

-.

ATlaT

UNIX@ SYSTEM V
RELEASE 4

Programmer's Reference Manual

Bys

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
Copyright 1989,1988,1987,1986 Sun Microsystems, Inc.
Copyright 1985 Regents of the University of California
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

AT&T gratefully acknowledges the)(JOpen Company Limited for permission to reproduce portions of
its copyrighted X/Open Portability Guide, Issue 3.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

UNIX and WE are registered trademarks of AT&T.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-947029-8

UNIX
PRESS

A Prentice Hall Title

C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632.
Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator's Guide

®
UNIX System V Release 4 System Administrator's Reference Manual
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: System Services

and Application Packaging Tools
UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Releas~ 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Device Driver Interface / Driver- Kernel

Interface (001 / DKI) Reference Manual
UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall •

Introduction

This manual describes the programming features of the UNIX system. It con­
tains individual manual pages that describe commands, system calls, subrou­
tines, file formats, and other useful topics, such as the ASCII table shownon
ascii(5). It provides neither a general overview of the UNIX system nor details
of the implementation of the system.

Not all commands, features, and facilities described in this manual are available
in every UNIX system. Some of the features require additional utilities that may
not exist on your system.

The manual is divided into five sections:

1. Commands
2. System Calls
3. Subroutines:

3C. C Programming Language Library Routines
3S. Standard I/O Library Routines
3E. Executable and Linking Format Library Routines
3G. General Purpose Library Routines
3M. Math Library Routines
3X. Specialized Library Routines

4. File Formats
5. Miscellaneous Facilities

Section 1 (Commands) describes commands that support C and other program­
ming languages.

Section 2 (System Calls) describes the access to the services provided by the
UNIX system kernel, including the C language interface.

Section 3 (Subroutines) describes the available general subroutines. In many
cases, several related subroutines are described on the same manual page. Their
binary versions reside,in various system libraries. See intro(3) for descriptions
of these libraries and the files in which they are stored. .

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out(4).
Excluded are files used by only one command (for example, the assembler's
intermediate files, if any). In general, the C language structures corresponding
to .these formats can be found in the directories /usr/include and
/usr/include/sys.

Introduction 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is con­
tained in the appropriate section of another manual. References with (1) follow­
ing the command mean that the utility is contained in this manual or the User's
Reference Manual. In these cases, the SEE ALSO section of the entry in which the
reference appears will point you to the correct book.

Each section consists of a number of independent entries of a page or SO each.
Entries within each section are alphabetized, with the exception of the introduc­
tory entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, alphabetized under
its "primary" name, the name that appears at the upper corners of each manual
page. Subsections 3C and 3S are grouped together because their functions con­
stitute the standard C library.

All entries are based on a common format, not all of whose parts always
appear:

2

• The NAME part gives the name(s) of the entry and briefly states its pur­
pose.

• The SYNOPSIS part summarizes the use of the program or function being
described. A few conventions are used, particularly in Section 2 (System
Calls):

D Constant width typeface strings are literals and are to be typed
just as they appear.

D Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the manual.

D Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as name
or file, it always refers to a file name.

D Ellipses ... are used to show that the previous argument prototype
may be repeated.

D A final convention is used by the commands themselves. An argu­
ment beginning with a minus - or plus + sign is often taken to be
some sort of flag argument, even if it appears in a position where a
file name could appear. Therefore, it is unwise to have files whose
names begin with - or +.

Programmer's Reference Manual

Introduction

• The DESCRIPTION part describes the utility.

• Th.e EXAMPLE(S) part gives example(s) of usage, where appropriate.

• The FILES part gives the file names that are built into the program.

• The SEE ALSO part gives pointers to related information.

• The DIAGNOSTICS part discusses the diagnostic indications that may be
produced. Messages that are intended to be self-explanatory are not
listed.

• The NOTES part gives generally helpful hints about the use of the utility.

A "Table of Contents" and a "Permuted Index" derived from that table precede
Section 1. The ''Permuted Index" is a list of keywords, given in the second of
three columns, together with the context in which each keyword is found. Key­
words are either topical keywords or the names of manual entries. Entries are
identified with their section numbers shown in parentheses. This is important
because there is considerable duplication of names among the sections, arising
principally from commands and functions that exist only to exercise a particular
system call. The right column lists the name of the manual page on which each
keyword may be found. The left column contains useful information about the
keyword.

Introduction 3

Table of Contents

1. Commands

intro(1) ... introduction to programming commands
admin(1) ... create and administer sees files
ar(1) ... maintain portable archive or library
as(1) ... assembler
cb(1) .. e program beautifier
cc(1) ... e compiler
cdc(1) .. change the delta comment of an sees delta
cflow(1) .. generate e flowgraph
cof2elf(1) ... eOFF to ELF object file translation
comb (1) ... combine sees deltas
cscope(1) ... interactively examine a e program
ctrace(1) .. e program debugger
cxref(1) .. generate e program cross-reference
delta(1) .. make a delta (change) to an sees file
dis(1) ... object code disassembler
dump(1) ... dump selected parts of an object file
get(1) ... get a version of an sees file
help(1) ... ask for help with message numbers or sees commands
install(1M) .. install commands
Id(1) ... link editor for object files
Idd(1) ... list dynamic dependencies
lex(1) .. generate programs for simple lexical tasks
!int(1) ... a e program checker
10rder(1) .. find ordering relation for an object library
Iprof(1) .. display line-by-line execution count profile data
m4(1) ... macro processor
make(1) ... maintain, update, and regenerate groups of programs
mcs(1) ... manipulate the comment section of an object fjle
nm(1) ... print name list of an object file
prof 0) .. display profile data
prs(1) .. print an sees file
regcmp(1) ... regular expression compile
rmdel(1) .. remove a delta from an sees file
sact(1) ... print current sees file editing activity
sccsdiff(1) .. compare two versions of an sees file
sdb(1) .. symbolic debugger
size(1) .. print section sizes in bytes of object files
strip (1) strip symbol table, debugging and line number information from an object file

Table of Contents 1

Table of Contents

tsort (1) .. topological sort
unget(1) ; ... undo a previous get of an sees file
val(1) ... validate an sees file
vc(1) ... version control
what(1) ... print identification strings
yacc(1) ... yet another compiler-compiler

2. System Calls

intro(2) .. introduction to system calls and error numbers
access(2) .. determine accessibility of a file
acct(2) .. enable or disable process accounting
adjtime(2) correct the time to allow synchronization of the system clock
alarm(2) .. set a process alarm clock
brk, sbrk(2) .. change data segment space allocation
chdir, fchdir(2) .. change working directory
chmod, fchmod(2) ... change mode of file
chown, Ichown, fchown(2) .. change owner and group of a file
chroot (2) change root directory
close(2) ... close a fue descriptor
creat (2) create a new file or rewrite an existing one
dup(2) ... duplicate an open file descriptor
exec: execl, execv, execle, execve, execlp, execvp(2) .. execute a file
exit, _exit (2) .. terminate process
fcntl (2) ... file control
fork(2) .. create a new process
fpathconf, pathconf(2) ... get configurable pathname variables
fsync(2) synchronize a file's in-memory state with that on the physical medium
getcontext, setcontext(2) .. get and set current user context
getdents(2) read directory entries and put in a file system independent format
getgroups, setgroups(2) get or set supplementary group access list IDs
getmsg(2) .. get next message off a stream
getpid, getpgrp, getppid, getpgid (2) get process, process group, and parent process IDs
getrlimit, setrlimit(2) ... control maximum system resource consumption
getsid (2) .. get session ID
getuid, geteuid, getgid, getegid (2)

.................................... ; get real user, effective user, real group, and effective group IDs
ioctI (2) ... control device
kill(2) .. send a signal to a process or a group of processes
link(2) ... link to a file

2 Programmer's Reference Manual

Table of Contents

Iseek(2) .. move read/write file pointer
memcntl(2) .. memory management control
mincore(2) .. determine residency of memory pages
mkdir(2) ... make a directory
mknod(2) ... make a directory, or a special or ordinary file
mmap(2) ... map pages of memory
mount(2) ... mount a file system
mprotect(2) .. set protection of memory mapping
msgctl(2) .. message control operations
msgget(2) .. get message queue
msgop: msgsnd, msgrcv(2) ... message operations
munmap(2) ... unmap pages of memory
nice(2) .. change priority of a time-sharing process
open(2) .. open for reading or writing
pause(2) suspend process until signal
pipe(2) ... create an interprocess channel
plock(2) .. lock into memory or unlock process, text, or data
poll(2) .. input/output multiplexing
priocntl(2) ... process scheduler control
priocntlset(2) ... generalized process scheduler control
profil(2) ... execution time profile
ptrace (2) ... , process trace
putmsg(2) ... send a message on a stream
read (2) read from file
readlink(2) ... read the value of a symbolic link
rename(2) .. change the name of a file
rmdir(2) .. remove a directory
semctl(2) .. semaphore control operations
semget(2) ... get set of semaphores
semop(2) ... semaphore operations
setpgid(2) .. set process group ID
setpgrp(2) .. set process group ID
setsid (2) set session ID
setuid, setgid(2) ... set user and group IDs
shmct1(2) ... shared memory control operations
shmget(2) ... get shared memory segment identifier
shmop: shmat, shmdt(2) .. shared memory operations
sigaction(2) ... detailed signal management
sigaltstack(2) ... set or get signal alternate stack context
signal, sigset, sighold, sigrelse, sigignore, sigpause(2) simplified signal management

Table of Contents 3

Table of Contents

sigpending(2) ... examine signals that are blocked and pending
sigprocmask(2) .. change or examine signal mask
sigsend, sigsendset(2) send a signal to a process or a group of processes
sigsuspend(2) ... install a signal mask and suspend process until signal
stat, lstat, fstat (2) get file status
statvfs, fstatvfs(2) .. get file system information
stime(2) .. set time
swapctl(2) ... manage swap space
symlink(2) ... make a symbolic link to a file
sync(2) .. update super block
sys3b(2) .. machine-specific functions
sysfs(2) ... get file system type information
sysinfo(2) ... get and set system information strings
termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,

cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid (2)
... ... general terminal interface

time(2) ... get time
times (2) get process and child process times
uadmin(2) ... administrative control
ulimit(2) .. get and set user limits
umask(2) ... set and get file creation mask
umount(2) .. unmount a file system
uname(2) .. get name of current UNIX system
unlink(2) ... remove directory entry
ustat(2) ... get file system statistics
utime(2) .. set file access and modification times
vfork(2) ... spawn new process in a virtual memory efficient way
wait(2) wait for child process to stop or terminate
waitid(2) .. wait for child process to change state
waitpid(2) .. wait for child process to change state
write, writev(2) .. write on a file

3. Functions

intro(3) .. introduction to functions and libraries
a64l, 164a(3C) .. convert between long integer and base-64 ASCII string
abort (3C) generate an abnormal termination signal
abs, labs(3C) ... return integer absolute value
addseverity(3C) build a list of severity levels for an application for use with fmtmsg
atexit(3C) .. add program termination routine

4 Programmer's Reference Manual

Table of Contents

bsearch(3C) ... binary search a sorted table
catgets(:3C) ... read a program message
catopen, catdose(3C) ... open/dose a message catalogue
clock(3C) ... report CPU time used
conv: to upper, tolower, _toupper, _tolower, toascii(3C) translate characters
crypt, setkey, encrypt (3C) .. generate encryption
ctermid (3S) generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C) , .. convert date and time to string
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,

isprint, isgraph, isascii(3C) ... character handling
cuserid (3S) ... get character login name of the user
decconv: _s2dec, _ d2dec, _ dec2s, _ dec2d(3C) .j convert between binary and decimal values
difftime(3C) .. computes the difference between two calendar times
directory: opendir, readdir, telldir, seekdir, rewinddir, dosedir(3C) directory operations
div, ldiv(3C) ; .. ; ... compute the quotient and remainder
drand48, erand48, lrand48, nrand48, mrand48, jiand48, srand48, seed48,

lcong48(3C) generate uniformly distributed pseudo-random numbers
dup2(3C) ~ , ... duplicate an open file descriptor
ecvt, fcvt, gcvt(3C) convert floating-point number to string
end, etext, edata(3C) ... , last locations in program
fclose, fflush(3S) .. ; close or flush a stream
ferror, feof, clearerr, fileno(3S) ... stream status inquiries
ffs(3C) ... find first set bit
fmtmsg(3C) ... display a message ()n stderr or system console
fopen, freopen, fdopen(3S) ... , .. open a stream
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky(3C)

.. IEEE floating point environment control
fread, fwrite(3S) ... , binary input/output
frexp, ldexp, 10gb, modf, modff, nextafter, scalb(3C)

... manipulate parts of floating-point numbers
fseek, rewind, ftell(3S) .. reposition a file pointer in a stream
fsetpos, fgetpos(3C) ... reposition a file pointer in a stream
ftw, nftw(3C) .. walk a file tree
getc, getchar, fgetc, getw(3S) ... get character or word from a stream
getcwd(3C) ... get path-name ot current working directory
getdate(3C) ;.. convert user format date and time
getenv(3C) ... return value for environment name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent(3C) get group file entry
getitimer, setitimer(3C) .. get/set value of interval timer
getlogin(3C) .. get login name

Table of Contents 5

Table of Contents

getmntent, getmntany(3C) ; .. get mnttab file entry
getopt(SC) ... get option letter from argument vector
getpass(3C) .; ... read a password
getpw{3C) ... get name from UID
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C)

.............................•.. manipulate password file entry
gets, fgets(3S) ~... get a string from a stream
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf(3C)

..................... ;... manipulate shadow password file entry
getsubopt (3C) .. ; ;... parse suboptions from a string
gettimeofday, settimeofday(3C) ... get or set the date and time
gettxt(3C) ... ,.. retrieve a text string
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname(3C)

... access utmp file entry
getutx: getutxent, getutxid, getutxline, pututxline, setutxent, endutxent,

utmpxname, getutmp, getutmpx, updwtmp, updwtmpx(3C) access utmpx file entry
getvfsent, getvfsfile, getvfsspec, getvfsany(3C) get vfstab file entry
hseareh, hcreate, hdestroy(30 .. manage hash search tables
initgroups(3C) ... initialize the supplementary group access list
insque, remque(3C) ... insert/remove element from a queue
isnan, isnand, isnanf, finite, fpclass, unordered (30

........ determine type of floating point number
13tol, lto13(3C) , convert between 3-byte integers and long integers
localeconv(3C) .. get numeric formatting information
lockf(3C) ; ... record locking on files
lsearch, lfind (3C) linear search and update
makecontext, swapcontext(3C) .. manipulate user contexts
makedev, major, minor(3C) ,.. manage a device number
malloc, free, realloc, calloe, memalign, valloc,(3C) .. memory allocator
mbchar: mbtowc, mblen, wctomb(3C) ... multibyte character handling
mbstring: mbstowcs, wcstornbs(3C) .. multibyte string functions
memory: memccpy, memchr, memcmp, memcpy, memmove, memset(3C)

... memory operations
mkfifo(3C) , .. create a new FIFO
mktemp(3C) ... make a unique file name
mktime(3C) ... converts a tm structure to a calendar time
mlock, munlock(30 ... lock (or unlock) pages in memory
mlockall, munlockall(30 ; .. lock or unlock address space
mOnitor(3C) ~... prepare execution profile
msync(3C) .. synchronize memory with physical storage

6 Programmer's Reference Manual

Table of Contents

nl_langinfo(3C) ... language information
offsetof(3C) ... offset of structure member
perror(3C) .. print system error messages
popen, pclose(3S) ... initiate pipe to/from a process
printf, fprintf, sprintf(3S) .. print formatted output
psignal, psiginfo,- system signal messages(3C) psignal, psiginfo,- system signal messages
putc, putchar, fputc, putw(3S) .. put character or word on a stream
puts, fputs(3S) .. put a string on a stream
putenv(3C) .. change or add value to environment
putpwent(3C) ... write password file entry
putspent(3C) .. write shadow password file entry
qsort(3C) ... quicker sort
raise(3C) send signal to program
rand, srand(3C) ... simple random-number generator
realpath(3C) .. returns the real file name
remove(3C) .. remove file
scanf, fscanf, sscanf(3S) ... convert formatted input
setbuf, setvbuf(3S) .. assign buffering to a stream
setjmp, 10ngjmp(3C) ... non-local goto
setlocale(3C) .. modify and query a program's locale
sigsetjmp, siglongjmp(3C) .. a non-local goto with signal state
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember(3C) manipulate sets of signals
sleep(3C) .. suspend execution for interval
ssignal, gsignal(3C) .. software signals
stdipc: ftok(3C) ... standard interprocess communication package
stdio(3S) ... standard buffered input/output package
strcoll (3C) string collation
strerror(3C) ... get error message string
strftime, cftime, ascftime,(3C) ... convert date and time to string
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,

strrchr, strpbrk, strspn, strcspn, strtok, strstr(3C) string operations
strtod, atof,(3C) .. convert string to double-precision number
strtol, strtoul, at 01, atoi (3C) convert string to integer
strxfrm(3C) .. string transformation
swab(3C) .. swap bytes
sysconf(3C) ... get configurable system variables
system (3S) issue a shell command
tcsetpgrp(3C) ... set terminal foreground process group ID
tmpfile(3S) ... create a temporary file
tmpnam, tempnam(3S) ... create a name for a temporary file

Table of Contents 7

Table of Contents

truncate, ftruncate(3C) ... set a file to a specified length
tsearch, tfind, tdelete, twalk(3C) ... manage binary search trees
ttyname, isatty(3C) ... find name of a terminal
ttyslot(3C) ... find the slot in the utmp file of the current user
ungetc(3S) .. push character back onto input stream
vprintf, vfprintf, vsprintf(3S) print formatted output of a variable argument list
elf(3E) ... object file access library
elf_begin(3E) ... make a file descriptor
elf _ cntl(3E) .. ,...... control a file descriptor
elf_ end(3E) .. finish using an object file
elf _ errmsg, elf _ errno (3E) ... error handling
elf_fill(3E) ... set fill byte
elUlagdata, elUlagehdr, elt flagelf, elf _ flagphdr, elt flagscn, eltflagshdr(3E)

.. manipulate flags
eltfsize: elf32 _fsize(3E) .. return the size of an object file type
eltgetarhdr(3E) .. retrieve archive member header
eltgetarsym(3E) .. retrieve archive symbol table
elf_getbase(3E) .. get the base offset for an object file
eltgetdata, elf_newdata, eltrawdata(3E) .. get section data
eltgetehdr: elf32..,getehdr, elf32 _ newehdr(3E) retrieve class-dependent object file header
eltgetident(3E) ... retrieve file identification data
eltgetphdr: elf32..,getphdr, elf32 _ newphdr(3E)

..................................... retrieve class-dependent program header table
elf _getscn, elf _ ndxscn, elf _ newscn, elf _ nextscn (3E) get section information
elf ..,getshdr: elf32..,getshdr (3E) ... retrieve class-dependent section header
elf_hash(3E) ... compute hash value
elf_kind (3E) determine file type
eltnext (3E) sequential archive member access
eltrand(3E) ... random archive member access
eltrawfile(3E) ... retrieve uninterpreted file contents
elf_strptr(:3E) ... make a string pointer
elt update(3E) .. update an ELF descriptor
elf_ version(3E) .. coordinate ELF library and application versions
elt xlate: elf32 _ xlatetof, elf32 _ xlatetom (3E) class-dependent data translation
nlist(3E) .. get entries from name list
basename(3G) return the last element of a path name
bgets(3G) .. read stream up to next delimiter
bufsplit(3G) ... split buffer into fields
copylist (3G) copy a file into memory
dirname(3G) ... report the parent directory name of a file path name

8 Programmer's Reference Manual

Table of Contents

gmatch(3G) .. shell global pattern matching
isencrypt(3G) .. determine whether a character buffer is encrypted
mkdirp, rmdirp(3G) .. create, remove directories in a path
p20pen, p2close(3G) .. open, close pipes to and from a command
pathfind (3G) search for named file in named directories
regcmp, regex(3G) .. compile and execute regular expression
regexpr, compile, step, advance(3G) regular expression compile and match routines
str: strfind, strrspn, strtrns(3G) ... string manipulations
strccpy: streadd, strcadd, strecpy(3G) .. copy strings, compressing or expanding escape codes
intro(3M) ... introduction to math libraries
bessel: jO, jl, jn, yO, yl, yn(3M) .. Bessel functions
erf, erfc(3M) ... error function and complementary error function
exp, expf, cbrt, log, logf, 10glO, 10glOf, pow, powf, sqrt, sqrtf(3M)

........ exponential, logarithm, power, square root functions
floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint, remainder(3M)

.. floor, ceiling, remainder, absolute value functions
gamma, Igamma(3M) ... log gamma function
hypot(3M) ... Euclidean distance function
matherr(3M) .. error-handling function
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh(3M) hyperbolic functions
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf, atan2,

atan2f(3M) .. trigonometric functions
assert (3X) verify program assertion
crypt (3X) password and file encryption functions
dlclose(3X) ... close a shared object
dlerror(3X) .. get diagnostic information
dlopen(3X) .. open a shared object
dlsym(3X) .. get the address of a symbol in shared object
libwindows(3X) .. windowing terminal function library
maillock(3X) ... manage lockfile for user's mailbox
malloc, free, realloc, calloc, mallopt, mallinfo(3X) ... memory allocator
sputl, sget1(3X) access long integer data in a machine-independent fashion

Table of Contents 9

Table of Contents

4. File Formats
intro(4) ... introduction to file formats
a.out(4) .. ELF (Executable and Linking Format) files
ar(4) .. archive file format
core(4) .. core image file
limits(4) .. header file for implementation-specific constants
sccsfile(4) ... format of sces file
strftime(4) ... language specific strings
timezone(4) ; ... set default system time zone
utmp, wtmp(4) ... utmp and wtmp entry formats
utmpx, wtmpx(4) ... utmpx and wtmpx entry formats

5. Miscellaneous Facilities
intro(5) ... introduction to miscellany
ascii(5) .. map of ASCII character set
environ (5) user environment
fcntl(5) .. ,....... file control options
jagent(5) .. host control of windowing terminal
langinfo(5) .. language information constants
layers(5) protocol used between host and windowing terminal under layers(1)
math(5) ... math functions and constants
nl_types(5) ... native language data types
prof(5) ... profile within a function
regexp: compile, step, advance(5) regular expression compile and match routines
siginfo(5) .. signal generation information
signal(5) .. base signals
stat(5) ... data returned by stat system call
stdarg(5) ... handle variable argument list
types(5) ... primitive system data types
ucontext (5) user context
values(5) ... machine-dependent values
varargs(5) .. , handle variable argument list
wstat(5) .. ,... wait status
xtproto(5) ... multiplexed channels protocol used by xt driver

10 Programmer's Reference Manual

Permuted Index

13tol, Ito13 convertbet.ween
integer and base-64 .ASCII string

abOrt generate an
termina tion signal

value
abs, labs return integer

floor, ceiling, re~ainder,
utime set file

me
elf_next sequential archive member

elf Jand random archive merii~
elf object me

get or set supplementary group
initialize file supplementary group
machine-independentl sputl, sgetl

setutent, endutent, utmpname
getutmpx, ujxlwtmp, updwtmpx

aCcess determine
acet enable or disable process

. accounting
Icos, cosf, tan, tanf, asin, aslni,

I cosf, tan, tanf, asin, asinf, acos,
I coshf, tanh, tanhf, asinh,

print current sces fue editing
atent

putenv change or
object dlsym get the

mlockall, munlockaii lock or unlock
severity levels for an applicationl

synchronization of the systeml
meS

admin create and
uadmin

and matchl regexp: compile, step,
and match I regexpr, compile, step,

alarm set a process

brk, sbrk change data segment space
calloc, memalign, valloc; memory
calloc, mallopt, mallinfo memory
clock adjtime correct the time to

sigaltstack set or get signal
Format) flies

I a list of severity levels for an
coordinate ELF library and

library

Permuted Index

3-byte integers and long integers 13tol(30
a641, 164a convert lH:tween long .. a641(30
abnol1Jlal termination Signal ... abort(30
abort generate anabnol1Jlal , abort(30
abs, labs return integer absolute .. abs(30
absolute value ... abs(30
absolute value functions Iremainder floor(3M)
access and modification times .. utime(2)
acCess determine accessibility of a..................................... access(2)
access ;... elf _ next(3E)
a.;cess .. elf_rand(3E)
a<:cess library , ,................................. elf(3E)
access list IDs I setgroups ... getgroups(2)
access list initgrotips .. initgroups(30
access long mtegerdata in a.. sputl(3X)
access utmp flie entry Ipututline, getut(30
access utmpx me entry Igetutmp, getutx(30
accessibility of a file :.: ... access(2)
acCounting : .. acet(2)
!lcct enable or disable process :.. acet(2)
acos, acosf, atan, atanf, atan2,1 ... trig(3M)
acOsf, atan, atanf, atan2, atan2fl .. trig(3M)
acosh, atanh hyperbolic functions sinh (3M)
actiVity sact : ... sact(1)
add program termination. routine atent(30
add value to environment .. putenv(3C)
address of a symbol in shared .. dlsym(3X)
address space ; ;......................... mlocl<all(3C)
addseverity build a list of ; addseverity(3C)
adjtime correct the time to allow..................................... adjtime(2)
admin create and administer sces admin(l)
administer sces mes .. ; ... adrnin(1)
administrative control ... uadrnin(2)
advance regular expression compile regexp(S)
advance regular expression compile regexpr(3G)
alarm clOck ; ... alarm(2)
alarm set a process alarm.clock .. alarm(2)
allocation : ; ... brk(2)
allocator malloe, free, realloc, .. malloc(3C)
allocator malloe, free, realloc, .. malloc(3X)
allow synchronization of the system adjtime(2)
alternate. stack context .. sigaltstack(2)
a.out ELF (Executable and linking a.out(4)
application for use with fmtmsg addseverity(30
application versions elf_ verl>ion ; elt version(3E)
ar archive flie format ... ar(4)
ar maintain portable archive or ... ar(1)

1

Permuted Index

ar
elf_next sequential

elf rand random
eltgetarhdr retrieve
ar maintain portable
eltgetarsym retrieve

stdarg handle variable
varargs handle variable

formatted output of a variable
getopt get option letter from

string strftime, cftime,
ascii map of

between long integer and base-64
time tol ctime, locaitime, gmtime,

I sin, sinf, cos, cosf, tan, tanf,
I sinf, cos, cosf, tan, tanf, asin,

Icosh, coshf, tanh, tanhf,
or SCCS commands help

as

assert verify program
setbuf, setvbuf

tanf, asin, , asinf, acos, acosf,
asinf, acos, acosf, atan, atanf,

I acos, acosf, atan, atanf, atan2,
I asin, asinf, acos, acosf, atan,

tanh, tanhf, asinh, acosh,
routine

double-precision number strtocL
strtol, strtoul, atol,

integer strto!, strtoul,
el(getbase get the

signal
convert between long integer and

a path name
cb C program

bessel: jO, j1, jn, yO, y1, yn
Bessel functions

delimiter
_ dec2s, _ dec2d convert between

fread, fwrite
bsearch

tfind, tdelete, twalk manage
ffs find first set

sync update super
sigpending examine signals that are

2

archive file format .. ar(4)
archive member access ... elf _ next(3E)
archive member access .. elfJand(3E)
~chive member header .. elf _getarhdr(3E)
archive or library ar(l)
archive symbol table .. elf~etarsym(3E)
argument list ... stdarg(5)
argument list ... varargs(5)
argument list Ivsprintf print ... vprintf(3S)
argument vector .. getopt(3C)
ascftime, convert date and time to strftime(3C)
ASCII character set ascii(5)
ascii map of ASCII character set ... ascii(5) ,
ASCII string a64l, 164a convert a64l(3C)
asctime, tzset convert date and .. ctime(3C)
asin, asinf, acos, acosf, atan,! .. trig(3M)
asinf, acos, acosf, atan, atanf,! .. trig(3M)
asinh, acosh, atanh hyperbolic I sinh(3M)
ask for help with message numbers help(1)
assembler ... as(1)
assert verify program assertion assert(3X)
assertion assert(3X)
assign buffering to a stream ... setbuf(3S)
atan, atanf, atan2, atan2fl I tan, .. trig(3M)
atan2, atan2f trigonometricl I asin, trig(3M)
atan2f trigonometric functions trig(3M)
atanf, atan2, atan2ftrigonometricl trig(3M)
atanh hyperbolic functions Icoshf, sinh(3M)
atexit add program termination atexit(3C)
atof, convert string to .. strtod(3C)
atoi convert string to integer ... strtol(3C)
atol, atoi convert string to ... strtol(3C)
base offset for an object file elf _getbase(3E)
base Signals .. signal(5)
base-64 ASCII string a64l, 164a a64l(3C)
basename return the last element of basename(3G)
beautifier ... cb(1)
Bessel functions bessel(3M)
bessel: jO, j1, jn, yO, y1, yn ... bessel(3M)
bgets read stream up to next .. bgets(3G)
binary and decimal values 1_ d2dec, decconv(3C)
binary input! output .. fread(3S)
binary search a sorted table bsearch(3C)
binary search trees tsearch, ... tsearch(3C)
bit .. '" ... '" ... '" ... '" ffs(3C)
block sync(2)
blocked and pending .. sigpending(2)

Programmer's Reference Manual

allocatio.n
table

bufsplit split
determine whether a character

stdio. standard
setbuf, setvbuf assign

an applicatio.n fo.r use/ addseverity
elf Jill set fill

size print sectio.n sizes in
swab swap

ce
cflo.w generate

cb
lint a

cxref generate
csco.peinteractively examine a

ctrace
mktime co.nverts a tm structure to. a

co.mputes the difference between two.
stat data returned by stat system

allocato.r malloc, free, realloc,
allocato.r malloc, free, realloc,

intro. intro.ductio.n to. system
catclose o.pen/close a message

catalo.gue cato.pen,

message catalo.gue

Po.w, powf, sqrt, sqrtf/ exp, expf,

sces delta
fabs, fabsf, rint,! flo.o.r, floorf,
fabsf, rint,! floor, flo.o.rf, ceil,

/fabs, fabsf, rint, remainder flo.o.r,
tetlush, tetlo.w, dgeto.speed,

/tcdrain, tetlush, tetlo.w,

tetlo.w, dgetospeed, dgetispeed,
tcgetsid/ /dgetispeed, dsetispeed,

time to. string strftime,
allo.catio.n brk, sbrk

chmo.d, fchmod
putenv

sigprocmask
cho.wn, lcho.wn, fcho.wn

pro.cess nice

Permuted Index

Permuted Index

brk, sbrk change data segment space brk(2)
bsearch binary search a so.rted bsearch(30
buffer into. fields .. bufsplit(3G)
buffer is encrypted isencrypt isencrypt(3G)
buffered input/o.utput package ... stdio.(3S)
buffering to. a stream ... setbuf(3S)
bufsplit split buffer into. fields bufsplit(3G)
build a list o.f severity levels fo.r addseverity(3C)
byte ... elf _ fill(3E)
bytes o.f o.bject files size(1)
bytes ... swab(3C)
C compiler ... ce(1)
C flo.wgraph .. etlo.w(1)
C pro.gram beautifier .. cb(1)
C pro.gram checker .. lint(1)
C pro.gram cross-reference .. cxref(1)
C pro.gram ... csco.pe(1)
C pro.gram debugger .. ctrace(1)
calendar time ... mktime(30
calendar times difftime ... difftime(30
call .. stat(S)
calloc, mallopt, mallinfo memory.................................. malloc(3X)
calloc, memalign, vallo.c, memo.ry mallo.c(30
calls and erro.r numbers ... intro.(2)
catalo.gue cato.pen, ... cato.pen(3C)
catclo.se o.pen/close a message cato.pen(30
catgets read a pro.gram message catgets(3C)
cato.pen, catclose o.pen/close a cato.pen(30
cb C pro.gram beautifier ... cb(1)
cbrt, lo.g, lo.gf, lo.g10, lo.g10f, .. exp(3M)
cc C co.mpiler .. cc(1)
cdc change the delta co.mment o.f an cdc(1)
cell, ceilf, co.pysign, fmod, fmodf, floor(3M)
cellf, co.pysign, fmo.d, fmo.df, fabs, floor(3M)
ceiling, remainder, absolute value/ floor(3M)
dgetispeed, cfsetispeed,/ /tcdrain, termio.s(2)
dgetospeed, dgetispeed,! .. termio.s(2)
etlo.w generate C flo.wgraph .. etlo.w(1)
dsetispeed, dsetospeed,! /tetlush, termios(2)
dseto.speed, tcgetpgrp, tcsetpgrp, termio.s(2)
dtime, asdtime, convert date and strftime(30
change data segment space ... brk(2)
change mode o.f file ... chmod(2)
change or add value to. environment putenv(3C)
change o.r examine signal mask sigprocmask(2)
change o.wner and gro.up o.f a file cho.wn(2)
change prio.rity o.f a time-sharing .. nice(2)

3

Permuted Index

chroot
waitid wait for child process to

waitpid wait for child process to
delta cdc

rename
delta make a delta

chdir, fchdir
pipe create an interprocess

xtproto multiplexed
ungete push

isencrypt determine whether a
ispunct, isprint, isgraph, isascii

mbtowe, mblen, wctomb multibyte
cuserid get

getc, getchar, fgete, getw get
putc, putchar, fpute, putw put

ascii map of ASCII
_tolower, toascii translate

directory
lin t a C program

times get process and
waitid wait for

waitpid wait for
wait wait for

and group of a file

/ elf32 _ xlatetof, elf32 _ xlatetom
/ elf32 _ newehdr retrieve

table / elf32 _ newphdr retrieve
elf_getshdr: elf32 _getshdr retrieve

inquiries ferror, feof,
allow synchronization of the system

alarm set a process alarm

4

close
dlclose

fclose, fflush
p20pen, p2close open,

/ telldir, seekdir, rewinddir,
dis object

compressing or expanding escape
translation

cof2elf
strcoll string

change root directory chroot(2)
change state ... waitid(2)
change state waitpid(2)
change the delta comment of an sees cdcO)
change the name of a me .. rename(2)
(change) to an secs me .. deltaO)
change working directory...................................... chdir(2)
channel pipe(2)
channels protocol used by xt driver xtproto(S)
character back onto input stream ungetc(3S)
character buffer is encrypted isencrypt(3G)
character handling /iscntrl, ... ctype(3C)
character handling mbchar: .. mbchar(3C)
character login name of the user cuserid(3S)
character or word from a stream getc(3S)
character or word on a stream putc(3S)
character set .. ascii(5)
characters /tolower, _toupper, ... conv(3C)
chdir, fchdir change working ... chdir(2)
checker lintO)
child process times .. times(2)
child process to change state ... waitid(2)
child process to change state ... waitpid(2)
child process to stop or terminate .. wait(2)
chmod, fchmod change mode of file chmod(2)
chown, lchown, fchown change owner chown(2)
chroot change root directory.. chroot(2)
class-dependent data translation elf _ xlate(3E)
class-dependent object file header elf_getehdr(3E)
class-dependent program header elf_getphdr(3E)
class-dependent section header elf -zetshdr(3E)
clearerr, fileno stream status ... ferror(3S)
clock adjtime correct the time to adjtime(2)
clock ... alarm(2)
clock report CPU time used .. clock(3C)
close a file descriptor ... close(2)
close a shared object dlclose(3X)
close close a file descriptor ... close(2)
close or flush a stream .. fclose(3S)
close pipes to and from a command p2open(3G)
closedir directory operations directory(3C)
code disassembler .. dis(1)
codes /strecpy copy strings, .. strccpy(3G)
cof2elf COFF to ELF object file .. cof2elf(1)
COFF to ELF object file translation cof2eH(1)
collation ... strcoll(3C)
comb combine secs deltas .. comb(1)

Programmer's Reference Manual

comb
open, close pipes to and from a

system issue a shell
help with message numbers or sees

install install
intro introduction to programming

cdc change the delta
mes manipulate the

stdipe: flok standard interprocess
file sccsdiff

expression regemp, regex
Istep, advance regular expression
Istep, advance regular expression

regemp regular expression
expression compile andl regexp:

expression compile andl regexpr,
ccC

yacc yet another
erf, erfc error function and

Istrcadd, strecpy copy strings,
elf hash
div,ldiv

calendar times difftime
fpathconf, pathconf get

sysconf get
a message on stderr or system
langinfo language information

file for implementation-specific
math math functions and

control maximum system resource
retrieve uninterpreted file

setcontext get and set current user
set or get signal alternate stack

ucontext user
swapcontext manipulate user

eltcntl
ioctl

fentl file
IEEE floating point environment
consumption getrlimit, setrlimit

mementl memory management
jagent host

msgctl message
semctl semaphore

shmctl shared memory
fentl file

prioentl process scheduler

Permuted Index

Permuted Index

combine sees deltas ... comb(1)
command p2open, p2close ... p2open(3G)
command .. system(3S)
commands help ask for ... help(1)
commands .. install(1M)
commands .. intro(1)
comment of an sees delta .. cdc(1)
comment section of an object file .. mes(1)
communication package ... stdipe(3C)
compare two versions of an sees sccsdiff(1)
compile and execute regular ... regemp(3G)
compile and match routines .. regexp(S)
compile and match routines ... regexpr(3G)
compile ... regemp(1)
compile, step, advance regular ... regexp(S)
compile, step, advance regular regexpr(3G)
compiler ... cc(1)
compiler-compiler .. yacc(1)
complementary error function .. erf(3M)
compressing or expanding escape I strccpy(3G)
compute hash value ... elthash(3E)
compute the quotient and remainder div(3Q
computes the difference between two difftime(3Q
configurable pathname variables fpathconf(2)
configurable system variables sysconf(3C)
console fmtmsg display .. fmtmsg(3Q
constants ... langinfo(S)
constants limits header .. limits(4)
constants ... math(S)
consumption getrlimit, setrlimit getrlimit(2)
contents elf_rawfile ... elf]awfile(3E)
context getcontext, ... getcontext(2)
context sigaltstack .. sigaltstack(2)
context .. ucontext(S)
contexts makecontext, .. makecontext(3Q
control a file descriptor ... elf _ entl(3E)
control device ... ioctl(2)
control .. fen U(2)
control Ifpgetsticky, fpsetsticky fpgetround(3Q
control maximum system resource getrlimit(2)
control .. mementl(2)
control of windowing terminal .. jagent(S)
control operations .. msgctl(2)
control operations .. semctl(2)
control operations .. shmct1(2)
control options ... fcnt1(S)
control .. priocnU(2)

5

Permuted Index

6

generalized process scheduler
uadmin administrative

vc version
tolower, toascii translatel

- long integers 13to1, Itol3
1_ s2dec, _ d2dec, _ dec2s, _ dec2d
base-64 ASCII string a641, 164a

Ilocaltime, gmtime, asctime, tzset
strftime, dtime, asdtime,

string ecvt, fevt, gevt
scanf, fscanL sscanf

number strtod, atof,
strtol, strtoul, atol, atoi

getdate
calendar time mktime

application versions elf_version
copylist

strccpy: streadd, strcadd, strecpy

rin t,! floor, floorf, ceil. ceilf,

core
synchronization of thel adjtime

acos, acosf,! trig: sin, sinf,
acosf, atan,! trig: sin, sinf, cos,

asinh, acosh,! sinh, sinhf,
acosh,! sinh, sinhf, cosh,

display line-by-line execution
clock report

an existing one
tmpnam, tempnam

mkflfo
existing one creat

fork
tmpfile

pipe
admin

path mkdirp, rmdirp
umask set and get file

cxref generate C program
functions

encryption
program
terminal

tzset convert date and time tol

isupper, isalpha, isalnum,1

control priocntlset .. priocntlset(2)
control .. uadmin(2)
control .. vc(1)
conv: toupper, tolower, _toupper, conv(3q
convert between 3-byte integers and 13tol(30
convert between binary and decimall decconv(30
convert between long integer and a641(30
convert date and time to string .. ctime(30
convert date and time to string strftime(30
convert floating-point number to ecvt(30
convert formatted input .. scanf(3S)
convert string to double-precision strtod(3C)
convert string to integer ... strto1(3C)
convert user format date and time getdate(30
converts a tm structure to a.. mktime(3C)
coordinate ELF library and elf _ version(3E)
copy a file into memory .. copylist(3G)
copy strings, compressing or I strccpy(3G)
copylist copy a file into memory................................. copylist(3G)
copysign, fmod, fmodf, fabs, fabsf, floor(3M)
core core image file .. core(4)
core image file .. core(4)
correct the time to allow ... adjtime(2)
cos, cosf, tan, tanf, asin, asinf, ... trig(3M)
cosf, tan, lanf, asin, asinf, acos, ... trig(3M)
cosh, coshf, tanh, tanhf, .. sinh(3M)
coshf, tanh, tanhf, asinh, .. sinh(3M)
count profile data lprof .. Iprof(1)
CPU time used ... clock(30
creat create a new file or rewrite ... creat(2)
create a name for a temporary file tmpnam(3S)
create a new FIFO mkf1fo(30
create a new file or rewrite an .. creat(2)
create a new process .. fork(2)
create a temporary file ... tmpflle(3S)
create an interprocess channel .. pipe(2)
create and administer SCCS files admin(1)
create, remove directories in a...................................... mkdirp(3G)
creation mask ... umask(2)
cross-reference ... cxref(1)
crypt password and file encryption crypt(3X)
crypt, setkey, encrypt generate ... crypt(30
cscope interactively examine a C cscope(1)
ctermid generate file name for ctermid(3S)
ctime, local time, gmtime, asctime, ctime(3C)
ctrace C program debugger .. ctrace(1)
ctype: isdigit, isxdigit, islower, ... ctype(30

Programmer's Reference Manual

sact print
uname get name of

getcontext, setco~text get and set
the slot in the utmp file of the

getcwd get path-name of
the user

cross-reference
between binary / decconv: _ s2dec,

elf Jawdata get section
retrieve flle identification

sputl, sgetl access long integer
execution count proflle

memory or unlock process, text, or
prof display proflle

stat
brk, sbrk change

elf32 _ xlatetom class-dependent
nt_types native language

types primitive system
getdate convert user format
settimeofday get or set the

gmtime, asctime, tzset convert
strftime, citime,' ascitime, convert

ctrace C program
sdb symbolic

strip strip symbol table,
decconv: _s2dec,_d2dec,_dec2s,

binary / decconv: _s2dec, _ d2dec,
_ dec2d convert between binary and/

_ dec2d convert between binary ,and
timezone set

bgets read stream up to next
change the delta comment of an sces

delta make a
cdc change the

rmdel remove a
sees fIle

comb combine sces
Idd list dynamic
close close a file

dup duplicate an open file
dup2 duplicate an open file

elf_begin make a file
elf_en tl con trol a file

elf_update update an ELF

Permuted Index

sigaction
ac.cess

Permuted Index

current sees flle editing activity .. sact(1)
current UNIX system .. uname(2)
current user context .. getcontext(2)
current user ttyslot fInd .. ttyslot(3Q
current working directory .. getcwd(3Q
cuserid get character login name of ,..................... cuserid(3S)
cxref generate C program ... cxref(1)
_ d2dec, _ dec2s, _ dec2d convert ,.............................. decconv(3Q
data elf..8etdata, elf_newdata, elf_getdata(3E)
data elf..8etident ... , .. elf..8etident(3E)
data in a machine-independent/ sputl(3X)
data Iprof display line-by-line ... Iprof(1)
data plock lock into ... plock(2)
data ... ' prof(1)
data returned by stat system call ... stateS)
data segment space allocation ... brk(2)
data translation / elf32 xlatetof, elf xlate(3E)
data types : .. nl-:"types(S)
data types ,.. types(S)
date and time ... getdate(3q
date and time gettimeofday, gettimeofday(3Q
date and time to string /localtime, ctime(3Q
date and time to string .. strftime(3C)
debugger : ... , ctrace(1)
debugger ... sdb(1)
debugging and line number / ... strip(1)
_ dec2d convert between binary and/ decconv(3Q
,dec2s, dec2d convert between decconv(3Q
decconv: fideci _ d2dec, _dec2s, decconv(3C)
decimal values / _ d2dec, _ dec2s, decconv(3C)
default system time zone ... timezone(4)
delimiter .. bgets(3G)
delta cdc ... cdc(1)
delta (change) to an sees flle .. delta(1)
delta comment of an sees delta .. cdc(1)
delta from an sees flie-........................... rmdel(l)
delta make a delta (change) to an delta(1)
deltas, ; ... comb(1)
dependencies ~ .. Idd(1)
descriptor ... close(2)
ciescriptor ... dup(2)
descriptor .. dup2(3Q
descriptor .. elf_begin(3E)
descriptor ... elf_entl(3E)
descnptor ... elf_ uPdate(3E)
detailed signal management .. sigaction(2)
determine accessibility of a flle .. access(2)

7

Permuted Index

elf)dnd
mincore

/isnallf, finite, fpclass; unordered
bUffer is encrypted isencrypt

ioct1 con trol
makedev, major, Iriwor manage a

dlerror get
times difftime computes the
between two calendar times

mkdirp, rindirp create, remove
sear~ for nameq me in named

chdir, fchdir change working
. chroot change root

system independimt/getdents read
unlink remove

get path-name of current working
inkdir make a

dimame report the parent
telldir, seekdir, rewinddir,/
seekdir, rewinddir, closedir

me mknod make a
rmdir remove a

name of a fiie path name

acct enable or
dis object code

system console fmtmsg
count prome data lprof

prof
hypot Euclidean'

/seed48, 1cong48 generate uniformly
remainder

in shared object
strtod, atof, convert string to

D;lrand48, jrand48, srand48, seed48J
channels protocol used by xt

8

object file
me dump
descriptor
descriptor

dup
dup2

ldd list
floating-point number to string

determine me type .. elf _ kind(3E)
determine residency of memory pages mincore(2)
determine type of floating point/ isnan(3C)
determine whether a character isencrypt(3G)
device ,.. ioct1(2)
device number .. makedev(3C)
diagnostic information .. dlerror(3X)
difference between two calendar difftime(3C)
difftiine computes the difference difftime(3C)
directories in a path .. mkdirp(3G)
directories .pathfind ... pathfind(3G)
directory ... chdir(2)
directory ... chroot(2)
directory entries and put in a me getdents(2)
direCtory entry ... ~ unlink(2)
directory getcwd ... getcwd(3C)
directory ... mkdir(2)
directory name of a me path name dirname(3G)
directory: opendir, readdir, .. directory(3C)
directory operations /te11dir, directory(3C)
directory, or a speciill or ordinary mknod(2)
directory .. rmdir(2)
diiname report the parent directory.......................... dirname(3G)
dis object code disassembler .. dis(1)
disable process accounting .. acct(2)
disassembler .. dis(1)
display a message on stderr or fmtmsg(3C)
display line-by-line execution ... Iprof(1)
display proflle data .. prof(1)
distance function ... hypot(3M)
distributed pseudo-random numbers drand48(3C)
div, ldiv compute the quotient and div(3C)
dlclose close a shared object ... dlclose(3X)
dlerror get diagnostic information dlerror(3X)
dloPen open a shared object .. dlopen(3X)
dlsym get the address of a symbol dlsym(3X)
double-precision number .. strtod(3C)
drand48, erand48, lrand48, nrand48, drand48(3C)
driver xtproto multiplexed .. xtproto(S)
dump dump selecteq parts of an dump(1)
dump selected parts of an object dump(1)
dup duplicate an open me ... dup(2)
dup2 duplicate an open me ... dup2(3C)
quplicate an open me descriptor ... dUP(2)
duplicate an open me descriptor dup2(3C)
dynamiC dependencies ... Idd(1)
ecvt, fcvt, gcvt convert .. ecvt(3C)

Programmer's Reference Manual

end, etext,
sact print current sees file

Id link
effective user, real group, and
/ getgid, getegid get real user,

new process in a virtual memory
insque, rem que insert/remove

basenarne return the last
elf_update update an

files a.out
versions elf version coordinate

cof2elf COFF to
object file type elf jsize:

retrieve/ elf ~etehdr:
retrieve/ elf_getphdr:

class-dependent/ elf _getshdr:
elf _getehdr: elf32~etehdr,

elf ~etphdr: elf32 ~etphdr,
class-dependent data/ eltxlate:

elf _ xlate: elf32_ xlatetof,

handling
elf_errmsg,

elf _ flage1f, elf _ flagphdr,!
elf _ flagphdr,! elf_ flagdata,

elf _ flagdata, elf_ flagehdr,
/ elf _ flagehdr, elf _ flagelf,
/ elt flagelf, elf _ flagphdr,

/elf_flagphdr, elf_flagsen,
size of an object file type

member header
symbol table
an object file

elf Jawdata get section data
elf32 _ newehdr retrieve/

identification data
elf32 _ newphdr retrieve I
elf _ nextsen get section/

class-dependent section header

get section/ elf_getsen,
section data elf J;etdata,

Permuted Index

Permuted Index

edata last locations in program ... end(3C)
editing activity .. sact(1)
editor for object files .. Id(1)
effective group IDs / get real user, getuid(2)
effective user, real group, and/ .. getuid(2)
efficient way vfork spawn vfork(2)
element from a queue .. insque(3C)
element of a path name ... basename(3G)
ELF descriptor .. elf _ update(3E)
ELF (Executable and Unking Format) a.out(4)
ELF library and application elf_ version(3E)
elf object file access library , , elf(3E)
ELF object file translation ... cof2elf(I)
elf32_fsize return the size of an elf_fsize(3E)
elf32 _getehdr, elf32 _ newehdr elf _getehdr(3E)
elf32_getphdr, elf32_newphdr elf_getphdr(3E)
elf32 _getshdr retrieve ... elf _getshdr(3E)
elf32 _ newehdr retrieve/ .. elf _getehdr(3E)
elf32 _ newphdr retrieve/ ... elf _getphdr(3E)
elf32 _ xlatetof, e1f32 _ xlatetom elf _ xlate(3E)
elf32_xlatetom class-dependent datal elf_xlate(3E)
elf_begin make a file deSCriptor elf_begin(3E)
elf _ entl control a file descriptor elf _ ent1(3E)
elf_end finish using an object file elf _ end(3E)
elf _ errmsg, elf _ ermo error elf _ errmsg(3E)
elf _ ermo error handling ... elf _ errmsg(3E)
elf jill set fill byte elf jill (3 E)
elf _ flagdata, elf _ flagehdr, .. elf _ flagdata(3E)
elf_flagehdr, elf_flagelf,•... elf_flagdata(3E)
elf _ flagelf, elf_ flagphdr,!•... elf _ flagdata(3E)
elf _ flagphdr, elf _ flagsen,! elf _flagdata(3E)
elf_flagsen, elf.:...flagshdr/ .. elf_flagdata(3E)
elf_flagshdr manipulate flags elf_flagdata(3E)
elf fsize: elf32 fsize retll,{n the elf fsize(3E)
elf=getarhdr r;ttieve archive ; elf~et;rhdr(3E)
elf _getarsym retrieve archive eltgetarsym(3E)
elf _getbase get the base offset for elf _getbase(3E)
elf_getdata, elf_newdata, .. elf_getdata(3E)
elf_getehdr: elf32~etehdr, elf_getehdr(3E)
elf _getiden t retrieve file elf _getiden t(3E)
elf _getphdr: elf32 ~etphdr, eltgetphdr(3E)
elf_getscn, eltndxscn, elf_newsen, eltgetsen(3E)
eltgetshdr: elf32 _getshdr retrieve elf _getshdr(3E)
elf_hash compute hash value elthash(3E)
elf_kind determine file type ... elf_kind(3E)
elf _ ndxscn, elf _ newscn, elf _ nextscn eltgetsen (3E)
elf_newdata, eltrawdata get elf_getdata(3E)

9

Permuted Index

elf _getsen, elf _ ndxscn,
access

elf~etscn, elf_ndxscn, eltnewsen,
access

elf ~etdata, elf _newdata,
file contents

and application versions
elf32 _ xlatetom class-dependent I

accounting acct
crypt, setkey,

whether a character buffer is
crypt, setkey, encrypt generate

crypt password and file
program

Igetgrgid, getgrnam, setgrent,
I getpwuid, getpwnam, setpwent,

getspent, getspnam, setspent,
I getutline, pututline, setutent,

I getutxline, pututxline, setutxent,
getdents read directory

nlist get
utmp, wtmp utmp and wtmp

utmpx, wtmpx utmpx and wtmpx
endgrent, fgetgrent get group file

getmntany get mnttab file
fgetpwent manipulate password file

manipulate shadow password file
endutent, utmpname access utmp file

updwtmp, updwtmpx access utmpx file
getvfsany get vfstab file

putpwent write password file
putspent write shadow password file

unlink remove directory

fpsetsticky IEEE floating point
environ user

getenv return value for
putenv change or add value to

jrand48, srand48, seed48,/ drand48,
complementary error function

complementary error function erf,
error function erf, erfc

error function and complementary
elf _ errmsg, elf _ errno

strerror get

10

elf _ newscn, elf _nextscn get section I elf ~etscn(3E)
elf_next sequential archive member............................ elf _next(3E)
elf _ nextsen get section information•.................. elf ~etsen(3E)
elf rand random archive member elf rand(3E)
elf =rawdata get section data elf _getdata(3E)
elf_rawflle retrieve uninterpreted elfJawflle(3E)
elf_strptr make a string pointer elf_strptr(3E)
elf_update update an ELF descriptor elf _ update(3E)
elf_version coordinate ELF library......................... elf _ version(3E)
elf xlate: elf32 xlatetof, ... elf xlate(3E)
enable or disable process .. :.. acct(2)
encrypt generate encryption .. crypt(3C)
encrypted isencrypt determine isencrypt(3G)
encryption ... crypt(3C)
encryption functions ... crypt(3X)
end, etext, edata last locations in .. end(30
endgrent, fgetgrent get group filel getgrent(3C)
endpwent, fgetpwent manipulate I getpwent(3C)
endspent, fgetspent, lckpwdf,/ getspent(30
endutent, utmpname access utmp filet getut(30
endutxent, utmpxname, getutmp,/ getutx(3C)
entries and put in a me system I getdents(2)
entries from name list ... nlist(3E)
entry formats .. utmp(4)
entry formats .. utmpx(4)
entry Igetgrnam, setgrent, ... getgrent(3C)
entry getmntent, .. getmntent(3C)
entry lsetpwent, endpwent, getpwent(3C)
entry Ifgetspent, lckpwdf, ulckpwdf getspent(3C)
entry Ipututline, setutent, .. getut(30
entry Igetutmp, getutmpx, .. getutx(3C)
entry I getvfsfile, getvfsspec, getvfsent(3C)
entry ... putpwent(3C)
entry .. putspent(3C)
entry ... unlink(2)
environ user environment .. environ(5)
environment control Ifpgetsticky, fpgetround(30
environment .. environ(5)
environment name .. getenv(30
environment .. putenv(3C)
erand48, lrand48, nrand48, mrand48, drand48(3C)
erf, erfc error function and .. erf(3M)
erfc error function and ... erf(3M)
error function and complementary...................................... erf(3M)
error function erf, eric .. erf(3M)
error handling ... elf_errmsg(3E)
error message string ... strerror(30

Programmer's Reference Manual

perror print system
introduction to system calls and

matherr
strings, compressing or expanding

program end,
hypot

escope interactively
sigprocmask change or

and pending sigpending
exec1p, execvp execute a fIle

execlp, execvp execute a/ exec:
execute a file exec: exec1, execv,

exec: execl, execv, exec1e, execve,
files a.out ELF

exec1~execv~execlp,execvp

regcmp, regex compile and
lprof display line-by-line

sleep suspend
monitor prepare

profil
execvp execute a file exec: execl,

file exec: execl, execv, execle,
execv, execle, execve, execlp,

create a new file or rewrite an

exit,
10glOf, pow, powf, sqrt, sqrtf/

copy strings, compressing or
10glOf, pow, powf, sqrtJ exp,
/loglOf, pow, pow£, sqrt, sqrtf

/compile, step, advance regular
,compile, step, advance regular

regcmp regular
regex compile and execute regular
/ ceil, ceilf, copysign, fmod, fmodf,

/ ceilf, copysign, fmod, fmodE, fabs,
data in a machine-independent

chdir,
chmod,

file chown, lchown,
stream

number to string ecvt,
[open, freopen,

status inquiries ferror,
stream status inquiries

Permuted Index

Permuted Index

error messages perror(3C)
error numbers intro ... intro(2)
error-handling function .. matherr(3M)
escape codes /strcadd, strecpy copy strccpy(3G)
etext, edata last locations in ... end(3C)
Euclidean distance function ... hypot(3M)
examine a C program ... cscope(1)
examine signal mask .. sigprocmask(2)
examine signals that are blocked sigpending(2)
exec: exec!, execv, execle, execve, ... exec(2)
execi, execv, execle, execve, J.. exec(2)
execle, execve, execlp, execvp .. exec(2)
execlp, execvp execute a fIle exec(2)
(Executable and Linking Format) .. a.out(4)
execute a file exec: execl, execv, ... exec(2)
execute regular expression :-: regcmp(3G)
execution count profile data ... Iprof(l)
execution for interval .. sleep(3C)
execution profile ... monitor(3Q
execution time profile ... profil(2)
execv, execle, execve, execlp, ... exec(2)
exeeve, execlp, execvp execute a ... exec(2)
execvp execute a file exec: execl, exec(2)
existing one creat ... creat(2)
exit, _exit terminate process exit(2)
_exit terminate process exit(2)
exp, expf, cbrt, log, logf, 10glO, .. exp(3M)
expanding escape codes /strecpy strccpy(3G)
expf, cbrt, log, logf, log10, ... exp(3M)
exponential, logarithm, power,! .. exp(3M)
expression compile and match/ regexp(S)
expression compile and match/ regexpr(3G)
expression compile .. regcrnp(1)
expression regcrnp, .. regcrnp(3G)
fabs, fabsf, rint, remainder floor,! floor(3M)
fabsf, rint, remainder floor,! ... floor(3M)
fashion / sgetl access long in teger sputl(3X)
fchdir change working directory ... chdir(2)
fchmod change mode of file : chmod(2)
fchown change owner and group of a chown(2)
fclose, fflush close or flush a ... fdose(3S)
fentl fIle con trol fen tl(2)
fentl file control options ... fentl(S)
fevt, gcvt convert floating-point ... ecvt(3C)
fdopen open a stream ... fopen(3S)
feof, dearerr, fileno stream ferror(3S)
ferror, feof, dearerr, fileno ... ferror(3S)

11

Permuted Index

fclose,

from a stream getc, getchar,
Igetgmam, setgrent, endgrent,

in a stream fsetpos,
Igetpwnam, setpwent, endpwent,

gets,
I getspnam, setspent, endspent,

bufsplit split buffer into
mkfifo create a new

utime set
elf object

access determine accessibility of a
chmod, fchmod change mode of

fchown change owner and group of a
elfJawfile retrieve uninterpreted

fentl
fentl

core core image
umask set and get

make a delta (change) to an sces
close close a

dup duplicate an open
dup2 duplicate an open

elf_begin make a
elf entl control a

dump selected parts of an object
sact print current SCCS

elf_end finish using an object
get the base offset for an object

crypt password and
endgrent, fgetgrent get group

getmntent, getrnntany get mnttab
fgetpwent manipulate password

ulckpwdf manipulate shadow password
endutent, utmpname access utmp

updwtmp, updwtmpx access utmpx
getvfsspec, getvfsany get vfstab

putpwent write password
putspent write shadow password

execve, execlp, execvp execute a
constants limits header

ar archive
intro introduction to

get get a version of an sces
retrieve class-dependent object

elf...getident retrieve

12

fflush close or flush a stream .. fclose(3S)
ffs fmd first set bit .. ffs(3C)
fgetc, getw get character or word getc(3S)
fgetgrent get group file entry getgrent(3C)
fgetpos reposition a file pointer fsetpos(3C)
fgetpwent manipulate password filel getpwent(3C)
fgets get a string from a stream .. gets(3S)
fgetspent, lckpwdf, ulckpwdfl getspent(3C)
fields .. bufsplit(3G)
FIFO .. ,.................. mkfifo(3C)
file access and modification times utime(2)
file access library ... elf(3E)
file .. access(2)
file .. chmod(2)
file chown, lchown, chown(2)
file contents ... elf_rawfile(3E)
file control ... fentl(2)
file control options ... fentl(S)
file ... coree 4)
flie creation mask ... umask(2)
flie delta .. delta(1)
flie descriptor close(2)
file descriptor .. dup(2)
file descriptor ... dup2(3C)
file descriptor ... elf_begin(3E)
file descriptor .. elf _ entl(3E)
file dump ... dump(1)
file editing activity .. sact(1)
file ... elf _ end(3E)
file elf -zetbase .. elf _getbase(3E)
file encryption functions ... crypt(3X)
file entry I getgrnam, setgrent, getgrent(3C)
file entry ... getmntent(3C)
file entry lsetpwent, endpwent, getpwent(3C)
file entry Ifgetspent, lckpwdf, getspent(3C)
file entry /pututline, setutent, ... getut(3C)
file entry / getutmp, getutmpx, getutx(3C)
file entry getvfsent, getvfsfile, getvfsent(3C)
flie entry .. putpwent(3C)
file entry ... putspent(3C)
file exec: execl, execv, execle, ... exec(2)
file for implementation-specific ... limits(4)
file format .. ar(4)
file formats ... intro(4)
file get(1)
file header lelf32_newehdr elf-zetehdr(3E)
file identification data .. elf _getident(3E)

Programmer's Reference Manual

pathfmd search for named
copylist copy a

link link to a
the comment section of an object

directory, or a special or ordinary
ctermid generate

mktemp make a unique
realpath returns the real

nm print name list of an object
ttyslot find the slot in the utmp

creat create a new
the parent directory name of a
fseek, rewind, ftell reposition a

fsetpos, fgetpos reposition a
lseek move read/write

prs print an sees
read read from
remoVe remove

rename change the name of a
rmdel remove a delta from an sees

compare two versions of an sces
sccsfile format of sees

stat, lstat, fstat get
number information from an object
symlink make a symbolic link to a

tread directory entries and put in a
statvis, fstatvfs get

mount mount a
ustat get
sysfs get

umount unmount a
tmpfile create a temporary

create a name for a temporary
truncate, ftruncate set a

cof2e1f COFF to ELF object
ftw, nftw walk a

return the size of an object
elf kind determine

undo a previous get of an SCCS
val validate an sces

write, writev write on a
ferror, feof, clearerr,

admin create and administer sees
ELF (Executable and Linking Format)

the physical! fsync synchronize a
ld link editor for object
lockf record locking on

Permuted Index

Permuted Index

file in named directories .. pathfind(3G)
file into memory ... copylist(3G)
file .. link(2)
file mes manipulate ... mcs(1)
file mknod make a .. mknod(2)
file name for terminal ... ctermid(3S)
file name .. mktemp(3C)
file name .. realpath(3C)
file ... nm(1)
file of the current user .. ttyslot(3C)
file or rewrite an existing one ... creat(2)
file path name dimame report dimame(3G)
file pointer in a stream .. fseek(3S)
file pointer in a stream .. fsetpos(3C)
file pointer .. lseek(2)
file ... prs(1)
file ... read(2)
file .. remove(30
file ... rename(2)
file .. rmde1(1)
file sccsdiff .. sccsdiff(1)
file sccsfile(4)
file status ... stat(2)
file /table, debugging and line .. strip(1)
file .. symlink(2)
file system independent format getdents(2)
file system information ... statvfs(2)
file system ... mount(2)
file system statistics .. ustat(2)
file system type information ... sysfs(2)
file system ... umount(2)
file .. tmpfile(3S)
file tmpnam, tempnam ... tmpnam(3S)
file to a specified length .. truncate(30
file translation ... cof2elf(l)
file tree ftw(3C)
file type elt£size: e1f32 jsize elf jsize(3E)
file type ... elf _ kind(3E)
file unget .. unget(1)
file ... val(1)
file ... write(2)
fileno stream status inquiries .. ferror(3S)
files .. admin(1)
files a.out ... a.out(4)
file's in-memory state with that on fsync(2)
files ... Id(1)
files ... lockf(30

13

Permuted Index

section sizes in bytes of object
elf fill set

ffs
ttyname, isatty

object library lorder
the current user ttyslot

elf end
determine/ isnan, isnand, isnanf,

elf jlagshdr manipulate
/fpgetsticky, fpsetsticky IEEE
unordered determine type of

ecvt, fcvt, gcvt convert
scalb manipulate parts of

/fmodf, fabs, fabsf, rint, remainder
copysign, fmod, fmodf, fabs,!

fmod, fmodf, fabs, fabsf,! floor,
cflow generate C

fclose, ffl ush close or
/ floorf, ceil, ceilf, copysign,
/ ceil, ceilf, copysign, fmod,

for an application for use with
or system console

stream
tcsetpgrp set terminal

ar archive file
getdate convert user

a.out ELF (Executable and Linking
put in a file system independent

sccsflle
intro introduction to file

utmp, wtmp utmp and wtmp entry
utmpx, wtmpx utmpx and wtmpx entry

scan£, fscan£' sscanf convert
vprintf, vfprintf, vsprintf print

printf, fprintf, sprintf print
localeconv get numeric

configurable pathname variables
of / isnan, isnand, isnanf, finite,

fpgetround, fpsetround,
fpsetmask, fpgetsticky,!

/fpsetround, fpgetmask, fpsetmask,
output printf,

fpgetround, fpsetround, fpgetmask,
fpgetsticky,! fpgetround,

/fpgetmask, fpsetmask, fpgetsticky,
on a stream putc, putchar,

14

files size print ... size(1)
fill byte ... elf _fill(3E)
find first set bit ... ffs(3C)
find name of a terminal .. ttyname(3C)
find ordering relation for an 10rder(1)
find the slot in the utmp file of ttyslot(3C)
finish using an object file .. elf _ end(3E)
finite, fpclass, unordered ... isnan(3C)
flags / elf _flagphdr, elf _ flagsen, elf _ flagdata(3E)
floating point environment control fpgetround(3C)
floating point number /fpclass, isnan(3C)
floating-point number to string .. ecvt(3C)
floating-point numbers /nextafter, frexp(3C)
floor, ceiling, remainder, absolute/ floor(3M)
floor, floorf, ceil, ceilf, ... floor(3M)
floorf, ceil, ceilf, copysign, ... floor(3M)
flowgraph .. cflow(1)
flush a stream ... fclose(3S)
fmod, fmodf, fabs, fabsf, rint,! ... floor(3M)
fmodf, fabs, fabsf, rint, remainder / floor(3M)
fmtmsg /a list of severity levels addseverity(3C)
fmtmsg display a message on stderr fmtmsg(3C)
fopen, freopen, fdopen open a........... fopen(3S)
foreground process group ID tcsetpgrp(3C)
fork create a new process ... fork(2)
format ... ar(4)
format date and time .. getdate(3C)
Format) files ... a.out(4)
format /read directory entries and getdents(2)
format of sees file ... sccsfile(4)
formats .. intro(4)
formats ... utmp(4)
formats ... utmpx(4)
formatted input ... scanf(3S)
formatted output of a variable/ vprintf(3S)
formatted output printf(3S)
formatting information ... localeconv(3C)
fpathconf, pathconf get .. fpathconf(2)
fpclass, unordered determine type isnan(3C)
fpgetmask, fpsetmask, fpgetsticky,! fpgetround(3C)
fpgetround, fpsetround, fpgetmask, fpgetround(3C)
fpgetsticky, fpsetsticky IEEE/ fpgetround(3C)
fprintf, sprintf print formatted .. printf(3S)
fpsetmask, fpgetsticky, fpsetsticky / fpgetround(3C)
fpsetround, fpgetmask, fpsetmask, fpgetround(3C)
fpsetsticky IEEE floating point/ fpgetround(3C)
fputc, putw put character or word putc(3S)

Programmer's Reference Manual

puts,

mallinfo memory allocator malloc,
valloc, memory allocator malloc,

fopen,
nextafter, scalb manipulate parts I

input scanf,
file pointer in a stream

pointer in a stream
stat, Istat,

information statvfs,
in-memory state with that on thel

a stream fseek, rewind.
communication package stdipe:

length truncate,

function erf, eric error
function and complementary error

gamma, Igamma log gamma
hypot Euclidean distance

libwindows windowing terminal
matherr error-handling

prof profile within a
math math

intro introduction to
jO, j1, jn, yO, yl, yn Bessel

crypt password and file encryption
logarithm, power, square root

ceiling, remainder, absolute value
mbstowcs, wcstombs multibyte string

asinh, acosh, atanh hyperbolic
sys3b machine-specific

atanf, atan2, atan2f trigonometric
fread,

gamma, Igamma log

to string eevt, fevt,
/tcgetpgrp, tcsetpgrp, tcgetsid

control priocntlset
signal abort

cfIow
cxref

crypt, setkey, encrypt
ctermid

lexical tasks lex
Ijrand48, srand48, seed48, lcong48

siginfo signal

Permuted Index

Permuted Index

fputs put a string on a stream .. puts(3S)
fread. fwrite binary inputloutput fread(3S)
free, realloc, ca1loc, mallopt, .. malloc(3X)
free, realloc, ca1loc, memaIign, malloc(3C)
freopen, fdopen open a stream ... fopen(3S)
frexp, Idexp, 10gb, modf, modff, frexp(30
fscanf, sscanf convert formatted .. scanf(3S)
fseek, rewind, ftell reposition a... fseek(3S)
fsetpos, fgetpos reposition a file fsetpos(3Q
istat get file status ... stat(2)
fstatvis get file system ... statvfs(2)
fsync synchronize a file's .. fsync(2)
ftell reposition a file pointer in .. fseek(3S)
ftok standard interprocess .. stdipc(3C)
ftruncate set a file to a specified truncate(3Q
ftw, nftw walk a file tree ... ftw(3Q
function and complementary error erf(3M)
function erf, eric error .. erf(3M)
function .. gamma(3M)
function ... hypot(3M)
function library ... libwindows(3X)
function ... matherr(3M)
function .. prof(5)
functions and constants ... math(5)
functions and libraries ... intro(3)
functions bessel: ... bessel(3M)
functions ... crypt(3X)
functions Isqrt, sqrtf exponential, exp(3M)
functions lrint, remainder floor, floor(3M)
functions mbstring: ... mbstring(3Q
functions Icoshf, tanh, tanhf, ... sinh(3M)
functions .. sys3b(2)
functions lacos, acosf, atan, ... trig(3M)
fwrite binary input/output .. fread(3S)
gamma function : .. gamma(3M)
gammll, Igamma log gamma function gamma(3M)
gevt convert floating-point number ecvt(3Q
general terminal interface ... termios(2)
generalized process scheduler priocntlset(2)
generate an abnormal termination abort(3Q
generate C flowgraph ... cfIow(1)
generate C program cross-reference cxref(1)
generate encryption .. crypt(3Q
generate file name for terminal ctermid(3S)
generate programs for simple .. lex(1)
generate uniformly distributedl drand48(3Q
generation information ... siginfo(5)

15

Permuted Index

rand. srand simple random-number
character or word from a stream

or word from a stream getc,
current user context

working directory
and time

put in a me system independent/
user,! getuid, geteuid, getgid.

name
user, effective user, real! getuid.

effective user,! getuid. geteuid,
setgrent, endgrent, fgetgrent get/

endgrent, fgetgrent get/ getgrent,
fgetgrent get/ getgrent, getgrgid,
supplementary group access list/

of interval timer

getmntent,
file entry

stream
argument vector

and/ getpid, getpgrp, getppid,
process, process group,! getpid.
get process, process group, and/
process group,! getpid, getpgrp,

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent, getpwuid,
endpwent, fgetpwent/ getpwent,

maximum system resource/
stream

getitimer,setitimer

endspent, fgetspent, lckpwdf,!
fgetspent, 1ckpwdf,/ getspent,

string
set the date and time

get real user, effective user,!
getutline, pututline, setutent,!

pututline, setutent,! getut
setutent,! getut: getutent,

getut: getuten t, getu tid.
/setutxent, endutxent, utmpxname,
/endutxent, utmpxname, getutmp,
getutxline, pututxline, setutxent,!

16

generator .. rand(3C)
getc, getchar, fgetc, getw get .. getc(3S)
getchar, fgetc, getw get character .. getc(3S)
getcontext, setcontext get and set getcontext(2)
getcwd get path-name of current getcwd(3q
getdate convert user format date getdate(3C)
getdents read directory entries and getdents(2)
getegid get real user, effective ... getuid(2)
getenv return value for environment getenv(3q
geteuid. getgid. getegid get real .. getuid(2)
getgid, getegid get real user, ... getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3C)
getgrnam, setgrent, endgrent, getgrent(3C)
getgroups, setgroups get or set getgroups(2)
getitimer, setitimer get/set value getitimer(3q
getlogin get login name .. getlogin(3C)
getmntany get mnttab me entry getmntent(3q
getmntent, getmntany get mnttab getmntent(3C)
getmsg get next message off a... getmsg(2)
getopt get option letter from ... getopt(3C)
getpass read a password .. getpass(3Q
getpgid get process, process group, getpid(2)
getpgrp, getppid, getpgid get .. getpid(2)
getpid. getpgrp, getppid, getpgid getpid(2)
getppid, getpgid get process, ... getpid(2)
getpw get name from UIO ... getpw(3Q
getpwent, getpwuid. getpwnam, getpwent(3Q
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwn&m, setpwent, getpwent(3C)
getrlimit, setrlimit control ... getrlimit(2)
gets, fgets get a string from a.. gets(3S)
get/set value of interval timer getitimer(3Q
getsid get session 10 .. getsid(2)
getspent, getspnam, setspent, getspent(3Q
getspnam, setspent, endspent, getspent(3Q
getsubopt parse suboptions from a......................... getsubopt(3C)
gettimeofday, settimeofday get or gettimeofday(3Q
gettxt retrieve a text string ... gettxt(3C)
getuid, geteuid, getgid, getegid ... getuid(2)
getut: getutent, getutid, .. getut(3Q
getutent, getutid, getutline, .. getut(3Q
getutid. getutline, pututline, .. getut(3Q
getutline, pututline, setutent,! .. getut(3Q
getutmp, getutmpx, updwtmp,/ getutx(3C)
getutmpx, updwtmp, updwtmpx access/ getutx(3C)
getutx: getutxent, getutxid. .. getutx(3C)

Programmer's Reference Manual

pututxline, setutxent,/ getutx:
setutxent,/ getutx: getutxent,

getutx: getutxent, getutxid,
getvfsent, getvfsfile, getvfsspec,

getvfsany get vfstab file entry
get vfstab file entry getvfsent,
file entry getvfsent, getvfsfile,

stream getc, getchar, fgetc,
gmatch shell

matching
and time to I ctime, loca1time,

setjmp, longjmp non-local
sigseljmp, siglongjmp a non-local

setgroups get or set supplementary
initialize the supplementary

I get real user, effective user, real
I getpgid get process, process

setgrent, endgrent, fgetgrent get
setpgid set process
setpgrp set process

set terminal foreground process
user, real group, and effective

setuid, setgid set user and
lchown, fchown change owner and

send a signal to a process or a
send a signal to a process or a

maintain, update, and regenerate
ssignal,
stdarg

varargs
isprint, isgraph, isascii character

elf _ errmsg, elf _ errno error
mblen, wctomb multibyte character
hsearch, hcreate, hdestroy manage

elf_hash compute
search tables hsearch,

hsearch, hcreate,
retrieve archive member

class-dependent object file
retrieve class-dependent section
implementation-specificl limits

retrieve class-dependent program
numbers or secs commands

commands help ask for
layers protocol used between

jagent
hash search tables

Permuted Index

Permuted Index

getutxent, getutxid, getutxJine, getutx(30
getutxid, getutxJine, pututxJine, getutx(30
getutxJine, pututxJine, setutxent,/ getutx(30
getvfsanyget vfstab file entry getvfsent(30
getvfsent, getvfsfile, getvfsspec, getvfsent(30
getvfsfile, getvfsspec, getvfsany getvfsent(3Q
getvfsspec, getvfsany get vfstab getvfsent(3Q
getw get character or word from a..................................... getc(3S)
global pattern matching ... gmatch(3G)
gmatch shell global pattern ... gmatch(3G)
gmtime, asctime, tzset convert date ctime(30
goto .. :..... seljmp(3C)
goto with signal state .. sigseljmp(30
group access list IDs getgroups, getgroups(2)
group access list initgroups initgroups(30
group, and effective group IDs ... getuid(2)
group, and parent process IDs .. getpid(2)
group file entry I getgmam, getgrent(30
group ID .. setpgid(2)
group ID .. setpgrp(2)
group ID t~tpgrp ... tcsetpgrp(30
group IDs I get real user, effective ,.................. getuid(2)
group IDs ... setuid(2)
group of a file chown, ... chown(2)
group of processes kill , .. kil1(2)
group of processes Isigsendset sigsend(2)
groups of programs make .. make(1)
gsignal software signals .. ssignal(3Q
handle variable argument list .. stdarg(S)
handle variable argument list varargs(S)
handling /iscntrl, ispunct, ... ctype(3Q
handling ... elf _ errmsg(3E)
handling mbchar: mbtowc, ... mbchar(3Q
hash search tables ... hsearch(3C)
hash value .. elf_hash(3E)
hcreate, hdestroy manage hash hsearch(30
hdestroy manage hash search tables hsearch(3C)
header elf _getarhdr ... elf _getarhdr(3E)
header / elf32 _ newehdr retrieve elf ..setehdr(3E)
header eltgetshdr: elf32..setshdr elf ..setshdr(3E)
header file for limits(4)
header table lelf32_newphdr elf..setphdr(3E)
help ask for help with message .. help(1)
help with message numbers or sees help(1)
host and windowing terminal under/ layers(S)
host control of windowing terminal jagent(S)
hsearch, hcreate, hdestroy manage hsearch(30

17

Permuted Index

tanhf, asinh, acosh, atanh

getsid get session
setpgid set process group
setpgrp set process group

setsid set session
terminal foreground process group

elf ~etident retrieve file
what print

shmget get shared memory segment
set supplementary group access list

process group, and parent process
real group, and effective group

setuid, setgid set user and group
/fpsetmask, fpgetsticky, fpsetsticky

core core
limits header file for

entries and put in a file system
langinfo language

dlerror get diagnostic
elf _ newscn, el(nextscn get section

/table, debugging and line number
localeconv get numeric formatting

18

nlJanginfo language
siginfo signal generation

statvfs, fstatvfs get file system
sysinfo get and set system

sysfs get file system type
supplementary group access list

access list initgroups
popen, pelose

fsync synchronize a file's
fscanf, sscanf convert formatted

ungetc push character back onto
fread, fwrite binary

poll
stdio standard buffered

clearerr, fileno stream status
insque, remque

element from a queue
process until signal sigsuspend

install

abs, labs return
a64l, 164a convert between long

sputl, sgetl access long
atol, atoi convert string to

hyperbolic functions /tanh, .. sinh(3M)
hypot Euclidean distance function hypot(3M)
ID getsid(2)
ID setpgid(2)
ID setpgrp(2)
ID .. setsid(2)
ID tcsetpgrp set tcsetpgrp(3C)
identification data .. elf _getident(3E)
identification strings ... what(1)
identifier ... shmget(2)
IDs getgroups, setgroups get or getgroups(2)
IDs / getppid, getpgid get process, getpid(2)
IDs /get real user, effective user, getuid(2)
IDs setuid(2)
IEEE floating point environment/ fpgetround(30
image file ... core(4)
implementation-specific constants limits(4)
independent format /read directory getdents(2)
information constants ... langinfo(S)
information dlerror(3X)
information /elf_ndxscn, .. elf _getscn(3E)
information from an object file ... strip(1)
information .. localeconv(3C)
information .. nIJanginfo(3C)
information ... siginfo(S)
information .. statvfs(2)
information strings ... sysinfo(2)
information ... , sysfs(2)
initgroups initialize the ... initgroups(30
initialize the supplementary group initgroups(30
initiate pipe to/from a process .. popen(3S)
in-memory state with that on the/ fsync(2)
input scanf, ... scanf(3S)
input stream ... ungetc(3S)
input/output ... fread(3S)
input/output multiplexing ... pol1(2)
input/output package ... stdio(3S)
inquiries ferror, feof, ... ferror(3S)
insert/remove element from a queue insque(3C)
insque, remque insert/remove insque(3C)
install a signal mask and suspend sigsuspend(2)
install commands .. install(1M)
install install commands .. install(1M)
integer absolute value .. abs(3C)
integer and base-64 ASCII string .. a641(30
integer data in a/ ... sputl(3X)
in teger strtol, strtoul, strto1(3C)

Programmer's Reference Manual

l3tol, ltol3 convert between 3-byte
between 3-byte integers and long

escope
tcgetsid general terminal

pipe create an
stdipe: ftok standard

sleep suspend execution for
setitimer get/set value of

libraries
libraries

commands
and error numbers

intro
libraries intro

intro
intro

commands intro
error numbers intro

/islower, isupper, isalpha,
/isxdigit, islower, isupper,

/iscntrl, ispunct, isprint, isgraph,
ttyname,

/isupper, isalpha, isalnum, isspace,
isupper, isalpha, isalnum,! ctype:

character buffer is encrypted
/isspace, iscntrl, ispunct, isprint,
isspace,! ctype: isdigit, isxdigit,

fpclass, unordered determine type/
unordered determine type off isnan,

determine type off isnan, isnand,
/isalnum, isspace, iscntrl, ispunct,
/isalpha, isalnum, isspace, iscntrl,

/islower, isupper, isalpha, isalnum,
system

ctype: isdigit. isxdigit, islower,
isalpha, isalnum,! ctype: isdigit,

functions bessel:
bessel: jO,
terminal

bessel: jO, jl,
/erand48, lrand48, nrand48, mrand48,

a group of processes
integers and long integers

and base-64 ASCII string a64l,

Permuted Index

Permuted Index

integers and long integers ... l3tol(3q
integers l3tol, Itol3 convert .. l3tol(3q
interactively examine a C program cscope(1)
interface /tcgetpgrp, tcsetpgrp, termios(2)
interprocess channel .. pipe(2)
interprocess communication package stdipe(3q
interval ... sleep(3q
interval timer getitimer, ... getitimer(3C)
intro introduction to me formats ... intro(4)
intro introduction to functions and intro(3)
intro introduction to math ... intro(3M)
intro introduction to miscellany... intro(S)
intro introduction to programming intro(1)
intro introduction to system calls .. intro(2)
introduction to me formats ... intro(4)
introduction to functions and ... intro(3)
introduction to math libraries ... intro(3M)
introduction to miscellany ... intro(S)
introduction to programming ... intro(l)
introduction to system calls and .. intro(2)
ioct! control device ... ioct1(2)
isalnum, isspace, iscntrl, ispunct,/ ctype(3q
isalpha, isainum, isspace, iscntrl,/ ctype(3Q
isascii character handling .. ctype(3Q
isatty find name of a terminal ttyname(3C)
iscntrl, ispunct, isprint, isgraph,! ctype(3Q
isdigit, isxdigit, islower, ... ctype(3Q
isencrypt determine whether a.................................. isencrypt(3G)
isgraph, isascii character handling ctype(3Q
islower, isupper, isalpha, isalnum, ctype(3Q
isnan, isnand, isnanf, finite, ... isnan(3Q
isnand, isnanf, fmite, fpclass, .. isnan(3Q
isnanf, finite, fpclass, unordered isnan(3Q
isprint, isgraph, isascii character/ ctype(3C)
ispunct, isprint, isgraph, isascii/ ctype(3C)
isspace, iscntrl, ispunct. isprint,! ctype(3Q
issue a shell command ... system(3S)
isupper, isalpha, isainum, isspace,! ctype(3Q
isxdigit, islower, isupper, .. ctype(3Q
jO, jl, jn, yO, yl, yn Bessel .. besse1(3M)
jl, jn, yO, yl, yn Bessel functions besse1(3M)
jagent host control of windowing jagent(S)
jn, yO, yl, yn Bessel functions ... besse1(3M)
jrand48, srand48, seed48, lcong48/ drand48(3C)
kill send a signal to a process or .. kill(2)
l3tol, Itol3 convert between 3-byte l3tol(3Q
164a convert between long integer a641(3Q

19

Permuted Index

abs,
constants

nl_types native
langinfo

ntIanginfo
strftime

and windowing terminal under I
host and windowing terminal under

group of a file chown,
lsetspent, endspent, fgetspent,

Imrand48, jrand48, srand48, seed48,

nextafter, scalb manipulate I frexp,
remainder div,

ftruncate set a file to a specified
getopt get option

withl Ibuild a list of severity
lexical tasks

lex generate programs for simple
lsearch,
gamma,

intro introduction to functions and
intro introduction to math
elf version coordinate ELF

ar maintain portable archive or
elf object file access

windowing terminal function
ordering relation for an object

function library
implementation-specific constants

ulimit get and set user
Istrip symbol table, debugging and

lsearch, lfind
profile data Iprof display

Id

read the value of a symbolic
link

symlink make a symbolic
a.out ELF (Executable and

Idd
or set supplementary group access

the supplementary group access
nlist get entries from name

nm print name

20

labs return integer absolute value abs(3C)
Ianginfo language information langinfo(S)
language data types ... nl_types(S)
language information constants langinfo(S)
language information ... nl_Ianginfo(3C)
language specific strings .. strftime(4)
layers protocOl used between host layers(S)
layers(l) Iprotocol used between layers(S)
lchown, fchown change owner and chown(2)
lckpwdf, ulckpwdf manipulate shadow I getspent(30
lcong48 generate uniformly I drand48(3C)
ld link editor for object files .. Id(1)
Idd list dynamic dependencies ... Idd(1)
ldexp, 10gb, modf, modff, .. frexp(3C)
ldiv compute the quotient and ... div(30
length truncate, ... truncate(3C)
letter from argument vector .. getopt(3C)
levels for an application for use addseverity(3C)
lex generate programs for simple ... lex(1)
lexical tasks lex(1)
lfind linear search and update lsearch(3Q
Igarnma log gamma function gamma(3M)
libraries ... intro(3)
libraries ... intro(3M)
library and application versions elt version(3E)
library ... ar(1)
library ... elf(3E)
library libwindows ... libwindows(3X)
library lorder find ... lorder(1)
libwindows windowing terminal libwindows(3X)
limits header file for .. limits(4)
limits .. ulimit(2)
line number information from ani strip(1)
linear search and update .. lsearch(3C)
line-by-line execution count .. Iprof(l)
link editor for object files ~ Id(l)
link link to a file ... link(2)
link readlink ... readlink(2)
link to a file .. link(2)
link to a file .. symlink(2)
Linking Format) files ... a.out(4)
lint a C program checker ... lint(1)
list dynamic dependencies ... Idd(1)
list IDs getgroups, setgroups get getgroups(2)
list initgroups initialize .. initgroups(30
list .. , .. nlist(3E)
list of an object file .. nm(1)

Programmer's Reference Manual

application/ addseverity build a
stdarg handle variable argument

varargs handle variable argument
output of a variable argument

modify and query a program's
information

convert date and time to/ ctime,
end, etext, edata last

text, or data plock
mlockall, munlockall

rnlock, munlock

maillock manage
lockf record

gamma, Igamma
powf, sqrt, sqrtf/ exp, expf, cbrt,

sqrtf/ exp, expf, cbrt, log, logf,
exp, expf, cbrt, log, logf, 10gIO,

/pow, powf, sqrt, sqrtf exponential,
manipulate parts off frexp,ldexp,

sqrt, sqrtf/ exp, expf, cbrt, log,
getlogin get

cuserid get character
setjmp,

an object library
execution count profile data

srand48, seed48,1 drand48, erand48,
update

stat,
integers and long integers 13tol,

values
sgetl access long integer data in a

sys3b
m4

maillock manage lockfile for user's
mailbox

library ar
groups of programs make

makedev,
user contexts

device number
free, realloc, calloc, mallopt,

mallopt, mallinfo memory allocator
memalign, valloc, memory allocator

malloc, free, realloc, calloc,

Permuted Index

Permuted Index

list of severity levels for an addseverity(30
list .. stdarg(S)
list varargs(S)
list /vsprintf print formatted .. vprintf(3S)
locale setlocale setlocale(3C)
localeconv get numeric formatting localeconv(3C)
localtime, gmtime, asctime, tzset ctime(3C)
locations in program end(3C)
lock into memory or unlock process, plock(2)
lock or unlock address space mlockall(3C)
lock (or unlock) pages in memory mlock(30
lockf record locking on files lockf(3C)
lockfIle for user's mailbox .. maillock(3X)
locking on files ... lockf(3C)
log gamma function gamma(3M)
log, logf, 10gIO, 10gIOf, pow, ... exp(3M)
10gIO, 10gIOf, pow, powf, sqrt, ... exp(3M)
10gIOf, pow, powf, sqrt, sqrtf/ ... exp(3M)
logarithm, power, square root/ .. exp(3M)
10gb, modf, modff, nextafter, scalb frexp(30
logf, 10gIO, 10gIOf, pow, powf, ... exp(3M)
login name ... getiogin(30
login name of the user ,. cuserid(3S)
longjmp non-local goto .. setjmp(3C)
lorder find ordering relation for 10rder(1)
Iprof display line-by-line ... Iprof(1)
lrand48, nrand48, mrand48, jrand48, drand48(30
lsearch, Ifind linear search and Isearch(3C)
lseek move read/write file pointer Iseek(2)
Istat, {stat get file status ... stat(2)
11013 convert between 3-byte ... 13to1(30
m4 macro processor .. m4(1)
machine-dependent values ... values(S)
machine-independent fashion sput!, sputl(3X)
machine-specific functions ... sys3b(2)
macro processor ... m4(1)
mailbox .. maillock(3X)
maillock manage lockfile for user's maillock(3X)
maintain portable archive or ... ar(1)
maintain, update, and regenerate make(1)
major, minor manage a device number makedev(3C)
makecontext, swapcontext manipulate makecontext(3C)
makedev, major, minor manage a makedev(3C)
mallinfo memory allocator malloc, malloc(3X)
malloc, free, realloc, calloc, malloc(3X)
malloc, free, realloc, calloc, malloc(3C)
mallopt, mallinfo memory allocator malloc(3X)

21

Permuted Index

makedev, major, minor
tsearch, tfind, tdelete, twalk

hsearch, hcreate, hdestroy
maillock
swapctl

memcntlmemory
sigaction detailed signal

sigpause simplified signal
eltflagscn, elf _ flagshdr

110gb, modf, modff, nextafter, scalb
lsetpwent, endpwent, fgetpwent

Isigaddset, sigdelset, sigismember
entry Ifgetspent, kkpwdf, ulckpwdf

an object file mcs
makecontext, swapcontext

strfmd, strrspn, strtrns string
ascii

mmap
mprotect set protection of memory

signal sigsuspend install a signal
change or examine signal

umask set and get file creation
regular expression compile and
regular expression compile and

gmatch shell global pattern
math

in tro in troduction to

getr limit, setrlimit con trol
multibyte character handling

handling mbchar: mbtowc,
functions mbstring:

multibyte string functions
character handling mbchar:

of an object file
state with that on the physical

malloc, free, realloc, calloc,
elf_next sequential archive

elf rand random archive
eltgetarhdr retrieve archive

offsetof offset of structure
memmove, memset memory I memory:
memset memory I memory: memccpy,

memory I memory: memccpy, memchr,

memory: memccpy, memchr, memcmp,

22

manage a device number .. makedev(3q
manage binary search trees .. tsearch(3q
manage hash search tables .. hsearch(3C)
manage lockfile for user's mailbox maillock(3X)
manage swap space swapctl(2)
management control .. memcntl(2)
management , .. sigaction(2)
management Isigrelse, sigignore, signal(2)
manipulate flags I elf _ flagphdr, elf _ flagdata(3E)
manipulate parts of floating-point I frexp(3C)
manipulate password file entry getpwent(3C)
manipulate sets of signals sigemptyset(3Q
manipulate shadow password file getspent(3Q
manipulate the comment section of mcsO)
manipulate user contexts makecontext(3Q
manipulations str: ... str(3G)
map of ASOI character set .. ascii(S)
map pages of memory .. mmap(2)
mapping .. mprotect(2)
mask and suspend process until sigsuspend(2)
mask sigprocmask sigprocmask(2)
mask ... umask(2)
match routines Istep, advance .. regexp(5)
match routines Istep, advance regexpr(3G)
matching ... gmatch(3G)
math functions and constants .. math(5)
math libraries ... intro(3M)
math math functions and constants math(5)
matherr error-handling function matherr(3M)
maximum system resource consumption getrlimit(2)
mbchar: mbtowc, mblen, wctomb mbchar(3C)
mblen, wctomb multibyte character mbchar(3C)
mbstowC5, wcstombs multibyte string mbstring(3Q
mbstring: mbstowcs, wcstombs mbstring(3Q
mbtowc, mblen, wctomb multibyte mbchar(3C)
mcs manipulate the comment section mcs(1)
medium la file's in-memory .. fsync(2)
memalign, valloc, memory allocator malloc(3C)
member access elf _ next(3E)
member access .. elf_rand(3E)
member header .. elf _getarhdr(3E)
member .. offsetof(3C)
memccpy, memchr, memcmp, memcpy, memory(3Q
memchr, memcmp, memcpy, memmove, memory(3Q
memcmp, memcpy, memmove, memset memory(3Q
memcntl memory management control memcnt1(2)
memcpy, memmove, memset memory I memory(3Q

Programmer's Reference Manual

/memccpy, memchr, memcmp, memcpy,
realloc, calloc, memalign, valloc,
realloc, calloc, mallopt mallinfo

shmctl shared
copylist copy a file into

spawn new process in a virtual
memcntl

mprotect set protection of
memcpy, memmove, memset memory /

munlock lock (or unlock) pages in
mmap map pages of

munmap unmap pages of
memcmp, memcpy, memmove, memset

shmop: shmat, shmdt shared
data plock lock into

mincore determine reSidency of
shmget get shared

msync synchronize
memchr, memcmp, memcpy, memmove,

catopen, catclose open/close a
catgets read a program

msgctl
help ask for help with

getmsg get next
putmsg send a

fmtmsg display a
msgop: msgsnd, msgrcv

msgget get
strerror get error

perror print system error
psignal, psiginfo,- system signal
psignal, psiginfo,- system signal

memory pages
makedev, major,

intro introduction to

directories in a path

special or ordinary file

calendar time
pages in memory

address space

getmntent, getmntany get
chmod, fchmod change

manipulate/ frexp, Idexp, 10gb,

Permuted Index

Permuted Index

memmove, memset memory operations memory(3C)
memory allocator malloc, free, malloc(3C)
memory allocator malloc, free, malloc(3X)
memory control operations .. shmctl(2)
memory .. copylist(3G)
memory efficient way vfork ... vfork(2)
memory management control .. memcnt1(2)
memory mapping mprotect(2)
memory: memccpy, memchr, memcmp, memory(3C)
memory mlock, ... mlock(3C)
memory .. mmap(2)
memory ... munmap(2)
memory operations /memccpy, memchr, memory(3C)
memory operations ... shmop(2)
memory or unlock process, text, or plock(2)
memory pages ... mincore(2)
memory segment identifier ... shmget(2)
memory with physical storage msync(3C)
memset memory operations /memccpy, memory(3C)
message catalogue .. catopen(3C)
message .. catgets(3C)
message control operations .. msgct1(2)
message numbers or sees commands help(1)
message off a stream getmsg(2)
message on a stream ... putmsg(2)
message on stderr or system console fmtmsg(3C)
message operations ... msgop(2)
message queue msgget(2)
message string strerror(3C)
messages ... perror(3C)
messages psignal, psiginfo,- system/ psignal(3C)
messages /system signal messages psignal(3C)
mincore determine residency of mincore(2)
minor manage a device number makedev(3C)
miscellany intro(5)
mkdir make a directory ... mkdir(2)
rnkdirp, rmdirp create, remove mkdirp(3G)
mkfifo create a new FIFO .. mkfifo(3C)
mknod make a directory, or a .. mknod(2)
mktemp make a unique file name mktemp(3C)
mktime converts a tm structure to a...... mktime(3C)
mlock, munlock lock (or unlock) mlock(3C)
mlockall, muniockalliock or unlock mlockall(3C)
mmap map pages of memory .. mmap(2)
mnttab file entry ... getmntent(3C)
mode of file chmod(2)
modf, modff, nextafter, sca1b .. frexp(3C)

23

Permuted Index

parts off frexp, Idexp, 10gb, modf,
utime set file access and

setlocale

mount

lseek
mapping

drand48, erand48, lrand48i nrand48,

operations
msgop: msgsnd,

msgop:
physical storage

mbchar: mbtowc, mblen, wctomb
mbstring: mbstowcs, wcstombs

by xt driver xtproto
poll input/output

memory mlock,
space mlockall,

return the last element of a path
directory name of a file path

tmpnam, tempnam create a
ctermid generate file

getpw get
getenv return value for environment

getlogin get login
nllst get entries from

nm print
mktemp make a unique file

dirname report the parent directory
rename change the
ttyname, isatty fmd

uname get
cuserid get character login

realpath returns the real file
pathfind search for named file in

pathfind search for
nUypes

bgets read stream up to
getmsg get

frexp,ldexp, 10gb, modf, modff,
ftw,

time-sharing process

24

modff, nextafter, sca1b manipulate frexp(3C)
modification times ... utirne(2)
modify and query a program's locale setlocale(3C)
monitor prepare execution profile monitor(3C)
mount a file system ... mount(2)
mount mount a file system .. mount(2)
move read/write file pointer .. lseek(2)
mprotect set protection of memory mprotect(2)
mrand48, jrand48, srand48, seed48,/ drand48(3C)
msgctl message control operations msgctl(2)
msgget get message queue ... msgget(2)
msgop: msgsnd, msgrcv message msgop(2)
msgrcv message operations ... msgop(2)
msgsnd, msgrcv message operations msgop(2)
msync synchronize memory with msync(3C)
multibyte character handling .. mbchar(3C)
multibyte string functions ... mbstring(3C)
multiplexed channels protocol used xtproto(S)
multiplexing ... poll(2)
munlock lock (or unlock) pages in mlock(3C)
muniockalliock or unlock address mlockall(3C)
munmap unmap pages of memory munmap(2)
name basename .. basename(3G)
name dirname report the parent dirname(3G)
name for a temporary file ... tmpnam(3S)
name for terminal .. ctermid(3S)
name from UID .. getpw(3C)
name .. getenv(3C)
name ... getlogin(3C)
name list nlist(3E)
name list of an object file ... nm(1)
name ... mktemp(3C)
name of a file path name ... dirname(3G)
name of a file .. rename(2)
name of a terminal ... ttyname(3C)
name of current UNIX system .. uname(2)
name of the user ... cuserid(3S)
name ... realpath(3C)
named directories .. pathfind(3G)
named file in named directories pathfmd(3G)
native language data types ... nl_types(S)
next delimiter ... bgets(3G)
next message off a stream ... getmsg(2)
nextafter, scalb manipulate parts/ frexp(3C)
nftw walk a file tree ... ftw(3C)
nice change priority of a ... nice(2)
nlist get entries from name list ... nlist(3E)

Programmer's Reference Manual

file
setjmp, longjmp

sigsetjmp, siglongjmp a
seed48,/ drand48, erand48, Irand48,

Isymbol table, debugging and line
determine type of floating point

major, minor manage a device
convert string to double-precision

fcvt, gcvt convert floating-point
uniformly distributed pseudo-random

manipulate parts of floating-point
to system calls and error

help ask for help with message
localeconv get

dis
dlclose close a shared
dlopen open a shared

the address of a symbol in shared
elf

dump dump selected parts of an
elf_end finish using an

get the base offset for an
retrieve class-dependent

the comment section of an
nm print name list of an

and line number information from an
. cof2elf COFF to ELF

elf32 fsize return the size of an
ld link editor for

print section sizes in bytes of
fmd ordering relation for an

elf getbase get the base
- offsetof

ungetc push character back
dlopen

fopen, freopen, fdopen
command p20pen, p2close

dup duplicate an
dup2 duplicate an

open

catopen, catclose
rewinddir, closedir I directory:

rewinddir, closedir directory

Permuted Index

Permuted Index

nl)anginfo language information nl)anginfo(3C)
nl_types native language data types nttypes(S)
nm print name list of an object ... nm(1)
non-local goto .. setjmp(3C)
non-local goto with signal state sigsetjmp(3Q
nrand48, mrand48, jrand48, srand48, drand48(3q
number information from an object I strip(1)
number lfinite, fpclass, unordered isnan(3Q
number makedev, ... makedev(3C)
number strtod, atof, .. strtod(3C)
number to string ecvt, ... ecvt(3C)
numbers lseed48, lcong48 generate drand48(3q
numbers Imodff, nextafter, scalb frexp(3Q
numbers intro introduction ... intro(2)
numbers or secs commands .. help(1)
numeric formatting information localeconv(3Q
object code disassembler ... dis(1)
object dlclose(3X)
object ... dlopen(3X)
object dlsyrn get .. dlsym(3X)
object file access library ... elf(3E)
object file .. dump(1)
object file .. elf _ end(3E)
object file elf ~etbase elf _getbase(3E)
object file header I elf32 _ newehdr eICgetehdr(3E)
object file mes manipulate ... mcs(1)
object file ... nm(1)
object file Itable, debugging .. strip(1)
object file translation ... cof2elf(1)
object file type elf jsize: ... elf jsize(3E)
object files .. Id(1)
object files size ... size(1)
object library lorder 10rder(1)
offset for an object file .. elf _getbase(3E)
offset of structure member .. offsetof(3Q
offsetof offset of structure member offsetof(3Q
onto input stream .. ungetc(3S)
open a shared object .. dlopen(3X)
open a stream ... fopen(3S)
open, close pipes to and from a................................... p20pen(3G)
open file descriptor .. dup(2)
open file descriptor ... dup2(3Q
open for reading or writing .. open(2)
open open for reading or writing .. open(2)
open I close a message catalogue catopen(3C)
opendir, readdir, telldir, seekdir, directory(3C)
operations Itelldir, seekdir, directory(3C)

25

Permuted Index

memcpy, memmove, memset memory
msgctl message control

msgop: msgsnd, msgrcv message
semctl semaphore control

semop semaphore
shmctl shared memory control

shmop: shmat, shmdt shared memory
strcspn, strtok, strstr string

getopt get
fentl file control

mlod<, munlock lock
library lorder find

make a directory, or a special or
/vfprintf, vsprintf print formatted

fprintf, sprintf print formatted
chown, lchown, fchown change

from a command p20pen,
to and from a command

standard buffered input/output
standard interprocess communication

rnlock, munlock lock (or unlock)
determine residency of memory

mmapmap
munmap unmap

path name dirname report the
get process, process group, and

getsubopt
dump dump selected

/modff, nextafter, scalb manipulate
functions crypt

endpwent, fgetpwent manipulate
lckpwdf, ulckpwdf manipulate shadow

putpwent write
putspent write shadow

getpass read a
create, remove directories in a

return the last element of a
the parent directory name of a file

variables fpathconf,
named directories

directory getcwd get
pathconf get configurable

gmatch shell global

26

process popen,
signals that are blocked and

operations /memchr, memcmp, memory(3C)
operations msgctl(2)
operations ... msgop(2)
operations semctl(2)
operations .. semop(2)
operations .. shmctl(2)
operations shmop(2)
operations /strpbrk, strspn, .. string(3C)
option letter from argument vector getopt(3C)
options ... fentl(S)
(or unlock) pages in memory .. mlock(3C)
ordering relation for an object 10rder(1)
ordinary file mknod mknod(2)
output of a variable argument list vprintf(3S)
output printf, printf(3S)
owner and group of a me chown(2)
p2close open, close pipes to and p20pen(3G)
p20pen, p2close open, close pipes p20pen(3G)
package stdio stdio(3S)
package stdipe: ftok ... stdipe(3C)
pages in memory...... mlock(3C)
pages mincore mincore(2)
pages of memory ... mmap(2)
pages of memory....... munmap(2)
parent directory name of a me dirname(3G)
parent process IDs / getpgid .. getpid(2)
parse suboptions from a string getsubopt(3C)
parts of an object file .. dump(1)
parts of floating-point number!, .. frexp(3C)
password and file encryption .. crypt(3X)
password me entry /setpwent, getpwent(3C)
password me entry /fgetspent, getspent(3C)
password file entry ... putpwent(3C)
password file entry ... putspent(3C)
password ... getpass(3C)
path mkdirp, rmdirp mkdirp(3G)
path name basename .. basename(3G)
path name dirname report rurname(3G)
pathconf get configurable pathname fpathconf(2)
pathfind search for named file in pathfind(3G)
path-name of current working getcwd(3C)
pathname variables fpathconf, fpathconf(2)
pattern matching ... gmatch(3G)
pause suspend process until signal pause(2)
pclose initiate pipe to/from a .. popen(3S)
pending sigpending examine sigpending(2)
perror print system error messages perror(3C)

Programmer's Reference Manual

in-memory state with that on the
msync synchronize memory with

popen, pclose initiate
p20pen, p2close open, close

process, text, or data
/fpsetsticky IEEE floating
determine type of floating

elf_strptr make a string
rewind, ftell reposition a me

fsetpos, fgetpos reposition a me
lseek move read/write me

a process
ar maintain

/cbrt, log, logf, 10glO, 10glOf,
sqrt, sqrtf exponential, logarithm,

flog, logf, 10glO, 10glOf, pow,
monitor

unget undo a
types

prs
activity sact

vprintf, vfprintf, vsprintf
printf, fprintf, sprintf

what
nm

object files size
perror

formatted output

scheduler control
nice change

acct enable or disable
alarm set a

times get
exit, exit terminate

fork create a new
IDs / getppid, getpgid get process,

setpgid set
setpgrp set

tcsetpgrp set terminal foreground
process, process group, and parent

efficient way vfork spawn new
change priority of a time-sharing

kill send a signal to a
/ sigsendset send a signal to a

Permuted Index

Permuted Index

physical medium /a me's ... fsync(2)
physical storage ... msync(30
pipe create an interprocess channel pipe(2)
pipe to/from a process ... popen(3S)
pipes to and from a command p20pen(3G)
plock lock into memory or unlock plock(2)
point environment control fpgetround(30
point number /fpclass, unordered isnan(3C)
pointer ... elf _ strptr(3E)
pointer in a stream £seek, .. fseek(3S)
pointer in a stream ... fsetpos(30
pointer .. lseek(2)
poll input/output multiplexing ... poll(2)
popen, pclose initiate pipe to/from popen(3S)
portable archive or library ... ar(1)
pow, powf, sqrt, sqrtf exponential,/ exp(3M)
power, square root functions /powf, exp(3M)
powf, sqrt, sqrtf exponential,! .. exp(3M)
prepare execution profIle .. monitor(3Q
previous get of an sees me ... unget(1)
primitive system data types ... types(S)
print an secs file .. prs(1)
print current sces fIle editing ... sact(1)
print formatted output of a/ .. vprintf(3S)
print formatted output ... printf(3S)
print identification strings : what(1)
print name list of an object me ... nm(1)
print section sizes in bytes of ... size(1)
print system error messages ... perror(3C)
printf, £printf, sprintf print .. printf(3S)
priocntl process scheduler control.................................. priocntl(2)
priocntlset generalized process priocntlset(2)
priority of a time-sharing process ... nice(2)
process accounting ... acct(2)
process alarm clock ... alarm(2)
process and child process times .. times(2)
process .. exit(2)
process .. fork(2)
process group, and parent process getpid(2)
process group 10 .. setpgid(2)
process group 10 ... setpgrp(2)
process group 10 .. tcsetpgrp(3Q
process IDs / getppid, getpgid get getpid(2)
process in a virtual memory .. vfork(2)
process nice .. nice(2)
process or a group of processes .. kill(2)
process or a group of processes sigsend(2)

27

Permuted Index

pclose initiate pipe to/from a
/ getpgrp, getppid, getpgid get

priocntl
priocntlset generalized

plock lock into memory or unlock
times get process and child

waitid wait for child
waitpid wait for child

wait wait for child
ptrace

pause suspend
install a signal mask and suspend
a signal to a process or a group of
a Signal to a process or a group of

m4 macro

line-by-line execution count
prof display

monitor prepare execution
profll execution time

prof
assert verify

cbe
lint a e

cxref generate e
cscope interactively examine a e

ctrace e
end, etext, edata last locations in

retrieve class-dependent
catgets read a

raise send signal to
atexit add

intro introduction to
lex generate

setlocale modify and query a
update, and regenerate groups of

mprotect set
windowing terminal under/ layers

xtproto multiplexed channels

generate uniformly distributed
psignal, psiginfo,- / psignal,

/system signal messages psignal,
messages psignal, psiginfo,-/

/psiginfo,- system signal messages

28

process popen, ;... popen(3S)
process, process group, and parentI getpid(2)
process scheduler control ... priocntl(2)
process scheduler control .. priocntlset(2)
process, text, or data ... plock(2)
process times ... times(2)
process to change state ... waitid(2)
process to change state ... waitpid(2)
process to stop or terminate .. wait(2)
process trace .. ptrace(2)
process until signal ... pause(2)
process until signal sigsuspend sigsuspend(2)
processes kill send .. kill(2)
processes sigsend. sigsendset send sigsend(2)
processor .. m4(1)
prof display profile data ... prof(l)
prof profile within a function .. prof(5)
profil execution time profile .. profll(2)
profile data lprof display ... Iprof(1)
profile data .. prof(l)
profile ... monitor(3C)
profile ... profil.(2)
profile within a function ... prof(5)
program assertion ... assert(3X)
program beautifier .. cb(1)
program checker .. lint(1)
program cross-reference .. cxref(1)
program ... cscope(1)
program debugger : ... ctrace(1)
program ... end(3C)
program header table /elf32_newphdr elf_getphdr(3E)
program message ... catgets(3C)
program ... raise(3C)
program termination routine .. atexit(3C)
programming commands .. intro(1)
programs for simple lexical tasks .. lex(1)
program's locale .. setlocale(3C)
programs make maintain, ... make(1)
protection of memory mapping mprotect(2)
protocol used between host and .. layers(5)
protocol used by xt driver .. xtproto(5)
prs print an sees file ... prs(1)
pseudo-random numbers /lcong48 drand48(3C)
psiginfo,- system signal messages psignal(3C)
psiginfo,- system signal messages pSignal(3C)
psignal, psiginfo,- system signal psignal(3C)
psignal, psiginfo,- system signal/ psignal(3C)

Programmer's Reference Manual

stream ungete
puts, fputs

pute, putchar, fpute, putw
getdents read directory entries and

character or word on a stream
or word on a stream pute,

environment

stream
entry

/getutent, getutid, getutline,
/ getutxent, getutxid, getutxline,

stream pute, putchar, fpute,

setlocale modify and
remque insert/remove element from a

msgget get message
qsort

div, ldiv compute the

generator
elf rand

rand, srand simple
getpass
catgets

me system independent/ getdents
read

bgets
readlink

rewinddir,! directory: opendir,
open open for
symbolic link

lseek move
realpath returns the

/get real user, effective user,
/ geteuid, getgid, getegid get

memory allocator malIoc, free,
memory allocator malloc, free,

lockf
regular expression

make maintain, update, and
expression regcmp,

Permuted Index

Permuted Index

ptrace process trace .. ptraee(2)
push character back onto input ungete(3S)
put a string on a stream ... puts(3S)
put character or word on a stream ~........................ putc(3S)
put in a file system independent/ getdents(2)
pute, putchar, fpute, putw put .. putc(3S)
putchar, fpute, putw put character putc(3S)
putenv change or add value to putenv(3C)
putmsg send a message on a stream putmsg(2)
putpwent write password me entry putpwent(3C)
puts, fputs put a string on a.. puts(3S)
putspent write shadow password me putspent(3C)
pututline, setutent, endutent,/ .. getut(3C)
pututxline, setutxent, endutxent,l getutx(3C)
putw put character or word on a....................................... pute(3S)
qsort quicker sort ... qsort(3C)
query a program's locale ... setlocale(3C)
queue insque, ... insque(3C)
queue .. msgget(2)
quicker sort ... qsort(3C)
quotient and remainder ... div(3C)'
raise send signal to program ... raise(3C)
rand, srand simple random-number rand(3C)
random archive member access elf Jand(3E)
random-number generator ... rand(3C)
read a password .. getpass(3C)
read a program message ... eatgets(3C)
read directory entries and put in a getdents(2)
read from me .. read(2)
read read from file .. read(2)
read stream up to next delimiter bgets(3G)
read the value of a symbolic link readlink(2)
readdir, telldir, seekdir, ... directory(3C)
reading or writing _ open(2)
readlink read the value of a... readlink(2)
read/write file pointer ... lseek(2)
real me name .. realpath(3C)
real group, and effective group IDs getuid(2)
real user, effective user, real/ .. getuid(2)
realloc, ealloc, mallopt, mallinfo malloc(3X)
realloc, ealloc, memalign, valloe, malloe(3C)
realpath returns the real me name realpath(3C)
record locking on mes ... lockf(3C)
regcmp, regex compile and execute regcmp(3G)
regcmp regular expression compile regcmp(1)
regenerate groups of programs ... make(1)
regex compile and execute regular regcmp(3G)

29

Permuted Index

regular expression compile and/
regular expression compile and/

regexp: compile, step, advance
regexpr, compile, step, advance

regcmp
regcmp, regex compile and execute

lorder find ordering
/rint, remainder floor, ceiling,

div, ldiv compute the quotient and
/fmod, fmodf, fabs, fabsf, rint,

rmde1
rmdir

mkdirp, rmdirp create,
unlink

remove

queue insque,

clock
a file path name dimame

stream fseek, rewind, ftell
stream fsetpos, fgetpos

mincore determine
setrlimit control maximum system

gettxt
el(.getarhdr

elf _getarsym
mel /elf32~etehdr, elf32_newehdr

/ elf32 ~etphdr, elf32 _ newphdr
header elf ~etshdr: elf32 ~etshdr

elf ~etident
contents elf rawme

abs, labs
name basename

type elf jsize: elf32 jsize
getenv

stat data
realpath

pointer in a stream fseek,
/opendir, readdir, telldir, seekdir,

creat create a new me or
/copysign, fmod, fmodf, fabs, fabsf,

me

30

in a path mkdirp,
chroot change

logarithm, power, square

regexp: compile, step, advance ... regexp(5)
regexpr, compile, step, advance regexpr(3G)
regular expression compile and/ regexp(5)
regular expression compile and/ regexpr(3G)
regular expression compile .. regcmp(1)
regular expression ... regcmp(3G)
relation for an object library ... lorder(1)
remainder, absolute value functions floor(3M)
remainder ... div(3q
remainder floor, ceiling,/ .. floor(3M)
remove a delta from an sees file rmde1(1)
remove a directory .. rmdir(2)
remove directories in a path ... mkdirp(3G)
remove directory entry ... unlink(2)
remove me .. remove(3q
relI\ove remove file ... remove(3Q
remque insert/remove element from a insque(3C)
rename change the name of a me rename(2)
report CPU time used ... clock(3q
report the parent directory name of dimame(3G)
reposition a me pointer in a... fseek(3S)
reposition a file pointer in a... fsetpos(3Q
residency of memory pages .. mincore(2)
resource consumption getrlimit, getrlimit(2)
retrieve a text string ... gettxt(3C)
retrieve archive member header elf _getarhdr(3E)
retrieve archive symbol table elfsetarsym(3E)
retrieve class-dependent object elf_getehdr(3E)
retrieve class-dependent program/ elf _getphdr(3E)
retrieve class-dependent section elf~etshdr(3E)
retrieve me identification data elf~etident(3E)
retrieve uninterpreted me ... elf_rawme(3E)
return integer absolute value ... abs(3C)
return the last element of a path basename(3G)
return the size of an object me eltfsize(3E)
return value for environment name getenv(3Q
returned by stat system call .. stat(5)
returns the real file name ... rea1path(3Q
rewind, ftell reposition a file .. fseek(3S)
rewinddir, closedir directory / directory(3C)
rewrite an existing one .. creat(2)
rint, remainder floor, ceiling,/ .. floor(3M)
rmdel remove a delta from an sees rmdel(1)
rmdir remove a directory .. rmdir(2)
rmdirp create, remove directories mkdirp(3G)
root directory .. chroot(2)
root functions /sqrtf exponential, exp(3M)

Programmer's Reference Manual

atexit add program termination
expression compile and match
expression compile and match

convert between binary I decconv:
editing activity
allocation brk,

10gb, modf, modff, nextafter,
formatted input

for help with message numbers or
cdc change the delta comment of an

comb combine
delta make a delta (change) to an

sact print current
get get a version of an

prs print an
rmdel remove a delta from an

sccsdiff compare two versions of an
sccsfile format of

unget undo a previous get of an
val validate an

admin create and administer
sees file

priocntl process
priocntlset generalized process

bsearch binary
!search, Ifind linear

directories pathfind
hcreate, hdestroy manage hash

tfind, tdelete, twalk manage binary
elf _ newdata, elf Jawdata get

retrieve class-dependent
elf _ newscn, elf _ ncxtscn get

mcs manipulate the comment
files size print

Inrand48, mrand48, jrand48, srand48,
lopendir, readdir, telldir,

shmget get shared memory
brk, sbrk change data

dump dump
semctl
semop

sem get get set of

Permuted Index

Permuted Index

routine atexit(3Q
routines Istep, advan.ce regular regexp(S)
routines Istep, advance regular regexpr(3G)
_s2dec, _d2dec, _dec2s, _dec2d decconv(3C)
sact print current sees file .. sact(1)
sbrk change data segment space .. brk(2)
scalb manipulate parts of! Ildexp, frexp(3C)
scanf, fscanf, sscanf convert .. scanf(3S)
sees commands help ask .. help(1)
sees delta .. cdc(1)
sees deltas ... comb(1)
secs file ... delta(1)
secs file editing activity .. sact(1)
sees file get(1)
sees file .. prs(1)
sees file ... rmdel(1)
sees file .. sccsdiff(1)
sees file ... sccsfile(4)
secs file ... unget(1)
secs file .. val(1)
secs fIles .. admin(1)
sccsdiff compare two versions of an sccsdiff(1)
sccsfile format of sees file ... sccsfile(4)
scheduler control ... priocntl(2)
scheduler control ..•....... priocntlset(2)
sdb symbolic debugger .. sdb(1)
search a sorted table ... bsearch(3C)
search and update .. lsearch(3C)
search for named file in named pathfInd(3G)
search tables hsearch, .. hsearch(3C)
search trees tsearch,•.. tsearch (3C)
section data eltgetdata, .. eltgetdata(3E)
section header I elf32 _getshdr elf _getshdr(3E)
section information I elf _ ndxscn, eltgetscn (3E)
section of an object file mcsO)
section sizes in bytes of object size(1)
seed48, lcong48 generate uniformly I drand48(3C)
seekdir; rewinddir, closedirl directory(3C)
segment identifier ... shmget(2)
segment space allocation brk(2)
selected parts of an object file .. dump(1)
semaphore control operations•....................................•. semctl(2)
semaphore operations ... semop(2)
semaphores .. semget(2)
semctl semaphore control operations•.... semctl(2)
semget get set of semaphores semget(2)
semop semaphore operations .. semop(2)

31

Permuted Index

putmsg
group of processes kill

group of! sigsend, sigsendset
raise

elf next
getsid get
setsid set

truncate, ftruncate
alarm

umask
ascii map of ASCII character

ffs find first
getcontext, setcontext get and

timezone
times u~e

elf fill
semget get

context sigaltstack
setpgid
seq,grp

mprotect
. setsid

IDs getgroups, setgroups get or
sysinfo get and

group ID tcSetpgrp
gettimeofday, settiIDeofday get or

sti1l)e
setuid,· setgid

ulimit get and
a stream

context getcontext,
. setuid,

getgrent, getgrgid, getgmam,
group access list IDs getgroups,

timet getitimet,

crypt,
program's locale

getpwent, getpwuid, getpWnam,
resource consumption getrlimit,

sigdelset, sigismember manipulate

32

lckpwdf,/ getspent, getspnam,
and time gettimeofday,

IDs

send a message on a stream .. putmsg(2)
send a signal to a proCess or a.. kill(2)
send a signal to a process or a.. sigsend(2)
send signal to program ... raise(3C)
sequential archive member access elf _next(3E)
session 10•.. getsid(2)
session 10 .. setsid(2)
set a file to a specified length truncate(3C)
set a process alarm clock ... alarm(2)
set and get file creation mask .. umask(2)
set .. ascii(S)
set bit ... :.......•. ffs(3C)
set Current user context .. getcontext(2)
set default system time zohe ... timezone(4)
set file access and modification .. utime(2)
set fill byte •.... :... elf _ fill(3E)
set of semaphores ... semget(2)
set or get signal alternate stack sigaltstack(2)
set process group 10 .. setpgid(2)
set prOcess group 10 ... setpgrp(2)
set protection of ~emory mapping mprotect(2)
set session 10 ... setsid(2)
set supplementary groupaccess list getgroups(2)
set system information strings ... sysinfo(2)
set terminal foreground process tcsetpgrp(3C)
set the date and time ... -:.. gettimeofday(3C)
set time :.. stime(2)
set liserand group IDs .. setuid(2)
set user liJ:nits .. ulimit(2)
setbuf, setvbuf asSign buffering to setbuf(3S)
setcontext get and set current user getcontext(2)
setgid set user and group IDs .. setuid(2)
setgrent, endgrent, fgetgrent get! getgrent(3C)
setgroups get or set supplementary........................... getgroups(2)
setitimer get/set value of interval getitimer(3C)
setjIhp, longjmp nOh-local goto setjmp(3C)
setkey, encrypt generate encryption crypt(3C)
setlocale modify and query a...................................... setlocale(3C)
setpgid set process group ID ... setpgid(2)
setpgrp set process group ID .. setpgrp(2)
setpwent, 'endpwent, fgetpwent/ getpwent(3C)
setrlimit control maximum system getrlimit(2)
sets .of signals /sigaddset, sigemptyset(3C)
setsid set .session 10 .. setsid(2)
setspent, endspent, fgetspent, getspent(3C)
se~timeofday ,get or set the date gettimeofday(3C)
setuid, setgid set user. and group setuid(2)

Programmer's Reference Manual

/ getutid, getutline, pututline,
/ getutxid, getutxline, pututxline,

stream setbuf,
for / addseverity build a list of

machine-independent fa!;!hion sputl,
/lckpwdf, ulckpwdf manipulate

putspent write
shmctl

shmop: shmat, shmdt
shmget get

dlclose close a
dlopen open a

get the address of a symbol in
system issue a

gmatch
operations shmop:

operations
shmop: shmat,

identifier
operations

management
sigemptyset, sigfUIset,
alternate stack context

sigemptyset, sigfUlset, sigaddset,
sigdelset, sigismember manipulate/

sigismember / sigemptyset,
sigpause/ signal, sigset,

signal, sigset, sighold, sigrelse,
information

/ sigfillset, sigaddset, sigde1set,
signal state sigsetjmp,

generate an abnormal termination
sigaltstack set or get

siginfo
I:ligaction detailed

sigignore, sigpause simplified
until signal sigsuspend install a
sigprocmask change or examine

system/ psignal, psiginfo,- system
messages psignal, psiginfo,- system

pause suspend process until
sigignore, sigpause simplified/

mask and suspend process until
siglongjmp a non-local goto with

processes kill send a
sigsend, sigsendset send a

Permuted Index

Permuted Index

setutent, endutent, utmpname access/ getut(3q
setutxent, endutxent, utinpxname,/ getutx(3C)
setvbUf assign buffering to a.. setbuf(3S)
severity levels for an application addseverity(3C)
sgetl access long integer data in a.................................... sputl(3X)
shadow password fUe entry.. getspent(3C)
shadow password fUe entry .. putspent(3Q
shared memory control operatioris shmctl(2)
shared ~emorY operations :.................. shII)op(2)
shared memory segment identifier ; shmget(2)
shared object .. dlclose(3X)
shared ob~ .. ;;.. dlopen(3X)
shared object dlsym ... dlsym(3X)
shell command ... system(3S)
shell global pattern matching .. gmatch(3G)
shmat, shmdt shaied memory ,............................... shmop(2)
shmctl shared memory contrQI ;.. shmctl(2)
shmdt shared memory operations shmop(2)
shmget get shared memory segment shmget(2)
shmop: shmat, shmdt liibared memory shmop(2)
sigaction detailed signal .,... sigaction(2)
sigaddset, sigde1set, sigismember/ sigemptyset(3Q
sigaltstack set or get signal.. sigaltstack(2)
sigdelset, sigismemb!!f manipulate/ sigemptyset(3Q
sigemptyset, sigfillset, sigaddset, sigemptyset(3Q
sigfU1set, sigaddset, sigde1set, sigemptyset(3C)
sighold, sigre1se, sigignore, ... signal(2)
sigignore, sigpause simplified/ .. signal(2)
siginfo signal generation .. siginfo(S)
sigismember manipulate sets of! sigemptyset(3Q
siglongjmp a non-local goto with sigsetjmp(3C)
signal abort .. abort(3C)
signal alternate stack context sigaltstack(2)
signal base signals ... signal(S)
signal generation information ... siginfo(5)
signal management .. sigaction(2)
signill management /sigre1se, ... signal(2)
signal mask and suspend process sigsuspend(2)
signal mask .. sigprocmask(2)
signal messages psignal, psiginfo,- psignal(3C)
signal messages / system signal psignal(3C)
signal ... paUse(2)
signal, sigset, sighold, sigre1se, ... signa1(2)
Signal sigsuspend install a signal sigsuspend(2)
signal state sigsetjmp, .. sigsetjmp(3C)
signal to a process or a group of .. kill(2)
signal to a process or a group of! sigsend(2)

33

Permuted Index

raise send
sigismember manipulate sets. of

signal base
ssignal, gsignal software

pending sigpending examine
sighold, sigre1se, sigignore,

blocked and pending
signal mask

signal, sigset, sighold,
to a process or a group of/

process or a group of! sigsend.
sigignore, sigpause/ signal,

goto with signal state
and suspend process until signal

lex generate programs for
rand, srand

/sigrelse, sigignore, sigpause
asin, asinf, acos, acosf,/trig:
asinf, acos, acosf,/ trig: sin,

tanh, tanhf, asinh, acosh,/
tanhf, asinh, acosh,/ sinh,

elf fsize: elf32 fsize return the
-. - of object files

size print section
interval

current user ttyslot find the
ssignal, gsignal

qsort quicker
tsort topological

bsearch binllry search a
brk, sbrk change data segment

muniockalliock or unlock adciress
swapctl manage swap

memory efficient way vfork
mknod make a directory, or a

strftiine language
truncate, ftruncate set a file to a

bufsplit
printf, fprintf,

data in a machine-independent/
/logf, log10, 10glo£, pow, powf,
/log10, 10glO£, pow,powf,sqrt,
exponential, logarithm, power,

generator rand.
/lrand48, nrand48, mrand48, jrand48,

scanf, fscanf,

34

signal to program ... raise(3q
signals /sigaddset, sigde1set, sigemptyset(3C)
signals ... signal(5)
signals ... ssignal(3q
signals that are blocked and sigpending(2)
sigpause simplified signal! /sigset, signa1(2)
sigpending examine signals that are sigpending(2)
sigprocmask change or examine sigprocmask(2)
sigre1se, sigignore, sigpause/ ... signal(2)
sigsend. sigsendset send a signal sigsend(2)
sigsendset send a signal to a ... sigsend(2)
sigset, sighold, sigre1se, ... signal(2)
sigsetjmp, siglongjmp a non-local sigsetjmp(3Q
sigsuspend install a signal mask sigsuspend(2)
simple lexical tasks .. lex(1)
simple random-number generator rand(3Q
simplified signal management.. signal(2)
sin, sinf, cos, cosf, tan, tanf, ... trig(3M)
sinf, cos, cosf, tan, tanf, asin, ... trig(3M)
sinh, sinhf, cosh, coshf, ... sinh (3M)
sinhf, cosh, coshf, tanh, .. sinh (3M)
size of ,an object file type ... elUsize(3E)
size print section sizes· in bytes .. size(1)
sizes in. bytes of object files ... size(l)
sleep suspend execution for .. sleep(3C)
slot in th\! utmp file· of the ... ttyslot(3C)
software signals .. sSignal(3C)
sort ... qsort(3C)
sort tsort(1)
sorted table•... bsearch(3Q
space allocation 1.. brk(2)
space mlockall, :... mlockall(3Q
space ... swapctl(2)
spawn new process in a virl$l .. vfork(2)
spe<;:ial or ordinary file ... mknod(2)
specific strings .. strftime(4)
specified length ... truncate(3C)
split buffer in to fields , bufsplit(3G)
sprintf print formatted output .. printf(3S)
sputl, sgetl access. long integer ... sputl(3X)
sqrt,sqrtf exponential, logarithm;/ exp(3M)
sqrtf exponential, logarithm,/ ... exp(3M)
square root functions /sqrt, sqrtf exp(3M)
srand simple random-nwpber ... rand(3Q
srand48, seed48, lcong48 generate/ drand48(3Q
sscanf convertformatted input .. scanf(3S)
ssignal, gsignal software signals ssigna1(3Q

Programmer's Reference Manual

set or get signal alternate
package stdio

package stdipc: ftok
call

stat data returned by
ustat get file system

feof, dearerr, fIleno stream
stat, lstat, fstat get file

wstat wait
information

list
fmtmsg display a message on

input/output package
communication package

compile and match/ regexp: compile,
compile and/ regexpr, compile,

wait wait for child process to
synchronize memory with physical

string manipulations
compressing or / strccpy: streadd,
strncmp, strcpy, strncpy,/ string:

copy strings, compressing or /
/stmcmp, strcpy, strnepy, strlen,

string: strcat, strdup, strncat,

/strdup, strncat, strcmp, strncmp,
/strchr, strrchr, strpbrk, strspn,
strcpy, strncpy'/ string: streat,

strings, compressing or / strccpy:
fdose, {flush dose or flush a

fopen, freopen, fdopen open a
reposition a file poinfer in a
reposition a file pointer in a

getw get character or word from a
getmsg get next message off a
gets, fgets get a string from a

putw put character or word on a
putmsg send a message em a
puts, fputs put a string On. a
setvbuf assign buffering to a

ferror, feof, c1earert.lileno
push character back o.tlto input

l)gets tead
or / strccpy: sttea~'id, streadd,

Permuted Index

Permuted Index

stack context sigaltstack ... sigaltstack(2)
standard buffered input/output .. stdio(3S)
standard interprocess communication stdipc(30
stat data returned by stat system ... stat(5)
stat, Istat, fstat get file status ... stat(2)
stat system call stat(5)
statistics•................. ustat(2)
status inquiries ferror, ... ferror(3S)
status ... stat(2)
status .. wstat(5)
statvls, Istatvfs get file system ... statvfs(2)
stdarg handle variable argument stdarg(5)
stderr or system console .. fmtmsg(30
stdio standard buffered ... stdio(3S)
stdipc: ftok standard interprocess stdipc(30
step, advance regular expression regexp(5)
step, advance regular expression regexpr(3G)
stime set time .. stime(2)
stop or terminate ... wait(2)
storage msync ... msync(3C)
str: strfind, strrspn, strtrns ... str(3G)
strcadd, strecpy copy strings,.. strccpy(3G)
strcat, strdup, strncat, strcmp, ... string(30
strCCPY: streadd, strcadd, strecpy sttccpy(3G)
strchr, strrchr, strpbrk, strspn'/ string(3Q
strcmp, strncmp, strcpy, strncpy,/ string(3Q
strcoll string collation .. strcoll(3Q
strcpy, strncpy, strlen, strchr,/ .. string(3Q
strcspn, strtok, strstr string/ .. string(30
strdup, strncat, strcmp, strncmp, string(30
streadd, strcadd, strecpy copy...................................... strccpy(3G)
stream .. fdose(3S)
stream .. fopen(3S)
stream fseek, rewind, ftell ... fseek(3S)
stream fsetpos, fgetpos .. fsetpos(30
stream getc, getchar, fgetc, .. getc(3S)
stream ... getmsg(2)
stream ... gets(3S)
stream putc, putchar, fputc, ... putc(3S)
stream ~ ... putmsg(2)
stream .. ;....................................... puts(3S)
stream serbuf, ... setbuf(3S)
stream status inquiries ... ferror(3S)
stream ungetc .. ungetc(3S)
stream up to next delimiter ... bgets(3G) .
strecpy copy strings, compressing strccpy(3G)
stretror get error message string strerror(30

35

Permuted Index

manipulations str:
date and time to string

long integer and base-64 ASOl
strcoll

tzset convert date and time to
convert floating-point number to

gets, fgets get a
mbstowcs, wcstombs multibyte

getsubopt parse suboptions from a
gettxt retrieve a text

str: strfind, strrspn, strtrns
puts, £puts put a

strspn, strcspn, strtok, strstr
e1f_strptr make a

strcmp, strncmp, strcpy, strncpy,/
strerror get error message

ascftime, convert date and time to
strtod, atof, convert

strtol, strtoul, atol, atoi convert
strxfrm

/streadd, strcadd, strecpy copy
strftime language specific

get and set system information
what print identification

and line number information from/
line number information from/ strip

/strcmp, strncmp, strcpy, strncpy,
strncpy,! string: strcat, strdup,
/strcat, strdup, strncat, strcmp,

/strncat, strcmp, strncmp, strcpy,
/ strncpy, strlen, strchr, strrchr,
/strcpy, strncpy, strlen, strchr,

manipulations str: strfmd,

36

/strlen, strchr, strrchr, strpbrk,
strpbrk, strspn, strcspn, strtok,

double-precision number
/strrchr, strpbrk, strspn, strcspn,

string to integer
to integer strtol,

str: strfind, strrspn,
offsetof offset of

mktime converts a tm

getsubopt parse
sync update

getgroups, setgroups get or set

strfind, strrspn, strtrns string .. str(3G)
strftime, cftime, ascftime, convert strftime(3C)
strftime language specific strings strftime(4)
string a64I, 164a convert between a64I(3C)
string collation .. strcoll(30
string /localtime, gmtime, asctime, ctime(3C)
string ecvt, fcvt, gcvt ... ecvt(3C)
string from a stream .. gets(3S)
string functions mbstring: .. mbstring(30
string ... getsubopt(3C)
string '" .. , '" '" gettxt(3C)
string manipulations ... ;................. str(3G)
string on a stream .. puts(3S)
string operations /strpbrk, .. string(3C)
string pointer ... eltstrptr(3E)
string: strcat, strdup, strncat, ... string(3C)
string .. strerror(30
string strftime, cftime, ... strftime(3C)
string to double-precision number strtod(3C)
string to integer ... strto1(3C)
string transformation .. strxfrm(3C)
strings, compressing or expanding/ strccpy(3G)
strings .. strftime(4)
strings sysinfo .. sysinfo(2)
strings ... what(1)
strip strip symbol table, debugging strip(1)
strip symbol table, debugging and strip(1)
strien, strchr, strrchr, strpbrk,/ .. string(3C)
strncat, strcmp, strncmp, strcpy, string(3C)
strncmp, strcpy, strncpy, strlen,! string(3C)
strncpy, strlen, strchr, strrchr,! string(3C)
strpbrk, strspn, strcspn, strtok,! string(3C)
strrchr, strpbrk, strspn, strcspn,/ string(3C)
strrspn, strtrns string ... str(3G)
strspn, strcspn, strtok, strstr / .. string(3C)
strstr string operations /strrchr, string(3C)
strtod, atof, convert string to ... strtod(3C)
strtok, strstr string operations .. string(3C)
strtol, strtoul, atol, atoi convert .. strto1(3C)
strtoul, atoI, atoi convert string .. strtol(3C)
strtrns string manipulations ... str(3G)
structure member .. offsetof(3C)
structure to a calendar time .. mktime(3C)
strxfrm string transformation .. strxfrm(3C)
suboptions from a string ... getsubopt(3C)
super block ... sync(2)
supplementary group access list IDs getgroups(2)

Programmer's Reference Manual

initgroups initialize the
sleep

pause
/install a signal mask and

swab
swapctl manage

contexts makecontext,

dlsym get the address of a
number information/ strip strip

elf...getarsym retrieve archive
sdb

readlink read the value of a
symlink make a

fIle

adjtime correct the time to allow
state with that on the/ fsync

storage msync

variables
information

information strings
stat data returned by stat

in tro in troduction to
to allow synchronization of the
display a message on stderr or

types primitive
perror print

directory entries and put in a fIle
statvfs, fstatvfs get file

sysinfo get and set

mount mount a file
/setrlimit control maximum

psiginfo,-/ psignal, psiginfo,­
signal messages psignal, psiginfo,­

ustat get file
timezone set default

sysfs get file
umount unmount a file

uname get name of current UNIX
sysconf get configurable

bsearch binary search a sorted
information/ strip strip symbol

retrieve archive symbol

Permuted Index

Permuted Index

supplementary group access list initgroups(3Q
suspend execution for interval .. sleep(3C)
suspend process until signal ... pause(2)
suspend process until signal sigsuspend(2)
swab swap bytes .. swab(3C)
swap bytes swab(3C)
swap space .. swapctl(2)
swapcontext manipulate user makecontext(3C)
swapctl manage swap space .. swapctl(2)
symbol in shared object .. dlsym(3X)
symbol table, debugging and line .. strip(1)
symbol table .. elf _getarsym(3E)
symbolic debugger .. sdb(1)
symbolic link ... readlink(2)
symbolic link to a file ... symlink(2)
symlink make a symbolic link to a symlink(2)
sync update super block sync(2)
synchronization of the system clock adjtime(2)
synchronize a file's in-memory .. fsync(2)
synchronize memory with physical msync(3C)
sys3b machine-specific functions .. sys3b(2)
sysconf get configurabJe system sysconf(3C)
sysfs get file system type ... sysfs(2)
sysinfo get and set system sysinfo(2)
system call .. stateS)
system calls and error numbers ... intro(2)
system clock / correct the time adjtime(2)
system console fmtmsg ... fmtmsg(3C)
system data types .. types(S)
system error messages .. perror(3C)
system independent format /read getdents(2)
system information .. statvfs(2)
system information strings .. sysinfo(2)
system issue a shell command system(3S)
system .. mount(2)
system resource consumption .. getrlimit(2)
system signal messages psignal, psignal(3Q
system signal messages /system psignal(3Q
system statistics ... ustat(2)
system time zone ... timezone(4)
system type information .. sysfs(2)
system .. umount(2)
system .. uname(2)
system variables ... sysconf(3C)
table ... bsearch(3C)
table, debugging and line number strip(1)
table eltgetarsym ... elf_getarsym(3E)

37

Permuted Index

class-dependent program header
hdestroy manage hash search

acosf,/ trig: sin, sinf, cos, cosf,
trig: sin, sinf, cos, cosf, tan,

sinh, sinhf, cosh, coshf,
/sinhf, cosh, coshf, tanh,

programs for simple lexical
tcgetattr, tcsetattr, tcsendbreak,
/tcsendbreak, tcdrain, tcfiush,

/tcsetattr, tcsendbreak, tcdrain,
tcdrain, tcfiush, tcfiow,/ termios:

general/ /cfsetispeed, cfsetospeed,
/ cfsetospeed, tcgetpgrp, tcsetpgrp,

termios: tcgetattr, tcsetattr,
tcfiush,/ termios: tcgetattr,

process group ID
terminal! /cfsetospeed, tcgetpgrp,

trees tsearch, tfind,
directory: opendir, readdir,

temporary file tmpnam,
tmpme create a

tmpnam, tempnam create a name for a
ctermid generate me name for

ID tcsetpgrp set
libwindows windowing

tcsetpgrp, tcgetsid general
jagent host control of windowing

ttyname, isatty find name of a
used between host and windowing

exit, _exit
wait for child process to stop or

atexit add program
abort generate an abnormal

tcsendbreak, tcdrain, tcfiush,/
lock into memory or unlock process,

gettxt retrieve a
search trees tsearch,

setitimer get/set value of interval
the difference between two calendar

times
times get process and child process

set me access and modification
nice change priority of a

zone
mktime converts a

temporary me

38

table /e1f32_newphdr retrieve elf_getphdr(3E)
tables hsearch, hcreate, ... hsearch(3C)
tan, tanf, asin, asinf, acos, .. trig(3M)
tanf, asin, asinf, acos, acosf,/ .. trig(3M)
tanh, tanhf, asinh, acosh,/ ... sinh(3M)
tanhf, asinh, acosh, atanh/ .. sinh (3M)
tasks lex generate .. lex(1)
tcdrain, tcfiush, tcflow,/ termios: termios(2)
tcflow, cfgetospeed, cfgetispeed,/ termios(2)
tcflush, tcflow, cfgetospeed,/ ... termios(2)
tcgetattr, tcsetattr, tcsendbreak, termios(2)
tcgetpgrp, tcsetpgrp, tcgetsid ... termios(2)
tcgetsid general terminal interface termios(2)
tcsendbreak, tcdrain, tcflush,/ ... termios(2)
tcsetattr, tcsendbreak, tcdrain, ... termios(2)
tcsetpgrp set terminal foreground tcsetpgrp(3Q
tcsetpgrp, tcgetsid general .. termios(2)
tdelete, twalk manage binary search tsearch(3Q
te1ldir, seekdir, rewinddir,/ .. directory(3Q
tempnam create a name for a tmpnam(3S)
temporary me .. tmpfile(3S)
temporary me .. tmpnam(3S)
terminal .. ctermid(3S)
terminal foreground process group tcsetpgrp(3C)
terminal function library .. libwindows(3X)
terminal in.terface / tcgetpgrp, .. termios(2)
terminal ... jagent(5)
terminal .. ttyname(3C)
terminal under layers(l) Iprotocol layers(5)
terminate process .. exit(2)
terminate wait ... wait(2)
termination routine ... atexit(3C)
termination signal .. ;.. abort(3C)
termios: tcgetattr, tcsetattr, : termios(2)
text, or data plock .. plock(2)
text string ... gettxt(3Q
tfind, tdelete, twalk manage binary.............................. tsearch(3Q
timer getitimer, .. getitimer(3C)
times difftime computes ... difftime(3Q
times get process and child process times(2)
times ... times(2)
times utime ... utime(2)
time-sharing process .. nice(2)
timezone set default system time timezone(4)
tm structure to a calendar time mktime(3Q
tmpme create a temporary me tmpfile(3S)
tmpnam, tempnam create a name for a tmpnam(3S)

Programmer's Reference Manual

/tolower, _toupper, _tolower,
popen, pclose initiate pipe

conv: toupper, tolower, _toupper,
toascii translate/ con v: toupper,

tsort
translate/ conv: toupper, tolower,
_tolower, toascii translate/ conv:

ptrace process
strxfrm string

_toupper, _tolower, toascii
cof2elf COFF to ELF object file

elf32 _ xlatetom class-dependent data
ftw, nftw walk a file

tdelete, twalk manage binary search
tanf, asin, asinf, acos, acosf,/

acosf, atan, atanf, atan2, atan2f
specified length

manage binary search trees

terminal
file of the current user
tsearch, tfind, tdelete,

return the size of an object file
elf kind determine file

sysfs get file system
/fpclass, unordered determine
nttypes native language data

types primitive system data
ctime, localtime, gmtime, asctime,

getpw get name from
filet / endspent, fgetspent, kkpwdf,

mask

system
unget

sees file
input stream

/srand48, seed48, lcong48 generate
elf rawfile retrieve

mktemp make a
uname get name of current

mlockall, munlockalllock or

Permuted Index

Permuted Index

toascii translate characters .. conv(3C)
to/from a process .. popen(3S)
_tolower, toascii translate/ ... conv(3C)
tolower, _toupper, _tolower, .. conv(3C)
topological sort .. tsort(1)
_toupper, _tolower, toascii ... conv(3C)
toupper, tolower, _toupper, ... conv(3C)
trace ... , ptrace(2)
transformation .. strxfrm(3C)
translate characters /tolower, ... conv(3C)
translation .. cof2elf(1)
translation / elf32 _ xlatetof, elf _ xlate(3E)
tree ... ftw(3C)
trees tsearch, tfind, ... tsearch(3C)
trig: sin, sinf, cos, cosf, tan, ... trig (3M)
trigonometric functions tacos, , trig (3M)
truncate, ftruncate set a file to a truncate(3C)
tsearch, !find, tdelete, twalk ... tsearch(3C)
tsort topological sort ... tsort(1)
ttyname, isatty find name of a ttyname(3C)
ttyslot fmd the slot in the utmp ttyslot(3C)
twalk manage binary search trees tsearch(3C)
type elfjsize: elf32_fsize .. elfjsize(3E)
type ... elf _ kind(3E)
type information ... sysfs(2)
type of floating point number .. isnan(3C)
types .. nt types(5)
types primitive system data types types(5)
types ... types(5)
tzset convert date and time tot .. ctime(3C)
uadmin administrative control .. uadmin(2)
ucontext user context ... ucontext(5)
UID ... getpw(3C)
ulckpwdf manipulate shadow password getspent(3C)
ulimit get and set user limits .. ulimit(2)
umask set and get file creation ... umask(2)
umount unmount a ftle system umount(2)
uname get name of current UNIX uname(2)
undo a previous get of an secs file unget(1)
unget undo a previous get of an .. unget(1)
ungetc push character back onto ungetc(3S)
uniformly distributed pseudo-random/ drand48(3C)
uninterpreted file contents .. el(rawfile(3E)
unique file name .. mktemp(3C)
UNIX system : ... uname(2)
unlink remove directory entry .. unlink(2)
unlock address space .. mlockall(3C)

39

Permuted Index

mlock, munlock lock (or
plock lock into memory or

murunap
umount

isnand, isnanf, finite, fpclass,
pause suspend proceSs

a signal mask and suspend process
elf_update

programs make maintain,
lsearch, lfmd linear search and

sync
lutmpxname, getutmp, getutmpx,

I getutmp, getutmpx, updwtmp,
levels for an application for

setuid, setgid set
setcontext get and set current

ucontext
makecontext, swapcontext manipulate

get character login name of the
I geteuid, getgid, getegid get real

environ
getdate convert

ullmit get and set
I getegid get real user, effective

in the utmp file of the current
maillock manage lockfile for

elf end fmish

modification times
utmp, wtmp

setutent, endutent, utmpname access
ttyslot find the slot.in the

formats
Ipututline, setutent, endutent,

utmpx, wtmpx
getutmpx, updwtmp, updwtmpx access

formats
Ipututxline, setutxent, endutxent,

40

val
}ree, realloc, calloc, memalign,

abs, labs return integer absolute
elf_hash compute hash

getenv return
floor, ceiling, remainder, absolute

readlink read the
getitimer, setitimer getl set

unlock) pages in memory ... mlock(3C)
unlock process, text, or data .. plock(2)
unmap pages of memory ... munmap(2)
unmount a file system .. umount(2)
unordered determine type ofl isnan, isnan(3C)
until signal .. pause(2)
until signal sigsuspend install sigsuspend(2)
update an ELF descriptor ... elf _ update(3E)
update, and regenerate groups of make(1)
update .. lsearch(3C)
update super block .. sync(2)
updwtmp, updwtmpx access utmpx filel getutx(3Q
updwtmpx access utmpx file entry................................ getutx(3Q
use with fmtmsg I a list of severity.................... addseverity(3Q
user and group IDs .. setuid(2)
user context getcontext, .. getcontext(2)
user context ... ucontext(S)
user contexts ... makecontext(3C)
user cuserid .. cuserid(3S)
user, effective user, real group, I getuid(2)
user environment ... environ(5)
user format date and time ... getdate(3Q
user limits ... ulimit(2)
user, real grOUp, and effective I .. getuid(2)
user ttyslot find the slot .. ttyslot(3Q
user's mailbox .. maillock(3X)
using an object file ... elf _ end(3E)
ustat get file system statistics ... ustat(2)
utime set file access and ... utime(2)
utmp and wtmp entry formats .. utmp(4j
utmp file entry Ipututline, ... getut(3C)
utmp file of the current user ... ttyslot(3C)
utmp, wtmp utmp and wtmp entry ,. utmp(4),
utmpname access utmp file entry.................................... getut(3C)
utmpx and wtmpx entry formats utmpx(4)
utmpx file entry I getutmp, .. getutx(3C)
ulmpx, wtmpx utmpx and wtmpx entry utmpx(4)
utmpxname, getutmp, getutmpx,/ getutx(~'
val validate an sees file .. val(1)
validate an seC$ file ... val(1)
valloc, memory allocator malloc, malloc(3C)
value .. abs(3C)
value ... elf hash(3E)
value for environment name .. g;tenv(3d
value functions lrint, remainder floor(3M)
value of a symbolic link .. readlink(2)
value of interval timer ... getitimer(3C)

Programmer's Reference Manual

putenv change or add
convert between binary and decimal

values machine-dependent
list

stdarg handle
varargs handle

print formatted output of a
pathconf get eonfigurable pathname

sysconf get configurable system

get option letter from argument
assert

ve
get get a

ELF library and application
sccsdiff compare two

virtual memory efficient way
output of a variable/ vprintf,

getvfsspec, getvfsany get
vfork spawn new process in a

formatted output of a variable/
a variable/ vprintf, vfprintf,

state waitid
state waitpid

terminate wait
wstat

or terminate
change state
change state

ftw, nftw
mbstring: mbstowcs,

mbchar: mbtowe, mblen,
encrypted isencrypt determine

libwindows
jagent host control of

/protocol used between host and
prof proflle

fgete, getw get character or
fpute, putw put character or

chdir, fchdir change
getewd get path-name of current

write, writev
putpwent
putspent

write,

Permuted Index

Permuted Index

value to environment .. putenv(3C)
values / _d2dec, _dec2s, _dec2d deceonv(3C)
values machine-dependent values values(S)
values ... values(S)
varargs handle variable argument varargs(S)
variable argument list ... stdarg(S)
variable argument list ... varargs(S)
variable argument list /vsprintf vprintf(3S)
variables fpathconf, ... fpatheonf(2)
variables .. sysconf(3C)
ve version control.. ve(l)
vector getopt ... getopt(3C)
verify program assertion ... assert(3X)
version control ... ve(1)
version of an sees flle ... get(1)
versions elf_version coordinate elf _ version(3E)
versions of an sees me .. sccsdiff(1)
vfork spawn new process in a ;........ vfork(2)
vfprintf, vsprintf print formatted vprintf(3S)
vfstab me entry /getvfsme, .. getvfsent(3C)
virtual memory efficient way.. vfork(2)
vprintf, vfprintf, vsprintf print vprintf(3S)
vsprintf print formatted output of vprintf(3S)
wait for child process to change waitid(2)
wait for child process to change waitpid(2)
wait for child process to stop or ... wait(2)
wait status ... wstat(S)
wait wait for child process to stop wait(2)
waitid wait for child process to ... waitid(2)
waitpid wait for child process to waitpid(2)
walk a flle tree ... ftw(3C)
wcstombs multibyte string functions mbstring(3Q
wctomb multibyte character handling mbchar(3Q
whether a character buffer is isencrypt(3G)
windowing terminal function library................... libwindows(3X)
windowing terminal ... jagent(S)
windowing terminal under layers(1) layers(S)
within a function .. prof(S)
word from a stream gete, getchar, gete(3S)
word on a stream pute, putchar, pute(3S)
working directory .. chdir(2)
working directory.. getewd(3C)
write on a me .. write(2)
write password me entry... putpwent(3Q
write shadow password file entry putspent(3C)
write, writev write on a me ... write(2)
writev write on a me ... write(2)

41

Permuted Index

42

open open for reading or

utmp, wtmp utmp and
utmp,

utmpx, wtmpx utmpx and
utmpx,

channels protocol used by
protocol used by xt driver

bessel: jO, jI, jn,
bessel: jO, jI, jn, yO,

yacc
bessel: jO, jI, jn, yO, yI,

timezone set default system time

writing .. open(2)
wstat wait status .. wstat(S)
wtmp entry formats ... utmp(4)
wtmp utmp and wtmp entry formats utmp(4)
wtmpx entry formats .. utmpx(4)
wtmpx utmpx and wtmpx entry formats utmpx(4)
xt driver xtproto multiplexed ... xtproto(S)
xtproto multiplexed channels xtproto(S)
yO, yI, yn Bessel functions bessel(3M)
yI, yn Bessel functions ... bessel(3M)
yace yet another compiler-compiler yacc(1)
yet another compiler-compiler .. yacc(1)
yn Bessel functions bessel(3M)
zone .. timezone(4)

Programmer's Reference Manual

Intro (1) Intro(1)

NAME
intro - introduction to programming commands

DESCRIPTION
This section describes the programming commands in alphabetical order. Unless
otherwise noted, the commands accept options and other arguments according to
the following syntax:

name [option(s)] [cmdarg(s)]

where:

name

option

is the name of an executable file.

is -noargletter(s) or -argletter <> optarg, where:

noargletter is a single letter representing an option without an
option argument;

argletter is a single letter representing an option requiring an option
argument;

<> is optional white space;

optarg is an option argument (character string) satisfying the
preceding argletter.

cmdarg is "-" by itself, which indicates the standard input, or a path name
(or other command argument) not beginning with "-".

Throughout the manual pages there are references to TMPDIR, BINDlR, INCDIR,
and LIBDIR. These represent directory names whose value is specified on each
manual page as necessary. For example, TMPDIR might refer to Ivar/tnp.
These are not environment variables and cannot be set. [There is an environment
variable called TMPDIR which can be set. See tnpnam(3S).] There are also refer­
ences to LIBP ATH, the default search path of the link editor and other tools.

SEE ALSO
exit(2), wait(2), getopt(3C).
getopts(1) in the User's Reference Manual.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal" ter­
mination) one supplied by the program [see wait(2) and exit(2)]. The former
byte is 0 for normal termination; the latter is customarily 0 for successful execu­
tion and non-zero to indicate troubles such as erroneous parameters, or bad or
inaccessible data. It is called variously "exit code," "exit status," or "return
code," and is described only where special conventions are involved.

WARNINGS

10/89

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and there­
fore become confused upon encountering a null character (the string terminator)
within a line.

Page 1

admin (1) admin (1)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[namell [-rrel] [-t[namell [-fflag[flag-valll [-dflag[flag-valll [-alogin]

[-elogin] [-mlmrlistll [:-y[comment]] [-h] [-z] Jiles

DESCRIPTION
admin is used to create new sees files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu­
ments (that begin with -) and named files (note that sees file names must begin
with the characters s.). If a named file does not exist, it is created and its param­
eters are initialized according to the specified keyletter arguments. Parameters
not initialized by a keyletter argument are assigned a default value. If a named
file does exist, parameters corresponding to specified keyletter arguments are
changed, and other parameters are left unchanged.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed. Again, non-sees files and
unreadable files are silently ignored.

The keyletter arguments are listed below. Each argument is explained as if only
one named file were to be processed because the effect of each argument applies
independently to each named file.

-n This keyletter indicates that a new sees file is to be created.

-i[name] The name of a file from which the text for a new sees file is to be
taken. The text constitutes the first delta of the file (see -r keyletter
for delta numbering scheme). If the -i keyletter is used, but the file
name is omitted, the text is obtained by reading the standard input
until an end-of-file is encountered. If this keyletter is omitted, then
the sees file is created empty. Only one sees file may be created by
an admin command on which the i keyletter is supplied. Using a
single admin to create two or more sees files requires that they be
created empty (no -i keyletter). Note that the -i keyletter implies
the -n keyletter.

-rre! The release into which the initial delta is inserted. This keyletter may
be used only if the -i keyletter is also used. If the -r keyletter is not
used, the initial delta is inserted into release 1. The level of the initial
delta is always 1 (by default initial deltas are named 1.1).

-t[name] The name of a file from which descriptive text for the sees file is to
be taken. If the -t keyletter is used and admin is creating a new
sees file (the -n and/or '-i keyletters also used), the descriptive text
file name must also be supplied. In the case of existing sees files:
(1) a -t keyletter without a file name causes removal of the descrip­
tive text (if any) that is currently in the sees file, and (2) a -t
key letter with a file name causes text (if any) in the named file to
replace the descriptive text (if any) that is currently in the sees file.

10/89 Page 1

admin(1)

-fflag

Page 2

admin(1)

This keyletter specifies a flag, and, possibly, a value for the flag, to be
placed in the sees file. Several -f keyletters may be supplied on a
single admin command line. The allowable flags and their values are:

b Allows use of the -b keyletter on a get command to create

cceil

ffloor

dSID

i[str]

j

Hist

n

qtext

branch deltas.

The highest release (Le., ceiling): a number greater than 0
but less than or equal to 9999 that may be retrieved by a
get command for editing. The default value for an
unspecified c flag is 9999.

The lowest release (Le., floor): a number greater than 0
but less than 9999 that may be retrieved by a get com­
mand for editing. The default value for an unspecified f
flag is 1.

The default delta number (SID) to be used by a get com­
ma,nd.

Causes the No id keywords (ge6) message issued by
gElt or delta to be treated as a fatal error. In the absence
of this flag, the message is only a warning. The message is
issued if no sees identification keywords [see get(1)] are
found in the text retrieved or stored in the sees file. If a
value is supplied, the keywords must exactly match the
given string. The string must contain a keyword, and no
embedded newlines.

Allows concurrent get commands for editing on the same
SID of an sees file. This flag allows multiple concurrent
updates to the same version of the sees file.

A list of releases to which deltas can no longer be made
(get -e against one of these "locked" releases fails). The
list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying all
releases for the named sees file. I

Causes delta to create a null delta in each of those
releases (if any) being skipped when a delta is made in a
new release (e.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
anchor points so that branch deltas may later be created
from them. The absence of this flag causes skipped
releases to be non-existent in the sees file, preventing
branch deltas from being created from them in the future.

User-definable text substituted for all occurrences of the
%Q% keyword in sees file text retrieved by get.

10/89

admin (1) admin(1)

10/89

-dflag

-a login

-elogin

mmod module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text retrieved
by get. If the m flag is not specified, the value assigned is
the name of the sees file with the leading s. removed.

ttype type of module in the sees file substituted for all
occurrences of %Y% keyword in sees file text retrieved by
get.

v[pgm] Causes delta to prompt for Modification Request (MR)
numbers as the reason for creating a delta. The optional
value specifies the name of an MR number validity check­
ing program [see delta(1)]. This program will receive as
arguments the module name, the value of the type flag
(see ttype above), and the mrlist. (If this flag is set when
creating an sees file, the m keyletter must also be used
even if its value is null).

Causes removal (deletion) of the specified flag from an sees file. The
-d keyletter may be specified only when processing existing sees
files. Several -d keyletters may be supplied in a single admin com­
mand. See the -f keyletter for allowable flag names.

(llist used with -d indicates a list of releases to be unlocked. See the
-f keyletter for a description of the 1 flag and the syntax of a list.)

A login name, or numerical UNIX System group ID, to be added to
the list of users who may make deltas (changes) to the sees file. A
group ID is equivalent to specifying all login names common to that
group ID. Several a keyletters may be used on a single admin com­
mand line. As many logins or numerical group IDs as desired may
be on the list simultaneously. If the list of users is empty, then any­
one may add deltas. If login or group ID is preceded by a! they are
to be denied permission to make deltas.

A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the sees file. Specifying a
group ID is equivalent to specifying all login names common to that
group ID. Several -e keyletters may be used on a single admin com­
mand line.

-m[mrlist] The list of Modification Requests (MR) numbers is inserted into the
sees file as the reason for creating the initial delta in a manner ident­
ical to delta. The v flag must be set and the MR numbers are vali­
dated if the v flag has a value (the name of an MR number validation
program). Diagnostics will occur if the v flag is not set or MR valida­
tion fails.

-y[comment]
The comment text is inserted into the sees file as a comment for the
initial delta in a manner identical to that of delta. Omission of the
-y keyletter results in a default comment line being inserted.

Page 3

admln(1) admin(1)

FILES

The -y keyletter is valid only if the -i and/or -n keyletters are
specified (i.e., a new sees file is being created).

-h Causes aclmin to check the structure of the sees file [see
sccsfile(4»), and to compare a newly computed check-sum (the
sum of all the characters in the sees file except those in the first line)
with the check-sum that is stored in the first line of the sees file.
Appropriate error diagnostics are produced. This keyletter inhibits
writing to the file, nullifying the effect of any other keyletters sup­
plied; therefore, it is only meaningful when processing existing files.

-z The sees file check-sum is recomputed and stored in the first line of
the sees file (see -h, above). Note that use of this keyletter on a
truly corrupted file may prevent future detection of the corruption.

The last component of all sees file names must be of the form s.file. New sees
files are given mode 444 [see chmod(1»). Write permission in the pertinent direc­
tory is, of course, required to create a file. All writing done by admin is to a tem­
porary x-file, called x. file, [see get(1)], created with. mode 444 if the admin com­
mand is creating a new sees file, or with the same mode as the sees file if it
exists. After successful execution of admin, the sees file is removed (if it exists),
and the x-file is renamed with the name of the sees file. This renaming process
ensures that changes are made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and that
sees files themselves be mode· 444. The mode of the directories allows only the
owner to modify sees files contained in the directories. The mode of the sees
files prevents any modification at all except by sees commands.

aclmin also makes use of a transient lock file (called z .file), which is used to
prevent simultaneous updates to the sees file by different users. See get(1) for
further information.

x-file
z-file
bdiff

[see delta(1))
[see delta(1)]
Program to compute differences between the "gotten" file and
the g-file [see get(1)].

SEE ALSO
bdiff(1), ed(1), delta(1), get(1), help(1), prs(1), what(1), sccsfile(4).

DIAGNOSTICS

NOTES

Page 4

Use the help command for explanations.

If it is_necessary to patch an sees file for any reason, the mode may be changed
to 644 by the owner allowing use of a text editor. You must run aclmin -h on the
edited file to check for corruption followed by an admin -z to generate a proper
check-sum. Another aclmin -h is recommended to ensure the sees file is valid.

10/89

ar(1) ar(1)

NAME
ar - maintain portable archive or library

SYNOPSIS
ar [-V I - key [arg I [posname I afi1e [name . ..

DESCRIPTION

10/89

The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files. However, it can be used for any
similar purpose. The magic string and the file headers used by ar consist of
printable ASOI characters. If an archive is composed of printable files, the entire
archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor Id
to effect multiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named
file that is always the first file in the archive. This file is never mentioned or
accessible to the User. Whenever the ar command is used to create or update the
contents of' such an archive, the symbol table is rebuilt.. The s option described
below will force the symbol table to be rebuilt.

The -v option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The
key is formed with one of the following letters: drqtpmK. Arguments to the key,
alternatively, are made with one of more of the following set: vuaibcls.
posname is an archive member name used as a reference point in positioning other
files in the archive. afi1e is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r

q

t

p

m

Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. This option is useful to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files
in the archive are listed. If names are given, only those files are listed.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

Page 1

ar (1) ar(1)

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, print the
filename preceding each extraction.

c Suppress the message that is produced by default when afile is created.

1 This option is obsolete. It is recognized, but ignored, and will be removed
in the next release.

s Force the regeneration of the archive symbol table even if ar(1) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

SEE ALSO

NOTES

Page 2

1d(1), lorder(1), strip(1), a. out(4), ar(4).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

Since the archiver no longer uses temporary files, the -1 option is obsolete and
will be removed in the next release.

By convention, archives are suffixed with the characters . a.

10/89

8s(1) 8s(1)

NAME
as - assembler

SYNOPSIS
as [options] file

DESCRIPTION

FILES

The as command creates object files from assembly language source files. The
following flags may be specified in any order:

-0 objfile Put the output of the assembly in objfile. By default, the output file
name is formed by removing the . s suffix, if there is one, from the
input file name and appending a .0 suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-In Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Obsolete. Assembler issues a warning saying that it is ignoring the
-dloption.

-T Accept obsolete assembler directives.

-v Write the version number of the assembler being run on the stan-
dard error output.

-Q{y I n} If -o:y is specified, place the version number of the assembler being
run in the object file. The default is -Qn.

-y [nrl],dir Find the m4 preprocessor (In) and/or the file of predefined macros
(d) in directory dir instead of in the customary place.

By default, as creates its temporary files in /var/trrp. This location can be
changed by setting the environment variable TMPDIR [see terrpnam in trrpnan(3S)].

SEE ALSO

NOTES

10/89

cc(1), ld(1), m4(1), nm:l), strip(1), trrpnam(3S), a. out(4).

If the -m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)] cannot be used as symbols (variables, functions, labels) in the input file
since m4 cannot determine which keywords are assembler symbols and which
keywords are real m4 macros.

The . align assembler directive may not work in the . text section when
long/short address optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expres­
sion.

Whenever possible, you should access the assembler through a compilation sys­
tem interface program such as cc.

Page 1

cb(1) cb(1)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s] [-j] [-l/eng] [-V] [fi/e ...]

DESCRIPTION

NOTES

The cb comand reads syntactically correct C programs either from its arguments
or from the standard input, and writes them on the standard output with spacing
and indentation that display the structure of the C code. By default, cb preserves
all user new-lines.

cb accepts the follOwing options.

-s Write the code in the style of Kernighan and Ritchie found in The C
Programming Language.

-j Put split lines back together.

-lleng Split lines that are longer than /eng.

-V Print on standard error output the version of cb invoked.

cb treats asm as a keyword.

The format of structure initializations is unchanged by cb.

Punctuation that is hidden in preprocessing directives causes indentation errors.

SEE ALSO
cc(1).

10/89

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi­
tion, Prentice-Hall, 1988.

Page 1

cc(1) cc(1)

NAME
cc - C compiler

SYNOPSIS
cc [options] file ...

DESCRIPTION
cc is the interface to the C compilation system. The compilation tools conceptu­
ally consist of a preprocessor, compiler, optimizer, basic block analyzer, assem­
bler, and link editor. cc processes the supplied options and then executes the
various tools with the proper arguments. cc accepts several types of files as
arguments.

Files whose names end with . c are taken to be C source files and may be prepro­
cessed, compiled, optimized, instrumented for profiling, assembled, and link
edited. The compilation process may be stopped after the completion of any pass
if the appropriate options are supplied. If the compilation process runs through
the assembler, then an object file is produced whose name is that of the source
with .0 substituted for . c. However, the .0 file is normally deleted if a single C
file is compiled and then immediately link edited. In the same way, .files whose
names end in . s are taken to be assembly source files; they may be assembled
and link edited. Files whose names end in . i are taken to be preprocessed C
source files, and they may be compiled, optimized, instrumented for profiling,
assembled, and link edited. Files whose names do not end in . c, . s, or . i are
handed to the link editor, which produces a dynamically linked executable whose
name by default is a. out.

Since cc usually creates files in the current directory during the compilation pro­
cess, it is necessary to run cc in a directory in which a file can be created.

The following options are interpreted by cc:
-A name[(tokens)]

Associates name as a predicate with the specified tokens as if by a tassert
preprocessing directive.

Preassertions: system (unix)
cpu (M32)
machine (u3b2)

-A - Causes all predefmed macros (other than those that begin with __) and
predefined assertions to be forgotten.

-B , c can be either dynamic or static. -B dynamic causes the link editor to
look for files named libx. so and then for files named libx. a when given
the -lx option. -B static causes the link editor to look only for files
named libx. a. This option may be specified multiple times on the com­
mand line as a toggle. This option and its argument are passed to ld.

-c Cause the preprocessing phase to pass along all comments other than
those on preprocessing directive lines.

-c Suppress the link editing phase of the compilation and do not remove any
produced object files.

1M9 ~~1

CC(1)

Page 2

cc(1)

-0 name[=tokens)
Associates name with the specified tokens as if by a tdefine preprocessing direc­
tive. If no =tokens is specified, the token 1 is supplied.

-de

-E

-f

-G

Predefinitions: u3b2
unix

e can be either y or n. -dy specifies dynamic linking, which is the default,
in the link editor. -dn specifies static linking in the link editor. This
option and its argument are passed to ld.

Only preprocess the named C files and send the result to the standard
output. . The output will contain preprocessing directives for use by the
next pass of the compilation system.

This option is obsolete and will be ignored.

Used to direct the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to ld. It cannot be
used with the -dn option.

Cause the compiler to generate additional information needed for the use·
of sdb. Use of sdb on a program compiled with both the -9 and -0
options is not recommended unless the user understands the behavior of
optimization.

-H Print, one per line, the path name of each file included during the current
compilation on the standard error output.

-I dir Alter the search for included files whose names do not begin with / to
lookindir prior to the usual directories. The directories for multiple -I
options are searched in the order specified.

-J sfm
Specify the assembly language source math library, libsfm. sa. This
library is searched when its name is encountered, so the placement of this
option is significant. Note that this is a special-purpose library and
should be used only when necessary [see intro(3M»). This option and its
argument are passed to the optimizer only when both -0 and -Ksd are
also specified.

-K [mode, goal, PIC, minabi)

-K mode

-Kgoal

mode can be either fpe (software floating point emulation) or mau
(hardware math accelerator unit). Compile with the indicated
floating-point mode.

goal can be either sd to optimize for speed, or sz to optimize for
size; either have an effect only if the -0 option is also specified.

-K PIC
Causes position-independent code (PIO to be generated.

10/89

cc(1)

10/89

cc(1)

-K minabi
Directs the compilation system to use a version of the C library
that minimizes dynamic linking. without changing the application's
ABI conformance (or non-conformance, as the case may be).
Applications that use the Network Services Library or the X library
may not use -K minabi.

The -K option can accept multiple arguments. For example,

-K fpe, sz can be used instead of -K fpe -K sz.

-L dir Add dir to the list of directories searched for libraries by 1d This option
and its argument are passed to 1d.

-1 name
Search the library 1ibname. so or 1ibname. a. Its placement on the com­
mand line is significant as a library is searched at a point in time relative
to the placement of other libraries and object files on the command line.
This option and its argument are passed to 1d.

-0 Arrange for compilation phase optimization. This option has no effect on
. s files.

-0 pathname
Produce an output object file pathname, instead of the default a. out. This
option and its argument are passed to 1d.

-p Only preprocess the named C files and leave the result in corresponding
files suffixed . i. The output will not contain any preprocessing directives,
unlike -E.

-p

-Qe

-qe

-s

Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, profiled versions of
1ibc.a and Hbm.a (with the :-lm option) are linked if the -dn option is
used. A lOOn. out file will then be produced at normal termination of exe­
cution of the object program. An execution profile can then be generated
by use of prof.

e can be either y or n. If e is y, identincation information about each
invoked compilation tool will be added to the output files (the default
behavior). This can be useful for software administration. Giving n for e
suppresses this information.

e can be either 1 or p. --q1 causes the invocation of the basic block
analyzer and arranges for the production of code that counts the number
of times each source line is executed. A listing of these counts can be gen­
erated by use of 1prof. -qp is a synonym for -po

Compile, optimize (if -0 is present), and do not assemble or link edit the
named C files. The assembler-language output is left in corresponding
files suffixed . s.

-u name
Causes any definition of name to be forgotten, as if by a tundef prepro­
cessing directive. If the same name is specified for both -0 and -u, name is
not defined, regardless of the order of the options.

Page 3

cc(1)

Page 4

-v

-v

cc(1)

Cause each invoked tool to print its version information on the standard
error output.

Cause the compiler to perform more and stricter semantic checks, and to
enable certain lint-like checks on the named C files.

-W tool, arg1[, arg2 ... J
Hand off the argument(s) argo each as a separate argument to tool. Each
argument must be separated I from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character; the backslash is removed from the
resulting argument.) tool can be one of the following:

p A synonym for 0
o compiler
2 optimizer
b basic block analyzer
a assembler
I link editor

For example, -Wa, -0, objfi1e passes -0 and objfi1e to the assembler, in that
order; also -WI,-I,name causes the linking phase to override the default
name ofthe dynamic linker, /usr/Iib/Iibc.so.l.

The order in which the argument(s) are passed to a tool with respect to
the other specified command line options may change.

-x c Specify the degree of conformance to the ANSI C standard. c can be one
of the following:

t (transition)
The compiled language includes all new features compatible with
older (pre-ANSI) C (the default behavior). The compiler warns
about all language constructs that have differing behavior between
the new and old versions and uses the pre-ANSI C interpretation.
This includes, for example, warning about the use of trigraphs the
new escape sequence \a, and the changes to the integral promotion
rules.

a (ANSI)
The compiled language includes all new features of ANSI C and
uses the new interpretation of constructs with differing behavior.
The compiler continues to warn about the integral promotion rule
changes, but does not warn about trigraph replacements or new
escape sequences.

c (conformance)
The compiled language and associated header files are ANSI C
conforming, but include all conforming extensions of -xa. Warn­
ings will be produced about some of these. Also, only ANSI
defined identifiers are visible in the standard header files.

10/89

cc(1)

FILES

10/89

CC(1)

The predefined macro __ STDC __ has the value 0 for -Xt and -Xa, and 1
for -Xc. All warning messages about differing behavior can be eliminated
in -Xa through appropriate coding; for example, use of casts can eliminate
the integral promotion change warnings.

-y item, dir
Specify a new directory dir for the location of item. item can consist of any
of the characters representing tools listed under the -w option or the fol­
lowing characters representing directories containing special files:

F obsolete. Use -yp instead. For this release,-YF will be simulated
using -YP. -YF will be removed in the next release.

I directory searched last for include files: INCDIR (see -I)
S directory containing the start-up object files: LIBDIR
L obsolete. Use -yP instead. For this release, -YL will be simulated

using -YP. -YL will be removed in the next release.
u obsolete. Use -yP instead. For this release, -YU will be simulated

using-yp. -YU will be removed in the next release.
P Change the default directories used for finding libraries. dir is a

colon-separated path list.

If the location of a tool is being specified, then the new path name for the
tool will be dir/tool. If more than one -Y option is applied to anyone
item, then the last occurrence holds.

cc recognizes -a, -B, -e, -h -m. -0, -r, -s, -t, -u, and -z and passes these
options and their arguments to Id. cc also passes any unrecognized options to
Id without any diagnostic.

When cc is put in a file prefixcc, the prefix will be recognized and used to prefix
the names of each tool executed. For example, OLDcc will execute OLDacollp,
OLDnewoptim, OLDbasicblk, OLDas, and OLDld, and will link the object file(s)
with OLDcrtl. o. Therefore, be careful when moving cc around. The prefix
applies to the compiler, optimizer, basic block analyzer, assembler, link editor,
and the start-up routines.

file.c
file. i
file. 0
file. s
a.out
LIBDIR/*crtLo
LIBDIR/*crtl.o
LIBDIR/ *crtn. 0

TMPDIR/*
LIBDIR/ aconp
LIBDIR/ newoptirn
LlBDIR/basicblk
BINDIR/as

C source file
preprocessed C source file
object file
assembly language file
link-edited output
startup initialization code
startup routine
last startup routine
temporary files
preprocessor and compiler
optimizer
basic block analyzer
assembler

Page 5

cc(1)

BINDIR/ld
LIBDIR/ Hbc . so
LIBDIR/ Hbc . a

INCDIR
LIBDIR
BINDIR
TMPDIR

link editor
shared standard C library
archive standard C library

usually /usr/include
usually /usr/ccs/lib
usually /usr/ccs/bin
usually /var/trr{> but can be redefined
environment variable TMPDIR (see
trr{>nan(3S».

cc(1)

by setting the
tempnam in

SEE ALSO

NOTES

Page 6

as(1), ld(1), Hnt(1), lprofFP (1) , prof (1) , sdb (1), IOOnitor (3C) ,
tmpnam(3S) .
The "C COmpilation System" chapter in the Programmer's Guide: ANSI C
and Programming Support Tools.
Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi­
tion, Prentice-Hall, 1988.
American National Standard for Information Systems - Programming Language
C, X3.1S9-1989.

Obsolescent but still recognized cc options include -f, -F, -YF, -YL, and -YO. The
-ql and -0 options do not work together; -0 will be ignored.

10/89

cdc(1) cdc(1)

NAME
cdc - change the delta comment of an sees delta

SYNOPSIS
cdc -r SID [-m[mrlist]] [-y[comment]] file ...

DESCRIPTION

10/89

cdc changes the delta comment, for the SID (Sees identification string) specified
by the -r keyletter, of each named sees file.

The delta comment is the Modification Request (MR) and comment information
normally specified via the -m and -y keyletters of the delta command.

If file is a directory, cdc behaves as though each file in the directory were
specified as a named file, except that non-secs files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see the NOTES section) and each
line of the standard input is taken to be the name of an secs file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu­
ments and file names.

All the described keyletter arguments apply independently to each named file:

-rSJD

-mmrlist

Used to specify the sees IDentification (SID) string of a delta for
which the delta comment is to be changed.

If the secs file has the v flag set [see admin(1)] then a list of MR
numbers to be added and/or deleted in the delta comment of the
SID specified by the -r keyletter may be supplied. A null MR list
has no effect.

mrlist entries are added to the list of MRs in the same manner as
that of delta. In order to delete an MR, precede the MR number
with the character ! (see the EXAMPLES section). If the MR to be
deleted is currently in the list of MRs, it is removed and changed
into a comment line. A list of all deleted MRs is placed in the
comment section of the delta comment and preceded by a com­
ment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the stan­
dard input is read; if the standard input is not a terminal, no
prompt is issued. The MRs? prompt always precedes the com­
!rents? prompt (see -y keyletter).

mrlist entries in a list are separated by blanks and/or tab charac­
ters. An unescaped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(l)]' it is taken to be
the name of a program (or shell procedure) that validates the
correctness of the MR numbers. If a non-zero exit status is
returned from the MR number validation program, cdc ter­
minates and the delta comment remains unchanged.

Page 1

cdc(1)

-y[comment]

cdc(1)

Arbitrary text used to replace the comment(s) already existing for
the delta specified by the -r keyletter. The previous comments
are kept and preceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the
prompt comnents? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped new-line character terminates
the comment text.

If you made the delta and have the appropriate file permissions, you can change
its delta comment. If you own the file and directory you can modify the delta
comment.

EXAMPLES

FILES

cdc -rl.6 -m"bl88-12345 !bl87-54321 bl89-00001" -ytrouble s.file

adds bl88-12345 and bl89-00001 to the MR list, removes b187-54321 from the MR
list, and adds the comment trouble to delta 1 .6 of s. file.

Entering:

cdc -rl.6 s.file
MRs? !bl87-54321 bl88-12345 bl89-00001
comnents? trouble

produces the same result.

x-file [see delta(1)]
z-file [see delta(1)]

SEE ALSO
admin(1), delta(1), get(1), help(1), prs(l), sccsfile(4).

DIAGNOSTICS

NOTES

Page 2

Use help for explanations.

If sees file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

10/89

cflow(1} cflow(1 }

NAME
cflow - generate C flowgraph

SYNOPSIS
cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION

10/89

The cflow command analyzes a collection of C, yaec, lex, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with . y, .1, and . c are processed by yacc, lex, and the C compiler as appropri­
ate. The results of the preprocessed files, and files suffixed with . i, are then run
through the first pass of lint. Files suffixed with . s are assembled. Assembled
files, and files suffixed with .0, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references
,that is written on the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol followed
by a colon and its definition. Normally only function names that do not begin
with an underscore are listed (see the -i options below). For information
extracted from C source, the definition consists of an abstract type declaration
(e.g., char *), and, delimited by angle brackets, the name of the source file and
the line number where the definition was found. Definitions extracted from
object files indicate the file name and location counter under which the symbol
appeared (e.g., text). Leading underscores in C-style external names are deleted.
Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found.
For undefined references, only < > is printed.

As an example, suppose the following code is in file. c:

int i;

main 0
{

fO
(

fO;
gO;
fO;

i = hO;

The command

cflow -ix file.c

produces the output

1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1>
5 g: <>

Page 1

cflow(1) cflow(1)

When the nesting level becomes too deep, the output of eflow can be piped to
the pr command, using the -e option, to compress the tab expansion to some­
thing less than every eight spaces.

In addition to the -0, -I; and -U options [which are interpreted just as they are
by ee], the following options are interpreted by eflow:

-r Reverse the "caller:callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexico­
graphical order by callee.

-ix Include external and static data symbols; The default is to include only
functions in the flowgraph.

-i_ Include names that begin with an underscore. The default is to exclude
these functions (,md data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is
cut off. By default this number is very large. . Attempts to set the cutoff
depth to a nonpositive integer will be ignored.

SEE ALSO
as(l), ec(l), lex(1), lint(1), run(l), yaee(1).
pr(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Complains about multiple definitions and only.believes the first ..

Files produced by lex and yaee cause the reordering of line number declarations,
which can confuse eflow. To get proper results, feed eflow the yaee or lex
input.

10/89

cof2elf(1) cof2elf(1)

NAME
cof2elf - COFF to ELF object file translation

SYNOPSIS
cof2elf [-iqV] [-Q{yn}] [-8 directory] files

DESCRIPTION
cof2elf converts one or more COFF object files to ELF. This translation occurs
in place, meaning the original fil~ contents are modified. If an input file is an
archive, each member will be translated as necessary, and the archive will be
rebuilt with its members in the original order. cof2elf does not change input
files that are not COFF.

Options have the following meanings.

~~ Normally, the files are modified only when full translation occurs.
Unrecognized data, such as unknown relocation types, are treated as
errOrs and prevent translation .. Giving the -i flag ignores these par­
tial translation conditions and modifies the file anyway.

-q Normally, co£2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The -q flag (for quiet)
suppresses these messages.

-Qarg If arg is y, identification information about cof2elf will be added to
tile output files. This can be useful for software administration.
Giving n for arg explicitly asks for no such information, which is the
default behavior.

-8directory As mentioned above, cof2elf modifies the input files. This option
saves a copy of the original files in the specified directory, which
must exist. cof2elf does not save files it does not modify.

-v This flag tells cof2elf to print a version message on standard error.
SEE ALSO

NOTES

10/89

ld(1), elf(3E), a. out(4), ar(4).

Some debugging information is discarded: Although this does not affect the
behavior of a running program, it may affect the information available for sym­
bolic debugging.

cof2e;tf translates only COFF relocatable files. It does not translate executable or
static shared library files for two main reasons. First, the operating system sup­
ports eXe<:utable files and static shared li~raries,· making translation unnecessary.
SeCond, those files have specific address ~nd alignment constraints determined by
the file format. Matching the constraints with a different object file format is
problematic. ..

When possible, programmers should recompile their .source code to build new
object files. cof2elf is provided for those times when source cOde is unavailable.

Page 1

comb(1) comb(1)

NAME
comb - combine sees deltas

SYNOPSIS
comb [-0] [-s] ['"1lSID] [-clist] files

DESCRIPTION

FILES

comb generates a shell procedure [see sh(l)] that, when run, reconstructs the
given sees files. The reconstructed files are typically smaller than the original
files. The arguments maybe specified in any 'Order, but . all keyletter arguments
apply to all named sees files. If a directory is named, conb .behaves as· though
each file in the directory were specified as a named file, except that non-sees files
(last component of the path name does not begin With s.) and .unreadable files
are silently ignored. If a name of - is given, the standard input is read; each line
of the input is taken to be the name of an sees file to be processed; non-SCes
files and unreadable files are silently ignored. The generated shell procedure is
written on the standard output.

The keyletter arguments are as follows. Each argument is. explained as if only
one nam.ed file is to be processed, but the effects of any keyletter argument apply
independently to each named file. .

-0

-s

For each get -e, this argument causes the reconstructed file to be
accessed . at the release of the delta to, be created, otherwise the recon­
structed file would be accessed at the most recent ancestor. Use of the -0
keyleuer may decrease the siZe of the reconstructed Secs file. It may also
alter the shape of the delta tree of the original file.

This' argument causes comb to generate a shell procedure that, whim run,
produces a report that gives for each file: the file name, size. (in blocks)
after combining, original size (also in blocks), and percentage change com­
puted by:

1QO * (original - combined) I original
It is recommended ,that before any sees files are actually combined, one
should use this option to determine exactly how much space is saved by
the combining process.

"'-pSID The sees identification string (SID) of the oldest delta to be preserved. All
older deltas 'are discarded in the reconstructed file.

-clist A list of deltas to be preserved. All other deltas are discarded. See get(1)
for the syntax of a list.

If no keyletter arguments are specified, com· preserves· only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

s.COMB
comb?????

the reconstructed sees file
temporary file

SEE ALSO

10/89

admin(1), delta(1), get(1), help(1), prsm, sccsfile(4).
sh(1) in the User's Reference Manual.

Page 1

comb(1) comb(1)

DIAGNOSTICS
Use help(1) for explanations.

NOTES
comb may rearrange the shape of the tree of deltas.

comb may not save any space; in fact, it is possible for the reconstructed file to be
larger than the original.

Page 2 10/89

cscope(1) cscope(1)

NAME
cscope - interactively examine a C program

SYNOPSIS
cscope [options] files • .•

DESCRIPTION

10/89

cscope is an interactive screen-oriented tool that allows the user to browse
through C source files for specified elements of code.

By default, cscope examines the C (. c and . h), lex (.1), and yacc (. y) source
files in the current directory. cscope may also be invoked for source files named
on the command line. In either case, cscope searches the standard directories for
!include files that it does not find in the current directory. cscope uses a sym­
bol cross-reference, cscope. out by default, to locate functions, function calls,
macros, variables, and preprocessor symbols in the files.

cscope builds the symbol cross-reference the first time it is used on the source
files for the program being browsed. On a subsequent invocation, cscope
rebuilds the cross-reference only if a source file has changed or the list of source
files is different. When the cross-reference is rebuilt, the data for the unchanged
files are copied from the old cross-reference, which makes rebuilding faster than
the initial build.

The following options can appear in any combination:

-b Build the cross-reference only.

-c
-c

-d

-e

~f reffi1e

-I incdir

-i namefiJe

Ignore letter case when searching.

uSe. only. ASCII characters in the cross-reference file, that is, do
not compress the data.

00 not llpd~te the cross-reference.

$uppres.s the "e command prompt between files.

... J.Jsereffile as the cross-reference file name instead of the default
cScope.otit. .
L.ook in incdir (before looking in INCDIR, the standard place for
header. files, normally /usr/include) for any !include files
whosenilmes do not begin with / and that are not specified on
thecomtnand line or in namefi1e below. (The tinclude files may

, pespecified with either double quotes or angle brackets.) The
.!ncdi,r dil'ectory is searched in addition to the current directory
. (w.hil':l\ is $(larched first) and the standard list (which is searched
lasl1 .. !fi more than one occurrence of -I appears, the directories
Jl1lie:seatt:hed in the order they appear on the command line.

~;~rowsethtough all source files whose names are listed in namefi1e
(fil(rna~es separated by spaces, tabs, or new-lines) instead of the

,4ef\ittil~ (CScope. files). If this option is specified, cscope
,':~~!\9t~sariy files appearing on the command line.
,/','''' ,-', , '

~;1~';,'t j',:~;<,'"
"~ "1'"\"

Page 1

cscope(1)

-L

-1

-num pattern

-P path

-pn

-s dir

-T

-u

-u

cscope(1)

Do a single search with line-oriented output when used with the
-num pattern option.

Line-oriented interface (see "Line-Oriented Interface" below).

Go to input field num (counting from 0) and find pattern.

Prepend path to relative file names in a pre-built cross-reference
file so you do not have to change to the directory where the
cross-reference file was built. This option is only valid with the
-d option.

Display the last n file path components instead of the default (1).
Use 0 to not display the file name at all.

Look in dir for additional source files. This option is ignored if
source files are given on the command line.

Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a
period (.) will not match any symbol if its. minimum length is
greater than eight characters.

Do not check file time stamps (assume that no files have
changed).

Unconditionally build the cross-reference file (assume that all
files have changed).

-v Print on the first line of screen the version number of cscope.

The -I, -p, and -T options can also be in the cscope. files file.

Requesting the Initial Search
After the cross-reference is ready, cscope will display this menu:

Find this C symbol:
Find this function definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.
SPACE Display next set of matching lines.
+ Display next set of matching lines.

Page 2 10/89

cscope(1)

.... e
>
I

Display previous set of matching lines.
Edit displayed files in order .
A ppend the displayed list of lines to a file.
Pipe all lines to a shell command.

At any time these single-character commands can also be used:

TAB Move to next input field.
RETURN Move to next input field .
.... n Move to next input field .
.... p Move to previous input field .
.... y Search with the last text typed .
.... b Move to previous input field and search pattern .
.... f Move to next input ficld and search pattern .

cscope(1)

.... c Toggle ignore/use letter case when searching. (When ignoring lettcr
case, search for FILE will match File and file.)

.... r Rebuild the cross-reference .
Start an interactive shell (type d to return to cscope) .

.... 1 Redraw the screen.
? Give help information about cscope commands .
.... d Exit cscope.

Note: If the first character of the text to be searched for matches one of the abovc
commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new
text, and then it will display the lines containing the old text. Select the lines to
be changed with these singlc-character commands:

1-9 Mark or unmark the line to be changed.
* Mark or unmark all displayed lines to be changed.
SPACE Display next sct of lines.
+ Display next set of lines.

a
.... d

ESCAPE

.... 1
?

Display previous set of lines.
Mark all lines to be changed.
Change the marked lines and exit .
Exit without changing the marked lines.
Start an interactive shell (type d to return to cscope).
Redraw the screen .
Give help information about cscope commands.

Special Keys
If your terminal has arrow keys that work in vi(1), you can use them to move
around the input fields. The up-arrow key is useful to move to the previous
input field instead of using the TAB key repeatedly. If you have the CLEAR, NEXT,
or PREV keys they will act as the 1, +, and - commands, respectively.

line-Oriented Interface

10/89

The -1 option lets you use cscope where a screen-oriented interface would not be
useful, e.g., from anothcr screen-oriented program.

Page 3

cscope(1) cscope(1)

cscope will prompt with » when it is ready for an input line starting with the
field number (counting from 0) immediately followed by the search pattern, e.g.,
lmain finds the definition of the main function.

If you just want a single search, instead of the -1 option use the -L and -num
pattern options, and you won't get the » prompt.

For -1, cscope outputs the number of reference lines
cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func­
tion name, line number, and line text, separated by spaces, e.g.,

main.c main 161 main(argc, argv)
Note that the editor is not called to display a single reference, unlike the screen­
oriented interface.

You can use the r command to rebuild the database.

cscope will quit when it detects end-of-file, or when the first character of an
input line is d or q.

ENVIRONMENT VARIABLES

FILES

Page 4

EDITOR Preferred editor, which defaults to vi(l).
INCLUDED IRS Colon-separated list of directories to search for tinclude files.
HOME Home directory, which is automatically set at login.
SHEIJ.. Preferred shell, which defaults to sh(1).
SOORCEDIRS Colon-separated list of directories to search for additional source

files.
TERM Terminal type, which must be a screen terminal.
TERMINFO Terminal information directory full path name. If your terminal

is not in the standard terminfo directory, see curses(3X) and
terminfo(4) for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /var/tnp.
VIEWER Preferred file display program [such as pg], which overrides EDI­

TOR (see above).
VPATH A colon-separated list of directories, each of which has the same

directory structure below it. If VPATH is set, cscope searches for
source files in the directories specified; if it is not set, cscope
searches only in the current directory.

cscope. files Default files containing -I, -p, and -T options and the list of
source files (overridden by the -i option).

cscope.out

ncscope.out

INCDIR

Symbol cross-reference file, which is put in the home directory if
it cannot be created in the current directory.

Temporary file containing new cross-reference before it replaces
the old cross-reference.

Standard directory for Unclude files (usually /usr/include).

10/89

cscope(1) cscope(1)

SEE ALSO

NOTES

10/89

The "cscope" chapter in the Programmer's Guide: ANSI C and Programming Sup­
port Tools.

cscope recognizes function definitions of the form:

fname blank (args) white arg_decs white {

where:

fname

blank

args

white

is the function name

is zero or more spaces or tabs, not including newlines

is any string that does not contain a II or a newline

is zero or more spaces, tabs, or newlines

are zero or more argument declarations (arg_decs may include com­
ments and white space)

It is not necessary for a function declaration to start at the beginning of a line.
The return type may precede the function name; escope will still recognize the
declaration. Function definitions that deviate from this form will not be recog­
nized by cscope.

The Function column of the search output for the menU option Find functions
called by this function: input field will only display the first function
called in the line, that is, for this function

eO
{

return (f() + g(»;

the display would be
Functions called by this function: e

File Function Line
a.c f 3 return(f() + g(»;

Occasionally, a function definition or call may not be recognized because of
braces inside hf statements. Similarly, the use of a variable may be incorrectly
recognized as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recog­
nized as a global definition, e.g.,

LDFlLE *
hf AR16WR

Preprocessor statements can also prevent the recognition of a global definition,
e.g.,

char flag
tifdef ALLOCATE STORAGE

-1
tendif

Page 5

cscope(1) cscope(1)

Page 6

A function declaration inside a function is incorrectly recognized as a function
call, e.g.,

fO
{

void gO;
}

is incorrectly recognized as a call to g () .

cscope recognizes C++ classes by looking for the class keyword, but doesn't
recognize that a struct is also a class, so it doesn't recognize inline member
function definitions in a structure. It also doesn't expect the class keyword in a
typedef, so it incorrectly recognizes X as a definition in

typedef class X * y;

It also doesn't recognize operator function definitions
Bool Feature::operator==(const Feature & other)
{

10/89

ctrace(1) ctrace(1)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [options] [file]

DESCRIPTION

10/89

The ctrace command allows the user to monitor the sequential execution of a C
program as each program statement executes. The effect is similar to executing a
shell procedure with the -x option. ctrace reads the C program in file (or from
standard input if the user does not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. The output
of ctrace must be placed into a temporary file because the cc(1) command does
not allow the use of a pipe. This file can then be compiled and executed.

As each statement in the program executes, it. will be listed at the terminal, fol­
lowed by the name and value of any variables referenced or modified in the
statement; these variable names and values will be followed by any output from
the statement. Loops in the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements within the loop is exe­
cuted: A warning message is printed after each 1000 loop cycles to help the user
detept infinite loops. The trace output goes to the standard output so the user
can put it into a file for examination with an editor or the bfs(1) or tail(1) com­
mands.

The options commonly used are:

-f fUnctions Trace only these functions.
-v functions / Trace all but these functions.
The user may want to add. to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. double
variables are printed as floating point m~mbers in scientific notation. The user
can request that var!ableli be printed in additioI1a.1 forIrults, if appropriate, with
these options: \ ' , . '.'

-0 Octal
-x Hexadecimal
-u Unsigned
-e Floating point

These options are used only in special circumstances:

-1 n Check n consecutively executed statements for looping trace output,
instead of the .siefault of 20. Use 0 to get all the trace output from loops.

-s Suppress re9-(mdant trace output from simple assignment statements and
string coJ?f function calls. This option can hide a bug caused by use of
the = oyerator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the maximum
n~ber is 20). The diagnostics section explains when to use this option.

/

/

Page 1

ctrace(1) ctrace(1)

-p Preprocess the input before tracing it. The user can also use the -0, -I,
and -u ceO) options.

-p string
Change the trace print function from the default of printf. For example,
fprintf (stderr, would send the trace to the standard error output.

-r f Use file f in place of the runtime.c: trace function package. This replace­
ment lets the user change the entire print function, instead of just the
name and leading arguments (see the -p option).

-v Prints version information on the standard error.
-Qarg If arg is y, identification information about ctrace will be added to the

output files. This can be useful for software administration. Giving n for
arg exlicitly asks for no such information, which is the default behavior.

EXAMPLE
If the file lc. c contains this C program:

1 tinclude <stdio.h>
2 main 0 /* count lines in
3 {
4
5
6

int c, nl;

nl = 0;

input */

7
8

while «c = getchar(» != ~OF)
if (c == '\n')

9
10
11

++nl;
printf ("%d\n", nl);

these commands and test data are entered:

cc lc.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will be
the number 2, which is incorrect because there is only one line in the test data.
The error in this program is common, but subtle. If the user invokes ctrace
with these commands:

ctrace lc.c >temp.c
cd tenp.c
a.out

the output will be:

2 mainO
6 nl = 0;

/* nl = 0 */
7 while «c = getcharO) != EOF)

ctrace(1) ctrace(1)

The program is now waiting for input. If the user enters the same test data as
before, the output will be:

1* c == 49 or '1' *1
8 if (c" '\n')

1* c == 10 or '\n' *1
9 ++nl;

1* nl == 1 *1
7 while «c = getchar 0) != EOF)

1* c -- 10 or '\n' *1
8 if (c - ' \n')

1* c =- 10 or '\n' *1
9 ++nl;

1* nl -= 2 *1
7 while «c - getcharO) I .. EOF)

If an end-of-file character (cntl-d) is entered, the final output will be:

1* c = -1 *1
10 printf("%d\n", nl);

1* nl == 2 */2
return

Note the information printed out at the end of the trace line for the nl variable
following line 10. Also note the return comment added by ctrace at the end of
the trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable c is assigned the value '1' in line 7, but in
line 8 it has the value '\n'. Once user attention is drawn to this if statement, he
or she will probably realize that the assignment operator (=) was used in place of
the equality operator (=). This error can easily be missed during code reading.

EXECUTION-TIME TRACE CONTROL

10/89

The default operation for ctrace is to trace the entire program file, unless the -f
or -v options are used to trace specific functions. The default operation does not
give the user statement-by-statement control of the tracing, nor does it let the
user turn the tracing off and on when executing the traced program.

The user can do both of these by adding ctroff() and ctron() function calls to
the program to turn the tracing off and on, respectively, at execution time. Thus,
complex criteria can be arbitrarily coded for trace control with if statements, and
this code can even be conditionally included because ctrace defmes the CTRACE
preprocessor variable. For example:

tifdef CTRACE
if (c == 'I' && i > 1000)

ctronO;
tendif

These functions can also be called from sdb(l) if they are compiled with the -9
option. For example, to trace all but lines 7 to 10 in the main function, enter:

Page 3

ctrace (1) ctrace (1)

FILES

sdb a.out
main:7b ctroff()
main:llb ctron()
r

The trace can be turned off and on by setting static variable tr_ct_ to 0 and 1,
respectively. This on/off option is useful if a user is using a debugger that can
not call these functions directly.

/usr/ccs/lib/ctrace/runtime.c run-time trace package

SEE ALSO
sdb(1), ctype(3C), fclose(3S), printf(3S), string(3C).
bfs(1), tail(1) in the User's Reference Manual.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since the
traced code often gets some cc warning messages. The user can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics

NOTES

Page 4

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression" error. Use the -t option to increase
this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that tabs are used
to indent the code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by Hfdef/ tendif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a tdefine
preprocessor statement.

'if ... else if' sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and -u preprocessor options.

Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will
cause a syntax error.

Pointer values are always treated as pointers to character strings.

10/89

ctrace(1) ctrace(1)

10/89

ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entire aggregate. ctrace may
choose to print the address of an aggregate or use the wrong format <e.g.,
~ . 149050e-311 for a structure with two integer members} when printing the
value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file
program. Separate output elimination can result in functions called from a loop
still being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

Page 5

cxref(1) cxref (1)

NAME
exref - generate C program cross-reference

SYNOPSIS
exref [options] files

DESCRIPTION
The exref command analyzes a collection of C files and builds a cross-reference
table. exref uses a special version of ee to include tdefine'd information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each
individual file, or, with the -e option, in combination. The table includes four
fields: NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the
LINE field also show reference marks as appropriate. The reference marks
include:

assignment
declaration
definition ..

If no reference marks appear, you can assume a general reference.

OPTIONS

10/89

exref interprets the -0, -I, -U options in the same manner that ee does. In
addition, cxref interprets the following options:

-e

-d

-1

-0 file

-8

-t

-wnum

-c

-F
-Lcois

-v

Combine the source files into a single report. Without the -e option,
exref generates a separate report for each file on the command line.

Disables printing declarations, making the report easier to read.

Does not print local variables. Prints only global and file scope statistics.

Direct output to file.

Operates silentlYi does not print input file names.

Format listing for 80-column width.

Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 5l.

Runs only the first pass of exref, creating a . ex file that can later be
passed to exref. This is similar to the -e option of cc or lint.

Prints the full path of the referenced file names.

Modifies the number of columns in the LINE field. If you do not specify
a number, exref defaults to five columns.

Prints version information on the standard error.

Page 1

cxref (1) cxref (1)

-wname,file, function, line
Changes the default width of at least one field. The default widths are:

FILES

Field

NAME
FILE
FUNCTION
LINE

Characters

15
13
15
20 (4 per column)

TMPDIR/tcx. *

TMPDIR/cx.*

LIBDIR/xref

temporary files

temporary files

accessed by cxref

usually /usr/ccs/lib LIBDIR

TMPDIR usually /var/tnp but can be redefined by setting the
environment variable 'lMPDIR [see tenpnam in tnpnam(3S)].

EXAMPLE
a.c

1 main 0
2 (
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8

Resulting cToss-reference table:

NAME FILE FUNCTION
c a.c
i a.c main
main a.c
u3b2 predefined
unix predefined

SEE ALSO
cc(1), lint(1).

DIAGNOSTICS

LINE
4- 7=
3* 6= 7
2*
0*
0*

Error messages usually mean you cannot compile the files.

Page 2 10/89

delta(1) delta (1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

DESCRIPTION

10/89

delta is used to permanently introduce into the named sees file changes that
were made to the file retrieved by get -e (called the g-file or generated file).

delta makes a delta to each named sees file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-sees files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see the NOTES section); each line of the standard input is taken to
be the name of an sees file to be processed.

delta may issue prompts on the standard output depending on certain keyletters
specified and flags [see admin(1)] that may be present in the sees file (see -m and
-y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the sees
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the same
sees file were done by the same person (login name). The
SID value specified with the -r keyletter can be either the
SID specified on the get command line or the SID to be
made as reported by the get command [see get(l)]. A
diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the created
delta's SID, as well as the number of lines inserted, deleted
and unchanged in the sees file.

-n

-glist

-m[mrlist]

Specifies retention of the edited g-file (normally removed at
completion of delta processing).

Specify a list [see get(1) for the definition of list] of deltas
that are to be ignored when the file is accessed at the
change level (SID) created by this delta.

If the sees file has the v flag set [see admin(1)] then a
Modification Request (MR) number must be supplied as the
reason for creating the new delta. If -rn is not used and the
standard input is a terminal, the prompt MRs? is issued on
the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments? prompt (see
-y keyletter). MRs in a list are separated by blanks and/or
tab characters. An unescaped new-line character terminates
the MR list. Note that if the v flag has a value [see
admin(1)], it is taken to be the name of a program (or shell

Page 1

delta (1) delta (1)

FILES
g-file

p-file

q-file

x-file

z-file

d-file

-y[commentl

-p

bdiff

procedure) that will validate the correctness of the MR
numbers. If a non-zero exit status is returned from the MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment. If -y is
not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before
the standard input is read; if the standard input is not a ter­
minal, no prompt is issued. An unescaped new-line charac­
ter terminates the comment text.

Causes delta to print (on the standard output) the sees
file differences before and after the delta is applied in a
diff(l) format.

Existed before the execution of delta; removed after comple­
tion of delta.
Existed before the execution of delta; may exist after comple­
tion of delta.
Created during the execution of delta; removed after comple­
tion of delta.
Created during the execution of delta; renamed to sees file
after completion of delta.
Created during the execution of delta; removed during the
execution of delta.
Created during the execution of delta; removed after comple­
tion of delta.
Program to compute differences between the "gotten" file and
the g-file.

SEE ALSO
admin(1), cdc(1), get(l), help(1), prs(1), rmdel(1), sccsfile(4).
bdiff(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Use help(1) for explanations.

A get of many sees files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if neces­
sary) and -y keyletters must also be present. Omission of these keyletters causes
an error.

Comments are limited to text strings of at most 1024 characters. Line lengths
greater than 1000 characters cause undefined results.

10/89

dls(1) dls(1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-0] [-V] [-L] [-s] [-d sec] [-0 sec] [-F functionl [-t sec] [-1 string] file ...

DESCRIPTION

10/89

The dis command produces an assembly language listing of file, which may be
an object file or an archive of object files. The listing includes assembly state­
ments and an octal or hexadecimal representation of the binary that produced
those statements.

The following options are interpreted by the disassembler and may be specified in
any order.

-d sec Disassemble the named section as data, printing the offset of the
data from the beginning of the section.

-0 sec Disassemble the named section as data, printing the actual address
of the data.

-F function Disassemble only the named function in each object file specified on
the command line. The -F option may be specified multiple times
on the command line.

-L Lookup source labels for subsequent printing. This option works
only if the file was compiled with additional debugging information
[e.g., the -9 option of eel.

-1 string Disassemble the archive file specified by string. For example, one
would issue the command dis -1 x -1 z to disassemble libx.a
and 1ibz.a, which are assumed to be in LIBDIR.

-0 Print numbers in octal. The default is h~xadecimal.

-s Perform symbolic disassembly where possible. Symbolic disassembly
output will appear on the line following the instruction. Symbol
names will be printed using C syntax.

-t sec Disassemble the named section as text.

-V Print, on. standard error, the version number of the disassembler
being executed.

If the -d., -0 or -t options are specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections containing
text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
indicates that the break-pointable line number starts with the following instruc­
tion. These line numbers will be printed only if the file was compiled with addi­
tional debugging information [e.g., the -g option of eel. An expression such as
<40> in the operand field or in the symbolic disassembly, following a relative dis­
placement for control transfer instructions, is the computed address within the
section to which control will be transferred. A function name will appear in the
first column, followed by () if the object file contains a symbol table.

Page 1

dis(1) dls(1)

FILES
LIBDIR usually /usr/ccs/lw

SEE ALSO
as(1), ce(1), Id(1), a. out(4).

DIAGNOSTICS

NOTES

Page 2

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

Since the -da option did not adhere to the command syntax rules, it has been
replaced by -D.

At this time, symbolic disassembly does not take advantage of additional infor­
mation available if the file is compiled with the -g option.

10/89

dump(1) dump(1)

NAME
dunp - dump selected parts of an object file

SYNOPSIS
dunp [options 1 files

DESCRIPTION

10/89

The dunp command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following options:

-a
-C

-c

-0

-f

-g

-h

-L

-1

-0

-r

Dump the archive header of each member of an archive.

Dump decoded C++ symbol table names.

Dump the string table(s).

Dump debugging information.

Dump each file header.

Dump the global symbols in the symbol table of an archive.

Dump the section headers.

Dump dynamic linking information and static shared library infor­
mation, if available.

Dump line number information.

Dump each program execution header.

Dump relocation information.

-s Dump section contents in hexadecimal.

-T index or -T indexl, index2
Dump only the indexed symbol table entry defined by index or a
range of entries defined by indexl, index2.

-t Dump symbol table entries.

-u When reading a COFF object file, dunp translates the file to ELF inter­
nally (this translation does not affect the file contents). This option
controls how much translation occurs from COFF values to ELF.
Normally (without -u), the COFF values are preserved as much as
possible, showing the actual bytes in the file. If -u is used, dunp
updates the values and completes the internal translation, giving a
consistent ELF view of the contents. Although the bytes displayed
under this option might not match the file itself, they show how the
file would look if it were converted to ELF. (See cof2elf(1) for
more information.)

-v Print version information.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

Page 1

dump(1) dump(1)

-d number or -d number1, number2

-n name

-p

-v

Dump the section number indicated by number or the range of sec­
tions starting at number1 and ending at number2. This modifier can
be used with -h, -s, and -r. When -d is used with -h or -s, the
argument is treated as the number of a section or range of sections.
When -d is used with -r, the argument is treated as the number of
the section or range of sections to which the relocation applies. For
example, to print out all relocation entries associated with the . text
section, specify the number of the section as the argument to -d. If
. text is section number 2 in the file, dunp -r -d 2 will print all
associated entries. To print out a specific relocation section use
dl.l1Tp -s -n name for raw data output, or dunp -sv -n name for
interpreted output.

Dump information pertaining only to the named entity. This
modifier can be used with -h, -s, -r, and -to When -n is used
with -h or -s, the argument will be treated as the name of a sec­
tion. When -n is used with -t or -r, the argument will be treated
as the name of a symbol. For example, dl.l1Tp -t -n . text will
dump the symbol table entry. associated with the symbol whose
name is . text, where dl.l1Tp -h -n . text will dump the section
header information for the . text section.

Suppress printing of the headings.

Dump information in symbolic representation rather than numeric.
This modifier can be used with -a (date, user id, group id), -f
(class, data, type, machine, version, flags), -h (type, flags), -0 (type,
flags), -r (name, type), -s (interpret section contents wherever pos­
sible), -t (type, bind), and -L (value). When -v is used with -s, all
sections that can be interpreted, such as the string table or symbol
table, will be interpreted. For example, dl.l1Tp -sv -n . symtab files
will produce the same formatted output as dl.l1Tp -tv files, but dl.l1Tp
-s -n . symtab files will print raw data in hexadecimal. Without
additional modifiers, dl.l1Tp -sv files will dump all sections in the
files interpreting all those that it can and dumping the rest (such as
. text or . data) as raw data.

The dunp command attempts to format the information it dumps in a meaningful
way, printing certain information in character, hexadecimal, octal or decimal
representation as appropriate.

SEE ALSO
a.out(4), ar(4).

Page 2 10/89

get(1) get (1)

NAME
get - get a version of an sces file

SYNOPSIS
get [-aseq-no.1 [-ccutoffl [-ilist1 [-rSID1 [-wstring1 [-xlist1 [-l[pll [-b1 [-e1 [-q1

[-k1 [-m] [-n1 [-p1 [-81 [-t1 file ...

DESCRIPTION

10/89

get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The argu­
ments may be specified in any order, but all keyletter arguments apply to all
named sees files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-SCes files (last com­
ponent of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sces file to be processed.

The generated text is normally written into a file called the g-file whose name is
derived from the sees file name by simply removing the leading "8." (see also
the FILES section below).

Each of the keyletter arguments is explained below as though only one sees file
is to be processed, but the effects of any keyletter argument apply independently
to each named file.

-rSID The sees identification string (SID) of the version (delta) of an
sees file to be retrieved. Table 1 below shows, for the most use­
ful cases, what version of an sces file is retrieved (as well as the
SID of the version to be eventually created by delta(1) if the -e
key letter is also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]ll]

No changes (deltas) to the sces file that were created after the
specified cutoff date-time are included in the generated ASOI text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to -c750228235959.
Any number of non-numeric characters may separate the two­
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form:

-c"77/2/2 9:22:25".

-ilist A list of deltas to be included (forced to be applied) in the crea-
tion of the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any form shown
in the "SID Specified" column of Table 1.

Page 1

get (1)

-xlist

-e

-b

-k

-l[p]

-p

-8

-m

-n

Page 2

get(1}

A list of deltas to be excluded in the creation of the generated file.
See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making a
change (delta) to the sees file via a subsequent use of delta(1).
The -e keyletter used in a get for a particular version (SID) of the
sees file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the sees file
[see admin(1)]. Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re­
executing the get command with the -k keyletter in place of the
-e keyletter.

sees file protection specified via the ceiling, floor, and authorized
user list stored in the sees file [see admin(1)] are enforced when
the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table 1. This keyletter
is ignored if the b flag is not present in the file [see admin(1)] or if
the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the sees file tree.) A branch delta may
always be created from a non-leaf delta. Partial SIDs are inter­
preted as shown in the "SID Retrieved" column of Table 1.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The -k keyletter is implied by
the -e keyletter.

Causes a delta summary to be written into an I-file. If -lp is
used, then an I-file is not created; the delta summary is written on
the standard output instead. See IDENTIFICATION KEYWORDS
for detailed information on the I-file.

Causes the text retrieved from the sees file to be written on the
standard output. No g-file is created. All output that normally
goes to the standard output goes to file descriptor 2 instead,
unless the -8 keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

Causes each text line retrieved from the sees file to be preceded
by the SID of the delta that inserted the text line in the sees file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -n keyletters are used, the format is: %M%

10/89

get(1) get(1)

10/89

value, followed by a horizontal tab, followed by the -m keyletter
generated format.

-g Suppresses the actual retrieval of text from the sees file. It is pri­
marily used to generate an I-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created delta in a given release
(e.g., -rl), or release and level (e.g., -ri. 2).

-w string Substitute string for all occurrences of %W% when getting the file.
Substitution occurs prior to keyword expansion.

-aseq-no. The delta sequence number of the sees file delta (version) to be
retrieved. This keyletter is used by the corrb command; it is not a
generally useful keyletter. If both the -r and -a keyletters are
specified, only the -a keyletter is used. Care should be taken
when using the -a keyletter in conjunction with the -e keyletter,
as the SID of the delta to be created may not be what one expects.
The -r key letter can be used with the -a and -e keyletters to con­
trol the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the sees file.

If the -e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the -i keyletter is used,
included deltas are listed following the notation "Included"; if the -x keyletter is
used, excluded deltas are listed following the notation "Excluded".

Page 3

get (1) get (1)

TABLE 1. Determination of sees Identification String
SID" -b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created
nonei
nonet
l{

R
R
R

R

R

Rr:
R.L

RL

RLB
RL.B
RLB.S
RL.B.S
RL.B.S

*

no R oefaults to mR mR;mr: mR-(mr:+U
yes R defaults to mR mR.mL mR.mL.(mB+l).l
no R>mR mR-mr: R.I
no R=mR mR.mL mR.(mL+l)
~es R>mR mR.mL mR.mL.(mB+ 1).1
~es R=mR mR.mL mR.mL.(mB+ 1).1

R< mRand hR.mL hR.mL.(mB+ 1).1 R does not exist
Trunk succ.#
in release > R R.mL R.mL.(mB+ 1).1
and R exists

no No trunK succ. R.r: R.(r:+U
~es No trunk succ. R.L R.L.(mB+ 1).1

Trunk succ. R.L R.L.(mB+l).l in release 2: R
no r\lo '6rancn succ. RLB.mS RLB.(mS+D
yes No branch succ. R.L.B.mS R.L.(mB+l).1
no r\lo '6ranch succ. ItLB.S R.LB.(S+D
~es No branch succ. R.L.B.S R.L.(mB+1).l

Branch succ. R.L.B.S R.L.(mB+1).1

"R", "L", '13", and "5" are the "release", "level", "branch", and "sequence"
components of the SID, respectively; "m" means "maximum". Thus, for
example, "R.mL" means "the maximum level number within release R";
''R.L.(mB+l).l'' means "the first sequence number on the new branch (Le.,
maximum branch number plus one) of level L within release R". Note that
if the SID specified is of the form "R.L", ''R.L.B'', or "R.L.B.S", each of the
specified components must exist.

** "hR" is the highest existing release that is lower than the specified, nonex-
istent, release R

*.... This is used to force creation of the first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag [see admin(1)] is present in the

file. An entry of - means "irrelevant".
t This case applies if the d (default SID) flag is not present in the file. If the d

flag is present in the file, then the SIb obtained from the d flag is interpreted
as if it had been specified on the command line. Thus, one of the other cases
in this table applies.

IDENTIFICATION KEYWORDS

Page 4

Identifying information is inserted into the text retrieved from the sees file by
replacing identification keywords with their value wherever they occur. The fol­
lowing keywords may be used in the text stored in an sees file:

10/89

get(1)

10/89

get (1)

Keyword Value
%M% Module name: either the value of the m flag in the file [see admin(1)l,

or if absent, the name of the sees file with the leading s. removed.
%!% sees identification (SID) (%R%. %L% . %8%. %8%) of the retrieved text.
%R% Release.
%L% Level.
%8% Branch.
%8% Sequenca
%D% Current date (YY/MM/DD).
%H% Current date (MM/DD/yY).
%T% Current time (HH:MM:SS).
%E% Date newest applied delta was created (W/MM/DD).
%G% Date newest applied delta was created (MM/DD/yY).
%u% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the sees file [see admin(1»).
%F% sees file name.
%P% Fully qualified sees file name.
%Q% The value of the q flag in the file [see admin(l»).
%c% Current line number. This keyword is intended for identifying mes­

sages output by the program such as "this should not have hap­
pened" type errors. It is not intended to be used on every line to pro­
vide sequence numbers.

%Z% The four-character string @(t) recognizable by the what command.
%W% A shorthand notation for constructing what strings for UNIX System

program files. %W% = %Z%%M%<tab>%!%
%A% Another shorthand notation for constructing what strings for non-

UNIX System program files: %A% - %Z%%Y% %M% %!%%Z%

Several auxiliary files may be created by get. These files are known generically
as the g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag.
An auxiliary file name is formed from the sees file name: the last component of
all sees filenames must be of the form s. module-name, the auxiliary files are
named by replacing the leadings with the tag. The g-file is an exception to this
scheme: the g-file is named by remOving the s. prefix. For example, s. xyz . c,
the auxiliary file names would be xyz. c, 1. xyz . c, p. xyz . c, and z. xyz . c,
respectively.

The g-file, which contains the generated text, is created in the current directory
(unless the -p keyletter is used). A g-file is created in all cases, whether or not
any lines of text were generated by the get. It is owned by the real user. If the
-k keyletter is used or implied, its mode is 644; otlj.erwise its mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -1 keyletter is
used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.

Page 5

get(1)

FILES

get (1)

Lines in the I-file have the following format:

a. A blank character if the delta was applied; * otherwise.
b. A blank character if the delta was applied or was not applied and

ignored; * if the delta was not applied and was not ignored.
c. A code indicating a "special" reason why the delta was or was not

applied: "I" (included), "x' (excluded), or "e' (cut off by a -c
keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one hor­
izontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an -e keyletter for the same SID until delta is executed or the joint edit
flag, j, [see admin(1)] is set in the sees file. The p-file is created in the directory
containing the sees file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The format of
the p-file is: the gotten SID, followed by a blank, followed by the SID that the
new delta will have when it is made, followed by a blank, followed by the login
name of the real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the -i keyletter argument if it was
present, followed by a blank and the -x keyletter argument if it was present, fol­
lowed by a new-line. There can be an arbitrary number of lines in the p-file at
any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous update,s. Its con­
tents are the binary (2 bytes) process ID of the command (i.e., get) that created
it. The z-file is created in the directory containing the sees file for the duration
of get. The same protection restrictions as those for the p-file apply for the z-file.
The z-file is created with mode 444.

g-file
p-file
q-file
z-file
bdiff

Created by the execution of get.
[see delta(1)]
[see delta(1)]
[see delta(1)]
Program to compute differences between the "gotten" file and
the g-file.

SEE ALSO

Page 6

admin(1), delta(1), help(1), pra(1), what(1).
bdiff(1) in the User's Reference Manual.

10/89

get(1) get(1)

DIAGNOSTICS

NOTES

10/89

Use help(l) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the
directory containing the sees files, but the real user does not, then only one file
may be named when the -e keyletter is used.

Page 7

help(1) help(1)

NAME
help - ask for help with message numbers or sees commands

SYNOPSIS
help [args]

DESCRIPTION

FILES

10/89

help finds information to explain a message from a command or explain the use
of a sees command. Zero or more arguments may be supplied. If no argu­
ments are given, help will prompt for one.

The arguments may be either information within the parentheses following a
message or sees command names.

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try ''help stuck".

LIBDIR/help

LIBDIR/help/helploc

LIBDIR

directory containing files of message text.
file containing locations of help files not in
LIBDIR/help.

usually /uer/cos/lib

Page 1

install (1M) install (1M)

NAME
install - install commands

SYNOPSIS
/usr/sbin/install [-e dira] [-f dirb] [-i] [-n dire] [-m mode] [-u user] [-g group]
[-0] [-s] file [dirx ...]

DESCRIPTION

10/89

The install command is most commonly used in "makefiles" [see make(1)] to
install a file (updated target file) in a specific place within a file system. Each file
is installed by copying it into the appropriate directory, thereby retaining the
mode and owner of the original command. The program prints messages telling
the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/usr/usr/bin, /usr/usr/usr/bin, fete, /usr/usr/lib,
and /usr/usr/usr/lib, in that order) for a file with the same name as file.
When the first occurrence is found, install issues a message saying that it is
overwriting that file with file, and proceeds to do so. If the file is not found, the
program states this and exits without further action.

If one or more directories (dirx ...) are specified after file, those directories will
be searched before the directories specified in the default list.

The meanings of the options are:

-e dira Installs a new command (file) in the directory specified by
dira, only if it is not found. If it is found, install issues a
message saying that the file already exists, and exits
without overwriting it. May be used alone or with the -s
option.

-f dirb Forces file to be installed in given directory, whether or not
one already exists. If the file being installed does not
already exist, the mode and owner of the new file will be
set to 755 and bin, respectively. If the file already exists,
the mode and owner will be that of the already existing file.
May be used alone or with the -0 or -s options.

-i

-n dire

-m mode

-u user

Ignores default directory list, searching only through the
given directories (dirx ...). May be used alone or with any
other options except -c and -f.

If file is not found in any of the searched directories, it is
put in the directory specified in dire. The mode and owner
of the new file will be set to 755 and bin, respectively.
May be used alone or with any other options except -e and
-f.

The mode of the new file is set to mode.

The owner of the new file is set to user.

Page 1

install (1M)

-9 group

-0

-s

SEE ALSO
make(1).

Page 2

install (1 M)

The group id of the new file is set to group. Only available
to the superuser.

If file is found, this option saves the "found" file by copy­
ing it to oLDfile in the directory in which it was found. This
option is useful when installing a frequently used file such
as /usr/bin/sh or /usr/lib/saf/ttym:m, where the
existing file cannot be removed. May be used alone or with
any other options except -c.

Suppresses printing of messages other than error messages.
May be used alone or with any other options.

10/89

Id (1) Id (1)

NAME
ld - link editor for object files

SYNOPSIS
ld [options] files ...

DESCRIPTION

10189

The ld command combines relocatable object files, performs relocation, and
resolves external symbols. ld operates in two modes, static or dynamic, as
governed by the -d option. In static mode, -<in, r~locatable object files given as
arguments are combined to produce an executable object file; if the -r option is
specified, relocatable object files are combined to produce one relocatable object
file. In dynamic mode, -dy, the default, relocatable object files given as argu­
ments are combined to produce an ex~table object file that will be linked at
e~ecution with any shared obje_ct files, given as arguments; if the -G option is
specified, rE!locatable object files are combined to produce a shared object. In all
caseS, the output of ld is left in a. out by default. , '

If any argument is a library, it is searched exactly once at the point it is encoun­
fered in the argument list. The library may be either a relocatable archive or a
shared object. For an archive 'library,' only those routines' defining an unresolved
external reference are, loaded. The archive library symbol table [see ar(4)] is
searched sequentially with as many passes, as are necessary to resolve external
references that can be satisfied by library members. Thus, the ordering of
members in' the library is functionally unimportant, unless there exist multiple
library members defining the same external symbol. A shared object consists of a
single entity all of whose references must be resolved within the executable being
built or within other shared objects with which it is linked.

The following options are recognized by ld:

-a In static mode only, ptoduce an executable object file; give errors for
undefined references. This is the default behavior for static mode. -a
may not be used with the -r option.

-b In dynamic mode only, when creating an executable, do not do special
processing fot relocations. that' reference symbols in shared objects.
Without the -b option, the link editor will create special position­
iridependent 'relocations for references to functions' defined in shared
objects and will, arrange for data ,objects defined in shared objects to be
copieq into the memory image_of the executable by'the dynamic linker at
rUll time .. W~th, the -b, option, the' output code may be more, efficient" but
it will be less -shara1::>le. ' '

-d.[yln] _ ,
When -dy, the default, is specified, ld uses dynamic linking; when -00 is
specified, ld uses static linking.

-e epsym
Set the entry point address for the output file to be that of the symbol
epsym. '

Page 1

Id(1)

Page 2

Id(1)

-h name
In dynamic mode only, when building a shared object, record name in the
object's dynamic section~ name will be recorded in executables that are
linked, with this object rather than the object's UNIX System file name.
Accordingly, name will be used by the dynamic linker as the name of the
shared object to search for at run time.

-Ix Search a library libi. so or libx" a, the conventional names for sPared
object and archive ,libraries, respectively. In dynamic mode, unless the
-:-Bstatic option is in effect, Id searches each directory specified in the
library search path for a file libx. so or libx. a. The directory search
stops at the first directory containing either. Id chooses the file ending in
. so if -Ix expands to two files whose names are of the fohn libx. so and
libx. a. If no libx. so is found, then Id accepts libx,. a. In static mode,
or when the, -Bstatic option is in effect, Id se1\'!ds·,only the file ending in
. a. A librltry is searched when its name is encountered, so, the placement
of -1 is significant.

-m Produce a memory map or listing of the input/output sections on th~
standard output.

-0 outfile, , . '
Produce an output object file named outfile., The name of the default
object file is a. out. ' '

-r Combine relocatable, object files to produce one ,relocatable object. file. Id
will notcomplaix;t about unr~solved references. This option cannot be
used in dynamic mode or with -a.. '

-s Strip symbolic informatiOn from the O).ltp~t file. The debugartd line Sec­
tions and theirassociat~ relocation entries will be removed. Except for
relocatable files Or ~hared objects, the' symbol table and string table sec~
Hons will also be remov~d from the output object file.

-t tum off the warning about multiply-defined sytnboi~ that are not the
Same siZe.

-usymname , . ' . ' . ,
Enter symname as an , undefined symbol in the symbOl tabl~. This is useful
for loading entirely from an ,!-rchh~e library, since in:~tially the ~ymbol table
i~. empty and an unresblved ref~~nce is needed t~ force the,loading of the
first routine. The placement "fthis option on. the ,command line is
significant; it must be placed before the library that will define the symbol.

-z defs
Force a fatal error if arty undefined symbols remain at the end of the link.
This is the default ~hen building an executable. It is also useful when
building a shat:ed object to assure that the object is self-contained, that is,
that all its symbolic references are resolved internally.

-z nodefs
Allow undefined symbols. ' This is the, default whim building a Shared
object. It Ihay be used when building art executable ~n dynamic mode and
linking with a shared. Object that has unresOlved references in routines riot
used by that executable. This option should be used with caution.

10/81

Id (1)

10/89

Id (1)

-z text
In dynamic mode only, force a fatal error if any relocations against non­
writable, allocatable sections remain.

-B [d~clstatic]' ,
Options governing library inclusion. -Bdynamic is valid in dynamic mode
only. These options may be specified any number of times on the com­
mand line as toggles: if the -Bstatic option is given, no shared objects
will be accepted until-Bdynamic is seen. See also the -1 option.

-Bsynbolic
In dynamic mode only, when building a shared object, bind references to
global symbols to their definitions within the object, if definitions are
available. Normally, references to global symbols. within shared objects
are not bound until run time, even if definitions are available, so that
definitions of the same symbol in an executable or other shared objects
can . override the object's own definition. 1d will issue warnings for
und¢ined symbols unless -z defs overrides.

-G In dynamic mode only, produce a shared object. Undefined symbols are
allowed. .

-I name
When building an executable, use name as the path name of the interpreter
to be. written into the program header. The default in static mode is no
intewreter; in dynamic mode, the default is the name of the dynamic
linker, /us.r/lib/libc.so.l. Either case may be overrridden by -I.
exec will load this interpreter when it loads the a. out and will pass con-

/trol to the interpreter rather than to the a. out directly.
-L path·

Add path to the library search directories. 1d searches for libraries first in
any directories specified with -Loptions, then in the standard directories.
This option is effective only if it precedes the -1 option on the command
line.

-M mapfile ,
In static mode only, read mapfile as a text file of directives to 1d. Because
these directives change the shape of the. output file created by 1d, use of
this option is strongly discouraged.

-Q[yln]
Under -Qy, an ident string is added to the . comnent section of the out­
put file to idehtify the version of the link editor used to create the file.
This will result in. multiple 1d identl;! when there have been multiple
linking steps, such as when using Id -r. This is identical with the default
a,ction of the cc command. -Qnsuppresses version.

-v Output a message giving information about the version of l.d being used.
-yp, dirlist

Change the default directories used for finding libraries. dirlist is a colon­
. separated path list.

Page 3

Id (1)

FILES

Id(1}

The environment variable LD_LIBRARY_PATH may be used to specify library
search directories. In the most general case, it will contain two directory lists
separated by a semicolon:

dirlistl; dirlist2

If ld is called with any number of occurences of -L, as in

ld ... -lpathl ... -Lpathn_.

then the search path ordering is

dirlistl pathl ... pathn dirlist2 LIBPATH

LD_LIBRARY_PATH is also used to specify library search directories to the dynamic
linker at run time. That is, if LD LIBRARY PATH exists in the environment, the
dynamic linker will search the directories named in it, before its default directory,
for shared objects to be linked with the program at execution.

The environment variableLD_RUN_PATH, containing a directory list, may also be
used to specify library search directories to the dynamic linker. If present and not
null, it is passed to the dynamic linker by ldvia data stored in the output object
file.

libx.so
libx.a
a.out
LIBPATH

libraries
libraries
output file
usually /usr/ces/lib: /usr/lib

SEE ALSO

NOTES

Page 4

as(1), ce(1), exec(2), exit(2), end(3C), a. out(4), ar(4).
The "C Compilation System" chapter and the "Mapfile Option" appendix in the
Programmer's Guide:. ANSI C and Programming Support Tools.

Through its options, the link editor gives users great flexibility; however, those
who use the -M mapfile option must assume some added responsibilities. Use of
this feature is strongly discouraged.

10/89

Idd(1) Idd (1)

NAME
1dd - list dynamic dependencies

SYNOPSIS
1dd [-d I -r] file

DESCRIPTION
The 1dd command lists the path names of all shared objects that would be loaded
as a result of executing file. If file is a valid executable but does not require any
shared objects, 1dd will succeed, producing no output.

1dd may also be used to check the compatibility of file with the shared objects it
uses. It does this by optionally printing warnings for any unresolved symbol
references that would occur if file were executed. Two options govern this mode
of 1dd:

-d Causes 1dd to check all references to data objects.

-r Causes 1dd to check references to both data objects and functions.

Only one of the above options may be given during any single invocation of 1dd.

SEE ALSO
cc(1), 1<1(1).
The "C Compilation System" chapter in the Programmer's Guide: ANSI C and Pro­
gramming >Support Tools.

DIAGNOSTICS

NOTES

10/89

1dd prints its record of shared object path names to stdout. The optional list of
symbol resolution problems are printed to stderr. If file is not an executable file
or cannot be opened for reading, a non-zero exit status is returned.

1dd doesn't list shared objects explicitly attached via d1open(3X).

1dd uses the same algorithm as the dynamic linker to locate shared objects.

Page 1

lex (1) lex(1)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-ctvn -v -Q[yln]] [file]

DESCRIPTION

10/89

The lex command generates programs to be used in simple lexical analysis of
text.

The input files (standard input default) contain strings and expressions to be
searched for and C text to be executed when these strings are found.

lex generates a file named lex.yy.c. When lex.yy.c is compiled and linked
with the lex library, it copies the input to the output except when a string
specified in the file is found. When a specified string is found, then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array. Matching is done in order of the patterns in
the file. The patterns may contain square brackets to indicate character classes, as
in [abx-z] to indicate a, b, X. y, and z; and the operators *, +, and? mean,
respectively, any non~negative number of, any positive number of, and either zero
or one occurrence of, the previous character or character class. Thus, [a-zA-Z] +
matches a string of letters. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are
also supported. The notation r{d,e} in a rule indicates between d and e instances
of regular expression r. It has higher precedence than I , but lower than *, ?, +,
and concatenation. The character '" at the beginning of an expression permits a
successful match only immediately after a new-line, and the character $ at the
end of an expression requires a trailing new-line. The character / in an expres­
sion indicates trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must follow in the input
stream. An operator character may be used as an ordinary symbol if it is within
" symbols or preceded by \.

Three macros are expected: input 0 to read a character; unput (c) to replace a
character read; and output (c) to place an output character. They are defined in
terms of the standard streams, but you can override them. The program gen­
erated is named yylex 0, and the lex library contains a main 0 that calls it. The
action REJECT on the right side of the rule causes this match to be rejected and
the next suitable match executed; the function yyxoore 0 accumulates additional
characters into the same yytext; and the function yyless (n) pushes back
yyleng -n characters into the input stream. (yyleng is an external int variable
giving the length of yytext.) The macros input and output use files yyin and
yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied;
if it precedes % %, it is copied into the external definition area of the lex. yy . c file.
All rules should follow a %%, as in yacc. Lines preceding %% that begin with a
non-blank character define the string on the left to be the remainder of the line; it
can be called out later by surrounding it with {}. In this section, C code (and
preprocessor statements) can also be included between % { and %}. Note that
curly brackets do not imply parentheses; only string substitution is done.

Page 1

lex(1) lex(1)

EXAMPLE

Page 2

D [0-9]
%(
void
skipcommnts(void)
{

}
%}
%%
if
[a-z] +
O{D}+
{D}+
n++n
n+"
"\n"
"/*"
%%

for(;;)
(

while (input() !='*')
,

if (input 0==' I')
return;

else

unput(yytext[yyleng-l]);

printf("IF statement\n");
printf ("tag, value %s\n", yytext) ;
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n");
printf("binary op\n");
;I*no action *1

skipcommnts 0 ;

The external names generated by lex all begin with the prefix yy or IT.

The flags must appear before any files.

-c Indicates C actions and is the default.

-t Causes the lex. yy. c program to be written instead to standard output.

-v Provides a two-line summary of statistics.

-n Will not print out the -v summary.

-v Print out version information on standard error.

-Q[yln] Print out version information to output file lex.yy.c by using -Qy.
The -Qn option does not print out version information and is the
default.

Multiple files are treated as a single file. If no files are specified, standard input
is used.

Certain default table sizes are too small for some users. The table sizes for the
resulting finite state machine can be set in the definitions section:

10/89

lex(1)

%pn

%n n

%e n

%a n
%k n

%0 n

number of positions is n (default 25(0)

number of states is n (500)-

number of parse tree nodes is n (1000)

number of transitions is n '(2000)

number of packed character classes is n (2500)

size of output array is n (3000)

lex(1)

The use of one or more of the above automatically implies the -v option, unless
the -n option is used. .

SEE ALSO
yacc(1).

10/89

The "lex" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

Page 3

lint (1) lint (1)

NAME
lint - a C program checker

SYNOPSIS
lint [options] files

DESCRIPTION

10/89

lint detects features of C program files which are likely to be bugs, non­
portable, or wasteful. It also checks type usage more strictly than the compiler.
lint issues error and warning messages. Among the things it detects are
unreachable statements, loops not entered at the top, automatic variables declared
and not used, and logical expressions whose value is constant. lint checks for
functions that return values in some places and not in others, functions called
with varying numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whos~ names end with . c are taken to be C source files. Arguments
whose names end with . 1n are taken to be the result of an earlier invocation of /
lint with either the -c or the -0 option used. The .10 files are analogous to .0

(object) files that are produced by the ce(1) command when given a . c file as
input. Files with other suffixes are warned about and ignored.

lint takes all the . c, .10, and llib-lx .In (specified by -lx) files and processes
them in their command line order. By default, lint appends the standard Clint
library (llib-lc .10) to the end of the list of files. When the -c option is used,
the .1n imd the 1lib-lX. 1n files are ignored. When the -c option is not used,
the second pass of lint checks the .1n and the llib-lX .1n list of files for
mutual compatibility.

Any number of lint options may be used, in any order, intermixed with. file­
name arguments. The following options are used to suppress certain kinds of
complaints:

-a

-b

-h

-m

-u

-v

-x

Suppress complaints about assignments of long values to variables that
are not long.

Suppress complaints about break statements that cannot be reached.

Do not apply heuristic tests that attempt to intuit bugs, improve style, and
reduce waste.

Suppress complaints about external symbols that could be declared static.

Suppress complaints about functions and external variables used and not
defined, or defined and not used. (This option is suitable for running
lint on a subset of files of a larger program).

Suppress complaints about unused arguments in functions.

Do not report variables referred to by external declarations but never
used.

Page 1

Iint(1}

Page 2

lint (1)

The following arguments alter lint's behavior:

-Idir Search for included header files in the directory dir before searching the
current directory and/or the standard place.

-lx Include the lint library llib-lx.ln. For example, you can include a lint
version of the math library llib-1m.ln by inserting -1m on the command
line. This. argument does not suppress the default use of llib-lc . In.
These lint libraries must be in the assumed directory. This option can be
used to reference local lint libraries and is useful in the development of
multi-file projects.

-Ldir Search for lint libraries in dir before searching the standard place.

-n Do not check compatibility against the standard C lint library.

-p Attempt to check portability to other dialects of C. Along with stricter
checking, this option causes all non-external names to be truncated to
eight characters and all external names to be truncated to six characters
and one case.

-g Produce one-line diagnostics only. lint occasionally buffers messages to
produce a compound report.

-k Alter the behavior of /*LINTED [messagel*/ directives. Normally, lint
will suppress warning messages for the code following these directives.
Instead of suppressing the messages, lint prints an additional message
containing the comment inside the directive.

-y Specify that the file being linted will be treated as if the /*LINTLIBRARY*/
directive had been used. A lint library is normally created by using the
/*LINTLIBRARY* / directive.

-F Print pathnames of files. lint normally prints the filename without the
path.

-c Cause lint to produce a .In file for every . c file on the command line.
These .In files are the product of lint's first pass only, and are not
checked for inter-function compatibility.

-ox Cause lint to create a lint library with the name llib-lx. In. The-c
option nullifies any use of the -0 option. The lint library produced is the
input that is given to lint's second pass. The -0 option simply causes
this file to be saved in the named lint library. To produce a llib-lx .In
without extraneous messages, use of the -x option is suggested. The-v
option is useful if the source file(s) for the lint library are just external
interfaces.

Some of the above settings are also available through the use of "lint com­
ments" (see below).

-v Write to standard error the product name and release.

-Wfile Write a .In file to file, for use by cflow(l).

10/89

lint (1)

10/89

lint (1)

-Rfile Write a . ln file to file, for use by cxref(1).

lint recognizes many cc(l) command line options, including -0, -U, -<], -0, -Xt,
-Xa, and -Xc, although -<] and -0 are ignored. Unrecognized options are warned
about and ignored. The predefined macro lint is defined to allow certain ques­
tionable code to be altered or removed for lint. Thus, the symbol lint should
be thought of as a reserved word for all code that is planned to be checked by
lint.

Certain conventional comments in the C source will change the behavior of lint:

/*ARGSUSEDn* /
makes lint check only the first n arguments for usage; a missing
n is taken to be 0 (this option acts like the -v option for the next
function).

/*CONSTCOND*/ or /*CONSTANTCOND*/ or /*CONSTANTCONDITION*/
suppresses complaints about constant operands for the next
expression.

/*EMPTY*/
suppresses complaints about a null statement consequent on an if
statement. This directive should be placed after the test expres­
sion, and before the semicolon. This directive is supplied to sup­
port empty if statements when a valid else statement follows. It
suppresses messages on an empty else consequent.

/*FALLTHRU*/ or /*FALLTHROUGH*/
suppresses complaints about fall through to a case or default
labelled statement. This directive should be placed immediately
preceding the label.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused func­
tions and function arguments in this file. This is equivalent to
using the -v and -x options.

/*LINTED [message]*/
suppresses any intra-file warning except those dealing with unused
variables or functions. This directive should be placed on the line
immediately preceding where the lint warning occurred. The-k
option alters the way in which lint handles this directive. Instead
of suppressing messages, lint will print an additional message, if
any, contained in the comment. This directive is useful in conjunc­
tion with the -s option for post-lint filtering.

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.
[This comment is typically placed just after calls to functions like
exit(2)].

/ * PRINTFLIKE n * /
makes lint check the first (n-1) arguments as usual. The nth
argument is interpreted as a printf format string that is used to
check the remaining arguments.

Page 3

lint (1)

FILES

Page 4

lint (1)

/ * PROTOLIB n * /
causes lint to treat function declaration prototypes as function
definitions if n is non-zero. This directive can only be used in con­
junction with the
/ * LINTLIBRARY * / directive. If n is zero, function prototypes will
be treated normally.

/ *SCANFLlKEn * /
makes lint check the first (n-l) arguments as usual. The nth argu­
ment is interpreted as a seanf format string that is used to check
the remaining arguments.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments
in the follOwing function declaration. The data types of the first n
arguments are checked; a missing n is taken to be O. The use of
the ellipsis terminator (...) in the definition is suggested in new or
updated code.

lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been processed,
if -s is not specified. Finally, if the -e option is not used, information gathered
from all input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question mark.

The behavior of the -c and the -0 options allows for incremental use of lint on
a set of C source files. Generally, one invokes lint once for each source file with
the -c option. Each of these invocations produces a .In file that corresponds to
the . e file, and prints all messages that are about just that source file. After all
the source files have been separately run· through lint, it is invoked once more
(without the -c option), listing all the .In files with the needed -Ix options. This
will print all the inter-file inconsistencies. This scheme works well with make; it
allows make to be used to lint only the source files that have been modified
since the last time the set of source files were linted.

LIBDIR

LIBDIR/lint [12]

LIBDIR/ llib-le .In

LIBPATH/llib-lm.ln

TMPDIR/*lint*

TMPDIR

the directory where the lint libraries specified by the
-Ix option must exist

first and second passes

declarations for C Library functions (binary format;
source is in LIBDIR/llib-le)

declarations for Math Library functions (binary format;
source is in LIBDIR/llib-Im)

temporaries

usually /var/trrp but can be redefined by setting the
environment variable TMPDIR [see tellpnam in
trrpnam(3S»).

10/89

lint (1)

UBDIR

UBPATH

lint (1)

usually /ccs/lilJ

usually /usr/ccs/lilJ: lusr/lilJ
SEE ALSO

10189

ce(1), make(l).

See the '1int" chapter in the C Programmer's Guide: ANSI C and Programming Sup­
port Tools.

Page 5

lorder(1 } lorder (1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files [see ar(l)]. The standard
output is a list of pairs of object file or archive member names; the first file of the
pair refers to external identifiers defined in the second. The output may be pro­
cessed by tsort(1) to find an ordering of a library suitable for one-pass access by
ld. Note that the link editor ld is capable of multiple passes over an archive in
the portable archive format [see ar(4)] and does not require that lorder be used
when building an archive. The usage of the lorder command may, however,
allow for a more efficient access of the archive during the link edit process.

The following example builds a new library from existing .0 files.

ar -cr library , lorder *.0 I tsort'

TMPDIR/ *symref

TMPDIR/*syndef

TMPDIR

temporary files

temporary files

usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tenpnani) in
tnpnam(3S)].

SEE ALSO

NOTES

10/89

ar(1), ld(1), tsort(1), tenpnam(3S), tnpname(3S), ar(4).

lorder will accept as input any object or archive file, regardless of its suffix, pro­
vided there is more than one input file. If there is but a single input file, its suffix
must be .0.

Page 1

Iprof(1) Iprof(1)

NAME
lprof - display line-by-line execution count profile data

SYNOPSIS
lprof [-pl [-sl [-xl [-I incdirl [-r srcfilel [-c cntfilel [-0 progl [-vl

lprof -m filel . cnt file2. cnt filen. cnt [-Tl -d destfile. cnt

DESCRIPTION
lprof reports the execution characteristics of a program on a (source) line by line
basis. This is useful as a means to determine which and how often portions of the
code were executed.

lprof interprets a profile file (prog.cnt by default) produced by the profiled pro­
gram prog (a. out by default). prog creates a profile file if it has been loaded with the
-ql option of cc. The profile information is computed for functions in a source file
if the -ql option was used when the source file was compiled.

A shared object may also be profiled by specifying -ql when the shared object is
created. When a dynamically linked executable is run, one profile file is produced
for each profiled shared object linked to the executable. This feature is useful in
building a single report covering multiple and disparate executions of a common
library. For example, if programs progl and prog2 both use library libx. a, run­
ning these profiled programs will produce two profile files, progl. cnt and
prog2. cnt, which cannot be combined. However, if libx is built as a profiled
shared object, libx. so, and progl and prog2 are built as profiled dynamically
linked executables, then running these programs with the merge option will pro­
duce three profile files; one of them, libx. so. cnt, will contain the libx profile
information from both runs.

By default, lprof prints a listing of source files (the names of which are stored in
the symbol table of the executable file), with each line preceded by its line number
(in the source file) and the number of times the line was executed.

The following options may appear singly or be combined in any order:

-p Print listing, each line preceded by the line number and the number of
times it was executed (default). This option can be used together with
the -s option to print both the source listing and summary information.

-s Print summary information of percentage of lines of code executed per
function.

-x Instead of printing the execution count numbers for each line, print each
line preceded by its line number and a [U] if the line was not executed.
If the line was executed, print only the line number.

-I incdir Look for source or header files in the directory incdir in addition to the
current directory and the standard place for tinclude files (usually
/usr/include). The user can specify more than one directory by using
multiple -I options.

-r srcfile Instead of printing all source files, print only those files named in -r
options (to be used with the -p option only). The user can specify mul­
tiple files with a single -r option.

10/89 Page 1

Iprof (1) Iprof (1)

-c cntfile Use the file cntfile instead of prog. cnt as the input profile file.

-0 prog Use the name of the program prog instead of the name used when creat-
ing the profile file. Because the program name stored in the profile file
contains the relative path, this option is necessary if the executable file
or profile file has been moved.

-v Print, on standard error, the version number of Iprof.

Merging Data Flies
Iprof can also be used to merge profile files. The -m option must be accompanied
by the -d option:

-m file1. cnt file2. cnt filen. cnt -d destfile. cnt
Merge the data files filel . cnt through filen . cnt by summing the execu­
tion counts per line, so that data from several runs can be accumulated.
The result is written to destfile. cnt. The data files must contain
profiling data for the same prog (see the -T option below).

-T Time stamp override. Normally, the time stamps of the executable files
being profiled are checked, and data files will not be merged if the time
stamps do not match. If -T is specified, this check is skipped.

CONTROLLING THE RUN-TIME PROFILING ENVIRONMENT
The environment, variable PROFOI?TS provides run-time control over profiling.
When a profiled program (or shared object) is about to terminate, it examines the
value of PROFOPTS to determine how the profiling data are to be handled. A ter­
minating shared object will honor every PROFOPTS option except file=filename.

The environment variable PROFOPTS is a comma-separated list of options inter­
preted by the program being profiled. If PROFOPTS is not defined in the environ­
ment, then the default action is taken: The profiling data are saved in a file (with
the default name, prog. cnt) in the current directory. If PROFOPTS is set to the null
string, no profiling data are saved. The following are the available options:

msg:=[yln] Ifmsg=y is specified, a message stating that profile data are being saved
is printed to stderr. If msg:=n is specified, only the profiling error mes­
sages are printed. The default is msg=y.

merge=[yl n]
If merge=y is specified, the data files will be merged after successive
runs. If merge=n is, specified, the data files are not merged after succes­
sive runs, and the data file is overwritten after each execution. The
merge will fail if the program has been recompiled, and the data file will
be left in TMPDIR. The default is merge=n.

pid=[y I n] If pid=y is specified, the name of the data file will include the process
ID of the profiled program. Inclusion of the process ID allows for the
creation of different data files for programs calling fork. If pid=nis
specified, the default name is used. The default is pid=n. For Iprof to
generate its profiling report, the-c option must be specified with Iprof
otherwise the default will fail.

Page.2 10/89

Iprof(1) Iprof(1)

FILES

dir=dirname
The data file is placed in the directory dirname if this option is specified.
Otherwise, the data file is created in the directory that is current at the
end of execution.

file=filename

prog.cnt
TMPDIR

filename is used as the name of the data file in dir created by the profiled
program if this option is specified. Otherwise, the default name is used.
For Iprof to generate its profiling report, the -c option must be
specified with Iprof if the file option has been used at execution time;
otherwise the default will fail.

profile data
usually /var/tIrf? but can be redefined by setting the environment
variable 'lMPDIR [see tenpnamin tnpnam3S)].

SEE ALSO

NOTES

10/89

cc(1), prof(1), fork(2), tnpnam3S).
The "lprof" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

For the -m option, if destfile . cnt exists, its previous contents are destroyed.

Optimized code cannot be profiled; if both optimization and line profiling are
requested, profiling has precedence.

Different parts of one line of a source file may be executed different numbers of
times (e.g., the for loop below); the count corresponds to the first part of the line.

For example, in the following for loop

main()
1 [2] {

int j;

1
5

[5]
[6]

for (j 0; j < 5; j++)
sub(j) ;

1 [8]

sub (al
int a;

5 [12] {

5 [13] printf(na is %d\nn, a);
5 [14] }

line 5 consists of three parts. The line count listed, however, is for the initialization
part, that is, j = o.

Page 3

m4(1) m4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 (options] [files]

DESCRIPTION

10/89

The m4 command is a macro processor intended as a front end for C, assembler,
and other languages. Each of the argument files is processed in order; if there are
no files, or if a file name is -, the standard input is read. The processed text is
written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuf­
fered.

-8 Enable line sync output for the C preprocessor (tline ...)

-Bint Change the size of the push-back and argument collection buffers from
the default of 4,096.

-Hint Change the size of the syrnboi table hash array from the default of 199.
The size should be prime.

-sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, the above flags must appear before any file names and before any
-D or -U flags:

-Dname [=val]
. Defines name to valor to null in vtll's absence.

-Uname
undefines name.

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no
arguments. Potential macro names consist of alphanumeric characters and under­
score (_), where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu­
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching fm: a
matching right parenthesis. It fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses that happen to turn up within the value of a nested call are as
effective as those in the original input text. After argument collection, the value
of the macro is pushed back onto the input stream and rescanned.

Page 1

m4(1)

Page 2

m4(1)

m4 makes available the following built-in macros. These macros may be
redefined, but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define

undefine

defn

pushdef

popdef

ifdef

shift

changequote

the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the replace­
ment text, where n is a digit, is replaced by the n-th argument.
Argument 0 is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the number of argu­
ments; $* is replaced by a list of all the arguments separated by
commas; $@ is like $*, but each argument is quoted (with the
current quotes).

removes the definition of the macro named in its argument.

returns the quoted defmition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previ­
ous one, if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is null.
The word unix is predefined.

returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies
the effect of the extra scan that will subsequently be performed.

change quote symbols to the first and second arguments. The sym­
bols may be up to five characters long. changequote without
arguments restores the original values (i.e.," ,).

changecom change left and right comment markers from the default t and
new-line. With no arguments, the comment mechanism is effec­
tively disabled. With one argument, the left marker becomes the
argument and the right marker becomes new-line. With two argu­
ments, both markers are affected. Comment markers may be up to
five characters long.

divert

undivert

m4 maintains 10 output streams, numbered 0-9. The final output is
the concatenation of the streams in numerical order; initially stream
o is the current stream. The divert macro changes the current
output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu­
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

10/89

m4(1)

10/89

divnum

dnl

ifelse

incr

decr

eval

len

index

substr

translit

include

sinclude

syscrrd

sysval

maketenp

m4exit

m4wrap

m4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next new­
line.

has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is repeated
with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string as a
decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, -, *, /, %, ** (exponentiation), bit­
wise &, I, A, and -; relationals; parentheses. Octal and hex
numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument may
be used to specify the minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argu­
ment begins (zero origin), or -1 if the second argument does not
occur.

returns a substring of its first argument. The second argument is a
zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

transliterates the characters in its first argument from the set given
by the second argument to the set given by the third. No abbrevia­
tions are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is inac­
cessible.

executes the UNIX System command given. in the first argument.
No value is returned.

is the return code from the last call to syscm:i.

fills in a string of XXXXX in its argument with the current process
ID.
causes immediate exit from m4. Argument I, if given, is the exit
code; the default is O.

argument 1 will be pushed back at final EOF; example:
m4wrap (, cleanup () ,)

Page 3

m4(1}

errprint

dUIlpdef

traceon

traceoff

SEE ALSO
asO), ceO).

Page 4

m4(1}

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for all
if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

10/89

make(1} make(1}

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-eiknpqrst] [names]

DESCRIPTION

10/89

make allows the programmer to maintain, update, and regenerate groups of com­
puter programs. make executes commands in makefile to update one or more tar­
get names (names are typically programs). If the -f option is not present, then
makefile, Makefile, and the Source Code Control System (SCCS) files
s . make file, and s . Makefile are tried in order. If makefile is -, the standard
input is taken. More than one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prere­
quisite files of a target are added recursively to the list of targets. Missing files
are deemed to be outdated.

The following list of four directives can be included in makefile to extend the
options provided by make. They are used in makefile as if they were targets:

• DEFAULT: If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
• DEFAULT are used if it exists.

• IGNORE: Same effect as the -i option .

• PRECIOUS: Dependents of the .PRECIOUS entry will not be removed when
quit or interrupt are hit.

• SILENT: Same effect as the -s option.

The options for make are listed below:

-e

-f makefile

-i

-k

-n

-p

-q

-r

-s
-t

Environment variables override assignments within makefiles.

Description filename (makefile is assumed to be the name of a
description file).

Ignore error codes returned by invoked commands.

Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

No execute mode. Print commands, but do not execute them.
Even command lines beginning with an @ are printed.

Print out the complete set of macro definitions and target
deSCriptions.

Question. make returns a zero or non-zero status code depend­
ing on whether or not the target file has been updated.

Do not use the built-in rules.

Silent mode. Do not print command lines before executing.

Touch the target files (causing them to be updated) rather than
issue the usual commands.

Page 1

make(1) make(1)

Creating the makefile

Page 2

The makefile invoked with the -f option is a carefully structured me of explicit
instructions for updating and regenerating programs, and contains a sequence of
entries that specify dependencies. The first line of an entry is a blank-separated,
non-null list of targets, then a :, then a (possibly null) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin with a tab are
shell commands to be executed to update the target. The first non-empty line
that does not begin with a tab or t begins a new dependency or macro definition.
Shell commands may be continued across lines with a backslash-new-line (\
new-line) sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (t) and new-line surround comments including contained \ new-line
sequences.

The following makefile says that pgm depends on two files a. 0 and b. 0, and that
they in turn depend on their corresponding source files (a. c and b. c) and a com­
mon file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to exe­
cute commands. The default is /usr/bin/sh. The first one or two characters in
a command can be the following: @, -, @-, or -@. If @ is present, printing of the
command is suppressed. If - is present, make ignores an error. A line is printed
when it is executed unless the -s option is present, or the entry . SILENT: is
included in makefile, or unless the initial character sequence contains a @. The-n
option specifies printing without execution; however, if the command line has the
string $ (MAKE) in it, the line is always executed (see the discussion of the
MAKEFLAGS macro in the "Environment" section below). The -t (touch) option
updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option
is present, if the entry . IGNORE: is included in makefile, or if the initial character
sequence of the command contains -, the error is ignored. If the -k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

10189

make(1) make(1)

Interrupt and quit cause the target to be deleted unless the target is a dependent
of the directive . PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and are processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The -e option causes the environment
to . override the macro assignments in a makefile. Suffixes and their associated
rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -f and -p) defined for the command line. Further,
upon invocation, make "invents" the variable if it is not in the environment, puts
the current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This feature proves very
useful for "super-makes". In fact, as noted above, when the -n option is used,
the command $ (MAKE) is executed anyway; hence, one can perform a make -n
recursively on a whole software system to see what would have been executed.
This result is possible because the -n is put in MAKEFLAGS and passed to further
invocations of $ (MAKE). This usage is one way of debugging all of the makefiles
for a software project without actually doing anything.

Include Flies
If the string inClude appears as the first seven letters of a line in a make file, and
is followed by a blank or a tab, the rest of the line is assumed to be a filename
and will be read by the current invocation, after substituting for any macros.

Macros
Entries of the form stringl = string2 are macro definitions. string2 is defined as
all characters up to a comment character. or an unescaped new-line. Subsequent
appearances of $(stringl[: substl=[subst2lD are replaced by string2. The
parentheses are. optional if a single-character macro name is used and there is no
substitute sequence. The optional :substl =subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are del­
imited by blanks, tabs, new-line characters, and beginnings of lines. An example
of the use of the substitute sequence is shown in the "Libraries" section below.

Internal Macros
There are five internally maintained macros that are useful for writing rwes for
building targets.

$* The macro $* stands for the filename part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies ..

$< The $< macro is only evaluated for inference rules or the .DEFAULT rwe. It
is the module that is outdated with respect to the target (the "manufac­
tured" dependent file name). Thus, in the .c.o rule, the $< macro would
evaluate to the . c file. An example for making optimized .0 files from . c
files is:

10/89 Page 3

make(1) make(1)

.c.o:
cc -c -<> $*.c

or:
.c.o:

cc -c -<> $<
$? The $? macro is evaluated when explicit rules from the makefile are

evaluated. It is the list of prerequisites that are outdated with respect to the
target, and essentially those modules that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib (file. 0). In this case, $@ evaluates to lib and $%
evaluates to the library member, file. o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to "directory part"
for D and "file part" for F. Thus, $ (@D) refers to the directory part of the string
$@. If there is no directory part, ./ is generated. The only macro excluded from
this alternative fq,rm is $?

Suffixes

Page 4

Certain names (for instance, those ending with .0) have inferable prerequisites
such as . c, . s, etc. If no update commands for such a file appear in makefile, and
if an inferable prerequisite exists, that prerequisite is compiled to make the target.
In this case, make has inference rules that allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .c- .f .f- .s .s- .sh .sh- .C .C-

.c.a .c.o .c-.a .c-.c .c-.o .f.a .f.o .f-.a .f-.f .f-.o

.h-.h .1.c .1.0 .1-.c .1-.1 .1-.0 .s.a .s.o .s-.a .s-.o

.s-.s .sh-.sh .y.c .y.o .y-.c .y-.o .y-.y .C.a .C.o .C-.a

.C-.C .C-.o .L.C .L.o .L-.C .L-.L .L-.o .y.c .Y.o .y-.c

.Y-.o .y-.y

The internal rules for make are contained in the source file rules. c for the make
program. These rules can be locally modified. To print out the rules compiled
into the make on any machine in a form suitable for recompilation, the following
command is used:

make ~f - 2>/dev/null </dev/null

A tilde in the above rules refers to an sees file [see sccsfile(4)]. Thus, the rule
. c- .0 would transform an sees C source file into an object file (.0). Because the
s. of the sees files is a prefix, it is incompatible with the make suffix point of
view. Hence, the tilde is a way of changing any file reference into an sees file
reference.

A rule with only one suffix (for example, . c:) is the definition of how to build x
from x .c. In effect, the other suffix is null. This feature is useful for building
targets from only one source file, for example, shell procedures and simple C pro­
grams.

10/89

make(1) make(1)

Additional suffixes are given as the dependency list for . SUFFIXES. Order is
significant: the first possible name for which both a file and a rule exist is inferred
as a prerequisite. The default list is:

. SUFFIXES: .0 .c .c- .y .y- .1 .1- .s .s- .sh .sh- .h .h- .f .f- .C

.C- .Y .Y- .L .L-

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
. SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This abbreviation is possible because make has a set of internal rules for building
files. The user may add rules to this list by simply putting them in the rruikefi1e.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(1}, lex(l}, and yacc(1}, respectively.
Again, the previous method for examining the current rules is recommended;

The inference of prerequisites can be controlled. The rule to create a file with
suffix ; 0 from a file with suffix . c is specified as an entry with . c.o: as the tar­
get and no dependents. Shell commands associated with the target define the
rule for making a .0 file from a . c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true t!lrget.

Libraries

10/89

If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within the
library. Thus, lib(file.o) and $ (LIB) (file.o) both refer to an archive library
that contains file. o. (This example assumes the LIB macro has been previously
defined.) The expression $ (LIB) (filel. 0 file2. 0) is not legal. Rules pertain­
ing to archive libraries have the form . XX . a where the XX is the suffix from
which the archive member is to be made. An unfort:unate by-product of the
current implementation requires the XX to be different from the suffix of the
archive member. Thus, one cannot have lib (file. 0) depend upon file.o
explicitly. The most common use of the archive interface follows. Here, we
assume the source files are all C type source: .

lib: lib (file1.o) lib (file2.0) lib (file3.o)
@echo lib is now up-to-date

.c.a:
$ (CC) -c $(CFLAGS) $<
$(AR) $ (ARFLAGS) $@ $*.0
rm-f$*.o

Page 5

make(1) make(1)

FILES

In fact, the . C • a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$ (CC) -c $(CFLAGS) $(1:.o=.c)
$ (AR) $ (ARFLAGS) lib $1
rm $1
@echo lib is now up-to-date

.c.a: ;

Here the substitution mode of the macro expansions is used. The $1 list is
defined to be the set of object filenames (inside lib) whose C source files are out­
dated. The substitution mode translates the .0 to .c. (Unfortunately, one cannot
as yet transform to .c-; however, this transformation may become possible in the
future.) Also note the disabling of the . c. a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

[MIn) akefile and s. [MIn) akefile
/usr/bin/sh

SEE ALSO

NOTES

Page 6

cc(1), lex(1), yacc(1), printf(3S), sccsfile(4).
cd(1), sh(1) in the User's Reference Manual.
See the "make" chapter in the Programmer's Guide: ANSI C and Programming Sup­
port Tools.

Some commands return non-zero status inappropriately; use -i or the - com­
mand line prefix to overcome the difficulty.

Filenames with the characters = : @ will not work. Commands that are directly
executed by the shell, notably cd(1), are ineffectual across new-lines in make. The
syntax lib(file1.o file2.0 file3.0) is illegal. You cannot build
lib(file.o) from file.o.

10/89

mcs(1) mcs(1)

NAME
mes - manipulate the comment section of an object file.

SYNOPSIS
mes [-a string] [-c) [-d) [-n name] [-p] [-V] file ...

DESCRIPTION
The mes command is used to manipulate a section, by default the . comment sec­
tion, in an ELF object file. It is used to add to, delete, print, and compress the
contents of a section in an ELF object file, and only print the contents of a section
in a COFF object file. mes must be given one or more of the options described
below. It applies each of the options in order to each file.

The following options are available.

-a string
Append string to the comment section of the ELF object files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section of the ELF object files. All
duplicate entries are removed. The ordering of the remaining entries is
not disturbed.

-d Delete the contents of the comment section from the ELF object files. The
section header for the comment section is also removed.

-n name
Specify the name of the comment section to access if other than . comment.
By default, mes deals with the section named . comment. This option can
be used to specify another section.

-p Print the contents of the comment section on the standard output. Each
section printed is tagged by the name of the file from which it was
extracted, using the format filename [member_name] : for archive files; and
filename: for other files.

-v Print, on standard error, the version number of mes.

If the input file is an archive [see ar(4)], the archive is treated as a set of indivi­
dual files. For example, if the -a option is specified, the string is appended to the
comment section of each ELF object file in the archive; if the archive member is
not an ELF object file, then it is left unchanged.

If mes is executed on an archive file the archive symbol table will be removed,
unless only the -p option has been specified. The archive symbol table must be
restored by executing the ar command with the -s option before the archive can
be linked by the ld command. mes will produce appropriate warning messages
when this situation arises.

EXAMPLES
mes -p file f Print file's conment section

mc:s -a string file f Append string to file's conment section

10/89 Page 1

mcs(1) mcs(1)

FILES
TMPDIR/mes*

TMPDIR

tenlfXlrary files

usually /var/tnp but can be redefined
environnlent variable TMPDIR [see
tnpnarr(3S)].

by setting the
tenpnamO in

SEE ALSO

NOTES

Page 2

ar(1), as(1), ce(1), ld(1), tnpnam(3S), a. out(4), ar(4).
See the "Object Files" chapter in Programmer's Guide: ANSI C and Programming
Support Tools.

mes cannot add to, delete or cOnlpress the contents of a section that is contained
within a segnlent.

10/89

nm(1) nm(1)

NAME
run - print name list of an object file

SYNOPSIS
run [-oxhvnefurplVT] files

DESCRIPTION

10/89

The run command displays the symbol table of each ELF or COFF object file,
specified by file(s). The file may be a relocatable or absolute ELF or COFF object ~.
file; or it may be an archive of relocatable or absolute ELF or COFF object files.
For each symbol, the following information will be printed:

Index The index of the symbol. (The index appears in brackets.)

Value The value of the symbol is one of the following: a section offset for
defined symbols in a relocatable file; alignment constraints for symbols
whose section index is SHN caH)N; a virtual address in executable and
dynamic library files. -

Size The size in bytes of the associated object.

Type A symbol is of one of the following types: NOTYPE (no type was
specified), OBJECT (a data object such as an array or variable), FUNC (a
function or other executable code), SECTION (a section symbol), or FILE
(name of the source file).

Bind The symbol's binding attributes. LOCAL symbols have a scope limited
to the object file containing their definition; GLOBAL symbols are visible
to all object files being combined; and WEAK symbols are essentially glo­
bal symbols with a lower precedence than GLOBAL.

Other A field reserved for future use, currently containing O.

Shndx Except for three special values, this is the section header table index in
relation to which the symbol is defined. The following special values
exist: ABS indicates the symbol's value will not change through reloca­
tion; COMMON indicates an unallocated block and the value provides
alignment constraints; and UNDEF indicates an undefined symbol.

Name The name of the symbol.

The output of run may be controlled using the following options:
-0

-x
-h
-v
-n
-e

-f

-u

Print the value and size of a symbol in octal instead of decimal.

Print the value and size of a symbol in hexadecimal instead of decimal.

Do not display the output heading data.

Sort external symbols by value before they are printed.

Sort external symbols by name before they are printed.

See NOTES below.

See NOTES below.

Print undefined symbols only.

Page 1

nm{1)

-r

-p

-1

-v

-T

nm{1)

Prepend the name of the object file or archive to each output line.

Produce easily parsable, terse output. Each symbol name is preceded
by its value (blanks if undefined) and one of the letters U (undefined), N
(symbol has no type), 0 (data object symbol), T (text symbol), S (section
symbol), or F (file symbol). If the symbol's binding attribute is LOCAL,
the key letter is lower case; if the symbol's binding attribute is WEAK,
the key letter is upper case; if the -1 modifier is specified, the upper
case key letter is followed by a *; if the symbol's binding attribute is
GLOBAL, the key letter is upper case.

Distinguish between WEAK and GLOBAL symbols by appending a .. to the
key letter for WEAK symbols.

Print the version of the run command executing on the standard error
output.

See NOTES below.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. When conflicting options are specified
(such as run -v -0) the first is taken and the second ignored with a warning mes­
sage to the user.

SEE ALSO

NOTES

Page 2

as(1), cc(1), dunp(1), 1d(1), a. out(4), ar(4).

The following options are obsolete because of changes to the object file format
and will be deleted in a future release.

-e

-f

-T

Print only external and static symbols. The symbol table now contains
only static and external symbols. Automatic symbols no longer appear
in the symbol table. They do appear in the debugging information pro­
duced by cc -g, which may be examined using dunp(1).

Produce full output. Redundant symbols (such as .text, .data, etc).
which existed previously do not exist and producing full output will be
identical to the default output.

By default, run prints the entire name of the symbols listed. Since sym­
bol names have been moved to the last column, the problem of
overflow is removed and it is no longer necessary to truncate the sym­
bol name.

10/89

prof(1) prof(1)

NAME
prof - display profile data

SYNOPSIS
prof [-t 1 cia 1 nl [-0 1 xl [-gIl) [-zl·[-hl [-81 [-In mdatal -v [prog)

DESCRIPTION .

10/89

The prof command interprets a profile file produced by the oonitor function.
The symbol table in the object file prog (a. out by default) is read arid correlated
with a profile flle (roon.outby default). For each external text symbol the percen­
tage of time spent executing between the address of that symbol and the address
of the next is printed, together with the number of times that function was called
and the average number of milliseconds per call.

The mutually exclusive options ~t, -c, -a, and -n determine the type of sorting
of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options -0 and -x specify the printing of the address of
each symbol monitored:

-0 Print each symbol address (in octal) alongwi~h the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol name.

The mutuaI1y exclusive options -9 and -1 (:cmtrol the type of symbols to be
reported. The .-1 option must be used with care; it applies the time sperit in a
static 'function to the precedmg (in memory)· global function, instead of giving the
static function a separate entry in the report. If all static functions are properly
located (see example below), this feature can be very useful. If not, the resUlting
report may be misleading.

Assume that A and B are global functions and OnlYA. ca:lls static function S. If s
is located immediately after A in th.;!· source. code (that is, if s· is properly
located), then, with· the -.1 option, the amount of time spent in A can easily be
determined, including the time spent in s. If, however, both A and B call S,
then, if the -1 option is used, the report will be misleading; the time spent dur­
ing B's call to S will be attributed' to A, making it appear as if more time· had
been spent in A than really had. In this case, function S cannot be properly
located.

-9 Irtclude static (non-global) functions.

-1 Do not include static (non-global) functions (default) ..

The following optiorts may be used in any combination:

-z Include all symbols in the profile range, even if associated with zero
number of calls and zero time.

Page 1

prof(1) prof (1)

FILES

-h

-8

Suppress the heading nprmally printed pn the report. (This is uSeful if the
repprt is to' be processed further.)

Print a summary pf several pf the mpnitpring parameters and statistics pn
the standard errpr' Qutput.

-mmdaia
Use file mdata insteild pf ilIOn. out as the input profile file.

-v Print prof version information on the standard 'error output.

A program' creates a profile file if it has been link edited with the -p pption of
cc. This optiOn to thecc command arranges for calls to zoonitor at the begin­
ning and ~nd of executipn, It. is the call to zoonitor at the end of execution that
causes the sy-stemto write a profile file. The number, of calfs to a functipn is tal­
l~ed if the ~optipn was used when the f'ilecon~aihing the function was com-
piled.' " " '

The name of the file created Py a profiled program is controlled by the environ~
mental variable P~OFDIR. If PROFDIRi!! not set, mon •. out is produced in the
directory current whe~ the program t~inates. If PROFDIR=.string,
string/pid ~ progname is produced, where progname c'orisists of arqv [0] with any
path prefix removed, and pid is the prOc:ess 10 of ~he program. IfPROFDIR is set,
but null, no profiling ot.!-tput.are pro~uced~' . '.. , .

A single funqion may be split' into subfunctions for profiling by means pf the
MARK macro [see piof(S)].

zoon.out
a·out

defalllt profile file
d.efault namelist (pbject) file

SEE ALSO
. ce(1), lprof(1), exit(2), profil(2), zoonitor(3C), prof(S).

the "lprof/ichapter in the Programmer's Guide: ANSI ~ and Programming Support

NOTES

Page 2

Tools. . . '

The times reported in successive icientical rurls may show yariances because pf
varying cache-hit ratios that result from sharing the cilche with other prpcesses.
Even if a program seems to, be the o!\ly pne 'usin,g the machine, hidden back­
grpund or. asynchro~o~s processes may blur the data. In rare cases, the dock
tickS .Initiating rec~rding of th~program counter may ''beat'' with lopps in a pro­
gram, grossly distortirfg measurem~nts. Call counts are always recorded pre-
cisely, however.. .' . , ' ,

Only prpgrams that call exit or ,return from ~in are guaranteed to' produce a
profile file, unless ~ fmal caU tc? zoonito+ is explicitly !=oded.

The times for static functions are attributed to the preceding external text symbol
if the -q pptionis npt useq. However, the call counts for the preceding function
are stillcorrecti thaUs, the static, function can counts 'ate not, added to the call
cpunts pf the externa~ functipn. . , .

10/89

prof(1) prof(1)

10/89

If more than one of the options -t, -c, -a, and -nis specified, the last option
specified is used and the user is warned.

Profiling may be used with dynamically linked executables, but care must be
applied. Currently, shared objects cannot be profiled with prof. Thus, when a
profiled, dynamically linked program is. executed,. only the "main" portion of the
image is sampled .. This means that all time spent outside of the "main" object,
that is, time spent in a shared object, will not be induded in the profile summary;
the total time reported for the program may be less than the total time used by
the program.

Because the time spent in a shared object. cannot be accounted for, the use of
shared objects should be mini~ized whenever a program is profiled with prof.
If possible, the program should be linked statically before being profiled.

Consider an extreme case. A profiloo, program dynamically linked with the
shared C library spends 100 units of time. in some libc routine, say, malloe.
Suppose malloe is called only from r6Jtine Band B consumes only 1 unit of
time. Suppose further that routine A consumes 10 units of time, more than any
other routine in the "main" (profiled) portion of the image. In this case, prof
will conclude that. most of the time is being spent in A and almost no time is
being spent in B. From this it will be almost impossible to tell that the greatest
improvement can be made oy looking at routine B and not routine .A. The value
of the profiler in this case is severely degraded; the solution is to use archives as
much as possible for profiling.

Page 3

prs(1) prs(1)

NAME
prs - print an sees file

SYNOPSIS
prs l-d[dataspec]] [-r[SID]] [-e] [-1] [-c[date-time]] [-a] files

DESCRIPTION
prs prints, on the standard output, parts or all of an sees file [see sccsfile(4)]
in a user-supplied format. If a directory is named, prs prints the files in that
directory, except the non-Sees files (last component of the path name does not
begin with s.) and unreadable files. If a name of - is given, the standard input
is. read; each line of the standard input is taken to be the name of an sees file or
directory to be processed. prs silently ignores non-sees files and unreadable
files.

Arguments to prs, which may appear in any order, consist of keyletter argu­
ments and file names.

The keyletter arguments apply independently to each named file:

-d[dataspec] Specifies the output data specification. The dataspec is a
string consisting of sees file data keywords (see the DATA
KEYWORDS section) interspersed with optional user­
supplied text.

-r[SID] Specifies the sees identification (SID) string of a delta for
which information is, desired. The default is the top delta.

-e Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter or the
date givet:l by the -c option.

-1 Requests information. for all deltas created later than and
including the delta designated via the -r keyletter or the
date given by the -c option.

-c[date-time] The cutoff date-time in the form:

-a

YY[MM[DD[HH[MM[SS]]]]]

Units omitted 'from the date-time default to their max­
imum possible values; for example, -c7502 is equivalent to
-c750228235959. Any, number of non-numeric characters
may separate the fields of the cutoff date; for example,
,j-c77/2/2' 9:22:25".,

Requests printing of information for both removed, i.e.,
delta type;:: R, [see rmde1(1)] and existing, i.e., delta type ;::
0, deltas. If the -a, keyletter is· not specified, information
for existing deltas only ~s provided.

DATA KEYWORDS

10/89

Data keywords specify those parts of an sees file that are to be retrieved and
output. All parts of an sees file [see sccsfile(4)] have an associated data key­
word. There is no limit on, the number of tiII:\es a data keyword may appear in a
dataspec.

Page 1

prs(1) prs(1)

The information printed by prs consists of: (1) the user-supplied text; and (2)
appropriate values (extracted from the sees file) substituted for the recognized
data keywords in the order of appearance in the dataspec. The format of a data
keyword value is either "Simple" (S), in which keyword substitution is direct, or
"Multi-line" (M), in which keyword substitution is followed by a carriage return.

User-supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \n. The default data
keywords are:

":Dt:\t:DL:\nMRs:\n:MR:~NTS:\n:C:"

Kerword Data Item File Section Value Format
:Dt: Delta information Delta Table See below'" S
:DL: Delta line statistics :Li:I:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta " nnnnn S
:DT: Delta type D orR S
:I: SCCS ID string (SID) " :R: .:L:. :B: .:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created nn S
:Om: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:: :Tm:: :Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:OS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: ... S
:Dx: Deltas excluded (seq #) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flags text M

Page 2 10/89

prs(1) prs (1)

Keyword Data Item File Section Value Format
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:KV: Keyword validation string text S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S
:LK: Locked releases :R: ... S
:Q: User-defined keyword text S
:M: Module name text S

:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Os: Default SID : I: S
:ND: Null delta flag yes or no S
:FO: File descriptive text Comments text M
:BO: Body Body text M
:GB: Gotten body " text M
:W: A form of what(1) string N/A :Z: :M:\t:I: S
:A: A form of what(1) string N/A :Z: :Y: :M: :1: :Z: S
:Z: what(1) string delimiter N/A @ (i) S
:F: SCCS file name N/A text S

:PN: sees file path name N/A text S

.. :Ot: = :OT: :1: :0: :T: :P: :08: :OP:

EXAMPLES

10/89

The command

prs -d"Users and/or user lOs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

The command

prs -d"Newest delta for pgm :M:: :1: Created :0: By :P:" -r
s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

The default case:

prs s.file

Page 3

prs (1)

FILES

produces on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

prs (1)

for each delta table entry of the "D" type. The only keyletter argument allowed
to be used with the "special case" is the -a keyletter.

/var/tmp/pr?????

SEE ALSO
admin(1), delta(1), get(1), help(1), sccsfile(4).

DIAGNOSTICS
Use help(1) for explanations.

Page 4 10/89

regcmp (1) regcmp(1)

NAME
regcltp - regular expression compile

SYNOPSIS
regcnp [-] file ...

DESCRIPTION
The regcrcp command performs a function similar to regcnp and, in most cases,
precludes the need for calling regcnp from C programs. Bypassing regcnp saves
on both execution time and program size. The command regcnp compiles the
regular expressions in file and places the output in file. i. If the - option is used,
the output is placed in file. c. The format of entries in file is a name (C variable)
followed by one or more blanks followed by one or more regular expressions
enclosed in double quotes. The output of regcnp is C source code. Compiled
regular expressions are represented as extern char vectors. file. i files may thus
be Uncluded in C programs, or file. c files may be compiled and later loaded.
In the C program that uses the regcnp output, regex (abc, line) applies the reg­
ular expression named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name

telno

"([A-Za-z] [A-Za-zO-9_] *) $0"

"\({O,l}([2-9] [01] [1-9])$0\) {O,l} *"
"([2-9] [0-9] (2}) $1 [-] {O,l}"
" ([0-9] (4}) $2"

The three arguments to telno shown above must all be entered on one line.

In the C program that uses the regcnp output,

regex(telno, line, area, exch, rest)

applies the regular expression named telno to line.

SEE ALSO
regcrcp(3G).

10/89 Page 1

rmdel(1) rmdel (1)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

rmdel removes the delta specified by the SID (sees identification string) from
each named sees file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named sees file. In addition, the
delta specified must not be that of a version being edited for the purpose of mak­
ing a delta; that is, if a p-fiIe exists for the named sees file [see get(l)], the delta
specified must not appear in any entry of the p-file.

The -r option specifies the SID level of the delta to be removed.

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed; non-SCes files and unread­
able files are silently ignored.

The rules governing the removal of a delta are as follows: if you make a delta
and have appropriate file permissions, you can remove it; if you own the file and
directory in which a new delta file resides, you can remove the delta.

x.fiIe [See delta(1)]
z.fiIe [See delta(1»)

SEE ALSO
delta(l), get(1), help(1), prs(l), sccsfile(4).

DIAGNOSTICS
Use help(1) for explanations.

1'()/89 Page 1

sact(1) sact (1)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

DESCRIPTION
sact informs the user of any impending deltas to a named sees file. This situa­
tion occurs when get with the -e option has been previously executed without a
subsequent execution of delta. If a directory is named on the command line,
sact behaves as though each file in the directory were specified as a named file,
except that non-SeeS files and unreadable files are silently ignored. If a name of
- is given, the standard input is read with each line being taken as the name of
an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the sees file
to which changes will be made to make the new delta.

Field 2

Field 3

Field 4

Field 5

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (Le.,
executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

SEE ALSO
delta(1), diff(1), get(1), help(1), unget(1).

DIAGNOSTICS
Use help(1) for explanations.

10/89 Page 1

sccsdiff (1) sccsd iff (1)

NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -r5IDl -r5ID2 [-p] [-sn] files

DESCRIPTION

FILES

sccsdiff compares two versions of an sees file and generates the differences
between the two versions. Any number of sees files may be specified, but argu­
ments apply to all files.

-rSIDl -rSID2

-p

-sn

5IDl and 5ID2 specify the deltas of an sees file that are
to be compared. Versions are passed to bdiff in the
order given.

pipe output for each file through pro

n is the file segment size that bdiff will pass to diff.
This option is useful when diff fails due to a high sys­
tem load.

/var/trnp/get????? temporary files

SEE ALSO
get(l), help(1).
diff(1), bdiff(1), pr(1) in the User's Reference Manual.

10/89 Page 1

sdb(1) sdb(1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-e] [-s signo] [-v] [-W] [-w] [objfile [corfile [directory-list])]

DESCRIPTION

10/89

sdb is the symbolic debugger for C and assembly programs. sdb may be used to
examine executable program files and core files. It may also be used to examine
live processes in a controlled execution environment.

The objfile argument is' the name of an executable program file. To take full
advantage of the symbolic capabilities of sdb, this file should be compiled with
the --q (debug) option. If it has not been compiled with the --q option, the sym­
bolic capabilities of sdb will be limited, but the file can still be examined and the
program debugged. objfile may also be a path name in the /proc directory, in
which case the currently executing process denoted by that path name is con­
trolled by sdb.

The corfile argument is the name of a core image file. A core image file is pro­
duced by the abnormal termination of objfile or by the use of gcore. A core
image file contains a copy of the segments of a program. The default for corfile is
core. A core image file need not be present to use sdb. Using a hyphen (-)
instead of corfile forces sdb to ignore an existing core image file.

The directory-list argument is a colon-separated list of directories that is used by
Sdb to locate source files used to build objfile. If no directory list is specified, sdb
will look in the current directory.

The following options are recognized by sdb:

-e Ignore symbolic information and treat nonsymbolic addresses as file
offsets.

-s signo
Where signa is a decimal number that corresponds to a signal number [see
signal(2)], do not,stop live processes under control of sdb that receive
the. Signal. This option maybe used more than once on the sdb command
line.

-v Print version information. If no objfile argument is specified on the com­
mand line, sdb will exit after printing the version information.

-W Suppress warnings about corfile being older than objfile or about source
files that are older than objfile.

-w Allow user to write to objfile or corfile.

sdb recognizes a current line and a current file. When sdb is examining an exe­
cutable program file without a core file, the current line and current file are ini­
tially set to the line and' file containing the first line of main. If corfile exists, then
current line and current file are initially set to the line and file containing the
source statement where the process terminated. The current line and current file
change atltomatically as a live process' executes. They may also be changed with
the source file examination commands.

Page 1

sdb(1) sdb (1)

Names of variables are written as in C. Variables local to a procedure may be
accessed using the form procedure:variable. If no procedure name is given, the
procedure containing the current line is used by default.

Structure members may be referred to as variable. member, pointers to structure
members as variable->member, and array elements as variable [number]. Pointers
may also be dereferenced by using the form pointer [number]. Combinations of
these forms may also be used. The form number->member may be used where
number is the address of a pointer, and number. member where number is inter­
preted as the address of a structure instance. The template of the structure type
used in this case will be the last structure type referenced. When sdb displays
the value of a structure, it does so by displaying the value of all elements of the
structure. The address of a structure is displayed by displaying the address of
the" structure instance rather than the addresses of individual elements.

Elements of a multidimensional array may be referred to as variable
[number] [number] ... , or as variable [number,number, ...]. In place of number, the
form number; number may be used to indicate a range of values, * may be used to
indicate all legitimate values for that subscript, or subscripts may be omitted
entirely if they are the last subscripts and the full range of values is desired. If
no subscripts are specified, sdb will display the value of all elements of the array.

A particular instance of a variable on the stack is referred to as
procedure: variable, number. The number is the occurrence of the specified pro­
cedure on the stack, with the topmost occurrence being 1. The default procedure
is the one containing the current line.

Addresses may be used in sdb commands as well. Addresses are specified by
decimal, octal, or hexadecimal numbers.

Line numbers in the source program are specified by the form filename: number or
procedure:number. In either case, the number is relative to the beginning of the file
and corresponds to the line number used by text editors or the output of pro A
number used by itself implies a line in the current file.

While a live process is running under sdb, all addresses and identifiers refer to
the live process. When sdb is not examining a live process, the addresses and
identifiers refer to objfile or corfile.

Commands

Page 2

The commands for examining data in the program are:

t Prints a stack trace of the terminated or halted program. The function
invoked most recently is at the top of the stack. For C programs, the stack
ends with _start, which is the startup routine that invokes main.

T Prints the top line of the stack trace.

variable/elm
Print the value of variable according to length I and format m. The numeric
count c indicates that a region of memory, beginning at the address implied
by variable, is to be displayed. The length specifiers are:

10/89

sdb(1)

10/89

b

h

1

one byte

two bytes (half word)

four bytes (long word)

Legal values for mare:

c character

d signed decimal

u unsigned decimal

o octal

x hexadecimal

f 32-bit single precision floating point

9 64-bit double precision floating point

sdb(1)

s Assumes that variable is a string pointer and prints characters start­
ing at the address pointed to by the variable.

a Prints characters starting at the variable's address. Do not use this
with register variables.

p pointer to procedure

i Disassembles machine-language instruction with addresses printed
numerically and symbolically.

I Disassembles machine-language instruction with addresses printed
numerically only.

Length specifiers are effective with formats c, d, u, 0, x. The length specifier
determines the output length of the value to be displayed. This value may
be truncated. The count specifier c displays that many units of memory,
starting at the address of the variable. The number of bytes in the unit of
memory is determined by 1 or by the size associated with the variable. If the
specifiers c, I, and m are omitted, sdb uses defaults. If a count specifier is
used with the s or a command, then that many characters are printed. Oth­
erwise, successive characters are printed until either a null byte is reached
or 128 characters are printed. The last variable may be redisplayed with the
./ command.

For a limited form of pattern matching, use the sh metacharacters * and ?
within procedure and variable names. (sdb does not accept these metachar­
acters in file names, as the function name in a line number when setting a
breakpoint, in the function call command, or as the argument to the e com­
mand.) If no procedure name is supplied, sdb matches both local and glo­
bal variables. If the procedure name is specified, then sdb matches only
local variables. To match global variables only, use : pattern. To print all
variables, use *: *.

Page 3

sdb(1)

Page 4

sdb(1)

linenumber?lm
variable: ?Im

Prints the value at the address from the executable or text space given by
linenumber or variable (procedure name), according to the format 1m. The
default format is i.

variable=lm
linenumber=lm
number=lm

Prints the address of variable or linenumber, or the value of number. I specifies
length and m specifies the format. If no format is specified, then sdb uses
lx (four-byte hex). m allows you to convert between decimal, octal, and
hexadecimal.

variable! value
Sets variable to the given value. The value may be a number, a character
constant, or a variable. The value must be well-defined; structures are
allowed only if assigning to another structure variable of the same type.
Character constants are denoted 'character. Numbers are viewed as integers
unless a decimal point or exponent is used. In this case, they are tJ;eated as
having the type double. Registers, except the floating point registers, are
viewed as integers. Register names are identical to those used by the assem­
bler (for example, %regname where regname is the name of a register). If the
address of a variable is given, it is regarded as the address of a variable of
type into C conventions are used in any type conversions necessary to per­
form the indicated assignment .

•
x Prints the machine registers and the current machine-language instruction.

X Prints the current machine-language instruction.

The commands for examining source files are:

e
e procedure
e filename
e directory!

e, without arguments, prints the name of the current file. The second form
sets the current file to the file containing the procedure. The third form sets
the current file to filename. The current line is set to the first line in the
named procedure or file. Source files are assumed to be in the directories in
the directory list. The fourth form adds directory to the end of the directory
list.

/regUlar expression/
Searches forward from the current line for a line containing a string match­
ing regUlar expression, as in ed. The trailing / may be omitted, except when
associated with a breakpoint.

?regUlar expression?
Searches backward from the current line for a line containing a string
matching regUlar expression, as in ed. The trailing? may be omitted, except
when associated with a breakpoint.

10/89

sdb(1) sdb(1)

p Prints the current line.

10/89

z

w

Prints the current line and the following nine lines. Sets the current line to
the last line printed.

Prints the 10 lines (the window) around the current line.

number
Specifies the current line. Prints the new current line.

count+
Advances the current line by count lines. Prints the new current line.

count-
Resets the current line by count lines back. Prints the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Runs the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program. The R command
runs the program with no arguments. An argument beginning with < or >
redirects the standard input or output, respectively. Full sh syntax is
accepted. If count is given, it specifies the number of breakpoints to be
ignored.

linenumber c count
linenumber C count •

Continues execution. sdb stops when it encounters count breakpoints. The
signal that stopped the program is reactivated with the C command and
ignored with the c command. If a line number is specified, then a tem­
porary breakpoint is placed at the line and execution continues. The break­
point is deleted when the command finishes.

linenumber g count
Continues with execution resumed at the given line. If count is given, it
specifies the number of breakpoints to be ignored.

s count
S count

s single steps the program through count lines or if no count is given, then
the program runs for one line. s will step from one function into a called
function. s also steps a program, but it will not step into a called function.
It steps over the function called.

i count
I count

Single steps by count machine-language instructions. The signal that caused
the program to stop is reactivated with the I command and ignored with
the i command.

Page 5

sdb(1)

Page 6

variable$m count
address:m count

sdb(1)

Single steps (as with s) until the specified location is modified with a new
value. If count is omitted, it is, in effect, infinity. Variable must be accessible
from the current procedure. This command can be very slow.

level v
Toggles verbose mode. This is for use when single stepping with s, s, or II\.
If level is omitted, then just the current source file and/or function name is
printed when either changes. If level is 1 or greater, each C source line is
printed before it executes. If level is 2 or greater, each assembler statement
is also printed. A v turns verbose mode off.

k Kills the program being debugged.

procedure <argl,arg2, ...)
procedure <argl,arg2, ...) /m

Executes the named procedure with the given arguments. Arguments can
be register names, integer, character, or string constants, or names of vari­
ables accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m. If no
format is given, it defaults to d.

linenumber b commands
Sets a breakpoint at the given line. If a procedure name without a line
number is given (e.g., proc:), a breakpoint is placed at the first line in the
procedure even if it was not compiled with the -g option. If no linenumber
is given, a breakpoint is placed at the current line. If no commands are
given, execution stops at the breakpoint and control is returned to sdb.
Otherwise the commands are executed when the breakpoint is encountered.
Multiple commands are specified by separating them with semicolons.
Nested. associated commands are not permitted; setting breakpoints within
the associated environments is permitted.

B Prints a list of the currently active breakpoints.

linen umber d
Deletes a breakpoint at the given line. If no linenumber is given, then the
breakpoints are deleted interactively. Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or d,
then the breakpoint is deleted.

D Deletes all breakpoints.

1 Prints the last executed line.

linenumber a
Announces a line number. If linenumber is of the form proc:number, the
command effectively does a linenumber:b l;c. If linenumber is of the form
proc:, the command effectively does a proc:b T;c.

10/89

sdb(1)

Miscellaneous commands:

trest-of-line
The rest-of-line represents comments that are ignored by sdb.

!command
The command is interpreted by sh.

new-line

sdb(1)

If the previous command printed a source line, then advance the current
line by one line and print the new current line. If the previous command
displayed a memory location, then display the next memory location. If the
previous command disassembled an instruction, then disassemble the next
instruction.

end-of-file character
Scrolls the next 10 lines of instructions, source, or data depending on which
was printed last. The end-of-file character is usually control-d.

<filename
Read commands from filename until the end of file is reached, and then con­
tinue to accept commands from standard input. Commands are echoed,
preceded by two asterisks, just before being executed. This command may
not be nested; < may not appear as a command in a file.

M Prints the address maps.
II string ..

Prints the given string. The C escape sequences of the form \ character,
\octaldigits, or \xhexdigits are recognized, where character is a nonnumeric
character. The trailing quote may be omitted.

q Exits the debugger.

V Prints version stamping information.

SEE ALSO

NOTES

10/89

cc(1), signal(2), a.out(4), core(4), s:yrns(4).
ed(1), gcore(1), sh(1) in the User's Reference Manual.
The "sdb" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

If objfile is a dynamically linked executable, variables, function names, and so on
that are defined in shared objects may not be referenced until the shared object in
which the variable, etc., is defined is attached to the process. For shared objects
attached at startup (e.g., libc. so .1, the default C library), this implies that such
variables may not be accessed until main is called.

The objfile argument is accessed directly for debugging information while the pro­
cess is created via the PATH variable.

Page 7

size(1) size (1)

NAME
size - print section sizes in bytes of object files

SYNOPSIS
size [-F -f -n -0 -v -xl files

DESCRIPTION

10/89

The size command produces segment or section size information in bytes for
each loaded section in ELF or COFF object files. size prints out the size of the
text, data, and bss (uninitialized data) segments (or sections) and their total.

size processes ELF and COFF object files entered on the command line. If an
archive file is input to the size command, the information for each object file in
the archive is displayed.

When calculating segment information, the size command prints out the total
file size of the non-writable segments, the total file size of the writable segments,
and the total memory size of the writable segments minus the total file size of the
writable segments.

If it cannot calculate segment information, size calculates section information.
When calculating section information, it prints out the total size of sections that
are allocatable, non-writable, and not NOBITS, the total size of the sections that
are allocatable, writable, and not NOBITS, and the total size of the writable sec­
tions of type NOBITS. (NOBITS sections do not actually take up space in the file.)

If size cannot calculate either segment or section information, it prints an error
m!,!ssage and stops processing the file.

-F. Prints out the size of each loadable segment, the permission flags of the
segment, then the total of the loadable segment sizes. If there is no seg­
ment data, size prints an error message and stops processing the file.

-f

-n

-0

-v

-x

Prints out the size of each allocatable section, the name of the section,
and the total of the section sizes. If there is no section data, size prints
out an error message and stops processing the file.

Prints out non~loadable segment or non-allocatable section sizes. If seg­
ment data exists, size prints out the memory size of each loadable seg­
ment or file size of each noncloadable segment, the permission flags, and
the total size of the segments. If there is no segment data, size prints
out, for each allocatable and non-allocatable section, the memory size,
the section name, and the total size of the sections. If there. is no seg­
ment or section data, size prints an error message and stops processing.

Prints numbers in octal, not decimal.

Prints the version information for the size command on the standard
error output.
Prints numbers in hexadecimal; not decimal.

Page 1

slze(1) size (1)

EXAMPLES
The examples below are typical size output.

size file 2724 + 88 + 0 == 2812

size -f file 26 (. text) + 5 (. init) + 5 (. fini) == 36

size -F file 2724 (r-x) + 88 (rwx) + 0 (rwx) = 2812

SEE ALSO
as(1), cc(1), Id(1),a.out(4), ar(4).

NOTES
Since the size of bss sections is not known until link-edit time, the size command
will not give the true total size of pre-linked objects.

Page 2 10/89

strip (1) strip (1)

NAME
strip - strip symbol table, debugging and line number information from an
object file.

SYNOPSIS
strip [-b1rVx] file ...

DESCRIPTION

FILES

The strip command strips the symbol table, debugging information, and line
number information from ELF object files; COFF object files can no longer be
stripped. Once this stripping process has been done, no symbolic debugging
access will be available for that file; therefore, this command is normally run only
on production modules that have been debugged and tested.

If strip is executed on a common archive file [see ar(4)] in addition to process­
ing the members, strip will remove the archive symbol table. The archive sym­
bol table must be restored by executing the ar(1) command with the -s option
before the archive can be linked by the 1d(l) command. strip will produce
appropriate warning messages when this situation arises.

The amount of information stripped from the ELF object file can be controlled by
using any of the following options:

-b Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-1 Strip line number information only; do not strip the symbol table or
debugging information.

-r Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-v Print, on standard error, the version number of strip.

-x Do not strip the symbol table; debugging and line number information
may be stripped.

strip is used to reduce the file storage overhead taken by the object file.

TMPDIRj strp*

TMPDIR

temporary files

usually /var/tIrrp but can be redefined by setting the
environment variable 'IMPDIR [seetenpnamO in
tIrrpnam(3S)].

SEE ALSO

NOTES

10/89

ar(1), as (1), cc(1), 1d(1), tIrrpnam(3S), a. out(4), ar(4).

The symbol table section will not be removed if it is contained within a segment,
or the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are con­
tained within a segment, or their associated relocation section is contained within
a segment.

Page 1

tsort (1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

tsort (1)

The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file. If no
file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

10/89 Page 1

unget(1) unget(1)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSlDl [-sl [-nl files

DESCRIPTION

FILES

unget undoes the effect of a get -e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the directory
were specified as a named file, except that non-SCes files and unreadable files are
silently ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

Keyletter arguments apply independently to each named file.

-rSID

-s

Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The
use of this keyletter is necessary only if two or more outstandc

ing gets for editing on the same sees file were done by the
same person (login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary and omitted on the com­
mand line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

-n Causes the retention of the gotten file, which would normally
be removed from the current directory.

unget must be performed by the same user who performed the original get -e.

p-file

q-file

z-file

[see delta(1)]

[see delta(1)]

[see delta(1)]

SEE ALSO
delta(1), get(1t help(1), sact(1).

DIAGNOSTICS
Use help(1) for explanations.

10/89 Page 1

val(1) val (1)

NAME
val - validate an sees file

SYNOPSIS
val -

val [-sl [-rSID1 [-mname1 [-ytype1 files

DESCRIPTION

10189

val determines if the specified file is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments, which begin with a -, and
named files.

val has a special argument, -, which causes reading of the standard input until
an end-of-file condition is detected. Each line read is independently processed as
if it were a command line argument list.

val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code on exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argu­
ment apply independently to each named file on the command line.

-s

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic message nor­
mally generated on the standard output for any error that is
detected while processing each named file on a given command line.

The argument value SID (sees identification string) is an sees delta
number. A check is made to determine if the SID is ambiguous (e.
g., -rl is ambiguous because it physically does not exist but implies
1.1, 1.2, etc., which may exist) or invalid (e. g., rl. 0 or rl.l. 0 are
invalid because neither can exist as a valid delta number). If the SID
is valid and not ambiguous, a check is made to determine if it actu­
ally exists.

The argument value name is compared with the sees %M% keyword
in file.

The argument value type is compared with the sees %Y% keyword in
file.

The 8-bit code returned by val is a disjunction of the possible errors; it can be
interpreted as a bit string where (moving from left to right) set bits are inter­
preted as follows:

bit 0 = missing file argument
bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted sees file
bit 3 = cannot open file or file not sees
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not exist
bit 6 = %Y%, -y mismatch
bit 7 = %M%, -m mismatch

Page 1

val(1) val(1)

val can process two or more files on a given command line and in turn can pro­
cess multiple command lines (when reading the standard input). In these cases
an aggregate code is returned: a logical OR of the codes generated for each com­
mand line and file processed.

SEE ALSO
admin(1), delta(1), get(1), help(1, pra(1).

DIAGNOSTICS
Use help(1) for explanations.

NOTES
val can process up to 50 files on a single command line.

Page 2 10/89

vc(1) vc(1)

NAME
ve - version control

SYNOPSIS
ve [-a] [-t] [-cchar] [-8] [keyword=value ... keyword=value]

DESCRIPTION

10/89

This command is obsolete and will be removed in the next release.

The ve command copies lines from the standard input to the standard output
under control of its arguments and of "control statements" encountered in the
standard input. In the process of performing the copy operation, user-declared
keywords may be replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard output is condi­
tional, based on tests (in control statements) of keyword values specified in con­
trol statements or as ve command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon
(:), except as modified by the -e keyletter (see below). Input lines beginning
with a backslash (\) followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines beginning with
a backslash followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASOI string that can be created with ed; a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a keyletter
(see below) forces replacement of keywords in all lines of text. An uninterpreted
control character may be included in a value by preceding it with \. If a literal \
is desired, then it too must be preceded by \.

The following options are valid:

-a

-t

-echar

-8

Forces replacement of keywords surrounded by control characters
with their assigned value in all text lines and not just in ve state­
ments.

All characters from the beginning of a line up to and including the
first tab character are ignored for the purpose of detecting a control
statement. If a control statement is found, all characters up to and
including the tab are discarded.

Specifies a control character to be used in place of the": II default.

Silences warning messages (not error) that are normally printed on
the diagnostic output.

ve recognizes the following version control statements:

: del keywordL ... , keyword]
Declare keywords. All keywords must be declared.

Page 1

vc(1)

Page 2

vC(1)

: asg keyword=value
Assign values to keywords. An asg statement overrides the assignment
for the corresponding keyword on the vc command line and all previous
asg statements for that keyword. Keywords that are declared but are not
assigned values have null values. .

: if condition

: end
Skip lines of the standard input. If the condition is true, all lines between
the if statement and the matching end statement are copied to the stan­
dard output. If the condition is false, all intervening lines are discarded,
including control statements. Note that intervening if statements and
matchirig end statements are recognized solely for the purpose of main-
taining the proper if-end matching. "

The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<valUe>

.. - ("not"] <or>

.. - <and> I <and> "1" <or>
::= <exp> I <exp> "&" <and> .
.. ...,- "(" <or> ")" I <valUe> <op> <value>
.. - "=" 1 "!=" 1"<"'1">"
.. _ <arbitrary ASqI string> I <n'1meric string>

The available operators and their meaJlings are:

~ual
! =; not equal
" ~nd
I or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and when

present, inverts the value of the entire condition

The > and < operate only on unsigned integer values <e.g., : 012 > 12 is
false). All other operators take strings as arguments (e.g., : 012 ! - 12 is
true). '

The precedence of the operators (from highest to lowest) is:

.. ! = > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one
blank or tab.

10/89

vc(1) VC(1)

: : text
Replace keywords on lines that are copied to the standard output. The
two leading control characters ate removed, and keywords surrounded by
control characters in text are replaced by their value before the line is
copied to the output file. This action is independent of the -a keyletter.

:on I

: off Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

: mag message
Print message on the diagnostic output.

: err message
Print message followed by:

ERROR: err statement on line ... (915)

on the diagnostic output. vc halts execution, and returns an exit code of 1.
SEE ALSO

help(1).
ed(1) in the User's Reference Manual.

10/89 Page 3

what(1 } what(1 }

NAME
what - print identification strings

SYNOPSIS
what [-s] files

DESCRIPTION
what searches the given files for all occurrences of the pattern that the get com­
mand substitutes for %z% (this is @ (I) at this printing) and prints out what fol­
lows until the first ", >, new-line, \, or null character. For example, if the C pro­
gram in file f . c contains

i ident "@ (i) identification information"
and f . c is compiled to yield f . 0 and a. out, then the command

what f.c f.o a.out

prints

f.c:
identification information

f.o:
identification information

a.out:
identification information

what is intended to be used in conjunction with the get command, which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:

-s Quit after finding the first occurrence of pattern in each file.

SEE ALSO
get(1), help(1), mesO).

DIAGNOSTICS

10/89

Exit status is a if any matches are found, otherwise 1. See help(1) for explana­
tions.

Page 1

yacc(1) yacc(1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vVd1t] [--Q[yln]] file

DESCRIPTION

FILES

10/89

The yacc command converts a context-free grammar into a set of tables for a
simple automaton that executes an LALR(1) parsing algorithm. The grammar may
be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro­
gram yyparse. This program must be loaded with the lexical analyzer program,
yylex" as well as main and yyerror, an error handling routine. These routines
must be supplied by the user; the lex(l) command is useful for creating lexical
analyzers usable by yacc.

-v Prepares the fIle y. output, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the gram­
mar.

-d Generates the file y.tab.h with the ide fine statements that associate
the yacc-assigned "token codes" with the user-declared "token names."
This association allows source files other than y. tab . c to access the
token codes.

-1 Specifies that the code produced in y.tab.c will not contain any nine
constructs. This option should only be used after the grammar and the
associated actions are fully debugged.

--Q[y I nl The --Qy option puts the version stamping information in y. tab. c.
This allows you to know what version of yacc built the file. The--Qn
option (the default) writes no version information.

-t Compiles runtime debugging code by default. Runtime debugging
code is always generated in y. tab. c under conditional compilation
control. By default, this code is not included when y. tab. c is com­
piled. Whether or not the -t option is used, the runtime debugging
code is under the control of YYDEBUG, a preprocessor symbol. If YYDE­
BUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and execu­
tion time of a program produced without the runtime 'debugging code
will be smaller and slightly faster.

-v Prints on the standard error output the version information for yacc.

y.output
y.tab.c
y.tab.h
yacc.tlIp,
yacc.debug, yacc.acts

defines for token names

temporary files

Page 1

yaCC(1) yacc(1)

LIBDIR/yaccpar
LIBDIR

parser prototype for C programs
usually /usr/ccs/lfrJ

SEE ALSO
lex(1).
The "yacc" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

DIAGNOSTICS

NOTES

Page 2

The number of reduce-reduce and shift-reduce conflicts is reported on the stan­
dard error output; a more detailed report is found in the y. output file. Simi­
larly, if some rules are not reachable from the start symbol, this instance is also
reported.

Because file names are fixed, at most one yacc process can be active in a given
directory at a given time.

10/89

intro(2) intro (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
iinclude <errno.h>

DESCRIPTION

10/89

This section describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise impossible
returned value. This is almost alwayS -lor. the NULL pointer; the individual
descriptions specify the details. An error number is also made available in the
external variable errno. errno is not cleared on successful calls, so it should be
tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The fol­
lowing is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to modify a file in some way for­
bidden except to its owner or the super-user. It is also returned for
attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
A file name is specified and the file should exist but doesn't, or one of the
\firectories in a path name does not exist.

3 ESRCH No such process
No procesS can be found corresponding to that specified by PID in the
kill or ptrace routine.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execution is
resumed after processing the signal, it will appear as if the interrupted
routine call returned this error condition.

S EIO I/O error
Some physical I/O error has occurred. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or exists
beyond the limit of the device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than ARC_MAX bytes is presented to a member
of the exec family of routines. The argument list limit is the sum of the
size of the argument list plus the size of the environment's exported shell
variables.

Page 1

intro (2) intro(2)

Page 2

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid format [see a.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read [respectively,
write] request is made to a file that is open only for writing (respectively,
reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
For example, the fork routine failed because the system's process table is
full or the user is not allowed to create any more processes, or a system
call failed because of insufficient memory or swap space.

12 ENOMEM Not enough space
During execution of an exec, brk, or sbrk routine, a program asks for
more space than the system is able to supply. This is not a temporary
condition; the. maximum size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires too
many segmentation registers, or if there is not enough swap space during
the fork routine. If this error occurs on a resource associated with
Remote File Sharing (RFS), it indicates a memory depletion which may be
temporary, dependent on system activity at the time the call was invol<ed~

13 EACCES ' Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argu­
ment of a routine. For example, errno potentially may be set to EFAULT
any time a routine that takes a pointer argument is passed an invalid
address, if the system can detect the condition. Because systems will
differ in their ability to reliably detect a bad address, on some. implemen­
tations passing a bad address to a routine will result in undefined
behavior.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required (e.g.,
in a call to the mount routine).

16 EBUSY Device busy
An attempt was made to mount a device that was already mounted or an
attempt was made to unmount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment), It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device.or resource is currently unavailable.

10/89

Intro (2) Intro(2)

10/89

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (e.g., call to
the link routine).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate operation to a device
(e.g., read a write-only device).

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required (e.g., in a path
prefix or as an argument to the chdir routine).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
An invalid argument was specified (e.g., unmounting a non-mounted dev­
ice), mentioning an undefined signal in a call to the signal or kill rou­
tine.

23 ENFlLE File table overflow
The system file table is full (i.e., SYS _OPEN files are open, and tem­
porarily no more files can be opened).

24 EMFlLE Too many open files
No process may have more than OPEN_MAX file descriptors open at a
time.

25 ENOTTY Not a typewriter
A call was made to the ioctl routine specifying a file that is not a special
character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or to
remove a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size, FCHR MAX [see
getrl:imitl.

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there is no
free space left· on the device. In the fentl routine, the setting or remov­
ing of record locks on a file cannot be accomplished because there are no
more record entries left on the system.

29 ESPIPE Illegal seek
A call to the lseek routine was issued to a pipe.

Page 3

intro (2) intro(2)

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links,
LINK_MAX, to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal is
ignored.

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist
on the specified message queue [see msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the remo­
val of an identifier from the file system's name space [see msgctl(2),
semctl(2), and shmctl(2)].

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error pertains to file
and record locking.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is full [see
fcnt1(2)].

47-49 Reserved

Page 4 10/89

Intro(2) intro(2)

10/89

58-59 Reserved

60 ENOSTR Device not a stream
A putmsg or getmsg system call was attempted on a file descriptor that is
not a STREAMS device.

61 ENODATA No data available

62 ETIME. Timer expired
The timer set for a STREAMS ioctl call has expired. The cause of this
error is device specific and could indicate either a hardware or software
failure, or perhaps a timeout value that is too short for the specific opera­
tion. The status of the ioctl operation is indeterminate.

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no STREAMS
head data structures were available. This is a temporary condition; one
may recover from it if other processes release resources.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try
to advertise, unadvertise, mount, or unmount remote resources while the
machine has not done the proper startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call from a package
which has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to advertise a resource
which is not on the local machine, or try to mount/unmount a device (or
pathname) that is on a remote machine.

67 ENOL INK Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit) connect­
ing to a remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource
which has been advertised already, or try to stop RFS while there are
resources still advertised, or try to force unmount a resource when it is
still advertised.

69 ESRMNT Srmount error
This error is RFS specific. It occurs when an attempt is made to stop RFS
while resources are still mounted by remote machines, or when a resource
is readvertised with a client list that does not include a remote machine
that currently has the resource mounted.

70 ECOMM Communication error on send
This error is RFS specific. It occurs when the current process is waiting
for a message from a remote machine, and the virtual circuit fails.

Page 5

Intro (2) intro(2)

Page 6

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is gen­
erally not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote
resources which are not directly accessible.

76 EDOTDOT Error 76
This error is RFS specific. A way for the server to tell the client that a
process has transferred back from mount point.

77 EBADMSG Not a data message
During a read, getmsg, or ioctl I _ RECVFD system call to a STREAMS
device, something has come to the head of the queue that can't be pro­
cessed. That something depends on the system call:

read: control information or a passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

78 ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the length of a
path component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect;
see limits(4).

79 EOVERFLOW
Value too large for defined data type.

80 ENOTUNIQ Name not unique on network
Given log name not unique.

81 EBADFD File descriptor in bad state
Either a file descriptor refers to no open file or a read request was made
to a file that is open only for writing.

82 EREMCHG Remote address changed

83 ELlBACC Cannot access a needed shared library
Trying to exec an a. out that requires a static shared library and the static
shared library doesn't exist or the user doesn't have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec an a. out that requires a static shared library (to be linked
in) and exec could not load the static shared library. The static shared
library is probably corrupted.

85 ELIBSCN . lib section in a. out corrupted
Trying to exec an a. out that requires a static shared library (to be linked
in) and there was erroneous data in the .lib section of the a. out. The
. lib section tells exec what static shared libraries are needed. The a. out
is probably corrupted.

10/89

intro (2) intro (2)

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a.out that requires more static shared libraries than is
allowed on the current configuration of the system. See the System
Administrator's Guide.

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle multiple characters as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path name traversal
exceeds MtlXSYMLINKS .

91 ESTART Error 91
Interrupted system call should be restarted.

92 ESTRPIPE Error 92
Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users
Too many users.

95 ENOTSOCK Socket operation on non-socket
Self-explanatory.

96 EDEs'1'ADDRREQ Destination address required
A required address was omitted from an operation on a transport end­
point. Destination address required.

97 EMSGSIZE Message too long
A message sent on a transport provider was larger than the internal mes­
sage buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket
type requested.

99 ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting options for a
protocol.

120 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementa­
tion for it exists.

121 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system
or no implementation for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram transport end­
point.

10/89 Plige 7

Intro (2) intro (2)

Page 8

123 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no imple­
mentation for it exists. Used for the Internet protocols.

124 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

125 EADDRINUSE Address already in use
User attempted to use an address already in use, and the protocol does
not allow this.

126 EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with an address
not on the current machine.

127 ENEToowN Network is down
Operation encountered a dead network.

128 ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

131 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a
loss of the connection on the remote host due to a timeout or a reboot.

132 ENOBUFS No buffer space available
An operation on a transport endpOint or pipe was not performed because
the system lacked sufficient buffer space or because a queue was full.

133 EISCONN Transport endpoint is already connected
A connect request was made on an already connected transport endpoint;
or, a sendto or sendmsg request on a connected transport endpoint
specified a destination when already connected.

134 ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the transport
endpoint is not connected and (when sending a datagram) no address was
supplied.

143 ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport endpoint has
already been shut down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETlMEOOUT Connection timed out
A connect or send request failed because the connected party did not
properly respond after a period of time. (The timeout period is depen­
dent on the communication protocol.)

10/89

Intro(2) Intro(2)

146 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused
it. This usually results from trying to connect to a service that is inactive
on the remote host.

147 EHOSTDOWN Host is down
A transport provider operation failed because the destination host was
down.

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an
operation in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was
attetnpted on a non-blocking object.

151 ESTALE Stale NFS file handle

DEFINITIONS
Background Process Group

Any process group that is not the foreground process group of a session that has
established a connection with a controlling terminal.

Controlling Process
A session leader that established a connection to a controlling terminal.

Controlling Terminal
A terminal that is associated with a session. Each session may have, at most, one
controlling terminal associated with it and a controlling terminal may be associ­
ated with only one session. Certain input sequences from the controlling terminal
cause signals to be sent to process groups in the session associated with the con­
trolling terminal; see termio(7).

Directory
Directories organize files into a hierarchical system where directories are the
nodes in the hierarchy. A directory is a file that catalogues the list of files,
including directories (sub-directpries), that are directly beneath it in the hierarchy.
Entries in a directory file are called links; A link. as!lqciates a fUe iqentifier with a
filename. By convention, a directory contains at least two links, . (dot) and ..
(dot-dot). The link called dot refers to the directory itself while dot-dot refers to
its parent directory. The root directory, which is the top-most node of the hierar­
chy, has itself as its parent directory. The pathname of the root directory is /
and the parent directory of the root directory is /.

Downstream
In a stream, the direction from stream head to driver.

Driver

10/89

In a stream, the driver provides the interface between peripheral hardware and
the stream. A driver can also be a pseudo-driver, such as a multiplexor or log
driver [see 10g(7)], which is not associated with a hardware device.

Page 9

Intro(2) Intro(2)

Effective User ID and Effective Group 10
An active process has an effective user ID and an effective group ID that are used
to determine file access permissions (see below). The effective user ID and effec­
tive group ID are equal to the process's real user ID and real group ID respec­
tively, unless the process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-group ID bit set [see exec(2»).

File Access Permissions
Read, write, and execute/search permissions on a file are granted to a process if
one or more of the following are true:

The effective user 10 of the process is super-user.

The effective user ID of the process matches the user ID of the owner of
the file and the appropriate access bit of the "owner" portion (0700) of the
file mode is set.

The effective user ID of the process does not match the user ID of the
owner of the file, but either the effective group ID or one of the supple.,
mentary group IDs of the process match the group ID of the file andthe
appropriate access bit of the "group" portion (0070) of the file mode is set.

The effective user ID of the process does not match the user ID of the
owner of the file, and neither the effective group ID nor any of the supple­
mentary group IDs of the process match the group ID of the file, but the
appropriate access bit of the "other" portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

File Descriptor .
A . file descriptor is a small integer used to do I/O on a file. The value of a file
descriptor is from 0 to (NOFlLES-l). A process may.have no more than NOFlLES
file descriptors open simultaneously. A file descriptor is returned by system calls
such as open, or pipe. The file descriptor is used as an argument by calls such as
read, write, ioctl, and close.

File Name
Names consisting of 1 to NAME_MAX characters may be used to name an ordinary
file, special file or directory.

These characters may be selected . from the set of all character values excluding'D
(null) and the ASCII code for I (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because
of the special meaning attached to these characters by the shell [see sh(1»).
Although permitted, the use of unprintable characters in file names should be
avoided.

A file name is sometimes referred to as a pathname component. The interpreta­
tion of a pathname compon~nt is dependent on the values of NAME_MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any
pathname component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect
for the path prefix of that component [see fpathconf(2) and limits(4»), it shall
be considered an error condition in that implementation. Otherwise, the imple­
mentation shall use the first N~MEU~X bytes of the pathname component.

Page 10 10/89

Intro(2) intro(2)

Foreground Process Group
Each session that has established a connection with a controlling terminal will
distinguish one process group of the session as the foreground process group of
the controlling terminal. This group has certain privileges when accessing its con­
trolling terminal that are denied to background process groups.

Message
In a stream, one or more blocks of data or information, with associated STREAMS
control structures. Messages can be of several defined types, which identify the
message contents. Messages are the only means of transferring data and com­
municating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue Identifier

10/89

A message queue identifier (msqid) is a unique positive integer created by a
msgget system call. Each msqid has a message queue and a data structure asso­
ciated with it. The data structure is referred to as msqid ds and contains the fol-
lowing members: -

struct
struct
struct
ushort
ushort
ushort
pid t
pid-t
ture t
time-t
time-t

ipc J>erm msgJ>ermi
msg *msg_firsti
msg *msg_lasti
msg_ cbytes i
msg_qnumi
msg qbytesi
msg-lspidi
msg-lrpidi
ms9-stimei
ms9-rtimei
ms9:ctimei

Here are descriptions of the fields of the msqid_ds structure:

msgye.rm is an ipc ye.rm structure that specifies the message operation
permission (see below). This structure includes the following members:

uid t
gid-t
uid-t
gi(~t
mode t
ushort
key_t

cuidi
cgidi
uidi
gidi
modei
seqi
keYi

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w pe.rmission */
/* slot usage sequence t */
/* key */

*msg_ first is a pointer to the first message on the queue.

*msg_last is a pointer to the last message on the queue.

msg_ cbytes is the current number of bytes on the queue.

Page 11

Intro (2) intro(2)

msg_ qnum is the number of messages currently on the queue.

msg_ qbytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd
operation.

msg_lrpid is the process id of the last process that performed a msgrcv
operation.

msg_stime is the time of the last msgsnd operation.

msg_ rtime is the time of the last msgrcv operation

msg ctime is the time of the last msgctl operation that changed a
member of the above structure.

Message Operation Permissions
In the msgop and msgctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed, inter­
preted as follows:

00400
00200
00040
00020
00004
00002

READ by user
WRITE by user
READ by group
WRITE by group
READ by others
WRITE by others

Read and write permissions on a msqid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg.J>erm. cuid or
msgyerm. uid in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of msg.J>erm.mocl.e is set.

The effective group ID of the process matches msgyerm. cgid or
msgyerm. gid and the appropriate bit of the "group" portion (060) of
msgyerm.rrode is set.

The appropriate bit of the "other" portion (006) of msgyerm.rrode is set.

Otherwise, the corresponding permissions are denied.

Module
A module is an entity containing processing routines for input and output data.
It always exists in the middle of a stream, between the stream's head and a
driver. A module is the STREAMS counterpart to the commands in a shell pipe­
line except that a module contains a pair of functions which allow independent
bidirectional (downstream and upstream) data flow and processing.

Multiplexor
A multiplexor is a driver that allows streams associated with several user
processes to be connected to a single driver, or several drivers to be connected to
a single user process. STREAMS does not provide a general multiplexing driver,
but does provide the facilities for constructing them and for connecting

Page 12 10/89

Intro (2) intro(2)

multiplexed configurations of streams.

Orphaned Process Group
A process group in which the parent of every member in the group is either itself
a member of the group, or is not a member of the process group's session.

Path Name
A path name is a null-terminated character string starting with an optional slash
(/), followed by zero or more directory names separated by slashes, optionally
followed by a file name.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a
non-existent file.

Process 10
Each process in the system is uniquely identified during its lifetime by a positive
integer called a process ID. A process ID may not be reused by the system until
the process lifetime, process group lifetime and session lifetime ends for any pro­
cess ID, process group ID and session ID equal to that process ID.

Parent Process 10
A new process is created by a currently active process [see fork(2)]. The parent
process ID of a process is the process ID of its creator.

Privilege
Having appropriate privilege means having the capability to override system res­
trictions.

Process Group
Each process in the system is a member of a process group that is identified by a
process group ID. Any process that is not a process group leader may create a
new process group and become its leader. Any process that is not a process
group leader may join an existing process group that shares the same session as
the process. A newly created process joins the process group of its parent.

Process Group Leader
A process group leader is a process whose process ID is the same as its process
group ID.

Process Group 10
Each active process is a member of a process group and is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader.
This grouping permits the Signaling of related processes [see kill(2)].

Process Lifetime ,
A process lifetime begins when the process is forked and ends after it exits, when
its termination has been acknowledged by its parent process. See wait(2).

Process Group Lifetime

10/89

A process group lifetime begins when the process group is created by its process
group leader, and ends when the lifetime of the last process in the group ends or
when the last process in the group leaves the group.

Page 13

Intro(2} Intro(2}

Read Queue
In a stream, the message queue in a module or driver containing messages mov­
ing upstream.

Real User 10 and Real Group 10
Each user allowed on the system is identified by a positive integer (0 to MAX­
UID) called a real ';1ser 10.

Each user is also a member of a group. The group is identified by a positive
integer called the real group 10.

An active process has a real user 10 and real group 10 that are set to the real user
10 and real group 10, respectively, of the user responsible for the creation of the
process.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. The root
directory of a process need not be the root directory of the root file system.

Saved User ID and Saved Group ID
The saved user ID and saved group ID are the values of the effective user ID and
effective groupID prior to an exec of a file whose set user or set group file mode
bit has been set [see exec(2)].

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a senqet
system call. Each semid has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds and contains the following
members:

struct ipc yenn sern yenn;
struct sern *sern_base;
ushort sern nsems;
time t Senl ot:i.me;
time -t sern:ct:i.me;

/* operation pe~ssion struct *1
/* ptr to first semaphore in set */
/* number of sems in set *1
/* last operation time */
/* last change time */
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Here are descriptions of the fields of the semid_ds structure:

Page 14

sernyenn is an ipcyenn structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

uid t uid; 1* user id */
gid-t gid; /* group id */
uid-t cuid; /* creator user id */
gid=::t cgid; /* creator group id */
mode t IOOde; /* rIa pe~ssion */
ushort seq; /* slot usage sequence number */
key_t key; /* key */

10/89

intro (2) intro (2)

sem_nserns is equal to the number of semaphores in the set. Each sema­
phore in the set is referenced by a nonnegative integer referred to as a
sem_mlIll. sem_num values run sequentially from 0 to the value of
sem nsems minus l.

sem _ otime is the time of the last sexoop operation.

sem _ ctime is the time of the last sem::tl operation that changed a
member of the above structure.

A semaphore is a data structure called sem that contains the following members:

ushort semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
ushort semncnt; /* i awaiting semval > eval */
ushort semzcnt; /* i awaiting semval = 0 */

semval is a non-negative integer that is the actual value of the semaphore.

sempid is equal to the process ID of the last process that performed a
semaphore operation on this semaphore.

semncnt is a count of the number of processes that are currently
suspended awaiting this semaphore'S semval to become greater than its
current value.

semzcnt is a count of the number of processes that are currently
suspended awaiting this semaphore'S semval to become O.

Semaphore Operation Permissions

10/89

In the sexoop and sernetl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed inter­
preted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions on a semid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem yermo euid or
semyerm. uid in the data structure associated with semid and the
appropriate bit of the "user" portion (0600) of semyerm.mode is set.

The effective group ID of the process matches sem yermo cgid or
sem yermo gid and the appropriate bit of the "group" portion (060) of
semyerm.mode is set.

Page 15

intro (2) intro (2)

The appropriate bit of the "other" portion (06) of semyenn.mode is set.

Otherwise, the corresponding permissions are denied.

Session
A session is a group of processes identified by a common ID called a session ID,
capable of establishing a connection with a controlling terminal. Any process that
is not a process group leader may create a new session and process group,
becoming the session leader of the session and process group leader of the pro­
cess group. A newly created process joins the session of its creator.

Session 10
Each session in the system is uniquely identified during its lifetime by a positive
integer called a session ID, the process ID of its session leader.

Session Leader
A session leader is a process whose session ID is the same as its process and pro­
cess group ID.

Session lifetime
A session lifetime begins when the session is created by its session leader, and
ends when the lifetime of the last process that is a member of the session ends, or
when the last process that is a member in the session leaves the session.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a
shmget system call. Each shmid has a segment of memory (referred to as a
shared memory segment) and a data structure associated with it. (Note that these
shared memory segments must be explicitly removed by the user after the last
reference to them is removed.) The data structure is referred to as shmid ds and
contains the following members: -

struct ipcyenn shmyenn; /* operation pennission struct */
int shm_segsz; /* size of segment */
struct region *shm_reg; /* ptr to region structure */
char pad[4]; /* for swap compatibility */
pid t shm lpid; /* pid of last operation * /
pid::::t shm::::cpid; /* creator pid */
ushort shm_nattch; /* number of current attaches */
ushort shm cnattch; /* used only for shminfo */
time t shm-atime; /* last attach time */
time t shm::::dtime; /* last detach time */
time t shm_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Here are descriptions of the fields of the shmid_ds structure:

Page 16

shm yenn is an ipc yenn strl.lcture that specifies the shared memory
operation permission (see below). This structl.lre inc1l.ldes the following
members:

10/89

Intra (2) Intra (2)

uid t
gid-t
uid t
gid_t
mode t
ushort
key_t

cuid;
cgid;
uid;
gid;
mode;
seq;
key;

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w per.mission */
/* slot usage sequence t */
/* key */

ShIn_segsz specifies the size of the shared memory segment in bytes.

shIn _ cpid is the process ID of the process that created the shared memory
identifier.

shIn _lpid is the process ID of the last process that performed a shrrop
operation.

shIn _ nattch is the number of processes that currently have this segment
attached.

shIn_atime is the time of the last shrnat operation [see shrrop(2»).

shIn_dtime is the time of the last slundt operation [see shrrop(2»).

shIn _ ctime is the time of the last shmctl operation that changed one of
the members of the above structure.

Shared Memory Operation Permissions

10/89

In the shrrop and shmctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed inter­
preted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shInyenn.cuid or
shIn yerm. uid in the data structure associated with shmid and the
appropriate bit of the "user" portion (0600) of shInyerm.mode is set.

The effective group ID of the process matches shIn yenn. cgid or
ShInyerm.gid and the appropriate bit of the "group" portion (060) of
shInyerm.modeisset.

The appropriate bit of the "other" portion (06) of shIn yenn. mode is set.

Otherwise, the corresponding permissions are denied.

Page 17

intro (2) intro (2)

Special Processes
The process with ID 0 and the process with ID 1 are special processes referred to
as procO and proc1; see kill(2). procO is the process scheduler. proc1 is the ini­
tialization process (init); proc1 is the ancestor of every other process in the sys­
tem and is used to control the process structure.

STREAMS
A set of kernel mechanisms that support the development of network services
and data communication drivers. It defines interface standards for character
input/output within the kernel and between the kernel and user level processes.
The STREAMS mechanism is composed of utility routines, kernel facilities and a
set of data structures.

Stream
A stream is a full-duplex data path within the kernel between a user process and
driver routines. The primary components are a stream head, a driver and zero or
more modules between the stream head and driver. A stream is analogous to a
shell pipeline except that data flow and processing are bidirectional.

Stream Head
In a stream, the stream head is the end of the stream that provides the interface
between the stream and a user process. The principle functions of the stream
head are processing STREAMS-related system calls, and passing data and informa­
tion between a user process and the stream.

Super-user
A process is recognized as a super-user process and is granted special privileges,
such as immunity from file permissions, if its effective user ID is O.

Upstream
In a stream, the direction from driver to stream head.

Write Queue
In a stream, the message queue in a module or driver containing messages mov­
ing downstream.

Page 18 10/89

access(2) access (2)

NAME
access - determine accessibility of a file

SYNOPSIS
tinclude <unistd.h>

int access(const char *path, int amode);

DESCRIPTION
path points to a path name naming a file. access checks the named file for acces­
sibility according to the bit pattern contained in amode, using the real user ID in
place of the effective user ID and the real group ID in place of the effective group
ID. The bit pattern contained in amode is constructed by an OR of the following
constants (defined in <unistd.h»:

R OK read
W OK write
X OK execute (search)
F OK check existence of file

Access to the file is denied if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES

EFAULT

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENOENT

ENOENT

ENOL INK

EROFS

Permission bits of the file mode do not permit the
requested access.

path points outside the allocated address space for the pro­
cess.

A signal was caught during the access system call.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while

POSIX NO TRUNC is in effect. - --
A component of the path prefix is not a directory.

Read, write, or execute (search) permission is requested for
a null path name.

The named file does not exist.

path points to a remote machine and the link to that
machine is no longer active.

Write access is requested for a file on a read-only file sys­
tem.

SEE ALSO
chmod(2), stat(2)
"File Access Permission" in intro(2)

10/89 Page 1

access (2) access (2)

DIAGNOSTICS
If the requested access is pennitted, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

Page 2 10/89

acct(2) acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
tinclude <unistd.h>

int acct(const char *path);

DESCRIPTION
acct enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each pro­
cess that terminates. The termination of a process can be caused by one of two
things: an exit call or a signal [see exit(2) and signal(2)]. The effective user ID
of the process calling acct must be superuser.

path points to a pathname naming the accounting file. The accounting file format
is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during
the system call. It is disabled if path is (char *)NULL and no errors occur during
the system call.

acct will fail if one or more of the following are true:

EACCES The file named by path is not an ordinary file.

EBUSY

EFAULT

ELOOP

ENAMETOOLONG

ENOTDIR

ENOENT

EPERM

An attempt is being made to enable accounting using the
same file that is currently being used.

path points to an illegal address.

Too many symbolic links were encountered in translating
path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while

POS IX NO TRUNC is in effect. - --
A component of the path prefix is not a directory.

One or more components of the accounting file pathname
do not exist.

The effective user of the calling process is not superuser.

EROFS The named file resides on a read-only file system.

SEE ALSO
exit(2), signal(2).
acct(4) in the System Administrator's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -} is
returned and errno is set to indicate the error.

Page 1

adjtime (2) adjtlme(2)

NAME
adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS
tinclude <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

DESCRIPTION
adjtime adjusts the system's notion of the current time, as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in
the struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or
slowing down (if that amount of time is negative) the system's clock by some
small percentage, generally a fraction of one percent. Thus, the time is always a
monotonically increasing function. A time correction from an earlier call to adj­
time may not be finished when adjtime is called again. If delta is 0, then olddelta
returns the status of the effects of the previous adjtime call and there is no effect
on the time correction as a result of this call. If oldde/ta is not a NULL pointer,
then the structure it points to will contain, upon return, the number of seconds
and/or microseconds still to be corrected from the earlier call. If olddelta is a
NULL pointer, the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in
a local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system
clock.

RETURN
A a return value indicates that the call succeeded. A -1 return value indicates an
error occurred, and in this case an error code is stored into the global variable
errno.

ERRORS
The following error codes may be set in errno:

EFAULT delta or olddelta points outside the process's allocated
address space, or olddelta points to a region of the process'
allocated address space that is not writable.

EPERM The process's effective user ID is not that of the super-user.

SEE ALSO
gettimeofday(3C)
date(1) in the User's Reference Manual.

10/89 Page 1

alarm(2) alarm (2)

NAME
alann - set a process alarm dock

SYNOPSIS
tinclude <unistd.h>

unsigned alann(unsigned sec) i

DESCRIPTION
alann instructs the alarm dock of the calling process to send the signal SIGALRM
to the calling process after the number of real time seconds specified by sec have
elapsed [see signal(2»).

Alarm requests are not stacked; successive calls reset the alarm dock of the cal­
ling process.

If sec is 0, any previously made alarm request is canceled.

fork sets the alarm dock of a new process toO [see fork(2»). A process created
by the exec family of routines inherits the time left on the old process's alarm
dock.

SEE ALSO
fork(2), exec(2), pause(2), signal(2), sigset(2).

DIAGNOSTICS

10/89

alann returns the amount of time previously remaining in the alarm dock of the
calling process.

Page 1

brk(2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
tinclude <unistd.h>

int brk(void *endds);

void *sbrk(int incr);

DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated for
the calling process's data segment [see exec(2)]. The change is made by resetting
the process's break value and allocating the appropriate amount of space. The
break value is the address of the first location beyond the end of the data seg­
ment. The amount of allocated space increases as the break value increases.
Newly allocated space is set to zero. If, however, the same memory space is real­
located to the same process its contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space accord­
ingly. incr can be negative, in which case the amount of allocated space is
decreased.

brk and Sbrk will fail without making any change in the allocated space if one or
more of the following are true:

ENOMEM Such a change would result in more space being allocated
than is allowed by the system-imposed maximum process
size [see ulimit(2)].

EAGAIN Total amount of system memory available for a read during
physical 10 is temporarily insufficient [see slunop(2)]. This
may occur even though the space requested was less than
the system-imposed maximum process size [see ulimit(2)].

SEE ALSO
exec(2), slunop(2), ulimit(2), end(3C).

DIAGNOSTICS

10/89

Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

Page 1

chdir(2) chdir(2)

NAME
chdir, fchdir - change working directory

SYNOPSIS
iinclude <unistd.h>

int chdir (const char *path);

int fchdir(int fildes);

DESCRIPTION

10/89

chdir and fchdir cause a directory pointed to by path or fildes to become the
current working directory, the starting point for path searches for path names not
beginning with /. path points to the path name of a directory. The fildes argu­
ment to fchdir is an open file descriptor of a directory.

In order for a directory to become the current directory, a process must have exe­
cute (search) access to the directory.

chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

EACCES Search permission is denied for any component of the path
name.

EFAULT

EINTR

EIO

ELOOP

ENAMETOOLONG

ENOTDIR

ENOENT

ENOL INK

EMULTIHOP

path points outside the allocated address space of the pro-
cess.

A signal was caught during the execution of the chdir sys­
tem call.

An I/O error occurred while reading from or writing to the
file system.

Too many symbolic links were encountered in translating
path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX _NO _ TRUNC is in effect.

A component of the path name is not a directory.

Either a component Of the path prefix or the directory
named by path does not exist or is a null pathname.

path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

fchdir will fail and the current working directory will be unchanged if one or
more of the following are true:

EACCES Search permission is denied for fildes.

EBADF fildes is not an open file descriptor.

Page 1

chdlr(2)

EINTR

EIO

ENOLINK

ENOTDIR

SEE ALSO
chroot(2).

DIAGNOSTICS

chdir(2)

A signal was caught during the execution of the fchdir
system call.

An I/O error occurred while reading from or writing to the
file system.

fildes points to a remote machine and the link to that
machine is no longer active.

The open file descriptor fildes does not refer to a directory.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Page 2 10/89

chmod(2) chmod(2)

NAME
cluood, fchmod - change mode of file

SYNOPSIS
iinclude <sys/types.h>
tinclude <sys/stat.h>

int chmod(const char "'path, IrOde_t IrOde);

int fchmod(int fildes, mode_t mode);

DESCRIPTION

10/89

chIrOd and fchm:xi set the access permission portion of the mode of the file
whose name is given by path or referenced by the descriptor fildes to the bit pat­
tern contained in mode. Access permission bits are interpreted as follows:

S ISUID 04000 Set user ID on execution.
S-ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1

01000
00700
00400
00200
00100
00070
00040
00020
00010
00007
00004
00002
00001

Enable mandatory file/record locking if # is 6, 4, 2, or 0
Save text image after execution.

S IRUSR
S IWUSR
S IXUSR
S IRWXG
S IRGRP
S_IWGRP
S IXGRP
S_IRWXO
S IROTH
S IWOTH
S IXOTH

Read, write, execute by owner.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

Modes are constructed by OR' ing the access permission bits.

The effective user ID of the process must match the owner of the file or the pro"
cess must have the appropriate privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit
01000 (save text image on execution) is cleared.

If neither the process nor a member of the supplementary group list is privileged,
and the effective group ID of the process does not match the group ID of the file,
mode bit 02000 (set group ID on execution) is cleared.

If a 0410 executable file has the sticky bit (mode bit 01000) set, the operating sys­
tem will not delete the program text from the swap area when the last user pro­
cess terminates. If a 0413 or ELF executable file has the sticky bit set, the operat­
ing system will not delete the program text from memory when the last user pro­
cess terminates. In either case, if the sticky bit is set the text will already be avail­
able (either in a swap area or in memory) when the next user of the file executes
it, thus making execution faster.

Page 1

chmod(2) chmod(2)

Page 2

If a directory is writable and has the sticky bit set, files within that directory can
be removed or renamed only if one or more of the following is true [see
unlink(2) and rename(2»):

the user owns the file
the user owns the directory
the file is writable by the user
the user is a privileged user

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010
(execute or search by group) is not set, mandatory file/record locking will exist
on a regular file. This may affect future calls to open(2), creat(2), read(2), and
write(2) on this file.

Upon successful completion, chm:>d and fchm:>d mark for update the st_ctime
field of the file.

chm::ld will fail and the file mode will be unchanged if one or more of the follow­
ing are true:

EACCES Search permission is denied on a component of the path
prefix of path.

EFAULT

EINTR

EIO

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENOENT

ENOLINK

EPERM

EROFS

path points outside the allocated address space of the pro­
cess.

A signal was caught during execution of the system call.

An I/O error occurred while reading from or writing to the
file system.

Too many symbolic links were encountered in translating
path.
Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of the path argument exceeds {PATH_M1UC}, or the
length of a path component exceeds {NAME_MAX} while

POSIX NO TRONe is in effect. - --
A component of the prefix of path is not a directory.

Either a component of the path prefix, or the file referred to
by path does not exist or is a null pathname.

fildes points to a remote machine and the link to that
machine is no longer active.

The effective user ID does not match the owner of the file
and the process does not have appropriate privilege.

The file referred to by path resides on a read-only file sys­
tem.

10/89

chmod (2) chmod(2)

fchmod will fail and the file mode will be unchanged if:

EBADF fildes is not an open file descriptor

EIO

EINTR

ENOL INK

EPERM

EROFS

An I/O error occurred while reading from or writing to the
file system.

A signal was caught during execution of the fchmod system
call.

path points to a remote machine and the link to that
machine is no longer active.

The effective user ID does not match the owner of the file
and the process does not have appropriate privilege.

The file referred to by fildes resides on a read-{)nly file sys­
tem.

SEE ALSO
chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), stat(2), write(2),
mkfifo(3C), stat(S).
chroc>d(1) in the User's Reference Manual.
The "File and Record Locking" chapter in the Application Programmer's Guide.

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

chown(2} chown(2}

NAME
chown, lchown, fchown - change owner and group of a file

SYNOPSIS
iinclude <unistd.h>
tinclude <sys/stat.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION

10189

The owner ID and group ID of the file specified by path or referenced by the
descriptor fildes, are set to owner and group respectively. If owner or group is
specified as -1, the corresponding ID of the file is not changed.

The function lchown sets the owner ID and group ID of the named file just as
chown does, except in the case where the named file is a symbolic link. In this
case lchown changes the ownership of the symbolic link file itself, while chown
changes the ownership of the file or directory to which the symbolic link refers.

If chown, lchown, or fchown is invoked by a process other than super-user, the
set-user-ID and set-group-ID bits of the file mode, S_ISUID and S_ISGID respec­
tively, are cleared [see chm:xi(2)].

The operating system has a configuration option, CPOSIX_CHOWN_RESTRICTED},
to restrict ownership changes for the chown, lchown, and fchown system calls.
When CPOSIX_CHOWN_RESTRICTED} is not in effect, the effective user ID of the
process must match the owner of the file or the process must be the super-user to
change the ownership of a file. When CPOSIX_CHOWN_RESTRICTED} is in effect,
the chown, lchown, and fchown system calls, for users other than super-user,
prevent the owner of the file from changing the owner ID of the file and restrict
the change of the group of the file to the list of supplementary group IDs.

Upon successful completion, chown, fchown and lchown mark for update the
st ctime field of the file.

chown and lchown fail and the owner and group of the named file remain
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix of path.

EFAULT path points outside the allocated address space of the pro­
cess.

EINTR

EINVAL

EIO

A signal was caught during the chown or lchown system
calls.

group or owner is out of range.

An I/O error occurred while reading from or writing to the
file system.

Page 1

chown (2) chown(2)

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOLINK

ENOTDIR

ENOENT

EPERM

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and file system type does not allow it. Too many
symbolic linKS were encountered in translating path ..

The length of the path argument exceeds {PATH_MAX}, or the
length of a: path component exceeds {NAMEumX} while
_POSIX _NO _ TRUNC is in effect.

path points to a remote machine and the link to that
machine is no longer active.

A component of the path prefix of path is not a dir~ctory.

Either a component of the path prefix or the file referred to
by path does not exist or is a null pathname.

The effective user ID does not match the owner of the file
or the process is not the super-user and
CPOSIX_CHOWN_RESTRICTED} indicates that such privilege
is required.

EROFS The named file resides on a read-only file system.

fchown fails and the owner and group of the named file remain unchanged if one
or more of the following are true:

EBADF fildes is not an openfile descriptor.

EINVAL

EPERM

EROFS

EINTR

EIO

ENOLINK

group or owner is out of range.

The effective user ID does not match the owner of the file
or the process is not the super-user and
CPOSIX _ CHOWN _RESTRICTED} indicates that such privilege
is required.

The named file referred to by fildes resides on a read-only
file system.

A signal was caught during execution of the system call.

An I/O error occurred while reading from or writing to the
file system.

fildes points to a remote machine and the link to that
machine is no longer active.

SEE ALSO
chIood(2).
chown(1), chgrp(1) in the User's Reference Manual.

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

10/89

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
iinclude <unistd.h>

int chroot (constchar *path);

DESCRIPTION
path points to a path name naming a directory. chroot causes the named direc­
tory to become the root directory, the starting point for path searches for path
names beginning with /. The user's working directory is unaffected by the
chroot system call.

The effective user ID of the process must be super-user to change the root direc­
tory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root
directory. .

chroot will fail and the root directory will remain unchanged if one or more of
the follow;ng are true:

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATHJ1AX}, or the

EFAULT

EINTR

EMULTIHOP

ENOL INK

ENOTDIR

ENOENT

length of a path component exceeds {NAME_MAX} while
YOSIX_NO_TRUNC is in effect.

path points outside the allocated address space of the process.

A signal was caught during the chroot system call.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

path points to a remote machine and the link to that machine is
no longer active.

Any component of the path name is not a directory.

The named directory does not exist or is a null pathname.

EPERM

SEE ALSO

The effective user ID is not super-user.

chdir(2).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned· and errno is set to indicate the error.

Page 1

close (2) close (2)

NAME
close - dose a file descriptor

SYNOPSIS
iinciude <unistd.h>
int close(int fildes);

DESCRIPTION
fi14(!S is a file descriptor obtained from a creat, 0pel1, dup, fcritl, or pipe system
calL close closes the file descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated by fildes> are removed.

When aU file descriptors associated. with the open file description have been
dosed, the open file deScription is freed.

If the. link count of the file is zero, when all file descriptors associated with the
file have been dosed, the space occupied by the file is freed and the file is no
longer accessible.

If a STREAMS-based [see intro(2») fildes is dosed, and the calling process had pre­
viously registered to receive a SIGPOLL signal [see signal(2)] for events associ­
ated with that stream [see I_SETSIG in streamio(7»), the calling process will be
unregistered for evehts associated with the stream, The last close for a stream
causes the stream associated with fildes to be dismantled. If. O_NDELAY and
0_ NONBLOCK are dear and there have been no signals posted for the stream, and
if there are data on the module's writeque1.le, close waits up to IS seconds (for
each module and driver) for any output to drain before dismantling the stream.
The time delay can be changed via an I_SETCLTI~ ioctlrequest [see
streaJlli0(7»). If O_NDELAYor O_NONBLOCK is set, Qr if there are any pending sig­
nals, close does not wait for output to drain, arid dismantles the stream immedi­
ately.

If fildes is associated with one end of a pipe, .the' last close causes a hangup to
occur on the other land of the pipe.. In addition, if the other end of the pipe has
been named [see fattaC::h(3C»), the last close forces the named end to be
detached [see fdetaC::h(3C»). If the named end has no open processes associated
with it and becomes detached, the stream associated with that end is also disman-
tled; .

The named file is closed unless one or more of the following are true:

EBAnF fildes is not a valid open file descriptor.

EINTR A signal was caught d.uring the close system call.

ENOLINK fildes is on a remote machine and the lirik to that machine is no
longer active.

SEE ALSO

10/89

creat(2), duP(2), exec(2), fcritl(2), intz;o(2), open(2), pipe(2), signal(2), sig­
nal(S), streamio(7).
;attach(3C), fdetaC::h(3q in the Programmer's Guide: Networking Interfaces.

Page 1

close (2) close (2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2 10/89

creat(2) creat(2}

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stat.h>
tinclude <fcntl.h>

int creat (const char *path, node_t mode);

DESCRIPTION

10/89

creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged.

If the file does not exist the file's owner ID is set to the effective user ID of the
process. The group ID of the file is set to the effective group ID of the process, or
if the S _ ISGID bit is set in the parent directory then the group ID of the file is
inherited from the parent directory. The access permission bits of the file mode
are set to the value of mode modified as follows:

If the group ID of the new file does not match the effective group ID or
one of the supplementary group IDs, the S _ ISGID bit is cleared.

All bits set in the process's file mode creation mask are cleared [see
umask(2)].

The "save text image after execution bit" of the mode is cleared [see
chmod(2) for the values of mode].

Upon successful completion, a write-only file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file pointer is set
to the beginning of the file. The file descriptor is set to remain open across exec
system calls [see fcntl(2)]. A new file may be created with a mode that forbids
writing.

The call creat (path, mode) is equivalent to:

open (path, O_WRONLY I O_CREAT I O_TRUNC, mode)

creat fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES

EACCES

EAGAIN

EFAULT

The file does not exist and the directory in which the file is
to be created does not permit writing.

The file exists and write permission is denied.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chnod(2)].

path points outside the allocated address space of the pro­
cess.

Page 1

creat(2)

EISDIR
EINTR
ELOOP

EMFILE

ENAMETOOLONG

ENOTDIR
ENOENT
ENOENT
EROFS

ETXTBSY

ENFILE

ENOLINK

EMULTIHOP

creat(2)

The named file is an existing directory.

A signal was caught during the creat system call.

Too many symbolic links were encountered in translating
path.
The process has too many open files [see getrlimit(2)].

The length of the path argument exceeds {PATHJWC}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The path name is null.

The named file resides or would reside on a read-only file
system.

The file is a pure procedure (shared text) file that is being
executed.

The system file table is full.

path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

ENOSPC The file system is out of inodes.
SEE ALSO

chm:xi(2)i close(2), dup(2), fcntl(2), getrlimit(2), lseek(2), open(2), read(2),
umask(2), write(2), stateS).

DIAGNOSTICS

Page 2

Upon successful completion a non-negative integer, namely the lowest numbered
unused file deSCriptor, is returned. Otherwise, a value of -1 is returned, no files
are created or modified, and errno is set to indicate the error.

10/89

dup(2) dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
tinclude <unistd.h>

int dup(int fildes);

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system
call. dup returns a new file descriptor having the following in common with the
original:

Same open file (or pipe).

Same file pointer (Le., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fcntl(2)].

The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EINTR

EMFlLE

ENOL INK

A signal was caught during the dup system call.

The process has too many open files [see getrlimit(2)].

fildes is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), dup2(3C),
lockf(3C).

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

Page 1

exec(2) exec(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
tinclude <unistd.h>

int execl (canst char *path, canst char *argO, ... , canst char
*argn, (char *)0);

int execv (canst char *path, char *canst *argv);

int execle (canst char *path, canst char *argO, ... , canst char
*argn, (char *0), canst char *envp[]);

int execve (canst char *path, char *canst *argv, char *canst
*cnup);

int execlp (canst char *file, canst char *argO, ... , canst char
*argn, (char *)0);

int execvp (canst char *file, char *canst *argv);

DESCRIPTION

10/89

exec in all its forms overlays a new process image on an old process. The new
process image is constructed from an ordinary, executable file. This file is either
an executable object file, or a file of data for an interpreter. There can be no
return from a successful exec because the calling process image is overlaid by the
new process image.

An interpreter file begins with a line of the form

t! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument.
When an interpreter file is exec'd, the system execs the specified interpreter. The
pathname specified in the interpreter file is passed as argO to the interpreter. If
arg was specified in the interpreter file, it is passed as argl to the interpreter. The
remaining arguments to the interpreter are argO through argn of the originally
exec'd file.

When a C program is executed, it is called as follows:

int main (int argc, char *argv [], char *envp []) ;

where argc is the argument count, argo is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environ­
ment strings. As indicated, argc is at least one, and the first member of the array
points to a string containing the name of the file.

path points to a path name that identifies the new process file.

file points to the new process file. If file does not contain a slash character, the
path prefix for this file is obtained by a search of the directories passed in the
PATH environment variable [see environ(S)]. The environment is supplied typi­
cally by the shell [see sh(1)].

Page 1

exec(2) exec(2)

Page 2

If the new process file is not an executable object file, execlp and execvp use the
contents of that file as standard input to sh(1).

The arguments argO, ... , argn point to null-terminated character strings. These
strings constitute the argument list available to the new process image.
Minimally, argO must be present. It will become the name of the process, as
displayed by the ps command. Conventionally, argO points to a string that is the
same as path (or the last component of path). The list of argument strings is ter­
minated by a (char *) 0 argument.

argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process image. By convention,
argv must have at least one member, and it should point to a string that is the
same as path (or its last component). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. envp is terminated by a
null pointer. For execl, execv, execvp, and execlp, the C run-time start-off
routine places a pointer to the environment of the calling process in the global
object extern char **environ, and it is used to pass the environment of the
calling process to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; [see fcntl(2)]. For those file
descriptors that remain open, the file pointer is unchanged.

Signals that are being caught by the calling process· are set to the default disposi­
tion in the new process image [see signa1(2)]. Otherwise, the new process image
inherits the signal dispositions of the calling process.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec sets
the effective user ID of the new process to the owner IDof the new process file.
Similarly, if the set-group-ID mode bit of the new process file is set, the effective
group ID of the new process is set to the group ID of the new process file. The
real user 1D and real group 1D of the new process remain the same as those of the
calling process. .

If the effective user-ID is root or super-user, the set-user-ID and set-group-ID bits
will be honored when the process is being controlled by ptrace.

The shared memory segments attached to the calling process will not be attached
to the new process [see shmop(2)].

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling process:

nice value [see nice(2)]
scheduler class and priority [see priocntl(2)]
process ID
parent process ID
process group ID
supplementary group IDs

10/89

exec(2) exec(2)

10/89

seJIladj values [see sexrop(2)]
session ID [see exit(2) and signal(2)]
trace flag [See ptrace(2) request 0]
time left un~il an alarm clock signal [see alarm(2)]
current working directory
root directory ..
file mode creation mask [see umask(2)]
reSource limits [See getrlimit(2»)
utimE!, stima, cutimE!, and cstime [see t.iJres(2)]
file-locks [see fcntl(2) and lockf(3C)]
controlling terminal
process signal mask [see sigprocma.sk(2)]
pending signals [see sigpending(2)]

Upon successful completion, exec marks for updCite the st _atimE! field of the
file. Should the exec suc~, the process image file is considered to have been
open 0 -ed. The corresponding close 0 is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call
to exec.

exec will fail and return to the calling process if one or more of the following are
true:

EACCES

E2B;IG

EACCES

EACCES

EAGAIN

EFAULT

EFAULT

EFAULT

EINTR

ELlBACC

ELIBE}{2C

ELOOP

EMULTIHOP

Search permission is denied for a directory listed in the
new process file's path prefix.

The number of bytes in the new process's argument list is
greater than the system-imposed limit of 5120 bytes. The
argument list limit is sum of the size of the argument list
plus the size of the environment's exported shell variables.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

Total amount of system memory aVCiilable when reading via
raw I/O is temporarily insufficient. .

R'eqiIired hardware is not present.

An a.out that was compiled with the MAU or 32B flag is
running on a machine without a MAU or 32B.

An argument points to an illegal address.

A signal was caught during the exec system call.

Required shared library does not have execute permission.

Trying to eXec(2) a shared library directly.

Too many symbolic links were encountered in translating
path or file.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

Page 3

exec(2) exec(2)

ENAMETOOLONG

ENOENT

ENOTDIR

ENOEXEC

ETXTBSY

ENOLINK

The length of the file or path argument exceeds {PATH_MAX},
or the length of a file or path component exceeds
{NAME_MAX} while _POSIX _ NO _ TRONC is in effect.

One or more components of the new process path name of
the file do not exist or is a null pathname.

A component of the new process path of the file prefix is
not a directory.

The exec is not an execlp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

The new process requires more memory than is allowed by
the system~imposed maximum. MAXMEM.

path points to a remote machine and the link to that
machine is no longer active.

SEE ALSO
alarm(2), exit(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2),
ptrace(2), seIIIQP(2), signal(2), sigpending(2), sigproc:mask(2), times(2),
umask(2), lockf(3C), system(3S), a.out(4), environ(5).
sh(1), ps(1) in the User's Reference Manual.

DIAGNOSTICS

Page 4

If exeC returns to the calling process, an error has occurred; the return value is
-1 and errno is set to indicate the error.

10/89

exit (2) exit (2)

NAME
exit, _exit - terminate process

SYNOPSIS
iinclude <stdlib.h>

void exit(int status);

tinclude <unistd.h>

void _exit (int status);

DESCRIPTION

10/89

_exit terminates the calling process with the following consequences:

All of the file descriptors, directory streams and message catalogue
descriptors open in the calling process are closed.

A SIGCHLD signal is sent to the calling process's parent process.

If the parent process of the calling process has not specified the
SA_NOCLDWAIT flag [see sigaction(2)], the calling process is transformed
into a "zombie process." A zombie process is a process that only occu­
pies a slot in the process table. It has no other space allocated either in
user or kernel space. The process table slot that it occupies is partially
overlaid with time accounting information [see <sys/proc. h>] to be used
by the times system call.

The parent process ID of all of the calling process's existing child processes
and zombie processes is set to 1. This means the initialization process [see
intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a sernadj value
[see serrop(2)], that sernadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)].

An accounting record is written on the accounting file if the system's
accounting routine is enabled [see acct(2)].

If the ptocess is a controlling process, SIGHUP is sent to the foreground
process group of its controlling terminal and its controlling terminal is
deallocated.

If the calling process has any stopped children whose process group will
be orphaned when the calling process exits, or if the calling process is a
member of a process group that will be orphaned when the calling pro­
cess exits, that process group will be sent SIGHUP and SIGCONT signals.

The C function exit(3C) calls any functions registered through the atexit func­
tion in the reverse order of their registration. The function exit circumvents all
such functions and cleanup.

Page 1

exit (2) exit (2)

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in stdlib.h and
may be used as the value of status to indicate successful or unsuccessful termina­
tion, respectively.

SEE ALSO

NOTES

Page 2

acct(2), intro(2), plock(2), senq>(2), sigaction(2), signal(2), times(2),
wait(2), atexit(3C).

See signal(2) NOTES.

10/89

fcntl (2) fcntl (2)

NAME
fentl - file control

SYNOPSIS
iinclude <sys/types.h>
iinclude <fentl.h>
'include <unistd.h>
int fentl (int fildes, int emi, ... /* arg */);

DESCRIPTION

10/89

fentl provides for control over open files. fildes is an open file descriptor [see
intro(2)].

fentl may take a third argument, arg, whose data type, value and use depend
upon the value of emd. emil specifies the operation to be performed by fentl
and may be one of the following:

F_DUPFD Return a new file descriptor with the following characteristics:

Lowest numbered available file descriptor greater than or
equal to the integer value given as the third argument.

Same open file (or pipe) as the original file.

Same file pointer as the original file (Le., both file descriptors
share one file pointer).

Same access mode (read, write, or read/write) as the original
file.

Shares any locks associated with the original file descriptor.

Same file status flags (i.e., both file descriptors share the same
file status flags) as the original file.

The close-on-exec flag [see F_GETFD] associated with the new
file descriptor is set to remain open across exec(2) system
calls.

Get the close-on-exec flag associated with fildes. If the low-order
bit is 0, the file will remain open across exec. Otherwise, the file
will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the low-order
bit of the integer value given as the third argument (0 or 1 as
above).

Get fildes status flags.

Set fildes status flags to the integer value given as the third argu­
ment. Only certain flags can be set [see fentl(S)].

Free storage space associated with a section of the ordinary file
fildes. The section is specified by a variable of data type struct
flock pointed to by the third argument argo The data type
struct flock is defined in the <fentl. h> header file [see
fentl(S)] and contains the following members: l_whence is 0, I,
or 2 to indicate that the relative offset 1 start will be measured

Page 1

fcntl(2) fcntl(2)

Page 2

from the start of the file, the current position, or the end of the
file, respectively. l_start is the offset from the position specified
in 1 whence. 1 len is the size of the section. An 1 len of 0
frees up to the end of the file; in this case, the end of fiie (Le., file
size) is set to the beginning of the section freed. Any data previ­
ously written into this section is no longer accessible.

The following commands are used for record-locking. Locks may be placed on
an entire file or on segments of a file.

F_SETLK Set or clear a file segment lock according to the flock structure
that arg points to [see fentl(S)]. The and F_SETLK is used to
establish read (F RDLCK) and write (F WRLCK) locks, as well as
remove either type of lock (F_UNLCK). if a read or write lock can­
not be set, fentl will return immediately with an error value of
-l.

F SETLKW

F GETLK

This cmd is the same as F _ SETLK except that if a read or write lock
is blocked by other locks, fent! will block until the segment is
free to be locked.

If the lock request described by the flock structure that arg points
to could be created, then the structure is passed back unchanged
except that the lock type is set to F _ UNLCK and the 1_ whence field
will be set to SEEK SET.

If a lock is found that would prevent this lock from being created,
then the structure is overwritten with a description of the first
lock that is preventing such a lock from being created. The struc­
ture also contains the process ID and the system ID of the process
holding the lock.

This command never creates a lock; it tests whether a particular
lock could be created.

Used by the network lock daemon, lockd(3N), to communicate
with the NFS server kernel to handle locks on NFS files.

Used by the network lock daemon, lockd(3N), to communicate
with the NFS server kernel to handle locks on NFS files.

Used by the network lock daemon, lockd(3N), to communicate
with the NFS server kernel to handle locks on NFS files.

A read lock prevents any process from write locking the protected area. More
than one read lock may exist for a given segment of a file at a given time. The
file descriptor on which a read lock is being placed must have been opened with
read access.

A write lock prevents any process from read locking or write locking the pro­
tected area. Only one write lock and no read locks may exist for a given segment
of a file at a given time. The file descriptor on which a write lock is being placed
must have been opened with write access.

10/89

fcntl (2) fcntl (2)

10/89

The flock structure describes the type (l_type), starting offset (l_whence), rela­
tive offset (l_start), size (l_len), process ID (lyid), and system ID (l_sysid)
of the segment of the file to be affected. The process ID and system ID fields are
used only with the F _ GETLK cmd to return the values for a blocking lock. Locks
may start and extend beyond the current end of a file, but may not be negative ,
relative to the beginning of the file. A lock may be set to always extend to the
end of file by setting l_len to o. If such a lock also has l_whence and l_start
set to 0, the whole file will be locked. Changing or unlocking a segment from the
middle of a larger locked segment leaves two smaller segments at either end.
Locking a segment that is already locked by the calling process causes the old
lock type to be removed and the new lock type to take effect. All locks associ­
ated with a file for a given process are removed when a file descriptor for that
file is closed by that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process in a fork(2) system call.

When mandatory file and record locking is active on a file [see chm:xl(2)],
creat(2), open(2), read(2) and write(2) system calls issued on the file will be
affected by the record locks in effect.

fentl will fail if one or more of the following are true:

EACCES cmd is F _ SETLK,. the type of lock (1_ type) is a read lock (F _ RDLCK)
and the segment of a file to be locked is already write locked by
another process, or the type is a write lock (F_WRLCK) and the seg­
ment of a file to be locked is already read or write locked by
another process.

EAGAIN cmd is F_FREESP, the file exists, mandatory file/record locking is
set, and there are outstanding record locks on the file.

EAGAIN cmd is F _ SETLK or F _ SETLKW and the file is currently being
mapped to virtual memory via:nmap [see mmap(2)].

EBADF

EBADF

EBADF

EBADF

EDEADLK

EDEADLK

fildes is not a valid open file descriptor.

cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a read
lock (F_RDLCK), and fildes is not a valid file descriptor open for
reading.

cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a write
lock (F_WRLCK), and fildes is not a valid file descriptor open for
writing.

cmd is F_FREESP, and fildes is not a valid file descriptor open for
writing.

cmd is F_SETLKW, the lock is blocked by some lock from another
process, and if fentl blocked the calling process waiting for that
lock to become free, a deadlock would occur.

cmd is FJREESP, mandatory record locking is enabled, O_NDEIAY
and O_NONBLOCK are clear and a deadlock condition was detected.

Page 3

tcnt! (2) tcntl (2)

EFAULT

EFAULT

EINTR

EIO

EMFILE

EINVAL

EINVAL
EINVAL

ENOLCK

ENOLINK

ENOLINK

EOVERFLOW

cmd is F _FREESP and the value pointed to by the third argument
arg resulted in an address outside the process's allocated address
space.

cmd is F_GETLK. F_SE'l!.K or F_SE'l!.KW and the value pointed to
by the third argument resulted in an address outside the program
address space.

A signal was caught during execution of the fentl system call.

An I/O error occurred while reading from or writing to the file
system.

cmd is F _DUPFD and the number of file descriptors currently open
in the calling process is the configured value for the maximum
number of open file descriptors allowed each user.

cmd is F_DUPFD and the third argument is either negative, or
greater than or equal to the configured value for the maximum
number of open file descriptors allowed each user.

cmd is not a valid value.

cmd is F _ GE'l!.K, F _ SE'l!.K, or F _ SE'l!.KW and the third argument or
the data it points to is not valid, or fildes refers to a file that does
not support locking.

cmd is F_SE'l!.K or F_SE'l!.KW, the type of lock is a read or write
lock, and there are no more record locks available (too many file
segments locked) because the system maximum has been
exceeded.

fildes is on a remote machine and the link to that machine is no
longer active.

cmd is F FREESP, the file is on a remote machine, and the link to
that machine is no longer active.

cmd is F _ GE'l!.K and the process ID of the process holding the
requested lock is too large to be stored in the lyid field.

SEE ALSO
elose(2), ereat(2), duP(2), exee(2), fork(2), open(2), pipe(2), fentl(5).

The "File and Record Locking" chapter in the Application Programmer's Guide.
DIAGNOSTICS

Page 4

On success, fentl returns a value that depends on cmd:

F _DUPFD A new file descriptor.

F GETFD Value of flag (only the low-order bit is defined). The
return value will not be negative.

F SETFD Value other than -1.

F FREESP Value of o.

10/89

fcntl (2) fcntl (2)

NOTES

10/89

F GETFL

F SETFL

F GETLK

F SETLK

F SETLKW

Value of file status flags. The return value will not be
negative.

Value other than-1.

Value other than-1.

Value other than-1.

Value other than-1.

On failure, fcntl returns -1 and sets errno to indicate the error.

In the future, the variable errno will be set to EAGAIN rather than EACCES when a
section of a file is already locked by another process. Therefore, portable applica­
tion programs should expect and test for either value.

Page 5

fork(2) fork(2)

NAME
fork - create a new process

SYNOPSIS
iinclude <sys/types.h>
iinclude <unistd.h>

pid_t fork(void);

DESCRIPTION

10/89

fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child process
inherits the following attributes from the parent process:

real user ID, real group ID, effective user ID, effective group ID
environment
close-on-exec flag [see exec(2)]
signal handling settings (Le., SIG_DFL, SIG_IGN, SIG_HOLD, function
address)
supplementary group IDs
set-user-ID mode bit
set-group-ID mode bit
profiling ani off status
nice value [see nice(2)]
scheduler class [see priocnt1(2)]
all attached shared memory segments [see shIoop(2)]
process group ID
session ID [see exit(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
resource limits [see getrlimit(2)]
controlling terminal

Scheduling priority and any per-process scheduling parameters that are specific to
a given scheduling class mayor may not be inherited according to the policy of
that particular class [see priocntl(2)].

The child process differs from the parent process in the following ways:

The child process has a unique process ID which does not match any
active process group ID.

The child process has a different parent process ID (Le., the process ID of
the parent process).

The child process has its own copy of the parent's file descriptors and
directory streams. Each of the child's file descriptors shares a common
file pointer with the corresponding file descriptor of the parent.

All semadj values are cleared [see serrop(2)].

Process locks, text locks and data locks are not inherited by the child [see
plock(2)].

Page 1

fork (2) fork (2)

The child process's tIns structure is cleared: tIns_utime, stime, cutime,
and cstime are set to 0 [see times(2)].

The time left until an alarm clock signal is reset to O.

The set of signals pending for the child process is initialized to the empty
set.

Record locks set by the parent process are not inherited by the child process [see
fcntl(2)].

fork will fail and no child process will be created if one or more of the following
are true:

EAGAIN

EAGAIN

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

ENOMEM There is not enough swap space.

SEE ALSO
alann(2), exec(2), fcntl(2), getrlimit(2), nice(2), plock(2), priocntl(2),
ptrace(2), semop(2), shmop(2), signal(2), times(2), umask(2), wait(2),
system(3S).

DIAGNOSTICS

Page 2

Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a
value of (pid_t)-l is returned to the parent process, no child process is created,
and ermo is set to indicate the error.

10/89

fpathconf(2) fpathconf (2)

NAME
fpathconf, pathconf - get configurable pathname variables

SYNOPSIS
tinclude <unistd.h>

long fpathconf (int fildes, int name);
long pathconf (char *path, int name);

DESCRIPTION

10/89

The functions fpathconf and pathconf return the current value of a
configurable limit or option associated with a file or directory. The path argu­
ment points to the pathname of a file or directory; fildes is an open file descriptor;
and name is the symbolic constant (defined in <unistd.h» representing the
configurable system limit or option to be returned.

The values returned by pathconf and fpathconf depend on the type of file
specified by path or fildes. The following table contains the symbolic constants
supported by pathconf and fpathconf along with the POSIX defined return
value. The return value is based on the type of file specified by path or fildes.

Notes:

1

2

3

4

5

Value of name See Note

PC LINK MAX 1 -
PC MAX CANNON 2 -
PC MAX INPUT 2 - - -
PC NAME MAX - - - 3,4

PC PATH MAX - - - 4,5

PC PIPE BUF 6 - - -
PC CHOWN RESTRICTED 7 -
PC NO TRUNC - - - 3,4

PC VOISABLE 2

If path or fildes refers to a directory, the value returned applies to the
directory itself.

The behavior is undefined if path or fildes does not refer to a terminal file.

If path or fildes refers to a directory, the value returned applies to the
filenames within the directory.

The behavior is undefined if path or fildes does not refer to a directory.

If path or fildes refers to a directory, the value returned is the maximum
length of a relative pathname when the specified directory is the working
directory.

Page 1

fpathconf(2) fpathconf(2)

6 If path or fildes refers to a pipe or FIFO, the value returned applies to the
FIFO itself. If path or fildes refers to a directory, the value returned applies
to any FIFOs that exist or can be created within the directory. If path or
fildes refer to any other type of file, the behavior is undefined.

7 If path or fildes refers to a directory, the value returned applies to any files,
other than directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name does not
change during the lifetime of the calling process.

fpathconf fails if the following is true:

EBADF fildes is not a valid file descriptor.

pathconf fails if one or more of the following are true:

EACCES search permission is denied for a component of the path prefix.

ELOOP too many symbolic links are encountered while translating path.

EMULTIHOP components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG

ENOENT

the length of a pathname exceeds {PATH_MAX}, or pathname com­
ponent is longer than {NAME_MAX} while CPOSIX_NO_TRUNC) is in
effect.

path is needed for the command specified and the named file does
not exist or if the path argument points to an empty string.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR a component of the path prefix is not a directory.

Both fpathconf and pathconf fail if the following is true:

EINVAL if name is an invalid value.

SEE ALSO
sysconf(3C),limits(4)

DIAGNOSTICS

Page 2

If fpathconf or pathconf are invoked with an invalid symbolic constant or the
symbolic constant corresponds to a configurable system limit or option not sup­
ported on the system, a value of -1 is returned to the invoking process. If the
function fails because the configurable system limit or option corresponding to
name is not supported on the system the value of ermo is not changed.

10/89

fsync(2) fsync(2)

NAME
fsync - synchronize a file's in-memory state with that on the physical medium

SYNOPSIS
iinclude <unistd.h>

int fsync(int fildes);

DESCRIPTION
fsync moves all modified data and attributes of fildes to a storage device. When
fsync returns, all in-memory modified copies of buffers associated with fildes
have been written to the physical medium. fsync is different from sync, which
schedules disk I/O for all files but returns before the I/O completes.

fsync should be used by programs that require that a file be in a known state.
For example, a program that contains a simple transaction facility might use
fsync to ensure that all changes to a file or files caused by a given transaction
were recorded on a storage medium.

fsync fails if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for writing.

ENOL INK

EINTR
EIO

fildes is on a remote machine and the link on that machine is no
longer active.

A signal was caught during execution of the fsync system call.

An I/O error occurred while reading from or writing to the file
system.

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

The way the data reach the physical medium depends on both implementation
and hardware. fsync returns when the device driver tells it that the write has
taken place.

SEE ALSO
sync(2)

10/89 Page 1

getcontext (2) getcontext (2)

NAME
getcontext, setcontext - get and set current user context

SYNOPSIS
'include <Ucontext.h>

int getcontext(ucontext_t *UCP)i

int setcontext(ucontext_t *UCP)i

DESCRIPTION

NOTES

These functions, along with those defined in makecontext(3C), are useful for
implementing user level context switching between multiple threads of control
within a process.

getcontext initializes the structure pointed to by ucp to the current user context
of the calling process. The user context is defined by ucontext(5) and includes
the contents of the calling process's machine registers, signal mask and execution
stack.

setcontext restores the user context pointed to by ucp. The call to setcontext
does not return; program execution resumes at the point specified by the context
structure passed to setcontext. The context structure should have been one
created either by a prior call to getcontext or makecontext or passed as the
third argument to a signal handler [see sigaction(2)]. If the context structure
was one created with getcontext, program execution continues as if the
corresponding call of getcontext had just returned. If the context structure was
one created with makecontext, program execution continues with the function
specified to makecontext.

When a signal handler is executed, the current user context is saved and a new
context is created by the kernel. If the process leaves the signal handler via
longjnp(3C) the original context will not be restored, and future calls to getcon­
text will not be reliable. Signal handlers should use siglongjnp(3C) or setcon­
text instead.

getcontext and setcontext will fail if the following is true:

EFAULT ucp points to an invalid address.

DIAGNOSTICS
On successful completion, setcontext does not return and getcontext returns
O. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
sigaction(2), sigaltstack(2), sigprocmask(2), makecontext(3C), ucontext(5).

10/89 Page 1

getdents (2) getdents (2)

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
iinclude <sys/dirent.h>

int getdents (int fildes, struct dirent *buf, size_t nbyte);

DESCRIPTION
fildes is a file descriptor obtained from an open(2) or dup(2) system call.

getdents attempts to read nbyte bytes from the directory associated with fildes
and to format them as file system independent directory entries in the buffer
pointed to by buf. Since the file system independent directory entries are of vari­
able length, in most cases the actual number of bytes returned will be strictly less
than nbyte. See dirent(4) to calculate the number of bytes.

The file system independent directory entry is specified by the dirent structure.
For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given by
the file pointer associated with fildes. Upon return from getdents, the file pointer
is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir routine [for a
description, see directory(3C)], and should not be used for other purposes.

getdents will fail if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for reading.

EFAULT

EINVAL

ENOENT

ENOLINK

ENOTDIR

buf points outside the allocated address space.

nbyte is not large enough for one directory entry.

The current file pointer for the directory is not located at a valid
entry.

fildes points to a remote machine and the link to that machine is
no longer active.

fildes is not a directory.

EIO An I/O error occurred while accessing the file system.

SEE ALSO
directory(3C).
dirent(4) in the System Administrator's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. A value of 0 indicates the end of the directory has
been reached. If the system call failed, a -1 is returned and errno is set to indi­
cate the error.

Page 1

getgroups (2) getgroups(2)

NAME
getgroups, setgroups - get or set supplementary group access list IDs

SYNOPSIS
iinclude <unistd.h>

int getgroups(int gidsetsize, gid_t *grouplist)

int setgroups(int ngroups, const gid_t *grouplist)

DESCRIPTION
getgroups gets the current supplemental group access list of the calling process
and stores the result in the array of group IDs specified by group/ist. This array
has gidsetsize entries and must be large enough to contain the entire list. This list
cannot be greater than {NGOUPS_MAX}. If gidsetsize equals 0, getgroups will
return the number of groups to which the calling process belongs without modi­
fying the array pointed to by grouplist.

setgroups sets the supplementary group access list of the calling process from
the array of group IDs specified by grouplist. The number of entries is specified
by ngroups and can not be greater than {NGROOPS_MAX}. This function may be
invoked only by the super-user.

get groups will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of
supplementary group IDs set for the calling process.

set groups will fail if:

EINVAL The value of ngroups is greater than {NGROOPS_MAX}.

EPERM The effective user ID is not super-user.

Either call will fail if:

EFAULT A referenced part of the array pointed to by group list is outside
of the allocated address space of the process.

SEE ALSO
chown(2), getuid(2), setuid(2), initgroups(3C).
groups(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, getgroups returns the number of supplementary
group IDs set for the calling process and setgroups returns the value O. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

Page 1

getmsg(2) getmsg(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
'include <stropts. h>

int getmsg (int fd, struct strbu£ *etlptr,
struet strbuf *dataptr, int *flagsp);

int getpmsg(int fd, struct strbuf *ctlptr,
struet strbuf *dataptr, int *bandp, int *flagsp);

DESCRIPTION

10/89

getmsg retrieves the contents of a message [see intro(2)] located at the stream
head read queue from a STREAMS file, and places the contents into user specified
buffer(s). The message must contain either a data part, a control part, or both.
The data and control parts of the message are placed into. separate buffers; as
described below. The semantics of each part is defined by the STREAMS module
that generated the message. . ' ,

The function getpmsg does the same'thing as getmsg, but provides finer cOntrol
over the priority of the messages received. Except where noted, all information
pertaining to getmsg also pertains to' getpnisg.· .

fd specifies a me descriptor referencing an open stream. ctlptrand dataptr each
point .to a strbuf structure, which contains the following members:

int maxlen; /* ~ buffer length */
int len; 1* length of data */
char *buf; /* ptr to buffer */

buf points to a buffer in which the data or control information is to be placed,
and inaxlen indicates the maximum number of bytes this buffer .can hold. On
return, len contains the number of bytes of data or control information actually
received, or 0 if there is a zero-length control or data part, or -1 if no data or con­
trol informatiort is present in the message. flagsp should point to an integer that
indiCates the type of message the user is able to receive. This is described later.

ctlptr is used to hold the control part from the message· and dataptr is used to
hold the data part from the message. If ctlptr (or dataptr) is NOLL or the maxlen
field is -1, the control (or data) part of the message is not processed and is left on
the stream head read queue. If ctlptr (or dataptr) is not NOLL and there is no
corresponding control (or data) part of the messages on the stream head read
queue, len is set to -1. If the maxlen field is set to 0 and there is a zero-length
control (or data) part, that zero-length pait is removed from the read queue and
len is set to O. If the maxlen field is set to 0 and there are more than zero bytes
of control (or data) information, that information is left on the read. queue and
len is set to O. If the maxlen field in ctlptr ordataptr is less than, respectively, the
control or data part of the message, maxlen bytes are retrieved. In t):lis case, the
remainder of the' message is left on the stream head read queue and a non-zero
return value is provided, as described below under DIAGNOSTICS.

Page 1

getmsg(2) getmsg(2)

Page 2

By default, getmsg processes the first available message on the stream head read
queue. However, a user may choose to retrieve only high priority messages by
setting the integer pointed by flagsp to RS _HIPRI. In this case, getmsg processes
the next message only if it is a high priority message. If the integer pointed by
flagsp is 0, getmsg retrieves any message available on the stream head read
queue. In this case, on return, the integer pointed to by flagsp will be set to
RS _ HIPRI if a high priority message was retrieved, or 0 otherwise.

For getpmsg, the flags are different. flagsp points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like
getmsg, getpmsg processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the
integer pointed to by flagsp to MSG_HIPRI and the integer pointed to by bandp to
o. In this case, getpmsg will only process the next message if it is a high-priority
message. In a similar manner, a user may choose to retrieve a message from a
particular priority band by setting the integer pointed to by flagsp to MSG_BAND
and the integer pointed to by bandp to the priority band of interest. In this case,
getpmsg will only process the next message if it is in a priority band equal to, or
greater than, the integer pointed to by bandp, or if it is a high-priority message. If
a user just wants to get the first message off the queue, the integer pointed to by
flagsp should be set to MSG_ANY and the integer pointed to by bandp should be set
to O. On return, if the message retrieved was a high-priority message, the integer
pointed to by flagsp will be set to MSG_HIPRI and the integer pointed to by bandp
will be set to O. Otherwise, the integer pointed to by flagsp will be set to
MSG_BAND and the integer pointed to by bandp will be set to the priority band of
the message.

If O_NDELAY and O_NONBLOCK are clear, getmsg blocks until a message of the type
specified by flagsp is available on the stream head read queue. If 0_ NDELAY or
O_NONBLOCK has been set and a message of the specified type is not present on
the read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg continues to operate normally, as described above, until the stream head
read queue is empty. Thereafter, it returns 0 in the len fields of dIptr and
dataptr.
getmsg or getprnsg will fail if one or more of the following are true:

EAGAIN The O_NDELAY or O_NONBLOCK flag is set, and no messages are
available.

EBADF
EBADMSG

EFAULT

EINTR

EINVAL

fd is not a valid file descriptor open for reading.

Queued message to be read is not valid for getmsg.

ctlptr, dataptr, bandp, or flagsp points to a location outside the allo­
cated address space.

A signal was caught during the getmsg system call.

An illegal value was specified in flagsp, or the stream referenced
by fd is linked under a multiplexor.

10/89

getmsg(2) getmsg(2)

ENOSTR A stream is not associated with fd.
getmsg can also fail if a STREAMS error message had been received at the stream
head before the call to getmsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
intro(2), poll(2), putmsg(2), read(2), write(2).
Programmer's Guide: STREAMS.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value is returned. A value of 0 indi­
cates that a full message was read successfully. A return value of M:>RECTL indi­
cates that more control information is waiting for retrieval. A return value of
MOREDATA indicates that more data are waiting for retrieval. A return value of
MORECTL I MOREDATA indicates that both types of information remain. Subse­
quent getmsg calls retrieve the remainder of the message. However, if a message
of higher priority has come in on the stream head read queue, the next call to
getmsg will retrieve that higher priority message before retrieving the remainder
of the previously received partial message.

Page 3

getpid (2) getpid (2)

NAME
getpid, getpgrp, getppid, getpgid - get process, process group, and parent
process IDs

SYNOPSIS
tinclude <sys/types.h>
tinclude <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

DESCRIPTION
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

getpgid returns the process group ID of the process whose process ID is equal to
pid, or the process group ID of the calling process, if pid is equal to zero.

getpgid will fail if one or more of the following is true:

EPERM The process whose process ID is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group ID of that process from the cal­
ling process.

ESRCH There is no process with a process ID equal to pid.
SEE ALSO

exec(2), fork(2), getpid(2), getsid(2), intro(2), setpgid(2), setsid(2)
setpgrp(2), signal(2).

DIAGNOSTICS

10/89

Upon successful completion, getpgid returns a process group ID. Otherwise, a
value of (pid_t) -1 is returned and errno is set to indicate the error.

Page 1

getrlimit(2) getrlimit(2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION

10/89

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with getrlimit and set with setrlimit.

Each call to either getrlimit or setrlimit identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values:
one specifying the current (soft) limit, the other a maximum (hard) limit. Soft
limits may be changed by a process to any value that is less than or equal to the
hard limit. A process may (irreversibly) lower its hard limit to any value that is
greater than or equal to the soft limit. Only a process with an effective user ID or
superuser can raise a hard limit. Both hard and soft limits can be changed in a
single call to setrlimit subject to the constraints described above. Limits may
have an infinite value of RLIM_INFINITY. rIp is a pointer to struct rlimit that
includes the following members:

rlim cur;
rlim=max;

/* current (soft) limit */
/* hard limit */

rlinL.t is an arithmetic data type to which objects of type int, size_t, and
off t can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when current
limit is exceeded, are summarized in the table below:

Resources
RLIMIT CORE

RLIMIT CPU

RLIMIT DATA

Description
The maximum size of a
core file in bytes that may
be created by a process.
A limit of 0 will prevent
the creation of a core file.

The maximum amount of
CPU time in seconds used
by a process.

The maximum size of a
process's heap in bytes.

Action
The writing of a core file
will terminate at this size.

SIGXCPU is sent to the
process. If the process is
holding or ignoring
SIGXCPU, the behavior is
scheduling class defined.

brk(2) will fail with ermo
set to ENOMEM.

Page 1

getrlimit (2) getrlimit (2)

Resources
RLIMIT FSIZE

RLIMIT NOFILE

RLIMIT STACK

RLIMIT VMEM

Description
The maximum size of a
file in bytes that may be
created by a process. A
limit of 0 will prevent the
creation of a file.

The maximum number of
open file descriptors that
the process can have.

The maximum size of a
process's stack in bytes.
The system will not
automatically grow the
stack beyond this limit.

The maximum size of a
process's mapped address
space in bytes.

Action
SIGXFSZ is sent to the
process. If the process is
holding or ignoring
SIGXFSZ, continued
attempts to increase the
size of a file beyond the
limit will fail with errno
set to EFBIG.

Functions that create new
file descriptors will fail
with errno set to EMFILE.

SIGSEGV is sent to the
process. If the process is
holding or ignoring SIG­
SEGV, or is catching SIG­
SEGV and has not made
arrangements to use an
alternate stack [see
sigaltstack(2)], the
disposition of SIGSEGV
will be set to SIG DFL
before it is sent.

brk(2) and mmap(2) func­
tions will fail with errno
set to ENOMEM. In addi­
tion, the automatic stack
growth will fail with the
effects outlined above.

Because limit information is stored in the per-process information, the shell buil­
tin ulimit must directly execute this system call if it is to affect all future
processes created by the shell.

The value of the current limit of the following resources affect these implementa­
tion defined constants:

Limit
RLIMIT FSIZE
RLIMIT_NOFILE

Implementation Defined Constant
FCHR MAX
OPEN MAX

RETURN VALUE
Upon successful completion, the function getrlimit returns a value of 0; other­
wise, it returns a value of -1 and sets errno to indicate an error.

ERRORS

Page 2

Under the following conditions, the functions getrlimit and setrlimit fail and
set ermo to:

10/89

getrllmit(2)

EINVAL

EPERM

SEE ALSO

getrlimit (2)

if an invalid resource was specified; or in a setrlimit call, the new
rlim_cur exceeds the new rlim_max.

if the limit specified to setrlimit would have raised the maximum
limit value, and the caller is the superuser

malloc(3C), open(2), sigaltstack(2), signal(S).

10/89 Page 3

getsid (2) getsid(2)

NAME
getsid - get session ID

SYNOPSIS
tinc1ude <sys/types.h>

pid_t getsid(pid_t~d);

DESCRIPTION
The function getsid returns the session ID of the process whose process ID is
equal to pid. If pid is equal to (pid_t) 0, getsid returns the session ID of the cal­
ling process.

RETURN VALUE
Upon successful completion, the function getsid returns the session ID of the
specified process; otherwise, it returns a value of (pid_t) -1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function getsid fails and sets errno to:

EPERM if the process whose process ID is equal to pid is not in the same ses­
sion as the calling process, and the implementation does not allow
access to the session ID of that process from the calling process.

ESRCH if there is no process with a process ID equal to ~d.

SEE ALSO
exec(2), fork(2), getpid(2), setpgid(2), setsid(2).

10/89 Page 1

getuld (2) getuld (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
tinclude <sys/types.h>
tinclude <unistd.h>

uid t getuid (void);

uid t geteuid (void);

gid_t getgid (void);

gid_t getegid (void);

DESCRIPTION
getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

10/89 Page 1

loctl(2) loctl(2)

NAME
ioctl - control device

SYNOPSIS
'include <unistd.h>

int ioctl (int fildes, int request, ... /* arg */);
DESCRIPTION

10/89

ioctl performs a variety of control functions on devices and STREAMS. For
non-STREAMS files, the functions performed by this call are device-specific control
functions. request and an optional third argument with varying type are passed
to the file designated by fildes and are interpreted by the device driver. This con­
trol is not· frequently used on non-STREAMS devices, where the basic
input/output functions are usually perforined through the read(2) and write(2)
system calls.

For STREAMS files, specific functions are performed by the ioctl call as described
in streamio(7).

fildes is an open file deSCriptor that refers to a device. request selects the control
function to be performed and depends on the device being addressed. arg
represents a third argument that has additional information that is needed by this
specific device to perform the requested function. The data type of arg depends
upon the particular control request, but it is either an int or a pointer to a
device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are pro­
vided by more than one device driver, for example, the general terminal interface
[see tennio(7)].

ioctl fails for any type of file if one or more of the following are true:

EBADF fildes is not a valid open file deSCriptor.

ENOTTY

EINTR

fildes is not associated . with a device driver that accepts control
functions.

A signal was caught during the ioctl system call.

ioctl also fails if the device driver detects an error. In this case, the error is
passed through ioctl without change to the caller. A particular driver might not
have all of the following error cases. Under the following conditions, requests to
device drivers may fail and set ermo to:

EFAULT request requires a data transfer to or from a buffer pointed to by
arg, but some part of the buffer is outside the process's allocated

EINVAL

EIO.
ENXIO

space. .

request or arg is not valid for this device.

Some physical I/O error has occurred.

The request and arg are valid for this device driver, but the ser­
vice requested can not be performed on this particular subdevice.

Page 1

loctl(2) loctl(2)

ENOLINK fildes is on a remote machine and the link to that machine is no
longer active.

STREAMS errors are described in streamio(7).

SEE ALSO
streamio(7) in the Programmer's Guide: STREAMS.
termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS

Page 2

Upon successful completion, the value returned depends upon the device control
function, but must be a non-negative integer. Otherwise, a value of -1 is returned
and ermo is set to indicate the error.

10/89

kill (2) kill (2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
tinclude <sys/types.h>
tinclude <signal.h>

int kill (pid_t pid, int sig);

DESCRIPTION

10/89

kill sends a signal to a process or a group of processes. The process or group
of processes to which the signal is to be sent is specified by pid. The signal that
is to be sent is specified by sig and is either one from the list given in signal [see
signal(5)], or O. If sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity of pid.

The real or effective user 10 of the sending process must match the real or saved
[from exec(2)] user 10 of the receiving process unless the effective user 10 of the
sending process is superuser, [see intro(2)], or sig is SIGCONT and the sending
process has the same session 10 as the receiving process.

The process with 10 0 and the process with 10 1 are special processes [see
intro(2)] and will be referred to below as procO and procl, respectively.

If pid is greater than 0, sig will be sent to the process whose process 10 is equal to
pid. pid may equal l.

If pid is negative but not (pid_t)-l, sig will be sent to all processes whose pro­
cess group 10 is equal to the absolute value of pid and for which the process has
permission to send a signal.

If pid is 0, sig will be sent to all processes excluding procO and proc1 whose pro­
cess group 10 is equal to the process group 10 of the sender. Permission is
needed to send a signal to process groups.

If pid is (pid _ t) -1 and the effective user 10 of the sender is not superuser, sig
will be sent to all processes excluding procO and prod whose real user 10 is equal
to the effective user 10 of the sender.

If pid is (pid _ t) -1 and the effective user 10 of the sender is superuser, sig will
be sent to all processes excluding procO and prod.

kill will fail and no signal will be sent if one or more of the following are true:

EINVAL sig is not a valid signal number.

EINVAL sig is SIGKILL and pid is (pid_t) 1 (Le., pid specifies proc1).

ESRCH

EPERM

No process or process group can be found corresponding to that
specified by pid.

The user 10 of the sending process is not privileged, and its real
or effective user 10 does not match the real or saved user 10 of
the receiving process, and the calling process is not sending
SIGCONT to a process that shares the same session 10.

Page 1

kill (2) kill (2)

SEE ALSO

NOTES

getpid(2), intro(2), setpgrp(2), signal(2), getsid(2), sigsend(2), sigac­
tion(2).

kill(1) in the User's Reference Manual.

sigsend is a more versatile way to send signals to processes. The user is
encouraged to use sigsend instead of kill.

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

10/89

IInk(2) Iink(2)

NAME
link - link to a file

SYNOPSIS
tinclude <unistd.h>

int link (const char *pathl, const char *path2);

DESCRIPTION

10/89

pathl points to a path name naming an existing file. path2 points to a path name
naming the new directory entry to be created. link creates a new link (directory
entry) for the existing file and increments its link count by one.

Upon successful completion, link marks for update the st _ ctime field of the
file. Also, the st_ctime and st_mtime fields of the directory that contains the
new entry are marked for update.

link will fail and no link will be created if one or more of the following are true:

EACCES A component of either path prefix denies search permis­
sion.

EACCES

EEXIST

EFAULT

EINTR

ELOOP

EMLINK

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENOENT

ENOENT

ENOENT

ENOLINK

ENOSPC

EPERM

The requested link requires writing in a directory with a
mode that denies write permission.

The link named by path2 exists.

path points outside the allocated address space of the pro­
cess.

A signal was caught during the link system call.

Too many symbolic links were encountered in translating
path.

The maximum number of links to a file would be exceeded.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of the pathl or path2 argument exceeds
{PATH_MAX}, or the length of a pathl or path2 component
exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in effect.

A component of either path prefix is not a directory.

pathl or path2 i~ a null path name.

A component of either path prefix does not exist.

The file named by pathl does not exist.

path points to a remote machine and the link to that
machine is no longer active.

the directory that would contain the link cannot be
extended.

The file named by pathl is a directory and the effective user
ID is not super-user.

Page 1

Iink(2)

EROFS

EXDEV

SEE ALSO
unlink(2).

DIAGNOSTICS

IInk(2)

The requested link requires writing in a directory on a
read-only file system.

The link named by path2 and the file named by pathl are
on different logical devices (file systems).

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2 10/89

Iseek{2} Iseek{2}

NAME
lseek - move read/write file pointer

SYNOPSIS
'include <sys/types.h>
'include <unistd.h>
off_t lseek (int fildes, off_t offset, int whence);

DESCRIPTION
fildesis a fiJe descriptor returned from a creat, c:pen, dup, or fentl system call.
lseek sets the file pointer associated with fildes as follows:

If whence is SEEK_SET, the pointer is set to offset bytes.

If whence is SEEK_CUR, the pointer is set to its current location plus offset.
If whence is SEEK_END, the pointer is set to the size of the file plus offset.

On success, lseek returns the resulting pointer location, as measured in bytes
from the beginning of the file. Note that if fildes is a remote file deScriptor and
offset is negative, lseek returns the file pointer even if it is negative.

lseek allows the file, pointer to be set beyond the existing data in the file. If data
are later written at this point, subsequent reads in the gap between the previous
end of data and the newly written data will return bytes of value 0 until data are
written into the gap.

lseek fails and the file pointer remains urichanged if one or more of the follow­
ing are true:

EBADF
ESPIPE

EINVAL

EINVAL

fildes is not an open file descriptor.

fildes is associated with a pipe or fifo.

whence is not SEEK SET, SEEK CUR. or SEEK END. The process
also gets a SIGSYS signal. - -

fildes is not a remote file descriptor, and the resulting file pointer
would be negative.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

SEE ALSO
creat(2), dup(2), fentl(2), c:pen(2).

DIAGNOSTICS

10189

Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

Page 1

memcntl(2) memcntl(2)

NAME
mem::ntl - memory management control

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mman.h>

int mem::ntl(caddr t addr, size t len, int cmd, caddr t arg,
int attr, int mask);

DESCRIPTION

10/89

The function rnem:mtl allows the calling process to apply a variety of control
operations pver the address space identified by the mappings established for the
address range [addr, addr + len).

addr must be a multiple of the pagesize as returned by sysconf(3C). The scope
of the control operations can be further ciefined with !ldditional selection criteria
(in the form of attributes) according to the bit pattern contained in attr.

The following attributes specify page mapping selection criteria:

SHARED Page is mapped shared.
PRIVATE Page is mapped private.

The following attributes specify page protection selection criteria:

PROT READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.

The selection criteria are constructed by an OR of the attribute bits and must
match exactly.

In addition, the following criteria may be specified:

BROC TEXT process text
PROC-DATA process data

where PROC_TEXT specifies <tIl privately mapped segments with read and execute
permission, and PROC~DATA ~pecifies all Rrivately ma,Fped segments with write
permission. .. .

Selection criteria can be used to describe various abstract memory objects within
the address space on which to operate. If an operation shall not be constrained
by the selection criteria, aUr must have the value o.
The operation to be performed is identified by the argument emil. The symbolic
names for the operations are ciefined in <sys/mnan. h> as follows:

Me LOCK Lock in memory all pages in the range with attributes attr. A
given page may be locked multiple tiines through different
mappings; however, within a given mapping, page locks do not
nest. Multiple lock operations on the same address in the same
process will all be removed with a single unlock operation. A
page locked ih one process and mapped in another. (or visible
through a different mapping in the locking process) is locked in
memory as long as the locking process does neither an implicit

Page 1

memcntl(2)

MC LOCKAS

MC SYNC

MC UNLOCK

MC UNLOCKAS

Page 2

memcntl(2)

nor explicit unlock operation. If a locked mapping is removed,
or a page is deleted through file removal or truncation, an
unlock operation is implicitly performed. If a writable
MAP_PRIVATE page in the address range is changed, the lock
will be transferred to the private page.

At present arg is unused, but must be 0 to ensure compatibility
with potential future enhancements.

Lock in memory all pages mapped by the address space with
attributes attr. At present addr and len are unused, but must be
NULL and 0 respectively, to ensure compatibility with potential
future enhancements. arg is a bit pattern built from the flags:

MCL CURRENT
MCL FUTURE

Lock current mappings
Lock future mappings

The value of arg determines whether the pages to be locked are
those currently mapped by the address space, those that will be
mapped in the future, or both. If M::L_FUTURE is specified, then
all mappings subsequently added to the address space will be
locked, provided sufficient memory is available.

Write to their backing storage locations all modified pages in
the range with attributes attr. Optionally, invalidate cache
copies. The backing storage for a modified MAP_SHARED map­
ping is the file the page is mapped to; the backing storage for a
modified MAP_PRIVATE mapping is its swap area. arg is a bit
pattern built from the flags used to control the behavior of the
operation:

MS ASYNC
MS SYNC
MS INVALIDATE

perform asynchronous writes
perform synchronous writes
invalidate mappings

MS _ ASYNC returns immediately once all write operations are
scheduled; with MS_SYNC the system call will not return until all
write operations are completed.

MS _INVALIDATE invalidates all cached copies of data in
memory, so that further references to the pages will be obtained
by the system from their backing storage locations. This opera­
tion should be used by applications that require a memory
object to be in a known state.

Unlock all pages in the range with attributes attr. At present
arg is unused, but must be 0 to ensure compatibility with poten­
tial future enhancements.

Remove address space memory locks, and locks on all pages in
the address space with attributes attr. At present addr, len, and
arg are unused, but must be NULL, 0 and 0 respectively, to
ensure compatibility with potential future enhancements.

10/89

memcntl(2) memcntl(2)

The mask argument must be zero; it is reserved for future use.

Locks established with the lock operations are not inherited by a child process
after fork. mem::mtl fails if it attempts to lock more memory than a system­
specific limit.

Due to the potential impact on system resources, all operations, with the excep­
tion of M: _SYNC, are restricted to processes with superuser effective user ID . The
mem::mtl function subsumes the operations of plock and met!.

RETURN VALUE.
Upon successful completion, the function meIlCDtl returns a value of 0; other­
wise, it returns a value of -1 and sets ermo to indicate an error.

ERRORS
Under the following conditions, the function meIlCDtl fails and sets ermo to:

EAGAIN if some or all of the memory identified by the operation could not
be locked when M:_LOCK or MC_LOCKAS is specified .

EBUSY

EINVAL·

EINVAL

EINVAL

EINVAL

ENOMEM

EPERM

. if some or all the addresses in the range [addr, addr + len) are locked
and MC_SYNC with MS_INVALIDATE option is specified.

if addr is not a multiple of the page size as returned by sysconf.

if addr and/or len do not have the value 0 when Me IDCKAS or
MC_UNLOCKAS is specified.

if arg is not valid for the function specified.

if invalid selection criteria are specified in attr.

if some or all the addresses in the range [addr, addr + len) are invalid
for the address space of the process or pages not mapped are
specified.

if the process's effective user ID is not superuser and one of
Me_LOCK, M:_LOCKAS, MC_UNLOCK, MC_UNLOCKAS was specified.

SEE ALSO

10/89

IIIl\ap(2), nprotect(2), plock(2), sysconf(2), mlock(3C), mlockall(3C),
msync(3C).

Page 3

mincore(2) mincore(2)

NAME
mincore - detennine residency of memory pages

SYNOPSIS
tinclude <unistd.h>
int mincore(caddr_t addr, size_t len, char *vec)i

DESCRIPTION
mincore returns the primary memory residency status of pages in the address
space covered by mappings in the range [addr, addr + len). The status is returned
as a character-per-page in the character array referenced by *vec (which the sys­
tem assumes to be large enough to encompass all the pages in the address range).
The least significant bit of each character is set to 1 to indicate that the referenced
page is in primary memory, 0 if it is not. The settings of other bits in each char­
acter are undefined and may contain other infonnation in future implementations.

mincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this infor­
mation may quickly be outdated. Only locked pages are guaranteed to remain in
memory; see mem:::ntl(2).

RETURN VALUE
mincore returns 0 on success, -1 on failure.

ERRORS
mincore fails if:

EFAULT

EINVAL

EINVAL
ENOMEM

SEE ALSO

*vec includes an out-of-range or otherwise inaccessible address.

addr is not a multiple of the page size as returned by
sysconf(3C).

The argument len has a value less than or equal to O.

Addresses in the range [addr, addr + len) are invalid for the
address space of a process, or specify one or more pages which
are not mapped.

mlock(3C), mnap(2), sysconf(3C).

10/89 Page 1

mkdlr(2) mkdlr(2)

NAME
mkdir - make a directory

SYNOPSIS
tinclude <sys/types.h>
iinclude <sys/stat.h>

int mkdir (const char *path, JlDde_t JlDde) ;

DESCRIPTION

10/89

mkdir creates a new directory named by the path name pointed to by path. The
mode of the new directory is initialized from mode [see chmod(2) for values of
mode]. The protection part of the mode argument is modified by the process's file
creation mask [see wnask(2)].

The directory'S owner 10 is set to the process's effective user 10. The directory's
group 10 is set to the process's effective group 10, or if the S_ISGID bit is set in
the parent directory, then the group 10 of the directory is inherited from the
parent. The S_ISGID bit of the new directory is inherited from the parent direc­
tory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.)
and its parent directory (..).

Upon successful completion, mkdir marks for update the st_atime, st_ctime
and st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of
the directory that contains the new entry are marked for update.

mkdir fails and creates no directory if one or more of the following are true:

EACCES Either a component of the path prefix denies search permis­
sion or write permission is denied on the parent directory
of the directory to be created.

EEXIST

EFAOLT

EIO

ELOOP

EMLINK

EMOLTIHOP

ENAMETOOLONG

The named file already exists.

path points outside the allocated address space of the pro­
cess.

An I/O error has occurred while accessing the file system.

Too many symbolic links were encountered in translating
path.
The maximum number of links to the parent directory
would be exceeded.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSDLNO _ TRUNC is in effect.

Page 1

mkdlr(2) mkdlr(2)

ENOENT

ENOLINK

ENOSPC

ENOTDIR

A component of the path prefix does not exist or is a null
pathname.

path points to a remote machine and the link to that
machine is no longer active.

No free space is available on the device containing the
directory.

A component of the path prefix is not a directory.

EROFS The path prefix resides on a read-only file system.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

SEE ALSO
chm:xI.(2), mknod(2), umask(2), stat(5).

Page 2 10/89

mknod(2) mknod(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

DESCRIPTION

10/89

mknod creates a new file named by the path name pointed to by path. The file
type and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IE'MI' bits, which must be set to one of
the following values:

S_IFIFO fifo special
S _ IFCHR character special
S_IFDIR directory
S_IFBLK block special
S _ IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

S ISUID 04000 Set user ID on execution.
()SGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1

S ISVTX 01000
S IRWXU 00700
S IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S IXGRP 00010
S-IRWXO 00007
S IROTH 00004
S IWOTH 00002
S_IXOTH 00001

Enable mandatory me/record locking if # is 6, 4, 2, or 0
Save text image after execution.
Read, write, execute by owner.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

The oWner ID of the file is set to the effective user ID of the process. The group
ID of the me is set to the effective group ID of the process. However, if the
S_ISGID bit is set in the parent directory, then the group ID of the file is inherited
from the parent. If the group· ID of the new file does not match the effective
group ID or one of the supplementary group IDs, the S_ISGID bit is cleared.

The access permission bits of mode are modified by the process's me mode crea­
tion mask: all bits set in the process's file. mode creation mask are cleared [see
umask(2»). If mode indicates a block or character special me, dev is a
configuration-dependent specification of a character or block I/O device. If mode
does not indicate a block special or character special device, dev is ignored. See
mkdev(3C).

Page 1

mknod (2) mknod(2)

mknod may be invoked only by a privileged user for file types other than FIFO
special.

If path is a symbolic link, it is not followed.

mknod fails and creates no new file if one or more of the following are true:

EEXIST The named file exists.

EINVAL

EFAOLT

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOTDIR

ENOENT

EPERM

EROFS

ENOSPC

EINTR

ENOLINK

dev is invalid.

path points outside the allocated address space of the pro­
cess.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while

POSIX NO TRONC is in effect. - --
A component of the path prefix is not a directory.

A component of the path prefix does not exist or is a null
pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on
a read-only file system.

No space is available.

A signal was caught during the mknod system call.

path points to a remote machine and the link to that
machine is no longer active.

SEE ALSO
chm:xi(2), exec(2), umask(2), mkdev(3C), mkfifo(3C), fs(4), stat(S).
mkdir(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

If mknod creates a device in a remote directory using Remote File Sharing, the
major and minor device numbers are interpreted by the server.

10/89

mmap(2) mmap(2)

NAME
mnap - map pages of memory

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mnan.h>

caddr_t mnap(caddr_t addr, size t len, int prot, int flags, int fd,
off_t off);

DESCRIPTION

10/89

The function mnap establishes a mapping between a process's address space and a
virtual memory object. The format of the call is as follows:

pa = rrmap(addr, len, prot, flags, fd, off);

mnap establishes a mapping between the process's address space at an address pa
for len bytes to the memory object represented by the file descriptor fd at offset off
for len bytes. The value of pa is an implementation-dependent function of the
parameter addr and values of flags, further described below. A successful mnap
call returns pa as its result. The address ranges covered by [pa, pa + len) and [off,
off + len) must be legitimate for the possible (not necessarily current) address
space of a process and the object in question, respectively. mnap cannot grow a
file.

The mapping established by rrmap replaces any previous mappings for the
process's pages in the range [pa, pa + len).

The parameter prot determines whether read, write, execute, or some combination
of accesses are permitted to the pages being mapped. The protection options are
defined in <sys/mman.h> as:

PROT READ
PROT WRITE
PROT EXEC
PROT NONE

Page can be read.
Page can be written.
Page can be executed.
Page can not be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE
is often implemented as PROT_READ I PROT_WRITE and PROT_EXEC as
PROT_READ I PROT_EXEC. However, no implementation will permit a write to
succeed where PROT WRITE has not been set. The behavior of PROT WRITE can be
influenced by settingMAP_PRIVATE in the flags parameter, described-below.

The parameter flags provides other information about the handling of the mapped
pages. The options are defined in <sys/mman.h> as:

MAP SHARED Share changes.
MAP PRIVATE Changes are private.
MAP FIXED Interpret addr exactly.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the
memory object. If MAP_SHARED is specified, write references will change the
memory object. If MAP_PRIVATE is specified, the initial write reference will create
a private copy of the memory object page and redirect the mapping to the copy.
Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. The map­
ping type is retained across a fork(2).

Page 1

mmap(2} mmap(2}

Note that the private copy is not created until the first write; until then, other
users who have the object mapped MAP_SHARED can change the object.

MAP_FIXED informs the system that the value of pa must be addr, exactly. The use
of MAP_FIXED is discouraged, as it may prevent an implementation from making
the most effective use of system resources.

When MAP_FIXED is not set, the system uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen will be an area of the address space
which the system deems suitable for a mapping of len bytes to the specified
object. All implementations interpret an addr value of zero as granting the system
complete freedom in selecting pa, subject to constraints described below. A non­
zero value of addr is taken to be a suggestion of a process address near which the
mapping should be placed. When the system selects a value for pa, it will never
place a mapping at address 0, nor will it replace any extant mapping, nor map
into areas considered part of the potential data or stack segments.

The parameter off is constrained to be aligned and sized according to the value
returned by sysconf. When MAP_FIXED is specified, the parameter addr must
also meet these constraints. The system performs mapping operations over whole
pages. Thus, while the parameter len need not meet a size or alignment con­
straint, the system will include, in any mapping operation, any partial page
specified by the range [pa, pa + len).

The system will always zero-fill any partial page at the end of an object. Further,
the system will never write out any modified portions of the last page of an
object which are beyond its end. References to whole pages following the end of
an object will result in the delivery of a SIGBUS signal. SIGBUS signals may also
be delivered on various file system conditions, including quota exceeded errors.

RETURN VALUE
On success, mnap returns the address at which the mapping was placed (pa). On
failure it returns (caddr_t)-l and sets errno to indicate an error.

ERRORS

Page 2

Under the following conditions, mnap fails and sets errno to:

EAGAIN The mapping could not be locked in memory.

EBADF fd is not open.

EACCES

ENXIO

EINVAL

EINVAL

EINVAL
ENODEV

fd is not open for read, regardless of the protection specified, or fd is
not open for write and PROT_WRITE was specified for a MAP_SHARED
type mapping.

Addresses in the range [off, off + len) are invalid for fd.
The arguments addr (if MAP_FIXED was specified) or off are not mul­
tiples of the page size as returned by sysconf.

The field in flags is invalid (neither MAP_PRIVATE or MAP_SHARED).

The argument lenhas a value less than or equal to O.

fd refers to an object for which mnap is meaningless, such as a termi­
nal.

10/89

mmap(2) mmap(2)

NOTES

ENOMEM MAP_FIXED was specified and the range [addr, addr + len) exceeds
that allowed for the address space of a process, or MAP_FIXED was
not specified and there is insufficient room in the address space to
effect the mapping.

mnap allows access to resources via address space manipulations instead of the
read/write interface. Once a file is mapped, all a process J:tas to do to access it
is use the data at the address to which the object was mapped. Consider the fol­
lowing pseudo-code:

fd ,.. open (...)
lseek(fd, offset)
read (fd, buf, len)
/* use data in buf */

Here is a rewrite using mnap:

fd = open (...)
address = mnap((caddr_t) 0, len, (PROT_READ PROT_WRITE),

MAP PR~TE, fd, offset)
/* use data at address */

SEE ALSO

10/89

fcntl(2), fork(2), lockf(3Q, mlockall(3C), nprotect(2), munmap(2), plock(2),
sysconf(2).

Page 3

mount (2) mount(2)

NAME
mount - mount a file system

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mount.h>

int mount (const char *spec, constchar *dir, int mflag,
... /* int fstyp, const char *dataptr, size_t datalen*/);

DESCRIPTION

10/89

mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names. fstyp is the file system type number. The sysfs(2) system
call can be used to determine the file system type number. If both the MS yATA and
MS]SS flag bits of mflag are off, the file system type defaults to the root file system
type. Only if either flag is on is fstyp used to indicate the file system type.

If the MS _DATA flag is set in mflag the system expects the dataptr and datalen argu­
ments to be present. Together they describe a block of file-system specific data at
address dataptr of length datalen. This is interpreted by file-system specific code
within the operating system and its format depends on the file system type. If a
particular file system type does not require this data, dataptr and datalen should
both be zero. Note that MS _FSS is obsolete and is ignored if MS _DATA is also set, but
if MS _FSS is set and MS _DATA is not, dataptr and data len are both assumed to be zero.

After a successful call to mount, all references to the file dir refer to the root direc­
tory on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file
system: if 1, writing is forbidden; otherwise writing is permitted according to indi­
vidual file accessibility.

mount may be invoked only by the super-user. It is intended for use only by the
mount utility.

mount fails if one or more of the following are true:

EBUSY dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

EBUSY The device associated with spec is currently mounted.

EBUSY

EFAULT

EINVAL

ELOOP

ENAMETOOLONG

There are no more mount table entries.

spec, dir, or data len points outside the allocated address space
of the process.

The super block has an invalid magic number or the fstyp is
invalid.

Too many symbolic links were encountered in translating
spec or dir.

The length of the path argument exceeds {PATH.J'IAX}, or the
length of a path component exceeds {NAME_MAX} while

POSIX NO TRONe is in effect. - --

Page 1

mount(2)

ENAMETOOLONG

ENOENT
ENO'IDIR
EPERM

EREM>TE

ENOLINK

EMULTIHOP

ENOTBLK
ENXIO

ENOTDIR
EROFS

ENOSPC

SEE ALSO
sysfs(2), um::>unt(2).

mount(2)

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX yo _ TRUNC is in effect.

None of the named files exists or is a null pathname.

A component of a path prefix is not a directory.

The effective user ID is not super-user.

spec is remote and cannot be mounted.

path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

spec is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

spec is write protected and mflag requests write permission.

The file system state in the super-block is not FsOKAY and
mflag requests write permission.

IOOunt(1M), fs(4) in the System Administrator's Reference Manual.
DIAGNOSTICS

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and er:rno is set to indicate the error.

10/89

mprotect (2) mprotect (2)

NAME
nprotect - set protection of memory mapping

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mman.h>

int mprotect(caddr_t addr, size_t len, int prot);

DESCRIPTION
The function rrprotect changes the access protections on the mappings specified
by the range [addr, addr + len) to be that specified by prot. Legitimate values for
prot are the same as those permitted for mnap and are defined in <sys/mman.h>
as:

PROT READ
PROT WRITE
PROT EXEC
PROT NONE

/* page can be read */
/* page can be written * /
/ * page can be executed * /
/* page can not be accessed */

RETURN VALUE
Upon successful completion, the function mprotect returns a value of 0; other­
wise, it returns a value of -1 and sets ermo to indicate an error.

ERRORS
Under the following conditions, the function rrprotect fails and sets errno to:

EACCES if prot specifies a protection that violates the access permission the
process has to the underlying memory object.

EAGAIN

EINVAL

EINVAL

ENOMEM

if prot specifies PROT_WRITE over a MAP_PRIVATE mapping and there
are insufficient memory resources to reserve for locking the private
page.

if addr is not a multiple of the page size as returned by sysconf.

The argument len has a value less than or equal to o.
if addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

When rrprotect fails for reasons other than EINVAL, the protections on some of
the pages in the range [addr, addr + len) may have been changed. If the error
occurs on some page at addr2, then the protections of all whole pages in the range
[addr, addr2] will have been modified.

SEE ALSO
meroc:ntl(2), mmap(2), plock(2), mlock(3C), mlockall(3C), sysconf(3C).

10/89 Page 1

msgctl(2) msgctl(2)

NAME
msgctl - message control operations

SYNOPSIS
'include <sys/types.h>
'include <sys/ipc.h>
'include <sys/msg.h>

int msgctl(int msqid, int cm:J., ••• /* struct msqid_ds *buf */);

DESCRIPTION

10/89

msgctl provides a variety of message control operations as specified by cmd.
The following cmds are available:

IPC STAT Place the current value of each member of the data structure associ­
ated with msqid into the structure pOinted to by buf. The contents of
this structure are defined in intro(2).

Set the value of the following members of the data structure associ­
ated with msqid to the corresponding value found in the structure
pointed to by buf:

msgyerm. uid
msgyerm. gid
msgyerm.m::x1e /* only access permission bits */
msg_qbytes

This cmd can only be executed by a process that has an effective user
ID equal to either that of super user, or to the value of
msgyerm. cuid or msgyerm. uid in the data structure associated
with msqid. Only super user can raise the value of msg_qbytes.

IPC RMID Remove the message queue identifier specified by msqid from the
system and destroy the message queue and data structure associated
with it. This cmd can only be executed by a process that has an
effective user ID equal to either that of super user, or to the value of
msg...,Perm. cuid or msgyerm. uid in the data structure associated
with msqid.

msgctl fails if one or more of the following are true:

EACCES cmd is IPC_STAT and operation permission is denied to the cal­
ling process [see intro(2)].

EFAULT

EINVAL

EINVAL

EINVAL

EOVERFLOW

buf points to an illegal address.

msqid is not a valid message queue identifier.

cmd is not a valid command.

cmd is IPC_SET and msgyerm.uid or msgyenn.gid is not
valid.

cmd is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by buf.

Page 1

msgctl (2)

EPERM

EPERM

SEE ALSO

msgctl(2)

cmd is IPC_RMID or IPC_SET. The effective user ID of the calling
process is not that of super user, or the value of msgyerm. cuid
or msgyerm. uid in the data structure associated with msqid.

cmd is IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the effective user ID of the calling
process is not that of super user.

intro(2), msgget(2), msgop(2).

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

10/89

msgget(2) msgget(2)

NAME
msgget - get message queue

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure [see
intro(2)] are created for key if one of the following are true:

key is IPC_PRIVATE.

key does not already have a message queue identifier associated with it,
and (msgflg&IPC_CREAT) is true. .

On creation, the data structure associated with the new message queue identifier
is initialized as follows:

msg~rm.cuid, msg~rm.uid, msg~rm.cgid, and msgyerm.gid are
set to the effective user 10 and effective group 10, respectively, of the cal-
ling process. .

The low-order 9 bits of msgyerm.IOOde are set to the low-order 9 bits of
msgflg·
msg qnum, msg lspid. msgll:pid, msg stime, and msg rtime are set to
O. - - - - -

msg_ ctime is set to the current time.

msg_ qbytes is set to the system limit.

msgget fails if one or more of the foilowing are true:

EACCES A message queue identifier exists for key, but operation permis­
sion [see intro(2)] as specified by th~ low-order 9 bits of msgflg
would not be granted.

ENOENT A message queue identifier does not exist for key and
(msgflg&IPC_CRE:AT) is false.

ENOSPC

EEXIST

A message queue identifier is to be created but the system­
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

A message queue identifier exists for key but (msgflg&IPC_CREAT)
and (msgflg&IPC _ EXCL) are both true.

SEE ALSO
intro(2), msgctl(2), msgop(2), stdipc(3C).

DIAGNOSTICS

10/89

Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

Page 1

msgop(2) msgop(2)

NAME
msgop: msgsnd, msgrcv - message operations

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/msg.h>

int msgsnd(int msqid, const void *msgp,
size_t msgsz, int msgflg};

int msgrcv(int msqid, void *msgp,
size_t msgsz, long msgtyp, int msgflg};

DESCRIPTION

10/89

msgsnd sends a message to the queue associated with the message queue
identifier specified by msqid. msgp points to a user defined buffer that must con­
tain first a field of type long integer that will specify the type of the message, and
then a data portion that will hold the text of the message. The following is an
example of members that might be in a user defined buffer.

long mtype; /* message type */
char mtext []; /* message text */

mtype is a positive integer that can be used by the receiving process for message
selection. mtext is any text of length msgsz bytes. msgsz can range from 0 to a
system imposed maximum.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_ qbytes [see
intro(2)].

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg&IPC_NOWAIT) is true, the message is not sent and the calling pro­
cess returns immediately.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution
until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

msqid is removed from the system [see msgctl(2)]. When this
occurs, ermo is set to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes exe­
cution in the manner prescribed in signal(2).

msgsnd fails and sends no message if one or more of the following are true:

Page 1

msgop(2) msgop(2)

Page 2

EINVAL

EACCES

EINVAL

EAGAIN

EINVAL

EFAULT

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process [see
intro(2»).

mtype is less than 1.

The message cannot be sent for one of the reasons cited above
and (msgflg&IPC _ NOWAIT) is true.

msgsz is less than zero or greater than the system-imposed limit.

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2»).

msg_ qnum is incremented by 1.

msg_lspid is set to the process ID of the calling process.

msg_ stime is set to the current time.

msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user defined structure pointed to
by msgp. The structure must contain a message type field followed by the area
for the message text (see the structure mymsg above). mtype is the received
message's type as specified by the sending process. mtext is the text of the mes­
sage. msgsz specifies the size in bytes of mtext. The received message is trun­
cated to msgsz bytes if it is larger than msgsz and (msgflg&MSG _NOERROR) is true.
The truncated part of the message is lost and no indication of the truncation is
given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgtyp is 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on
the queue. These are as follows:

If (msgflg&IPC_NOWAIT) is true, the calling process returns immediately
with a return value of -1 and sets errno to ENOMSG.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution
until one of the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs, errno is
set to EIDRM. and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes
execution in the manner prescribed in signal(2).

10/89

msgop(2) msgop(2)

msgrcv fails and receives no message if one or more of the following are true:

EINVAL msqid is not a valid message queue identifier.

EACCES

EINVAL

E2BIG

ENOMSG

EFAULT

Operation permission is denied to the calling process.

msgsz is less than O.

The length of mtext is greater than msgsz and
(msgfig&MSG_NOERROR) is false.

The queue does not contain a message of the desired type and
(msgtyp&IPC _ NOWAIT) is true.

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2»).

msg_ qnum is decremented by 1.

msg_lrpid is set to the process ID of the calling process.

msg_ rtime is set to the current time.

SEE ALSO
intro(2), msgct1(2), msgget(2), signal(2).

DIAGNOSTICS

10/89

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If they return due to
removal of msqid from the system, a value of -1 is returned and errno is set to
EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of O.

msgrcv returns the number of bytes actually placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 3

munmap(2) munmap(2)

NAME
murunap - unmap pages of memory.

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/mman.h>

int munmap(caddr_t addr, size_t len);

DESCRIPTION
The function murunap removes the mappings for pages in the range [addr, addr +
len). Further references to these pages will result in the delivery of a SIGSEGV
signal to the process.

The function mnap often performs an implicit munmap.

RETURN VALUE
Upon successful completion, the function munmap returns a value of 0; otherwise,
it returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function munmap fails and sets errno to:

EINVAL if addr is not a multiple of the page size as returned by sysconf.

EINVAL if addresses in the range [addr, addr + len) are outside the valid
range for the address space of a process.

EINVAL The argument len has a value less than or equal to O.

SEE ALSO
mnap(2), sysconf(3C).

10/89 Page 1

nice(2) nice(2)

NAME
nice - change priority of a time-sharing process

SYNOPSIS
tinclude <unistd.h>

int nice(int incr);

DESCRIPTION
nice allows a process in the time-sharing scheduling class to change its priority.
The priocntl system call is a more general interface to scheduler functions.

nice adds the value of incr to the nice value of the calling process. A process's
nice value is a non-negative number for which a more positive value results in
lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the
system. (The default nice value is 20.) Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

EPERM nice fails and does not change the nice value if incr is negative or
greater than 39 and the effective user ID of the calling process is
not super-user.

EINVAL nice fails if called by a process in a scheduling class other than
time-sharing.

SEE ALSO
exec(2), priocntl(2).
nice(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, nice returns the new nice value minus 20. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

Page 1

open(2) open(2)

NAME
open - open for reading or writing

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stat.h>
tinclude <fcntl.h>

int open (const char "'path, int of lag, ... /* IIPde_t mode */);

DESCRIPTION

10/89

path points to a path name naming a file. open opens a me descriptor for the
named fIle and sets the file status flags according to the value of oflag. oflag
values are constructed by OR-ing Flags from the following list (only one of the
first three flags below may be used):

O_RDONLY Open for reading only.

o WRONLY Open for writing only.

o RDWR Open for reading and writing.

o NDELAY or 0 NONBLOCK
- -These flags may affect subsequent reads and writes [see read(2)

° SYNC

and write(2»). If both 0 NDELAY and 0 NONBLOCK are set,
o _NONBLOCK will take precedence. -

When opening a FIFO with 0_ RDONLY or 0_ WRONLY set:

If O_NDELAY or O_NONBLOCK is set:. An open for reading-only
will return without. delay; an open for writing-only will
return an error if no process currently has the file open for
reading.

If O_NDELAY and O_NONBLOCK are clear: An open for
reading-only will block until a process opens the file for writ­
ing; an. open for writing-only will block until a process opens
the file for reading.

When opening a fIle associated with a terminal line:

If O_NDELAY or O_NONBLOCK is set: The open will return
without waiting for the device to be ready or available; subse­
quent behavior of the device is device specific.

If O_NDELAYand O_NONBLOCK are clear: The open will block
until the device is ready or available. .

If set, the file pointer will be set to the end of the file prior to each
write.

When opening a regular file, this flag affects subsequent writes. If
set, each write(2) will wait for both the file data and file status to
be physically updated.

If set and the file is a terminal, the terminal will not be allocated
as the calling process's controlling terminal.

Page 1

open (2) open(2)

Page 2

o CREAT

o TRUNC

o EXCL

If the file exists, this flag has no effect, except as noted under
o EXCL below. Otherwise, the file is created and the owner ID of
the file is set to the effective user ID of the process, the group ID
of the file is set to the effective group ID of the process, or if the
S ISGIO bit is set in the directory in which the file is being
created, the file's group ID is set to the group ID of its parent
directory. If the group ID of the new file does not match the
effective group ID or one of the supplementary groups IDs, the
S _ ISGID bit is cleared. The access permission bits of the file mode
are set to the value of mode, modified as follows [see creat(2)]:

All bits set in the file mode creation mask of the process are
cleared [see umask(2)].

The "save text image after execution bit" of the mode is
cleared [see chIood(2)].

If the file exists, its length is truncated to 0 and the mode and
owner are unchanged. O_TRUNC has no effect on FIFO special files
or directories.

If 0 EXCL and 0 CREAT are set, open will fail if the file exists. The
cheCk for the existence of the file and the creation of the file if it
does not exist is atomic with respect to other processes executing
open naming the same filename in the same directory with
o EXCL and 0 CREAT set. - -

When opening a STREAMS file, oflag may be constructed from 0_ NDELAY or
O_NONBLOCK OR-ed with either O_RDONLY, O_WRONLY , or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them. The
values of 0_ NDELAY and 0_ NONBLOCK affect the operation of STREAMS drivers and
certain system calls [see read(2), getmsg(2), putmsg(2), and write(2)]. For
drivers, the implementation of O_NDELAY and O_NONBLOCK is device specifiC.
Each STREAMS device driver may treat these options differently.

When open is invoked to open a named stream, and the connld module [see
connld(7)] has been pushed on the pipe, open blocks until the server process has
issued an I_RECVFO ioctl [see streamio(7)] to receive the file descriptor.

If path is a symbolic link and 0_ CREAT and 0 _EXCL are set, the link is not fol­
lowed.

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is the lowest numbered file descriptor available and is set
to remain open across exec system calls [see fcntl(2)].

Certain flag values can be set following open as described in fcnt1(2).

If O_CREAT is set and the file did not previously exist, upon successful completion
open marks for update the st_atime, st_ctime and st_mtime fields of the file
and the st_ctime and st_mtime fields of the parent directory.

10/89

open(2) open (2)

10/89

If O_TRUNC is set and the file did previously exist, upon successful completion
open marks for update the st_ctime and st_mtime fields of the file.

The named file is opened unless one or more of the following are true:

EACCES The file does not exist and write permission is denied by
the parent directory of the file to be created.

EACCES

EACCES

EACCES

EAGAIN

EEXIST

EFAULT

EINTR

EIO

EISDIR

ELOOP

EMFlLE

EMULTIHOP

ENAMETOOLONG

ENFlLE
ENOENT

ENOENT

ENOLINK

ENOMEM

ENOSPC

ENOSPC

0_ TRUNC is specified and write permission is denied

A component of the path prefix denies search permission.

oflag permission is denied for an existing file.

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chIood(2)].

0_ CREAT and 0_ EXCL are set, and the named file exists.

path points outside the allocated address space of the pro­
cess.

A signal was caught during the open system call.

A hangup or error occurred during the open of the
STREAMS-based device.

The named file is a directory and oflag is write or
read/write.

Too many symbolic links were encountered in translating
path.

The process has too many open files [see getrlimit(2)].

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATHJ"IAX}, or the
length of a path component exceeds {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect.

The system file table is full.

o CREAT is not set and the named file does not exist.

O_CREAT is set and a component of the path prefix does not
exist or is the null pathname.

path points to a remote machine, and the link to that
machine is no longer active.

The system is unable to allocate a send descriptor.

O_CREAT and O_EXCL are set, and the file system is out of
inodes.

0_ CREAT is set and the directory that would contain the file
cannot be extended.

Page 3

open(2) open(2)

ENOSR

ENOTDIR

ENXIO

ENXIO

ENXIO

EROFS

ETXTBSY

Unable to allocate a stream.

A component. of the path prefix is not a directory.

The named file is a character special or block special file,
and the device associated with this special file does not
exist.

° NDELAY or ° NONBLOCK is set, the named file is a FIFO,
O:=WRONLY is set~ and no process has the file open for read­
ing.

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT, or O_TRONC is set in oflag (if
the file does not exist).

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

SEE ALSO
intro(2), chrood(2), close(2), creat(2), dup(2), exec(2), fcntl(2), getrlimit(2),
lseek(2), read(2), getmsg(2), putmsg(2),stat(2), umask(2), write(2), stat(S).

DIAGNOSTICS

Page 4

Upon successful completion, the file descriptor is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

10/89

pause (2) pause (2)

NAME
pause - suspend process until signal

SYNOPSIS
tinclude <unistd.h>

int pause (void) ;

DESCRIPTION
pause suspends the calling process until it receives a signal. The signal must be
one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function [see signal.(2) 1, the calling process resumes execution
from the point of suspension; with a return value of -1 from pause and ermo
set to EINTR.

SEE ALSO
alaIl!(2), kill(2), signal(2), sigpause(2), wait(2).

10/89 Page 1

plpe(2) plpe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
tinclude <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes [0] and fildes [1] . The files associated with fildes [0] and fildes [1] are
streams and are both opened for reading and writing. The 0_ NDEIAY and
O_NONBLOCK flags are cleared.
A read from fildes [0] accesses the data written to fildes [1] on a first-in-first-out
(FIFO) basis and a read from fildes [1] accesses the data written to fildes [0] also
on a FIFO basis.

The FD _ cu)EXEC flag will be clear on both file descriptors.

Upon successful completion pipe marks for update the st_atime, st_ctime,
and st_mtime fields of the pipe.

pipe fails if:

EMFlLE If {OPEN_MAX}-l or more file descriptors are currently open for
this process.

ENFlLE

SEE ALSO

A file table entry could not be allocated.

fcntl(2), getmsg(2), pol1(2), putmsg(2), read(2), write(2), streamio(7).
shO) in the User's Reference Manual.

DIAGNOSTICS

NOTES

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Since a pipe is bi-directional, there are two separate flows of data. Therefore, the
size (st_size) returned by a call to fstat(2) with argument fildes [0] or fildes [1]
is the number of bytes available for reading from fildes[O] or fildes[l] respec­
tively. Previously, the size (st_size) returned by a call to fstatO with argu­
ment fildes [1] (the write-end) was the number of bytes available for reading from
fildes [0] (the read-end).

Page 1

plock(2) plock(2)

NAME
plock - lock into memory or unlock process, text, or data

SYNOPSIS
iinclude <sys/lock.h>

int plock(int op);

DESCRIPTION
plock allows the calling process to lock into memory or unlock its text segment
(text lock), its data segment (data lock), or both its text and data segments (pro­
cess lock). Locked segments are immune to all routine swapping. The effective
user ID of the calling process must be super-user to use this call. plock performs
the function specified byop:

PROCLOCK

TXTLOCK

DATLOCK

UNLOCK

Lock text and data segments into memory (process lock).

Lock text segment into memory (text lock).

Lock data segment into memory (data lock).

Remove locks.

plock fails and does not perform the requested operation if one or more of the
following are true:

EPERM The effective user ID of the calling process is not super-user.

EINVAL op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

EINVAL op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

EINVAL

EINVAL

op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

EAGAIN

SEE ALSO

op is equal to UNLOCK and no lock exists on the calling process.

Not enough memory.

exec(2), exit(2), fork(2), memcnt1(2).

DIAGNOSTICS

NOTES

10/89

Upon successful completion, a value of 0 is returned to the calling process.
erwise, a value of -1 is returned and errno is set to indicate the error.

memcntl is the preferred interface to process locking.

Oth-

Page 1

poll (2) poll (2)

NAME
poll- input/output multiplexing

SYNOPSIS
tinclude <stropts.h>
tinclude <poll.h>

int poll(struct poll *fds, size_t nfds, int ti.neout);

DESCRIPTION

10/89

poll provides users with a mechanism for multiplexing input/output over a set
of file descriptors that reference open files. poll identifies those files on which a
user can send or receive messages, or on which certain events have occurred.

Ids specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one element for each open file
descriptor of interest. The array's elements are pollfd structures, which contain
the following members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

fd specifies an open file descriptor and events and revents are bitmasks con­
structed by an OR of any combination of the following event flags:

POLLIN Data other than high priority data may be read without blocking.

POLLRDNORM

POLLRDBAND

POLLPRI

POLLOUT

POLLWRNORM

POLLWRBAND

POLLMSG

POLLERR

POLLHUP

For STREAMS, this flag is set even if the message is of zero
length.

Normal data (priority band = 0) may be read without blocking.
For STREAMS, this flag is set even if the message is of zero
length.

Data from a non-zero priority band may be read without block­
ing For STREAMS, this flag is set even if the message is of zero
length.

High priority data may be received without blocking. For
STREAMS, this flag is set even if the message is of zero length.

Normal data may be written without blocking.

The same as POLLOUT.

Priority data (priority band > 0) may be written. This event only
examines bands that have been written to at least once.

An M_SIG or M_PCSIG message containing the SIGPOLL signal
has reached the front of the stream head read queue.

An error has occured on the device or stream. This flag is only
valid in the revents bitmask; it is not used in the events field.

A hangup has occurred on the stream. This event and POLLOUT
are mutually exclusive; a stream can never be writable if a
hangup has occurred. However, this event and POLLIN,
POLLRDNORM, POLLRDBAND, or POLLPRI are not mutually

Page 1

poll (2) poll (2)

POLINVAL

exclusive. This flag is only valid in the revents bitmask; it is
not used in the events field.

The specified fd value does not belong to an open file. This flag
is only valid in the revents field; it is not used in the events
field.

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to
be examined is specified by nfds.
If the value fd is less than zero, events is ignored and revents is set to 0 in that
entry on return from poll .

The results of the poll query are stored in the revents field in the pollfd struc­
ture. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits are set in revents
when the poll call returns. The event flags POLLHUP, POLLERR, and POLLNVAL
are always set in revents if the conditions they indicate are true; this occurs even
though these flags were not present in events.

Ifnone of the defined events have occurred on any selected file descriptor, poll
waits at least timeout milliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is INFTIM (or
-1), poll blocks until a requested event occurs or until the call is interrupted.
poll is not affected by the O_NDELAY and O_NONBLOCK flags.

poll fails if one or more of the following are true:

EAGAIN Allocation of internal data structures failed, but the request may
be attempted again.

EFAULT

EINTR

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

EINVAL The argument nfds is greater than {OPEN_MAX}.

SEE ALSO
intro(2), getmsg(2), getrlimit(2), putmsg(2), read(2), write(2)
Programmer's Guide: STREAMS

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (i.e., file
descriptors for which the revents field is non-zero). A value of 0 indicates that
the call timed out and no file descriptors have been selected. Upon failure, a
value of -1 is returned and errno is set to indicate the error.

10/89

priocntl (2) priocntl (2)

NAME
priocntl - process scheduler control

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/priocntl.h>
tinclude <sys/rtpriocntl.h>
tinclude <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, ... /* arg */);

DESCRIPTION

10/89

priocntl provides for control over the scheduling of active processes.

Processes fall into distinct classes with a separate scheduling policy applied to
each class. The two classes currently supported are the real-time class and the
time-sharing class. The characteristics of these classes are described under the
corresponding headings below. The class attribute of a process is inherited across
the fork and exec(2) system calls. priocntl can be used to dynamically change
the class and other scheduling parameters associated with a running process or
set of processes given the appropriate permissions as explained below.

In the default configuration, a runnable real-time process runs before any other
process. Therefore, inappropriate use of real-time processes can have a dramatic
negative impact on system performance.

priocntl provides a interface for specifying a process or set of processes to
which the system call is to apply. The priocntlset system call provides the
same functions as priocntl, but allows a more general interface for specifying
the set of processes to which the system call is to apply.

For priocntl, the idtype and id arguments are used together to specify the set of
processes. The interpretation of id depends on the value of idtype. The possible
values for idtype and corresponding interpretations of id are as follows:

P_PID id is a process 10 specifying a single process to which the priocntl
system call is to apply.

P PPID

P PGID

P SID

P CID

P uro

id is a parent process 10. The priocntl system call applies to all
processes with the specified parent process 10.

id is a process group 10. The priocntl system call applies to all
processes in the specified process group.

id is a session 10. The priocntl system call applies to all processes
in the specified session.

id is a class ID (returned by priocntl PC _ GETCID as explained
below). The priocntl system call applies to all processes in the
specified class.

id is a user 10. The priocntl system call applies to all processes
with this effective user ID.

Page 1

priocntl (2) priocntl (2)

Page 2

P GID

P ALL

id is a group 10. The priocntl system call applies to all processes
with this effective group 10.

The priocntl system call applies to all existing processes. The
value of id is ignored. The permission restrictions described below
still apply.

An id value of P MYID can be used in conjunction with the idtype value to specify
the calling process's process 10, parent process 10, process group 10, session 10,
class 10, user 10, or group 10.

In order to change the scheduling parameters of a process (using the
PC_SETPARMS command as explained below) the real or effective user 10 of the
process calling priocntl must match the real or effective user 10 of the receiving
process or the effective user 10 of the calling process must be super-user. These
are the minimum permission requirements enforced for all classes. An individual
class may impose additional permissions requirements when setting processes to
that class and/or when setting class-specific scheduling parameters.

A special sys scheduling class exists for the purpose of scheduling the execution
of certain special system processes (such as the swapper process). It is not possi­
ble to change the class of any process to sys. In addition, any processes in the
sys class that are included in a specified set of processes are disregarded by
priocntl. For example, an idtype of {'_UID and an id value of zero would specify
all processes with a user ID of zero except processes in the ays class and (if
changing the parameters using PC_SETPARMS) the init process.

The init process is a special case. In order for a priocntl call to change the
class or other scheduling parameters of the init process (process 10 1), it must be
the only process specified by idtype and id. The init process may be assigned to
any class configured on the system, but the time-sharing class is almost always
the appropriate choice. (Other choices may be highly undesirable; see the System
Administrator's Guide for more information.)

The data type and value of arg are specific to the type of command specified by
cmd.

The following structure is used by the PC _ GETCID and PC _ GETCLINFO commands.

typed.ef struct {

id t
char
long

pcinfo_t;

pc_cid;
pc clname [PC CLNMSZ);
pc=clinfo[PC=CLINFOSZ);

/* Class id */
/* Class nama */
/* Class information */

pc_cid is a class 10 returned by priocntl PC_GETCID. pc_clnama is a buffer of
size PC CLNMSZ (defined in <ays/priocntl.h» used to hold the class name (RT
for real-=time or TS for time-sharing).

pc_cHnfo is a buffer of size PC_CLINFOSZ (defined in <sys/priocntl.h» used
to return data describing the attributes of a specific class. The format of this data
is class-specific and is described under the appropriate heading (REAL-TIME
CLASS or TIME-SHARING CLASS) below.

10/89

priocntl (2) priocntl (2)

The following structure is used by the PC _ SETPARMS and PC _ GETPARMS com­
mands.

typedef

id t
long

st:ruct {

pc cid;
pc=:clpal:11lS [PC_CLPARMSZJ;

pcpa:rms _ t;

/* Process class */
/* Class-specific params */

pc_cid is a class ID (returned by priocntl PC_GETCID). The special class ID
PC_enroLL can also be assigned to pc_cid when using the PC_GETPARMS com­
mand as explained below.

The pc_clpa:rms buffer holds class-specific scheduling parameters. The format of
this parameter data for a particular class is described under the appropriate head­
ing below. PC_CLPARMSZ is the length of the pc_clpa:rms buffer and is defined in
<sys/priocntl. h>.

Commands

10/89

Available priocntl commands are:

PC GETCID
-Get class ID and class attributes for a specific class given class name. The
idtype and id arguments are ignored. If arg is non-null, it points to a structure
of type pcinfo _ t. The pc _ clname buffer contains the name of the class
whose attributes you are getting.

On success, the class ID is returned in pc cid, the class attributes are returned
in the pc clinfo buffer, and the prioCntl call returns the total number of
classes configured in the system (including the sys class). If the class
specified by pc_clname is invalid or is not currently configured the priocntl
call returns -1 with errno set to EINVAL. The format of the attribute data
returned for a given class is defined in the <sys/rtpriocntl.h> or
<sys/tspriocntl.h> header file and described under the appropriate head­
ing below.

If arg is a NULL pointer, no attribute data is returned but the priocntl call
still returns the number of configured classes.

PC GETCLINFO
-Get class name and class attributes for a specific class given class ID. The
idtype and id arguments are ignored. If arg is non-null, it points to a structure
of type pcinfo_t. pc_cid is the class ID of the class whose attributes you are
getting.

On success, the class name is returned in the pc clname buffer, the class attri­
butes are returned in the pc clinfo buffer, and-the priocntl call returns the
total number of classes configured in the system (including the sys class).
The format of the attribute data returned for a given class is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and described
under the appropriate heading below.

Page 3

prloentl (2) prloentl (2)

If arg is a NULL pointer, no attribute data is returned but the priocntl call
still returns the number of configured classes.

PC SETPARMS
Set the class and class-specific scheduling parameters of the specified
process(es). arg points to a structure of type pcpaz::ms_t. pc_cid specifies the
class you are setting and the pc _ clpaz::ms buffer contains the class-specific
parameters you are setting. The format of the class-specific parameter data is
defined in the <sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and
described under the appropriate class heading below.

When setting parameters for a set of processes, priocntl acts on the
processes in the set in an implementation-specific order. If priocntl
encounters an error for one or more of the target processes, it mayor may not
continue through the set of processes, depending on the nature of the error. If
the error is related to permissions (EPERM), priocntl continues through the
process set, resetting the parameters for all target processes for which the cal­
ling process has appropriate permissions. priocntl then returns -1 with
errno set to EPERM to indicate that the operation failed for one or more of the
target processes. If priocntl encounters an error other than permissions, it
does not continue through the set of target processes but returns the error
immediately.

PC GETPARMS
-Get the class and/or class-specific scheduling parameters of a process. arg
points the a structure of type pcparms _ t.

If pc _ cid specifies a configured class and a single process belonging to that
class is specified by the idtype and id values or the procset structure, then
the scheduling parameters of that process are returned in the pc_clparms
buffer. If the process specified does not exist or does not belong to the
specified class, the priocntl call returns -1 with ermo set to ESRCH.

If pc _ cid specifies a configured class and a set of processes is specified, the
scheduling parameter!,l of one of the specified processes belonging to the
specified class are returned in the pc _ clparms buffer and the priocntl call
returns the process ID of the selected process. The criteria for selecting a pro­
cess to return in this case is class dependent. If none of the specified
processes exist or none of them belong to the specified class the priocntl call
returns -1 with ermo set to ESRCH.

If pc _ cid is PC _ CLNULL and a single process is specified the class of the
specified process is returned in pc_cid and its scheduling parameters are
returned in the pc_clparns buffer.

PC ADMIN
-This command provides functionality needed for the implementation of the
dispadmin(1M) command. It is not intended for general use by other applica­
tions.

REAL-TIME CLASS

Page 4

The real-time class provides a fixed priority preemptive scheduling policy for
those processes requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the real-time class is

10/89

prlocntl (2) priocntl (2)

10/89

configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable real-time pro­
cess is given CPU service before any process belonging to any other class.

The real-time class has a range of real-time priority (rt yri) values that may be
assigned to processes within the class. Real-time priorities range from 0 to x,
where the value of x is configurable and can be determined for a specific installa­
tion by using the priocntl PC_GETCID or PC_GETCLINFO command.

The real-time scheduling policy is a fixed priority policy. The scheduling priority
of a real-time process is never changed except as the result of an explicit request
by the user/application to change the rtyri value of the process.

For processes in the real-time class, the rtyri value is, for all practical purposes,
equivalent to the scheduling priority of the process. The rtyri value com­
pletely determines the scheduling priority of a real-time process relative to other
processes within its class. Numerically higher rt yri values represent higher
priorities. Since the real-time class controls the highest range of scheduling prior­
ities in the system it is guaranteed that the runnable real-time process with the
highest rt yri value is always selected to run before any other process in the
system.

In addition to providing control over priority, priocntl provides for control over
the length of the time quantum allotted to processes in the real-time class. The
time quantum value specifies the maximum amount of time a process may run
assuming that it does not complete or enter a resource or event wait state
(sleep). Note that if another process becomes runnable at a higher priority the
currently running process may be preempted before receiving its full time quan­
tum.

The system's process scheduler keeps the runnable real-time processes on a set of
scheduling queues. There is a separate queue for each configured real-time prior­
ity and all real-time processes with a given rt yri value are kept together on the
appropriate queue. The processes on a given queue are ordered in FIFO order
(that is, the process at the front of the queue has been waiting longest for service
and receives the CPU first). Real-time processes that wake up after sleeping,
processes which change to the real-time class from some other class, processes
which have used their full time quantum, and runnable processes whose priority
is reset by priocntl are all placed at the back of the appropriate queue for their
priority. A process that is preempted by a higher priority process remains at the
front of the queue (with whatever time is remaining in its time quantum) and
runs before any other process at this priority. Following a fork(2) system call by
a real-time process, the parent process continues to run while the child process
(which inherits its parent's rtyri value) is placed at the back of the queue.

The following structure (defined in <sys/rtpriocntl.h» defines the format
used for the attribute data for the real-time class.

Page 5

priocntl (2) priocntl (2)

Page 6

typedef struct {

short /* Maximum real-time priority */

rtinfo_t;

The priocntl PC GETCID and PC GETCLINFO commands return real-time class
attributes in the pc_ clinfo buffer in this format.

rt_maxpri specifies the configured maximum rtyri value for the real-time
class (if rt_maxpri is x, the valid real-time priorities range from 0 to x).

The following structure (defined in <sys/rtpriocntl.h» defines the format
used to specify the real-time class-specific scheduling parameters of a process.

typedef struct {

short
ulong
long

rtpa:rms _ t;

rtyri;
rt_tqsecs;
rt _ tqnsecs;

/* Real-Time priority */
/* Seconds in time quantum */
/* Additional nanoseconds in quantum * /

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the real-time class, the data in the pc _ clpa:rms buffer is in this format.

The above commands can be used to set the real-time priority to the specified
value or get the current rtyri value. Setting the rtyri value of a process that
is currently running or runnable (not sleeping) causes the process to be placed at
the back of the scheduling queue for the specified priority. The process is placed
at the back of the appropriate queue regardless of whether the priority being set
is different from the previous rtyri value of the process. Note that a running
process can voluntarily release the CPU and go to the back of the scheduling
queue at the same priority by resetting its rtyri value to its current real-time
priority value. In order to change the time quantum of a process without setting
the priority or affecting the process's position on the queue, the rtyri field
should be set to the special value RT _ NOCHANGE (defined in
<sys/rtpriocntl.h». Specifying RT_NOCHANGE when changing the class of a
process to real-time from some other class results in the real-time priority being
set to zero.

For the priocntl PC _ GETPARMS command, if pc _ cid specifies the real-time class
and more than one real-time process is specified, the scheduling parameters of the
real-time process with the highest rtyri value among the specified processes
are returned and the process ID of this process is returned by the priocntl call.
If there is more than one process sharing the highest priority, the one returned is
implementation-dependent.

The rt _ tqsecs and rt _ tqnsecs fields are used for getting or setting the time
quantum associated with a process or group of processes. rt_tqsecs is the
number of seconds in the time quantum and rt_tqnsecs is the number of addi­
tional nanoseconds in the quantum. For example setting rt_tqsecs to 2 and
rt_tqnsecs to 500,000,000 (decimal) would result in a time quantum of two and
one-half seconds. Specifying a value of 1,000,000,000 or greater in the
rt _ tqnsecs field results in an error return with errno set to EINVAL. Although
the resolution of the tCL nsecs field is very fine, the specified time quantum

10/89

priocntl (2) prlocntl (2)

length is rounded up by the system to the next integral multiple of the system
clock's resolution. For example, the finest resolution currently available on the
3B2 is 10 milliseconds (1 "tick"). Setting rt_tqsecs to 0 and rt_tqnsecs to
34,000,000 would specify a time quantum of 34 milliseconds, which would be
rounded up to 4 ticks (40 milliseconds) on the 3B2. The maximum time quantum
that can be specified is implementation-specific and equal to LONG_MAX ticks
(defined in <limits. h». Requesting a quantum greater than this maximum
results in an error return with errno set to ERANGE (although infinite quantums
may be requested using a special value as explained below). Requesting a time
quantum of zero (setting both rt _ tqsecs and rt _ tqnsecs to 0) results in an
error return with errno set to EINVAL.

The rt _ tqnsecs field can also be Set to one of the following special values
(defined in <sys/rtpriocntl.h», in which case the value of rt_tqsecs is
ignored.

RT_TQINF

RT_TQDEF

Set an infinite time quantum.

Set the time quantum to the default for this priority [see
rt_dptbl(4)].

Don't set the time quantum. This value is useful when
you wish to change the real-time priority of a process
without affecting the time quantum. Specifying this
value when changing the class of a process to real-time
from some other class is equivalent to specifying
RT_TQDEF.

In order to change the class of a process to real-time (from any other class) the
process invoking priocntl must have super-user privileges. In order to change
the priority or time quantum setting of a real-time process the process invoking
priocntl must have super-user privileges or must itself be a real-time process
whose real or effective user ID matches the real of effective user ID of the target
process.

The real-time priority and time quantum are inherited across the fork(2) and
exec(2) system calls.

TIME·SHARING CLASS

10/89

The time-sharing scheduling policy provides for a fair and effective allocation of
the CPU resource among processes with varying CPU consumption characteris­
tics. The objectives of the time-sharing policy are to provide good response time
to interactive processes and good throughput to CPU-bound jobs while providing
a degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri
below) values that may be assigned to processes within the class. A ts_upri
value of zero is defined as the default base priority for the time-sharing class.
User priorities range from - x to +x where the value of x is configurable and can
be determined for a specific installation by using the priocntl PC_GETCID or
PC GETCLINFO command.

Page 7

prlocntl (2) prlocntl (2)

Page 8

The purpose of the user priority is to provide some degree of user/application
control over the scheduling of processes in the time-sharing class. Raising or
lowering the ts_upri value of a process in the time-sharing class raises or lowers
the scheduling priority of the process. It is not guaranteed, however, that a pro­
cess with a higher ts_upri value will run before one with a lower ts_upri
value. This is because the ts_upri value is just one factor used to determine the
scheduling priority of a time-sharing process. The system may dynamically
adjust the internal scheduling priority of a time-sharing process based on other
factors such as recent CPU usage.

In addition to the system-wide limits on user priority <returned by the PC _ GETCID
and PC_GETCLINFO commands) there is a per process user priority limit (see
ts_uprilim below), which specifies the maximum ts_upri value that may be set
for a given process; by default, ts_uprilim is zero.

The following structure (defined in <sys/tspriocntl.h» defines the format
used for the attribute data for the time-sharing class.

typedef struct {

short /* Limits of user priority range */

tsinfo_t;

The priocntl PC _ GETCID and PC _ GETCLINFO commands return time-sharing
class attributes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the time­
sharing class. If ts _ maxupri is x, the valid range for both user priorities and
user priority limits is from -x to +x.

The following structure (defined in <sys/tspriocntl.h» defines the format
used to specify the time-sharing class-specific scheduling parameters of a process.

typedef struct {

short
short

tsparms_t;

ts_uprilim;
ts_upri;

/* Time-Sharing user priority limit */
/* Time-Sharing user priority */

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the time-sharing class, the data in the pc _ clparms buffer is in this for­
mat.

For the priocntl PC _ GETPARMS command, if pc _ cid specifies the time-sharing
class and more than one time-sharing process is specified, the scheduling parame­
ters of the time-sharing process with the highest ts _ upri value among the
specified processes is returned and the process ID of this process is returned by
the priocntl call. If there is more than one process sharing the highest user
priority, the one returned is implementation-dependent.

Any time-sharing process may lower its own ts_uprilim (or that of another pro­
cess with the same user ID). Only a time-sharing process with super-user
privileges may raise a ts _ uprilim. When changing the class of a process to
time-sharing from some other class, super-user privileges are required in order to
set the initial ts_uprilim to a value greater than zero. Attempts by a non-

10/89

priocntl (2) priocntl (2)

super-user process to raise a ts_uprilim or set an initial ts_uprilim greater
than zero fail with a return value of -1 and ermo set to EPERM.

Any time-sharing process may set its own ts_upri (or that of another process
with the same user ID) to any value less than or equal to the process's
ts_uprilim. Attempts to set the ts_upri above the ts_uprilim (and/or set the
ts_uprilim below the ts_upri) result in the ts_upri being set equal to the
ts_uprilim.

Either of the ts_uprilim or ts_upri fields may be set to the special value
TS NOCHANGE (defined in <sys/tspriocntl.h» in order to set one of the values
without affecting the other. Specifying TSYOCHANGE for the ts_upri when the
ts_uprilim is being set to a value below the current ts_upri causes the
ts_upri to be set equal to the ts_uprilim being set. Specifying TS_NOCHANGE
for a parameter when changing the class of a process to time-sharing (from some
other class) causes the parameter to be set to a default value. The default value
for the ts_uprilim is 0 and the default for the ts_upri is to set it equal to the
ts_uprilim which is being set.

The time-sharing user priority and user priority limit are inherited across the
fork and exec system calls.

RETURN VALUE
Unless otherwise noted above, priocntl returns a value of 0 on success.
priocntl returns -Ion failure and sets errno to indicate the error.

ERRORS
priocntl fails if one or more of the following are true :

EPERM The calling process does not have the required permissions as
explained above.

EINVAL

ERANGE

ESRCH

EFAULT

ENOMEM

EAGAIN

The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

The requested time quantum is out of range.

None of the specified processes exist.

All or part of the area pointed to by one of the data pointers is
outside the process's address space.

An attempt to change the class of a process failed because of
insufficient memory.

An attempt to change the class of a process failed because of
insufficient resources other than memory (for example, class­
specific kernel data structures).

SEE ALSO

10/89

fork(2), exec(2), nice(2), priocntlset(2)

priocntl(1) in the User's Reference Manual

dispadmin(1M), rt_dptbl(4), ts_dptbl(4) in the System Administrator's Reference
Manual

Page 9

priocntlset (2) priocntlset (2)

NAME
priocntlset - generalized process scheduler control

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/procset.h>
iinclude <sys/priocntl.h>
iinclude <sys/rtpriocntl.h>
tinclude <sys/tspriocntl.h>

long priocntlset (procset_t *psp, int cmd, ... /* arg * /);
DESCRIPTION

10/89

priocntlset changes the scheduling properties of running processes.
priocntlset has the same functions as the priocntl system call, but a more
general way of specifying the set of processes whose scheduling properties are to
be changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose
type depends on cmd. See priocntl(2) for the valid values of cmd and the
corresponding arg structures.

psp is a pointer to a procset structure, which priocntlset uses to specify the
set of processes whose scheduling properties are to be changed.

typedef struct procset {
idop_t p_op; /* operator connecting left/right sets */
idtype_t p_lidtype; /* left set ID type */
id t p lid; /* left set ID */
idtype t p-ridtype; /* right set 10 type */
id_t - p=rid; /* right set 10 */
procset_t;

p_lidtype and p_lid specify the ID type and ID of one ("left") set of processes;
p_ridtype and p_rid specify the ID type and ID of a second ("right") set of
processes. ID types and IDs are specified just as for the priocntl system call.
p _ op specifies the operation to be performed on the two sets of processes to get
the set of processes the system call is to apply to. The valid values for p _ op and
the processes they specify are:

POP OIFF set difference: processes in left set and not in right set

set intersection: processes in both left and right sets

set union: processes in either left or right sets or both

POP AND

POP OR

POP XOR set exclusive-or: processes in left or right set but not in both

The following macro, which is defined in procset. h, offers a convenient way to
initialize a procset structure:

tdefine setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)->p op (op), \
(psp)->p-lidtype (ltype), \
(psp) ->p=lid (lid), \
(psp)->p_ridtype (rtype), \

'(psp)->p_rid (rid),

Page 1

priocntlset (2)

DIAGNOSTICS
priocntlset has the same return values and errors as priocntl.

SEE ALSO
priocntl(2)

priocntl(1) in the User's Reference Manual

Page 2

prlocntlset (2)

10/89

profil (2) profil (2)

NAME
profil - execution time profile

SYNOPSIS
tinclude <unistd.h>

void profil(unsigned short *buff, size t bufsiz, int offset,
unsigned scale);

DESCRIPTION

10/89

profil provides CPU-use statistics by profiling the amount of CPU time expended
by a program. profil generates the statistics by creating an execution histogram
for a current process. The histogram is defined for a specific region of program
code to be profiled, and the identified region is logically broken up into a set of
equal size subdivisions, each of which corresponds to a count in the histogram.
With each clock tick, the current subdivision is identified and its corresponding
histogram count is incremented. These counts establish a relative measure of
how much time is being spent in each code subdivision. The resulting histogram
counts for a profiled region can be used to identify those functions that consume
a disproportionately high percentage of CPU time.

buff is a buffer of bufsiz bytes in which the histogram counts are stored in an
array of unsigned short into

offset, scale, and bufsiz specify the region to be profiled.

offset is effectively the start address of the region to be profiled.

scale, broadly speaking, is a contraction factor that indicates how much smaller
the histogram buffer is than the region to be profiled. More precisely, scale is
interpreted as an unsigned 16-bit fixed-point fraction with the decimal point
implied on the left. Its value is the reciprocal of the number of bytes in a subdi­
vision, per byte of histogram buffer. Since there are two bytes per histogram
counter, the effective ratio of subdivision bytes per counter is one half the scale.

Several observations can be made:

the maximal value of scale, Oxffff (approximately 1), maps subdivi­
sions 2 bytes long to each counter.

the minimum value of scale (for which profiling is performed), Ox0002
0/32,768), maps subdivision 65,536 bytes long to each counter.

the default value of scale (currently used by cc -qp), Ox4000, maps
subdivisions 8 bytes long to each counter.

The values are used within the kernel as follows: when the process is interrupted
for a clock tick, the value of offset is subtracted from the current value of the pro­
gram counter (pc), and the remainder is multiplied by scale to derive a result.
That result is used as an index into the histogram array to locate the cell to be
incremented. Therefore, the cell count represents the number of times that the
process was executing code in the subdivision associated with that cell when the
process was interrupted.

Page 1

profil (2) profil (2)

scale can be computed as (RATIO * 0200000L), where RATIO is the desired ratio
of bufsiz to profiled region size, and has a value between 0 and 1. Qualitatively
speaking, the closer RATIO is to I, the higher the resolution of the profile infor­
mation.

bufsiz can be computed as (size _oLregion _to_be yrofiled * RATIO).

SEE ALSO

NOTES

Page 2

prof(1), times(2), monitor(3C).

Profiling is turned off by giving a scale of 0 or I, and is rendered ineffective by
giving a bufsiz of O. Profiling is turned off when an exec(2) is executed, but
remains on in both child and parent processes after a fork(2). Profiling is turned
off if a buff update would cause a memory fault.

10/89

ptrace(2) ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
tinclude <unistd.h>
tinclude <sys/types.h>

int ptrace(int request, pid_t pid, int addr, int data);

DESCRIPTION
ptrace allows a parent process to control the execution of a child process. Its
primary use is for the implementation of breakpoint debugging [see sclb(l)]. The
child process behaves normally until it encounters a signal [see signal(S)], at
which time it enters a stopped state and its parent is notified via the wait(2) sys­
tem call. When the child is in the stopped state, its parent can examine and
modify its "core image" using ptrace. Also, the parent can cause the child
either to terminate or continue, with the possibility of ignoring the signal that
caused it to stop.

The request argument determines the action to be taken by ptrace and is one of
the following:

o This request must be issued by the child process if it is to be traced by
its parent. It turns on the child's trace flag that stipulates that the child
should be left in a stopped state on receipt of a signal rather than the
state specified by June [see signal(2)]. The pid, addr, and dilta argu­
ments are ignored, and a return value is not defined for this request.
Peculiar results ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For each,
pid is the process ID of the child. The child must be in a stopped state before
these requests are made.

1, 2 With these requests, the word at location addr in the address space of
the child is returned to the parent process. If instruction and data space
are separated, request 1 returns a word from instruction space, and
request 2 returns a word from data space. If instruction and data space
are not separated, either request 1 or request 2 may be used with equal
results. The data argument is ignored. These two requests fail if addr is
not the start address of a word, in which case a value of -1 is returned
to the parent process and the parent's errno is set to EIO.

3 With this request, the word at location addr in the child's user area in
the system's address space [see <sys/user .h>] is returned to the parent
process. The data argument is ignored. This request fails if addr is not
the start address of a word or is outside the user area, in which case a
value of -1 is returned to the parent process and the parent's errno is
set to EIO.

4, 5 With these requests, the value given by the data argument is written
into the address space of the child at location addr. If instruction and
data space are separated, request 4 writes a word into instruction space,
and request 5 writes a word into data space. If instruction and data
space are not separated, either request 4 or request 5 may be used with
equal results. On success, the value written into the address space of

10/89 Page 1

ptrace(2) ptrace(2)

the child is returned to the parent. These two requests fail if addr is not
the start address of a word. On failure a value of -1 is returned to the
parent process and the parent's errna is set to EIO.

6 With this request, a few entries in the child's user area can be written.
data gives the value that is to be written and addr is the location of the
entry. The few entries that can be written are the general registers and
the condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the data argument
is 0, all pending signals including the one that caused the child to stop
are canceled before it resumes execution. If the data argument is a valid
signal number, the child resumes execution as if it had incurred that sig­
nal, and any other pending signals are canceled. The addr argument
must be equal to 1 for this request. On success, the value of data is
returned to the parent. This request fails if data is not 0 or a valid sig­
nal number, in which case a value of -1 is returned to the parent pro­
cess and the parent's erma is set to EIO.

S This request causes the child to terminate with the same consequences
as exit(2).

9 This request sets the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The
trace bit causes an interrupt on completion of one machine instruction.
This effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent
exec(2) calls. If a traced process calls exec(2), it stops before executing the first
instruction of the new image showing signal SIGTRAP. ptrace in general fails if
one or more of the following are true:

EIO request is an illegal number.

ESRCH pid identifies a child that does not exist or has not executed a
ptrace with request o.

EPERM the involking subject does not have the appropriate MAC privilages.

SEE ALSO
sdb(1), exec(2), signal(2), wait(2).

Page 2 10/89

putmsg(2) putmsg(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
iinclude <stropts.h>

int putmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

DESCRIPTION

10/89

putmsg creates a message from user-specified buffer(s) and sends the message to
a STREAMS file. The message may contain either a data part, a control part, or
both. The data and control parts to be sent are distinguished by placement in
separate buffers, as described below. The semantics of each part is defined by the
STREAMS module that receives the message.

The function putpmsg does the same thing as putmsg, but provides the user the
ability to send messages in different priority bands. Except where noted, all
information pertaining to putmsg also pertains to putpmsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure, which contains the following members:

int rnaxlen; /* not used */
int len; /* length of data */
void *buf; /* ptr to buffer */

dlptr points to the structure describing the control part, if any, to be included in
the message. The buf field in the strbuf structure points to the buffer where the
control information resides, and the len field indicates the number of bytes to be
sent. The rnaxlen field is not used in putmsg [see getmsg(2)]. In a similar
manner, dataptr specifies the data, if any, to be included in the message. flags
indicates what type of message should be sent and is described later.

To send the data part of a message, dataptr must not be NULL and the len field of
dataptr must have a value of 0 or greater. To send the control part of a message,
the corresponding values must be set for dlptr. No data (control) part is sent if
either dataptr (ctlptr) is NULL or the len field of dataptr (ctlptr) is set to -l.

For putmsgO, if a control part is specified, and flags is set to RS_HIPRI, a high
priority message is sent. If no control part is specified, and flags is set to
RS_HIPRI, putmsg fails and sets errno to EINVAL. If flags is set to 0, a normal
(non-yriority) message is sent. If no control part and no data part are specified,
and flags is set to 0, no message is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by
putmsg is at least 64 bytes in length.

For putpmsg, the flags are different. flags is a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0,
putpmsg fails and sets errno to EINVAL. If a control part is specified and flags is
set to MSG_HIPRI and band is set to 0, a high-priority message is sent. If flags is

Page 1

putmsg(2) putmsg(2)

Page 2

set to MSG_HIPRI and either no control part is specified or band is set to a non­
zero value, putpmsg() fails and sets errno to EINVAL. If flags is set to MSG~,
then a message is sent in the priority band specified by band. If a control part
and data part are not specified and flags is set to MSG_BAND, no message is sent
and 0 is returned.

Normally, putmsg() will block if the stream write queue is full due to internal
flow control conditions. For high-priority messages, putmsg() does not block on
this condition. For other messages, putmsg() does not block when the write
queue is full and 0_ NDEIAY or 0_ NONBLOCK is set. Instead, it fails and sets errno
to EAGAIN.

putmsg or putpmsg also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the stream, regardless of priority
or whether O_NDEtAY or O_NONBLOCK has been specified. No partial message is
sent.

putmsg fails if one pr more of the following are true:

EAGAIN A non-priority message was specified, the 0 _NDELAY or
0_ NONBLOCK flag is set and the stream write queue is full due to
internal flow control conditions.

EBADF fd is not a valid file descriptor open for writing.

EFAULT

EINTR

EINVAL

EINVAL

EINVAL

ENOSR

ENOSTR

ENXIO

ERANGE

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or flags is set to
RS_HIPRI and no control part was supplied.

The stream referenced by fd is linked below a multiplexor.

For putpmsg, if flags is set to MSG_HIPRI and band is nonzero.

Buffers could not be allocated for the message that was to be
created due to insufficient STREAMS memory resources.

A stream is not associated with fd.
A hangup condition was generated downstream for the specified
stream, or the other end of the pipe is closed. <

The size of the. data part of the message does not fall within the
range specified by the maximum and minimum packet sizes of the
topmost stream module. This value is also returned if the control
part of the message is larger than the maximum configured size of
the control part of a message, or if the data part of a message is
larger than the maximum configured size of the data part of a mes­
sage.

putmsgalso fails if a STREAMS error message had been processed by the stream
head before the call to putmsg. The error returned is the value contained in the
STREAMS error message.

10/89

putmsg(2) putmsg(2)

SEE ALSO
getmsg(2),' intro(2), poll(2), putmsg(2), read(2), write(2).
Programmer's Guide: STREAMS.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89 Page 3

read (2) read (2)

NAME
read - read from file

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/uio.h>
'include <unistd.h>
int read(int fildes, void *buf, unsigned nbyte);

int readv(int fildes, struct iovec *iov, int iovent);

DESCRIPTION

10/89

read attempts to read nbyte bytes from the file associated with fildes into the
buffer pointed to by buf. If nbyte is zero, read returns zero and has no other
results. fildes is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. On return from read,. the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

ready performs the same action as read,. but places the input data into the iovcnt
buffers specified by the members of the iovarray: iov[O), iov[l), ... , iov[iovcnt-l).

For ready, the iovec structure contains the following members:

addr t iov base;
size-t iov=len;

Each iovec entry specifies the base address and length of an area in memory
where data should be placed. ready always fills one buffer completely before
proceeding to the next.

On success, read and ready return the number of bytes actually read and placed
in the buffer; this number may be less than nbyte if the file is associated with a
communication line [see ioctl(2) and teonio(7»), or if the number of bytes left
in the file is less than nbyte, or if the file is a pipe or a special file. A value of 0 is
returned when an end-of-file has been reached.

read reads data previously written to a file. If any portion of an ordinary file
prior to the ·end of file has not been written, read returns the number of bytes
read as O. For example, the lseek routine allows the file pointer to be set beyond
the end of existing data in the file. If additional data is written at this point, sub­
sequent reads in the gap between the previous end of data and newly written
data return bytes with a value of 0 until data is written into the gap.

A read or ready from a STREAMS [see intro(2») file can operate in three dif­
ferent modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the
I_SRDOPT ioctl.(2) request [see streamio(7»), and can be tested with the
I _ GRDOPT ioctl(2) request. In byte-stream mode, read and ready usually
retrieve data from the stream until they have retrieved nbyte bytes, or until there

Page 1

read (2) read (2)

Page 2

is no more data to be retrieved. Byte-stream mode usually ignores message
boundaries.

In STREAMS message-nondiscard mode, read and readv retrieve data until they
have read nbyte bytes, or until they reach a message boundary. If read or ready
does not retrieve all the data in a message, the remaining data is replaced on the
stream and can be retrieved by the next read or ready call. Message-discard
mode also retrieves data until it has retrieved nbyte bytes, or it reaches a message
boundary. However, unread data remaining in a message after the read or
readv returns is discarded, and is not available for a subsequent read, readv, or
getmsg [see getmsg(2»).

When attempting< to read from a regular file with mandatory file/record locking
set [see chmod(2»), and there is a write lock owned by another process on the seg­
ment of the file to be read:

If 0_ NDELAY or 0_ NONBLOCK is set, read returns -1 and sets ermo to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read sleeps until the blocking
record lock is removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, read returns 0 to indicate
end-of-file.

If some process has the pipe open for writing and O_NDELAY is set, read
returns O.

If some process has the pipe open for writing and 0 _NONBLOCK is set, read
returns -1 and sets errno to EAGAIN.

If 0 NDELAY and 0 NONBLOCK are clear, read blocks until data is written
to the pipe or the Pipe is closed by all processes that had opened the pipe
for writing.

When attempting to read a file associated with a terminal that has no data
currently available:

If O_NDELAY is set, read returns O.

If O_NONBLOCK is set, read returns -1 and sets ermo to EAGAIN.

If 0 NDELAY and 0 NONBLOCK are clear, read blocks until data becomes
available. -

When attempting to read a file associated with a stream that is not a pipe or FIFO,
or terminal, and that has no data currently available:

If 0_ NDELAY or 0_ NONBLOCK is set, read returns -1 and sets ermo to
EAGAIN.

If 0 NDELAY and 0 NONBLOCK are clear, read blocks until data becomes
available. -

10/89

read (2) read (2)

10/89

When reading from a STREAMS file, handling of zero-byte messages is determined
by the current read mode setting. In byte-stream mode, read accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte
message block is encountered. read then returns the number of bytes read, and
places the zero-byte message back on the stream to be retrieved by the next read
or getmsg [see getmsg(2)]. In the two other modes, a zero-byte message returns
a value of 0 and the message is removed from the stream. When a zero-byte
message is read as the first message on a stream, a value of 0 is returned regard­
less of the read mode.

A read or read v from a STREAMS file returns the data in the message at the front
of the stream head read queue, regardless of the priority band of the message.

Normally, a read from a STREAMS file can only process messages with data and
without control information. The read fails if a message containing control infor­
mation is encountered at the stream head. This default action can be changed by
placing the stream in either control-data mode or control-discard mode with the
I_SRDOPT ioctl(2}. In control-data mode, control messages are converted to
data messages by read. In control-discard mode, control messages are discarded
by read, but any data associated with the control messages is returned to the
user.

read and readv fail if one or more of the following are true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK
was set, and there was a blocking record lock.

EAGAIN Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

EAGAIN

EAGAIN

EBADF
EBADMSG
EDEADLK

EFAOLT
EINTR
EINVAL
EIO

ENOLCK

No data is waiting to be read on a file associated with a tty dev­
ice and 0 NONBLOCK was set.

No message is waiting to be read on a stream and O_NDELAYor
o NONBLOCK was set.

fildes is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data message.

The read was going to go to sleep and cause a deadlock to
occur.

buf points outside the allocated address space.

A signal was caught during the read or readv system call.

Attempted to read from a stream linked to a multiplexor.

A physical I/O error has occurred, or the process is in a back­
ground process group and is attempting to read from its control­
ling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group of the process is orphaned.

The system record lock table was full, so the read or readv
could not go to sleep until the blocking record lock was
removed.

Page 3

read (2) read(2)

ENOLINK

ENXIO

fildes is on a remote machine and the link to that machine is no
longer active.

The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

In addition, ready may return one of the following errors:

EFAULT iov points outside the allocated address space.

EINVAL

EINVAL

iovcnt was less than or equal to 0 or greater than 16.

The sum of the iov_len values in the iov array overflowed a 32-
bit integer.

A read from a STREAMS file also fails if an error message is received at the
stream head. In this case, errno is set to the value returned in the error message.
If a hangup occurs on the stream being read, read continues to operate normally
until the stream head read queue is empty. Thereafter, it returns O.

SEE ALSO
intro(2), creat(2), dup(2), fcntl(2), getmsg(2), ioctl(2), open(2), pipe(2)
streamio(7), termio(7) in the System Administrator's Reference Manual

DIAGNOSTICS
On success a non-negative integer is returned indicating the number of bytes
actually read. Otherwise, a -1 is returned and errno is set to indicate the error.

Page 4 10/89

readlink(2) read link (2)

NAME
readlink - read the value of a symbolic link

SYNOPSIS
tinclude <unistd.h>

int readlink(const char *path, void *buf, size_t bufsiz);

DESCRIPTION
readlink places the contents of the symbolic link referred to by path in the buffer
buf, which has size bujsiz. The contents of the link are not null-terminated when
returned.

readlink fails and the buffer remains unchanged if:

EACCES Search permission is denied for a component of the path
prefix of path.

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

path or buf extends outside the allocated address space of
the process.

The named file is not a symbolic link.

An I/O error occurs while reading from or writing to the
file system.

Too many symbolic links are encountered in translating
path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while

POSIX NO TRUNC is in effect. - --
ENOENT

ENOSYS

DIAGNOSTICS

The named file does not exist.

The file system does not support symbolic links.

Upon successful completion readlink returns the number of characters placed in
the buffer; otherwise, it returns -1 and places an error code in errno.

SEE ALSO
lstat(2), stat(2), symlink(2)

10/89 Page 1

rename (2) rename(2)

NAME
remme - change the name of a file

SYNOPSIS
tinclude <stdio.h>

int rename (const char *old, const char *new);

DESCRIPTION

10189

rename renames a file. old is a pointer to the pathname of the file or directory to
be renamed. new is a pointer to the new pathname of the file or directory. Both
old and new must be of the same type (either both files, or both directories) and
must reside on the same file system.

If new already exists, it is removed. Thus, if new names an existing directory, the
directory must not have any entries other than, possibly, "." and " .. ". When
renaming directories, the new pathname must not name a descendant of old. The
implementation of rename ensures that upon successful completion a link named
new will always exist.

If the final component of old is a symbolic link, the symbolic link is renamed, not
the file or directory to which it points.

Write permission is required for both the directory containing old and the direc­
tory containing new. Furthermore, if old and new are directories, write permission
is required for the directory named by old, and if it exists, the directory named by
new. rename fails, old is not changed, and no new file is created if one or more of
the following are true:

EACCES A component of either path prefix denies search permis­
sion; one of the directories containing old or new denies
write permission; or one of the directories pointed to by old
or new denies write permission.

EBUSY new is a directory and the mount point for a mounted file
system.

EDQUOT The directory in which the entry for the new name is being
placed cannot be extended because the user's quota of disk
blocks on the file system containing the directory has been
exhausted.

EEXIST

EFAULT

EINVAL

EINTR

EIO

The link named by new is a directory containing entries
other than "." and " .. ".

old or new points outside the process's allocated address
space.

old is a parent directory of new, or an attempt is made to
rename II ." or " .. II •

A signal was caught during execution of the rename system
call.

An I/O error occurred while making or updating a direc­
tory entry.

Page 1

rename (2) rename(2)

EISDIR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOENT

ENOLINK

ENOSPC

ENOTDIR

EROFS

EXDEV

new points to a directory but old points to a file that is not a
directory.

Too many symbolic links were encountered in translating
old or new.

Components of pathnames require hopping to multiple
remote machines and the file system type does not allow it.

The length of the old or new argument exceeds {PATH_MAX},
or the length of a old or new component exceeds
{NAME_MAX} while JOSIX_NO_TRUNC is in effect.

A component of either old or new does not exist, or the file
referred to by either old or new does not exist.

Pathnames point to a remote machine and the link to that
machine is no longer active.

The directory that would contain new is out of space.

A component of either path prefix is not a directory; or the
old parameter names a directory and the new parameter
names a file.

The requested operation requires writing in a directory on a
read-only file system.

The links named by old and new are on different file sys­
tems.

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

The system can deadlock if there is a loop in the file system graph. Such a loop
takes the form of an entry in directory a, saya/foo, being a hard link to directory
b, and an entry in directory b, say b/bar, being a hard link to directory a. When
such a loop exists and two separate processes attempt to perform rename a/foo
b/bar and rename b/bar a/foo, respectively, the system may deadlock attempting to
lock both directories for modification. The system administrator should replace
hard links to directories by symbolic links.

SEE ALSO
link(2), unlink(2)

Page 2 10/89

rmdlr(2) rmdlr(2)

NAME
r:ndir - remove a directory

SYNOPSIS
,include <unistd.h>

int rmdir (const char *path);

DESCRIPTION

10/89

rm::lir removes the directory named by the path name pointed to by path. The
directory must not have any entries other than ". II and " . . ".

If the directory's link count becomes zero and no process has the directory open,
the space occupied by the directory is freed and the directory is no longer accessi­
ble. If one or more processes have the directory open when the last link is
removed, the ". II and " .. II entries, if present, are removed before r:mdir returns
and no new entries may be created in the directory, but the directory is not
removed until all references to the directory have been closed.

If path is a symbolic link,.it is not followed.

Upon successful completion r:ndir marks for update the st_ctime and st ___ mtime
fields of the parent directory. .

The named directory isrembved unless one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix.

EACCES

EACCES

EBUSY

EEXIST

EFAULT

EINVAL
EINVAL
EIO

ELOOP

EMULTIHOP

ENAMETOOLONG

Write permIssion is denied on the directory containing the
directory to be removed.

The parent dii-ectoryhas the sticky bit set and is riot owned
by the. user; the directory is not owned by the user and is
not.writable by the user; the user is not a super-user.

The directory to be removed is the mount point for a
mQunted file system.

The directory contains entries other than those for ". II and
" "

I path points outside the process's allocated address space.

The directory to be removed is the current directory.

The directory to be removed is the "." entry of a directory.

An I/O error occurred while accessing the file system.

Too many symbolic links were encountered in translating
path.
Components of path require hopping to multiple remote
machines and the file system does riot allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect. .

Page 1

rmdlr(2}

ENO'IDIR

ENOENT

EROFS

ENOLINK

DIAGNOSTICS

rmdir(2}

A component of the path prefix is not a directory.

The named directory does not exist or is the null pathname.

The directory entry to be removed is part of a read-only file
system.

path points to a remote machine, and the link to that
machine is no longer active.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
mkdir(2).

rm:iir(1), z:m(1), and mkdir(l) in the User's Reference Manual.

Page 2 10/89

semetl (2) semetl(2)

NAME
sem::::tl - semaphore control operations

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/sem.h>

union semun {

} ;

int val;
struct semid ds *buf;
ushort *array;

int sem::::tl (int semid, int semnum, int cm:i, .,. /* union semun arg
*/);

DESCRIPTION

10/89

sem::::tl provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid
and semnum:

GETVAL Return the value of semval [see intro(2)]. {READ}

SETVAL Set the value of semval to arg.val. {ALTER}. When this com­
mand is successfully executed, the semadj value correspond­
ing to the specified semaphore in all processes is cleared.

GETPID Return the value of (int) senpid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of sema­
phores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array.
{ALTER}. When this cmd is successfully executed, the semadj
values corresponding to each specified semaphore in all
processes are cleared.

The following cmds are also available:

IPC STAT Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.bUf.
The contents of this structure are defined in intro(2). {READ}

IPC SET Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to byarg.buf:

semyenn.uid
semyenn.gid
semyenn.mode /* only access permission bits */

Page 1

semetl (2) semetl (2)

This command can be executed only by a process that has an
effective user 10 equal to either that of super-user, or to the
value of sem...,Perm.cuid or sem~rm.uid in the data struc­
ture associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This command only be executed only by a
process that has an effective user 10 equal to either that of
super-user, or to the value of sem.J>erm.cuid or
sem...,Perm.uid in the data structure associated with semid.

senetl fails if one or more of the following are true:

EACCES Operation permission is denied to the calling process [see
intro(2)].

EINVAL

EINVAL

EINVAL

EINVAL

EOVERFLOW

ERANGE

EPERM

semid is not a valid semaphore identifier.

semnum is less than 0 or greater than sem_nsems.

cmd is not a valid command.

cmd is IPC_SET and 8em...,Perm.uid or semyerm.gid is not
valid.

cmd is IPC _STAT and uid or gid is too large to be stored in the
structure pointed to by arg.buf.
cmd is SETVAL or SETALL and the value to which semval is to be
set is greater than the system imposed maximum.

cmd is equal to IPC ~D or IPC _SET and the effective user 10 of
the calling process is not equal to that of super-user, or to the
value of sem...,Perm.cuid or semyerm.uid in the data structure
associated with semid.

EFAULT

SEE ALSO

arg .buf points to an illegal address.

intro(2), semget(2), sem::>p(2).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

GETVAL the value of semval
GETPID the value of (int) senpid
GETNCNT the value of semncnt
GETZCNT the value of semzcnt
all others a value of 0

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

Page 2 10/89

semget(2) semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
'include <sys/types.h>
'include <sys/ipc.h>
'include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION

10/89

semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro(2)] are created for key if one of the following is true:

key is equal to IPC _PRIVATE.

key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is
initialized as follows:

semJ>enn.cuid, semJ>enn.uid, semJ>enn.cgid, and semJ>enn.gid are
set equal to the effective user 10 and effective group 10, respectively, of
the calling process.

The access permission bits of semJ>enn.mode are set equal to the access
permission bits of semflg.

sem _ nsems is set equal to the value of nsems.

sem _ otime is set equal to 0 and sem _ ctime is set equal to the current
time.

semget fails if one or more of the following are true:

EINVAL nsems is either less than or equal to zero or greater than the
system-imposed limit.

EACCES

EINVAL

ENOENT

ENOSPC

ENOSPC

A semaphore identifier exists for key, but operation permission
[see intro(2)] as specified by the low-order 9 bits of semflg
would not be granted.

A semaphore identifier exists for key, but the number of sema­
phores in the set associated with it is less than nsems, and nsems
is not equal to zero.

A semaphore identifier does not exist for key and
(semflg&IPC_CREAT) is false.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphore identifiers
system wide would be exceeded.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores system
wide would be exceeded.

Page 1

semget(2) semget(2)

EEXIST A semaphore identifier exists for key but both
(semflg&IPC_CREAT) and (semflg&IPC_EXCL) are both true.

SEE ALSO
intro(2), semctl(2), sem:>p(2), stdipc(3C).

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

10/89

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
'include <sys/types.h>
'include <sys/ipc.h>
tinclude <sys/sem.h>
int semop(int sem:i.d, struct senbuf *sops, size_t nsops);

DESCRIPTION

10/89

semop is used to perform atomically an array of semaphore operations on the set
of semaphores associated with the semaphore identifier specified by semid. sops is
a pointer to the array of semaphore-operation structures. nsops is the number of
such structures in the array. The contents of each structure includes the follow­
ing members:

short sern _ num; /* semaphore number * /
short sern op; /* semaphore operation * /
short sern=flg; /* operation flags */

Each semaphore operation specified by 5em _ op is performed on the corresponding
semaphore specified by semid and sem_num.

5em_Op specifies one of three semaphore operations as follows, depending on
whether its value is negative, positive, or zero:

If 5em_Op is a negative integer, one of the following occurs: {ALTER}

If semval [see intro(2») is greater than or equal to the absolute value of
5em_Op, the absolute value of sem:. . .op is subtracted from semval. Also, if
(semjlg&SEM_UNDO) is true, the absolute value of sem_op is added to the cal­
ling process's semadj value [see exit(2») for the specified semaphore.

If semval is less than the absolute value of sem_op and
(semjlg&IPC_NOWAIT) is true, SeJOOp returns immediately.

If semval is less than the absolute value of 5em _ op and
(semjlg&IPC_NOWAIT) is false, semop increments the semncnt associated
with the specified semaphore and suspends execution of the calling process
until one of the following conditions occur.

semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value. of semncnt associated with the specified
semaphore is decremented, the absolute value of sem_ op is subtracted
from semval and, if (semjlg&SEM_UNDO) is true, the absolute value of
5em_Op is added to the calling process's semadj value for the specified
semaphore.

The seinid for which the calling process is awaiting action is removed
from the system [see sem:::tl(2»). When this occurs, errno is set equal to
EIORM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this
occurs, the value of semncnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(2).

Page 1

semop(2) semop(2)

Page 2

If sem_op is a positive integer, the value of sem_op is added to semval and, if
(semJlg&SF1,lLUNDO) is true, the value of sem_op is subtracted from the calling
process's semadj value for the specified semaphore. {ALTER}

If sem _op is zero, one of the following occurs: {READ}

If semval is zero, seIOOp returns immediately.

If seJlllTal is not equal to zero and (semJlg&IPC_NOWAIT) is true, se:roop
returns immediately.

If semval is not equal to zero and (sem Jlg&IPC _ NOWAIT) is false, se:roop
increments the semzcnt associated with the specified semaphore and
suspends execution of the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated
with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed
from the system. When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be caught. When this
occurs, the value of semzcnt associated with the specified semaphore is
decremented, and the. calling process resumes execution in the manner
prescribed in signal(2).

SeIOOp fails if one or more of the following are true for any of the semaphore
operations specified by sops:

EINVAL semid is not a valid semaphore identifier.

EFBIG sem_num is less than zero or greater than or equal to the number
of semaphores in the set associated with semid.

E2BIG

EACCES

EAGAIN

ENOSPC

EINVAL

ERANGE

ERANGE

EFAULT

nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process [see
intro(2)j.

The operation would result in suspension of the calling process
but (semJlg&IPC_NOWAIT) is true.

The limit on the number of individual processes requesting an
SEM UNDO would be exceeded.

The number of individual semaphores for which the calling pro­
cess requests a SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system­
imposed limit.

An operation would cause a semadj value to overflow the
system-imposed limit.

sops points to an illegal address.

Upon successful completion, the value of senpid for each semaphore specified in
the array pointed to by sops is set equal to the process ID of the calling process.

10/89

semop(2) semop(2)

SEE ALSO
intro(2), exec(2), exit(2), fork(2), sem:::tl(2), semget(2).

DIAGNOSTICS

10/89

If semop returns due to the receipt of a signal, a value of -1 is returned to the cal­
ling process and errno is set to EINTR. If it returns due to the removal of a semid
from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successftd completion, a value of zero is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Page 3

setpgid(2) setpgld (2)

NAME
setpgid - set process group ID

SYNOPSIS
tinclude <sys/types.h>
tinclude <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
setpgid sets the process group ID of the process with ID pid to pgid. If pgid is
equal to pid, the process becomes a process group leader. If pgid is not equal to
pid, the process becomes a member of an existing process group.

If pid is equal to 0, the process ID of the calling process is used. If pgid is equal to
0, the process specified by pid becomes a process group leader.

setpgid fails and returns an error if one or more of the following are true:

EACCES pid matches the process ID of a child process of the calling pro­
cess and the child process has successfully executed an exec(2)
function.

EINVAL

EINVAL

EPERM

EPERM

EPERM

ESRCH

pgid is less than (pid_t) 0, or greater than or equal to
{PID_MAX}.

The calling process has a controlling terminal that does not sup­
port job control.

The process indicated by the pid argument is a session leader.

pid matches the process ID of a child process of the calling pro­
cess and the child process is not in the same session as the cal­
ling process.

pgid does not match the process ID of the process indicated by
the pid argument and there is no process with a process group ID
that matches pgid in the same session as the calling process.

pid does not match the process ID of the calling process or of a
child process of the calling process.

SEE ALSO
exec(2), exit(2), fork(2), getpid(2), getpgid(2), setsid(2).

DIAGNOSTICS

10/89

Upon successful completion, setpgid returns a value of o. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Page 1

setpgrp(2)

NAME
setpgrp - set process group ID

SYNOPSIS
'include <sys/types.h>
'include <unistd.h>
pid_t setpgrp (void);

DESCRIPTION

setpgrp(2)

If the calling process is not already a session leader, setpg:rp sets the process
group ID and session ID of the calling process to the process ID of the calling pro­
cess, and releases the calling process's controlling terminal.

SEE ALSO
intro(2), exec(2), fork(2), getpid(2), kill(2), setsid(2), signal(2).

DIAGNOSTICS
setpgrp returns the value of the new process group ID.

NOTES
setpgrp will be phased out in favor of the setsid(2) function.

10/89 Page 1

setsld(2) setsld (2)

NAME
setsid - set session ID

SYNOPSIS
iinclude <sys/types.h>
iinclude <unistd.h>

pid_t setsid(void);

DESCRIPTION
If the calling process is not already a process group leader, setsid sets the pro­
cess group ID and session ID of the calling process to the process ID of the cal­
ling process, and releases the process's controlling terminal.

setsid will fail and return an error if the following is true:

EPERM The calling process is already a process group leader, or there are
processes other than the calling process whose process group ID
is equal to the process ID of the calling process.

SEE ALSO
intro(2), exec(2), exit(2), fork(2), getpid(2), getpgid(2), getsid(2),
setpgid(2), setpgrp, signal(2), sigsend(2).

WARNING
If the calling process is the last member of a pipeline started by a job control
shell, the shell may make the calling process a process group leader. The other
processes of the pipeline become members of that process group. In this case, the
call to setsid will fail. For this reason, a process that calls setsid and expects
to be part of a pipeline should always first fork; the parent should exit and the
child should call setsid, thereby insuring that the process will work reliably
when started by both job control shells and non-job control shells.

DIAGNOSTICS

10/89

Upon successful completion, setsid returns the calling process's session !D. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

setuid(2) setuid(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
iinclude <sys/types.h>
iinclude <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

DESCRIPTION
The setuid system call sets the real user ID, effective user ID, and saved user ID
of the calling process. The setgid system call sets the real group ID, effective
group ID, and saved group ID of the calling process.

At login time, the real user ID, effective user ID, and saved user ID of the login
process are set to the login ID of the user responsible for the creation of the pro­
cess. The same is true for the real, effective, and saved group IDs; they are set to
the group ID of the user responsible for the creation of the process.

When a process calls exec(2) to execute a file (program), the user and/or group
identifiers associated with the process can change. If the file executed is a set­
user-ID file, the effective and saved user IDs of the process are set to the owner of
the file executed. If the file executed is a set-group-ID file, the effective and saved
group IDs of the process are set to the group of the file executed. If the file exe­
cuted is not a set-user-ID or set-group-ID file, the effective user ID, saved user ID,
effective group ID, and saved group ID are not changed.

The following subsections describe the behavior of setuid and setgid with
respect to the three types of user and group IDs.

setuid
If the effective user ID of the process calling setuid is the superuser, the real,
effective, and saved user IDs are set to the uid parameter.

If the effective user ID of the calling process is not the superuser, but uid is either
the real user ID or the saved user ID of the calling process, the effective user ID is
set to uid.

setgid

10/89

If the effective user ID of the process calling setgid is the superuser, the real,
effective, and saved group IDs are set to the gid parameter.

If the effective user ID of the calling process is not the superuser, but gid is either
the real group ID or the saved group ID of the calling process, the effective group
ID is set to gid.

setuid and setgid fail if one or more of the following is true:

EPERM For setuid, if the effective user ID is not the superuser, and the uid
parameter does not match either the real or saved user IDs. For set­
gid, if the effective user ID is not the superuser, and the gid parameter
does not match either the real or saved group IDs.

Page 1

setuld (2) setuid (2)

EINVAL The uid or gid is out of range.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEe ALSO
intro(2), exec(2), getgroups(2), getuid(2), stateS).

Page 2 10/89

shmctJ(2) shmctl (2)

NAME
shroc:tl - shared memory control operations

SYNOPSIS
'include <sys/types.h>
'include <sys/ipc.h>
'include <sys/shm.h>

int shroc:tl (int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION

10/89

shroc:tl provides a variety of shared memory control operations as specified by
cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data structure
associated with shmid into the structure pointed to by but. The
contents of this structure are defined in intro(2). {READ}

IPC SET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf:

shm ...,Perm. uid
shm ...,Perm. gid
shm...,Perm.mode /* only access permission bits */

This command can be executed only by a process that has an
effective user ID equal to that of super~user, or to the value of
shm ...,Perm. cuid or shm...,Perm. uid in the data structure associ­
ated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from
the system and destroy the shared memory segment and data
structure associated with it. This command can be executed
only by a process that has an effective user ID equal to that of
super-user, or to the value of shmyerm.cuid or shmyerm.uid
in the data structure associated with shmid.

SlIM LOCK Lock the shared memory segment specified by shmid in
memory. This command can be executed only by a process that
has an effective user ID equal to super-user.

SlIM UNLOCK Unlock the shared memory segment specified by shmid. This
command can be executed only by a process that has an effec­
tive user ID equal to super-user.

shroc:tl fails if one or more of the following are true:

EACCES cmd is equal to IPC_STAT and {READ} operation permission is
denied to the calling process [see intro(2)].

EINVAL

EINVAL

shmid is not a valid shared memory identifier.

cmd is not a valid command.

Page 1

shmctl(2) shmctl(2)

EINVAL emil is IPC_SET and shm...,perm.uid or shm...,perm.qid is not valid.

EOVERFLOW emil is IPC _STAT and uid or gid is too large to be stored in the struc­
ture pointed to by buf.

EPERM

EPERM

EFAULT

emil is equal to IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of super-user, or to the value of
shm...,perm.cuid or shmyerm.uid in the data structure associated
with shmid.

emil is equal to SlDL LOCK or SlDL UNLOCK and the effective user ID of
the calling process is not equal to that of super-user.

buf points to an illegal address.

ENOMEM emil is equal to slDLLOCK and there is not enough memory.
SEE ALSO

shrlget(2), shJrop(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference
to them has been removed.

10/89

shmget(2) shmget(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/ipc.h>
tinclude <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

DESCRIPTION

10/89

shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes [see intro(2)] are created for key if one of the fol­
lowing are true:

key is equal to IPC_PRlVATE.

key does not already have a shared memory identifier associated with it,
and (shmjlg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

shm...,Perm.cuid, shm...,Perm.uid, shm...,Perm.cgid, and shmJ>erm.gid are
set equal to the effective user ID and effective group ID, respectively, of
the calling process.

The access permission bits of shm...,Perm.mode are set equal to the access
permission bits of shmjlg. shm_segsz is set equal to the value of size.

shm_lpid, ~hm_nattch shm_ati.me, and shm_dti.me are set equal to o.
shm _ cti.me is set equal to the current time.

shmget fails if one or more of the following are true:

EINVAL size is less than the system-imposed minimum or greater than the
system-imposed maximum.

EACCES A shared memory identifier exists for key but operation permis­
sion [see intro(2)] as specified by the low-order 9 bits of shmjlg
would not be granted.

EINVAL

ENOENT

ENOSPC

ENOMEM

A shared memory identifier exists for key but the size of the seg­
ment associated with it is less than size and size is not equal to
zero.

A shared memory identifier does not exist for key and
(shmjlg&IPC_C'REAT) is false.

A shared memory identifier is to be created but the system­
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory seg­
ment are to be created but the amount of available memory is
not sufficient to fill the request.

Page 1

shmget(2) shmget(2)

EEXIST A shared memory identifier exists for key but both
(shmjlg&IPC_CP.EAT) and (shmjlg&IPC_EXCL) are true.

SEE ALSO
intro(2), shm:::t1(2), shnDp(2), stdipc(3C).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

The user must explicitly remove shared memory segments after the last reference
to them has been removed.

10/89

shmop(2} shmop(2}

NAME
shmop: shmat, shm1t - shared memory operations

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shm1t (void *shmaddr);

DESCRIPTION

10/89

shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The seg­
ment is attached at the address specified by one of the following criteria:

If shmaddr is equal to (void *) 0, the segment is attached at the first
available address as selected by the system.

If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is true, the
segment is attached at the address given by (shmaddr - (shrruuldr modulus
SHMLBA».
If shmaddr is not equal to (void *) 0 and (shmflg&sHM_RND) is false, the
segment is attached at the address given by shmaddr.

shm1t detaches from the calling process's data segment the shared memory seg­
ment located at the address specified by shmaddr.

The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}, other­
wise it is attached for reading and writing {READ/WRITE}.

shmat fails and does not attach the shared memory segment if one or more of the
following are true:

EINVAL shmid is not a valid shared memory identifier.

EACCES

ENOMEM

EINVAL

EINVAL

EMFlLE

EINVAL

Operation permission is denied to the calling process [see
intro(2»).

The available data space is not large enough to accommodate the
shared memory segment.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus sHMLBA,). is an illegal address.

shmaddr is not equal to zero, (shmflg&SHM_RND) is false, and the
value of shmaddr is an illegal address.

The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

shmdt fails and does not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment.

Page 1

shmop(2) shmop(2)

SEE ALSO
intro(2), exec(2), exit(2), fork(2), shm::tl(2), shmget(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared
memory segment.

shrcrlt returns a value of O.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference
to them has been removed.

10/89

sigaction (2) sigaction (2)

NAME
sigaction - detailed signal management

SYNOPSIS
iinclude <signal.h>

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact);

DESCRIPTION

10/89

sigaction allows the calling process to examine and/or specify the action to be
taken on delivery of a specific signal. [See signal(S) for an explanation of gen­
eral signal concepts.]

sig specifies the signal and can be assigned any of the signals specified in sig­
nal(S) except SIGKILL and SIGSTOP

If the argument ad is not NULL, it points to a structure specifying the new action
to be taken when delivering sig. If the argument oad is not NULL, it points to a
structure where the action previously associated with sig is to be stored on return
from sigaction.

The sigaction structure includes the following members:

void (*sa handler) ();
sigset_t sa_mask;
int sa_flags;

sa_handler specifies the disposition of the signal and may take any of the values
specified in signal(S).

sa_mask specifies a set of signals to be blocked while the signal handler is active.
On entry to the signal handler, that set of signals is added to the set of signals
already being blocked when the signal is delivered. In addition, the signal that
caused the handler to be executed will also be blocked, unless the SA NODEE'ER
flag has been specified. SIGSTOP and SIGKILL cannot be blocked (the system
silently enforces this restriction).

sa_flags specifies a set of flags used to modify the delivery of the signal. It is
formed by a logical OR of any of the following values:

SA_ONSTACK If set and the signal is caught and an alternate signal
stack has been declared with sigaltstack(2), the
signal is delivered to the calling process on that
stack. Otherwise, the signal is delivered on the
same stack as the main program.

SA RESETHAND If set and the signal is caught, the disposition of the
signal is reset to SIG _DFL and the signal will not be
blocked on entry to the signal handler (SIGILL,
SIGTRAP, and SIGPWR cannot be automatically reset
when delivered; the system silently enforces this res­
triction).

Page 1

sigaction (2) sigaction (2)

SA NODEFER

SA RESTART

SA SIGINFO

SA NOCLDWAIT

SA NOCLDSTOP

If set and the signal is caught, the signal will not be
automatically blocked by the kernel while it is being
caught.

If set and the signal is caught, a system call that is
interrupted by the execution of this signal's handler
is transparently restarted by the system. Otherwise,
that system call returns an EINTR error.

If cleared and the signal is caught, sig is passed as
the only argument to the signal-catching function. If
set and the signal is caught, pending signals of type
sig are reliably queued to the calling process and
two additional arguments are passed to the signal­
catching function. If the second argument is not
equal to NULL, it points to a siginfo _ t structure
containing the reason why the signal was generated
[see siginfo(5)]; the third argument points to a
ucontext_t structure containing the receiving
process's context when the signal was delivered [see
ucontext(5)].

If set and sig equals SIGCHLD, the system will not
create zombie processes when children of the calling
process exit. If the calling process subsequently
issues a wait(2), it blocks until all of the calling
process's child processes terminate, and then returns
a value of -1 with errno set to ECHILD.

If set and sig equals SIGCHLD, sig will not be sent to
the calling process when its child processes stop or
continue.

sigaction fails if any of the following is true:

EINVAL The value of the sig argument is not a valid signal number or is
equal to SIGKILL or SIGSTOP.

EFAULT

DIAGNOSTICS

act or oact points outside the process's allocated address space.

On success, sigaction returns zero. On failure, it returns -1 and sets errno to
indicate the error.

SEE ALSO

NOTES

Page 2

intro(2), exit(2), kill(2), pause(2), sigaltstack(2), signal(2),
sigprocmask(2), sigsend(2), sigsuspend(2), wait(2), sigsetops(3C),
siginfo(5), signal(5), ucontext(5).

kill(1) in the User's Reference Manual.

If the system call is reading from or writing to a terminal and the terminal's
NOFLSH bit is cleared, data may be flushed [see termio(7)].

10/89

sigaltstack (2) sigaltstack (2)

NAME
sigaltstack - set or get signal alternate stack context

SYNOPSIS
'include <signal.h>

int sigaltstack (const stack_t *ss, stack_t *oss);

DESCRIPTION

NOTES

10/89

sigaltstack allows users to define an alternate stack area on which signals are
to be processed. If ss is non-zero, it specifies a pointer to, and ~he size of a stack
area on which to deliver signals, and tells the system if the process is currently
executing on that stack. When a signal's action indicates its handler should exe­
cute on the alternate signal stack [specified with a sigaction(2) call], the system
checks to see if the process is currently executing on that stack. If the process is
not currently executing on the signal stack, the system arranges a switch to the
alternate signal stack for the duration of the signal handler's execution.

The structure sigaltstack includes the following members.

int *ss sp
long ss jiize
int ss_flags

If 55 is not NULL, it points to a structure specifying the alternate signal stack that
will take effect upon return from sigaltstack. The ss_sp and ss_size fields
specify the new base and size of the stack, which is automatically adjusted for
direction of growth and alignment. The ss _flags field specifies the new stack
state and may be set to the following:

SS_DISABLE The stack is to be disabled and ss_sp and ss_size are ignored.
If SS_DlSABLE is not set, the stack will be enabled.

If oss is not NULL, it points to a structure specifying the. alternate signal stack that
was in effect prior to the call to sigaltstack. The ss_sp and ss_size fields
specify the base and size of that stack. The ss _flags field specifies the stack's
state, and may contain .the following values:

SS _ ONSTACK The process is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the process is
executing on it will fail.

SS_DlSABLE The alternate signal stack is currently disabled.

sigaltstack fails if any of the following is true:

EFAULT Either 55 or 055 points outside the process's allocated address
space.

EINVAL An attempt was made to disable an active stack or the ss_flags
field specifies invalid flags. .

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

The value SIGSTKSZ is defined to be the number of bytes that would be used to
cover the usual case when allocating an alternate stack area. The value
MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In

Page 1

sigaltstack(2) sigaltstack(2)

computing an alternate stack size, a program should add that amount to its stack
requirements to allow for the operating system overhead.

The following code fragment is typically used to allocate an alternate stack.

if «sigstk.ss sp = (char *)malloc(SIGSTKSZ» = NULL)
/* error return * / ;

sigstk.ss size = SIGSTKSZ;
sigstk.ss-flags = 0;
if (sigaltstack(&sigstk, (stack t *)0) < 0)

perror("sigaltstack"); -

SEE ALSO
getcontext(2), sigaction(2), sigsetjrcp(3C), ucontext(S).

DIAGNOSTICS

Page 2

On success, sigaltstack returns zero. On failure, it returns -1 and sets errno
to indicate the error.

10/89

8lgnal(2) 8lgnal(2)

NAME
signal, sigset, sighold, sigrelse, sigignore, sigpause - simplified signal
management

SYNOPSIS
iinclude <signal.h>

void (*signal(int sig, void (*disp) (int») (int);

void (*sigset(int sig, void (*disp) (int») (int);

int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

DESCRIPTION
These functions provide simplified sigI'!al management for application processes.
See signal(5) for an explanation of general signal concepts.

signal and sigset are used to modify signC!-1 dispositions. sig specifies the sig­
nal, which may be any sigI'!al except SIGKILL and SIGSTOP .. dis" specifies the
sigI'!al's disposition, which may be SIG_OFL, SIG_IGN, or the address of a signal
handler. If signal is used, disp is the address of a signal handleX', and sig is not
SIGILL, SIGTRAP, or SIGPWR. the system first sets the signal's disposition to
SIG_OFL before executing the signal handler. If sigset is used anq disp is the
address of a sigI'!al handler, the system. adds sig to the calling process's signal
mask before executing the sigI'!al handler; Whe.rt the signal handler returns, the
system restores the calling process's signal mask to .its state prior to the delivery
of the sigI'!al. In addition, if sigset is used and disp is equal to SIG_HOW, sig is
added to the calling process's sigI'!al mask and the signa1's disposition remains
unchanged. . .

sighold adds sig to the calling process' ssignal mask.

sigrelse removes sig from the calling process's signal mask.

sigignore sets the disposition of sig to SIG_,:IGN.

sigpause removes sig from the calling process's signal mask and suspends the
calling process until a signal is received.

These functions fail if any of the following are true.

EINVAL The value of the sig argument is not a valid signal or is equal to
SIGKILL or SIGS'IOP.

EINTR
NOTES

A signal was caught during the system call sigpause.

10/89

sighold in conjunction with sigrelse or sigpause may be used to establish
critical regions of code that require the delivery of a signal to be temporarily
deferred. .

Page 1

signal(2) slgnal(2)

If signal or sigset is used to set SIGCHID's disposition to a signal handler,
SIGCHLD will not be sent when the calling process's children are stopped or con­
tinued.

If any of the above functions are used to set SIGCHLD's disposition to SIG_IGN,
the calling process's child processes will not create zombie processes when they
terminate [see exit(2)]. If the calling process subsequently waits for its children,
it blocks until all of its children terminate; it then returns a value of -1 with
errno set to ECHILD [see wait(2), waitid(2)].

DIAGNOSTICS
On success, signal returns the signal's previous disposition. On failure, it
returns SIG_ERR and sets errno to indicate the error.

On success, sigset returns SIG_HOID if the signal had been blocked or the
signal's previous disposition if it had not been blocked. On failure, it returns
SIG_ERR and sets ermo to indicate the error.

All other functions return zero on success. On failure, they return -1 and set
ermo to indicate the error.

SEE ALSO
kill(2), pause(2), sigaction(2), sigsend(2), wait(2), waitid(2), signal(S).

Page 2 10/89

slgpendlng (2) slgpendlng (2)

NAME
sigpendinq - examine signals that are blocked and pending

SYNOPSIS
'include <signal.h>

int sigpendinq(siqset_t *set);

DESCRIPTION
The sigpendinq function retrieves those signals that have been sent to the calling
process but are being blocked from delivery by the calling process's signal mask.
The signals are stored in the space pointed to by the argument set.

sigpendinq fails if the following is true:

EFAOLT The set argument points outside the process's allocated address
space.

SEE ALSO
siqaction(2), sigproanask(2), siqsetops(3C).

DIAGNOS11CS

10/89

On success, siqpendinq returns zero. On failure, it returns -1 and sets errno to
indicate the error.

Page 1

sigprocmask (2) sigprocmask (2)

NAME
sigprocmask - change or examine signal mask

SYNOPSIS
iinclude <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION
The sigprocmask function is used to examine and/or change the calling
process's signal mask. If the value is SIG_BLOCK, the set pointed to by the argu­
ment set is added to the current signal mask. If the value is SIG_UNBLOCK, the set
pointed by the argument set is removed from the current signal mask. If the
value is SIG _ SETMASK. the current signal mask is replaced by the set pointed to
by the argument set. If the argument oset is not NULL, the previous mask is stored
in the space pointed to by oset. If the value of the argument set is NULL, the value
how is not significant and the process's signal mask is unchanged; thus, the call
can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask, at least
one of those signals will be delivered before the call to sigprocmask returns.

It is not possible to block those signals that cannot be ignored [see sigaction(2)];
this restriction is silently imposed by the system.

If sigprocmask fails, the process's signal mask is not changed.

sigprocmask fails if any of the following is true:

EINVAL The value of the how argument is not equal to one of the defined
values.

EFAULT The value of set or oset points outside the process's allocated
address space.

SEE ALSO
sigaction(2), signal(2), sigsetopts(3C), signal(S).

DIAGNOSTICS

10/89

On success, sigprocmask returns zero. On failure, it returns -1 and sets errno
to indicate the error.

Page 1

slgsend(2) slgsend(2)

NAME
sigsend, sigsendset - send a signal to a process or a group of processes

SYNOPSIS
'include <sys/types.h>
'include <sys/signal.h>
'include <sys/procset.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset (procset_t *pap, int sig);

DESCRIPTION

10/89

sigsend sends a signal to the process or group of processes specified by id and
idtype. The signal to be sent is specified by sig and is either zero or one of the
values listed in signal(5). If sig is zero (the null signal), error checking is per­
formed but no signal is actually sent. This value can be used to check the vali­
dity of id and idtype.
The real or effective user ID of the sending process must match the real or effec­
tive user ID of the receiving process, unless the effective user ID of the sending
process is super-user, or sig is SIGCONT and the sending process has the same ses­
sion ID as the receiving process.

If idtype is P_PID, sig is sent to the process with process ID id.
If idtype is P _PGID, sig is sent to any process with process group ID id.

If idtype is P _SID, sig is sent to any process with session ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.
If idtype is P _ GID, sig is sent to any process with effective group ID id.
If idtype is P_CID, sig is sent to any process with scheduler class ID id [see
priocntl(2)].

If idtype is P_AIJ.., sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a pro­
cess ID of 1 is excluded unless idtype is equal to P_PID.

sigsendset provides an alternate interface for sending signals to sets of
processes. This function sends signals to the set of processes specified by psp.
psp is a pointer to a structure of type procset_t, defined in sys/procset .h>,
which includes the following members:

idop t P op;
idtype t p-lidtype;
id t - p-lid;
idtype t p:ridtype;
id_t - p_rid;

p_lidtype and p_lid specify the ID type and ID of one ("left") set of processes;
p_ridtype and p_rid specify the ID type and ID of a second ("right") set of
processes. ID types and IDs are specified just as for the idtype and id arguments to
sigsend. p _ op specifies the operation to be performed on the two sets of

Page 1

sigsend(2) slgsend(2)

processes to get the set of processes the system call is to apply to. The valid
values for p _ op and the processes they specify are:

POP_DIET set difference: processes in left set and not in right set

POP_AND

POP_OR

POP XOR

set intersection: processes in both left and right sets

set union: processes in either left or right set or both

set exc1usivEH>r: processes in left or right set but not in both

sigsend and sigsendset fail if one or more of the following are true:

EINVAL sig is not a valid signal number.

EINVAL idtype is not a valid idtype field.

EINVAL

ESRCH

sig is SIGKILL, idtype is P_PID and id is 1 (proc1).

No process can be found corresponding to that specified by id
and idtype.

EPERM The user ID of the sending process is not super-user, and its real
or effective user ID does not match the real or effective user ID of
the receiving process, and the calling process is not sending
SIGCONT to a process that shares the same session.

In addition, sigsendset fails if:

EFA1JLT psp points outside the process's allocated address space.

SEE ALSO
getpid(2), getpgrp(2), ldll(2), priocntl(2), setpid(2), signal(2), signal(S).

kill(l) in the User's Reference Manual.
DIAGNOSTICS

Page 2

On success, sigsend returns zero. On failure, it returns -1 and sets ermo to
indicate the error.

10/89

slgsuspend(2) sigsuspend (2)

NAME
sigsuspend - install a signal mask and suspend process until signal

SYNOPSIS
tinclude <signal.h>

int sigsuspend(const sigset_t *set);

DESCRIPTION
sigsuspend replaces the process's signal mask with the set of signals pointed to
by the argument set and then suspends the process until delivery of a signal
whose action is either to execute a signal catching function or to terminate the
process.

If the action is to terminate the process, sigsuspend does not return. If the
action is to execute a signal catching function, sigsuspend returns after the signal
catching function returns. On return, the signal mask is restored to the set that
existed before the call to sigsuspend.

It is not possible to block those signals that cannot be ignored [see signal(S)li
this restriction is silently imposed by the system.

sigsuspend fails if either of the following is true:

EINTR A signal is caught by the calling process and control is. returned
from the signal catching function.

EFAULT The set argument points outside the process's allocated address
space.

DIAGNOSTICS
Since sigsuspend suspends process execution indefinitely, there is no successful
completion return value. On failure, it returns -1 and sets errno to indicate the
error.

SEE ALSO
sigaction(2), sigproonask(2), sigpause(2), sigsetops(3C), signal(S).

10/89 Page 1

stat (2) stat (2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stat.h>

int stat (const char *path, struct stat *OOf);

int lstat (const char *path, struct stat *buf);

int fstat(int fildes, struct stat *OOf);

DESCRIPTION

10/89

path points to a path name naming a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path name leading
to the file must be searchable. stat obtains information about the named file.

Note that in a Relllote File Sharing environment, the information retur.ned by
stat depends on the user/group mapping set up between the local and remote
computers. [See idload(lM).]

lstat obtains file attributes similar to stat, except when the named file is a sym­
bolic linki in that case lstat returns information about the link, while stat
returns information about the file the link references.

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcntl, or pipe system call.

but is a pointer to a stat structure into which information is placed concerning
the file.

The contents of the structure pointed to by but include the following members:

mode t stIIDde; 1* File mode [see mknod(2)] *1
ino t st:ino; 1* Inode number *1
dev t st_dev; 1* IO of device containing *1

uid t
gid=t
off t
timi!' t
time-t
time-t

long
long

st nlink;
st-uid;
st=gid;
st size;
st-atime;
st-mtime;
st:ctime;

1* a directory entry for this file *1
1* IO .of device *1
/* This entry is defined only for *1
1* char special or block special files *1
1* Number of links *1
1* User IO of the-file's owner *1
1* Group IO of the file's group *1
1* File size in bytes *1
1* Time of last access */
/* Time of last data modification *1
1* Time of last file status change *1
1* Times measured in seconds since *1
1* 00:00:00 UTC, Jan. 1, 1970 *1

at blksize; 1* Preferred·I/O block size *1
st}>lOCks; /* Number st_blksize blocks allocated *1

Page 1

stat (2)

Page 2

st m::Kie

st dey

stat (2)

The mode of the file as described in mknod(2). In addition to the
modes described in mknod(2), the mode of a file may also be S _IFLNK
if the file is a symbolic link. (Note that S JFLNK may only be
returned by lstat.)

This field uniquely identifies the file in a given file system. The pair
st_ino and st_dev uniquely fdentifies regular files.
This field uniquely identifies the file system that contains the file. Its
value may be used as input to the ustat system call to determine
more information about this file system. No other meaning is associ­
ated with this value.

st rdev This field should be used only by administrative commands. It is
valid only for· block special or character special files and only has
meaning on the system where the file was configured.

st _ nlink This field should be used only by administrative commands.

st uid The user ID of the file's owner.

st_9id The group ID of the file's group.

st size For regular files, this is the address of the end of the file. For block
special or character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Changed by the following sys­
tem calls: creat, mknod, pipe, ut.ime, and read.

st_mtime Time when data was last modified. Changed by the following system
calls: creat, mknod, pipe, ut.ime, and w;rite.

st_ctime Time when file status was last changed. Changed by the following
system calls: chmod, chown, creat, link, mknod, pipe, unlink,
utime, and write.

st blksize
- A hint as to the ''best'' unit size for I/O operations. This field is not

defined for block-special or character-special files.

st blocks
- . The total number of physical blocks of size 512 bytes actually allocated

on disk. This field is not defined for block-special or character-special
files.

stat and lstat fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix.

EFAULT
EINTR

ELOOP

but or path points to an invalid address.

A signal was caught during the stat or lstat system call.

Too many symbolic links were encountered in translating
path.

10/89

stat (2)

EMULTIHOP

ENAMETOOLONG

ENOENT

ENOTDIR

ENOLINK

EOVERFLOW

stat (2)

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while

POSIX NO TRUNe is in effect. - --
The named file does not exist or is the null pathname.

A component of the path prefix is not a directory.

path points to a remote machine and the link to that
machine is no longer active.

A component is too large to . store in the structure pointed
to by buf.

fstat fails if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EFAULT

EINTR

ENOLINK

EOVERFLOW

buf points to an invalid address.

A signal was caught during the fstat system call.

fildes points to a remote machine and the link to that
machine is no longer active.

A component is too large to store in the structure pointed
to by buf.

SEE ALSO
chrood(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fattach(3C), stat(5).

DIAGNOSTICS

10/89

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

statvfs(2) statvfs(2)

NAME
statvfs, fstatvfs - get file system information

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/statvfs.h>

int statvfs (const char *path, struct statvfs *buf);

int fstatvfs (int fildes, struct statvfs *buf);

DESCRIPTION

10/89

statvfs returns a "generic superblock" describing a file system; it can be used to
acquire information about mounted file systems. buf is a pointer to a structure
(described below) that is filled by the system call.

path should name a file that resides on that file system. The file system type is
known to the operating system. Read, write, or execute permission for the
named file is not required, but all directories listed in the path name leading to
the file must be searchable.

The statvfs structure pointed to by buf includes the following members:

ulong
ulong

f bsize;
f:frsize;

/* preferred file system block size */
/* fundamental filesystem block size
(if supported) */

ulong /* total t of blocks on file system
in units of f frsize */

ulong
ulong

f bfree;
f:bavail;

/* total t of-free blocks */
/* t of free blocks avail to

non-superuser */
ulong
ulong
ulong

f_files;
f ffree;
f:favail;

/* total t of file nodes (inodes) */
/* total t of free file nodes */
/* t of inodes avail to

non-superuser*/
fsid_t f_fsid; /* file system id (dev for now) */
char f basetype [FSTYPSZ]; /* target fs type name,

- null-ter.minated */
ulong f_flag; /* bit mask of flags */
ulong f namemax; /* maximum file name length */
char f-fstr[32]; /* file system specific string */
ulong (::filler[16]; /* reserved for future expansion */

f_basetype contains a null-terminated FSType name of the mounted target (e.g.
s5 mounted over rfs will contain s5).

The following flags can be returned in the f_flag field:

ST RDONLY OxOl /* read-only file system */
ST:NOSUID Ox02 /* does not support setuid/setgid

ST NOTRUNC Ox04
semantics */

/* does not trunCate file names
longer than {NAMEumX}*/

Page 1

statvfs(2) statvfs(2)

fstatvfs is similar to statvfs, except that the file named by path in statvfs is
instead identified by an open file descriptor fi1des obtained from a successful
open, creat, dup, fentl, or pipe system call.

statvfs fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EFAULT

EINTR

EIO

ELOOP

EMOLTIHOP

ENAME'1'OOLONG

ENOENT

ENOLINK

ENOTDIR

path or buf points outside the process's allocated address space.

A signal was caught during statvfs execution.

An I/O error occurred while reading the file system.

Too many symbolic links were encountered in translating path.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of a path component exceeds {NAME_MAX} characters,
or the length of path exceeds {PATH_MAX} characters.

Either a component of the path prefix or the file referred to by
path does not exist.

path points to a remote machine and the link to that machine is
no longer active.

A component of the path prefix of path is not a directory.

fstatvfs fails if one or more of the following are true:

EFAULT buf points to an invalid address.

EBADF fi1des is not an open file descriptor.

EINTR

EIO

DIAGNOSTICS

A signal was caught during fstatvfs execution.

An I/O error occurred while reading the file system.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

Page 2

cluood(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

10/89

stime(2)

NAME
stime - set time

SYNOPSIS
tinclude <unistd.h>

int stime(const time_t *tp);

DESCRIPTION

stime (2)

stime sets the system's idea of the time and date. tp points to the value of time
as measured in seconds from 00:00:00 UTe January 1, 1970.

stime will fail if:

EPERM the effective user ID of the calling process is not super-user.

SEE ALSO
time(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89 Page 1

swapctl(2) swapctl (2)

NAME
swapctl - manage swap space

SYNOPSIS
tinclude <sys/stat.h>
iinclude <sys/swap.h>

int swapctl(int cmd, void *arg);

DESCRIPTION
swapctl adds, deletes, or returns information about swap resources. cmd
specifies one of the following options contained in <sys/swap.h>:

SC ADD /* add a resource for swapping */
SC LIST /* list the resources for swapping */
SC_REMOVE /* remove a resource for swapping */
SC GETNSWP /* return number of swap resources */

When SC _ADD or SC _ REMOVE is specified, arg is a pointer to a swapres structure
containing the following members:

char *sr_name; /* pathname of resource */
off t sr_start; /* offset to start of swap area */
off t sr_length; /* length of swap area */

sr_start and sr_length are specified in 512-byte blocks. When SC_LIST is
specified, arg is a pointer to a swaptable structure containing the following
members:

int swt_n; /* number of swapents following */
struct swapent swt _ ent [] ; /* array of swt _ n swapents * /

A swapent structure contains the following members:

char *ste""path; /* name of the swap file */
off t ste_start; /* starting block for swapping */
off t ste_length; /* length of swap area */
long steyages; /* number of pages for swapping */
long ste_free; /* number of ste""pages free */
long ste_flags; /* ST INDEL bit set if swap file */

/* is-now being deleted */

SC LIST causes swapctl to return at most swt n entries. The return value of
swapctl is the number actually returned. The-ST _ INDEL bit is turned on in
ste_flags if the swap file is in the process of being deleted. When SC_GETNSWP
is specified, swapctl returns as its value the nurnbcr of sVJap resources in use.
arg is ignored for this operation. The SC _ADD and SC _REMOVE functions will fail if
calling process does not have appropriate privileges.

RETURN VALUE

10/89

Upon successful completion, the function swapctl returns a value of 0 for
SC_ADD or SC_REM:>VE, the number of struct swapent entries actually returned
for SC _LIST, or the number of swap resources in use for SC _ GETNSWP. Upon
failure, the function swapctl returns a value of -1 and sets errno to indicate an
error.

Page 1

swapctl(2} swapctl(2}

ERRORS

Page 2

Under the following conditions, the function swapctl fails and sets errno to:

EEXIST Part of the range specified by sr _start and sr _length is
already being used for swapping on the specified resource
(SC~ADD).

EFAULT

EINVAL

EISDIR

ELOOP

ENAMETOOLONG

ENOENT

ENOMEM

ENOSYS

ENO'IDIR

EPERM

EROFS

arg, sr_name, or steyath pOints outside the allocated
address space.

The specified function value is not. valid, the path specified
is not a swap resource (SC_REH:)VE), part of the range
specified by sr_start and sr length lies outside the
resource specified (SC_ADD), or the specified swap area is
less than one page (SCjIDD).

The path specified for SCLADD is a directory.

Too many symbolic links were encountered in translating
the pathname provided to SC_ADD orSC_REX>VE .

The length of a component of the path specified for SC_ADD
or SCJlEX'VE exceeds (NAHE....~) characters or the length
of the path exceeds (PATIL MroC} characters and
CPOSIX_NO_TRUNC} is in effect.

The pathname specified fOr SC _ADD or· SC _ REM:>VE does not
exist.

An insufficient number of struct swapent structures were
provided to SC...:. LIST, or there were insufficient system
storage resources available during an SC_ADD or
SC_REX>VE, or the. system would not have enough swap
space after an SC JUX)VE.

The pathname specified for SC_ADD or SC_lUX)VE is not a
file or block special device.

Pathname provided to SC_ADD or SC_REK'NE contained a
component in the path prefix that was not a directory.

The process does not have appropriate privileges.

The pathname specified. forSC_ADD is a read-only file sys­
tem.

10/89

symllnk(2) symllnk(2)

NAME
Symlink - make a symbolic link to a file

SYNOPS.IS
'include <unistd.h> int symlink(const char *namel, const char
*name2);

DESCRIPTION

10/89

symlink creates a symbolic link name2 to the file name1. Either name may l>e an
arl>itrary pathname, the files ,need not l>e on the same file system, and name1 may
l>e nonexistent.

The file to which the syml>olic link points is use<! when an open(2) operation is
performed on the link: A stat(2) on a syml>olic link returns the linked-to file,
while an lstat returns information al>oqt the link itself. This can lead to surpris­
ing results when a symbolic link is made to a directory. To avoid confusion in
programs, the readlink(2) call can l>e used to read the contents of a syml>olic
link.

The syml>olic link is made unless one or more of the following are true:

EACCES Search permission is denied for a component of the path
prefix of name2.

EDQUOT

EDQUOT

EDQUOT

EEXIST

EFAULT

EIO

ELOOP

EllU\METOOLONG

ENOENT

ENOSPC

The directory in which the entry for the new symbolic link
is l>eing placed cannot be extended because the user's quota
of disk l>locks on the file system containing the directory
has been exhausted.

The new symbolic link cannot be created because the user's
quota of disk blocks on the file system which will contain
the link has been exhausted.

The user's quota of inodes on the file system on which the
file is being created has been exhausted.

The file referred to by name2 already exists.

name1 or· n~me2 points outside the allocated address space
for the process.

An I/O error occurs while reading from or writing to the
file system.

Too many symbolic links are encountered in translating
name2.

The length of the name1 or name2 argument exceed!>
{PATH_MUl, or<the length of a name1 or name2 component
exceeds {NAME.:.,!WC} while CPOSIX_NO_TRUNC) is in effect.

A component'ofthe path prefix of name2 does not exist.

The directory. in which the entry for the new symbolic link
is being placedeannot be extended because no space is left
on the file system containing the directory.

Page 1

symllnk(2)

ENOSPC

ENOSPC

ENOSYS

ENO'lDIR

EROFS

DIAGNOSTICS

symllnk(2)

The new symbolic link cannot be created because no space
is left on the file system which will contain the link.

There are no free inodes on the file system on whicil the file
is being created.

The file system does not support symbolic links

A component of the path prefix of name2 is not a 4irectory.

The file name2 would reside on a read-only file system.

Upon successful completion symlink returns a value of 0; otherwise, it returns -1
and places an error code in ermo.

SEE ALSO
link(2), readlink(2), unlink(2). cp(1) in the User's Reference Manual.

Pa$l8 2 10/89

sync(2}

NAME
sync - update super block

SYNOPSIS
tinclude <unistd.h>

void sync(void)i

DESCRIPTION

sync(2)

sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block I/O.

lt should be used by programs that examine a file system, such as fsck(1M),
df(1M), etc. It is mandatory before are-boot.

The writing, although scheduled, is not necessarily completed before sync
returns. The fsync system call completes the writing before it returns.

SEE ALSO
fsync(2)

10/89 Page 1

sys3b(2) sys3b(2)

NAME
sys3b - machine-specific functions

SYNOPSIS
iinclude <sys/sys3b.h>

int sys3b (int cmd, .••) ;

DESCRIPTION
sys3b implements machine-specific functions. The and argument determines the
function performed. The type and number of arguments expected depends on
the function.

Command GRNFLASH
When and is GRNFLASH, no arguments are expected. This function starts the
green LED flashing. This command is only available to the super-user.

Command GRNON
When and is GRNON, no arguments are expected. This function turns the green
LED to a solid on state. This command is available only to the super-user.

Command RNVR
When cmd is RNVR, an argument of type const struct nvparams * is expected.

struct nvparams {
char *addr;
char *data;
unsigned short cnt;
} i

This function reads cnt bytes at address addr in NVRAM <non-volatile RAM)
into address data. This command is available only to the super-user.

Command RTODC
When emd is RTODC, an argument of type struct todc * is expected.

struct todc {
short htenths;
short hhours;
short hm:>nth;
} i

short hsecs;
short hdaysi
short hyear;

short hmins;
short hweekday i

This function reads the hardware time-of-day clock and returns the data in the
structure referred to by the argument. This command is available only to the
super-user.

Command S3BSYM

10/89

When emd is S3BSYM, the symbol table created when a new bootable operating
system is configured may be accessed. The symbols available via this command
are defined in one of two places: the driver routines loaded or the variable
specifications in the files in the / etc/master. d directory. Two arguments are
expected: the first must be a pointer to a buffer into which the symbol table is
copied, and the second must be an integer containing the total size of the buffer.
The format of the symbol table is:

Page 1

sys3b(2) sys3b(2)

int size;
int count;

char name [] ;

/* synbol size in bytes */
/* total number of symbols */

/* for each symbol: */
/* name of symbol, padded */
/* with '\0' to next */
/* sizeof(long) boundary */

char symbol[l]; /* long value; value of symbol */

The S3BSVAL macro in sys/sys3b.h takes a pointer to a symbol name in the
table and returns its value. The S3BNXTSYM macro takes a pointer to a symbol
name in the table and returns a pointer to the next entry. Include sys/inline.h
to use these macros.

Typically, the symbol table would be retrieved with two calls to sys3b. First, the
size of the symbol table is obtained by calling sys3b with a buffer of one integer.
This integer is then used to obtain a buffer large enough to contain the entire
symbol table. The second invocation of sys3b with this newly obtained buffer
retrieves the entire symbol table.

tinclude <sys/sys3b.h>

int size;
struct s3bsym *buffer;

/* size of buffer needed */
/* buffer pointer */

sys3b(S3BSYM, (struct s3bsym *) 'size, sizeof(size));
buffer = (struct s3bsym *) malloc (size);
sys3b(S3BSYM, buffer, size);

Command S3BCONF

Page 2

When cmd is S3BCONF, the configuration table created during the configuration of
a new bootable operating system may be accessed. This table contains the names
and locations of the devices supported by the currently running UNIX system,
the names of all software modules included in the system, and the names of all
devices in the EDT that were ignored. Two arguments are expected: the first
must be a pointer to a buffer into which the configuration table is copied, and the
second must be an integer containing the total size of the buffer. The format of
the configuration table is:

int

long
char
char

ndev;

timestanp;
name[14];
flag;

/* total number of entries */

/* for each ent~ ... */
/* f timdat fram file header */
/* name of device/module */
/* configuration information */
/* Ox80: device ignored */
/* Ox40: name [] is a driver */
/* 0x20: name[] is a software module */

char board; / * local bus address of device * /

Typically, the configuration table would be retrieved with two calls to sys3b.
First, the number of entries is obtained by calling sys3b with a buffer of one
integer. This integer is then used to calculate and obtain a buffer large enough to
contain the entire configuration table. The second invocation of sys3b with this
newly obtained buffer retrieves the configuration table.

10/89

sys3b(2) sys3b(2)

tinclude <sys/sys3b.h>

int count;
int size;
struct s3bconf *buffer;

/* total number of devices */
/* size of buffer needed */
/* buffer pointer */

sys3b(S3BCONF, (struct s3bconf *)&count, sizeof(count»;
size .. sizeof(int);
size += count * sizeof(struct s3bc);
buffer" (struct s3bconf *)Jnalloc(size);
sys3b(S3BCONF, buffer, size);

Command S3BBOOT
When cmd is S3BBOOT, the timestamp and path name of the program last used to
bootstrap the machine may be accessed. The path name of the a.out format file
which was booted, and the timestamp from the file header [see a.out(4)] are
saved. One argument is expected: a pointer to a buffer into which the informa­
tion is copied. The format of this information is:

long timestanp; /* f tindat from file header */
char path [100] ; /* path name */

This information would be retrieved with a single call to sys3b.

tinclude <sys/sys3b.h>

struct s3bboot buffer; /* buffer */
sys3b(S3BBOOT, &buffer);

Command S3BAUTO
When cmd is S3BAUTO, no arguments are expected. This function returns a
boolean value in answer to the question, "Was the operating system reconfigured
during the last boot, or was an existing bootable operating system booted?" The
value returned is zero if an existing bootable (such as /stand/stand/unix or
/ stand/un~ was booted. The integer value 1 is returned if the bootable operat­
ing system was configured during the preceding boot process. The value is
undefined if the system was booted in "magic mode." This command is available
only to the super-user.

Command S3BFPHW

10/89

When cmd is S3BFPHW, an indication of whether or not a MAU is present is
returned. (See the Introduction to this manual for a description of the MAU.) One
argument, the address of an int, is expected. On return from the system call,
this int contains a 1 if a MAU is present or a 0 if a MAU is not present. If the
address of the int is not valid (for example, not word aligned, not user accessi­
ble) EFAULT is returned.

The following example determines whether a MAU is present:

'include <sys/sys3b.h>

int mau-present;
sys3b(S3BFPHW, &mau-present);

Page 3

sys3b(2) sys3b(2)

If this command succeeds, it returns 0 to the calling process. The call fails and
returns -1 if one or more of the following is true:

EFAULT mauJ>resent is not an integer.

EFAULT &mau '-present is an invalid address.

Command S3BSWPI

Page 4

Note: This cmd is available only with UNIX System V Release 2.1 and Release 3
software. Its function is subsumed by the swap command; see swap(lM).

When cmd is S3BSWPI, individual swapping areas may be added, deleted or the
current areas determined. The address of an appropriately primed swap buffer is
passed as the only argument. (Refer to the sys/swap.h header file for details of
loading the buffer.)

The format of the swap buffer is:

struct swapint {
char si cm:i;
char *s1 buf;
int si swplo;

/*command: list, add, delete*/
/*swap file path pointer*/
/*start block*/

int si:Pblks; /*swap size*/

Note that the add and delete options of the command may be exercised only by
the super-user.

Typically, a swap area is added by a single call to sys3b. First, the swap buffer is
primed with appropriate entries for the structure members. Then sys3b is
invoked.

tinclude <sys/sys3b.h>
tinclude <Sys/swap.h>

struct swapint swapbuf;

sys3b(S3BSWPI, &swapbuf);
/*swap into buffer ptr*/

If this command succeeds, it returns 0 to the calling process. It fails and returns
-1 if one or more of the following is true:

EFAULT swapbuf points to an invalid address.

EFAULT

ENOTBLK

EEXIST

ENOSPC
ENOMEM

ENOMEM

EINVAL

swapbuf. si _ buf points to an invalid address.

The swap area specified is not a block special device.

The swap area specified has already been added.

Too many s~ap areas are in use (if adding).

The swap area specified is the last remaining swap area.

There is no place to put swapped pages when deleting a swap area.

An argument is invalid.

10/89

sys3b(2) sys3b(2)

Command STIME
When cmd is STIME, an argument of type lang is expected. This function sets the
system time and date. The argument contains the time as measured in seconds
from 00:00:00 UTe January 1, 1970. This command is available only to the super­
user.

Command WNVR
When cmd is WNVR.' an argument of type struct nvparams * is expected (see
command RNVR). This function writes cnt bytes into address addr in NVRAM
<non-volatile RAM) from address data. This command is available only to the
super-user.

Command S3BTRAPLOCORE

10/89

Prior to release ~.O, user processes could read low memory (for example, read
accesses using NULL pointers were permitted from user programs). When cmd is
S3BTRAPLOCORE, user level access permission on low core memory can be
changed and user accesses of low core memory can be trapped. Only read access
is affected; user level write access to low core is not allowed under any cir­
cumstances.

A single argument of type int is expected. This argument may have one of the
following four values, defined in <sys/sys3b.h>:

S3BTLC DISABLE
Disable low core trapping. Read aCCesses to low core are allowed from
user processes.

S3BTLC SIGNAL
Trap low core accesses. Any user process which attempts to read low
core will be sent a SIGSEGVsignal with si_code set to SEGV_MAPERR.

S3BTLC PRINT
Trap low core accesses. Any user process which attempts to read low
core will be sent a SIGSEGV signal With si_code set to SEGV_MAPERR. In
addition, a message will be printed on the system console each time a pro­
cess attempts to read low core.

S3BTLC STATUS
Return current state of low core trapping. The state of low core trapping
is unchanged.

If this command succeeds, it returns one of S3BTLC DISABLE, S3BTLC SIGNAL,
S3BTLC_PRINT, to indicate the setting of low core protection prior to the call.
The command fails and returns -1 if one or more of the following is true:

EPERM The caller is not super-user (not required for S3BTLC _STATUS).

EINVAL An argument is invalid.

Page 5

sys3b(2) sys3b(2)

DIAGNOSTICS
On success, sys3b returns a value that depends on cmd as follows:

S3BSYM A value of zero.
S3BCONF A value of zero.
S3BBOOT A value of zero.
S3BAUTO A value of zero if an existing boot able operating system

(such as /stand/stand/unix or /stand/unix) was last
booted. A value of one if a new bootable operating sys­
tem was configured during the last boot process.

S3BTRAPLOCORE Returns the setting of low core protection prior to the
call.

Otherwise, a value of -1 is returned and errno is set to indicate the error. When
cmd is invalid, ermo is set to EINVAL on return.

SEE ALSO
sync(2), a. out(4).
cunix(1M), swap(1M), in the System Administrator's Reference Manual.

Page 6 10/89

sysfs(2) sysfs(2)

NAME
sysfs - get me system type information

SYNOPSIS
'include <sys/fstyp.h>
'include <sys/fsid.h>

int sysfs (int opcode, const char *fsname);

int sysfs (int opcode, int fs_index, char *buf);

int sysfs(int opcode);

DESCRIPTION
sysfs returns information about the file system types configured in the system.
The number of arguments accepted by sysfs varies and depends on the opcode.
The currently recognized opcodes and their functions are:

GETFSIND Translate fsrulme, a null-terminated file-system type identifier, into
a file-system type index.

GETFSTYP

GETNFSTYP

Translate fs _index, a file-system type index, into a null-terminated
me-system type identifier and write it into the buffer pointed to
by buf; this buffer must be at least of size FSTY.i?sz as defined in
<sys/fstyp.h>.

Return the total number of me system types configured in the sys­
teJp..

sysfs fails if one or more of the following are true:

EINVAL fsname points to an invalid file-system identifier; fs jndex is zero,
or invalid; opcode is invalid.

EFAULT buf or fsname points to an invalid user address.

DIAGNOSTICS

10/89

Upon successful completion, sysfs returns the file-system type index if the opcode
is GETFSIND, a value of 0 if the opcode is GETFSTYP, or the number of file system
types configured if the opcode is GETNFSTYP. Otherwise, a value of-l is returned
and errno is set to indicate the error.

Page 1

sysinfo(2) syslnfo(2)

NAME
sysinfo - get and set system information strings

SYNOPSIS
tinclude <sys/systeminfo.h>

long sysinfo (int comnand, char *buf, long count);

DESCRIPTION

10/89

sysinfo copies information relating to the UNIX system on which the process is
executing into the buffer pointed to by but; sysinfo can also set certain informa­
tion where appropriate commands are available. count is the size of the buffer.

The POSIX PlOO3.1 interface sySconf [see sysconf(2)] provides a similar class of
configuration information, but returns an integer rather than a string.

The commands available are:

SI_SYSNAME Copy iilto the array pointed to by but the string that would be
returned by uname [see uname(2)] in the sysname field. This is the
name of the implementation of the operating system, e.g., System V
or UTS.

51 HOS1NAME
- Copy into the array pointed to by but a string that names the

present host machine. This is the string that would be returned by
uname [see uname(2)] in the nodename field. This hostname or
nodename is often the name the machine is known by locally.

The hostname is the name of this machine as a node in some net­
work; different networks may have different names for the node, but
presenting the· nodename to the appropriate network Directory or
name-to-address mapping service should produce a transport end
point address. The name may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the ter­
minating null).

51 SET HOS1NAME
- - Copy the null-terminated contents of the array pointed to by but into

the string maintained by the kernel whose value will be returned by
succeeding calls to sysinfO with the command SI_HOSTNAME. This
command requires that the effective-user-id be super-user.

51_RELEASE Copy into the array pointed to by but the string that would be
returned by uname [see uname(2)] in the release field. Typical values
might be 4.0 or 3.2.

51 VERSION Copy into the array pointed to by but the string that would be
returned by uname [see uname(2)] in the version field. The syntax
and semantics of this string are defined by the system provider.

51 MACHINE
- Copy into the array pointed to by but the string that would be

returned by uname [see uname(2)] in the machine field, e.g., 3b2 or
580.

Page 1

syslnfo(2) sysinfo(2)

SI ARCHITECTURE
- Copy into the array pointed to by but a string describing the instruc­

tion set architecture of the current system, e.g., mc68030, m32100, or
i80486. These names may not match predefined names in the C
language compilation system.

SI HW PROVIDER
- - Copies the name of the hardware manufacturer into the array

pointed to by buf.

SI HW SERIAL
- - Copy into the array pointed to by but a string which is the ASCII

representation of the hardware-specific serial number of the physical
machine on which the system call is executed. Note that this may
be implemented in Read-Only Memory, via software constants set
when building the operating system, or by other means, and may
contain non-numeric characters. It is anticipated that manufacturers
will not issue the same "serial number" to more than one physical
machine. The pair of strings returned by SI_HW_PROVIDER and
SI_HW_SERIAL is likely to be unique across all vendor's System V
implementations.

SI SRPC DOMAIN
- - Copies the Secure Remote Procedure Call domain name into the

array pointed to by buf.

SISET SRPC DOMAIN
- - - Set the string to be returned by sysinfo with the

SI _ SRPC _DOMAIN command to the value contained in the array
pointed to by but. This command requires that the effective-user-id
be super-user.

sysinfo will fail if one or both of the following are true:

EPERM The process does not have appropriate privelege for a SET commands.

EINVAL
but does not point to a valid address, or the data for a SET command
exceeds the limits established by the implementation.

DIAGNOSTICS

USAGE

Page 2

Upon successful completion, the value returned indicates the buffer size in bytes
required to hold the complete value and the terminating null character. If this
value is no greater than the value passed in count, the entire string was copied; if
this value is greater than count, the string copied into but has been truncated to
count-l bytes plus a terminating null character.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

There is in many cases no corresponding programmatic interface to set these
values; such strings are typically settable only by the system administrator modi­
fying entries in the master. d directory or the code provided by the particular
OEM reading a serial number or code out of read-only memory, or hard<oded in
the version of the operating system.

10/89

syslnfo(2) syslnfo(2)

A good starting guess for count is 257, which is likely to cover all strings returned
by this interface in typical installations.

SEE ALSO
uname(2), sysconf(2)i
BSD compatibility package interfaces gethostname(3), gethostid(3).

10/89 Page 3

termios(2) termios(2)

NAME
termios: tcgetattr, tcsetattr, tcsenc:lbreak,
cfgetospeed, cfgetispeed, cfsetispeed,
tcsetpgrp, tcgetsid - general terminal interface

tcdrain, tcflush, tcflow,
cfsetospeed, tcgetpgrp,

SYNOPSIS
iinclude <termios.h>

int tcgetattr(int fildes, struct termios *termios-p);

int tcsetattr(int fildes, int optional actions,
const struct termios *termios-p);-

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_selector);

int tcflow(int fildes, int action);

speed_t cfgetospeed(struct termios *termios-p);

int cfsetospeed(const struct termios *teDmios-p, speed_t speed);

speed_t cfgetispeed(struct termios *termios-p);

int cfsetispeed(const struct teDmios *teDmios-p, speed_t speed);

iinclude <sys/types.h>
iinclude <termios.h>

pid_t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

DESCRIPTION
These functions describe a general terminal interface for controlling asynchronous
communications ports. A more detailed overview of the terminal interface can be
found in termio(7), which also describes an ioctl(2) interface that provides the
same functionality. However, the function interface described here is the pre­
ferred user interface.

Many of the functions described here have a termios y argument that is a pointer
to a termios structure. This structure contains the following members:

tcflag t c iflag; /* input modes */
tcflag-t c-oflag; /* output modes */
tcflag-t c-cflag; /* control modes */
tcflag-t c-lflag; /* local modes */
cc_t - C::::CC[NCCS]; /* control chars */

These structure members are described in detail in termio(7).

Get and Set Terminal Attributes

10/89

The tcgetattr function gets the parameters associated with the object referred
by fildes and stores them in the termios structure referenced by tennies y. This
function may be invoked from a background process; however, the terminal

Page 1

termios(2) termios(2)

attributes may be subsequently changed by a foreground process.

The tcsetattr function sets the parameters associated with the terminal (unless
support is required from the underlying hardware that is not available) from the
termios structure referenced by termios y as follows:

If optional_actions is TCSANOW, the change occurs immediately.

If optional_actions is TCSADRAIN, the change occurs after all output written
to fildes has been transmitted. This function should be used when chang­
ing parameters that affect output.

If optional_actions is TCSAFLUSH, the change occurs after all output written
to the object referred by fildes has been transmitted, and all input that has
been received but not read is discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in
<termios . h>.

Line Control

Page 2

If the terminal is using asynchronous serial data transmission, the tcsendbreak
function causes transmission of a continuous stream of zero-valued bits for a
specific duration. If duration is zero, it causes transmission of zero-valued bits for
at least 0.25 seconds, and not more than 0.5 seconds. If duration is not zero, it
behaves in a way similar to tcdrain.

If the terminal is not using asynchronous serial data transmission, the tcsend­
break function sends data to generate a break condition or returns without tak­
ing any action.

The tcdrain function waits until all output written to the object referred to by
fildes has been transmitted.

The tcflush function discards data written to the object referred to by fildes but
not transmitted, or data received but not read, depending on the value of
queue_selector:

If queue_selector is TCIFLUSH, it flushes data received but not read.

If queue_selector is TCOFLUSH, it flushes data written but not transmitted.

If queue _selector is TCIOFLUSH, it flushes both data received but not read,
and data written but not transmitted.

The tcflow function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action:

If action is TCOOFF, it suspends output.

If action is TCOON, it restarts suspended output.

If action if TCIOFF, the system transmits a STOP character, which causes
the terminal device to stop transmitting data to the system.

If action is TCION, the system transmits a START character, which causes
the terminal device to start transmitting data to the system.

10/89

termios(2) termlos(2)

Get and Set Baud Rate
The baud rate functions get and set the values of the input and output baud rates
in the tennios structure. The effects on the terminal device described below do
not become effective until the tcsetattr function is successfully called.

The input and output baud rates are stored in the tennios structure. The values
shown in the table are supported. The names in this table are defined in
<tennios. h>.

Name
BO
BSO
D75
B110
B134
B150
B200
B300

Description
Hang up
50 baud
75 baud'

110 baud
134.5 baud

150 baud
200 baud
300 baud

Name
B600
B1200
B1800
B2400
84800
B9600
B19200
B38400

Descripti()n
600 baud

1200 baud
1800 baud
2400 baud
4800 baud
9600 baud

19200 baud
38400 baud

cfgetospeed gets the output baud rate and stores it in the termios structure
pointed to by termiosy.

cfsetospeed sets the output baud rate stored in the tennios structure pointed
to by termiosy to speed. The zero baud rate, BO, is used to terminate the connec­
tion. . If BO is specified, the modem control lines are no longer be asserted. Nor­
mally, this disconnects the line.

cfgE!tispeed gets the input baud rate and stores it in the termios structure
pointed to by termiosy.

cfsetispJed: sets the ir\put'b~ud rate stored in the tennios structure pointed to
by termios y to speed. If the input baud rate is set to zero, the input baud rate is
specified by the value of the output baud rate. Both cfsetispeed and
cfsetospeed return a value of zero if successful and -1 to indicate an error.
Attempts to set unsupported baud rates are ignored. This refers both to changes
to baud rates not supported by the hardware, and to changes setting the input
and output baud rates to different values if the hardware does not support this.

Get and Set Terminal Foreground Process Group ID
tcsetpgrp sets the foreground process group ID of the terminal specified by fildes
to pgid. The file associated with fildes must be the controlling terminal of the cal­
ling process and the controlling terminal must be currently associated with the
session of the calling process. pgid must match a process group ID of a process in
the same session as the calling process.

tcgetpgrp returns the foreground process group ID of the terminal specified by
fildes. tcgetpgrp is allowed from a process that is a member of a background
process group; however, the information may be subsequently changed by a pro­
cess that is a member of a foreground process group.

Get Terminal Session ID
tcgetsid returns the session ID of the terminal specified by fildes.

10/89 Page 3

termlos(2) termlos(2)

DIAGNOSTICS

Page 4

On success, tcgetpgzp returns the process group ID of the foreground process
group associated with the specified terminal. Otherwise, it returns -1 and sets
ermo to indicate the error.

On su!=cess, tcgetsid returns the session ID associated with the specified termi­
nal. Otherwise, it returns -1 and sets errno to indicate the error.

On success, all other functions return a value of O. Otherwise, they return -1 and
set ermo to indicate the etror.

All of the functions fail if one of more of the following is true:

EBADF The fi1des argument is not a valid file deSCriptor.

ENO'I'l'Y The file associated with fi1des is not a terminal.

tcsetattr also fails if the following is true:

EINVAL The optionatactions argument is not a proper value, or an
attempt Was made to change an attribute represented in the ter­
mios structure to an unsupported value.

tcsendbreak also fails if the following is true:

EINVAL The device does not support the tcsendbreak function.

tcdrain also fails if one or more of the following is true:

EIN'l'R A signal interrupted the tcdrain function.

EINVAL The device does not support the tcdrain function.

tcflush also fails if the following is true:

)l:INVAL The device does not support the tcflush function or the
queue_selector argument is not a proper value.

tcflow also fails if the following is true:

EINVAL the device does not support the tcflow function or the action
argument is not a proper value.

tcgetpgrp also fails if the following is true:

ENOTl'Y the calling process does not have a controlling terminal, or fildes
does not refer to the controlling terminal.

tcsetpgrp also fails if the following is true:

EINVAL pgid is not a valid process group ID .

ENO'I'l'Y

EPERM

the calling process does not have a controlling terminal, or fi1des
does not refer to the controlling terminal, or the controlling ter­
minal is no longer associated with the session of the calling pro­
cess.

pgid does not match the process group of an existing process in
the same session as the calling process.

10/89

termlos(2) termlos(2)

tcgetsid also fails if the following is true:

EACCES fildes is a terminal that is not allocated to a session.

SEE ALSO
setsid(2), setpgid(2).
tennio(7) in the System Administrator's Reference Manual.

10/89 Page 5

tlme(2) time(2)

NAME
time - get time

SYNOPSIS
iinclude ~$ys/types.h>
iinclude <time.h>

time...;.t time(time_t *tloc);

DESCRIPTION
time returns the value of time in seconds since 00:00:00 UTe, January 1,1970.

If tloc is non-zero, the return value is also stored in the location to which tloc
points.

SEE ALSO
stime(2), ctime{3q

NOTES
time fails and its actions are undefined if tloc points to an illegal address.

DIAGNOSTICS .

10189

Upon successfUl completion, time returns the value of time. Otherwise, a value
of (time_t)-l is retumed and ermo is set to indicate the error.

Page 1

times (2) times (2)

NAME
times - get process and child process times

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
times fills the tms structure pointed to by buffer with time-accounting informa­
tion. The tms structure is defined in <sys/times . h> as follows:

struct tms {
clock t

} ;

clock t
clock-t
clock t

tms_utime;
tms stime;
tms-cutime;
tIns::::cstime;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait routine. All times are reported in
clock ticks per second. Clock ticks are a system-dependent parameter. The
specific value for an implementation is defined by the variable CLK _ TCK, found in
the include file limits .h. (On a 3B2 Computer clock ticks occur 100 times per
second.)

tIns _ utime is the CPU time used while executing instructions in the user space of
the calling process.

tIns _ stime is the CPU time used by the system on behalf of the calling process.

tIns cutime is the sum of the tIns utime and the tIns cutime of the child
processes.

tIns cstime is the sum of the tms stime and the tIns cstime of the child
processes.

times fails if:

EFAULT buffer points to an illegal address.

SEE ALSO
exec(2), fork(2), time(2), wait(2), waitid(2), waitpid(3C).
time(1), timex(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, times returns the elapsed real time, in clock ticks
per second, from an arbitrary point in the past (e.g., system start-up time). This
point does not change from one invocation of times to another. If times fails, a
-1 is returned and errno is set to indicate the error.

Page 1

uadmin(2) uadmin(2)

NAME
uadmin - administrative control

SYNOPSIS
tinclude <sys/uadmin.h>

int uadmi.n (int cm:i, int fen, int nrlep);

DESCRIPTION
uadmin provides control for basic administrative functions. This system call is
tightly coupled to the system administrative procedures and is not intended for
general use. The argument mdep is provided for machine-dependent use and is
not defmed here.'

As specified by cmd, the following commands are available:

A SHUTDOWN The system is shut down. All user processes are killed, the
buffer cache is flushed, and the root file system is unmounted.
The action to be taken after the system has been shut down is
specified by fen. The functions are generic; the hardware capa­
bilities vary on specific machines.

A REBOOT

AD HALT Halt the processor and turn off the power.

AD_BOOT Reboot the system, using /stand/unix.

AD lBOOT Interactive reboot; user is prompted for bootable
program name.

The system stops immediately without any further processing.
The action to be taken next is specified by fen as above.

The root file system is mounted again after having been fixed.
This should be used only during the startup process.

uadmin fails if any of the following are true:

EPERM The effective user ID is not super-user.

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

A SHUTDOWN Never returns.
A REBOOT Never returns.
A REK)UNT 0

Otherwise, a value of -1 is returned and errno is set to indicate the error.

10/89 Page 1

ullmit(2) ullmit(2)

NAME
ulimit - get and set user limits

SYNOPSIS
'include <Ulimit.h>

long ulimit (int and, ... /* newlimit * /);

DESCRIPTION
This function provides for control over process limits. The cmd values available
are:

UL GETFSIZE Get the regular file size limit of the process. The limit is in units
of 512-byte blocks and is inherited by child processes. Files of
any size can be read.

UL SETFSIZE Set the regular me size limit of the process to the value of newl­
imit , taken as a long. Any process may decrease this limit, but
only a process with an effective user ID of super-user may
increase the limit.

UL GMEMLIM Get the maximum possible break value [see brk(2)].

UL GDESLIM Get the current value of the maximum number of open mes per
process configured in the system.

The getrlimit system call provides a more general interface for controlling pro­
cess limits.

ulimit fails if the following is true:

EINVAL The cmd argument is not valid.

EPERM A process with an effective user ID other than super user
attempts to increase its me size limit.

SEE ALSO

NOTES

brk(2), getrlimit(2), write(2)

ulimit is effective in limiting the growth of regular files. Pipes are currently lim­
ited to {PIPE_MAX}.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

Page 1

umask(2)

NAME
wnask - set and get file creation mask

SYNOPSIS
'include <sys/types.h>
'include <sys/stat.h>
mode _ t wnask (mode _ t cmask);

DESCRIPTION

umask(2)

wnask sets the process's file mode creation mask to cmask and returns the previ­
ous value of the mask. Only the access permission bits of cmask and the file
mode creation mask are used.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2), stat(S).
mkdir(l), sh(1) in the User's Reference Manual.

DIAGNOSTICS
'The previous value of the file mode creation mask is returned.

10/89 Page 1

umount(2) umount(2)

NAME
woount - unmount a file system

SYNOPSIS
iinclude <sys/mount.h>

int umount(const char *file);

DESCRIPTION
woount requests that a previously mounted file system contained on the block
special device or directory identified. by file be unmounted. file is a pointer to a
path name. After unmounting the file system, the directory upon which the file
system was mounted reverts to its ordinary interpretation.

woount may be invoked only by the super-user.

woount will fail if one or more of the following are true:

EPERM The p~ess's effective user ID is not super-user.

EINVAL file does not exist.

ELOOP Too many symbolic links were encountered in translating
the path pointed to by file.

ENAMETOOLONG

ENOTBLK

EINVAL

EBUSY

EFAULT

EREM:>TE

ENOLINK

EMULTIHOP

SEE ALSO
mount(2).

DIAGNOSTICS

The length of the file argument exceeds {PA'1'lU~X}, or the
length of a file component exceeds {NAME~} while
_POSIX_NO_TRUNC is in effect.

file is not a block special device.

file is not mounted.

A file on file is busy.

file points to an illegal address.

file is remote.

file is on a remote machine, and the link to that machine is
no longer active.

Components of the path pointed to by file require hopping
to multiple remote machines.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89 Page 1

uname(2) uname(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
tinclude <sys/utsname.h>

int uname (struct utsname .name);

DESCRIPTION
uname stores information identifying the current UNIX system in the structure
pointed to by name.
uname uses the structure utsname defined in <sys/utsname. h> whose members
are:

char sysname [SYS NMLN];
char nodename [SYS NMLN];
char release [SYS NMLN];
char Version [Syg-NMLN] ;
char machine [SYS :NMLN] ;

uname returns a null-terminated character string naming the current UNIX system
in the character aiTaysysname. Similarly, nodename contains the name that the
system is known by on a communications network. release and version further
identify the operating system. machine contains a standard name that identifies
the hardware that the UNIX system is running on.

EFAULT uname fails if name points to an invalid address.

SEE AI-SO
uname(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

uron successful completion, a non-negative value is returned. Otherwise, a value
o. -1 is returned and er:r:no is set to indicate the error.

Page 1

unllnk(2) unllnk(2)

NAME
unlink - remove directory entry

SYNOPSI$
f~clude <unistd.h>

int unltnk(const char' .path);
DESCRIPTION

10/89

unlink removes the directory entry named by the path name pointed to by path.
and decrements the link count of the file referenced by the directory entry. When
all links to a file have been removed and no process has the file open, the space
occupied by the file is freed and the file ceases to exist. If one or more processes
have the file open when thelast link is removed, space occupied by the file is not
released until all references to the file have been closed. If path is a symbolic link,
the symbolic link is removed. path should not name a directory unless the pro­
cess has appropriat~ privileges. Applications should use rndir to remove direc­
tories.

Upon successful completion unlink marks for update the st_ctilne and
st_mtilne fields of the parent directory. Also, if the file's link count is not zero,
the st_ctilne field of the file is marked for update.

The named file is unlinked unless one or more of the follpwing are true:

EACCES Search permission is denied for a component of the path
prefix.

EACCES

E:ACCES

EBUSY

EFAULT

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

ENOENT

ENOTDIR

Write permission is denied pn the directory containing the
link to be removed.

The parent directory has the sticky bit set and the file is not
writable by the user; the user does not own the parent
directory and the user does not own the file;

The entry to be unlinked is the mount point for a mounted
file system.

path points outside the process's allocated address space.

A .signal was caught during the unlink s}1'tem call.

Too many sylnbolic links were encountered in translating
path,

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX.;.. NO _ TRONC is in effect.

The named file does not exist or is a null pathname. The
user is not a super-user.

A component of the path prefix is nota directory.

Page 1

unllnk(2)

EPERM

ETXTBSY

EROFS

ENOLINK

SEE ALSO

unlink(2)

The named file is a directory and the effective user ID of
the process is not super-user.

The entry to pe unlinked is the last link to a pure procedure
(shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only file
system.

path points to a remote machine and the link to that
machine is no longer active.

close(2), link(2), open(2), r:m:1ir(2).
xm(1) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Page 2 10/89

ustat(2} ustat(2}

NAME
ustat - get file system statistics

SYNOPSIS
tinclude <sys/types.h>
tinclude <ustat.h>

int ustat(dev_t dey, stzuct ustat *buf);

DESCRIPTION
ustat returns information about a mounted file system. dev is a device number
identifying a device containing a mounted file system [see mkdev(3C»). but is a
pointer to a ustat structure that includes the following elements:

daddr t f tfree; /* Total free blocks */
ino t- f-tinode; /* Nunt>er of free inodes */
char f-fname[6]; /* Filsys name */
char f-fpack[6]; /* F!lsys pack name */

ustat fails if one or more of the following are true:

EINVAL dev is not the device number of a device containing a mounted
file system.

EFAOLT

EINTR

ENOLINK

ECCHd

but points outside the process's allocated address space.

A signal was caught during a ustat system call.

dev is on a remote machine and the link to that machine is no
longer active.

dev is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
stat(2), statvfs(2), mkdev(3C), fs(4).

NOTES
ustat will be phased out in favor of the statvfs function.

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

utlme(2) utlme(2)

NAME
utime - set file access and modification times

SYNOPSIS
tinclude <sys/types.h>
tinclude <utime.h>

int utime (const char "'path, const struct utinbuf "'times);

DESCRIPTION

10/89

path points to a path name naming a file. utime sets the access and modification
times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utinbuf structure
(defined in utime .h) and the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or the super­
user may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 UTC,
Jan. 1, 1970.

struct utimbu£ {

} ;

time t actime;
time:t m:xitime;

/'" access time "'/
/ '" m:xlification time '" /

utime also causes the time of the last file status change (st_ctime) to be
updated.

utime will fail if one or more of the following are true:

EACCES Search permission is denied by a component of the path
prefix.

EACCES

EFAULT

EFAULT

EINTR

ELOOP

EMULTIHOP

ENAMETOOLONG

The effective user 1D is not super-user and not the owner of
the file and times is NULL and write access is denied.

times is not NULL and points outside the process's allocated
address space.

path points outside the process's allocated address space.

A signal was caught during the utime system call.

Too many symbolic links were encountered in translating
path.

Components of path require hopping to multiple remote
machines and the file system does not allow it.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds· {NAME_MAX} while

POSIX NO TRONe is in effect. - --

Page 1

utlme(2)

ENOENT

ENOLINK

ENO'IDIR

EPERM

EROFS

SEE ALSO
stat(2).

DIAGNOSTICS

utime(2)

The named file does not exist or is a null pathname.

path points to a remote machine and the link to that
machine is no longer active.

A component of the path prefix is not a directory.

The effective user ID is not super-user and not the owner of
the file and times is not NULL.

The file system containing the file is mounted read-only.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Page 2 10/89

vfork(2) vfork(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
tinclude <unistd.h>

pid_t vfork (void);

DESCRIPTION
vfork can be used to create new processes without fully copying the address
space of the old process, which is horrendously inefficient in a paged environ­
ment. It is useful when the purpose of fork would have been to create a new
system context for an execve. vfork differs from fork in that the child borrows
the parent's memory and thread of control until a call to execve or an exit (either
by a call to exit or abnormally.) The parent process is suspended while the
child is using its resources.
vfork returns 0 in the child's context and (later) the process ID (PID) of the child
in the parent's context.

vfork can normally be used just like fork. It does not work, however, to return
while running in the child's context from the procedure which called vfork since
the eventual return from vfork would then return to a no longer existent stack
frame. Be careful, also, to call _exit rather than exit if you cannot execve,
since exit will flush and close standard I/O channels, and thereby mess up the
parent processes standard I/O data structures. Even with fork it is wrong to call
exit since buffered data would then be flushed twice.

DIAGNOSTICS
Upon successful completion, vfork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a
value of -1 is returned to the parent process, no child process is created, and the
global variable ermo is set to indicate the error.

vfork will fail and no child process will be created if one or more of the follow­
ing are true:

EAGAIN

EAGAIN

The system-imposed limit on the total number of processes under
execution would be exceeded. This limit is determined when the
system is generated.

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. This limit is
determined when the system is generated.

ENOMEM There is insufficient swap space for the new process.

SEE ALSO

NOTES

10/89

exec(2), exit(2), fork(2), ioctl(2), wait(2).

This system call will be eliminated in a future release. System implementation
changes are making the efficiency gain of vfork over fork smaller. The memory
sharing semantics of vfork can be obtained through other mechanisms.

Page 1

vfork(2) vfork(2)

Page 2

To avoid a possible deadlock situation, processes that are children in the middle
of a vfork are never sent SIG'l'TOOor SIGTTIN signals; rather, output or ioctls are
allowed and input attempts result in an EOF indication.
On some systems, the implementation of vfork causes the parent to inherit regis­
ter values from the child. This can create problems for certain optimizing com­
pilers if <unistd.h> is not included in the source calling vtork.

10/89

walt(2) waH(2)

NAME
wait - .wait for child process to stop or terminate

SYNOPSIS
'include <sys/types ~ h>
tin¢lude <sys/wait.h>

pid_t wait(int *stat_lec);

DESCRIPTION
wait suspends the calling process uhtil one of its immediate children terminates
or untU a child that is being traced stops because it has received a signal. The
wait system call will return prematurely if a signal is received. If all child
processes stopped or terminated prior to the call on wait, return is immediate.

If wait returns because the status of a child process is available, it returns the
process ID of the diild process. If the calling process had specified a non-zero
value for stat;...loc, the status of the child process will be stored in the location
pOinted to bystaf _loco It may be evaluated with the macros described on
wstat(5). In the following, status is the object pointed to by stat Joe:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8
bits will be set equal to WSTOPFLG.

If the child process terminated due to an exit call, the low order 8 bits of
status will be 0 and the high order 8 bits will contain the low order 8 bits
of the argument that the child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of
status will be 0 and the low order 8 bits will contain the number of the
signal that caused the termination. In addition, if WCOREFLG is set, a "core
image" will have been produced; see signal(2).

If wait returns because the status of a child process is available, then that status
may be evaluated with the macros defined by wstat(5).

If a parent process terminates without waiting for its child processes to terminate,
the patent process 10 of each child process is set to 1. This means the initializa­
tion process inherits the child processes; see intro(2).

wait will fail if one or both of the following is true:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function W!lS interrupted by a signal.

SEE A \..SO

NOTES

10189

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2),
signal(S), wstat(5).

See NOTES in signal(2).

If SIGCID is held, then wait does not recognize death of children.

Page 1

walt (2) walt (2)

DIAGNOSTICS

Page 2

If wait returns due to II. stopped or terminllted child process, the process ID of
the child is returned to the clllling process. Otherwise, Il value of -1 is rettuned
Ilnd errno is set to indiCilte the error.

10/89

waltld(2) waltld(2)

NAME
waitid - wait for child process to change state

SYNOPSIS
'include <sys/types.h>
'include <wait.h>

int waitid(idtype t idtype, id_t id, siginfo_t *infop, int
options); -

DESCRIPTION

10/89

waitid suspends the calling process until one of its children changes state. It
records the current state of a child in the structure pointed to by in fop. If a child
process changed state prior to the call to waitid, waitid returns immediately.

The idtype and id arguments specify which children waitid is to wait for.

If idtype is P_PID, waitid waits for the child with a process ID equal to
(pid_t) id.
If idtype is P _PGID, waitid waits for any child with a process group ID
equal to (pid_t) id.
If idtype is P_ALL, waitid waits for any children and id is ignored.

The options argument is used to specify which state changes waitid is to wait for.
It is formed by an OR of any of the following flags:

WEXlTED

WTRAPPED

WSTOPPED

WCONTlNUED

WNOHANG
WNOWAIT

Wait forprocess(es) to exit.

Wait for traced process(es) to become trapped or reach a break­
point [see ptrace(2»).

Wait for and return the process status of any child that has
stopped upon receipt of a signal.

Return the status for any child that was stopped and has been
continued.

Return immediately.

Keep the process in a waitable state.

infop must point to a siginfo_t structure, as defined in siginfo(5). siginfo_t
is filled in by the system with the status of the process being waitoo for.

waitid fails if one or more of the following is true.

EFAULT infop points to an invalid address.

EINTR

EINVAL

EINVAL
ECHIID

waitid was interrupted due to the receipt of a signal by the cal­
ling process.

An invalid value was specified for options.
idtype and id specify an invalid set of processes.

The set of processes specified by idtype and id does not contain
any unwaited-for processes.

Page 1

waltld(2) waitid(2)

DIAGNOSTICS
If waitid returns due to a change of state of one of its children, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO

Page 2

intro(2), exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(2),
sigaction(2), wait(2), siginfo(S).

10/89

waltpld(2) waitpid(2)

NAME
waitpid - wait for child process to change state

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/wait.h>

pid_t waitpid (pid_t pid, int *stat_loc, int options);

DESCRIPTION

10/89

waitpid suspends the calling process until one of its children changes state; if a
child process changed state prior to the call to waitpid, return is immediate. pid
specifies a set of child processes for which status is requested.

If pid is equal to (pid_t) -1, status is requested for any child process.

If pid is greater than (pid _ t) 0, it specifies the process ID of the child pro­
cess for which status is requested.

If pid is equal to (pid _ t) 0 status is requested for any child process whose
process group ID is equal to that of the calling process.

If pid is less than (pid_t) -1, status is requested for any child process
whose process group ID is equal to the absolute value of pid.

If waitpid returns because the status of a child process is available, then that
status may be evaluated with the macros defined by wstat(5) . If the calling pro­
cess had specified a non-zero value of stat _Zoe, the status of the child process will
be stored in the location pointed to by stat _loe.

The options argument is constructed from the bitwise inclusive OR of zero or
more of the following flags, defined in the header file <sys/wait .h>:

WCONTINUED the status of any continued child process specified by pid, whose
status has not been reported since it continued, shall also be
reported to the calling process.

WNOHANG

WNOWAIT

WONTRACED

waitpid will not suspend execution of the calling process if
status is not immediately available for one of the child processes
specified by pid.
keep the process whose status is returned in stat _Zoe in a waitable
state. The process may be waited for again with identical results.

the status of any child processes specified by pid that are
stopped, and whose status has not yet been reported since they
stopped, shall also be reported to the calling process.

waitpid with options equal to lo"'v'l~TRACED and pid equal to (pid_t)-l is identical
to a call to wait(2).

waitpid will fail if one or more of the following is true:

EINTR waitpid was interrupted due to the receipt of a signal sent by
the calling process.

Page 1

waitpid(2) waitpid(2)

EINVAL

ECHILD

An invalid value was specified for options.
The process or process group specified by pid does not exist or is
not a child of the calling process or can never be in the states
specified by options.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2), sigac­
tion(2), siginfo(S), wstat(S)

DIAGNOSTICS

Page 2

If waitpid returns because the status of a child process is available, this function
shall return a value equal to the process ID of the child process for which status is
reported. If waitpid returns due to the delivery of a signal to the calling pro­
cess, a value of -1 shall be returned and ermo shall be set to EINTR. If this func­
tion was invoked with WNOHANG set in options, it has at least one child process
specified by pid for which status is not available, and ~tatus is not available for
any process specified by pid, a value of 0 shall be returned. Otherwise, a value of
-1 shall be returned, and ermo shall be set to indicate the error.

10/89

write (2) write (2)

NAME
write, writev - write on a file

SYNOPSIS
tinclude <unistd.h>
int write (int fildes, const void *buf, unsigned nbyte);

tinclude <sys/types.h>
tinclude <sys/uio.h>

int writev(int fildes, const struct iovec *iov, int iovent);

DESCRIPTION

10/89

write attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with fildes. If nbyte is zero and the file is a regular file, write returns
zero and has no other results. fildes is a file descriptor obtained from a creat,
open, dup, fentl, or pipe system call.

writev performs the same action as write, but gathers the output data from the
iovcnt buffers specified by the members of the iov array: iov[O], iov[l], ... ,
iov[iovcnt-l]. The iovcnt is invalid if greater than 0 and less than or equal to
{IOV_MAX}.

For writev, the iovec structure contains the following members:

caddr t iov base;
int iov~en;

Each iovec entry specifies the base address and length of an area in memory
from which data should be written. writev always writes a complete area before
proceeding to the next.

On devices capable of seeking, the actual writing of data proceeds from the posi­
tion in the file indicated by the file pointer. On return from write, the file
pointer is incremented by the number of bytes actually written. On a regular file,
if the incremented file pointer is greater than the length of the file, the length of
the file is set to the new file pointer.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

If the 0_ APPEND flag of the file status flags is set, the file pointer is set to the end
of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, write does not
return until both the file data and file status have been physically updated. This
function is for special applications that require extra reliability at the cost of per­
formance. For block special files, if O_SYNC is set, write does not return until the
data has been physically updated.

A write to a regular file is blocked if mandatory file/record locking is set [see
chmod(2)], and there is a record lock owned by another process on the segment of
the file to be written:

Page 1

write(2) write (2)

Page 2

If O_NDELAY or O_NONBLOCK is set, write returns -1 and sets errno to
&AGAIN.

If OJIDELAY and O_NONBLOCK are clear, write sleeps until all blocking
locks are removed or the write is terminated by a signal.

If a write requests that more bytes be written than there is room for-for exam­
ple, if the write would exceed the process file size limit [see getrlimit(2) and
ulimit(2»), the system file size limit, or the free space on the device-only as
many bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512-bytes
returns 20. The next write of a non-zero number of bytes gives a failure return
(except as noted for pipes and FIFO below).

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

There is no file offset associated with a pipe, hence each write request
appends to the end of the pipe.

Write requests of {PIPE_BUF} bytes or less are guaranteed not to be inter­
leaved with data from other processes doing writes on the same pipe.
Writes of greater than {PIPE_BUF} bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether or not the
O_NONBLOCK or O_NDELAY flags are set.

If 0_ NONBLOCK and 0_ NDELAY are clear, a write request may cause the pro­
cess to block, but on normal completion it returns nbyte.

If O_NONBLOCK is set, write requests are handled in the following way:
the write does not block the process; write requests for {PIPE_BUF} or
fewer bytes either succeed completely and return nbyte, or return -1 and
set errno to &AGAIN. A write request for greater than {PIPE_BUF} bytes
either transfers what it can and returns the number of bytes written, or
transfers no data and returns -1 with errno set to &AGAIN. Also, if a
request is greater than {PIPE_BUF} bytes and all data previously written
to the pipe has been read, write transfers at least {PIPE_BUF} bytes.

IfO_NDELAY is set, write requests are handled in the following way: the
write does not block the process; write requests for {PIPE_BUF} or fewer
bytes either succeed completely and. return nbyte, or return O. A write
request for greater than {PIPE_BUF} bytes either transfers what it can and
returns the number of bytes written, or transfers no data and returns O.
Also, if a request is greater than {PIPE_BUF} bytes and all data previously
written to the pipe has been read, write transfers at least {PIPE_BUF}
bytes.

When attempting to write to a file descriptor (other than a pipe or FIFO) that sup­
ports nonblockingwrites and cannot accept the data immediately:

If 0 NONBLOCK and 0 NDELAY are clear, write blocks until the data can be
accepted. -

10/89

write (2) write (2)

10/89

If O_NONBLOCK or O_NDELAY is set, write does not block the process. If
some data can be written without blocking the process, write writes what
it can and returns the number of bytes written. Otherwise, if O_NONBLOCK
is set, it returns -1 and sets errno to EAGAIN or if 0_ NDELAY is set, it
returns O.

For STREAMS files [see intro(2)], the operation of write is determined by the
values of the minimum and maximum nbyte range ("packet size") accepted by the
stream. These values are contained in the topmost stream module. Unless the
user pushes the topmost module [see I_PUSH in streamio(7)], these values can
not be set or tested from user level. If nbyte falls within the packet size range,
nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write breaks the buffer into maximum packet size seg­
ments prior to sending the data downstream (the last segment may be smaller
than the maximum packet size). If nbyte does not fall within the range and the
minimum value is non-zero, write fails and sets errno to ERANGE. Writing a
zero-length buffer (nbyte is zero) to a STREAMS device sends a zero length mes­
sage with zero returned. However, writing a zero-length buffer to a pipe or FIFO
sends no message and zero is returned. The user program may issue the
I_SWROPT ioctl(2) to enable zero-length messages to be sent across the pipe or
FIFO [see streamio(7)].

When writing to a stream, data messages are created with a priority band of zero.
When writing to a stream that is not a pipe or FIFO:

If O_NDELAY and O_NONBLOCK are not set, and the stream cannot accept
data (the stream write queue is full due to internal flow control condi­
tions), write blocks until data can be accepted.

If 0_ NDELAY or 0_ NONBLOCK is set and the stream cannot accept data,
write returns -1 and sets errno to EAGAIN.

If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been
written when a condition occurs in which the stream cannot accept addi­
tional data, write terminates and returns the number of bytes written.

write and writev fail and the file pointer remains unchanged if one or more of
the following are true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is
set, and there is a blocking record lock.

EAGAIN

EAGAn I

EAGAIN

EBADF

Total amount of system memory available when reading via raw
I/O is temporarily insufficient.
Ii.,.." ~~""OTnrd- ;L! 'ft"I'.:IIrla "r\. 'U.7"';"~ f.n. '::IiI C:+'I"O'.:lTY'l .. 1,'.:11- I'"':::ln "no" '.:Il'"ron+ rl'.:l+'.:I

.&-:t.J.L CA."''''","J.'''lt'''' .1.00 .1..1.,"-. _1..1." II.V 11.4. 0 ""'-.1. .. lI.J.l'I,A.II. 11.4.I.L_ .. ---..... r
with the 0_ NDELAY or 0_ NONBLOCK flag set.

If a write to a pipe or FIFO of {PIPE_BUF} bytes or less is
requested and less than nbytes of free space is available.

fildes is not a valid file descriptor open for writing.

Page 3

write (2) write (2)

Page 4

EDEADLK

EFAULT

EFBIG

EINTR

EINVAL

EIO

ENOLCK

ENOLINK

ENOSR

ENOSPC

The write was going to go to sleep and cause a deadlock situa­
tion to occur.

buf points outside the process's allocated address space.

An attempt is made to write a file that exceeds the process's file
size limit or the maximum file size [see getrlimit(2) and
ulimit(2»).

A signal was caught during the write system call.

An attempt is made to write to a stream linked below a multi­
plexor.

The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set; the process is nei­
ther ignoring nor blocking SIGTTOU signals, and the process
group of the process is orphaned.

The system record lock table was full, so the write could not go
to sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

An attempt is made to write to a stream with insufficient
STREAMS memory resources available in the system.

During a write to an ordinary file, there is no free space left on
the device.

ENXIO A hangup occurred on the stream being written to.

EPIPE and SIGPIPE signal

EPIPE

EPIPE

ERANGE

ENOLCK

An attempt is made to write to a pipe that is not open for read­
ing by any process.

An attempt is made to write to a FIFO that is not open for read­
ing by any process.

An attempt is made to write to a pipe that has only one end
open.

An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

Enforced record locking was enabled and {LOCK_MAX} regions
are already locked in the system.

In addition, writev may return one of the following errors:

EINVAL iovcnt was less than or equal to 0, or greater than 16.

EINVAL One of the iov _len values in the iov array was negative.

EINVAL The sum of the iov _len values in the iov array overflowed a 32-
bit integer.

10/89

write (2) write(2)

A write to a STREAMS file can fail if an error message has been received at the
stream head. In this case, errno is set to the value included in the error message.

Upon successful completion write and writev mark for update the st_ctime
and st mtime fields of the file.

SEE ALSO
intro(2), creat(2), dup(2), fcntl(2), getrlimit(2), lseek(2), open(2), pipe(2),
ulimit(2).

DIAGNOSTICS

10/89

On success, write returns the number of bytes actually written. Otherwise, it
returns -1 and sets errno to indicate the error.

Page 5

Intro(3) intro(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries, other than those func­
tions that directly invoke UNIX system primitives, which are described in Sec­
tion 2 of this volume. Function declarations can be obtained from the #include
files indicated on each page. Certain major collections are identified by a letter
after the section number:

(3C) These functions, together with those of Section 2 and those marked (3S),
constitute the standard C library, libe, which is automatically linked by
the C compilation system. The standard C library is implemented as a
shared object, libe. so, and an archive, libe. a. C programs are linked
with the shared object version of the standard C library by default. Specify
-dn on the cc command line to link with the archive version. [See ceO)
for other overrides, and the "c Compilation System" chapter of the
Programmer's Guide: ANSI C and Programming Support Tools for a discus­
sion.]

(3S) These functions constitute the "standard I/O package" [see stdio(3S)].

(3E) These functions constitute the ELF access library, libelf. This library is
not implemented as a shared object, and is not automatically linked by the
C compilation system. Specify -Ie If on the cc command line to link with
this library.

(3G) These functions constitute the general-purpose library, libgen. This
library is not implemented as a shared object, and is not automatically
linked by the C compilation system. Specify -lgen on the cc command
line to link with this library.

(3M) These functions constitute the math library, libm. [See intro(3M) and
math(5).] This library is not implemented as a shared object, and is not
automatically linked by the C compilation system. Specify -1m on the cc
command line to link with this library.

(3X) Specialized libraries. The files in which these libraries are found are given
on the appropriate pages.

DEFINITIONS

10/89

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, conventionally represented in the C
language as \0. A character array is a sequence of characters. A null-terminated
character array (a string) is a sequence of characters, the last of which is the null
character. The null string is a character array containing only the terminating
null character. A NULL pointer is the value that is obtained by casting 0 into a
pointer. C guarantees that this value will not match that of any legitimate
pointer, so many functions that return pointers return NULL to indicate an error.
The macro NULL is defined in stdio.h. Types of the form size_t are defined in
the appropriate header files.

Page 1

Inti'0(3) Intro(3)

FILES
INCDIR
UBDIR
UBDIR/l:ilic. so
UBDIR/l:ilic. a
UBDIR/ libgen. a
UBDIR/l:ibm. a
UBDIR/l:ibsfm. sa

usually /usr/include
usually /usr/ccs/l:ib

/usr/l:ib/l:ilic.so.l

SEE ALSO
ar(1), ce(1), ld(1), lint(l), rm(l), intro(2), intro(3M), stdio(3S), math(S).
The "C Compilation System" chapter in the Programmer's Guide: ANSI C and Pro­
gramming Support Tools.

DIAGNOSTICS

NOTES

Page 2

For functions that return floating-point values, error handling varies according to
compilation mode. Under the -Xt (default) option to ce, these functions return
the conventional values 0, ±HUGE, or NaN when the function is undefined for the
given arguments or when. the value is not representable. In the -Xa and -Xc
compilation modes, ±HUGE_VAL is returned instead of ±HuGE. (HUGE_VAL and
HUGE are defined in math.h to be infinity and the largest-magnitude single-
precision number, respectively.) .

None of the functions, external variables, or macros should be redefined in the
user's programs. Any other name may be redefined without affecting the
behavior of other library functions, but such redefinition may conflict with a
declaration in an included header file.

The header files in INCDIR provide function prototypes (function declarations
including the types of arguments) for most of the functions listed in this manual.
Fimction prototypes allow the compiler to check for correct usage of these func­
tions in the user's program. The lint program checker may also be used and
will report discrepancies even if the header files are n~t included with tinclude
statements. Definitions for Sections 2, 3C, and 3S are checked automatically.
Other definitions cart be included by using the -1 option to lint. (For example,
-1m includes definitions for libm.) USe of lint is highly recommended.

Users should carefully note the difference between STREAMS and stream.
STREAMS is a set of kernel mechanisms that support the development of network
services and data communication drivers. It is composed of utility routines, ker­
nel facilities, and a set of data structures. A stream isa file with its associated
buffering. It is declared to be a pointer to a type FILE defmed in stdio. h. .

In detailed definitions of components, it is sometimes necessary to refer to sym­
bolic . names that are implementation"'Specific, but which are not necessarily
expected to be accessible to an application program. Many of these symbolic
names describe boundary conditions and· system limits. .

10/89

Intro(3) Intro(3)

10/89

In this section, for readability, these implementation-specific values are given
symbolic names. These names always appear enclosed in curly brackets to distin­
guish them from symbolic names of other implementation-specific constants that
are accessible to application programs by header files. These· names are not
necessarily accessible to an application program' through a header file, although
they may be defined in the documentation for a particular system.

In general, a portable application program should not refer to these symbolic
names in its code. For example, an application program would not be expected
to test the length of an argument list given to a routine to 'determine if it was
greater than {ARG_MAX}.

Page 3

a641(3C) a641(3C)

NAME
a641, 164a - convert between long integer and baSEHi4 ASCII string

SYNOPSIS
iinc1ude <std1ib.h>

long a641 (const char *s);

char *164a (long 1);

DESCRIPTION

NOTES

10/89

These functions are used to maintain numbers stored in base-64 ASCII characters.
These characters define a notation by which long integers can be represented by
up to six characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are . for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38-63.

a641 takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

a641 scans the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number.

164a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which
are overwritten by each call.

Page 1

abort (3C)

NAME
abort - generate an abnormal termination signal

SYNOPSIS
Unclude <stdlib.h>

void abort (void);

DESCRIPTION

abort (3C)

abort first closes all open files, stdio(3S) streams, directory streams and)nessage
catalogue descriptors, if possible, then causes the signal SIGABRT to be sent to the
calling process.

SEE ALSO
sdb(1), exit(2), kill(2), signal(2), catopen(30, stdio(3S).
sh(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

If SIGABRT is neither caught nor ignored, and the current directory is writable, a
core dump is produced and the message abort - core dunped is written by the
shell [see sh(1)].

Page 1

abs(3C)

NAME
abs, labs - return integer absolute value

SYNOPSIS
'include <stdlib.h>

int abs (int val);

long labs (long lval);

DESCRIPTION

abs(3C)

abs returns the absolute value of its int operand. labs returns the absolute
value of its long operand.

SEE ALSO
floor(3M).

NOTES

10/89

In 2's-complement representation, the absolute value of the largest magnitude
negative integral value is undefined.

Page 1

addseverity (3C) addseverlty (3C)

NAME
addseverity - build a list of severity levels for an application for use with
fmtmsg

SYNOPSIS
tinclude <£mtmsg.h>

int addseverity(int severity, oonst char *string);

DESCRIPTION
The addseverity function builds a list of severity levels for an application to be
used with the message formatting facility, fmtmsg. severity is an integer value
indicating the seriousness of the condition, and string is a pointer to a string
describing the condition (string is not limited to a specific size).

If addseverity is called with an integer value that has not been previously
defined, the function adds that new severity value and print string to the existing
set of standard severity levels.

If addseverity is called with an integer value that has been previously defined,
the function redefines that value with the new print string. Previously defined
severity levels may be removed by supplying the NULL string. If addseverity is
called with a negative number or an integer value of 0, 1, 2, 3, or 4, the function
fails and returns -1. The values 0-4 are reserved for the standard severity levels
and cannot be modified. Identifiers for the standard levels of severity are:

MM HALT indicates that the application has encountered a severe
fault and is halting. Produces the print string HALT.

MM ERROR indicates that the application has detected a fault. Pro­
duces the print string ERROR.

MM _WARNING indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the print
string WARNING.

MM INFO provides information about a condition that is not in error.
Produces the print string INFO.

MMYOSEV indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment
variable [see fmtmsg(3C)].

EXAMPLES

10/89

When the function addseverity is used as follows:
addseverity(7, "ALERT")

the following call to fmtmsg:

fmtmsg(MM PRINT, "UX:cat", 7, "invalid syntax", "refer to
manual", "ux:cat:OOl")

produces:
UX: cat: ALERT: invalid syntax
TO FIX: refer to manual UX:cat:OOl

Page 1

add severity (3C) addseverity (3C)

SEE ALSO
fmtmsg(1M), fmtmsg(3Q, gettxt(3C), printf(3S).

DIAGNOSTICS
addseverity returns !otLOK on success or ~_NOTOK on failure.

Page 2 10/89

atexlt(3C)

NAME
atexit - add program termination routine

SYNOPSIS
tinclude <stdlib.h>

int atexit (void (*func) (void));

DESCRIPTION

atexlt(3C)

atexit adds the function func to a list of functions to be called without argu­
ments on normal termination of the program. Normal termination occurs by
either a call to the exit system call or a return from main. At most 32 functions
may be registered by atexit; the functions will be called in the reverse order of
their registration.

atexit returns 0 if the registration succeeds, nonzero if it fails.

SEE ALSO
exit(2).

10/89 Page 1

bsearch (3C) bsearch (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
tinclude <stdlib. h>

void *bsearch (const void *key, const void *base, size_t nel,
size_t size, int (*compar) (const void *, const void *»;

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B.
It returns a pointer into a table (an array) indicating where a datum may be
found or a null pointer if the datum cannot be found. The table must be previ­
ously sorted in increasing order according to a comparison function pointed to by
compar. key points to a datum instance to be sought in the table. base points to
the element at the base ohhe table. nel is the number of elements in the table.
size is the number of bytes in each element. The function pointed to by compar is
called with two arguments that point to the elements being compared. The func­
tion must return an integer less than, equal to, or greater than 0 as accordingly
the first argument is to be considered less than, equal to, or greater than the
second.

EXAMPLE

10/89

The example below searches a table' containing. pointers to nodes conSisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry. .

This program reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

tinclude <stdio.h>
tinclude <stdlib.h>
tinclude <string.h>

struct node (/* these are stored in the table */

} ;

. phar *string;
in\:. length;

static struct node table [] =
(

/ * table to be searched * /

} ;

main 0
(

"asparagus", 10),
"beans", 6 },
"tomato", '7 },
"wate:"~,.elon", 11 },

struct node *n6de-Ptr, node;
/* routine to conpare 2 nodes * /
static int nodecampare(const void *, const void *);
char str_~pace[20]; /* space to read string into */

Page 1

bsearch (3C) bsearch (3C)

node. string - str ~ce;
while (scanf("%20s", node. string) !- EOF) {

node ytr - bsearch (&node,
table, sizeof(table)/sizeof(struct node),
sizeof (struct node), node carpare);

if (nodeytr !- NULL) { -
(void) printf("string = %20s, length = %d\n",

nodE!J>tr->string, nodeJ>tr->length);
else {

(void)printf("not found: %208\n", node. string) ;

return(O);

/* routine to catpare two nodes based on an */
/* alphabetical ordering of the string field */
static int
node ccmpare (canst void *nodel, canst void *node2)
{ - .

return (strcnp(
«const struct node *)nodel)->string,
«canst struct node *)node2)->string»;

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS

NOTES

Page 2

A null pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should be of type
pOinter-to-element.
The c()mparisoI) function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table,
nel should be the lower number.

10/89

catgets(3C) catgets(3C)

NAME
catgets - read a program message

SYNOPSIS
tinclude <nl_types.h>

char *catgets (nl_catd catd, int set_num, int msg_num, char *s);

DESCRIPTION
catgets attempts to read message msg_num, in set set_num, from the message
catalogue identified by catd. catd is a catalogue descriptor returned from an ear­
lier call to cat open. s points to a default message string which will be returned
by catgets if the identified message catalogue is not currently available.

SEE ALSO
catopen(3C).

DIAGNOSTICS

10/89

If the identified message is retrieved successfully, catgets returns a pointer to an
internal buffer area containing the null terminated message string. If the call is
unsuccessful because the message catalogue identified by catd is not currently
available, a pointer to s is returned.

Page 1

eatopen (3C) eatopsn (3C)

NAME
catopen, catclose - openl close a message catalogue

SYNOPSIS
iinclude <nl_types.h>

nl_catd catopen (char *name, int of lag);

int cat close (nl_catd catd);

DESCRIPTION

10/89

catopen opens a message catalogue and returns a catalogue descriptor. name
specifies the name of the message catalogue to be opened. If name contains a "I"
then name specifies a pathname for the message catalogue. Otherwise, the
environment variable NLSPATH is used. If NLSPATH does not exist in the environ­
ment, or if a message catalogue cannot be opened in any of the paths specified by
NLSPATH, then the default path is used [see nl_types(5)].

The names of message catalogues, and their location in the filestore, can vary
from one system to another. Individual applications can choose to name or locate
message catalogues according to their own special needs. A mechanism is there­
fore required to specify where the catalogue resides.

The NLSPATH variable provides both the location of message catalogues, in the
form of a search path, and the naming conventions associated with message
catalogue files. For example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the
current setting of the LANG environment variable (see following section), and %N
substitutes the value of the name parameter passed to catopen. Thus, in the
above example, catopen will search in /nlslib/$LANG/name. cat, then in
/nlslib/name/$LANG, for the required message catalogue.

NLSPATH will normally be set up on a system wide basis (e.g., in /etc/profile)
and thus makes the location and naming conventions associated with message
catalogues transparent to both programs and users.

The full set of metacharacters is:

%N The value of the name parameter passed to catopen.

%L The value of LANG.

%! The value of the language element of LANG.

%t The value of the territory element of LANG.

%c The value of the codeset element of LANG.

%% A single %.

The LANG environment variable provides the ability to specify the user's require­
ments for native languages, local customs and character set, as an ASCII string in
the form

LANG=language [_territory [. codeset]]

Page 1

catopen (3C) catopen (3C)

A user who speaks German as it is spoken in Austria and has a terminal which
operates in ISO 8859/1 codeset, would want the setting of the LANG variable to be

LANG=De A.88591

With this setting it should be possible for that user to find any relevant catalo­
gues should they exist.

Should the LANG variable not be set then the value of LC MESSAGES as returned
by setlocale is used. If this is NULL then the defaUit path as defined in
nl_types is used.

oflag is reserved for future use and should be set to O. The results of setting this
field to any other value are undefined.

catclose closes the message catalogue identified by catd.

SEE ALSO
catgets(3C), setlocale(3C), environ(5), nl_types(5).

DIAGNOSTICS

Page 2

If successful, catopen returns a message catalogue descriptor for use on subse­
quent calls to catgets and catclose. Otherwise catopen returns (nl_ catd)
-l.

catclose returns 0 if successful, otherwise -1.

10/89

clock (3C) clock (3C)

NAME
clock - report CPU time used

SYNOPSIS
tinclude <time.h>

clock_t clock (void);

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used since the first call
to clock in the calling process. The time reported is the sum of the user and sys­
tem times of the calling process and its terminated child processes for which it
has executed the wait system call, the pclose function, or the system function.

Dividing the value returned by clock by the constant CLOCKS_PER _SEC, defined
in the time. h header file, will give the time in seconds.

The resolution of the clock is 10 milliseconds on AT&T 38 computers.

SEE ALSO

NOTES

10/89

times(2), wait(2), popen(3S), systexr(3S).

The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the
value returned will wrap around after accumulating only 2147 seconds of CPU
time (about 36 minutes). If the process time used is not available or cannot be
represented, clock returns the value (clock_t)-l.

Page 1

conv(3C} conv(3C}

NAM.E
conv: toupper, tolower, _toupper, _tolower, toaseii - translate characters

SYNOPSIS
tinelude <ctype.h>

int toupper (int e);

int tolower (int e);

int _toupper (int e);

int _tolower (int e);

int toaseii (int e);

DESCRIPTION
toupper and tolower have as their domain the range of the function gete: all
values represented in an unsigned char and the value of the macro EOF as
defined in stdio. h. If the argument of toupper represents a lower-case letter,
the result is the corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

The macros _toupper and _tolower accomplish the same things as toupper and
tolower, respectively, but have restricted domains and are faster. _toupper
requires a lower-case letter as its argument; its result is the corresponding upper­
case letter. _tolower requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside the domain cause
undefined results.

toaseH yields its argument with all bits turned off that are not part of a stan­
dard 7-bit ASCII character; it is intended for compatibility with other systems.

toupper, tolower, _toupper, and_tolower are affected by LC_CTYPE. In the C
locale, or in a locale where shift information is not defined, these functions deter-

. mine the case of characters according to the rules of the ASCII-coded character set.
Characters outside the ASOI range of characters are returned unchanged.

SEe ALSO
etype(3C), gete(3S), setlocale(3C), environ(5).

10/89 Page 1

crypt (3C) crypt (3C)

NAME
crypt, setkey, encxypt - generate encryption

SYNOPSIS
tinclude <cxypt.h>

char "'crypt (const char "'key, const char "'salt);

void setkey (const char "'key);

void encrypt (char "'block, int edflag);

DESCRIPTION
cxypt is the password encryption function. It is based on a one-way encryption
algorithm with variations intended (among other things) to frustrate use of
hardware implementations of a key search.

key is the input string to encrypt, for instance, a user's typed password. Only the
first eight characters are used; the rest are ignored. salt is a two-character string
chosen from the set a-zA-ZO-9. /; this string is used to perturb the hashing algo­
rithm in one of 4096 different ways, after which the input string is used as the
key to encrypt repeatedly a constant string. The returned value points to the
encrypted input string. The first two characters of the return value are the salt
itself.

The setkey and encxypt functions provide (rather primitive) access to the actual
hashing algorithm. The argument of set key is a character array of length 64 con­
tairung only the characters with numerical value 0 and 1. this strifig is d\vided
into groups of 8, the low~order bit in each group is ignored; this gives a 56-bit
key that is set into the machine. This is the key that will be uSed with the hash­
ing algorithm to encrypt the string block. with the encxypt function.

The block argument of encrypt is a character array of length 64. containing only
the characters with numerical value 0 and 1. The argument array .is modified in
place to a similar array representing the bits of the argument after having been
subjected to. the hashing algorithm using the key set by setkey. The argument
edflag, . indicating decryption rather than encryption, is ignored; use encxypt in
libcJ:YPt (see crypt(3X)] for decryption. . .

SEE ALSO
getpass(3C), cxypt(3X), passwd(4).
log-in(l), passwd(l) in the User's Reference Manual.

DIAGNOSTICS
If edflag is set to anything other than zero, errno will be set to ENOSYS.

NOTES
The return value for cxypt points to static data that are overwritten by each call.

10/89 Page 1

ctermld (35) ctermld (35)

NAME
ctez:mid - generate file name for terminal

SYNOPSIS
tinclude <stdio.h>

char*ctez:mid (char *s);

DESCRIPTION
ctez:mid generates the path name of the controlling terminal for the current pro­
cess, and stores it in a string.

If 5 is a NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to ctez:mid, and the address of which is
returned. Otherwise, 5 is assumed to point to a character array of at least
L_ctez:mid elementsj the path name is placed in this array and the value of 5 is
returned. The constant L ctez:mid is defined in the stdio. h header file.

SEE ALSO
ttyname(3C).

NOTES

10/89

The difference between ctez:mid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while ctez:mid returns a string (/dev/tty) that will refer
to the terminal if used as a file name. Thus ttyname is useful only if the process
already has at least one file open to a terminal.

Page 1

ctlme(3C) ctlme(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
tinclude <time.h>

char *ctime (const time_t *clock);

struct tm *localtime (const time_t *clock);

struct tm *9Jlltime (const time_t *clock);

char *asctime (const struct tm *tm);

extern time~t timezone, altzone;

extern int daylight;

extern char *tzname [2] ;

voidtzset (void);

DESCRIPTION

10189

ctime, localtime, and gmtime accept arguments of type time_t, pointed to by
clock, representing the time in seconqs since 00:00:00 UTe, January 1, 1970.
ctj,Jne returns a pointer to a 2~haracter.string as shown below. Time zone and
daylight savings corrections are made before the string is generated.. The fields
are constant in width:

Fri Sep 13 00:00:00 1986\n\0

l6caltime and, gmtime return pointers to tm struct\l1'es, described below. local­
time corrects for the main time. zone and. possible alternate ("daylight savings")
time zone; gmtime converts directly to Coordinated Universal Time (UTC), which
is the time the UNIX system uses internally.

asctime converts a tm structure to a 26-characte:r string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
time.h header file. The structure declaration is:

struct
int

};

int
int
int
int
int
int
int
int

tIn niin;
tm -hoW:;
tIn::m:lay;
tm_JOOn;
tm,year;
tm_wday;
tmJday;
tm_isdst;

/ * seconds afteJ;' the minute - [0, 61] * /
/,. for leap seconds */

/* minutes aft.er tlle hciu:r:;'" [0, S9) */
/* hour since midnight - [0, 23]' */
/* day of the JOOnth - [1, 31] */
/* JOOnths since January - [0, 11] */
/* years since 1900 */
/* days since Sunday - [0, 6] */
/* days since January 1 - [0, 365] */
/* flag for alternate daylight */

/* savings time */

Page 1

ctlme(3C) ctlme(3C)

Page 2

The value of tm_isdst is positive if daylight savings time is in effect, zero if day­
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of tm_isdst was defined as non-zero if daylight savings
time was in effect.)

The external time t variable altzone contains the difference, in seconds,
between Coordinated Universal Time and the alternate time zone. The external
variable time zone contains the difference, in seconds, between UTC and local
standard time. The external variable daylight indicates whether time should
reflect daylight savings time. Both timezone and altzone default to 0 (UTC).
The external variable daylight is non-zero if an alternate time zone exists. The
time zone names are contained in the external variable tzname, which by default
is set to:.

ch<u" *tznarne [2] - { "QIT"," "};
These functions know about the peculiarities of this conversion for various time
periods for the u.s. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.
tzset uses the contents of the environment variable TZ to override the value of
the different external variables. The function tzset is called by asctime and
may also be called by the user. See environ(5) for a description of the TZ
environment variable.

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New
Jersey in 1986 could be

EST5EDT4,116/2:00:00,298/2:00:00
or simply

EST5EDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KSTI0:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, t znarne [0] is EST,
timezone will be set to 5*60*60, tznarne[l] is. EDT, altzone will be set to
4*60*60, thEl starting date of the alternate time zone is the 117th day at 2 AM, the
ending date of the alternate time zone is the 299th day at 2 AM (using zero-based
Julian days), and daylight will be set positive. Starting and ending times are
relative to the alternate time zone. If the alternate time zone start and end dates
and the time are not provided, the days for the United States that year will be
used and the time will be 2 AM. If the start and end dates are provided but the
time is not proVided, the time will be 2 AM. The effects of t~set are thus to
change the values of the external variables time zone, altzone, daylight, and
tzname. ctime, localtime, mktime, and strftime will also update these exter­
nal variables as if they had called tzset at the time specified by the time_t or
struct tm value that they.are converting.

Note that in most installations, TZ is set to the correct value by default when the
user logs on, via the local fete/profile file [see profile(4) and timezone(4)].

10/89

ctlme(3C) ctlme(3C)

FILES
/usr/lib/locale/language/LC_TIME - file containing locale specific date and
time information

SEE ALSO

NOTES

10/89

ti.me(2), getenv(3C), mkti.me(3C), putenv(30, printf(3S), setlocale(3C),
strfti.me(3C), cfti.me(4), profile(4), ti.mezone(4), environ(5).

The return values for cti.me, localtime, and gmti.me point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from ti.mezone to altzone or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

Page 3

ctype(3C) ctype(3C)

NAME
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, is space,
iscntrl, ispunct, isprint, isgraph, isascH - character handling

SYNOPSIS
'include <ctype.h>

int isalpha(int c);

int isupper(int c);

int islower(int c);

int isdigit(int c) ;

int isxdigit(int c);

int isalnum(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int c);

int isgraph(int c);

int iscntrl(int c);

int isascii(int c);
DESCRIPTION

10/89

These macros classify character-coded integer values. Each is a predicate return­
ing non-zero for true, zero for false. The behavior of these macros, except
isascii, is affected by the current locale [see setlocale(3C»). To modify the
behavior, change the LC_TYPE category in setlocale, that is, setlocale
(LC_CTYPE, newlocale). In the C locale, or in a locale where character type infor­
mation is not defined, characters are classified according to the rules of the uS­
ASCII 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are defined only
where the argument is an int, the value of which is representable as an
unsigned char, or EOF, which is defined by the stdio.h header file and
represents end-of-file.

isalpha

isupper

tests for any character for which isupper or islower is true, or
any character that is one of an implementation-defined set of
characters for which none of iscntrl, isdigit, ispunct, or
isspace is true. In the C locale, isalpba returns true only for
the characters for which isupper or islower is true.

tests for any character that is an upper-case letter or is one of an
implementation-<iefined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or islower is true. In
the C locale, isupper returns true only for the characters defined
as upper-case ASCII characters.

Page 1

ctype(3C) ctype(3C)

FILES

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

tests for any character that is a lower-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or isupper is true. In
the C locale, islower returns true only for the characters defined
as lower-case ASCn characters.

tests for any decimal-digit character.
tests for any hexadecimal-digit character ([0-9], [A-F] or
[a-f]).

tests for any character for which isalpha or isdigit is true
(letter or digit).

tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of an
implementation-defined set of characters for which isalnum is
false. In the C locale, isspace returns true only for the standard
white-space characters.

tests for any printing character which is neither a space nor a
character for which isalnum is true.

tests for any printing character, including space (" II).

tests for any printing character, except space.

tests for any "control character" as defined by the character set.

tests for any ASOI character, code between 0 and 0177 inclusive.

All the character classification macros and the conversion functions and macros
use a table lookup.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (e.g., tundef isdigit).

/usr/lib/ locale/locale/LC _ CTYPE
SEE ALSO

chrtbl(1M), setlocale(3C), stdio(3S), ascii(5), environ(5).
DIAGNOSTICS

If the argument to any of the character handling macros is not in the domain of
the function, the result is undefined.

10/89

cuserld (3S) cuserld (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
tinclude <stdio.h>

char *cuserid (char *s);

DESCRIPTION
cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this
representation is generated in an internal static area, the address of which is
~rned. Otherwise, s is assumed to point to an array of at least L_cuserid
characters; the representation is left in this array. The constant L_cuserid is
defined in the stdio. h header file.

SEE ALSO
getlogin(3C), getpwent(3C).

DIAGNOSTICS

10/89

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character' \0' will be placed at s [0].

Page 1

decconv(3C) decconv (3C)

NAME
decconv: s2dec, _ d2dec, _ dec2s, _ dec2d - convert between binary and
decimal values

SYNOPSIS
tinclude <ieee£p.h>

void _s2dec (float *x, decimal *d, int p);

void d2dec (double *x, decimal *d, int p);

void dec2s (decimal *d, float *x, int p);

void dec2d (decimal *d, double *x, int p);

DESCRIPTION

10/89

The _ s2dec function returns a decimal floating-point value, given a pointer to a
single-precision binary floating-point number and a precision specification.

On input, the value of the Hen field in the decimal should. be set to tell how
many decimal digits should be output in the mantissa for rounding purposes. If
the Hen field is not ·in the range 1:S; ilen :s; 9, a NaN is returned. If the input
binary value x is a NaN or infinity, the returned decimal d will be a NaN or
infinity with the appropriate sign. The exponential component of the returned
decimal value is always two digits. The structure decimal is defined in the
ieee£p . h header file.

The parameter p (0 :s; p :s; ilen) specifies how many of the digits in the output
decimal mantissa string are to be considered to be to the right of the implicit
decimal point. If p is out of range, a NaN is returned.

The _ d2dec function works like the _ s2dec function except that it takes a pointer
to a double~precision value for x. The ilen field must be in the range of
1 :s; ilen :s; 17; and the exponential component of the returned decimal will contain
three digits.

The _dec2s function returns a single-precision binary floating-point value, given
a decimal value and a preciSion specification.

The parameter p (0 :s; p :s; ilen) tells how many of the digits in the mantissa string
are to be considered to be to the right of an implicit decimal point.

Because the decimal format can represent a larger range of numbers than the
binary formats, this conversion may overflow or underflow. Upon overflow or
underflow, a signed infinity (signed zero) is returned, and the appropriate sticky
bit is set.

The mantissa and exponent strings may contain leading zero characters. But,
once all leading 0 characters are removed, the mantissa string should have a
length >0 and :S;9. The exponent string should have a length >0 and:!>2. The spe­
ciell case of d == 0 (decimal) is detected, in which case the trailing 0 characters in
the string are not removed.

Page 1

decconv(3C) decconv (3C)

The _ dec2d function is analogous to the _ dec2s function except that it returns a
double-precision value. After leading 0 characters are removed, the mantissa
string should contain no more than 17 digits and the exponent string should con­
tain no more than three digits.
Rounding is performed according to the current rounding mode. The default is
round-to-nearest.

Calling these functions may result in the following exceptions: overflow,
underflow, inexact result, invalid operation.

SEE ALSO
fpgetround(30.

Page 2

The "Floating Point Operations" chapter in the Programmer's Guide: ANSI C and
Programming Support Tools.

10/89

difttime (3C)

NAME
difftilne - computes the difference between two calendar times

SYNOPSIS
'include <tilne.h>

double difftilne (tilne_t tilnel, tilne_t tilneO);

DESCRIPTION

dlfttlme (3C)

difftilne computes the difference between two calendar times. difftilne returns
the difference (timel-timeO) expressed in seconds as a double. This function is
provided because there are no general arithmetic properties defined for type
tilne t.

SEE ALSO
ctilne(3C).

10/89 Page 1

directory (3C) directory (3C)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir -
directory operations

SYNOPSIS
Jinclude <dirent.h>

OIR *opendir (const char *filename);

struct dirent *readdir (OIR *dirp);

long telldir (OIR *dirp);

void seekdir (OIR *dirp, long loc);

void rewinddir (OIR *dirp);

int closedir (OIR *dirp);

DESCRIPTION

10/89

opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A
null pointer is returned if filename cannot be accessed or is not a directory, or if it
cannot malloc(3C) enough memory to hold a OIR structure or a buffer for the
directory entries.

readdir returns a pointer to the next active directory entry and positions the
directory stream at the next entry. No inactive entries are returned. It returns
NULL upon reaching the end of the directory or upon detecting an invalid location
in the directory. readdir buffers several directory entries per actual read opera­
tionj readdir marks for update the st_at.irne field of the directory each time the
directory is actually read.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the position associated with the directory stream at
the time the telldir operation that provides loe was performed. Values
returned by telldir are valid only if the directory has not changed because of
compaction or expansion. This situation is not a problem with System V, but it
may be a problem with some file system types.

rewinddir resets the position of the named directory stream to the beginning of
the directory. It also causes the directory stream to refer to the current state of
the corresponding directory, as a call to opendir would.

clQsedir closes the named directory stream and frees the OIR structure.

The following errors can occur as a result of these operations.

opendir returns NULL on failure and sets errno to one of the following values:

ENOTDIR A component of filename is not a directory.

EACCES A component of filename denies search permission.

Page 1

directory (3C) directory (3C)

EACCES

EMFILE

ENFILE

EFAULT

ELOOP

ENAMETOOLONG

ENOENT

Read pennission is denied on the specified directory.

The maximum number of file descriptors are currently
open.

The system file table is full.

filename points outside the allocated address space.

Too many symbolic links were encountered in translating
filename.

The length of the filename argument exceeds {PATH_MAX},
or the length of a filename component exceeds {NAME:_MAX}
while CPOSIX_NO_TRUNC} is in effect.

A component of filename does not exist or is a null path­
name.

readdir returns NULL on failure and sets errno to one of the following values:

ENOENT The current file pointer for the directory is not located at a
valid entry.

EBADF The file descriptor determined by the OIR stream is no
longer valid. This result occurs if the OIR stream has been
closed.

telldir, seekdir, and closedir return -1 on failure and set errno to the fol­
lowing value:

EBADF The file descriptor determined by the OIR stream is no
longer valid. This results if the OIR stream has been closed.

EXAMPLE

Page 2

Here is a sample program that prints the names of all the files in the current
directory:

tinclude <stdio.h>
tinclude <dirent.h>

main 0
{

OIR *dirp;
struct dirent *direntp;

dirp = opendir(".");
while ((direntp == readdir (dirp » ! = NULL)

(void)printf("%s\n", direntp->d name);
closedir(dirp); -
return (0);

10/89

directory (3C) directory (3C)

SEE ALSO
getdents(2), dirent(4).

NOTES
rewinddir is implemented as a macro, so its function address cannot be taken.

10/89 Page 3

dlv(3C) dlv(3C)

NAME
diY, Idiv - compute the quotient and remainder

SYNOPSIS
tinclude <stdlib.h>

div_t div (int nurner, int denom);

ldiv_t Idiv (long int numer, long int denom);

DESCRIPTION

10/89

div computes the quotient and remainder of the division of the numerator numer
by the denominator denom. This function provides a well-defmed semantics for
the signed integral division and remainder operations, unlike the
implementation-defined semantics of the built-in operations. The sign of the
resulting quotient is that of the algebraic quotient, and, if the division is inexact,
the magnitude of the resulting quotient is the largest integer less than the magni­
tude of the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quotient * denom + remainder will equal numer.

div returns a structure of type div_t, comprising both the quotient and
remainder:

typedef struct div t {
int quot; /*quotient*/
int rem; /*remainder* /

div_t;

Idiv is similar to div, except that the arguments and the members of the
returned structure (which has type ldiv_t) all have type long into

Page 1

drand48 (3C) drand48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
tinclude <stdlib.h>

double drand48 (void);

double erand48 (unsigned short xsubi [3]) ;

long lrand48 (void);

long nrand48 (unsigned short xsubi [3]) ;

long mrand48 (void);

long jrand48 (unsigned short xsubi [3]) ;

void srand48 (long seedval);

unsigned short *seed48 (unsigned short seed16v[3]);

void lcong48 (unsigned short param[7]);

DESCRIPTION

10/89

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating­
point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly dis­
tributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distri­
buted over the interval [_231,231).

Functions srand48, seed48, and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48, or mrand48 is called.
(Although it is not recommended practice, constant default initializer values will
be supplied automatically if drand48, lrand48, or mrand48 is called without a
prior· call to an initialization entry point.) Functions erand48, nrand48, and
jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula

x,,+1 = (ax"+c)mod,,, n~O.

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value a and the addend value care
given by

a = SDEECE66D16 = 273673163155 8

c = B16 = 13 8•

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48, or jrand48 is computed by first generating the next 48-bit X;
in the sequence. Then the appropriate number of bits, according to the type of

Page 1

drand48 (3C) drand48 (3C)

data item to be returned, are copied from the high-order (leftmost) bits of Xi and
transformed into the returned value.

The functions drand48, lrand48, and mrand48 store the last 48-bit Xi generated
in an internal buffer. Xi must be initialized prior to being invoked. The func­
tions erand48, nrand48 i and jrand48 require the calling program to provide
storage for the successive Xi values in the array specified as an argument when
the functions are invoked. These routines do not have to be initialized; the cal­
ling program must place the desired initial value of X; into the array and pass it
as an argument. By using different arguments, functions erand48, nrand48, and
jrand48 allow separate modules of a large program to generate several indepen­
dent streams of pseudo-random numbers, i.e., the sequence of numbers in each
stream will not depend upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits
contained in its argument. The low-order 16 bits of Xi are set to. the arbitrary
value 330E16 •

The initializer function seed48 sets the value of Xi to the 48-bit value specified in
the argument array. In addition, the previous value of Xi is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some future
time - use the pointer to get at and store the last Xi value, and then use this
value to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi, the
multiplier value a, and the addend value c. Argument array elements param[O-21
specify Xi' param[3-5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After lcong48 has been called, a subsequent call to either srand48 or
seed48 will restore the "standard" multiplier and addend values, a and c,
specified on the previous page.

SEE ALSO
rand(3C).

Page 2 10/89

dup2(3C) dup2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
iinclude <unistd.h>

int dup2 (int fildes, int fildes2);

DESCRIPTION
fildes is a file descriptor referring to an open file, and fildes2 is a non-negative
integer less than {OPEN_MAX} (the maximum number of open files). dup2 causes
fildes2 to refer to the same file as fildes. If fildes2 already referred to an open file,
not fildes, it is closed first. If fildes2 refers to fildes, or if fildes is not a valid open
file descriptor, fildes2 will not be closed first.

dup2 will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EBADF fildes2 is negativeor greater than or equal to {OPEN_MAX}.

EINTR a signal was caught during the d.up2 call.

% [EMFILE {OPEN_MAX} file descriptors are currently open.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C), limits(4).

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer, namely, the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

Page 1

ecvt(3C) ecvt(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
tinclude <stdlib.h>

char *ecvt (double value, int ndigit, int *decpt, int *sign);

char *fcvt (double value, int ndigit, int *decpt, int *sign);

char *gcvt (double value, int ndigit, char *buf);

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The high-order digit is non-zero, unless the value is zero. The
low-order digit is rounded. The position of the decimal point relative to the
beginning of the string is stored indirectly through decpt (negative means to the
left of the returned digits). The decimal point is not included in the returned
string. If the sign of the result is negative, the word pointed to by sign is non­
zero, otherwise it is zero.

fcvt is identical to ecvt, except that the correct digit has been rounded for
printf %f output of the number of digits specified by ndigit.

gcvt converts the value to a null-terminated strin~ in the array pointed to by buf
and returns buf. It attempts to produce ndigit SIgnificant digits in %f format if
possible, otherwise %e format (scientific notation), ready for printing. A minus
sign, if there is one, or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

NOTES

10/89

The values returned by ecvt and fcvt point to a single static data array whose
content is overwritten by each call.

Page 1

end (3C) end (3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern etext;

extern edata;

extern end;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents;
only their addresses are meaningful.

etext The address of etext is the first address above the program text.

edata The address of edata is the first address above the initialized data region.

end The address of end is the first address above the uninitialized data region.

SEE ALSO

NOTE

10/89

cc(1), brk(2), malloc(3C), stdio(3S).

When· execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines brk, mal­
loc, the standard input/output library [see stdio(3S)], by the profile (-p) option
of cc, and so on. Thus, the current value of the program break should be deter­
mined by sbrk «char *) 0) [see brk(2)].

Page 1

fclose(3S) fclose(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
'include <stdio.h>

int fclose (FILE *stream);

int fflush (FILE *stream);

DESCRIPTION
fclose causes any buffered data waiting to be written for the named stream [see
intro(3)] to be written out, and the stream to be closed. If the underlying file
pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with
the byte after the last one read from or written to the file being closed.

fclose is performed automatically for all open files upon calling exit.

If stream points to an output stream or an update stream on which the most
recent operation was not input, fflush causes any buffered data waiting to be
written for the named stream to be written to that file. Any unread data buffered
in stream is discarded. The stream remains open. If stream is open for reading,
the underlying file pointer is not already at end of file, and the file is one capable
of seeking, the file pointer is adjusted so that the next operation on the open file
pointer deals with the byte after the last one read from or written to the stream.

When calling fflush, if stream is a null pointer, all files open for writing are
flushed.

SEE ALSO
close(2), exit(2), intro(3), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

10/89

Upon successful completion these functions return a value of zero. Otherwise EOF
is returned.

Page 1

ferror(3S) ferror(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
iinclude <stdio.h>

int ferror (FILE *stream);

int feof (FILE * stream) ;

void clearerr (FILE *stream);

int fileno (FILE *stream);

DESCRIPTION
ferror returns non-zero when an error has previously occurred reading from or
writing to the named stream [see intro(3)], otherwise zero.

feof returns non-zero when EOF has previously been detected reading the named
input stream, otherwise zero.

clearerr resets the error indicator and EOF indicator to zero on the named
stream.

fileno returns the integer file descriptor associated with the named stream; see
open(2).

SEE ALSO
open(2), fopen(3S), stdio(3S).

10/89 Page 1

ffs(3C)

NAME
ffs - find first set bit

SYNOPSIS
iinclude <string.h>

int ffs(const int i);

DESCRIPTION

ffs(3C)

ffs finds the first bit set in the argument passed it and returns the index of that
bit. Bits are numbered starting at 1 from the low order bit. A return value of
zero indicates that the value passed is zero.

10/89 Page 1

fmtmsg(3C) fmtmsg(3C)

NAME
fmtmsg - display a message on stderr or system console

SYNOPSIS
iinclude <£mtmsg.h>

int £mtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
Based on a message's classification component, £mtmsg writes a formatted mes­
sage to stderr, to the console, or to both.

fmtmsg can be used instead of the traditional printf interface to display mes­
sages to stderr. fmtmsg, in conjunction with gettxt, provides a simple inter­
face for producing language-independent applications.

A formatted message consists of up to five standard components as defined
below. The component, classification, is not part of the standard message
displayed to the user, but rather defines the source of the message and directs the
display of the formatted message.

classification
Contains identifiers from the following groups of major classifications and
subclassifications. Anyone identifier from a subclass may be used in com­
bination by ORing the values together with a single identifier from a dif­
ferent subclass. Two or more identifiers from the same subclass should not
be used together, with the exception of identifiers from the display sub­
class. (Both display subclass identifiers may be used so that messages can
be displayed to both stderr and the system console).

"Major classifications" identify the source of the condition. Identifiers
are: MM_HARD (hardware), MM_SOFT (software), and MM_FIRM (firmware).

"Message source subclassifications" identify the type of software in
which the problem is spotted. Identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS (operating system).

"Display subclassifications" indicate where the message is to be
displayed. Identifiers are: MM_PRINT to display the message on the
standard error stream, MM_CONSOLE to display the message on the sys­
tem console. Neither, either, or both identifiers may be used.

"Status subclassifications" indicate whether the application will recover
from the condition. Identifiers are: MM RECOVER (recoverable) and
MM_NRECOV (non-recoverable). -

An additional identifier, MM NULIMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format of this component is two
fields separated by a colon. The first field is up to 10 characters long; the
second is up to 14 characters. Suggested usage is that label identifies the
package in which the application resides as well as the program or applica­
tion name. For example, the label UX: cat indicates the UNIX System V
package and the cat application.

10/89 Page 1

fmtmsg(3C) fmtmsg(3C)

severity
Indicates the seriousness of the condition. Identifiers for the standard lev­
els of severity are:

MM_HALT indicates that the application has encountered a severe fault
and is halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces
the print string ERROR.

~ WARNING indicates a condition out of the ordinary that might be a
problem and should be watched. Produces the print string WARNING.

MM_INFO provides information about a condition that is not in error.
Produces the print string INFO.

MM _ NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseverity routine.

text Describes the condition that produced the message. The text string is not
limited to a specific size.

action Describes the first step to be taken in the error recovery process. fmttnsg
precedes each action string with the prefix: TO FIX:. The action string is
not limited to a specific size.

tag An identifier which references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying
number. A sample tag is UX:cat:l46.

Environment Variables

Page 2

There are two environment variables that control the behavior of fmtrnsg:
MSGVERB and SEV _LEVEL.

MSGVERB tells fmtrnsg which message components it is to select when writing
messages to stderr. The value of MSGVERB is a colon-separated list of optional
keywords. MSGVERB can be set as follows:

MSGVERB=[keyword[: keyword[: ... lJl
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB con­
tains a keyword for a component and the component's value is not the
component's null value, fmtrnsg includes that component in the message when
writing the message to stderr. If MSGVERB does not include a keyword for a
message component, that component is not included in the display of the mes­
sage. The keywords may appear in any order. If MSGVERB is not defined, if its
value is the null-string, if its value is not of the correct format, or if it contains
keywords other than the valid ones listed above, fmtmsg selects all components.

The first time fmtrnsg is called, it examines the MSGVERB environment variable to
see which message components it is to select when generating a message to write
to the standard error stream, stderr. The values accepted on the initial call are
saved for future calls.

10/89

fmtmsg(3C) fmtmsg(3C)

MSGVERB affects only which components are selected for display to the standard
error stream. All message components are included ih console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use
by fmtJnsg. The standard severity levels shown below cannot be modified. Addi­
tional severity levels can also be defined, redefined, and removed using
addseverity [see addseverity(3C)]. If the same severity level is defined by
both SEV_LEVEL and addseverity, the definition by addseverity is controlling.

o (no severity is used)
1 HALT
2 ERROR
3 WARNING
4 INFO

SEV LEVEL can be set as follows:

SEV _ LEVEL=[description[: description [: ...]]]
export SEV _LEVEL

description is a comma-separated list containing three fields:

description=severitL keyword, level, printstring

severity_keyword is a character string that is used as the keyword on the -s severity
option to the fmtmsg command. <This field is not used by the fmtmsg function.)

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3,
or 4, which are reserved for the standard severity levels). If the keyword
severity_keyword is used, level is the severity value passed on to the fmtmsg func­
tion.

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If a description in the colon list is not a three-field comma list, or, if the second
field of a comma list does not evaluate to a positive integer, that description in the
colon list is ignored.

The first time fmtmsg is called, it examines the SEV LEVEL environment variable,
if defined, to see whether the environment expands the levels of severity beyond
the five standard levels and those defined using addseverity. The values
accepted on the initial call are saved for future calls.

Use in Applications

10/89

One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that com­
ponent.

The table below indicates the null values and identifiers for fmtmsg arguments.

Page 3

fmtmsg(3C) fmtmsg(3C)

Argument Type Null-Value Identifier
label char* (char*) NULL *_NULLLBL
severity int 0 !~LNULLSEV
class long OL ~ NULLMC
text char* (char*) NULL *_NtlLLTXT
action char* (char*) NULL *NULI.ACT
tag char* (char*) NULL MM NtlLLTAG

Another means of systematically omitting a component is by omitting the com­
ponentkeyworo(s) when defining the MSGVERB environment variable (see the
"Environment Variables" section).

EXAMPLES
Example 1:

The following example ot :fnCnsg:

fmtmsg(MM PRINT, "UX:cat", ~_DROR, "invalid syntax", "refer
to manuai", "UX:cat:001")

produces a complete message in the standard message format:

UX: cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:OOl

Example 2:

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action .

and the Example l·is used, fmtmsgproduces:

ERROR: invalid· syntax
TO FIX: refer to manual

Example 3:

When the environment variable SEV LEVEL is set as follows:

SEV_LEVEL--note,5,NOTE

the following call to fmtmsg:

fmtmsg (MM _ UTIL I ~_PRINT, "UX: cat" , 5, "invalid syntax" ,
"refer to manual", "UX:cat:001")

produces:

UX: cat: NOTE: invalid syntax
TO FIX: refer to manual UX:cat:OOl

SEE ALSO

Page 4

addseverity(3C), gettxt(3Q, printf(3S).
fmtmsq(l) in the User's Reference Manual.

10/89

fmtmsg(3C) fmtmsg(3C)

DIAGNOSTICS
The exit codes for fmtmsg are the following:

MM OK The function succeeded.

Y(.NOTOK The function failed completely.

MM NCMSG The function was unable to generate a message on the standard
error stream, but otherwise succeeded.

MMYOCON The function was unable to generate a console message, but other­
wise succeeded.

fopen(3S} fopen(3S}

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
'include <stdio.h>

FILE *fopen (canst char *filename, const char *type);

FILE *freopen (const char * filename, const char *type, FILE
*stream) ;

FILE *fdopen (int fildes, const char *type);

DESCRIPTION

10/89

fopen opens the file named by filename and associates a stream with it. fopen
returns a pointer to the FILE structure associated with the stream.
filename points to a character string that contains the name of the file to be
opened.

type is a character string beginning with one of the following sequences:

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing

"r+", "r+b" or "rb+"
open for update (reading and writing)

"w+", "w+b" or "wb+"
truncate or create for update

"a+", "a+b" or "ab+"
append; open or create for update at end-of-file

The "b" is ignored in the above types. The "b" exists to distinguish binary files
from text files. However, there is no distinction between these types of files on a
UNIX system.

freopen substitutes the named file in place of the open stream. A flush is first
attempted, and then the original stream is closed, regardless of whether the open
ultimately succeeds. Failure to flush or close stream successfully is ignored.
freopen returns a pointer to the FILE structure associated with stream.

freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files. stderr is by default unbuffered, but the use
of freopen will cause it to become buffered or line-buffered.

fdopen associates a stream with a file descriptor. File deSCriptors are obtained
from open, dup, creat, or pipe, which open files but do not return pointers to a
FILE structure stream. Streams are necessary input for almost all of the Section
3S library routines. The type of stream must agree with the mode of the open file.
The file position indicator associated with stream is set to the position indicated
by the file offset associated with fildes.

Page 1

fopen(3S) fopen(3S)

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input without
an intervening fflusb. fseek, fsetpos, or rewind, and input may not be
directly followed by output without an intervening fseek, fsetpos, or rewind,
or an input operation that encounters end-of-file.

When a file is opened for append (i.e., when type is "a", "ab", "a+", or "ab+"), it
is impossible to overwrite information already in the file. fseek may be used to
reposition the file pointer to any position in the file, but when output is written
to the file, the current file pointer is disregarded. All output is written at the end
of the file and causes the file pointer to be repOSitioned at the end of the output.
If two separate processes open the same file for append, each process may write
freely to the file without fear of destrOying output being written by the other.
The output from the two processes will be intermixed in the file in the order in
which it is written.

When opened, a stream is fully buffered if and only if it can be determined not to
refer to an interactive device. The error and end-of-file indicators are cleared for
the stream.

SEE ALSO
close(2), creat(2), duP(2), open(2), pipe(2), write(2), fclose(3S), fseek(3S),
setbuf(3S), stdio(3S).

DIAGNOSTICS

Page 2

The functions fopen and freopen return a null pointer if path cannot be accessed,
or if type is invalid, or if the file cannot be opened.

The function fdopen returns a null pointer if fildes is not an open file descriptor,
or if type is invalid, or if the file cannot be opened.

The functions fopen or fdopen may fail and not set errno if there are no free
stdio streams.

File descriptors used by fdopen must be less than 255.

10/89

fpgetround (3C) fpgetround (3C)

NAME
fpgetround, fpsetround, fpgetma.sk. fpsetmask, fpgetsticky, fpsetsticky -
IEEE floating-point environment control

SYNOPSIS
'include <ieeefp.h>

fp_rnd fpgetround (void);

fp_rnd fpsetround (fp_rnd rnd_dir);

fp _except fpgetmask (void);

fp_except fpsetmask (fp_except mask);

fp _except fpgetsticky (void);

fp _except fpsetsticky (fp _ except sticky);

DESCRIPTION
There are five floating-point exceptions: divide-by-zero, overflow, underflow,
imprecise (inexact) result, and invalid operation. When a floating-point exception
occurs, the corresponding sticky bit is set (1), and if the mask bit is enabled (1),
the trap takes place. These routines let the user change the behavior on
occurrence of any of these exceptions, as well as change the rounding mode for
floating-point operations.

FP X INV
FP_X_OFL
FP_X_UFL
FP X DZ
FP_X_IMI?
FP RN
FP RP
FP RM
FP RZ

/* invalid operation exception */
/* overflow exception */
/* underflow exception */
/* divide-by-zero exception */
/* ~recise (loss of precision) */
/* round to nearest representative number */
/* round to plus infinity */
/* round to minus infinity */
/* round to zero (truncate) */

fpgetround returns the current rounding mode.

fpsetround sets the rounding mode and returns the previous rounding mode.

fpgetmask returns the current exception masks.

fpsetmask sets the exception masks and returns the previous setting.

fpgetsticky returns the current exception sticky ~ags.

fpsetsticky sets (clears) the exception sticky flags and returns the previous set­
ting.

The default environment is rounding mode set to nearest (FP RN) and all traps
disabled. -

Individual bits may be examined using the constants defined in ieeefp. h.

SEE ALSO
isnan(3C).

10/89 Page 1

fpgetround (3C) fpgetround (3C)

NOTES

Page 2

fpsetsticky modifies all sticky flags. fpsetmask changes all mask bits. fpset­
mask clears the sticky bit corresponding to any exception being enabled.

C requires truncation (round to zero) for floating point to integral conversions.
The current rounding mode has no effect on these conversions.

One must clear the sticky bit to recover from the trap and to proceed. If the
sticky bit is not cleared before the next trap occurs, a wrong exception type may
be signaled.

10/89

fread (3S) fread(3S)

NAME
fread. fwrite - binary input/output

SYNOPSIS
tinclude <stdio. h>

size_t fread (void *ptr, size_t size,size_t nitems, FILE *stre~;

size t fwrite (canst void *ptr, size_t sizer $~ze_t nitems, FILE
*stre~;

DESCRIPTION
fread reads into an array pointed . to by ptt up .to nitems items of data from
stream, where an item of data is a sequence of bytes (not necessarily terminated
by a null byte) of length size. fread stops reading bytes if art end-of-file or error
condition is encountered while reading stream, or if nitemsitetns. have been read.
fread increments the data pointer in stream to point to the byte following the last
byte read if there is one. fread does not change the contents of stream. fread
returns the number.of items read.

fwrite writes to the named output stream at mostnitems items of data from the
array pointed to by ptr, where an item of data is a sequence of bytes (not neces­
sarily terminated by a null byte) of length size. fwrite stops writing when it has
written nitems items of data or if an error condition is encountered on stream.
fwrite does not change the contents of the array pointed to by ptr. fwrite
increments the data-pointer in stream by the number of bytes written. fwrite
returns the number of items written.

If size or nitems is zero, then fread and fwritereturn a value of 0 and do not
effect the state of stream. .

The ferrer or feof routines must be used to distinguish between an error condi­
tion and end-of-file condition.

SEE ALSO
exit(2), lseek(2), read(2), write(2), abort(3C), fclosa(3S), fopen(3S), getc(3S),
gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
If an error occurs, the error indicator for stream is $et.

10/89 Page 1

frexp (3C) frexp(3C)

NAME
frexp, ldexp, 10gb, JOOdf, JOOdff, nextafter, scalb - manipulate parts of
floating-point numbers

SYNOPSIS
tinclude <math.h>

double frexp (double value, int *epcr)i

double ldexp (double value, int exp) i

double 10gb (double value) i

double nextafter (double valuel, double value2)i

double scalb (double value, double exp)i

double modf (double value, double *iptr)i

float modff (float value, float *iptr)i

DESCRIPTION
Every non-zero number can be written uniquely as x * 2", where the "mantissa"
(fraction) x is in the range 0.5 ~ I x I < 1.0, and the "exponent" n is an integer.
frexp returns the mantissa of a double value, and stores the exponent indirectly
in the location pointed to by eptr. If value is zero, both results returned by frexp
are zero.

ldexp and scalb return the quantity value * 2ap. The only difference between
the two is that scalb of a signaling NaN will result in the invalid operation
exception being raised.

10gb returns the unbiased exponent of its floating-point argument as a double­
precision floating-point value.

modf and modff (single-precision version) return the signed fractional part of
value and store the integral part indirectly in the location pointed to by iptr.

nextafter returns the next representable double-precision floating-point value
following valuel in the direction of value2. Thus, if value2 is less than valuel,
nextafter returns the largest representable floating-point number less than
valuel.

SEE ALSO
cc(1), intro(3M).

DIAGNOSTICS

10189

If ldexp would cause overflow, ±HUGE (defined in math.h.) is returned (according
to the sign of value), and errnois set to ERANGE. If ldexp would cause
underflow, zero is returned and errno is set to ERANGE. if the input value to
ldexp is NaN or infinity, that input is returned and errno is set to EDOM. The
same error conditions apply to scalJ:)except that a signaling NaN as input will
result in the raising of the invalid operation exception.

10gb of NaN returns that NaN, 10gb· of infinity returns positive infinity, and
10gb of zero returns negative infinity and results in the raising of the divide by
zero exception. In each of these conditions errno is set to EDOM.

Page 1

frexp(3C} frexp(3C}

Page 2

If input valuel to nextafter is positive or negative infinity, that input is returned
and errno is set to EDOM. The overflow and inexact exceptions are signalled
when input valuel is finite, but nextafter (valuel, value2) is not. The underflow
and inexac:t e~~ptions are signalled when ne:xtafte:r (valuel, value2) lies strictly
between ± 2-1 . In both c;ases errno is set to ERAN/PE.

when the program is compiled with the c::c options -Xc or -Xa, HUGE_VAL is
returned instead of HUGE •

10/89

fseek(3S) fseek(3S)

NAME
fseek, rewind. ftell - reposition a file pointer in a stream

SYNOPSIS
'include <stdio.h>

int fseek (FILE * stream, long offset, int ptmame);

void rewind (FILE *stream);

long ftell (FILE *stream);

DESCRIPTION
fseek sets the position of the next input or output operation on the stream [see
intro(3)]. The new position is at the signed distance offset bytes from the begin­
ning, from the current position, or from the end of the file, according to a ptrname
value of SEEK_SET, SEEK_CUR, or SEEK_END (defined in stdio.h) as follows:

SEEK_SET set position equal to offset bytes.

SEEK_CUR set position to current location plus offset.
SEEK_END set position to EOF plus offset.
fseek allows the file position indicator to be set beyond the end of the existing
data in the file. If data is later written at this point, subsequent reads of data in
the gap will return zero until data is actually written into the gap. fseek, by
itself, does not extend the size of the file.

rewind (stream) is equivalent to:

(void) fseek (stream, OL, SEEK_SET);

except that rewind also clears the error indicator on stream.
fseek and rewind clear the EOF indicator and undo any effects of ungetc on
stream. After fseek or rewind. the next operation on a file opened for update
may be either input or output.

If stream is writable and buffered data has not been written to the underlying file,
fseek and rewind cause the unwritten data to be written to the file.

ftell returns the offset of the current byte relative to the beginning of the file
associated with the named stream.

SEE ALSO
lseek(2), write(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS

NOTES

10/89

fseek returns -1 for improper seeks, otherwise zero. An improper seek can be,
for example, an fseek done on a file that has not been opened via fopen; in par­
ticular, fseek may not be used on a terminal or on a file opened via popen.
After a stream is closed, no further operations are defined on that stream.

Although on the UNIX system an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset, portability to non­
UNIX systems requires that an offset be used by fseek directly. Arithmetic may
not meaningfully be performed on such an offset, which is not necessarily meas­
ured in bytes.

Page 1

fsetpos(3C) fsetpos (3C)

NAME
fsetpos, fgetpos - reposition a file pointer in a stream

SYNOPSIS
tinclude <stdio.h>

int fsetpos (FILE * stream, const fpos_t *pos);

int fgetpos (FILE * stream, fpos_t *pos);

DESCRIPTION
fsetpos sets the position of the next input or output operation on the stream
according to the value of the object pointed to by pos. The object pointed to by
pos must be a value returned by an earlier call to fgetpos on the same stream.

fsetpos clears the end-of-file indicator for the stream and undoes any effects of
the ungetc function on the same stream. After fsetpos, the next operation on a
file opened for update may be either input or output.

fgetpos stores the current value of the file position indicator for stream in the
object pointed to by pos. The value stored contains information usable by fset­
pos for repositioning the stream to its position at the time of the call to fgetpos.

If successful, both fsetpos and fgetpos return zero. Otherwise, they both return
nonzero.

SEE ALSO
fseek(3S), lseek(2) ungetc(3S).

10/89 Page 1

ftw(3C) ftw(3C)

NAME
ftw, nftw - walk a file tree

SYNOPSIS
tinclude <ftw.h>

int ftw (const char *path, int (*fn) (const char *, const struct
stat *, int), int depth);

int nftw (const char *path, int (*fn) (const char *, const struct
stat *, int, struct FTN*), int depth, int flags);

DESCRIPTION

10/89

ftw recursively descends the directory hierarchy rooted in path. For each object
in the hierarchy, ftw calls the user-defined function fn, passing it a pointer to a
null-terminated character string containing the name of the object, a pointer to a
stat structure (see stat(2» containing information about the object, and an
integer. Possible values of the integer, defined in the ftw.h header file, are:

FTN_F The object is a file.

FTN D The object is a directory.

The object is a directory that cannot be read. Descendants of the
directory will not be processed.

FTN NS stat failed on the object because of lack of appropriate permission
or the object is a symbolic link that points to a non-existent file. The
stat buffer passed to fn is undefined.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of In returns
a nonzero value, or some error is detected within ftw (such as an I/O error). If
the tree is exhausted, ftw returns zero. If fn returns a nonzero value, ftw stops
its tree traversal and returns whatever value was returned by fn. If ftw detects
an'error other than EACCES, it returns -1, and sets the error type in errno.

The function nftw is similar to ftw except that it takes an additional argument,
flags. The flags field is used to specify:

FTN PHYS Physical walk, does not follow symbolic links. Otherwise, nftw will
follow links but will not walk down any path that crosses itself.

FTN M:>UNT The walk will not cross a mount point.

FTWyEPTH All subdirectories will be visited before the directory itself.

FTN CHOIR The walk will change to each directory before reading it.

The function nftw calls fn with four arguments at each file and directory. The
first argument is the pathname of the object, the second is a pointer to the stat
buffer, the third is an integer giving additional information, and the fourth is a
struct FTN that contains the following members:

int base;
int level;

Page 1

ftw(3C) ftw(3C)

base is the offset into the pathname of the base name of the object. level indi­
cates the depth relative to the rest of the walk, where the root level is zero.

The values of the third argument are as follows:

FTW F The object is a file.

FTW D

FTW DP

FTW SLN

FTW DNR

The object is a directory.

The object is a directory and subdirectories have been visited.

The object is a symbolic link that points to a non-existent file.

The object is a directory that cannot be read. fn will not be called
for any of its descendants.

stat failed on the object because of lack of appropriate permission.
The stat buffer passed to fn is undefined. stat failure other than
lack of appropriate permission (EACCES) is considered an error and
nftw will return -1.

Both ftw and nftw use one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is zero or nega­
tive, the effect is the same as if it were 1. depth must not be greater than the
number of file descriptors currently available for use. ftw will run faster if depth
is at least as large as the number of levels in the tree. When ftw and nftw
return, they close any file descriptors they have opened; they do not close any file
descriptors that may have been opened by fn.

SEE ALSO

NOTES

Page 2

stat(2), malloc(3C).

Because ftw is recursive, it is possible· for it to terminate with a memory fault
when applied to very deep file structures.

ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is
forcibly terminated, such as by longjnp being executed by fn or an interrupt rou­
tine, ftw will not have a chance to free that storage, so it will remain per­
manently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its next
invocation.

10/89

getc(3S) getc(3S)

NAME
gete, get char, fgete, getw - get character or word from a stream

SYNOPSIS
'inelude <stdio.h>

int gete (FILE *stream);
int getchar (void);

int fgete (FILE *stream);

int getw (FILE * stream) ;

DESCRIPTION
. gete returns the next character (i.e., byte) from the named input stream [see

intro(3}] as an unsigned char converted to an into It also moves the file
pOinter, if defined, ahead one character in stream. getchar is defined as
gete (stdin). gete and getchar are macros.

fgete behaves like gete, but is a function rather than a macro. fgete runs more
slowly than gete, but it takes less space per invocation and its name can be
passed as an argument to a function.

getw returns the next word (Le., integer) from the named input stream. getw
increments the associated file pointer, if defined, to point to the next word. The
size of a word is the size of an integer and varies from machine to machine.
getw assumes no special alignment in the file.

SEE ALSO
felose(3S}, ferror(3S}, fopen(3S}, fread(3S}, gets(3S}, pute(3S}, scanf(3S},
stdio(3S}, ungetc(3S}.

DIAGNOSTICS

NOTES

10/89

These functions return the constant EOF at end-of-file or upon an error and set the
EOF or error indicator of stream, respectively. Because EOF is a valid integer, fer­
ror should be used to detect getw errors.

If the integer value returned by gete, getchar, or fgete is stored into a charac­
ter variable and then compared against the integer constant EOF, the comparison
may never succeed, because sign-extension of a character on widening to integer
is implementation dependent.

The macro version of gete evaluates a stream argument more than once and may
treat side effects incorrectly. In particular, gete (*f++) does not work sensibly.
Use fgete instead.

Because of possible differences in word length and byte ordering, files written
using putw are implementation dependent, and may not be read using getw on a
different processor.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (e.g., tundef gete).

Page 1

getcwd(3C) getcwd(3C)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
tinclude <unistd.h>

char *getcwd (char *buf, int size);

DESCRIPTION
getcwd returns a pointer to the current directory pathname. The value of size
must be at least one greater than the length of the pathname to be returned.

If but is not NULL, the pathname will be stored in the space pointed to by but.

If but is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C).
In this case, the pointer returned by getcwd may be used as the argument in a
subsequent call to free.

getcwd will fail if one or more of the following are true:

EACCES A parent directory cannot be read to get its name.

EINVAL

ERANGE

size is less than or equal to O.

size is greater than 0 and less than the length of the pathname plus
1.

EXAMPLE
Here is a program that prints the current working directory.

iinclude <unistd.h>
tinclude <stdio.h>

main 0
{

char *cwd;
if «cwd = getcwd(NULL, 64» = NULL)
{

perror ("pwd") ;
exit (2);

(void)printf ("%s\n", cwd);
return(O);

SEE ALSO
malloc(3C).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function.

10/89 Page 1

getdate (3C) getdate (3C)

NAME
getdate - convert user format date and time

SYNOPSIS
tinclude <time.h>

struct tm *getdate (const char *string);

extern int getdate_err;

DESCRIPTION

10/89

getdate converts user-definable date and/or time specifications pointed to by
string into a tm structure. The structure declaration is in the time. h header file
[see also ctime(3C)j.

User-supplied templates are used to parse and interpret the input string. The
templates are text files created by the user and identified via the environment
variable OATEMSK. Each line in the template represents an acceptable date and/or
time specification using some of the same field descriptors as the ones used by
the date command. The first line in the template that matches the input
specification is used for interpretation and conversion into the internal time for­
mat. If successful, the function getdate returns a pointer to a tm structure; oth­
erwise, it returns NULL and sets the global variable getdate _err to indicate the
error.

The following field descriptors are supported:

%% same as %
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c locale's appropriate date and time representation
%d day of month (01-31; the leading 0 is optional)
%e same as %d
%0 date as %m/%d/%y
%h abbreviated month name
%H hour (00-23)
%I hour (01-12)
%m month number (01-12)
%M minute (00-59)
%n same as \n
%p locale's equivalent of either AM or PM
%r time as %I: %M: %S %p
%R time as %H: %M
%S seconds (00-59)
%t insert a tab
%T time as %H: %M: %S
%w weekday number (0-6; Sunday = 0)
%x locale's appropriate date representation

Page 1

getdate (3C) getdate (3C)

Page 2

%X locale's appropriate time representation
%y year with century (00-99)
%Y year as ccyy (e.g., 1986)
%z time zone name or no characters if no time zone exists

The month and weekday names can consist of any combination of upper and
lower case letters. The user can request that the input date or time specification
be in a specific language by setting the categories LC_TlME and LC_CTYPE of set­
locale.

The following example shows the possible contents of a template:

%m
%A %B %d %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d, %m, %Y %H: %M
at %A the %dst of %B in %Y
run job at %I %p, %B %dnd
%A den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate ("10/1/87 4 PM")
getdate ("Friday")
getdate("Friday Septenber 19 1987, 10:30:30")
getdate("24,9,198610:30")
getdate ("at lOOnday the 1st of december in 1986")
getdate ("run job at 3 PM, december %2nd")

If the LANG environment variable is set to german, the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples
show how local date and time specification can be defined in the template.

Invocation Line in Template
getdate ("11/27/86") %m/%d/%y
getdate ("27 .11. 86") %d.%m.%y
getdate ("86-11-27") %y-%m-%d
getdate ("Friday 12: 00 : 00") %A %H:%M:%S

The following rules are applied for converting the input specification into the
internal format:

If only the weekday is given, today is assumed if the given day is equal to
the current day and next week if it is less.

If only the month is given, the current month is assumed if the given
month is equal to the current month and next year if it is less and no year
is given. (The first day of month is assumed if no day is given.)

10/89

getdate (3C) getdate (3C)

FILES

If no hour, minute, and second are given, the current hour, minute, and
second are assumed.

If no date is given, today is assumed if the given hour is greater than the
current hour and tomorrow is assumed if it is less.

The following examples illustrate the above rules. Assume that the current date
is Mon Sep 22 12:19:47 EDT 1986 and the LANG environment variable is not set.

Input Line in Template
~n %a
Sun %a
Fri %a
September %B
January %B
December %B
Sep Mon %b %a
Jan Fri %b %a
Dec Mon %b %a
Jan Wed 1989 %b %a %y
Fri 9 %a %H
Feb 10:30 %b %H:%S
10:30 %H:%M
13:30 %H:%M

/usr/lib/locale/<locale>/LC TIME
/usr/lib/locale/<locale>/LC=CTYPE

Date
Mon Sep 22 12:19:48 EDT 1986
Sun Sep 28 12:19:49 EDT 1986
Fri Sep 26 12:19:49 EDT 1986
Mon Sep 1 12:19:49 EDT 1986
Thu Jan 1 12:19:49 EST 1987
Mon Dec 1 12:19:49 EST 1986
Mon Sep 1 12:19:50 EDT 1986
Fri Jan 2 12:19:50 EST 1987
Mon Dec 1 12:19:50 EST 1986
Wed Jan 4 12:19:51 EST 1989
Fri Sep 26 09:00:00 EDT 1986
Sun Feb 1 10:00:30 EST 1987
Tue Sep 23 10:30:00 EDT 1986
Mon Sep 22 13:30:00 EDT 1986

language specific printable files
code set specific printable files

SEE ALSO
setlocale(3C), ctype(3C), environ(5).

DIAGNOSTICS

10/89

On failure getdate returns NULL and sets the variable getdate err to indicate
the error. -

The following is a complete list of the getdate _err settings and their meanings.

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3

4

5

6

7

8

Failed to get file status information.

The template file is not a regular file.

An error is encountered while reading the tempiate fiie.

malloc failed (not enough memory is available).

There is no line in the template that matches the input.

The input specifi~ation is invalid (e.g., February 31).

Page 3

getdate (3C) getdate (3C)

NOTES
Subsequent calls to getdate alter the contents of getdate_err.

Dates before 1970 and after 2037 are illegal.

getdate makes explicit use of macros described in ctype(3C).

Page 4 10/89

getenv(3C)

NAME
getenv - return value for environment name

SYNOPSIS
iinclude <stdlib.h>

char *getenv (const char *name);

DESCRIPTION

getenv(3C)

getenv searches the environment list [see environ(S)] for a string of the form
name=value and, if the string is present, returns a pointer to the value in the
current environment. Otherwise, it returns a null pointer.

SEE ALSO
exec(2), putenv(3C), environ(S).

10/89 Page 1

getgrent (3C) getgrent (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group
file entry

SYNOPSIS
iinelude <grp.h>

struct group *getgrent (void);

struct group *getgrgid (gid_t gid);

struct group *getgrnam (eonst char *name);

void setgrent (void);

void endgrent (void);

struct group *fgetgrent (FILE *f);

DESCRIPTION

FILES

getgrent, getgrgid, and getgrnam each return pointers to an object containing
the broken-out fields of a line in the /ete/group file. Each line contains a
"group" structure, defined in the grp.h header file with the following members:

char *gr_name; /* the name of the group */
char *gr-passwd; /* the encrypted group password */
gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member names */

When first called, getgrent returns a pointer to the first group structure in the
file; thereafter, it returns a pointer to the next group structure in the file; so, suc­
cessive calls may be used to search the entire file. getgrgid searches from the
beginning of the file until a numerical group id matching gid is found and returns
a pointer to the particular structure in which it was found.

getgrnam searches from the beginning of the file until a group name matching
name is found and returns a pointer to the particular structure in which it was
found. If an end -of-file or an error is encountered on reading, these functions
return a null pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. endgrent may be called to close the group file when processing is
complete.

fgetgrent returns a pointer to the next group structure in the stream f, which
matches the format of / ete/ group.

/ete/group

SEE ALSO
getlogin(3C), getpwent(3C).
group(4) in the System Administrator's Reference Manual.

10189 Page 1

getgrent(3C) getgrent (3C)

DIAGNOSTICS

NOTES

Page 2

getgrent, getgrgid, getgrnam, and fgetgrent return a null pointer on EOF or
error.

All information is contained in a static area, so it must be copied if it is to be
saved.

10/89

getltlmer (3C) getltlmer (3C)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
tinclude <sys/time.h>

int getitimer (int which, struct itimerval *value);

int setitimer (int which, struct itimerval *value, st:rtict itimerval
. *ovalue);

DESCRIPTION
The system provides each process with three interval timers, defined in
sys/time.h. The getitimer call stores the current value of the timer specified
by which into the structure pointed to by value. The setitimer call sets the value
of the timer specified by which to the value specified in the structure pointed to
by value, and if ovaIue is not NULL, stores the previous value of the timer in the
structure pointed toby ovalue.

A timer value is defined by the itimerval structure [see gettimeofday(30 for
the definition of timeval], which includes the following members:

struct timeval it interval; /* timer interval * /
struct timeval it:value; /*current value */

If it_value is non-zero, it indicates the time to the next timer expiration. If
it_interval is non-zero, it specifies a value to be used in reloading it_value
when the timer expires. Setting it_value to zero disables a timer,regardless of
the value of it_interval. Setting it_interval to zero disables a timer after its
next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to
this resolution.

The three timers are:

ITIMER REAL Decrements in real time. A SIGALRM signal is delivered when
this timer expires.

ITIMER _ VIR'lUAL Decrements in process virtual time. It runs only when the
process is executing. A SIGVTALRM signal is delivered when it
expires.

ITIMER_PROF Decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used
. by interpreters in statistically profiling the execution of inter­
preted programs. Each time the ITIMER _PROF timer expires,
the SIGPROF signal is delivered. Because this signal may
interrupt in-progress system calls, programs using this timer
must be prepared to restart interrupted system calls.

SEE ALSO
alarJl(2), gettimeofday(3C).

DIAGNOSTICS

10/89

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is
returned, and an error code is placed in the global variable errno.

Page 1

getitlmer (3C) getltlmer (3C)

NOTES

Page 2

Under the following conditions, the functions getiti.mer and setiti.mer fail and
set ermo to:

EINVAL The specified number of seconds is greater than 100,000,000, the
number of micro5e(:onds is greater than or equal to 1,000,000, or the
which parameter is unrecognized.

The microseconds field should not be equal to or greater than one second.

setiti.mer is independent of the alarm system call.

Do not use setiti.mer with the sleep routine. A sleep following a setiti.mer
wipes out knowledge of the user signal handler.

10/89

getlogln (3C) getlogln (3C)

NAME
get login - get login name

SYNOPSIS
tinclude <stdlib.h>

char *getlogin (void);

DESCRIPTION

FILES

get login returns a pointer to the login name as found in /var/adm/utrrp. It
may be used in conjunction with getpwnam to ~ocate the correct password file
entry when the same user id is shared by several login names.

If get login is called within a process that is not attached to a terminal, it returnS
a null pointer. The correct procedure for determinin.g the login name is to call
cuserid, or to call getlogin and if it fails to call getpwuid.

/var/adm/utJrp
SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utrrp(4).

DIAGNOSTICS
Returns a null pointer if the login name is not found.

NOTES
The return values point to static data whose content is overwritten by each call.

10/89 Page 1

getmntent (3C) getmntent (3C)

NAME
getmntent, getmntany - get mnttab file entry

SYNOPSIS
iinclude <stdio.h>
iinclude <sys/mnttab.h>

int getmntent (FILE *fp, struct mnttab *np) i

int getmntany (FILE *fp, struct mnttab *np, struct mnttab *npref);

DESCRIPTION

FILES

getmntent and getmntany each fill in the structure pointed to by mp with the
broken-out fields of a line in the / etc/mnttab file. Each line in the file contains
a mnttab structure, declared in the sys/mnttab. h header file:

struct mnttab {

}i

char *mnt _special i
char *mnt IOOUIltPi
char *mnt=fstypei
char *mnt mntopts;
char *mnt=time;

The fields have meanings described in mnttab(4).

getmntent returns a pointer to the next mnttab structure in the file; so successive
calls can be used to search the entire file. getmntany searches the file referenced
by fp until a match is found between a line in the file and mpref. mpref matches
the line if all non-null entries in mpref match the corresponding fields in the file.
Note that these routines do not open, close, or rewind the file.

/etc/mnttab

SEE ALSO
mnttab(4).

DIAGNOSTICS
If the next entry is successfully read by getmntent or a match is found with
getmntany, 0 is returned. If an end-of-file is encountered on reading, these func­
tions return -1. If an error is encountered, a value greater than 0 is returned.
The possible error values are:

MNT _ TOOLONG A line in the file exceeded the internal buffer size of
MNT_LINE _MAX.

MNT TOOMANY

MNT TOOFEW

NOTES

A line in the file contains too many fields.

A line in the file contains too few fields.

10/89

The members of the mnttab structure point to information contained in a static
area, so it must be copied if it is to be saved.

Page 1

getopt(3C) getopt(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
tinclude <stdlib.h>

int getopt (int argc, char * const *argv, const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

DESCRIPTION
getopt returns the next option letter in argv that matches a letter in optstring. It
supports all the rules of the command syntax standard [see intro(l)]. Since all
new commands are intended to adhere to the command syntax standard, they
should use getopts(1), getopt(3C), or getsubopts(3C) to parse positional
parameters and check for options that are legal for that command.

optstring must contain the option letters the command using getopt will recog­
nize; if a letter is followed by a colon, the option is expected to have an argu­
ment, or group of arguments, which may be separated from it by white space.
optarg is set to point to the start of the option argument on return from getopt.

get opt places in optind the argv index of the next argument to be processed.
optind is external and is initialized to 1 before the first call to getopt .. When all
options have been processed (i.e., up to the first non-option argument), getopt
returns EOF. The special option "--" (two hyphens) may be used to delimit the
end of the options; when it is encountered, EOF is returned and "--" is skipped,'
This is useful in delimiting non-option arguments that begin with "-" (hyphen).

EXAMPLE

10/89

The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the option 0,

which requires an argument:

iinclude <stdlib.h>
tinclude <stdio.h>

main (int argc, char **argv)
{

int c;
extern char * optarg;
extern int optind;
int aflg = 0;
int bflg = 0;
int errflg = 0;
char *ofile = NULL;

while «c = getopt (argc, argv, "abo: "» != EOF)
switch (c) {
case 'a':

if (bflg)
errflg++;

Page 1

getopt(3C) getopt(3C)

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bflg++;

break;
case '0':

ofile = optarg;
(void)printf("ofile = %s\n", ofile);
break;

case '?':
errflg++;

}
if (errflg) {

(void)fprintf(stderr,
"usage: c:mj (-al-b] (-o<file>] files ... \n");

exit (2);

for (; optind < argc; optind++)
(void)printf ("%s\n", argv(optind]);

return 0;

SEE ALSO
getsubopt(3C).
getopts(l), intro(l) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

getopt prints an error message on the standard error and returns a "?" (ques­
tion mark) when it encounters an option letter not included in optstring or no
argument after an option that expects one. This error message may be disabled
by setting opterr to O. The value of the character that caused the error is in
optopt.

The library routine getopt does not fully check for mandatory arguments. That
is, given an option string a:b and the input -a -b, getopt assumes that -b is the
mandatory argument to the option -a and not that -a is missing a mandatory
argument.
It is a violation of the command syntax standard [see intro(1)] for options with
arguments to be grouped with other options, as in c:mj -aboxxx file, where a
and b are options, 0 is an option that requires an argument, and xxx is the argu­
ment to o. Although this syntax is permitted in the current implementation, it
should not be used because it may not be supported in future releases. The
correct syntax is c:mj -ab -oxxx file.

10/89

getpass (3C) getpass(3C)

NAME
getpass - read a password

SYNOPSIS
'include <stdlib.h>

char *getpass (const char *pronpt);
DESCRIPTION

FILES

NOTE

10/89

getpass reads up to a newline or EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echOing. A pointer is returned to a null-terminated string of at most 8 characters.
If /dev/tty cannot be opened, a null pointer is returned. An interrupt will ter­
minate input and send an interrupt signal to the calling program before return­
ing.

/dev/tty

The return value points to static data whose content is overwritten by each call.

Page 1

getpw(3C)

NAME
getpw - get name from UID

SYNOPSIS
tinclude <stdlib.h>

int getpw (uid _ t uid, char *OOf) i

DESCRIPTION

getpw(3C)

getpw searches the password file for a user id number that equals uid, copies the
line of the password file in which uid was found into the array pointed to by buf,
and returns O. getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should not
be used; see getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C).
passwd(4) in the System Administrator's Reference Manual.

DIAGNOSTICS
getpw returns non-zero on error.

10/89 Page 1

getpwent (3C) getpwent (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - manipulate
password file entry

SYNOPSIS
:/tinclude <pwd. h>

struct passwd *getpwent (void);

struct passwd *getpwuid (uid _ t uid);

struct passwd *getpwnam (const char *name);

void setpwent (void);

void endpwent (void);

struct passwd *fgetpwent (FILE *f);

DESCRIPTION

FILES

10/89

getpwent, getpwuid, and getpwnam each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the ! etc/passwd
file. Each line in the file contains a passwd structure, declared in the pwd. h
header file:

struct passwd {

};

char *pw _ name;
char *pwyasswd;
uid tpw uid;
gid=:tpw=:9id;
char *pw age;
char *pw =: comment;
char *pw gecos;
char *pw -dir;
char *pw:shell;

getpwent when first called returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file; so suc­
cessive calls can be used to search the entire file. getpwuid searches from the
beginning of the file until a numerical user id matching uid is found and returns
a pointer to the particular structure in which it was found, getpwnam searches
from the beginning of the file until a login name matching name is found, and
returns a pointer to the particular structure in which it was found. If an end-of­
file or an error is encountered on reading, these functions return a null pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. endpwent may be called to close the password file when pro­
cessing is complete.

fgetpwent returns a pointer to the next passwd structure in the stream f, which
matches the format of / etc/passwd.

/etc/passwd

Page 1

getpwent (3C) getpwent(3C}

SEE ALSO
getlogin(3C), getgrent(3C).
paaswd(4) in the System Administrator's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

getpwetlt, getpwnid, getpwnam, and fgetpwent retum a null pointer on Eor or
errOr.

All information is contained in a static area, so it must be copied if it is to be
saved.

10/89

gets (3S) gets (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
~include <stdio.h>

char *gets (char *8);

char *fgets (char *s, int n, FILE *streaJil);

DESCRIPTION
gets reads characters from the standard input stream [see in~ro(3)1, stdin, into
the array pointed to by 5, until a newline character is read or an end-of-file condi­
tion . is encouritered. The newline character is discarded and the string is ter­
minated with a null character.

fgetsreads characters from the streizm into the array pointed to by 5, until n-l
characters are read, or a newline character is read and transferred to 5, or an
end-of-file condition is encountered. The string is then terminated with a null
character.

When using gets, if the length of an input line exceeds the size of 5, indeter­
minate behavior may result. For this reaspn, it is strongly recommended that
gets be avoided ih favor of fgets.

SEE ALSO
Iseek(2), read(2), ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S),
stdio(3S),ungeta3S).

DIAGNOSTICS

10/89

If end-of-:file is encountered and ho charaders have been read, no characters are
transferred to 5 and a null pointer is reU.trned .. If it read error occurs, such as try­
ing to use these functiOnS on a file that has not been opened for reading, a null
pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, the EOF indicator for the stream is set. Otherwise 5 is returned.

Page 1

getspent(3C) getspent (3C)

NAME
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf -
manipulate shadow password file entry

SYNOPSIS
iinclude <shadow.h>
struet spwd *getspent (void);

struet spwd *getspnam (const char *name);

int lckpwdf (void);

int ulckpwdf (void);

void setspent (void);

void endspent (void);

struet spwd *fgetspent (FILE *fp);

DESCRIPTION

10189

The getspent and getspnam routines each return a pointer to an object with the
following structure containing the broken-out fields of a line in the I etcl shadow
file. Each line in the file contains a "shadow password" structure, declared in the
shadow. h header file:

struet spwd{

};

char *sp nanp;
char * sp Ywdp;
long sp lstchg;
long sp:min;
long sp_max;
long sp warn;
long sp - inaet;
long sp:expire;
unsigned long sp_flag;

The getspent routine when first called returns a pointer to the first spwd struc­
ture in the file; thereafter, it returns a pointer to the next spwd structure in the
file; so successive calls can be used to search the entire file. The getspnam rou­
tine searches from the beginning of the file until a login name matching name is
found, and returns a pointer to the particular structure in which it was found.
The getspent and getspnam routines populate the sp_min, SP_IDaX, sp_lstchg,
sp _warn, sp _ inact, sp _expire, or sp _flag. field with -1 if the corresponding
field in Jete/shadow is empty. If an end-of-file or an error is encountered on
~ading, or there is a format error in the file, these functions return a null pointer
and set ermo to EINVAL.

I etel . pwd . lock is the lock file. It is used to coordinate modification access to
the password files lete/passwd and letc/shadow. lekpwdf and ulckpw4f are
routines that are used to gain modification access to the password files, through
the lock file. A process first uses lckpwdf to lock the lock file, thereby gaining
exclusive rights to modify the I ete/passwd or I etcl shadow password file.
Upon completing modifications, a process should release the lock on the lock file

Page 1

getspent(3C) getspent (3C)

FILES

via ulekpwdf. This mechanism prevents simultaneous modification of the pass­
word files.

lekpwdf attempts to lock the file /ete/ .pwd.lock within 15 seconds. If unsuc­
cessful, e.g., /ete/ .pwd.lock is already locked, it returns -1. If successful, a
return code other than -1 is returned.

ulckpwdf attempts to unlock the file / ete/ . pwd . lock. If unsuccessful, e.g.,
/ ete/ . pwd . lock is already unlocked, it returns -1. If successful, it returns O.

A call to the setspent routine has the effect of rewinding the shadow password
file to allow repeated searches. The endspent routine may be called to close the
shadow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the stream
/p, which matches the format of /ete/shadortl.

/ete/shadortl
/ete/passwd
/ete/.pwd.lock

SEE ALSO
getpwent(3C), putpwent(3C), putspent(3C).

DIAGNOSTICS

NOTES

Page 2

getspent, getspnam, lekpwdf, ulckpwdf, and fgetspent return a null pointer
on EOF or error.

This routine is for internal use only; compatibility is not guaranteed.

All information is contained in a static area, so it must be copied if it is to be
saved.

10/89

getsubopt (3C) getsubopt (3C)

NAME
getsubopt - parse suboptions from a string

SYNOPSIS
iinclude <stdlib.h>

int getsUbopt (char **optionp, char * const *tokens, char **valuep);

DESCRIPTION
getsubopt parses sUboptions in a flag argument that was initially parsed by
getopt. These suboptions are separated by commas and may consist of either a
single token or a token-value pair separated by an equal sign. Since commas
delimit suboptions in the option string, they are not allowed to be part of the
suboption or the value of a suboption. A command that uses this syntax is
roount(1M), which allows the user to specify mount parameters with the -0

option as follows:

roount -0 rw,hard,bg,wsize=1024 speed:/usr lusr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of
which has an associated value of 1024.

getsubopt takes the address of a pointer to the option string, a vector of possible
tokens, and the address of a value string pointer. It returns the index of the
token that matched the suboption in the input string or -1 if there was no match.
If the option string at optionp contains only one subobtion, getsubopt updates
optionp to point to the null character at the end of the string; otherwise it isolates
the suboption by replacing the comma separator with a null character, and
updates optionp to point to the start of the next suboption. If the suboption has
an associated value, getsubopt updates valuep to point to the value's first charac­
ter. Otherwise it sets valuep to NULL.

The token vector is organized as a series of pointers to null strings. The end of
the token vector is identified by a null pointer.

When getsubopt returns, if valuep is not NULL, then the suboption processed
included a value. The calling program may use this information to determine if
the presence or lack of a value for this subobtion is an error.

Additionally, When getsubopt fails to match the suboption with the tokens in
the tokens array, the calling program should decide if this is an error, or if the
unrecognized option should be passed to another program.

EXAMPLE

10/89

The following code fragment shows how to process options to the roount com­
mand using gets"bopt.

iinclude <stdlib.h>

char *myopts [] = {
idefine READONLY 0

"ron,
idefine READWRlTE 1

nrw",

Page 1

getsubopt (3C) getsubopt (3C)

tdefine WRlTESlZE 2
"wsize",

tdefine READSIZE 3
"rsize",
NULL};

main (argc, argv)
int arge;
char * *argv;

int se, e, errflag;
char *options, *value;
extern char *optarg;
extern int optind;

while ((e .. getopt(arge, argv, "abf:o:"» !- -1) {
switch (c) {
case 'a': /* process a option */

break;
case 'b': /* process b option */

break;
case' f' :

ofile - optarg;
break;

case '?':
errflag++;
break;

case '0':
options = optarg;
while (*options != '\0') {

switch (getstibopt (&options,myopts, &value)
case READONLY : /* process ro option */

break;
case READWRlTE /* process rw option */

break;
case WRlTESIZE /* process wsize option */

if (value = NULL) {
error no arg 0 ;
errflag++ ;

else
write size = atoi(value);

break; -
case READSIZE : /* process rsize option */

if (value = NULL) {
error_no_argO;
errflag++;

else

Page 2 10/89

getsubopt (3C) getsubopt (3C)

read_size = atoi(value);
break;

default :

break;

if (errflag) {

/* process unknown token */
error_bad_token(value);
errflag++;
break;

/* print usage instructions etc. */

for (; optind<argc; optind++) (
/* process remaining arguments */

SEE ALSO
getopt(3C).

DIAGNOSTICS

NOTES

10/89

getsubopt returns -1 when the token it is scanning is not in the token vector.
The variable addressed by valuep contains a pointer to the first character of the
token that was not recognized rather than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be parsed, or a null
character if there are no more options.

During parsing, commas in the option input string are changed to null characters.
White space in tokens or token-value pairs must be protected from the shell by
quotes.

Page 3

gettlmeofday (3C) gettimeofday (3C)

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
tinclude <sys/time.h>

int gettimeofday (struct timeval *tp);

int settimeofday (struct timeval *tp);

DESCRIPTION
gettimeofday gets and settimeofday sets the system's notion of the current
time. The current time is expressed in elapsed seconds and microseconds since
00:00 Universal Coordinated Time, January 1, 1970. The resolution of the system
dock is hardware dependent; the time may be updated continuously or in clock
ticks.

tp points to a timeval structure, which includes the following members:

long
long

tv_sec;
tv_usec;

/* seconds since Jan. 1, 1970 */
/* and microseconds */

If tp is a null pointer, the current time information is not returned or set.

The TZ environment variable holds time zone information. See timezone(4).

Only the privileged user may set the time of day.

SEE ALSO
adjtime(2), ctime(3C), timezone(4).

DIAGNOSTICS

NOTES

10/89

A -1 return value indicates that an error occurred and ermo has been set. The
following error codes may be set in errno:

EINVAL tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the
time or time zone.

The implementation of settimeofday ignores the tv_usec field of tp. If the
time needs to be set with better than one second accuracy, call settimeofday for
the seconds and then adjtime for finer accuracy.

Page 1

g(itttxt(3C) gettxt(3C)

NAME
gettxt - retrieve a text string

SYNOPSIS
tinclude <unistd.p>

char *gettxt (const char *msgid, const char *dflt_str);

DESCRIPTION
gettxt retrieves a text string from a message file. The arguments to the function
are a message identification msgid and a default string dflt _str to be used if the
retrieval fails. .

The text strings are in files created by the mkmsgs utility [see mkmsgs(1)] and
installed in directories in /usr/lib/locale/<loca1e>/:W~MESSAGES.

The directory <locale> can be viewed as the language in which the text strings are
written. The user can request that messages be displayed in a specific language
by setting the environment variable LC_MESSAGES. If LC MESSAGES is not set, the
environment variable LANG will be used. If LANG is nor set, the files containing
the strings are in /usr/lib/loc~le/C/LC_MESSAGES/*.

The USer can also change the language in which the messages are displayed by
invoking the setlocale function with the appropriate arguments.

If gettXt fails to retrieve a message in a specific language it will try to retrieve
the same qlessage in U.S. English. On failure, the processing depends on what the
second argument dflt _str poihts to. A pointer to the second argument is returned
if the secohd argument is m>t the null string. If dflt _str points to the null string, a
pointer to the U.S. English text string "Message not found! !\n" is returned.

The following depicts the acceptable syntax of msgid for a call to gettxt .

. <msgid> = <msgjilename>: <msgnumber>
The first field is used to indicate the file that contains the text strings and must be
limited to 14 characters. These characters must be selected from the set of all
character values excluding'J) (null) and the ASCII code for / (slash) and : (colon).
The names of message files must be. the. same as the names of fileS created by
mkmsgsand installed in /usr/lib/locale/<locale>/LC MESSAGES/*. The
numeric field indicates the sequencenutriber of the string in the file. The strings
are numbered from 1 to n where n is the number of strings in the file.

On failure to pass the cortect msgid or a valid message number to gettxt a
pointer to the text string "Message not found!! \n" is returned.

EXAMPLE

FILES

10/89

gettxt("UX:10", "hello world\niij
gettxt("UX:10", "")

UX is the name of the file that contains the messages. 10 is the message number.

/usr/lib/locale/C/LC_MESSAGES/* contains default message files created by
mkmsgs

Page 1

gettxt(3C)

/usr/lib/locale/locale/LC_MESSAGES/*

SEE ALSO
fmtmsg(3C), setlocale(3C), environ(S).

gettxt(3C)

contains message files for different
languages created by mkmsgs

exstr(1), mkmsgs(1), srchtxt(1) in the User's Reference Manual.

Page 2 10/89

getut(3C) getut(3C)

NAME
getut: getutent, getutid, getutline,pututlin~ setutent, endutent, utmp­
name - access utllp file entry

SYNOPSIS
iinclude <utllp.h>

st~ct utllp *getutent (void);

struct utllp *getutid (const struct utmp *id);

struct utllp *getutline (const struct utmp *line);

struct utllp *pututline (const struct utmp *utllp);

void setutent (void);

void endutent (void);

int utllpname (const char *file);

DESCRIPTION

10/89

getutent, getutid, getutline, and pututline each return a pointer to a struc­
ture with the following members:

char ut user[8]; /* user login name */
char ut-id[4]; /* /sbin/inittab id (usually line t) */
char ut-line[12]; /* device name (console, lnxx) */
short utyid; /* process id */
short ut type; /* type of entry */
struct exIt status {
} ut_exit; - /* exit status of a process */

/ * marked as DEAD PROCESS * /
time t ut_time; /* time entry was made */

The structure exit status includes the following members:

short e ter.mination;
short e:exit;

/* ter.mination status */
/* exit status */

getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp file until it finds an
entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN PROCESS, USER PROCESS, or DEAD PROCESS, then getutid will return a
pointer to the first entr;./ whose type is one of these four and whose ut _ id field
matches id->ut_id. If the end of file is reached without a match, it fails.

getutline searches forward from the current point in the utllp file until it finds
an entry of the type LOGIN_PROCESS .or USER]ROCESS that also has a ut _line
string matching the line->ut}ine string. If the end of file is reached without a
match, it fails.

Page 1

getut(3C) getut(3C)

FILES

pututline writes out the supplied utnp structure into the utnp file. It uses
getutid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututline will have
searched for the proper entry using one of the getut routines. If so, pututline
will not search. If pututline does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utnp struc­
ture.

setutent resets the input stream to the begiRning of the file. This reset should
be done before each search for a new entry if it is desired that the entire file be
examined.

endutent closes the currently open file.

utnpname allows the user to change the name of the file examined, from
/var/adm/utnp to any other file. It is most often expected that this other file
will be /var/adm/w'arp. If the file does not exist, this will not be apparent until
the first attempt to reference the file is made. utnpname does not open the file.
It just closes the old file if it is currently open and saves the new file name. If the
file name given is longer than 79 characters, utnpname returns O. Otherwise, it
will return 1.

/var/adm/utrrp
/var/adm/wtrrp

SEE ALSO
ttyslot(3C), utnp(4).

DIAGNOSTICS

NOTES

Page 2

A null pointer is returned upon failure to read, whether for permissions or hav­
ing reached th~ end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. On each call to either getutid
or getutline, the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks
no further. For this reason, to use getutline to search for multiple occurrences,
it would be necessary to zero out the static area after each success, or getutline
would just return the same structure over and over again. There is one exception
to the rule about emptying the structure before further reads are done. The
implicit read done by pututline (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static structure returned by the
getutent, getutid or getutline routines, if the user has just modified those
contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes trying
to modify the utnp and w'arp files.

10/89

getutx(9C) getutx(3C)

NAME
getutx: getutxent, getutxid, getutxline, pututxline, setutxent,
endutxent, utrlpxname, getutnp, getut:npx, updwtIlp, updwtl!px - access
utnpx file entry

SYNOPSIS
.include <utrtpx.h>

struc:t ut:npx *getutxent (void);

struc:t utrlpx *getutxid (const struc:t ut:npx *id);

struc:t utnpx *getutxline (const struc:t utnpx *line);

struc:t utnpx *pututxline (const struc:t utnpx *utIlpx);

void setutxent (void);

void endutxent (void);

int utltpxname (const char *file);

void getutnp (struc:t utnpx *utnpx, struc:t utnp *utnp);

void getutnpx (struct utnp *utnp, struc:t utnpx *utnpx);

void updwtIlp (char *wfile, struc:t utnp *utnp);

void updwtIlpx (char *wfilex, struc:t utnpx *utnpx);

DESCRIPTION

10/$9

getutxent, getutxid, and getutxline each return a pointer to a structure of
the following type:

struc:t
char
char

utnpx {
ut user[32];
ut=:id[4] ;

/* user login name */
/* /sbin/inittab id (usually */
/* line .) */

};

char ut line [32] ; /* device name (console, lnxx) * /
pid t
short.

ut:Pid; /* process id */
ut_type; /* type of entry */

struct
short
short

exit status {
e-ter.mination; /* termination status */
e-exit; /* exit status */
/* exit status of a process
/* marked as DEAD PROCESS */

struc:t timeval ut tv; l* time entry was made */
short ut_syslen; 7* significant length of ut_host */

/* including te~inatin9 null */
char ut_host[257]; /* host name, if remote */

getutxent reads in the next entry from a utnpx-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutxid searches forward from the current point in the utnpx file until it finds
an entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in ill is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then

Page 1

getutx(3C) getutx(3C)

FILES

Page 2

getutxid will return a pointer to the first entry whose type is one of these four
and whose ut id field matches id->ut id. If the end of file is reached without a
match, it fails: -

getutxl.ine searches forward from the current point in the utnpx fIle until it
finds an entry of the type LOGIN_PROCESS or OSER _PROCESS which also has a
uUine string matching the line->ut_line string. If the end of fIle is reached
without a match, it fails.

pututxline writes out the supplied utnpx structure into the utrlpx file. It uses
getutxid to search forward for the proper place if it finds that it is not already
at the proper place. It is expected that normally the user of pututx!ine will
have searched for the proper entry using one of the getutx routines. If so,
pututxline will not search. If pututxline does not find a matching slot for the
new entry, it will add a new entry to the end of the file. It returns a pointer to
the utnpx structure.

setutxent resets the input stream to the beginning of the file. This should be
done before each search for a new entry if it is desired that the entire fIle be
examined.

endutxent closes the currently open file.

utnpxname allows the user to change the name of the file examined, from
/var/adm/utnpx to any other fIle. lt is most often expected that this other file
will be /var/adm/warpx. If the file does not exist, this will not be apparent until
the first attempt to reference the file is made. ut.npxname does not open the fIle.
lt just closes the old file if it is currently open and saves the new fIle name. The
new file name must end with the "x" character to allow the name of the
corresponding utnp file to be easily obtainable (otherwise an error code of 1 is
returned).

getutnp copies the information stored in the fields of the utnpx structure to the
corresponding fields of the utnp structure. If the information in any field of
utmpx does not fit in the corresponding utnp field, the data is truncated.

getutnpx copies the information stored in the fields of the utnp structure to the
corresponding fields of the utnpx structure.

updwarp checks the existence of wfile and its parallel fIle, whose name is obtained
by appending an "x" to wfile. If only one of them exists, the second one is
created and initialized to reflect the state of the existing file. utmp is written to
wfile and the corresponding utnpx structure is written to the parallel file.

updwarpx checks the existence of wfilex and its parallel file, whose name is
obtained by truncating the final "x" from wfilex. If only one of them exists, the
second one is created and initialized to reflect the state of the existing file. utmpx
is written to wfilex, and the corresponding utnp structure is written to the parallel
file.

/var/adm/utnp,/var/admiutnpx
/var/adm/warp,/var/adm/wtmpx

10/89

getutx(3C} getutx(3C}

SEE ALSO
ttyslot(3C), utIlp(4), utllpx(4).

DIAGNOSTICS

NOTES

10/89

A null pointer is returned upon failure to read, whether for permissions or hav­
ing reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. On each call to either
getutxid or getutxline, the routine examines the static structure before per­
forming more I/O. If the contents of the static structure match what it is search­
ing for, it looks no further. For this reason, to use getutxline to search for mul­
tiple occurrences it would be necessary to zero out the static after each success, or
getutxline would just return the same structure over and over again. There is
one exception to the rule about emptying the structure before further reads are
done. The implicit read done by pututxline (if it finds that it is not already at
the correct place in the file) will not hurt the contents of the static structure
returned by the getutxent, getutxid, or getutxline routines, if the user has
just modified those contents and passed the pointer back to pututxline.

These routines use buffered standard I/O for input, but pututxline uses an
unbuffered write to avoid race conditions between processes trying to modify the
utIlpx and wtnpx files.

Page 3

getvfsent (3C) getvfsent (3C)

NAME
getvfsent, getvfsfile, getvfsspec, getvfsany - get vfstab file entry

SYNOPSIS
tinclude <stdio.h>
tinclude <sys/vfstab.h>

int getvfsent (FILE *fp, struct vfstab *vp);

int getvfsfile (FILE *fp, struct vfstab *vp, char *file);

int getvfsspec (FILE *, struct vfstab *vp, char *spec);

int getvfsany (FILE *, struct vfstab *vp, vfstab *vref);

DESCRIPTION

FILES

getvfsent, getvfsfile, getvfsspec, and getvfsany each fill in the structure
pointed to by vp with the broken-out fields of a line in the /etc/vfstab file.
Each line in the file contains a vfstab structure, declared in the sys/vfstab. h
header file:

char *vfs_special;
char *vfs_fsckdev;
char *vfs mountp;
char *vfs:fstype;
char *vfs_fsckpass;
char *vfs automnt;
char *vfs:mntopts;

The fields have meanings described in vfstab(4).

getvfsent returns a pointer to the next vfstab structure in the file; so successive
calls can be used to search the entire file. getvfsfile searches the file referenced
by fp until a mount point matching file is found and fills vp with the fields from
the line in the file. getvfsspec searches the file referenced by fp until a special
device matching spec is found and fills vp with the fields from the line in the file.
spec will try to match on device type (block or character special) and major and
minor device numbers. If it cannot match in this manner, then it compares the
strings. getvfsany searches the file referenced by fp until a match is found
between a line in the file and vref. vref matches the line if all non-null entries in
vref match the corresponding fields in the file.

Note that these routines do not open, close, or rewind the file.

/etc/vfstab

DIAGNOSTICS

10/89

If the next entry is successfully read by getvfsent or a match is found with
getvfsfile, getvfsspec, or getvfsany, 0 is returned. If an end-of-file is
encountered on reading, these functions return -1. If an error is encountered, a
value greater than 0 is returned. The possible error values are:

Page 1

getvfsent (3C)

VFS TOOLONG

VFS_TOOFEW

NOTES

getvfsent (3C)

A line in the file exceeded the internal buffer size of
VFS LINE~. - -
A line in the file contains too many fields.

A line in the file contains too few fields.

The members of the vfstab structure point to information contained in a static
area, so it must be copied if it is to be saved.

Page 2 10/89

hsearch C3C) hsearch C3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
iinclude <search.h>

ENTRY *hsearch (EN'tRY item, ACTION action);

int hcreate (size_t nel);

void hdestroy (void);

DESCRIPTioN
hsearch is a hash-table search routine generalized from Kntith (6.4) Algorithm D.
It returns· a pointer into a hash table indicating the location at which an entry can
be found. The comparison function used by hsearch is strcnp [see string(3C»).
item is a structure of type ENTRY (defined in the search.h header file) containing
two pointers: item.key points to the comparison key, and item.data points to any
other data tp be associated with that key. (Pointers to types· other than void
should be cast to pointer-to-void.) action is a member of an enumeration type
ACTION (defined in search.p) indicating the disposition of the entry if it cannot
be found in the table. ENTER indicates that the item should be inserted in the
table at an appropriate point. Given a duplicate of an existing item, the new item
is not entered and· hsearchreturns a pointer to the existing item. FIND indicates
that no entry should be made. Unsuccessful resolution is indicated by the return
of a null pointer. .

hcreate .allocates sufficient space for the table, and must be called before
hsearch is used. nel is an estimate of the maximum number of entries that the
table will· contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another call to
hcreate.

EXAMPLE

10/89

The following example will read in strings followed by two numbers and store
them in a hash table, discarding duplicates. It will then read in strings and find
the matching entry in the hash table and print it out.

iinelude <stdio.h>
iinclude <search.h>
iinclude <string.h>
tinclude <stdlib.h>

struct info {
int age, room;

/* this is the info stored in table */
/* other than the key * /

};

maine)
{

5000 /* t of elements in search table */

/* space to store strings */

Page 1

hsearch (3C)

Page 2

hsearch (3C)

char string space [NOM EMl?L*20];
/* space to-store enPioyee info */
struct info info space [NOM EMPL] ;
/* next avail space in str-ing space */
char * str ytr = string_space;-
/* next avail space in info space */
struct info *infoytr = info_space;
ENTRY item, *found item;
/* name to look for in table * /
char name to find [30] ;
int i = 0; -

/* create table */
(void) hcreate(NOM_EMPL);
while (scanf("%s%d%d", strytr, &infoytr->age,

&infoytr->room) != EOF && i++ < NUM_EMI?L) {
/* put info in structure, and structure in item */
item. key = strytr;
item.data == (void *)infoytr;
strytr += strlen(strytr) + 1;
infoytr++;
/* put item into table */
(void) hsearch (item, ENTER);

/* access table */
item. key = name to find;
while (scanf(,,%s",-item.key) != EOF) {

if «found item = hsearch(item, FIND» != NULL) {
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found itemr>key,
«stroct info *)found itemr>data)->age,
«struct info *)found-itemr>data)->room);

else { -
(void) printf ("no such enployee %s\n",

name_to_find)

return 0;

10/89

hsearch (3C) hsearch (3C)

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS

NOTES

10/89

hsearch returns a null pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

here ate returns zero if it cannot allocate sufficient space for the table.

hsearch and here ate use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

Page 3

Initgroups (3C) Initgroups(3C)

NAME
initgroups - initialize the supplementary group access list

SYNOPSIS
'include <grp. h>
'include <sys/types.h>
int initgroups (const char *name, gid_t basegid)

DESCRIPTION
initgroups reads the group file, using getgrent, to get the group membership
for the user specified by name and then initializes the supplementary group access
list of the calling process using setgroups. The basegid group id is also included
in the supplementary group access list. This is typically the real group id from
the password file.

While scanning the group file, if the number of groups, including the basegid
entry, exceeds {NGROUPS_MAX}, subsequent group entries are ignored.

initgroups will fail and not change the supplementary group access list if:

EPERM The effective user id is not superuser.
SEE ALSO

setgroups(2), getgrent(3C).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

Insque(3C) insque(3C)

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
include <search.h>

void insque (struet qelem *elem, struet qelem *pred);

void remque (struet qelem *elem);

DESCRIPTION

10/89

insque and remque manipulate queues built from doubly linked lists. Each ele­
ment in the queue must be in the following form:

struet qelem {
struet qelem *CLforw;
struet qelem *CLback;
char CLdata[];

};

insque inserts elem in a queue immediately after pred. remque removes an entry
e1em from a queue.

isnan(3C) isnan(3C)

NAME
isnan, isnand, isnanf, finite, fpclass, unordered - determine type of
floating-point number

SYNOPSIS
tinclude <ieeefp.h>

int isnand (double dsrc);

int isnanf (float fsrc);

int finite (double dsrc);

fpclass_t fPclass (double dsrc);

int unordered (double dsrcl, double dsrc2);

tinclude <math.h>

int isnan (double dsrc);

DESCRIPTION
isnan, isnand, and isnanf return true (1) if the argument dsrc or fsrc is a NaN;
otherwise they return false I (0). The functionalty of isnan is identical to that of
isnand.

isnanf is implemented as a macro included in the ieeefp.h header file.

fpclass returns the class the dsrc belongs to. The 10 possible classes are as fol­
lows:

FP SNAN
FP_QNAN
FP NINF
FP PINF
FP_NDENORM
FP_PDENORM
FP NZERO
FP_PZERO
FP NNORM
FP PNORM

signaling NaN
quiet NaN
negative infinity
positive infinity
negative denormalized non-zero
positive denormalized non-zero
negative zero
positive zero
negative normalized non-zero
positive normalized non-zero

finite returns true (1) if the argument dsrc is neither infinity nor NaN; otherwise
it returns false (0).

unordered returns true (1) if one of its two arguments is unordered with respect
to the other argument. This is equivalent to reporting whether either argument is
NaN. If neither of the arguments is NaN, false (0) is returned.

None of these routines generate any exception, even for signaling NaN s.

SEE ALSO
fpgetround(3Q, intro(3M).

10/89 Page 1

13tol(3C) 13tol(3C)

NAME
l3tol, lto13 - convert between 3-byte integers and long integers

SYNOPSIS
tinclude <stdlib.h>

void l3tol (long *lp, canst char *cp, int n);

void lto13 (char *cp, canst long *lp, int n);

DESCRIPTION
l3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp.
lto13 performs the reverse conversion from long integers (lp) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block numbers
are three bytes long.

SEE ALSO
fs(4).

NOTES

10/89

Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

Page 1

localeconv(3C) localeconv (3C)

NAME
localeconv - get numeric formatting information

SYNOPSIS
iinclude <locale.h>

struct lconv *localeconv (void);

DESCRIPTION

10/89

localeconv sets the components of an object with type struct lconv (defined
in locale. 11) with the values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale [see
setlocale(3C)]. The definition of struct lconv is given below (the values for
the fields in the C locale are given in comments):

char *decilnalJX>int; /* */
char *thousands sep; /* (zero length string) */
char *grouping;- /* */
char *int curr syrcbol; /* */
char *currency-syrcbol; /* */
char *m::>n_deciiiialJX>int; /* */
char *m::>n thousands sep; /* * /
char *m::>n =grouping ; - / * '''' * /
char *positive sign; /* */
char *negative-sign; /* */
char int frac digits; /* CHAR MAX */
char frae_digIts; /* CHAR-MAX */
char p_csyrecedes; /* CHAR-MAX */
char p_sep_by_space; /* CHAR-MAX */
char n _ cs yrecedes; /* CHAR-MAX * /
char n sep by space; /* CHAR-MAX */
char p=sigllyOsn; /* CHAR-MAX */
char n_signyosn; /* CHAR=MAX */

The members of the structure with type char * are strings, any of which (except
decirnalyoint) can point to , to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in the limits.h header file) to
indicate that the value is not available in the current locale. The members are the
following:

char*decirnalyoint
The decimal~point character used to format non-monetary quantities.

char *thousands sep
The character used to separate groups of digits to the left of the decimal­
point character in formatted non-monetary quantities.

char *grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current· group in a formatted non­
monetary quantity. The elements of grouping are interpreted according
to the following:

Page 1

localeconv (3C) localeconv (3C)

Page 2

No further grouping is to be performed. CHAR-MAX

o The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size
of the next group of digits to the left of the current group.

char * int curr symbol
The international currency symbol applicable to the current locale, left­
justified within a four-character space-padded field. The character
sequences should match with those specified in: ISO 4217 Codes for the
Representation of Currency and Funds.

char *currency symbol
The local currency symbol applicable to the current locale.

char*mon_decimal-point
The decimal point used to format monetary quantities.

char*mon_thousands_sep
The separator for groups of digits to the left of the decimal point in for­
matted monetary quantities.

char *mon grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted mone­
tary quantity. The elements of mon_grouping are interpreted according
to the rules described under grouping.

char *positive sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char *negative sign
The string used to indicate a negative-valued formatted monetary quan­
tity.

char int frac digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in an internationally formatted monetary quantity.

char frac digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in a formatted monetary quantity.

char p _ cs -precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds
the value for a nonnegative formatted monetary quantity.

char p sep by space
-Set to r or 0 if the currency_symbol respectively is or is not separated
by a space from the value for a nonnegative formatted monetary quantity.

10/89

/

localeconv(3C) localeconv (3C)

char n_cs""precedes
Set to 1 or 0 if the currency_ syDbol respectively precede& or succeeds
the value for a negative formatted monetary quantity.

char n sep py space
-Set to I-or 0 if the currency_syDbol respectively is or is not separated
by a space from the value for a negative formatted monetary quantity.

char p_signJ>Osn
Set to a value indicating the positioning of the positive_sign for a non­
negative formatted monetary quantity. The value of p_signJ>Osn is
interpreted according to the following:

o Parentheses surround the quantity and currency_syDbol.

1 The sign string precedes the quantity and currency_syntJol.

2 The sign string succeeds the quantity and currency_syntJol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_ synbol.

char n _sign J>Osn
Set to a value indicating the positioning of the negative_sign for a
negative formatted monetary quantity. The value of n_signJ>Osn is
interpreted according to the rules described under p _sign J>Osn.

RETURNS
localeconv returns a pointer to the filled-in object. The structure pointed to by
the return value may be overwritten by a subsequent call to localeconv.

EXAMPLES

10/89

The following table illustrates the rules used by four countries to format mone­
tary quantities.

Country Positive format Negative format International format

Italy L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1:234,56
Norway kr1.234,56 kr1.234,56- NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by localeconv are as follows:

Italy Netherlands Norway Switzerland

int_curr_synbol "ITL." "NLG " "NOK " "CHE' "
currency_syDbol ttL." "rn "krn "SFrs."
mon_decimalJ>Oint " " " " " " , ,
mon thousands sep " " " " " " " " ,
mon :grouping - "\3" "\3" "\3" "\3"
positive_sign '''' .. "
negative_sign n_" It_II II_It "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2

Page 3

localeconv (3C)

p _ cs yrecedes 1
p_sep_by_space 0
n_csyrecedes 1
n sep by space 0
p:sigllyOsn 1
n_signyosn 1

FILES
/usr/lib/locale/locale/LC M:>NETARY
/usr/ lib/locale/locale/LC: NUMERIC

SEE ALSO
setlocale(3C).

1
1
1
1
1
4

localeconv (3C)

1 1
0 0
1 1
0 0
1 1
2 2

LC M:>NETARY database for locale
LC -NUMERIC database for locale

chrtbl(1M), mmtbl(1M) in the System Administrator's Reference Manual.

Page 4 10/89

lockf(3C) lockf(3C)

NAME
lockf - record locking on files

SYNOPSIS
linclude <unistd.h>

int lockf (int fildes, int function, long size);

DESCRIPTION

10/89

lockf allows sections of a file to be locked; advisory or mandatory write locks
depending on the mode bits of the file [see c:hrood(2)]. Locking calls from other
processes that attempt to lock the locked file section will either return an error
value or be put to sleep until the resource becomes unlocked. All the locks for a
process are removed when the process terminates. [See fcntl(2) for more infor­
mation about record locking.]

fildes is an open file descriptor. The file descriptor must have O_WRONLY or
o _RDWR permission in order to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in unistd.h as follows:

Idefine F ULOCK 0 /* unlock previously locked section */
Idefine F-LOCK 1 /* lock section for exclusive use */
Idefine F-TLOCK 2 /* test & lock section for exclusive use */
Idefine F:TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified
section. F LOCK and F TLOCK both lock a section of a file if the section is avail­
able. F_uLOcK removeslocks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to
be locked or unlocked starts at the current offset in the file and extends forward
for a positive size and backward for a negative size (the preceding bytes up to
but not including the current offset). If size is zero, the section from the current
offset through the largest file offset is locked (Le., from the current offset through
the present or any future end~f-file). An area need not be allocated to the file in
order to be locked as such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_'l'LOCK may, in whole or in part, contain or
be contained by a previously locked section for the same process. Locked sec­
tions will be unlocked starting at the the point of the offset through size bytes or
to the end of file if size is (off t) O. When this situation occurs, or if this situa­
tion occurs in adjacent sections,the sections are combined into a single section. If
the request requires that a new element be added to the table of active locks and
this table is already full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F_LOCK will cause the calling process to sleep until the resource is
available. F TLOCK will cause the function to return a -1 and set errno to
EACCES if the section is already locked by another process.

Page 1

lockf(3C) lockf(3C)

F _ CLOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining
sections are still locked by the process. Releasing the center section of a locked
section requires an additional element in the table of active locks. If this table is
full, an ermo is set to ENOLK and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process's locked resource. Thus calls to lockf or
fentl scan for a deadlock prior to sleeping on a locked resource. An error
return is made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm system call may
be used to provide a timeout facility in applications that require this facility.

lockf will fail if one or more of the following are true:

EBADF fildes is not a valid open descriptor.

EAGAIN

EDEADLK
ENOL!{

ECO~

cmd is F TLOCK or F TEST and the section is already locked by
another process. -

cmd is F_LOCK and a deadlock would occur.

cmd is F LOCK, F '!'LOCK, or F ULOCK and the number of entries in
the lock table woUid exceed the number allocated on the system.

fildes is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
intro(2), alarm(2), chm:x1(2), close(2), creat(2), fentl(2), open(2), read(2),
write(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard
I/O package is the most common source of unexpected buffering.

Because in the future the variable ermo will be set to EAGAIN rather than EACCES
when a section of a file is already locked by another process, portable application
programs should expect and test for either value.

10/89

lsearch (3C) Isearch (3C)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
tinclude <search.h>

void *lsearch (canst void *key, void * base, size t *nelp,
size_t width, int (*campar) (canst void *, const void *»;

void *lfind (const void *key, const void *base, size_t *nelp,
size_t width, int (*campar) (const void *, const void *»;

DESCRIPTION

NOTES

lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table. key points to the datum
to be sought in the table. base points to the first element in the table. nelp points
to an integer containing the current number of elements in the table. The integer
is incremented if the datum is added to the table. width is the size of an element
in bytes. compar is a pointer to the comparison function that the user must supply
(strcnp, for example). It is called with two arguments that point to the elements
being compared. The function must return zero if the elements are equal and
non-zero otherwise.

lfind is the same as lsearch except that if the datum is not found, it is not
added to the table. Instead, a null pointer is returned.

The pointers to the key and the element at the base of the table may be pointers
to any type.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value returned should be cast into type pointer-to-element.

EXAMPLE

10/89

This program will read in less than TABSIZE strings of length less than ELSIZE
and store them in a table, eliminating duplicates, and then will print each entry.

tinclude <search.h>
tinclude <string.h>
tinclude <stdlib.h>
linclude <stdio.h>

Ide fine TABSIZE 50
Ide fine ELSIZE 120

main()
{

char line [ELSIZE] ; /* buffer to hold input string */
char tab[TABSIZE] [ELSIZE]; /* table of strings */
size t nel = 0; /* nwrber of entries in tab */
int i;

Page 1

Isearch (3C) Isearch (3C)

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) lsearch(line, tab, &nel, ELSIZE, mycnp);

fore i = 0; i < nel; i++)
(void)fputs(tab[i], stdout);

return 0;

SEE ALSO

NOTES

Page 2

bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

If the searched-for datum is found, both lsearch and Ifind return a pointer
to it. Otherwise, lfind returns NULL and lsearch returns a pointer to the
newly added element.

Undefined results can occur if there is not enough room in the table to add
a new item.

10/89

makecontext (3C) makecontext (3C)

NAME
makecontext, swapcontext - manipulate user contexts

SYNOPSIS
tinclude <ucontext.h>

void makecontext (ucontext_t *ucp, (void(*) (» £unc, int argc, ...);

int swapcontext (ucontext_t *oucp, ucontext_t *ucp);

DESCRIPTION
These functions are useful for implementing user-level context switching between
multiple threads of control within a process.

makecontext modifies the context specified by ucp, which has been initialized
using getcontexti when this context is resumed using swapcontext or setcon­
text [see getcontext(2»), program execution continues by calling the function
func, passing it the arguments that follow argc in the lllilkecontext call. the
integer value of argc must match the. number of arguments that follow argc.
Otherwise the behavior is undefined.

swapcontext saves the current context in the context structure pointed to by oucp
and sets the context to the context structure pointed to by ucp.
These functions will fail if either of the following is true:

ENOMEM ucp does not have enough stack left to complete the operation.

EFAULT ucp or oucp points to an invalid address.

SEE ALSO
exit(2), getcontext(2), sigaction(2), sigprocmask(2), ucontext(S).

DIAGNOSTICS

NOTES

10/89

On . successful completion, swapcontext return a value of zero. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

The size of the ucontext_t structure may change in future releases. To remain
binary compatible, users of these features must always use makecontext or
getcontext to create new instances of them.

Page 1

makedev(3C) makedev(3C)

NAME
makedev, major, minor - manage a device number

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mkdev.h>

dev_t makedev(major_t maj, minor_t min);

major_t major(dev_t device);

minor_t minor(dev_t device);

DESCRIPTION
The makedev routine returns a formatted device number on success and NODEV on
failure. maj is the major number. min is the minor number. makedev can be used
to create a device number for input to mknod(2).

The major routine returns the major number component from device.

The minor routine returns the minor number component from device.

makedev will fail if one or more of the following are true:

EINVAL One or both of the arguments maj and min is too large.

EINVAL The device number created from maj and min is NODEV.

major will fail if one or more of the following are true:

EINVAL The device argument is NODEV.

EINVAL The major number component of device is too large.

minor will fail if the following is true:

EINV AL The device argument is NODEV.

SEE ALSO
stat(2), mknod(2).)

DIAGNOSTICS
On failure, NODEV is returned and errno is set to indicate the error.

10/89 Page 1

malloc(3C) malloc(3C)

NAME
malloo, free, realloo, calloo, memalign, valloo, - memory allocator

SYNOPSIS
tinclude <stdlib.h>

void*malloo (size_t size);

void free (void *ptr);

void *realloc (void *ptr, size_t size);

void *calloo (size_t nelem, size_t elsize);

void *memalign(size_t alignment, size_t size);

void *valloo(size_t size);

DESCRIPTION
malloo and free provide a simple general-purpose memory allocation package.
malloo returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc,
calloo or realloo. After free is performed this space is made available for
further allocation. If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloo is overrun or if
some random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes. If ptr is NULL, realloc behaves like malloc
for the specified size. If size is zero and ptr is not a null pointer, the object
pOinted to is freed.

calloo allocates space for an array of nelem elements of size elsize. The space is
initialized to zeros. _

memalign allocates size bytes on a specified alignment boundary, and returns a
pointer to the allocated block. The value of the returned address is guaranteed to
be an even multiple of alignment. Note: the value of alignment must be a power
of two~ and must be greater than or equal to the size of a word.

valloo (size) is equivalent to memalign (sysconf eSC _PAGESIZE) , size) .

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object. .

rr.alloc, reaUoc, calloc, memalign, and valloc will fail if there is not enough
available memory.

SEE ALSO
malloo(3X).

DIAGNOSTICS

10/89

. If there is no available memory, malloo, realloo, memali9D, valloo, and cal-
100 return a null pointer. When realloc returns NULL, the block pointed to by
ptr is. left intact. If size, nelem, or elsize is 0, .a unique pointer to the arena is
returned.

Page 1

mbchar(3C) mbchar(3C)

NAME
Itbchar: nbtowc, mblen, wctomb - multibyte character handling

SYNOPSIS
'include <stdlib.h>

int ni:ltowc (wchar_t *pwc, const char *s, size_t n);

int ni:llen (const char *s, size_t n);

int wctomb (char *s, wchar _ t wchar);

DESCRIPTION

10/89

Multibyte characters are used to represent characters in an extended character set.
This is needed for locales where 8 bits are not enough to represent all the charac­
ters in the character set.

The multibyte character handling functions provide the means of translating mul­
tibyte characters into wide characters and back again. Wide characters have type
wchar_t (defined in stdlib.h), which is an integral type whose range of values
can represent distinct codes for all members of the largest extended character set
specified among the supported locales.

A maximum of 3 extended character sets are supported for each locale. The
number of bytes in an extended character set is defined by the LC _ CTYPE category
of the locale [see setlocale(3C)]. However, the maximum number of bytes in
any multibyte character will never be greater than Me_LEN_MAX. which is defmed
in stdlib.h. The maximum number of bytes in a character in an extended char­
acter set in the current locale is given by the macro, Me_CUR _MAX, also defined in
stdlib.h.

mbtowc determines the number of bytes that comprise the multibyte character
pointed to by s. Also, if pwc is not a null pointer, nptowc converts the multibyte
character to a wide character and places the result in the object pointed to by pwc.
(The value of the wide character corresponding to the null character is zero.) At
most n characters will be examined, starting at the character pointed to by s.

If 5 is a null pointer, mbtowc simply returns O. If 5 is not a null pointer, then, if s
points to the null character, mbtowc returns 0; if the next n or fewer bytes form a
valid multibyte character, nbtowc returns the number of bytes that comprise the
converted multibyte character; otherwise, 5 does not point to a valid multibyte
character and ni:ltowc returns -1.

nblen determines the number of bytes comprising the multibyte character
pointed to by 5. It is equivalent to

mbtowc «wchar_t *) 0, s, n);

wctOJ'lb determines the number of bytes needed to represent the multibyte charac­
ter corresponding to the code whose value is wchar, and, if 5 is not a null pointer,
stores the multibyte character representation in the array pointed to by s. At
most Me_CUR_MAX characters are stored.

If 5 is a null pointer, wctomb simply returns O. If 5 is not a null pointer, wctomb
returns -1 if the value of wchar does not correspond to a valid multibyte charac­
ter; otherwise it returns the number of bytes that comprise the multibyte charac­
ter corresponding to the value of wchar.

Page 1

mbchar(3C) mbchar(3C)

SEE ALSO
mbstring(3C), setlocale(3C), environ(5).
chrtbl(1M) in the System Administrator's Reference Manual.

Page 2 10/89

mbstrlng (3C) mbstrlng (3C)

NAME
mbstring: rli>stowcs, wcstombs - multibyte string functions

SYNOPSIS
'include <stdlib.h>

size t mbstowcs (wchar_t *pwcs, const char *s, size_t n);
size_t wcstombs (char *s, const wchar_t *pwcs, size_t n);

DESCRIPTION
mbstowcs converts a sequence of multibyte characters from the array pointed to
by s into a sequence of corresponding wide character codes and stores these
codes into the array pointed to by pwcs, stopping after n codes are stored or a
code with value zero (a converted null character) is stored. If an invalid multi­
byte character is encountered, mbstowcs returns (size _ t)-l. Otherwise,
mbstowcs returns the number of array elements modified, not including the ter­
minating zero code, if any.

wcstanbs converts a sequence of wide character codes from the array pointed to
by pwcs into a sequence of multibyte characters and stores these multibyte charac­
ters into the array pointed to by s, stopping if a multibyte character would exceed
the limit of n total bytes or if a null character is stored. If a wide character code
is encountered that does not correspond to a valid multibyte character, wcstanbs
returns (size_t)-I. Otherwise, wcstombs returns the number of bytes modified,
not including a terminating null character, if any.

SEE ALSO
mbchar(3C), setlocale(3C), environ(5).
chrtbl(1M) in the System Administrator's Reference Manual.

10/89 Page 1

memory (3C) memory (3C)

NAME
memo:ry: mem::cpy, mam:::hr, mem:::np, mem:::py, maIIII'OVe, memset - memory opera­
tions

SYNOPSIS
tinclude <string.h>

void *mem::c::py (void *sl, const void *s2, int c, size_t n);

void *mem::hr (const void *s, int c, size_t n);

int nemc:np (const void *sl, const void *82, size_t n);

void *memcpy (void *sl, const void *s2, size_t n);

void *memrove (void *sl, const void *s2, size_t n);

void *memset (void *s, int c, size_t n);

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
bytes bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

mem::cpy copies bytes from memory area 52 into 51, stopping after the first
occurrence of c (converted to an unsigned char) has been copied, or after n
bytes have been copied, whichever comes first. It returns a pointer to the byte
after the copy of c in 51, or a null pointer if c was not found in the first n bytes
of 52.

mem::hr returns a pointer to the first occurrence of c (converted to an unsigned
char) in the first n bytes (each interpreted as an unsigned char) of memory area
5, or a null pointer if c does not occur.

memc::np compares its arguments, looking at the first n bytes (each interpreted as
I an unsigned char), and returns an integer less than, equal to, or greater than 0,

according as 51 is leXicographically less than, equal to, or greater than 52 when
taken to be unsigned characters.

memcpy copies n bytes from memory area 52 to 51. It returns 51.

memrove copies n bytes from memory areas 52 to 51. Copying between objects
that overlap will take place correctly. It returns 51.

memset sets the first n bytes in memory area 5 to the value of c (converted to an
unsigned char). It returns 5.

SEE ALSO
string(3C).

10/89 Page 1

mkflfo(3C) mkfifo(3C)

NAME
rnkfifo - create a new FIFO

SYNOPSIS
'include <sys/types.h>
'include <sys/stat.h>
int mkfifo (const char *path, JOOde_t JOOde);

DESCRIPTION
The mkfifo routine creates a new FIFO special file named by the pathname
pointed to by path. The mode of the new FIFO is initialized from mode. The file
permission bits of the mode argument are modified by the process's file creation
mask [see umask(2)].

The FIFO's owner id is set to the process's effective user id. The FIFO's group id
is set to the process's effective group id, or if the S_IS(;ID bit is set in the parent
directory then the group id of the FIFO is inherited from the parent.

mkfifo calls the system call mknod to make the file.

SEE ALSO ,
c:hrood(2), exec(2), rnknod(2), umask(2), fs(4), stat(S).
mkdir(l) in the User's Reference Manual.

DIAGNOSTICS

NOTES

10/89

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Bits other than the file permission bits in mode are ignored.

Page 1

mktemp{3C)

NAME
mktenp - make a unique file name

SYNOPSIS
tinclude <stdlib.h>

char *mktenp (char *t.enplate);

DESCRIPTION

mktemp(3C)

mktenp replaces the contents of the string pointed to by template with a unique
file name, and returns template. The string in template should look like a file
name with six trailing xs; mktenp will replace the xs with a character string that
can be used to create a unique file name.

SEE ALSO
tllpfile(3S), tn'pnam(3S).

DIAGNOSTIC
mktenp will assign to template the empty string if it cannot create a unique name.

NOTES
mktenp can create only 26 unique file names per process for each unique template.

10/89 Page 1

mktime(3C) mktime(3C)

NAME
mktime - converts a tIn structure to a calendar time

SYNOPSIS
tinclude <time.h>

time_t mktime (st:ruct tIn *timeptr);

DESCRIPTION

10/89

mktime converts the time represented by the tIn structure pointed to by timeptr
into a calendar time (the number of seconds since 00:00:00 UTe, January 1, 1970).

The tIn structure has the following format.

st:ruct tIn {
int tIn sec; /* seconds after the minute [0, 61] */
int tIn=min; /* minutes after the hour [0, 59] */
int tIn_hour; /* hour since midnight [0, 23] */
int tIn_nrlay; /* day of the IOOnth [1, 31] */
int tIn_lOOn; /* lOOnths since January [0, 11] */
int tIn3ear; /* years since 1900 */
int tIn_wday; / * days since Sunday [0, 6] */
int tIn3day; /* days since January 1 [0, 365] */
int tIn_isdst; /* flag for daylight savings time */

} ;

In addition to computing the calendar time, mktime normalizes the supplied tIn
structure. The original values of the tIn_wdayand tIn3day components of the
structure are ignored, and the original values of the other components are not
restricted to the ranges indicated. in the definition of the structure. On successful
completion, the values of the tIn_wday and tIn3day components are set appropri­
ately, and the other components are set to represent the specified calendar time,
but with their values forced to be within the appropriate ranges. The final value
of tIn_m:iay is not set until tIn_lOOn and tIn...,Year are determined.

The original values of the components may be either greater than or less than the
specified range. For example, a tm_hour of -1 means 1 hour before midnight,
tIn _ nrlay of 0 means the day preceding the current month, and tIn_lOOn of - 2
means 2 months before January of tIn3ear.

If tIn_isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise,
if tm_isdst is zero, the original values are assumed to be in the main timezone
and are converted to the alternate timezone if the main timezone is not valid. If
tm_isdst is negative, the correct timezone is determined and the components are
not adjusted.

Local timezone information is used as if mktime had called tzset.

mktime returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-l.

Page 1

mktlme(3C) mkllme(3C)

EXAMPLE
What day of the week is July 4, 2001?

'include <stdio.h>
'include <time.h>

static char *const wday [] - {

};

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "saturday", "-unknown-"

struet tm time str;
/* ... */ -
time_str.tm~ar- 2001 - 1900;
time str.tm JlDn - 7 - 1;
time - str. tm - nday- 4;
time -str.tm-hour- 0;
time:str.tm:min ... 0;
time str.tm sec - 1;
time -str.tm-isdst ... -1;
if (iiiktime(&time str)== -1)

time str ... tm Wday=7;
printf ("%s\n" , Wday[time_str.tm_wday]) ;

SEE ALSO

NOTES

Page 2

etime(3C); getenv(3C), timezone(4).

tm~ar of the tm structure must be for year 1970 or later. Calendar times before
00:00:00 UTe, January 1, 1970 or after 03:14:07 UTe, January 19, 2038 cannot be
represented.

10/89

mlock(3C) mlock(3C)

NAME
mlock, mmlock - lock (or unlock) pages in memory

SYNOPSIS
tinclude <sys/types.h>

int mlock (caddr_t addr, size_t len);

int mmlock(caddr_t addr, size_t len);

DESCRIPTION
The function mlock uses the mappings established for the address range [addr,
addr + len) to identify pages to be locked in memory. The effect of mlock (addr,
len) is equivalent to memcntl (addr, len , Me_LOCK, 0, 0, 0).

munlock removes locks established with mlock. The effect of munlock (addr, len)
is equivalent to memcntl (addr, len , Me_UNLOCK, 0, 0, 0).

Locks established with mlock are not inherited by a child process after a fork
and are not nested.

SEE ALSO
fork(2), memcntl(2), nmap(2), mlockall(3C), plock(2), sysconf(3C).

DIAGNOSTICS

NOTES

10189

Upon successful completion, the functions mlock and mmlock return 0; other­
wise, they return -1 and set errno to indicate the error.

Use of mlock and mmlock requires that the user have appropriate privileges.

Page 1

miockall{3C) mlockall (3C)

NAME
mlockall, lllIlnlockall - lock or unlock address space

SYNOPSIS
tinclude <sys/mman.h>

int mlockall (int flags);

int mmlockall (void) ;

DESCRIPTION
The function mlockall causes all pages mapped by an address space to be locked
in memory. The effect of mlockall (flagS) is equivalent to:

memcntl(O, 0, MC_LOCKAS, flags, 0, 0)

The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both:

MCL CURRENT Lock current mappings
MCL FUTURE Lock future mappings

The function lllIlnlockall removes address space locks and locks on mappings in
the address space. The effect of munlockall is equivalent to:

memcntl(O, 0, MC_UNLOCKAS, 0, 0, 0)

Locks established with mlockall are not inherited by a child process after a fork
and are not nested.

SEe ALSO
fork(2), memcntl(2), mlock(3C}, rmap(2), plock(2), sysconf(3C).

DIAGNOSTICS

NOTES

10/89

Upon successful completion, the functions mlockall and munlockall return 0;
otherwise, they return -1 and set errno to indicate the error.

Use of mlockall and mmlockall requires that the user have appropriate
privileges.

Page 1

monitor (3C) monitor (3C)

NAME
IOOni tor - prepare execution profile

SYNOPSIS
iinclude <:non. h>

void IOOnitor (int (*lowpc) (), int (*highpc) (), i«>RD *buffer,
size_t bufsize, size_t nfunc);

DESCRIPTION

10/89

IOOnitor is an interface to profil, and is called automatically with default
parameters by any program created by cc -po Except to establish further control
over profiling activity, it is not necessary to explicitly call IOOnitor.

When used, IOOnitor is called at least at the beginning and the end of a program.
The first call to IOOnitor initiates the recording of two different kinds of
execution-profile information: execution-time distribution and function call count.
Execution-time distribution data is generated by profil and the function call
counts are generated by code supplied to the object file (or files) by cc -po Both
types of information are collected as a program executes. The last call to IOOni­
tor writes this collected data to the output file lOOn. out.

lowpc and highpc are the beginning and ending addresses of the region to be
profiled.

buffer is the address of a user-supplied array of WORD (WORD is defined in the
header file IOOn . h). buffer is used by IOOni tor to store the histogram generated by
profil and the call counts.

bufsjze identifies the number of array elements in buffer.

nfunc is the number of call count cells that have been reserved in buffer. Addi­
tional call count cells will be allocated automatically as they are needed.

bufsjze should be computed using the following formula:

size of buffer =
- sizeof (struct hdr) +

nfunc * sizeof(struct cnt) +
«highpc-lowpc)/BARSIZE) * sizeof(WORD} +
sizeof(i«>RD) - 1 ;

bufsize = (size_of_buffer / sizeof(i«>RD» ;

where:

lowpc, highpc, nfunc are the same as the arguments to IOOnitor;

BARSIZE is the number of program bytes that correspond to each histo­
gram bar, or cell, of the profil buffer;

the hdr and cnt structures and the type WORD are defmed in the header
file lOOn. h.

Page 1

monitor (3C) monitor (3C)

FILES

The default call to xoonitor is shown below:

xoonitor (&eprol, &etext, wbuf, wbufsz, 600);
where:

eprol is the beginning of the user's program when linked with cc -p [see
end(3C)];

etext is the end of the user's program [see end(3C)];

wbuf is an array of WORD with wbufsz elements;

wbufsz is computed using the bufsize formula shown above with BARSIZE
of 8;

600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribu­
tion histogram that uses profil for the entire program, initially reserves room
for 600 call count cells in buffer, and provides for enough histogram cells to gen­
erate significant distribution-measurement results. [For more information on the
effects of bufsize on execution-distribution measurements, see profil(2).]

To stop execution monitoring and write the results to a file, use the following:

xoonitor((int (*) ())0, (int (*) ())0, (WORD *)0, 0, 0);

Use prof to examine the results.

xoon.out

SEE ALSO

NOTE

Page 2

cc(1), prof(1), profil(2), end(3C).

Additional calls to xoonitor after main has been called and before exit has been
called will add to the function-call count capacity, but such calls will also replace
and restart the profil histogram computation.

The name of the file written by xoonitor is controlled by the environment vari­
able PROFDIR. If PROFDIR does not exist, the file xoon.out is created in the
current directory. If PROFDIR exists but has no value, xoonitor does no profiling
and creates no output file. If PROFDIR is dirname, and xoonitor is called automati­
cally by compilation with cc -p, the file created is dirname/pid.progname where
progname is the name of the program.

10/89

msync(3C) msync(3C)

NAME
msync - synchronize memory with physical storage

SYNOPSIS
'include <sys/types.h>
'include <sys/mman.h>

int msync(caddr_t addr, size_t len, int flags};

DESCRIPTION
The function msync writes all modified copies of pages over the range [addr, addr
+ len) to their backing storage locations. msync optionally invalidates any copies
so that further references to the pages will be obtained by the system from their
backing storage locations. The backing storage for a modified MAP_SHARED map­
ping is the file the page is mapped to; the backing storage for a modified
MAP_PRIVATE mapping is its swap area.

flags is a bit pattern built from the following values:

MS _ ASYNC perform asynchronous writes
MS _SYNC perform synchronous writes
MS_INVALIDATE invalidate mappings

If MS _ ASYNC is set, msync returns immediately once all write operations are
scheduled; if MS_SYNC is set, msync does not return until all write operations are
completed.

MS_INVALIDATE invalidates all cached copies of data in memory, so that further
references to the pages will be obtained by the system from their backing storage
locations.

The effect of msync (addr, len, flags) is equivalent to:

memcntl(addr, len, M::_SYNC, flags, 0, O}

SEE ALSO
memcntl(2), mmap(2), sysconf(3C).

DIAGNOSTICS

NOTES

10189

Upon successful completion, the function msync returns 0; otherwise, it returns
-1 and sets errno to indicate the error.

msync should be used by programs that require a memory object to be in a
known state, for example, in building transaction facilities.

Page 1

nUanginfo (3C) nUanginfo (3C)

NAME
nl_langinfo - language information

SYNOPSIS
tinclude <nl_types.h>
tinclude <langinfo.h>

char *nl_langinfo (nl_item item);

DESCRIPTION
nl_langinfo returns a pointer to a null-terminated string containing information
relevant to a particular language or cultural area defined in the programs locale.
The manifest constant names and values of item are defined by langinfo. h.

For example:

nl_langinfo (ABOAY_l);

would return a pointer to the string "0im" if the identified language was French
and a French locale was correctly installed; or "Sun" if the identified language
was English.

SEE ALSO
gettxt(3C), localeconv(3C), setlocale(3C), strfti.me(3C), langinfo(S),
nl_types(S).

DIAGNOSTICS
If setlocale has not been called successfully, or if langinfo data for a supported
language is either not available or item is not defined therein, then nl_langinfo
returns a pointer to the corresponding string in the C locale. In all locales,
nl_langinfo returns a pointer to an empty string if item contains an invalid set­
ting.

WARNING

10/89

The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl_langinfo may overwrite the array.

The nl_langinfo function is built upon the functions localeconv, strfti.me,
and gettxt [see langinfo(S)]. Where possible users are advised to use these
interfaces to the required data instead of using calls to nl_langinfo.

Psg." 1

offsetof(3C} offsetof (3C)

NAME
offsetof - offset of structure member

SYNOPSIS
tinclude <stddef.h>

size_t offsetof (type, member-designator);

DESCRIPTION

10/89

offsetof is a macro defined in stddef. h which expands to an integral constant
expression that has type size _ t, the value of which is the offset in bytes, to the
structure member (designated by member-designator), from the beginning of its
structure (designated by type).

Page 1

perror(3C) perror(3C)

NAME
perror - print system error messages

SYNOPSIS
iinclude <stdio.h>

void perror (const char *s);

DESCRIPTION
perror produces a message on the standard error output (file descriptor 2),
describing the last error encountered during a call to a system or library function.
The argument string 5 is printed first, then a colon and a blank, then the message
and a newline. (However, if 5 is a null pointer or points to a null string, the
colon is not printed.) To be of most use, the argument string should include the
name of the program that incurred the error. The error number is taken from the
external variable errno, which is set when errors occur but not cleared when
non-erroneous calls are made.

SEE ALSO
intro(2), fmtmsg(3C), strerror(3C).

10/89 Page 1

popen(3S) popen(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
'include <stdio.h>

FILE *popen (const char *comnand, const char *type);

int pclose (FILE *stream);

DESCRIPTION
popen creates a pipe between the calling program and the command to be exe­
cuted. The arguments to popen are pointers to null-terminated strings. command
consists of a shell command line. type is an I/O mode, either r for reading or w
for writing. The value returned is a stream pointer such that one can write to the
standard input of the command, if the I/O mode is w, by writing to the file stream
[see intro(3»); and one can read from the standard output of the command, if the
I/O mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the asso­
ciated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter
and a type was an output filter.

EXAMPLE
Here is an example of a typical call:

'include <stdio.h>
'include <stdlib.h>

main 0
{

char *cm:l ... II /usr/bin/ls *. c" ;
char buf[BUFSIZ];
FILE *ptr;

if «ptr'" popen(cm:l, "r"» !- NOLL)
while (fgets(buf, BUFSIZ, ptr) != NOLL)

(void) printf("%s", buf);
return 0;

This program will print on the standard output [see stdio(3S») all the file names
in the current directory that have a . c suffix.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), stdio(3S),systen(3S).

DIAGNOSTICS
popen returns a null pointer if files or processes cannot be created.

pclose returns -1 if stream is not associated with a popened command.

10189 Page 1

popen(3S) popen(3S)

NOTES

Page 2

If the original and popened processes concurrently read or write a common file,
neither should use buffered I/O. Problems with an output filter may be
forestalled by careful buffer flushing, e.g., with fflush [see fclose(3S»).

A security hole exists through the IFS and PATH environment variables. Full
pathnames should be used (or PATH reset) and IFS should be set to space and tab
(" \t").

10/89

prlntf(3S) prlntf(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
iinclude <stdio.h>

int printf(const char *forroat, ... /* args */);

int fprintf(FlLE *strm, const char *format, ... /* args */);

int sprintf(char *s, const char * format, ... /* args */);

DESCRIPTION

10/89

printf places output on the standard output stream stdout.

fprintf places output on strm.

sprintf places output, followed by the null character (\0), in consecutive bytes
starting at s. It is the user's responsibility to ensure that enough storage is avail­
able. Each function returns the number of characters transmitted (not including
the \0 in the case of sprint f) or a negative value if an output error was encoun­
tered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains three types of objects defined
below:

1. plain characters that are simply copied to the output stream;

2. escape sequences that represent non-graphic characters;

3. conversion specifications.

The following escape sequences produce the associated action on display devices
capable of the action:

\a Alert. Ring the bell.

\b Backspace. Move the printing position to one character before the current
position, unless the current position is the start of a line.

\f Form feed. Move the printing position to the initial printing position of
the next logical page.

\n Newline. Move the printing position to the start of the next line.

\r Carriage return. Move the printing position to the start of the current
line.

\ t Horizontal tab. Move the printing position to the next implementation­
defined horizontal tab position on the current line.

\v Vertical tab. Move the printing position to the start of the next
implementation-defined vertical tab position.

All forms of the printf functions allow for the insertion of a language-dependent
decimal-point character. The decimal-point character is defined by the program's
locale (category LC_NUMERIC). In the C locale, or in a locale where the decimal­
point character is not defined, the decimal-point character defaults to a period (.).

Page 1

prlntf(3S) printf(3S)

Page 2

Each conversion specification is introduced by the character %. After the charac­
ter %, the following appear in sequence:

An optional field, consisting of a decimal digit string followed by a $,
specifying the next args to be converted. If this field is not provided, the
args following the last args converted will be used.

Zero or more flags, which modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag (-), described
below, has been given) to the field width.

An optional precision that gives the minimum number of digits to appear
for the d, i, 0, U, x, or X conversions (the field is padded with leading
zeros), the number of digits to appear after the decimal-point character for
the e, E, and f conversions, the maximum number of significant digits for
the g and G conversions, or the maximum number of characters to be
printed from a string in s conversion. The precision takes the form of a
period (.) followed by a decimal digit string; a null digit string is treated
as zero. Padding specified by the precision overrides the padding
specified by the field width.

An optional h specifies that a following d, i, 0, u, x, or X conversion
specifier applies to a short int or unsigned short int argument (the
argument will be promoted according to the integral promotions and its
value converted to short int or unsigned short int before printing);
an optional h specifies that a following n conversion specifier applies to a
pointer to a short int argument. An optional 1 (ell) specifies that a fol­
lowing d, i, 0, u, x, or X conversion specifier applies to a long int or
unsigned long int argument; an optional 1 (ell) specifies that a follow­
ing n conversion specifier applies to a pointer to long int argument. An
optional L specifies that a following e, E, f, g, or G conversion specifier
applies to a long double argument. If an h, 1, or L appears before any
other conversion specifier, the behavior is undefined.

A conversion character (see below) that indicates the type of conversion to
be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer args supplies the field width or precision. The args
that is ac~?~lly ~o~~er:e,d is not f~c~ed until the conversion letter is. seen, so the
args specuymg nem wlUth or preclslOn must appear before the args (If any) to be
converted. If the precision argument is negative, it will be changed to zero. A
negative field width argument is taken as a - flag, followed by a positive field
width.

In format strings containing the *digits$ form of a conversion specification, a field
width or precision may also be indicated by the sequence *digits$, giving the
position in the argument list of an integer args containing the field width or preci­
sion.

10/89

prlntf(3S) prlntf(3S)

10/89

When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N-l)th, be specified
in the format string.

The flag characters and their meanings are:

+

The result of the conversion will be left-justified within the field. (It will
be right-justified if this flag is not specified.)

The result of a signed conversion will always begin with a sign (+ or -).
(It will begin witn a sign only when a negative value is converted if this
flag is not specified.)

space If the first character of a signed conversion is not a sign, a space will be
placed before the result. This means that .if the space and + flags both
appear, the space flag will be ignored.

i The value is 'to be converted to an alternate form. Fore, d, i, s, and u
conversions, the flag has no effect. For an'o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X)
conversion, a non-zero result will have Ox (or OX) prepended to it. For e,
E, £, 9, and G conversions, the result will always contain a decimal-point
character, even if no digits follow, the point (normally, a decimal point
appears in the result of these conversions only if a digit follows it). For 9
and G conversions, trailing zeros will not be removed from the result as
they normally are.

o For d, i, 0, u, x, X, e, E, f, 9, andG conversions, leading zeros (follOwing
any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored. For d, i, 0, U, x, and X conversions, if a precision is specified, the
o flag will be ignored. For other conversions, the behavior is undefined.

Each conversion character results in fetching zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,x The integer arg is converted to signed decimal (d or i), (unsigned
octal (0), unsigned decimal (u), or urisigned hexadecimal notation
(x and X). The x conversion uses the letters abcde£ and the X
conversion uses the letters ABCDEF. The. precision specifies the
minimum number of digits to appear. If the value being con­
verted can be represented in fewer digits than the specified
minimum, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a preci­
sion of zero is no characters.

£ The double args is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal-point

character· [see setlocale(30J is equal to the precision
specification. If the precision is omitted from arg, six digits are
output; if the precision is explicitly zero and the t flag is not
specified, no decimal-point character appears. If a decima}"pOint

Page 3

prlntf(3S) printf(3S)

Page 4

e,E

g,G

c

s

p

n

character appears, at least 1 digit appears before it. The valueis
rounded to the appropriate number of digits.

The double args is converted to the style [-]d.ddde±dd, where
there is one digit before the decimal-point character (which is
non-zero if the argument is non-zero) and the number of digits
after it is equal to the precision. When the precision is missing,
six digits are produced; if the precision is zero and the f flag is
not specified, no decimal-point character appears. The E conver­
sion character will produce a number with E instead of e intro­
ducing the exponent. The exponent always contains at least two
digits. The value is rounded to the appropriate number of digits.

The double args is printed in style f or e (or in style E in the case
of a G conversion character), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as
one. The style used depends on the value converted: style e (or
E) will be used only if the exponent resulting from the conver­
sion is less than -4 or greater than or equal to the precision.
Trailing zeros ar~ removed from the fractional part of the result.
A decimal-point character appears only if it is followed by a
digit.

The int args is converted to an unsigned char, and the result­
ing character is printed.

The args is taken to be a string (character pointer) and characters
from the string are written up to (but not including) a terminat-
ing null character; if the precision is specified, no more than that
many characters are written. If the precision is not specified; it is
taken to be infinite, so all characters up to the first null character
are printed. A NULL value for args will yield undefined results.

The args should be a pointer to void. The value of the pointer is
converted to an implementation-<iefined set of sequences of
printable characters, which should be the same as the set of
sequences that are matched by the %p conversion of the scanf
function.

The argument should be a pointer to an integer into which is
written the number of characters written· to the output standard
I/O stream so far by this call to printf, fprintf, or sprintf.
No argument is converted.

% Print a %; no argument is converted.

If the character after the % or %digits$ sequence is not a valid conversion character,
the results of the conversion are undefined.

If a floating-point value is the internal representation for infinity, the output is
[±]in!, where in! is either inf or !NF, depending on the conversion character.
Printing of the sign follows the rules described above.

10/89

printf(3S) printf(3S)

If a floating-point value is the internal representation for "not-a-number/' the
output is [±jnanOxm. Depending on the conversion character, nan is either nan or
NAN. Additionally, Oxm represents the most significant part of the mantissa.
Again depending on the conversion character, x will be x or x, and m will use the
letters abcdef or ABCDEF. Printing of the sign follows the rules described above.

In no case does a non-existent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printf and
fprintf are printed as if the putc routine had been called.

EXAMPLE
To print a date and time in the form Sunday, July 3, 10: 02, where weekday
and xronth are pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d",
weekday, xronth, day, hour, min);

To print 1t to 5 decimal places:

printf("pi = %.5f", 4 * atan(l.O»;

SEE ALSO
exit(2), Iseek(2), write(2), abort(3C), ecvt(3C), putc(3S), scanf(3S),
setlocale(3C), stdio(3S).

DIAGNOSTICS

10/89

printf, fprintf, and sprintf return the number of characters transmitted, or
return a negative value if an error was encountered.

Page 5

pslgnal (3C) pslgnal (3C)

NAME
psignal, psiginfo - system signal messages

SYNOPSIS
iinclude <siginfo.h>

void psignal (int sig, const char *s);

void psiginfo (siginfo_t *pinfo, char *s);

DESCRIPTION
psignal and psiginfo produce messages on the standard error output describ­
ing a signal. sig is 'a signal that may have been passed as the first argument to a
signal handler. pinfo is a pointer to a siginfo structure that may have been
passed as the second argument to an enhanced signal handler [see sigaction(2»).
The argument string s is printed first, then a colon and a blank, then the message
and a newline.

SEE ALSO
sigaction(2), perror(3), siginfo(S), signal(S).

10/89 Page 1

putc(3S) putc(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (int c, FILE *stream);

int putchar (int e);

int fpute (int e, FILE *stream);

int putw (int w, FILE *stream);

DESCRIPTION
pute writes c (converted to an unsigned char) onto the output stream [see
intro(3)] at the position where the file pointer (if defined) is pointing, and
advances the file pointer appropriately. If the file cannot support positioning
requests, or stream was opened with append mode, the character is appended to
the output stream. putchar(e) is defined as pute(e, stdout). pute and
putchar are macros.

fpute behaves like pute, but is a function rather than a macro. fpute runs more
slowly than pute, but it takes less space per invocation and its name can be
passed as an argument to a function.

putw writes the word (Le., integer) w to the output stream (where the file pointer,
if defined, is pointing). The size of a word is the size of an integer and varies
from machine to machine. putw neither assumes nor causes special alignment in
the file.

SEE ALSO
exit(2), lseek(2), write(2), abort(3C), felose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), puts(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

NOTES

10/89

On success, these functions (with the exception of putw) each return the value
they have written. putw returns ferror (stream). On failure, they return the
constant EOF. This result will occur, for example, if the file stream is not open for
writing or if the output file cannot grow.

Because it is implemented as a macro, pute evaluates a stream argument more
than once. In particular, pute (e, *f++); doesn't work sensibly. fpute should
be used instead.

Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a dif­
ferent processor.

Functions exist for all the above defmed macros. To get the function form, the
macro name must be undefined (e.g., lundef putc).

Page 1

puts (35) puts (35)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
tinclude <stdio.h>

int puts (const char *s);

int fputs (const char *s, FILE *stream);

DESCRIPTION
puts writes the string pointed to by 5, followed by a new-line character, to the
standard output stream stdout [see intro(3)].

fputs writes the null-terminated string pointed to by 5 to the named output
stream.

Neither function writes the terminating null character.

SEE ALSO
exit(2), lseek(2), write(2), abort(3C), fclose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS

NOTES

10/89

On success both routines return the number of characters written; otherwise they
return EOF.

puts appends a new-line character while fputs does not.

Page 1

putenv(3C) putenv(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
iinclude <stdlib.h>

int putenv (char *string);

DESCRIPTION
string points to a string of the form "rUlme=value." putenv makes the value of the
environment variable rUlme equal to value by altering an existing variable or creat­
ing a new one. In either case, the string pointed to by string becomes part of the
environment, so altering the string will change the environment. The space used
by string is no longer used once a new string-defining name is passed to putenv.
Because of this limitation, string should be declared static if it is declared within a
function.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(S).

DIAGNOSTICS

NOTES

10/89

putenv returns non-zero if it was unable to obtain enough space via malloc for
an expanded environment, otherwise zero.

putenv manipulates the environment pointed to by environ, and can be used in
conjunction with getenv. However, envp (the third argument to main) is not
changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order. A
potential error is to call the function putenv with a pointer to an automatic vari­
able as the argument and to then exit the calling function while string is still part
of the environment.

Page 1

putpwent (3C)

NAME
putpwent - write password file entry

SYNOPSIS
iinclude <pwd.h>

int putpwent (const struct passwd *p, FILB *f);

DESCRIPTION

putpwent (3C)

putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure
created by getpwent (or getpwuid or getpwnam,), putpwent writes a line on the
stream /' which matches the format of / etc/passwd.

SEE ALSO
getpwent(3C).

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its operation, other­
wise zero.

10/89 Page 1

putspent (3C) putspent (3C)

NAME
putspent - write shadow password file entry

SYNOPSIS
tinelude<shadow.h>

int putspent (eonst struct spwd *p, FILE *fp);

DESCRIPTION
The putspent . routine is the inverse of get spent. Given a pointer to a spwd
structure created by the getspent routine (or the getspnam routine), the
putspent routine writes a line on the stream fp, which. matches the format of
/ete/shadow.

If the sp min, sp max, sp lstchg, sp warn, sp inact, or sp expire field of the
spwd strUcture is--l, or if sp_flag is'll, the corresponding Jete/shadow field is
cleared.

SEE ALSO
getspent(3C), getpwent(3C), putpwent(3C).

DIAGNOSTICS

NOTES

10/89

The put spent routine returns non-zero if an error was detected during its opera­
tion, otherwise zero.

This routine is for internal use only, compatibility is not guaranteed.

Page 1

qsort(3C) qsort(3C)

NAME
qsort - quicker sort

SYNOPSIS
iinclude <stdlib.h>

void qsort (void* base, size t nel, size_t width), int (*compar)
(const void *, const void *»;

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It sorts a table of data
in place. The contents of the table are sorted in ascending order according to the
user-supplied comparison function.

base points to the element at the base of the table. nel is the number of elements
in the table. width specifies the size of each element in bytes. compar is the name
of the comparison function, which is called with two arguments that point to the
elements being compared. The function must return an integer less than, equal
to, or greater than zero to indicate if the first argument is to be considered less
than, eq~l to, or greater than the second.

The contents of the table are sorted in ascending order according to the user sup-
plied comparison function. . ! .

SEE ALSO

NOTES

10/89

bsearch(3C), lsearch(3Q, string(3C).
sOrt(1) in the User's Rcference Manual.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredict-
able. .

Page 1

raJse(3C) raise (3C)

NAME
raise - send signal to program

SYNOPSIS
'include <sigrtal.h>

int raise (int sig);

DESCRIPTION
raise sends the signal sig to the executing program.

raise returns zero if the operation succeeds. Otherwise, raise returns -1 and
errno is set to indicate the error. raise uses kill to send the signal to the exe­
cuting program:

~ill(getpid(), sig);

See kill(2) for a detailed list of failure conditions. See signal(2) for a list of sig­
nals.

SEE ALSO
getpid(2), kill(2), signal(2).

10/89 Page 1

rand (3C) rand (3C)

NAME
rand, srand -simple random-number generator

SYNOPSIS
tinclude <stdlib.h>

int rand (void);

void srand (unsigned int seed);

DESCRIPTION

NOTES

rand uses a multiplicative congruential random-number generator with period 232

that returns successive pseudo-random numbers in the range from 0 to RAND_MAX
(defined in stdlib.h).

The function srand· uses the argument seed as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to the function rand.
If the function srand is then called with the same seed value, the sequence of
pseudo-random numbers will be repeated. If the function rand is called before
any calls to srand have been made, the same sequence will be generated as when
srand is first called with a seed value of 1.

The spectral properties of rand are limited. drand48(3C) provides a much better,
though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

10/89 Page 1

realpath (3C) realpath (3C)

NAME
realpath - returns the real file name

SYNOPSIS
iinclude <stdlib.h>
iinclude <sys/param.h>

char "'realpath (char '" file_name, char '" resolved_name);
DESCRIPTION

realpath resolves all links and references to "." and " .. " in file_name and stores
it in resolved_name.

It can handle both relative and absolute path names. For absolute path names
and the relative names whose resolved name cannot be expressed relatively (e.g.,
. ./ .. /reldir), it returns the resolved absolute name. For the other relative path
names, it returns the resolved relative name.

resolved_name must be big enough (!WCPATHLEN) to contain the fully resolved path
name.

SEE ALSO
getcwd(3C).

DIAGNOSTICS

NOTES

10/89

If there is no error, realpath returns a pointer to the resolved_name. Otherwise it
returns a null pointer and places the name of the offending file in resolved_name.
The global variable ermo is set to indicate the error.

realpath operates on null-terminated strings.

One should have execute permission on all the directories in the given and the
resolved path.

realpath may fail to return to the current directory if an error occurs.

Page 1

remove (3C) remove (3C)

NAME
remove - remove flle

SYNOPSIS
iinclude <stdio.h>

int remove(const char *path);

DESCRIPTION
remove causes the flle or empty directory whose name is the string pointed to by
path to be no longer accessible by that name. A subsequent attempt to open that
file using that name will fail, unless the file is created anew.

For files, rem::>ve is identical to unlink. For directories, remove is identical to
rm:iir.

See xmdir(2) and unlink(2) for a detailed list of failure conditions.

SEE ALSO
xmdir(2), unlink(2).

RETURN VALUE

10/89

Upon successful completion, remove returns a value of 0; otherwise, it returns a
value of -1 and sets errno to indicate an error.

/

Page 1

scanf(3S) scanf(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
tinclude <stdio.h>

int scanf (const char * format, ...) ;

int fscanf (FILE *strm, const char *format, ...);

int sscanf (const char *s, const char *format, ...);

DESCRIPTION

10/89

scanf reads from the standard input stream, stdin.

fscanf reads from the stream strm.

sscanf reads from the character string s.

Each function reads characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control string, format,
described below and a set of pointer arguments indicating where the converted
input should be stored. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are simply ignored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) that,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %) that must match the next character of the
input stream.

3. Conversion specifications consisting of the character % or the character
sequence %digits$, an optional assignment suppression character *, a
decimal digit string that specifies an optional numerical maximum field
width, an optional letter 1 (ell), L, or h indicating the size of the receiv­
ing object, and a conversion code. The conversion specifiers d, i, and n
should be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to
long into Similarly, the conversion specifiers 0, u, and x should be
preceded by h if the corresponding argument is a pointer to unsigned
short int rather than a pointer to unsigned int, or by 1 if it is a
pointer to unsigned long into Finally, the conversion specifiers e, f,
and g should be preceded by 1 if the corresponding argument is a
pointer to double rather than a pointer to float, or by L if it is a
pointer to long double. The h, 1, or L modifier is ignored with any
other conversion specifier.

A conversion specification directs the conversion of the next input field; the result
is placed in the variable pointed to by the corresponding argument unless assign­
ment suppression was indicated by the character *. The suppression of assign­
ment provides a way of describing an input field that is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next

Page 1

scanf{3S) scanf{3S)

inappropriate character or until the maximum field width, if one is specified, is
exhausted. For all descriptors except the character [and the character c, white
space leading an input field is ignored.
Conversions can be applied to the nth argument in the argument list, rather than
to the next unused argument. In this case, the conversion character % (see above)
is replaced by the sequence %digits$ where digits is a decimal integer n, giving the
position of the argument in the argument list. The first such argument, %1$,
immediately follows format. The control string can contain either form of a
conversion specification, i.e., % or %digits$, although the two forms cannot be
mixed within a single control string.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion codes
are valid:

% A single % is expected in the input at this point; no assignment is done.

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 10
for the base argument. The corresponding argument should be a pointer
to integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value
10 for the base argument. The corresponding argument should be a
pointer to unsigned integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 8
for the base argument. The corresponding argument should be a pointer
to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of the strtoul function with
the value 16 for the base argument. The corresponding argument should
be a pointer to unsigned integer.

i Matches an optionally signed integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 0
for the base argument. The corresponding argument should be a pointer
to integer.

n No input is consumed. The corresponding argument should be a pointer
to integer into which is to be written the number of characters read from
the input stream so far by the call to the function. Execution of a %n
directive does not increment the assignment count returned at the comple­
tion of execution of the function.

e,f,g Matches an optionally signed floating point number, whose format is the
same as expected for the subject string of the strtod function. The
corresponding argument should be a pointer to floating.

Page 2 10/89

scanf(3S) scanf(3S)

10/89

s

c

p

A character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

Matches a sequence of characters of the number specified by the field
width (1 if no field width is present in the directive). The corresponding
argument should be a pointer to the initial character of an array large
enough to accept the sequence. No null character is added. The normal
skip over white space is suppressed.

Matches a nonempty sequence of characters from a set of expected charac­
ters (the scanset). The corresponding argument should be a pointer to the
initial character of an array large enough to accept the sequence and a ter­
minating null character, which will be added automatically. The conver­
sion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (J). The characters between the
brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (A), in which case the scanset contains all char­
acters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins with [] or ["], the right
bracket character is in the scanlist and the next right bracket character is
the matching right bracket that ends the specification; otherwise the first
right bracket character is the one that ends the specification.

A range of characters in the scanset may be represented by the construct
first - last;. thus [0123456789] may be expressed [0-9]. Using this con­
vention, first must be lexically less than or equal· to last, or else the dash
will stand for itself. The character - will also stand for itself whenever it is
the first or the last character in the scanlist. To include the right bracket
as an element of the scanset, it must appear as the first character (possibly
preceded by a circumflex) of the scanlist and in this case it will not be
syntactically interpreted as the closing bracket. At least one character
must match for this conversion to be considered· successful.

Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the %p conversion
of the printf function. The corresponding argument should be a pointer
to void. The interpretation of the input item is implementation-defined. If
the input item is a value converted earlier during the same program exe­
cution,. the pointer that results shall compare equal to that value; other­
wise, the behavior of the %p conversion is undefined.

If an invalid conversion character follows the %, the results of the operation may
not be predictable.

The conversion specifiers E, G, and X are also valid and, under the -xa and -Xc
compilation modes [see cc(1»), behave the same as e, g, and x, respectively.
Under the -Xt compilation mode, E, G, and X behave the same as 1e, 19, and lx,
respectively.

Page 3

$canf(3S) scanf(3S)

Each function allows for detection of a language-dependent decimal point charac­
ter in the input string. The decimal point character is defined by the program's
locale (category LC_NUMERIC). In the "C" locale, or in a locale where the decimal
point character is not defined, the decimal point character defaults to a period (.).

The scanf conversion terminates at end of file, at the end of the control string, or
when an input character conflicts with the control string.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have ~ read (other
than leading white space, where permitted), execution of the current directive ter­
minates with an input failure; otherwise, unless execution of the current directive
is terminated with a matching failure, execution of the following 4irective (if any)
is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input char­
acter is left unread in the input stream. Trailing white space (including new-line
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed as~ignments is not directly determinable other than via
the %n directive.

EXAMPLES
The call to the function scanf:

int i, n; float x; char name [50] ;
n=seanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thoapson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name
will contain thanpson\O.

The call to the function scanf:

int i; float x; char name [50] ;
(void) seanf ("%2d%f%*d %[0-9]", &i, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the characters 56\0 in name.
The next character read from stdin will be a.

SEE ALSO
ee(1), printf(3S), strtod(3Q, strtol(3C), strtoul(3C).

DIAGNOSTICS

Page 4

These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early matching failure between
an iilput character and the c:ontrol string. If the input ends before the first match­
ing failure or conversion, EOF is returned.

10/89

setbuf(3S) setbuf(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
tinclude <stdio.h>

void setbuf (FILE * stream, char *buf);

int setvbuf (FILE * stream, char *buf, int type, size_t size);

DESCRIPTION
setbuf may be used after a stream [see intro(3)] has been opened but before it is
read or written. It causes the arraYfointed to by buf to be used instead of an
automatically allocated buffer. If bu is the NULL pointer input/output will be
completely unbuffered.

While there is no limititation on the size of the buffer, the constant BUFSIZ,
defined in the <stdio.h> header file, is typically a good buffer size:

char buf[BUFSIZ];

setvbuf may be used after a stream has been opened but before it is read or
written. type determines how stream will be buffered. Legal values for type
(defmed in stdio.h)are:

_IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be flushed when a
newline is written, the buffer is full, or input is requested.

IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. size specifies the size of the buffer to
be used. If input/output is unbuffered, buf and size are ignored.

For a further discussion of buffering, see stdio(3S).

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

NOTES

10/89

If an illegal value for type is provided, setvbuf returns a non-zero value. Other­
wise, it returns zero.

A common source of error is allocating buffer space as an "automatic" variable in
a code block, and then failing to close the stream in the same block.

Parts of buf will be used for internal bookkeeping of the stream anct, therefore,
buf will contain less than size bytes when full. It is recommended that the
automatically allocated buffer is used when using setvbuf.

Page 1

setJmp{3C) setjmp{3C)

NAME
setjnp, longjnp - non-local goto

SYNOPSIS
tinclude <setjmp.h>

int set jmp (jmp _ buf env);

void longjnp (jnp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

setjnp saves its stack environment in env (whose type, jmp_buf, is defined in the
<setjnp.h> header file) for later use by longjnp. It returns the value O.

longjnp restores the environment saved by the last call of set jnp with the
corresponding env argument. After longjnp is completed, program execution
continues as if the corresponding call of setjnp had just returned the value val.
(The caller of setjnp must not have returned in the interim.) longjnp cannot
cause setjmp to return the value O. If longjnp is invoked with a second argu­
ment of 0, setjnp will return 1. At the time of the second return from setjmp,
all external and static variables have values as of the time longjnp is called (see
example). The values of register and automatic variables are undefined.

Register or automatic variables whose value must be relied upon must be
declared as volatile.

EXAMPLE

10/89

tinclude <stdio.h>
tinclude <stdlib.h>
tinclude <setjnp.h>

jmp buf env;
int-i = 0;
main 0
(

void exit 0 ;

if (setjmp(env) != 0) (
(void) printf(nvalue of i on 2nd return from setjmp: %d\nn, i);
exit(O);

}
gO
(

(void) printf(nvalue of i on 1st return fran setjmp: %d\n", i);
i = 1;
gO;
/* NOTREACHED */

longjmp(env, 1);
/* NOTREACHED */

Page 1

setjmp(3C) setjmp(3C)

If the a. out resulting from this C language code is run, the output will be:

value of i on 1st return from setjmp:O

value of i on 2nd return from setjmp:1

SEE ALSO

NOTES

Page 2

signal(2), sigsetjnp(3C).

If longjnp is called even though env was never primed by a call to setjnp, or
when the last such call was in a function that has since returned, absolute chaos
is guaranteed.

10/89

setlocale (3C) setlocale (3C)

NAME
set locale - modify and query a program's locale

SYNOPSIS
tinclude <locale.h>

char *setlocale (int category, const char *locale);

DESCRIPTION

10/89

setlocale selects the appropriate piece of the program's locale as specified by
the category and locale arguments. The category argument may have the following
values: LC CTYPE, LC NUMERIC, LC TIME, LC COLLATE, LC KlNETARY,
LC MESSAGES and LC ALL. These namesare definedTn the locale.h-header file.
LC:=CTYPE affects the behavior of the character handling functions (isdigit,
tolower, etc.) and the multibyte character functions (such as mbtowc and
wctonb). LC_NUMERIC affects the decimal-point character for the formatted
input/output functions and the string conversion functions as well as the non­
monetary formatting information returned by localeconv. [See
localeconv(3C).]. LC TIME affects the behavior of ascftime, cftime, get date
and strftime. LC COLLATE affects the behavior of strcoll and strxfrm.
LC _ M)NETARY affects the monetary formatted information returned by
localeconv. LC MESSAGES affects the behavior of gettxt, catopen, catclose,
and catgets. [see catopen(3C) and catgets(3C).] LC_ALL names the program's
entire locale.

Each category corresponds to a set of databases which contain the relevant infor­
mation for each defined locale. The location of a database is given by the follow­
ing path, /usr/lw/locale/locale/category, where locale and category are the
names of locale and category, respectively. For example, the database for the
LC_CTYPE category for the "german" locale would be found in
/usr/lw/locale/german/LC_CTYPE.

A value of "C" for locale specifies the default environment.

A value of "" for locale specifies that the locale should be taken from environment
variables. The order in which the environment variables are checked for the vari­
ous categories is given below:

Category
LC CTYPE:
LC COLLATE:
LC TIME:
LC NUMERIC:
LC MONETARY:
LC_MESSAGES:

1st Env. Var.
LC CTYPE
LC COLLATE
LC TIME
LC NUMERIC
LC MONETARY
LC MESSAGES

At program startup, the equivalent of

set locale (LC_ALL, "C")

2nd Env. Var
LANG
LANG
LANG
LANG
LANG
LANG

is executed. This has the effect of initializing each category to the locale
described by the environment "C".

Page 1

setlocale (3C) setlocale (3C)

FILES

If a pointer to a string is given for locale, set locale attempts to set the locale for
the given category to locale. If setlocale succeeds, locale is returned. If setlo­
cale fails, a null pointer is returned and the program's locale is not changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is
given for locale and LC_ALL is given for category, setlocale attempts to set the
locale for all the categories to locale. The locale may be a simple locale, consisting
of a single locale, or a composite locale. A composite locale is a string beginning
with a "/" followed by the locale of each category separated by a "/". If
set locale fails to set the locale for any category, a null pointer is returnedand
the program's locale for all categories is not changed. Otherwise, locale is
returned.

A null pointer for locale causes setlocale to return the current locale associated
with the category. The program's locale is not changed.

/usr/lw/locale/C/LC CTYPE - LC CTYPE database for the C locale.
/usr/lw/locale/C/LC-NUMERIC - Lc NUMERIC database for the C locale.
/usr/lw/locale/C/LC-TIME - LC TIME database for the C locale.
/usr/lw/locale/C/LC-COLLATE --LC COLLATE database for the C locale.
/usr/lw/locale/C/LC-MESSAGES - LC MESSAGES database for the C locale.
/usr/lw/locale/locale7category - files containing the locale specific information
for each locale and category.

SEE ALSO

Page 2

cti.ne(3C), ctype(3C), getdate(3C), gettxt(3G), localeconv{3C), mbtowc(3C),
printf(3S), strcoll(3C), strfti.ne(3C), strtod(3C), strxfxni3C), wctomb(3C),
environ(S).

10/89

slgsetjmp (3C) slgsetJmp (3C)

NAME
sigsetjnp, siglongjnp - a non-local goto with signal state

SYNOPSIS
iinclude <setjnp.h>

int sigsetjnp (sigjnp_buf env, int savemask)i

void siglongjnp (sigjnp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

sigsetjnp saves the calling process's registers and stack environment [see
sigaltstack(2)] in env (whose type, sigjrlp buf, is defined in the <setjnp.h>
header file) for later use by siglongjnp. ff savemask is non-zero, the calling
process's signal mask [see sigproc:mask(2)] and scheduling parameters [see
priocntl(2)] are also saved. sigsetjnp returns the value O.

siglongjnp restores the environment saved by the last call of sigset jnp with
the corresponding env argument. After siglongjnp is completed, program exe­
cution continues as if the corresponding call of sigsetjnp had just returned the
value val. siglongjnp cannot cause sigsetjnp to return the value zero. If
siglongjnp is invoked with a second argument of zero, sigsetjnp will return 1.
At the time of the second return from sigsetjnp, all external and static variables
have values as of the time siglongjnp is called. The values of register and
automatic variables are undefined. Register or automatic variables whose value
must be relied upon must be declared as volatile.

If a signal-catching function interrupts sleep and calls siglongjnp to restore an
environment saved prior to the sleep call, the action associated with SIGALRM
and time it is scheduled to be generated are unspecified. It is also unspecified
whether the SIGALRM signal is blocked, unless the process's signal mask is
restored as part of the environment.

The function siglongjnp restores the saved signal mask if and only if the env
argument was initialized by a call to the sigsetjnp function with a non-zero
savemask argument.

SEE ALSO

NOTES

10/89

getcontext(2), priocntl(2), sigaction(2), sigaltstack(2), sigprocmask(2),
set jnp(3C).

If siglongjnp is called even though env was never primed by a call to
sigset jnp, or when the last such call was in a function that has since returned,
absolute chaos is guaranteed.

Page 1

sigsetops (3C) slgsetops (3C)

NAME
sigenptyset, sigfillset, sigaddset, sigdelset, sigismernber - manipulate
sets of signals.

SYNOPSIS
tinclude <signal.h>

int sigemptyset (sigset_t *set);

int sigfillset (sigset_t *set);

int sigaddset (sigset_t *set, int signo);

int sigdelset (sigset_t *set, int signo);

int sigismernber (sigset_t *set, int signo);

DESCRIPTION
These functions manipulate sigset _t data types, representing the set of signals sup­
ported by the implementation.

sigenptyset initializes the set pointed to by set to exclude all signals defined by
the system.

sigfillset initializes the set pointed to by set to include all signals defined by
the system.

sigaddset adds the individual signal specified by the value of signo to the set
pointed to by set.

sigdelset deletes the individual signal specified by the value of signo from the
set pointed to by set.

sigismember checks whether the signal specified by the value of signo is a
member of the set pointed to by set.

Any object of type sigset _t must be initialized by applying either sigenptyset or
sigfillset before applying any other operation.

sigaddset, sigdelset and sigismeni>er will fail if the following is true:

EINVAL The value of the signa argument is not a valid signal number.

sigfillset will fail if the following is true:

EFAULT The set argument specifies an invalid address.

SEE ALSO
sigaction(2), sigprocmask(2), sigpending(2), sigsuspend(2), signal(S).

DIAGNOSTICS

10/89

Upon successful completion, the sigismeni>er function returns a value of one if
the specified signal is a member of the specified set, or a value of zero if it is not.
Upon successful completion, the other functions return a value of zero. Otherwise
a value of -1 is returned and ermo is set to indicate the error.

Page 1

sleep (3C) sleep (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
tinclude <unistd.h>

unsigned sleep (unsigned seconds);

DESCRIPTIOfoJ
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested because any caught signal will terminate the sleep following execution
of that signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount because of the scheduling of other activity in
the system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an. alarm set
to go off earlier than the end of the requested sleep time, or premature arousal
because of another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal) occllrs. The previous state of the alarm signal is saved and
restoted. The calling program may have set up an alarm signal before calling
sleep. If the sleep time exceeds the time until such alarm signal, th~ process
sleeps only until the alarm signal would have occurred. The caller's alarm catch
routine is executed just before the sleep routine returns. But if the sleep time is
less than the time till such alarm, the prior alarm time is reset to go off at the
same time it would have without the intervening sleep.

SEE ALSO
ala.t:n(2), pause(2), signal(2), wait(2).

10/89 Page 1

sslghal (3C) sslgnal (3C)

NAME
sSignal, gsignal - software signals

SYNOPSIS
tinclude <signal.h>

int (*ssignal (int sig, int (*actian) (int») (int);

int gsignal (int sig);

DESCRIPTION
ssighal and gsignal implement a software facility similar to signal(2). This
facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 17. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to gsig­
nal,. Raising a software signal causes the action established for that signal to be
taken.
The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the action; it is
either the name of a (user~efined) action function or one of the manifest constants
SIG_On (default) or SIG_IGN (ignore) .. ssignal returns the action previously
established for that signal type; if no action has been established or the signal
number is illegal, ssignal returns SIG_OFL.

gsignal raises the signal identified by its argument, sig:
If an action function has been established for sig, then that action is reset to
SIG_OFL and the action function is entered with argument sig. gsignal
returns the value returned to it by the action function.

If the action for sig is SIG.;...IGN, gsignal returns the value 1 and takes no
other action.

If the action for sig is S!G_OFL, gsignal returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig, gsignal
returns the value 0 and takes no other action.

SEE ALSO
signal(2), sigset(2), raise(3C).

10/89 Page 1

stdlo(3S) stdlo(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
tinclude <stdio.h>

FILE *stdin, * stdout , *stderr;

DESCRIPTION

10/89

The functions described in the entries of sub-class 3S of this manual constitute an
efficient, user-level I/O buffering scheme. The in-line macros getc and putc han­
dle characters quickly. The macros getchar and put char, and the higher-level
routines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, gets,
getw, printf, puts, putw, and scanf all use or act as if they use getc and putc;
they can be freely intermixed.

A file with associated buffering is called a stream [see intro(3)] and is declared to
be a pointer to a defined type FILE. fopen creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio. h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

The following symbolic values in <unistd.h> define the file descriptors that will
be associated with the C-Ianguage stdin, stdout and stderr when the application is
started:

STDIN FILENO
STDOUT FILENO
STDERR_FILENO

Standard input value, stdin. It has the value of O.
Standard output value, stdout. It has the value of 1.
Standard error value, stderr. It has the value of 2.

A constant null designates a null pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

An integer constant FILENAME_MAX specifies the size needed for an array of char
large enough to hold the longest file name string that the implementation guaran­
tees can be opened.

An integer constant FOPEN _MAX specifies the minimum number of files that the
implementation guarantees can be open simuitaneously. Note that no more than
255 files may be opened via fopen, and only file deSCriptors 0 through 255 are
valid.

Any program that uses this package must include the header file of pertinent
macro definitions, as follows:

tinclude <stdio.h>

Page 1

stdio{3S) stdlo{3S)

The functions and constants mentioned in the entries of sub-class 35 of this
manual are declared in that header file and need no further declaration. The con­
stants and the following "functions" are implemented as macros (redeclaration of
these names is perilous): gete, getchar, pute, put char, ferror, feof, elear­
err, and fileno. There are also function versions of gete, getchar, pute,
put char, ferror, feof, elearerr, and fileno.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default unbuffered,
but use of freopen [see fopen(35)] will cause it to become buffered or line­
buffered. When an output stream is unbuffered, information is queued for writ­
ing on the destination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. . When it is
line-buffered, each line of output is queued for writing on the destination termi­
nal as soon as the line is completed (that is, as soon as a new-line character is
written or terminal input is requested). setbuf or setvbuf [both described in
setbuf(35)] may be used to change the stream's buffering strategy.

SEE ALSO
open(2), elose(2), lseek(2), pipe(2), read(2), write(2), ctermid(35),
euserid(35), fclose(35), ferror(35), fopen(35), fread(35), fseek(35), getc(35),
gets(35), popen(35), printf(35), putc(35), puts(35), seanf(35), setbuf(35),
system(35), tnpfile(35), tnpnani35), ungetc(35).

DIAGNOSTICS

Page 2

Invalid stream pointers usually cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error condi­
tions.

10/89

stdipc(3C) stdlpc(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>

key_t ftok(const char *path, int id);

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be
used by the msgget(2), semget(2), and shnget(2) system calls to obtain interpro­
cess communication identifiers. One suggested method for forming a key is to
use the ftok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining por­
tion as a sequence number. There are many other ways to form keys, but it is
necessary for each system to define standards for forming them. If some stan­
dard is not adhered to, it will be possible for unrelated processes to unintention­
ally interfere with each other's operation. It is still possible to interface intention­
ally. Therefore, it is strongly suggested that the most significant byte of a key in
some sense refer to a project so that keys do not conflict across a given system.

ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. path must be the path name of an existing file
that is accessible to the process. id is a character that uniquely identifies a project.
Note that ftok will return the same key for linked files when called with the
same id and that it will return different keys when called with the same file name
but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS

NOTES

10/89

ftok returns (key_t) -1 if path does not exist or if it is not accessible to the pro­
cess.

If the file whose path is passed to ftok is removed when keys still refer to the
file, future calls to ftok with the same path and id will return an error. If the
same file is recreated, then ftok is likely to return a different key than it did the
original time it was called.

Page 1

strcoll (3C) strcoll (3C)

NAME
strcoll - string collation

SYNOPSIS
'include <string.h>

int strcoll (const char *sl, const char *s2);

DESCRIPTION

FILES

strcoll returns an integer greater than, equal to, or less than zero in direct
correlation to whether string s1 is greater than, equal to, or less than the string s2.
The comparison is based on strings interpreted as appropriate to the program's
locale for category LC_COLLATE [see setlocale(3C»).

Both strcoll and strxf.rm provide for locale-specific string sorting. strcoll is
intended for applications in which the number of comparisons per string is small.
When strings are to be compared a number of times, strxfrm is a more appropri­
ate utility because the transformation process occurs only once.

/usr/lib/locale/LC_COLLATE LC COLLATE database for locale.

SEE ALSO

10/89

setlocale(3C), string(3C), strxfrn(3Q, environ(S).
colltbl(lM) in the System Administrator's Reference Manual.

Page 1

strerror (3C)

NAME
strerror - get error message string

SYNOPSIS
tinclude <string.h>

char *strerror (int errnum);

DESCRIPTION

strerror (3C)

strerror maps the error number in errnum to an error message string, and
returns a pointer to that string. strerror uses the same set of error messages as
perror. The returned string should not be overwritten.

SEE ALSO
perror(3C).

10/89 Page 1

strftime (3C) strftime (3C)

NAME
strftime, cft.ime, ascftime - convert date and time to string

SYNOPSIS
tinclude <time.h>

size t *strft.ime (char *s, size_t maxsize, const char *format,
Canst struct tm *t.imeptr);

int cftime (char *s, char *format, const time_t *clock);

int ascft.ime (char *s, const char *format, const struct tm
*timeptr) ;

DESCRIPTION

10/89

strftime, ascft.ime, and cftime place characters into the array pointed to by s
as controlled by the string pointed to by format. The format string consists of zero
or more directives· and ordinary characters. All ordinary characters (including the
terminating null character) are copied unchanged into the array. For strft.ime,
no more than maxsize characters are placed into the array.

If format is (char *)0, then the locale's default format is used. For strftime the
default format is the sameas "%c", for cftime and ascftime the default format
is the same as "%C". cftime and ascftime first try to use the value of the
environment variable CFTlME, and if that is undefined or empty, the default for­
mat is used.

Each directive is replaced by appropriate characters as described in the following
list. The appropriate characters are determined by the LC_TlME category of the
program's locale and by the values contained in the structure pointed to by
timeptr for strftime and ascftime, and by the time represented by clock for
cftime.

%%
%a
%A
%b
%B
%c
%C
%d
%0
%e
%h
%H
%I
%j
%m
%M
%n
%p

same as %
locale's abbreviated weekday name
locale's full weekday name
locale's abbreviated month name
locale's full month name
locale's appropriate date and time representation
locale's date and time representation as produced by date(1)
day of month (01 - 31)
date as %m/%d/%y
day of month (1-31; single digits are preceded by a blank)
locale's abbreviated month name.
hour (00 - 23)
hour (01 - 12)
day number of year (001 - 366)
month number (01 - 12)
minute (00 - 59)
same as \n
locale's equivalent of either AM or PM

Page 1

strftlme (3C) strftlme (3C)

%r
%R
%8
%t
%T
%U
%w
%W
%x
%X
%y
%y
%Z

time as %I:%M:%S [AM I PM]
time as %H:%M
seconds (()() - 61), allows for leap seconds
insert a tab
time as %H:%M:%S
week number of year (00 - 53), Sunday is the first day of week 1
weekday number (0 - 6), Sunday = 0
week number of year (00 - 53), Monday is the first day of week 1
locale's appropriate date representation
locale's appropriate time representation
year within century (00 - 99)
year as ccyy (e.g. 1986)
time zone name or no characters if no time zone exists

The difference between %U and %W lies in which day is counted as the first of the
week. Week number 01 is the first week in January starting with a Sunday for %U
or a Monday for %W. Week number 00 contains those days before the first Sun­
day or Monday in January for %U and %W, respectively.

If the total number of resulting characters including the terminating null character
is not more than maxsize, strftirile, cftime and ascftime return the number of
characters placed into the array pointed to by 5 not including the terminating null
character. Otherwise, z.ero is returned and the contents of the array are indeter­
minate. cftime and ascftimeretum the number of characters placed into the
array pointed to by 5 not including the terminating null character.

Selecting the Output's Language
By default, the output of strftime, cftime, and ascftime appear in US English.
The user can request that the output of strftime, cftime or ascftime be in a
specific language by setting the locale for category LC_TlME in setlocale.

Tlmezone
The timezone is taken from the environment variable TZ [see ctime(30 for a
description of TZ].

EXAMPLES

FILES

The example illustrates the use of strftime. It shows what the string in str
would look like if the structure pointed to by tmptr contains the values
corresponding to ThUrsday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %b %d %j", tn"ptr)

This results in str containing "Thursday Aug 28 240".

/usr/lib/locale/language/LC_TIME - file containing locale specific date and
tUne information ..

SEE ALSO
ctime(3C), getenv(30, setlocale(30, strftime(4), timezone(4), environ(5).

NOTE
cftime and ascftime are obsolete. strftime should be used instead.

Page 2 10/89

string (3C) string (3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtok, strstr - string opera­
tions

SYNOPSIS
tinclude <string.h>

char *strcat (char *s1, const char *s2);

char *strdup (const char *s1);

char *strncat (char *s1, const char *s2, size t n);

int strc:np (const char *s1, canst char *s2);

int strncmp (const char *s1, const char *82, 8ize_t n);

char *strcpy (char *s1, const char *s2);

char *strncpy (char *s1, canst char *82, 8ize t n);

size_t strlen (const char *s);

char *strchr (const char *8, int c);

char *strrchr (const char *s, int c);

char *strpbrk (const char *s1, const char *s2);

size_t 8trspn (const char *s1, const char *s2);

size_t strcspn (canst char *s1, const char *s2);

char *strtok (char *s1, const char *82);

char *strstr (const char *s1, const char *s2);

DESCRIPTION

10/89

The arguments 5,51, and 52 point to strings (arrays of characters terminated by a
null character). The functions 8trcat, strncat, strcpy, strncpy, and strtok.
all alter 51. These functions do not check for overflow of the array pointed to by
51.

strcat appends a copy of string 52, including the terminating null character, to
the end of string 51. strncat appends at most n characters. Each returns a
pointer to the null-terminated result. The initial character of 52 overrides the null
character at the end of 51.

strc:np compares its arguments and returns an integer less than, equal to, or
greater than 0, based upon whether 51 is lexicographically less than, equal to, or
greater than 52. strnc:np makes the same comparison but looks at at most n
characters. Characters following a null character are not compared.

strcpy copies string 52 to 51 including the terminating null character, stopping
after the null character has been copied. strncpy copies exactly n characters,
truncating 52 or adding null characters to 51 if necessary. The result will not be
null-terminated if the length of 52 is n or more. Each function returns 51.

Page 1

string (3C) string (3C)

strdup returns a pointer to a new string which is a duplicate of the string
pointed to by 51. The space for the new string is obtained using malloc(3C). If
the new string can not be created, a NULL pointer is returned.

strlen returns the number of characters in 5, not including the terminating null
character.

strchr (or strrchr) returns a pointer to the first (last) occurrence of c (con­
verted to a char) in string 5, or a NULL pointer if c does not occur in the string.
The null character terminating a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string 51 of any character
from string 52, or aNULL pointer if no character from 52 exists in 51.

strspn (or strcspn) returns the length of the initial segment of string 51 which
consists entirely of characters from (not from) string 52.

strtok considers the string 51 to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string 52.
The first call (with pointer 51 specified) returns a pointer to the first character of
the first token, and will have written a null character into 51 immediately follow­
ing the returned token. The function keeps track of its position in the string
between separate calls, so that subsequent calls (which must be made with the
first argument a NULL pointer) will work through the string 51 immediately fol­
lowing that token. In this way subsequent calls will work through the string 51
until no tokens remain. The separator string 52 may be different from call to call.
When no token remains in 51, a NULL pointer is returned.

strstr locates the first occurrence in string 51 of the sequence of characters
(excluding the terminating null character) in string 52. strstr returns a pointer
to the located string, or a null pointer if the string is not found. If 52 points to a
string with zero length (i.e., the string ""), the function returns 51.

SEE ALSO

NOTES

Page 2

malloc(3C), setlocale(3C), strxfrn(3C).

All of these functions assume the default locale "c." For some locales, strxfnn
should be applied to the strings before they are passed to the functions.

10/89

strtod (3C) strtod(3C)

NAME
strtod, atof, - convert string to double-precision number

SYNOPSIS
iinclude <stdlib.h>

double strtod (const char *nptr, char **endptr);

double atof (const char *nptr);

DESCRIPTION
strtod returns as a double-precision floating-point number the value represented
by the character string pointed to by nptr. The string is scanned up to the ftrst
unrecognized character.

strtod recognizes an optional string of "white-space" characters [as deftned by
isspace in ctype(3C)], then an optional sign, then a string of digits optionally
containing a decimal point character, then an optional exponent part including an
e or E followed by an optional sign, followed by an integer.

If the value of endptr is not (char **)NULL, a pointer to the character terminat­
ing the scan is returned in the location pointed to by endptr. If no number can be
formed, *endptr is set to nptr, and zero is returned.

atof (nptr) is equivalent to:
strtod(nptr, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS

10/89

If the correct value would cause overflow, ±HUGE is returned (according to the
sign of the value), and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.
When the -Xc or -Xa, compilation options are used, HUGE_VAL is returned instead
of HUGE.

Page 1

strtol(3C} strtol(3C}

NAME
strtol, strtoul, atol, atoi - convert string to integer

SYNOPSIS
tinclude <stdlib.h>

long strtol (const char *str, char **ptr, int base) i

unsigned long strtoul (const char *str, char **ptr, int base) i

long atol (canst char *str);

int atoi (canst char *str);

DESCRIPTION
strtol returns as a long integer the value represented by the character string
pointed to by str. The string is scanned up to the first character inconsistent
with the base. Leading "white-space" characters [as defined by isspace in
ctype(30J are ignored.

If the value of pfr is not (char **)NCLL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no integer can be
formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and "Ox" or "OX" is
ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading "Ox" or "OX"
hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

If the value represented by sfr would cause overflow, LONG_~ or LONG_MIN is
returned (according to the sign of the value), and errno is set to the value,
ERANGE.

strtoul is similar to strtol except that strtoul returns as an unsigned long
integer the value represented by sfr. If the value represented by sfr would cause
overflow, ULONG_~ is returned, and errno is set to the value, ERANGE.

Except for behavior on error, atol (str) is equivalent to: strtol (str, (char
**)NOLL, 10).

Except for behavior on error, atoi (str) is equivalent to: (int) strtol (str,
(char **)NOLL, 10).

DIAGNOSTICS
If strtol is given a base greater than 36, it returns 0 and sets errno to EINVAL.

SEE ALSO

NOTES

10/89

ctype(30, scanf(3S), strtod(3C).

strtol no longer accepts values greater than LONG_Ml\X as valid input. Use
strtoul instead.

Page 1

strxfrm (3C) strxfrm (3C)

NAME
strxf.rm - string transformation

SYNOPSIS
iinclude <string.h>

size_t strxf.rm (char *s1, const char *s2, size_t n);

DESCRIPTION
strxf.rm transforms the string s2 and places the resulting string into the array sl.
The transformation is such that if strcnp is applied to two transformed strings, it
will return the same result as strcoll applied to the same two original strings.
The transformation is based on the program's locale for category LC_COLLATE
[see setlocale(3C)].

No more than n characters will be placed into the resulting array pointed to by
sl, including the terminating null character. If n is 0, then s1 is permitted to be a
null pointer. If copying takes place between objects that overlap, the behavior is
undefined.

strxf.rm returns the length of the transformed string (not including the terminat­
ing null character). If the value returned is n or more, the contents of the array sl
are indeterminate.

EXAMPLE

FILES

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxf.rm(NULL, s, 0);

!usr!lw!locale!locale!LC_COIJATE LC COLLATE database for locale.

SEE ALSO
colltbl(lM) in the System Administrator's Reference Manual.
setlocale(3C), strcoll(3C), string(3C), environ(5).

DIAGNOSTICS
On failure, strxf.rm returns (size_t) -1.

10/89 Page 1

swab (3C) swab (3C)

NAME
swab - swap bytes

SYNOPSIS
iinclude <stdlib.h>

void swab (const char * from, char *to, int nbytes);

DESCRIPTION

10/89

swab copies nbytes bytes pointed to by from to the array pointed to by to,
exchanging adjacent even and odd bytes. nbytes should be even and non­
negative. If nbytes is odd and positive, swab uses nbytes-l instead. If nbytes is
negative, swab does nothing.

Page 1

sysconf(3C) sysconf(3C)

NAME
sysconf - get configurable system variables

SYNOPSIS
tinclude <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf function provides a method for the application to determine the
current value of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following
table lists the minimal set of system variables from <limits.h> and <unistd.h>
that can be returned by sysconf, and the symbolic constants, defined in
<unistd.h> that are the corresponding values used for name.

NAME

SC ARC; MAX - - -SC CHIID MAX - - -SC CLK TCK
=SC=NGROUPS_MAX
_ SC_ OPEN_MAX

SC PASS MAX - - -
SC PAGESIZE
SC JOB CONTROL - - -_SC_SAVED_IDS
SC VERSION
SC XOPEN VERSION - - -SC LOGNAME MAX - - -

RETURN VALUE

ARG MAX
CHIID_MAX
CLK TCK
NGRO'OPS MAX
OPEN MAX
PASS MAX
PAGESIZE

POSIX JOB CONTROL
-POSIX-SAvEn IDS - - -POSIX VERSION - -

XOPEN VERSION
LoGNAME" _ MAX

The value of CLK _ TCK may be variable and it should not be assumed that
CLK_TCK is a compile-time constant. The value of CLK TCK is the same as the
value of sysconfCSC_CLK_TCK).

SEE ALSO
fpathconf(3C).

DIAGNOSTICS

NOTES

10/89

If name is an invalid value, sysconf will return -1 and set errno to indicate the
error. If sysconf fails due to a value of name that is not defined on the system,
the function will return a value of -1 without changing the value of errno.

A call to setrlimit may cause the value of OPEN_MAX to change.

Page 1

system (3S) system (3S)

NAME
system - issue a shell command

SYNOPSIS
tinclude <stdlib.h>

int system (const char *string);

DESCRIPTION
system causes the string to be given to the shell [seesh(1)] as input, as if the
string had been typed as a command at a terminal. The current process waits
until the shell has completed, then returns the exit status of the shell in the for­
mat specified by waitpid.

If string is a NULL pointer, system checks if lsbin/sh exists and is executable, If
I sbinl sh is available, system returns non-zero; otherwise it returns zero.

system fails if one or more ofthe following are true:

EAGAIN The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

EINTR
ENOMEM

systelil was interupted by a signal.

The new process .. r~uires more memory than is allowed by the
system-imposed maximum MAXMEM.

SEE ALSO
exec(2), waitpid(3C).
sh(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

system forks to create a child process th~t in tum execs I sbinl sh in order to
execute string. If the fork or exec fails, system returns a value of -1 and sets
errno.

Page 1

tcsetpgrp (3C) tcsetpgrp (3C)

NAME
tcsetpgrp - set terminal foreground process group id

SYNOPSIS
tinclude <unistd.h>

int tcsetpgrp (int fildes, pid_t pgid)

DESCRIPTION
tcsetpgrp sets the foreground process group 10 of the terminal specified by fildes
to pgid. The file associated with fildes must be the controlling terminal of the cal­
ling proc~ss and the controlling terminal must be currently associated with the
session of the calling process. The value of pgid must match a process group 10
of a process in the same session as the calling process.

tcsetpgrp fails if one or more of the following is true.:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The fildes argUmel1t is a terminal that does not support
tcaetpgrp, orpgid is not a valid process group 10.

ENOTTY The calling process does not have a controlling terminal, or the

EPERM

SEE ALSO

file is . not the controlling terminal, or. the controlling terminal is
no longer associated with the session of the calling process.

pgid does not match the process group ID of an existing process
in the same session as the calling process.

tcsetpgrp(3C), tcsetsid(3C).
tetmio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion,tcsetpgrp returns a value of O. Otherwise, a value.
of -1 is returned and errno is set to indicate the error.

1M9 ~~1

tmpfile(35) tmpfile (35)

NAME
tnpfile - create a temporary file

SYNOPSIS
tinclude <stdio.h>

FILE *tnpfile (void);

DESCRIPTION
tnpfile creates a temporary file using a name generated by the tnpnam routine
and returns a corresponding FILE pointer. If the file cannot be opened, a NULL
pointer is returned. The file is automatically deleted when the process using it
terminates or when the file is closed. The file is opened for update ("w+").

SEE ALSO

10/89

creat(2), open(2), unlink(2), fopen(3S), mlctenp(3C), perror(3C), stdio(3S),
tnpnam(3S).

Page 1

tmpnam(3S) tmpnam(3S)

NAME
tnpnam. tempnam - create a name for a temporary file

SYNOPSIS
tinclude <stdio.h>

char *trrpnam (char *8);

char *tempnam (const char *dir, const char *pfx);

DESCRIPTION

FILES

These functions generate file names that can safely be used for a temporary file.

tnpnam always generates a file name using the path-prefix defined as P _ tnpdir
in the <stdio. h> header file. If s is NULL, tlIpnam leaves its result in an internal
static area and returns a pointer to that area. The next call to trrpnam will des­
troy the contents of the area. If s is not NULL, it is assumed to be the address of
an array of at least L_tmpnam bytes, where L_tlIpnam is a constant defined in
<stdio. h>; tmpnam places its result in that array and returns s.

tempnam allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is
NULL or points to a string that is not a name for an appropriate directory, the
path-prefix defined as P _ tlIpdir in the <stdio. h> header file is used. If that
directory is not accessible, /tlIp will be used as a last resort. This entire sequence
can be up-staged by providing an environment variable TMPDIR in the user's
environment, whose value is the name' of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter
sequences in their names. Use the pfx argument for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few char­
acters of the temporary-file name.

tempnam uses malloc to get space for the constructed file name, and returns a
pointer to this area. Thus, any pointer value returned from tempnam may serve
as an argument to free [see malloc(3C)]. If tempnam cannot return the expected
result for any reason-e.g., malloc failed--or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL pointer will be
returned.

tempnam fails if there is not enough space.

p_tmpdir /var/tnp

SEE ALSO

NOTES

10/89

creat(2), unlink(2), fopen(3S), malloc(3C), mktenp(3C), tmpfile(3S).

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only
in the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user's responsibility to remove the file when its use is
ended.

Page 1

tmpnam(3S) tmpnam(3S)

Page 2

If called more than TMP_MAX (defined in stdio.h) times in a single process, these
functions start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for
some other process to create a file with the same name. This can never happen if
that other process is using these functions or mlctenp and the file names are
chosen to render duplication by other means unlikely.

10/89

truncate (3C) (C Programming Language Utilities) truncate (3C)

NAME
truncate, ftruncate - set a file to a specified length

SYNOPSIS
iinclude <unistd.h>

int truncate (const char *path, off_t length);

int ftruncate (int fildes, off_t length);

DESCRIPTION

10/89

The file whose name is given by path or referenced by the descriptor fildes has its
size set to length bytes.

If the file was previously longer than length, bytes past length will no longer be
accessible. If it was shorter, bytes from the EOF before the call to the EOF after
the call will be read in as zeros. The effective user ID of the process must have
write permission for the file, and for ftruncate the file must be open for writing.

truncate fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path
prefix.

EACCES Write permission is denied for the file referred to by path.

EFAULT

EINTR

EINVAL

EIO

EISDIR
ELOOP

EMFILE

EMULTIHOP

ENAMETOOLONG

ENFILE
ENOENT

ENOLINK

ENOTDIR

path points outside the process's allocated address space.

A signal was caught during execution of the truncate rou­
tine.

path is not an ordinary file.

An I/O error occurred while reading from or writing to the
file system.

The file referred to by path is a directory.

Too many symbolic links were encountered in translating
path.

The maximum number of file descriptors available to the pro­
cess has been reached.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of a path component exceeds {NAME_MAX} char­
acters, or the length of path exceeds {PATH_MAX} characters.

Could not allocate any more space for the system file table.

Either a component of the path prefix or the file referred to
by path does not exist.

path points to a remote machine and the link to that machine
is no longer active.

A component of the path prefix of path is not a directory.

Page 1

truncate (3C) (C Programming Language Utilities) truncate (3C)

EROFS

ETXTBSY

The file referred to by path resides on a read-only file system.

The file referred to by path is a pure procedure (shared text)
file that is being executed.

ftruncate fails if one or more of the following are true:

EAGAIN The file exists, mandatory file/record locking is set, and there
are outstanding record locks on the file [see chm:xl(2)].

EBADF

EINTR

EIO

ENOLINK

fildes is not a file descriptor open for writing.

A signal was caught during execution of the ftruncate rou­
tine.

An I/O error occurred while reading from or writing to the
file system.

fildes points to a remote machine and the link to that machine
is no longer active.

EINVAL
SEE ALSO

fildes does not correspond to an ordinary file.

fcntl(2), open(2)

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error ..

10/89

tsearch (3C) tsearch (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
tinclude <search.h>

void *tsearch (const void *key, void **rootp, int (*compar)
(const void *, const void *»;

void *tfind (const void *key, void * const *rootp, int (*campar)
(const void *, const void *»;

void *tdelete (const void *key, void **rootp, int (*compar)
(const void *, const void *»;

void twalk (void *root, void (*action) (void *, VISIT, int»;

DESCRIPTION

10/89

tsearch, tfind, tdelete, and twalk are routines for manipulating binary
search trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This routine is called with
two arguments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than 0, according to whether the first argu­
ment is to be considered less than, equal to or greater than the second argument.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

tsearch is used to build and access the tree. key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to *key (the value
pointed to by key), a pointer to this found datum is returned. Otherwise, *key is
inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data. rootp points to a variable that points to the root of
the tree. A NULL value for the variable pointed to by rootp denotes an empty tree;
in this case, the variable will be set to point to the datum which will be at the
root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, tfind will return a NULL pointer. The
arguments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same
as for tsearch. The variable pointed to by rootp will be changed if the deleted
node was the root of the tree. tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree to be traversed.
(Any node in a tree may be used as the root for a walk below that node.) action
is the name of a routine to be invoked at each node. This routine is, in tum,
called with three arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf} VISIT; (defined in the search.h header
file), depending on whether this is the first, second or third time that the node
has been visited (during a depth-first, left-to-right traversal of the tree), or
whether the node is a leaf. The third argument is the level of the node in the
tree, with the root being level zero.

Page 1

tsearch (3C) tsearch (3C)

The pointers to the key and the root of the tree should be of type pointer-to­
element, and cast to type pointer-to-character. Similarly, although declared as
type pointer-to-character, the value returned should be cast into type pOinter-to­
element.

EXAMPLE

Page 2

The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the
stored strings and their lengths in alphabetical order.

tinclude <string.h>
tinclude <stdio.h>
tinclude <search.h>

struct node {

} ;

char *string;
int length;

char string space[10000);
struct node-nodes[500);
void *root = NULL;

int node campare(const void *node1, const void *node2) {
ret~rn strcmp«(const struct node *) node1)->string,

«const struct node *) node2)->string);

void print node (void * *node , VISIT order, int level)
if (order = preorder II order = leaf)

printf ("length=%d, string=%20s\n",
(*(struct node **)node)->length,
(*(struct node **)node)->string);

main 0
char *strptr = string space;
struct node *nodeptr ~ nodes;
int i = 0;

while (gets (strptr) != NULL && i++ < 500)
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch«void *)nodeptr,

&root, node compare);
strptr += nodeptr->len9th + 1;
nodeptr++;

twalk(root, print_node);

10/89

tsearch (3C) tsearch (3C)

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3Q.

DIAGNOSTICS

NOTES

10/89

A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.
A NULL pointer is returned by tfind and tdelete if TOOtp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns ~ pointer to the inserted item.

The rOQt argument to twalk is one level of indirection less than the TOOtp argu­
ments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are
visited. tsearch uses preorder, postorder and endorder to refer respectively to
visi~ing a node before any of its children, after its left child and before its right,
~nd af!:er both its children. The alternate nomenclature uses preorder, inorder
and postorder to refer to the same visits, which could result in some confusion
over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Page 3

ttyname (3C) ttyname (3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
tinclude <stdlib.h>

char *ttyname (int fildes);

int isatty (int fildes);

DESCRIPTION

FILES

ttyname returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

/dev/*

DIAGNOSTICS

NOTES

10/89

ttyname returns a NULL pointer if fildes does not describe a terminal device in
directory / dey.

The return value points to static data whose content is overwritten by each call.

Page 1

ttyslot (3C) ttyslot (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
iinclude <stdlib.h>

int ttyslot (void);

DESCRIPTION

FILES

ttyslot returns the index of the current user's entry in the /var/adm/utnp file.
The returned index is accomplished by scanning files in /dev for the name of the
terminal associated with the standard input, the standard output, or the standard
error output (0, I, or 2).

/var/adm/utnp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS

10/89

A value of -1 is returned if an error was encountered while searching for the ter­
minal name or if none of the above file descriptors are associated with a terminal
device.

Page 1

ungetc(3S) ungetc(3S)

NAME
ungetc - push character back onto input stream

SYNOPSIS
tinclude <stdio.h>

int ungetc (int c, FILE *stream);

DESCRIPTION
ungetc inserts the character specified by c (converted to an unsigned char) into
the buffer associated with an input stream [see intro(3»). That character, c, will
be returned by the next getc(3S) call on that stream. ungetc returns c, and
leaves the file corresponding to stream unchanged. A successful call to ungetc
clears the EOF indicator for stream.

Four bytes of pushback are guaranteed.

The value of the file position indicator for stream after reading or discarding all
pushed-back characters will be the same as it was before the characters were
pushed back.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

fseek, rewind [both described on fseek(3S»), and fsetpos erase the memory of
inserted characters for the stream on which they are applied.

SEE ALSO
fseek(3S), fsetpos(3C), getc(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
ungetc returns EOF if it cannot insert the character.

10/89 Page 1

vprlntf(3S) vprlntf (35)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a variable argument
list

SYNOPSIS
'include <stdio.h>
'include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf (FILE *5tream, canst char *format, va_list ap);

int vsprintf(char *5, const char *format, va_list ap);
DESCRIPTION

vprintf, vfprintf and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of being called with a variable number
of arguments, they are called with an argument list as defined by the <stdarg . h>
header file.

The <stdarg. h> header file defines the type va_list and a set of macros for
advancing through a list of arguments whose number and types may vary. The
argument ap to the vprint family of routines is of type va_list. This argument
is used with the <stdarg. h> header file macros va start, va arg and va end
[see va start, va arg, and va end in stdarg(5»). The EXAMPLE section below
shows their use with vprintf. -

EXAMPLE

10/89

The following demonstrates how vfprintf could be used to write an error rou­
tine:

'include <stdio.h>
iinclude <stdarg.h>
1*
* error should be called like

* error (function_name, fO%mat, argl, ...);
*1

void error(char *function_name, char *fo%mat, ...)

va_list ap;

va_start (ap, fO%mat);
1* print out name of function causing error *1,
(void) fprintf(stderr, "ERR in %s: ", function_name);
va arg(ap, char*);
I*-print out remainder of message *1
(void) vfprintf(stderr, fO%mat, ap);
va end(ap);
(void) abort;

Page 1

vprintf{3S) vprlntf{3S)

SEE ALSO
printf(3S), stdarg(5).

DIAGNOSTICS
vprintf and vfprintf return the number of characters transmitted, or return-1
if an error was encountered.

Page 2 10/89

elf(3E) elf(3E)

NAME
elf - object file access library

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]
tinclude <libelf.h>

DESCRIPTION
Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive mes, an.d archive members. The header file
provides type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF
descriptor. That is, when the program starts working with a file, elf_begin
creates an ELF descriptor through which the program manipulates the structures
and information in the file. These ELF descriptors can be used both to read and
to write meso After the program establishes an ELF descriptor for a file, it may
then obtain section descriptors to manipulate the sections of the file [see
elf_getscn(3E)]. Sections hold the bulk of an object me's real information, such
as text, data, the symbol table, and so on. A section descriptor ''belongs'' to a
particular ELF descriptor, just as a section belongs to a file. Finally, data descrip­
tors are available through section descriptors, allowing the program to manipulate
the information associated with a section.. A data descriptor ''belongs'' to a sec­
tion descriptor.

Descriptors provide private handles to a file and its pieces. ' In other words, a
data descriptor is associated with one section descriptor, which is associated with
one ELF descriptor, which is associated with one file. Although descriptors are
private, they give access to data that may be shared. Consider programs that
combine input files, using incoming data to create or update another file. Such a
program might get data descriptors for an input and an output section. It then
could update the .output descriptor to reuse the input descriptor's data. That is,
the descriptors are distinct, but they could share the associated data bytes. This
sharing avoids the space overhead for duplicate buffers and the performance
overhead for copying data unnecessarily.

FILE CLASSES

10/89

ELF provides a framework in which to defme a family of object files, supporting
multiple processors and architectures. An important distinction among object
files is the class, or capacity, of the me. The 32-bit class supports architectures in
which a 32-bit object can represent addresses, file sizes, etc., as in the following.

Name
Elf32 Addr
Elf32-Half
Elf32-0ff
Elf32-Sword
Elf32-Word
unsigned char

Pu ose
Unsigned address
Unsigned medium integer
Unsigned file .offset
Signed large integer
Unsigned large integer
Unsi ned small inte er

Page 1

elf(3E) elf(3E)

Other classes will be defined as necessary, to support larger (or smaller)
machines. Some library services deal only with data objects for a specific class,
while others are class-independent. To make this distinction clear, library func­
tion names reflect their status, as described below.

DATA REPRESENTATIONS
Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied
by the header files work on the native machine, which may have different data
encodings (size, byte order, etc.) than the target machine. Although native
memory objects should be at least as big as the file objects (to avoid information
loss), they may be bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations.
Some library routines convert data automatically, while others leave conversion
as the program's responsibility. Either way, programs that create object files
must write file-typed objects to those files; programs that read object files must
take a similar view. See elf xlate(3E) and elf fsize(3E) for more informa-
tion. - -

Programs may translate data explicitly, taking full control over the object file lay­
out and semantics. If the program prefers not to have and exercise complete con­
trol, the library provides a higher-level interface that hides many object file
details. elf_begin and related functions let a program deal with the native
memory types, converting between memory objects and their file equivalents
automatically when reading or writing an object file.

ELF VERSIONS

Page 2

Object file versions allow ELF to adapt to new reqUirements. Three­
independent-versions can be important to a program. First, an application pro­
gram knows about a particular version by virtue of being compiled with certain
header files. Second, the access library similarly is compiled with header files
that control what versions it understands. Third, an ELF object file holds a value
identifying its version, determined by the ELF version known by the file's creator.
ldeally, all three versions would be the same, but they may differ.

If . a program's version is newer than the access library, the program
might use information unknown to the library. Translation routines
might not work properly, leading to undefined behavior. This condition
merits installing a new library.

The library's version might be newer than the program's and the file's.
The library understands old versions, thus avoiding compatibility prob­
lems in this case.

Finally, a file's version might be newer than either the program or the
library understands. The program might or might not be able to process
the file properly, depending on whether the file has extra information
and whether that information can be safely ignored. Again, the safe
alternative is to install a new library that understands the file's version.

10/89

elf(3E) elf(3E)

To accommodate these differences, a program must use elf_version to pass its
version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper
representations. When the library reads object files, it uses each file's version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program's working version for the file data.

SYSTEM SERVICES
As mentioned above, elf_begin and related routines provide a higher-level
interface to ELF files, performing input and output on behalf of the application
program. These routines assume a program can hold entire files in memory,
without explicitly using temporary files. When reading a file, the library routines
bring the data into memory and perform subsequent operations on the memory
copy. Programs that wish to read or write large object files with this model must
execute on a machine with a large process virtual address space. If the underly­
ing operating system limits the number of open files, a program can use
elf_cntl to retrieve all necessary data from the file, allowing the program to
close the file descriptor and reuse it.

Although the elf_begin interfaces are convenient and efficient for many pro­
grams, they might be inappropriate for some. In those cases, an application may
invoke the elf_xlate data translation routines directly. These routines perform
no input or output, leaving that as the application's responsibility. By assuming a
larger share of the job, an application controls its input and output model.

LIBRARY NAMES

10/89

Names associated with the library take several forms.

elf name These class-independent names perform some service, name, for
the program.

Service names with an embedded class, 32 here, indicate they
work only for the designated class of files.

Data types can be class-independent as well, distinguished by
Type.
Class-dependent data types have an embedded class name, 32
here.

Several functions take commands that control their actions.
These values are members of the Elf_Cm:i enumeration; they
range from zero through ELF_C_NOM-l.

ELF F FLAG Several functions take flags that control library status and/or
actions. Flags are bits that may be combined.

ELF32 FSZ TYPE
- - These constants give the file sizes in bytes of the basic ELF types

for the 32-bit class of files. See elf fsize for more informa-

ELF K KIND

tion. -

The function elf kind identifies the KIND of file associated
with an ELF descriptor. These values are members of the
Elf_Kind enumeration; they range from zero through
ELF_K_NOM-l.

Page 3

elf(3E) elf(3E)

When a service function, such as elf xlate, deals with multi­
ple types, names of this form specify the desired TYPE. Thus,
for example, ELF_T_EHDR is directly related to Elf32_Ehdr.
These values are members of the Elf_Type enumeration; they
range from zero through ELF_T_NUM-l.

SEE ALSO

NOTES

Page 4

cof2elf(1), elf begin(3E), elf cntl(3E), elf end(3E), elf error(3E),
elf fill(3E), elf flag(3E), eif fsize(3E), elf getarhdr(3E),
elrgetarsym(3E):-elf getbase(3E), elf getdata(3E), elf getehdr(3E),
elf3etident(3E), elf:getphdr(3E), elf:getscn(3E), elf_getshdr(3E),
elf hash(3E), elf kind(3E), elf next(3E), elf rand(3E), elf rawfile(3E),
elf - strptr(3E), elf update(3E):-elf version(3E), elf xlate(3E), a. out(4)
ar(4) - - -
The "Object Files" in the chapter Programmer's Guide: ANSI C and Programming
Support Tools.

Information in the ELF header files is separated into common parts and
processor-specific parts. A program can make a processor's information available
by including the appropriate header file: <sys/elf_NAME.h> where NAME
matches the processor name as used in the ELF file header.

S bol Processor
M32 AT&T WE 32100
SPARe SPARe
386 Intel 80386
486 Intel 80486
860 Intel 80860
68K Motorola 68000
88K Motorola 88000

Other processors will be added to the table as necessary. To illustrate, a program
could use the following code to "see" the processor-specific information for the
WE 32100.

iinclude <libelf.h>
iinclude <sys/elf_M32.h>

Without the <sys/elf M32.h> definition, only the common ELF information
would be visible. -

10/89

elf_begin (3E) elt begin (3E)

NAME
elf_begin - make a file descriptor

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

'include <libelf.h>

Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

DESCRIPTION

10/89

elf_begin, elf_next, elf_rand,. and elf_end work together to process ELF
object files, either individually or as members of archives. After obtaining an ELF
descriptor from elf_begin, the program may read an existing file, update an
existing file, or create a new me. fildes is an open me descriptor that elf_begin
uses for reading or writing. The initial me offset [see lseek(2}J is unconstrained,
and the resulting file offset is undefined.

cmd may have the following values.

ELF _ C _NULL When a program sets cmd to this value, elf_begin returns a
null pointer, without opening a new descriptor. ref is ignored
for this command. See elf_next(3E) and the examples below
for more information.

When a program wishes to examine the contents of an existing
file, it should set cmd to this value. Depending on the value of
ref, this command examines archive members or entire files.
Three cases can occur.

First, if ref is a null pointer, elf_begin allocates a new ELF
deSCriptor and prepares to process the entire file. If the file
being read is an archive, elf_begin also prepares the resulting
deSCriptor to examine the initial archive member on the next call
to elf_begin, as if the program had used elf_next or
elf_rand to "move" to the initial member.

Second, if ref is a non-null descriptor associated with an archive
file, elf_begin lets a program obtain a separate ELF descriptor
associated with an individual member. The program should
have used elf_next or elf_rand to position ref appropriately
(except for the initial member, which elf_begin prepares; see
the example below). In this case, fildes should be the same file
deSCriptor used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,
elf begin increments the number of activations for the
desCriptor and returns ref, without allocating a new descriptor
and without changing the descriptor's read/write permissions.
To terminate the descriptor for ref, the program must call
elf end once for each activation. See elf next(3E} and the
examples below for more information. -

Page 1

elf_begin (3E) elf_begin (3E)

This command duplicates the actions of ELF_C_READ and addi­
tionally allows the program to update the file image [see
elf_update(3E»). That is, using ELF_C_READ gives a read-only
view of the file, while ELF_C_RDWR lets the program read and
Write the file. ELF C RDWR is not valid for archive members. If
ref is non-null, it must have been created with the ELF_C_RDWR
command.

If the program wishes to ignore previous file contents, presum­
ably to create a new file, it should set and to this value. ref is
ignored for this command.

elf_begin "works" on all files (including files with zero bytes), providing it Can
allocate memory for its internal structures and read any necessary information
from the file. Programs reading object files thus may call elf_kind or
elf3etehdr to determine the file type (only object files have an ELF header). If
the file is an archive with no more members to process, or an error occurs,
elf_begin returns a null pointer. Otherwise, the return value is a non-null ELF
descriptor.

Before the first call to elf_begin, a program must call elf_version to coordi­
nate versions.

SYSTEM SERVICES
When processing a file, the library decides when to read or write the file, depend­
ing on the program's requests. Normally, the library assumes the file descriptor
remains usable for the life of the ELF descriptor. If, however, a program must
process many files simultaneously and the underlying operating system limits the
number of open files, the program can use elf_cntl to let it reuse file descrip­
tors. After calling elf_cntl with appropriate arguments, the program may close
the file descriptor without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end ter­
minates the descriptor's last activation. After the descriptors have been ter­
minated, the storage is released; attempting to reference such data gives
undefined behavior. Consequently, a program that deals with multiple input (or
output) files must keep the ELF deSCriptors active until it finishes with them.

EXAMPLES

Page 2

A prototype for reading a file appears below. If the file is a simple object file, the
program executes the loop one time, receiving a null descriptor in the second
iteration. In this case, both elf and arf will have the same value, the activation
count will be two, and the program calls elf_end twice to terminate the descrip­
tor. If the file is an archive, the loop processes each archive member in turn,
ignoring those that are not object files.

10/89

el,-begin (3E) el,-begin (3E)

10/89

if (elf_version (EV_CURRENT) == EV_NONE)
{

}

/* libral:y out of date */
/* recover from error */

cmd = ELF C READ;
arf = elf-begin(fildes, cmd, (Elf *)0);
while «elf = elf_begin(fildes, cmd, arf» != 0)
{

}

if «ehdr = elf32_getehdr(elf» != 0)
{

/* process the file ... */
}
cmd = elf_next(elf);
elf_end (elf) ;

elf_end (arf) ;

Alternatively, the next example illustrates random archive processing. After iden­
tifying the file as an archive, the program repeatedly processes archive members
of interest. For darity, this example omits error checking and ignores simple
object files. Additionally, this fragment preserves the ELF descriptors for all
archive members, because it does not call elf_end to terminate them.

elf version(EV CURRENT);
arf-= elf begin(fildes, ELF C READ, (Elf *)0);
if (elf_kind (arf) != ELF_Kj\R)
{

/* not an archive */
}

/* initial processing */
/* set offset = ... for desired meJTber header */
while (elf_rand (arf, offset) == offset)
{

if «elf '" elf_begin(fildes, ELF_C_READ, arf» == 0)
break;

if «ehdr = elf32_getehdr(elf» != 0)
{

/* process archive member ... */
}
/* set offset = ... for desired member header */

The following outline shows how one might create a new ELF file. This example
is simplified to show the overall flow.

Page 3

elf_begin (3E)

elf versian(EV CURRENT);
fildes ... open("path/name", O_RDWRIO_TRUNCjO CREAT, 0666);
if «elf'" elf_begin(fildes, ELF_C_WRITE, (Elf *)0» == 0)

return;
ehdr = elf32 newehdr(elf);
phdr - elf32-newphdr(elf, count);
sen = elf newsen(df);
shdr = elf32 getshdr(scn);
data = elf_newdata (sen) ;
elf update (elf, ELF C WRITE);
elf:end(elf); --

Finally, the following outline shows how one might update an existing ELF file.
Again, this example is simplified to show the overall flow.

elf versian(EV CURRENT);
fildes ... open("path/name", ° RDWR);
elf - elf_begin(fildes, ELF_C_RDWR, (Elf *)0);

/ * add new or delete old info:rmatian ... * /

close (creat ("path/name", 0666»;
elf update (elf, ELF C WRITE);
elf:end(elf); --

In the example above, the call to creat truncates the file, thus ensuring the
resulting file will have the "right" size. Without truncation; the updated file
might be as big as the original, even if information were deleted.. the library
truncates the file, if it can, with ftruncate [see truncate(2»). Some systems,
however, do not support ftruncate, and the call to creat protects against this.

Notice that both file creation examples open the file with write and read permis­
sions. On systems that support mnap, the library uses it to enhance performance,
and mnap requires a readable file descriptor. Although the library can use a
write-only file descriptor, the application will not obtain the performance advan­
tages of mnap.

SEE ALSO

NOTES

Page 4

cof2elf(1), creat(2), lseek(2), mnap(2), open(2), truncate(2), elf(3E),
elf_entl(3E), .elf_end(3E), elf~tarhdr(3E), elf_getbase(3E),
elf 3etdata(3E), elf _getehdr(3E), elf _getphdr(3E), elf _getsen(3E),
elf kind(3E), elf next(3E), elf rand(3E), elf rawfile(3E), elf update(3E),
elf:versian(3E), ar(4). - - -

COFF is an object file format that preceded ELF . When a program calls eif _beg-in
on a COFF file, the library translates COFF structures to their ELF equivalents,
allowing programs to read (but not to write) a COFF file as if it were ELF . This
conversion happens only to the memory image and not to the file itself. After the
initial elf_begin, file offsets and addresses in the ELF header, the program
headers, and the seetionheaders retain the original COFF values [see
elf_getehdr, elf3etphdr, and elf_getshdr). A program may call
elf_update to adjust these values (without writing the file), and the library will

10/89

elf_begin (3E) elt begin (3E)

10/89

then present a consistent, ELF view of the file. Data obtained through
elf_getdata are translated (the COFF symbol table is presented as ELF, etc.).
Data viewed through elf_rawdata undergo no conversion, allowing the program
to view the bytes from the file itself.

Some COFF debugging information is not translated, though this does not affect
the semantics of a running program.

Although the ELF library supports COFF , programmers are strongly encouraged
to recompile their programs, obtaining ELF object files.

Page 5

e1tcntl(3E)

NAME
elf_cotl- control a file descriptor

SYNOPSIS
co [flag ...) file ... -lelf [library .•.)

tinclude <libelf.h>

int elf_cotl(Elf *elf, Elf_amd cmd):

DESCRIPTION
elf _ cotl instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3E) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Gen­
erally, elf_cotl commands apply to all activations of elf. Moreover, if the ELF
descriptor is associated with an archive file, descriptors for members within the
archive will also be affected as described below. Unless stated otherwise, opera­
tions on archive members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF C FODONE
- - This value tells the library not to Use the file descriptor associated with

elf. A program should use this command when it has requested all
the information it cares to use and wishes to avoid the overhead of
reading the rest of the file. The memory for all completed operations
remains valid, but later file operations, such as the initial elf _getdata
for a section, will fail if the data are not in memory already.

ELF C FOREAD
- - This command is similar to ELF _ C _FDDONE, except it forces the library

to read the rest of the file. A program should use this command when
it must close the file descriptor but has not yet read everything it
needs from the file. After elf_cotl completes the ELF_C_FDREAD
command, future operations, such as elf _getdata, will use the
memory version of the file without needing to use the file descriptor.

If elf cotl succeeds, it returns zero. Otherwise elf was null or an error
occurred, and the function returns -1.

SEE ALSO

NOTE

10/89

elf(3E), elf _ begin(3E), elf _getdata(3E), elf _ rawfile(3E).

If the program wishes to use the "raw" operations [see elf_rawdata, which
elf_qetdata(3E> describes, and elf_rawfile(3E») after disabling the file descrip­
tor with ELF_C_FODONE or ELF_C_FDREAD, it must execute the raw operations
explicitly beforehand. Otherwise, the raw file operations will fail. Calling
elf_rawfile makes the entire image available, thus supporting subsequent
elf_rawdata calls.

Page 1

NAME
elf_end - finish using an object file

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J
iinclude <libelf.h>

int elf_end(Elf *elf);

DESCRIPTION
A program uses elf_end to terminate an ELF descriptor, elf, and to deallocate
data associated with the descriptor. Until the program terminates a descriptor,
the data remain allocated. elf should be a value previously returned by
elf_begin; a null pointer is allowed as an argument, to simplify error handling.
If the program wishes to write data associated with the ELF descriptor to the file,
it must use elf_update before calling elf_end.

As elf_begin(3E) explains, a descriptor can have more than one activation. Cal­
ling elf_end removes one activation and returns the remaining activation count.
The library does not terminate the descriptor until the activation count reaches
zero. Consequently, a zero return value indicates the ELF descriptor is no longer
valid.

SEE ALSO
elf(3E), elf _ begin(3E), elf _ update(3E).

10/89 Page 1

elf_error (3E) elt error (3E)

NAME
elf_errmsg, elf_errno - error handling

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]

'include <libelf.h>

const char *elf errmsg(int err);
int elf_errno(void);

DESCRIPTION
If an ELF library function fails, a program may call elf _ errno to retrieve the
library's internal error number. As a side effect, this function resets the internal
error number to zero, which indicates no error.

elf errmsg takes an error number, err, and returns a null-terminated error mes­
sage{with no trailing new-line) that describes the problem. A zero err retrieves a
message for the most recent error. If no error has occurred, the return value is a
null pOinter (not a pointer to the null string). Using err of -1 also retrieves the
most recent error, except it guarantees a non-null retum value, even when no
error has occurred. If no message is available for the given number, elf_errmsg
returns a pointer to an appropriate message. This function does not have the side
effect of clearing the internal error number.

EXAMPLE
The following fragment clears the internal error number and checks it later for
errors. Unless an error occurs after the first call to elf errno, the next call will
return zero. -

(void)elf errno();
while (more to do)
{ - -

/* processing ... */
if «err = elf errno(» !- 0)
{ -

1'08g = elf errmsg(err);
/* print mag */

SEE ALSO
elf{3E), elf _ version{3E).

10/89 Page 1

elfJiII (3E)

NAME
elf_fill - set fill byte

SYNOPSIS
cc [flag ... 1 file ... -lelf [library ... 1

iinclude <libelf.h>

void elf_fill(int fill);

DESCRIPTION
Alignment constraints for ELF files sometimes require the presence of "holes."
For example, if the data for one section are required to begin on an eight-byte
boundary, but the preceding section is too "short," the library must fill the inter­
vening bytes. These bytes are set to the fill character. The library uses zero bytes
unless the application supplies a value. See elf_getdata(3E) for more informa­
tion about these holes.

SEE ALSO

NOTE

10/89

elf(3E), elf_getdata(3E), elf_flag(3E), elf_update(3E).

An application can assume control of the object file organization by setting the
ELF_F_LAYOUT bit [see elf_flag(3E»). When this is done, the library does not fill
holes.

Page 1

NAME
elf flagdata, elf flagehdr, elf flagelf, elf_flagphdr, elf_flagscn,
elf~)lagshdr - manipulate flags -

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

iinclude <libelf.h>

unsigned elf_flagdata(Elf_Data * data, Elf_Cm:i cm:i, unsigned flags);

unsigned elf_flagehdr(Elf *elf, Elf_Cm:i cm:i, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_Cm:i ctrd, unsigned flags);

unsigned elf_flagphdr(Elf *elf, Elf_Cm:i cm:i, unsigned flags);

unsigned elf_flagscn(Elf_Scn *scn, Elf_Cm:i ctrd, unsigned flags);

unsigned elf_flagshdr(Elf_Scn *scn, Elf_Cm:i c:mj, unsigned flags);

DESCRIPTION

10/89

These functions manipulate the flags associated with various structures of an ELF
file. Given an ELF descriptor (eln, a data descriptor (data), or a section deSCriptor
(sen), the functions may set or clear the associated status bits, returning the
updated bits. A null descriptor is allowed, to simplify error handling; all func­
tions return zero for this degenerate case.

cmd may have the following values.

ELF C CLR The functions clear the bits that are asserted in flags. Only
the non-zero bits in flags are cleared; zero bits do not change
the status of the descriptor.

ELF _ C _SET The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the
status of the descriptor.

Descriptions of the defined flags bits appear below.

ELF F DIRTY When the program intends to write an ELF file, this flag
asserts the associated information needs to be written to the
file. Thus, for example, a program that wished to update the
ELF header of an existing file would call elf _ flagehdr with
this bit set in flags and cmd equal to ELF_C_SET. A later call
to elf_update would write the marked header to the file.

Normally, the library decides how to arrange an output file.
That is, it automatically decides where to place sections, how
to align them in the file, etc. If this bit is set for an ELF
descriptor, the program assumes responsibility for determin­
ing all file positions. This bit is meaningful only for
elf_flagelf and applies to the entire file associated with the
descriptor.

Page 1

elfJlag(3E} elfJlag (3E)

When a flag bit is set for an item, it affects all the subitems as well. Thus, for
example, if the program sets the ELF_F_DIRTY bit with elf_flagelf, the entire
logical file is "dirty."

EXAMPLE
The following fragment shows how one might mark the ELF header to be written
to the output file.

ehdr = elf32 getehdr(elf);
/* dirty eh~ ••• */
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

SEE ALSO
elf(3E), elf_end(3E), elf_getdata(3E), elf-.<Jetehdr(3E), elf_update(3E).

Page 2 10/89

eIUslze(3E)

NAME
e1f_fsize: e1f32_fsize - return the size of an object file type

SYNOPSIS
cc [flag ...] file ..• -le1f [library ...]

tinc1ude <libe1f.h>

size_t e1f32_fsize(E1f_TYPe type, size_t count, unsigned ver):

DESCRIPTION
elf32_fsize gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size [see
e1f(3E) and e1f_version(3E»).

Constant values are available for the sizes of fundamental types.

ELF T ADDR
ELF-T-BYTE
ELF-T-HALF
ELT-T-QFF
ELF - T - SWORD
ELF:=T:=i«>RD

File Size

ELF32 FSZ ADDR
1 - -

ELF32 FSZ HALF
ELF32-FSZ-OFF
ELF32-FSZ-S~RD
ELF32::)SZ:=~RD

Memory Size

sizeof(E1f32 Addr)
8izeof(unsigned char)
sizeof(Elf32_Ha1f)
sizeof(E1f32 Off)
SiZ80f(E1f32-Sword)
sizeof(E1f3~WOrd)

e1f32 fsize returns zero if the value of type or ver is unknown. See
elf _ xlate(3E) for a list of the type values.

SEE ALSO
e1f(3E), e1f_version(3E), elf_xlate(3E).

10/89 Page 1

elf _getarhdr (3E) elf_getarhdr (3E)

NAME
elf_getarhdr - retrieve archive member header

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *elf);

DESCRIPTION
elf_getarhdr returns a pointer to an archive member header, if one is available
for the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf _getarhdr then returns a null value. The header
includes the following members.

char
tllTe t
long
long
unsigned long
off t
char

*ar_name;
ar_date;
ar uid;
ar-gid;
ar=mode;
ar_size;

An archive member name, available through ar_name, is a null-terminated string,
with the ar format control characters removed. The ar rawname member holds a
null-terminated string that represents the original name "'bytes in the file, including
the terminating slash and trailing blanks as specified in the archive format.

In addition to "regular" archive members, the archive format defines some spe­
cial members. All special member names begin with a slash (I), distinguishing
them from regular members (whose names may not contain a slash), These spe­
cial members have the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf _getarsym. The information in the symbol table is useful for ran­
dom archive processing [see elf_rand(3E)J.

/ / This. member, if present, holds a string table for long archive member
names. An archive member's header contains a 16-byte area for the
name, which may be exceeded in some file systems. The library
automatically retrieves long member names from the string table, setting
ar_name to the appropriate value.

Under some error conditions, a member's name might not be available. Although
this causes the library to set ar_name to a null pointer, the ar_rawname member
will be set as usual.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4).

10/89 Page 1

elf _getarsym (3E) elf_getarsym (3E)

NAME
elf_getarsym - retrieve archive symbol table

SYNOPSIS
cc [flag ... J file ... -lelf !library ... J

tinclude <libelf.h>

Elf_Arsym *elf_getarsym(Elf *elf, size_t *ptr);

DESCRIPTION
elf _getarsym returns a pointer to the archive symbol table, if one is available
for the ELF descriptor elf. Otherwise, the archive doesn't have a symbol table, an
error occurred, or elf was null; elf_getarsym then returns a null value. The
symbol table is an array of structures that include the following members.

char *as name;
size t as off;
unsigned long as=hash;

These members have the following semantics.

as name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the
member's header. The archive member residing at the given offset
defines the associated symbol. Values in as_off may be passed as
arguments to elf_rand to access the desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash.

If ptr is non-null, the library stores the number of table entries in the location to
which ptr points. This value is set to zero when the return value is null. The
table's last entry, which is included in the count, has a null as_name, a zero value
for as_off, and -OUL for as_hash.

SEE ALSO
elf(3E), elf_getarhdr(3E), elf_hash(3E), elf_rand(3E), ar(4).

10/89 Page 1

elf_getbase (3E) e1tgetbase (3E)

NAME
elf_getbase - get the base offset for an object file

SYNOPSIS
cc [flag ... J file .•. -lelf [library ... J

'include <libelf.h>

off_t elf_getbase(Elf *elf);

DESCRIPTION
elf_getbase returns the file offset of the first byte of the me or archive member
associated with elf, if it is known or obtainable, and -1 otherwise. A null elf is
allowed, to simplify error handling; the return value in this case is -1. The base
offset of an archive member is the beginning ofthe member's information, not the
beginning of the archive member header.

SEE ALSO
elf(3E), elf_begin(3E), ar(4).

10/89 Page 1

elf_getdata(3E) elf_getdata (3E)

NAME
elf_getdata,. elf_newdata, elf_rawdata - get section data

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]

tinclude <libelf.h>

Elf_Data *elf_getdata(Elf_Sen *sen, Elf_Data *data);

Elf_Data * elf _ newdata (Elf_Sen *sen);

Elf_Data *elf_rawdata(Elf_Sen *sen, Elf_Data *data);

DESCRIPTION

10/89

These functions access and manipulate the data associated with a section descrip­
tor, sen. When reading an existing file, a section will have a single data buffer
associated with it. A program may build a new section in pieces, however, com­
posing the new data from multiple data buffers. For this reason, "the" data for a
section should be viewed as a list of buffers, each of which is available through a
data descriptor.

elf _getdata lets a program step through a section's data list. If the incoming
data descriptor, data, is null, the function returns the first buffer associated with
the section. Otherwise, data should be a data descriptor associated with sen, and
the function gives the program access to the next data element for the section. If
sen is null or an error occurs, elf_getdata returns a null pointer.

elf_getdata translates the data from file representations into memory represen­
tations [see elf_xlate(3E)] and presents objects with memory data types to the
program, based on the file's class [see elf(3E)]. The working library version [see
elf_version(3E)] specifies what version of the memory structures the program
wishes elf_getdata to present.

elf_newdata creates a new data descriptor for a section, appending it to any
data elements already associated with the section. As described below, the new
data descriptor appears empty, indicating the element holds no data. For con­
venience, the descriptor's type (d_type below) is set to ELF_T_BYTE, and the ver­
sion (d_version below) is set to the working version. The program is responsi­
ble for setting (or changing) the descriptor members as needed. This function
implicitly sets the ELF_F_DIRTY bit for the section's data [see elf_flag(3E)]. If
sen is null or an error occurs, elf_newdata returns a null pointer.

elf_rawdata differs from elf_getdata by returning only uninterpreted bytes,
regardless of the section type. This function typically should be used only to
retrieve a section image frem a file being read, and then only when a program
must avoid the automatic data translation described below. M~reover, a program
may not close or disable [see elf_entl(3E)] the file descriptor associated with elf
before the initial raw operation, because elf_rawdata might read the data from
the file to ensure it doesn't interfere with elf getdata. See elf rawfile(3E)
for a related facility that applies to the entire file. When elf _get<iita provides
the right translation, its use is recommended over elf_rawdata. If sen is null or
an error occurs, elf_rawdata returns a null pointer.

Page 1

elf _getdata (3E) elf_getdata (3E)

The Elf_Data structure includes the following members.

void *d _ buf;
Elf Type d type;
size t d:size;
off t doff;
size t d-align;
unsigned d:version;

These members are available for direct manipulation by the program. Descrip­
tions appear below.

d buf A pointer to the data buffer resides here. A data element with no
data has a null pointer.

d size

doff

d version

This member's value specifies the type of the data to which d_buf
points. A section's type determines how to interpret the section
contents, as summarized below.

This member holds the total size, in bytes, of the memory occu­
pied by the data. This may differ from the size as represented in
the file. The size will be zero if no data exist. [See the discussion
of SHT _ NOBITS below for more information.]

This member gives the offset, within the section, at which the
buffer resides. This offset is relative to the file's section, not the
memory object's.

This member holds the buffer's required alignment, from the
beginning of the section. That is, d_off will be a multiple of this
member's value. For example, if this member's value is four, the
beginning of the buffer will be four-byte aligned within the sec­
tion. Moreover, the entire section will be aligned to the maximum
of its constituents, thus ensuring appropriate alignment for a
buffer within the section and within the file.

This member holds the version number of the objects in the
buffer. When the library originally read the data from the object
file, it used the working version to control the translation to
memory objects.

DATA AUGNMENT

Page 2

As mentioned above, data buffers within a section have explicit alignment con­
straints. Consequently, adjacent buffers sometimes will not abut, causing "holes"
within a section. Programs that create output files have two ways of dealing with
these holes.

First, the program can use elf_fill to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to ini­
tialize the data there. The library's initial fill value is zero, and elf_fill lets the
application change that.

Second, the application can generate its own data buffers to occupy the gaps,
filling the gaps with values appropriate for the section being created. A program
might even use different fill values for different sections. For example, it could
set text sections' bytes to no-operation instructions, while filling data section holes

10/89

elf_getdata(3E} elf_getdata (3E)

with zero. Using this technique, the library finds no holes to fill, because the
application eliminated them.

SECTION AND MEMORY TYPES
elf _getdata interprets sections' data according to the section type, as noted in
the section header available through elf_getshdr. The following table shows
the section types and how the library represents them with memory data types
for the 32-bit file class. Other classes would have similar tables. By implication,
the memory data types control translation by elf_xlate.

Section Type Elf_Type 32-Bit Type

SHT DYNAMIC ELF T DYN Elf32_Dyn
SHT-DYNSYM ELF:T:SYM Elf32_Sym
SHT:HASH ELF_T_WORD Elf32 Word
SHT NOBITS ELF T BYTE unsigned char
SHT:NOTE ELF:T:BYTE unsigned char
SHT_NULL none none
SHT PROGBITS ELF T BYTE unsigned char
SHT:REL ELF:T:REL Elf32 Rel
SHT REIA ELF_T_RELA Elf32-Rela
SHT STRTAB ELF T BYTE unsigned char
SHT S'XMrAB ELF:T:SYM Elf32_Sym
other ELF_T_BYTE unsigned char

elf_rawdata creates a buffer with type ELF....:.T_BYTE.

As mentioned above, the program's working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type "belongs" to a version newer than the
application's working version, the library does not translate the section data.
Because the application cannot know the data format in this case, the library
presents an untranslated buffer of type ELF_T_BYTE, just as it would for an
unrecognized section type.

A section with a special type, SHT_NOBITS, occupies no space in an object file,
even when the section header indicates a non-zero size. elf getdata and
elf_rawdata "work" on such a section, setting the data structure to have a null
buffer pointer and the type indicated above. Although no data are present, the

, d_size value is set to the size from the section header. When a program is creat­
ing a new section of type SHT _NOBITS, it should use elf Jlewdata to add data
buffers to the section. These "empty" data buffers shOUld have the d_size
members set to the desired size and the d buf members set to null.

EXAMPLE

10/89

The following fragment obtains the string table that holds section names (ignor­
ing error checking). See elf_strptr(3E) for a variation of string table handling.

/

/

/
Page 3

elf _getdata (3E) elf_getdata (3E)

ehdr = elf32 getehdr(elf);
sen = elf_getsen(elf, (size_t)ehdr->e_shstrndx);
shdr = elf32_getshdr(scn);
if (shdr->sh_type != SHT_STRTAB)
{

/* not a string table */
}
data = 0;
if «data = elf_getdata(sen, data» == 0 II data->d_size == 0)
{

/* error or no data */

The e shstrndx member in an ELF header holds the section table index of the
string table. The program gets a section descriptor for that section, verifies it is a
string table, and then retrieves the data. When this fragment finishes, data­
>d_buf points at the first byte of the string table, and data->d_size holds the
string table's size in bytes.

SEE ALSO

Page 4

elf(3E), elf ent1(3E), elf fill(3E), elf flag(3E), elf getehdr(3E),
elf getsen(3E), elf getshdr(3E), elf rawfile(3E), elf version(3E),
elf=xlate(3E). - - -

10/89

elf_getehdr(3E) elf_getehdr (3E)

NAME
elf_getehdr: elf32_getehdr, elf32-.newehdr - retrieve class-dependent object
file header

SYNOPSIS
cc (flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf32 Ehdr *elf32_getehdr(Elf *elf);

Elf32 Ehdr *elf32_newehdr(Elf *elf);

DESCRIPTION
For a 32-bit class file, elf32_getehdr returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32 newehdr allocates a "clean" one, but it otherwise behaves the same as
elf32=getehdr. It does not allocate a new header if one exists ~1ready. If no
header exists (for elf_getehdr), one cannot be created (for elf_newehdr), a sys­
tem error occurs, the file is not a 32-bit class file, or elf is null, both functions
return a null pointer.

The header includes the following members.

unsigned char e_ident[EI~IDENT];
Elf32 Half e type;
Elf32-Half e=machine;
Elf32-Word e_version;
Elf32-Addr e entry;
Elf32-0ff e~hoff;
Elf32-0ff e_shoff;
Elf32-Word e flags;
Elf32=Half e=ehsize;
Elf32 Half e-phentsize;
Elf32 Half e-phnum;
Elf32-Half e_shentsize;
Elf32-Half e_shnum;
Elf32-Half e_shstrndx;

elf32_newehdrautomatically sets the ELF_F_DIRTY bit [see elf_flag(3E)J. A
program may use elf_getident to inspect the identification bytes from a file.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getident(3E).

10/89 Page 1

elf_getldent (3E) eltgetident(3E)

NAME
elf _getident - retrieve file identification data

SYNOPSIS
co [flag ... J file ... -lelf [library ... J

'include <libelf.h>

char *elf_getident(Elf *elf, size_t *ptr);

DESCRIPTION
As elf(3E) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits; etc. To accommodate these differences,
without forcing the larger sizes on smaller machines, the initial bytes in an ELF
file hold identification information common to all file classes. Every ELF header's
e _ ident has EI _ NIDENT bytes with the following interpretation.

e_ident Index Value Purpose

EI MAGO ELFMAGO
EI-MAGl ELFMAGl File identification EI-MAG2 ELFMAG2
EI-MAG3]i:LFMAG3

ELFCLASSNONE
EI_CLASS ELFCLASS32 File class

ELFCLASS64
ELFDATANONE

EI_DATA ELFDATA2LSB Data encoding
ELFDATA2MSB

EI_VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of flles [see elf_kind(3E)J also may have identification data, though
they would not conform to e _ ident.

elf_getident returns a pointer to the file's "initial bytes." If the library recog­
nizes the file, a conversion from the file image to the memory image may occur.
In any case, the idl:!ntificationqytes are guaranteed not to have been modified,
though the size of the unmodified a~ depel'\ds on tl'tfi! fil~ type. If ptT is non­
null, the library stores the number of identification bytes in the locCitiOIl to which
ptT points. If no data are present, elf is null, or an error occurs, the return value is
a null pointer, with zero optionally stored through ptT.

SEE ALSO
elf(3E), elf _ begin(3E), elf _getehdr(3E), elf _ kind(3E), elf _ rawfile(3E).

10/89 Page 1

elf_getphdr(3E) elf_getphdr(3E)

NAME
elf getphdr: elf32 getphdr, elf32 newphdr - retrieve class-dependent pro-
gram header table - -

SYNOPSIS
cc [flag ...) file ... -lelf [library ...)

iinclude <libelf.h>

Elf32_Phdr *elf32_getphdr(Elf *elf);

Elf32_Phdr *elf32_newphdr(Elf *elf, size_t count);

DESCRIPTION
For a 32-bit class file, elf32_getphdr returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.

elf32_newphdr allocates a new table with count entries, regardless of whether
one existed previously, and sets the ELF _F _DIRTY bit for the table [see
elf_flag(3E»). Specifying a zero count deletes an existing table. Note this
behavior differs from that of elf32_newehdr [see elf32_getehdr(3E»), allowing
a program to replace or delete the program header table, changing its size if
necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs,
or elf is null, both functions return a null pointer. Additionally, elf32_newphdr
returns a null pointer if count is zero.

The table is an array of Elf32_Phdr structures, each of which includes the fol­
lowing members.

Elf32 Word p type;
Elf32-0ff p:offset;
Elf32-Addr p vaddr;
Elf32-Addr p:Paddr;
Elf32-Word p_filesz;
Elf32-Word P_mem8Z;
Elf32-Word p flags;
Elf32:Word p:align;

The ELF header's eJlhnum member tells how many entries the program header
table has [see elf_getehdr(3E»). A program may inspect this value to determine
the size of an existing table; elf32_newphdr automatically sets the member's
value to count. If the program is building a new file, it is responsible for creating
the file's ELF header before creating the program header table.

SEE ALSO
elf(3E), elf _ begin(3E), elf _ flag(3E), elf _getehdr(3E).

10/89 Page 1

elf_getscn (3E) e1tgetscn (3E)

NAME
elf_getsen, elf_ndxsen, elf_newscn, elf_nextsen - get section information

SYNOPSIS
cc [flag ...] file ... -lelf [library ... J

'include <libelf.h>

Elf_Sen *elf_getsen CElf *elf, size_t index);

size_t elf_ndxsenCElf_Scn *scn);

Elf Sen *elf_newscnCElf *elf);

Elf_Sen *elf_nextsenCElf *elf, Elf_Sen *scn);

DESCRIPTION
These functions provide indexed and sequential access to the sections associated
with the ELF descriptor elf. If the program is building a new file, it is responsible
for creating the file's ELF header before creating sections; see elf_getehdr(3E).

elf _getsen returns a section descriptor, given an index into the file's section
header table. Note the first "real" section has index 1. Although a program can
get a section descriptor for the section whose index is 0 (SHN_UNDEF, the
undefined section), the section has no data and the section header is "empty"
(though present). If the specified section does not exist, an error occurs, or elf is
null, elf_getsen returns a null pointer.

elf_newsen creates a new section and appends it to the list for elf. Because the
SHN_ONDEF section is required and not "interesting" to applications, the library
creates it automatically. Thus the first call to elf_newsen for an ELF descriptor
with no existing sections returns a descriptor for section 1. If an error occurs or
elf is null, elf_newsen returns a null pointer.

After creating a new section descriptor, the program can use elf _getshdr to
retrieve the newly created, "dean" section header. The new section descriptor
will have no associated data [see elf_getdata(3E)]. When creating a new sec­
tion in this way, the library updates the e _ shnum member of the ELF header and
sets the ELF_F_DIRTY bit for the section [see elf_flag(3E)]. If the program is
building a new file, it is responsible for creating the file's ELF header [see
elf_getehdr(3E)] before creating new sections.

elf_nextsen takes an existing section descriptor, sen, and returns a section
descriptor for the next higher section. One may use a null sen to obtain a section
descriptor for the section whose index is 1 (skipping the section whose index is
SHN_ONDEF). If no further sections are present or an error occurs, elf_nextscn
returns a null pointer.

elf_ndxsen takes an existing section descriptor, sen, and returns its section table
index. If sen is null or an error occurs, elf_ndxsen returns SHN_ONDEF.

EXAMPLE

10/89

An example of sequential access appears below. Each pass through the loop
processes the next section in the file; the loop terminates when all sections have
been processed.

Page 1

elf_getscn (3E) elf_getscn (3E)

sen - 0;
while «sen - elf nextsen(elf, sen» 1- 0)
{ -

/* process section */

SEE ALSO

Page 2

elf(3E), elf_begin(3E), elf_flag(3E), elf..sJetdata(3E), elf_getehdr(3E),
elf _getshdr(3E).

10/89

elf_getshdr(3E) e1tgetshdr (3E)

NAME
elf _getshdr: elf32 _getshdr - retrieve class-dependent section header

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf32_Shdr *elf32_getshdr(Elf_Scn *scn);

DESCRIPTION
For a 32-bit class me, elf32_getshdr returns a pointer to a section header for the
section descriptor sen. Otherwise, the me is not a 32-bit class file, sen was null, or
an error occurred; elf32 _getshdr then returns null.

The header includes the following members.

Elf32 Word sh_name;
Elf32-Word sh_type;
Elf32-Word sh flags;
Elf32-Addr sh=addr;
Elf32-0ff sh_offset;
Elf32-Word sh size;
Elf32-Word sh-link;
Elf32-Word sh=info;
Elf32-Word sh addralign;
Elf32-Word sh=entsize;

If the program is building a new file, it is responsible for creating the file's ELF
header before creating sections.

SEE ALSO
elf(3E), elf_flag(3E), elf_getscn(3E), elf_strptr(3E).

10/89 Page 1

NAME
elf_hash - compute hash value

SYNOPSIS
cc [flag ... J file •.. -lelf [library ... J
tinclude <libelf.h>

unsigned long elf_hash(const char *name);

DESCRIPTION
elf_hash computes a hash value, given a null terminated string, name. The
returned hash value, h, can be used as a bucket index, typically after computing
h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash
uses unsigned arithmetic to avoid possible differences in various machines'
signed arithmetic. Although name is shown as char* above, elf_hash treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates
type conflicts with expressions such as elf_hash ("name") .
ELF files' symbol hash tables are computed using this function [see
elf_getdata(3E) and elf_xlate(3E»). The hash value returned is guaranteed
not to be the bit pattern of all ones (-OOL).

SEE ALSO
elf(3E), elf _getdata(3E), elf _ xlate(3E).

10/89 Page 1

NAME
elf_kind - determine file type

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J
tinclude <libelf.h>

Elf_Kind elf_kind(Elf *elf);

DESCRIPTION
This function returns a value identifying the kind of file associated with an ELF
descriptor (elf>. Currently defined values appear below.

ELF K AR The file is an archive [see ar(4)J. An ELF descriptor may also be
associated with an archive member, not the archive itself, and
then elf_kind identifies the member's type.

ELF _ K _ COFF The file is a COFF object file. elf _ begin(3E) describes the
library's handling for COFF files.

ELF K ELF

ELF K NONE

The file is an ELF file. The program may use elf _getident to
determine the class. Other functions, such as elf getehdr, are
available to retrieve other file information. -

This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf
should be a value previously returned by elf_begin. A null pointer is allowed,
to simplify error handling, and causes elf_kind to return ELF_K_NONE.

SEE ALSO
elf(3E), elf_begin(3E), elf_getehdr(3E), elf_getident(3E), ar(4).

10/89 Page 1

NAME
elf_next - sequential archive member access

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J
iinclude <libelf.h>

Elf_amd elf_next(Elf *elf);

DESCRIPTION
elf_next, elf_rand. and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_next provides sequential access to the next archive member. That is, having
an ELF descriptor, elf, associated with an archive member, elf_next prepares the
containing archive to access the following member when the program calls
elf_begin. After successfully positioning an archive for the next member,
elf_next returns the value ELF_C_READ. Otherwise, the open file was not an
archive, elf was null, or an error occurred, and the return value is ELF_C_NULL.
In either case, the return value may be passed as an argument to elf_begin,
specifying the appropriate action.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4).

10/89 Page 1

elfJand (3E) elfJand (3E)

NAME
elf_rand - random archive member access

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

size_t elf_rand(Elf *elf, size_t offset);

DESCRIPTION
elf_rand, elf_next, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_rand provides random archive processing, preparing elf to access an arbi­
trary archive member, elf must be a descriptor for the archive itself, not a
member within the archive. offset gives the byte offset from the beginning of the
archive to the archive header of the desired member. See elf getarsym(3E) for
more information about archive member offsets. When eii rand works, it
returns offset. Otherwise it returns 0, because an error occurred~ elf was null, or
the file was not an archive (no archive member can have a zero offset). A pro­
gram may mix random and sequential archive processing.

EXAMPLE
An archive starts with a "magic string" that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns -1 for errors and 0 other­
wise).

#include <ar. h>
tinclude <libelf.h>

int
rewindelf(Elf *elf)
(

return 0;
return -1;

SARMAG)

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_next(3E), ar(4).

10/89 Page 1

elfJawflle (3E)

NAME
elf _rawfile - retrieve uninterpreted file contents

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

iinclude <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

DESCRIPTION
elf _rawfile returns a pointer to an uninterpreted byte image of the file. This
function should be used only to retrieve a file being read. For example, a pro­
gram might use elf_rawfile to retrieve the bytes for an archive member.
A program may not dose or disable [see elf_cntl(3E)] the file descriptor associ­
ated with elf before the initial call to elf_rawfile, because elf_rawfile might
have to read the data from the file if it does not already have the original bytes in
memory. Generally, this function is more efficient for unknown file types than
for object files. The library implicitly translates object files in memory, while it
leaves unknown files unmodified. Thus asking for the uninterpreted image of an
object file may create a duplicate copy in memory.

elf_rawdata [see elf_getdata(3E)J is a related function, providing access to
sections within a file.

If ptr is non-null, the library also stores the file's size, in bytes, in the location to
which ptr points. If no data are present, elf is null, or an error occurs, the return
value is a null pointer, with zero optionally stored through ptr.

SEE ALSO

NOTE

10/89

elf(3E), elf _ begin(3E), elf _ cnt1(3E), elf _getdata(3E), elf _getehdr(3E),
elf _getident(3E), elf _ kind(3E).

A program that uses elf_rawfile and that also interprets the same file as an
object file potentially has two copies of the bytes in memory. If such a program
requests the raw image first, before it asks for translated information (through
such functions as elf_getehdr, elf_getdata, and so on), the library "freezes"
its original memory copy for the raw image. It then uses this frozen copy as the
source for creating translated objects, without reading the file again. Conse­
quently, the application should view the raw file image returned by elf_rawfile
as a read-only buffer, unless it wants to alter its own view of data subsequently
translated. In any case, the application may alter the translated objects without
changing bytes visible in the raw image.

Multiple calls to elf_rawfile with the same ELF descriptor return the same
value; the library does not create duplicate copies of the file.

Page 1

elf_ strptr (3E) el,-strptr (3E)

NAME
elf _ strptr - make a string pointer

SYNOPSIS
cc [flag ... J file... -lelf [library ... J

iinclude <libelf.h>

char *elf_strptr(Elf *elf, size_t section, size_t offset);

DESCRIPTION
This function converts a string section offset to a string pointer. elf identifies the
file in which the string section resides, and section gives the section table index for
the strings. elf_strptr normally returns a pointer to a string, but it returns a
null pointer when elf is null, section is invalid or is not a section of type
SHT _ STRTAB, the section data cannot be obtained, offset is invalid, or an error
occurs.

EXAMPLE
A prototype for retrieving section names appears below. The file header specifies
the section name string table in the e_shstrndx member. The following code
loops through the sections, printing their names.

if «ehdr = elf32_getehdr(elf» == 0)
{

/* handle the error */
return;

ndx = ehdr->e_shstrndx;
sen = 0;
while «sen = elf_nextscn(elf, sen» != 0)
{

char *name = 0;
if «shdr = elf32 getshdr(sen» != 0)

name = elf strptr(elf, ndx, (size t)shdr->sh name);
printf('''%s'\n'', name? name: "(null)"); -

SEE ALSO

NOTE

10/89

elf(3E), elf _getdata(3E), elf _getshdr(3E), elf _ xlate(3E).

A program may call elf_getdata to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than
using elf_strptr.

Page 1

elt update (3E) e1t update (3E)

NAME
elf_update - update an ELF descriptor

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

off_t elf_update(Elf *elf, Elf_cmd cmd);

DESCRIPTION

10/89

elf_update causes the library to examine the information associated with an ELF
descriptor, elf, and to recalculate the structural data needed to generate the file's
image.

cmd may have the following values.

ELF C NULL This value tells elf update to recalculate various values,
- - updating only the ELF descriptor's memory structures. Any

modified structures are flagged with the ELF_F_DIRTY bit. A
program thus can update the structural information and then
reexamine them without changing the file associated with the
ELF descriptor. Because this does not change the file, the ELF
descriptor may allow reading, writing, or both reading and
writing [see elf_begin(3E)J.

If cmd has this value, elf_update duplicates its ELF_C_NULL
actions and also writes any "dirty" information associated with
the ELF descriptor to the file. That is, when a program has used
elf_getdata or the elf_flag facilities to supply new (or
update existing) information for an ELF descriptor, those data
will be examined, coordinated, translated if necessary [see
elf_xlate(3E)J, and written to the file. When portions of the
file are written, any ELF _F _DIRTY bits are reset, indicating those
items no longer need to be written to the file [see
elf flag(3E)J. The sections' data are written in the order of
their section header entries, and the section header table is writ­
ten to the end of the file.

When the ELF descriptor was created with elf_begin, it must
have allowed writing the file. That is, the elf_begin command
must have been either ELF C RDWR or ELF C WRITE. -- --

If elf_update succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns -1.

When updating the internal structures, elf_update sets some members itself.
Members listed below are the application's responsibility and retain the values
given by the program.

Page 1

elf_update (3E) elf_update (3E)

~ernber ~otes

e_ident [EI_DATAl Library controls other e_ident values
etype
e-machine
eversion

ELF Header e_entry
eJ>hoff
e_shoff
e_flags
e_shstrndx

Program Header

~ernber

p_type
P offset
p=vaddr
pJ>addr
p_filesz
p_memsz
p flags
p:=align

~ernber

Section Header

sh_name
sh type
sh=flags
sh addr
sh offset
sh-size
sh-Unk
sh info

Only when ELF _F _LAYOUT asserted
Only when ELF _F _LAYOUT asserted

~otes

The application controls all
program header entries

~otes

Only when ELF _F _LAYOUT asserted
Only when ELF_F_LAYOUT asserted

sh=addralign Only when ELF_F_LAYOUT asserted
sh_entsize

Page 2 10/89

elf_update (3E) eltupdate(3E)

Data Descriptor

Member
d buf
d-type
d-size
doff
cCalign
d version

Notes

Only when ELF_F_IAYOUT asserted

Note the program is responsible for two particularly important members (among
others) in the ELF header. The e version member controls the version of data
structures written to the file. If the version is EV_NONE, the library uses its own
internal version. The e_ident [EI_DATAJ entry controls the data encoding used
in the file. As a special case, the value may be ELFDATANONE to request the native
data encoding for the host machine. An error occurs in this case if the native
encoding doesn't match a file encoding known by the library.

Further note that the program is responsible for the sh _ entsize section header
member. Although the library sets it for sections with known types, it cannot
reliably know the correct value for all sections. Consequently, the library relies
on the program to provide the values for unknown section type. If the entry size
is unknown or not applicable, the value should be set to zero.

When deciding how to build the output file, elf_update obeys the alignments of
individual data buffers to create output sections. A section's most strictly aligned
data buffer controls the section's alignment. The library also inserts padding
between buffers, as necessary, to ensure the proper alignment of each buffer.

SEE ALSO

NOTE

10/89

elf(3E), elf begin(3E), elf flag(3E), elf fsize(3E), elf getdata(3E),
elf_getehdX(3E), elf_getshdr(3E), elf_xlate(3E). -

As mentioned above, the ELF_C_WRITE command translates data as necessary,
before writing them to the file. This translation is not always transparent to the
application program. If a program has obtained pointers to data associated with
a file [for example, see elf_getehdr(3E) and elf_getdata(3E)], the program
should reestablish the pointers after calling elf_update.

As elf_begin(3E) describes, a program may "update" a COFF file to make the
image consistent for ELF. The ELF_C_NULL command updates only the memory
image; one can use the ELF _ C _WRITE command to modify the file as well. Abso­
lute executable files (a. out files) require special alignment, which cannot nor­
mally be preserved between COFF and ELF . Consequently, one may not update
an executable COFF file with the ELF_C_WRITE command (though ELF_C_NULL is
allowed).

Page 3

elf_version (3E) eltversion (3E)

NAME
elf_version - coordinate ELF library and application versions

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

unsigned elf_version(unsigned ver);

DESCRIPTION
As elf(3E) explains, the program, the library, and an object file have independent
notions of the '1atest" ELF version. elf_version lets a program determine the
ELF library's internal version. It further lets the program specify what memory
types it uses by giving its own working version, ver, to the library. Every program
that uses the ELF library must coordinate versions as described below.

The header file <libelf. h> supplies the version to the program with the macro
EV_CURRENT. If the library's internal version (the highest version known to the
library) is lower than that known by the program itself, the library may lack
semantic knowledge assumed by the program. Accordingly, elf_version will
not accept a working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version to return the library's internal
version, without altering the working version. If ver is a version known to the
library, elf_version returns the previous (or initial) working version number.
Otherwise, the working version remains unchanged and elf_version returns
EV NONE.

EXAMPLE

NOTES

The following excerpt from an application program protects itself from using an
older library.

if (elf_version(EV_CURRENT) == EV_NONE)
{

/* libra:ry out of date */
/* recover from error */

The working version should be the same for all operations on a particular elf
descriptor. Changing the version between operations on a descriptor will prob­
ably not give the expected results.

SEE ALSO
elf(3E), elf_begin(3E), elf_xlate(3E).

10/89 Page 1

elf_xlate(3E) elf_xlate(3E)

NAME
elf xlate: elf32_xlatetof, elf32.JClatetam - class-dependent data transla­
tion-

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

iinclude <libelf.h>

Elf Data *elf32 xlatetof(Elf Data *dst, const Elf_Data *src,
- unsigned encode) i -

Elf Data *elf32 xlatetam(Elf Data *dst, const Elf_Data *src,
- unsigned encode) i -

DESCRIPTION

10/89

elf32 xlatetam translates various data structures from their 32-bit class file
representations to their memory representations; elf32 _ xlatetof provides the
inverse. This conversion is particularly important for cross development environ­
ments. src is a pointer to the source buffer that holds the original data; dst is a
pointer to a destination buffer that will hold the translated copy. encode gives the
byte encoding in which the file objects are (to be) represented and must have one
of the encoding values defined for the ELF header's e_ident[EI_DATAl entry [see
elf getident(3E)J. If the data can be translated, the functions return dst. Oth­
erwise, they return null because an error occurred, such as incompatible types,
destination buffer overflow, etc.

elf _getdata(3E) describes the Elf_Data descriptor, which the translation rou­
tines use as follows.

d_buf Both the source and destination must have valid buffer pointers.

d_type This member's value specifies the type of the data to which d_buf
points and the type of data to be created in the destination. The
program supplies a d_type value in the source; the library sets
the destination's d type to the same value. These values are
summarized below.-

d size This member holds the total size, in bytes, of the memory occu­
pied by the source data and the size allocated for the destination
data. If the destination buffer is not large enough, the routines do
not change its original contents. The translation routines reset the
destination's d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

d version This member holds version number of the objects (desired) in the
buffer. The source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is,
dst->d_buf may equal src->d_buf. Other cases where the source and destina­
tion buffers overlap give undefined behavior.

Page 1

ELF_T_ADDR
ELF T BYTE
ELF-TOYN

ELF_T_EHDR
ELF T HALF
ELT_T_OFF
ELF T PHDR
ELF T REL
ELF T RELA
ELF_T_SHDR
ELF T SWORD
ELF T SYM
ELF_T_WORD

32-Bit Memory Type

EIf32 Addr
unsigned char
Elf32 Dyn
Elf32-Ehdr
EIf32-Half
Elf32:0ff
EIf32 Phdr
Elf32 ReI
EIf32-ReIa
Elf32:Shdr
EIf32 Sword
Elf32:Sym
Elf32 Word

elf_ xlate (3E)

"Translating" buffers of type ELF_T_BYTE does not change the byte order.

SEE ALSO
elf(3E), elf_fsize(3E), elf_getdata(3E), elf_getident(3E).

Page 2 10/89

nllst{3E) nlist{3E)

NAME
nlist - get entries from name list

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]

tinc1ude <n1ist.h>

int n1ist (const char *fi1ename, struct nlist *n1);

DESCRIPTION
nlist examines the name list in the executable file whose name is pointed to by
filename, and selectively extracts a list of values and puts them in the array of
nlist structures pointed to by nl. The name list nl consists of an array of struc­
tures containing names of variables, types, and values. The list is terminated
with a null name, that is, a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the name is found,
the type, value, storage class, and section number of the name are inserted in the
other fields. The type field may be .set to 0 if the file was not compiled with the
-g option to cc(1). nlist will always return the information for an external sym­
bol of a given name if the name exists in the file. If an external symbol does not
exist, and there is more than one symbol with the specified name in the file (such
as static symbols defined in separate files), the values returned will be for the last
occurrence of that name in the file. If the name is not found, all fields in the
structure except nJlame are set to O.
This function is useful for examining the system name list kept in the file
/ stand/unix. In this way programs can obtain system addresses that are up to
date.

SEE ALSO
a.out(4).

DIAGNOSTICS

10/89

All value entries are set to 0 if the file cannot be read or if it does not contain a
valid name list.

n1ist returns 0 on success, -Ion error.

Page 1

/

basename(3G) basename (3G)

NAME
basename - return the last element of a path name

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

'include <libgen.h>

char *basename (char *path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a path name,
basename returns a pointer to the last element of path. Trailing"/" characters
are deleted.

If path or *path is zero, pointer to a static constant " ." is returned.

EXAMPLES

SEE ALSO
dirname(3G).

Input string
/usr/lib
/usr/
/

Output pointer
lib
usr
/

basename(1) in the User's Reference Manual.

10/89 Page 1

bgets(3G} bgets(3G}

NAME
bgets - read stream up to next delimiter

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J
iinclude <libgen.h>

char *bgets (char *buffer, size t *count, FILE * stream,
const char *breakstring);-

DESCRIPTION
bgets reads characters from stream into buffer until either count is exhausted or
one of the characters in breakstring is encountered in the stream. The read data is
terminated with a null byte ('\0') and a pointer to the trailing null is returned. If
a breakstring character is encountered, the last non-null is the delimiter character
that terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, n\nn);

is identical to

fgets (buffer, sizeof buffer, stream);

There is always enough room reserved in the buffer for the trailing null.

If breakstring is a null pointer, the value of breakstring from the previous call is
used. If breakstring is null at the first call, no characters will be used to delimit
the string.

EXAMPLES
iinclude <libgen.h>

char buffer[8];
/* read in first user name from /etc/passwd */
fp = fopen(n/etc/passwdn,nrn);
bgets(buffer, 8, fp, n:n);

DIAGNOSTICS
NULL is returned on error or end-of-file. Reporting the condition is delayed to the
next call if any characters were read but not yet returned.

SEE ALSO
gets(3S).

10/89 Page 1

bufspllt(3G) bufspllt (3G)

NAME
bufsplit - split buffer into fields

SYNOPSIS
cc [flag ... 1 file ••. -lgen [library ... 1
'include <libgen.h>

size_t bufsplit (char *buf, size_t n, char **a);
DESCRIPTION

bufsplit examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by tabs or
new-lines.

To change the characters used to separate fields, call bufsplit with buf pointing
to the string of characters, and n and a set to zero. For example, to use' :', '.',
and ',' as separators along with tab and new-line:

bufsplit (":., \t\n", 0, (char**) 0 ');

RETURN VALUE
The number of fields assigned in the array a. If buf is zero, the return value is
zero and the array is unchanged. Otherwise the value is at least one~ The
remainder of the elements in the array are assigned the address of the null byte at
the end of the buffer.

EXAMPLES

NOTES

10/89

/*
* set a[O] "'! "This", all] - "is", a[2] - "a",
* a[3] = "test"
*/

bufsplit("This\tis\ta\ttest\n", 4, a);

bufsplit changes the delimiters to null bytes in buf.

Page 1

copyllst (3G) copyllst(3G)

NAME
copylist - copy a file into memory

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

iinclude <libgen.h>

char *copylist (canst char *filenm, off_t *szptr);
DESCRIPTION

copylist copies a list of items from a file into freshly allocated memory, replac­
ing new-lines with null characters. It expects two arguments: a pointer filenm to
the name of the file to be copied, and a pointer szptr to a variable where the size
of the file will be stored.

Upon success, copylist returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc, or opening the file.

EXAMPLES
/* read "file" into buf */
off t size;
char *buf;
buf = copylist("file", &size);
for (i = 0; i < size; i++)

if(buf[i])
putchar(buf[i]);

else
putchar (' \n') ;

SEE ALSO
malloc(3C).

10/89 Page 1

dlrname (3G) dirname (3G)

NAME
dirname - report the parent directory name of a file path name

SYNOPSIS
cc [flag ... J file . .. -lgen [library ... J

finclude <libgen.h>

char *dirname (char *path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a file system
path name, dirname returns a pointer to a static constant string that is the parent
directory of that file. In doing this, it sometimes places a null byte in the path
name after the next to last element, so the content of path must be disposable.
Trailing" I" characters in the path are not counted as part of the path.

If path or *path is zero, a pointer to a static constant " ." is returned.

dirname and basename together yield a complete path name. dirname (path) is
the directory where basename (path) is found.

EXAMPLES
A simple file name and the strings "." and " .. " all have "." as their return
value.

Input string
lusr/lib
lusrl
usr
I

Output pointer
lusr
I

I

The following code reads a path name, changes directory to the appropriate
directory [see chdir(2)J, and opens the file.

char path[lOO], *pathcopy;
int fd;
gets (path);
pathcopy = strdup (path);
chdir (dirname (pathcopy));
fd = open (basename (path), 0_ RDONLY) ;

SEE ALSO
chdir(2), basename(3G).
basename(1) in the User's Reference Manual.

10/89 Page 1

gmatch(3G) gmatch(3G)

NAME
gmatch - shell global pattern matching

SYNOPSIS
co [flag ...] file ... -lgen [library .•. J
tinclude <libgen.h>
int gmatch (canst char .str, canst char .pattern);

DESCRIPTION
gmatch checks whether the null-terminated string sfr matches the null-terminated
pattern string pattern. See the sh(l) section "File Name Generation" for a discus­
sion of pattern matching. gmatch returns non-zero if the pattern matches· the
string, zero if the pattern doesn't. A backslash ('\') is used as an escape character
in pattern strings.

EXAMPLE
char .s;

gmatch (s, ". [a\-]")

gmatch returns non-zero (true) for all strings with 'a' or '-' as their last character.
SEE ALSO

sh(1) in the User's Reference Manual

10/89 Page 1

lsencrypt (3G) lsencrypt (3G)

NAME
isencrypt - determine whether a character buffer is encrypted

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

iinclude <libgen.h>

int is encrypt (const char *fbuf, size_t ninbuf);

DESCRIPTION
isencrypt uses heuristics to determine whether a buffer of characters is
encrypted. It requires two arguments: a pointer to an array of characters and the
number of characters in the buffer.

isencrypt assumes that the file is not encrypted if all the characters in the first
block are ASCII characters. If there are non-ASCII characters in the fil'st ninbuf
characters, isencrypt assumes that the buffer is encrypted if the setlocale
LC _ CTYPE category is set to C or ascii.

If the LC _ CTYPE category is set to a value other than C or ascii, then is encrypt
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf
has at least 64 characters, a chi-square test is used to determine if the bytes in the
buffer have a uniform distribution; and isencrypt assumes the buffer is
encrypted if it does. If the buffer has less than 64 characters, a check is made for
null characters and a terminating new-line to determine whether the buffer is
encrypted.

DIAGNOSTICS
If the buffer is encrypted, 1 is returned; otherwise zero is returned.

SEE ALSO
setlocale(3C).

10/89 Page 1

mkdlrp(3G) mkdirp(3G)

NAME
rnkdiIP, rmdiIP - create, remove directories in a path

SYNOPSIS
cc [flag .•. J file ... -lgen [library ... J
iinclude <libgen.h>

int rnkdiIP (const char *path, 1OOde_t 1OOde);

int rmdiIP (char *d, char *d1);

DESCRIPTION
rnkdiIP creates all the missing directories in the given path with the given mode.
[See chmod(2) for the values of mode.J
rmdiIP removes directories in path d. This removal starts at the end of the path
and moves back toward the root as far as possible. If an error occurs, the
remaining path is stored in dl. rmiiIP returns a 0 only if it is able to remove
every directory in the path.

EXAMPLES
/* create scratch directories */
if (rnkdiIP ("/tnp/sub1/sub2/sub3", 0755) == -1) {

fprintf(stderr, "cannot create directory");
exit(l);

}

chdir("/tnp/sub1/sub2/sub3") ;

/* cleanup */
chdir("/tnp") i
rmdiIP("sub1/sub2/sub3") ;

SEE ALSO
rnkdir(2), rmdir(2).

DIAGNOSTICS

NOTES

10/89

If a needed directory cannot be created, mkdiIP returns -1 and sets errno to one
of the rnkdir error numbers. If all the directories are created, or existed to begin
with, it returns zero.

rnkdiIP uses malloc to allocate temporary space for the string.

rmdiLP returns - 2 if a "." or " .. " is in the path and - 3 if an attempt is made
to remove the current directory. If an error occurs other than one of the above,
-1 is returned.

Page 1

p2open(3G) p2open(3G)

NAME
p2open, p2close - open, close pipes to and from a command

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

int p20pen (const char *cmd, FILE *fp[2]);

int p2close (FILE *fp[2]);

DESCRIPTION
p20pen forks and execs a shell running the command line pointed to by cmd. On
return, fp[O] points to a FILE pointer to write the command's standard input
and fp[l] points to a FILE pointer to read from the command's standard output.
In this way the program has control over the input and output of the command.

The function returns 0 if successful; otherwise it returns -1.

p2close is used to close the file pointers that p20pen opened. It waits for the
process to terminate and returns the process status. It returns 0 if successful; oth­
erwise it returns -1.

EXAMPLES
iinclude <stdio.h>
iinclude <libgen.h>

main (argc, argv)
int argc;
char * *argv;
{

SEE ALSO

FILE *fp[2];
pid t pid;
char buf[16] ;

pid=p2open("/usr/bin/cat", fp);
if (pid == 0) {

}

fprintf(stderr, "p2open failed\n");
exit(l);

write(fileno(fp[O]),"This is a test\n", 16);
if(read(fileno(fp[l]), buf, 16) <=0)

fprintf(stderr, "p2open failed\n");
else

write (1, buf, 16);
(void)p2close(fp);

fclose(3S), popen(3S), setbuf(3S).

DIAGNOSTICS
A common problem is having too few file descriptors. p2close returns -1 if the
two file pointers are not from the same p2open.

10/89 Page 1

p2open(3G) p2open(3G)

NOTES
Buffered writes on fp [0] can make it appear that the command is not listening.
Judiciously placed fflush calls or unbuffering fp[O] can be a big help; see
fclose(3S).

Many commands use buffered output when connected to a pipe. That, too, can
make it appear as if things are not working.

Usage is not the same as for popen, although it is closely related.

Page 2 10/89

pathfind (3G) pathfind (3G)

NAME
pathfind - search for named file in named directories

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

char *pathfind (const char *path, const char *name, const char
*mode) ;

DESCRIPTION
pathfind searches the directories named in path for the file name. The directories
named in path are separated by semicolons. mode is a string of option letters
chosen from the set rwxfbcdpugks:

Letter Meaning
r readable
w writable
x executable
f normal file
b block special
c character special
d directory
p FIFO (pipe)
u set user ID bit
9 set group IDbit
k sticky bit
s size nonzero

Options read, write, and execute are checked relative to the real (not the effective)
user ID and group ID of the current process.

If the file name, with all the characteristics specified by mode, is found in any of
the directories specified by path, then pathfind returns a pointer to a string con­
taining the member of path, followed by a slash character (/), followed by name.

If name begins with a Slash, it is treated as an absolute path name, and path is
ignored.

An empty path member is treated as the current directory. . / is not prepended
at the occurrence of the first match; rather, the unadorned name is returned.

EXAMPLES
To find the Is command using the PATH environment variable:

pathfind (getenv ("PATH"), "Is", "rx")

SEE ALSO
access(2), mknod(2), stat(2), getenv(3C).
sh(1), test(1) in the User's Reference Manual.

DIAGNOSTICS
If no match is found, pathname returns a null pointer, «char *) 0).

10/89 Page 1

pathfind (3G) pathfind (3G)

NOTES

Page 2

The string pointed to by the retUrned pointer is stored in a static area that is
reused on subsequent calls to pathfind

10/89

regcmp(3G) regcmp(3G)

NAME
regcnp, regex - compile and execute regular expression

SYNOPSIS
tinclude <libgen.h>

cc [flag .. ·]file ... -lgen [library ... J

char *regcnp (const char *stringl [, char *string2, ...],
(char *)0);

char *regex (const char *re, const char *subject
[, char *retO, ...]);

extern char *_locl;

DESCRIPTION

10/89

regcnp compiles a regular expression (consisting of the concatenated arguments)
and returns a pointer to the compiled form. malloc(3C) is used to create space
for the compiled form. It is the user's responsibility to free unneeded space so
allocated. A NULL return from regcnp indicates an incorrect atgument.
regcnp(1) has been written to generally preclude the need for this routine at exe­
cution time.

regex executes a compiled pattern against the subject string. Additional argu­
ments are passed to receive values back. regex returns NULL on failure or a
pointer to the next unmatched character on success. A global character pointer
_locl points to Where the match began. regc:np and regex were mostly bor­
rowed from the editor, ed(1); however, the syntax and. semantics have been
changed slightly. The following are the valid symbols and associated meanings.

[] * . A

$

+

These symbols retain their meaning in ed(1).

Matches the end of the string; \n matches a newline.

Within brackets the minus means through. For example, [a-z] is
equivalent to [abed. . . xyz]. The - can appear as itself only if used
as the first or last character. For example, the character class expres­
sion [] -] matches the characters] and-.

A regular expression followed by + means one or more times. For
example, [0-9] + is equivalent to [0-9] [0-9] *.

{m} {m,} {m,u}

(•••) $n

Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. The value m is the
minimum number and u is a number, less than 256, which is the max­
imum. If ortly m is present (Le., {m}), it indicates the exact number
of times the regular expression is to be applied. the value {m,} is
analogous to {m,infinity}. The plus (+) and star (*) operations are
equivalent to {l,} and {O,} respectively.

The value of the enclosed regular expression is to be returned. The
value will be stored in the (n+ l)th argument following the subject
argument. At most, ten enclosed regular expressions are allowed.
regex makes its assignments unconditionally.

Page 1

regcmp{3G) regcmp{3G)

(...) Parentheses are used for grouping. An operator, e.g., *, +, { }, can
work on a single character or a regular expression enclosed in
parentheses. For example, (a* (cb+) *) $0.

By necessity, all the .above defined symbols are special. They must, therefore, be
escaped with a \ (backslash) to be used as themselves.

EXAMPLES
The following example matches a leading newline in the subject string pointed at
by cursor.

char *cursor, * newcursor , *ptr;

newcursor = regex«ptr = regc:np(""\n", (char *)0», cursor);
free (ptr) ;

The following example matches through the string Testing3 and returns the
address of the character after the last matched character (the "4"). The string
Testing3 is copied to the character array retO.

char retO[9];
char *newcursor, *name;

name = regc:np(" ([A-Za-z] [A-za-zO-9] {O, 7})$0", (char *)0);
newcursor = regex(name, "0 12Testing345 " , retO);

The following example applies a precompiled regular expression in file. i [see
regCllp(1) 1 against string.

tinclucie "file.i"
char *string, *newcursor;

newcursor = regex(name, string);

SEE ALSO

NOTES

Page 2

regCllp(1), malloc(3C).
ed(1) in the User's Reference Manual.

The user program may run out of memory if regcnp is called iteratively without
freeing the vectors no longer required.

10/89

regexpr(3G) regexpr (3G)

NAME
regexpr: conpile, step, advance - regular expression compile and match rou­
tines

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J
iinclude <regexpr.h>

char *conpile (const char *instring, char *expbuf, char *endbuf);

int step (const char * string, char *expbuf);

int advance (const char * string, char *expbuf);

extern char *locl, *l0c2, *locs;

extern int nbra, regerrno, reg-length;

extern char *braslist[], *braelist[];

DESCRIPTION

10/89

These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions compiled are in the form used
byed.

The syntax of the conpile routine is as follows:

conpile (instring, expbuf, endbuf)

The parameter instring is a null-terminated string representing the regular expres­
sion.

The parameter expbuf points to the place where the compiled regular expression
is to be placed. If expbuf is NULL, conpile uses malloc to allocate the space for
the compiled regular expression. If an error oeeurs, this space is freed. It is the
user's responsibility to free unneeded space after the compiled regular expression
15 no longer needed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. This argument is ignored if expbuf is NULL. If
the compiled expression cannot fit in (endbuf-expbuf> bytes, conpile returns
NULL and regerrno (see below) is set to 50.

H conpile succeeds, it returns a non-NULL pointer whose value depends on
expbuf. If expbuf is non-NULL, carrpile returns a pointer to the byte after the last
byte in the compiled regular expression. The length of the compiled regular
expression is stored in reglength. Otherwise, conpile returns a pointer to the
space allocated by malloc.

If an error is detected when compiling the regular expression, a NULL pointer is
returned from conpile and regerrno is set to one of the non-zero error numbers
indicated below:

Page 1

regexpr (3G) regexpr{3G)

Page 2

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\ (-\) imbalance.
Too many \(.
More than 2 numbers given in \{ -\}.
} expected after \.
First number exceeds second in \{ -\}.
[] imbalance.
Regular expression overflow.

The call to step is as follows:

step (string, eJ!Pbuf)

The first parameter to step is a pointer to a string of characters to be checked for
a match. This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the
function eonpile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two
external character pointers are set as a side effect to the call to step. The variable
set in step is loel. loc! is a pointer to the first character that matched the regu­
lar expression. The variable loe2 points to the character after the last character
that matches the regular expression. Thus if the regular expression matches the
entire line, loe! points to the first character of string and 10c2 points to the null
at the end of string.

The purpose of step is to step through the string argument until a match is
found or until the end of string is reached. If the regular expression begins with
", step tries to match the regular expression at the beginning of the string only.

The function advance has the same arguments and side effects as step, but it
always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, loes
should be set equal to loe2, and step should be called with string equal to 10c2.
loes is used by commands like ed and sed so that global substitutions like
s/y*119 do not loop forever, and is NULL by default.

The external variable nbra is used to determine the number of subexpressions in
the compiled regular expression. bras list and braelist are arrays of character
pointers that point to the start and end of the nbra subexpressions in the
matched string. For example, after calling step or advance with string sabedefg
and regular expression \ (abcdef\), bras list [0] will point at a and brael­
ist [0] will point at g. These arrays are used by commands like ed and sed for
substitute replacement patterns that contain the \n notation for subexpressions.

10/89

regexpr(3G} regexpr (3G)

Note that it isn't necessary to use the external variables reqerrno, nbra, locl,
loc2 locs, brae list, and braslist if one is only checking whether or not a
string matches a regular expression.

EXAMPLES
The following is similar to the regular expression code from qrep:

tinclude <regexpr.h>

if (compile (*argv, (char *)0, (char *)0)
regerr(regerrno)i

if (step (linebuf, expbuf»
succeed 0 i

SEE ALSO
regexp(S).
ed(1), grep(1), sed(1) in the User's Reference Manual.

10/89

(char *)0)

Page 3

str(3G) str(3G)

NAME
str: strfind, strrspn, strtrns - string manipulations

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

int strfind (const char *asl, const char *as2);

char *strrspn (const char *string, const char *tc);

char * strtrns (const char *str, canst char *old, const char *new,
char *result);

DESCRIPTION
strfind returns the offset of the second string, as2, if it is a substring of string
asl.
strrspn returns a pointer to the first character in the string to be trimmed (all
characters from the first character to the end of string are in tc).

strtrns transforms str and copies it into result. Any character that appears in
old is replaced with the character in the same position in new. The new result is
returned.

EXAMPLES
/* find pointer to substring "hello" in asl */
i = strfind(asl, "hello");

/* trim junk from end of string */
s2 = strrspn(sl, "*71$%");
*s2 = '\0';

/* transfor.m lower case to upper case */
al [] = "abcdefghijklmnopqrstuvwxyz";
a2 [] = "ABCOEFGHIJKLMNOPQRSTUVWXYZ";
s2 = strtrns(sl, al, a2, s2);

SEE ALSO
string(3C).

DIAGNOSTICS
If the second string is not a substring of the first string strfind returns -1.

10/89 Page 1

strccpy (3G) strccpy (3G)

NAME
strccpy: streadd, strcadd, strecpy - copy strings, compressing or expanding
escape codes

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

char *strccpy (char * output , const char *input) ;

char *strcadd (char *output, const char *input) ;

char *strecpy (char *output, const char *input, const char
*exceptions);

char *streadd (char *output, const char *input, const char
*exceptions);

DESCRIPTION
strccpy copies the input string, up to a null byte, to the output string, compress­
ing the C-Ianguage escape sequences (for example, \n, \001) to the equivalent
character. A null byte is appended to the output. The output argument must
point to a space big enough to accommodate the result. If it is as big as the space
pointed to by input it is guaranteed to be big enough. strccpy returns the output
argument.

strcadd is identical to strccpy, except that it returns the pointer to the null byte
that terminates the output.

strecpy copies the input string, up to a null byte, to the output string, expanding
non-graphic characters to their equivalent C-Ianguage escape sequences (for
example, \n, \001). The output argument must point to a space big enough to
accommodate the result; four times the space pointed to by input is guaranteed to
be big enough (each character could become \ and 3 digits). Characters in the
exceptions string are not expanded. The exceptions argument may be zero, mean­
ing all non-graphic characters are expanded. strecpy returns the output argu­
ment

streadd is identical to strecpy, except that it returns the pointer to the null byte
that terminates the output.

EXAMPLES
/* expand all but newline and tab */
strecpy(output, input, n\n\t");

/* concatenate and compress several strings */
cp strcadd(output, input1);
cp strcadd(cp, input2);
cp strcadd(cp, input3);

SEE ALSO
string(3C), str(3G).

10/89 Page 1

Intro(3M) intro(3M)

NAME
intro - introduction to math libraries

SYNOPSIS
cc [flag ... J file ... -1m [library ... J
cc -<> -Ksd [flag ... J file ... -J sfm [library ... J

tinclude <math.h>

DESCRIPTION
This section describes the functions in the math libraries, libm and libsfm.
Declarations for these functions may be obtained from the finclude file math.h.
Several generally useful mathematical constants are also defined there [see
intro(3) and math(S)J.

The math libraries are not automatically loaded by the C compilation system; use
the -lor -J options to cc to access the libraries as follows:

-1m Search the regular math library, libID.

-J sfm Do in-line expansion of functions from the fast single-
precision assembly source math library, libsfm. Specify-<>
-Ksd to optimize for speed.

libm Contains the full set of double-precision routines plus some single­
precision routines (designated by the suffix f) that give better perfor­
mance with less precision. Selected routines are hand-optimized for per­
formance. The optimized routines include sin, cos, tan, atan, atan2,
exp, log, loglO, pow, and sqrt and their single-precision equivalents.

libsfm Contains the functions sinf, cosf, tanf, asinf, acosf, atanf, expf,
logf, loglOf, powf, and sqrtf. The source library routines are in-line
expanded by the optimizer to provide faster execution by reducing the
overhead of argument passing, function calling and returning, and return
value passing. The source library is designed for applications that desire
an increase in speed at the potential cost of size.

libsfm should be used only when necessary and with extreme caution.
It is a special purpose library that does not do error checking or domain
reduction. In other words, these functions never call matherr, and argu­
ments aren't reduced to be within a finite range.

Inputs to sinf and cosf must be in the range

-~:5x:5~
2 2

Inputs to tanf must be in the range
1t 1t

-2'<x<2'

Inputs to sqrtf, logf, and loglOf must be greater than O.

DEFINITIONS
See intro(3) for C language definitions.

10/89 Page 1

intra (3M) Intra (3M)

FILES
LIBDIR usually /usr/ees/lib
LIBDIR/libm.a
LIBDIR/libsfm. sa

SEE ALSO
ee(1), intro(2), intro(3), math(S).
The "Floating Point Operations" chapter in the Programmer's Guide: ANSI C and
Programming Support Tools.

DIAGNOSTICS

Page 2

Error handling varies according to compilation mode. Under the -Xt (default)
option to ee, these functions return the conventional values 0, ±HUGE, or NaN
when the function is undefined for the given arguments or when the value is not
representable. In the -Xa and -Xc compilation modes, ±HUGE_VAL is returned
instead of ±HUGE. (HUGE_VAL and HUGE are defined in math.h to be infinity and
the largest-magnitude single-precision number, respectively.) In every case, the
external variable errno [see intro(2)] is set to the value EDOM or ERANGE,
although the value may vary for a given error depending on compilation mode.
See the table under matherr(3M) below.

10/89

bessel (3M) bessel (3M)

NAME
bessel: jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

#include <math.h>

double jO (double x);

double jl (double x);

double jn (int n, double x) ;

double yO (double x);

double yl (double x);

double yn (int n, double x) ;

DESCRIPTION
jO and jl return Bessel functions of x of the first kind of orders 0 and 1, respec­
tively. jn returns the Bessel function of x of the first kind of order n.

yO and yl return Bessel functions of x of the second kind of orders 0 and 1,
respectively. yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

SEE ALSO
matherr(3M).

DIAGNOSTICS

10189

Non-positive arguments cause yO, yl, and yn to return the value -HUGE and to set
errno to EOOM. In addition, a message indicating DCMAIN error is printed on the
standard error output.

Arguments too large in magnitude cause jO, jl, yO, and yl to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the
standard error output.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function rnatherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed.

Page 1

erf(3M) erf(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

iinclude <math.h>

double erf (double x);

double erfc (double x);

DESCRIPTION
erf returns the error function of x, defined as

2 1 e-t2 dt rno
erfc, which returns 1.0 - erf (x), is provided because of the extreme loss of rela­
tive accuracy if erf (x) is called for large x and the result subtracted from 1.0
(e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

10/89 Page 1

exp(3M) exp(3M)

NAME
exp, expf, cbrt, log, logf, 10g10, log10f, pow, powf, sqrt, sqrtf - exponen­
tial, logarithm, power, square root functions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J
cc --0 -Ksd [flag ... J file ... -J sfm [library ... J
'include <math.h>

double exp (double x);

float expf (float x);

double cbrt (double x);

double log (double x);

float logf (float x);

double 10g10 (double x);

float 10g10f (float x);

double pow (double x, double y);

float powf (float x, float y);

double sqrt (double x);

float sqrtf (float x);

DESCRIPTION
exp and expf return ex.
cbrt returns the cube root of x.

log and logf return the natural logarithm of x. The value of x must be positive.

10g10 and 10g10f return the base ten logarithm ofx. The value of x must be
positive.

pow and powf return xY. If x is 0, y must be positive. If x is negative, y must be
an integer.

sqrt and sqrtf return the non-negative square root of x. The value of x may
not be negative.

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS

10/89

exp and expf return HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and set errno to ERANGE.

log, logf, 10g10, and 10g10f return -HUGE and set errno to EDOM when x is
non-positive. A message indicating DOMAIN error is printed on standard error.

pow and powf return 0 and set errno to EDOM when x is 0 and y is non-positive,
or when x is negative and y is not an integer. In these cases, a message indicat­
ing DOMAIN error is printed on standard error. When the correct value for pow or
powf would overflow or underflow, these functions return ±HUGE or 0, respec­
tively, and set errno to ERANGE.

Page 1

exp(3M) exp(3M)

Page 2

sqrt and sqrtf return 0 and set errno to EDOM when x is negative. A message
indicating DOMAIN error is printed on standard error.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed. In these compilation modes, pow and powf return I, with no error,
when both x and yare 0; when x is 0 and y is negative, they return -HUGE_VAL
and set errno to EDOM. Under -Xc, log and logf return -HUGE VAL and set
errno to ERANGE when x is O. Under -Xc, sqrt and sqrtf return NaN when x is
negative.

10/89

floor(3M) floor(3M)

NAME
floor, floorf, ceil, ceilf, copysign, fm:xl., flOOdf, fabs, fabsf, rint,
remainder - floor, ceiling, remainder, absolute value functions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

iinclude <math.h>

double floor (double x);

float floorf (float x);

double ceil (double x);

float ceilf (float x);

double copysign (double x, double y);

double flOOd (double x, double y);

float flOOdf (float x, float y);

double fabs (double x);

float fabsf (float x);

double rint (double x);

double remainder (double x, double y);

DESCRIPTION
floor and floorf return the largest integer not greater than x. ceil and ceilf
return the smallest integer not less than x.

copysign returns x but with the sign of y.

flOOd and flOOdf return the floating point remainder of the division of x by y.
More precisely, they return the number f with the same sign as x, such that x = iy
+ f for some integer i, and I f I < I y I .
fabs and fabsf return the absolute value of x, I x I .
rint returns the nearest integer value to its floating point argument x as a
double-precision floating point number. The returned villue is rounded according
to the currently set machine rounding mode. If round-to-nearest (the default
mode) is set and the difference between the function argument and the rounded
result is exactly 0.5, then the result will be rounded to the nearest even integer.

remainder returns the floating point remainder of the division of x by y. More
precisely, it returns the value r = x - yn, where n is the integer nearest the exact
value x/yo Whenever I n - x/y I = liz, then n is even.

SEE ALSO
abs(3C), rnatherr(3M).

DIAGNOSTICS

10/89

flOOd and fmodf return x when y is 0 and set errno to EDOM. remainder returns
NaN when y is a and sets errno to EDOM. In both cases, except in compilation
modes -Xa or -Xc, a message indicating DOMAIN error is printed on standard
error. Except under -Xc, these error-handling procedures may be changed with
the function matherr.

Page 1

gamma (3M) gamma (3M)

NAME
gamna, 19amna - log gamma function

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

tinclude <math.h>
double gamna (double x);

double 19arrma (double x);

extern int signgam;

DESCRIPTION
gamna and 19amna return

In(I r(x) I)
where r(x) is defined as

j e-'t,,-ldt
o

The sign of r(x) is returned in the external integer signgam. The argument x
may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if «y = gamna (x» > UUWCDOUBLE)

error ();
y = signgam ... exp (y) ;

where LN_MAXDOUBLE is the least value that causes exp to return a range error,
and is defined in the values.h header file.

SEE ALSO
exp(3M), matherr(3M), values(5).

DIAGNOSTICS

10/89

For non-positive integer arguments HUGE is returned and errno is set to EDOM. A
message indicating SING error is printed on the standard error output.

If the correct value would overflow, garrma and 19amna return HUGE and set
errno to ERANGE.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed.

Page 1

hypot(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

tinclude <mBth.h>

double hypot (double x, double y);

DESCRIPTION
hypot returns

sqrt(x * x + y * y)
taking precautions against unwarranted overflows.

SEE ALSO
matherr(3M).

DIAGNOSTICS

hypot(3M)

When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

10/89

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE.

Page 1

matherr (3M) matherr (3M)

NAME
matherr - error-handling function

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

tinclude <math.h>

int matherr (struct exception *x);

DESCRIPTION

10/89

matherr is invoked by functions in the math libraries when errors are detected.
Note that matherr is not invoked when the -Xc compilation option is used.
Users may define their own procedures for handling errors, by including a func­
tion named matherr in their programs. matherr must be of the form described
above. When an error occurs, a pointer to the exception structure x will be
passed to the user-supplied matherr function. This structure, which is defined in
the math. h header file, is as follows:

struct exception
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables argl and arg2 are the arguments with which
the function was invoked. ret val is set to the default value that will be returned
by the function unless the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message will be printed,
and errno will not be set.

H matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, ermo is set to
EDOM or ERANGE and the program continues.

Page 1

matherr {3M} matherr {3M}

Default Error Handling Procedures
Types of Errors

type DOMAIN SING OVERFLOW UNDERFWW TLOSS PLOSS
errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - M,O -
yO, yl, yn (arg S 0) M, -H - - - - -

EXP, EXPF: - - H 0 - -

LOG, LOGIO:

LOGF, LOGIOF:

(arg < 0) M,-H - - - - -
(arg = 0) M,-H - - - - -

POW,POWF: - - ±H 0 - -
neg •• non-in! M,O - - - - -

0 •• non-pos M, 0 - - - - -

SQRT, SQRTF: M,O - - - - -

FMOD, FMODF:

(arg2 = 0) M,X - - - - -

REMAINDER:

(arg2 = 0) M,N - - - - -
CAMMA, LCAMMA: - M,H H - - -

HYPOT: - - H - - -

SINH, SINHF: - - ±H - - -
COSH, COSHF: - - H - - -
ASIN, ACOS, ATAN2:

ASINF, ACOSF, ATAN2F: M,O - - - - -

ACOSH: M,N - - - - -

ATANH:

(I argl > 1) M,N - - - - -
(I argl = 1) - M,N - - - -

Page 2 10/89

matherr (3M) matherr (3M)

M
H
-H
±H

o
X
N

Abbreviations
Message is printed (not with the -Xa or -Xc options).
HUGE is returned (HUGE_VAL with the -Xa or -Xc options).
-HUGE is returned (-HUGE_VAL with the -Xa or -Xc options).
HUGE or -HUGE is returned.
(HUGE_VAL or -HUGE_VAL with the -Xa or -Xc options).
o is returned.
argl is returned.
NaN is returned.

EXAMPLE

NOTES

10/89

.include <math.h>

.include <stdio.h>

.include <stdlib.h>

.include <string.h>

int
matherr(register struct exception *x);
{

switch (x->type)
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 */
if (!strCllp(x->name, "sqrt"» {

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno */

case SING:
/* all other domain or sing errors, print message */
/* and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort ();

case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g)=%g\n",

x->name, x->arg1, x->retval);
return (1); /* take no other action */

return (0); /* all other errors, execute default procedure */

Error handling in -xa and -Xt modes [see cc(1)] is described more completely on
individual math library pages.

Page 3

sinh (3M) sinh (3M)

NAME
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh - hyperbolic func­
tions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J
iinclude <math.h>

double sinh (double x);

float sinhf (float x);

double cosh (double x);

float coshf (float x);

double tanh (double x);

float tanhf (float x);

double asinh (double x);

double acosh (double x);

double atanh (double x);

DESCRIPTION
sinh, cosh, and tanh and the single-precision versions sinhf, coshf, and tanhf
return, respectively, the hyberbolic sine, cosine, and tangent of their argument.

asinh, acosh, and atanh return, respectively, the inverse hyperolic sine, cosine,
and tangent of their argument.

SEE ALSO
matherr(3M).

DIAGNOSTICS

10/89

sinh, sinhf, cosh, and coshf return HUGE (and sinh and sinhf may return
-HUGE for negative x) when the correct value would overflow and set errno to
ERANGE.

acosh returns NaN and sets errno to EDOM when the argument x is less than 1. A
message indicating DOMAIN error is printed on the standard error output.

atanh returns NaN and sets errno to EDOM if I x I ~ 1. If I x I = 1, a message
indicating SING error is printed on the standard error output; if I x I > 1 the mes­
sage will indicate DOMAIN error.

Except when the -:Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed.

Page 1

trig (3M) trig (3M)

NAME
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf,
atan2, atan2f - trigonometric functions

SYNOPSIS
cc [flag ...) file ..• -1m [library ...)

cc -0 -Ksd [flag ...) file ... -J sfro [library ...)

iinclude <math.h>

double sin (double x);

float sinf (float x);

double cos (double x);

float cosf (float x);

double tan (double x);

float tanf (float x);

double asin (dOuble x);

float asinf (float x);

double acos (double x);

float acosf (float x);

double atan (double x);

float atanf (float x);

double atan2 (double y, double x);

float atan2f (float y, float x);

DESCRIPTION
sin, cos, and tan and the single-precision versions sinf, cosf, and tanf return,
respectively, the sine, cosine, and tangent of their argument, x, measured in radi­
ans.

asin and asinf return the arcsine of x, in the range [-x/2,+x/2).

acos and acosf return the arccosine of x, in the range [O,+x).

atan and atanf return the arctangent of x, in the range (-x/2,+1r./2).

at;,an2 and atan2f return the arctangent of y / x, in the range (-x,+x), using the
signs of both arguJllents to determine the quadrant of the return value.

SEE ALSO
matherr(3M).

DIAGNOSTICS

10/89

If the magnitude of the argument of asin, asinf, acos, or acosf is greater than
1, or if both arguments of atan2 or atan2f are 0, 0 is returned and errno is set
to Eoat In addition, a message indicating DOMAIN error is printed on the stan­
dard error output.

Page 1

trig (3M) trig (3M)

Page 2

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function rnatherr. When the -Xa or -Xc compilation
options are used, no error messages are printed.

10/89

assert (3X) assert (3X)

NAME
assert - verify program assertion

SYNOPSIS
'include <assert.h>

void assert (int expression);

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed,
if expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement. The
latter are respectively the values of the preprocessor macros _FILE_ and

LINE . - -
Compiling with the preprocessor option -DNDEBOG [see cc(1)], or with the prepro­
cessor control statement ide fine NDEBOG ahead of the Unclude <assert.h>
statement, will stop assertions from being compiled into the program.

SEE ALSO

NOTES

10/89

cc(1), abort(3C).

Since assert is implemented as a macro, the expression may not contain any
string literals.

Page 1

crypt (3X) crypt (3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag ... J file ... -lcrypt [library ... J

iinclude <crypt.h>

char *crypt (canst char *key, canst char *salt);

void setkey (canst char *key);

void encrypt (char *block, int flag);

char *des_crypt (canst char *key, canst char *salt);

void des_setkey (canst char *key);

void des_encrypt (char *block, int flag);

int run_setkey (int *p, canst char *key);

int run crypt (long offset, char *buffer, unsigned int count,
int-*p) ;

int crypt_close (int *p);

DESCRIPTION

10/89

des_crypt is the password encryption function. It is based on a one-way hash­
ing encryption algorithm with variations intended (among other things) to frus­
trate use of hardware implementations of a key search.

key is a user's typed password. salt is a two-character string chosen from the set
[a-zA-ZO-9./J; this string is used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly
a constant string. The returned value points to the encrypted password. The first
two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of des_setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored,
thereby creating a 56-bit key that is set into the machine. This key is the key that
will be used with the hashing algorithm to encrypt the string block with the func­
tion des_encrypt.

The argument to the des_encrypt entry is a character array of length 64 contain­
ing only the characters with numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits of the argument after
having been subjected to the hashing aigorithm using the key set by des_setkey.
If flag is zero, the argument is encrypted; if non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt. The
international version is part of the C Development Set, and the domestic version
is part of the Security Administration Utilities. If decryption is attempted with
the international version of des_encrypt, an error message is printed.

Page 1

crypt (3X) crypt (3X)

crypt, setkey, and encrypt are front-end routines that invoke des_crypt,
des _ setkey, and des _encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications
that need cryptographic capabilities [such as. ed(l) and vi(l)] that must be com­
patible with the crypt(1) user-level utility. run_setkey establishes a two-way
pipe connection with the crypt utility, using key as the password argument.
run_crypt takes a block of characters and transforms the cleartext or ciphertext
into their ciphertext or cleartext using the crypt utility. offset is the relative byte
position from the beginning of the file that the block of text provided in block is
coming from. count is the number of characters in block, and connection is an
array containing indices to a table of input and output file streams. When encryp­
tion is finished, crypt close is used to terminate the connection with the crypt
utility. -

run_setkey returns -1 if a connection with the crypt utility cannot be esta­
blished. This result will occur in international versions of the UNIX system in
which the crypt utility is not available. If a null key is passed to run_setkey, 0
is returned. Otherwise, 1 is returned. run crypt returns -1 if it cannot write
output or read input from the pipe attached to crypt. Otherwise it returns O.

The program must be linked with the object file access routine library
libcrypt . a.

SEE ALSO
getpass(3C), passwd(4).
crypt(U- login(1), passwd(l) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

In the international version of crypt(3X), a flag argument of 1 to encrypt or
des_encrypt is not accepted, and errno is set to ENOSYS to indicate that the
functionality is not available.

The return value in crypt points to static data that are overwritten by each call.

10/89

dlclose (3X) dlclose (3X)

NAME
dlclose - close a shared object

SYNOPSIS
cc [flag ...] file ... -ldl [library ...]

'include <dlfcn.h>
int dlclose(void *handle):

DESCRIPTION
dlclose disassociates a shared object previously opened by dlopen from the
current process. Once an object has been closed using dlclose, its symbols are
no longer available to dlsym. All objects loaded automatically as a result of
invoking dlopen on the referenced object [see dlopen(3X)] are also dosed. han­
dle is the value returned by a preVious invocation of dlopen.

SEE ALSO
dlerror(3X), dlopen(3X), dlsym(3X).

DIAGNOSTICS

NOTES

10/89

If the referenced object was successfully dosed, dlclose returns O. If the object
could not be closed, or if handle does not refer to an opeh (}bject, dlclose returns
a non-O value. More detailed diagnostic information will be available through
dlerror.

A successful invocation of dlclose does not guarantee that the objects associated
with handle will actually be removed from the address space of the process.
Objects loaded by one invocation of dlopen may also be loaded by another invo­
cation of dlopen. The same object may also be opened multiple times. An object
will not be removed from the address space until all references to that object
through an explicit dlopen invocation have been dosed and all other objects
implicitly referencing that object have also been closed.

Once an object has been dosed by dlclose, referencing symbols contained in that
object can cause undefined behavior.

Page 1

dlerror (3X) dlerror (3X)

NAME
dlerror - get diagnostic information

SYNOPSIS
cc [flag ... J file ... -ldl [library ... J

finclude <dlfcn.h>

char *dlerror(void);

DESCRIPTION
dlerror returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror, dler­
ror returns NULL. Thus, invoking dlerror a second time, immediately following
a prior invocation, will result in NULL being returned.

SEE ALSO

NOTES

10/89

dlerror(3X), dlopen(3X), dlsym(3X).

The messages returned by dlerror may reside in a static buffer that is overwrit­
ten on each call to dlerror. Application code should not write to this buffer.
Programs wishing to preserve an error message should make their own copies of
that message.

Page 1

dlopen(3X) dlopen(3X)

NAME
d10pen - open a shared object

SYNOPSIS
cc [flag ... J file ... -ld1 [library ... J

tinc1ude <dlfcn.h>

void *d1open (char *pathname, int mode);

DESCRIPTION
d10pen is one of a family of routines that give the user direct access to .the
dynamic linking facilities. (See "C Compilation System" in the Programmer's
Guide: ANSIC and Programming Support Tools). These routines are available in a
library which is loaded if the option -ld1 is used with cc or 1d.

d10pen makes a shared object available to a running process. d10pen returns to
the process a handle which the process may use on subsequent calls to d1sym and
d1c1ose. This value should not be interpreted in any way by the process. path­
name is the path name of the object to be opened; it may be an absolute path or
relative to the current directory. If the value of pathname is 0, d10pen will make
the symbols contained in the original a. out, and all of. the objects that were
loaded at program startup with the a. out, available through d1sym.

When a shared object is brought into the address space of a process, it may con­
tain references to .symbols whose addresses are not known until the object is
loaded. These references must be relocated before the symbols can be accessed.
The mode parameter governs when these relocations take place and may have the
following values:

RTLD LAZY
- Under this mode, only references to data symbols are relocated when the

object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode should result in better
performance, since a process may not reference all of the functions in any
given shared object.

RTLD NOW
- Under this mode, all necessary relocations are performed when the object

is first loaded. This may result in some wasted effort, if relocations are
performed for functions that are never referenced, but is useful for appli­
cations that need to know as soon as an object is loaded that all symbols
referenced during execution will be available.

SEE ALSO
cc(1), 1d(1), sh(1J, exec(2), dlclose(3X), dlerror(3X), dlsyn(3X).
The "C Compilation System" chapter in the Programmer's Guide: ANSI C and Pro­
gramming Support Tools.

DIAGNOSTICS

10/89

If pathname cannot be found, cannot be opened for reading, is not a shared object,
or if an error occurs during the process of loading patliname or relocating its sym­
bolic references, dlopen will return NULL. More detailed diagnostic information
will be available through dlerror.

Page 1

dlopen(3X) dlopen(3X)

NOTES

Page 2

If other shared objects were link edited with pathname when pathname was built,
those objects will automatically be loaded by dlopen. The directory search path
that will be used to find both pathname and the other needed objects may be
specified by setting the environment variable LD_LIBRARY_PATH. This environ­
ment variable should contain a colon-separated list of directories, in the same for­
mat as the PATH variable [see sh(1)]. LD_LIBRARY_PATH will be ignored if the
process is running setuid or setgid [see exec(2)] or if the name specified is not
a simple file name (i.e. contains a / character). Objects whose names resolve to
the same absolute or relative path name may be opened any number of times
using dlopen, however, the object referenced will only be loaded once into the
address space of the current process. The same object referenced by two different
path names, however, may be loaded multiple times. For example, given the
object /usr/home/me/Il\Ylibs/Il\Ylib. so, and assuming the current working
directory is /usr/home/me/workdir,

void *handlel;
void *handle2;

handlel
handle2

dlopen (" .. /Il\Ylibs/Il\Ylib. so", RTLD LAZY);
dlopen (" /usr /home/me/Il\Ylibs/Il\Ylib -:-so", RTLD _LAZY) ;

will result in Il\Ylibs. so being loaded twice for the current process. On the other
hand, given the same object and current working directory, if
LD_LIBRARY_PATH=/usr/home/me/Il\Ylibs, then

void *handlel;
void *handle2;

handlel
handle2

dlopen ("Il\Ylib. so" , RTLD LAZY);
dlopen (" /usr/home/me/Il\Ylibs/Il\Ylib. so", RTLD _LAZY) ;

will result in Il\Ylibs. so being loaded only once.

Objects loaded by a single invocation of dlopen may import symbols from one
another or from any object loaded automatically during program startup, but
objects loaded by one dlopen invocation may not directly reference symbols from
objects loaded by a different dlopen invocation. Those symbols may, however,
be referenced indirectly using dlsym.

Users who wish to gain access to the symbol table of the a. out itself using
dlsym(O, mode) should be aware that some symbols defined in the a.out may
not be available to the dynamic linker. The symbol table created by Id for use by
the dynamic linker might contain only a subset of the symbols defined in the
a . out: specifically those referenced by the shared objects with which the a. out
is linked.

10/89

dlsym(3X) dlsym(3X}

NAME
dlsym - get the address of a symbol in shared object

SYNOPSIS
cc [flag ...) file ... -ldl !library ...)

Unclude <dlfcn. h>

void *dlsym(void *handle, char *name);

DESCRIPTION
dlsym allows a process to obtain the address of a symbol defined within a shared
object previously opened by dlopen. handle is a value returned by a call to dlo­
pen; the corresponding shared object must not have been closed using dlclose.
name is the symbol's name as a character string. dlsym will search for the named
symbol in all shared objects loaded automatically as a result of loading the object
referenced by handle [see dlopen(3X»).

EXAMPLES
The following example shows how one can use dlopen and dlsym to access
either function or data objects. For simplicity, error checking has been omitted.

void *handle;
int i, *iptr;
int (*fptr) (int);

/* open the needed object */
handle = dlopen("/usr/mydir/libx.so", RTLD_LAZY);

/* find address of function and data objects */
fptr = (int (*) (int» dlsym(handle, "some_function");

iptr = (int *) dlsym(handle, "int_object");

/* invoke function, passing value of integer as a parameter */

i = (*fptr) (*iptr);

SEE ALSO
dlerror(3X), dlopen(3X), dlsy:m(3X).

DIAGNOSTICS

10/89

If handle does not refer to a valid object opened by dlopen, or if the named sym­
bol cannot be found within any of the objects associated with handle, dlsym will
return NULL. More detailed diagnostic information win be available through
dlerror.

Page 1

IIbwlndows(3X} Iibwlndows(3X}

NAME
libwindows - windowing terminal function library

SYNOPSIS
cc [flag ...] file ..• -lwindows [library ...]

int openagent (void);

int New (int cntlfd, int origin x, int originJ,
int corner_x, int cornerJ); -

int Newlayer (int cntlfd, int origin_x, int originJ,
int corner_x, int corner J) ;

int openchan (int chan);

int Runlayer (int chan, char *ccmnand);

int Current (int cntlfd, int chan);

int Delete (int cntlfd, int chan);

int Top (int cntlfd, int chan);

int Bottom (int cntlfd, int chan);

int M:>ve (int cntlfd, int chan, int origin_x, int originy);

int Reshape (int cntlfd, int chan, int origin_x, int oriqinJ,
int corner_x, int cornerJ) i

int Exit (int cntlfd);

DESCRIPTION

10/89

This library of routines enables a program running on a host UNIX system to per­
form windowing terminal functions [see layers(l)].

The openagent routine opens the control channel of the xt(7) channel group to
which the calling process belongs. Upon successful completion, openagent
returns a file descriptor that can be passed to any of the other libwindows rou­
tines except openchan and Runlayer. (The file descriptor can also be passed to
the close system call.) Otherwise, the value -1 is returned.

The New routine creates a new layer with a separate shell. The origin_x,origin.Jj,
corner_x, and corner.Jj arguments are the coordinates of the layer rectangle. If all
the coordinate arguments are 0, the user must define the layer's rectangle interac",
tively. The layer appears on top of any overlapping layers. The layer is not
made current (i.e., the keyboard is not attached to the new layer). Upon success­
ful completion, New returns the xt(7) channel number associated with the layer.
Otherwise, the value -1 is returned.

The Newlayer routine creates a new layer without executing a separate shell.
Otherwise it is identical to New, described above.

The openchan routine opens the channel argument chan which is obtained from
the New or Newlayer routine. Upon successful completion, openehan returns a
file descriptor that can be used as input to write(2) or close(2). Otherwise, the
value -1 is returned.

Page 1

IIbwlndows(3X) libwlndows (3X)

FILES

The Runlayer routine runs the specified command in the layer associated with the
channel argument chan. This layer is usually a layer previously created with
Newlayer. Any processes currently attached to this layer will be killed, and the
new process will have the environment of the layers process.

The Current routine makes the layer associated with the channel argument chan
current (Le., attached to the keyboard).

The Delete routine deletes the layer associated with the channel argument chan
and kills all host processes associated with the layer.

The Top routine makes the layer associated with the channel argument chan
appear on top of all overlapping layers.

The Bottom routine puts the layer associated with the channel argument chan
under all overlapping layers.

The Move routine moves the layer associated with the channel argument chan
from its current screen location to a new screen location at the origin point
(origin _x, origin --11). The size and contents of the layer are maintained.

The Reshape routine reshapes the layer associated with the channel argument
chan. The arguments origin_x, origin --11, corner _x, and corner --11 are the new coordi­
nates of the layer rectangle. If all the coordinate arguments are 0, the user is
allowed to define the layer's rectangle interactively.

The Exit routine causes the layers program to exit, killing all processes associ­
ated with it.

ULIBDIR/libwindows. a windowing terminal function library
ULIBDIR usually /usr/lib

SEE ALSO
close(2), write(2), jagent(S).
layers(l) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, Runlayer, Current, Delete, Top, Bottom" Move,
Reshape, and Exit return 0, while openagent, New, Newlayer, and openchan
return values as described above under each routine. If an error occurs, -1 is
returned.

The values of layer rectangle coordinates are dependent on the type of terminal.
This dependency affects the routines that pass layer rectangle coordinates: Move,
New, Newlayer, and Rest.ape. Some terminals will expect these numbers to be
passed as character positions (bytes); others will expect the information to be in
pixels (bits).

10/89

libwlndows (3X) Iibwlndows(3X)

10/89

For example, for the AT&T 5620 DMD terminal, New, Newlayer, and Reshape
take minimum values of 8 (pixels) for origin_x and originy and maximum values
of 792 (pixels) for corner _ x and 1016 (pixels) for corner y. The minimum layer
size is 28 by 28 pixels and the maximum layer size is 784 by 1008 pixels.

It is recommended that applications use /dev/xt/?? [0-7] instead of
/dev/xt?? [0-7] when accessing the xt driver.

Page 3

malllock(3X) malllock(3X)

NAME
maillock - manage lockfile for user's mailbox

SYNOPSIS
co [flag ... J file ... -lmail [library ... J
tinclude <maillock.h>

int maillock (const Char *user, int retrycnt);

int mailunlock (void);

DESCRIPTION
The maillock function attempts to create a lockfile for the uSer's mailfile. If a
lockfile already exists, maillock assumes the contents of the file is the process 10
(as a null-terminated ASCII string) of the process that created the lockfile (presum­
ably with a call to maillock). If the process that created the lockfUe is still alive,
maillock will sleep and try again retrycnt times before returning with an error
indication. The sleep algorithm is to sleep for 5 seconds times the attempt
number. That is, the first sleep will be for 5 seconds, the next sleep will be. for 10
seconds, etc. until the number of attempts reaches retrycnt. When the loc:kfile is
no longer needed, it should be removed by calling mailurilock.

user is the login name of the user for whose mailbox the ·lockfUe will be created.
maillock assumes that users' mailfiles are in the "standard" place as defined in
maillock. h.

RETURN VALUE

FILES

NOTES

10/89

The following return code definitions are contained in maillock . h.

tdefine L SUCCESS 0 /* Lockfile created or removed */
tdefine L-NAMELEN 1 /* Recipient name > 13 chars */
.define L-TMPLOCK 2 /* Can't create tmp file */
.define L-TMPWRlTE 3 /* Can't write pid into lockfile */
tdefine L-MAXTRYS 4 /* Failed after retrycnt attenpts */
tdefine L:ERROR 5 /* Check errno for reason */

LIBDIR/llib-mail.ln
LIBDIR/mail. a
/var/mail/*
/var/mail/*.lock

ma.ilunlock will only remove the 10ckfUe created from the most previous call to
maillock. Caning maillock ror different users without intervening calls to
mailunlock will cause the initially created lockfile(s) to remain, potentially block­
ing subsequent message delivery until the current process finally terminates. .

Page 1

ma/loc{3X) malloc{3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - memory allocator

SYNOPSIS
cc [flag ... J file ... -lmalloc [library ... J

tinclude <stdlib.h>

void *malloc (size_t size)

void free (void *ptr)

void *realloc (void *ptr, size_t size)

void *calloc (size_t nelem, size_t elsize)

tinclude <malloc'h>

int mallopt (int cm::i, int value)

struct mallinfo mallinfo (void)

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.

malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation, and its
contents have been destroyed (but see mallopt below for a way to change this
behavior). If ptr is a null pointer, no action occurs.

Undefined results occur if the space assigned by malloc is overrun or if some
random number is handed to free.

realloc changes the size of the block pOinted to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents are unchanged up to the
lesser of the new and old sizes. Ifptr is a null pointer, realloc behaves like mal­
loc for the specified size. If size is zero and ptr is not a null pointer, the object it
points to is freed.

calloc allocates space for an array of nelem elements of size elsize. The space is
initialized to zeros.

mallopt provides for control over the allocation algorithm. The available values
for cmd are:

M MXFAST Set maxfast to value. The algorithm allocates all blocks below the
size of maxfast in large groups and then doles them out very quickly.
The default value for maxfast is 24.

M NLBLKS Set numlblks to value. The above mentioned "large groups" each
contain numlblks blocks. numlblks must be greater than O. The
default value for numlblks is 100.

M GRAIN Set grain to value. The sizes of all blocks smaller than maxfast are
considered to be rounded up to the nearest multiple of grain. grain
must be greater than O. The default value of grain is the smallest
number of bytes that will allow alignment of any data type. Value
will be rounded up to a multiple of the default when grain is set.

10/89 Page 1

malloc(3X) malloc(3X)

M_KEEP Preserve data in a freed block until the next malloc, realloc, or
calloc. This option is provided only for compatibility with the old
version of malloc and is not recommended.

These values are defined in the malloc.h header file.

mallopt may be called repeatedly, but may not be called after the first small
block is allocated.

mall info provides instrumentation describing space usage. It returns the struc­
ture:

struct mallinfo
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int srnblks; /* number of small blocks */
int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */
int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

/* is used */

This structure is defined in the malloc . h header file.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS

NOTES

Page 2

malloc, realloc, and calloc return a NULL pointer if there is not enough avail­
able memory. When realloc returns NULL, the block pointed to by ptr is left
intact. If mallopt is called after any allocation or if cmd or value are invalid,
non-zero is returned. Otherwise, it returns zero.

Note that unlike rnalloc(3C), this package does not preserve the contents of a
block when it is freed, unless the M_KEEP option of mallopt is used.

Undocumented features of malloc(3C) have not been duplicated.

Function prototypes for rralloc, realloc, calloc and free are also defined in
the <rnalloc.h> header file for compatibility with old applications. New applica­
tions· should include <stdlib. h> to access the prototypes for these functions.

10/89

sputl(3X) sputl{3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
cc [flag ... J file ... -lld [library ... J
tinclude <ldfcn.h>

void sputl (long value, char *buffer)i

long sgetl (const char *buffer)i

DESCRIPTION

10/89

sputl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

sgetl retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent way of
storing long numeric data in a file in binary form without conversion to charac­
ters.

Page 1

/

Intro(4) intro(4)

NAME
intro - introduction to file formats

DESCRIPTION

10/89

This section outlines the formats of various files. The C structure declarations for
the file formats are given where applicable. Usually, the header files containing
these structure declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
Unclude <fi1ename.h> or Unclude <sys/filename.h> should be used.

Page 1

a.out(4) a.out(4)

NAME
a. out - ELF (Executable and Linking Format) files

SYNOPSIS
tinclude <elf.h>

DESCRIPTION

10/89

The file name a.out is the default output file name from the link editor, Id(1).
The link editor will make an a. out executable if there were no errors in linking.
The output file of the assembler, as(1), also follows the format of the a. out file
although its default file name is different.

Programs that manipulate ELF files may use the library that elf(3E) describes.
An overview of the file format follows. For more complete information, see the
references given below.

L' ki V' Execution View in ng lew
ELF header ELF header

Program header table Program header table
optional

Section 1 · .. Segment 1

Section n · .. Segment 2

·
Section header table Section header table

optional

An ELF header resides at the beginning and holds a "road map" describing the
file's organization. Sections hold the bulk of object file information for the link­
ing view: instructions, data, symbol table, relocation information, and so on.
Segments hold the object file information for the program execution view. As
shown, a segment may contain one or more sections.

A program header table, if present, tells the system how to create a process
image. Files used to build a process image (execute a program) must have a pro­
gram header table; relocatable files do not need one. A section header table con­
tains information describing the file's sections. Every section has an entry in the
table; each entry gives information such as the section name, the section size, etc.
Files used during linking must have a section header table; other object files may
or may not have one .

• A.lthough the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header
has a fixed position in the file.

When an a. out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by unini­
tialized, the latter actually being initialized to all D's), and a stack. The text seg­
ment is not writable by the program; if other processes are executing the same
a. out file, the processes will share a single text segment.

Page 1

a.out(4) a.out(4}

The data segment starts at the next maximal page boundary past the last text
address. (If the system supports more than one page size, the "maximal page" is
the largest supported size.) When the process image is created, the part of the
file holding the end of text and the beginning of data may appear twice. The
duplicated chunk of text that appears at the beginning of data is never executed;
it is duplicated so that the operating system may bring in pieces of the file in
multiples of the actual page size without having to realign the beginning of the
data section to a page boundary. Therefore, the first data address is the sum of
the next maximal page boundary past the end of text plus the remainder of the
last text address divided by the maximal page size. If the last text address is a
multiple of the maximal page size, no duplication is necessary. The stack is
automatically extended as required. The data segment is extended as requested
by the brk(2) system call.

SEE ALSO

Page 2

as(1), cc(1), Id(1), brk(2), elf(3E).

The "Object Files" chapter in the Programmer's Guide: ANSI C and Programming
Support Tools.

10/89

ar(4) ar(4)

NAME
ar - archive file format

SYNOPSIS
Unclude <ar. h>

DESCRIPTION

10/89

The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor ld.

Each archive begins with the archive magic string.

tdefine AlOO\G
tdefine SARMA(;

n!<arch>\nn
8

/* magic string */
/* length of magic string */

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following format:

tdefine ARE'MAG \n" /* header trailer string */

struct ar hdr /* file member header */
{

char ar name [16]; /* ,/, terminated file member name */
char ar date [12]; /* file member date */
char ar-uid[6] ; /* file member user identification */
char ar=gid[6]; /* file member group identification */
char ar mode[8]; /* file member mode (octal) */
char ar-size[lO]; /* file member size */
char ar=fmag[2] ; /* header trailer string */

} ;

All information in the file member headers is in printable ASCII. The numeric
information contained in the headers is stored as decimal numbers (except for
ar _mode which is in octal). Thus, if the archive contains printable files, the
archive itself is printable.

If the file member name fits, the ar _name field contains the name directly, and is
terminated by a slash U) and padded with blanks on the right. If the member's
name does not fit, ar _name contains a slash U) followed by a decimal representa­
tion of the name's offset in the archive string table described below.

The ar date field is the modification date of the file at the time of its insertion into
the archive. Common format archives can be moved from system to system as
long as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of
the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Page 1

ar(4)

Page 2

ar (4)

Each archive that contains object files [see a.out(4)] includes an archive symbol
table. This symbol table is used by the link editor 1d to determine which archive
members must be loaded during the link edit process. The archive symbol table
(if it exists) is always the first file in the archive (but is never listed) and is
automatically created and/or updated byar.

The archive symbol table has a zero length name (Le., ar_name[O] is 'I'),
ar_name [1]=' ',etc.). All "words" in this symbol table have four bytes, using
the machine-independent encoding shown below. (All machines use the encoding
described here for the symbol table, even if the machine's "natural" byte order is
different.)

Ox01020304

The contents of this file are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes >I< "the number of
symbols".

3. The name string table. Length: ar _size - 4 bytes >I< ("the number of sym-
bols" + 1).

As an example, the following. symbol table defines 4 symbols. The archive
member at file offset 114 defines name and object. The archive member at file
offset 426 defines function and a second version of name.

Offset +0 +1
o
4
8

12
16
20
24
28
32
36
40
44

n
\0
e
f
t
\0
e

a
0

c
u
i
n
\0

+2 +3
4

114
114
426
426

m e
b j
t \0
n c
0 n
a m

4 offset entries
name
object
function
name

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there
are elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string
table are all the defined global symbols found in the common object files in the
archive. Each offset is the location of the archive header for the associated sym­
bol.

10/89

ar(4) ar(4)

If some archive member's name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a new-line.
This string table member, if present, will precede all "normal" archive members.
The special archive symbol table is not a "normal" member, and must be first if it
exists. The ar_name entry of the string table's member header holds a zero length
name ar_name [0]=' /', followed by one trailing slash (ar_name [1]==' /'), fol­
lowed by blanks (aryame [2] ==' ',etc.). Offsets into the string table begin at
zero. Example ar _name values for short and long file names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
o

10
20
30

f
s
n
m

i
a
9
e

Member Name

short-name
file name sample
longerfilenamexarnple

1
m
e
x

e
p 1
r f
a m

ar name

short-name/
/0
/18

n
e
i
p

a m e
/ \n 1
1 e n
1 e /

Note

Not in string table
Offset 0 in string table
Offset 18 in string table

0

a
\n

SEE ALSO

NOTES

10/89

ar(1), ld(1), strip(1), sputl(3X), a. out(4).

strip will remove all archive symbol entries from the header. The archive sym­
bol entries must be restored via the -ts options of the ar command before the
archive can be used with the link editor ld.

Page 3

core(4} core(4)

NAME
core - core image file

DESCRIPTION

10/89

The UNIX system writes out a core image of a process when it is terminated due
to the receipt of some signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls apply). A
process with an effective user ID different from the real user ID will not produce a
core image.

The core file contains all the process information pertinent to debugging: contents
of hardware registers, process status and process data. The format of a core file
is object file specific.

For ELF executable programs [see a. out (4)], the core file generated is also an ELF
file, containing ELF program and file headers. The e_type field in the file header
has type ET_CORE. The program header contains an entry for every load able and
writeable segment that was part of the process address space, including shared
library segments. The contents of the segments themselves are also part of the
core image.

The program header of an ELF core file also contains a NOTE segment. This seg­
ment may contain the following entries. Each has entry name "CORE" and
presents the contents of a system structure:

prstatus t
The entry containing this structure has a NOTE type of 1. This structure
contains things of interest to a debugger from the operating system's u­
area, such as the general registers, signal dispositions, state, reason for
stopping, process ID and so forth. The structure is defined in
<sys/procfs. h>.

fpregset t
This entry is present only if the process used the floating-point hard ware.
It has a NOTE type of 2 and contains the floating-point registers. The
fpregset_t structure is defined in <sys/regset.h>.

prpsinfo t
The entry containing this structure has a NOTE type of 3. It contains infor­
mation of interest to the ps(1) command, such as process status, cpu
usage, "nice" value, controlling terminal, user ID, process ID, the name of
the executable and so forth. The structure is defined in <sys/procfs . h>.

COFF executable programs produce core files consisting of two parts: the first sec­
tion is a copy of the system's per-user data for the process, including the general
registers. The format of this section is defined in the header files <sys/user. h>
and <sys/reg. h>. The remainder of a COFF core image represents the actual
contents of the process data space.

The size of the core file created by a process may be controlled by the user [see
getrlimit(2)].

Page 1

core(4)

SEE ALSO
sdb(1), getrlimit(2), setuid(2), elf(3E), a. out(4), signal(S).
crash(1M) in the System Administrator's Reference Manual.

core(4)

The "Object Files" chapter in the Programmer's Guide: ANSI C and Programming
Support Tools.

Page 2 10/89

limits (4) limits (4)

NAME
limits - header file for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION

10/89

The header file limits.h is a list of minimal magnitude limitations imposed by a
specific implementation of the operating system.

ARG_MAX 5120 /* max length of arguments to exec */
CHAR_BIT 8 /* max i of bits in a "char" */
CHARJ1AX 255 /* max value of a "char" */
CHAR_MIN 0 /* min value of a "char" */
CHILD_MAX 25 /* max i of processes per user id */
CLK_TCK _sysconf(3) /* clock ticks per second */
DBL_DIG 15 /* digits of precision Of a "double" */
DBL_MAX 1. 7976931348623157E+308 /* max decimal value of a "double"*/
DBL_MIN 2.2250738585072014E-308 /* min decimal value of a "double"*/
FCHR_MAX 1048576 /* max size of a file in bytes */
FLT_DIG 6 /* digits of precision of a "float" */
FLT_MAX 3.40282347e+38F /* max decimal value of a "float" */
FLT_MIN 1. 17549435E-38F /* min decimal value of a "float" */
INT_MAX 2147483647 /* max value of an "int" */
INT_MIN (-2147483647-1) /* min value of an "int" */
LINK_MAX 1000 /* max i of links to a single file */
LOGNAME_MAX 8 /* max i of characters in a login name */
LONG BIT 32 /* i of bits in a "long" */
LONG_MAX 2147483647 /* max value of a "long int" */
LONG MIN (-2147483647-1) /* min value of a "long int" */
MAX_CANON 256 /* max bytes in a line for canonical

NGROUPS MAX
NL_ARGMAX

NL LANGMAX

NL_SETMAX
NL TEXTMAX
NZERO
OPEN_MAX

PASS MAX

512
5

14
16
9

14
32767
1

255
255
20
20

8

processing */
/* max size of a char input buffer */
/* max i of bytes in a IlU.lltibyte
character */
/* max i of characters in a file name */
/* max i of groups for a user */
/* max value of "digit" in calls to the
NLS printf () and scanf () */
/* max i of bytes in a LANG name */
/* max message number */
/* max i of bytes in N-to-1 mapping
characters */
/* max set number */
/* max i of bytes in a message string */
/* default process priority */
/* max i of files a process can have
open */
/* max i of characters in a password */

Page 1

Iimits(4) limits (4)

Page 2

PATH MAX
PID_MAX
PIPEBUF
PIPE_MAX

SCHAR_MAX
SCHAR_MIN
SHRT MAX
SHRT_MIN
STD_BLK
SYS_NMLN

UCHAR MAX
UID MAX
UINT MAX
ULONG_MAX
USHRT_MAX
USI MAX
WORD_BIT

1024
30000
5120
5120

127
(-128)
32767
(-32768)
1024
257

1
17576

255
60000
4294967295
4294967295
65535
4294967295
32

I * max i of characters in a path name * I
1* max value for a process ID *1
1* max i bytes atomic in write to a pipe *1
1* max i bytes written to a pipe
in a write *1
1* max value of a "signed char" *1
1* min value of a "signed char" *1
1* max value of a "short int" */
1* min value of a "short int" *1
1* i bytes in a physical 1/0 block *1
1* 4.0 size of utsname elements *1
/* also defined in sys/utsname.h */
/* max pid of system processes */
/* max i of unique names generated
by tnpnam * /
/* max value of an "unsigned char" *1
/* max value for a user or group ID */
/* max value of an "unsigned int" *1
/* max value of an "unsigned long int" */
/* max value of an "unsigned short int" */
/* max decimal value of an "unsigned" */
/* i of bits in a "word" or "int" */

The following POSIX definitions are the most restrictive values to be used by a
POSIX conform ant application. Conforming implementations shall provide values
at least this large.

_POSIX_ARG_MAX 4096 /* max length of arguments to exec *1
_POSIX_CHILD_MAX 6 1* max i of processes per user ID * /
_POSIX_LINK_MAX 8 /* max i of links to a single file *1
_POSIX_MAX_CANON 255 /* max i of bytes in a line of input * /
_POSIX_MAX_INPUT 255 /* max i of bytes in terminal

input queue * /
]OSIX _ NAME_MAX 14 1* i of bytes in a filename */
_POSIX_NGROUPS_MAX 0 /* max i of groups in a process */
_POSIX_OPEN_MAX 16 /* max i of files a process can have open */
]OSI~PATH_MAX 255 /* max i of characters in a pathname */
_POSIX_PIPE_BUF 512 /* max i of bytes atomic in write

to a pipe */

10/89

sccsfile(4) sccsflle (4)

NAME
sccsfile - format of sces file

DESCRIPTION
An sces (Source Code Control System) file is an Asell file. It consists of six logi­
cal parts: the checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of users who may
add deltas), flags (contains definitions of internal keywords), comments (contains
arbitrary descriptive information about the file), and the body (contains the actual
text lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH (start of
heading) character (octal (01). This character is hereafter referred to as the con­
trol character and will be represented graphically as @. Any line described below
that is not depicted as beginning with the control character is prevented from
beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000
and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sces file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first
line. The @h" provides a magic number of (octal) 064001, depending on byte
order.

Delta tabie

10/89

The delta table consists of a variable number of entries of one of the following
forms:

@sDDDDD/DDDDD/DDDDD
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD ..•
@xDDDDD ...
@gDDDDD .••
@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@d) contains the type of the delta (normal: 0 or
removed: R), the sees ID of the delta, the date and time of creation of the delta,
the login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded,
and ignored, respectively. These lines are optional.

Page 1

sccsfile { 4 } sccsfile (4)

The @m lines (optional) each contain one MR number associated with the delta; the
@c lines contain comments associated with the delta. The @e line ends the delta
table entry.

User names
The list of login names and/or numerical group IDs of users who may add deltas
to the file, separated by new-lines. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing lines @u and @u. An
empty list allows anyone to make a delta. Any line starting with a ! prohibits
the succeeding group or user from making deltas.

Flags

Page 2

Keywords used internally. See admin(1) for more information on their use. Each
flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t <type of program>
@f v <program name>
@f i <keyword string>
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword. The v flag
controls prompting for MR numbers in addition to comments; if the optional text
is present it defines an MR number validity checking program. The i flag con­
trols the warning/error aspect of the "No id keywords" message. When the i
flag is not present, this message is only a warning; when the i flag is present, this
message causes a fatal error (the file will not be "gotten", or the delta will not be
made). When the b flag is present the -b keyletter may be used on the get com­
mandto cause a branch in the delta tree. The m flag defines the first choice for
the replacement text of the %M% identification keyword. The f flag defines the
floor release; the release below which no deltas may be added. The c flag defines
the ceiling release; the release above which no deltas may be added. The d flag
defines the default SID to be used when none is specified on a get command.
The n flag causes delta to insert a null delta (a delta that applies no changes) in
those releases that are skipped when a delta is made in a new release (e.g., when
delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence of the
n flag causes skipped releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The 1 flag defines a list of releases
that are locked against editing. The q flag defines the replacement for the %Q%
identification keyword. The z flag is used in specialized interface programs.

10/89

sccsfile {4} sccsfile {4}

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The comments
section typically will contain a description of the file's purpose.

Body
The body consists of text lines and control lines. Text lines do not begin with the
control character, control lines do. There are three kinds of control lines: insert,
delete, and end, represented by:

@I DDDDD
@D DDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for
the control line.

SEE ALSO
admin(1), delta(1), get(1), prs(1).

10/89 Page 3

strftime (4) strftlme (4)

NAME
strftime - language specific strings

DESCRIPTION
There can exist one printable file per locale to specify its date and time formatting
information. These files must be kept in the directory
/usr/lib/locale/<locale>/LC_TIME. The contents of these files are:

1. abbreviated month names (in order)

2. month names (in order)

3. abbreviated weekday names (in order)

4. weekday names (in order)

5. default strings that specify formats for locale time (%X) and
locale date (%x).

6. default format for cftime, if the argument for cftime is zero or null.

7. AM (ante meridian) string

8. PM (post meridian) string

Each string is on a line by itself. All white space is significant. The order of the
strings in the above list is the same order in which they must appear in the file.

EXAMPLE
/usr/lib/locale/C/LC_TIME

FILES

Jan
Feb

January
February

Sun
Mon

Sunday
Monday

%H:%M:%S
%m/%d/%y
%a %b %d %T %Z %Y
AM
PM

/usr/lib/locale/<locale>/LC_TIME

SEE ALSO
ctime(3C), setlocale(3C), strftime(3C).

10/89 Page 1

time zone (4)

NAME
timezone - set default system time zone

SYNOPSIS
/etc/TlMEZONE

DESCRIPTION
This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone.
EXAMPLES

/ etc/TlMEZONE for the east coast:

t Time Zone
TZ"EST5EDT
export TZ

SEE ALSO
ctime(3C), environ(S).
rc2(lM), profile(4) in the System Administrator's Reference Manual.

10189

timezone(4)

Page 1

utmp(4) utmp(4)

NAME
utIlp, wt.np - utmp and wtmp entry formats

SYNOPSIS
tinclude <utmp.h>

DESCRIPTION

10/89

These files, which hold user and accounting information for such commands as
who, write, and login, have the following structure, defined in <utmp. h>:

tdefine U'l'MI?_FlLE "/var/adm/utmp"
tdefine WTMI?JlLE "/var/adm/wtmp"
tdefine ut_name ut_user

utIlp {
/* user login name */

struct
char
char

ut user [8] ;
u()d[4] ; /* /sbin/inittab id (created by */

} ;

char ut line[12];
short ut yid;
short ut_type;
struct exit status

short e_termination;
short e_exit;

ut_exit;

/* process that puts entry in utIlp) */
/* device name (console, lnxx) */
/* process id */
/* type of entry */

/* process termination status */
/* process exit status */
/* exit status of a process
* marked as DEAD PROCESS * /

/* time entry was-made */

/* Definitions for ut_type */

tdefine EMPTY 0
tdefine RUN LVL 1
tdefine BOOT TIME 2
tdefine OLD TIME 3
tdefine NEW-TIME 4
tdefine INIT PROCESS 5
tdefine LOGIN PROCESS 6
tdefine USER PROCESS 7
tdefine DEAD-PROCESS 8
tdefine ACCOUNTING 9

/* process spawned by "init" */
/* a "getty" process waiting for login */
/* a user process */

tdefine UTMAXTYPE ACCOUNTING /* max legal value of ut_type */

/* Below are special strings or formats used in the "ut line" *i
/* field when accounting for something other than a process. */
/* No string for the ut line field can be more than 11 chars + */
/ * a null character in length. * /

Page 1

utmp(4) utmp(4)

FILES

idefine RUNLVL MSG "run-level %c"
'define BOoT MBG "system boot"
'define OTIME_MSG "old time"
tdefine NTIMI!LMSG "new time"

/var/adm/utnp
/var/adm/wtrrp

SEE ALSO
getut(3C).
login(1), who(1), write(1) in the User's Reference Manual.

Page 2 10/89

utmpx(4) utmpx(4)

NAME
utnpx, wtmpx - utmpx and wtmpx entry formats

SYNOPSIS
tinclude <utnpx.h>

DESCRIPTION
utnpx(4) is an extended version of utnp(4).

These files, which hold user and accounting information for such commands as
who, write, and login, have the following structure as defined by <utnpx. h>:

tdefine UTMPX FILE "/var/adnl/utmpx"
tdefine Wl'MPX-FILE "/var/adnl/wtmpx"
tdefine ut_name ut_user
tdefine ut xtime ut_tv.tv_sec

struct utnpx {
char ut user[32];
char ut:=id [4] ;
char ut_line[32];
pid_t utyid;
short ut_type;
struct exit status ut exit;
struct timeval ut tv;­
long ut_session;
long pad[5];
short ut_syslen;

char ut_host[257];
} ;

EMPTY a
RUN LVL 1
BOOT TIME 2
OLD TIME 3
NEW TIME 4

/* user login name */
/* inittab id */
/* device name (console, lnxx) */
/* process id */
/* type of entry */
/* process termination/exit status */
/ * time entry was made * /
/* session ID, used for windowing */
/* reserved for future use */
/* significant length of ut_host */
/* including terminating null */
/* remote host name */

/* Definitions for ut_type */

tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine

INIT PROCESS 5
LOGIN PROCESS 6
USER PROCESS 7

/* Process spawned by "init" */

DEADJROCESS
ACCOUNTING

8
9

/* A "getty" process waiting for login */
/* A user process */

tdefine UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

10/89

/*
/*
/*
/*

Below are special strings or formats used in the "ut line"
field when accounting for something other than a process.
No string for the ut line field can be more than 11 chars +
a null character in length.

Page 1

*/
*/
*/
*/

utmpx(4)

FILES

#define
idefine
#define
idefine
idefine

RONLVL MSG
BOOT MSG
OTlME MSG
NTlME MSG
MOD WIN

Ivar/adro/utmpx
Ivar/adro/wtIlpx

SEE ALSO
getutx(3C).

"run-level %c"
"system boot"
"old time"
"new time"
10

login(1), who(1), write(1) in the User's Reference Manual.

Page 2

utmpx(4)

10/89

Intro (5)

NAME
intro - introduction to miscellany

DESCRIPTION

intro(5)

This section describes miscellaneous facilities such as macro packages, character
set tables, etc. .

10/89
Page 1

ascii (5) ascii (5)

NAME
ascii - map of ASCII character set

DESCRIPTION
ascii is a map of the ASOI character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

I 000 nul I 001 soh 002 slxl003 elxl004 eOll005 enq 006 ackl007 bel
1010 bs 1011 hi 012 nl 1013 vi 1014 np 1015 cr 016 so 1017 si
1020 die 1021 del 022 dc21023 dc31024 dc4 025 nak 026 syn 027 elb
1030 can 1031 em 032 sub 1033 esc 1034 is 035 gs 036 rs 037 us
1040 sp 1041 042 .. 1043 /# 1044 $ 045 % 046 & 047

,

1050 (1051) 052 • 1053 + 1054 , 055 - 056 . 057 /
1060 0 1061 1 062 2 1063 3 1064 4 065 5 066 6 067 7
1070 8 1071 9 072 : 1073 ; 1074 < 075 = 076 > 077 ?
1100@ 1101 A 102 B 1103 C 1104 D 105 E 106 F 107 G
1110 H 1111 I 112 J 1113 K 1114 L 115M 116 N 1170
1120 P 1121 Q 122 R 1123 5 1124 T 125 U 126 V 127 W
1130 X 1131 Y 132Z 1133 [1134 \ 135) 136 A 137
1140 ' 1141 a 142 b 1143 c 1144 d 145 e 146 f 147 g
1150 h 1151 i 152 j 1153 k 1154 I 155 m 1156 n 157 0

1160 P 1161 q 162 r 1163 s 1164 I 165 u 1166 v 167 w
1170 x 1171 Y 172 z 1173 { 1174 I 175 } 1176 - 177 de I

00 nul 01 soh 02 s Ix I 03 elx 04 eol 05 enq 06 ack I 07 bel I
08 bs 09 hi Oa nl I Ob vi Oc np Od cr Oe so I Of si I
10 die 11 del 12 dc2 I 13 dc3 14 dc4 15 nak 16 syn I 17 elb I
18 can 19 em la sub I Ib esc Ie fs Id gs Ie rs I 1£ us I
20 sp 21 ! 22 .. I 23 /# 24 $ 25 % 26 & I 27

,
I

28 (29 2a • I 2b + 2c , 2d - 2e . I 2f / I
30 0 31 1 32 2 I 33 3 34 4 35 5 36 6 I 37 7 I
38 8 39 9 3a : I 3b ; 3c < 3d = 3e > I 3f ? I
40 @ 41 A 42 B I 43 C 44 D 45 E 46 F I 47 G I
48 H 49 I 4a J I 4b K 4c L 4dM 4e N I 4f 0 I
50 P 51 Q 52 R I 53 5 54 T 55 U 56 V I 57W I
58 X 59 Y 5a Z I 5b [5c \ 5d J 5e A I 5f I
60 ' 61 a 62 b I 63 c 64 d 65 e 66 f I 67 g I
68 h 69 i 6a j I 6b k 6c I 6d m 6e n I 6£ 0 I
70 P 71 q 72r I 73 5 74 I 75 u 76 v I 77 w I
78 x 79 y 7a z I 7b { 7c I 7d } 7e - I 7£ de I I

FiLES
/usr/pub/ascii

10/89 Page 1

environ (5) environ (5)

NAME
environ - user environment

DESCRIPTION

10/89

When a process begins execution, exec routines make available an array of strings
called the environment [see exec(2»). By convention, these strings have the form
variable=value, for example, PATH=/sbin:/usr/sbin. These environmental vari­
ables provide a way to make information about a program's environment avail­
able to programs. The following environmental variables can be used by applica­
tions and are expected to be set in the target run-time environment.

HOME The name of the user's login directory, set by login(1) from the
password file (see passwd(4».

LANG The string used to specify localization information that allows users
to work with different national conventions. The setlocale(3C)
function looks for the LANG environment variable when it is called
with "" as the locale argument. LANG is used as the default locale if
the corresponding environment variable for a particular category is
unset.

For example, when setlocaleO is invoked as

set locale (LC _ CTYPE, ""),

setlocaleO will query the LC _ CTYPE environment variable first to
see if it is set and non-null. If LC CTYPE is not set or null, then set­
localeO will check the LANG enVironment variable to see if it is set
and non-null. If both LANG and LC CTYPE are unset or null, the
default C locale will be used to set the-LC_CTYPE category.

Most commands will invoke

setlocale (LC_ALL, "n)

prior to any other processing. This allows the command to be used
with different national conventions by setting the appropriate
environment variables.

The following environment variables are supported to correspond
with each category of setlocale(3C):

LC COLLATE This category specifies the collation sequence being
used. The information corresponding to this
category is stored in a database created by the
colltbl(1M) command. This environment variable
affects strcoll(3C) and strxfrm(3C).

LC CTYPE This category specifies character classification, char­
acter conversion, and widths of multibyte charac­
ters. The information corresponding to this
category is stored in a database created by the
chrtbl(1M) command. The default C locale
corresponds to the 7-bit ASCII character set. This
environment variable is used by ct:ype(3C),

Page 1

envlron(5) environ (5)

Page 2

MSGVERB

mbchar(3C), and many commands; for example:
cat(1), ed(1), ls(1), and vi(1).

LC MESSAGES This category specifies the language of the message
database being used. For example, an application
may have one message database with French mes­
sages, and another database with German messages.
Message databases are created by the mkrnsgs(1M)
command. This environment variable is used by
exstr(1), gettxt(1), gettxt(3C), and srchtxt(1).

LC MJNETARY This category specifies the monetary symbols and
delimiters used for a particular locale. The informa­
tion corresponding to this category is stored in a
database created by the JOOntb1(1M) command.
This environment variable is used by
loca1econv(3C) .

LC NUMERIC This category specifies the decimal and thousands
delimiters. The information corresponding to this
category is stored in a database created by the
chrtb1(1M) command. The default C locale
corresponds to as the decimal delimiter and no
thousands delimiter. This environment variable is
used by loca1econv(3C), printf(3C), and
strtod(3C).

LC TIME This category specifies date and time formats. The
information corresponding to this category is stored
in a database specified in strftime(4). The default
C locale corresponds to U.S. date and time formats.
This environment variable is used by many com­
mands and functions; for example: at(1), ca1en­
dare})' date(1), strftime(3C), and getdate(3C).

Controls which standard format message components fmtmsg selects
when messages are displayed to stderr [see fmtmsg(1) and
fmtinsg(3C)].

SEV LEVEL Define severity levels and associate and print strings with them in
standard format error messages [see addseverity(3C), fmtmsg(1),
and fmtmsg(3C)].

NETPATH A colon-separated list of network identifiers. A network identifier is
a character string used by the Network Selection component of the
system to provide application-specific default network search paths.
A network identifier must consist of non-NULL characters and must
have a length of at least 1. No maximum length is specified. Net­
work identifiers are normally chosen by the system administrator.
A network identifier is also the first field in any /etc/netconfig
file entry. NETPATH thus provides a link into the /etc/netconfig
file and the information about a network contained in that network's
entry. /etc/netconfig is maintained by the system administrator.

10/89

environ (5)

NLSPATH

PATH

TERM

TZ

10/89

environ (5)

The library routines described in getnetpath(3N) access the NET­
PATH environment variable.

Contains a sequence of templates which catopen(3C) uses when
attempting to locate message catalogs. Each template consists of an
optional prefix, one or more substitution fields, a filename and an
optional suffix.

For example:

NLSPATH=n/system!nlslib/%N.cat"

defines that catopen() should look for all. message catalogs in the
directory /system/nlslib, where the catalog name should be con­
structed from the name parameter passed to catopen(), %N, with
the suffix . cat.

Substitution fields consist of a % symbol, followed by a single-letter
keyword. The following keywords are currently defined:

%N The value of the name parameter
passed to catopen().

%L The value of LANG.
%! The language element from LANG.
%t The territory element from LANG.
%c The codeset element from LANG.
%% A single.% character.

An empty string is substituted if the specified value is not currently
defined. The separators "-.:.' and"." are not included in %t and %c
substitutions;

Templates defined in NLSPATH are separated by colons (:). A lead­
ing colon or two adjacent colons (: :) is equivalent to specifying %N.

For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message
catalog in name, name.cat and /nlslib/$LANG/name.cat.

The sequence of directory prefixes that sh(1), time(1), nice(1),
nohup(1), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). login(1) sets
PATH=/usr/bin. (For more detail, see sh(1).)

The kind of terminal for which output is to be prepared. This infor­
mation is used by commands, such as Imil) or vi(1), which may
exploit special capabilities of that terminal.

Time zone information. The contents of the environment variable
named TZ are used by the functions ctime(3C), localtime() (see
ctime(3C», strftime(3C) and rnktime(3C) to override the default
timezone. If the first character of TZ is a colon (:), the behavior is

Page 3

environ (5)

Page 4

environ (5)

implementation defined, otherwise TZ has the form:

std offset [dst [offset], [start [/time] , end [/time]]]

std and dst
Three or more bytes that are the designation for the standard
(std) and daylight savings time (dst) timezones. Only std is
required, if dst is missing, then daylight savings time does
not apply in this locale. Upper- and lower-case letters are
allowed. Any characters except a leading colon (:), digits, a
comma (,), a minus (-) or a plus (+) are allowed.

offset Indicates the value one must add to the local time to arrive
at Coordinated Universal Time. The offset has the form:

hh [: mm [: ss]]

The minutes (mm) and seconds (ss) are optional. The hour
(hh) is required and may be a single digit. The offset follow­
ing std is required. If no offset follows dst , daylight savings
time is assumed to be one hour ahead of standard time. One
or more digits may be used; the value is always interpreted
as a decimal number. The hour must be between 0 and 24,
and the minutes (and seconds) if present between 0 and 59.
Out of range values may cause unpredictable behavior. If
preceded by a "_", the timezone is east of the Prime Meri­
dian; otherwise it is west (which may be indicated by an
optional preceding" +" sign).

start / time, end / time
Indicates when to change to and back from daylight savings
time, where start/time describes when the change from stan­
dard time to daylight savings time occurs, and end/time
describes when the change back happens. Each time field
describes when, in current local time, the change is made.

The formats of start and end are one of the following:

In The Julian day n (1 ~ n ~ 365). Leap days are
not counted. That is, in all years, February 28 is
day 59 and March 1 is day 60. It is impossible
to refer to the occasional February 29.

n The zero-based Julian day (0 ~ n ~ 365). Leap
days are counted, and it is possible to refer to
February 29. -

Mm.n.d th
The d day, (0 ~ d ~ 6) of week n of month m
of the year (1 ~ n ~ 5, 1 ~ m ~ 12), where week
5 means "the last d-day in month m" which
may occur in either the fourth or the fifth
~hek). Week 1 is the first week in which the
d day occurs. Day zero is Sunday.

10/89

environ (5) environ (5)

Implementation specific defaults are used for start and end if
these optional fields are not given.

The time has the same format as offset except that no leading
sign ("_" or "+") is allowed. The default, if time is not given
is 02:00:00.

Further names may be placed in the environment by the export command and
name=value arguments in shO), or by exec(2). It is unwise to conflict with cer­
tain shell variables that are frequently exported by .profile files: MAIL, PS1,
PS2, IFS (see profile(4».

SEE ALSO

10/89

chrtb1(1M), colltb1(1M), rnlansgs(1M), rontb1(1M), netconfig(4),
strftime(4), passwd(4), profile(4) in the System Administrator's Reference
Manual.
exec(2), addseverity(3C), catopen(3C), ctime(3C), ctype(3C), fmtmsg(3C),
getdate(3C), gettxt(3C), loca1econv(3C), Itbchar(3C), mkt.i.me(3C), printf(3C),
strcoll(3C), strftime(3C), strtod(3C), strxfrm(3C), strftime(4),
timezone(4).
cat (1), date(1), ed(1), fmtmsg(1), ls(1), login(1), nice(1), nohup(1), sh(1),
sort(1), time(1), vi(1) in the User's Reference Manual.
getnetpath(3N), in the Programmer's Guide: Networking Interfaces.
mm(1) in the DOCUMENTER'S WORKBENCH Software Technical Discussion and
Reference Manual.

Page 5

fcntl (5)

NAME
fcntl - file control options

SYNOPSIS
Jinclude <fcntl.h>

DESCRIPTION

fcntl (5)

The .<fcntl.h> header defines the following requests and arguments for use by
the functions fcntl [see fcntl(2)] and open [see open(2)].

10/89

Values for cmd used by fcntl (the following values are unique):
F_DUPFD Duplicate file descriptor
F_GETFD Get file deSCriptor flags
F_SETFD Set file descriptor flags
F _ GETFL Get file status flags
F SETFL Set file status flags
(:: GETLK Get record locking information
F SETLK Set record locking information
F SETLKW Set record locking information;

wait if blocked

File descriptor flags used for fcntl:
FD _ CLOEXEC Close the file descriptor upon

execution of an exec function [see exec(2)]

Values for l~type used for record locking with fcntl
(the following values are unique):

F RDLCK Shared or read lock
F-ONLCK Unlock
F - WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct:
Values for oflag used by open:

C CREAT Create file if it does not exist
0:::: EXCL Exclusive use flag
o YOCTTY Do not assign controlling tty
0_ TRONC Truncate flag

File status flags used for open and fcnt!:
O_APPEND Set append mode
O.;..NDELAY Non-blocking mode
o YONBLOCK Non-blocking mode (POSIX)
O_SYNC Synchronous writes

Mask for use with file access modes:
O_ACCMODE Mask for file access modes

Page 1

tcntl (5) tcntl (5)

File access modes used for open and fentl:
0_ RDONLY Open for reading only
0_ RDWR Open for reading and writing
0_ WRONLY Open for writing only

The structure flock describes a file lock. It includes the following members:

short l_type; /* Type of lock */
short 1 whence; /* Flag for starting offset */
off t l=start; /* Relative offset in bytes */
off t 1 len; /* Size; if 0 then until EOF */
long l:sysid; /* Returned with F GETLK */
pid_t lyid; /* Returned with F-GETLK */

SEE ALSO
creat(2), exec(2), fcnt1(2), open(2).

Page 2 10/89

jagent (5) jagent (5)

NAME
jagent - host control of windowing terminal

SYNOPSIS
#inc1ude <sys/jioct1.h>

int ioct1 (int cnt1fd, JAGENT, &arg);

DESCRIPTION
The ioct1 system call, when performed on an xt(7) device with the JAGENT
request, allows a host program to send information to a windowing terminal.

ioct1 has three arguments:

cntlfd the xt(7) control channel file descriptor

JAGENT the xt ioct1 request to invoke a windowing terminal agent routine.

&arg the address of a bagent structure, defined in <sys/jioctl.h> as fol­
lows:

struct

} ;

int
char
char

bagent {
size;
*src;
*dest;

/*
/*
/*

size of src in & dest out */
the source byte string */
the destination byte string */

The src pointer must be initialized to point to a byte string that is
sent to the windowing terminal. See 1ayers(S) for a list of JAGENT
strings recognized by windowing terminals. Likewise, the dest
pointer must be initialized to the address of a buffer to receive a byte
string returned by the terminal. When ioct1 is called, the size argu­
ment must be set to the length of the src string. Upon return, size is
set by ioct1 to the length of the destination byte string, dest.

SEE ALSO
ioct1(2), 1ibwindows(3X), 1ayers(S).
xt(7) in the Programmer's Guide: STREAMS.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value, the size of the destination byte
string, is returned. If an error occurs, -1 is returned.

Page 1

langlnfo(5)

NAME
langinfo - language information constants

SYNOPSIS
tinclude <langinfo.h>

DESCRIPTION

langlnfo(5)

This header file contains the constants used to identify items of langinfo data.
The mode of items is given in nl_types.

10/89

DAY_l Locale's equivalent of 'sunday'

DAY 2

DAY 3

DAY 4

DAY 5

DAY 6

DAY 7

ABDAY 1

ABDAY 2

ABDAY 3

ABDAY 4

ABDAY 5

ABDAY 6

ABDAY 7

MaN 1

MaN 2

MaN 3

MaN 4

MaN 5

MaN 6

MaN 7

MaN_8

MaN 9

MaN_IO

MaN 11

MaN_12

ABMON 1

Locale's equivalent of 'monday'

Locale's equivalent of 'tuesday'

Locale's equivalent of 'wednesday'

Locale's equivalent of 'thursday'

Locale's equivalent of 'friday'

Locale's equivalent of 'saturday'

Locale's equivalent of 'sun'

Locale's equivalent of 'mon'

Locale's equivalent of 'tue'

Locale's equivalent of 'wed'

Locale's equivalent of 'thur'

Locale's equivalent of 'fri'

Locale's equivalent of 'sat'

Locale's equivalent of 'january'

Locale's equivalent of 'febuary'

Locale's equivalent of 'march'

Locale's equivalent of 'april'

Locale's equivalent of 'may'

Locale's equivalent of 'june'

Locale's equivalent of 'july'

Locale's equivalent of 'august'

Locale's equivalent of 'september'

Locale's equivalent of 'october'

Locale's equivalent of 'november'

Locale's equivalent of 'december'

Locale's equivalent of 'jan'

Page 1

langlnfo(5}

ABMON 2

ABMON 3

ABMON 4

ABMON 5

ABMON 6

ABMON 7

ABMON 8

ABMON 9

ABMON 10

ABMON 11

ABMON 12

RADIXCHAR

THOUSEP

YESSTR

NOSTR

CRNCYSTR

° T FMT

° FMI'
T FMI'

AM_STR

PM STR

Locale's equivalent of 'feb'

Locale's equivalent of 'mar'

Locale's equivalent of 'apr'

Locale's equivalent of 'may'

Locale's equivalent of 'jun'

Locale's equivalent of 'ju!'

Locale's equivalent of 'aug'

Locale's equivalent of 'sep'

Locale's equivalent of 'oct'

Locale's equivalent of 'nov'

Locale's equivalent of 'dec'

Locale's equivalent of '.'

Locale's equivalent of ','

Locale's equivalent of 'yes'

Locale's equivalent of 'no'

Locale's currency symbol

Locale's default format for date and time

Locale's default format for the date

Locale's default format for the time

Locale's equivalent of 'AM'

Locale's equivalent of 'PM'

This information is retrived by nl_langinfo.

lang info (5)

The items CRNCYSTR, RADIXCHAR and THOUSEP are extracted from the fields
currency_symbol, decimalyoint and thousands_sep in the structure returned
by localeconv.

The items T_FMT, D_FMT, D_T_FMT, YES$TR and NOSTR are retrived from a special
message catalog named Xopen_info which should be generated for each locale
supported and installed in the appropriate directory [see gettxt(3C) and
mlansgs(lM)]. This catalog should have the messages in the order T_FMT, D_FMI',
D_T_FMT, YESSTR and NOSTR.

An other items are as returned by s'trftL1"fie.

SEE ALSO
gettxt(3C), localeconv(3C), nl_langinfo(3C), strftime(3C), cftime(4),
nl types(S).
chItbl(1), rnkmsgs(1M) in the System Administrator's Reference Manual.

Page 2 10/89

Jayers(5) Jayers(5)

NAME
layers - protocol used between host and windowing terminal under layers(1}

DESCRIPTION

10/89

Layers are asynchronous windows supported by the operating system in a win­
dowing terminal. Communication between the UNIX System processes and ter­
minal processes l.mder the layers command [see layers(1}] occurs via multi­
plexed channels managed by the respective operating systems using a protocol as
specified in xtproto(S).

The contents of packets transferring data between a UNIX System process and a
layer are asymmetric. Data sent from the UNIX System to a particular terminal
process are undifferentiated and it is up to the terminal process to interpret the
contents of packets.

Control information for terminal processes is sent via channel O. Process 0 in the
windowing terminal performs the designated functions on behalf of the process
connected to the designated channel. These packets take the form:

command, channel

except for JTIMOM and JAGENT information, which takes the form

command, data ...

The commands are the bottom eight bits extracted from the following ioctl(2)
codes:

JBOOT Prepare to load a new terminal program into the designated layer.

JTERM Kill the downloaded layer program, and restore the default window
program.

JTIMOM Set the timeout parameters for the protocol. The data consist of four
bytes in two groups: the value of the receive timeout in milliseconds
(the low eight bits followed by the high eight bits) and the value of the
transmit timeout (in the same format).

JZOMBOOT Like JBOOT, but do not execute the program after loading.

JAGENT Send a source byte string to the terminal agent routine and wait for a
reply byte string to be returned.

The data are from a bagent structure [see jagent(5)] and consist of a
one-byte size field followed l:>Y a two-byte agent command code and
parameters. Two-byte integers transmitted as part of an agent com­
mand are sent with the high-order byte first. The response from the
terminal is generally identical to the command packet, with the two
command bytes replaced by the return code: 0 for success, -1 for
failure. Note that the routines in the libwindows(3X) library all send
parameters in an agentrect structure. The agent command codes and
their parameters are as follows:

A NEWLAYER followed by a two-byte channel number· and a rec­
tangle structure (four two-byte coordinates).

Page 1

layers (5) layers (5)

Page 2

A CURRENT followed by a two-byte channel number.

A DELETE followed by a two-byte channel number.

A TOP followed by a two-byte channel number.

A BOTTOM followed by a two-byte channel number.

A MOVE followed by a two-byte channel number and a point
to move to (two two-byte coordinates).

A RESHAPE followed by a two-byte channel number and the new
rectangle (four two-byte coordinates).

A NEW followed by a two-byte channel number and a rec­
tangle structure (four two-byte coordinates).

A EXIT no parameters needed.

A ROMVERSION no parameters needed. The response packet contains
the size byte, two-byte return code, two unused
bytes, and the parameter part of the terminal ID
string (e.g., 8; 7 i 3) .

JXTPROTO Set xt protocol type [see xtproto(5)]. The data consist of one byte
specifying maximum size for the data part of regular xt packets sent
from the host to the terminal. This number may be lower than the
number returned by A _ XTPROTO at lower baud rates or if the -m option
was specified upon invocation of layers(1). A size of 1 specifies net­
work xt protocol.

Packets from the windowing terminal to the UNIX System all take the following
form:

command, data ...

The single-byte commands are as follows:

C_SENDCHAR Send the next byte to the UNIX System process.

C NEW

C UNBLK

C EXIT

C DEFUNCT

Create a new UNIX System process group for this layer.
Remember the window size parameters for this layer.
The data for this command is in the form described by
the jwinsize structure. The size of the window is
specified by two 2-byte integers, sent low byte first.

Unblock transmission to this layer. There are no data for
this command.

Delete the UNIX System process group attached to this
layer. There are no'data for this co-mmand.

Exit. Kill all UNIX System process groups associated
with this terminal and terminate the session. There are
no data for this command.

Layer program has died, send a terminate signal to the
UNIX System process groups associated with this termi­
nal. There are no data for this command.

10/89

layers (5) layers (5)

FILES

C SENDNCHARS The rest of the data are characters to be passed to the
UNIX System process.

The layer has been reshaped. Change the window size
parameters for this layer. The data take the same form as
for the C _NEW command. A SIGWINCH signal is also sent
to the process in the window, so that the process knows
that the window has been reshaped and it can get the
new window parameters.

Disable network xt flow control [see xtproto(S)].

Enable network xt flow control [see xtproto(S)].

/usr/include/windows.h
/usr/include/sys/jioctl.h

SEE ALSO

10/89

layers(1), libwindows(3X), jagent(S), xtproto(5).
xt(7) in the Programmer's Guide: STREAMS.

Page 3

math (5) math (5)

NAME
math - math functions and constants

SYNOPSIS
iinclude <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library (described
in Section 3M), as well as various functions in the C Library (Section 3C) that
return floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling
mechanisms, including the following constant used as a error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M LOG2E

M LOGIOE

M LN2

M LNIO

M PI

M_PI_2
M]I_4

M 1 PI

M 2 PI

M_2_SQRTPI

M_SQRT2

M_SQRTIY.

The base-2logarithm of e.
The base-l0 logarithm of e.
The natural logarithm of 2.

The natural logarithm of 10.

1t, the ratio of the circumference of a circle to its diameter.

1t/2.
1t/4.
1/1t.
2/1t.

2/'J1t.

The positive square root of 2.

The positive square root of 1/2.

The following mathematical constants are also defined in this header file:

MAXFLOAT The maximum value of a non-infinite single-precision floating
point number.

HUGE_VAL positive infinity.

For the defmitions of various machine-dependent constants, see values(5).

SEE ALSO
intro(3), matherr(3M), values(5).

10/89 Page 1

nUypes(5) nUypes(5)

NAME
nl_types - native language data types

SYNOPSIS
tinclude <n1_types.h>

DESCRIPTION
This header file contains the following definitions:

nl_ catd used by the message catalog functions catopen, catgets and
catclose to identify a catalogue

nl item used by nl langinfo to identify items of langinfo data. Values
for objects Of type nl_item are defined in langinfo .h.

NL SETD used by gencat when no $set directive is specified in a message
text source file. This constant can be used in subsequent calls to
catgets as the value of the set identifier parameter.

maximum number of messages per set

maximum number of sets per catalogue.

maximum size of a message.

DEF_NLSPATH
SEE ALSO

the default search path for locating catalogues.

10/89

catgets(3C), catopen(30, nl_langinfo(3C), langinfo(5).
gencat(1M) in the System Administrator's Reference Manual.

Page 1

prof(5) prof(5)

NAME
prof - profile within a function

SYNOPSIS
tdefine MARK
tinclude <prof.h>

void MARK (name);

DESCRIPTION
MARK introduces a mark called name that is treated the same as a function entry
point. Execution of the mark adds to a counter for that mark, and program­
counter time spent is accounted to the immediately preceding mark or to the
function if there are no preceding marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in
a single compilation must be unique, but may be the same as any ordinary pro­
gram symbol.

For marks to be effective, the symbol MARK must be defined before the header file
prof.h is included, either by a preprocessor directive as in the synopsis, or by a
command line argument:

cc -p -DMARK foo. c

If MARK is not defined, the MARK (name) statements may be left in the source files
containing them and are ignored. prof -g must be used to get information on
all labels.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARK defined on the command line,
the marks are ignored.

tinclude <prof.h>
foo()
(

int it j;

MARK (loopl) ;
for (i = 0; i < 2000; i++) {

}
MARK (loop2) ;
for (j = 0; j < 2000; j++) (

SEE ALSO
prof(1), prOfil(2), monitor(3C).

10/89 Page 1

regexp(5) regexp(5)

NAME
regeJIP: conpi1e, step, advance - regular expression compile and match rou­
tines

SY~OPSIS
ide£ine INIT declarations
ide£ine GETC (void) getc code
idefine PEEKC (void) peekc code
idefine UNGETC (void) ungetc code
tdefine RETURN (ptr) return code
idefine ERROR (val) error code

iinc1ude <regexp.h>

char *conpi1e(char *instring, char *expbuf, char *endbuf, int eo£);

int step(char *string, char *expbuf);

int advance(char *string, char *expbuf);

extern char *loc1, *10c2, *locs;

DESCRIPTION

10/89

These functions are general purpose regular expression matching routines to be
used in programs that perform regular expression matching. These functions are
defined by the <regexp. h> header file.

The functions step and advance do pattern matching given a character string
and a compiled regular expression as input.

The function conpile takes-as input a regular expression as defined below and
produces a compiled expression that can be used with step or advance.

A regular expression specifies a set of character strings. A member of this set of
strings is said to be matched by the regular expression. Some characters have
special meaning when used in a regular expression; other characters stand for
themselves.

The regular expressions available for use with the regexp functions are con­
structed as follows:

Expression Meaning
c the character c where c is not a special character.

\c the character c where c is any character, except a digit in the range
1-9.

$

[5]

the beginning of the line being compared.

the end of the line being compared.

any character in the input.

any character in the set 5, where 5 is a sequence of characters and/or
a range of characters, e.g., [c-c].

Page 1

regexp(5) regexp(5)

Page 2

[AS] any character not in the set 5, where 5 is defined as above.

r* zero or more successive occurrences of the regular expression r. The
longest leftmost match is chosen.

rx the occurrence of regular expression r followed by the occurrence of
regular expression x. (Concatenation)

r\{m,n\} any number of m through n successive occurrences of the regular
expression r. The regular expression r\{m\} matches exactly m
occurrences; r\{m, \} matches at least m occurrences.

\ (r\) the regular expression r. When \n (where n is a number greater
than zero) appears iIi. a constructed regular eXlhression, it stands for
the regular expression x where x is the n regular expression
enclosed in \ (and \) that appeared earlier in the constructed regu­
lar expression. For example, \ (r\) x\ (y\) z\2 is the concatenation of
regular expressions rxyzy.

Characters that have special meaning except when they appear within square
brackets ([J) or are preceded by \ are: ., *, [, \. Other special characters, such
as $ have special meaning in more restricted contexts.

The character A at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a tI'ailing newline.

Two characters have special meaning only when used within square brackets.
The character - denotes a range, [c-c] , unless it is just after the open bracket or
before the closing bracket, [-c] or [c-] in which case it has no special meaning.
When used within brackets, the character A has the. meaning complement of if it
immediately follows the open bracket (example: [AC]); elsewhere between brack­
ets (example: [c"']) it stands for the ordinary character "'.

The special meaning of the \ operator can be escaped only by preceding it with
another \, e.g. \ \.
Programs must have the following five macros declared before the iinclude
<regexp. h> statement. These macros are used by the CCIIpile routine. The
macros GETC, PEEKC, and UNGETC operate on the regular expression given as
input to conpile.

GETC This macro returns the value of the next character (byte) in the
regular expression pattern. Successive calls to GETC should
return successive characters of the regular expression.

PEEKC

UNGETC

This macro returns the next character (bvte) in the regular
expression. Immediately successive calls to PEEKC should return
the same character, which should also be the next character
returned by GETC.

This macro qlUses the argument c to be returned by the next call
to GETC and PEEKC. No more than one character of pushback is
ever needed and this character is guaranteed to be the last char­
Cicter reltd by GETC. The return value of the macro UNGETC (c) is
always ignored.

10/89

regexp(5) regexp(5)

10/89

RETURN (ptr)

ERROR (val)

This macro is used on normal exit of the conpile routine. The
value of the argument ptr is a pointer to the character after the
last character of the compiled regular expression. This is useful
to programs which have memory allocation to manage.

This macro is the abnormal return from the conpile routine.
The argument val is an error number [see ERRORS below for
meanings]. This call should never return.

The syntax of the corrpile routine is as follows:

corrpile (instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the conpile routine but
is useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call func­
tions to input characters or have characters in an external array can pass down a
value of (char *) 0 for this parameter.

The next parameter, expbuf, is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbuf) bytes, a call to ERROR (50) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a /.

Each program that includes the <regexp.h> header file must have a #define
statement for INIT. It is used for dependent declarations and initializations.
Most often it is used to set a register variable to point to the beginning of the reg­
ular expression so that this register variable can be used in the declarations for
GETC, PEEKC, and UNGETC. Otherwise it can be used to declare external variables
that might be used by GETC, PEEKC and UNGETC. [See EXAMPLE below.]

The first parameter to the step and advance functions is a pointer to a string of
characters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular expression which was
obtained by a call to the function corrpile.

The function step returns non-zero if some substring of string matches the regu­
lar expression in expbuf and zero if there is no match. If there is a match, two
external character pointers are set as a side effect to the call to step. The variable
loc1 points to the first character that matched the regular expression; the variable
loc2 points to the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire input string, loc1
will point to the first character of string and loc2 will point to the null at the end
of string.

The function advance returns non-zero if the initial substring of string matches
the regular expression in expbuf. If there is a match, an external character pointer,
loc2, is set as a side effect. The variable loc2 points to the next character in
string after the last character that matched.

Page 3

regexp(5) regexp(5)

When advance encounters a * or \ { \ } sequence in the regular expression, it
will advance its pointer to the string to be matched as far as possible and will
recursively call itself trying to match the rest of the string to the rest of the regu­
lar expression. As long as there is no match, advance will back up along the
string until it finds a match or reaches the point in the string that initially
matched the * or \ { \} . It is sometimes desirable to stop this backing up before
the initial point in the string is- reached. If the external character pointer loCS is
equal to the point in the string at sometime during the backing up process,
advance will break out of the loop that backs up and will return zero.

The external variables ciref, sed. and nbra are reserved.

DIAGNOSTICS
The function conpile uses the macro RETURN on success and the maCro ERROR on
failure (see above). The functions step and advance return non-zero on a suc­
cessful match and zero if there is no match. Errors are:

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \ (\) imbalance.

43 too many \ (.

44 more than 2 numbers given in \ { \}.
45 } expected after \.

46 first number exceeds second in \ { \}.
49 [1 imbalance.

50 regular expression overflow.

EXAMPLE

Page 4

The following is an example of how the regular expression macros and calls
might be defined by an application program:

tdefine INIT
tdefine GETC
tdefine PEEKC
tdefine,UNGETC(c)
tdefine FETURN(*c)
tdefine ERROR(c)

tinclude <regexp.h>

register char *sp - instring;
(*sp++)
(*sp)

(-sp)
return;

regerr

(void) compile (*argv, expbuf, &expbuf[ESIZE1,'\0');

if (step (linebuf, expbuf»
succeed;

10/89

slglnfo(5) 8Iginfo(5)

NAME
siginfo - signal generation information

SYNOPSIS
tinclude <siginfo.h>

DESCRIPTION

10/89

If a process is catching a signal, it may request information that tells why the sys­
tem generated that signal [see sigaction(2»). If a process is monitoring its chil­
dren, it may receive information that tells why a child changed state [see
waitid(2»). In either case, the system returns the information in a structure of
type siginfo _ t, which includes the following information:

int si signo /* signal number */
int si-errno /* error number */
int si-code /* signal code */

si_signo contains the system-generated signal number. (For the waitid(2) func­
tion, si_signo is always SIGCHLD.)

If si_errno is non-zero, it contains an error number associated with this signal,
as defined in errno. h.

si_code contains a code identifying the cause of the signal. If the value of
si_code is less than or equal to 0, then the signal was generated by a user pro­
cess [see kill(2) and sigsend(2)] and the siginfo structure contains the follow­
ing additional information:

pid_t si-pid /* sending process 10 */
uid_t si_uid /* sending user 10 */

Otherwise, si code contains a signal-specific reason why the signal was gen­
erated, as follOWs:

Signal Code
SIGILL ILL ILLOPC

ILL ILLOPN
ILL ILLADR
ILL ILLTRP
ILL PRVOPC
ILL PRVREG
ILL COP ROC
ILL BADSTK

SIGFPE FPE INTOIV
FPE INTOVF
FPE FLTOIV
FPE FLTOVF
FPE FLTUND
FPE FLTRES
FPE FLTINV
FPE FLTSUB

Reason
illegal opcode
illegal operand
illegal addressing mode
illegal trap
privileged opcode
privileged register
coprocessor error
internal stack error

integer divide by zero
integer overflow
floating point divide by zero
floating point overflow
floating point underflow
floating point inexact result
invalid floating point operation
subscript out of range

Page 1

8Iglnfo(5) 8Iglnfo(5)

Signal
SIGSEGV

SIGBUS

SIGTRAP

SIGCHLD

SIGPOLL

Code
SEGV MAPERR
SEGV: ACCERR

BUS ADRALN
BUS ADRERR
BUS-OBJERR

CID_EXlTED
CID KILLED
CID-DUMPED
Cm-TRAPPED
cm STOPPED
cm CONTINUED

POLL_IN
POLL_OUT
POLL MSG
POLL ERR
POLL PRI
POLL_HUP

Reason
address not mapped to object
invalid permissions for mapped object

invalid address alignment
non-existent physical address
object specific hardware error

process breakpoint
process trace trap

child has exited
child was killed
child terminated abnormally
traced child has trapped
child has stopped
stopped child had continued

data input available
output buffers available
input message available
I/O error
high priority input available
device disconnected

In addition, the following signal-dependent information is available for kernel­
generated signals:

Signal Field Value
SIGILL caddr_t si addr address of faulting instruction
SIGFPE
SIGSEGV caddr_t si addr
SIGBUS
SIGCHLD pid_t si-pid

int si status
SIGPOLL long si_band

address of faulting memory reference

child process ID
exit value or signal
band event for POLL_IN, POLL OUT, or
POLL MSG

SEE ALSO

NOTES

Page 2

sigaction(2), waitid(2), signal(S).

For SIGCHLD signals, if si_code is equal to CLD;...EXlTED, then ai_status is equal
to the exit value of the process; otherwise, it is equal to the signal that caused the
process to change state. For some implementations, the exact value of si _addr
may not be available; in that case, si_addr is guaranteed to be on the same page
as the faulting instruction or memory reference.

10/89

signal (5) signal (5)

NAME
signal - base signals

SYNOPSIS
tinclude <signal.h>

DESCRIPTION

10/89

A signal is an asynchronous notification of an event. A signal is said to be gen­
erated for (or sent to) a process when the event associated with that signal first
occurs. Examples of such events include hardware faults, timer expiration and
terminal activity, as well as the invocation of the kill or sigsend system calls.
In some circumstances, the same event generates signals for multiple processes.
A process may request a detailed notification of the source of the signal and the
reason why it was generated [see siginfo(5»).

Each process may specify a system action to be taken in response to each signal
sent to it, called the signal's disposition. The set of system signal actions for a
process is initialized from that of its parent. Once an action is installed for a
specific signal, it usually remains installed until another disposition is explicitly
requested by a call to either sigaction, Signal or sigset, or until the process
execs [see sigaction(2) and signal(2»). When a process execs, all signals whose
dispoSition has been set to catch the signal will be set to SIG_DFL. Alternatively,
a process may request that the system automatically reset the disposition of a sig­
nal to SIG_DFL after it has been caught [see sigaction(2) and signal(2»).

A signal is said to be delivered to a process when the appropriate action for the
process and signal is taken. During the time between the generation of a signal
and its delivery, the signal is said to be pending [see sigpending(2»). Ordinarily,
this interval cannot be detected by an application. However, a signal can be
blocked from delivery to a process [see signal(2) and sigprocmask(2»). If the
action associated with a blocked signal is anything other than to ignore the signal,
and if that signal is generated for the process, the signal remains pending until
either it is unblocked or the signal's disposition requests that the signal be
ignored. If the signal disposition of a blocked signal requests that the signal be
ignored, and if that signal is generated for the process, the signal is discarded
immediately upon generation.

Each process has a signal mask that defines the set of signals currently blocked
from delivery to it [see sigprocmask(2»). The signal mask for a process is initial­
ized from that of its parent.

The determination of which action is taken in response to a signal is made at the
time the signal is delivered, allowing for any changes since the time of genera­
tion. This determination is independent of the means by which the signal was ori-
ginally generated. v

The signals currently defmed in <signal.h> are as follows:

Page 1

signal (5) signal (5)

Name Value Default Event
SIGHUP 1 Exit Hangup [see termio(7))
SIGINT 2 Exit Interrupt [see termio(7))
SIGQUIT 3 Core Quit [see termio(7»)
SIGILL 4 Core Illegal Instruction
SIGTRAP 5 Core Trace/Breakpoint Trap
SIGABRT 6 Core Abort
SIGEMT 7 Core Emulation Trap
SIGFPE 8 Core Arithmetic Exception
SIGKILL 9 Exit Killed
SIGBUS 10 Core Bus Error
SIGSEGV 11 Core Segmentation Fault
SIGSYS 12 Core Bad System Call
SIGPIPE 13 Exit Broken Pipe
SIGALRM 14 Exit Alarm Clock
SIGTERM 15 Exit Terminated
SIGUSRl 16 Exit User Signal 1
SIGUSR2 17 Exit User Signal 2
SIGCHLD 18 Ignore Child Status Changed
SIGPWR 19 Ignore Power Fail/Restart
SIGWINCH 20 Ignore Window Size Change
SIGURG 21 Ignore Urgent Socket Condition
SIGPOLL 22 Exit Pollable Event [see streamio(7»)
SIGSTOP 23 Stop Stopped (signal)
SIGTSTP 24 Stop Stopped (user) [see termio(7»)
SIGCONT 25 Ignore Continued
SIGTTIN 26 Stop Stopped (tty input) [see termio(7»)
SIGTTOU 27 Stop Stopped (tty output) [see termio(7»)
SIGVTALRM 28 Exit Virtual Timer E~ired
SIGPROF 29 Exit Profiling Timer xpired
SIGXCPU 30 Core CPU time limit exceeded [see getrlimit(2»)
SIGXFSZ 31 Core File size limit exceeded [see getrlimit(2»)

Using the signal, sigset or sigaction system call, a process may specify one
of three dispositions for a signal: take the default action for the signal, ignore the
signal, or catch the signal.

Default Action: SIG DFL

Page 2

A disposition ofSIG_DFL specifies the default action. The default action for each
signal is listed in the table above and is selected from the following:

Exit

Core

Stop

vVhen it gets the signal, the receiving piQCeSS is to be terminated "'lith all
the consequences outlined in ,exit(2).

When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exit(2). In addition, a "core image" of the
process is constructed in the current working directory.

When it gets the signal, the receiving process is to stop.

10/89

signal (5) signal (5)

Ignore When it gets the signal, the receiving process is to ignore it. This is
identical to setting the disposition to SIG_IGN.

Ignore Signal: SIG IGN
A disposition ofSIG_IGN specifies that the signal is to be ignored.

Catch Signal: function address

NOTES

10/89

A disposition that is a function address specifies that, when it gets the signal, the
receiving process is to execute the signal handler at the specified address. Nor­
mally, the signal handler is passed the signal number as its only argument; if the
disposition was set with the sigaction function however, additional arguments
may be requested [see sigaction(2)]. When the signal handler returns, the
receiving process resumes execution at the point it was interrupted, unless the
signal handler makes other arrangements. If an invalid function address is
specified, results are undefined.

If the disposition has been set with the sigset or sigaction function, the signal
is automatically blocked by the system while the signal catcher is executing. If a
longjrnp [see setjrnp(3C)] is used to leave the signal catcher, then the signal must
be explicitly unblocked by the user [see signal(2) and sigprocmask(2)].

If execution of the signal handler interrupts a blocked system call, the handler is
executed and the interrupted system call returns a -1 to the calling process with
errno set to EINTR. However, if the SA_RESTART flag is set the system call will be
transparently restarted.

The dispositions of the SIGKILL and SIGSTOP signals cannot be altered from their
default values. The system generates an error if this is attempted.

The SIGKILL and SIGSTOP signals cannot be blocked. The system silently
enforces this restriction.

Whenever a process receives a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOIJ signal,
regardless of its disposition, any pending SIGCONT signal are discarded.

Whenever a process receives a SIGCONT signal, regardless of its dispositlon, any
pending SIGSTOP, SIGTSTP, SIGTTIN, andSIGTTOIJ signals is discarded. In addi­
tion, if the process was stopped, it is continued.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a "selectable" event pending. A process must specifically
request that this signal be sent using the I_SETSIG ioctl call. Otherwise, the
process will never receive SIGPOLL.

If the disposition of the SIGCHLD signal has been set with signal or sigset, or
with sigaction and the SA_NOCLDSTOP flag has been specified, it will only be
sent to the calling process when its children exit; otherwise, it will also be sent
when the calling process's children are stopped or continued due to job control.

The name SIGCLD is also defined in this header file and identifies the same signal
as SIGCHLD. SIGCLD is provided for backward compatibility, new applications
should use SIGCHLD.

Page 3

signal (5) signal (5)

The disposition of signals that are inherited as SIG_IGN should not be changed.

SEE ALSO

Page 4

exit(2), getrlirnit(2), intro(2), kill(2), pause(2), sigaction(2),
sigaltstack(2), signal(2), sigprocmask(2), sigsend(2), sigsuspend(2),
wait(2), sigsetops(3C), siginfo(S), ucontext(S).

10/89

stat (5) stat (5)

NAME
stat - data returned by stat system call

SYNOPSIS
linclude <sys/types.h>
linclude <sys/stat.h>

DESCRIPTION

10/89

The system calls stat, lstat and fstat return data in a stat structure, which is
defined in stat. h.

The constants used in the st mode field are also defined in this me:

Ide fine
id.efine
ide fine
ide fine
ide fine
Ide fine
Ide fine
'define
'define
'define
Ide fine
Ide fine
Idef.:i.ne
Ide fine
Idefine
Idefine
'define
'define
Idefine
'define
'define
idefine
idefine
'define
Ide fine
Ide fine
idefine
ide fine
tdefine
ide fine

S IFMr
S-IAMB

S:=IFIE'O
S IFCHR
S-IFDIR
S_IE'NAM
S INSEM
S:INSHD
S IFBLK
S IFREG
s-tJrUlK
S-ISUID
S ISGro
S:ISVTX
S IREAD
S:=Dffl.lTE
S IEXEC
S ENFMi'
S IRWXU
S-IRUsa
S_IWUSR
S IXUSR
S-IRWXG
S-IRGRP
S_IWGRP
S IXGRP
S_}RWXO
S IROTH
S-IWOTH
S IXOTH

/. type of file ./
/. access mode bits ./
/. fifo ./
/. character special ./
/. directpry • /
/. XENIX special named file • /
/. XENIX semaphore subtype of IFNAM ./
/. XE;NIX shared data subtype of IFNAM ./
/. block special • /
/. regular • /
/. symbolic link • /
/. set user id on execution • /
/. set group id on execution • /
/. Save swapped text even after use./
/. read permission, owner • /
/. write permission, owner • /
/* execute/search permission, owner./
/. record locking enforcement flag ./
/* read, write, eXecute: owner. /
/. read permission: owner ./
/. write permission: owner • /
/. execute permission: owner./
/. read, write, execute: group • /
/. read permission: group ./
/. write permission: group ./
r execute permission: group. /
r read, write, execute: other • /
r read permission: other • /
r write permission: other • /
r execute permission: other • /

Page 1

stat(S)

The following macros are for POSIX conformance:

SEE ALSO

tdefine
tdefine
tdefine
tdefine
tdefine

stat(2), types(S).

Page 2

S _ ISBLK (mode)

S_ISCHR(xoode)
S ISDIR (IOOde)
S::::ISFIFO(IOOde)
S _ ISREG (IOOde)

block special file
character special file
directory file
pipe or fifo file
regular file

stat(S)

10/89

stdarg(5) stdarg(5)

NAME
stdarg - handle variable argument list

SYNOPSIS
iinclude <stdarg.h>

va_list pvar;

void va_start (va_list pvar, parlIN);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable numbers of
arguments of variable types to be written. Routines that have variable argument
lists [such as printf] but do not use sttiarg are inherently non-portable, as dif­
ferent machines use different argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start 0 macro is invoked before any access to the unnamed arguments
and initializes pvar for subsequent use by va_argO and va_endO. The parame­
ter parmN is the identifier of the rightmost parameter in the variable parameter
list in the function definition (the one just before the, ...). If this parameter is
declared with the register storage class or with a function or array type, or
with a type that is not compatible with the type that results after application of
the default argument promotions, the behavior is undefined.

The parameter parmN is required under strict ANSI C compilation. In other com­
pilation modes, parmN need not be supplied and the second parameter to the
va_star,t 0 macro can be left empty [e.g., va_start (pvar,);]. This allows for
routines that contain no parameters before the ... in the variable parameter list.

The va_argO macro expands to an expression that has the type and value of the
next argument in the call. The parameter pvar should have been previously ini­
tialized by va_start O. Each invocation of va _arg 0 modifies pvar so that the
values of successive arguments are returned in turn. The parameter type is the
type name of the next argument to be returned. The type name must be specified
in such a way so that the type of a pointer to an object that has the specified type
can be obtained simply by postfixing a * to type. If there is no actual next argu­
ment, or if type is not compatible with the type of the actual next argument (as
promoted according to the default argument promotions), the behavior is
undefined.

The va_end 0 macro is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

10/89

This example gathers into an array a list of arguments that are pointers to strings
(but not more than MAXARGS arguments) with function fl, then passes the array
as a single argument to function f2. The number of pointers is specified by the
first argument to fl.

Page 1

stdarg(5) stdarg(5)

tinclude <stdarg.h>
tdefine MAXARGS 31

void fl (int n..,ptrs, ...)
{

va list ap;
char *array[~GS];
int ptr_no - 0;

if (n..,ptrs > MAXARGS)
n..,ptrs = ~GS;

va_start (ap, n..,Ptrs);
while (ptr_no < n..,ptrs)

array[ptr_no++] = va_arg(ap, char*);
va end (ap) ;
f2(n..,ptrs, array);

Each call to fl shall have visible the definition of the function or a declaration
such as

void fl(int, ...)

SEE ALSO
vprintf(3S).

NOTES

Page 2

It is up to the calling routine to specify in some manner how many arguments
there are, since it is not always possible to determine the number of arguments
from the stack frame. For example, execl is passed a zero pointer to signal the
end of the list. printf can tell how many arguments there are by the format. It
is non-portable to specify a second argument of char, short, or float to
va_arg, because arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float argu­
ments to double before passing them to a function.

10/89

types (5) types (5)

NAME
types - primitive system data types

SYNOPSIS
iinclude <sys/types.h>

DESCRIPTION

10/89

The data types defined in types.h are used in UNIX System code. Some data of
these types are accessible to user code:

typedef struet { int r[l]; } .physadr;
typedef long clock_t;
typedef long daddr t;
typedef char. caddr -t;
typedef unsigned char unchcir;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef unsigned long ino t;
typedef long uid-t;
typedef long gidt;
typedef ulong nlilik t;
typedef ulong 1I'Ode_t;
typedef short cnt_t;
typedef long time t;
typedef int label_t[lO];
typedef ulong dev t;
typedef long off-t;
typedef long pid-t;
typedef long paddr _ t;
typedef int key_t;
typedef unsigned char use t;
typedef short sysId t;
typedef short index-t;
typedef short lock t;
typedef unsigned int size-t;
typedef long clock t;
typedef long pid_t;

The form daddr t is used for disk addresses except in an i-node on disk, see
fs(4). Times are encoded in seconds since 00:00:00 UTe, January 1, 1970. The
major and minor parts of a device code specify kind and unit number of a device
and are installation-dependent. Offsets are measured in bytes from the beginning
of a file. The label_t variables are used to save the processor state while
another process is running.

Page 1

ucontext(5) ucontext (5)

NAME
ucontext - user context

SYNOPSIS
iinclude <ucontext.h>

DESCRIPTION
The ucontext structure defines the context of a thread of control within an exe­
cuting process.

This structure includes at least the following members:

ucontext t
sigset_t­
stack_t

uc link
uc:sigmask
uc_stack

mcontext_t uc_mcontext
uc _link is a pointer to the context that to be resumed when this context returns.
If uc _link is equal to 0, then this context is the main context, and the process
exits when this context returns.

uc _ sigmask defines the set of signals that are blocked when this context is active
[see sigprocmask(2)].

uc_stack defines the stack used by this context [see sigaltstack(2)].

uc_mcontext contains the saved set of machine registers and any implementation
specific context data. Portable applications should not modify or access
uc _mcontext.

SEE ALSO

10/89

getcontext(2),
makecontext(3C).

sigaction(2), sigprocmask(2), sigaltstack(2),

Page 1

values(5) values (5)

NAME
values - machine-dependent values

SYNOPSIS
iinclude <values.h>

DESCRIPTION
This' file contains a set of manifest constants, conditionally defined for particular
processor architectures,.

The model assumed for integers is binary representation (one's or two's comple­
ment), where the sign is represented by the value of the higl1-order bit.

BITS (type) The number of bits in a specified type <e.g., int).

HIBITS
HIBITL
HIBITI

The value of a short integer with only the high-order bit set.

The v,llue of a long integer with only the high-order, bit set.

The value ,of a regular integer with only the high-order bit set.

MAXSHORT The maximum value of a signed short integer.

MAXLONG The maximum value of a signed long integer.

MAXINT The maximum value ofa signed regular integer.

MAXFLOAT, LN MAXFLOAT
- The maXimum value of a single-precision floating-point number,

and its natural logarithm.

MAXDOOBLE, LN MAXDOUBLE
The maximum value of adouble~ptecision floating-point number,
and its natural logarithm.

MINFLOAT, LN MINFLOAT'
- The minimum positive value of a single-precision floating-point

number, .and' its natural logarithm.

MINDOUBLE, LN MINDOUBLE

FSIGNIF

DSIGNIF

The minimum, positive value of a double-precision floating-point
number, and its natural logarithm.

The number of significant bits in the mantissa of a single-precision
floating-pOint number.

The number of significant bits in the mantissa of a double­
precision floating-point number.

SEE ALSO
intro(3), math(S).

10189 Page 1

varargs(5) varargs(5)

NAME
varargs - handle variable argument list

SYNOPSIS
tinelude <varargs.h>

va_alist

va_del

va_list pvar;

void va_start (va_list pvar);

type va_arg(va_list pvar, type);
void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists
to be written .. Routines that hav~ variable argument lists [such as printf(3S»)
but do not use varargs are inherently non-portable, as different machines use
different argument~passing conventions.

va_alist is used asthe parameter list in a function header.

va_del is a declaration for va_alist. No semicolon should follow va_del.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argumell.t in the list poirited to by pvar. type is the
type the argument is expected to be. Different types call. be mixed, but it is up to
th~ routine to know what type of argument is expected, as it cannot be deter­
mined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

10/89

This example is a possible implementation of exeel [see exee(2»).

finelude <unistd.h>
finelude <vatargs.h>
fdefine MAXARGslOO

/* exeel is eailed by
exeel(file, argl, arg2, ... , (char *)0);

*/
exeel(va alist)
va del -
{

va_list ap;
ehar *fil~;
char *args [MAXARGS];
it)t argno == 0;

/* assumed big enough*/

Page 1

varatgs(5) varargs(5)

va start (ap) ;
fiIe = va .. arg(ap, char *);
while «args[argno++l == va_arg(ap, char *» != 0)

vaend(ap);
return execv(file, args);

SEE ALSO

NOTES

Page 2

exec(2), printf(3S), vprintf(3S), stdarg(S).

It is up to thecalUng routine tp specify in some manner how many arguments
there are, since it· is not always F()ssib.le to determine the number of arguments
from the stack frame. For example, execl is passed a zero pointer to· signal the
end of the list. printf can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments ~n by the called function are not char, short, or
float. C converts char and short arguments to int and converts float argu­
ments to double before passing them to a function.

stdarg is the preferreq interface.

10/89

wstat(5) wstat(5)

NAME
wstat - wait status

SYNOPSIS
tinclude <sys/wait.h>

DESCRIPTION
When a process waits for status from its children via either the wait or waitpid
function, the status returned may be evaluated with the following macros,
defined in sys/wait. h. These macros evaluate to int~gral expressions. The stat
arg\J.ment to these macros is the integer value returned from wa,tt or waitpid.

WIFEXITFD (stat) Evaluates to a non~zero value if status was returned for a
child process that terminated normally.

WEXITSTATUS (stat)

WIFSIGNALEO (stat)

WTERMSIG (stat)

WIFSTOPPEO (stat)

WSTOPSIF (stat)

WIFCONTINUEO(stat)

WCOREDUMI?(stat)

If the value of WIFEXITED (stat) is non~zero, this macro
eval\J.ates to the exit code that the child process passed to
_exit or exit,. or the value that the child process
returne(i from main.

Evaluates to a non-zero value if status was returned for a
child process that terminated due to the receipt of a sig­
nal.

If the value of WIFSIGNALEO (stat) is non-zero, this macro
evaluates to the number of the signal that caused the ter­
mination of the child process.
Evaluates to a non-zero value if status was returned for a
child process that is·currently stopped.

If the value of WIFSTOPPED (stat) is non-zero, this macro
evaluates to the number of the signal that caused the
child proc~ss to stop.

EV!lluates to a non-zero value if status was returned for a
child process that has continued.

If the value of WIFSIGNALED (stat) is non-zero, this macro
evaluates to a non-zero value if a core image of the ter­
minatedchild was created.

SEE ALSO
exit(2), wait(2), waitpid(3C).

10/89 Page 1

xtproto(5) xtproto(5)

NAME
xtproto - multiplexed channels protocol used by xt driver

DESCRIPTION

10/89

This xt protocol is used for communication between multiple UNIX System host
processes and an AT&T windowing terminal operating under the layers com­
mand; see xt(7). It is a multiplexed protocol that directs traffic between host
processes and terminal windows, thereby allowing multiple virtual terminal ses­
sions over a single connection. The protocol is implemented by the xt host driver
and corresponding firmware in a windowing terminal.

The xt driver implements two distinct low level protocols. Which protocol is
used depends on the media used for communication with the terminal. The regu­
lar xt protocol is used when communicating over unreliable media such as RS-
232. The regular xt protocol provides flow control and error correction, thereby
guaranteeing error-free delivery of data. The network xt protocol is used when
communicating over reliable media such as a local area network. In order to
achieve maximum possible throughput, the network xt protocol relies on the
underlying network to provide flow control and error correction.

The layers command queries the windowing terminal whether to use regular or
network xt protocol through an A_XTPROTO Jl\GENT ioctl system call [see
layers(S)]. The layers command then decides what protocol to use based on
the return value of A_XTPROTO, baud rate, and the -In option of layers.

The regular xt protocol uses packets with a 2-byte header containing a 3-bit
sequence number, 3-bit channel number, control flag, and one byte for data size.
The data part of packets sent from the host to the terminal may not be larger
than 252 bytes. The maximum data part size can be less than 252 at lower baud
rates, or if the -In option of layers was specified. Also, when communicating
with some earlier windowing terminals, maximum data part size is fixed at 32
bytes. The maximum data part size of packets sent from the terminal to the host
is always fixed at 32 bytes. The trailer contains a CRC-16 code in 2 bytes. Each
channel is double-buffered.

Correctly received regularxt packets in sequence are acknowledged with a con­
trol packet containing an ACK; however, out of sequence packets generate a con­
trol packet containing a NAK, which causes the retransmission in sequence of all
unacknowledged packets.

Unacknowledged regulatxt packets are retransmitted after a timeout interval
that is dependent on baud rate. Another timeout parameter specifies the interval
after which incomplete receive packets are discarded.

Network xt protocol uses a 3-byte header containing a 3-bit channel number,
various control flags,aI:ld 2-bytes for data size. The data part of packets sent from
the host to the terminal has no size limit. The data part of packets sent from the
terminal to the host is restricted to 1025 bytes.

Since network xt protocol relies on the underlying media to guarantee error-free
delivery of data, no. CRC codes or timeouts are needed.

Page 1

xtproto(5) xtproto(5)

FILES

Network xt protocol provides a simple flow control mechanism to limit the
amount of data sent to a window in the terminal before a NETWORK XT ACK ack­
nowledgement is received by the host. The intent of this flow control is to limit
the amount of data sent to a window in the terminal not reading its input
because, for example, the user has pressed the scroll lock key. This is necessary to
prevent data from backing up and blocking other data directed to other windows.
To improve overall throughput, network xt flow control can be disabled by
processes in the terminal that always read their input quickly.

/usr/include/sys/xtproto.h channel multiplexing protocol definitions

SEE ALSO

Page 2

jagent(S), layers(S).
layers(1) in the User's Reference Manual.
xt(7) in the Programmers Guide: STREAMS.

10/89

I
I
I
I
I
I
!
I
I
!
I
I
!
I
I
I
i
!
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

