forI rpc_c1nt_create(3N)
close a transport endpoint .. t_close(3N)
command .. rexec(3N)
communication .. socket(3N)
compiler .. rpcgen(l)
component Iget letc/netconfig getnetpath(3N)
configuration database entry................................ getnetconfig(3N)
configuration database ... netconfig(4)
configuration file for yP updating updaters(4)
configuration script .. doconfig(3N)
confirmation from a connect request tJcvconnect(3N)
connect initiate a connection on a............................... connect(3N)
connect request ... t _ accept(3N)
connect request .. t_listen(3N)
connect request tJcvconnect tJcvconnect(3N)
connected peer ... getpeername(3N)
connected sockets ... socketpair(3N)
connection dial .. dial(3q
connection on a socket ... accept(3N)
connection on a socket ... connect(3N)
connection shutdown ... shutdown(3N)
connection t_rcv receive .. t_rcv(3N)
connection t_snd .. t_snd(3N)
connection with another transport t_connect(3N)
connections on a socket ... Iisten(3N)
contains terminal line settings .. ttydefs(4)
Conb'ol Message Protocol .. ICMP(7)
Control Protocol ... TCP(7)

Programmer's Guide: Networking Interfaces

sacadm service access
sac service access

networkl Ihtonl, htons, ntohl, ntohs
getnetpath get letc/netconfig entry

database newkey
socketpair

communication socket
Ih'brary routines for dealing with

routines for dealing with the
external data representation stream

endpoint tJook look at the
domainname get/set name of

U~etstate get the
server host yppoll return

inetd Internet services
hosts host name

rpc rpc program number
ypcat print values in a yP

t_rcvuderr receive a unit
spray scatter

connection t_snd send
connection t rev receive

t_ snd send data ci expedited
nlsgetcall get client's

llibrary routines for external
xdr library routines for external

library routines for external
library routines for external
library routines for external

tJcv receive data or expedited
tJcvudata receive a

t_sndudata send a
ypfiles the YP

get network configuration
netconfig network configuration

create a new key in the publickey
publickey public key

store, delete, firstkey, nextkey
ypinit build and install YP

ypmake rebuild yP

UDP Internet User
store, delete, firstkey, nextkey I

makedbm make a YP
firstkey, nextkey I dbm, dbminit,

delete, firstkey, nextkey I dbm,
Iclnt_vc_create library routines for

Permuted Index

Permuted Index

controller administration .. sacadm(1M)
controller .. sac(1M)
convert values between host and byteorder(3N)
corresponding to NETP A TH component getnetpath(3N)
create a new key in the publickey newkey(1M)
create a pair of connected sockets socketpair(3N)
create an endpoint for .. socket(3N)
creation and manipulation of CLIENT I
.. rpc _ clnt_ create(3N)
creation of server handles llibrary rpc_svc_create(3N)
creation llibrary routines for xdr _ create(3N)
current event on a transport ... t_look(3N)
current secure RPC domain domainname(lM)
current state .. t...8etstate(3N)
current version of a yP map at a yP yppoll(lM)
daemon ... inetd(1M)
data base .. hosts(4)
data base .. rpc(4)
data base .. ypcat(1)
data error indication ... t_rcvuderr(3N)
data in order to check the network spray(3N)
data or expedited data over a.. t_ snd(3N)
data or expedited data sent over a tJcv(3N)
data over a connection .. t_snd(3N)
data passed via the listener nlsgetcall(3N)
data representation stream creation xdr _ create(3N)
data representation .. xdr(3N)
data representation Ixdr_setpos xdr_admin(3N)
data representation Ixdr_wrapstring xdr_complex(3N)
data representation Ixdr_void xdr_simple(3N)
data sent over a connection ... t_rcv(3N)
data unit .. t_rcvudata(3N)
data unit ... t_sndudata(3N)
database and directory structure ypfiles(4)
database entry getnetconfig getnetconfig(3N)
database .. netconfig(4)
database newkey .. newkey(lM)
database ... publickey(4)
database subroutines Ifetch, .. dbm(3)
database .. ypinit(1M)
database ... ypmake(1M)
Datagram Protocol .. UDP(7)
dbm, dbminit, dbmclose, fetch, ... dbm(3)
dbm file .. makedbm(1M)
dbmclose, fetch, store, delete, ... dbm(3)
dbminit, dbmclose, fetch, store, .. dbm(3)
dealing with creation andl rpc _ clnt_ create(3N)

3

Permuted Index

Isvc_vc_create library routines for
keylogin

I dbminit, dbmclose, fetch, store,
line connection

sockio ioctls that operate
ypfiles the yP database and

t unbind
t_snddis send user-btitiated

tJcvdis retrieve information from
Ires_mkquery, res_send, res)nit,

Ires_send, res_init, dn_comp,
script

get/set name of current secure RPC
secure RPC domain

chkey change user
I gethostbyname, sethostent,

I getnetbyname, setnetent,
socket create an

bind an address to a transport
t_close close a transport

at the current event on a transport
t_ open establish a transport

manage options for a transport
t_unbind disable a transport

I getprotobyname, setprotoent,
I getservbyname, setservent,

getnetpath get letc/netconfig
endhostent get network host

get network configuration database
setnetent, endnetent get network

endprotoent get protocol
setservent, endservent get service

4

environ user
tJcvuderr receive a unit data

t_ error produce
server side remote procedure call

transport user t_ connect
t_open

connection dial
to NETP ATHI getnetpath get

ethers
operations

tJook look at the current
doconfig

t_snd send data or
connection tJcv receive data or

dealing with the creation of serverl rpc_svc_create(3N)
decrypt and store secret key .. keylogin(1)
delete, firstkey, nextkey databasel dbm(3)
dial establish an outgoing terminal dia1(3C)
directly on sockets ... sockio(7)
directory structure ... ypfiles(4)
disable a transport endpoint t_unbind(3N)
disconnect request ... t_snddis(3N)
disconnect .. t_rcvdis(3N)
dn _ comp, dn _expand resolver I resolver(3N)
dn _expand resolver routines resolver(3N)
doconfig execute a configuration doconfig(3N)
domain domainname .. domainname(1M)
domainname get/set name of current domainname(1M)
encryption key ... r.hkey(l)
endhostent get network host entry........................ gethostent(3N)
endnetent get network entry getnetent(3N)
endpoint for communication ... socket(3N)
endpoint t_bind ... t_bind(3N)
endpoint ... t_close(3N)
endpoint t}ook look ... t}ook(3N)
endpoint ... t_open(3N)
endpoint t_optmgmt ... t_optmgmt(3N)
endpoint ... t_unbind(3N)
endprotoent get protocol entry............................. getprotoent(3N)
endservent get service entry getservent(3N)
entry corresponding to NETPATHI getnetpath(3N)
entry I gethostbyname, sethostent, gethostent(3N)
entry getnetconfig ... getnetconfig(3N)
entry 1getnetbyaddr, getnetbyname, getnetent(3N)
entry I getprotobyname, setprotoent, getprotoent(3N)
entry I getservbyname, .. getservent(3N)
environ user environment .. environ(5)
environment .. environ(5)
error indication .. t_rcvuderr(3N)
error message .. t_error(3N)
errors llibrary routines for rpc _ svc _ err(3N)
establish a connection with another t_connect(3N)
establish a transport endpoint t_open(3N)
establish an outgoing terminal line dia1(3C)
letc/netconfig entry corresponding getnetpath(3N)
Ethernet address mapping operations ethers(3N)
ethers Ethernet address mapping ethers(3N)
event on a transport endpoint .. t}ook(3N)
execute a configuration script doconfig(3N)
expedited data over a connection t_snd(3N)
expedited data sent over a .. tJcv(3N)

Programmer's Guide: Networking Interfaces

creation llibrary routines for
xdr library routines for

I xdr _ setpos library routines for
I xdr _ wrapstring library routines for

Ixdr_void library routines for
nextkey I dbm, dbminit, dbmclose,

settings information for I ttydefs
updaters configuration

makedbm make a yP dbm
I dbmclose, fetch, store, delete,

map yppush
request message nlsrequest

tfree
shutdown shut down part-of a
Inetdir .,.Perror, netdir _sperror

sethostent, endhostentl gethostent,
gethostent, gethostbyaddr,

gethostbyname, sethostent,/
setnetent, endnetentl getnetent,

getl getnetent, getnetbyaddr,
configuration database entry

getnetbyname, setnetent, endnetentl
I authdes ~etucred,

corresponding to NETPATH component
peer

getprotoent, getprotobynumber,
setprotoent'/ getprotoent,

getprotobyname, setprotoent, I
public or secret key publickey:

secret I publickey: getpublickey,
getservent, getservbyport,

setservent, endserventl getservent,
getservbyname, setservent,l

domain domainname

options on sockets
creation and manipulation of CLIENT

dealing with the creation of server
ntohl, ntohs convert values between
sethostent, endhostent get network

hosts
version of a YP map at a yP server

transfer yP map from a yP server to
I authdes ~etucred, getnetname,

values between host andl byteorder,

Permuted Index

Permuted Index

external data representation stream xdr_create(3N)
external data representation ... xdr(3N)
external data representation xdr_admin(3N)
external data representation xdr _ complex(3N)
external data representation xdr_simple(3N)
fetch, store, delete, firstkey, dbm (3)
file contains terminal line .. ttydefs(4)
file for yP updating ... updaters(4)
file ... makedbm(1M)
firstkey, nextkey databasel ... dbm(3)
force propagation of a changed yP yppush(1M)
format and send listener service nlsrequest(3N)
free a library structure .. t_free(3N)
full-duplex connection ... shutdown(3N)
generic transport name-to-addressl
... netdir ~etbyname(3N)
gethostbyaddr, gethostbyname, gethostent(3N)
gethostbyname, sethostent,l gethostent(3N)
gethostent, gethostbyaddr, gethostent(3N)
getnetbyaddr, getnetbyname, getnetent(3N)
getnetbyname, setnetent, endnetent getnetent(3N)
getnetconfig get network getnetconfig(3N)
getnetent, getnetbyaddr, ... getnetent(3N)
getnetname, host2netname,/ secure Jpc(3N)
getnetpath get /etc/netconfig entry getnetpath(3N)
getpeername get name of connected getpeername(3N)
getprotobyname, setprotoent,/ getprotoent(3N)
getprotobynumber, getprotobyname, getprotoent(3N)
getprotoent, getprotobynumber, getprotoent(3N)
getpublickey, getsecretkey retrieve publickey(3N)
getsecretkey retrieve public or publickey(3N)
getservbyname, setservent,/ getservent(3N)
getservbyport, getservbyname, getservent(3N)
getservent, getservbyport, .. getservent(3N)
get/set name of current secure RPC domainname(1M)
getsockname get socket name getsockname(3N)
getsockopt, setsockopt get and set getsockopt(3N)
handles /routines for dealing with rpc_clnt_create(3N)
handles /library routines for rpc _ svc _ create(3N)
host and network byte order /htons, byteorder(3N)
host entry /gethostbyname, gethostent(3N)
host name data base .. hosts(4)
host yppoll return current ... yppoll(1M)
host ypxfr ... ypxfr(lM)
host2netname, key _ decryptsession,/ secure _ rpc(3N)
hosts host name data base .. hosts(4)
htonl, htons, ntohl, ntohs convert byteorder(3N)

5

Permuted Index

between host andl byteorder, htonl,
Protocol

receipt of an orderly release
receive a unit data error

inet_makeaddr, inet}naof,1
inet_makeaddr, inet}naof,1 inet:

linet_ network, inet_ makeaddr,
inet: inet _ addr, inet_ network,

address I linet makeaddr, inet Inaof,
inetJnaof'/ inet: inet~ addr,

linetJnaof, inet_netof,
machines rusers return

contains terminal line settings
t rcvdis retrieve

rpcinfo report RPC
get protocol-specific service

yp _update changes yp
ypupdated server for changing yP

connect
t sndrel

ypinit build and
yperr_string, ypprot_err yP client
linet_Inaof, inet_netof, inet_ntoa

ICMP
IP

inetd
Protocol TCP

UDP
select synchronous

sockets sockio

chkey change user encryption
publickey public

newkey create a new
keylogin decrypt and store secret

retrieve public or secret
I getnetname, host2netname,

Ihost2netname, key _ decryptsession,
netname2host,/ Ikey _ encryptsession,

key
print the value of one or more
for storing public and private

and private keys
Ikey _ encryptsession, key ~endes,

calls Irpc _broadcast, rpc _ call
remotel I authsys _create_default

6

htons, ntohl, ntohs convert values byteorder(3N)
ICMP Internet Control Message ... ICMP(7)
indication tJcvrel acknowledge tJcvrel(3N)
indication t rcvuderr ... t rcvuderr(3N)
inet: inet_addr, inet_network, ::-....... inet(3N)
inet_addr, inet_network, .. inet(3N)
inetd Internet services daemon .. inetd(1M)
inet_Inaof, inet_netof, inet_ntoal inet(3N)
inet_makeaddr, inet_Inaof,1 .. inet(3N)
inet netof, inet ntoa Internet ... inet(3N)
inet-network, i;;et makeaddr, ... inet(3N)
inet=ntoa Internet address I ... inet(3N)
information about users on remote rusers(3N)
information for ttymon lfile .. ttydefs(4)
information from disconnect .. tJcvdis(3N)
information ... rpcinfo(1M)
information t~etinfo .. t~etinfo(3N)
information yp _ update(3N)
information .. ypupdated(1M)
initiate a connection on a socket connect(3N)
initiate an orderly release ... t_sndre1(3N)
install yP database .. ypinit(1M)
interface Iyp _order, yp _master, ypcint(3N)
Internet address manipulation .. inet(3N)
Internet Control Message Protocol ICMP(7)
Internet Protocol .. IP(7)
Internet services daemon .. inetd(1M)
Internet Transmission Control ... TCP(7)
Internet User Datagram Protocol ... UDP(7)
110 multiplexing ... select(3C)
ioctls that operate directly on .. sockio(7)
IP Internet Protocol ... IP(7)
key ... chkey(1)
key database ... publickey(4)
key in the publickey database newkey(1M)
key .. keylogin(1)
key I getpublickey, getsecretkey publickey(3N)
key _ decryptsession,l .. secure JPC(3N)
key-encryptsession, key _gendes,1 secure _ rpc(3N)
key-gendes, key-setsecret, secure _ rpc(3N)
keylogin decrypt and store secret keylogin(1)
keys from a yP map ypmatch ypmatch(1)
keys keyserv server .. keyserv(1M)
keyserv server for storing public keyserv(1M)
key-setsecret, netname2host,/ secure _ rpc(3N)
library routines for client side rpc_clnt_calls(3N)
library routines for client side rpc_clnt_auth(3N)

Programmer's Guide: Networking Interfaces

I clnt_ tp _create, clnt_ vc _create
thel Isvc_tp_create, svc_vc_create

Ixdrrec _create, xdrstdio _create
representation xdr

Ixdr_inline, xdrrec_eof, xdr_setpos
Ixdr_vecto~xdr_WTapstring

Ixdr_ujong, xdr_u_short, xdr_void
Ixprt_register, xprt_unregister

procedure calls rpc
procedure calls IxdrJeplymsg XDR

Irpcb Jmtca1l, rpcb _set, rpcb _unset
I svc Jun, svc _ sendreply

Inetname2user, user2netname
I svcerr _ systemerr, svcerr _ weakauth

t alloc allocate a
tjree free a

t_ sync synchronize transport
dial establish an outgoing terminal

ttydefs file contains terminal
t listen

listen
socket

get client's data passed via the
nlsrequest format and send

rusers who's logged in on
rusers who's

transport endpoint tjook
tielts, ticots, ticotsord

rusers who's logged in on local
information about users on remote

rwall write to specified remote

endpoint t_optmgmt
inet_ ntoa Internet address

Ifor dealing with creation and
return current version of a YP

ypxfr transfer YP
ypwhich return name of yP server or
value of one or more keys from a YP

force propagation of a changed YP
addresses to RPC program num her

ethers Ethernet address
return name of yP server or map
recv, recvfrom, recvmsg receive a

send, sendto, sendmsg send a
and send listener service request

ICMP Internet Control

Permuted Index

Permuted Index

library routines for dealing withl rpc_clnt_create(3N)
library routines for dealing with rpc _ svc _ create(3N)
library routines for external datal xdr_create(3N)
library routines for external data .. xdr(3N)
library routines for external datal xdr_admin(3N)
library routines for external datal.................... xdr _ complex(3N)
library routines for external datal xdr_simple(3N)
library routines for registering I rpc _svc _ calls(3N)
library routines for remote ... rpc(3N)
library routines for remote ... rpc _ xdr(3N)
library routines for RPC bindl rpcbind(3N)
library routines for RPC servers rpc_svcJeg(3N)
library routines for secure remote I secure_rpc(3N)
library routines for server side I rpc_svc_err(3N)
library structure .. t_alloc(3N)
library structure .. t_free(3N)
library .. t_sync(3N)
line connection .. dial(3Q
line settings information for I ... ttydefs(4)
listen for a connect request .. tjisten(3N)
listen for connections on a socket listen(3N)
listen listen for connections on a listen(3N)
listener nlsgetcall .. nlsgetcall(3N)
listener service request message nlsrequest(3N)
local machines ... rusers(1)
logged in on local machines ... rusers(1)
look at the current event on a .. Uook(3N)
loopback transport providers ... tielts(7)
machines ... rusers(1)
machines rusers return ... rusers(3N)
machines ... rwall(3N)
makedbm make a yP dbm file makedbm(1M)
manage options for a transport t_ optmgmt(3N)
manipulation linet_netof, ... inet(3N)
manipulation of CLIENT handles rpc _ clnt_ create(3N)
map at a YP server host yppoll yppoll(1M)
map from a YP server to host ... ypxfr(1M)
map master .. ypwhich(1)
map ypmatch print the .. ypmatch(1)
map yppush ... yppush(1M)
mapper rpcbind universal.. rpcbind(1M)
mapping operations .. ethers(3N)
master ypwhich ... ypwhich(1)
message from a socket ... recv(3N)
message from a socket .. send(3N)
message nlsrequest format nlsrequest(3N)
Message Protocol .. ICMP(7)

7

Permuted Index

t_ error produce error
pmadm port

select synchronous I/O
hosts host

getsockname get socket
getpeername get

domainname get/set
nIsprovider get
ypwhich return

bind bind a
/netdir_sperror generic transport

database
netdir _getbyname, netdir _getbyaddr,

netdir ~etbyname,
netdir _free, netdir _ mergeaddr,/

/netdir _getbyaddr, netdir _free,
generic/ /taddr2uaddr, uaddr2taddr,

/uaddr2taddr, netdir~rror,
/key ~endes, key _ setsecret,

/key _ setsecret, netname2host,
entry corresponding to

convert values between host and
entry getnetconfig get

netconfig
setnetent, endnetent get

sethostent, endhostent get
rpc.rwalld

rwall write to all users over a
scatter data in order to check the

rpc.rusersd
publickey database

/fetch, store, delete, firstkey,
via the listener

provider
service request message

host and/ byteorder, htonI, htons,
byteorder, htonI, htons, ntohI,

rpc rpc program
universal addresses to RPC program

sockio ioctls that
ethers Ethernet address mapping

t_ optmgmt manage
getsockopt, setsockopt get and set

between host and network byte
spray scatter data in

tJcvrel acknowledge receipt of an

8

message .. t_ error(3N)
monitor administration ... pmadm(1M)
multiplexing ... select(3C)
name data base ... hosts(4)
name .. getsockname(3N)
name of connected peer getpeername(3N)
name of current secure RPC domain domainname(1M)
name of transport provider nlsprovider(3N)
name of yP server or map master ypwhich(1)
name to a socket ... bind(3N)
name-to-address translation netdir ~tbyname(3N)
netconfig network configuration netconfig(4)
netdir _free, netdir _ mergeaddr,/ netdir ~etbyname(3N)
netdir~etbyaddr, netdir_free,/ netdir~tbyname(3N)
netdir ~etbyname, netdir ~tbyaddr,
... netdir ~tbyname(3N)
netdir_mergeaddr, taddr2uaddr,/ netdir_getbyname(3N)
netdir "perror, netdir _sperror netdir _getbyname(3N)
netdir _sperror generic transport/ netdir _getbyname(3N)
netname2host, netname2user,/ secure_rpc(3N)
netname2user, user2netname library / secure _ rpc(3N)
NETPATH component / /etc/netconfig getnetpath(3N)
network byte order /ntohI, ntohs byteorder(3N)
network configuration database getnetconfig(3N)
network configuration database netconfig(4)
network entry /getnetbyname, getnetent(3N)
network host entry / gethostbyname, gethostent(3N)
network rwall server .. rpc.rwalld(1M)
network .. rwall(1M)
network spray ... spray(3N)
network username server rpc.rusersd(lM)
newkey create a new key in the newkey(1M)
nextkey database subroutines ... dbm(3)
nIsgetcall get client's data passed nlsgetcall(3N)
nIsprovider get name of transport nlsprovider(3N)
nlsrequest format and send listener nlsrequest(3N)
ntohl, ntohs convert values between byteorder(3N)
ntohs convert values between host/ byteorder(3N)
number data base .. rpc(4)
number mapper rpcbind ... rpcbind(1M)
operate directly on sockets ... sockio(7)
operations ... ethers(3N)
options for a transport endpoint t_optmgmt(3N)
options on sockets .. getsockopt(3N)
order /ntohI, ntohs convert values byteorder(3N)
order to check the network .. spray(3N)
orderly release indication .. tJcvrel(3N)

Programmer's Guide: Networking Interfaces

t sndrel initiate an
- dial establish an

spray spray
socketpair aeate a

bootparamd boot
shutdown shut down

ypset point ypbind at a
n1sgetcall get client's data

getpeername get name of connected

ypset
pmadm

from a YP map ypmatch
ypcat

server for storing public and
lroutines for client side remote
routines for server side remote
rpc library routines for remote

XDR library routines for remote
library routines for secure remote

ypserv, ypbind yP server and binder
t_error
rpc rpc

rpcbind universal addresses to RPC
yppush force

rpcgen an RPC
setprotoent, endprotoent get

ICMP Internet Control Message
IP Internet

TCP Internet Transmission Control
UDP Internet User Datagram

information t..,.getinfo get
nlsprovider get name of transport

ticotsord loopback transport
keyserv server for storing

publickey
getpublickey, getsecretkey retrieve

newkey aeate a new key in the
getsecretkey retrieve public orl

ypmake
indication tJcvrel acknowledge

t rcvudata
recv, recvfrom~ recvmsg

indication t_rcvuderr
over a connection tJcv

connect request tJcvconnect

Permuted Index

Permuted Index

orderly release .. t_sndrel(3N)
outgoing terminal line connection dial(3q
packets ... spray(1M)
pair of connected sockets ... socketpair(3N)
parameter server .. bootparamd(lM)
part of a full-duplex connection shutdown(3N)
particular server ... ypset(lM)
passed via the listener .. nlsgetcall(3N)
peer .. getpeername(3N)
pmadm port monitor administration pmadm(1M)
point ypbind at a particular server ypset(lM)
port monitor administration .. pmadm(1M)
print the value of one or more keys ypmatch(1)
print values in a YP data base .. ypcat(1)
private keys keyserv .. keyserv(1M)
procedure call authentication rpc_clnt_auth(3N)
procedure call errors llibrary rpc_svc_err(3N)
procedure calls .. rpc(3N)
procedure calls IxdrJeplymsg rpc_xdr(3N)
procedure calls luser2netname secure_rpc(3N)
processes ... ypserv(lM)
produce error message .. t_ error(3N)
program number data base .. rpc(4)
program number mapper ... rpcbind(1M)
propagation of a changed yP map yppush(lM)
protocol compiler ~ rpcgen(1)
protocol entry I getprotobyname, getprotoent(3N)
Protocol ... ICMP(7)
Protocol .. IP(7)
Protocol .. TCP(7)
Protocol ... UDP(7)
protocol-specific service .. t~tinfo(3N)
provider ... nlsprovider(3N)
providers ticlts, ticats, ... ticlts(7)
public and private keys .. keyserv(lM)
public key database ... publickey(4)
public or secret key pubUckey: pubUckey(3N)
pubUckey database .. newkey(lM)
publickey: getpubUckey, .. pubUckey(3N)
publickey public key database publickey(4)
rebuild yP database .. ypmake(lM)
receipt of an orderly release ... t_rcvrel(3N)
receive a data unit ... t rcvudata(3N)
receive a message from a socket :::...... recv(3N)
receive a unit data error ... t_rcvuderr(3N) ,
receive data or expedited data sent tJcv(3N)
receive the confirmation from a.......................... tJcvconnect(3N)

9

Permuted Index

message from a socket
from a socket recv,

socket recv, recvfrom,
llibrary routines for

acknowledge receipt of an orderly
t_sndrel initiate an orderly

rexec return stream to a
return information about users on

rwall write to specified
llibrary routines for client side

llibrary routines for server side
rpc library routines for

IXDR library routines for
llibrary routines for secure

rpcinfo
llibrary routines for external data

library routines for external data
library routines for external data
library routines for external data
library routines for external data
format and send listener service

t_ accept accept a connect
t _listen listen for a connect

the confirmation from a connect
send user-initiated disconnect

resolver, res _ mkquery, res_send,
dn_comp, dn_expandl resolver,

res_init, dn_comp, dn_expandl
res_init, dn_comp, dn_expand

dn_expandl resolver, res_mkquery,
disconnect t rcvdis

I getpublickey, getsecretkey
at a YP server host yppoll

remote machines rusers
master ypwhich

rexec
command

Irpc _broadcast, rpc _ call library
I authsys _create_default library

andl Iclnt_vc_create library
creation ofl Isvc_vc_createlibrary

Ixdrstdio _create library
representation xdr library

Ixdrrec_oof, xdr_setpos library
Ixdr _vector, xdr _ wrapstring library

Ixdr _ u _short, xdr _void library
Ixprt _ unregister library

10

recv, recvfrom, recvmsg receive a..................................... recv(3N)
recvfrom, recvmsg receive a message recv(3N)
recvmsg receive a message from a.................................... recv(3N)
registering servers ... rpc_svc_calls(3N)
release indication t rcvrel .. t rcvrel(3N)
release':: .. tyndrel(3N)
remote command .. rexec(3N)
remote machines rusers .. rusers(3N)
remote machines ... rwall(3N)
remote procedure callI rpc_clnt_auth(3N)
remote procedure call errors rpc_svc_err(3N)
remote procedure calls .. rpc(3N)
remote procedure calls .. rpc _ xdr(3N)
remote procedure calls ... secure _ rpc(3N)
report RPC information ... rpcinfo(lM)
representation stream creation xdr _ create(3N)
representation xdr .. xdr(3N)
representation Ixdr_setpos xdr_admin(3N)
representation Ixdr_wrapstring xdr_complex(3N)
representation Ixdr _void xdr _simple(3N)
request message nlsrequest nlsrequest(3N)
request ... t_accept(3N)
request ... tJisten(3N)
request tJcvconnect receive tJcvconnect(3N)
request t_snddis ... t_snddis(3N)
res _ init, dn _ comp, dn _ expandl resolver(3N)
res_mkquery, res_send, res_init, resolver(3N)
resolver, res_mkquery, res_send, resolver(3N)
resolver routines Ires_send, resolver(3N)
res_send, res _ init, dn _ comp, .. resolver(3N)
retrieve information from ... t rcvdis(3N)
retrieve public or secret key..................................... publickey(3N)
return current version of a yP map yppoll(lM)
return information about users on rusers(3N)
return name of yP server or map ypwhlch(l)
return stream to a remote command rexec(3N)
rexec return stream to a remote rexec(3N)
routines for client side calls rpc_clnt_calls(3N)
routines for client side remotel rpc _ clnt_ auth(3N)
routines for dealing with creation rpc_clnt_create(3N)
routines for dealing with the rpc_svc_create(3N)
routines for external datal...................................... xdr _ create(3N)
routines for external data ... xdr(3N)
routines for external datal..................................... xdr _ admin(3N)
routines for external datal.................................. xdr _ complex(3N)
routines for external datal..................................... xdr _ simple(3N)
routines for registering servers rpc _ svc _ calls(3N)

Programmer's Guide: Networking Interfaces

rpc library
/xdrJeplymsg XDR library

/rpcb _set, rpcb _unset library
/svcJun, svc_sendreply library

/netname2user, user2netname library
procedure/ /svcerr_weakauth library

dn_comp, dn_expand resolver
rpcb _unset library routines for
get/set name of current secure

rpcinfo report
procedure calls

rpc
rpcbind universal addresses to

rpcgen an

svc_sendreply library routines for
rpcbind: rpcb _getmaps,

rpcb ~ettime,! rpcbind:
/rpcb~etmaps, rpcb~etaddr,
rpcb ~etaddr, rpcb ~ettime,/

program number mapper
/rpcb ~etaddr, rpcb _gettime,

/clnt_sperrno, dnt_sperror,
/ rpcb ~ettime, rpcb Jmtcall,

bind/ /rpcbJmtcall, rpcb_set,
/clnt_sperror, rpc_broadcast,

authnone _create, authsys _create,!
clntjreeres, clnt_geterr,!

clnt_create, clnt_destroy,!

svc_unreg, xprtJegister,!
svc _destroy, svc _ dg_ create,!

svcerr _decode, svcerr _ noproc,!
svc ~etargs, svc ~treqset,!

xdr _ authsys ...Farms, xdr _ callhdr,!
users on remote machines

machines
rpc.rwalld network

network
machines

administration

Permuted Index

Permuted Index

routines for remote procedure calls rpc(3N)
routines for remote procedure calls rpc _ xdr(3N)
routines for RPC bind service rpcbind(3N)
routines for RPC servers .. rpc_svcJeg(3N)
routines for secure remote/ secure_rpc(3N)
routines for server side remote rpc _svc _ err(3N)
routines Ires send, res init, resolver(3N)
RPC bind ser;tce /rpcb_set, rpcbind(3N)
RPC domain domainname domainname(1M)
RPC information ... rpcinfo(1M)
rpc library routines for remote .. rpc(3N)
rpc program number data base .. rpc(4)
RPC program number mapper rpcbind(1M)
RPC protocol compiler ... rpcgen(1)
rpc rpc program number data base rpc(4)
RPC servers /svcJun, .. rpc_svcJeg(3N)
rpcb_getaddr, rpcb_gettime,/ rpcbind(3N)
rpcb _getmaps, rpcb ~etaddr, rpcbind(3N)
rpcb _gettime, rpcb _ rmtcall,! .. rpcbind(3N)
rpcbind: rpcb ~etmaps, ... rpcbind(3N)
rpcbind universal addresses to RPC rpcbind(1M)
rpcb _ rmtcall, rpcb _set, rpcb _ unset/ rpcbind(3N)
rpc _broadcast, rpc _ call library / rpc _ clnt_ calls(3N)
rpcb _set, rpcb _unset library / rpcbind(3N)
rpcb _unset library routines for RPC rpcbind(3N)
rpc_calllibrary routines fort rpc_clnt_ca11s(3N)
rpc_clnt_auth: auth_destroy, rpc_clnt_auth(3N)
rpc_dnt_calls: clnt_call, rpc_clnt_ca11s(3N)
rpc _ clnt_ create: dnt_ control, rpc _ dnt_ create(3N)
rpcgen an RPC protocol compiler rpcgen(1)
rpcinfo report RPC information rpcinfo(1M)
rpcJeg, svcJeg, svc_unreg, rpc_svc_ca11s(3N)
rpc.rusersd network usemame server rpc.rusersd(1M)
rpc.rwalld network rwall server rpc.rwalld(1M)
rpc.sprayd spray server ... rpc.sprayd(1M)
rpc_svc_cal1s: rpcJeg, svcJeg, rpc_svc_ca11s(3N)
rpc_svc_create: svc_create, rpc_svc_create(3N)
rpc _svc _err: svcerr _ auth, .. rpc _svc _ err(3N)
rpc_svcJeg: svcjreeargs, rpc_svcJeg(3N)
rpc_xdr: xdr_acceptedJeply, rpc_xdr(3N)
rusers return information about rusers(3N)
rusers who's logged in on local ... rusers(1)
rwall server rpc.rwalld(1M)
rwall write to all users over a.. rwall(1M)
rwall write to specified remote .. rwa11(3N)
sac service access controller ... sac(1M)
sacadm service access controller sacadm(1M)

11

Permuted Index

network spray
doconfig execute a configuration

keylogin decrypt and store
getsecretkey retrieve public or

/user2netname library routines for
domainname get/set name of current

authdes _getucred, getnetname,/

t sndudata
send, sendto, sendmsg

connection t_snd
message nlsrequest format and

message from a socket
request t_snddis

socket send, sendto,
a socket send,

receive data or expedited data
ypserv, ypbind yP

bootparamd boot parameter
ypupdated

private keys keyserv
for dealing with the creation of

current version of a YP map at a yP

ypwhich return name of yP

rpc.rusersd network username
rpc.rwalld network rwall

rpc.sprayd spray
errors /library routines for

ypxfr transfer yP map from a yP

ypset point ypbind at a particular
library routines for registering

library routines for RPC
administration sacadm

sac
setservent, endservent get

t_getinfo get protocol-specific
nlsrequest format and send listener

library routines for RPC bind
inetd Internet

getsockopt, setsockopt get and
host/ / gethostbyaddr, gethostbyname,

entry / getnetbyaddr, getnetbyname,
/ getprotobynumber, getprotobyname,

/ getservbyport, getservbyname,
sockets getsockopt,

ttydefs file contains terminal line
connection shutdown

12

scatter data in order to check the spray(3N)
script ... doconfig(3N)
secret key ... keylogin(1)
secret key /getpublickey, ... publickey(3N)
secure remote procedure calls secure_rpc(3N)
secure RPC domain .. domainname(1M)
secure_rpc: authdes_seccreate, secure_rpc(3N)
select synchronous I/O multiplexing select(3C)
send a data unit .. t_sndudata(3N)
send a message from a socket ... send(3N)
send data or expedited data over a t_snd(3N)
send listener service request nlsrequest(3N)
send, sendto, sendmsg send a... send(3N)
send user-initiated disconnect t_snddis(3N)
sendmsg send a message from a...................................... send(3N)
sendto, sendmsg send a message from send(3N)
sent over a connection t rev .. t rev(3N)
server and binder proces~ .. YP;erv(1M)
server .. bootparamd(1M)
server for changing yP information ypupdated(lM)
server for storing public and keyserv(1M)
server handles /library routines rpc _ svc _ create(3N)
server host yppoll return yppoll(1M)
server or map master .. ypwhich(l)
server ... rpc.rusersd(1M)
server ... rpc.rwalld(1M)
server .. rpc.sprayd(1M)
server side remote procedure call rpc_svc_err(3N)
server to host .. ypxfr(lM)
server .. ypset(1M)
servers /xprt_unregister rpc_svc_calls(3N)
servers /svcJun, svc_sendreply rpc_svcJeg(3N)
service access controller .. sacadm(1M)
service access controller .. sac(lM)
service entry / getservbyname, getservent(3N)
service information t ~etinfo(3N)
service request message .. nlsrequest(3N)
service /rpcb_set, rpcb_unset rpcbind(3N)
services daemon .. inetd(1M)
set options on sockets getsockopt(3N)
sethostent, endhostent get network gethostent(3N)
setnetent, endnetent get network getnetent(3N)
setprotoent, endprotoent get/ getprotoent(3N)
setservent, endservent get service/ getservent(3N)
setsockopt get and set options on getsockopt(3N)
settings information for ttymon .. ttydefs(4)
shut down part of a full-duplex shutdown(3N)

Programmer's Guide: Networking Interfaces

full-duplex connection
library routines for client

llibrary routines for client
llibrary routines for server

accept accept a connection on a
bind bind a name to a

connect initiate a connection on a
communication

listen listen for connections on a
getsockname get

recvmsg receive a message from a
sendmsg send a message from a

connected sockets
setsockopt get and set options on

create a pair of connected
ioct1s that operate directly on

on sockets
rwall write to

spray
check the network

rpc.sprayd

dbm, dbminit, dbmclose, fetch,
keylogin decrypt and

keyserv server for
for external data representation

rexec return
t_alloc allocate a library

t jree free a library
the yP database and directory

delete, firstkey, nextkey datab~
svc _ dg_ create,! rpc _SYC _create:

rpc _ svc _create: svc _create,
Isvc_create, SYc_destroy,

SYCercnoproc,1 rpc_sYc_err:
rpc _sye _ err: Sycerr:... auth,

Isvcerr <luth, sycerr decode,
I sycerr_ d~e, Sycerr = noproc,
I sveerr _noproc, sveerr _ noprog,

I Sycerr _noprog; svcerr yrogvers,
I Sycerr yrogvers, Sycerr _systemerr,

I svc _destroy, SYC _ dg_ create,
SYC~etreqset,1 rpc_sYc_reg:

rpc _SYC Jeg: SYC _ freeargS, ,
Isyc~freeargs, syc~etargs,
Isvc~targs,syc~etreqse~

I SYC _ dlL create, svc jd _create,

Permuted Index

Permuted Index

shutdown shut down part of a................................ shutdown(3N)
side calls Irpc_broadcast, rpc_call rpc_clnt_calls(3N)
side remote procedure calli rpc_clnt_auth(3N)
side remote procedure call errors rpc _SYC _ err(3N)
socket ... accept(3N)
socket .. bind(3N)
socket .. connect(3N)
socket create an endpoint for .. socket(3N)
socket .. listen(3N)
socket name .. getsockname(3N)
socket recv, recvfrom, ... recv(3N)
socket send, sendto, ... send(3N)
socketpair create a pair of .. socketpair(3N)
sockets getsockopt, .. getsockopt(3N)
sockets socketpair ... socketpair(3N)
sockets sockio .. sockio(7)
sockio ioctls that operate directly sockio(7)
specified remote machines rwa1l(3N)
spray packets .. spray(1M)
spray scatter data in order to .. spray(3N)
spray server ... rpc.sprayd(1M)
spray spray packets ... spray(lM)
store, delete, firstkey, nextkey I .. dbm(3)
store secret key ... keylogin(1)
storing public and private keys keyserv(1M)
stream creation llibrary routines xdr _ create(3N)
stream to a remote command ... rexec(3N)
structure ... t alloc(3N)
structure ... t_free(3N)
structure ypfiles ypfiles(4)
subroutines' Ifetch, store, .. dbm(3)
sYc_create, SYc_destroy, rpc_syc_create(3N)
SYC _destroy, svc _ dg_ create,l rpc _ SYC _ create(3N)
SYC _ dg_ create, Syc}d _create,! rpc _ SYC _ create(3N)
Sycerr _ auth, sycerr _decode, rpc _SYC _ err(3N)
svcerr _decode, Sycerr _noproc,1 rpc _SYC _ err(3N)
sycerr_noproc, Sycerr_noprog,1 rpc_syc_err(3N)
svcerr _ noprog, svcerr yrogvers,! rpc _SYC _ err(3N)
svcerr yrogvers, svcerr _ systemerr,! rpc _SYC _ err(3N)
svcerr _systemerr, Sycerr _ weakauthl , rpc _SYC _ err(3N)
svcerr _ weakauth library routinesl rpc _SYC _ err(3N)
svc_fd_create, sycJaw_create,! rpc_syc_create(3N)
syc_freeargs, syc~etargs, ~ rpc_sycJeg(3N)
SYC .$etargs, SYC ~etreqset,! rpc _SYC Jeg(3N)
svc~etreqset, syc~etrpccaller,1 rpc_sycJeg(3N)
svc~etrpcca1ler, sycJun,1 rpc_svcJeg(3N)
sycJaw_create, SYc_ill_create,1 rpc_syc_create(3N)

13

Permuted Index

rpc_svc_calls: rpcJeg,
I svc ~etreqset, svc ~etrpccaller,

RPCI Isvc_getrpccaller, svcJun,
Isvc fd create, svc raw create,
I svc =ra;' _create, s;c _tIC create,
rpc_svc_calls: rpc_reg, svcJeg,
I svc _ tli _create, svc _ tp _create,

t_sync
select

Inetdir_free, netdir_mergeaddr,
structure

transport endpoint

with another transport user
Protocol

dial establish an outgoing
for ttymon ttydefs file contains

service information

transport providers
transport providers ticlts,

providers ticlts, ticots,
request

a transport endpoint
endpoint

transport endpoint
host ypxfr

generic transport name-to-address
TCP Internet

t_bind bind an address to a
t close close a

look at the current event on a
t_open establish a

t_optmgmt manage options for a
t unbind disable a
t_sync synchronize

translation Inetdir_sperror generic
nlsprovider get name of

ticlts, ticots, ticotsord loopback
establish a connection with another

data sent over a connection
confirmation from a connect I

disconnect
orderly release indication

14

svcJeg, svc _ unreg, xprtJegister,l rpc _ svc _ calls(3N)
svc _run, svc _ sendreply library I rpc _svc Jeg(3N)
svc_sendreply library routines for rpc_svcJeg(3N)
svc_tli_create, svc_tp_create,1 rpc_svc_create(3N)
svc_tp_create, svc_vc_createl rpc_svc_create(3N)
svc _ unreg, xprt Jegister,l rpc _svc _ calls(3N)
svc_vc_create library routines fori rpc_svc_create(3N)
synchronize transport library ... t_sync(3N)
synchronous 1/0 multiplexing ... select(3q
t_accept accept a connect request t_accept(3N)
taddr2uaddr, uaddr2tad6ir,l netdir _getbyname(3N)
t_ alloc allocate a library .. t_ alloc(3N)
t bind bind an address to a.. t bind(3N)
t=close close a transport endpoint t.=-close(3N)
t connect establish a connection t connect(3N)
rcp Internet Transmission Control :. TCP(7)
terminal line connection ... dial(3C)
terminal line settings information ttydefs(4)
t_error produce error message t_error(3N)
t_free free a library structure ... t_free(3N)
t~etinfo get protocol-specific t_getinfo(3N)
t_getstate get the current state t_getstate(3N)
ticlts, ticots, ticotsord loopback .. ticlts(7)
ticots, ticotsord loopback ... ticlts(7)
ticotsord loopback transport ticlts(7)
t}isten listen for a connect .. t}isten(3N)
t}ook look at the current event on t}ook(3N)
t_open establish a transport ... t_open(3N)
t_optmgmt manage options for a t_optmgmt(3N)
transfer yP map from a yP server to ypxfr(1M)
translation Inetdir _sperror netdir _getbyname(3N)
Transmission Control Protocol .. TCP(7)
transport endpoint .. t_bind(3N)
transport endpoint ... t_close(3N)
transport endpoint t}ook .. t}ook(3N)
transport endpoint ... t_open(3N)
transport endpoint ... t_ optmgmt(3N)
transport endpoint ... t_unbind(3N)
transport library .. t_sync(3N)
transport name-to-address netdir _getbyname(3N)
transport provider ... nlsprovider(3N)
transport providers ... ticlts(7)
transport user t_ connect t _ connect(3N)
tJcv receive data or expedited .. tJcv(3N)
tJcvconnect receive the .. tJcvconnect(3N)
t rcvdis retrieve information from t rcvdis(3N)
t=rcvrel acknowledge receipt of an (,rcvrel(3N)

Programmer's Guide: Networking Interfaces

error indication
over a connection

disconnect request
release

library
settings information for ttymon

line settings information for
endpoint

/netdir_mergeaddr, taddr2uaddr,

t rcvuderr receive a
tJcvudata receive a data

t_ sndudata send a data
number mapper rpcbind

updating
updaters configuration file for YP

UDP Internet
chkey change

environ
a connection with another transport

secure/ /netname2host, netname2user,
t_snddis send

rpc.rusersd network
rusers return information about

rwall write to all
map ypmatch print the

/htonl, htons, ntohl, ntohs convert
ypcat print

host yppoll return current
nlsgetcall get client's data passed

rusers
rwall
rwall

data representation
/xdrJejectedJeply, xdrJeplymsg

xdr _ authsys yarms,! rpc _ xdr:
xdrrec _ eof, xdr _ setpos library /

xdr -pointer,! xdr _complex:
rpc _ xdr: xdr _accepted Jeply,

xdr_enum, xdr_float,/ xdr_simple:
xdr_complex: xdr_array,

/ xdr _ authsys yarms,
/xdr_authsysyarms, xdr_ca1lhdr,
xdr _ float,/ xdr _simple: xdr _ bool,

xdr _opaque, xdr -pointer,!

Permuted Index

Permuted Index

tJcvudata receive a data unit tJcvudata(3N)
tJcvuderr receive a unit data tJcvuderr(3N)
t_snd send data or expedited data t_snd(3N)
t snddis send user-initiated .. t snddis(3N)
t=sndrel initiate an orderly .. (,sndrel(3N)
t_sndudata send a data unit t_sndudata(3N)
t_sync synchronize transport .. t_sync(3N)
ttydefs file contains terminal line ttydefs(4)
ttymon /file contains terminal .. ttydefs(4)
t_unbind disable a transport t_unbind(3N)
uaddr2taddr, netdiryerror,! netdir_getbyname(3N)
UDP Internet User Datagram Protocol UDP(7)
unit data error indication ... tJcvuderr(3N)
unit ... t_rcvudata(3N)
unit .. t_sndudata(3N)
universal addresses to RPC program rpcbind(1M)
updaters configuration file for yP updaters(4)
updating .. updaters(4)
User Datagram Protocol .. UDP(7)
user encryption key .. chkey(1)
user environment ... environ(5)
user t connect establish .. t connect(3N)
user2netname library routines for seCure _ rpc(3N)
user-initiated disconnect request t_snddis(3N)
username server ... rpc.rusersd(1M)
users on remote machines ... rusers(3N)
users over a network ... rwall(1M)
value of one or more keys from a yP ypmatch(1)
values between host and network/ byteorder(3N)
values in a yP data base .. ypcat(1)
version of a YP map at a yP server yppoll(1M)
via the listener .. nlsgetcall(3N)
who's logged in on local machines rusers(1)
write to all users over a network rwall(1M)
write to specified remote machines rwall(3N)
xdr library routines for external....................... xdr(3N)
XDR library routines for remote/ rpc_xdr(3N)
xdr_acceptedJeply, ... rpc_xdr(3N)
xdr_admin: xdr_getpos, xdr)nline, xdr_admin(3N)
xdr_array, xdr_bytes, xdr_opaque, xdr_complex(3N)
xdr _ authsys yarms, xdr _ callhdr,! rpc _ xdr(3N)
xdr_bool, xdr_char, xdr_double, xdr_simple(3N)
xdr _bytes, xdr _opaque, xdr yointer,! xdr _ complex(3N)
xdr _ callhdr, xdr _ callmsg,/ ... rpc _ xdr(3N)
xdr _ callmsg, xdr _opaque _ auth,/ rpc _ xdr(3N)
xdr_char, xdr_double, xdr_enum, xdr_simple(3N)
xdr_complex: xdr_array, xdr_bytes, xdr_complex(3N)

15

Permuted Index

xdrmem create, xdrrec create,!
xdrrec _ create,/ xdT _create:

xdr_simple: xdr_bool, xdr_char,
Ixdr bool, xdr char, xdr double,

Ixdr_Cbar, xdr):ouble, xdr_enum,
Ixdr_double, xdr_enum, xdr)loat,

xdr _ setpos library I xdr _ admin:
library I xdr _ admin: xdr ~etpos,

Ixdr_enum, xdrJloat, xdrJree,
Ixdr float, xdr free, xdr int,

X"dr _create: xdr _destroy,
xdr_complex: xdr_array, xdr_bytes,

Ixdr _ callhdr, xdr _ callmsg,
Ixdr_array, xdr_bytes, xdr_opaque,

Ixdr_destroy, xdrmem_create,
xdr _ admin: xdr ~etpos, xdr)nline,

Ix dr_bytes, xdr_opaque, xdrJ>Ointer,
XDRI Ixdr_callmsg, xdr_opaque_auth,

for remotel IxdrJejectedJeply,
Ixdr_getpos, xdr_inilne, xdrrec_eof,

Ixdr_free, xdr_int, xdrJong,
xdr double, xdr enum, xdr float, I

fori /xdrmem_create, xdrrec=create,
Ixdr J>Ointer, xdr Jeference,
xdr _ int, xdr Jong, xdr _short,

IxdrJong, xdr_short, xdr_u_char,
Ixdr Jeference, xdr _string,

Ixdr_short, xdr_u_char, xdr_uJong,
routines I Ixdr_string, xdr_union,

external! Ixdr_uJong, xdr_u_short,
Ixdr _string, xdr _union, xdr _vector,

IrpcJeg, svcJeg, svc_unreg,
IsvcJeg, svc_unreg, xprtJegister,

yp_master, yperr_string, ypprot_err
ypcat print values in a

ypfiles the
ypinit build and install

ypmake rebuild
makedbm make a

yp_update changes
ypupdated server for changing

yppoll return current version of a
ypxfr transfer

value of one or more keys from a
force propagation of a changed

ypserv, ypbind
current version of a yP map at a

16

xdr _create: xdr _destroy, ... xdr _ create(3N)
xdr _destroy, xdrmem _create, xdr _ create(3N)
xdr_double, xdr_enum, xdr_float,/ xdr_simple(3N)
xdr _ enum, xdr _float, xdr _ free,l xdr _simple(3N)
xdr_float, xdr_free, xdr)nt,1 xdr_simple(3N)
xdr_free, xdr)nt, xdrJong,1 xdr_simple(3N)
xdr _getpos, xdr _ inilne, xdrrec _ eof, xdr _ admin(3N)
xdr _ inilne, xdrrec _ eof, xdr _setpos xdr _ admin(3N)
xdr_int, xdrJong, xdr_short,/ xdr_simple(3N)
xdr}ong, xdr_short, xdr_u_char,/ xdr_simple(3N)
xdrmem create, xdrrec create,/ xdr create(3N)
xdr_opaque, xdrJ>Ointer,1 xdr_c~mplex(3N)
xdr_opaque_auth,1 .. rpc_xdr(3N)
xdrJ>Ointer, xdrJeference'/ xdr_complex(3N)
xdrrec _create, xdrstdio _ create I xdr _ create(3N)
xdrrec _ eof, xdr _setpos library I xdr _ admin(3N)
xdr Jeference, xdr _string, I xdr _ complex(3N)
xdrJejectedJeply, xdrJeplymsg rpc_xdr(3N)
xdr Jeplymsg XDR library routines rpc _ xdr(3N)
xdr_setpos library routines fori xdr_admin(3N)
xdr_short, xdr_u_char, xdr_uJong,1 xdr_simple(3N)
xdr_simple: xdr_bool, xdr_char, xdr_simple(3N)
xdrstdio _create library routines xdr _ create(3N)
xdr_string, xdr_union, xdr_vector,1 xdr_complex(3N)
xdr_u_char, xdr_u}ong,1 IxdrJree, xdr_simple(3N)
xdr_uJong, xdr_u_short, xdr_voidl xdr_simple(3N)
xdr_union, xdr_vector,1 xdr_complex(3N)
xdr _ u _short, xdr _void library I xdr _simple(3N)
xdr _vector, xdr _ wrapstring library................... xdr _ complex(3N)
xdr _void library routines for xdr _simple(3N)
xdr _ wrapstring library routines for I xdr _ complex(3N)
xprtJegister, xprt_unregisterl rpc_svc_calls(3N)
xprt_unregister library routines I rpc_svc_calls(3N)
yP c1ientinterface Iyp_order, ypclnt(3N,
yP data base ... ypcat(1)
yP database and directory structure ypfiles(4)
yP database .. ypinit(lM)
yP database .. ypmake(1M)
yP dbm file ... makedbm(lM)
yp information yp _ update(3N)
yP information ... ypupdated(1M)
yP map at a YP server host ... yppoll(1M)
yP map from a yP server to host ypxfr(1M)
yP map ypmatch print the ... ypmatch(1)
yP map yppush ... yppush(1M)
yP server and binder processes ypserv(1M)
yP server host yppoll return .. yppoll(1M)

Programmer's Guide: Networking Interfaces

ypwhich return name of
ypxfr transfer yP map from a
updaters configuration file for
Iyp_match, ypjirst, yp_next,

ypset point
processes ypserv,

ypclnt, yp~et_default_domain,
base

yp_bind, yp_unbind, yp_match,1
Iyp_all, yp_order, yp_master,

directory structure
Iyp_bind, yp_unbind, yp_match,
yp_unbind, yp_match,1 ypclnt,

database

YPI Iyp_next, yp_all, yp_order,
more keys from a yP map

yp_all,1 Iyp_bind, yp_unbind,
Iyp_unbind, yp_match, yp_first,

Iypjirst, yp_next, yp_all,
yP map at a yP server host

Iyp _order, yp _master, yperr_string,
changed yP map

processes
server

Iyp~et_default_domain, yp_bind,

Permuted Index

information
map master

server to host

Permuted Index

yP server or map master .. ypwhich(1)
yP server to host .. ypxfr(1M)
yP updating .. updaters(4)
yp_all, yp_order, yp_master,/ .. ypclnt(3N)
ypbind at a particular server ... ypset(lM)
ypbind yP server and binder .. ypserv(1M)
yp_bind, yp_unbind, yp_match,/ ypclnt(3N)
ypcat print values in a yP data ... ypcat(1)
ypclnt, yp~et_default_domain, ypclnt(3N)
yperr_string, ypprot_err yP clientl ypclnt(3N)
ypfiles the yP database and .. ypfiles(4)
yp)irst, yp_next, yp_all,1 ... ypclnt(3N)
yp;_default_domain, yp_blnd, ypclnt(3N)
ypinit build and Install yP .. ypinit(1M)
ypmake rebuild yP database ypmake(1M)
yp_master, yperr_string, ypprot_err ypclnt(3N)
ypmatch print the value of one or ypmatch(1)
yp_match, yp_first, yp_next, ... ypclnt(3N)
yp_next, yp_all, yp_order,/ .. ypclnt(3N)
yp_order, yp_master, yperr_string,1 ypclnt(3N)
yppoll return current version of a yppoll(lM)
ypprot_err yP client Interface ... ypclnt(3N)
yppush force propagation of a.................................... yppush(1M)
ypserv, ypblnd yP server and binder ypserv(lM)
ypset point ypbind at a particular ypset(lM)
yp_unbind, yp_match, yp_first,1 ypclnt(3N)
yp _update changes yp information yp _ update(3N)
ypupdated server for changing yP ypupdated(1M)
ypwhich return name of yP server or ypwhich(1)
ypxfr transfer yP map from a yP ypxfr(1M)

17

chkey(1)

NAME
chkey - change user encryption key

SYNOPSIS
chkey

DESCRIPTION

chkey(1)

The chkey command prompts for a password and uses it to encrypt a new user
encryption key. The encrypted key is stored in the publickey(4) database.

This command should be executed only on the master server for the
publickey(4) database.

SEE ALSO
keyloqin(l), keylogout(1), publickey(4), keyserv(1M), newkey(1).

10/89 Page 1

keylogln (1)

NAME
keyl09in - decrypt and store secret key

SYNOPSIS
keyl09in

DESCRIPTION

keylogin (1)

The keyl09in command prompts for a password, and uses it to decrypt the
user's secret key stored in the publickey(4) database. Once decrypted, the user's
key is stored by the local key server process, keyserv(lM), to be used by any
secure network service, such as NFS.

SEE ALSO
chkey{l), keylogout (1), publickey(4), keyserv(lM), newkey(l).

10/89 Page 1

rpcgen(1) rpcgen(1)

NAME
rpcgen - an RPC protocol compiler

SYNOPSIS
rpcgen infile
rpcgen [-Dname [=value]] [-T] [-K sees] infile
rpcgen -c I-h I-ll-m I-t [-0 outfile] infile
rpcgen -s nettype [-0 outfile] infile
rpcgen -n netid [-0 outfile] infile

DESCRIPTION

10/89

rpcgen is a tool that generates C code to implement an RPC protocol. The input
to rpcgen is a language similar to C known as RPC Language (Remote Procedure
Call Language).

rpcgen is normally used as in the first synopsis where it takes an input file and
generates up to four output files. If the infile is named proto. X, then rpcgen will
generate a header file in proto. h, XDR routines in proto _ xdr . c, server-side
stubs in proto svc. c, and client-side stubs in proto clnt. c. With the -T
option, it will alSO generate the RPC dispatch table in proto _ tbl. i.

The server created can be started both by the port monitors (for example, inetd
or listen) or by itself. When it is started by a port monitor, it creates servers
only for the transport for which the file descriptor 0 was passed. The name of
the transport must be specified by setting up the environmental variable
PM_TRANSPORT. When the server generated by rpcgen is executed, it creates
server handles for all the transports specified in NETPATH environment variable,
or if it is unset, it creates server handles for all the visible transports from
/etc/netconfig file. Note: the transports are chosen at run time and not at
compile time. When the server is self-started, it backgrounds itself by default. A
special define symbol RPC_SVC_FG can be used to run the server process in fore­
ground.

The second synopsis provides special features which allow for the creation of
more sophisticated RPC servers. These features include support for user pro­
vided tdefines and RPC dispatch tables. The entries in the RPC dispatch table
contain:

• pointers to the service routine corresponding to that procedure,
• a pointer to the input and output arguments
• the size of these routines

A server can use the dispatch table to check authorization and then to execute the
service routine; a client library may use it to deal with the details of storage
management and XDR data conversion.

The other three synopses shown above are used when one does not want to gen­
erate all the output files, but only a particular one. Some examples of their usage
is described in the EXAMPLE section below. When rpcgen is executed with the
-s option, it creates servers for that particular class of transports. When executed
with the -n option, it creates a server for the transport specified by netid. If infile
is not specified, rpcgen accepts the standard input.

Page 1

rpcgen(1) rpcgen(1)

Page 2

The C preprocessor, cc -E [see cc(1)], is run on the input file before it is actually
interpreted by xpcgen. For each type of output file, xpcgen defines a special
preprocessor symbol for use by the xpcgen programmer:

RPC _ HDR defined when compiling into header files
RPC_XDR defined when compiling into XDR routines
RPC_SVC defined when compiling into server-side stubs
RPC_CLNT defined when compiling into client-side stubs
RPC_TBL defined when compiling into RPC dispatch tables

Any line beginning with '\' is passed directly into the output file, uninterpreted
byxpcgen.

For every data type referred to in infi1e, xpcgen assumes that there exists a rou­
tine with the string xdr _ prepended to the name of the data type. If this routine
does not exist in the RPC/XDR library, it must be provided. Providing an
undefined data type allows customization of XDR routines.

The following options are available:

-c Compile into XDR routines.
-Dname [... value]

Define a symbol name. Equivalent to the tdefine directive in the source.
If no value is given, value is defined as 1. This option may be specified
more than once.

-h Compile into C data-definitions (a header file). -T option can be used in
conjunction to produce a header file which supports RPC dispatch tables.

-K sees
By default, services created using xpcqen wait 120 seconds after servicing
a request before exiting. That interval can be changed using the -K flag.
To create a server that exits immediately upon servicing a request, -K 0
can be used. To create a server that never exits, the appropriate argument
is -K -1.

When monitoring for a server, some portmonitors, like 1isten(1M),
always spawn a new process in response to a service request. If it is
known that a server will be used with such a monitor, the server should
exit immediately on completion. For such servers, xpcqen should be used
with -K -1.

-1 Compile into client-side stubs.

-m Compile into server-side stubs, but do not generate a main routine. This
option is useful for doing callback-routines and for users who need to
write their own main routine to do initialization.

-n netid
Compile into server-side stubs for the transport specified by netid. There
should be an entry for netid in the netconfig database. This option may be
specified more than once, so as to compile a server that serves multiple
transports.

10/89

rpcgen(1) rpcgen(1)

NOTES

-ooutfile
Specify the name of the output file. If none is specified, standard output
is used (-0, -h, -1, --!I\. -n, -s and -t modes only).

-s nettype
Compile into server-side stubs for all the transports belonging to the class
nettype. The supported classes are netpath, visible, circuit_n,
circuit v, datagram n, datagram v, tcp, and udp [see rpc(3N) for the
meanings associated With these classes]. This option may be specified
more than once. Note: the transports are chosen at run time and not at
compile time.

-t Compile into RPC dispatch table.

-T Generate the code to support RPC dispatch tables.

The options -0, -h, -1, -In, -s and -t are used exclusively to generate a particu­
lar type of file, while the options -0 and -T are global and can be used with the
other options.

The RPC Language does not support nesting of structures. As a work-around,
structures can be declared at the top-level, and their name used inside other
structures in order to achieve the same effect.

Name clashes can occur when using program definitions, since the apparent seop­
ing does not really apply. Most of these can be avoided by giving unique names
for programs, versions, procedures and types.

The server code generated with -n option refers to the transport indicated by
netid and hence is very site specific.

EXAMPLE
The following example:

$ rpcgen -T prot.x

generates all the five files: prot. h, prot _ clnt. c, prot _ svc. c, prot _ xdr. c and
prot_tbl. i.

The following example sends the C data-definitions (header file) to the standard
output.

$ rpcgen -h prot.x

To send the test version of the -OTEST, server side stubs for all the transport
belonging to the class datagram_n to standard output, use:

$ rpcgen -s datagram_n -OTEST prot.x

To create the server side stubs for the transport indicated by netid tcp, use:

$ rpcgen -n tcp -0 prot_svc.c prot.x

SEE ALSO
cc(l).

10/89 Page 3

rusers(1) rusers(1)

NAME
rusers - who's logged in on local machines

SYNOPSIS
rusers [-ahilu] host ...

DESCRIPTION
The rusers command produces output similar to who(l), but for remote
machines. The listing is in the order that responses are received, but this order
can be changed by specifying one of the options listed below.

The default is to print out the names of the users logged in. When the -1 flag is
given, additional information is printed for each user, including idle time, when
user logged in, and tty.

A remote host will only respond if it is running the rusersd(1M) daemon, which
may be started up from inetd(1M) or listen(1M).

The following options are available:

-a Give a report for a machine even if no users are logged on.

-h Sort alphabetically by host name.

-i Sort by idle time.

-1 Give a longer listing in the style of who(1).

-u Sort by number of users.

SEE ALSO
inetd(1M), listen(1M), pmadm(lM), rusersd(lM), sacadm(lM), who(1).

10/89 Page 1

ypcat(1) ypcat(1)

NAME
ypcat - print values in a yP data base

SYNOPSIS
ypcat [-k] [-d ypdomain] mname

DESCRIPTION
The ypcat command prints out values in the yP name service map specified by
mname, which may be either a map name or a map nickname. Since ypcat uses
the yP network services, no yP server is specified.

Refer to ypfiles(4) and ypserv(lM) for an overview of the yP name service.

The following options are available:

-dypdomain
Specify a domain other that the default domain.

-k Display the keys for those maps in which the values are null or the key is
not part of the value. None of the maps derived from files that have an
ASOI version in / etc fall into this class.

SEE ALSO
ypmatch(l), ypserv(lM), ypfiles(4)

10/89 Page 1

ypmatch(1) ypmatch(1)

NAME
ypmatch - print the value of one or more keys from a yP map

SYNOPSIS
ypmatch [-d ypdomain] [-k] key... mname

DESCRIPTION
ypmatch prints the values associated with one or more keys from the YPs name
services map specified by mname, which may be either a mapname or an map nick­
name.

Multiple keys can be specified; the same map will be searched for all keys. The
keys must be exact values insofar as capitalization and length are concerned. No
pattern matching is available. If a key is not matched, a diagnostic message is
produced.

The following options are available:

-d ypdomain

-k

Specify a domain other than the default domain.

Before printing the value of a key, print the key itself, followed by a':'
colon. This is useful only if the keys are not duplicated in the values, or
so many keys were specified that the output could be confusing.

SEE ALSO
ypcat(1), ypfiles(4)

10/89 Page 1

ypwhlch(1) ypwhlch(1)

NAME
ypwhich - return name of yP server or map master

SYNOPSIS
ypwhich [-d [ypdomain 1 1 [host name 1
ypwhich [-d ypdomain 1 -m [mname 1

DESCRIPTION
ypwhich tells which YP server supplies the yP name services to a YP client, or
which is the master for a map. If invoked without arguments, it gives the YP
server for the local machine. If hostname is specified, that machine is queried to
find out which YP master it is using.

Refer to ypfiles(4) and ypserv(1M) for an overview of the yP name services.

The following options are available:

-d [ypdomainl
Use ypdomain instead of the default domain.

-mmname
Find the master yP server for a map. No hostname can be specified with
-In. mname can be a mapname, or a nickname for a map. When mname is
omitted, produce a list available maps.

SEE ALSO
ypserv(1M), ypset(1M), ypfiles(4)

10/89 Page 1

bootparamd(1M}

NAME
bootparam:i - boot parameter server

SYNOPSIS
bootparam:i [-d]

DESCRIPTION

bootparamd (1 M)

bootparam:i is a server process that provides information to diskless clients
necessary for booting. It obtains its information from the / etc/bootparams file.

bootparam:i can be invoked either by inetd(1M) or by the user.

The -d option displays the debugging information.

FILES
/etc/bootparams

SEE ALSO
inetd(1M)

10/89 Page 1

domalnname (1 M) domalnname(1M)

NAME
domainname - get/set name of current secure RPC domain

SYNOPSIS
domainname [newname 1

DESCRIPTION

NOTES

The domainname command is used on secure RPC machines. With no argument,
the name of the machine's secure RPC domain is written to standard output.

root privileges are required to use the domainname command with an argument.
In this form, the command sets the name of the secure RPC domain to newname.
newname may be up to 255 characters long.

domainname is normally run by the network administrator on all machines using
secure RPC to set the name of the secure RPC domain. To use secure RPC,
machines must have a secure RPC domain name.

Secure RPC domain names are not related to ans should not be confused with
RFS domains.

The RPC package expects the newname argument to be a valid filename for the
underlying file system in use on the networked machines using secure RPc. For
example, machines based on the s5 file system should not have domain names
longer than 14 characters in length or problems may occur when using secure
RPc.

The secure RPC domain name set by domainname will not be remembered across
reboots. To give a machine a "permanent" name, set the SRPC_DOMAIN tunable in
/etc/master.d/kernel to the secure RPC domain name.

SEE ALSO
RPC Administration in the Programmer's Guide: Networking Interfaces.

10/89 Page 1

Inetd (1M) Inetd(1M)

NAME
inetd - Internet services daemon

SYNOPSIS
inetd [-d 1 [-s 1 [configuration-file 1

DESCRIPTION
inetd. the Internet services daemon, is normally run at boot time by the Service
Access Facility (SAP). When started, inetd reads its configuration information
from configuration-file, the default being /etc/inetd.conf. See inetd.conf(4)
for more information on the format of this file. It listens for connections on the
Internet addresses of the services that its configuration file specifies. When a con­
nection is found, it invokes the server daemon specified by that configuration file
for the service requested. Once a server process exits, inetd continues to listen on
the socket.

The -s option allows you to run inetd "stand-alone," outside the Service Access
Facility (SAP).

Rather than having several daemon processes with sparsely distributed requests
each running concurrently, inetd reduces the load on the system by invoking
Internet servers only as they are needed.

inetd itself provides a number of simple TCP-based services. These include
echo, discard, chargen (character generator), daytime (human readable time),
and time (machine readable time, in the form of the number of seconds since
midnight, January I, 1900). For details of these services, consult the appropriate
RFC, as listed below, from the Network Information Center.

inetd rereads its configuration file whenever it receives a hangup signal, SIGHUP.
New services can be activated, and existing services deleted or modified in
between whenever the file is reread.

SEE ALSO

10/89

comsat(1M), ftpd(1M), rexecd(lM), rlogind(1M), rshd(1M), telnetd(1M),
tftpd(1M), inetd.conf(4).

Postel, Jon, ''Echo Protocol," RFC 862, Network Information Center, SRI Inter­
national, Menlo Park, Calif., May 1983.

Postel, Jon, ''Discard Protocol," RFC 863, Network Information Center, SRI
International, Menlo Park, Calif., May 1983.

Postel, Jon, "Character Generater Protocol," RFC 864, Network Information
Center,
SRI International, Menlo Park, Calif., May 1983.

Postel, Jon, ''Daytime Protocol," RFC 867, Network Information Center, SRI Inter­
national, Menlo Park, Calif., May 1983.

Postel, Jon, and Ken Harrenstien, ''rime Protocol," RFC 868, Network Informa­
tion Center, SRI International, Menlo Park, Calif., May 1983.

Page 1

keyserv(1M) keyserv (1 M)

NAME
keyserv - server for storing public and private keys

SYNOPSIS
keyserv [-n)

DESCRIPTION

FILES

keyserv is a daemon that is used for storing the private encryption keys of each
user logged into the system. These encryption keys are used for accessing secure
network services such as secure NFS.

Normally, root's key is read from the file lete/.rootkey when the daemon is
started. This is useful during power-fail reboots when no one is around to type a
password.

When the -n option is used, root's key is not read from lete/.rootkey. Instead,
keyserv prompts the user for the password to decrypt root's key stored in the
publiekey(4) database and then stores the decrypted key in letel .rootkey for
future use. This option is useful if the I etel . rootkey file ever gets out of date
or corrupted.

letc/.rootkey

SEE ALSO
publiekey(4).

10/89 Page 1

makedbm(1M) makedbm(1M)

NAME
makedbm - make a yP dbm file

SYNOPSIS
/u8r/sbin/makedbm [-1] [-8] [-i yp_inputJilel [-0 yp_output_name]

[-d yp _domain_name] [-m yp _master_name] infile outfile

makedbm [-u dbmfilename]

DESCRIPTION
The makedbm command takes infile and converts it to a pair of files in dbm(3) for­
mat, namely outfile. pag and outfile. dir. Each line of the input file is converted to
a single dbm record. All characters up to the first TAB or SPACE form the key, and
the rest of the line is the data. If a line ends with '\', then the data for that
record is continued on to the next line. It is left for the clients of the YP name
service to interpret 't'; makedbm does not itself treat it as a comment character.
infile can be '-', in which case the standard input is read.

makedbm is meant to be used in generating dbm files for the yP name service, and
it generates a special entry with the key yp Jast _modified, which is the date of infile
(or the current time, if infile is '-').

The following options are available:

-1 Lowercase. Convert the keys of the given map to lower case, so that host
name matches, for example, can work independent of upper or lower case
distinctions.

-8 Secure map. Accept connections from secure YP networks only.

-i yp _input Jile
Create a special entry with the key yp _input Jile.

-0 yp _output_name
Create a special entry with the key yp _output_name.

-d yp _domain_name
Create a special entry with the key yp _domain_name.

-In yp _master_name
Create a special entry with the key yp _master_name. If no master host
name is specified, yp _master_name will be set to the local host name.

-u dbmfilename
Undo a dbm file. That is, print out a dbm file one entry per line, with a
single space separating keys from values.

SEE ALSO
dbm(3)

10/89 Page 1

newkey(1M) newkey(1M)

NAME
newkey - create a new key in the publickey database

SYNOPSIS
newkey -h hostname

newkey -u username
DESCRIPTION

The newkey command is normally run by the network administrator on the
machine that contains the public1tey(4) database, to establish public keys for
users and privileged users on the network. These keys are needed when using
secure RPC or secure NFS.
newkey will prompt for a password for the given username or hostname and then
create a new public/secret key pair for the user or host in /etc/publickey,
encrypted with the given password.

The following options are available:

-h hostname Create a new public/secret key pair for the privileged user at the
given hostname. Prompts for a password for the given hostname.

-u username Create a new public/secret key pair for the given username.
Prompts for a password for the given username.

SEE ALSO
chkey(l), keylogin(l), keylogout(1), keyserv(lM), publickey(4)

10/89 Page 1

pmadm(1M) pmadm(1M)

NAME
pmaclm - port monitor administration

SYNOPSIS
pmaclm -a [-p pmtag I -t type] -s svctag -i id -In pmspecific

-v veT [-f xu] [-y comment] [-z script]

pmaclm -r -p pmtag -s svctag

pmaclm -e -p pmtag -s svctag

pmaclm -d -p pmtag -s svctag

pmaclm -1 [-t type I -p pmtag] [-s svctag]

pmaclm -L [-t type I -p pmtag] [-s svctag]

pmaclm -g -p pmtag -s svctag [-z script]

pmaclm -g -s svctag -t type -z script
DESCRIPTION

10/89

pmaclm is the administrative command for the lower level of the Service Access
Facility hierarchy, that is, for service administration. A port may have only one
service associated with it although the same service may be available through
more than one port. In order to uniquely identify an instance of a service the
pmaclm command must identify both the port monitor or port monitors through
which the service is available (-p or -t) and the service (-s). See the option
descriptions below.

pmaclm performs the following functions:

- add or remove a service
- enable or disable a service
- install or replace a per-service configuration script
'- print requested service information

Any user on the system may invoke pmaclm to request service status (-1 or -L) or
to print per-service configuration scripts (-g without the -z option). pmadm with
other options may be executed only by a privileged user.

The options have the f~llowing meanings:

-a Add a service. pmadm adds an entry for the new service to the port
monitor's administrative file. Because of the complexity of the options
and arguments that follow the -a option, it may be convenient to use a
command script or the menu system to add services. If you use the
menu system, enter sysadm ports, then choose the port_services
option.

-d Disable a service. Add x to the flag field in the entry for the service
svctag in the port monitor's administrative file. This is the entry used by
port monitor pmtag. See the -f option, below, for a description of the
flags available.

Page 1

pmadm(1M) pmadm(1M)

Page 2

-e Enable a service. Remove x from the flag field in the entry for the ser­
vice svctag in the port monitor administrative file. This is the entry used
by port monitor pmtag. See the -f option, below, for a description of the
flags available.

-f xu The -f option specifies one or both of the following two flags which are
then included in the flag field of the entry for the new service in the port
monitor's administrative file. If the -f option is not included, no flags
are set and the default conditions prevail. By default, a new service is
enabled and no utrrp entry is created for it. A -f option without a fol­
lowing argument is illegal.

x Do not enable the service svctag available through
port monitor pmtag.

u Create a utrrp entry for service svctag available through
port monitor pmtag.

-g Print, install, or replace a per-service configuration script. The -g option
with a -p option and a -s option prints the per-service configuration
script for service svctag available through port monitor pmtag. The-g
option with a -p option, a -s option, and a -z option installs the per­
service configuration script contained in the file script as the per-service
configuration script for service svctag available through port monitor
pmtag. The -g option with a -s option, a -t option, and a -z option
installs the file script as the per-service configuration script for service
svctag available through any port monitor of type type. Other combina­
tions of options with -g are invalid.

-i id id is the identity that is to be assigned to service svctag when it is
started. id must be an entry in / etc/passwd.

-1 The -1 option requests service information. Used by itself and with the
options described below it provides a filter for extracting information in
several different groupings.

-1 By itself, the -1 option lists all services on the system.

-1 -p pmtag Lists all services available through port monitor pmtag.
-1 -s svctag Lists all services with tag svctag.
-1 -p pmtag -s svctag

Lists service svctag.
-1 -t type Lists all services available through port monitors of type

type.
-1 -t type -s svctag

Lists all services with tag svctag available through a port
monitor of type type.

Other combinations of options with -1 are invalid.

10/89

pmadm(1M) pmadm(1M)

-L The -L option is identical to the -1 option except that output is printed
in a condensed format.

-m pmspecific
pmspecific is the port monitor-specific portion of the port monitor admin­
istrative file entry for the service.

-p pmtag
Specifies the tag associated with the port monitor through which a ser­
vice (specified as -s svctag) is available.

-r Remove a service. When pmadm removes a service, the entry for the ser­
vice is removed from the port monitor's administrative file.

-ssvctag
Specifies the service tag associated with a given service. The service tag
is assigned by the system administrator and is part of the entry for the
service in the port monitor's administrative file.

-t type Specifies the the port monitor type.

-v ver Specifies the version number of the port monitor administrative file. The
version number may be given as

-v 'pmspec -V'

where pmspec is the special administrative command for port monitor
pmtag. This special command is ttyadm for ttymon and nlsaclmin for
listen. The version stamp of the port monitor is known by the com­
mand and is returned when pmspec is invoked with a -V option.

-y comment

-z script

Associate comment with the service entry in the port monitor administra­
tive file.

Used with the -g option to specify the name of the file that contains the
per-service configuration script. Modifying a configuration script is a
three-step procedure. First a copy of the existing script is made (-g
alone). Then the copy is edited. Finally, the copy is put in place over
the existing script (-g with -z).

OUTPUT
If successful, pmadm will exit with a status of O. If it fails for any reason, it will
exit with a nonzero status.

Options that request information write the requested information to the standard
output. A request for information using the -1 option prints column headers and
aligns the information under the appropriate headings. In this format, a missing
field is indicated by a hyphen. A request for information in the condensed for­
mat using the -L option prints the information in colon-separated fields; missing
fields are indicated by two successive colons. t is the comment character.

EXAMPLES

10189

Add a service to a port monitor with tag pmtag. Give the service the tag svctag.
Port monitor-specific information is generated by specpm. The service defined by
svctag will be invoked with identity root.

Page 3

pmadm(1M) pmadm(1M)

FILES

pmadm -a -p pmtaq -s svctaq -i root -m 'specpm -a arql -b arq2' \
-v 'specpm -V'

Add a service with service tag svctaq, identity guest, and port monitor-specific
information generated by specpm to all port monitors of type type:

pmadm -a -s svctaq -i guest -t type -m 'specpm -a arql -b arq2' \
-v 'specpm -V'

Remove the service svctaq from port monitor pmtaq:

pmadm -r -p pmtaq -s svctaq

Enable the service svctaq available through port monitor pmtaq:

pmadm -e -p pmtaq -s svctaq

Disable the service svctaq available through port monitor pmtaq:

pmadm -d -p pmtaq -s svctaq

List status information for all services:

pmadm -1

List status information for all services available through the port monitor with tag
ports:

pmadm -1 -p ports

List the same information in condensed format:

pmadm -L -p ports

List status information for all services available through port monitors of type
listen:

pmadm -1 -t listen

Print the per-service configuration script associated with the service svctaq avail­
able through port monitor pmtaq:

pmadm -q -p pmtaq -s svctaq

/etc/saf/pmtag/ _confiq
/ etc/ saf/pmtag/ svctag
/var/ saf/pmtag/*

SEE ALSO
doconfiq(3n), sacadm(lM), sac(1M).

Page 4 10/89

rpcblnd(1M) rpcblnd(1M)

NAME
rpcbind - universal addresses to RPC program number mapper

SYNOPSIS
rpcbind

DESCRIPTION

NOTES

rpcbind is a server that converts RPC program numbers into universal addresses.
It must be running to make RPC calls.

When an RPC service is started, it will tell rpcbind at what address it is listen­
ing, and what RPC program numbers it is prepared to serve. When a client
wishes to make an RPC call to a given program number, it will first contact
rpcbind on the server machine to determine the address where RPC packets
should be sent.

Normally, standard RPC servers are started by port monitors, so rpcbind must
be started before port monitors are invoked.

rpcbind is restricted to users with appropriate privileges.

If rpcbind crashes, all RPC servers must be restarted.

SEE ALSO
rpcinfo(1 M).

10/89 Page 1

rpclnfo(1M) rpclnfo (1 M)

NAME
rpcinfo - report RPC information

SYNOPSIS
rpcinfo [host)
rpcinfo -p [host)
rpcinfo -T transport host program version
rpcinfo [-n portnum) -u host program version
rpcinfo [-n portnum) -t host program version
rpcinfo -a serv _address -T transport program [version)
rpcinfo -b [-T transport) program version
rpcinfo -d [-T transport) program version

DESCRIPTION

10/89

rpcinfo makes an RPC call to an RPC server and reports what it finds.

In the first synopsis, it . lists all the registered RPC services with rpcbind on host.
If host is not specified, it defaults to the local host.

In the second synopsis, it lists all the RPC services registered with portmapper.
Also note that the format of the information is different in the first and the
second synopsis; this is because in the first case, rpcbind (version 3) is contacted,
while in the second case portmap (version 2) is contacted for information.

The third synopsis makes an RPC call to procedure 0 of program and version on
the specified host and reports whether a response was received. transport is the
transport which has to be used for contacting the given service. The remote
address of the service is obtained by making a call to remote rpcbind.

The other ways of using rpcinfo are described below. See EXAMPLES.

The following options are available:

-T transport

-b

Specify the transport on which the service is reqUired. If this
option is not specified, rpcinfo uses the transport specified in
the NETPATH environment variable, or if that is unset or null, in
the netconfig database. This is a generic option, and can be used
in conjunction with any other option, except the -b option.

Use serv address as the (universal) address for the service on tran­
sport, to-ping procedure 0 of the specified program and report
whether a response was received. The use of -T option is
required with -a option.

If version number is not specified, rpcinfo tries to ping all the
available version numbers for that program number. This option
avoids calls to remote rpcbind to find the address of the service.
The serv _address is specified in universal address format of the
given transport.

Make an RPC broadcast to procedure 0 of the specified program
and version and report all hosts that respond. If transport is
specified, it broadcasts its request only on the transport specified
through transport. If broadcasting is not supported by any tran­
sport, an error message is printed. Only UDP transports support
broadcasting.

Page 1

rpclnfo (1 M)

-d

-n

-p

-t

-u

rpclnfo (1 M)

Delete registration for the RPC service of the specified program
and version. If transport is specified, unregister the service on
only that transport, otherwise unregister the services on all the
transports on which it was registered. This option can be exer­
cised only by the privileged user.

Use portnum as the port number for the -t and -u options
instead of the port number given by the portmapper. Use of this
option avoids a call to the remote portmapper to find out the
address of the service.

Probe the portmapper on host, and print a list of all registered
RPC programs. If host is not specified, it defaults to the local
host.

Make an RPC call to procedure 0 of program on the specified host
using TCP, and report whether a response was received.

Make an RPC call to procedure 0 of program on the specified host
using UDP, and report whether a response was received.

The program argument is a number.

If a version is specified, rpcinfo attempts to call that version of the specified pro­
gram. Otherwise, rpcinfo attempts to find all the registered version numbers for
the specified program by calling version 0, which is presumed not to exist; if it
does exist, rpcinfo attempts to obtain this information by calling an extremely
high version number instead, and attempts to call each registered version. Note:
the version number is required for -b and -d options.

EXAMPLES

Page 2

To show all of the RPC services registered on the local machine use:

$ rpcinfo

To show all of the RPC services registered with rpcbind on the machine named
klaxon use:

$ rpcinfo klaxon

To show if the RPC service with program number prog_no and version vers is
registered on the machine named klaxon for the transport tcp use:

$ rpcinfo -T tcp klaxon prog_ no vers
To show all of the RPC services registered with the portmapper on the local
machine use:

$ rpcinfo -p

To ping version 2 of rpcbind (program number 100000) on host sparky:

$ rpcinfo -t sparky 100000 2

10/89

rpclnfo (1 M) rpclnfo (1 M)

To delete the registration for version 1 of the walld (program number 100008)
service for all transports use:

t rpcinfo -d 100008 1

SEE ALSO
rpcbind(1M), rpc(4).

10/89 Page 3

rusersd (1 M)

NAME
rpc. rusersd - network usernarne server

SYNOPSIS
/usr/lib/netsvc/rusers/rpc.rusersd

DESCRIPTION

rusersd (1 M)

rusersd is a server that returns a list of users on the host. The rusersd daemon
may be started by inetd(lM) or listen(1M).

SEE ALSO
inetd(1M), listen(lM), pmadm(lM), sacadm(lM).

10/89 Page 1

rwall(1M) rwall(1M)

NAME
rwall - write to all users over a network

SYNOPSIS
/usr/sbin/rwall host name ...

DESCRIPTION

NOTES

rwall reads a message from standard input until EOF. It then sends this mes­
sage, preceded by the line:

Broadcast Message . . .

to all users logged in on the specified host machines.

A machine can only receive such a message if it is running rwalld(1M), which
may be started by inetd(1M) or listen(1M).

The timeout is fairly short to allow transmission to a large group of machines
(some of which may be down) in a reasonable amount of time. Thus the message
may not get through to a heavily loaded machine.

SEE ALSO
inetd(lM), listen(1M), pmadm(lM), rwalld(1M), sacadm(lM), wall(1)

10/89 Page 1

rwalld(1M}

NAME
rpc. rwalld - network rwall server

SYNOPSIS
/usr/lib/netsvc/rwall/rpc.rwalld

DESCRIPTION

rwalld(1M}

rwalld is a server that handles rwall(1M) requests. It is implemented by calling
wall(1M) on all the appropriate network machines. The rwalld daemon may be
started by inetd(1M) or listen(1M).

SEE ALSO
inetd(1M), listen(1M), rwall(1M), wall(1M).

10/89 Page 1

sac(1M) sac(1M)

NAME
sac - service access controller

SYNOPSIS
sac -t sanity_interval

DESCRIPTION

10/89

The Service Access Controller (SAC) is the overseer of the server machine. It is
started when the server machine enters multiuser mode. The SAC performs
several important functions as explained below.

Customizing the SAC environment. When sac is invoked, it first looks for the per­
system configuration script /etc/saf/ _sysconfig. sac interprets _sysconfig
to customize its own environment. The modifications made to the SAC environ­
ment by _ sysconfig are inherited by all the children of the SAC. This inherited
environment may be modified by the children.

Starting port monitors. After it has interpreted the _sysconfig file, the sac reads
its administrative file /etc/saf/ _sactab. _sactab specifies which port monitors
are to be started. For each port monitor to be started, sac forks a child [fork(2)]
and creates a utrrp entry with the type field set to LOGIN_PROCESS. Each child
then interprets its per-port monitor configuration script
/etc/saf/pmtag/ _config, if the file exists. These modifications to the environ­
ment affect the port monitor and will be inherited by all its children. Finally, the
child process execs the port monitor, using the command found in the _ sactab
entry. (See sacadm; this is the command given with the -c option when the port
monitor is added to the system.)

Polling port monitors to detect failure. The -t option sets the frequency with which
sac polls the port monitors on the system. This time may also be thought of as
half of the maximum latency required to detect that a port monitor has failed and
that recovery action is necessary.

Administrative functions. The Service Access Controller represents the administra­
tive point of control for port monitors. Its administrative tasks are explained
below.

When queried (sacadm with either -lor -L), the Service Access Controller
returns the status of the port monitors specified, which sacadm prints on the stan­
dard output. A port monitor may be in one of six states:

ENABLED

DISABLED

STARTING

FAILED

The port monitor is currently running and is accepting connec­
tions. See sacadm(lM) with the -e option.

The port monitor is currently running and is not accepting con­
nections. See sacadm with the -d option, and see NOTRUNNING,
below.

The port monitor is in the process of starting up. STARTING is
an intermediate state on the way to ENABLED or DISABLED.

The port monitor was unable to start and remain running.

Page 1

saC(1M) sac(1M)

STOPPING The port monitor has been manually terminated but has not
completed its shutdown procedure. STOPPING is an intermedi­
ate state on the way to NOTRUNNING.

NOTRUNNING The port monitor is not currently running. (See sacadm with
-k.) This is the normal "not running" state. When a port mon­
itor is killed, all ports it was monitoring are inaccessible. It is
not possible for an external user to tell whether a port is not
being monitored or the system is down. If the port monitor is
not killed but is in the DISABLED state, it may be possible
(depending on the port monitor being used) to write a message
on the inaccessible port telling the user who is trying to access
the port that it is disabled. This is the advantage of having a
DISABLED state as well as the NOTRUNNING state.

When a port monitor terminates, the SAC removes the utrrp entry for that port
monitor.

The SAC receives all requests to enable, disable, start, or stop port monitors and
takes the appropriate action.

The SAC is responsible for restarting port monitors that terminate. Whether or
not the SAC will restart a given port monitor depends on two things:

- the restart count specified for the port monitor when the port monitor
was added by sacadm; this information is included in
/ ete/ saf/pmtag/ _ saetab

- the number of times the port monitor has already been restarted

SEE ALSO

FILES

Page 2

sacadll(lM), prnadll(lM).

/ete/saf/ sactab
/ete/saf/-sysoonfiq
/var/adm/utnp
/var/saf/_loq

10189

sacadm{1M) sacadm{1M)

NAME
sacaclm - service access controller administration

SYNOPSIS
sacaclm -a -p pmtag -t type -c cmll -v ver [-f dx] [-n count] \

[-y comment] [-z script]

sacaclm -r -p pmtag

sacaclm -s -p pmtag

sacaclm -k -p pmtag

sacaclm -e -p pmtag

sacaclm -d -p pmtag

sacaclm -1 [-p pmtag I -t type]

sacaclm -L [-p pmtag I -t type]

sacaclm -9 -p pmtag {-z script]
,

sacaclm -G [-:I: script]

sacaclm -x [-p pmtag]
DESCRIPTION

10/89

sacaclm is the administrative command for the upper level of the Service Access
Facility hierarchy, that is, for port monitor administration. sacadm performs the
following functions:

- adds or removes a port monitor
- starts or stops a port monitor
- enables or disables a port monitor
- installs or replaces a per-system configuration script
- installs or replaces a per-port monitor configuration script
- prints request~ port monitor information

. ~

Requests about the status of port monitors (-1 and -L) and requests to print per­
port monitor and per-system configuration scripts (-g and -G without the -:-Z
option) may be executed by any user on the system. Other saccldm commands
may be executed only by a privileged user.

The options have the following meanings:

-a Add a port monitor. When adding a port monitor, sacadm creates the
supporting directory structure in /etc/saf and /var/pf and adds an
entry for the new port monitor to / etc/ saf/_ sactab. The file _ sactab
already exists on the delivered system. Initially, it is empty except for a
single line, which contains the version number of the Service Access
Controller.

Unless the command line that adds the new port monitor includes a -f
option with the argument x. the new port monitor will be started.
Because of the complexity of the options and arguments that follow the
-a option, it may be convenient to use a command script or the menu

Page 1

sacadm (1 M) sacadm (1 M)

Page 2

system to add port monitors. If you use the menu system, enter sysadm
ports and then choose the port_monitors option.

-c and Execute the command string and to start a port monitor. The -c option
may be used only with a -a. A -a option requires a -c.

-d Disable the port monitor pmtag.
-e Enable the port monitor pmtag.
-f dx The -f option specifies one or both of the following two flags which are

then included in the flags field of the _sactab entry for the new port
monitor. If the -f option is not included on the command line, no flags
are set and the default conditions prevail. By defaUlt, a port monitor is
started. A -f option with no following argument is illegal.

d Do not enable the new port monitor.
x Do not start the new port monitor.

The -q option is used to request output or to install or replace the per­
port monitor configuration script /etc/saf/pmtag/ _confiq. -q requires
a -p option. The -q option with only a -p option prints the per-port
monitor configuration script for port monitor pmtag. The -q option with
a -p option and a -z option installs the file script as the per-port moni­
tor configuration script for port monitor pmtag. Other combinations of
options with -q are invalid.

-G The -G option is used to request output or to install or replace the per­
system configuration script /eto/saf/ _sysconfiq. The -G option by
itself prints the per-system configuration script. The -G option in combi­
nation with a -z option installs the file script as the per-system
configuration script. Other combinations of options with a -G option are
invalid.

-k Stop port monitor pmtag.
-1 The -1 option is used to request port monitor information. The -1 by

itself lists all port monitors on the system. The -1 option in combination
with the -p option lists only the port monitor specified by pmtag. A-1
in combination with the -t option lists all port monitors of type type.
Any other combination of options with the -1 option is invalid.

-L The -L option is identical to the -1 option except that the output
appears in a condensed format.

-n count
Set the restart count to count. If a restart count is not specified, count is
set to O. A count of 0 indicates that the port monitor is not to be res­
tarted if it fails.

-ppmtag
Specifies the tag associated with a port monitor.

10/89

sacadm(1M) sacadm(1M)

-r Remove port monitor pmtag. sacadm removes the port monitor entry
from /etc/saf/_sactab. If the removed port monitor is not running,
then no further action is taken. If the removed port monitor is running,
the Service Access Controller (SAC) sends it SIGTERM to indicate that it
should shut down. Note that the port monitor's directory structure
remains intact.

-s Start a port monitor. The SAC starts the port monitor pmtag.

-t type Specifies the port monitor type.

-v ver Specifies the version number of the port monitor. This version number
may be given as

-v 'pmspec -v'
where pmspec is the special administrative command for port monitor
pmtag. This special command is ttyadm for ttym:>n and n1sadmin for
listen. The version stamp of the port monitor is known by the com­
mand and is returned when pmspec is invoked with a -v option.

-x The -x option by itself tells the SAC to read its database file Csactab).
The -x option with the -p option tells port monitor pmtag to read its
administrative file.

-ycomment
Include comment in the _ sactab entry for port monitor pmtag.

-z script
Used with the -q and -G options to specify the name of a file that con­
tains a configuration script. With the -9 option, script is a per-port
monitor configuration script; with -G it is a per-system configuration
script. Modifying a configuration script is a three-step procedure. First
a copy of the existing script is made (-q or -G). Then the copy is edited.
Finally, the copy is put in place over the existing script (-9 or -G with
-z).

OUTPUT
If successful, sacadm will exit with a status of O. If sacadm fails for any reason, it
will exit with a nonzero status. Options that request information will write the
information on the standard output. In the condensed format (-L), port monitor
information is printed as a sequence of colon-separated fields; empty fields are
indicated by two successive colons. The standard format (-1) prints a header
identifying the columns, and port monitor information is aligned under the
appropriate headings. In this format, an empty field is indicated by a hyphen.
The comment character is J.

EXAMPLES

10/89

The following command line adds a port monitor. The port monitor tag is
npack; its type is listen; if necessary, it will restart three times before failing; its
administrative command is n1sadmin; and the configuration script to be read is
in the file script:

sacadm -a -p npack -t listen -c /usr/1ib/saf/1isten npack \
-v 'n1sadmin -V' -n 3 -z script

Page 3

sacadm(1M) sacadm(1M)

Remove a port monitor whose tag is pmtag:

sacadm -r -p pmtag

Start the port monitor whose tag is pmtag:

sacadm -s -p pmtag

Stop the port monitor whose tag is pmtag:

saeadm -k -p pmtag

Enable the port monitor whose tag is pmtag:

sacadm -e -p pmtag

Disable the port monitor whose tag is pmtag:

sacadm -d -p pmtag

List status information for all port monitors:

sacadm-1

List status information for the port monitor whose tag is pmtag:

sacadm -1 -p pmtag

List the same information in condensed format:

sacadm -L -p pmtag

List status information for all port monitors whose type is listen:

saeadm -1 -t listen

Replace the per-port monitor configuration script associated with the port moni­
tor whose tag is pmtag with the contents of the file file. con fig:

saeadm -g -p pmtag -z file. eonfig

SEE ALSO

FILES

Page 4

doconfig(3N), pmadm(lM), sae(1M).

/ete/saf/ saetab
/ete/saf/-syseonfig
/ ete/ safipmtag/ _ con fig

10/89

spray(1M) spray(1M)

NAME
spray - spray packets

SYNOPSIS
/usr/sbin/spray [-c count] [-d delay] [-1 length] [-t nettype host]

DESCRIPTION
spray sends a one-way stream of packets to host using RPC, and reports how
many were received, as well as the the transfer rate. The host argument can be
either a name or an Internet address.

The following options are available:

-c count Specify how many packets to send. The default value of count is

-ddelay

-1 length

-t nettype

the number of packets required to make the total stream size
100000 bytes.

Specify how many microseconds to pause between sending each
packet. The default is O.

The length parameter is the numbers of bytes in the Ethernet
packet that holds the RPC call message. Since the data is
encoded using XDR, and XDR only deals with 32 bit quantities,
not all values of length are possible, and spray rounds up to the
nearest possible value. When length is greater than 1514, then the
RPC call can no longer be encapsulated in one Ethernet packet, so
the length field no longer has a simple correspondence to Ether­
net packet size. The default value of length is 86 bytes (the size
of the RPC and UDP headers).

Specify c1as of transports. Defaults to netpath. See rpc(3N) for
a description of supported classes.

SEE ALSO
sprayd(lM), rpc(3N)

10/89 Page 1

sprayd(1M)

NAME
:tpC. sprayd - spray server

SYNOPSIS
/usr/lib/netsvc/spray/:tpC.sprayd

DESCRIPTION

sprayd(1M)

:tpC. sprayd is a server which records the packets sent by spray(lM). The
:tpC. sprayd daemon may be started by inetd(1M) or listen(1M).

SEE ALSO
inetd(lM) listen(1M), pmadll(lM), sacadll(lM), spray(lM)

10/89 Page 1

yplnlt(1M) yplnlt(1M)

NAME
ypinit - build and install yP database

SYNOPSIS
/usr/sbin/ypinit -c
/usr/sbin/ypinit -m
/usr/sbin/ypinit -s master-name

DESCRIPTION
ypinit sets up a yP name service database on a yP server. It can be used to set
up a master or a slave server, or a client system. You must be the privileged user
to run it. It asks a few, self-explanatory questions, and reports success or failure
to the terminal.

It sets up a master server using the simple model in which that server is master
to all maps in the data base. This is the way to bootstrap the yP system; later if
you want you can change the association of maps to masters.

All databases are built from scratch, either from information available to the pro­
gram at runtime, or from the ASOI data base files in / etc. These files should be
in their traditional form, rather than the abbreviated form used on client
machines.

A YP database on a slave server is set up by copying an existing database from a
running server. The master-name argument should be the hbstname of a yP server
(either the master server for all the maps, or a server on which the data base is
up-to-date and stable).

To set up a client, ypinit prompts for a list of yP servers to bind the client to, this
list should be ordered from closest to farthest server.

Read ypfiles(4) and ypserv(1M) for an overview of the yP name service.

The following options are available:

-c Set up a client system.

-m Indicate that the local host is to be the yP master.

-s master-name
Set up a slave database.

SEE ALSO
makedbm(lM), ypmake(lM), yppush(1M), ypserv(lM), ypxfr(1M), ypfiles(4)

FILES
/var/yp/binding/domainname/ypservers

10/89 Page 1

ypmake(1M) ypmake(1M)

NAME
ypmake - rebuild yP database

SYNOPSIS
cd /var/yp ; make [map 1

DESCRIPTION

FILES

The file called Makefile in /var/yp is used by make to build the yP name ser­
vice database. With no arguments, make creates dbm databases for any Yr maps
that are out-of-date, and then executes yppush(1M) to notify slave databases that
there has been a change.

If map is supplied on the command line, make will update that map only.

There are three special variables used by make: DIR, which gives the directory of
the source files; NOPUSH, which when non-null inhibits doing a yppush of the
new database files; and DOM, used to construct a domain other than the master's
default domain. The default for DIR is /ete, and the default for NOPUSH is the
null string.

ypmake also creates an entry in /var/yp/aliases.
Refer to ypfiles(4) and ypserv(lM) for an overview of the Yr.

/var/yp

SEE ALSO
make(1), makedl:xn(lM), yppush(1M), ypserv(lM), ypfiles(4)

10/89 Page 1

yppoll(1M) yppoll(1M}

NAME
yppoll - return current version of a yP map at a yP server host

SYNOPSIS
/usr/sbin/yppoll [-d ypdomain] [-h host] mapname

DESCRIPTION
The yppoll command asks a ypserv(lM) process what the order number is, and
which host is the master yP server for the named map.

The following options are available:

-dypdomain

-h host
Use ypdomain instead of the default domain.

Ask the ypserv process at host about the map parameters. If host is not
specified, the yP server for the local host is used. That is, the default host
is the one returned byypwhich(1).

SEE ALSO
ypserv(lM), ypwhich(l), ypfiles(4)

10/89 Page 1

yppush{1M) yppush{1M)

NAME
yppush - force propagation of a changed yP map

SYNOPSIS
/usrlsbin/yppush [-v] [-d ypdomain] mapname

DESCRIPTION

FILES

yppush copies a new version of a yP name service map from the master YP
server to the slave yP servers. It is normally run only on the master yP server by
the Makefilein /var/yp after the mastEn' databases are changed. It first con­
structs a list of yP server hosts by reading the yP map ypservers within the
ypdomain, or if the map is not set up, the local file is used. Keys within the map
ypservers are the ASCII names of the machines on which the yP servers run.

A transfer map request is sent to the yP server at each host, along with the infor­
mation needed by the transfer agent (the program which actually moves the map)
to call back the yppush . When the attempt has completed (successfully or not),
and the transfer agent has sent yppush a status message, the results may be
printed to stdout. Messages are also printed when a transfer is not possible; for
instance when the request message is undeliverable, or when the timeout period
on responses has expired.

Refer to ypfiles(4) and ypserv(lM) for an overview of the yP name service.

The following optionas are available:

-v Verbose. Print messages when each server is called, and for each
response. If this flag is omitted, only error messages are printed.

-dypdomain
Specify a ypdomain other than the default domain.

/var/yp/ypdomain/ypservers. {dir, pag}
/var/yp

local file

SEE ALSO
ypserv(lM), ypxfr(lM), ypfiles(4)

10/89 Page 1

ypserv(1M) ypserv(1M)

NAME
ypserv, ypbind - yP server and binder processes

SYNOPSIS
/usr/lib/netsvc/yp/ypserv

/usr/lib/netsvc/yp/ypbind [-ypset I -ypsetme I
DESCRIPTION

10/89

The yP provides a simple network lookup service consisting of databases and
processes. The databases are dbm(3) files in a directory tree rooted at /var/yp.
These files are described in ypfiles(4). The processes are /usr/sbin/ypserv,
the yP database lookup server, and /usr/sbin/ypbind, the YP binder. The pro­
grammatic interface to yP is described in ypclnt(3N). Administrative tools are
described in yppush(1M), ypxfr(1M), yppol1(1M), ypwhich(1), and ypset(lM).
Tools to see the contents of yP maps are described in ypcat(1), and ypmatch(1).
Database generation and maintenance tools are described in ypinit(1M),
ypmake(1M), and makedbn(lM).

Both ypserv and ypbind are daemon processes typically activated at system
startup time from /etc/rc.local. ypserv runs only on yP server machines with
a complete YP database. ypbind runs on all machines using yP services, both YP
servers and clients.

The ypserv daemon's primary function is to look up information in its local data­
base of yP maps. Communication to and from ypserv is by means of RPC calls.
Lookup functions are described in ypclnt(3N), and are supplied as C-callable
functions in the YP library. There are four lookup functions, all of which are per­
formed on a specified map within some yP domain: Match, "GetJirst", "Get_next",
and "Get_all". The Match operation takes a key, and returns the associated value.
The "Get Jirst" operation returns the first key-value pair from the map, and
"Get_next" can be used to enumerate the remainder. "Get_all" ships the entire
map to the requester as the response to a single RPC request.

Two other functions supply information about the map, rather than map entries:
"Get order number", and "Get master name". In fact, both order number and mas­
ter name exist in the map as -key-value pairs, but the server will not return either
through the normal lookup functions. If you examine the map with
makedbmOM), however, they will be visible.

The function of ypbind is to remember information that lets client processes on a
single node communicate with some ypserv process. ypbind must run on every
machine which has YP client processes; ypserv mayor may not be running on
the same node, but must be running somewhere on the network.

The information ypbind remembers is called a binding - the association of a
domain name with a yP server.

The process of binding is driven by client requests. As a request for an unbound
domain comes in, the ypbind process steps through the ypservers list (last entry
first) trying to find a ypserv process that serves maps within that domain. There
must be a ypserv process on at least one of the hosts in the ypservers file.
Once a domain is bound by a particular ypbind, that same binding is given to
every client process on the node. The ypbind process on the local node or a
remote node may be queried for the binding of a particular domain by using the

Page 1

ypserv(1M) ypserv(1M)

FILES

ypwhich(1) command.

If ypbind is unable to speak to the ypserv process it is bound to, it marks the
domain as unbound, tells the client process that the domain is unbound, and tries
to bind the domain once again. Requests received for an unbound domain will
wait until the domain requested is bound. In general, a bound domain is marked
as unbound when the node running ypserv crashes or gets overloaded. In such
a case, ypbind will to bind another yP server listed in
/var/yp/bindinq/domainname/ypservers.

ypbind also accepts requests to set its binding for a particular domain. The
request is usually generated by the yP subsystem itself. ypset(lM) is a command
to access the "Set_domain" facility. Note: the Set Domain procedure only accepts
requests from processes running as root, ant the -ypset or -ypsetme flags must
have been set for ypbind.

The following options are available for the ypbind command only:

-ypset Allow any user to call ypset(1M). By default, no one can call
ypset(lM).

-ypsetme Only allow root on local machines to call ypset(lM). By default,
no one can call ypset(1M).

If the file /var/yp/ypserv . log exists when ypserv starts up, log information
will be written to this file when error conditions arise.
/var/yp
/var/yp/bindinq/ypdomain/ypservers

SEE ALSO

NOTES

Page 2

malcedbm(lM), ypcat(1), ypinit(lM), ypmake(1M), ypmatch(1), yppoll(1M),
yppush(lM), ypset(1M), ypwhich(l), ypxfr(1M), cIblI(3X), ypclnt(3N),
ypfiles(4)

Both ypbind and ypserv support multiple domains. The ypserv process deter­
mines the domains it serves by looking for directories of the same name in the
directory /var/yp. Additionally, the ypbind process can maintain bindings to
several domains and their servers.

10/89

ypset(1M) ypset(1M)

NAME
ypset - point ypbind at a particular server

SYNOPSIS
/usr/sbin/ypset [-d ypdomain 1 [-h host 1 server

DESCRIPTION
In order to run ypset, ypbind must be initiated with the -ypset or -ypset.me
options. See ypserv(lM). ypset tells ypibind to get yP services for the specified
ypdomain from the ypserv process running on server. If server is down, or is not
running ypserv, this is not discovered until a yP client process tries to get a bind­
ing for the domain. At this point, the binding set by ypset will be tested by
ypbind. If the binding is invalid, ypbind will attempt to rebind for the same
domain.

ypset is useful for binding a client node which is not on a broadcast net, or is on
a broadcast net which is not running a YP server host. It also is useful for debug­
ging yP client applications, for instance where a yP map only exists at a single YP
server host.

In cases where several hosts on the local net are supplying yP services, it is possi­
ble for ypbind to rebind to another host even while you attempt to find out if the
ypset operation succeeded. For example, you can type:

% ypset hostl
% ypwhich
host2

which can be confusing. This is a function of the yP subsystem's attempt to
load-balance among the available YP servers, and occurs when host1 does not
respond to ypbind because it is not running ypserv (or is overloaded), and host2,
running ypserv, gets the binding.

server indicates the yP server to bind to, and must be specified as a name. This
will work only if the node has a current valid binding for the domain in question,
and ypbind has been set to allow use of ypset. In most cases, server should be
specified as an IP address.

ypset tries to bind ypibind over a datagram transport first. Datagram Transports
are recommended for higher performance. The yP library calls, yp_enum(),
yp _all (), yp _next (), and yp _first () use circuit transports regardless of the
main transport being used.

Refer to ypfiles(4) and ypserv(lM) for an overview of the yP name service.

The following options are available:

-h host Set ypbind's binding on host, instead of locally. host must be
specified as a name.

-d ypdomain Use ypdomain , instead of the default domain.

SEE ALSO
ypserv(1M), ypwhich(1), ypfiles(4)

10/89 Page 1

ypupdated(1M) ypupdated(1M)

NAME
ypupdated - server for changing YP information

SYNOPSIS
/usr/lib/netsvc/yp/ypupdated [-is I

DESCRIPTION

FILES

ypupdated is a daemon that updates information in the yP name service, nor­
mally started up by inetd(1M). ypupdated consults the file updaters(4) in the
directory /var/yp to determine which yP maps should be updated and how to
change them.

By default, the daemon requires the most secure method of authentication avail­
able to it, either DES (secure) or UNIX (insecure).

The following options are available:

-i Accept RPC calls with the insecure AUTH_UNIX credentials. This allows
programmatic updating of yP maps in all networks.

-s Only accept calls authenticated using the secure RPC mechanism
(AUTH_DES authentication). This disables programmatic updating of yP
maps unless the network supports these calls.

/var/yp/updaters

SEE ALSO
inetd(1M), keyserv(lM), updaters(4)

10/89 Page 1

ypxfr(1M) ypxfr(1M)

NAME
ypxfr - transfer yP map from a yP server to host

SYNOPSIS
/usr/sbin/ypxfr [-c 1 [-f 1 [-d ypdomain 1 [-h host 1 [-s ypdomain 1

[-c tid prog server 1 mapname
DESCRIPTION

10/89

The ypxfr command moves a yP map in the default domain for the local host to
the local host by making use of normal yP services. It creates a temporary map
in the directory /var/yp/ypdomain (this directory must already exist; ypdomain is
the default domain for the local host), fills it by enumerating the map's entries,
fetches the map parameters (master and order number), and loads them. It then
deletes any old versions of the map and moves the temporary map to the real
mapname.

If run interactively, ypxfr writes its output to the terminal. However, if it is
started without a controlling terminal, and if the log file /var/yp/ypxfr . log
exists, it appends all its output to that file. Since ypxfr is most often run from the
privileged user's crontab file, or by ypserv, the log file can be used to retain a
record of what was attempted, and what the results were.

For consistency between servers, ypxfr should be run periodically for every map
in the yP data base. Different maps change at different rates: a map may not
change for months at a time, for instance, and may therefore be checked only
once a day. Some maps may change several times per day. In such a case, you
may want to check hourly for updates. A crontab(l) entry can be used to per­
form periodic updates automatically. Rather than having a separate crontab
entry for each map, you can group comands to update several maps in a shell
script. Examples (mnemonically named) are in /usr/sbin/yp: ypxfr_lperday,
and ypxfr_lperhour. They can serve as reasonable first cuts.

Refer to ypfiles(4) and ypserv(1M) for an overview of the yP name service.

The following options are available:

-c Do not send a Gear current map request to the local ypserv process. Use
this flag if ypserv is not running locally at the time you are running
ypxfr. Otherwise, ypxfr complains that it cannot talk to the local
ypserv, and the transfer fails.

-f Force the transfer to occur even if the version at the master is not more
recent than the local version.

-c tid prog server
This option is only for use by ypserv. When ypserv starts ypxfr, it
specifies that ypxfr should call back a yppush process at the host server,
registered as program number prog, and waiting for a response to transac­
tion tid.

-dypdomain
Specify a domain other than the default domain.

Page 1

ypXfr(1M) ypxfr(1M)

FILES

-h host
Get the map from host, regardless of what the map says the master is. If
host is not specified, ypxfr asks the yP service for the name of the master,
and try to get the map from there. host must be a name.

-8 ypdo11l4in
Specify a source domain from which to transfer a map that should be the
same across domains.

/var/yp/~r.loq

/u8r/sbin/yp/yp~r_lperday

/usr/sbin/yp/ypxfr_lperhour

/var/yp/ypdonunn

/u8r/spool/cron/crontabs/root

log file

script to run one transfer per day, for use
with cron(lM)

script for hourly transfers of volatile maps

yP domain

privileged user's crontab file

SEE ALSO
cron(lM), crontab(l), ypserv(lM), yppush(lM), ypfiles(4)

Page 2 10/89

dbm(3) dbm(3)

NAME
dbm, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey­
database subroutines

SYNOPSIS
tinclude <dbm.h>
typedef struct {
char *dptr;
int dsize;
} datum;
dbminit (file)
char *file;
dbmclose()
datum fetch (key)
datum key;
store (key, content)
datum key, content;
delete (key)
datum key;
datum firstkey ()
datum nextkey(key)
datum key;

DESCRIPTION

10189

These functions maintain key/content pairs in a database. The functions will
handle very large (a billion blocks) databases and will access a keyed item in one
or two file system accesses. The functions are obtained with the loader option
-lyp.

keys and contents are described by the datum typedef. A datum specifies a string
of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASO!
strings, are allowed. The database is stored in two files. One file is a directory
containing a bit map and has . dir as its suffix. The second file contains all data
and has . pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file. dir and file. pag must exist. An empty database is created
by creating zero-length . dir and . pag files.

A database may be closed by calling dbmclose. You must close a database
before opening a new one.

Once open, the data stored under a key is accessed by fetch () and data is
placed under a key by store. A key (and its associated contents) is deleted by
delete. A linear pass through all keys in a database may be made, in an
(apparently) random order, by use of firstkey() andnextkey. firstkey()
will return the first key in the database. With any key nextkey () will return the
next key in the database. This code will traverse the database:

for (key = firstkey(); key.dptr != NULL; key - nextkey(key»

Page 1

dbm(3} dbm(3}

RETURN VALUE

NOTES

FILES

Page 2

All functions that return an int indicate errors with negative values. A zero
return indicates no error. Routines that return a datum indicate errors with a
NULL (0) dptr.

The . pag file will contain holes so that its apparent size is about four times its
actual cont~nt. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal
means (cp(1), cat(1), tar(1), ar(1» without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is
changed by supsequent calls.

The lium of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit
on a single block. store () will retllm an error in the event that a disk block fills
with inseparable data.

delete () does not physically reclaim file space, although it does make it avail­
able for reuse.

The order of keys presented by firstkey () and nextkey () depends on a hash­
ing function, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

/usr/lib/libyp.a

10/89

select (3C) select (3C)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
'include <sys/time.h>
'include <sys/types.h>

select (nfds, readfds, writefds, execptfds, timeout)
int nfdsi
fd set *readfds, *writefds, *execptfdsi
strect timeval *timeouti

FD SET(fd, &fdset)i
FD:CLR(fd, &fdset)i
FD_ISSET(fd, &fdset)i
FD ZERO(&fdset)i
int fdi
fd_set fdseti

DESCRIPTION
select examines the I/O descriptor sets whose addresses are passed in readfds,
writefds, and execptfds to see if any of their descriptors are ready for reading, are
ready for writing, or have an exceptional condition pending, respectively. nfds is
the number of bits to be checked in each bit mask that represents a file descriptor;
the descriptors from 0 to -1 in the descriptor sets are examined. On return,
select replaces the given descriptor sets with subsets consisting of those descrip­
tors that are ready for the requested operation. The return value from the call to
select 0 is the number of ready descriptors.

The descriptor sets are stored as bit fields in arrays of integers. The following
macros are provided for manipulating such descriptor sets: FD_ZERO(&fdset) ini­
tializes a descriptor set fdset to the null set. FD _SET (fd, &fdset) includes a partic­
ular descriptor fd in fdset. FD_CLR<fd, &fdset) removes fd from fdset.
FD _ ISSET (fd, &fdset) is nonzero if fd is a member of fdset, zero otherwise. The
behavior of these macros is undefined if a descriptor value is less than zero or
greater than or equal to FD_SETSIZE. FD_SETSIZE is a constant defined in
sys/ select. h and is normally at least equal to the maximum number of descrip­
tors supported by the system.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a NULL pointer, the select blocks indefinitely.
To affect a poll, the timeout argument should be a non-NULL pointer, pointing to
a zero-valued timeval structure.

Any of readfds, writefds, and execptfds may be given as NULL pointers if no
descriptors are of interest.

RETURN VALUE

10/89

select returns the number of ready descriptors contained in the descriptor sets
or -1 if an error occurred. If the time limit expires, then select returns O.

Page 1

select (3C) select (3C)

ERRORS
An error return from select indicates:

EBADF

EINTR

EINVAL

One of the I/O descriptor sets specified an invalid I/O descriptor.

A signal was delivered before any of the selected events
occurred, or the time limit expired.

A component of the pointed-to time limit is outside the accept­
able range: t sec must be between 0 and 108, inclusive. t usee
must be greater-than or equal to 0, and less than 106• -

SEE ALSO

NOTES

Page 2

poll(2), read(2), write(2)

The default value for FD_SETSIZE (currently 1024) is larger than the default limit
on the number of open files. In order to accommodate programs that may use a
larger number of open files with select, it is possible to increase this size within
a program by providing a larger definition of FD_SETSIZE before the inclusion of
<sys/types. h>.

In future versions of the system, select may return the time remaining from the
original timeout, if any, by modifying the time value in place. It is thus unwise
to assume that the timeout value will be unmodified by the select call.

The descriptor sets are always modified on return, even if the call returns as the
result of a timeout.

10/89

accept (3N) accept (3N)

NAME
accept - accept a connection on a socket

SYNOPSIS
'include <sys/types.h>
'include <sys/socket.h>
ns - accept(s, addr, addrlen)
int ns, s;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION
The argument s is a socket that has been created with socket(3N) and bound to
an address with bind(3N), and that is listening for connections after a call to
listen(3N). accept() extracts the first connection on the queue of pending con­
nections, creates a new socket with the properties of s, and allocates a new file
descriptor, ns, for the socket. If no pending connections are present on the queue
and the socket is not marked as non-blocking, acceptO blocks the caller until a
connection is present. If the socket is marked as non-blocking and no pending
connections are present on the queue, accept() returns an error as described
below. accept() uses the netconfig(4) file to determine the STREAMS device file
name associated with s. This is the device on which the connect indication will be
accepted. The accepted socket, ns, is used to read and write data to and from the
socket that connected to ns; it is not used to accept more connections. The origi­
nal socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is IDled in with the address of the
connecting entity as it is known to the communications layer. The exact format
of the addr parameter is determined by the domain in which the communication
occurs.

addr1en is a value-result parameter. Initially, it contains the amount of space
pointed to by addr; on return it contains the length in bytes of the address
returned.

accept() is used with connection-based socket types, currently with
SOCK_STRDM.

It is possible to select(3N) a socket for the purpose of an accept() by selecting
it for read. However, this will only indicate when a connect indication is pend­
ing; it is still necessary to call accept().

RETURN VALUE
acceptO returns -1 on error. If it succeeds, it returns a non-negative integer that
is a descriptor for the accepted socket.

ERRORS

10/89

accept() will fail if:

EBADF
ENOTSOCK

The descriptor is invalid.

The descriptor does not reference a socket.

Page 1

accept (3N)

EOPNOTSUPP
EWOULDBLOCK

EPROTO

ENODEV

ENOMEM

ENOSR

SEE ALSO

accept (3N)

The referenced socket is not of type SOCK_STREAM.

The socket is marked as non-blocking and no connections
are present to be accepted.

A protocol error has occurred; for example, the STREAMS
protocol stack has not been initialized.

The protocol family and type corresponding to s could not
be found in the netconfiq file.

There was insufficient user memory available to complete
the operation.

There were insufficient STREAMS resources available to
complete the operation.

bind(3N), connect(3N), listen(3N), socket(3N), netconfig(4).

Page 2 10/89

bind (3N) blnd(3N)

NAME
bind - bind a name to a socket

SYNOPSIS
'include <sys/types.h>
'include <sys/socket.h>

bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION

NOTES

bind() assigns a name to an unnamed socket. When a socket is created with
socket(3N), it exists in a name space (address family) but has no name assigned.
bind() requests that the name pointed to by name be assigned to the socket.

Binding a name in the UNIX domain creates a socket in the file system that must
be deleted by the caller when it is no longer needed (using unlink(2».

The rules used in name binding vary between communication domains.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS

10/89

The bind() call will fail if:

EBADF

ENOTSOCK
EADDRNOTAVAIL

EADDRlNUSE

EINVAL

EINVAL

EACCES

ENOSR

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

The specified address is not available on the local machine.

The specified address is already in use.

namelen is not the size of a valid address for the specified
address family.

The socket is already bound to an address.

The requested address is protected and the current user has
inadequate permission to access it.

There were insufficient STREAMS resources for the operation
to complete.

The following errors are specific to binding names in the UNIX domain:

ENOTDIR A component of the path prefix of the pathname in name is
not a directory.

ENOENT

EACCES

A component of the path prefix of the pathname in name
does not exist.

Search permission is denied for a component of the path
prefix of the pathname in name.

Page 1

bind (3N)

ELOOP

EIO

Jm,OFS
EISDlR

SEE ALSO
unlipk(2)

Page 2

bind (3N)

Too many symbolic links were encountered in translating
the pathname in name.

An I/O err()r occurred while making the directory entry or
allocating the inode.

The inode would reside on a read-only fil~ system.

A null pathname was specified.

10/89

byteorder (3N) byteorder (3N)

NAME
byteorder, htonl, htons, ntohl, ntohs - convert values between host and
network byte order

SYNOPSIS
tinclude <sys/types.h>
tinclude <netinet/in.h>

net long = htonl(hostlong);
u_long netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

host long = ntohl(netlong);
u_long hostlong, net long;

host short = ntohs(netshort);
u_short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros
in the include file <netinet/in.h>. On other architectures, if their host byte
order is different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses and
ports as returned by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

10/89 Page 1

connect (3N) connect (3N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/socket.h>

connect (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The parameter 5 is a socket. If it is of type SOCK_DGRAM, connect 0 specifies the
peer with which the socket is to be associated; this address is the address to
which datagrams are to be sent if a receiver is not explicitly designated; it is the
only address from which datagrams are to be received. If the socket 5 is of type
SOCK_STREAM, connect () attempts to make a connection to another socket. The
other socket is specified by name. name is an address in the communications
space of the socket. Each communications space interprets the name parameter in
its own way. If 5 is not bound, then it will be bound to an address selected by the
underlying transport provider. Generally, stream sockets may successfully con­
nect 0 only once; datagram sockets may use connect 0 multiple times to
change their association. Datagram sockets may dissolve the association by con­
necting to a null address.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is
returned and a more specific error code is stored in errno.

ERRORS

10/89

The call fails if:

EBADF 5 is not a valid descriptor.

ENOTSOCK

EINVAL

EADDRNOTAVAIL

EAFNOSUPPORT

EISCONN

ETlMEDOUT

ECONNREFUSED

5 is a descriptor for a file, not a socket.

namelen is not the size of a valid address for the specified
address family.

The specified address is not available on the remote
machine.

Addresses in the specified address family cannot be used
with this socket.

The socket is already connected.

Connection establishment timed out without establishing a
connection.

The attempt to connect was forcefully rejected. The calling
program should close(2) the socket descriptor, and issue
another socket(3N) call to obtain a new descriptor before
attempting another connect 0 call.

Page 1

connect (3N) connect (3N)

ENETONREACH

EADDRlNUSE
EINPROGRESS

EALREADY

EINTR

ENOTSOCK

EPROTOTYPE

The network is not reachable from this host.

The address is already in use.

The socket is non-blocking and the connection cannot be
completed immediately. It is possible to select(3N) for
completion by selecting the socket for writing. However,
this is only possible if the socket STREAMS module is the
topmost module on the protocol stack with a write service
procedure. This will be the normal case.

The socket is non-blocking and a previous connection
attempt has not yet been completed.
The connection attempt was interrupted before any data
arrived by the delivery of a signal.

The file referred to by name is not a socket.

The file referred to by name is a socket of a type other than
type s (for example, s is a SOCK_DGRAM socket, while name
refers to a SOCK_STREAM socket).

ENOSR There were insufficient STREAMS resources available to com-
plete the operation.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPC domain.

ENO'IDIR A component of the path prefix of the pathname in name is
not a directory.

ENOENT A component of the path prefix of the pathname in name
does not exist.

ENOENT The socket referred to by the pathname in name does not
exist. .

EACCES Search permission is denied for a component of the path
prefix of the pathname in name.

ELOOP

EIO

Too many symbolic links were encountered in translating
the pathname in name.
An I/O error occurred while reading from or writing to the
file system.

SEE ALSO
accept(3N), c6nnect(3N), qetsockname(3N), socket(3N).

Page 2 10/89

dial(3C) dial(3C)

NAME
dial - establish an outgoing terminal line connection

SYNOPSIS
tinclude <dial.h>

int dial (CALL call);

void undial (int fd);

DESCRIPTION

10/89

dial returns a file-descriptor for a terminal line open for read/write. The argu­
ment to dial is a CALL structure (defined in the dial.h header file).

When finished with the terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal dev­
ice.

The definition of CALL in the dial. h header file is:

typedef struct {
struot termio *attr;
int baud;
int speed;
char * line;
char *telno;
int modem;
char *device;
int dev_len;

} CALL;

/* pointer to termio attribute struot */
/* transmission data rate */
/* 212A 1OOdem: 10_300, high-1200 */
/* device name for out-going line */
/* pointer to tel-no digits string */
/* specify IOOdem control for direct lines */
/* unused */
/* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be either 300 or 1200 to identify the I13A modem, or
the high- or low-speed setting on the 212A modem. Note that the 113A modem
or the low-speed setting of the 212A modem will transmit at any rate between 0
and 300 bits per second. However, the high-speed setting of the 212A modem
transmits and receives at 1200 bits per second only. The CALL element baud is for
the desired transmission baud rate. For example, one might set baud to 110 and
speed to 300 (or 1200). However, if speed is set to 1200, baud must be set to
high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name
should be placed in the line element in the CALL structure. Legal values for
such terminal device names are kept in the Devices file. In this case, the value of
the baud element should be set to -1. This value will cause dial to determine the
correct value from the Devices file.

The telno element is for a pointer to a character string representing the tele­
phone number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dial *
dial #

wait for secondary dial tone
delay for approximately 4 seconds

Page 1

dial (3C) dial (3C)

FILES

The CALL element IOOdem is used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element
attr is a pointer to a tennio structure, as defined in the tennio. h header file.
A NULL value for this pointer element may be passed to the dial function, but if
such a structure is incfuded, the elements specified in it will be set for the outgo­
ing terminal line before the connection is established. This setting is often impor­
tant for certain attributes such as parity and baud-rate.

The CALL elements device and dey_len are no longer used. They are retained in
the CALL structure for compatibility reasons.

/etc/uucp/Devices
/etc/uucp/Systems
/var/ spool/uucp/LCK .. tty-device

SEE ALSO
alann(2), read(2), write(2).
tennio(7) in the System Administrator's Reference Manual.
uuCP(lQ in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the dial. h
header file.

INTRPT
D_BONG
NO_ANS
ILL_BD
A_PROS
L_PROB
NO_Ldv
DV_tn_A
DV_tn_K
NO_BD_A
NO_BD_K
DV_tn_B
BlD_SlS

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13

,* interrupt occurred *,
'* dialer hunq (no retum from write) *'
'* no anawr within 10 seconds */
'* illeqal baud-rate *,
'* acu problem (openO failure) *,
'* line problem (openO failure) *,
'* can't open Devices file *'
'* requested device not available *'
'* requested device not known *'
'* no device available at requested baud *'
'* no device known at requested baud *'
'* requested speed does not match *'
'* system not in Systems file*'

Including the dial.h header file automatically includes the tennio.h header file.

An alann(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of "touching" the LCK.. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uuCP(lC) may simply
delete the LCK .. entry on its 9O-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call, causing an
apparent error return. If the user program expects to be around for an hour or
more, error returns from rea~ should be checked for (errno=EINTR), and the
read possibly reissued.

10/89

doconflg (3N) doconflg (3N)

NAME
doconfig - execute a configuration script

SYNOPSIS
t include <sac.h>int doconfig(int fd, char *script, long rflag);

DESCRIPTION

10/89

doconfig is a Service Access Facility library function that interprets the
configuration scripts contained in the files /etc/saf/pmtag/ _config,
/etc/saf/ _8Ysconfig, and /etc/saf/pmtag/svctag.

script is the name of the configuration script; fd is a file descriptor that desig­
nates the stream to which stream manipulation operations are to be applied; rflag
is a bitmask that indicates the mode in which script is to be interpreted. rflag
may take two values, NORUN and NOASSIGN, which may be or'd. If rflag is zero,
all commands in the configuration script are eligible to be interpreted. If rflag has
the NOASSIGN bit set, the assign command is considered illegal and will generate
an error return. If rflag has the NORUN bit set, the run and runwait commands
are considered illegal and will generate error returns.

The configuration language in which script is written consists of a sequence of
commands, each of which is interpreted separately. The following reserved key­
words are defined: assign, push, pop, runwait, and run. The comment charac­
ter is t; when a t occurs on a line, everything from that point to the end of the
line is ignored. Blank lines are not significant. No line in a command script may
exceed 1024 characters.

assign variable=value
Used to define environment variables. variable is the name of the
environment variable and value is the value to be assigned to it. The
value assigned must be a string constant; no form of parameter substitu­
tion is available. value may be quoted. The quoting rules are those used
by the shell for defining environment variables. assign will fail if space
cannot be allocated for tue new variable or if any part of the
specification is invalid.

push modulel[, module2, module3, ...]
Used to push STREAMS modules onto the stream designated by fd.
modulel is the name of the first module to be pushed, module2 is the
name of the second module to be pushed, etc. The command will fail if
any of the named modules cannot be pushed. If a module cannot be
pushed, the subsequent modules on the same command line will be
ignored and modules that have already been pushed will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If
an argument is given, modules will be popped one at a time until the
named module is at the top of the stream. If the named module is not
on the designated stream, the stream is left as it was and the command
fails. If module is the special keyword ALL, then all modules on the
stream will be popped. Note that only modules above the topmost
driver are affected.

Page 1

doconflg (3N) doconflg(3N)

runwait command
The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is
run with /usr/bin/sh -c prepended to it; shell scripts may thus be
executed from configuration scripts. The runwait command will fail if
command cannot be found or cannot be executed, or if command exits
with a non-zero status.

run command
The run command is identical to runwait except that it does not wait
for command to complete. command is the pathname of the command to
be run. run will not fail unless it is unable to create a child process to
execute the command.

Although they are syntactically indistinguishable, some of the commands avail­
able to run and runwait are interpreter built-in commands. Interpreter built-ins
are used when it is necessary to alter the state of a process within the context of
that process. The doconfig interpreter built-in commands are similar to the shell
special commands and, like these, they do not spawn another process for execu­
tion. See sh(1). The initial set of built-in commands is:

cd
ulimit
umask

DIAGNOSTICS
doconfig returns 0 if the script was interpreted successfully. If a command in
the script fails, the interpretation of the script ceases at that point and a positive
number is returned; this number indicates which line in the script failed. If a sys­
tem error occurs, a value of -1 is returned. When a script fails, the process
whose environment was being established should not be started.

SEE ALSO
pmadm(lM), sacadm(lM), sh(1).

Page 2 10/89

ethers (3N) ethers (3N)

NAME
ethers - Ethernet address mapping operations

SYNOPSIS
#include <SyS/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if _ ether.h>

char *
ether_ntoa(e)

struct ether_addr *e;

struct ether addr *
ether aton (sf

Char *s;

ether_ntohost(hostname, e)
char *hostname;
struct ether_addr *e;

ether hostton (hostname, e)
Char *hostname;
struct ether_addr *e;

ether line (1, e, hostname)
Char *1;
struct ether. addr *e;
char *hostnaiiie;

DESCRIPTION

10/89

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether _ntoa () converts a 48 bit Ethernet number pointed to by e to
its standard ASOI representation; it returns a pointer to the ASCII string. The
representation is of the form x:x:x:x:x:x where x is a hexadecimal number between
o and ff. The function ether aton 0 converts an ASCII string in the standard
representation back to a 48 bit Ethernet number; the function returns NULL if the
string cannot be scanned successfully.

The function ether_ntohost () maps an Ethernet number (pointed to bye) to its
associated hostname. The string pointed to by hostname must be long enough to
hold the hostnatne and a NULL character. The function returns zero upon success
and non-zero upon failure. Inversely, the function ether _ hostton 0 maps a
hostnarne string to its corresponding Ethernet number; the function modifies the
Ethernet number pointed to bye. The function also returns zero upon success
and non-zero upon failure. The function ether_lineO scans a line (pointed to
by 1) and sets the hostname and the Ethernet number (pointed to bye). The

Page 1

ethers(3N) ethers(3N)

string pointed to by host name must be long enough to hold the hostname and a
NULL character. The function returns zero upon success and non-zero upon
failure. The format of the scanned line is described by ethers(4).

FILES
fete/ethers

SEE ALSO
ethers(4)

Page 2 10/89

gethostent (3N) gethostent (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent­
get network host entry

SYNOPSIS
tinelude <sys/types.h>
tinelude <sys/socket.h>
tinelude <netdb.h>

struct hostent *gethostent()

struct hostent *gethostbyaddr(addr, len, type)
ehar *addr;
int len, type;

struct hostent *gethostbyname(name)
char *name;

sethostent(stayopen)
int stayopen

endhostent ()

DESCRIPTION

10/89

gethostent (), gethostbyaddr (), and gethostbyname () each return a pointer
to an object with the following structure containing the broken-out fields of a line
in the network host data base, fete/hosts. In the case of gethostbyaddr (),
addr is a pointer to the binary format address of length len (not a character
string).

structhostent {
char *h_name; /* official name of host */
char **h_aliases;/* alias list */
int h_addrtype; /* address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name server */

};

The members of this structure are:

h name Official name of the host.

h aliases A zero terminated array of alternate names for the
host.

h_length

h addr list

The type of address being returned; currently
always AF_INET.

The length, in bytes, of the address.

A pointer to a list of network addresses for the
named host. Host addresses are returned in net-
work byte order.

gethostent () reads the next line of the file, opening the file if necessary.

Page 1

gethostent (3N) gethostent (3N)

FILES

sethostent () opens and rewinds the file. If the stayopen flag is non-zero, the
host data base will not be closed after each call to gethostent () (either directly,
or indirectly through one of the other gethost calls).

endhostent () closes the file.

gethostbyname () and gethostbyaddr () sequentially search from the beginning
of the file until a matching host name or host address is found, or until an EOF is
encountered. Host addresses are supplied in network order.

gethostbyaddr () takes a pointer to an address structure. This structure is
unique to each type of address. For add res of type AF_INE'.r this is in_addr struc­
ture. See <netinet/in.h>.

/etc/hosts
SEE ALSO

hosts(4)

DIAGNOSTICS

BUGS

Page 2

A NULL pointer is returned on an EOF or error.

All information is contained in a static area so it must be copied if it is to be
saved. Only the Internet address format is currently understood.

10/89

getnetconflg (3N) getnetconflg (3N)

NAME
getnetconfiq - get network configuration database entry

SYNOPSIS
'include <netconfig.h>

void *
setnetconfiq ()

struct netconfiq *
getnetconfiq(handlep)
void * handlep

int
endnetconfiq(handlep)
void * handlep

struct netconfig *
getnetconfiqent(netid)

char * netid ;

int
freenetconfigent(netconfigp)

struct netconfiq * netconfigp
DESCRIPTION

10/89

The five library routines described on this page are part of the UNIX System V
Network Selection component. They provide application access to the system
network configuration database, letc/netconfiq. In addition to the netconfiq
database and the routines for accessing it, Network Selection includes the
environment variable NETPATH (see environ(5» and the NETPATH access routines
described in getnetpath(3N).

A call to setnetconfiq 0 has the effect of "binding" or "rewinding" the
netconfiq database. setnetconfiq() must be called before the first call to qet­
netconfiq () and may be called at any other time. setnetconfiq 0 need not be
called before a call to getnetconfiqent (). setnetconfiq 0 returns a unique
handle to be used by qetnetconfiq () .

When first called, getnetconfiq () returns a pointer to the current entry in the
netconfig database, formatted as a struct netconfig. qetnetconfiq () can
thus be used to search the entire netconfiq file. qetnetconfiq () returns NULL
at end of file.

endnetconfig () should be called when processing is complete to release
resources for reuse. Programmers should be aware, however, that the last call to
endnetconfiq () frees all memory allocated by qetnetconfiq () for the struct
netconfiq data structure. endnetconfiq() may not be called before set­
netconfiq(). endnetconfiq() returns 0 on success and -1 on failure (e.g., if
setnetconfiq () was not called previously).

getnetconfiqent (netid) returns a pointer to the struct netconfiq structure
corresponding to netid. It returns NULL if netid is invalid (Le., does not name an
entry in the netconfig database). It returns NULL and sets ermo in case of
failure (e.g., if setnetconfiq() was not called previously).

Page 1

getnetconflg (3N) getnetconflg (3N)

freenetconfiqent (netconfigp) frees the netconfig structure pointed to by
netconfigp (previously returned by qetnetconfigent ()).

SEE ALSO

Page 2

netconfig(4), qetnetpath(3N), environ(5)
Network Programmer's Guide
System Administrator's Guide

10/89

getnetent (3N) getnetent (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get
network entry

SYNOPSIS
'include <netdb.h>

struct netent *getnetent()

struct netent *getnetbyname (name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;
int type;

setnetent(stayopen)
int stayopen;

endnetent ()

DESCRIPTION

10/89

getnetent (), getnetbyname (), and getnetbyaddr () each return a pointer to
an object with the following structure containing the broken-out fields of a line in
the network data base, /etc/networks.

struct
char
char
int
long

} ;

netent {
*n name;
**n_aliases;
n_addrtype;
n_net;

The members of this structure are:

/* official name of net */
/* alias list */
/* net number type */
/* net number */

n name The official name of the network.

n aliases A zero terminated list of alternate names for the network.

n _ addrtype The type of the network number returned; currently only
AF_INET.

n net The network number. Network numbers are returned in
machine byte order.

getnetent () reads the next line of the file, opening the file if necessary.

setnetent () opens and rewinds the file. If the stayopen flag is non-zero, the net
data base will not be closed after each call to getnetent () (either directly, or
indirectly through one of the other getnet calls).

endnetent () closes the file.

getnetbyname () and getnetbyaddr () sequentially search from the beginning
of the file until a matching net name or net address and type is found, or until
EOF is encountered. Network numbers are supplied in host order.

Page 1

getnetent (3N)

FILES
fete/networks

SEE ALSO
networks(4)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

BUGS

getnetent (3N)

All information is contained in a static area so it must be copied if it is to be
saved.

Only Internet network numbers are currently understood.

Page 2 10/89

getnetpath (3N) getnetpath (3N)

NAME
getnetpath - get /etc/netconfig entry corresponding to NETPATH component

SYNOPSIS
'include <netconfiq.h>

void *
setnetpath ()

struct netconfiq *
getnetpath(handlep);
void * handlep;

int
endnetpath(handlep);
void * handlep;

DESCRIPTION
The three routines described on this page are part of the UNIX System V Network
Selection component. They provide application access. to the system network
configuration database, /etc/netconfiq, as it is "filtered" by the NETPATH
environment variable (see environ(5». Network Selection also includes routines
that access the network configuration database directly (see qetnetconfiq(3N».

A call to setnetpath 0 "binds" or "rewinds" NETPATH. setnetpath 0 must be
called before the first call to qetnetpath () and may be called at any other time.
It returns a handle that is used by getnetpath. setnetpath () will fail if the
netconfiq database is not present. If NETPATH is unset, setnetpath 0 returns
the number of "visible" networks in the netconfiq file. The set of visible net­
works constitutes a default NETPATH.

When first called, getnetpath 0 returns a pointer to the netconfiq database
entry corresponding to the first valid NETPATH component. The netconfiq entry
is formatted as a struct netconfiq. On each subsequent call, qetnetpath
returns a pointer to the netconfiq entry that corresponds to the next valid NET­
PATH component. qetnetpathO can thus be used to search the netconfiq data­
base for all networks included in the NETPATH variable. When NETPATH has been
exhausted, qetnetpath () returns NULL.

getnetpath () silently ignores invalid NETPATH components. A NETPATH com­
ponent is invalid if there is no corresponding entry in the netconfiq database.

If the NETPATH variable is unset, qetnetpath 0 behaves as if NETPATH were set to
the sequence of "default" or "visible" networks in the netconfiq database, in
the order in which they are listed.

endnetpath () may be called to "unbind" NETPATH when processing is complete,
releasing resources for reuse. Programmer's should be aware, however, that end­
netpath 0 frees all memory allocated by setnetpath O. endnetpath 0 returns
o on success and -Ion failure (e.g., if setnetpathO was not called previously).

SEE ALSO

10/89

netconfiq(4), getnetconfiq(3N), environ(5)
Network Programmer's Guide
System Administrator's Guide

Page 1

getpeername (3N) getpeername(3N)

NAME
qetpeername - get name of connected peer

SYNOPSIS
int qetpeername (s, name, namelen)
int 8;
struct 80Ckaddr "'name;
int "'namelen;

DESCRIPTION
qetpeernameO returns the name of the peer connected to socket s. The int
pointed to by the name1en parameter should be initialized to indicate the amount
of space pointed to by name. On return it contains the actual size of the name
retumed(in bytes). The name is truncated if the buffer provided is too small.

RETURN VALUE
o is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOT~

ENOTOONN

ENOMEM

ENOSR

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The socket is not connected.

There was insufficient user memory for the operation to
complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO
accept(3N), bind(3N), qetsockname(3N), socket(3N)

10/89 Page 1

getprotoent (3N) getprotoent (3N)

NAME
getprotoent, getprotobynunber, getprotobyname, setprotoent, endpro­
toent - get protocol entry

SYNOPSIS
'inelude <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen;

endprotoent ()

DESCRIPTION

FILES

getprotoent (), getprotobyname (), and getprotobynumber () each return a
pointer to an object with the following structure containing the broken-out fields
of a line in the network protocol data base, fete/protocols.

struct
char
char
int

) ;

protoent (
*p_name;
**p_aliases;
P""proto;

/* official name of protocol */
/* alias list */
/* protocol number */

The members of this structure are:

p _name The official name of the protocol.

pyroto

A zero terminated list of alternate names for the
protocol.

The protocol number.

getprotoent () reads the next line of the file, opening the file if necessary.

setprotoent () opens and rewinds the file. If the stayopen flag is non-zero, the
net data base will not be closed after each call to getprotoent () (either directly,
or indirectly through one of the other getproto calls).

endprotoent () closes the file.

getprotobyname () and getprotobynunber () sequentially search from the
beginning of the file until a matching protocol name or protocol number is found,
or until an EOF is encountered.

fete/protocols

SEE ALSO
protocols(4}

10/89 Page 1

getprotoent(3N) getprotoent (3N)

DIAGNOSTICS
A NULL pointer is returned on an EOF or error.

All information is contained in a static area so it must be copied if it is to be
saved. Only the Internet protocols are currently understood.

Page 2 10/89

getservent (3N) getservent (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent­
get service entry

SYNOPSIS
tinclude <netdb.h>

struct servent *getservent()

struct servent *getservbyname (name, proto)
char *name, *proto;

struct servent *getservbyport (port, proto)
int port;
char *proto;

setservent(stayopen)
int stayopen;

endservent ()

DESCRIPTION

10/89

getservent (), getservbyname(), and getservbyport<) each return a pointer to an
object with the following structure containing the broken-out fields of a line in
the network services data base, / etc/ services.

struct
char
char
int
char

} ;

servent {
*s name;
**s_aliases;
s.J>Ort;
*syroto;

/* official name of service */
/* alias list */
/* port service resides at */
/* protocol to use */

The members of this structure are:

s name
s aliases

syort

syroto

The official name of the service.

A zero terminated list of alternate names for the ser-
vice.

The port number at which the service resides. Port
numbers are returned in network short byte order.

The name of the protocol to use when contacting the
service.

getservent () reads the next line of the file, opening the file if necessary.

setservent () opens and rewinds the file. If the stayopen flag is non-zero, the
net data base will not be closed after each call to getservent () (either directly,
or indirectly through one of the other getserv calls).

endservent () closes the file.

getservbyname () and getservbyport () sequentially search from the beginning
of the file until a matching protocol name or port number is found, or until BOF
is encountered. If a protocol name is also supplied (non-NULL), searches must
also match the protocol.

Page 1

getservent (3N)

FILES
/etc/services

SEE ALSO
getprotoent(3N), services(4)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

getservent (3N)

All information is contained in a static area so it must be copied if it is to be
saved. Expecting port numbers to fit in a 32 bit quantity is probably naive.

Page 2 10/89

getsockname (3N) getsockname (3N)

NAME
getsockname - get socket name

SYNOPSIS
getsockname (s, name, namelen)
int Si

struct socJcaddr *namei
int *nameleni

DESCRIPTION
getsockname() returns the current name for socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On
return it contains the actual size of the name retumed(in bytes).

RETURN VALUE
o is returned if the call succeeds; -1 if it fails.

ERRORS
The call succeeds unless:

EBADF The argument s is not a valid descriptor.

ENOTSOCK

ENOMEM

ENOSR

The argument s is a file, not a socket.

There was insufficient user memory for the operation to
complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO
bind(3N), getpeername(3N), socket(3N)

10/89 Page 1

getsockopt (3N) getsockopt (3N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/socket.h>

int getsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

int setsockopt (s, level, optname, optval, opt len)
int s, level, optname;
char *optval;
int optlen;

DESCRIPTION

10/89

getsockopt() and setsockopt() manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the
uppermost socket level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL_SOCKET. To manipulate options at any other level, level is
the protocol number of the protocol that controls the option. For example, to
indicate that an option is to be interpreted by the Tep protocol, level is set to the
TCP protocol number [see getprotoent(3N)].

The parameters optval and optlen are used to access option values for set­
sockopt(). For getsockopt(), they identify a buffer in which the value(s) for the
requested option(s) are to be returned. For getsockopt() , optlen is a value-result
parameter, initially containing the size of the buffer pointed to by optval, and
modified on return to indicate the actual size of the value returned. If no option
value is to be supplied or returned, a 0 optval may be supplied.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file
/usr/include/sys/socket.h contains definitions for the socket-level options
described below. Options at other protocol levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt(), the optval
parameter should be non-zero to enable a boolean option, or zero if the option is
to be disabled. SO_LINGER uses a struct linger parameter that specifies the
desired state of the option and the linger interval (see below). struct linger is
defined in /usr/include/sys/socket.h.

The following options are recognized at the socket level. Except as noted, each
may be examined with getsockopt() and set with setsockopt().

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse

Page 1

getsockopt (3N) getsockopt (3N)

so KEEPALIVE
SO: DONTROUTE
so LINGER
SO_BROADCAST
SO_OOBINLINE
SO_SNDBUF
SO RCVBUF
SO:TYPE
SO_ERROR

toggle keep connections alive
toggle routing bypass for outgoing messages
linger on close if data is present
toggle permission to transmit broadcast messages
toggle reception of out-of-band data in band
set buffer size for output
set buffer size for input
get the type of the socket(get only)
get and clear error on the socket(get only)

SO_DEBUG enables debugging in the underlying protocol modules. 50_ REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(3N) call
should allow reuse of local addresses. 50_ KEEPALIVE enables the periodic
transmission of messages on a connected socket. If the connected party fails to
respond to these messages, the connection is considered broken and processes
using the socket are notified using a SIGPIPE signal. SO-PONTROUTE indicates
that outgoing messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface according to the net­
work portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued on a
socket and a close(2) is performed. If the socket promises reliable delivery of
data and SO_LINGER is set, the system will block the process on the closeO
attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified
in the s~tsockoptO call when SO_LINGER is requested). If SO_LINGER is dis­
abled and a close () is issued, the system will process the close () in a manner
that allows the process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on
the socket. With protocols that support out-of-band data, the 50_ OOBINLINE
option reql1ests that out-of-band data be placed in the normal data input queue as
received; it will then be accessible with recv() or read() calls without the
MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are options that adjust the normal
buffer sizes allocated for output and input buffers, respectively. The buffer size
may be increased for high-volume connections or may be decreased to limit the
possible backlog of incoming data. The system places an absolute limit on these
values. Finally, SO_TYPE and SO_ERROR are options used only with get­
sockOPtO. SO_TYPE returns the type of the socket (for example, SOCK_STREAM).
It is useful for servers that inherit sockets on startup. SO_ERROR returns any
pending error on the socket and clears the error status. It may be used to check
for asynchronous errors on connected datagram sockets or for other asynchro­
nous errors.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

Page 2 10/89

getsockopt (3N)

EBADF

ENOTSOCK

ENOPROTOOPT

ENOMEM

ENOSR

SEE ALSO

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

getsockopt (3N)

The option is unknown at the level indicated.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

ioctl(2), socket(3N), getprotoent(3N).

10/89 Page 3.

Inet(3N) Inet(3N)

NAME
inet: inet addr, inet network, inet makeaddr, inet_lnaof, inet_netof,
inet _ ntoa = Internet address manipulation

SYNOPSIS
'include <sys/types.h>
'include <sys/socket.h>
'include <netinet/in.h>
'include <arpa/inet.h>
unsigned lonq
inet _addr (cp)
char *cp;

inet network(cp)
char-*cp;

struct in addr
inet makeaddr(net, lna)
int net, lna;

inet lnaof(in)
struct in_addr in;

inet netof(in)
struct in_addr in;

char *
inet ntoa (in)
struct in_addr in;

DESCRIPTION
The routines inet_addr() and inet_network() .each interpret character strings
representing numbers expressed in the Internet standard '.' notation, returning
numbers suitable for use as Internet addresses and Internet network numbers,
respectively. The routine inet_makeaddr() takes an Internet network number
and a local network address and constructs an Internet address from it. The rou­
tines inet _ netof () and inet _lnaof () break apart Internet host addresses,
returning the network number and local network address part, respectively.
The routine inet_ntoa () returns a pointer to a string in the base 256 notation
d.d.d.d described below.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine for­
mat integer values.

INTERNET ADDRESSES

10189

Values specified using the'.' notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

Page 1

Inet(3N) Inet(3N)

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right most two bytes of the network address. This
makes the three part address format convenient for specifying Class B network
addresses as 128.net.host.

When a two part address is supplied, the last part is interpreted as a 24-bit quan­
tity and placed in the right most three bytes of the network address. This makes
the two part address format convenient for specifying Class A network addresses
as net.host.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in a ' .' notation may be decimal, octal, or hexade­
cimal, as specified in the C language (that is, a leading Ox or OX implies hexade­
cimal; otherwise, a leading 0 implies octal; otherwise, the number is interpreted
as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4}, networks(4)

DIAGNOSTICS

BUGS

Page 2

The value -1 is returned by inet_addr() and inet_network() for malformed
requests.

The problem of host byte ordering versus network byte ordering is confusing. A
simple way to specify Class C network addresses in a manner similar to that for
Class B and Class A is needed.

The return value from inet _ntoa () points to static information which is
overwritten in each call.

10/89

listen (3N) listen (3N)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for
incoming connections is specified with listen () and then the connections are
accepted with accept(2). The listen () call applies only to sockets of type
SOCK_STREAM or SOCK _ SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connec­
tions may grow to. If a connection request arrives with the queue full, the client
will receive an error with an indication of ECONNREFOSED.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS

NOTES

10/89

The call fails if:

EBADF

ENOTSOCK

EOPNOTSUPP

The argument 5 is not a valid descriptor.

The argument 5 is not a socket.

The socket is not of a type that supports the operation
listen.

There is currently no backlog limit.

Page 1

netdlr(3N) netdlr(3N)

NAME
netdir getbyname, netdir getbyaddr, netdir free, netdir mergeaddr,
taddr2uaddr, uaddr2taddr, netdir..,J?error, netd"Ir_sperror - generic tran­
sport name-to-address translation

SYNOPSIS

10/89

tinclude <netdir.h>

int
netdir getbyname(config, service, addrs)

struct netconfig *config;

int

struct nd hostserv *service;
struct nd:addrlist **addrs;

netdir_getbyaddr(config, service, netaddr)
struct netconfig *config;

void

struct nd_hostservlist **service;
struct netbuf *netaddr;

netdir free(ptr, ident)
void *ptr;
int ident;

int
netdir mergeaddr(config, mrg uaddr, s uaddr, c_uaddr)

struct netconfig *conilg; -
char **mrg_uaddr, *s_uaddr, *c_uaddr;

char *
taddr2uaddr(config, addr)

struct netconfig *config;
struct netbuf *addr;

struct netbuf *
uaddr2taddr(config, uaddr)

struct netconfig *config;
char *uaddr;

int
netdir options(netconfig, option, fd, pointer_to_args)

struct netconfig *netconfig;
int option;
int fd;
char *point_to_args;

void
netdir..,J?error (s)
char *s;

char *
netdir_sperror()

Page 1

netdlr{3N) netdlr{3N)

DESCRIPTION
These routines provide a generic interface for name-to-address mapping that will
work with a all transport protocols. This interface provides a generic way for pro­
grams to convert transport specific addresses into common structures and back
again.
The netdir_getbyname () routine maps the machine name and service name in
the nd _ hostserv structure to a collection of addresses of the type understood by
the transport identified in the netconfig structure. This routine returns all
addresses that are valid for that transport in the nd _addrlist structure. The
nd_hostserv and nd_addrlist structures have the following elements. The
netconfig structure is described on the netconfig(4) manual page.

struct nd addrlist
int It cnt
struct netbuf *n_addrs;

struct nd hostserv
char- *h host;
char *h:=serv;

netdir _getbyname () accepts some special-case host names. These host names
are hints to the underlying mapping routines that define the intent of the request.
This information is required for some transport provider developers to provide
the correct information back to the caller. The host names are defined in
/usr/include/netdir.h. The currently defined host names are:

Represents the address to which local programs will bind their end­
points. HOST_SELF differs from the host name provided by
gethostname(3), which represents the address to which remote pro­
grams will bind their endpoints.

HOST_ANY Represents any host accessible by this transport provider. HOST_ANY
allows applications to specify a required service without specifying a
particular host name.

HOST BROADCAST
- Represents the address for all hosts accessible by this transport pro­

vider. Network requests to this address will be received by all
machines.

All fields of the nd_hostserv structure must be initialized.

To find all available transports, call the netdir_getbyname () routine with each
struct netconfig structure returned by the getnetpath(3N) call.

The netdir _getbyaddr () routine maps addresses to service names. This rou­
tine returns a list of host and service pairs that would yield this address. If more
than one tuple of host and service name is returned then the first tuple contains
the preferred host and service names.

struct nd hostservlist
int -*h cnt;
struct hostserv *h_hostservs;

Page 2 10/89

netdlr(3N) netdlr(3N)

10/89

The netdir _free () structure is used to free the structures allocated by the name
to address translation routines.

The netdir _ merqeaddr () routine is used by a network service to return an
optimized network addresses to a client. This routine takes the universal address
of the endpoint that the service has bound to, which is pointed to by the s_uaddr
parameter, and the address of the endpoint that a request came in on, which is
pointed to by the c _ uaddr paramter, to create an optimized address for communi­
cation with the service. The service address should be an address returned by the
netdir_getbyname () call, specified with the special host name HOST_SELF.

The taddr2uaddr () and uaddr2taddr () routines support translation between
universal addresses and TLI type netbufs. The take and return character string
pointers. The taddr2uaddr () routine returns a pointer to a string that contains
the universal address and returns NULL if the conversion is not possible. This is
not a fatal condition as some transports may not suppose a universal address
form.

option, fd, and pointer_to _args are passed to the netdir _options routine for the
transport specified in netconfigp. There are four values for option:

ND SET BROADCAST
ND_SET_RESERVEDPORT
ND CHECK RESERVEDPORT - -ND MERGEADDR

If a transport provider does not support an option, netdir_options returns -1
and sets nderror to ND NOCTRL. - -
The specific actions of each option follo~.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast, if the
transport supports broadcast. fd is a file descriptor into the
transport (Le., the result of a t_open of /dev/udp).
pointer_to _args is not used. If this completes, broadcast
operations may be performed on file descriptor fd.

ND SET RESERVEDPORT
- - Allows the application to bind to a reserved port, if that

concept exists for the transport provider. fd is a file
descriptor into the transport (it must not be bound to an
address). If pointer_to _args is NULL, fd will be bound to a
reserved port. If pointer_to _args is a pointer to a netbuf
structure, an attempt will be made to bind to a reserved
port on the specified address.

ND CHECK RESERVEDPORT
- - Used to verify that an address corresponds to a reserved

port, if that concept exists for the transport provider. fd is
not used. pointer_to _args is a pointer to a netbuf structure
that contains an address. This option returns 0 only if the
address specified in pointer_to _args is reserved.

Page 3

netdlr(3N) netdlr(3N)

Used to take a ''local address" (like the 0.0.0.0 address
that TCP uses) and return a "real address" that client
machines can connect to. fd is not used. pointer_to _args is a
pointer to a struct nd _ mergearg, which has the following
form:

struct nd_meJ:gear9 {
char *s_uacldr; /* server's universal address */
char *c_uacldr; /* client's universal address */
Qhar *DLuacldr; /* the result *1

s _ uaddr is something like O. 0 . 0 . 0 . 1 . 12, and, if the call is
successful, m _ uaddr will be set to something like
192.11.109.a9.1.12. For most transports, m_uaddr is
exactly what s_uaddr is.

The netdir J>E!rror () routine prints an error message on the standard output
stating why one of the name-to-address mapping routines failed. The error mes­
sage is preceded by the string given as an argument.

The netdir _ sperror () routine returns a string containing an error message stat­
ing why one of the name-to-address mapping routines failed.

SEE ALSO
getnetpath(3N)

Page 4 10/89

nlsgetcall (3N) nlsgetcall (3N)

NAME
nlsgetcall - get client's data passed via the listener

SYNOPSIS
'include <sys/tiuser.h>

struct t_call *nlsgetcall (int fd);
DESCRIPTION

nlsqetcall allows server processes started by the listener process to access the
client's t_call structure, that is, the sndcall argument of t_connect(3N).

The t_call structure returned by nlsgetcall can be released using t_free(3N).

nlsgetcall returns the address of an allocated t call structure or NULL if a
t call structure cannot be allocated. If the t alloc succeeds, undefined
environment variables are indicated by a negative len-field in the appropriate net­
buf structure. A len field of zero in the netbuf structure is valid and means that
the original buffer in the listener's t_call structure was NULL.

WARNING
The len field in the netbuf structure is defined as being unsigned. In order to
check for error returns, it should first be cast to an into

The listener process limits the amount of user data (udata) and options data (opt)
to 128 bytes each. Address data addr is limited to 64 bytes. If the original data
was longer, no indication of overflow is given.

DIAGNOSTICS

FILES

A NULL pointer is returned if a t _call structure cannot be allocated by t _ alloc.
t_errno can be inspected for further error information. Undefined environment
variables are indicated by a negative length field (len) in the appropriate netbuf
structure.

/usr/lib/libnsl s.a
/usr/lib/libslan.a
/usr/lib/libnls.a

SEE ALSO
nlsadmin(1), getenv(3), t_connect(3N), t_alloc(3N), t_free(3N), t_error(3N).

NOTES
Server processes must call t_sync(3N) before calling this routine.

10/89 Page 1

nlsprovlder{3N) nlsprovlder (3N)

NAME
nlsprovider - get name of transport provider

SYNOPSIS
char *nlsprovider()i

DESCRIPTION
nlsprovider returns a pointer to a null terminated character string which con­
tains the name of the transport provider as placed in the environment by the
listener process. If the variable is not defined in the environment, a NULL pointer
is returned.

The environment variable is only available to server processes started by the
listener process.

SEE ALSO
nlsadmin(1M).

DIAGNOSTICS
If the variable is not defined in the environment, a NULL pointer is returned.

FILES

10/89

/usr/lib/libslan.a (7300)
/usr/lib/libnls.a (382 Computer)
/usr/lib/libnsl_s.a

Page 1

nlarequest (3N) nlsrequest(3N)

NAME
nlsrequest - format and send listener service request message

SYNOPSIS
'include <listen.h>

int nlsrequest (int fd, char *service_oode);
extern int nlsloq, t errno;
extern char - * _ nlsrmsq-;

DESCRIPTION
Given a virtual circuit to a listener process <fd) and a service code of a server pro­
cess, nlsrequest formats and sends a service request message to the remote listener
process requesting that it start the given service. nlsrequest waits for the remote
listener process to return a service request response message, which is made available
to the caller in the static, null terminated data buffer pointed to by _ nlsrmsq.
The service request response message includes a success or failure code and a text
message. The entire message is printable.

SEE ALSO

FILES

nlsaclmin(l), t_error(3).

/usr/lib/libnls.a
/usr/lib/libslan.a
/usr/lib/libnsl_s.a

DIAGNOSTICS
The success or failure code is the integer return code from nlsrequest. Zero
indicates success, other negative values indicate nlsrequest failures as follows:

-1: Error encountered by nlsrequest, see t_errno.

Postive values are error return codes from the listener process. Mnemonics for
these codes are defined in <listen. h>.

2 : Request message not interpretable.
3: Request service code unknown.
4 : Service code known, but currently disabled.

If non-null, _nlsrmsq contains a pointer to a static, null terminated character
buffer containing the service request response message. Note that both _ nlsrmsq
and the data buffer are overwritten by each call to nlsrequest.

If _nlsloq is non-zero, nlsrequest prints error messages on stderr. Initially,
_nlsloq is zero.

WARNING

10/89

nlsrequest cannot always be certain that the remote server process has been
successfully started. In this case, nlsrequest returns with no indication of an
error and the caller will receive notification of a disconnect event via a 'l LOOK
error before or during the first t_snd or t_rcv call. -

Page 1

publickey(3N) publlckey (3N)

NAME
publickey: getpublickey, getsecretkey - retrieve public or secret key

SYNOPSIS
tinclude <rpc/rpc.h>
tinclude <rpc/key-prot.h>

getpublickey(const char netname[MAXNETNAMELEN],
char publickey[HEXKEYBYTES]);

getsecretkey(const char netname[MAXNETNAMELEN],
char secretkey[HEXKEYBYTES], const char *passwd);

DESCRIPTION
getpublickey and getsecretkey get public and secret keys for netname from
the publickey(4) database.

getsecretkey has an extra argument, passwd, used to decrypt the encrypted
secret key stored in the database.

Both routines return 1 if they are successful in finding the key, 0 otherwise. The
keys are returned as NULL-terminated, hexadecimal strings. If the password
supplied to getsecretkey fails to decrypt the secret key, the routine will return
1 but the secretkey argument will be a NULL string.

SEE ALSO
publickey(4).

10/89 Page 1

recv(3N) recv(3N)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/socket.h>

int recv(s, buf, len, flags)
int S;
char .buf;
int len, flags;

int recvfran(s, buf, len, flags, from, fromlen)
int S;
char .buf;
int len, flags;
struct sockaddr • from;
int .fromlen;

int recvmsg(s, msq, flags)
int S;
struct msghdr .msq;
int flags;

DESCRIPTION

10189

s is a socket created with socket(3N). recvO, recvfromO, and recvmsgO are
used to receive messages from another socket. recv () may be used only on a
connected socket (see connect(3N», while recvfromO and recvmsqO may be
used to receive data on a socket whether it is in a connected state or not.

If from is not a NULL pointer, the source address of the message is filled in. from­
len is a value-result parameter, initialized to the size of the buffer associated with
from, and modified on return to indicate the actual size of the address stored
there. The length of the message is returned. If a message is too long to fit in
the supplied buffer, excess bytes may be discarded depending on the type of
socket the message is received from (see socket(3N».

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking (see fcntl(2» in which case -1 is
returned with the external variable errno set to EW)ULDBIDCK.

The select () call may be used to determine when more data arrives.

The flags parameter is formed by ORing one or more of the following:

MSG _ OOB Read any out-of-band data present on the socket rather than the
regular in-band data.

Peek at the data present on the socket; the data is returned, but
not consumed, so that a subsequent receive operation will see
the same data.

The recvmsgO call uses a msghdr structure to minimize the number of directly
supplied parameters. This structure is defined in /usr/ include/ sys/ socket. h
and includes the following members:

Page 1

recv{3N) recv{3N)

caddr_t mag_name;
int mag_namelen;
struct iovec *mB<J_iov;
int mB<J iovlen;
caddr_t mB<J_accrights;
int mB<J_accrightslen;

/* optional address */
/* size of address */
/* scatter/gather array */
/* t elements in msq iov */
/* access rights sent/received */

Here 11ISg_name and 11ISg_namelen specify the destination address if the socket is
unconnected; mBg_name may be given as a NULL pointer if no names are desired
or required. The 11ISg_iov and 11ISg_iovlen describe the scatter-gather locations,
as described in read(2). A buffer to receive any access rights sent along with the
message is specified in 11ISg_accrights, which has length 11ISg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

EBADF 5 is an invalid descriptor.

ENOTSOCK

EINTR

EWOOLDBLOCK

ENOMEM

ENOSR

5 is a descriptor for a file, not a socket.

The operation was interrupted by delivery of a signal
before any data was available to be received.

The socket is marked non-blocking and the requested
operation would block.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resouces available for the
operation to complete.

SEE ALSO

Page 2

connect(3N), fcntl(2), getsockopt(3N), ioctl(2), read(2), send(3N),
socket(3N).

10/89

resolver (3N) resolver (3N)

NAME
resolver, res mlcquery, res_send. res_in it, dn_coup, dn_expand - resolver
routines -

SYNOPSIS
'include <sys/types.h>
'include <netinet/in.h>
'include <arpa/nameser.h>
'include <resolv.h>

res mlcquery(op, dnarne, class, type, data, datalen, newrr, buf, buflen)
int-op;
char *dname;
int class, type;
char *data;
int datalen;
struct rrec *newrr;
char *buf;
int buflen;

res_send (msq, msqlen, answer, anslen)
char *msq;
int msqlen;
char *answer;
int anslen;

res_init

dn_coop(exp_dn, coup_dn, length, dnptrs, lastdnptr)
char *exp dn, *coop dn;
int length; -
char **dnptrs, **lastdnptr;

dn expand(msq, msqlen, coup dn, exp_dn, length)
chir *msq, *coup dn, exp dn;
int msqlen, length; -

DESCRIPTION

10/89

These routines are used for making, sending and interpreting packets to Internet
domain name servers. Global information that is used by the resolver routines is
kept in the variable _res. Most of the values have reasonable defaults and can
be ignored. Options are a simple bit mask and are OR'ed in to enable. Options
stored in res.options are defined in /usr/include/resolv.h and are as fol-
lows. -

RES DEBUG

RES AAONLY

True if the initial name server address and default domain
name are initialized (that is, res_init has been called).

Print debugging messages.

Accept authoritative answers only. res_send will continue
until it finds an authoritative answer or finds an error.
Currently this is not implemented.

Page 1

resolver (3N) resolver (3N)

FILES

Page 2

RES_USEVC

RES_STAYOPEN

RES IGNTC

RES DEFNAMES

Use TCP connections for queries instead of UDP.

Used with RES_USEVC to keep the TCP connection open
between queries. This is useful only in programs that regu-
larly do many queries. UDP should be the normal mode
used.

Unused currently (ignore truncation errors, that is, do not
retry with TCP).

Set the recursion desired bit in queries. This is the default.
res_send does not do iterative queries and expects the
name server to handle recursion.

Append the default domain name to single label queries.
This is the default.

res_init reads the initialization file to get the default domain name and the
Internet address of the initial hosts running the name server. If this line does not
exist, the host running the resolver is tried. res_mkquery makes a standard
query message and places it in buf. res _ mkquery will return the size of the
query or -1 if the query is larger than buflen. op is usually QUERY but can be any
of the query types defined in /usr/include/arpa/nameser.h. dname is the
domain name. If dname consists of a single label and the RES _DEFNAMES flag is
enabled (the default), dname will be appended with the current domain name.
The current domain name is defined in a system file and can be overridden by
the environment variable LClCALDCMAIN. newrr is currently unused but is
intended for making update messages.

res_send sends a query to name servers and returns an answer. It will call
res_init if RES_INIT is not set, send the query to the local name server, and
handle timeouts and retries. The length of the message is returned or -1 if there
were errors.

dn_expand expands the compressed domain name comp_dn to a full domain
name. Expanded names are converted to upper case. msg is a pointer to the
beginning of the message, exp _dn is a pointer to a buffer of size length for the
result. The size of compressed name is returned or -1 if there was an error.

dn_cortp compresses the domain name exp _dn and stores it in comp _dn. The size
of the compressed name is returned or -1 if there were errors. length is the size
of the array pointed to by comp _ dn. dnptrs is a list of pointers to previously
compressed names in the current message. The first pointer points to to the
beginning of the message and the list ends with NULL. lastdnptr is a pointer to the
end of the array pointed to dnptrs. A side effect is to update the list of pointers
for labels inserted into the message by dn_conp as the name is compressed. If
dnptr is NULL, do not try to compress names. If lastdnptr is NULL, do not update
the list.

/usr/include/arpa/nameserv.h
/usr/include/netinet/in.h

10/89

resolver (3N)

/usr/include/resolv.h
/usr/include/sys/types.h
/etc/resolv.conf
/usr/lib/libresolv.a

SEE ALSO
named(lM), resolv.conf(4).

NOTES
/usr/lib/libresolv.a is necessary for compiling programs.
Programs must be loaded with the option -lresolv.

10/89

resolver (3N)

Page 3

rexec(3N) rexec(3N)

NAME
rexec - retum stream to a remote command

SYNOPSIS
rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char **ahost;
u short inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION
rexec() looks up the host "ahost using qethostbyname [see qethostent(3N»),
returning -1 if the host does not exist. Otherwise "ahost is set to the standard
name of the host. If a username and password are both specified, then these are
used to authenticate to the foreign host; otherwise the environment and then the
user's . netrc file in his home directory are searched for appropriate information.
If all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the
connection. The protocol for connection is described in detail in rexecd(1M).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and
given to the remote command as its standard input and standard output. If fd2p
is non-zero, then a auxiliary channel to a control process will be setup, and a
descriptor for it will be placed in *fd2p. The control process will retum diagnos­
tic output from the command (unit 2) on this channel, and will also accept bytes
on this channel as signal numbers, to be forwarded to the process group of the
command. If fd2p is 0, then the standard error (unit 2 of the remote command)
will be made the same as its standard output and no provision is made for send­
ing arbitrary signals to the remote process, although you may be able to get its
attention by using out-of-band data.

SEE ALSO
gethostent(3N), getservent(3N), rcmd(3N), rexecd(1M).

NOTES
There is no way to specify options to the socket () call that rexec () makes.

10/89 Page 1

rpc(3N) rpc(3N)

NAME
rpc - library routines for remote procedure calls

DESCRIPTION
RPC routines allow C language programs to make procedure calls on other
machines across a network. First, the client calls a procedure to send a data
packet to the server. On receipt of the packet, the server calls a dispatch routine
to perform the requested service, and then sends back a reply.

The following sections describe data objects use by the RPC package.

Nettype

10/89

Some of the high-level RPC interface routines take a nettype string as one of the
parameters [for example, clnt_create, svc_create, rpc_re<J, rpc_calll. This
string defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in the NETPATH variable or in top to
down order in the !etc!netconfig file.

nettype can be one of the following:

netpath

visible

circuit v

udp

tcp

raw

Choose from the transports which have been indicated by their
token names in the NETPATH variable. If NETPATH is unset or
NULL, it defaults to visible. netpath is the default nettype.
Choose the transports which have the visible flag (v) set in the
!etc!netconfig file.

This is same as visible except that it chooses only the connec­
tion oriented transports from the entries in !etc!netconfig
file.

This is same as visible except that it chooses only the connec­
tionless datagram transports from the entries in
!etc!netconfig file.

This is same as netpath except that it chooses only the connec­
tion oriented datagram transports

This is same as netpath except that it chooses only the connec­
tionless datagram transports.

It refers to Internet UDP.

It refers to Internet TCP.

This is for memory based RPC, mainly for performance evalua­
tion.

If nettype is NULL, it defaults to netpath.

Page 1

rpc(3N) rpc(3N)

Data Structures
Some of the data structures used by the RPC package are shown below.

The AOTH Structure
union des_block {

struet {

};

u int32 high;
u-int32 low;

} key;
char c[8];

typed.ef union des block des block;
extern bool_t xdr:des_block(">;

/*
* Authentication info.
*/

struct opaque auth {
enum t oi flavor;
caddr t oa -base;
u_ int - oa :len¢h;

};

/*

Opaque to client.

/* flavor of auth */
/* a.d.dz:ess of more auth stuff */
/* not to exceed MU:_lWTH_BrrES */

* Auth handle, interface to client side authenticators.
*/

typed.ef struet {
struet opaque auth
struet opaque-auth
union des blOck
struet auth-ops {

ah cred;
ah-verf;
ah:key;

void (*ah nextverf) () ;
int (*ah -marshal) ();
int (*ah -validate) () ;
int (*ah -refresh) ();
void (*ah-destroy) ();

*ah ops; -
caddr:t ah-private;

ADTH;

/* nextverf & serialize */
/* validate varifier */
/* refresh credentials */
/* destroy this strueture */

The CLIENT Structure

Page 2

/*
* Client rpc handle.
* Created by individual implementations
* Client is responsible for initializing auth, see e.g. auth_none.c.
*/

typedef struet {
AUTH *cl auth;
struet clnt ops { -

enum clilt stat
void -
void
boolt
void-
boolt

(*cl call) ();
(*cC abort) ();
(*cCgeterr) () ;
(*cl-freeres) ()
(*cl-destroy) ()
(*cl:control) ()

/* authenticator */

/* call remote procedure */
/* abort a call */
/* get specific error code */
/* frees results */
/* destroy this structure */
/* the ioetl () of rpc */

10/89

rpc(3N} rpc(3N}

} *cl ops;
caddr:=t
char
char

CLIENT;

clyrivate;
*cl netid;
*cCtp;

/* private stuff */
/* network token */
/* device name */

The SVCXPRT Structure
enum xprt_stat {

XE'RT DIED,
XE'RT:=~S,
XE'RT_IDLE

};

/*
* Server side transport handle
*/

typedef struct {
int

tdefine xp sock
tendif -

stroot xp ops {
bool t
enum - xprt stat
bool t -
booCt
booCt
void-

XPJlOrt;

(*xp I:eCv) () ;
(*xp -stat) () ;
(*xp -getarg's) () ;
(*xp:=reply) ();
(*xp fMear9s) ();
(*xp:=destroy) ();

} *xp ops;
int - xp acldrlen;
char *xP_tp;
char *xp netid;
struct netbuf - xp ltaddr;
struct netbuf xp:=rtaddr;
char xp raddr[16];
struct opaque auth xp Verf;
caddr_t - xPyl;
caddr_t xpy2;
caddr_t xpy3;

SVCXPRT;

/* associated port number.
* Obsolete, but still used to
* specify whether rendezvouser
* or noCDal connection
*/

/* receive incoming' requests *1
/* get transport status */
/* get arguments */
/* send reply */
/* free mem allocated for arg'S */
/* destroy this struct */

/* length of remote acIdr. Obsolete */
/* transport provider device name */
/* network token */
/* local transport address */
/* remote transport address */
/* remote address. Obsolete */
/* raw response verifier */
/* private: for use by svc ops */
/* private: for use by sve ops */
/* private: for use by sve lib * /

The XDR Structure

10/89

/*
* Xdr operations. XDR ENCODE causes the type to be encoded into the
* stream. XDR_DECODE Causes the type to be extracted from the stream.
* XDR FREE can be used to release the space allocated by an XDR DECODE
* request. -
*/

enum xdr op {
XDR_ENCOOE-O ,
XDR_DECODE-l,

Page 3

rpc(3N) rpc(3N)

};

1*
* This is the nuniler of bytes per unit of external data.
*1

Ide fine BYTES PER XDR UNIT (4)
ldefine RNDOP(x) -«ax) + BYTES PER XDR UNIT - 1) 1 BYTES_PER_XDJLUNIT) \

* BYTES_PER_XDR_UNIT) - -

1*
* A xdrproc_t exists for each data type which is to be encoded or decoded.

*
* The second argument to the xdrproc t is a pointer to an opaque pointer.
* The opaque pointer generally points to a structure of the data type
* to be decoded. If this pointer is 0, then the type routines should
* allocate dynamic storage of the appropriate size and return it.
* bool_t (*xdrproc_t) (XDR *, caddr_t *);
*1

typedef bool_t (*xdrproc_t) ();

1*
* The XDR handle.
* Contains operation which is being applied to the stream,
* an operations vector for the paticular implementation (e.g. see xdr_mem.c) ,
* and two private fields for the use of the particular iDpelementation.
*1

typedef struct {
enum xdr op x op;
struct xdr ops {

bool t - (*x get long) ();
bool:t (*x:::;,utlong) () ;
bool t (*x getbytes) 0;
bool:t (*x:::;,utbytes) ();
u int (*x getpostn) ();
bOol t (*x-setpostn) 0;
long-* (*x-inline) ();
void (*x:destroy) ();

} *x_ops;
caddr t
caddr-t
caddr:t
int

XDR;

xJlllblic;
xJrivate;
x base;
x:handy;

1* operation; fast additional param *1

1* get a long from underlying stream *1
1* put a long to " *1
1* get some bytes from " *1
1* put some bytes to " *1
1* returns bytes off from beginning *1
1* lets you reposition the stream *1
1* buf quick ptr to buffered data *1
1* free privates of this xdr_stream *1

1* users' data *1
1* pointer to private data *1
1* private used for position info *1
1* extra private word *1

Index to Routines

Page 4

The following table lists RPC routines and the manual reference pages on which
they are described:

10/89

rpc(3N)

10/89

RPC Routine
auth destroy
authdes getucred
authdes-seccreate
authnone create
authsys 'Create
authsys-create default
clnt call -
clnt-control
clnt_create
clnt destroy
clnt::::dg_create
clnt freeres
clnt~qeterr
clnt:Pcreateerror
clntJlermo
clntJlerror
clnt raw create
clnt~spcreateerror
clnt-sperrno
clnt~sperror
clnt-tli create
clnt-tp 'Create
clnt::::vc::::create
qetnetname
host2netname
key_decryptsessian
key_encryptsessian
key gendes
key-setsecret
netDame2host
netname2user
rpc broadcast
:r:pc::::call
:r:pc_reg
svc create
svc::::destroy
svc dq create
svc-fd-create
svc-freeargs
svc_qetargs
svc_qetreqset
svc_qet:r:pccaller
svc_raw_create
svc_reg
svc_run
svc_Bendreply

Manual Reference Page
rpc clnt auth(3N)
secUre ~(3N)
secure -:r:pc(3N)
rpc cliit auth(3N)
rpc - clnt - auth(3N)
rpc - clnt - auth(3N)
rpc-clnt-calls(3N)
rpc - clnt - create(3N)
rpc - clnt - create(3N)
rpc - clnt -create(3N)
rpc - clnt -create(3N)
rpc - clnt - calls(3N)
rpc - clnt - calls(3N)
rpc - clnt - create(3N)
rpc - clnt - calls(3N)
rpc - clnt - calls(3N)
rpc - clnt - create(3N)
rpc - clnt - create(3N)
rpc - clnt - calls(3N)
rpc - clnt - calls(3N)
rpc - clnt - create(3N)
rpc -clnt - create(3N)
rpc - clnt - create(3N)
secUre rPc(3N)
secure -:r:pc(3N)
secure - :r:pc(3N)
secure - :r:pc(3N)
secure -:r:pc(3N)
secure - :r:pc(3N)
secure - :r:pc(3N)
secure - :r:pc(3N)
rpc cliit calls(3N)
rpc - clnt - calls(3N)
rpc - svc ealls(3N)
rpc - svc - create(3N)
rpc - svc - create(3N)
rpc - svc - create(3N)
rpc - svc -create(3N)
rpc - svc - req(3N)
rpc - svc - req(3N)
rpc - svc - req(3N)
rpc - svc - req(3N)
rpc - svc - create(3N)
rpc - svc - calls(3N)
rpc - svc - req(3N)
:r:pc:::: svc:::: req(3N)

rpc(3N)

Page 5

rpc(3N)

FILES

svc_tli_create
svc_tp_create
sve_unreq
svc ve create
svcerr:=auth
svcerr decode
svcerr_noproc
svcerr_noproq
svcerryroqvers
svcerr systemerr
svcerr-weakauth
user2netname
xdr accepted reply
xdr:=authsysj)a.rms
xdr callhdr
Xdr-callmsq
xdr -opaque auth
xdr-rejected reply
xdr-replymsq-
xprt reqister
xprt:=unreqister

/etc/netconfiq

SEE ALSO

rpc svc create(3N)
rpc - sve - create(3N)
rpc - sve - calls(3N)
rpc -svc -create(3N)
rpc - sve -err(3N)
rpc - svc -err(3N)
rpc - svc - err(3N)
rpc - sve - err(3N)
rpc - svc - err(3N)
rpc - sve - err(3N)
rpc -sve -err(3N)
secure 'rPc(3N)
rpe xdcl3N)
rpc - xdr(3N)
rpc - xdr(3N)
rpc - xdr(3N)
rpc - xdr(3N)
rpc - xdr(3N)
rpc - xdr(3N)
rpc - svc calls(3N)
rpc:= svc:= calls(3N)

rpc(3N)

environ(S), qetnetconfiq(3N), qetnetpath(3N), rpc_clnt_auth(3N),
rpc clnt calls(3N), rpc clnt create(3N), rpc sve calls(3N),
rpc - svc create(3N), rpc - svc err(3N), rpc svc - reg{3N), roc xdr(3N),
rpcbind(3N), secure_rpc(3NCxdr(3N), netconfiq(4). - -

Page 6 10/89

NAME
rpc clnt auth: auth destroy, authnone create, authsys create,
authsys_create_default --library routines for client side remote procedure call
authentication

DESCRIPTION
These routines are part of the RPC library that allows C language programs to
make procedure calls on other machines across the network, with desired authen­
tication. First, the client calls a procedure to send a data packet to the server.
Upon receipt of the packet, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

These routines are normally called after creating the CLIENT handle. The client's
authentication information is passed to the server when the RPC call is made.

Routines
The following routines require that the header rpc. h be included [see rpc(3N)
for the definition of the AUTH data structure].

tinclude <rpc/rpc.h>

void
auth_destroy(AUTH *auth);

A function macro that destroys the authentication information associated
with auth. Destruction usually involves deallocation of private data struc­
tures. The use of auth is undefined after calling auth _destroy.

AUTH *
authnone_create(void);

AUTH *

Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call. This is the
default authentication used by RPC.

authsys create(const char *host, const uid t uid, const gid t gid,
canst int len, const gid_t *aup_gids); -

Create and return an RPC authentication handle that contains AUTH SYS
authentication information. The parameter host is the name of the
machine on which the information was created; uid is the user's user ID;
gid is the user's current group ID; len and aup.$ids refer to a counted array
of groups to which the user belongs.

AUTH *
authsys_create_default(void);

Call authsys _create with the appropriate parameters.

SEE ALSO
rpc(3N), rpc _ clnt _create(3N), rpc _ clnt _ calls(3N).

10/89 Page 1

NAME
~ _ clnt _calls: clnt _call, clnt _ freeres, clnt _geterr, clnt yerrno,
clnt yerror, clnt _ sperrno, clnt _ sperror, ~ _ broadcast, ~ _call -
library routines for client side calls

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on
other machines across the network. First, the client calls a procedure to send a
data packet to the server. Upon receipt of the packet, the server calls a dispatch
routine to perform the requested service, and then sends back a reply.

The clnt call, ~ call and ~ broadcast routines handle the client side of
the procedure call. The remaining routines deal with error handling in the case
of errors.

Routines

10/89

See ~(3N) for the definition of the CLIENT data structure.

tinclude <~/~.h>

enum clnt stat
clnt call(CLIENT *clnt, const u long procnum, const xdrproc t inproc,

- caddr tin, const xdrproc t outproc, caddr tout, -
const - struct timeval tout); -

A function macro that calls the remote procedure procnum associated with
the client handle, clnt, which is obtained with an RPC client creation rou­
tine such as clnt_create [see rpc_clnt_create(3N)]. The parameter in is
the address of the procedure's argument(s), and out is the address of
where to place the result(s); inproc is used to encode the procedure's
parameters, and outproc is used to decode the procedure's results; tout is
the time allowed for results to be returned.

If the remote call succeeds, the status is returned in RPC SUCCESS, other-
wise an appropriate status is returned. -

int clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. The parameter out is the
address of the results, and outproc is the XDR routine describing the
results. This routine returns 1 if the results were successfully freed, and 0
otherwise.

void
clnt_geterr(const CLIENT *clnt, struct ~_err *errp);

A function macro that copies the error structure out of the client handle to
the structure at address errp.

Page 1

Page 2

void
clnt-P8rrno(oonst enum clnt_stat stat);

void

Print a message to standard error corresponding to the condition indicated
by stat. A newline is appended at the end of the message. Normally used
after a procedure call fails, for instance rpc_call.

clnt-P8rror(const CLIENT *clot, const char *s);

char *

Print a message to standard error indicating why an RPC call failed; clnt is
the handle used to do the call. The message is prepended with string s
and a colon. A newline is appended at the end of the message. Normally
used after a procedure call fails, for instance clnt _call.

clnt_sperrno(const enum clnt_stat stat);

char *

Take the same arguments as clot -P8rrno, but instead of sending a mes­
sage to the standard error indicating why an RPC call failed, return a
pointer to a string which contains the message.

clnt _ sperrno is normally used instead of clnt -P8rrno when the pro­
gram does not have a standard error (as a program running as a server
quite likely does not), or if the programmer does not want the message to
be output with printf [see printf(3S»), or if a message format different
than that supported by clnt -P8rrno is to be used. Note: unlike
clnt_sperror and clnt_spcreaterror [see rpc_clnt_create(3N)),
clnt _ sperrno does not return pointer to static data so the result will not
get overwritten on each call.

clnt_sperror(oonst CLIENT *clnt, oonst char *s);

Like clnt-P8rror, except that (like clnt_sperrno) it returns a string
instead of printing to standard error. However, clnt_sperror does not
append a newline at the end of the message.

Warning: returns pointer to static data that is overwritten on each call.

10/89

enum clnt stat
rpc broadcast(const u long proqnum, const u long versnum,

- const u long proenum, const xdrproc t inproc, caddr tin,
const xdrproc t outproc, caddr tout, const resultproc t eachresult,
const char *nettype); - -

Like rpc _call, except the call message is broadcast to the connectionless
network specified by nettype. If nettype is NULL- it defaults to netpath.
Each time it receives a response, this routine calls eachresult, whose
form is:

boolt
eachresult(const caddr tout, const struct netbuf *addr,

struct netconfig *netconf) ;

where out is the same as out passed to rpc _broadcast, except that the
remote procedure's output is decoded there; addr points to the address of
the machine that sent the results, and netconf is the netconfig structure of
the transport on which the remote server responded. If eachresult
returns 0, rpc_broadcast waits for more replies; otherwise it returns
with appropriate status.

Warning: broadcast file descriptors are limited in size to the maximum
transfer size of that transport. For Ethernet, this value is 1500 bytes.

enum clnt stat
rpc call(const char *host, const u long proqnum,

- const u long versnum, const u-long procnum,
const xdrproc t inproc, const-xdrproc t outproc,
const char * in, char *out, const char-*nettype);

Call the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure's parameters, and outproc is used to decode
the procedure's results. nettype can be any of the values listed on
rpc(3N). If nettype is NULL, it defaults to netpath. This routine returns 0
if it succeeds, or the value of enum clnt_stat cast to an integer if it fails.
Use the clntyerrno routine to translate failure statuses into messages.

Warning: rpc_call uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of
timeouts or authentication using this routine. There is also no way to des­
troy the client handle.

SEE ALSO
printf(3S), rpc(3N), rpc_clnt_auth(3N), rpc_clnt_create(3N).

10/89 Page 3

NAME
rpc clnt create: clnt contro~clnt create,clnt destroy,
clnt_d9_create,clnt-pcreateerror,clLnt_raw_create,
clnt_spcreateerror,clnt_tli_create,clnt_tp_create,Clnt_vc_create­
library routines for dealing with creation and manipulation of CLIENT handles

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on
other machines across the network. First a CLIENT handle is created and then the
client calls a procedure to send a data packet to the server. Upon receipt of the
packet, the server calls a dispatch routine to perform the requested service, and
then sends back a reply.

Routines

10/89

See rpc(3N) for the definition of the CLIENT data structure.

tinclude <rpc/rpc.h>

boolt
clnt=control(CLIENT *clnt, const u_int req, char *info);

A function macro used to change or retrieve various information about a
client object. req indicates the type of operation, and info is a pointer to
the information. For both connectionless and connection-oriented tran­
sports, the supported values of req and their argument types and what
they do are:

CLSET TIMEOUT
CLGET TIMEOUT

struct timeval
struct timeval

set total timeout
get total timeout

Note: if you set the timeout using clnt _control, the timeout parameter
passed to clnt _call will be ignored in all future calls.

CLGET FD
CLGET SVC ADDR
CLSET=FD_CLOSE

int
struct netbuf
int

int

get the associated file descriptor
"get servers address
close the file descriptor when
destroying the client handle
[see clnt destroy]
do not close the file
descriptor when destroying
the client handle

The following operations are valid for connectionless transports only:

CLSET _RETRY_TIMEOUT struct timeval set the retry timeout
CLGET _RETRY_TIMEOUT struct timeval get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

Page 1

Page 2

clnt_control returns 1 on success and 0 on failure.

CLIENT *
clnt_create(const char *host, const u_long prognum,

const u_long versnum, const char *nettype);

void

Generic client creation routine for program prognum and version versnum.
host identifies the name of the remote host where the server is located.
nettype indicates the class of transport protocol to use. The transports are
tried in left to right order in NETPATH variable or in top to down order in
the netconfig database.

clnt_create tries all the transports of the nettype class available from the
NETPATH environment variable and the the netconfig database, and
chooses the first successful one. Default timeouts are set, but can be
modified using clnt _control.

clnt_destroy(CLIENT *clnt);

A function macro that destroys the client's RPC handle. Destruction usu­
ally involves deallocation of private data structures, including clnt itself.
Use of clnt is undefined after calling clnt_destroy. If the RPC library
opened the associated file descriptor, or CLSET_FD_CLOSE was set using
clnt_control, it will be closed.

CLIENT *
clnt dg create(const int fd, const struct netbuf *svcaddr,

- const u long prognum, const u long versnum,
const u:int sendsz, const u_int recvsz);

void

This routine creates an RPC client for the remote program prognum and
version versnum; the client uses a connectionless transport. The remote
program is located at address svcaddr. The parameter fd is an open and
bound file descriptor. This routine will resend the call message in inter­
vals of 15 seconals until a response is received or until the call times out.
The total time for the call to time out is specified by clnt _ call [see
clnt call in rpc clnt calls(3N)). This routine returns NULL if it fails.
The retry time out and the total time out periods can be changed using
clnt_control. The user may set the size of the send and receive buffers
with the parameters sendsz and recvsz; values of 0 choose suitable defaults.

clnt-pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle
could not be created. The message is prepended with the string s and a
colon, and appended with a newline.

10/89

rpc _ clnt_create (3N)

10/89

CLIENT *
clnt_raw_create(const u_long prognum, const u_long versnum);

This routine creates a toy RPC client for the remote program prognum and
version versnum. The transport used to pass messages to the service is a
buffer within the process's address space, so the corresponding RPC
server should live in the same address space; [see svc_raw_create in
rpc_clnt_calls(3N)). This allows simulation of RPC and acquisition of
RPC overheads, such as round trip times, without any kernel interference.
This routine returns NULL if it fails. clnt raw create should be called
aftersvc_raw_create. - -

char *
clnt_spcreateerror(const char *s);

Like clnt J'Createerror, except that it returns a string instead of print­
ing to the standard error. A newline is not appended to the message in
this case.

Warning: returns a pointer to static data that is overwritten on each call.

CLIENT *
clnt_tli_create(const int fd, const struct netconfig *netconf,

const struct netbuf *svcaddr, u const long prognum,
const u long versnum, const u int sendSz,
const u=int recvsz); -

This routine creates an RPC client handle for the remote program prognum
and version versnum. The remote program is located at address svcaddr.
If svcaddr is NULL and it is connection-oriented, it is assumed that the file
descriptor is connected. For connectionless transports, if svcaddr is NULL,
RPC_UNKNOWNADDR error is set. fd is a file descriptor which may be open,
bound and connected. If it is RPC _ ANYFD, it opens a file descriptor on the
transport specified by netconf. If netconf is NULL, a RPC _ UNKNOWNPROTO
error is set. If fd is unbound, then it will attempt to bind the descriptor.
The user may specify the size of the buffers with the parameters sendsz
and recvsz; values of 0 choose suitable defaults. Depending upon the type
of the transport (connection-oriented or connectionless), clnt_tli_create
calls appropriate client creation routines. This routine returns NULL if it
fails. The clntJ'Createrror routine can be used to print the reason for
failure. The remote rpc-.bind service [see rpcbind(1M») will not be con­
sulted for the address of the remote service.

CLIENT *
clnt tp create(const char *host, const u long prognum,

- const u _long versnum, const struct netconfig *netconf);

clnt _ tp _create creates a client handle for the transport specified by
netconf. Default options are set, which can be changed using
clnt _control calls. The remote rpcbind service on the host host is con­
sulted for the address of the remote service. This routine returns NULL if
it fails. The clnt J'Createrror routine can be used to print the reason
for failure.

Page 3

CLIENT *
clnt_vc_create(const int fd, const struct netbuf *svcaddr,

const u lonq proqnum, const u lonq versnum,
const u:)nt sendsz, const u_int recvsz);
This routine creates an RPC client for the remote program prognum and
version versnum; the client uses a connection-oriented transport. The
remote program is located at address svcaddr. The parameter fd is an open
and bound file descriptor. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz; values of 0 choose
suitable defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual
address of the remote program. clnt _ vc _create will not consult the
remote rpcbind service for this information.

SEE ALSO
rpcbind(1M), J:PC(3N), J:PC_clnt_auth(3N), J:PC_clnt_calls(3N).

Page 4 10/89

NAME
rpc_svc_calls: rpc_reg, svc_reg, svc_unreq, xprt._register,
xprt_unregister - library routines for registering servers

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to
register themselves with rpcbind [see rpcbind(lM)], and it associates the given
program and version number with the dispatch function.

Routine.

10/89

See %pC(3N) for the definition of the SVCXPRT data structure.

tinclude <rpc/rpc.h>
int
rpc _ reg (const u_long proqnum, const u_lonq veranum,

const u _long prOCDllln, const char * (*procname) ,
const ~roc t inproc, const xdJ:proc t outproc,
const char *nettype); -

int

Register program prognum, procedure procname, and version versnum with
the RPC service package. If a request arrives for program prognum, ver­
sion versnum, and procedure procnum, procname is called with a pointer to
its parameter(s)i procname should return a pointer to its static result(s)i
inproc is used to decode the parameters while outproc is used to encode the
results. Procedures are registered on all available transports of the class
nettype. nettype defines a class of transports which can be used for a par­
ticular application. If nettype is NULL, it defaults to netpath. This routine
returns 0 if the registration succeeded, -1 otherwise.

svc_reg(const SVCXPRT *xprt, const u_long proqnum, const u_long versnum,

void

canst void (*dispatch), const struct netconfig *netconf);
Associates prognum and versnum with the service dispatch procedure,
dispatch. If netconf is NULL, th~ service is not registered with the rpcbind
service. If netconf is non-zero, then a mapping of the triple [prognum, vers­
num, netconf->nc_netid] to xprt->xp_ltaddr is established with the local
rpcbind service.

The svc _ reg routine returns 1 if it succeeds, and 0 otherwise

svc _unreg (const u _long proqnum, const u _long versnum);

Remove, from the rpcbind service, all mappings of the double [prognum,
versnum] to dispatch routines, and of the triple [prognum, versnum, *] to
network address. .

Page 1

void
xprt_reqister (const SVCXPRT *xprt);

void

After RPC service transport handle xprt is created, it is registered with the
RPC service package. This routine modifies the global variable svc_fda.
Service implementors usually do not need this routine.

xprt_unreqister(oonst SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters
itself with the RPC service package. This routine modifies the global vari­
able svc _fda. Service implementors usually do not need this routine.

SEE ALSO

Page 2

l:pCbind(lM), l:pCbind(3N), %pC(3N), %pC_svc_err(3N), %pC_svc_create(3N),
%pC _svc _ req(3N).

10/89

NAME
rpc svc create: svc create,svc destroy,svc dg create,svc fd create,
svc:::: raw:::: create, svc _ tli _create, svc _ tp _create, s;c _ vc _create - library
routines for dealing with the creation of server handles

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on servers across the network. These routines deal with the
creation of service handles. Once the handle is created, the server can be invoked
by calling svc _ run.

Routines

10/89

See rpc(3N) for the definition of the SVCXPRT data structure.

tinclude <rpc/rpc.h>

int
svc_create(

void

const void (*dispatch) (const struct svc req *, const SVCXPRT *),
const u_long prognum, const u_long versnum,
const char *nettype);

svc _create creates server handles for all the transports belonging to the
class nettype.
nettype defines a class of transports which can be used for a particular
application. The transports are tried in left to right order in NETPATH vari­
able or in top to down order in the netconfig database.

If nettype is NULL, it defaults to netpath. svc_create registers itself with
the rpcbind service [see rpcbind(1M»). dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires
calling svc_run [see svc_run in rpc_svc_reg(3N)). If it succeeds,
svc create returns the number of server handles it created, otherwise it
returns 0 and the error message is logged.

svc_destroy(SVCXPRT *xprt);

A function macro that destroys the RPC service transport handle xprt.
Destruction usually involves deallocation of private data structures,
including xprt itself. Use of xprt is undefined after calling this routine.

SVCXPRT *
svc_dg_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connectionless RPC service handle, and returns a
pointer to it. This routine returns NULL if it fails, and an error message is
logged. sendsz and recvsz are parameters used to specify the size of the
buffers. If they are 0, suitable defaults are chosen. The file descriptor fd
should be open and bound.

Warning: since connectionless-based RPC messages can only hold limited
amount of encoded data, this transport cannot be used for procedures that
take large arguments or return huge results.

Page 1

Page 2

SVCXPRT *
sve_fd_create(oonst int fd, const u_int sendsz, const u_int recvsz);

This routine creates a service on top of any open and bound descriptor,
and returns the handle to it. Typically, this descriptor is a connected file
descriptor for a connection-oriented transport. sendsz and recosz indicate
sizes for the send and receive buffers. If they are 0, a reasonable default
is chosen. This routine returns NULL, if it fails, and an error message is
logged.

SVCXPRT *
sve_raw_create(void);

This routine creates a toy RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process's address
space, so the corresponding RPC client should live in the same address
spacei [see clnt_raw_create in rpc_clnt_create]. This routine allows
simulation of RPC and acquisition of RPC overheads (such as round trip
times), without any kernel interference. This routine returns NULL if it
fails, and an error message is logged.

SVCXPRT *
sve tli create (const int fd, const struct netconfig *netoonf,

- const struct t bind *bindaddr, const u int sendsz,
const u_int recvsz); -

This routine creates an RPC server handle, and returns a pointer to it. fd
is the file descriptor on which the service is listening. If fd is RPC ANYFD, it
opens a file deSCriptor on the transport specified by netconf. n the file
descriptor is unbound, it is bound to the address specified by bindaddr, if
bindaddr is non-null, otherwise it is bound to a default address chosen by
the transport. In the case where the default address is chosen, the number
of outstanding connect requests is set to 8 for connection-oriented tran­
sports. The user may specify the size of the send and receive buffers with
the parameters sendsz and recoszi values of 0 choose suitable defaults.
This routine returns NOLL if it fails, and an error message is logged.

SVCPRT *
sve _ tp _create (oonst void (*dispatch) (const RQSTP *, const SVCXPRT *),

const u long proqnum, const u long versnum,
const struct netconfig *netconf);

sve _ tp _create creates a server handle for the network specified by
netconf, and registers itself with the rpcbind service. dispatch is called
when there is a remote procedure call for the given prognum and versnumi
this requires calling sve run. sve tp create returns the service handle
if it succeeds, otherwise a NULL is returned, and an error message is
logged.

10/89

SVCXPRT *
sve ve_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connection-oriented RPC service and returns a
pointer to it. This routine returns NULL if it fails, and an error message is
logged. The users may specify the size of the send and receive buffers
with the parameters sendsz and reevsz; values of 0 choose suitable defaults.
The file descriptor fd should be opp.n and bound.

SEE ALSO
rpcbind(1M), rpc(3N), rpc sve calls(3N), rpc sve err(3N),
rpc_svc_reg(3N). - - - -

10/89 Page 3

NAME
%pc ave err: avcerr auth" svcerr decode, avcerr nopree,
svcerrjioproq, svcerr~rogvers, sVCerr _ &ystemerr-; svcerr_W8alcauth -
library routines for server side remote procedure call errors

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure caDs on other machines across the network.

These routines can be called by the server side dispatch function if there is any
error in the transaction with the client.

Routine.

10/89

See z:pc(3N) for the definition of the SVCXPRT data structure.

tinclude <z:pc/z:pc.h>

void
svcerr auth(const SVCXPRT *xprt, const enum auth_stat why);

void

Called by a service dispatch routine that refuses to perform a remote pro­
cedure call due to an authentication error.

svcerr_decode (const SVCXPRT *xprt);

void

Called by a service dispatch routine that cannot successfully decode the
remote parameters [see svc_getarqs in z:pc_svc_reg(3N»).

svcerr-popree(const SVCXPRT *xprt);

void

Called by a service dispatch routine that does not implement the pro­
cedure number that the caller requests.

svcerr_noproq(const SVCXPRT *xprt);

void

Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

svcerr"progvers (const SVCXPRT *xprt);

void

Called when the desired version of a program is not registered with the
RPC package. Service implementors usually do not need this routine.

svcerr_systemerr(const SVCXPRT *xprt);

Called by a service dispatch routine when it detects a system error not
covered by any particular protocol. For example, if a service can no
longer allocate storage, it may call this routine.

Page 1

void
svcerr_weakauth(const SVCXPRT *xprt);

Called by a service dispatch routine that refuses to perform a remote pro­
cedure call due to insufficient (but correct) authentication parameters. The
routine calls svcerr_auth(xprt, AOTH_'l'OOWEAK).

SEE ALSO
rpc(3N), rpc_svc_calls(3N), rpc_svc_c:ceate(3N), rpc_svc_reg(3N).

Page 2 10/89

NAME
rpc svc reg: svc freearqs, sve qetarqs, svc qetreqset,
sve =qet~ller, ave_run, svc _ sendreply - library routines for RPC servers

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some
of them are called by the server side dispatch function, while others [such as
svc _ run] are called when the server is initiated.

Routines

10/89

tinclude <rpc/rpc.h>

int
svc_freearqs (const SVCXPRT *l!prt, canst xdrproc_t inproc, char *in);

int

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the arguments to a service procedure using
sve _qetarqs. This routine returns 1 if the results were successfully freed,
and 0 otherwise.

svc_qetarqs(const SVCXPRT *l!prt, const xdrproc_t inproc, caddr_t *in);

void

A function macro that decodes the arguments of an RPC request associ­
ated with the RPC service transport handle xprt. The parameter in is the
address where the arguments will be placed; inproc is the XDR routine
used to decode the arguments. This routine returns 1 if decoding
succeeds, and 0 otherwise.

svc_qetreqset(fd_set *rdfds);

This routine is only of interest if a service implementor does not call
svc_run, but instead implements custom asynchronous event processing.
It is called when poll has determined that an RPC request has arrived on
some RPC file descriptors; rdfds is the resultant read file descriptor bit
mask. The routine returns when all file descriptors associated with the
value of rdfds have been serviced

struct netbuf *
svc_qetrpccaller(const SVCXPRT *xprt);

The approved way of getting the network address of the caller of a pro­
cedure associated with the RPC service transport handle xprt.

void
svc_run(void) ;

This routine never returns. It waits for RPC requests to arrive, and calls
the appropriate service procedure using svc_qetreqset when one
arrives. This procedure is usually waiting for a poll library call to return.

Page 1

int
svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc,

const caddr_t *out);

Called by an RPC service's dispatch routine to send the results of a
remote procedure call. The parameter xprt is the request's associated tran­
sport handle; outproc is the XDR routine which is used to encode the
results; and out is the address of the results. This routine returns 1 if it
succeeds, 0 otherwise.

SEE ALSO
poll(2), rpc(3N), rpc_svc_calls(3N), rpc_svc_create(3N), rpc_svc_err(3N).

Page 2 10/89

NAME
rpc _ xdr: xdr _accepted_reply, xdr _authsys J>CU1Il8, xdr _ callhdr,
xdr callmsq, xdr opaque auth, xdr rejected reply, xdr replymsq - XDR
library routines for remote procedure calls - -

DESCRIPTION
These routines are used for describing the RPC messages in XDR language. They
should normally be used by those who do not want to use the RPC package.

Routines

10/89

See rpc(3N) for the definition of the XDR data structure.

tinclude <rpc/rpc.h>

boolt
xdr_accepted_reply(XDR *xdrs, const struct accepted_reply *ar);

boolt

Used for encoding RPC reply messages. It encodes the status of the RPC
call in the XDR language format, and in the case of success, it encodes the
call results also.

xdr_authsys-parms(XDR *xdrs, const struct authsys-parms *aupp);

void

Used for describing operating system credentials. It includes machine­
name, uid, gid list, etc.

xdr_callhdr(XDR *xdrs, const struct rpc_msq *chdr);

Used for describing RPC call header messages. It encodes the static part
of the call message header in the XDR language format. It includes infor­
mation such as transaction ID, RPC version number, program and version
number.

boolt
xdr_callmsq(XDR *xdrs, const struct rpc_msq *cmsq);

boolt

Used for describing RPC call messages. This includes all the RPC call
information such as transaction ID, RPC version number, program
number, version number, authentication information, etc. This is normally
used by servers to determine information about the client RPC call.

xdr_opaque_auth(XDR *xdrs, const struct opaque_auth *ap);

Used for describing RPC opaque authentication information messages.

boolt
xdr_rejected_reply(XDR *xdrs, const struct rejected_reply *rr);

Used for describing RPC reply messages. It encodes the rejected RPC
message in the XDR language format. The message could be rejected
either because of version number mis-match or because of authentication
errors.

Page 1

boolt
xdr_replymsg(XDR *xdrs, const struct rpc_IIIBg *rmsg);

Used for describing RPC reply messages. It encodes all the RPC reply
message in the XDR language format This reply could be either an accep­
tance, rejection or NULL.

SEE ALSO
rpc(3N).

Page 2 10/89

rpcblnd (3N) rpcblnd (3N)

NAME
rpcbind: rpcb getmaps, rpcb getaddr, rpcb gettime, rpcb rmtcall,
rpcb_set, rpcbjlnset - library routines for RPC bind service -

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC
binder service. rpcbind [see rpcbind(1M») maintains a list of mappings between
programs and their universal addresses.

Routines

10/89

'include <rpc/rpc.h>

struct rpcblist *
rpcb_getmaps(const struct netconfig *netoonf, oonst char *host);

boolt

A user interface to the rpcbind service, which returns a list of the current
RPC program-to-address mappings on the host named. It uses the tran­
sport specified through netconf to contact the remote rpcbind service on
host host. This routine will return NULL, if the remote rpcbind could not
be contacted.

rpcb-getaddr(const u long prognum, const u long versnum,
-const struct ne1tconfig *netconf, stru<:t netbuf *svcaddr,

const char *host);

A user interface to the rpcbind service, which finds the address of the
service on host that is registered with program number prognum, version
versnum, and speaks the transport protocol associated with netconf. The
address found is returned in svcaddr. svcaddr should be preallocated. This
routine returns 1 if it succeeds. A return value of 0 means that the map­
ping does not exist or that the RPC system failed to contact the remote
rpcbind service. In the latter case, the global variable rpc_createerr
contains the RPC status.

boolt
rpcb_gettime(const char *host, time_t *timep);

This routine returns the time on host in timep. If host is NULL,
rpcb gettime returns the time on its own machine. This routine returns
1 if itsucceeds, 0 if it fails. rpcb_gettime can be used to synchronize the
time between the client and the remote server. This routine is particularly
useful for secure RPc.

Page 1

rpcblnd (3N) rpcblnd (3N)

enum clnt stat
rpcb_rmtcall(const struet netconfig *netconf, const char *host,

const u long prognum, const u long versnum, const u long procnum,
const xdrproc t inproc, const - caddr tin, -
const xdrproc-t outproc, const caddr tout,
const struct timeval tout, struct nethuf *svcaddr);

boolt

A user interface to the rpcbind service, which instructs rpcbind on host
to make an RPC calIon your behalf to a procedure on that host. The
parameter "svcaddr will be modified to the server's address if the pro­
cedure succeeds [see rpc call and clnt call in rpc clnt calls(3N)
for the definitions of other parameters]. This procedure-shouid normally
be used for a ping and nothing else [see rpc_broadcast in
rpc_clnt_calls(3N)]. This routine allows programs to do lookup and
call, all in one step.

rpcb set(const u long prognum, const u long versnum,
- const struet netconfig *netconf, const struct netbuf *svcaddr);

boolt

A user interface to the rpcbind service, which establishes a mapping
between the triple [prognum, versnum, netconf->nc_netid] and svcaddr on
the machine's rpcbind service. The value of transport must correspond to
a network token that is defined by the netconfig database. This routine
returns 1 if it succeeds, 0 otherwise. [See also svc _ reg in
rpc _ svc _ calls(3N)].

rpcb-unset(const u long prognum, const u long versnum,
- const struct netconfig *netconf); -

A user interface to the rpcbind service, which destroys all mapping
between the triple [prognum, versnum, netconf->nc_netid] and the address
on the machine's rpcbind service. If netconf is NULL, rpcb_unset des­
troys all mapping between the triple [prognum, versnum, *] and the
addresses on the machine's rpcbind service. This routine returns 1 if it
succeeds,O otherwise. [See also svc_unreg in rpc_svc_calls(3N»).

SEE ALSO
rpc_clnt_calls(3N), rpc_svc_calls(3N), rpcbind(1M), rpcinfo(1M).

Page 2 10/89

rusers(3N)

NAME
rusers - return information about users on remote machines

SYNOPSIS
tinclude <rpcsvc/rusers.h>

int rusers (char *host, struct utnpidlearr *up);

rusers(3N)

rusers fills the utnpidlearr structure with data about host, and returns 0 if suc­
cessful. The function will fail if the underlying transport does not support broad­
cast mode.

SEE ALSO
rusers(1).

10/89 Page 1

rwall(3N)

NAME
rwall - write to specified remote machines

SYNOPSIS
'include <rpcsvc/rwall.h>

rwall(char *host, char *msg);

DESCRIPTION

rwall(3N)

rwall executes wall(lM) on host. host prints the string msg to all its users. It
returns 0 if successful.

SEE ALSO
rwall(1M), rwalld(1M).

10/89 Page 1

secureJpc(3N) secureJpc(3N)

NAME
secure_~ authdes_seccreate,authdes~tucred,getnetname,

host2netname,key decryptsessio~key encryptsessio~key gendes,
key_setsecret, netname2host, netname2user, user2netname - library routines
for secure remote procedure calls

DESCRIPTION
RPC library routines allow C programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a data
packet to the server. Upon receipt of the packet, the server calls a dispatch rou­
tine to perform the requested service, and then sends back a reply.

RPC supports various authentication flavors. Among them are:

AUTH _NONE (none) no authentication.
AUTH SYS Traditional UNIX@-style authentication.
AUTH DES DES encryption-based authentication.

The authdes getucred and authdes seccreate routines implement the
AUTH_DES authentication flavor. The keyserver daemon keyserv [see
keyserv(lM)] must be running for the AUTH_DES authentication system to work.

Routines

10/89

See %pC(3N) for the definition of the AUTH data structure.

'include <%pC/%pC.h>

int
authdes getucred(const struct authdes cred *adc, uid t *uidp,

g1d_t *gidp, short *gidlenp, gi~t *gidlist); -

authdes getucred is the first of the two routines which interface to the
RPC secUre authentication system known as AUTH_DES. The second is
authdes seccreate, below. authdes getucred is used on the server
side for converting an AUTH_DES credential, which is operating system
independent, into an AUTH _ SYS credential. This routine returns 1 if it
succeeds, 0 if it fails.

*uidp is set to the user's numerical ID associated with ade. *gidp is set to
the numerical ID of the group to which the user belongs. *gidlist contains
the numerical IDs of the other groups to which the user belongs. *gidlenp
is set to the number of valid group ID entries in *gidlist [see
netname2user, below].

Page 1

secure JPc (3N)

Page 2

AUTH *
authdes seccreate(const char *name, const unsigned int window,

collst char *timehost, const des_block *ckey);

int

authdes seccreate, the second of two AUTH DES authentication routines,
is used on the client side to return an authentication handle that will
enable the use of the secure authentication system. The first parameter
name is the network name, or netname, of the owner of the server process.
This field usually represents a hostname derived from the utility routine
host2netname, but could also represent a user name usi~g
user2netname, described below. The second field is window on the vali­
dity of the client credential, given in seconds. A small window is more
secure than a large one, but choosing too small of a window will increase
the frequency of resynchronizations because of clock drift. The third
parameter, timehost, the host's name, is optional. If it is NULL, then the
authentication system will assume that the local clock is always in sync
with the timehost clock, and will not attempt resynchronizations. If a
timehost is supplied, however, then the system will consult with the
remote time service whenever resynchronization is required. This parame­
ter is usually the name of the RPC server itself. The final parameter ckey
is also optional. If it is NULL, then the authentication system will generate
a random DES key to be used for the encryption of credentials. If ckey is
supplied, then it will be used instead.

getnethame (char name [MAXNETNAMELEN+l]) ;

int

getnetname installs the unique, operating-system independent netname of
the caller in the fixed-length array name. Returns 1 if it succeeds, and 0 if
it fails.

host2netname (char name [MAXNETNAMELEN+l], const char *host,
const char *domain);

int

Convert from a domain-specific hostname host to an operating-system
independent netname. Return 1 if it succeeds, and 0 if it fails. Inverse of
netname2host. If domain is NULL, host2netname uses the default domain
name of the machine. If host is NULL, it defaults to that machine itself.

key_decryptsession(const char *remotename, des_block *deskey);

key_decryptsesiion is an interface to the keyserver daemon, which is
associated with RPC's secure authentication system (AUTH_DES authentica­
tion). User programs rarely need to call it, or its associated routines
key_encryptsession, key_gendes and key_setsecret.

key_decryptsession takes a server netname remotename and a DES key
deskey, and decrypts the key by using the the public key of the the server
and the secret key associated with the effective UID of the calling process.
It is the inverse of key_encryptsession.

10/89

secure JPc (3N) secureJpc(3N)

int
key_encryptsession(const char *remotename, des_block *deskey);

int

key _ encryptsession is a keyserver interface routine. It takes a server
netname remotename and a DES key deskey, and encrypts it using the pub­
lic key of the the server and the secret key associated with the effective
UID of the calling process. It is the inverse of key_decryptsession. This
routine returns 0 if it succeeds, -1 if it fails.

key_gendes(des_block *deskey);

int

key_gendes is a keyserver interface routine. It is used to ask the
keyserver for a secure conversation key. Choosing one at random is usu­
ally not good enough, because the common ways of choosing random
numbers, such as using the current time, are very easy to guess.

key_setsecret(const char *key);

int

key_setsecret is a keyserver interface routine. It is used to set the key
for the effective UID of the calling process. this routine returns 0 if it
succeeds, -1 if it fails.

netname2host (const char *name, char *host, const int hostlen);

int

Convert from an operating-system independent netname name to a
domain-specific hostname host. hostlen is the maximum size of host.
Returns 1 if it succeeds, and 0 if it fails. Inverse of host2netname.

netname2user(const char *name, uid t *uidp, gid t *gidp,
int *gidlenp, gid_t gidlist[Nc;ROUPS]); -

int

Convert from an operating-system independent netname to a domain­
specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of
user2netname.

*uidp is set to the user's numerical ID associated with name. *gidp is set to
the numerical ID of the group to which the user belongs. gidlist contains
the numerical IDs of the other groups to which the user belongs. *gidlenp
is set to the number of valid group ID entries in gidlist.

user2netname(char name[MAXNETNAMELEN+1], const uid t uid,
const char *danain); -

Convert from a domain-specific username to an operating-system indepen­
dent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of
netname2user.

SEE ALSO
chkey(l), keyserv(lM), newkey(1M), rpc(3N), rpc_clnt_auth(3N).

10/89 Page 3

send (3N) send (3N)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/socket.h>

int send(s, msg, len, flags)
int s;
char *msg;
int len, flags;

int sendto(s, msg, len, flags, to, tolen)
int s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

int sendmsg(s, mag, flags)
int s;
struct msghdr *msg;
int flags;

DESCRIPTION

10/89

s is a socket created with socket(3N). sendO, sendtoO, and sendmsgO are
used to transmit a message to another socket. send () may be used only when
the socket is in a connected state, while sendto () and sendmsg () may be used at
any time.

The address of the target is given by to with to1en specifying its size. The length
of the message is given by len. If the message is too long to pass atomically
through the underlying protocol, then the error EMSGSIZE is returned, and the
message is not transmitted.

No indication of failure to deliver is implicit in a send (). Return values of -1
indicate some locally detected errors.

If no buffer space is available at the socket to hold the message to be transmitted,
then send () normally blocks, unless the socket has been placed in non-blocking
I/O mode (see fcntl(2». The select 0 call may be used to determine when it
is possible to send more data.

The flags parameter is formed by DRing one or more of the following:

MSG OOB Send out-of-band data on sockets that support this notion. The
underlying protocol must also support out-of-band data.
Currently, only SOCK_STREAM sockets created in the AF_lNET
address family support out-of-band data.

MSG DONTROUTE The SO _DONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing programs.

Page 1

send (3N) send (3N)

See recv(3N) for a description of the msqhdr structure.

RETURN VALUE
These calls return the number of bytes sent, or -1 if an error occurred.

ERRORS
The calls fail if:

EBADF

ENOTSOCK

EINVAL

EINTR

EMSGSIZE

E~OLDBLOCK

ENOMEM

ENOSR

SEE ALSO

s is an invalid descriptor.

s is a descriptor for a file, not a socket.

to1en is not the size of a valid address for the specified
address family.

The operation was interrupted by delivery of a signal
before any data could be buffered to be sent.

The socket requires that message be sent atomically, and
the message was too long.

The socket is marked non-blocking and the requested
operation would block.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

connect(3N), fcntl(2), getsockopt(3N), recv(3N), socket(3N), write(2).

Page 2 10/89

shutdown (3N) shutdown (3N)

NAME
shutdown - shut down part of a full-<luplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown () call shuts down all or part of a full-duplex connection on the
socket associated with s. If how is 0, then further receives will be disallowed. If
how is 1, then further sends will be disallowed. If how is 2, then further sends
and receives will be disallowed.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF
ENOTSOCK

ENOTCONN

ENOMEM

ENOSR

s is not a valid descriptor.

s is a file, not a socket.

The specified socket is not connected.

There was insufficient user memory available for the opera­
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO
connect(3N), socket(3N).

NOTES
The how values should be defined constants.

10/89 Page 1

socket (3N) socket (3N)

NAME
socket - create an endpoint for communication

SYNOPSIS
'include <sys/types.h>
'include <sys/socket.h>
int socket(domain, type, protocol)
int domain, type, protocol;

DESCRIPTION

10/89

socket () creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which commun­
ication will take place; this selects the protocol family which should be used. The
protocol family generally is the same as the address family for the addresses sup­
plied in later operations on the socket. These families are defined in the include
file /usr/include/sys/socket.h. There must be an entry in the netconfig(4)
file for at least each protocol family and type required. If protocol has been
specified, but no exact match for the tuplet family, type, protocol is found, then
the first entry containing the specified family and type with zero for protocol will
be used. The currently understood formats are:

UNIX system internal protocols

ARPA Internet protocols

The socket has the indicated type, which specifies the communication semantics.
Currently defined types are:

SOCK_STREAM
S~DGRAM
SOCK_RAW
~SEQI?ACKET
SOCK_ROM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK_SEQI?ACKET socket may provide a
sequenced, reliable, two-way connection-based data transmission path for
datagrams of fixed maximum length; a consumer may be required to read an
entire packet with each read system call. This facility is protocol specific, and
presently not implemented for any protocol family. SOCK_RAW sockets provide
access to internal network interfaces. The types SOCK_RAW, which is available only
to the super-user, and SOCK_ROM, for which no implementation currently exists, are
not described here.

protocol specifies a particular protocol to be used with the socket. Normally only
a single protocol exists to support a particular socket type within a given protocol
family. However, multiple protocols may exist, in which case a particular proto­
col must be specified in this manner. The protocol number to use is particular to
the communication domain in which communication is to take place. If a proto­
col is specified by the caller, then it will be packaged into a socket level option
request and sent to the underlying protocol layers.

Page 1

8Ocket(3N} 8Ocket(3N}

Sockets of type SOCK_STRUM are full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data may be sent or
received on it. A connection to another socket is created with a connect(3N) call.
Once connected, data may be transferred using read(2) and write(2) calls or
some variant of the send(3N) and recv(3N) calls. When a session has been com­
pleted, a C10S8(2) may be performed. Out-of-band data may also be transmitted
as described on the send(3N) manual page and received as described on the
recv(3N) manual page.

The communications protocols used to implement a SOCK_STRUM insure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then
the connection is considered broken and calls will indicate an error with -1
returns and with ETlMEDOUT as the specific code in the global variable errno.
The protocols optionally keep sockets warm by forcing transmissions roughly
every minute in the absence of other activity. An error is then indicated if no
response can be elicited on an otherwise idle connection for a extended period
(for instance 5 minutes). A SIGPIPB signal is raised if a process sends on a broken
stream; this causes naive processes, which do not handle the signal, to exit.

SOCK_SBQPACICBT sockets employ the same system calls as SOCK_STREAM sockets. The
only difference is that read calls will return only the amount of data requested,
and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW Sockets aliow datagrams to be sent to correspondents
named in sendto calls. Datagrams are generally received with recvfrOl'l\. which
returns the next datagram with its return address.

An fcnt1(2) call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. It may also enable non-blocking I/O and
asynchronous notification of I/O events with SIGIO signals.

The operation of sockets is controlled by socket level options. These options are
defined in the me /usr/inc1ude/sys/socket.h. setsockopt(3N) and
qetsockopt(3N) are used to set and get options, respectively.

RETURN VALUE
A -1 is returned if an error occurs. Otherwise the return value is a descriptor
referencing the socket.

ERRORS

Page 2

The socket () call fails if:

EPROTONOSOPPORT The protocol type or the specified protocol is not supported
within this domain.

EMFILE The per-process descriptor table is full.

EACCESS

ENOMEM

Permission to create a socket of the specified type and/or
protocol is denied.

Insufficient user memory is available.

10/89

socket (3N)

ENOSR

SEE ALSO

socket (3N)

There were insufficient STREAMS resources available to
complete the operation.

close(2), fcntl(2), ioctl(2), read(2),· write(2), accept(3N), bind(3N),
connect(3N), getsocJcname(3N), getsockopt(3N), listen(3N), recv(3N),
send(3N), shutdown(3N), socketpair(3N).

10/89 Page 3

sock.tpalr (3N) socketpalr(3N)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
'include <sys/types.h>
'include <sys/socket.h>
socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2J;

DESCRIPTION
The socketpair () library call creates an unnamed pair of connected sockets in
the ~~fied address family d, of the specified type , and using the optionally
specified protocol. The descriptors used in referencing the new sockets are
returned in sv[O] and sv[1]. The two sockets are indistinguishable.

RETURN VALUE
socketpair () returns a -1 on failure, otherwise it returns the number of the
second file descriptor it creates.

ERRORS
The call succeeds unless:

EMFILE Too many descriptors are in use by this process.

EAFNOSUPPORT The specified address family is not supported on this
machine.

EPROTONOSUPPORT The specified protocol is not supported on this machine.

EOPNOSUPPORT The specified protocol does not support creation of socket
pairs.

ENOSR

There was insufficient user memory for the operation to
complete.

There were insufficient STREAMS resources for the operation
to complete.

SEE ALSO
pipe(2), read(2), write(2)

NOTES
This call is currently implemented only for the AF _UNIX address family.

10189 Page 1

spray(3N) spray (3N)

NAME
spray - scatter data in order to check the network

SYNOPSIS
tinclude <rpcsvc/spray.h>

DESCRIPTION
The spray protocol sends packets to a given machine to test the speed and relia­
bility of communications with that machine.

The spray protocol is not. a C function interface, per se, but can be accessed using
the generic remote procedure calling interface clnt_call() [see
rpc_clnt_calls(3N»). The protocol sends a packet to the called host. The host
acknowledges receipt of the packet. The protocol counts the number of ack­
nowledgments and can return that count.

The spray protocol currently supports the following procedures, which should be
called in the order given:

SPRAYFROC CLEAR
This procedure clears the counter.

SPRAYFROC SPRAY
This procedure sends the packet.

SPRAYFROC GET
Thisprocedure returns the count and the amount of time since the last
SPRAYFROC CLEAR.

The following XDR routines are available in librpcsvc:

xdr_sprayarr
xdr_spraycumul

EXAMPLE

10/89

The following code fragment demonstrates how the spray protocol is used:
tinclude <rpc/rpc.h>
tinclude <rpcsvc/spray.h>

spraycumul spray_result;
sprayarr spray data;
char buf[100]; /* arbitrary data */
int loop = 1000;
CLIENT *clnt;
struct timeval timeoutO = {O, O};
struct timeval timeout25 = {25, O};

spray data.sprayarr len = (u int)100;
spray:data.sprayarr:val = buf;

clnt = clnt create (nsomehostn, SPRAYFROG, SPRAYVERS, nnetpathn);
if (clnt ==-(CLIENT *)NULL) (

/* handle this error */

Page 1

spray (3N)

SEE ALSO

spray(3N)

if (clnt call(clnt, SPRAYFROC CLEAR,
xdr-void, NULL, xdr void-; NULL, timeout25» (

- /* handle this-error * /
)
while (loop-- > 0) {

}

if (clnt call(clnt, SPRAYFROC SPRAY,
xdr~sprayarr, ,spray_data, xdr_void, NULL, timeoutO» {

/* handle this error */

if (clnt call(clnt, SPRAYFROC GET,
xdr-void, NULL, xdr spraYcUJIU1, 'spray_result, timeout25»

- /* handle this error * /
}

printf ("Acknowledged %ld of 1000 packets in %d sees %d usecs\n",
spray_result.counter,
spray_result.clock.sec,
spray_result.clock.usee);

rpc_clnt_calls(3N), spray(1M), sprayd(1M).

Page 2 10/89

NAME
t_accept - accept a connect request

SYNOPSIS
'include <tiuser.h>

int t_accept (int fd, int resfd, struct t_call *call);

DESCRIPTION

10189

This function is issued by a transport user to accept a connect request. fd
identifies the local transport endpoint where the connect indication arrived,
resfd specifies the local transport endpoint where the connection is to be esta­
blished, and call contains information required by the transport provider to
complete the connection. call points to a t_call structure that contains the fol­
lowing members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr is the address of the caller, opt
indicates any protocol-specific parameters associated with the connection, udata
points to any user data to be returned to the caller, and sequence is the value
returned by t_listen that uniquely associates the response with a previously
received connect indication.

A transport user may accept a connection on either the same, or on a different,
local transport endpoint from the one on which the connect indication arrived. If
the same endpoint is specified (i.e., resfd=fd), the connection can be accepted
unless the following condition is true: The user has received other indications on
that endpoint but has not responded to them (with t_accept or t_snddis). For
this condition, t_accept will fail and set t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpOint must be
bound to a protocol address and must be in the T_IDLE state [see
t_getstate(3N)] before the t_accept is issued.

For both types of endpoints, t_accept will fail and set t_errno to TLOOK if there
are indications (e.g., a connect or disconnect) waiting to be received on that end­
point.

The values of parameters specified by opt and the syntax of those values are pro­
tocol specific. The udata argument enables the called transport user to send user
data to the caller and the amount of user data must not exceed the limits sup­
ported by the transport provider as returned in the connect field of the info
argument of t_open or t_getinfo. If the len [see netbuf in intro(3)] field of
udata is zero, no data will be sent to the caller.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint, or the user is illegally accepting a connection on
the same transport endpoint on which the connect indication
arrived.

Page 1

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADDATA]

[TBADSEQ]
[TLOOK)

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The function was issued in the wrong sequence on the tran­
sport endpoint referenced by fd, or the transport endpoint
referred to by resfd is not in the T_IDLE state.

The user does not have permission to accept a connection on
the responding transport endpoint or use the specified
options.

The specified options were in an incorrect format or con­
tained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport end­
point referenced by fd and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

intro(3), t connect(3N), t getstate(3N), t listen(3N), t open(3N),
t_rcvconnect(3N). - - -
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and t errno is set to indicate the error.

Page 2 10/89

NAME
t_alloc - allocate a library structure

SYNOPSIS
tinclude <tiuser.h>

char *t alloc (fd, struct_type, fields)
int fd;-
int struct type;
int fields;

DESCRIPTION

10/89

The t_alloc function dynamically allocates memory for the various transport
function argument structures as specified below. This function will allocate
memory for the specified structure, and will also allocate memory for buffers
referenced by the structure.

The structure to allocate is specified by struct_type, and can be one of the fol­
lowing:

T_BIND struct t_bind

T_CALL

T OP'1MGMT

T_DIS
T UNITDATA

T_UDERROR

struct

struct

struct

struct

struct

t call

t_optmgmt

t_discon

t_unitdata

t_uderr

T INFO struct t _info

where each of these structures may subsequently be used as an argument to one
or more transport functions.

Each of the above structures, except T _INFO, contains at least one field of type
struct netbuf. netbuf is described in intro(3). For each field of this type, the
user may specify that the buffer for that field should be allocated as well. The
fields argument specifies this option, where the argument is the bitwise-OR of
any of the following:

T ADDR The addr field of the t_bind, t_call, t_unitdata, or t_uderr struc­
tures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr
structures.

T UDATA The udata field of the t_call, t_discon, or t_unitdata structures.

T ALL All relevant fields of the given structure.

For each field specified in fields, t_alloc will allocate memory for the buffer
associated with the field, and initialize the buf pointer and maxlen [see netbuf in
intro(3) for description of buf and maxlen] field accordingly. The length of the
buffer allocated will be based on the same size information that is returned to the
user on t_open and t_getinfo. Thus, fd must refer to the transport endpoint
through which the newly allocated structure will be passed, so that the appropri­
ate size information can be accessed. If the size value associated with any

Page 1

specified field is -1 or -2 (see t_open or t_getinfo), t alloc will be unable to
determine the size of the buffer to allocate and willlail, setting t_errno to
TSYSERR and errno to EINVAL. For any field not specified in fields, buf will be
set to NULL and maxlen will be set to zero.

Use of t_alloc to allocate structures will help ensure the compatibility of user
programs with future releases of the transport interface.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end­
point.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_free(3N), t_getinfo(3N), t_open(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

Page 2

On successful completion, t_alloc returns a pointer to the newly allocated struc­
ture. On failure, NULL is returned.

10/89

NAME
t_bind - bind an address to a transport endpoint

SYNOPSIS
'include <tiuser.h>

int t bind (fd, req, ret)
int idi
struct t bind *req;
struct t-bind *reti

DESCRIPTION

1Q/89

This function associates a protocol address with the transport endpoint specified
by fd and activates that transport endpoint. In connection mode, the transport
provider may begin accepting or requesting connections on the transport end­
point. In connectionless mode, the transport user may send or receive data units
through the transport endpoint.

The req and ret arguments point to a t _bind structure containing the following
members:

struct netbuf addr i
unsigned qlen;

netbuf is described in intro(3). The addr field of the t_bind structure specifies
a protocol address and the qlen field is used to indicate the maximum number of
outstanding connect indications.

req is used to request that an address, represented by the netbuf structure, be
bound to the given transport endpoint. len [see netbuf in intro(3); also for buf
and maxlenl specifies the number of bytes in the address and buf points to the
address buffer. maxlen has no meaning for the req argument. On return, ret
contains the address that the transport provider actually bound to the transport
endpoint; this may be different from the address specified by the user in req. In
ret, the user specifies maxlen, which is the maximum size of the address buffer,
and buf, which points to the buffer where the address is to be placed. On return,
len specifies the number of bytes in the bound address and buf points to the
bound address. If maxlen is not large enough to hold the returned address, an
error will result.

If the requested address is not available, or if no address is specified in req (the
len field of addr in req is zero) the transport provider may assign an appropri­
ate address to be bound, and will return that address in the addr field of ret.
The user can compare the addresses in req and ret to determine whether the
transport provider bound the transport endpoint to a different address than that
requested.

req may be NULL if the user does not wish to specify an address to be bound.
Here, the value of qlen is assumed to be zero, and the transport provider must
assign an address to the transport endpoint. Similarly, ret may be NULL if the
user does not care what address was bound by the provider and is not interested
in the negotiated value of qlen. It is valid to set req and ret to NULL for the
same call, in which case the provider chooses the address to bind to the transport
endpoint and does not return that information to the user.

Page 1

Page 2

The qlen field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connect indications the transport provider
should support for the given transport endpoint. An outstanding connect indica­
tion is one that has been passed to the transport user by the transport provider.
A value of qlen greater than zero is only meaningful when issued by a passive
transport user that expects other users to call it. The value of qlen will be nego­
tiated by the transport provider and may be changed if the transport provider
cannot support the specified number of outstanding connect indications. On
return, the qlen field in ret will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the same
protocol address (however, the transport provider must support this capability
also), but it is not allowable to bind more than one protocol address to the same
transport endpOint. If a user binds more than one transport endpoint to the same
protocol address, only one endpoint can be used to listen for connect indications
associated with that protocol address. In other words, only pne t _bind for a
given protocol address may specify a value of qlen greater than zero. In this
way, the transport provider can identify which transport endpoint should be
notified of an incoming connect indication. If a user attempts to bind a protocol
address to a second transport endpoint with a value of qlen greater than zero,
the transport provider will assign another address to be bound to that endpoint.
If a user accepts a connectioJ1. on the transport endpoint that is being used as the
listening endpoint, the bound protocol address will be found to be busy for the
duration of that connection. No other transport endpoints may be bound for
listening while that initial listening endpoint is in the data transfer phase. This
will prevent more than one transport endpoint bound to the same protocol
address from accepting connect indications.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOOTSTATE]

[TBADADDR]

[TNOADDR]

[TACCES]

[TBUFOVFLW]

[TSYSERR]

The function was issued in the wrong sequence.

The specified protocol address was in an incorrect format or
contained illegal information.

The transport provider could not allocate an address.

The user does not have permission to use the specified
address.

The number of bytes allowed for an incoming argument is
not sufficient to store the value of that argument. The
provider's state will change to T_IDLE and the information
to be returned in ret will be discarded.

A system error has occurred during execution of this func­
tion.

10/89

SEE ALSO
intro(3), t_open(3N), t_optJl9!lt(3N), t_unbind(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10/89

t _ b~ returns 0 on success and -} on failure and t _ errno is set to indicate the
error.

Page 3

NAME
t_close - close a transport endpoint

SYNOPSIS
'include <tiuser.h>

int t close(fd)
int fd;

DesCRIPTION
The t _close function informs the transport provider that the user is finished
with the transport endpoint specified by fei. and frees any local library resources
associated with the endpoint. In addition, t_close closes the file associated with
the transport endpoint.

t_close should be called from the T_UNBND state [see t_getstate(3N)). How­
ever, this function does not check state information, so it may be called from any
state to close a transport endpoint. If this occurs, the local library resources asso­
ciated with the endpoint will be freed automatically. In addition, close(2) will be
issued for that file descriptor; the close will be abortive if no other process has
that file open, and will break any transport connection that may be associated
with that endpoint.

On failure, t _ errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

SEE ALSO
t_getstate(3N), t_~n(3N), t_unbind(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10189

t _close returns 0 on success and -Ion failure and t _ ermo is set to indicate the
error.

Page 1

NAME
t_connect - establish a connection with another transport user

SYNOPSIS
'include <tiuser.h>

int t connect(fd, sndcall, reveall)
int fd.;
struct t call *sndcall;
struct t:call *reveall;

DESCRIPTION

10/89

This function enables a transport user to request a connection to the specified
destination transport user. fd identifies the local transport endpoint where com­
munication will be established, while sndcall and reveall point to a t _ call
structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

sndcall specifies information needed by the transport provider to establish a
connection and reveall specifies information that is associated with the newly
established connection.

netbuf is described in intro(3). In sndcall, addr specifies the protocol address
of the destination transport user, opt presents any protocol-specific information
that might be needed by the transport provider, udata points to optional user
data that may be passed to the destination transport user during connection
establishment, and sequence has no meaning for this function.

On return in rcvcall, addr returns the protocol address associated with the
responding transport endpoint, opt presents any protocol-specific information
associated with the connection, udata points to optional user data that may be
returned by the destination transport user during connection establishment, and
sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed to the
transport provider. The transport provider is free to specify the structure of any
options passed to it. These options are specific to the underlying protocol of the
transport provider. The user may choose not to negotiate protocol options by
setting the len field of opt to zero. In this case, the provider may use default
options.

The udata argument enables the caller to pass user data to the destination tran­
sport user and receive user data from the destination user during connection
establishment. However, the amount of user data must not exceed the limits sup­
ported by the transport provider as returned in the connect field of the info
argument of t_open(3N) or t_getinfo(3N). If the len [see netbuf in intro(3)]
field of udata is zero in sndcall, no data will be sent to the destination transport
user.

Page 1

t_conn.ct(3N)

Page. 2

On return, the addr, opt, and udata fields of reveal! will be updated to reflect
values associated with the connection. Thus, the maxlen [see netbuf in intro(3)]
field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, reveal! may be NULL, in which
case no information is given to the user on return from t _connect.

By default, t _connect executes in synchronous mode, and will wait for the desti­
nation user's response before returning r.ontrol to the local user. A successful
return (i.e., return value of zero) indicates that the requested connection has been
established. However, if 0 NDELAY or 0 NONBLOCK is set (via t open or fcntl),
t _connect executes in asynchronous mode. In this case, the call will not wait for
the remote user's response, but will return control immediately to the local user
and return -1 with t errno set to TNODATA to indicate that the connection has not
yet been established. In this way, the function simply initiates the connection
establishment procedure by sending a connect request to the destination transport
user.

On failure, t _ ermo may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE]

[TNODATA]

[TBADADDR]

[TBADOPT]

[TBADDATA]

[TACCES]

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

The function was issued in the wrong sequence.

o NDELAY or 0 NONBIDCK was set, so the function success­
fiiily initiated the connection establishment procedure, but
did not wait for a response from the remote user.

The specified protocol address was in an incorrect format or
contained illegal information.

The specified protocol options were in an incorrect format or
contained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

The user does not have permission to use the specified
address or options.

The number of bytes allocated for an incoming argument is
not sufficient to store the value of that argument. If exe­
cuted in synchronous mode, the provider's state, as seen by
the user, changes to T _DATAXFER, and the connect indication
information to be returned in rcveall is discarded.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

10/89

SEE ALSO
intro(3), t_accept(3N), t_qetinfo(3N), t_listen(3N), t_open(3N),
t_cptmgmt.(3N), t_rcvconnect(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t connect returns 0 on success and -1 on failure and t ermo is set to indicate
the error. -

10/89 Page 3

NAME
t_error - produce error message

SYNOPSIS
'include <tiuser.h>

void t error(errmsg)
char *err.msg;
extern int t errno;
extern char *t err list [] ;
extern int t_nerr;

DESCRIPTION
t_error produces a message on the standard error output which describes the
last error encountered during a call to a transport function. The argument string
errmsg is a user-supplied error message that gives context to the error.

t _error prints the user-supplied error message followed by a colon and the stan­
dard transport function error message for the current value contained in t_errno.
If t_errno is TSYSERR, t_error will also print the standard error message for the
current value contained in errno [see intro(2»).

t_errlist is the array of message strings, to allow user message formatting.
t _ errno can be used as an index into this array to retrieve the error message
string (without a terminating newline). t_nerr is the maximum index value for
the t_errlist array.

t _ errno is set when an error occurs and is not cleared on subsequent successful
calls.

EXAMPLE
If a t_connect function fails on transport endpoint fci2 because a bad address
was given, the following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message would print as:

t_connect failed on fd2: Incorrect transport address format

where lit connect failed on fd2" tells the user which function failed on which
transport-endpoint, and "Incorrect transport address format" identifies the
specific error that occurred.

SEE ALSO
UNIX System V Network Programmer's Guide.

10/89 Page 1

tJree(3N) Uree(3N)

NAME
t _ free - free a library structure

SYNOPSIS
'include <tiuser.h>

int t free (ptr, struct type)
char .ptr; -
int struct_type;

DESCRIPTION
The t_free function frees memory previously allocated by t_alloc. This func­
tion will free memory for the specified structure, and will also free memory for
buffers referenced by the structure.

ptr points to one of the six structure types described for t_alloc, and
struct_type identifies the type of that structure, which can be one of the follow­
ing:

T_BIND struct t_bind

T_CALL struct t_call

T_OP'DGfi' struct t _ opt:Jl9mt
T DIS struct t _ discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures is used as an argument to one or more transport
functions.

t_free will check the addr, opt, and udata fields of the given structure (as
appropriate), and free the buffers pointed to by the buf field of the netbuf [see
intro(3)] structure. If buf is NULL, t_free will not attempt to free memory.
After all buffers are freed, t _free will free the memory associated with the struc­
ture pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated by t_alloc.

On failure, t _ errno may be set to the following:

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_alloc(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10189

t _free returns 0 on success and -1 on failure and t _ errno is set to indicate the
error.

Page 1

t_getlnfo (3N) t_getlnfo (3N)

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
tinclude <tiuser.h>

int t getinfo(fd, info)
int fd;
struct t_info *info;

DESCRIPTION

10/89

This function returns the current characteristics of the underlying transport proto­
col associated with file descriptor fd The info structure is used to return the
same information returned by t_open. This function enables a transport user to
access this information during any phase of communication.

This argument points to a t_info structure, which contains the following
members:

lonq acidr; r max size of the transport protocol address • /
lonq options; r max number of bytes of protocol-specific options • /
lonq tsdu; r max size of a transport service data unit (TSDU) • /
lonq etsdu; r max size of an expedited transport service data unit (ETSDU) • /
lonq connect; r max amount of data allowed on connection establishment functions • /
lonq discon; r max amount of data allowed on t snddis and t rcvdis functions • /
lonq servtype; r service type supported by the tran-;port provider- /

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum size
of a transport protocol address; a value of -1 specifies that there
is no limit on the address size; and a value of - 2 specifies that the
transport provider does not provide user access to transport pro­
tocol addresses.

options

tsdu

etsdu

A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by the pro­
vider; a value of -1 specifies that there is no limit on the option
size; and a value of - 2 specifies that the transport provider does
not supportuser-settable options.

A value. greater than zero specifies the maximum size of a tran­
sport service data unit (TSDU); a value of zero specifies that the
transport provider does not support the concept of TSDU, although
it does support the sending of a data stream with no logical boun­
daries preserved across a connection; a value of -1 specifies that
there is no limit on the size of a TSDU; and a value of - 2 specifies
that the transfer of normal data is not supported by the transport
provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept
of ETSDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a

Page 1

connect

discon

servtype

t_g8tlnfo (3N)

connection; a value of -1 specifies that there is no limit on the size
of an ETSDU; and a value of - 2 specifies that the transfer of
expedited data is not supported by the transport provider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection establish­
ment functions; a value of -1 specifies that there is no limit on the
amount of data sent during connection establishment; and a value
of - 2 specifies that the transport provider does not allow data to
be sent with connection establishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t _ snddis and
t_rcvdis functions; a value of -1 specifies that there is no limit
on the amount of data sent with these abortive release functions;
and a value of - 2 specifies that the transport provider does not
allow data to be sent with the abortive release functions.

This field specifies the service type supported by the transport
provider, as described below.

If a transport user is concerned with protocol independence, the above sizes may
be accessed to determine how large the buffers must be to hold each piece of
information. Alternatively, the t_alloc function may be used to allocate these
buffers. An error will result if a transport user exceeds the allowed data size on
any function. The value of each field may change as a result of option negotia­
tion, and t_getinfo enables a user to retrieve the current characteristics.

The servtype field of info may specify one of the following values on return:

T COTS The transport provider supports a connection-mode service but
does not support the optional orderly release facility.

T CLTS

The transport provider supports a connection-mode service with
the optional orderly release facility.

The transport provider supports a connectionless-mode service.
For this service type, t _open will return - 2 for etsdu, connect,
and discon.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end­
point.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO
t _ open(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t get info returns 0 on success and -Ion failure and t errno is set to indicate
the error. -

Page 2 10/89

t _getstate (3N) t_getstate (3N)

NAME
t _getstate - get the current state

SYNOPSIS
'include <tiuser.h>

int t getstate(fd)
int fd;

DESCRIPTION
The t_getstate function returns the current state of the provider associated with
the transport endpoint specified by fd.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end­
point.

[TSTATECHNG]

[TSYSERR]

The transport provider is undergoing a state change.

A system error has occurred during execution of this func­
tion.

SEE ALSO
t _ open(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10/89

t_getstate returns the current state on successful completion and -1 on failure
and t_errno is set to indicate the error. The current state may be one of the fol­
lowing:

T UNBND unbound

T IDLE idle

T OUTCON

T INCON
outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release indica­
tion)

T_INREL incoming orderly release (waiting for an orderly release request)

If the provider is undergoing a state transition when t_getstate is called, the
function will fail.

Page 1

Uisten(3N)

NAME
t _listen - listen for a connect request

SYNOPSIS
tinclude <tiuser.h>

int t listen (fd, call)
int fd.;
struct t _call *call;

DESCRIPTION

10/89

This function listens for a connect request from a calling transport user. fd
identifies the local transport endpoint where connect indications arrive, and on
return, call contains information describing the connect indication. call points
to a t_call structure, which contains the following members:

struct netbuf addr;
truct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address of
the calling transport user, opt returns protocol-specific parameters associated
with the connect request, udata returns any user data sent by the caller on the
connect request, and sequence is a number that uniquely identifies the returned
connect indication. The value of sequence enables the user to listen for multiple
connect indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of call, the
maxlen [see netbuf in intro(3)] field of each must be set before issuing
t_listen to indicate the maximum size of the buffer for each.

By default, t_listen executes in synchronous mode and waits for a connect indi­
cation to arrive before returning to the user. However, if O_NDELAY or
O_NONBLOCK is set (via t_open or fcntl), t_listen executes asynchronously,
reducing to a poll for existing connect indications. If none are available, it
returns -1 and sets t_errno to TNODATA.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

(TBUFOVFLW]

[TNODATA]

(TLOOK]

The number of bytes allocated for an incoming argument is
not sufficient to store the value of that argument. The
provider's state, as seen by the user, changes to T_INCON,
and the connect indication information to be returned in
call is discarded.

o NDELAY or 0 NONBLOCK was set, but no connect indica­
tions had been queued.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

Page 1

[TNOTSUPPORT]

[TSYSERR]

tJlsten (3N)

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

CAVEATS
If a user issues t_listen in synchronous mode on a transport endpoint that was
not bound for listening (i.e., qlen was zero on t_bind), the call will wait forever
because no connect indications will arrive on that endpoint.

SEE ALSO
intro(3), t accept(3N), t bind(3N), t connect(3N), t open(3N),
t_rcvconnect(3N). - - -
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t listen returns 0 on success and -Ion failure and t errno is set to indicate
the error. -

Page 2 10/89

tJook(3N) tJook(3N)

NAME
t_look - look at the current event on a transport endpoint

SYNOPSIS
tinclude <tiuser.h>

int t look (fd)
int fd;

DESCRIPTION
This function returns the current event on the transport endpoint specified by fd.
This function enables a transport provider to notify a transport user of an asyn­
chronous event when the user is issuing functions in synchronous mode. Certain
events require immediate notification of the user and are indicated by a specific
error, TLOOK, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint periodi­
cally for asynchronous events.

On failure, t_errno may be set to one of the following:

[TBADFI The specified file descriptor does not refer to a transport end­
point.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO
t open(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10/89

Upon success, t_look returns a value that indicates which of the allowable events
has occurred, or returns zero if no event exists. One of the following events is
returned:

T_LISTEN

T CONNECT

T_DATA
T_EXDATA

T_DI SCONNECT

T_UDERR

T ORDREL

connection indication received

connect confirmation received

normal data received

expedited data received

disconnect received

datagram error indication

orderly release indication

On failure, -1 is returned and t_errno is set to indicate the error.

Page 1

NAME
t_open - establish a transport endpoint

SYNOPSIS
'include <tiuser.h>

'include <fentl.h>

int t_open (char path, int of lag, struct t_info "'info);

DESCRIPTION

10189

t_open must be called as the first step in the initialization of a transport end­
point. This function establishes a transport endpoint by opening a UNIX file that
identifies a particular transport provider (i.e., transport protocol) and returning a
file descriptor that identifies that endpoint. For example, opening the file
/dev/iso_cots identifies an OSI connection-oriented transport layer protocol as
the transport provider.

path points to the path name of the file to open, and of lag identifies any open
flags [as in open(2»). of lag may be constructed from O_NDELAY or O_NONBLOCK
OR-ed with 0_ RDwa. These flags are defined in the header file <fentl. h>.
t _ open returns a file descriptor that will be used by all subsequent functions to
identify the particular local transport endpoint.

This function also returns various default characteristics of the underlying tran­
sport protocol by setting fields in the t_info structure. This argument points to
a t_info which contains the following members:

long addr; r max size of the transport protocol address • /
long options; r max number of bytes of protocol-specific options • /
long tsdu; r max size of a transport service data unit (TSDU) • /
long etsdu; r max size of an exPedited transport service data unit (ETSDU) • /
long connect; r max amount of data allowed on connection establishment functions • /
long discon; r max amount of data allowed on t sncIdis and t rovdis functions • /
long _rvtype; r service type supported by the transport provider -. /

The values of the fields have the following meanings:

addr

options

tsdu

A value greater than or equal to zero indicates the maximum size
of a transport protocol address; a value of -1 specifies that there
is no limit on the address size; and a value of -2 specifies that the
transport provider does not provide user access to transport pro­
tocol addresses.

A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by the pro­
vider; a value of -1 specifies that there is no limit on the option
size; and a value of - 2 specifies that the transport provider does
not support user-settable options.

A value greater than zero specifies the maximum size of a tran­
sport service data unit (TSDO); a value of zero specifies that the
transport provider does not support the concept of TSDU, although
it does support the sending of a data stream with no logical boun­
daries preserved across a connection; a value of -1 specifies that
there is no limit on the size of a TSDU;· and a value of - 2 specifies

Page 1

Page 2

etsdu

connect

discon

servtype

that the transfer of normal data is not supported by the transport
provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept
of ETSDu,although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connec­
tion; a value of -1 specifies that there is no limit on the size of an
ETSDU; and a value of - 2 specifies that the transfer of expedited
data is not supported by the transport provider.

A value greater than or equal to. zero specifies the maximum
amount of data that may be associated with connection establish­
ment functions; a value of -1 specifies that there is no limit on the
amount of data sent during connection establishment; and a value
of - 2 specifies that the transport provider does not allow data to
be sent with connection establishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t _ snddis and

, t _ rcvdis functions; a value of -1 specifies that. there is no limit
on the amount of data sent with these abortive release functions;
and a value of - 2 specifies that the transport provider does not
allow data to be sent with the abortive release functions.

This field specifies the service type supported by the transport
provider, as described below.

If a transport uSer is concerned with protocol independence, the above sizes. may
be accessed to determine how large the buffers must be to hold each piece of
information. Alternatively, the t_alloc function may be used to allocate these
buffers. An error will result if a transport user exceeds the allowed data size on
any function.

The servtype field of info may specify one of the following values on return:

T COTS The transport provider supports a connection-mode serVice but
does not support the optional orderly release facility.

The transport provider supports a connection-mode service with
the optional orderly release facility. '

T_CLTS The transport provider supports a connectionless-mode service.
For this service type, t _ open will return - 2 for etsdu, connect,
and discon.

A single transport endpoint may support only one of the above services at one
time.

If info is set to uu. by the transport user, no protocol information is returned by
t_open.

10/89

t_open(3N)

On failure, t_errno may be set to the following:

[TSYSERRj A system error has occurred during execution of this func­
tion.

[TBADFLAGj

DIAGNOSTICS

An invalid flag is specified.

NOTES

t_open returns a valid file descriptor on success and -1 on failure and t_errno
is set to indicate the error.

If t_open is used on a non-TLI-conforming STREAMS device, unpredictable events
may occur.

SEE ALSO
open(2).
UNIX System V Network Programmer's Guide.

10/89 Page 3

t_ optmgmt (3N) t_ optmgmt (3N)

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
tinclude <tiuser.h>

int t_optmgmt (int fd, struct t_optmgmt *req, struct t_optngmt *ret);
DESCRIPTION

10/89

The t_optmgmt function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider. fd identifies a bound transport
endpoint.

The req and ret arguments point to a t_optmgmt structure containing the fol­
lowing members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is used to specify the
action to take with those options.

The options are represented by a netbuf [see intro(3); also for len, buf, and
maxlen] structure in a manner similar to the address in t bind. req is used to
request a specific action of the provider and to send options to the provider. len
specifies the number of bytes in the options, buf points to the options buffer, and
maxlen has no meaning for the req argument. The transport provider may
return options and flag values to the user through ret. For ret, maxlen specifies
the maximum size of the options buffer and buf points to the buffer where the
options are to be placed. On return, len specifies the number of bytes of options
returned. maxlen has no meaning for the req argument, but must be set in the
ret argument to specify the maximum number of bytes the options buffer can
hold. The actual structure and content of the options is imposed by the transport
provider.

The flags field of req can specify one of the following actions:

T NEGOTIATE This action enables the user to negotiate the values of the options
specified in req with the transport provider. The provider will
evaluate the requested options and negotiate the values, return­
ing the negotiated values through ret.

T CHECK This action enables the user to verify whether the options
specified in req are supported by the transport provider. On
return, the flags field of ret will have either T SOCCESS or
T_FAILURE set to indicate to the user whether the options are
supported. These flags are only meaningful for the T_CHECK
request.

This action enables a user to retrieve the default options sup­
ported by the transport provider into the opt field of ret. In
req, the len field of opt must be zero and the buf field may be
NULL.

Page 1

t_ optmgmt (3N) t_ optmgmt (3N)

If issued as part of the connectionless-mode service, t opt.m;pnt may block due to
flow control constraints. The function will not compTete until the transport pro­
vider has processed all previously sent data units.

On failure, t_ermo may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADFLAG]

[TBUFOVFLW]

[TSYSERR]

The function was issued in the wrong sequence.

The user does not have permission to negotiate the
specified options.

The specified protocol options were in an incorrect format
or contained illegal information.

An invalid flag was specified.

The number of bytes allowed for an incoming argument is
not sufficient to store the value of that argument. The
information to be returned in ret will be discarded.
A system error has occurred during execution of this func­
tion.

SEE ALSO
intro(3), t_getinfo(3N), t_open(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t optmgmt returns 0 on success and -1 on failure and t errno is set to indicate
the error. -

Page 2 10/89

tJcv(3N) tJcv(3N)

NAME
t _ rev - receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv (int fd, char *buf, unsigned nbytes, int *flags);

DESCRIPTION

10/89

This function receives either normal or expedited data. fd identifies the local
transport endpoint through which data will arrive, buf points to a receive buffer
where user data will be placed, and nbytes specifies the size of the receive
buffer. flags may be set on return from t_rcv and specifies optional flags as
described below.

By default, t _ rev operates in synchronous mode and will wait for data to arrive
if none is currently available. However, if O_NDELAY or O_NONBIDCK is set (via
t_open or fcntl), t_rev will execute in asynchronous mode and will fail if no
data is available. (See TNODATA below.)

On return from the call, if T K>RE is set in flags, this indicates that there is more
data and the current transpOrt service data unit (TSDU) or expedited transport ser­
vice data unit (ETSDU) must be received in multiple t_rcv calls. Each t_rcv with
the T_K>RE flag set indicates that another t_rcv must follow to get more data for
the current TSDU. The end of the TSDU is identified by the return of a t_rcv call
with the T_K>RE flag not set. If the transport provider does not support the con­
cept of a TSDU as indicated in the info argument on return from t_open or
t_getinfo, the T_K>RE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T_EXPEDlTED is set in flags. If
the number of bytes of expedited data exceeds nbytes, t_rcv will set
T_EXPEDlTED and T_K>RE on return from the initial call. Subsequent calls to
retrieve the remaining ETSDU will have T_EXPEDlTED set on return. The end of
the ETSDU is identified by the return of a t _ rcv call with the T _ K>RE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed.
Only after the full ETSDU has been retrieved (T _ K>RE not set) will the remainder
of the TSDU be available to the user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TNODATA]

(TLOOK]

[TNOTSUPPORT]

[TSYSERR]

O_NDELAY or O_NONBLOCK was set, but no data is currently
available from the transport provider.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

Page 1

tJcv{3N)

SEE ALSO
t_open(3N), t_snd(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
On successful completion, t_rcv returns the number of bytes received, and it
returns -1 on failure and t errno is set to indicate the error.

Page 2 10/89

tJcvconnect(3N) tJcvconnect (3N)

NAME
t_rcvconnect - receive the confirmation from a connect request

SYNOPSIS
'include <tiuser.h>

int t_rcvconnect (int fd, struct t_call *call);
DESCRIPTION

10189

This function enables a calling transport user to determine the status of a previ­
ously sent connect request and is used in conjunction with t_connect to establish
a connection in asynchronous mode. The connection will be established on suc­
cessful completion of this function.

fd identifies the local transport endpoint where communication will be esta­
blished, and call contains information associated with the newly established con­
nection. call points to a t_call structure which contains the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address
associated with the responding transport endpoint, opt presents any protocol­
specific information associated with the connection, udata points to optional user
data that may be returned by the destination transport user during connection
establishment, and sequence has no meaning for this function.

The maxlen [see netbuf in intro(3)] field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each. How­
ever, call may be NULL, in which case no information is given to the user on
return from t_rcvconnect. By default, t_rcvconnect executes in synchronous
mode and waits for the connection to be established before returning. On return,
the addr, opt, and udata fields reflect values associated with the connection.

If O_NDELAY or O_NONBLOCK is set (via t_open or fentl), t_rcvconnect executes
in asynchronous mode, and reduces to a poll for existing connect confirmations.
If none are available, t_rcvconnect fails and returns immediately without wait­
ing for the connection to be established. (See TNODATA below.) t rcvconnect
must be re-issued at a later time to complete the connection establiShment phase
and retrieve the information returned in call.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

(TBUFOVFLW] The number of bytes allocated for an incoming argument is
not sufficient to store the value of that argument and the
connect information to be returned in call will be dis­
carded. The provider's state, as seen by the user, will be
changed to DATAXFER.

Page 1

tJcvconnect(3N) tJcvconnect (3N)

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

o NDELAY or 0 N~LOCK was set, but a connect
confirmation has not yet arrived.

An asynchronous event has occurred on this transport con­
nection and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
intz:o(3), t accept(3N), t bind(3N), t connect(3N), t listen(3N),
t_open(3N)-:- - - -
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t rcvconnect returns 0 on success and -1 on failure and t errno is set to indi-
cate the error. -

Page 2 10/89

tJcvdls(3N) tJcvdls(3N)

NAME
t_rcvd.is - retrieve information from disconnect

SYNOPSIS
'include <tiuser.h>

t_rcvdis (int fd, struct t_discon *discon);
DESCRIPTION

10/89

This function is used to identify the. cause of a ~isconnect, and to retrieve any
user data sent with the disconnect. fd identifies the local transport endpoint
where the connection existed, and discon points to a t _ discon structure contain­
ing the following members:

struct netbuf udata;
int reason;
int sequence;

netbuf is described in intro(3). reason specifies the reason for the disconnect
through a protocol-dependent reason code, udata identifies any user data that
was sent with the disconnect, and sequence may identify an outstanding connect
indication with which the disconnect is associated. sequence is only meaningful
when t_rcvdis is issued by a passive transport user who has executed one or
more t _listen functions and is processing the resulting connect indications. If a
disconnect indication occurs, sequence can be used to identify which of the out­
standing connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the
value of reason or sequence, discon may be NULL and any user data associated
with the disconnect will be discarded. However, if a user has retrieved more
than one outstanding connect indication (via t_listen) and discon is NULL, the
user will be unable to identify which connect indication the disconnect is associ­
ated with.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does hot refer to a transport
endpoint.

[TNODIS]

[TBUFOVFLW]

[TNOTSUPPORT]

[TSYSERR]

No disconnect indication currently exists on the specified
transport endpoint.

The number of bytes allocated for incoming data is not
sufficient to store the data. The provider's state, as seen by
the user, will change to T_IDLE, and the disconnect indica­
tion information to be returned in discon will be dis­
carded.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

Page 1

tJcvdls(3N) tJcvdls(3N)

SEE ALSO
intro(3), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t rcvdis returns 0 on success and -1 on failure and t errno is set to indicate
the error. -

Page 2 10/89

tJcvrel (3N) tJcvrel (3N)

NAME
t_rcvrel- acknowledge receipt of an orderly release indication

SYNOPSIS
tinclude <tiuser.h>

t_rcvrel (int fd);

DESCRIPTION
This function is used to acknowledge receipt of an orderly release indication. fd
identifies the local transport endpoint where the connection exists. After receipt
of this indication, the user should not attempt to receive more data because such
an attempt will block forever. However, the user may continue to send data over
the connection if t_sndrel has not been issued by the user.

This function is an optional service of the transport prOVider, and is only sup­
ported if the transport provider returned service type T_COTS_ORD on t_open or
t_getinfo.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TNOREL]

[TLOOK)

[TNOTSUPPORT]

[TSYSERR]

No orderly release indication currently exists on the
specified transport endpoint.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
t_open(3N), t_sndrel(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10/89

t_rcvrel returns 0 on success and -1 on failure t_errno is set to indicate the
error.

Page 1

tJcyudata (3N) tJcyudata(3N)

NAME
t_rcwdata - receive a data unit

SYNOPSIS
'include <tiuser.h>

int t_rcwdata (int fd, struct t_unitdata *unitdata, int *flags);

DESCRIPTION

10189

This function is used in connectionless mode to receive a data unit from another
transport user. fd identifies the local transport endpoint through which data will
be received, unitdata holds information associated with the received data unit,
and flags is set on return to indicate that the complete data unit was not
received. unitdata points to a t_unitdata structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen [see netbuf in intro(3)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user,
opt identifies protocol-specific options that were associated with this data unit,
and udata specifies the user data that was received.

By default, t _ rcwdata operates in synchronous mode and will wait for a data
unit to arrive if none is currently available. However, if 0 JIDEIAY or
O_NONBLOCK is set (via t_open or fentl), t_rcwdata will execute in asynchro­
nous mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold
the current data unit, the buffer will be filled and T K>RE will be set in flags on
return to indicate that another t rcwdata should be issued to retrieve the rest
of the data unit. Subsequent t_rcwdata call(s) will return zero for the length of
the address and options until the full data unit has been received.

On failure, t _ ermo may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TNODATA]

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

o NDELAY or 0 NONBLOCK was set, but no data units are
currently available from the transport provider.

The number of bytes allocated for the incoming protocol
address or options is not sufficient to store the information.
The unit data information to be returned in unitdata will
be discarded.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

This function is not supported by the underlying transport
provider.

Page 1

tJcvudata(3N) t_rcvudata (3N)

[TSYSERR] A system error has occurred during execution of this func­
tion.

SEE ALSO
int~3), t_rcvuderr(3N), t_sndudata(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

Page 2

t_rcvudata returns 0 on successful completion and -1 on failure and t_errno is
set to indicate the error.

10/89

tJcvuderr (3N) tJcvuderr (3N)

NAME
t_rcwderr - receive a unit data error indication

SYNOPSIS
'include <tiuser.h>

int t_rcwderr (int fd, struet t_uderr *uderr);

DESCRIPTION
This function is used in connectionless mode to receive information concerning an
error on a previously sent data unit, and should be issued only after a unit data
error indication. It informs the transport user that a data unit with a specific des­
tination address and protocol options produced an error. fd identifies the local
transport endpoint through which the error report will be received, and uderr
points to a t_uderr structure containing the following members:

struet netbuf addr;
struet netbuf opt;
long error;

netbuf is described in intro(3). The maxlen [see netbuf in intro(3)] field of
addr and opt must be set before issuing this function to indicate the maximum
size of the buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies protocol-specific
options that were associated with the data 'unit, and error specifies a protocol­
dependent error code.

If the user does not care to identify the data unit that produced an error, uderr
may be set to NULL and t _ rcwderr will simply clear the error indication
without reporting any information to the user.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end­
point.

[TNOCDERR]

[TBUFOVFLW]

[TNOTSCPPORT]

[TSYSERR]

No unit data error indication currently exists on the specified
transport endpoint.

The number of bytes aIlocated for the incoming protocol
address or options is not sufficient to store the information.
The unit data error information to be returned in uderr will
be discarded.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO

10189

intro(3), t_rCWdata(3N), t_sndudata(3N).
UNIX System V Network Programmer's Guide.

Page 1

tJcyuderr (3N) tJcyuderr (3N)

DIAGNOSTICS
t_rcvuderr returns 0 on successful completion and -1 on failure and t_errno is
set to indicate the error.

Page 2 10/89

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS
tinclude <tiuser.h>

int t_snd (int fd, char *buf, unsigned nbytes, int flags);

DESCRIPTION

10/89

This function is used to send either normal or expedited data. fd identifies the
local transport endpoint over which data should be sent, buf points to the user
data, nbytes specifies the number of bytes of user data to be sent, and flags
specifies any optional flags described below.

By default, t _ snd operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider
at the time the call is made. However, if 0 NDELAY or 0 NONBLOCK is set (via
t _open or fcntl), t _ snd will execute in asynchronous -mode, and will fail
immediately if there are flow control restrictions.

Even when there are no flow control restrictions, t snd will wait if STREAMS
internal resources are not available, regardless of the state of O_NDELAY or
O_NONBLOCK.

On successful completion, t_snd returns the number of bytes accepted by the
transport provider. Normally this will equal the number of bytes specified in
nbytes. However, if O_NDELAY or O_NONBLOCK is set, it is possible that only part
of the data will be accepted by the transport provider. In this case, t_snd will set
T K:>RE for the data that was sent (see below) and will return a value less than
nbytes. If nbytes is zero and sending of zero bytes is not supported by the
underlying transport provider, t _ snd () will return -1 with t _ errno set to TBAD­
DATA. A return value of zero indicates that the request to send a zero-length data
message was sent to the provider.

If T_EXPEDlTED is set in flags, the data will be sent as expedited data, and will
be subject to the interpretations of the transport provider.

If T_K:>RE is set in flags, or is set as described above, an indication is sent to the
transport provider that the transport service data unit (TSDU) or expedited tran­
sport service data unit (ETSDU) is being sent through multiple t _ snd calls. Each
t_snd with the T_K:>RE flag set indicates that another t_snd will follow with
more data for the current TSDU. The end of the TSDU (or ETSDU) is identified by a
t_snd call with the T_K:>RE flag not set. Use of T_K:>RE enables a user to break
up large logical data units without losing the boundaries of those units at the
other end of the connection. The flag implies nothing about how the data is
packaged for transfer below the transport interface. If the transport provider
does not support the concept of a TSDU as indicated in the info argument on
return from t _ open or t _getinfo, the T ~RE flag is not meaningful and should
be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the transport pro­
vider as returned by t _ open or t _getinfo. If the size is exceeded, a TSYSERR
with system error EPROTO will occur. However, the t_snd may not fail because
EPROTO errors may not be reported immediately. In this case, a subsequent call
that accesses the transport endpoint will fail with the associated TSYSERR.

Page 1

If t _and is issued from the T _IDLE state, the provider may silently discard the
data. If t_SDd is issued from any state other than T_DATAXFER, T_INREL or
T_~DLE, the provider will generate a TSYSERR with system error EPROTO (which
may be reported in the manner described above).

On failure, t_errno may be set to one of the following:

[~I'J

[~]

[TNOTSOPPORT]

[TS-mERRJ

[TBADDATAJ

The specified file descriptor does not refer to a transport
endpoint.

o NDELAY or 0 NetmLOCK was set, but the flow control
mechanism preVented the transport provider from accept­
ing data at this time.

This function is not supported by the underlying transport
provider.

A system error [see intro(2)] has been detected during exe­
cution of this function.

nbytea is zero and sending zero bytes is not supported by
the transport provider. .

SEE ALSO
t_open(3N), t_rcv(3N).
UNIX System V Network Progra",mer's Guide.

DIAGNOSTICS

Page 2

On successful completion, t_~d returns the number of bytes accepted by the
transport provider, and it returns -1 on failure and t _ errno is set to indicate the
error.

10/89

NAME
t_snddis - send user-initiated disconnect request

SYNOPSIS
tinclude <tiuser.h>

int t_snddis (int fd, struct t_call *call):

DESCRIPTION

10/89

This function is used to initiate an abortive release on an already established con­
nection or to reject a connect request. fd identifies the local transport endpoint of
the connection, and call specifies information associated with the abortive
release. call points to a t_call structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). The values in call have different semantics,
depending on the context of the call to t_snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to iden­
tify uniquely the rejected connect indication to the transport provider. The addr
and opt fields of call are ignored. In all other cases, call need only be used
when data is being sent with the disconnect request. The addr, opt, and
sequence fields of the t _call structure are ignored. If the user does not wish to
send data to the remote user, the value of call may be NULL.

udata specifies the user data to be sent to the remote user. The amount of user
data must not exceed the limits supported by the transport provider as returned
in the discon field of the info argument of t _ open or t _getinfo. If the len
field of udata is zero, no data will be sent to the remote user.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE]

[TBADDATA]

[TBADSEQ]

[TLOOK]

The function was issued in the wrong sequence. The tran­
sport provider's outgoing queue may be flushed, so data
may be lost.

The amount of user data specified was not within the
bounds allowed by the transport provider. The transport
provider's outgoing queue will be flushed, so data may be
lost.

An invalid sequence number was specified, or a NULL call
structure was specified when rejecting a connect request.
The transport provider's outgoing queue will be flushed, so
data may be lost.

An asynchronous event has occurred on this transport end­
point and requires immediate attention.

Page 1

(TNOTSUPPORT]

[TSYSERR]

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
intz:o(3), t _ connect(3N), t _getinfo(3N), t _listen(3N), t _ open(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t snddis returns 0 on success and -1 on failure and t ermo is set to indicate
the error. -

Page 2 10/89

NAME
t _ andrel - initiate an orderly release

SYNOPSIS
tinclude <tiuaer.h>

int t_andrel (int fd);

DESCRIPTION
This function is used to initiate an orderly release of a transport connection and
indicates to the transport provider that the transport user has no more data to
send. fd identifies the local transport endpoint where the connection exists.
After issuing t _ andrel, the user may not send any more data over the connec­
tion. However, a user may continue to receive data if an orderly release indica­
tion has not been received.

This function is an optional service of the transport provider, and is only sup­
ported if the transport provider returned service type T _ COTS_ORO on t _ open or
t_qetinfo.

If t _ andrel is issued from an invalid state, the provider will generate an EPROTO
protocol error; however, this error may not occur until a subsequent reference to
the transport endpoint.

On failure, t _ errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TE'LON] 0 NDELAY or 0 NONBLOCK was set, but the flow control
mechanism prevented the transport provider from accept­
ing the function at this time.

[TNOTSUPPORT]

[TSYSERR]

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

SEE ALSO
t_open(3N), t_rcvrel(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t andrel returns 0 on success and -1 on failure and t errno is set to indicate
the error. -

10189 Page 1

t_ sndudata (3N) t_ sndudata (3N)

NAME
t_sndudata - send a data unit

SYNOPSIS
'include <tiuser.h>

int t_sndudata (int fd, struct t_unitdata *unitdata);
DESCRIPTION

10/89

This function is used in connectionless mode to send a data unit to another tran­
sport user. fd identifies the local transport endpoint through which data will be
sent, and unitdata points to a t_unitdata structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

netbuf is described in intro(3). In unitdata, addr specifies the protocol
address of the destination user, opt identifies protocol-specific options that the
user wants associated with this request, and udata specifies the user data to be
sent. The user may choose not to specify what protocol options are associated
with the transfer by setting the len field of opt to zero. In this case, the provider
may use default options.

If the len field of udata is zero, and the sending of zero bytes is not supported
by the underlying transport provider, t _ sndudata will return -1 with t _ ermo
set to TBADDATA

By default, t_sndudata operates in synchronous mode and may wait if flow con­
trol restrictions prevent the data from being accepted by the local transport pro­
vider at the time the call is made. However, if 0 NDELAY or 0 NONBLOCK is set
(via t_open or fentl), t_sndudata will execute in asynchronoUs mode and will
fail under such conditions.
If t _ sndudata is issued from an invalid state, or if the amount of data specified
in udata exceeds the TSDU size as returned in the tsdu field of the info argu­
ment of t _ open or t _get info, the provider will generate an EPROTO protocol
error. (See TSYSERR below.) If the state is invalid, this error may not occur until
a subsequent reference is made to the transport endpoint.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end­
point.

[TFLCM]

[TNOTSUPPORT]

[TSYSERR]

o NDELAY or 0 NONBLOCK was set, but the flow control
mechanism prevented the transport provider from accepting
data at this time.

This function is not supported by the underlying transport
provider.

A system error has occurred during execution of this func­
tion.

Page 1

tsndudata(3N) t_sndudata(3N)

[TBADDATA] nbytes is zero and sending zero bytes is not supported by
the transport provider.

SEE ALSO
intro(3), t_rcvudata(3N), t_rcvuderr(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

Page 2

t_sndudata returns 0 on successful completion and -1 on failure t_ermo is set
to indicate the error.

10/89

NAME
t _ sync - synchronize transport library

SYNOPSIS
tinclude <tiuser.h>

int t_sync (int fd);

DESCRIPTION
For the transport endpoint specified by fd, t_sync synchronizes the data struc­
tures managed by the transport library with information from the underlying
transport provider. In doing so, it can convert a raw file descriptor [obtained via
open(2), dup(2), or as a result of a fork(2) and exec(2)] to an initialized transport
endpoint, assuming that file descriptor referenced a transport provider. This
function also allows two cooperating processes to synchronize their interaction
with a transport provider.

For example, if a process forks a new process and issues an exec, the new pro­
cess must issue a t _sync to build the private library data structure associated
with a transport endpoint and to synchronize the data structure with the relevant
provider information.

It is important to remember that the transport provider treats all users of a tran­
sport endpoint as a single user. If multiple processes are using the same end­
point, they should coordinate their activities so as not to violate the state of the
provider. t_sync returns the current state of the provider to the user, thereby
enabling the user to verify the state before taking further action. This coordina­
tion is only valid among cooperating processes; it is possible that a process or an
incoming event could change the provider's state after a t_sync is issued.

If the provider is undergoing a state transition when t_sync is called, the func­
tion will fail.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSTATECHNG]

[TSYSERR]

The transport provider is undergoing a state change.

A system error has occurred during execution of this func­
tion.

SEE ALSO
dup(2), exec(2), fork(2), open(2).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS

10/89

t_sync returns the state of the transport provider on successful completion and
-Ion failure and t_errno is set to indicate the error. The state returned may be
one of the following:

T_UNBND unbound

Page 1

Page 2

T IDLE
T_OUTCON
T_INCON

T_DATAXFER
T CX1l'REL

idle

outgoing connection pending

incoming connection pending

data transfer

t sync(3N)

outgoing orderly release (waiting for an orderly release indi­
cation)

incoming orderly release (waiting for an orderly release
request)

10/89

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
tinclude <tiuser.h>

int t_unbind (int fd)i
DESCRIPTION

The t_unbind function disables the transport endpoint specified by fd which was
previously bound by t_bind(3N). On completion of this call, no further data or
events destined for this transport endpoint will be accepted by the transport pro­
vider.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-
point.

[TOUTSTATE] The function was issued in the wrong sequence.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO
t_bind(3N).
UNIX System V Network Programmer's Guide.

DIAGNOSTICS
t unbind returns 0 on success and -1 on failure and t errno is set to indicate
the error. -

10/89 Page 1

xdr(3N) xdr(3N)

NAME
xdr - library routines for external data representation

DESCRIPTION
XDR routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Data for remote procedure calls (RPC) are
transmitted using these routines.

Index to Routine.
The following table lists XDR routines and the manual reference pages on which
they are described:

XDR Routine
xdr_array
xdr bool
xdr:bytes
xdr char
xdr-destroy
xdr:double
xdr enum
xdr-float
xdr:free
xdr_getpos
xdr inline
xdr-int
xdr-long
xdr:opaque
xdr ...,pointer
xdr reference
Xdr-setpos
xdr-short
xdr:string
xdr_u_char
xdr_\Llong
xdr u short
xdr-uiiion
xdr-vector
xdr-void
xdr:wrapstring
xdrmellLcreate
xdrrec create
xdrrec - eof -
xdrstctIo_create

Manual Reference Page
xdr conplex(3N)
xdr - sillple(3N)
xdr-conplex(3N)
xdr - sillple(3N)
xdr - create(3N)
xdr - sillple(3N)
xdr - sillple(3N)
xdr - sillple(3N)
xdr - sillple(3N)
xdr - admin(3N)
xdr - admin(3N)
xdr - sillple(3N)
xdr - sillple(3N)
xdr - conplex(3N)
xdr ~ conplex(3N)
xdr - conplex(3N)
xdr - admin(3N)
xdr - sillple(3N)
xdr - conplex(3N)
xdr - sillple(3N)
xdr - sillple(3N)
Xcsr - sillple(3N)
xcir ~ conplex(3N)
xdr - conplex(3N)
xdr - sillple(3N)
xdr - conplex(3N)
xdr - create(3N)
xdr - create(3N)
xdr - admin(3N)
xdr: create(3N)

SEE ALSO
xdr_admin(3N), xdr_conplex(3N), xdr_create(3N), xdr_sillple(3N), rpc(3N).

10189 Page 1

xdr _ admln (3N) xdr _ admln (3N)

NAME
xdr admin: xdr getpos, xdr inline, xdrrec eof, xdr setpos - library rou-
tines for external data representation - -

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures
in a machine-independent fashion. Protocols such as remote procedure calls
(RPC) use these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

Routines

10/89

See :rpc(3N) for the definition of the XDR data structure.

tinclude <:rpc/xdr.h>

u_int
xdr_getpos(const XDR *xdrs);

long *

A macro that invokes the get-position routine associated with the XDR
stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is
that simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for por­
tability should not depend on this feature.

xdr _ inHne (XDR *xdrs; const int len);

A macro that invokes the in-line routine associated with the XDR stream,
%drs. The routine returns a pointer to a contiguous piece of the stream's
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long *.

Warning: xdr_inline may return NULL (0) if it cannot allocate a contigu­
ous piece of a buffer. Therefore the behavior may vary among stream
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

boolt
xdrrec_eof(XDR *xdrs);

This routine can be invoked only on streams created by xdrrec_create.
After consuming the rest of the current record in the stream, this routine
returns 1 if the stream has no more input, 0 otherwise.

boolt
xdr_setpos (XDR *xdrs, const u_int pos);

A macro that invokes the set position routine associated with the XDR
stream %drs. The parameter pos is a position value obtained from
xdr _getpos. This routine returns 1 if the XDR stream was repositioned,
and 0 otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this
routine may fail with one type of stream and succeed with another.
Therefore, applications written for portability should not depend on this
feature.

Page 1

xdr _ admln (3N) xdr _ admln (3N)

SEE ALSO
rpc(3N), xdr _ conplex(3N), xdr _ create(3N), xdr _ sinple(3N).

Page 2 10/89

xdr_complex(3N) xdr_complex(3N)

NAME
xdr_conplex: xdr_array, xdr_bytes, xdr_opaque, xdr...J>Ointer,
xdr_reference,xdr_string,xdr_union,xdr_vector,xdr_wrapstring­
library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe complex data structures in
a machine-independent fashion. Protocols such as remote procedure calls (RPC)
use these routines to describe the format of the data. These routines are the XDR
library routines for complex data structures. They require the creation of XDR
stream [see xdr_create(3N»).

Routines

10/89

See qx:(3N) for the definition of the XDR data structure.

'include <qx:/xdr.h>

boolt
xdr array(XDR *xdrs, caddr t *arrp, u int *sizep,

- const u_int maxsize, Canst u_int-elsize,
const xdrproc_t elproc);

boolt

xdr_array translates between variable-length arrays and their correspond­
ing external representations. The parameter arrp is the address of the
pointer to the array, while sizep is the address of the element count of the
array; this element count cannot exceed maxsize. The parameter elsize is
the sizeof each of the array's elements, and elproc is an XDR routine that
translates between the array elements' C form and their external represen­
tation. This routine returns 1 if it succeeds, 0 otherwise.

xdr bytes (XDR *xdrs, char **sp, u int *sizep,
- const u_int maxsize); -

xdr _bytes translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer.
The length of the string is located at address sizep; strings cannot be
longer than maxsize. This routine returns 1 if it succeeds, 0 otherwise.

boolt
xdrjipaque (XDR *xdrs, caddr_t cp, const u_int cnt);

xdr _opaque translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and
cnt is its size in bytes. This routine returns 1 if it succeeds, 0 otherwise.

boolt
xdr-POinter(XDR *xdrs, char **Objpp, u_int Objsize,

const xdrproc_t xdrobj);

Like xdr _reference except that it serializes NULL pointers, whereas
xdr_reference does not. Thus, xdrJX>inter can represent recursive
data structures, such as binary trees or linked lists.

Page 1

xdr _complex (3N) xdr _complex (3N)

Page 2

boo1t
xdr_reference (XDR *xdrs, caddr_t *pp, u_int size,

const xdrproc_t proc);

xdr_reference provides pointer chasing within structures. The parame­
ter pp is the address of the pointer; size is the sizeof the structure that
*pp points to; and proc is an XDR procedure that translates the structure
between its C form and its external representation. This routine returns 1
if it succeeds, 0 otherwise.

Warning: this routine does not understand NULL pointers. Use
xdr ..,pointer instead.

boo1t
xdr_string(XDR *xdrs, char **sp, const u_int maxsize) i

xdr_string translates between C strings and their corresponding external
representations. Strings cannot be longer than maxsize. Note: sp is the
address of the string's pointer. This routine returns 1 if it succeeds, 0 oth­
erwise.

boo1t
xdrjinion(XDR *x.drs, enum t *dscnp, char *unp,

const struct xdr_discrim *choices,
const boo1 t (*defau1tarm) (const XDR *, const char *,

boo1t

const- int)) i

xdr union translates between a discriminated C union and its
corresponding external representation. It first translates the discriminant
of the union located at dscmp. This discriminant is always an enum _ t.
Next the union located at unp is translated. The parameter choices is a
pointer to an array of xdr _ discrim structures. Each structure contains an
ordered pair of [value, procl. If the union's discriminant is equal to the
associated value, then the proc is called to translate the union. The end of
the xdr_discrim structure array is denoted by a routine of value NULL. If
the discriminant is not found in the choices array, then the defaultarm pro­
cedure is called (if it is not NULL). Returns 1 if it succeeds, 0 otherwise.

xdr vector(XDR *xdrs, char *arrp, const u int size,
- const u_int e1size, const xdrproc_t e1proc);

xdr_vector translates between fixed-length arrays and their correspond­
ing external representations. The parameter arrp is the address of the
pointer to the array, while size is is the element count of the array. The
parameter elsize is the sizeof each of the array's elements, and elproc is an
XDR routine that translates between the array elements' C form and their
external representation. This routine returns 1 if it succeeds, 0 otherwise.

10/89

xdr _complex (3N) xdr _complex (3N)

boolt
xdr_wrapstring(XDR *xdrs, char **sp);

A routine that calls xdr_string(xdrs, sp, maxuint); where maxuint is the
maximum value of an unsigned integer.

Many routines, such as xdr_array, xdrJX>inter and xdr_vector take a
function pointer of type xdrproc _ t, which takes two arguments.
xdr_string, one of the most frequently used routines, requires three
arguments, while xdr_wrapstring only requires two. For these routines,
xdr_wrapstring is desirable. This routine returns 1 if it succeeds, 0 oth­
erwise.

SEE ALSO
rpc(3N), xdr_admin(3N), xdr_create(3N), xdr_siJlple(3N).

10/89 Page 3

xdr_create(3N} xdr _create (3N)

NAME
xdr create: xdr destroy, xdrmem create, xdrrec create,
xdrstdio_create = library routines fur external data representation stream crea­
tion

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures
in a machine-independent fashion. Protocols such as remote procedure calls
(RPC) use these routines to describe the format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be
created before any data can be translated into XDR format.

Routines

10/89

See zpc(3N) for the definition of the XDR. CLIENT, and SVCXPRT data structures.

tinclude <zpc/xdr.h>

void
xdr_destroy(XDR *xdrs);

void

A macro that invokes the destroy routine associated with the XDR stream,
xdrs. Destruction usually involves freeing private data structures associ­
ated with the stream. Using xdrs after invoking xdr_destroy is
undefined.

xdrmem create(XDR *xdrs, const caddr t addr,
cC;nst u_int size, const enum xdr_op op);

void

This routine initializes the XDR stream object pointed to by xdrs. The
stream's data is written to, or read from, a chunk of memory at location
addr whose length is no more than size bytes long. The op determines the
direction of the XDR stream (either XDR ENCODE, XDR DECODE, or
XDRJREE). --

xdrrec create(XDR *xdrs, const u int sendsz,
const u int recvsz, const caddr t handle,
canst int (*readit) (const void *, char *, const int),
const int (*writeit) (const void *, const char *, const int»;

This routine initializes the XDR stream object pointed to by xdrs. The
stream's data is written to a buffer of size sendsz; a value of 0 indicates the
system should use a suitable default. The stream's data is read from a
buffer of size recvsz; it too can be set to a suitable default by passing- a 0
value. When a stream's output buffer is full, writeit is called. Similarly,
when a stream's input buffer is empty, readit is called. The behavior of
these two routines is similar to the system calls read and write [see
read(2) and write(2), respectively], except that handle (CLIENT, or
SVCXPRT) is passed to the former routines as the first parameter instead of
a file descriptor. Note: the XDR stream's op field must be set by the caller.

Page 1

xdr _create (3N) xdr _create (3N)

void

Warning: this XDR stream implements an intennediate record stream.
Therefore there are additional bytes in the stream to provide record boun­
dary information.

xdrstdio_create (XDR *xdrs, FILE *file, const enum xdr_op cp);

This routine initializes the XDR stream object pointed to by xdrs. The
XDR stream data is written to, or read from, the standard I/O stream file.
The parameter ap determines the direction of the XDR stream (either
XDR_ENCODE, XDR.-DECODE, or XDR.-FREE).

Warning: the destroy routine associated with such XDR streams calls
fflush on the file stream, but never fclose [see fclose(3S)j.

SEE ALSO
fclose(3S), read(2), rpc(3N), write(2), xdr admin(3N), xdr corrplex(3N),
xdr_sinple(3N). --

Page 2 10/89

xdr _simple (3N) xdr_slmple(3N)

NAME
xdr sirlple: xdr bool, xdr char, xdr double, xdr enUll\. xdr float,
xdr -free, xdr int, xdr long; xdr short, xdr u char, xdr u iOng,
xdr::::u_Short, Xm:_void-:' library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC)
use these routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(3N»).

Routines

10/89

See %pC(3N) for the definition of the XDR data structure.

'include <%pC/xdr.h>

boolt
xdrJiool (XDR *xdrs, bool_t *bp);

xdr_bool translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either
1 or o. This routine returns 1 if it succeeds, 0 otherwise.

boolt
xdr_Cbar(XDR *xdrs, char *cp);

xdr_char. translates between t characters and their external representa­
tions. This routine returns 1 if it succeeds, 0 otherwise. Note: encoded.
characters are not packed, and occupy 4 bytes each. For arrays of char/!.c­
ters, it is worthwhile to consider xdr bytes, xdr opaque or xcii: string
[see xdr_bytes, xdr_opaque and xdr:string in Xdr_COllplex(3N»).

boolt
xdrjiouble (XDR *xdrs, double *dp);

xdr _double translates between C double precision numbers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

boolt
xdr_enum(XDR *xdrs, enum_t *ep);

xdr _ enum translates between C enums (actually integers) and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

boolt
xdr_float(XDR *xdrs, float *fp);

void

xdr_float translates between C floats and their external representa­
tions. This routine returns 1 if it succeeds, 0 otherwise.

xdr_free(xdJ:proc_t proo, char *objp);

Generic freeing routine. The first argument is the XDR routine for the
object being freed. The second argument is a pointer to the object itself.
Note: the pointer passed to this routine is not freed, but what it points to
is freed (recursively).

Page 1

xdr _simple (3N) xdr _simple (3N)

boo1.t
xdr_Int(XDR *xdrs, int *ip);

xdr_int translates between C integers and their external representations.
This routine returns 1 if it succeeds, 0 otherwise.

boo1t
xdr_Ionq(XDR *xdrs, lonq *lp);

xdr_10nq translates between C 10nq integers and their external represen­
tations. This routine returns 1 if it succeeds, 0 otherwise.

boo1t
xdr_Short (XDR *xdrs, short *sp);

xdr_ short translates between C short integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

boo1t
xdrjLchar(XDR *xdrs, char *ucp);

xdr_u_char translates between unsiqned C characters and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

boo1t
xdrji_10nq(XDR *xdrs, unsigned 10nq *u1p);

xdr_u_10nq translates between C unsiqned 1009 integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

boo1t
xdrji_short(XDR *xdrs, unsiqned short *usp);

xdr_u_short translates between C unsiqned short integers and their
extemal representations. This routine returns 1 if it succeeds, 0 otherwise.

boo1t
xdr_Void(void) ;

This routine always returns 1. It may be passed to RPC routines that
require a function parameter, where nothing is to be done.

SEE ALSO
:r:pc(3N), xdr_aclmin(3N), xdr_conplex(3N), xdr_create(3N).

Page 2 10/89

ypclnt(3N) ypclnt(3N)

NAME
ypclnt, yp get default domain, yp bind, yp unbind, yp match,
yp first, yp next, yp -all, yp order, yp maSter, yperr string,
ypprot _err - yP client interlace - - -

SYNOPSIS
tinclude <rpcsvc/ypclnt.h>
tinclude <rpcsvc/yp-prot.h>

DESCRIPTION
This package of functions provides an interface to the yP network lookup service.
The package can be loaded from the standard library, /usr/lib/libnsl. {so, a}.
Refer to ypfiles(4) and ypserv(lM) for an overview of the yP name services,
including the definitions of map and domain, and a description of the various
servers, databases, and commands that comprise the YP name service.

All input parameters names begin with in. Output parameters begin with out.
Output parameters of type char ** should be addresses of uninitialized charac­
ter pointers. Memory is allocated by the YP client package using malloc(3), and
may be freed if the user code has no continuing need for it. For each outkey and
outval, two extra bytes of memory are allocated at the end that contain NEWLINE
and NULL, respectively, but these two bytes are not reflected in outkey1en or out­
val1en. indomain and inmap strings must be non-NULL and NULL-terminated.
String parameters which are accompanied by a count parameter may not be
NULL, but may point to NULL strings, with the count parameter indicating this.
Counted strings need not be NULL-terminated.

All functions in this package of type int return 0 if they succeed, and a failure
code (YfERR xxxx) otherwise. Failure codes are described under DIAGNOSTICS
below. -

Routines

10/89

yp bind (indomain);
char * indomain;

void

To use the yP name services, the client process must be bound to a YP
server that serves the appropriate domain using yp _bind (} . Binding
need not be done explicitly by user code; this is done automatically when­
ever a yP lookup function is called. yp_bind() can be called directly for
processes that make use of a backup strategy (for example, a local file) in
cases when yP services are not available.

yp _unbind (indomain)
char *indomain;

Each binding allocates (uses up) one client process socket descriptor; each
bound domain costs one socket descriptor. However, multiple requests to
the same domain use that same descriptor. yp_unbind() is available at
the client interface for processes that explicitly manage their socket
descriptors while accessing multiple domains. The call to yp_unbind()
make the domain unbound, and free all per-process and per-node resources
used to bind it.

Page 1

ypclnt(3N} ypclnt(3N}

If an RPC failure results upon use of a binding, that domain will be
unbound automatically. At that point, the ypclnt () layer will retry for­
ever or until the operation succeeds, provided that ypbind is running, and
either

• the client process cannot bind a server for the proper domain, or

• RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound
ypserv process returns any answer (success or failure), the ypclnt layer
will return control to the user code, either with an error code, or a success
code and any results.

yp get default domain (outdanain);
chir *"outdomaIn;

The yP lookup calls require a map name and a domain name, at
minimum. It is assumed that the client process knows the name of the
map of interest. Client processes should fetch the node's default domain
by calling yp_<Jet_default_doma1n(), and use the returned outdomain as
the indomain parameter to successive yP name service calls.

yp match(indomain, inmap, inkey, inkeylen, outval, outvallen)
chir *indanain;
char * inmap;
char * inkey;
int inkeylen;
char **outval;
int *outvallen;

yp_match() returns the value associated with a passed key. This key
must be exact; no pattern matching is available.

yP first(indomain, inmap, outkey, outkeylen, outval, outvallen)
chi'r *indanain;
char *inmap;
char **outkey;
int *outkeylen;
char **outval;
int *outvallen;

yp_first () returns the first key-value pair from the named map in the
named domain.

yp next(indomain, inmap, inkey, inkeylen, outkey, outkeylen, outval, outval
chir *indanain;
char *inmap;
char *inkey;
int inkeylen;
char **outkey;
int *outkeylen;
char **outval;
int *outvallen;

Page 2 10/89

ypclnt(3N) ypclnt(3N)

yp_next () returns the next key-value pair in a named map. The inkey
parameter should be the outkey returned from an initial call to
yp _first () (to get the second key-value pair) or the one returned from
the nth call to yp_next() (to get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the struc­
ture of the yP map being processing; there is no relation in retrieval order
to either the lexical order within any original (non-YP name service) data
base, or to any obvious numerical sorting order on the keys, values, or
key-value pairs. The only ordering guarantee made is that if the
yp _first () function is called on a particular map, and then the
yp _ next () function is repeatedly called on the same map at the same
server until the call fails with a reason of lPBRR_NCK>RE, every entry in the
data base will be seen exactly once. Further, if the same sequence of
operations is performed on the same map at the same server, the entries
will be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for
the domain to become unbound, then bound once again (perhaps to a dif­
ferent server) while a client is running. This can cause a break in one of
the enumeration rules; specific entries may be seen twice by the client, or
not at all. This approach protects the client from error messages that
would otherwise be returned in the midst of the enumeration. The next
paragraph describes a better solution to enumerating all entries in a map.

yp all(indomain, inmap, incallback);
chir *indomain;
char *inmap;
struct ypall_callback *incallback;

yp _all () provides a way to transfer an entire map from server to client
in a single request using TCP (rather than UDP as with other functions in
this package). The entire transaction take place as a single RPC request
and response. yp all () can be used just like any other YP name service
procedure, identify the map in the normal manner, and supply the name
of a function which will be called to process each key-value pair within
the map. The call to yp_all () returns only when the transaction is com­
pleted (successfully or unsuccessfully), or the foreach function decides
that it does not want to see any more key-value pairs.

The third parameter to yp _all () is
struct ypall callback *incallback {
int (*foreaCh) ();
char *data;
} ;

The function foreach is called
foreach(instatus, inkey, inkeylen, inval, invallen, indata);
int instatus;
char *inkey;
int inkeylen;
char *inval;
int invallen;

10/89 Page 3

ypclnt(3N} ypclnt(3N}

Page 4

char *indata;
The instatus parameter will hold one of the return status values defined in
<rpcsvc/ypyrot.h - either lP_TRtlE or an error code. (See
ypprot err (), below, for a function which converts a YP name service
protocol error code to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined in the
synopsis section above. First, the memory pointed to by the inkey and
inval parameters is private to the yp _ all () function, and is overwritten
with the arrival of each new key-value pair. It is the responsibility of the
foreach function to do something useful with the contents of that
memory, but it does not own the memory itself. Key and value objects
presented to the foreach function look exactly as they do in the server's
map - if they were not NEWLINE-terminated or NULL-terminated in the
map, they will not be here either.

The indata parameter is the contents of the incallback-><iata element
passed to yp _all (). The data element of the callback structure may be
used to share state information between the foreach function and the
mainline code. Its use is optional, and no part of the yP client package
inspects its contents - cast it to something useful, or ignore it.

The foreach function is a Boolean. It should return zero to indicate that
it wants to be called again for further received key-value pairs, or non­
zero to stop the flow of key-value pairs. If foreach returns a non-zero
value, it is not called again; the functional value of yp_all () is then O.

yp order(indomain, inmap, outorder);
chi'r *indanain;
char * inmap;
int *outorder;

yp _order () returns the order number for a map.

yp master(indomain, inmap, outname);
chir *indanain;
char * inmap;
char **outname;

yp _master () returns the machine name of the master yP server for a
map.

char *yperr string(incode)
int incode;-

yperr_string() returns a pointer to an error message string that is
NULL-terminated but contains no period or NEWLINE.

ypprot err (incode)
unsigned int incode;

ypprot_err() takes a yP name service protocol error code as input, and
returns a ypclnt layer error code, which may be used in turn as an input
to yperr _string () .

10/89

ypclnt(3N) ypclnt(3N)

FILES
/usr/lib/libyp.a

SEE ALSO
ypserv(lM), malloc(3), ypupdate(3N), ypfiles(4)

DIAGNOSTICS

10/89

All integer functions return 0 if the requested operation is successful, or one of
the following errors if the operation fails.

'define YPBRR BADARGS
"1 /* args to function are bad */"

'define YPBRR RPC
"2 /* RPC failure - domain has been unbound */"

'define YPBRR DOMAIN
"3 /* can't bind to server on this domain */"

'define YPBRR MAP
"4 /* no such map in server's domain */"

,define YPBRR !(BY

"5 /* no such key in map */"
,define YPBRR YPBRR

"6 /* intemal yp server or client error */"
'define YPBRR RESRC

"7 /* resource allocation failure */"
tdefine YPBRR NCM>RE

"8 /* no Irore records in map database */"
'define YPBRR PMAi'

"9 /* can't cOJlll\Ullicate with rpcbinder */"
'define YPBRR YPBIND

"10 /* can't cOJIII\Ullicate with ypbind */"
'define YPBRR YPSERV

"11 /* can't cOJIII\Ullicate with ypserv */"
tdefine YPBRR NOOOM

"12 / * local domain name not set * /"
tdefine YPBRR BADDBfR

"13 /* yP database is bad * /"

'define YPBRR VERSfR
"14 /* yP version mismatch */"

'define YPBRR ACCESS
"15 /* access violation */"

'define YPBRR BUSY
"16 / * database busy * /"

Page 5

ypupdate (3N) ypupdate (3N)

NAME
yp_update - changes yp information

SYNOPSIS
tinclude <rpcsvc/ypclnt.h>

yp update (domain, map, ypop, key, keylen, data, datalen)
chir *domain;
char *map;
unsigned ypop
char *key;
int keylen;
char *data;
int datal en;

DESCRIPTION
yp _update () is used to make changes to the yP database. The syntax is the
same as that of yp _match () except for the extra parameter ypop which may take
on one of four values. If it is lPCP_CHANGB then the data associated with the key
will be changed to the new value. If the key is not found in the database, then
yp_update () will return lPERR_KEY. If ypop has the value YPOP_INSERT then the
key-value pair will be inserted into the database. The error YPERR_KEY is returned
if the key already exists in the database. To store an item into the database
without concern for whether it exists already or not, pass ypop as lPOP_STORE and
no error will be returned if the key already or does not exist. To delete an entry,
the value of ypop should be YPOP_DEIBTE.

This routine depends upon secure RPC, and will not work unless the network is
running secure RPC.

SEE ALSO
secure _ rpc(3N)

10/89 Page 1

hostS(4) hosts(4)

NAME
hosts - host name data base

SYNOPSIS
/etc/hosts

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA
Internet. For each host a single line should be present with the following infor­
mation:

Internet-address official-hast-name aliases

Items are separated by any number of SPACE and/or TAB characters. A '.' indi­
cates the beginning of a comment; characters up to the end of the line are not
interpreted by routines which search the file. This file is normally created from
the official host data base maintained at the Network Information Control Center
(NIC), though local changes may be required to bring it up to date regarding
unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional '.' notation using the
inet_addr routine from the Internet address manipulation library, inet(3N).
Host names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

EXAMPLE
Here is a typical line from the / etc/hosts file:

192.9.1.20 gaia

FILES
/etc/hosts

SEE ALSO
gethostent(3N), inet(3N).

10/89

• John Smith

Page 1

netconflg (4) netconflg (4)

NAME
netconfig - network configuration database

SYNOPSIS
tinclude <netconfig.h>

DESCRIPTION
The network configuration database, /etc/netconfig,is a system file used to
store information about networks connected to the system and available for use.
The netconfig database and the routines that access it [see getnetconfig(3N)]
are part of the UNIX System V Network Selection component. The Network
Selection component also includes the environment variable NETPATH and a group
of routines that access the netconfig database using NETPATH components as
links to the netconfig entries. NETPATH is described in sh(l); the NETPATH access
routines are discussed in getnetpath(3N).

netconfig contains an entry for each network available on the system. Entries
are separated by newlines. Fields are separated by whitespace and occur in the
order in which they are described below. Whitespace can be embedded as
''\blanK' or "\tab". Backslashes may be embedded as ''\ \". Each field
corresponds to an element in the struct netconfig structure. struct netcon­
fig and the identifiers described on this manual page are defined in
/usr/include/netconfig.h.
network ID

A string used to uniquely identify a network. network ID consists of non­
null characters, and has a length of at least 1. No maximum length is
specified. This namespace is locally Significant and the local system
administrator is the naming authority. All network IDs on a system must
be unique.

semantics
The semantics field is a string identifing the "semantics" of the network,
i.e., the set of services it supports, by identifying the service interface it
provides. The semantics field is mandatory. The following semantics are
recognized.

tpi_clts Transport Provider Interface, connectionless

tpi _cots Transport Provider Interface, connection oriented

tpi cots ord
- - Transport Provider Interface, connection oriented, sup-

ports orderly release.

flag The flag field records certain two-valued ("true" and "false") attributes of
networks. flag is a string composed of a combination of characters, each of
which indicates the value of the corresponding attribute. If the character is
present, the attribute is "true." If the character is absent, the attribute is
"false." "-" indicates that none of the attributes is present. Only one
character is currently recognized:

10/89 Page 1

netconflg (4)

v

netconflg (4)

Visible ("default") network. Used when the environment
variable NETPATH is unset.

protocol family
The protocol family and protocol name fields are provided for protocol­
specific applications.

The protocol family field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as those for network
IDs, that is, the string consists of non-null characters; it has a length of at
least 1; and there is no maximum length specified. A "-" in the protocol
family field indicates that no protocol family identifier applies, that is, the
network is experimental The following are examples:

loopbacJc Loopback (local to host).
inet Internetwork: UDP, TCP, etc.
iDplinlc ARPANET imp addresses
pup PUP protocols: e.g. BSP
chaos MIT CHAOS protocols
ns XEROX NS protocols
nbs NBS protocols
ecma European Computer Manufacturers Association
datakit DATAKIT protocols
ccitt ccm protocols, X.25, etc.
ana IBM SNA
decnet DECNET
dli Direct data link interface
lat LAT
hylink NSC Hyperchannel
appletalk Apple Talk
nit Network Interface Tap
ieee802 IEEE 802.2; also ISO 8802
osi Umbrella for all families used by OSI (e.g., protosw

x25
osinet
gosip

protocol name

lookup)
ccm X.25 in particular
AFI = 47, IDI = 4
U.S. Government OSI

The protocol name field contains a string that identifies a protocol. The pro­
tocol name identifier follows the same rules as those for network IDs, that js,
the string consists of non-NULL characters; it has a length of at least 1; and
there is no maximum length specified. The following protocol names are
recognized. A "-" indicates that none of the names listed applies.

top Transmission Control Protocol

udp User Datagram Protocol

icnp Internet Control Message Protocol

Page 2 10/89

netconfig (4) netconflg (4)

FILES

10/89

network device
The network device is the full pathname of the device used to connect to the
transport provider. Typically, this device will be in the /dev directory.
The network device must be specified.

directory lookup libraries
The directory lookup libraries support a "directory service" (a name-to­
address mapping service) for the network. This service is implemented by
the UNIX System V Name-to-Address Mapping feature. If a network is not
provided with such a library, the netdir feature will not work. A" -" in
this field indicates the absence of any lookup libraries, in which case
name-to-address mapping for the network is non-functional. The directory
lookup library field consists of a comma-separated list of full pathnames to
dynamically linked libraries. Commas may be embedded as "\, ";
backslashs as If\ \".

Lines in /etc/netconfig that begin with a sharp sign (I) in column 1 are treated
as comments.

The struct netconfig structure includes the following members corresponding
to the fields in in the netconfig database entries:

char * nc netid Network 10, including NULL terminator

unsigned long nc_semantics

unsigned long nc_flag

char * nc-protofmly

char * nc-proto

char * nc device

unsigned long nc_nlookups

unsigned long nc_unused[9]

Semantics

Flags

Protocol family

Protocol name

Full pathname of the network device

Number of directory lookup libraries

Full pathnames of the directory lookup
libraries themselves

Reserved for future expansion (not advertised
to user level)

The nc_semantics field takes the following values, corresponding to the seman­
tics identified above:

NC_TPI_CLTS
NC TPI COTS
NC_TPI_COTS_ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any
attributes.

NC VISIBLE

/etc/netconfig
/usr/include/netconfig.h

Page 3

netconflg (4) netconflg (4)

SEE ALSO

Page 4

netdir_getbyname(3N), getnetconfig(3N), getnetpath(3N), netconfig(4)
Network Programmer's Guide
System Administrator's Guide

10/89

publlckey (4) publlckey(4)

NAME
publickey - public key database

SYNOPSIS
/etc/publickey

DESCRIPTION
/etc/publickey is the public key database used for secure RPC. Each entry in
the database consists of a network user name (which may either refer to a user or
a hostname), followed by the user's public key (in hex notation), a colon, and
then the user's secret key encrypted with a password (also in hex notation).

This file is altered either by the user through the chkey(l) command or by the
system administrator through the newkey(l) command.

SEE ALSO
chkey(l), newkey(l), publickey(3N).

10/89 Page 1

rpc(4) rpc(4)

NAME
rpc - rpc program number data base

SYNOPSIS
rpc

DESCRIPTION

10/89

The rpc program number database contains user readable names that can be used
in place of RPC program numbers. Each line has the following information:

name of server for the RPC program
RPC program number
aliases

Items are separated by any number of blanks and/or tab characters. A • indi­
cates the beginning of a comment; characters up to the end of the line are not
interpreted by routines which search the file.

Below is an example of an RPC database:

•
• rpc •
rpcbind 100000
rusersd 100002
nfs 100003
lTOuntd 100005
walld 100008
sprayd 100012
llocJangr 100020
nlocJangr 100021
status 100024
bootparam 100026
keyserv 100029

portmap sunrpc portmapper
rusers
nfsprog
lTOunt ShOW1TO\:llt
rwall shutdown
spray

keyserver

Page 1

ttydefs(4} ttydefs(4}

NAME
ttydefs - file contains terminal line settings information for ttyJOOn

DESCRIPTION
/etc/ttydefs is an administrative file that contains information used by ttyJOOn
to set up the speed and terminal settings for a 1TY port.

The ttydefs file contains the following fields:

ttylabel The string ttyJOOn tries to match against the 1TY port's ttylabel
field in the port monitor administrative file. It often describes
the speed at which the terminal is supposed to run, for example,
1200.

initial-flags

final-flags

autobaud

next label

Contains the initial termio(7) settings to which the terminal is to
be set. For example, the system administrator will be able to
specify what the default erase and kill characters will be. initial­
flags must be specified in the syntax recognized by the stty com­
mand.

final-flags must be specified in the same format as initial-flags.
ttyJOOn sets these final settings after a connection request has
been made and immediately prior to invoking a port's service.

If the autobaud field contains the character 'A', autobaud will be
enabled. Otherwise, autobaud will be disabled. ttyJOOn deter-
mines what line speed to set the 1TY port to by analyzing the
carriage returns entered. If autobaud has been disabled, the hunt
sequence is used for baud rate determination.

If the user indicates that the current terminal setting is not
appropriate by sending a BREAK, ttyJOOn searchs for a ttydefs
entry whose ttylabel field matches the nextlabel field. If a match is
found, ttyJOOn uses that field as its tty label field. A series of
speeds is often linked together in this way into a closed set called
a hunt sequence. For example, 4800 may be linked to 1200,
which in turn is linked to 2400, which is finally linked to 4800.

SEE ALSO
ttyJOOn(1M), sttydefs(1M)
System Administrator's Guide, "Service Access"

10/89 Page 1

update,. (4) update,. (4)

NAME
updaters - configuration file for yP updating

SYNOPSIS
/var/yp/updaters

DESCRIPTION

FILES

The file /var/yp/updaters is a makefile (see make(l)) which is used for updating
yP databases. Databases can only be updated in a secure network, that is, one
that has a publickey(4) database. Each entry in the file is a make target for a
particular yP database. For example, if there is a yP database named
publickey.byname that can be updated, there should be a make target named
publickey.byname in the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command
through standard input. The information passed is described below (all items are
followed by a NEWLINE, except for the actual bytes of key and actual bytes of
date).

• Network name of client wishing to make the update (a string)

• Kind of update (an integer)
• Number of bytes in key (an integer)

• Actual bytes of key

• Number of bytes in data (an integer)

• Actual bytes of data
After getting this information through standard input, the command to update
the particular database should decide whether the user is allowed to make the
change. If not, it should exit with the status lPERR_ACCESS. If the user is allowed
to make the change, the command should make the change and exit with a status
of zero. If there are any errors that may prevent the updater from making the
change, it should exit with the status that matches a valid yP error code described
in <rpcsvc/ypclnt.h>.

/var/yp/updaters

SEE ALSO
make(l), ypupdated(lM), ypupdate(3), publickey(4)

10/89 Page 1

ypflles(4) ypflles(4)

NAME
ypfiles - the yP database and directory structure

DESCRIPTION

10/89

The yP network lookup service uses a distributed, replicated database of dbm files
contained in the /var/yp directory hierarchy on each yP server. A dbm database
consists of two files, one has the filename extension . pag and the other has the
filename extension .dir. For instance, the database named publickey, is imple­
mented by the pair of files publickey.pag and publickey.dir.
A <ibm database served by the yP is called a yP map. A yP ypdomllin is a subdirec­
tory of /var/yp containing a set of yP maps. Any number of yP domains can
exist. Each may contain any number of maps. .

No maps are required by the yP lookup service itself, although they may be
required for the normal operation of other parts of the system. There is no list of
maps which yP serves - if the map exists in a given domain, and a client asks
about it, the yP will serve it. For a map to be accessible consistently, it must exist
on all yP servers that serve the domain. To provide data consistency between the
replicated maps, an entry to run ypxfr periodically should be made in the
privileged user's crontab file on each server. More information on this topic is
in ypxfr(lM).

yP maps should contain two distinguished key-value pairs. The first is the key
'YP_LAST_K)DIFIED, having as a value a ten-character ASCII order number. The
order number should be the system time in seconds when the map was built.
The second key is 'YP_MASTER_NAMB, with the name of the yP master server as a
value. makedbn(lM) generates both key-value pairs automatically. A map that
does not contain both key-value pairs can be served by the YP, but the ypserv
process will not be able to return values for "Get order number" or "Get master
name" requests. See ypserv(lM). In addition, values of these two keys are used
by ypxfr when it transfers a map from a master YP server to a slave. If ypxfr
cannot figure out where to get the map, or if it is unable to determine whether
the local copy is more recent than the copy at the master, extra command line
switches must be set when it is run.

yP maps must be generated and modified only at the master server. They are
copied to the slaves using ypxfr(lM) to avoid potential byte-ordering problems
among YP servers running on machines with different architectures, and to
minimize the amount of disk space required for the dbm files. The YP database
can be initially set up for both masters and slaves by using ypinit(1M).

After the server databases are set up, it is probable that the contents of some
maps will change. In general, some ASCII source version of the database exists on
the master, and it is changed with a standard text editor. The update is incor­
porated into the YP map and is propagated from the master to the slaves by run­
ning /var/yp/Makefile, see ypmake(1M). All Sun-supplied maps have entries in
/var/yp/Makefile; if a YP map is added, edit this file to support the new map.
The makefile uses makedbn(lM) to generate the yP map on the master, and
yppush(1M) to propagate the changed map to the slaves. yppush is a client of
the map ypservers, which lists all the YP servers. For more information on this
topic, see yppush(lM).

Page 1

ypfIl8.(4)

FILES
/var/yp
/var/yp/aliases
/var/yp/Makefile

SEE ALSO

ypfIl8.(4)

makedbll(lM), ypinit(1M), ypmake(lM), yppoll(lM), yppush(lM), ypserv(lM),
ypxfr(1M), dbn(3), publickey(4)

Page 2 10/89

environ (5) environ (5)

NAME
environ - user environment

DESCRIPTION

10/89

When a process begins execution, exec routines make available an array of strings
called the environment [see exec(2)]. By convention, these strings have the form
variable=value, for example, PATH=/sbin:/usr/sbin. These environmental vari­
ables provide a way to make information about a program's environment avail­
able to programs. The following environmental variables can be used by applica­
tions and are expected to be set in the target run-time environment.

HOME The name of the user's login directory, set by login(1) from the
password file (see passwd(4».

LANG The string used to specify localization information that allows users
to work with different national conventions. The setlocale(3C)
function looks for the LANG environment variable when it is called
with "" as the locale argument. LANG is used as the default locale if
the corresponding environment variable for a particular category is
unset.

For example, when setlocaleO is invoked as
set locale (LC _ CTYPE, " ") ,

setlocaleO will query the LC _ CTYPE environment variable first to
see if it is set and non-null. If LC CTYPE is not set or null, then set­
localeO will check the LANG enVironment variable to see if it is set
and non-null. If both LANG and LC CTYPE are unset or null, the
default C locale will be used to set the-LC_CTYPE category.

Most commands will invoke
set locale (LC_ALL, "")

prior to any other processing. This allows the command to be used
with different national conventions by setting the appropriate
environment variables.

The following environment variables are supported to correspond
with each category of setlocale(3C):

LC _COLLATE This category specifies the collation sequence being
used. The information corresponding to this
category is stored in a database created by the
colltbl(1M) command. This environment variable
affects strcoll(3C) and strxfrm(3C).

LC CTYPE This category specifies character classification, char­
acter conversion, and widths of multibyte charac­
ters. The information corresponding to this
category is stored in a database created by the
chrtbl(1M) command. The default C locale
corresponds to the 7 -bit ASCII character set. This
environment variable is used by ctype(3C),
nbchar(3C), and many commands; for example:
cat(l), ed(1), ls(1), and vi(1).

Page 1

environ (5) environ (5)

Page 2

MSGVERB

This category specifies the language of the message
database being used.. For example, an application
may have one message database with French mes­
sages, and another database with German messages.
Message databases are created by the mlcmsgs(1M)
command. This environment variable is used by
exstr(1), gettxt(1), gettxt(3C), and srchtxt(1).

This category specifies the monetary symbols and
delimiters used for a particular locale. The informa­
tion corresponding to this category is stored in a
database created by the JOOntbl(1M) command.
This environment variable is used. by
localeconv(3Q.

This category specifies the decimal and thousands
delimiters. The information corresponding to this
category is stored in a database created by the
chrtbl(1M) command. The default C locale
corresponds to "." as the decimal delimiter and no
thousands delimiter. This environment variable is
used. by localeconv(3C), printf(3C), and
strtod(3C).

This category specifies date and time formats. The
information corresponding to this category is stored
in a database specified in strftime(4). The default
c locale corresponds to U.S. date and time formats.
This environment variable is used. by many com­
mands and functions; for example: at(1), calen­
dar(1), date(1), strftime(3C), and getdate(3Q.

Controls which standard format message components fmtmsg selects
when messages are displayed to stderr [see fmtmsg(1) and
fmtmsg(3C»).

SEV LEVEL Define severity levels and associate and print strings with them in
standard format error messages [see addseverity(3Q, fmtmsg(1),
and fmtmsg(3C»).

NETPATH A colon-separated list of network identifiers. A network identifier is
a character string used. by the Network Selection component of the
system to provide application-specific default network search paths.
A network identifier must consist of non-NULL characters and must
have a length of at least 1. No maximum length is specified. Net­
work identifiers are normally chosen by the system administrator.
A network identifier is also the first field in any /etc/netconfig
file entry. NETPATH thus provides a link into the /etc/netconfig
file and the information about a network contained in that network's
entry. /etc/netconfig is maintained by the system administrator.
The library routines described in getnetpath(3N) access the NET­
PATH environment variable.

10/89

\
'.

envlron(S)

NLSPATH

PATH

TERM

TZ

10189

envlron(S)

Contains a sequence of templates which catopen(30 uses when
attempting to locate message catalogs. Each template consists of an
optional prefix, one or more substitution fields, a filename and an
optional suffix.

For example:

NLSPATH-"/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the
directory /system/nlslib, where the catalog name should be con­
structed from the name parameter passed to catopen(), %N, with
the suffix . cat.

Substitution fields consist of a % symbol, followed by a single-letter
keyword. The following keywords are currently defined:

%N The value of the name parameter
passed to catq>en().

%L The value of LANG.
%! The language element from LANG.
%t The territory element from LANG.
%c The codeset element from LANG.
%% A single % character.

An empty string is substituted if the specified value is not currently
defined. The separators "..:' and "." are not included in %t and %c
substitutions.

Templates defined in NLSPATH are separated by colons (:). A lead­
ing colon or two adjacent colons (: :) is equivalent to specifying %N.

For example:

NLSPATH-":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message
catalog in, name, name.cat and /nlslib/$LANG/name.cat.

The sequence of directory prefixes that sh(1), time(l), nice(1),
nohup(l), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). login(l) sets
PATH-/usr/bin. (For more detail, see sh(1).)

The kind of terminal for which output is to be prepared. This infor­
mation is used by commands, such as rm(l) or vi(1), which may
exploit special capabilities of that terminal.

Time zone information. The contents of the environment variable
named TZ are used by the functions ctime(3C), localtime() (see
ctime(30), strftime(3C) and mktime(3C) to override the default
timezone. If the first character of TZ is a colon (:), the behavior is
implementation defined, otherwise TZ has the form:

std offset [dst [offset], [start [/ time] , end [/ time]]]

Page 3

environ (5)

Page 4

environ (5)

std and dst
Three or more bytes that are the designation for the standard
(std) and daylight savings time (dst) timezones. Only std is
required, if dst is missing, then daylight savings time does
not apply in this locale. Upper- and lower-case letters are
allowed. Any characters except a leading colon (:), digits, a
comma (,), a minus (-) or a plus (+) are allowed.

offset Indicates the value one must add to the local time to arrive
at Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour
(hh) is required and may be a single digit. The offset follow­
ing std is required. If no offset follows dst , daylight savings
time is assumed to be one hour ahead of standard time. One
or more digits may be used; the value is always interpreted
as a decimal number. The hour must be between 0 and 24,
and the minutes (and seconds) if present between 0 and 59.
Out of range values may cause unpredictable behavior. If
preceded by a "-", the timezone is east of the Prime Meri­
dian; otherwise it is west (which may be indicated by an
optional preceding "+" sign).

start/time, end/time
Indicates when to change to and back from daylight savings
time, where start/time describes when the change from stan­
dard time to daylight savings time occurs, and end/time
describes when the change back happens. Each time field
describes when, in current local time, the change is made.

The formats of start and end are one of the following:

In The Julian day n (1 ::; n ::; 365). Leap days are
not counted. That is, in all years, February 28 is
day 59 and March 1 is day 60. It is impoSSible
to refer to the occasional February 29.

n The zero-based Julian day (0 ::; n ::; 365). Leap
days are counted, and it is possible to refer to
February 29.

Mm.n.d th
The d day, (0 ::; d ::; 6) of week n of month m
of the year (1 ::; n ::; 5, 1 ::; m ::; 12), where week
5 means "the last d-day in month m" which
may occur in either the fourth or the fifth
,,\Wk). Week 1 is the first week in which the
d day occurs. Day zero is Sunday.

10/89

envlron(5) envlron(5)

Implementation specific defaults are used for start and end if
the~ optional fields are not given.

The time has the same format as offset except that no leading
sign ("_" or "+") is allowed. The default, if time is not given
is 02:00:00. .

Further names may be placed in the environment by the export command and
name=value arguments in sh(1), or by exec(2). It is unwise. to conflict with cer­
tain shell variables that are frequently exported by . profile files: MAIL, PS1,
PS2, IFS (see profile(4». .

SEE ALSO

10/89

chrtbl(1M), colltbl(1M), mlcmsgs(1M), IIOntbl(lM), netconfiq(4),
strftime(4), passwd(4), profile(4) in the System Administrator's Reference
Manual.
exec(2), addseverity(3Q, catopen(3C), ctime(3Q, ctype(3C), fmtmsq(3Q,
getdate(3C), qettxt(3Q, localeconv(3Q, nbchar(3C), m1ctime(3Q, printf(3C),
strcoll(3C), strftime(3C), strtod(3Q, strxfnn(3C), strftime(4),
timezone(4).
cat(l), date(l), ed{l), fmtmsq(l), ls(1), loqin(1), nice(1), nohup(l), sh(1),
sort(1), time(l), vi(1) in the User's Reference Ma7!ual.
qetnetpath(3N), in the Programmer's Guide: Networking Interfaces.
1II1~:t) in the DOCUMENTER'S WORKBENCH Software Technical Discussion and
Reference Manual.

Page 5

ICMP(7) ICMP(7)

NAME
ICMP - Internet Control Message Protocol

SYNOPSIS
'include <sys/socket.h>
'include <netinet/in.h>
'include <netinet/ip_icmp.h>

s - socket (AF_IHB'l, SOCK_RAW, proto);

t - t_open("/dev/icmp", O_RDWR);

DESCRIPTION
ICMP is the error and control message protocol used by the Internet protocol fam­
ily. It is used by the kernel to handle and report errors in protocol processing. It
may also be accessed by programs using the socket interface or the Transport
Level Interface (TU) for network monitoring and diagnostic functions. When
used with the socket interface, a raw sqcket type is used. The protocol number
for ICMP, used in the proto parameter to the socket call, can be obtained from
getprotobyname () [see getprotoent(3N»). ICMP file descriptors and sockets are
connectionless, and are normally used with the t_sndudata / t_rcvudata and
the sendto () / recvfrom () calls.

Outgoing packets automatically have an Internet Protocol OP) header prepended
to them. Incoming packets are provided to the user with the IP header and
options intact.

ICMP is an datagram protocol layered above IP. It is used internally by the protcol
code for various purposes including routing, fault isolation, and congestion con­
trol. Receipt of an ICMP redirect message will add a new entry in the routing
table, or modify an existing one. ICMP messages are routinely sent by the proto­
col code. Received tCMP messages may be reflected back to users of higher-level
protocols such as TCP or UDP as error returns from system calls. A copy of all
ICMP message received by the system is provided to every holder of an open
ICMP socket or TU descriptor.

SEE ALSO
send(2), getprotoent(3N), recvfrcmi3N), t _ rcvudata(3N), t _ sndudata(3N),
routinq(4), inet(7), iP(7).

Postel, Jon, Internet Control Message Protocol - DARPA Internet Program Protocol
Specification, RFC 792, Network Information Center, SRI International, Menlo Park,
Calif., September 1981.

DIAGNOSTICS

10/89

A socket operation may fail with one of the following errors returned:

EIScam An attempt was made to establish a connection on a socket
which already has one, or when trying to send a datagram
with the destination address specified and the socket is
already connected.

ENOTCONN An attempt was made to send a datagram, but no destina­
tion address is specified, and the socket has not been con­
nected.

Page 1

ICMP(7) ICMP(7)

NOTES

Page 2

ENOBOFS

EADDRNOTAVAIL

The system ran out of memory for an internal data struc­
ture.

An attempt was made to create a socket with a network
address for which no network interface exists.

Replies to ICMP echo messages which are source routed are not sent back using
inverted source routes, but rather go back through the normal routing mechan­
isms.

10/89

IP(7) IP(7)

NAME
IP - Internet Protocol

SYNOPSIS
'include <sys/socket.h>
'include <netinet/in.h>

s - socket (AF_DlB'r, SOClU~AIf, proto);

t ... t_open ("/dev/rawip", O_RDWR);

d ... open ("/dev/ip", O_RDWR);

DESCRIPTION

10/89

IP is the internetwork datagram delivery protocol that is central to the Internet
protocol family. Programs may use IP through higher-level protocols such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or
may interface directly to IP. See tcp(7) and udp(7). Direct access may be via the
socket interface (using a raw socket) or the Transport Level Interface (TLI). The
protocol options defined in the IP specification may be set in outgoing datagrams.

The STREAMS driver /dev/rawip is the TLI transport provider that provides raw
access to IP. The device /dev/ip is the multiplexing STREAMS driver that imple­
ments the protocol processing of IP. The latter connects below to datalink provid­
ers [interface drivers, see if(3N)], and above to tranport providers such as TCP
and UDP.

Raw IP sockets are connectionless and are normally used with the sendto () and
recvfrom() calls, [(see send(2) and recv(2)] although the connect(2) call may
also be used to fix the destination for future datagrams [in which case the read(2)
or recv(2) and write(2) or send(2) calls may be used]. If proto is zero, the
default protocol, IPPROTO _ RAW, is used. If proto is non-zero, that protocol
number will be set in outgoing datagrams and will be used to ruter incoming
datagrams. An IP header will be generated and prepended to each outgoing
datagram; received datagrams are returned with the IP header and options intact.

A single socket option, IP_OPTIONS, is supported at the IP level. This socket
option may be used to set IP options to be included in each outgoing datagram.
IP options to be sent are set with setsockopt () [see getsockopt(2)]. The get­
sockopt(2) call returns the IP options set in the last set.sockopt () call. IP
options on received datagrams are visible to user programs only using raw IP
sockets. The format of IP options given in setsockopt () matches those defined
in the IP specification with one exception: the list of addresses for the source rout­
ing options must include the first-hop gateway at the beginning of the list of gate­
ways. The first-hop gateway address will be extracted from the option list and
the size adjusted accordingly before use. IP options may be used with any socket
type in the Internet family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass the routing step in output. Normally, IP
selects a network interface to send the datagram, and possibly an intermediate
gateway, based on an entry in the routing table. See routinq(4). When
SO_DCIITROO'l'E is set, the datagram will be sent using the interface whose network
number or full IP address matches the destination address. If no interface
matches, the error ENETUNRCH will be returned.

Page 1

IP(7) IP(7)

Raw IP datagrams can also be sent and received using the TLI connectionless
primitives.

Datagrams flow through the IP layer in two directions: from the network up to
user processes and from user processes down to the network. Using this orienta­
tion, IP is layered above the network interface drivers and below the transport pro­
tocols such as UDP and TCP. The Internet Control Message Protocol (ICMP) is logi­
cally a part of IP. See icnp(7).

IP provides for a checksum of the header part, but not the data part of the
datagram. The checksum value is computed and set in the process of sending
datagrams and checked when receiving datagrams. IP header checksumming may
be disabled for debugging purposes by patching the kernel variable ipcksUIII to
have the value zero.

IP options in received datagrams are processed in the IP layer according to the
protocol specification. Currently recognized IP options include: security, loose
source and record route (LSRR), strict source and record route (SSRR), record
route, stream identifier, and internet timestamp.

The IP layer will normally forward received datagrams that are not addressed to
it. Forwarding is under the control of the kernel variable ipforwarding: if ipfor­
warding is zero, IP datagrams will not be forwarded; if ipforwarding is one, IP
datagrams will be forwarded. ipforwarding is usually set to one only in machines
with more than one network interface (internetwork routers). This kernel vari­
able can be patched to enable or disable forwarding.

The IP layer will send an ICMP message back to the source host in many cases
when it receives a datagram that can not be handled. A time exceeded ICMP
message will be sent if the time to live field in the IP header drops to zero in the
process of forwarding a datagram. A destination unreachable message will be
sent if a datagram can not be forwarded because there is no route to the final
destination, or if it can not be fragmented. If the datagram is addressed to the
local host but is destined for a protocol that is not supported or a port that is not
in use, a destination unreachable message will also be sent. The IP layer may
send an ICMP source quench message if it is receiving datagrams too quickly.
ICMP messages are only sent for the first fragment of a fragmented datagram and
are never returned in response to errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented
on output if the datagram is larger than the maximum transmission unit (MTU) of
the network interface. Fragments of received datagrams are dropped from the
reassembly queues if the complete datagram is not reconstructed within a short
time period.

Errors in sending discovered at the network interface driver layer are passed by
IP back up to the user process.

SEE ALSO

Page 2

read(2), write(2), connect(3N), getsockopt(3N), recv(3N), send(3N),
routinq(4), icnp(7), inet(7) tcp(7), udp(7).

10/89

IP(7) IP(7)

Postel, Jon, Internet Protocol - DARPA Internet Program Protocol Specification, RFe
791, Network Information Center, SRI International, Menlo Park, Calif., September
1981.

DIAGNOSTICS

NOTES

10/89

A socket operation may fail with one of the following errors returned:

EACCESS A IP broadcast destination address was specified and the
caller was not the privileged user.

EISCONN

EMSGSIZE

ENETUNREACH

ENOTCONN

ENOBUFS

An attempt was made to establish a connection on a socket
which already had one, or to send a datagram with the des­
tination address specified and the socket was already con­
nected.

An attempt was made to send a datagram that was too
large for an interface, but was not allowed to be frag­
mented (such as broadcasts).

An attempt was made to establish a connection or send a
datagram, where there was no matching entry in the rout­
ing table, or if an ICMP destination unreachable message
was received.

A datagrem was sent, but no destination address was
specified, and the socket had not been connected.

The system ran out of memory for fragmentation buffers or
other internal data structure.

EADDRNOTAVAIL An attempt was made to create a socket with a local
address that did not match any network interface, or an IP
broadcast destination address was specified and the net­
work interface does not support broadcast.

The following errors may occur when setting or getting IP options:

EINVAL An unknown socket option name was given.

EINVAL The IP option field was improperly formed; an option field
was shorter than the minimum value or longer than the
option buffer provided.

Raw sockets should receive ICMP error packets relating to the protocol; currently
such packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see
received IP options.

Page 3

sockio(7) sockio(7)

NAME
sockio - ioctls that operate directly on sockets

SYNOPSIS
tinclude <sys/sockio.h>

DESCRIPTION
The IOCTL's listed in this manual page apply directly to sockets, independent of
any underlying protocol. The setsockopt call (see getsockopt(3N) is the pri­
mary method for operating on sockets, rather than on the underlying protocol or
network interface. ioctls for a specific network interface or protocol are docu­
mented in the manual page for that interface or protocol.

SIOCSPGRP The argument is a pointer to an into Set the process-group
ID that will subsequently receive SIGIO or SIGURG signals
for the socket referred to by the descriptor passed to ioctl
to the value of that into

SIOCGPGRP

SIOCCATMARK

The argument is a pointer to an into Set the value of that
int to the process-group ID that is receiving SIGIO or
SIGURG signals for the socket referred to by the descriptor
passed to ioctl.

The argument is a pointer to an into Set the value of that
int to 1 if the read pointer for the socket referred to by the
descriptor passed to ioctl points to a mark in the data
stream for an out-of-band message. Set the value of that
int to 0 if the read pointer for the socket referred to by the
descriptor passed to ioctl does not point to a mark in the
data stream for an out-of-band message.

SEE ALSO
ioctl(2), getsockopt(2), fili0(4)

10/89 Page 1

TCP(7) TCP(7)

NAME
TCP - Internet Transmission Control Protocol

SYNOPSIS
'include <sys/socket.h>
'include <netinet/in.h>

s - socket (AF _INET , SOCK_STREAM, 0);

t - t_open (" /deV/tcp", O_RDWR);
DESCRIPTION

10189

TCP is the virtual circuit protocol of the Internet protocol family. It provides reli­
able, flow-controlled, in order, two-way transmission of data. It is a byte-stream
protocol layered above the Internet Protocol (IP), the Internet protocol family's
internetwork datagram delivery protocol.

Programs can access TCP using the socket interface as a SOCK_STREAM socket type,
or using the Transport Level Interface (TLI) where it supports the connection­
oriented (T_COTS_ORD) service type.

TCP uses IP's host-level addressing and adds its own per-host collection of port
addresses. The endpoints of a TCP connection are identified by the combination
of an IP address and a TCP port number. Although other protocols, such as the
User Datagram Protocol (UDP), may use the same host and port address format,
the port space of these protocols is distinct. See inet(7) for details on the com­
mon aspects of addressing in the Internet protocol family.

Sockets utilizing TCP are either active or passive. Active sockets initiate connec­
tions to passive sockets. Both types of sockets must have their local IP address
and TCP port number bound with the bind(2) system call after the socket is
created. By default, TCP sockets are active. A passive socket is created by calling
the listen(2) system call after binding the socket with bind (). This establishes
a queueing parameter for the passive socket. After this, connections to the pas­
sive socket can be received with the accept(2) system call. Active sockets use the
connect(2) call after binding to initiate connections.

By using the special value lNADDR _ ANY, the local IP address can be left
unspecified in the bind () call by either active or passive TCP sockets. This
feature is usually used if the local address is either unknown or irrelevant. If left
unspecified, the local IP address will be bound at connection time to the address
of the network interface used to service the connection.

Once a connection has been established, data can be exchanged using the read(2)
and write(2) system calls.

TCP supports one socket option which is set with setsockopt () and tested with
getsockopt(2). Under most circumstances, TCP sends data when it is presented.
When outstanding data has not yet been acknowledged, it gathers small amounts
of output to be sent in a single packet once an acknowledgement is received. For
a small number of clients, such as window systems that send a stream of mouse
events which receive no replies, this packetization may cause significant delays.
Therefore, TCP provides a boolean option, TCP_NODELAY (defined in
/usr/include/netinet/tcp.h), to defeat this algorithm. The option level for

Page 1

TCP(7) TCP(7)

the setsockopt () call is the protocol number for TCP, available from
getprotobyname () [see getprotoent(3N)].

Options at the IP level may be used with Tep; See iP(7).

Tep provides an urgent data mechanism, which may be invoked using the out­
of-band provisions of send(2). The caller may mark one byte as urgent with the
MSG_OOB flag to send(2). This sets an urgent pointer pointing to this byte in the
Tep stream. The receiver on the other side of the stream is notified of the urgent
data by a SIGURG signal. The SIOCATMARK ioctl () request returns a value indi­
cating whether the stream is at the urgent mark. Because the system never
returns data across the urgent mark in a single read(2) call, it is possible to
advance to the urgent data in a simple loop which reads data, testing the socket
with the SIOCATMARK ioctl () request, until it reaches the mark.

Incoming connection requests that include an IP source route option are noted,
and the reverse source route is used in responding.

A checksum over all data helps TCP implement reliability. Using a window-based
flow control mechanism that makes use of positive acknowledgements, sequence
numbers, and a retransmission strategy, TCP can usually recover when datagrams
are damaged, delayed, duplicated or delivered out of order by the underlying
communication medium.

If the local TCP receives no acknowledgements from its peer for a period of time,
as would be the case if the remote machine crashed, the connection is closed and
an error is returned to the user. If the remote machine reboots or otherwise loses
state information about a TCP connection, the connection is aborted and an error
is returned to the user.

SEE ALSO
read(2), write(2), accept(3N), bind(3N), connect(3N), getprotoent(3N),
getsockopt(3N), listen(3N), send(3N), inet(7), ip(7).

Postel, Jon, Transmission Control Protocol - DARPA Internet Program Protocol
Specification, RFC 793, Network Information Center, SRI International, Menlo Park,
Calif., September 1981.

DIAGNOSTICS

Page 2

A socket operation may fail if:

EISCONN A connect () operation was attempted on a socket on
which a connect () operation had already been performed.

ETlMEDOUT

ECONNRESET

ECONNREFUSED

A connection was dropped due to excessive retransmis­
sions.

The remote peer forced the connection to be closed (usually
because the remote machine has lost state information
about the connection due to a crash).

The remote peer actively refused connection establishment
(usually because no process is listening to the port).

10/89

TCP(7)

EADDRlNUSE

EADDRNOTAVAIL

EACCES

ENOBOFS

10/89

TCP(7)

A bind () operation was attempted on a socket with a net­
work address/port pair that has already been bound to
another socket.

A bind () operation was attempted on a socket with a net­
work address for which no network interface exists.

A bind () operation was attempted with a reserved port
number and the effective user ID of the process was not the
privileged user.

The system ran out of memory for internal data structures.

Page 3

tlcHs(7) tlcHs(7)

NAME
ticlts, ticots, ticotsord - loopback transport providers

SYNOPSIS
'include <ticlts.h>
'include <ticots.h>
'include <ticotsord.h>

DESCRIPTION

USAGE

10/89

The devices known as ticlts, ticots, and ticotsord are ''loopback transport
providers," that is, stand-alone networks at the transport level. Loopback tran­
sport providers are transport providers in every sense except one: only one host
(the local machine) is "connected to" a loopback network. Loopback transports
present a TPI (STREAMS-level) interface to application processes and are intended
to be accessed via the TI.I (application-level) interface. They are implemented as
clone devices and support address spaces consisting of "flex-addresses," i.e., arbi­
trary sequences of octets, of length> 0, represented by a netbuf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service
of type T_CLTS. Its default address size is TCL_DEFAULTADDRSZ. ticlts prints
the following error messages (see t_rcwderr(3N»:

TCL _ BADADDR bad address specification
TCL_BADOPT bad option specification
TeL NOPEER bound
TeL:PEERBADSTATE peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers (connection­
oriented) service of type T_COTS. Its default address size is TCO_DEFAULTADDRSZ.
ticots prints the following disconnect messages (see t_rcvdis(3N»:

TCO NOPEER no listener on destination address
TCO:PEERNOROOK)NQ peer has no room on connect queue
TCO PEERBADSTATE peer in wrong state
TCO - PEERINITIATED peer-initiated disconnect
TCO :PROVIDERINITIATED provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_COTS_ORD (connection-oriented service with orderly release). Its default
address size is TCOO _DEFAULTADDRSZ. ticotsord prints the following disconnect
messages (see t_rcvdis(3N»:

TCOO NOPEER
TCOO - PEERNORO<H:>NQ
TCOO :PEERBADSTATE
TOOO_PEERINITIATED
TOOO_PROVIDERINITIATED

no listener on destination address
peer has no room on connect queue
peer in wrong state
peer-initiated disconnect
provider-initiated disconnect

Loopback transports support a local IPC mechanism through the TU interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

Page 1

tlclts(7) ticlts(7)

FILES

Page 2

Transport provider-independent applications must not include the header files
listed in the synopsis section above. In particular, the options are (like all tran­
sport provider options) provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_COTS) sup­
ported by the OSI transport-level model. The use of ticlts and ticots is
encouraged.
ticotsord supports the same service type (T _ COTSORD) supported by the TCP lIP
model. The use of ticotsord is discouraged except for reasons of compatibility.

Idev/ticlts
/dev/ticots
/dev/ticotsord

10/89

UDP(7) UDP(7)

NAME
UDP - Internet User Datagram Protocol

SYNOPSIS
'include <sys/socket.h>
'include <netinet/in.h>

s = socket (AF_INET, SOCK_DGRAM, 0);

t = t_open (JI/dev/udpJl, O_RDWR);

DESCRIPTION

10/89

UDP is a simple datagram protocol which is layered directly above the Internet
Protocol (IP). Programs may access UDP using the socket interface, where it sup­
ports the SOCK_DGRAM socket type, or using the Transport Level Interface (TLI),
where it supports the connectionless (T_CLTS) service type.

Within the socket interface, UDP is normally used with the sendto () ,
sendmsg(), recvfran(), and recWlSg() calls [see send(2) and recv(2»). If the
connect(2) call is used to fix the destination for future packets, then the recv(2)
or read(2) and send(2) or write(2) calls may be used.

UDP address formats are identical to those used by the Transmission Control Pro­
tocol (TCP). Like TCP, UDP uses a port number along with an IP address to iden­
tify the endpoint of communication. The UDP port number space is separate from
the TCP port number space (that is, a UDP port may not be connected to a TCP
port). The bind(4} call can be used to set the local address and port number of a
UDP socket. The local IP address may be left unspecified in the bind () call by
using the special value INADDR_ANY. If the bind () call is not done, a local IP
address and port number will be assigned to the endpoint when the first packet
is sent. Broadcast packets may be sent (assuming the underlying network sup­
ports this) by using a reserved broadcast address; This address is network inter­
face dependent. Broadcasts may only be sent by the privileged user.

Options at the IP level may be used with UDP; see ip(7).

There are a variety of ways that a UDP packet can be lost or corrupted, including
a failure of the underlying communication mechanism. UDP implements a check­
sum over the data portion of the packet. If the checksum of a received packet is
in error, the packet will be dropped with no indication given to the user. A
queue of received packets is provided for each UDP socket. This queue has a lim­
ited capacity. Arriving datagrams which will not fit within its high-water capacity
are silently discarded.

UDP processes Internet Control Message Protocol (ICMP) error messages received
in response to UDP packets it has sent. See icnp(7). ICMP source quench mes­
sages are ignored. ICMP destination unreachable, time exceeded and parameter
problem messages disconnect the socket from its peer so that subsequent attempts
to send packets using that socket will return an error. UDP will not guarantee
that packets are delivered in the order they were sent. As well, duplicate packets
may be generated in the communication process.

Page 1

UDP(7) UDP(7)

SEE ALSO
read(2), write(2), bind(3N), connect(3N), recv(3N), send(3N), iC!!p(7), inet(7),
ip(7), tcp(7).

Postel, Jon, User Datagram Protocol, RFC 768, Network Information Center, SRI
International, Menlo Park, Calif., August 1980.

DIAGNOSTICS

Page 2

A socket operation may fail if:

EISOONN A connect () operation was attempted on a socket on
which a connect () operation had already been performed,
and the socket could not be successfully disconnected
before making the new connection.

EISOONN A sendto () or sendmsq () operation specifying an address
to which the message should be sent was attempted on a
socket on which a connect () operation had already been
performed.

ENOTCONN

EADDRlNUSE

EADDRNOTAVAIL

EINVAL

EACCES

ENOBOFS

A send () or write () operation, or a sendto () or
sendmsq () operation not specifying an address to which
the message should be sent, was attempted on a socket on
which a connect () operation had not already been per­
formed.

A bind() operation was attempted on a socket with a net­
work address/port pair that has already been bound to
another socket.

A bind () operation was attempted on a socket with a net­
work address for which no network interface exists.

A sendmsq () operation with a non-NULL msq_accrights
was attempted.

A bind () operation was attempted with a reserved port
number and the effective user ID of the process was not the
privileged user.

The system ran out of memory for internal data structures.

10/89

ISBN 0-13-947078-6

90000>

