ATal

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide:

ANSI C and
Programming Support Tools

UNIX Software Operation

i

ATsTl

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide:
ANSI C and
Programming Support Tools

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

Intel 80386 and Intel 80860 are trademarks of Intel Corporation.

Motorola 68000 and Motorola 88000 are trademarks of Motorola Corporation.
PDP is a registered trademark of Digital Equipment Corporation.

SPARC is-a registered trademark of Sun Microsystems, Inc.

Teletype, UNIX, and WE are registered trademarks of AT&T.

10987654321

ISBN 0-13-93370L-7

UNIX

PRESS
A Prentice Hall Title

P RENTI CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632.

Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX” System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index

UN IXS System V Release 4 System Administrator’s Guide

UNIX System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C
and Programming Support Tools
UNIX® System V Release 4 Programmer’s Guide: Character User Interface
{FMLIand ETI)
UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces
UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance

UNIX® System V Release 4 Programmer’s Guide: System Services
and Application Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual
System Programmer’s Series

UNIX® System V Release 4 ANSIC Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel
Interface (DDI/ DKI) Reference Manual

UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer’s Guide: STREAMS

Available from Prentice Hall

Contents

Purpose

Notation Conventions

1 Overview
Introduction 1-1
C Compilation 1-2
C Language 1-4
Summary of Contents 1-7
Other Tools 1-12

2 C Compilation System

Introduction 2-1
Compiling and Linking 2-2
Libraries and Header Files : 2-33

3 C Language

Introduction 31

Source Files and Tokenization 3-5

Preprocessing 3-11
Declarations and Definitions 3-21
Conversions and Expressions 3-31
Statements 3-47
Portability Considerations 3-52

Table of Contents i

Table of Contents

4 C Compiler Diagnostics

Introduction 4-1
Messages 4-3
Operator Names 4-130
Other Error Messages 4-132
5 lint
Introduction 5-1
What lint Does 5-3
Usage 5-8
lint-specific Messages 5-17
6 sdb
Introduction 6-1
Command Line Syntax 6-3
Interactive Commands 6-5
Example 6-18
7 Iprof
Overview of C Profiling Utilities 7-1
Compiling the Program 7-4
Running the Profiled Program 7-5
Invoking Iprof 7-10
Profiling Archive or Shared Object Library Code 7-18
Notes 7-20
Improving Program Performance 7-22
Improving Test Coverage 7-29

ii ANSI C and Programming Support Tools

Table of Contents

8 cscope
Introduction 8-1
How to Use cscope 8-2
Notes 8-26
9 make
Introduction 9-1
Basic Features 9-2
Description Files and Substitutions 9-7
Command Usage 9-20
Suggestions and Warnings 9-23
Internal Rules - 9-24
1 o SCCS
Introduction . 10-1
Basic Usage 10-2
Delta Numbering 10-7
SCCS Command Conventions 10-10
SCCS Commands 10-12
SCCS Files 10-37

LI

Introduction

Generating a Lexical Analyzer Program 11-2
Writing lex Source 11-5
Using lex with yacc 11-22
Miscellaneous 11-25
Summary of Source Format 11-26

Table of Contents jii

Table of Contents

1 2 yacc
Introduction 12-1
Basic Specifications 12-4
Parser Operation 12-12
Ambiguity and Conflicts 12-17
Precedence 12-22
Error Handling 12-28
The yacc Environment 12-31
Hints for Preparing Specifications 12-33
Advanced Topics 12-37
Examples 12-44
1 3 Object Files
Introduction 13-1
Program Linking 13-4
Program Execution 13-39
1 4 Floating Point Operations
Introduction ' ‘ 141
IEEE Arithmetic 14-2
Conversion Between Binary and Decimal Values 14-13
Single-Precision Floating Point Operations 14-16
Double-Extended-Precision 14-19
IEEE Requirements 14-20
1 5 m4 Macro Processor
Overview 15-1
m4 Macros 15-4

ANSI C and Programming Support Tools

Table of Contents

A Appendix A: Enhanced asm Facility

Introduction A-1
Example A-2
Definition Of Terms A-4
Detailed Description A-5
Writing asm Macros A-8

B Appendix B: Mapfile Option

Introduction B-1
Using the Mapfile Option B-2
Mapfile Structure and Syntax B-3
Mapping Example B-9
Mapfile Option Defaults B-11
Internal Map Structure B-13
Error Messages B-17
Glossary
| Index

Table of Contents v

Figures and Tables

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Organization of C Compilation System

Excerpt from string(3S) Manual Page

How stremp() Is Used in a Program

Standard 1/O Functions and Macros

String Operations

Classifying 8-Bit Character-Coded Integer Values
Converting Characters, Integers, or Strings

Math Functions

libgen Functions

Figure 2-10: Using argv[1] to Pass a File Name
Figure 2-11: Using Command Line Arguments to Set Flags

Figure 6-1:
Figure 6-2:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:

Source Program c_recurse.c

sdb Usage Example

Example of Iprof Default Output
Example of Iprof —x Output

Example of Iprof —s Output

prof Output

Iprof Output for the Function CAfind()
Iprof Output for New Version of CAfind()
prof Output for New Version of Iprof
Iprof Summary Output for a Test Suite
Fragment of Output from Iprof —x

Figure 7-10: Output from Iprof —x for putdata()

Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 8-9:

The cscope Menu of Tasks

Menu Manipulation Commands

Requesting a Search for a Text String

cscope Lists Lines Containing the Text String
Commands for Use after Initial Search

Examining a Line of Code Found by cscope
Requesting a List of Functions That Call alloctest()
cscope Lists Functions That Call alloctest()
cscope Lists Functions That Call mymalloc()

Figure 8-10: Viewing dispinit() in the Editor
Figure 8-11: Using cscope to Fix the Problem
Figure 8-12: Changing a Text String

Table of Contents

2-3

2-35
2-37
2-39
2-40
2-42
2-43
2-44
2-48
2-54
2-55
6-19
6-20
7-13
7-15
7-16
7-22
7-23
7-26
7-28
7-29
7-30
7-31

vii

Table of Contents

Figure 8-13: cscope Prompts for Lines to Be Changed 8-20
Figure 8-14: Commands for Selecting Lines to Be Changed 8-21
Figure 8-15: Marking Lines to Be Changed 8-22
Figure 8-16: cscope Displays Changed Lines of Text 8-23
Figure 8-17: Escaping from cscope to the Shell 8-24
Figure 9-1: Summary of Default Transformation Path 9-13
Figure 9-2: make Internal Rules 9-24
Figure 10-1: Evolution of an SCCS File 10-7
Figure 10-2: Tree Structure with Branch Deltas 10-8
Figure 10-3: Extended Branching Concept 10-9
Figure 10-4: Determination of New SID 10-21
Figure 11-1: Creation and Use of a Lexical Analyzer with lex 11-4
Figure 11-2: lex Operators 11-9
Figure 13-1: Object File Format 13-2
Figure 13-2: 32-Bit Data Types 13-3
Figure 13-3: ELF Header 13-4
Figure 13-4: e_ident]] Identification Indexes 13-7
Figure 13-5: Data Encoding ELFDATA2LSB 13-9
Figure 13-6: Data Encoding ELFDATA2MSB 13-10
Figure 13-7: WE 32100 Identification, e_ident 13-10
Figure 13-8: Processor-Specific Flags, e_flags 13-11
Figure 13-9: 6386 Computer Identification, e_ident 13-11
Figure 13-10: Special Section Indexes 13-12
Figure 13-11: Section Header 13-14
Figure 13-12: Section Types, sh_type 13-15
Figure 13-13: Section Header Table Entry: Index 0 13-18
Figure 13-14: Section Attribute Flags, sh_flags 13-18
Figure 13-15: sh_link and sh_info Interpretation 13-19
Figure 13-16: Special Sections 13-20
Figure 13-17: Special Sections, .got and .plt 13-23
Figure 13-18: String Table 13-24
Figure 13-19: String Table Indexes 13-24
Figure 13-20: Symbol Table Entry 13-25
Figure 13-21: Symbol Binding, ELF32_ST_BIND 13-26
Figure 13-22: Symbol Types, ELF32_ST _TYPE 13-27
Figure 13-23: Symbol Table Entry: Index 0 13-29
Figure 13-24: Relocation Entries 13-30
Figure 13-25: 3B2 Computer Relocatable Fields 13-32
Figure 13-26: 3B2 Computer Relocation Types 13-34
Figure 13-27: 6386 Computer Relocatable Fields 13-35
viii ANSI C and Programming Support Tools

Figure 13-28:
Figure 13-29:
Figure 13-30:
Figure 13-31:
Figure 13-32:
Figure 13-33:
Figure 13-34:
Figure 13-35:
Figure 13-36:
Figure 13-37:
Figure 13-38:
Figure 13-39:
Figure 13-40:
Figure 13-41:
Figure 13-42:
Figure 13-43:
Figure 13-44:
Figure 13-45:
Figure 13-46:
Figure 13-47:
Figure 13-48:

Figure B-1: User-Defined Mapfile
Figure B-2: Default Mapfile
Figure B-3: Simple Map Structure

Table of Contents

6386 Computer Relocation Types 13-37
Program Header 13-39
Segment Types, p_type 13-40
Segment Flag Bits, p_flags 13-43
Segment Permissions 13-43
Text Segment 13-44
Data Segment 13-44
Note Information 13-45
Example Note Segment 13-46
Executable File 13-48
Program Header Segments 13-48
Process Image Segments 13-50
Example Shared Object Segment Addresses 13-51
Dynamic Structure 13-54
Dynamic Array Tags, d_tag 13-55
Global Offset Table 13-61
3B2 Computer Procedure Linkage Table 13-62
6386 Computer Absolute Procedure Linkage Table 13-64
6386 Computer Position-Independent Procedure Linkage Table 13-64
Symbol Hash Table 13-67
Hashing Function 13-68
B-9
B-11
B-14
ix

Table of Contents

Purpose

The Programmer’s Guide: ANSI C and Programming Support Tools describes UNIX
system tools supplied with the C compilation system for AT&T 3B2 and 6386
computers. We do not attempt to teach you how to program in C, nor do we
cover every UNIX system tool you might conceivably use in creating a C pro-
gram. The UNIX system text editor vi, for example, which you might use to
create the source files for a C program, and the file system itself, are described
in the User’s Guide. UNIX system calls are described in the Programmer’s

Guide: System Services and Application Packaging Tools, networking services in the
Programmer’s Guide: Networking Interfaces, and so on. The guides themselves ela-
borate on two foundation documents of the UNIX system, the Lser’s Reference
Manual and the Programmer’s Reference Manual. The manuals are foundation
documents in the sense that they describe formally and comprehensively every
feature of the UNIX system. Because their formality takes some getting used to,
the guides are provided to help you get started.

This book concentrates on tools described in Section 1 of the Programmer’s Refer-
ence Manual:

m the compilation system

m the program analysis tools lint, sdb, 1prof, and cscope
m the program maintenance tools make and SCCS

m the program development tools lex, yacc, and m4

See Chapter 1 for a complete summary of contents. Of course, we refer you to
other documents wherever appropriate.

We recommend two texts for programmers new to the C language: Kernighan
and Ritchie, The C Language, Second Edition, 1988, Prentice-Hall; Harbison

and Steele, C: A Reference Manual, Second Edition, 1987, Prentice-Hall. For
implementation-specific details not covered in this book, refer to the Application
Binary Interface for your machine. For tutorial discussions of the transition to
ANSI C, consult the ANSI C Transition Guide.

Purpose 1

Notation Conventions

The following conventions are observed in this book:

m Computer input and output appear in constant width type, substitut-
able values in italic type:

$ cc file.c file.c file.c

The dollar sign is the default system prompt for the ordinary user. There
is an implied carriage return at the end of each command. When a com-
mand extends beyond the width of our page, we mark the break with a
backslash and an indented second line:

$ cc -L../archives -L../mylibs filel.c file2.c file3.c \
file4.c -1foo

Of course, a command that extends beyond the width of your terminal
screen will wrap around. You should use the backslash only if you enter
the command exactly as we show it.

m In cases where you are expected to enter a control character, the character
is shown as, for example, control _d or ~d. Either form means that you
press the d key while holding down the CTRL key.

® A number in parentheses following a command or function name refers to
the section of the Programmer’s Reference Manual in which the command or
function is described. 1d(1), for example, means that the 1d command is
described in Section 1 of the Programmer’s Reference Manual.

Notation Conventions 1

\W

R\

B
@

1 Overview

Introduction 1-1
C Compilation 12
C Language 14
Modular Programming in C 1-4
Libraries and Header Files 1-5
How C Programs Communicate with the Shell 15
Summary of Contents 17
Creating an Executable 1-7
Program Analysis 1-8
Program Management 1-9
Program Development 1-10
Advanced Programming Utilities 1-11
Other Tools 1-12

Table of Contents i

Introduction

This volume of the Programmer’s Guide is about UNIX system tools that are used
to create, maintain, and extend C programs. As we noted in the “Purpose” sec-
tion in the beginning of this book, we do not attempt to teach you how to pro-
gram in C. We assume you know how to do that, or are learning how to do it
concurrently.

Nor could we possibly cover every tool that is supplied with the C compilation
system, or every facet of the tools that we do cover. The Programmer’s Reference
Manual exists to do both those things. The idea, instead, is to explain and pro-
vide examples of how you use the most important of these tools, and to present
a coherent picture of how they fit together. In addition, we have included
material that we think most C programmers will find invaluable, but that does
not lend itself to the reference manual format. The C compiler diagnostics
chapter is a good example of what we mean.

So how should you read the Guide? If you are not experienced in writing C
programs, you will probably want to read it sequentially, since, as far as possi-
ble, we’ve organized the tools in functional groupings. At the same time, you
will also want to read it selectively. We don’t expect anyone to read through all
four hundred or so compiler diagnostics, or casual programmers to read the
entire chapter on object files. The information you will need to make decisions
about what to read is contained in the “Summary of Contents” section below,
which introduces the programming support tools covered in the Guide and
sketches their relationship. Before we turn to it, there’s some background we
want to give on C compilation and the C language.

Overview 1-1

C Compilation

The most important of the tools we discuss in these pages is the C compilation
system, which translates your C source code into the machine instructions of the
computer your program is to run on — compiles it, in other words. On the
UNIX operating system, the command to do this is cc:

$ cc mycode.c
If your program is in multiple source files, then the command is
$ cc filel.c file2.c file3.c

and so on. As the examples suggest, the source files to be compiled must have
names that end in the characters .c.

There are other things going on invisibly in these command lines that you will
want to read about in Chapter 2, which describes the C compilation system. For
now it’s enough to note that either of these commands will create an executable
program in a file called a.out in your current directory. The second command
will also create in your current directory object files that correspond to each of
your source files:

$1ls -1
a.out

filel.
filel.
file2.
file2.
files.
file3.

OO0 OOo0aO0

Each .o file contains a binary representation of the C language code in the
corresponding source file. The cc command creates and then links these object
files to produce the executable object file a.out. The standard C library func-
tions that you have called in your program — printf (), for example — are
automatically linked with the executable at run time. You can, of course, avoid
these default arrangements by using the command line options to cc that we
describe in Chapter 2. We'll talk a bit more formally about link editing in the
“Summary of Contents” section below. We'll look at libraries in the next
section.

1-2 ANSI C and Programming Support Tools

C Compilation

You execute the program by entering its name after the system prompt:
$ a.out

Since the name a.out is only of temporary usefulness, you will probably want
to rename your executable:

$ mv a.out myprog

You can also give your program a different name when you compile it — with a
cc command line option:

$ cc -o myprog filel.c file2.c file3.c

Here, too, you execute the program by entering its name after the prompt:

$ myprog

Overview 1-3

C Language

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. All the same, the relationship
between the UNIX system and the C language has been and remains very close.
The language was developed on the UNIX operating system, and is used to code
the UNIX system kernel. Most UNIX application programs are written in C.

Chapter 3 provides a complete reference guide to the C language. Here are
some features of the language:

m basic data types: characters, integers of various sizes, and ﬂoatmg point
numbers;

m derived data types: functions, arrays, pointers, structures, and unions;
m a rich set of operators, including bit-wise operators;

m flow of control: if, if-else, switch, while, do-while, and for state-
ments. ‘

Application programs written in C usually can be transported to other machines
without difficulty. Programs written in ANSI standard C (conforming to stan-
dards set down by the American National Standards Institute) enjoy an even
higher degree of portability.

Programs that require direct interaction with the UNIX system kernel — for
low-level 1/O, memory management, interprocess communication, and the like
— can be written efficiently in C usmg the calls to system functions contained in
the standard C library, and described in Section 2 of the Programmer’s Reference
Manual.

Modular Programming in C

C is a language that lends itself readily to modular programming. It is natural
in C to think in terms of functions. And since the functions of a C program can
be compiled separately, the next logical step is to put each function, or group of
related functions, in its own file. Each file can then be treated as a component,
or a module, of your program.

Chapter 3 describes how you write C code so that the modules of your program
can communicate with each other. What we want to stress here is that coding a
program in small pieces eases the job of making changes: you need only recom-
pile the revised modules. It also makes it easier to build programs from code

1-4 ANSI C and Programming Support Tools

C Language

you have written already: as you write functions for one program, you will
surely find that many can be picked up for another.

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/output, string handling,
and other high-level operations that are not explicitly provided by the C
language. Header files contain definitions and declarations that your program
will need if it calls a library function. The functions that perform standard 1/0,
for example, use the definitions and declarations in the header file stdio.h.
When you use the line

#include <stdio.h>

in your program, you assure that the interface between your program and the
standard I/O library agrees with the interface that was used to build the library.

Chapter 2 describes some of the more important standard libraries and lists the
header files that you need to include in your program if you call a function in
those libraries. It also shows you how to use library functions in your program
and how to include a header file. You can, of course, create your own libraries
and header files, following the examples of modular programming described in
Chapter 2.

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on
the command line, which is to say, by the shell. We have already seen, for
instance, how you invoke the cc command with the names of your source files
as arguments:

$ cc filel.c file2.c file3.c

When you execute a C program, command line arguments are made available to
the function main () in two parameters, an argument count, conventionally
called argc, and an argument vector, conventionally called argv. (Every C pro-
gram is required to have an entry point named main.) argc is the number of
arguments with which the program was invoked. argv is an array of pointers
to character strings that contain the arguments, one per string. Since the

Overview 15

C Language

command name itself is considered to be the first argument, or argv[0], the
count is always at least one. Here is the declaration for main():

int

main(int argc, char *argv(])

For two examples of how you might use run-time parameters in your program,
see the last subsection of Chapter 2.

The shell, which makes arguments available to your program, considers an
argument to be any sequence of non-blank characters. Characters enclosed in
single quotes (' abc def’) or double quotes ("abc def") are passed to the pro-
gram as one argument even if blanks or tabs are among the characters. You are
responsible for error checking and otherwise making sure that the argument
received is what your program expects it to be.

In addition to argc and argv, you can use a third argument: envp is an array of
pointers to environment variables. You can find more information on envp in
the Programmer’s Reference Manual under exec in Section 2 and environ in
Section 5.

C programs exit voluntarily, returning control to the operating system, by
returning from main () or by calling the exit () function. That is, a return (n)
from main () is equivalent to the call exit (n). (Remember that main() has type
“function returning int.”’)

Your program should return a value to the operating system to say whether it
completed successfully or not. The value gets passed to the shell, where it
becomes the value of the $? shell variable if you executed your program in the
foreground. By convention, a return value of zero denotes success, a non-zero
return value means some sort of error occurred. You can use the macros
EXIT SUCCESS and EXIT FAILURE, defined in the header file stdlib.h, as
return values from main() or argument values for exit ().

1-6 ANSI C and Programming Support Tools

Summary of Contents

This section sketches the programming support tools covered by the Guide in
five functional groupings:

m creating an executable
m program analysis
® program management
m program development
m advanced programming utilities
Italicized notes suggest typical ways in which the tools are used.

In addition to the chapters discussed here, the Guide includes appendices on
assembly language escapes that use the keyword asm, and on mapfiles, a facil-
ity for mapping object file input sections to executable file output segments. It
also includes a glossary and an index.

Creating an Executable

Chapter 2 describes the C compilation system, the set of software tools that you
use to generate an executable program from C language source files. It contains
material that will be of interest to the novice and expert programmer alike.

The first section, “Compiling and Linking,” details the command line syntax
that is used to produce a binary representation of a program — an executable
object file. We mentioned earlier that the modules of a C program can com-
municate with each other. A symbol declared in one source file can be defined
in another, for example. Link editing refers to the process whereby the symbol
referenced in the first file is connected with the definition in the second. By
means of command line options to the cc command, you can select either of
two link editing models:

® static linking, in which external references are resolved before execution;

® dynamic linking, in which external references are resolved during execu-
tion.

Overview 1-7

Summary of Contents

“Compiling and Linking” describes, among many other things, the options that
let you tailor the link editor’s behavior to your needs. It also includes a discus-
sion of the advantages and disadvantages of each model. One major difference
is that dynamic linking permits library code to be shared — used simultane-
ously — by different programs at run time. Another is that dynamically linked
code can be fixed or enhanced without having to relink applications that depend
on it.

The second section of the chapter, “Libraries and Header Files,” focuses on the
standard C library, in particular, the functions you use for standard 1/0. It also
describes the math library and libgen. The header files that you need to
include in your program if you call a function in these libraries are listed in this
section.

Use the cc command and its options to control the process in which object files are
created from source files, then linked with each other and with the library functions
called in your program.

As noted, Chapter 3 provides a reference guide to the C language, which is to
say, the language accepted by the C compilation system. Chapter 4 lists the
warning and error messages produced by the C compiler. Check the code
examples given in the compiler diagnostics chapter when you need to clarify
your understanding of the rules of syntax and semantics summarized in the
language chapter. In many cases they’ll prove helpful.

Program Analysis

The lint program, described in Chapter 5, checks for code constructs that may
cause your C program not to compile, or to execute with unexpected results.
lint issues every error and warning message produced by the C compiler. It
also issues ““lint-specific’” warnings about inconsistencies in definition and use
across files and about potential portability problems. The chapter includes a list
of these warnings, with examples of source code that would elicit them.

sdb stands for “symbolic debugger,” which means that you can use the sym-
bolic names in your program to pinpoint where a problem has occurred. You
can run your program under control of sdb to see what the program is doing
up to the point at which it fails. Alternatively, you can use it to rummage
through a core image file left by a program that failed. That lets you check the

1-8 ANSI C and Programming Support Tools

Summary of Contents

status of the program at the moment of failure, which may disclose the underly-
ing problem. Chapter 6 is a tutorial on sdb.

Use lint to check your program for portability and cross-file consistency, and to
assure it will compile. Use sdb to locate a bug.

Profilers are tools that analyze the dynamic behavior of your program: how fast
and how often the parts of its code are executed.

m prof is a time profiler. It reports the amount of time and the percéntage
of time that was spent executing the parts of a program. It also reports
the number of calls to each function and the average execution time of the
calls.

m lprof is a line-by-line frequency profiler. It reports how many times each
line of C source code was executed. In that way, it lets you identify the
unexecuted and most frequently executed parts of your code.

Chapter 7 of the Guide discusses the lprof program in greater detail. It
includes an overview of the C profiling utilities that describes the procedure you
must follow to profile a program with either of these tools.

The cscope browser is an interactive program that locates specified elements of
code in C, lex, or yacc source files. It lets you search and, if you want, edit
your source files more efficiently than you could with a typical editor. That’s
because cscope knows about function calls — when a function is being called,
when it is doing the calling — and C language identifiers and keywords.
Chapter 8 is a tutorial on the cscope browser.

Use prof and lprof to identify, and cscope to rewrite, inefficient lines of code.
Use cscope for any other program-editing task.

Program Management

A number of UNIX system tools were designed to make it easier to manage C
programs. make, Chapter 9, is used to keep track of the dependencies between
modules of a program, so that when one module is changed, dependent ones
are brought up to date. make reads a specification of how the modules of your
program depend on each other, and what to do when one of them is modified.
When make finds a component that has been changed more recently than

Overview 1-9

Summary of Contents

modules that depend on it, the specified commands — typically to recompile
the dependent modules — are passed to the shell for execution.

The Source Code Control System, SCCS, is a set of programs that you can use to
track evolving versions of files, ordinary text files as well as source files. When
a file has been put under control of SCCS, you can specify that only a single
copy of any version of it can be retrieved for editing at a time. When the edited
file is returned to SCCS, the changes are recorded. That makes it possible to
audit the changes and reconstruct the file’s earlier versions. Chapter 10
describes SCCS.

Use make for any program with multiple files. Use SCCS to keep track of program
versions.

Program Development

Two UNIX system tools were designed to make it easier to build C programs.
lex, Chapter 11, and yacc, Chapter 12, generate C language modules that can
be useful components of a larger application, in fact, any kind of application
that needs to recognize and act on a systematic input.

lex generates a C language module that performs lexical analysis of an input
stream. The lexical analyzer scans the input stream for sequences of characters
— tokens — that match regular expressions you specify. When a token is
found, an action, which you also specify, is performed.

yacc generates a C language module that parses tokens that have been passed
to it by a lexical analyzer. The parser describes the grammatical form of the
tokens according to rules you specify. When a particular grammatical form is
found, an action, which again you specify, is taken. The lexical analyzer need
not have been generated by lex. You could write it in C, with somewhat more
effort.

Use lex to create the lexical analyzer, and yacc the parser, of a user interface.

1-10 ANSI C and Programming Support Tools

Summary of Contents

Advanced Programming Utilities

Chapter 13, “Object Files,” describes the executable and linking format (ELF) of
the object code produced by the C compilation system. Strictly speaking, the
chapter is required reading only for programmers who need to access and mani-
pulate object files. Still, because it provides a larger perspective on the work-
ings of the compilation system, especially the dynamic linking mechanism, it
may prove useful to readers who seek to widen their understanding of the
material presented in earlier chapters.

Chapter 14, “Floating Point Operations,” details the standard single- and
double-precision data types, operations, and conversions for floating point arith-
metic that are generated by the C compiler. It also describes the low-level
library functions that are provided to programmers who need the full range of
floating point support. Most users will not need to call low-level functions to
employ floating point operations in their programs. Those who do will find the
information they need in Chapter 14.

Chapter 15 describes m4, a general purpose macro processor that can be used to
preprocess C and assembly language programs.

Overview 1-11

Other Tools

This section lists programming support tools that do not receive extended treat-
ment in the Guide. Consult the index for references to these tools in related con-
texts, and Section 1 of the Programmer’s Reference Manual for details of usage.

Tools for analyzing source code:

m cflow produces a chart of the external references in C, lex, yacc, and
assembly language files. Use it to check program dependencies.

m ctrace prints out variables as each program statement is executed. Use it
to follow the execution of a C program statement by statement.

m cxref analyzes a group of C source files and builds a cross-reference table
for the automatic, static, and global symbols in each file. Use it to check
program dependencies and to expose program structure.

Tools for reading and manipulating object files:

m cof2elf translates object files in the common object file format (COFF) to
the executable and linking format (ELF).

dis disassembles object files.

dump dumps selected parts of object files.

lorder generates an ordered listing of object files.
mcs manipulates the sections of an object file.

nm prints the symbol table of an object file.

size reports the number of bytes in an object file’s sections or loadable
segments.

B strip removes symbolic debugging information and symbol tables from
an object file.

1-12 ANSI C and Programming Support Tools

2 C Compilation System

Introduction 21
Compiling and Linking 22
Basic cc Command Line Syntax 2-4
Commonly Used cc Command Line Options 2-8
m Searching for a Header File 2-8
m Preparing Your Program for Symbolic Debugging 29
m Preparing Your Program for Profiling 2-9
m Optimizing Your Program 2-10
Link Editing 2-10
m Default Arrangement 2-11
m Linking with Standard Libraries 2-13
m Creating and Linking with Archive and Shared Object
Libraries 2-14
m Specifying Directories to Be Searched by the Link Editor 2-17
m Specifying Directories to Be Searched by the Dynamic Linker 2-19
m Checking for Run-Time Compatibility 2-20
m Dynamic Linking Programming Interface 2-21
m Implementation 2-21
m Guidelines for Building Shared Objects 2-24
= Multiply Defined Symbols 2-29
m Quick-Reference Guide 2-31
Libraries and Header Files 2-33
Header Files 2-33
How to Use Library Functions 2-35
C Library (libc) 2-38
m Subsection 3S Routines 2-38
m Subsection 3C Routines 2-40
m System Calls 2-43

Table of Contents

Table of Contents

Math Library (libm) 2-44
General Purpose Library (libgen) 2-48
Standard /O 2-50
m Three Files You Always Have 2-50
m Named Files 2-51
m Passing Command Line Arguments 2-52

ii ANSI C and Programming Support Tools

Introduction

This chapter describes the UNIX system tools that you use to generate an execut-
able program from C language source files.

The first section, “Compiling and Linking,” details the command line syntax
that you use to produce a binary representation of a program — an executable
object file. It concentrates on the options to the cc command that control the
process in which object files are, first, created from source files, then linked with
each other and with the library functions that you have called in your program.
As we indicated in Chapter 1, the major focus of the section is on static vs.
dynamic linking: how each model is implemented and invoked, and its relative
merits.

Standard libraries are the focus of the second section of the chapter, “Libraries
and Header Files.” Because the C language contains no intrinsic input/output
facility, for example, I/O must be carried out by explicitly called functions. On
the UNIX system, the functions that perform these and other high-level tasks
have been standardized and grouped in libraries; they are convenient, portable,
and, in most cases, optimized for your machine. The contents of some impor-
tant standard libraries are described later in this chapter.

Header files contain definitions and declarations that serve as the interface
between your program and the functions in these libraries. They also contain a
number of “functions” — getc() and putc(), for example — that actually are
defined as macros. (The manual page will generally tell you whether what you
are using is a macro or a function. As a practical matter, it makes very little
difference: you use them the same way in your program.) The descriptions of
standard libraries in this chapter show the header files that you need to include
in your program if you call a function in those libraries; the manual page for
each function also lists the required header files. In a later section of this
chapter, we’ll show you how to use library functions in your program and how
to include header files. We'll pay particular attention to standard I/0.

C Compilation System 2-1

Compiling and Linking

The C compilation system consists of a compiler, assembler, and link editor.
The cc command invokes each of these components automatically unless you
use command line options to specify otherwise. Before we turn to the cc com-
mand line syntax, let’s look briefly at the four steps in which an executable C
program is created:

1. The preprocessor component of the compiler reads lines in your source

files that direct it to replace a name with a token string (#define),
perhaps conditionally (#if, for example). It also accepts directives in
your source files to include the contents of a named file in your program
(#include). As we'll see in the second part of this chapter, included
header files for the most part consist of #define directives and declara-
tions of external symbols, definitions and declarations that you want to
make available to more than one source file.

. The compiler proper translates the C language code in your source files,

which now contain the preprocessed contents of any included header
files, into assembly language code.

. The assembler translates the assembly language code into the machine

instructions of the computer your program is to run on. As we indicated
in Chapter 1, these instructions are stored in object files that correspond
to each of your source files. In other words, each object file contains a
binary representation of the C language code in the corresponding source
file. Object files are made up of sections, of which there are usually at
least two. The text section consists mainly of program instructions; text
sections normally have read and execute, but not write, permissions.
Data sections normally have read, write, and execute permissions. See
Chapter 13 for the details of the object file format.

. The link editor links these object files with each other and with any

library functions that you have called in your program, although when it
links with the library functions depends on the link editing model you
have chosen:

m An archive, or statically linked library, is a collection of object
files each of which contains the code for a function or a group of
related functions in the library. When you use a library function
in your program, and specify a static linking option on the cc
command line, a copy of the object file that contains the function
is incorporated in your executable at link time.

ANSI C and Programming Support Tools

Compiling and Linking

m A shared object, or dynamically linked library, is a single object
file that contains the code for every function in the library.
When you call a library function in your program, and specify a
dynamic linking option on the cc command line, the entire con-
tents of the shared object are mapped into the virtual address
space of your process at run time. As its name implies, a shared
object contains code that can be used simultaneously by different
programs at run time.

We'll discuss these two ways in which libraries are implemented in the “Link
Editing” section below. We'll also show you how to combine the static and
dynamic linking approaches in different ways according to your needs.

Figure 2-1 shows the organization of the C compilation system. Note that we
have omitted discussing the optimizer here because it is optional. We'll show
you how to invoke it in “Commonly Used cc Command Line Options” below.

Figure 2-1: Organization of C Compilation System

C source & compiler compiler optimizer link | 1]
header files |] preproc:essork> proper =] (optional) =] assembler |-> editor |] aout
libraries —

C Compilation System 2-3

Compiling and Linking

Basic cc Command Line Syntax

Now let’s look at how this process works for a C language program to print the
words hello, world. Here is the source code for the program, which we have
written in the file hello.c:

#include <stdio.h>

main ()

{

printf("hello, world\n");
} _

As we noted in Chapter 1, the UNIX system command to create an executable
program from C language source files is cc:
$ cc hello.c

As we also noted there, the source files to be compiled must have names that
end in the characters .c. Otherwise you can name them anythmg you want.

Since we haven't committed any syntactic or semantic errors in our source code,
the above command will create an executable program in the file a.out in our
current directory:

$ 1s -1
a.out
hello.c

Note that a .o file is not created when you compile a single source file.
We can execute the program by entering its name after the system prompt:

$ a.out
hello, world

Since the name a.out is only of temporary usefulness, we’ll rename the execut-
able:

$ mv a.out hello

We could also have given the program the name hello when we compiled it,
with the —o option to the cc command:

$ cc -o hello hello.c

2-4 ANSI C and Programming Support Tools

Compiling and Linking

In either case, we execute the program by entering its name after the system
prompt:

$ hello

hello, world

Now let’s look at how the cc command controls the four-step process that we
described in the previous section. When we specify the —P option to cc, only
the preprocessor component of the compiler is invoked:

$ cc -P hello.c

The preprocessor’s output — the source code plus the preprocessed contents of
stdio.h — is left in the file hello.i in our current directory:

$ 1s -1
hello.c
hello.i

That output could be useful if, for example, you received a compiler error mes-
sage for the undefined symbol a in the following fragment of source code:

if (i > 4)
{
/* declaration follows
int a; /* end of declaration */
a=4;
}
The unterminated comment on the third line will cause the compiler to treat the
declaration that follows it as part of a comment. Because the preprocessor
removes comments, its output

if (i > 4)
{

a=4;
}
will clearly show the effect of the unterminated comment on the declaration.

You can also use the preprocessed output to examine the results of conditional
compilation and macro expansion.

C Compilation System 2-5

Compiling and Linking

If we specify the —S option to the cc command, only the preprocessor and
compiler phases are invoked:

$ cc =S hello.c

The output — the assembly language code for the compiled source — is left in
the file hello.s in our current directory. That output could be useful if you
were writing an assembly language routine and wanted to see how the compiler
went about a similar task.

If, finally, we specify the —c option to cc, all the components but the link editor
are invoked:

$ cc —¢ hello.c

The output — the assembled object code for the program — is left in the object
file hello.o in our current directory. You would typically want this output
when using make (Chapter 9).

Now we need only enter the command
$ cc hello.o

to create the executable object file a.out. By default, the link editor arranges
for the standard C library function that we have called in our program —
printf () — to be linked with the executable at run time. In other words, the
standard C library is a shared object, at least in the default arrangement we are
describing here.

The outputs we have described above are, of course, inputs to the components
of the compilation system. They are not the only inputs, however. The link
editor, for example, will supply code that runs just before and just after your
program to do startup and cleanup tasks. This code is automatically linked
with your program only when the link editor is invoked through cc. That’s
why we specified cc hello.o in the previous example rather than 1d
hello.o. For similar reasons, you should invoke the assembler through cc
rather than as:

$ cc hello.s
As we noted in Chapter 1, the compilation process is largely identical if your
program is in multiple source files. The only difference is that the default cc

command line will create object files, as well as the executable object file a.out,
in your current directory:

26 ANSI C and Programming Support Tools

Compiling and Linking

$ cc filel.c file2.c file3.c
$1ls -1

a.out
filel.
filel.
file2.
file2.
file3.
file3.

OQo0oO0o0OQ

What this means is that if one of your source files fails to compile, you need not
recompile the others. Suppose, for example, you receive a compiler error diag-
nostic for filel.c in the above command line. Your current directory will
look like this:

$ 1s -1
filel.
file2.
file2.
file3.
file3.o

That is, compilation proceeds but linking is suppressed. Assuming you have
fixed the error, the following command

$ cc filel.c file2.o file3.o

will create the object file filel.o and link it with file2.o0and file3.o to
produce the executable program a.out. As the example suggests, C source
files are compiled separately and independently. To create an executable pro-
gram, the link editor must connect the definition of a symbol in one source file
with external references to it in another.

Note, finally, that not all the cc command line options that we have discussed
are compiler options. Because, for example, it is the link editor that creates an
executable program, the —o option — the one you use to give your program a
name other than a.out — is actually an 1d option that is accepted by the cc
command and passed to the link editor. We'll see further examples of this
below. The main reason we mention it is so that you can read about these
options on the appropriate manual page.

Q0 QaQ

C Compilation System 2-7

Compiling and Linking

Commonly Used cc Command Line Options

In this section we’ll talk about cc command line options that let you

m specify the order in which directories are searched for included header
files;
m prepare your program for symbolic debugging or profiling;
m optimize your program.
We'll postpone until the next section a discussion of the cc command line

options that you use to link your program with the library functions you have
called in it.

Searching for a Header File
Recall that the first line of our sample program was
#include <stdio.h>

The format of that directive is the one you should use to include any of the
standard header files that are supplied with the C compilation system. The
angle brackets (< >) tell the preprocessor to search for the header file in the
standard place for header files on your system, usually the /usr/include
directory.

The format is different for header files that you have stored in your own direc-
tories:
#include "header.h"

The quotation marks (" ") tell the preprocessor to search for header.h first in
the directory of the file containing the #include line, which will usually be
your current directory, then in the standard place.

If your header file is not in the current directory, you specify the path of the
directory in which it is stored with the —I option to cc. Suppose, for instance,
that you have included both stdio.h and header.h in the source file

mycode. c:

#include <stdio.h>
#include "header.h"

2-8 ANSI C and Programming Support Tools

Compiling and Linking

Suppose further that header.h is stored in the directory ../defs. The com-
mand

$ cc -I../defs mycode.c

will direct the preprocessor to search for header.h first in the current directory,
then in the directory ../defs, and finally in the standard place. It will also
direct the preprocessor to search for stdio.h firstin ../defs, then in the stan-
dard place — the difference being that the current directory is searched only for
header files whose name you have enclosed in quotation marks.

You can specify the —I option more than once on the cc command line. The
preprocessor will search the specified directories in the order they appear on the
command line. Needless to say, you can specify multiple options to cc on the
same command line:

$ cc -0 prog -I../defs mycode.c

Prepéring Your Program for Symbolic Debugging
When you specify the —g option to cc
$ cc —g mycode.c

you arrange for the compiler to generate information about program variables
and statements that will be used by the symbolic debugger sdb (Chapter 6).
The information supplied to sdb will allow you to use the symbolic debugger
to trace function calls, display the values of variables, set breakpoints, and

SO on.

Preparing Your Program for Profiling

To use either of the profilers (Chapter 7) that are supplied with the C compila-
tion system, you must do two things:

1. Compile and link your program with a profiling option:
for prof: $ cc -gp mycode.c
for lprof: $ cc —ql mycode.c

2. Run the profiled program:

$ a.out

C Compilation System 2-9

Compiling and Linking

At the end of execution, data about your program’s run-time behavior are writ-
ten to a file in your current directory:

for prof: mon.out
for 1prof: prog.cnt

where prog is the name of the profiled program. The files are inputs to the
profilers.

Optimizing Your Program
The -0 option to cc invokes the optimizer:
$ cc -0 mycode.c

The optimizer improves the efficiency of the assembly language code generated
by the compiler. That, in turn, will speed the execution time of your object
code. Use the optimizer when you have finished debugging and profiling your

program.

Link Editing

Because we try to cover the widest possible audience in this section, it may
provide more background than many users will need to link their programs
with.a C language library. If you are interested only in the how-to, and are
comfortable with a purely formal presentation that scants motivation and
background alike, you may want to skip to the quick-reference guide in the
last subsection.

Link editing refers to the process in which a symbol referenced in one module
of your program is connected with its definition in another — more concretely,
the process by which the symbol printf () in our sample source file hello.c
is connected with its definition in the standard C library. Whichever link edit-
ing model you choose, static or dynamic, the link editor will search each
module of your program, including any libraries you have used, for definitions
of undefined external symbols in the other modules. If it does not find a
definition for a symbol, the link editor will report an error by default, and fail to
create an executable program. (Multiply defined symbols are treated differently,
however, under each approach. For details, see the section “Multiply Defined
Symbols” below.) The principal difference between static and dynamic linking
lies in what happens after this search is completed:

2-10 ANSI C and Programming Support Tools

Compiling and Linking

m Under static linking, copies of the archive library object files that satisfy
still unresolved external references in your program are incorporated in
your executable at link time. External references in your program are
connected with their definitions — assigned addresses in memory —
when the executable is created.

® Under dynamic linking, the contents of a shared object are mapped into
the virtual address space of your process at run time. External references
in your program are connected with their definitions when the program is
executed.

In this section, we’ll examine the link editing process in detail. We'll start with
the default arrangement, and with the basics of linking your program with the
standard libraries supplied by the C compilation system. Later, we’'ll discuss
the implementation of the dynamic linking mechanism, and look at some coding
guidelines and maintenance tips for shared library development. Throughout
the discussion, we’ll consider the reasons why you might prefer dynamic to
static linking. These are, briefly:

m Dynamically linked programs save disk storage and system process
memory by sharing library code at run time.

® Dynamically linked code can be fixed or enhanced without having to
relink applications that depend on it.

Default Arrangement
We stated earlier that the default cc command line
$ cc filel.c file2.c file3.c

would create object files corresponding to each of your source files, and link
them with each other to create an executable program. These object files are
called relocatable object files because they contain references to symbols that
have not yet been connected with their definitions — have not yet been assigned
addresses in memory.

We also suggested that this command line would arrange for the standard C
library functions that you have called in your program to be linked with your
executable automatically. The standard C library is, in this default arrangement,
a shared object called libc.so, which means that the functions you have called
will be linked with your program at run time. (There are some exceptions. A

C Compilation System 2-11

Compiling and Linking

number of C library functions have been left out of libc.so by design. If you
use one of these functions in your program, the code for the function will be
incorporated in your executable at link time. That is, the function will still be
automatically linked with your program, only statically rather than dynami-
cally.) The standard C library contains the system calls described in Section 2 of
the Programmer’s Reference Manual, and the C language functions described in
Section 3, Subsections 3C and 3S. See the second part of this chapter for details.

Now let’s look at the formal basis for this arrangement:

1. By convention, shared objects, or dynamically linked libraries, are desig-
nated by the prefix 1ib and the suffix .so; archives, or statically linked
libraries, are designated by the prefix 1lib and the suffix .a. 1libc.so,
then, is the shared object version of the standard C library; libc.a is the
archive version.

2. These conventions are recognized, in turn, by the -1 option to the cc
command. That is,

$ cc filel.c file2.c file3.c -1lx

directs the link editor to search the shared object libx.so or the archive
library libx.a. The cc command automatically passes -1c to the link
editor.

3. By default, the link editor chooses the shared object implementation of a
library, 1ibx.so, in preference to the archive library implementation,
libx.a, in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system, /usr/ccs/lib and /usr/1lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/ccs/lib.

Adding it up, we can say, more exactly than before, that the default cc com-
mand line will direct the link editor to search /usr/ccs/lib/libc.so rather
than its archive library counterpart. We'll look at each of the items that make
up the default in more detail below.

libc. so is, with one exception, the only shared object library supplied by the C
compilation system. (The exception, libdl.so, is used with the programming
interface to the dynamic linking mechanism described later. Other shared object
libraries are supplied with the operating system, and usually are kept in the
standard places.) In the next section, we'll show you how to link your program

2-12 ANSI C and Programming Support Tools

Compiling and Linking

with the archive version of libc to avoid the dynamic linking default. Of
course, you can link your program with libraries that perform other tasks as
well. Finally, you can create your own shared objects and archive libraries.
We'll show you the mechanics of doing that below.

The default arrangement, then, is this: the cc command creates and then links
relocatable object files to generate an executable program, then arranges for the
executable to be linked with the shared C library at run time. If you are
satisfied with this arrangement, you need make no other provision for link edit-
ing on the cc command line.

Linking with Standard Libraries

libc. so is a single object file that contains the code for every function in the
shared C library. When you call a function in that library, and dynamically link
your program with it, the entire contents of libc.so are mapped into the vir-
tual address space of your process at run time.

Archive libraries are configured differently. Each function, or small group of
related functions (typically, the related functions that you will sometimes find
on the same manual page), is stored in its own object file. These object files are
then collected in archives that are searched by the link editor when you specify
the necessary options on the cc command line. The link editor makes available
to your program only the object files in these archives that contain a function
you have called in your program.

As noted, libc.a is the archive version of the standard C library. The cc com-
mand will automatically direct the link editor to search libc.a if you turn off
the dynamic linking default with the —dn option:

$ cc —dn filel.c file2.c file3.c

Copies of the object files in libc.a that resolve still unresolved external refer-
ences in your program will be incorporated in your executable at link time.

If you need to point the link editor to standard libraries that are not searched
automatically, you specify the -1 option explicitly on the cc command line. As
we have seen, -1x directs the link editor to search the shared object 1ibx.so or
the archive library libx.a. So if your program calls the function sin(), for
example, in the standard math library libm, the command

$ cc filel.c file2.c file3.c -1m
will direct the link editor to search for /usr/ccs/1ib/libm.so, and if it does

C Compilation System 213

Compiling and Linking

not find it, /usr/ccs/lib/libm.a, to satisfy references to sin() in your pro-
gram. Because the compilation system supplies shared object versions only of
libc and libdl, the above command will direct the link editor to search
libm.a unless you have installed a shared object version of libm in the stan-
dard place. Note that because we did not turn off the dynamic linking default
with the —dn option, the above command will direct the link editor to search
libec. so rather than libc.a. You would use the same command with the —dn
option to link your program statically with 1ibm.a and libc.a. The contents
of libm are described in the second part of this chapter.

Note, finally, that because the link editor searches an archive library only to
resolve undefined external references it has previously seen, the placement of
the -1 option on the cc command line is important. That is, the command

$ cc —dn filel.c -1m file2.c file3.c

will direct the link editor to search 1ibm.a only for definitions that satisfy still
unresolved external references in filel.c. As a rule, then, it’s best to put -1
at the end of the command line.

Creating and Linking with Archive and Shared Object Libraries

In this section we describe the basic mechanisms by which archives and shared
objects are built. The idea is to give you some sense of where these libraries
come from, as a basis for understanding how they are implemented and linked
with your programs. Of course, if you are developing a library, you will need
to know the material in this section. Even if you are not, it should prove a use-
ful introduction to the subsequent discussion.

The following commands

$ cc -c functionl.c function2.c function3.c
$ ar -r libfoo.a functionl.o function2.o function3.o

will create an archive library, libfoo.a, that consists of the named object files.
(Check the ar(1) manual page for details of usage.) When you use the -1
option to link your program with libfoo.a

$ cc -Ldir filel.c file2.c file3.c -1foo

the link editor will incorporate in your executable only the object files in this
archive that contain a function you have called in your program. Note, again,
that because we did not turn off the dynamic linking default with the -dn
option, the above command will direct the link editor to search libc.so as well

2-14 ANSI C and Programming Support Tools

Compilling and Linking

as libfoo.a. We'll look at the directory search option — represented in the
above command line by -Ldir — in the next section. For now it's enough to
note that you use it to point the link editor to the directory in which your
library is stored.

You create a shared object library by specifying the -G option to the link editor:
$ cc -G -o libfoo.so functionl.o function2.o function3.o

That command will create the shared object 1ibfoo.so consisting of the object
code for the functions contained in the named files. (We are deferring for the
moment a discussion of a compiler option, =K PIC, that you should use in
creating a shared object. For that discussion, see the “Implementation” section
below.) When you use the -1 option to link your program with libfoo.so

$ cc -Ldir filel.c file2.c file3.c -1foo

the link editor will record in your executable the name of the shared object and
a small amount of bookkeeping information for use by the system at run time.
Another component of the system — the dynamic linker — does the actual
linking.

A number of things are worth pointing out here. First, because shared object
code is not copied into your executable object file at link time, a dynamically
linked executable normally will use less disk space than a statically linked exe-
cutable. For the same reason, shared object code can be changed without break-
ing executables that depend on it. In other words, even if the shared C library
were enhanced in the future, you would not have to relink programs that
depended on it (as long as the enhancements were compatible with your code;
see “/Checking for Run-Time Compatibility’” below). The dynamic linker would
simply use the definitions in the new version of the library to resolve external
references in your executables at run time.

Second, we specified the name of the shared object that we wanted to be created
under the -G option. Of course, you don’t have to do it the way we did. The
following command, for example, will create a shared object called a.out:

$ cc -G functionl.o function2.o function3.o
You can then rename the shared object:
$ mv a.out libfoo.so

As noted, you use the 1ib prefix and the .so suffix because they are conven-
tions recognized by -1, just as are 1lib and .a for archive libraries. So while it

C Compilation System 2-15

Compiling and Linking

is legitimate to create a shared object that does not follow the naming conven-
tion, and to link it with your program

$ cc -G —o sharedob functionl.o function2.o function3.o
$ cc filel.c file2.c file3.c /path/sharedob

we recommend against it. Not only will you have to enter a path name on the
cc command line every time you use sharedob in a program, that path name
will be hard-coded in your executables. The reason why you want to avoid this
is related to our next point.

We said that the command line
$ cc -Ldir filel.c file2.c file3.c -1lfoo

would direct the link editor to record in your executable the name of the shared
object with which it is to be linked at run time. Note: the name of the shared
object, not its path name. What this means is that when you use the -1 option
to link your program with a shared object library, not only must the link editor
be told which directory to search for that library, so must the dynamic linker
(unless the directory is the standard place, which the dynamic linker searches by
default). We'll show you how to point the dynamic linker to directories in the
section “Specifying Directories to Be Searched by the Dynamic Linker” below.
What we want to stress here is that as long as the path name of a shared object
is not hard-coded in your executable, you can move the shared object to a dif-
ferent directory without breaking your program. That’s the main reason why
you should avoid using path names of shared objects on the cc command line.
Those path names will be hard-coded in your executable. They won't be if you
use -1.

Finally, the cc -G command will not only create a shared object, it will accept
a shared object or archive library as input. In other words, when you create
libfoo.so, you can link it with a library you have already created, say,
libsharedob. so:

$ cc -G -o libfoo.so -Ldir functionl.o function2.o \
function3.o —-lsharedob

That command will arrange for libsharedob.so to be linked with libfoo.so
when, at run time, libfoo.so is linked with your program. Note that here
you will have to point the dynamic linker to the directories in which both
libfoo.so and libsharedob.so are stored.

2-16 ANSI C and Programming Support Tools

Compiling and Linking

Specifying Directories to Be Searched by the Link Editor

In the previous section we created the archive library libfoo.a and the shared
object 1ibfoo.so. For the sake of discussion, we’ll now say that both these
libraries are stored in the directory /home/mylibs. We'll also assume that you
are creating your executable in a different directory. In fact, these assumptions
are not academic. They reflect the way most programmers organize their work
on the UNIX system.

The first thing you must do if you want to link your program with either of
these libraries is point the link editor to the /home/mylibs directory by specify-
ing its path name with the -L option:

$ cc -L/home/mylibs filel.c file2.c file3.c -1foo

The -L option directs the link editor to search for the libraries named with -1
first in the specified directory, then in the standard places. In this case, having
found the directory /home/mylibs, the link editor will search libfoo.so

rather than libfoo.a. As we saw earlier, when the link editor encounters oth-
erwise identically named shared object and archive libraries in the same direc-
tory, it searches the library with the .so suffix by default. For the same reason,
it will search libc.so here rather than libc.a. Note that you must specify -L
if you want the link editor to search for libraries in your current directory. You
can use a period (.) to represent the current directory.

To direct the link editor to search libfoo.a, you can turn off the dynamic link-
ing default:

$ cc —-dn -L/home/mylibs filel.c file2.c file3.c -1lfoo

Under -dn, the link editor will not accept shared objects as input. Here, then,
it will search libfoo.a rather than libfoo.so, and libc.a rather than
libc.so.

To link your program statically with libfoo.a and dynamically with libc.so,
you can do either of two things. First, you can move libfoo.a to a different
directory — /home/archives, for example — then specify /home/archives
with the -L option:

$ cc -L/home/archives -L/home/mylibs filel.c file2.c \
file3.c -1foo

As long as the link editor encounters the /home/archives directory before it
encounters the /home/mylibs directory, it will search libfoo.a rather than
libfoo.so. That is, when otherwise identically named .so and .a libraries

C Compilation System 2-17

Compiling and Linking

exist in your directories, the link editor will search the first one it finds. The
same thing is true, by the way, for identically named libraries of either type. If
you have different versions of libfoo.a in your directories, the link editor will
search the first one it finds.

A better alternative might be to leave libfoo.a where you had it in the first
place and use the -Bstatic and —Bdynamic options to turn dynamic linking
off and on. The following command will link your program statically with
libfoo.a and dynamically with libc.so:

$ cc -L/home/mylibs filel.c file2.c file3.c -Bstatic \
—-1foo —-Bdynamic

When you specify -Bstatic, the link editor will not accept a shared object as
input until you specify -Bdynamic. In other words, you can use these options
as toggles — any number of times — on the cc command line:

$ cc -L/home/mylibs filel.c file2.c -Bstatic -1foo \
file3.c —Bdynamic -lsharedob

That command will direct the link editor to search

m first, 1ibfoo.a to resolve still unresolved external references in filel.c
and file2.c;

m second, libsharedob.so to resolve still unresolved external references in
all three files and in libfoo.a;

m last, libc.so to resolve still unresolved external references in all three
files and the preceding libraries.

Files, including libraries, are searched for definitions in the order they are listed
on the cc command line. The standard C library is always searched last.

You can add to the list of directories to be searched by the link editor by using
the environment variable LD_LIBRARY PATH. LD_LIBRARY PATH must be a list
of colon-separated dlrectory names; an optlonal second list is separated from the
first by a semicolon:

$ LD_LIBRARY PATH=dir:dir;dir:dir export LD_LIBRARY PATH

The directories specified before the semicolon are searched, in order, before the
directories specified with —L; the directories specified after the semicolon are
searched, in order, after the directories specified with L. Note that you can use
LD_LIBRARY PATH in place of -L altogether. In that case the link editor will
search for libraries named with -1 first in the directories specified before the

2-18 ANSI C and Programming Support Tools

Compiling and Linking

semicolon, next in the directories specified after the semicolon, and last in the
standard places. You should use absolute path names when you set this
environment variable.

As we explain in the next section, LD_LIBRARY PATH is also used by the
dynamic linker. That is, if LD_LIBRARY_ PATH exists in your environment,
the dynamic linker will search the directories named in it for shared objects
to be linked with your program at execution. In using LD LIBRARY PATH
with the link editor or the dynamic linker, then, you should keep in mind that
any directories you give to one you are also giving to the other.

Specifying Directories to Be Searched by the Dynamic Linker

Earlier we said that when you use the -1 option, you must point the dynamic
linker to the directories of the shared objects that are to be linked with your
program at execution. The environment variable ILD_RUN_PATH lets you do that
at link time. To set LD_RUN_PATH, list the absolute path names of the direc-
tories you want searched in the order you want them searched. Separate

path names with a colon. Since we are concerned only with the directory
/home/mylibs here, the following will do:

$ LD_RUN_PATH=/home/mylibs export LD_RUN_PATH
Now the command
$ cc —o prog -L/home/mylibs filel.c file2.c file3.c —1lfoo

will direct the dynamic linker to search for libfoo.so in /home/mylibs when
you execute your program:

$ prog

The dynamic linker searches the standard place by default, after the directories
you have assigned to LD_RUN_PATH. Note that as far as the dynamic linker is
concerned, the standard place for libraries is /usr/lib. Any executable ver-
sions of libraries supplied by the compilation system are kept in /usr/lib.

The environment variable LD_LIBRARY PATH lets you do the same thing at run
time. Suppose you have moved libfoo.so to /home/sharedobs. It is too late
to replace /home/mylibs with /home/sharedobs in ID_RUN PATH, at least
without link editing your program again. You can, however, assign the new
directory to LD_LTIBRARY PATH, as follows:

$ LD_LIBRARY PATH=/home/sharedobs export LD_LIBRARY PATH

C Compilation System 2-19

Compiling and Linking

Now when you execute your program

$ prog

the dynamic linker will search for libfoo.so first in /home/mylibs and, not
finding it there, in /home/sharedobs. That is, the directory assigned to
LD_RUN_PATH is searched before the directory assigned to LD_LIBRARY PATH.
The important point is that because the path name of libfoo.so is not hard-
coded in prog, you can direct the dynamic linker to search a different directory
when you execute your program. In other words, you can move a shared object
without breaking your application.

You can set LD_LIBRARY PATH without first having set LD_RUN_PATH. The
main difference between them is that once you have used LD_RUN_PATH for an
application, the dynamic linker will search the specified directories every time
the application is executed (unless you have relinked the application in a dif-
ferent environment). In contrast, you can assign different directories to
LD_LIBRARY_PATH each time you execute the application. LD_LIBRARY PATH
directs the dynamlc linker to search the a551gned directories before it searches
the standard place. Directories, including those in the optional second list, are
searched in the order listed. See the previous section for the syntax.

Note, finally, that when linking a set-user or set-group ID program, the dynamic
linker will ignore any directories specified by LD LIBRARY PATH that are not
“trusted.” Trusted directories are built into the dynamlc linker and cannot be
modified by the application. Currently, the only trusted directory is /usr/lib.

Checking for Run-Time Compatibility

Suppose you have been supplied with an updated version of a shared object.
You have already compiled your program with the previous version; the link
editor has checked it for undefined symbols, found none, and created an execut-
able. According to everything we have said, you should not have to link your
program again. The dynamic linker will simply use the definitions in the new
version of the shared object to satisfy unresolved external references in the exe-
cutable.

Suppose further that this is a database update program that takes several days
to run. You want to be sure that your program does not fail in a critical section
because a symbol that was defined by the previous version of the shared object
is no longer defined by the new version. In other words, you want the informa-

2-20 ANSI C and Programming Support Tools

Compiling and Linking

tion that the link editor gives you — that your executable is compatible with the
shared library — without having to link edit it again.

There are two ways you can check for run-time compatibility. The command
1dd (“list dynamic dependencies”) directs the dynamic linker to print the path
names of the shared objects on which your program depends:

$ 1dd prog

When you specify the -d option to 1dd, the dynamic linker prints a diagnostic
message for each unresolved data reference it would encounter if prog were exe-
cuted. When you specify the —r option, it prints a diagnostic message for each
unresolved data or function reference it would encounter if prog were executed.

You can do the same thing when you execute your program. Whereas the
dynamic linker resolves data references immediately at run time, it normally
delays resolving function references until a function is invoked for the first time.
Normally, then, the lack of a definition for a function will not be apparent until
the function is invoked. By setting the environment variable ILD_BIND_ NOW

$ LD_BIND NOW=1 export LD BIND_NOW

before you execute your program, you direct the dynamic linker to resolve all
references immediately. In that way, you can learn before execution of main ()
begins that the functions invoked by your process actually are defined.

Dynamic Linking Programming Interface

You can use a programming interface to the dynamic linking mechanism to
attach a shared object to the address space of your process during execution,
look up the address of a function in the library, call that function, and then
detach the library when it is no longer needed. The routines for this are stored
in 1libdl.so. Subsection 3X of the Programmer’s Reference Manual describes its
contents.

Implementation

We have already described, in various contexts in this section, the basic imple-
mentation of the static and dynamic linking mechanisms:

m When you use an archive library function, a copy of the object file that
contains the function is incorporated in your executable at link time.
External references to the function are assigned virtual addresses when
the executable is created.

C Compilation System 2-21

Compiling and Linking

m When you use a shared library function, the entire contents of the library
are mapped into the virtual address space of your process at run time.
External references to the function are assigned virtual addresses when
you execute the program. The link editor records in your executable only
the name of the shared object and a small amount of bookkeeping infor-
mation for use by the dynamic linker at run time.

We'll take a closer look at how dynamic linking is implemented in a moment.
First let’s consider the one or two cases in which you might not want to use it.

- Earlier we said that because shared object code is not copied into your execut-
able object file at link time, a dynamically linked executable normally will use
less disk space than a statically linked executable. If your program calls only a
few small library functions, however, the bookkeeping information to be used
by the dynamic linker may take up more space in your executable than the code
for those functions. You can use the size command, described in Section 1 of
the Programmer’s Reference Manual, to determine the difference.

In a similar way, using a shared object may occasionally add to the memory
requirements of a process. Although a shared object’s text is shared by all
processes that use it, its data typically are not (at least its writable data; see the
section “Guidelines for Building Shared Objects” below for the distinction).
Every process that uses a shared object usually gets a private copy of its entire
data segment, regardless of how many of the data are needed. If an application
uses only a small portion of a shared library’s text and data, executing the
application might require more memory with a shared object than without one.
It would be unwise, for example, to use the standard C shared object library to
access only strcmp (). Although sharing strcmp () saves space on your disk
and memory on the system, the memory cost to your process of having a
private copy of the C library’s data segment would make the archive version of
strcmp () the more appropriate choice.

Now let’s consider dynamic linking in a bit more detail. First, each process that
uses a shared object references a single copy of its code in memory. That means
that when other users on your system call a function in a shared object library,
the entire contents of that library are mapped into the virtual address space of
their processes as well. If they have called the same function as you, external
references to the function in their programs will, in all likelihood, be assigned
different virtual addresses. That is, because the function may be loaded at a dif-
ferent virtual address for each process that uses it, the system cannot calculate
absolute addresses in memory until run time.

2-22 ANSI C and Programming Support Tools

Compiling and Linking

Second, the memory management scheme underlying dynamic linking shares
memory among processes at the granularity of a page. Memory pages can be
shared as long as they are not modified at run time. If a process writes to a
shared page in the course of relocating a reference to a shared object, it gets a
private copy of that page and loses the benefits of code sharing (although
without affecting other users of the page).

Third, to create programs that require the least possible amount of page
modification at run time, the compiler generates position-independent code
under the =K PIC option. Whereas executable code normally must be tied to a
fixed address in memory, position-independent code can be loaded anywhere in
the address space of a process. Because the code is not tied to specific
addresses, it will execute correctly — without page modification — at a different
address in each process that uses it. As we have indicated, you should spec1fy
-K PIC when you create a shared object:

$ cc -K PIC -G —o libfoo.so functionl.c function2.c \
function3.c

Relocatable references in your object code will be moved from its text segment
to tables in the data segment. See Chapter 13, “Object Files,” for the details.

In the next section we’ll look at some basic guidelines for building shared
objects. For now, we’ll sum up the reasons why you might want to use one:

m Because library code is not copied into the executables that use it, they
require less disk space.

m Because library code is shared at run time, the dynamic memory needs of
systems are reduced.

m Because symbol resolution is put off until run time, shared objects can be
updated without having to relink applications that depend on them.

m As long as its path name is not hard-coded in an executable, a shared
object can be moved to a different directory without breaking an applica-
tion.

C Compilation System 2-23

Compiling and Linking

Guidelines for Building Shared Objects

This section gives coding guidelines and maintenance tips for shared library
development. Before getting down to specifics, we should emphasize that if
you plan to develop a commercial shared library, you ought to consider provid-
ing a compatible archive as well. As we have noted, some users may not find a
shared library appropriate for their applications. Others may want their appli-
cations to run on UNIX system releases without shared object support. Shared
object code is completely compatible with archive library code. In other words,
you can use the same source files to build archive and shared object versions of
a library.

Let’s look at some performance issues first. There are two things you want to
do to enhance shared library performance:

Minimize the Library’s Data Segment. As noted, only a shared object’s text seg-
ment is shared by all processes that use it; its data segment typically is not.
Every process that uses a shared object usually gets a private memory copy of
its entire data segment, regardless of how many of the data are needed. You
can cut down the size of the data segment a number of ways:

m Try to use automatic (stack) variables. Don’t use permanent storage if
automatic variables will work.

m Use functional interfaces rather than global variables. Generally speaking,
that will make library interfaces and code easier to maintain. Moreover,
defining functional interfaces often eliminates global variables entirely,
which in turn eliminates global “‘copy’” data. The ANSI C function
strerror (), described in Subsection 3C of the Programmer’s Reference
Manual, illustrates these points.

In previous implementations, system error messages were made available
to applications only through two global variables:

extern int sys_nerr;
extern char *sys errlist[];

That is, sys_errlist [X] gives a character string for the error X, if X is a
nonnegative value less than sys_nerr. Now if the current list of mes-
sages were made available to applications only through a lookup table in
an archive library, applications that used the table obviously would not be
able to access new messages as they were added to the system unless they
were relinked with the library. In other words, errors might occur for

2-24 ANSI C and Programming Support Tools

Compiling and Linking

which these applications could not produce meaningful diagnostics.
Something similar happens when you use a global lookup table in a
shared library.

First, the compilation system sets aside memory for the table in the
address space of each executable that uses it, even though it does not
know yet where the table will be loaded. After the table is loaded, the
dynamic linker copies it into the space that has been set aside. Each pro-
cess that uses the table, then, gets a private copy of the library’s data seg-
ment, including the table, and an additional copy of the table in its own
data segment. Moreover, each process pays a performance penalty for the
overhead of copying the table at run time. Finally, because the space for
the table is allocated when the executable is built, the application will not
have enough room to hold any new messages you might want to add in
the future. A functional interface overcomes these difficulties.

strerror () might be implemented as follows:

static const char *msg[] = {
"Error 0",
"Not owner",
"No such file or directory",

}:

char #*
strerror(int err)

{
if (err < 0 || err >= sizeof (msg) /sizeof (msg[0]))

return 0;
return (char *)msg[err];
}

The message array is static, so no application space is allocated to hold a
separate copy. Because no application copy exists, the dynamic linker
does not waste time moving the table. New messages can be added,
because only the library knows how many messages exist. Finally, note
the use of the type qualifier const to identify data as read-only. Whereas
writable data are stored in a shared object’s data segment, read-only data
are stored in its text segment. For more on const, see Chapter 3,

“C Language.”

C Compilation System 2-25

Compiling and Linking

In a similar way, you should try to allocate buffers dynamically — at run
time — instead of defining them at link time. That will save memory
because only the processes that need the buffers will get them. It will also
allow the size of the buffers to change from one release of the library to
the next without affecting compatibility. Example:

char *
buffer ()

{
static char *buf = 0;

if (buf == 0)
{
if ((buf = malloc(BUFSIZE)) == 0)
return O;

}

return buf;

}

Exclude functions that use large amounts of global data — that is, if you
cannot rewrite them in the ways described in the foregoing items. If an
infrequently used routine defines a great deal of static data, it probably
does not belong in a shared library.

Make the library self-contained. If a shared object imports definitions
from another shared object, each process that uses it will get a private
copy not only of its data segment, but of the data segment of the shared
object from which the definitions were imported. In cases of conflict, this
guideline should probably take precedence over the preceding one.

Minimize Paging Activity. Although processes that use shared libraries will not
write to shared pages, they still may incur page faults. To the extent they do,
their performance will degrade. You can minimize paging activity in the fol-
lowing ways:

m Organize to improve locality of reference. First, exclude infrequently used

2-26

routines on which the library itself does not depend. Traditional a.out
files contain all the code they need at run time. So if a process calls a
function, it may already be in memory because of its proximity to other
text in the process. If the function is in a shared library, however, the

ANSI C and Programming Support Tools

Compiling and Linking

surrounding library code may be unrelated to the calling process. Only
rarely, for example, will any single executable use everything in the
shared C library. If a shared library has unrelated functions, and if unre-
lated processes make random calls to those functions, locality of reference
may be decreased, leading to more paging activity. The point is that func-
tions used by only a few a.out files do not save much disk space by
being in a shared library, and can degrade performance.

Second, try to improve locality of reference by grouping dynamically
related functions. If every call to funcA() generates calls to funcB ()

and funcC(), try to put them in the same page. cflow, described in
Section 1 of the Programmer’s Reference Manual, generates this kind of static
dependency information. Combine it with profiling (Chapter 7) to see
what things actually are called, as opposed to what things might be
called.

m Align for paging. Try to arrange the shared library’s object files so that
frequently used functions do not unnecessarily cross page boundaries.
First, determine where the page boundaries fall. Page size on the 3B2 is
typically 2K; on the 6386 it is 4K. You can use the nm command,
described in Section 1 of the Programmer’s Reference Manual, to determine
how symbol values relate to page boundaries. After grouping related
functions, break them up into page-sized chunks. Although some object
files and functions are larger than a page, many are not. Then use the less
frequently called functions as glue between the chunks. Because the glue
between pages is referenced less frequently than the page contents, the
probability of a page fault is decreased. You can put frequently used,
unrelated functions together because they will probably be called ran-
domly enough to keep the pages in memory.

m Avoid hardware thrashing. The 3B2, for example, uses memory manage-
ment hardware with an eight-entry cache for translating virtual to physi-
cal addresses. Each segment (128 KB) is mapped to one of the eight
entries. So segments 0, 8, 16, ... use entry 0; segments 1, 9, 17, ... use entry
1; and so forth. You get better performance by arranging the typical pro-
cess to avoid cache entry conflicts. If a heavily used library had both its
text and its data segments mapped to the same cache entry, the perfor-
mance penalty would be particularly severe. Every library instruction
would bring the text segment information into the cache. Instructions that
referenced data would flush the entry to load the data segment. Of
course, the next instruction would reference text and flush the cache entry

C Compilation System 2-27

Compiling and Linking

again. At least on the 3B2, a library’s text and data segment numbers
should differ by something other than eight.

Now let’s look at some maintenance issues. We have already seen how allocat-
ing buffers dynamically can ease the job of library maintenance. As a general
rule, you want to be sure that updated versions of a shared object are compati-
ble with its previous versions so that users will not have to recompile their
applications. At the very least, you should avoid changing the names of library
symbols from one release to the next.

All the same, there may be instances in which you need to release a library ver-
sion that is incompatible with its predecessor. On the one hand, you will want
to maintain the older version for dynamically linked executables that depend on
it. On the other hand, you will want newly created executables to be linked
with the updated version. Moreover, you will probably want both versions to
be stored in the same directory. In this situation, you could give the new
release a different name, rewrite your documentation, and so forth. A better
alternative would be to plan for the contingency in the very first instance by
using the following sequence of commands when you create the original version
of the shared object:

$ cc -K PIC -G -h libfoo.l -o libfoo.l functionl.c \
function2.c function3.c
$ 1n libfoo.l libfoo.so

In the first command -h stores the name given to it, 1ibfoo.1, in the shared
object itself. You then use the UNIX system command 1n, described in Section 1
of the User’s Reference Manual, to create a link between the name libfoo.1 and
the name libfoo.so. The latter, of course, is the name the link editor will look
for when users of your library specify

$ cc -Ldir filel.c file2.c file3.c -1lfoo

In this case, however, the link editor will record in the user’s executable the
name you gave to -h, libfoo.1, rather than the name libfoo.so. That
means that when you release a subsequent, incompatible version of the library,
libfoo. 2, executables that depend on libfoo.1l will continue to be linked with
it at run time. As we saw earlier, the dynamic linker uses the shared object
name that is stored in the executable to satisfy unresolved external references at
run time.

2-28 ANSI C and Programming Support Tools

Compiling and Linking

You use the same sequence of commands when you create libfoo.2:

$ cc -K PIC -G -h libfoo.2 -0 libfoo.2 functionl.c \
function2.c functiond.c
$ 1n libfoo.2 libfoo.so

Now when users specify
$ cc -Ldir filel.c file2.c file3.c -1foo

the name libfoo.2 will be stored in their executables, and their programs will
be linked with the new library version at run time.

Multiply Defined Symbols

Multiply defined symbols — except for different-sized initialized data objects —
are not reported as errors under dynamic linking. To put that more formally,
the link editor will not report an error for multiple definitions of a function or a
same-sized data object when each such definition resides within a different
shared object or within a dynamically linked executable and different shared
objects. The dynamic linker will use the definition in whichever object occurs
first on the cc command line. You can, however, specify -Bsymbolic when
you create a shared object

$ cc -K PIC -G -Bsymbolic -o libfoo.so functionl.c \
function2.c function3.c

to insure that the dynamic linker will use the shared object’s definition of one of
its own symbols, rather than a definition of the same symbol in an executable or
another library.

In contrast, multiply defined symbols are generally reported as errors under
static linking. We say “‘generally’” because definitions of so-called weak sym-
bols can be hidden from the link editor by a definition of a global symbol. That
is, if a defined global symbol exists, the appearance of a weak symbol with the
same name will not cause an error.

To illustrate this, let’s look at our own implementation of the standard C library.
This library provide services that users are allowed to redefine and replace. At
the same time, however, ANSI C defines standard services that must be present
on the system and cannot be replaced in a strictly conforming program.

fread (), for example, is an ANSI C library function; the system function

read () is not. So a conforming program may redefine read() and still use
fread() in a predictable way.

C Compilation System 2-29

Compiling and Linking

The problem with this is that read () underlies the fread() implementation in
the standard C library. A program that redefines read() could “‘confuse” the
fread () implementation. To guard against this, ANSI C states that an imple-
mentation cannot use a name that is not reserved to it. That's why we use
_read() — note the leading underscore — to implement fread() in the stan-
dard C library.

Now suppose that a program you have written calls read (). If your program
is going to work, a definition for read() will have to exist in the C library.
One does. It is identical to the definition for _read() and contained in the
same object file.

Suppose further that another program you have written redefines read(), as it
has every right to do under ANSI C. And that this same program calls

fread (). Because you get our definitions of both _read() and read() when
you use fread(), we would expect the link editor to report the multiply
defined symbol read() as an error, and fail to create an executable program.
To prevent that, we used the #pragma directive in our source code for the
library as follows:

#pragma weak read = _read

Because our read() is defined as a weak symbol, your own definition of
read () will override the definition in the standard C library. You can use the
#pragma directive in the same way in your own library code.

There’s a second use for weak symbols that you ought to know about:
#pragma weak read

tells the link editor not to complain if it does not find a definition for the weak
symbol read. References to the symbol use the symbol value if defined, 0 oth-
erwise. The link editor does not extract archive members to resolve undefined
weak symbols. The mechanism is intended to be used primarily with functions.
Although it will work for most data objects, it should not be used with unini-
tialized global data (““common’ symbols) or with shared library data objects that
are exported to executables.

2-30 ANSI C and Programming Support Tools

Compiling and Linking

Quick-Reference Guide

1. By convention, shared objects, or dynamically linked libraries, are desig-
nated by the prefix 1ib and the suffix .so; archives, or statically linked
libraries, are designated by the prefix lib and the suffix .a. libc.so,
then, is the shared object version of the standard C library; libc.a is the
archive version.

2. These conventions are recognized, in turn, by the -1 option to the cc
command. That is, —1x directs the link editor to search the shared object
libx.so or the archive library libx.a. The cc command automatically
passes -1c to the link editor. In other words, the compilation system
arranges for the standard C library to be linked with your program tran-
sparently.

3. By default, the link editor chooses the shared object implementation of a
library, libx.so, in preference to the archive library implementation,
libx.a, in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system, /usr/ccs/lib and /usr/lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/ccs/1ib.

In this arrangement, then, C programs are dynamically linked with libc.so
automatically:

$ cc filel.c file2.c file3.c
To link your program statically with libc.a, turn off the dynamic linking
default with the —dn option:

$ cc —dn filel.c file2.c file3.c
Specify the -1 option explicitly to link your program with any other library. If
the library is in the standard place, the command

$ cc filel.c file2.c file3.c -lx

will direct the link editor to search for libx.so, then libx.a in the standard
place. Note that the compilation system supplies shared object versions only of
libc and libdl. (Other shared object libraries are supplied with the operating
system, and usually are kept in the standard places.) Note, too, that, as a rule,
it’s best to place -1 at the end of the command line.

C Compilation System 2-31

Compiling and Linking

If the library is not in the standard place, specify the path of the directory in
which it is stored with the -L option

$ cc -Ldir filel.c file2.c file3.c -lx
or the environment variable LD_LIBRARY PATH

$ LD_LIBRARY PATH=dir export LD_LIBRARY PATH
$ cc filel.c file2.c file3.c -lx

If the library is a shared object and is not in the standard place, you must also
specify the path of the directory in which it is stored with either the environ-
ment variable LD _RUN_PATH at link time, or the environment variable
LD_LIBRARY PATH at run time:

$ LD_RUN PATH=dir export LD _RUN_PATH
$ LD_LIBRARY PATH=dir export LD_LIBRARY PATH

It’s best to use an absolute path when you set these environment variables.
Note that LD_LIBRARY_PATH is read both at link time and at run time.

To direct the link editor to search 1ibx.a where libx.so exists in the same
directory, turn off the dynamic linking default with the —dn option:

$ cc —dn -Ldir filel.c file2.c file3.c -lx

That command will direct the link editor to search libc.a well as libx.a. To
link your program statically with 1ibx.a and dynamically with libc.so, use
the -Bstatic and -Bdynamic options to turn dynamic linking off and on:

$ cc -Ldir filel.c file2.c file3.c -Bstatic —1lx —-Bdynamic

Files, including libraries, are searched for definitions in the order they are listed
on the cc command line. The standard C library is always searched last.

2-32 ANSI C and Programming Support Tools

Libraries and Header Files

As we have noted, the standard libraries supplied by the C compilation system
contain functions that you can use in your program to perform input/output,
string handling, and other high-level operations that are not explicitly provided
by the C language. Header files contain definitions and declarations that your
program will need if it calls a library function. They also contain function-like
macros that you can use in your program as you would a function.

In the first part of this chapter, we showed you how to link your program with
these standard libraries and how to include a header file. In this part, we'll talk
a bit more about header files and show you how to use library functions in your
program. We'll also describe the contents of some of the more important stan-
dard libraries, and tell you where to find them in the Programmer’s Reference
Manual. We'll close with a brief discussion of standard 1/0.

Header Files

Header files serve as the interface between your program and the libraries sup-
plied by the C compilation system. Because the functions that perform standard
170, for example, very often use the same definitions and declarations, the sys-
tem supplies a common interface to the functions in the header file stdio.h.
By the same token, if you have definitions or declarations that you want to
make available to several source files, you can create a header file with any edi-
tor, store it in a convenient directory, and include it in your program as
described in the first part of this chapter.

Header files traditionally are designated by the suffix .h, and are brought into
a program at compile time. The preprocessor component of the compiler does
this because it interprets the #include statement in your program as a direc-
tive. The two most commonly used directives are #include and #define. As
we have seen, the #include directive is used to call in and process the contents
of the named file. The #define directive is used to define the replacement
token string for.an identifier. For example,

#define NULL O

defines the macro NULL to have the replacement token sequence 0. See Chapter
3, “C Language,” for the complete list of preprocessing directives.

Many different .h files are named in the Programmer’s Reference Manual. Here
we are going to list a number of them, to illustrate the range of tasks you can
perform with header files and library functions. When you use a library

C Compilation System 2-33

Libraries and Header Files

function in your program, the manual page will tell you which header file, if
any, needs to be included. If a header file is mentioned, it should be included
before you use any of the associated functions or declarations in your program.
It’s generally best to put the #include right at the top of a source file.

assert.h assertion checking
ctype.h character handling
errno.h error conditions
float.h floating point limits
limits.h other data type limits
locale.h program’s locale
math.h mathematics
setjmp.h nonlocal jumps
signal.h signal handling
stdarg.h variable arguments
stddef.h common definitions
stdio.h standard input/output
stdlib.h general utilities
string.h string handling
time.h date and time
unistd.h system calls

2-34 ANSI C and Programming Support Tools

Libraries and Header Files

How to Use Library Functions

The manual page for each function describes how you should use the function
in your program. As an example, we'll look at-the strcmp () routine, which
compares character strings. The routine is described on the string manual
page in Section 3, Subsection 3S, of the Programmer’s Reference Manual. Related
functions are described there as well, but only the sections relevant to strcmp ()
are shown in Figure 2-2.

Figure 2-2: Excerpt from string(3S) Manual Page

As shown, the DESCRIPTION section tells you what the function or macro does.
It’s the SYNOPSIS section, though, that contains the critical information about
how you use the function or macro in your program.

Note that the first line in the SYNOPSIS is
#include <string.h>

That means that you should include the header file string.h in your program

C Compilation System 2-35

Libraries and Header Files

because it contains useful definitions or declarations relating to stremp (). In
fact, string.h contains the line '

extern int strcmp(const char *, const char *);

that describes the kinds of arguments expected and returned by strcmp ().
This line is called a function prototype. Function prototypes afford a greater
degree of argument type checking than old-style function declarations, so you
lessen your chance of using the function incorrectly. By including string.h,
you assure that the compiler checks calls to strcmp () against the official inter-
face. You can, of course, examine string.h in the standard place for header
files on your system, usually the /usr/include directory.

The next thing in the SYNOPSIS section is the formal declaration of the function.
The formal declaration tells you:

m the type of value returned by the function;
m the arguments the function expects to receive when called, if any;
m the argument types.

By way of illustration, let’s look at how you might use strcmp () in your own
code. Figure 2-3 shows a program fragment that will find the bird of your
choice in an array of birds.

2-36 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-3: How stremp() Is Used In a Program

C Compilation System 2-37

Libraries and Header Files

C Library (libc)

In this section, we describe some of the more important routines in the standard
C library. As we indicated in the first part of this chapter, 1ibc contains the
system calls described in Section 2 of the Programmer’s Reference Manual, and the
C language functions described in Section 3, Subsections 3C and 35. We'll
explain what each of these subsections contains below. We'll look at system
calls at the end of the section.

Subsection 3S Routines

Subsection 3S of the Programmer’s Reference Manual contains the so-called stan-
dard I/0 library for C programs. Frequently, one manual page describes
several related functions or macros. In Figure 2-4, the left-hand column contains
the name that appears at the top of the manual page; the other names in the
same row are related functions or macros described on the same manual page.
Programs that use these routines should include the header file stdio.h.

We'll talk a bit more about standard I/0 in the last subsection of this chapter.

2-38 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-4: Standard I/O Functions and Macros

fclose fflush Close or flush a stream.

ferror feof clearerr fileno | Stream status inquiries.

fopen freopen fdopen Open a stream.

fread fwrite Input/output.

fseek rewind ftell Reposition a file pointer in a
stream.

getc getchar fgetc getw Get a character or word from a
stream.

gets fgets Get a string from a stream.

popen pclose Begin or end a pipe to/from a
process.

printf fprintf sprintf Print formatted output.

putc putchar fputc putw Put a character or word on a
stream.

puts fputs Put a string on a stream.

scanf fscanf sscanf Convert formatted input.

setbuf setvbuf Assign buffering to a stream.

system Issue a command through the
shell.

tmpfile Create a temporary file.

tmpnam tempnam Create a name for a temporary
file.

ungetc Push character back into input
stream.

vprintf vEfprintf vsprintf Print formatted output of a
varargs argument list.

C Compilation System ’ 2-39

Libraries and Header Files

Subsection 3C Routines

Subsection 3C of the Programmer’s Reference Manual contains functions and mac-
ros that perform a variety of tasks:

m string manipulation

m character classification

® character conversion

®m environment management

B memory management.

Here we’ll look at functions and macros that perform the first three tasks.

Figure 2-5 lists string-handling functions that appear on the string page in
Subsection 3C of the Programmer’s Reference Manual. Programs that use these
functions should include the header file string.h.

Figure 2-5: String Operations

strcat

strncat

strcmp

strncmp

strcpy

strncpy

2-40

Append a copy of one string to the end of another.

Append no more than a given number of characters from one
string to the end of another.

Compare two strings. Returns an integer less than, greater
than, or equal to 0 to show that one is lexicographically less
than, greater than, or equal to the other.

Compare no more than a given number of characters from the
two strings. Results are otherwise identical to strcmp.
Copy a string.

Copy a given number of characters from one string to another.
The destination string will be truncated if it is longer than the
given number of characters, or padded with null characters if it
is shorter.

ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-5: String Operations (continued)

strdup

strchr

strrchr

strlen

strpbrk

strspn

strcspn

strstr

strtok

Return a pointer to a newly allocated string that is a duplicate
of a string pointed to.

Return a pointer to the first occurrence of a character in a
string, or a null pointer if the character is not in the string.

Return a pointer to the last occurrence of a character in a
string, or a null pointer if the character is not in the string.

Return the number of characters in a string.

Return a pointer to the first occurrence in one string of any
character from the second, or a null pointer if no character
from the second occurs in the first.

Return the length of the initial segment of one string that con-
sists entirely of characters from the second string.

Return the length of the initial segment of one string that con-
sists entirely of characters not from the second string.

Return a pointer to the first occurrence of the second string in
the first string, or a null pointer if the second string is not
found.

Break up the first string into a sequence of tokens, each of
which is delimited by one or more characters from the second
string. Return a pointer to the token, or a null pointer if no
token is found.

C Compilation System 2-41

Libraries and Header Files

Figure 2-6 lists functions and macros that classify 8-bit character-coded integer
values. These routines appear on the conv and ctype pages in Subsection 3C
of the Programmer’s Reference Manual. Programs that use these routines should
include the header file ctype.h.

Figure 2-6: Classifying 8-Bit Character-Coded Integer Values

isalpha Is c a letter?

isupper Is ¢ an uppercase letter?

islower Is c a lowercase letter?

isdigit Is c a digit [0-9]?

isxdigit Is ¢ a hexadecimal digit [0-9], [A-F], or [a-f]?

isalnum Is ¢ alphanumeric (a letter or digit)?

isspace Is ¢ a space, horizontal tab, carriage return, new-line, vertical tab,
or form-feed?

ispunct Is ¢ a punctuation character (neither control nor alphanumeric)?

isprint Is ¢ a printing character?

isgraph " Same as isprint except false for a space.

iscntrl Is ¢ a control character or a delete character?

isascii Is ¢ an ASCII character?

toupper Change lower case to upper case.

_toupper Macro version of toupper.

tolower Change upper case to lower case.

_tolower Macro version of tolower.

toascii Turn off all bits that are not part of a standard ASCII character;
intended for compatibility with other systems.

2-42 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-7 lists functions and macros in Subsection 3C of the Programmer’s
Reference Manual that are used to convert characters, integers, or strings from
one representation to another. The left-hand column contains the name that
appears at the top of the manual page; the other names in the same row are
related functions or macros described on the same manual page. Programs that
use these routines should include the header file stdlib.h.

Figure 2-7: Converting Characters, Integers, or Strings

a64l l64a Convert between long integer and base-64
ASCII string.

ecvt fevt gevt | Convert floating point number to string.

13tol ltol3 Convert between 3-byte packed integer and
long integer.

strtod atof Convert string to double-precision number.

strtol atol atoi | Convert string to integer.

strtoul Convert string to unsigned long.

System Calls

UNIX system calls are the interface between the kernel and the user programs
that run on top of it. read(), write (), and the other system calls in Section
2 of the Programmer’s Reference Manual define what the UNIX system is. Every-
thing else is built on their foundation. Strictly speaking, they are the only way
to access such facilities as the file system, interprocess communication primi-
tives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are performing input/output, for example, you
can use the standard I/0 functions described earlier. When you use these func-
tions, the details of their implementation on the UNIX system — for example,
that the system call read () underlies the fread() implementation in the
standard C library — are transparent to the program. In other words, the

C Compilation System 2-43

Libraries and Header Files

program will generally be portable to any system, UNIX or not, with a conform-
ing C implementation.

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read() in a
program that performed a simple I/O operation. Other operations, however,
including most multitasking mechanisms, do require direct interaction

with the UNIX system kernel. These operations are discussed in detail in the
Programmer’s Guide: System Services and Application Packaging Tools.

Math Library (libm)

The math library, 1ibm, contains the mathematics functions supplied by the C
compilation system. These appear in Subsection 3M of the Programmer’s Refer-
ence Manual. Here we describe some of the major functions, organized by the
manual page on which they appear. Note that functions whose names end with
the letter £ are single-precision versions, which means that their argument and
return types are float. The header file math.h should be included in pro-
grams that use math functions.

Figure 2-8: Math Functions

exp(3M)

exp expf Return &*.

cbrt Return cube root of x.

log logf Return the natural logarithm of x. The
value of x must be positive.

logl0 loglOf Return the base-ten logarithm of x. The
value of x must be positive.

pow powf Return x¥. If x is zero, y must be posi-
tive. If x is negative, y must be an
integer.

2-44 ANSI C and Programming Support Tools

Figure 2-8: Math Functions (continued)

sqrt sqrtf Return the non-negative square root of
x. The value of x must be non-
negative.

hypot(3M)

hypot Return sqrt(x * x + y * y), taking pre-
cautions against overflows.

gamma(3M)

gamma lgamma Return In(| T'(x)|), where T'(x) is

X
defined as [e't*14t.
0

trig(3M)

sin sinf Return, respectively, the sine, cosine,

cos cosf and tangent of x, measured in radians.

tan tanf

asin asinf Return the arcsine of x, in the range
[-r/2, +r/2].

acos acosf Return the arccosine of x, in the range
[0,+x].

atan atanf Return the arctangent of x, in the range
(-n/2, +w/2).

atan2 atan2f Return the arctangent of y/x, in the

range (-m, +7], using the signs of both
arguments to determine the quadrant
of the return value.

C Compilation System

2-45

Libraries and Header Files

Libraries and Header Files

Figure 2-8: Math Functions (continued)
sinh(3M)

sinh sinhf Return, respectively, the hyperbolic

cosh coshf sine, cosine, and tangent of their argu-

tanh tanhf ment.

asinh Return, respectively, the inverse hyper-

acosh bolic sine, cosine, and tangent of their

atanh argument.

matherr(3M)

matherr Error handling.

erf(3M)

erf Returns the error function of x, defined

2 7 i
as et dt.
W

erfc erfc, which returns 1.0 - erf(x), is pro-
vided because of the extreme loss of
relative accuracy if erf is called for
large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).

floor(3M)

floor floorf Return the largest integer not greater
than x.

ceil ceilf Return the smallest integer not less
than x.

copysign Return x but with the sign of y.

2-46 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-8: Math Functions (continued)

fmod fmodf Return the floating point remainder of
the division of x by y: x if y is zero,
otherwise the number f with same sign
as x, such that x = iy + f for some
integer 7, and | f |<| y |.

fabs fabsf Return the absolute value of x, | x |.

rint Return the integer value nearest to the
double-precision floating point argu-
ment x as a double-precision floating
point number. The returned value is
rounded according to the currently set
machine rounding mode. If round-to-
nearest (the default mode) is set and
the difference between the function
argument and the rounded result is
exactly 0.5, then the result will be
rounded to the nearest even integer.

remainder Return the floating point remainder of
the division of x by y: NaN if y is zero,
otherwise the value r = x - yn, where n
is the integer nearest the exact value of
x/y. Whenever |n - xfy| = 1/2, thenn
is even.

C Compilation System 2-47

Libraries and Header Files

General Purpose Library (libgen)

libgen contains general purpose functions, and functions designed to facilitate
internationalization. These appear in Subsection 3G of the Programmer’s Refer-
ence Manual. Figure 2-9 describes functions in libgen. The header files
libgen.h and, occasionally, regexp.h should be included in programs that
use these functions.

Figure 2-9: libgen Functions

advance

basename

bgets

bufsplit

compile

copylist

dirname

eaccess

gmatch

isencrypt

2-48

step

Execute a regular expression on a string.

Return a pointer to the last element of a path
name.

Read a specified number of characters into a
buffer from a stream until a specified character
is reached.

Split the buffer into fields delimited by tabs
and new-lines.

Return a pointer to a compiled regular expres-
sion that uses the same syntax as ed.

Copy a file into a block of memory, replacing
new-lines with null characters. It returns a
pointer to the copy.

Return a pointer to the parent directory name
of the file path name.

Determine if the effective user ID has the
appropriate permissions on a file.

Check if name matches shell file name pattern.

Use heuristics to determine if contents of a
character buffer are encrypted.

ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-9: libgen Functions (continued)

mkdirp

p2open p2close

pathfind

regcmp

regex

rmdirp

strccepy strcadd

strecpy

strfind

C Compilation System

Create a directory and its parents.

p2open is similar to popen(3S). It establishes
a two-way connection between the parent and
the child. p2close closes the pipe.

Search the directories in a given path for a
named file with given mode characteristics. If
the file is found, a pointer is returned to a
string that corresponds to the path name of the
file. A null pointer is returned if no file is
found.

Compile a regular expressionk and return a
pointer to the compiled form.

Compare a compiled regular expression against
a subject string. ‘

Remove the directories in the specified path.

strccpy copies the input string to the output
string, compressing any C-like escape
sequences to the real character. strcaddisa
similar function that returns the address of the
null byte at the end of the output string.

Copy the input string to the output string,
expanding any non-graphic characters with the
C escape sequence. Characters in a third argu-
ment are not expanded.

Return the offset of the first occurrence of the
second string in the first string. -1 is returned
if the second string does not occur in the first.

2-49

Libraries and Header Files

Figure 2-9: libgen Functions (continued)

strrspn Trim trailing characters from a string. It
returns a pointer to the last character in the
string not in a list of trailing characters.

strtrns Return a pointer to the string that results from
replacing any character found in two strings
with a character from a third string. This func-
tion is similar to the tr command.

Standard /O

As we have seen, the functions in Subsection 35 of the Programmer’s Reference
Manual constitute the standard I/0O library for C programs. In this section, we
want to discuss standard 1/0 in a bit more detail. First, let’s briefly define what
I/0O involves. It has to do with

® reading information from a file or device to your program;
m writing information from your program to a file or device;

B opening and closing files that your program reads from or writes to.

Three Files You Always Have

Programs automatically start off with three open files: standard input, standard
output, and standard error. These files with their associated buffering are called
streams, and are designated stdin, stdout, and stderr, respectively. The
shell associates all three files with your terminal by default.

This means that you can use functions and macros that deal with stdin,
stdout, or stderr without having to open or close files. gets (), for exam-
ple, reads a string from stdin; puts () writes a string to stdout. Other
functions and macros read from or write to files in different ways: character at
a time, getc() and putc(); formatted, scanf() and print£(); and so on.
You can specify that output be directed to stderr by using a function such as

2-50 ANSI C and Programming Support Tools

Libraries and Header Files

fprintf(). fprintf () works the same way as printf () except that it
delivers its formatted output to a named stream, such as stderr.

Named Files

Any file other than standard input, standard output, and standard error must be
explicitly opened by you before your program can read from or write to the file.
You open a file with the standard library function fopen(). fopen() takes a
path name, asks the system to keep track of the connection between your pro-
gram and the file, and returns a pointer that you can then use in functions that
perform other I/O operations.

The pointer is to a structure called FILE, defined in stdio.h, that contains
information about the file: the location of its buffer, the current character posi-
tion in the buffer, and so on. In your program, then, you need to have a declara-
tion such as

FILE #*fin;
which says that fin is a pointer to a FILE. The statement
fin = fopen("filename", "r");

associates a FILE structure with filename, the path name of the file to open,
and returns a pointer to it. The "r" means that the file is to be opened for
reading. This argument is known as the mode. There are modes for reading,
writing, and both reading and writing.

In practice, the file open function is often included in an if statement:

if ((fin = fopen("filename", "r")) == NULL)
(void) fprintf (stderr, "Cannot open input file %s\n",
"filename");

which takes advantage of the fact that fopen () returns a NULL pointer if it
cannot open the file. To avoid falling into the immediately following code on
failure, you can call exit (), which causes your program to quit:

if ((fin = fopen("filename", "r")) == NULL) {
(void) fprintf (stderr, "Cannot open input file %s\n",
"filename");
exit (1),

C Compilation System 2-51

Libraries and Header Files

Once you have opened the file, you use the pointer f£in in functions or macros
to refer to the stream associated with the opened file:

int c;
= getc(fin);

brings in one character from the stream into an integer variable called c. The
variable c is declared as an integer even though we are reading characters
because getc () returns an integer. Getting a character is often incorporated in
some flow-of-control mechanism such as

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc () are all defined in stdio.h. getc () and other macros in the stan-
dard I/0 package keep advancing a pointer through the buffer associated with
the stream; the UNIX system and the standard I/O functions are responsible for
seeing that the buffer is refilled if you are reading the file, or written to the out-
put file if you are producing output, when the pointer reaches the end of the
buffer.

Your program may have multiple files open simultaneously, 20 or more depend-
ing on system configuration. If, subsequently, your program needs to open
more files than it is permitted to have open simultaneously, you can use the
standard library function fclose () to break the connection between the FILE
structure in stdio.h and the path names of the files your program has
opened. Pointers to FILE may then be associated with other files by subse-
quent calls to fopen (). For output files, an fclose () call makes sure that all
output has been sent from the output buffer before disconnecting the file.

exit () closes all open files for you, but it also gets you completely out of your
process, so you should use it only when you are sure you are finished.

Passing Command Line Arguments

As we noted in Chapter 1, information or control data can be passed to a C pro-
gram as an argument on the command line. When you execute the program,
command line arguments are made available to the function main () in two
parameters, an argument count, conventionally called argc, and an argument
vector, conventionally called argv. argc is the number of arguments with

2-52 ANSI C and Programming Support Tools

Libraries and Header Files

which the program was invoked. argv is an array of pointers to characters
strings that contain the arguments, one per string. Since the command name
itself is considered to be the first argument, or argv[0], the count is always at
least one.

If you plan to accept run-time parameters in your program, you need to include
code to deal with the information. Figures 2-10 and 2-11 show program frag-
ments that illustrate two common uses of run-time parameters:

m Figure 2-10 shows how you provide a variable file name to a program,
such that a command of the form

$ prog filename
will cause prog to attempt to open the specified file.

m Figure 2-11 shows how you set internal flags that control the operation of
a program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options
specified. The getopt () function used in the example is the most com-

mon way to process arguments in UNIX system programs. getopt () is
described in Subsection 3C of the Programmer’s Reference Manual.

C Compilation System 2-53

Libraries and Header Files

Figure 2-10: Using argv[1] to Pass a File Name

2-54 ANSI C and Programming Support Tools

Libraries and Header Flles

Figure 2-11: Using Command Line Arguments to Set Flags

C Compilation System 2-55

. . 3 CLANGUAGE

3 C Language

Introduction 3-1
Compilation Modes 3-1
m Global Behavior 3-2
How To Use This Chapter 3-2
Phases of Translation 3-3
Source Files and Tokenization 3-5
Tokens 3-5
Identifiers 35
Keywords 3-6
Constants 3-6
m Integral Constants 3-6
m Floating Point Constants 3-7
m Character Constants 3-7
m Wide Characters and Multibyte Characters 3-9
String Literals 39
Wide String Literals 39
Comments 3-10
Preprocessing 3-11
Trigraph Sequences 3-11
Preprocessing Tokens 3-11
m Preprocessing Numbers 3-12
Preprocessing Directives 3-12
m Preprocessing Operators 3-12
m Macro Definition and Expansion 3-13
m File Inclusion 3-14
m Conditional Compilation 3-15
m Line Control 3-17
m Assertions 3-17

Table of Contents i

Table of Contents

m Version Control 3-18
m Pragmas 3-18
m Error Generation 3-19
m Predefined Names 3-20
Declarations and Definitions 3-21
Introduction 3-21
Types 3-21
m Basic Types 3-21
m Type Qualifiers 3-22
m Structures and Unions 3-22
® Enumerations 3-24
Scope 3-24
Storage Duration 3-25
Storage Class Specifiers 3-26
Declarators 3-27
m Pointer Declarators 3-27
m Array Declarators 3-28
m Function Declarators 3-28
Function Definitions 3-29
Conversions and Expressions 3-31
Implicit Conversions 3-31
m Characters and Integers 3-31
m Signed and Unsigned Integers 3-31
m Integral and Floating 3-32
m Float and Double 3-32
m Usual Arithmetic Conversions 3-32
Expressions . 3-33
m Objects and Ivalues 3-33
m Primary Expressions 3-33
Operators 3-34
m Unary Operators 3-34
m Cast Operators - Explicit Conversions 3-36
m Multiplicative Operators 3-36
m Additive Operators 3-37

il ANSI C and Programming Support Tools

Table of Contents

m Bitwise Shift Operators 3-38
m Relational Operators 3-39
m Equality Operators 3-39
m Bitwise AND Operator 3-39
m Bitwise Exclusive OR Operator 3-40
m Bitwise OR Operator 3-40
m Logical AND Operator 3-40
a Logical OR Operator 3-41
m Conditional Operator 3-41
m Assignment Expressions 3-42
= Comma Operator 3-42
m Structure Operators 3-42
Associativity and Precedence of Operators 3-43
Constant Expressions 3-43
Initialization 3-44
Statements 3-47
Expression Statement 3-47
Compound Statement 3-47
Selection Statements 3-47
m if 3-47
m else 3-48
m switch 3-48
lteration Statements 3-49
m while 3-49
s do-while 3-49
m for 3-50
Jump Statements 3-50
m goto 3-50
B break 3-51
m continue 3-51
B return 3-51
Portability Considerations 3-52

Table of Contents jii

Introduction

This chapter is a guide to the C language compilers for the AT&T 3B2 and 6386
computers. The level of presentation assumes some experience with C, and
familiarity with fundamental programming concepts.

The compilers are compatible with the C language described in the American
National Standards Institute (ANSI) “‘Draft Proposed American National Stan-
dard for Information Systems—Programming Language C,” document number
X3J11/88-090, dated December 7, 1988. The standard language is referred to as
“ANSI C” in this document. The notation CI4 refers to previous issues of the
compilation system: C Issue 4.2 for the 3B2, C Issue 4.1.6 for the 6386.

Compilation Modes

The compilation system has three compilation modes that correspond to degrees
of compliance with ANSI C. The modes are:

-Xt Transition mode. Yields behavior compatible
with the previous issue (CI4). Under this
option, the compiler provides new ANSI C
features and supports all extensions that were
provided in CI4. Where the interpretation of a
construct differs between CI4 and the Standard,
the compiler issues a warning and follows the
CH4 behavior. This is the default compilation
mode.

-Xa ANSI C mode. Under this option, the compiler
provides ANSI C semantics where the interpre-
tation of a construct differs between CI4 and the
Standard, and issues a warning. Extensions pro-
vided in CI4, including those that are incompati-
ble with the Standard, are supported.

—Xc Conformance mode. Enforces ANSI C confor-
mance, and allows the use of conforming exten-
sions. Conforming extensions are those that do
not interfere with conforming code. Non-
conforming extensions are disallowed or cause
diagnostic messages.

C Language 31

Introduction

Global Behavior

A program that depends on unsigned-preserving arithmetic conversions will
behave differently. This is considered to be the most serious change made by
ANSI C to a widespread current practice.

In the first edition of Kernighan and Ritchie, The C Programming Language
(Prentice-Hall, 1978), unsigned specified exactly one type; there were no
unsigned chars, unsigned shorts, or unsigned longs, but most C compilers
added these very soon thereafter.

In previous AT&T C compilers, the “unsigned preserving” rule is used for pro-
motions: when an unsigned type needs to be widened, it is widened to an
unsigned type; when an unsigned type mixes with a signed type, the result is
an unsigned type.

The other rule, specified by ANSI C, came to be called “value preserving,” in
which the result type depends on the relative sizes of the operand types. When
an unsigned char or unsigned short is “widened,” the result type is int if
an int is large enough (as it is on 3B2 and 6386 computers) to represent all the
values of the smaller type. Otherwise the result type would be unsigned int.
The “value preserving”” rule produces the “least surprise” arithmetic result for
most expressions.

Only in the transition (-Xt) mode will the compiler use the unsigned preserving
promotions; in the other two modes, conformance (-Xc) and ANSI (—Xa), the
value preserving promotion rules will be used. No matter what the current
mode may be, the compiler will warn about each expression whose behavior
might depend on the promotion rules used.

This warning is not optional since this is a serious change in behavior.

How To Use This Chapter

You can use this chapter either as a quick reference guide, or as a comprehen-
sive summary of the language as implemented by the compilation system.
Many topics are grouped according to their place in the ANSI-specified phases
of translation, which describe the steps by which a source file is translated into
an executable program. The phases of translation are explained in the following
section.

3-2 ANSI C and Programming Support Tools

Introduction

Phases of Translation

The compiler processes a source file into an executable in eight conceptual steps,
which are called phases of translation. While some of these phases may in actual-
ity be folded together, the compiler behaves as if they occur separately, in
sequence.

1.

Trigraph sequences are replaced by their single-character equivalents.
(Trigraph sequences are explained in the “Preprocessing’” section of this
chapter).

Any source lines that end with a backslash and new-line are spliced
together with the next line by deleting the backslash and new-line.

. The source file is partitioned into preprocessing tokens and sequences of

white-space characters. Each comment is, in effect, replaced by one space
character. (Preprocessing tokens are explained in the “Preprocessing’” sec-
tion of this chapter).

Preprocessing directives are executed, and macros are expanded. Any
files named in #include statements are processed from phase 1 through
phase 4, recursively.

Escape sequences in character constants and string literals are converted
to their character equivalents.

Adjacent character string literals, and wide character string literals, are
concatenated.

Each preprocessing token is converted into a token. The resulting tokens
are syntactically and semantically analyzed and translated. (Tokens are
explained in the “Source Files and Tokenization” section of this chapter).

All external object and function references are resolved. Libraries are
linked to satisfy external references not defined in the current translation
unit. All translator output is collected into a program image which con-
tains information needed for execution.

Output from certain phases may be saved and examined by specifying option
flags on the cc command line.

C Language 33

Introduction

The preprocessing token sequence resulting from Phase 4 can be saved by using
the following options:

1. -P leaves preprocessed output in a file with a .i extension.
2. -E sends preprocessed output to the standard output.

Output from Phase 7 can be saved in a file with a .o extension by using the —c
option to cc. The output of Phase 8 is the compilation system’s final output
(a.out).

3-4 ANSI C and Programming Support Tools

Source Files and Tokenization

Tokens

A token is a series of contiguous characters that the compiler treats as a unit.
Translation phase 3 partitions a source file into a sequence of tokens. Tokens
fall into seven classes:

m Identifiers

m Keywords

® Numeric Constants

m Character Constants

m String literals

m Operators

m Other separators and punctuators

Identifiers
m Identifiers are used to name things such as variables, functions, data
types, and macros.

m Identifiers are made up of a combination of letters, digits, or underscore
(_) characters.

m First character may not be a digit.

C Language ‘ 3-5

Source Files and Tokenization

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

asm default for short union
auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch

continue float return typedef

The keyword asm is reserved in all compilation modes except —Xc. The key-
word _ _asmis a synonym for asm and is available under all compilation
modes, although a warning will be issued when it is used under the -Xc mode.

Constants

Integral Constants
m Decimal
o Digits 0-9.
o First digit may not be 0 (zero).

m Octal
o Digits 0-7.
o First digit must be 0 (zero).

m Hexadecimal

o Digits 0-9 plus letters a~f or A-F. Letters correspond to decimal
values 10-15.

o Prefixed by 0x or 0X (digit zero).

3-6 ANSI C and Programming Support Tools

Source Files and Tokenization

m Suffixes
All of the above can be suffixed to indicate type, as follows:
Suffix Type
uorU unsigned

lorL long
both unsigned long

Floating Point Constants

m Consist of integer part, decimal point, fraction part, an e or E, an option-
ally signed integer exponent, and a type suffix, one of £, F, 1, or L.
Each of these elements is optional; however one of the following must be
present for the constant to be a floating point constant:

o A decimal point (preceded or followed by a number).
o0 An e with an exponent.
o Any combination of the above. Examples:

xxx e exp
XXX
XXX

® Type determined by suffix; £ or F indicates float, 1 or L indicates
long double, otherwise type is double. The suffix L is only available
under compilation mode -Xc.

Character Constants
m One or more characters enclosed in single quotes, as in ’x’.
m All character constants have type int.

m Value of a character constant is the numeric value of the character in the
ASCII character set.

C Language 3-7

Source Files and Tokenization

® A multiple-character constant that is not an escape sequence (see below)
has a value derived from the numeric values of each character. For exam-
ple, the constant ‘123" has a value of

0 I3I 721 lll

or 0x333231 on the 3B2. On the 6386 the value is

0 Ill I2! I3I

or 0x313233.

m Character constants may not contain the character ’ or new-line. To
represent these characters, and some others that may not be contained in
the source character set, the compiler provides the following escape
sequences:

Escape Sequences

new-line NL (LF) \n | audible alert BEL \a
horizontal tab HT \t | question mark ? \?
vertical tab VT \v | double quote " \"
backspace BS \b | octal escape 000 \ooo
carriage return CR \r | hexadecimal escape hh \xhh
formfeed FF \f | backslash \ \\
single quote ’ \’

If the character following a backslash is not one of those specified, the compiler
will issue a warning and treat the backslash-character sequence as the character
itself. Thus, *\q’ will be treated as ‘q’. However, if you represent a character
this way, you run the risk that the character may be made into an escape
sequence in the future, with unpredictable results. An explicit new-line charac-
ter is invalid in a character constant and will cause an error message.

m The octal escape consists of one to three octal digits.

B The hexadecimal escape consists of one or more hexadecimal digits.

3-8 ANSI C and Programming Support Tools

Source Files and Tokenization

Wide Characters and Multibyte Characters
m A wide character constant is a character constant prefixed by the letter L.

m A wide character has an external encoding as a multibyte character and
an internal representation as the integral type wchar_t, defined in
stddef.h.

m A wide character constant has the integral value for the multibyte charac-
ter between single quote characters, as defined by the locale-dependent
mapping function mbtowc.

String Literals

One or more characters surrounded by double quotes, as in "xyz".
Initialized with the characters contained in the double quotes.

Have static storage duration and type “array of characters.”

The escape sequences described in “Character Constants” may also be
used in string literals. A double quote within the string must be escaped
with a backslash. New-line characters are not valid within a string.

m Adjacent string literals are concatenated into a single string. A null char-
acter, \0, is appended to the result of the concatenation, if any.

m String literals are also known as “‘string constants.”

Wide String Literals
®m A wide-character string literal is a string literal immediately prefixed by
the letter L.
®m Wide-character string literals have type “array of wchar_t.”

m Wide string literals may contain escape sequences, and they may be con-
catenated, like ordinary string literals.

C Language 3-9

Source Files and Tokenization

Comments

Comments begin with the characters /+* and end with the next */.
/* this is a comment */
Comments do not nest.

If a comment appears to begin within a string literal or character constant, it
will be taken as part of the literal or constant, as specified by the phases of
translation.

char *p = "/* this is not a comment */"; /* but this is */

3-10 ANSI C and Programming Support Tools

Preprocessing

m Preprocessing handles macro substitution, conditional compilation, and
file inclusion.

m Lines beginning with # indicate a preprocessing control line. Spaces and
tabs may appear before and after the #.

m Lines that end with a backslash character \ and new-line are joined with
the next line by deleting the backslash and the new-line characters. This
occurs (in translation phase 2) before input is divided into tokens.

m Each preprocessing control line must appear on a line by itself.

Trigraph Sequences

Trigraph sequences are three-character sequences that are replaced by a
corresponding single character in Translation Phase 1, as follows:

2= * 22 [27< {
22/ \ 2?)] 22> }
297 - 22! o 27— ~

No other such sequences are recognized. The trigraph sequences provide a way
to specify characters that are missing on some terminals, but that the C
language uses.

Preprocessing Tokens

A token is the basic lexical unit of the language. All source input must be
formed into valid tokens by translation phase seven. Preprocessing tokens (pp-
tokens) are a superset of regular tokens. Preprocessing tokens allow the source
file to contain non-token character sequences that constitute valid preprocessing
tokens during translation. There are four categories of preprocessing tokens:

m Header file names, meant to be taken as a single token.

® Preprocessing numbers (discussed in the following section).

C Language 3-11

Preprocessing

m All other single characters that are not otherwise (regular) tokens. See the

example in the “Preprocessing Numbers” section of this chapter.

m Identifiers, numeric constants, character constants, string literals, opera-

tors, and punctuators.

Preprocessihg Numbers
m A preprocessing number is made up of a digit, optionally preceded by a

period, and may be followed by letters, underscores, digits, periods, and
any one of e+ e~ E+ E-.

Preprocessing numbers include all valid number tokens, plus some that
are not valid number tokens. For example, in the macro definition:

#define R 2e ## 3

the preprocessing number 2e is not a valid number. However, the
preprocessing operator ## will “paste’”” it together with the preprocessing
number 3 when R is replaced, resulting in the preprocessing number
2e3, which is a valid number. See the “Preprocessing Operators’” section,
below for a discussion of the ## operator.

Preprocessing Directives

Preprocessing Operators

The preprocessing operators are evaluated left to right, without any defined pre-
cedence.

3-12

A macro parameter preceded by the # prepro-
cessing operator has its corresponding unex-
panded argument tokens converted into a string
literal. (Any double quotes and backslashes con-
tained in character constants or part of string
literals are escaped by a backslash). The # char-
acter is sometimes referred to as the “stringiz-
ing” operator. This rule applies only within
function-like macros.

ANSI C and Programming Support Tools

Preprocessing

If a replacement token sequence (see “Macro
Definition and Expansion” below) contains a ##
operator, the ## and any surrounding white
space are deleted and adjacent tokens are con-
catenated, creating a new token. This occurs
only when the macro is expanded.

Macro Definition and Expansion
® An object-like macro is defined with a line of the form:

#define identifier token—sequenceapt

where identifier will be replaced with token-sequence wherever identifier
appears in regular text.
® A function-like macro is defined with a line of the form:
#define identifier (identiﬁer-listopt) tOken-sequenceopt
where the macro parameters are contained in the comma-separated
identifier-list. The token-sequence following the identifier list determines
the behavior of the macro, and is referred to as the replacement list. There
can be no space between the identifier and the (character. For example:

#define FIM(a,b) a+b

The replacement-list a+b determines that the two parameters a and b
will be added.

m A function-like macro is invoked in normal text by using its identifier, fol-
lowed by a (token, a list of token sequences separated by commas, and a
) token. For example:

FLM(3,2)

® The arguments in the invocation (comma-separated token sequences) may
be expanded, and they then replace the corresponding parameters in the
replacement token sequence of the macro definition. Macro arguments in
the invocation are not expanded if they are operands of # or ## operators
in the replacement string. Otherwise, expansion does take place. For
example:

C Language 3-13

Preprocessing

Assume that M1 is defined as 3:
#define M1 3

When the function-like macro FIM is used, use of the # or ## operators
will affect expansion (and the result), as follows:

Definition Invocation Result Expansion ?

atb FIM(M1, 2) 3+2 Yes, Yes
#a FIM (M1, 2) "M1" No

a##b FIM (M1, 2) M12 No, No
at#a FILM (M1, 2) 3+"M1" Yes, No

In the last example line, the first a in a+#a is expanded, but the second a
is not expanded because it is an operand of the # operator.

m The number of arguments in the invocation must match the number of
parameters in the definition.

m A macro’s definition, if any, can be eliminated with a line of the form:
#undef identifier

There is no effect if the definition doesn’t exist.

File Inclusion
m A line of the form:
#include “filename"

causes the entire line to be replaced with the contents of filename. The fol-
lowing directories are searched, in order.

o The current directory (of the file containing the #include line).
o Any directories named in -I options to the compiler, in order.
o A list of standard places, typically, but not necessarily,
/usr/include.
® A line of the form:

#include <filename>

3-14 ANSI C and Programming Support Tools

Preprocessing

causes the entire line to be replaced with contents of filename. The angle
brackets surrounding filename indicate that filename is not searched for in
the current directory.

A third form allows an arbitrary number of preprocessing tokens to fol-
low the #include, as in:

#include preprocessing-tokens

The preprocessing tokens are processed the same way as when they are
used in normal text. Any defined macro name is replaced with its
replacement list of preprocessing tokens. The preprocessing tokens must
expand to match one of the first two forms (< ... >or "...").

A file name beginning with a slash / indicates the absolute pathname of a
file to include, no matter which form of #include is used.

Any #include statements found in an included file cause recursive pro-
cessing of the named file(s).

Conditional Compilation

Different segments of a program may be compiled conditionally. Conditional
compilation statements must observe the following sequence:

1.

One of: #if or #ifdef or #ifndef.

2. Any number of optional #elif lines.
3.
4. One #endif line.

One optional #else line.

#1if integral-constant-expression
Is true if integral-constant-expression evaluates to nonzero.
If true, tokens following the if line are included.

The integral-constant-expression following the if is evaluated by following
this sequence of steps:
1. Any preprocessing tokens in the expression are expanded. Any
use of the defined operator evaluates to 1 or 0 if its operand
is, respectively, defined, or not.

C Language 3-15

Preprocessing

3-16

2. If any identifiers remain, they evaluate to 0.

3. The remaining integral constant expression is evaluated. The
constant expression must be made up of components that evalu-
ate to an integral constant. In the context of a #if, the integral
constant expression may not contain the sizeof operator, casts,
or floating point constants.

The following table shows how various types of constant expres-
sions following a #if would be evaluated. Assume that name is

not defined.
Constant expression Step 1 Step2 Step 3
__STDC__ 1 1 1
'defined(_ _STDC_) !1 1 0
3| |name 3| |name 3110 1
2 + name 2 +mmame 2+ 0 2
#ifdef identifier

Is true if identifier is currently defined by #define or by the -D option to
the cc command line.

#ifndef identifier

Is true if identifier is not currently defined by #define (or has been
undefined).

#elif constant-expression
Indicates alternate if-condition when all preceding if-conditions are false.
#else

Indicates alternate action when no preceding if or elif conditions are
true. A comment may follow the else, but a token may not.

#endif

Terminates the current conditional. A comment may follow the endif,
but a token may not.

ANSI C and Programming Support Tools

Preprocessing

Line Control
m Useful for programs that generate C programs.
m A line of the form
#line constant "filename"

causes the compiler to believe, for the purposes of error diagnostics and
debugging, that the line number of the next source line is equal to constant
(which must be a decimal integer) and the current input file is filename
(enclosed in double quotes). The quoted file name is optional. constant
must be a decimal integer in the range 1 to MAXINT. MAXINT is defined

in limits.h.

Assertions
A line of the form
#assert predicate (token-sequence)

associates the token-sequence with the predicate in the assertion name space
(separate from the space used for macro definitions). The predicate must be an
identifier token.

#assert predicate
asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default on the
3B2:

#assert machine (u3b2)
#assert system (unix)
#assert cpu (M32)

The following defaults apply to the 6386:

#assert machine (1386)
#assert system (unix)
#assert cpu (1386)

C Language 3-17

Preprocessing

Any assertion may be removed by using #unassert, which uses the same syn-
tax as assert. Using #unassert with no argument deletes all assertions on
the predicate; specifying an assertion deletes only that assertion.

An assertion may be tested in a #if statement with the following syntax:
#if #predicate (non-empty token-list)

For example, the predefined predicate system can be tested with the following
line:

#if #system(unix)

which will evaluate true.

Version Control
The #ident directive is used to help administer version control information.
#ident "version"

puts an arbitrary string in the .comment section of the object file. The
.comment section is not loaded into memory when the program is executed.

Pragmas
m Preprocessing lines of the form
#pragma pp-tokens
specify implementation-defined actions.
m Three #pragmas are recognized by the compilation system:
o #pragma ident "version"
which is identical in function to #ident "version".
o #pragma weak identifier
which identifies identifier as a weak global symbol,
or
#pragma weak identifier = identifier2

which identifies identifier as a weak global symbol whose value is the
same as identifier2. identifier should otherwise be undefined. See

3-18 , ANSI C and Programming Support Tools

Preprocessing

“Multiply Defined Symbols” in Chapter 2 for more information on
weak global symbols.
o #pragma int_to_unsigned identifier

which identifies identifier as a function whose type was int in previ-
ous releases of the compilation system, but whose type is unsigned
int in this release. The declaration for identifier must precede the

#pragma.

unsigned int strlen(const char#);
#pragma int_to_unsigned strlen

#pragma int_to_unsigned makes it possible for the compiler to
identify expressions in which the function’s changed type may affect
the evaluation of the expression. In the -Xt mode the compiler
treats the function as if it were declared to return int rather than

unsigned int.
m The 6386 has a fourth #pragma:
o #pragma pack (n)

which controls the layout of structure offsets. n is a number, 1, 2, or
4, that specifies the strictest alignment desired for any structure
member. If n is omitted, the alignment reverts to the default, which
may have been set by the —-Zp option to cc.

A value of 4 is the default. A value of 2 gives structure layouts that
match those on an AT&T 6300+ computer.

m The compiler ignores unrecognized pragmas.

Error Generation
A preprocessing line consisting of
#error token-sequence

causes the compiler to produce a diagnostic message containing the foken-
sequence, and stop.

C Language 3-19

Preprocessing

Predefined Names

The following identifiers are predefined as object-like macros:

STDC_

The current line number as a decimal constant.

A string literal representing the name of the file being
compiled.

The date of compilation as a string literal in the form
"Mmm dd yyyy."

The time of compilation, as a string literal in the form
"hh:mm:ss."

The constant 1 under compilation mode —Xc, otherwise 0.

With the exception of __STDC_ _, these predefined names may not be
undefined or redefined. Under compilation mode -Xt, __STDC__ may be
undefined (#undef _ _STDC_ _) to cause a source file to think it is being com-
piled by a previous version of the compiler.

3-20

ANSI C and Programming Support Tools

Declarations and Definitions

Introduction

A declaration describes an identifier in terms of its type and storage duration.
The location of a declaration (usually, relative to function blocks) implicitly
determines the scope of the identifier.

Types
Basic Types

The basic types and their sizes are:
m char (1 byte)
m short int (2 bytes)
m int (4 bytes)
m long int (4 bytes)

Each of char, short, int, and long may be prefixed with signed or
unsigned. A type specified with signed is the same as the type specified
without signed except for signed char on the 3B2. (char on the 3B2 has
only non-negative values.)

m float (4 bytes)
m double (8 bytes)

m long double (12 bytes)

Under compilation mode -Xc, long double will cause a warning that
long double is equivalent to double. Using long double under compi-
lation modes -Xa and -xt will result in an error.

m void

Integral and floating types are collectively referred to as arithmetic types. Arith-
metic types and pointer types (see “Pointer Declarators’’) make up the scalar

types.

C Language 3-21

Declarations and Definitions

Type Qualifiers

m const

The compiler may place an object declared const in read-only memory.
The program may not change its value and no further assignment may be
made to it. An explicit attempt to assign to a const object will provoke
an error.

volatile

volatile advises the compiler that unexpected, asynchronous events may
affect the object so declared, and warns it against making assumptions.
An object declared volatile is protected from optimization that might
otherwise occur.

Structures and Unions

m Structures

3-22

A structure is a type that consists of a sequence of named members. The

members of a structure may have different object types (as opposed to an
array, whose members are all of the same type). To declare a structure is
to declare a new type. A declaration of an object of type struct reserves
enough storage space so that all of the member types can be stored simul-
taneously.

A structure member may consist of a specified number of bits, called a
bit-field. The number of bits (the size of the bit-field) is specified by
appending a colon and the size (an integral constant expression, the
number of bits) to the declarator that names the bit-field. The declarator
name itself is optional; a colon and integer will declare the bit-field. A
bit-field must have integral type. The size may be zero, in which case the
declaration name must not be specified, and the next member starts on a
boundary of the type specified. For example:

char :0

means “‘start the next member (if possible) on a char boundary.” A
named bit-field number that is not declared with an explicitly signed
type holds values in the range

0 - (2"-1)

ANSI C and Programming Support Tools

Declarations and Definitions

where n is the number of bits. A bit-field declared with an explicit signed
type holds values in the range

_2n—1 _ (zn—l_l)

An optional structure tag identifier may follow the keyword struct. The
tag names the kind of structure described, and it and struct may then
be used as a shorthand name for the declarations that make up the body
of the structure. For example:

struct t {
int x;
float y;

} stl, st2;

Here, stl and st2 are structures, each made up of x, an int,and y, a
float. The tag t may be used to declare more structures identical to
stl and st2, as in:

struct t st3;

A structure may include a pointer to itself as a member; this is known as
a self-referential structure.

struct n {
int x;
struct n *left;
struct n *right;
}:

® Unions

A union is an object that may contain one of several different possible
member types. A union may have bit-field members. Like a structure,
declaring a union declares a new type. Unlike a structure, a union stores
the value of only one member at a given time. A union does, however,
reserve enough storage to hold its largest member.

C Language 3-23

Declarations and Definitions

Enumerations

An enumeration is a unique type that consists of a set of constants called
enumerators. The enumerators are declared as constants of type int, and
optionally may be initialized by an integral constant expression separated from
the identifier by an = character.

Enumerations consist of two parts:
m The set of constants.
m An optional tag.
For example:
enum color {red, blue=5, yellow};

color is the tag for this enumeration type. red, blue, and yellow are its
enumeration constants. If the first enumeration constant in the set is not fol-
lowed by an =, its value is 0. Each subsequent enumeration constant not fol-
lowed by an =is determined by adding 1 to the value of the previous enumera-
tion constant. Thus yellow has the value 6.

enum color car_color;

declares car_color to be an object of type enum color.

Scope

The use of an identifier is limited to an area of program text known as the
identifier’s scope. The four kinds of scope are function, file, block, and function

prototype.

m The scope of every identifier (other than label names) is determined by
the placement of its declaration (in a declarator or type specifier).

m The scope of structure, union and enumeration tags begins just after the
appearance of the tag in a type specifier that declares the tag. Each
enumeration constant has scope that begins just after the appearance of its
defining enumerator in an enumerator list. Any other identifier has scope
that begins just after the completion of its declarator.

3-24 ANSI C and Programming Support Tools

Declarations and Definitions

m If the declarator or type specifier appears outside a function or parameter
list, the identifier has file scope, which terminates at the end of the file
(and all included files).

m If the declarator or type specifier appears inside a block or within the list
of parameter declarations in a function definition, the identifier has block
scope, which ends at the end of the block (at the } that closes that block).

m If the declarator or type specifier appears in the list of parameter declara-
tions in a function prototype declaration, the identifier has function proto-
type scope, which ends at the end of the function declarator (at the) that
ends the list).

m Label names always have function scope. A label name must be unique
within a function.

Storage Duration

m Automatic Storage Duration

Storage is reserved for an automatic object, and is available for the object
on each entry (by any means) into the block in which the object is
declared. On any kind of exit from the block, storage is no longer
reserved.

m Static Storage Duration
An object declared outside any block, or declared with the keywords
static or extern, has storage reserved for it for the duration of the

entire program. The object retains its last-stored value throughout pro-
gram execution.

C Language) 3-25

Declarations and Definitions

Storage Class Specifiers

B auto

3-26

An object may be declared auto only within a function. It has block
scope and the defined object has automatic storage duration.

register

A register declaration is equivalent to an auto declaration. It also
advises the compiler that the object will be accessed frequently.

static

static gives a declared object static storage duration (see “‘Storage Dura-
tion”). The object may be defined inside or outside functions. An
identifier declared static with file scope has internal linkage. A func-
tion may be declared or defined with static. If a function is defined to
be static, the function has internal linkage. A function may be declared
with static at block scope; the function should be defined with static
as well.

extern

extern gives a declared object static storage duration. An object or func-
tion declared with extern has the same linkage as any visible declaration
of the identifier at file scope. If no file scope declaration is visible the
identifier has external linkage.

typedef

Using typedef as a storage class specifier does not reserve storage.
Instead, typedef defines an identifier that names a type. See the section
on derived types for a discussion of typedef.

ANSI C and Programming Support Tools

Declarations and Definitions

Declarators

A brief summary of the syntax of declarators:

declarator:
pointerapt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression

pt
direct-declarator (parameter-type-list)
direct-declarator (identiﬁer—listopt)

1

pointer:
* type—qualiﬁer-listap :
* type-qualiﬁer-listopt pointer

Pointer Declarators
m Pointer to a type:
char *p;
p is a pointer to type char. p contains the address of a char object.
Care should be taken when pointer declarations are qualified with const:
const int *pci;
declares a pointer to a const-qualified (“read-only”’) int.
int *const cpi;
declares a pointer-to-int that is itself “read-only.”
m Pointer to a pointer:
char *#*t;
t points to a character pointer.
m Pointer to a function:
int (*£) ();

f is a pointer to a function that returns an int.

C Language 3-27

Declarations and Definitions

m Pointer to void:
void *

A pointer to void may be converted to or from a pointer to any object or
incomplete type, without loss of information. This “generic pointer”
behavior was previously carried out by char *; a pointer to void has the
same representation and alignment requirements as a pointer to a charac-

ter type.

Array Declarators
® One-dimensional array:
int ia[10];
ia is an array of 10 integers.
® Two-dimensional array:
char d[4][10];
d is an array of 4 arrays of 10 characters each.
m Array of pointers:
char *p([7];
p is an array of seven character pointers.

An array type of unknown size is known as an incomplete type.

Function Declarators

m A function declaration includes the return type of the function, the func-
tion identifier, and an optional list of parameters.

m Function prototype declarations include declarations of parameters in the
parameter list.

m If the function takes no arguments, the keyword void may be substituted
for the parameter list in a prototype.

m A parameter type list may end with an ellipsis “, . . . ”” to indicate that the
function may take more arguments than the number described. The
comma is necessary only if it is preceded by an argument.

3-28 ANSI C and Programming Support Tools

Declarations and Definitions

m The parameter list may be omitted, which indicates that no parameter
information is being provided.

Examples:
B void srand(unsigned int seed):;

The function srand returns nothing; it has a single parameter which is
an unsigned int. The name seed goes out of scope at the) and as such
serves solely as documentation.

B int rand(void);
The function rand returns an int; it has no parameters.
B int stramp(const char *, const char *);

The function strcmp returns an int; it has two parameters, both of
which are pointers to character strings that strcmp does not change.

m void (*signal(int, wvoid (*) (int))) (int);

The function signal returns a pointer to a function that itself returns
nothing and has an int parameter; the function signal has two parame-
ters, the first of which has type int and the second has the same type as
signal returns.

B int fprintf(FILE *stream, const char *format, ...);

The function fprintf returns an int; FILE is a typedef name declared
in stdio.h; format is a const qualified character pointer; note the use
of ellipsis (. . .) to indicate an unknown number of arguments.

Function Definitions

A function definition includes the body of the function after the declaration of
the function. As with declarations, a function may be defined as a function pro-
totype definition or defined in the old style. The function prototype style
includes type declarations for each parameter in the parameter list. This exam-
ple shows how main would be defined in each style:

C Language 3-29

Declarations and Definitions

Function Prototype Style Old Style
int int
main(int argc, char *argv[]) main(argc, argv)
{ int argc;
char *argvl[];

} {
}

Some important rules that govern function definitions:

m An old style definition names its parameters in an identifier list, and their
declarations appear between the function declarator and the “/{” that
begins the function body.

m Under the old style, if the type declaration for a parameter was absent,
the type defaulted to int. In the new style, all parameters in the parame-
ter list must be type-specified and named. The exception to this rule is
the use of ellipsis, explained in the “Function Declarators” section of this
chapter.

m A function definition serves as a declaration.

m Incomplete types are not allowed in the parameter list or as the return
type of a function definition. They are allowed in other function declara-
tions.

3-30 ANSI C and Programming Support Tools

Conversions and Expressions

Implicit Conversions

Characters and Integers

Any of the following may be used in an expression where an int or unsigned
int may be used.

® char.

®m short int.

m A char, short, or int bit-field.

m The signed or unsigned varieties of any of the above types.
®m An object or bit-field that has enumeration type.

If an int can represent all values of the original type, the value is converted to
an int; otherwise it is converted to an unsigned int. This process is called
integral promotion.

The promotion rules for ANSI C are different from previous releases. The
compiler warns about expressions where this may lead to different behavior.

Compilation Mode Dependencies That Affect Unsigned Types

m Under compilation mode -Xt, unsigned char and unsigned short are
promoted to unsigned int.

® Under compilation modes -Xa and -Xc, unsigned char and unsigned
short are promoted to int.

Signed and Unsigned Integers

® When an integer is converted to another integral type, the value is
unchanged if the value can be represented by the new type.

m If a negative signed integer is converted to an unsigned integer with
greater size, the signed integer is first promoted to the signed integer
corresponding to the unsigned integer.

C Language 3-31

Conversions and Expressions

Integral and Floating

When a floating type is converted to any integral type, any fractional part is dis-
carded.

Float and Double

A float is promoted to double or long double, or a double is promoted to
long double without a change in value.

The actual rounding behavior that is used when a floating point value is con-
verted to a smaller floating point value depends on the rounding mode in effect
at the time of execution. The default rounding mode is “round to nearest.” See
Chapter 14, “Floating Point Operations,” and the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) for a more complete discus-
sion of rounding modes.

Usual Arithmetic Conversions

Some binary operators convert the types of their operands in order to yield a
common type, which is also the type of the result. These are called the usual
arithmetic conversions:

m If either operand is type long double, the other operand is converted to
long double.

m Otherwise, if either operand has type double, the other operand is con-
verted to double.

m Otherwise, if either operand has type float, the other operand is con-
verted to float.

m Otherwise, the integral promotions are performed on both operands.
Then, these rules are applied:

o If either operand has type unsigned long int, the other operand is
converted to unsigned long int.

o Otherwise, if one operand has type long int and the other has type
unsigned int, both operands are converted to unsigned long
int.

3-32 ANSI C and Programming Support Tools

Conversions and Expressions

o Otherwise, if either operand has type long int, the other operand
is converted to long int.

o Otherwise if either operand has type unsigned int, the other
operand is converted to unsigned int.

o Otherwise, both operands have type int.

Expressions

Objects and Ivalues

An object is a manipulatable region of storage. An lvalue is an expression refer-
ring to an object. An obvious example of an lvalue expression is an identifier.
There are operators that yield lvalues: for example, if E is an expression of
pointer type, then *E is an lvalue expression referring to the object to which E

points.
An lvalue is modifiable if:
m it does not have array type,
m it does not have an incomplete type,
m it does not have a const-qualified type,

and, if it is a structure or union, it does not have any member (including, recur-
sively, any member of all contained structures or unions) with a const-qualified
type:

The name “lvalue” comes from the assignment expression E1 = E2 in which
the left operand E1 must be an lvalue expression.

Primary Expressions

m Identifiers, constants, string literals, and parenthesized expressions are pri-
mary expressions.

® An identifier is a primary expression, provided it has been declared as
designating an object (which makes it an lvalue) or a function (which
makes it a function designator).

C Language 3-33

Conversions and Expressions

m A constant is a primary expression; its type depends on its form and
value.

m A string literal is a primary expression; it is an lvalue.

m A parenthesized expression is a primary expression. Its type and value
are identical to those of the unparenthesized version. It is an lvalue, a
function designator, or a void expression, according to the type of the
unparenthesized expression.

Operators

A table of operator associativity and precedence appears in the next section.

Unary Operators
Expressions with unary operators group right to left.

* e . Indirection operator. Returns the object or func-
tion pointed to by its operand. If the type of the
expression is “pointer to ...,” the type of the

4

result is ““...”.

&e Address operator. Returns a pointer to the
object or function referred to by the operand.
Operand must be an lvalue or function type,
and not a bit-field or an object declared
register. Where the operand has type “type,”
the result has type “pointer to type.”

-e Negation operator. The operand must have
arithmetic type. Result is the negative of its
operand. Integral promotion is performed on
the operand, and the result has the promoted
type. The negative of an unsigned quantity
is computed by subtracting its value from 2"
where 7 is the number of bits in the result type.

3-34 ANSI C and Programming Support Tools

Conversions and Expressions

+e Unary plus operator. The operand must have
arithmetic type. Result is the value of its
operand. Integral promotion is performed on
the operand, and the result has the promoted
type.

te Logical negation operator. The operand must
have arithmetic or pointer type. Result is one if
the value of its operand is zero, zero if the value
of its operand is nonzero. The type of the result
is int.

~e The ~ operator yields the one’s complement (all
bits inverted) of its operand, which must have
integral type. Integral promotion is performed
on the operand, and the result has the promoted
type.

++e The object referred to by the lvalue operand of
prefix ++ is incremented. The value is the new
value of the operand but is not an lvalue. The
expression ++x is equivalent to x += 1. The
type of the result is the type of the operand.

--e The modifiable lvalue operand of prefix —- is
decremented analogously to the prefix ++
operator.

e++ When postfix ++ is applied to a modifiable

lvalue, the result is the value of the object
referred to by the lvalue. After the result is
noted, the object is incremented in the same
manner as for the prefix ++ operator. The type
of the result is the same as the type of the
lvalue.

e—-— When postfix —- is applied to an lvalue, the
result is the value of the object referred to by the
lvalue. After the result is noted, the object is
decremented in the same manner as for the
prefix —— operator. The type of the result is the
same as the type of the lvalue.

C Language 3-35

Conversions and Expressions

sizeof e

sizeof (type)

The sizeof operator yields the size in bytes of
its operand. When applied to an object with
array type, the result is the total number of
bytes in the array. (The size is determined from
the declarations of the objects in the expression.)
This expression is semantically an unsigned
constant (of type size_t, a typedef) and may
be used anywhere a constant is required (except
in a #if preprocessing directive line). One
major use is in communication with routines like
storage allocators and I/O systems.

The sizeof operator may also be applied to a
parenthesized type name. In that case it yields
the size in bytes of an object of the indicated

type.

Cast Operators - Explicit Conversions

(type) e

Multiplicative Operators

The multiplicative operators *,

Placing a parenthesized type name before an
expression converts the value of the expression
to that type. Both the operand and type must be
pointer type or an arithmetic type.

/, and % group left to right. The usual arith-

metic conversions are performed, and that is the type of the result.

exe

e/e

3-36

Multiplication operator. The * operator is com-
mutative.

Division operator. When positive integers are
divided, truncation is toward 0. If either
operand is negative, the quotient is negative.
Operands must be arithmetic types.

Remainder operator. Yields the remainder from
the division of the first expression by the
second. The operands must have integral type.

ANSI C and Programming Support Tools

Conversions and Expressions

The sign of the remainder is that of the first
operand. It is always true that (a/b) *b + a%b
is equal to a (if a/b is representable).

Additive Operators

The additive operators +and - group left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities for each
operator.

ete Result is the sum of the operands. A pointer to
an object in an array and an integral value may
be added. The latter is in all cases converted to
an address offset by multiplying it by the size of
the object to which the pointer points. The
result is a pointer of the same type as the origi-
nal pointer that points to another object in the
same array, appropriately offset from the origi-
nal object. Thus if P is a pointer to an object in
an array, the expression P+1 is a pointer to the
next object in the array. No further type combi-
nations are allowed for pointers.

The + operator is commutative.

The valid operand type combinations for the +
operator are:

a+a
p+iori+p

where g is an arithmetic type, i is an integral
type, and p is a pointer.

e-e Result is the difference of the operands. The
operand combinations are the same as for the +
operator, except that a pointer type may not be
subtracted from an integral type.

Also, if two pointers to objects of the same type
are subtracted, the result is converted (by divi-
sion by the size of the object) to an integer that

C Language 3-37

Conversions and Expressions

represents the number of objects separating the
pointed-to objects. This conversion will in gen-
eral give unexpected results unless the pointers
point to objects in the same array, since pointers,
even to objects of the same type, do not neces-
sarily differ by a multiple of the object size. The
result type is ptrdiff t (defined in stddef.h).
ptrdiff t is a typedef for int in this imple-
mentation. It should be used “‘as is” to ensure
portability. Valid type combinations are

a-a
p-1i
pP-P

Bitwise Shift Operators
The bitwise shift operators << and >> take integral operands. ,
el << e2 Shifts el left by e2 bit positions. Vacated bits are

filled with zeros.
el >>e2 Shifts el right by e2 bit positions. Vacated bits

are filled with zeros on the 3B2. On the 6386,
vacated bits are filled with zeros if the promoted
type of el is an unsigned type. Otherwise they
are filled with copies of the sign bit of the pro-
moted value of el.

The result types of the bitwise shift operators are compilation-mode dependent,
as follows:

-Xt The result type is unsigned if either operand is
unsigned.

-Xa, —Xc The result type is the promoted type of the left
operand. Integral promotion occurs before the
shift operation.

3-38 ANSI C and Programming Support Tools

Conversions and Expressions

Relational Operators
arelop a
p relop p

m The relational operators < (less than) > (greater than) <= (less than or
equal to) >= (greater than or equal to) yield 1 if the specified relation is
true and 0 if it is false.

m The result has type int.
s Both operands:
o have arithmetic type; or

o are pointers to qualified or unqualified versions of the same object or
incomplete types.

Equality Operators

aeqop a
p eqop p
peqop 0
0 eqop p

® The == (equal to) and != (not equal to) operators are analogous to the
relational operators; however, they have lower precedence.

Bitwise AND Operator
iel & ie2
m Bitwise “and” of iel and ie2.

m Value contains a 1 in each bit position where both 7el and ie2 contain a 1,
and a 0 in every other position.

m Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

C Language 3-39

Conversions and Expressions

Bitwise Exclusive OR Operator
iel ~ ie2
m Bitwise exclusive “or” of iel and ie2.

m Value contains a 1 in each position where there is a 1 in either iel or ie2,
but not both, and a 0 in every other bit position.

m Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

Bitwise OR Operator
iel | ie2
m Bitwise inclusive “or” of iel and ie2.

m Value contains a 1 in each bit position where there is a 1 in either iel or
ie2, and a 0 in every other bit position.

® Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

Logical AND Operator
el && e2

m Logical “and” of el and e2.

m el and e2 must be scalars.

m el is evaluated first, and e2 is evaluated only if el is nonzero.
m Result is 1 if both el and e2 are non-zero, otherwise 0.

m Result type is int.

3-40 ANSI C and Programming Support Tools

Conversions and Expressions

Logical OR Operator
el || e2

m Logical “or” of el and e2.
®m ¢l and e2 must be scalars.

m ¢l is evaluated first, and e2 is evaluated only if el is zero. Result is 0 only
if both el and e2 are false, otherwise 1.

m Result type is int.

Conditional Operator
e?el: e
m If ¢ is nonzero, then el is evaluated; otherwise e2 is evaluated. The value
is el or e2.
m The first operand must have scalar type.
m For the second and third operands, one of the following must be true:

o Both must be arithmetic types. The usual arithmetic conversions are
performed to make them a common type and the result has that

type.
o Both must have compatible structure or union type; the result is that
type.
o Both operands have void type; the result has void type.

o Both operands are pointers to qualified or unqualified versions of
compatible types. The result type is the composite type.

o One operand is a pointer and the other is a null pointer constant.
The result type is the pointer type.

o One operand is a pointer to an object or incomplete type and the
other is a pointer to a qualified or unqualified version of void. The
result type is a pointer to void.

For the pointer cases (the last three), the result is a pointer to a type
qualified by all the qualifiers of the types pointed to by the operands.

C Language 3-41

Conversions and Expressions

Assignment Expressions

m Assignment operators are:
= ¥= [= %= 4= —= <K= >>= &= |= "=

m An expression of the form el op= €2 is equivalent to el = el op (e2) except
that el is evaluated only once.

m The left operand:
o must be a modifiable lvalue.

o must have arithmetic type, or, for +=and —=, must be a pointer to
an object type and the right operand must have integral type.

o of an = operator, if the operand is a structure or union, must not
have any member or submember qualified with const.

m Result type is the type of the (unpromoted) left operand.

Comma Operator
el , e2

m ¢l is evaluated first, then e2.

m The result has the type and value of e2 and is not an lvalue.

Structure Operators

SU . mem

Indicates member mem of structure or union su.

sup => mem

Indicates member mem of structure or union pointed to by sup. Equivalent to
(*sup) .mem.

3-42 ANSI C and Programming Support Tools

Conversions and Expressions

Associativity and Precedence of Operators

Operators Associativity

00 —->. left to right
! ~ ++ —— + — * & (type) sizeof right to left
* /% left to right
+ - left to right
<< >> left to right
< <= > >= left to right

== 1= left to right
left to right
left to right
left to right
left to right
left to right
right to left
+= -= ¥= /= $= g= *= | = <<= >>= | right to left
, left to right

Unary +, -, and * have higher precedence than their binary versions.

Il v—&— >
e —

Prefix ++ and -- have higher precedence than their postfix versions.

Constant Expressions

m A constant expression is evaluated during compilation (rather than at run
time). As a result, a constant expression may be used any place that a
constant is required.

m Constant expressions must not contain assignment, ++, --, function-call,
or comma operators, except when they appear within the operand of a
sizeof operator.

C Language 3-43

Conversions and Expressions

Initialization

m Scalars (all arithmetic types and pointers):

Scalar types with static or automatic storage duration are initialized with
a single expression, optionally enclosed in braces. Example:

int i = 1;

Additionally, scalar types (with automatic storage duration only) may be
initialized with a nonconstant expression.

Unions:

An initializer for a union with static storage duration must be enclosed in
braces, and initializes the first member in the declaration list of the union.
The initializer must have a type that can be converted to the type of the
first union member. Example:

union {
int i;
float f£;
} u= {1}; /* initialize u.i */

For a union with automatic storage duration, if the initializer is enclosed
in braces, it must consist of constant expressions that initialize the first
member of the union. If the initializer is not enclosed in braces, it must
be an expression that has the matching union type.

Structures:
The members of a structure may be initialized by initializers that can be
converted to the type of the corresponding member.
struct s {
int i;
char c;

char #s;
} st = {3, "a’, "abc" };

This example illustrates initialization of all three members of the structure.
If initialization values are missing, as in

struct s st2 = {5};

ANSI C and Programming Support Tools

Conversions and Expressions

then the first member is initialized (in this case, member i is initialized
with a value of 5), and any uninitialized member is initialized with 0 for
arithmetic types and a null pointer constant for pointer types.

For a structure with automatic storage duration, if the initializer is
enclosed in braces, it must consist of constant expressions that initialize
the respective members of the structure. If the initializer is not enclosed
in braces, it must be an expression that has the matching structure type.

m Arrays:
The number of initializers for an array must not exceed the dimension,
(i.e., the declared number of elements), but there may be fewer initializers
than the number of elements. When the number of initializers is less than
the size of the array, the first array elements are initialized with the values
given, until the supply of initializers is exhausted. Any remaining array

elements are initialized with the value 0 or a null pointer constant, as
explained above in the discussion of structures. Example:

int ia[51 ={ 1, 2 };

In this example, an array of five ints is declared, but only the first two
members are initialized explicitly. The first member, ia[0], is initialized
with a value of 1; the second member, ia[1], is initialized with a value
of 2. The remaining members are initialized with a value of 0.

When no dimensions are given, the array is sized to hold exactly the
number of initializers supplied.
A character array may be initialized with a string literal, as in:

char cal[] = { "abc" }; /*curly braces are optional#*/

where the size of the array is four (three characters with a null byte
appended). The following:

char cb[3] = "abc";
is valid; however, in this case the null byte is discarded. But:
char cc[2] = "abc";

is erroneous because there are more initializers than the array can hold.

C Language 3-45

Conversions and Expressions

Arrays may be initialized similarly with wide characters:
wchar t wc[] = L"abc";

Initializing subaggregates (for example, arrays of arrays) requires the
proper placement of braces. For example,

int ia [4][2] =
{

1,

2,

3,

4
};

initializes the first two rows of ia (ia[0][0], ia[0][1], ia[1][O],
and ia[1][1]), and initializes the rest to 0. This is a minimally bracketed
initialization.

Note that a similar fully bracketed initialization yields a different result:

int ia [4][2] =
{

{1},

{2},

{3},

{4},
};

initializes the first column of ia (ia[0][0], ia[1][0], ia[2][0], and
ia[31[0]), and initializes the rest to 0.

Mixing the fully and minimally bracketed styles may lead to unexpected
results. Use one style or the other consistently.

3-46 ANSI C and Programming Support Tools

Statements

Expression Statement

expression;

The expression is executed for its side effects, if any (such as assignment or func-
tion call).

Compound Statement

{

declaration—listo ,
statement—listop:'

}
m Delimited by { and 1}.
m May have a list of declarations.
m May have a list of statements.

m May be used wherever statement appears below.

Selection Statements
if

if (expression)
statement

m If expression evaluates to nonzero (true), statement is executed.

m If expression evaluates to zero (false), control passes to the statement fol-
lowing statement.

m The expression must have scalar type.

C Language 3-47

Statements

else

if (expressionl)
statement1

else if (expression2)
statement2

else
statement3

If expressionl is true, statementl is executed, and control passes to the state-
ment following statement3. Otherwise, expression2 is evaluated.

If expression2 is true, statement2 is executed, and control passes to the state-
ment following statement3. Otherwise, statement3 is executed, and control
passes to the statement following statement3.

An else is associated with the lexically nearest if that has no else and
that is at the same block level.

switch

3-48

switch (expression)
statement
Control jumps to or past statement depending on the value of expression.
expression must have integral type.
Any optional case is labeled by an integral constant expression.

If a default case is present, it is executed if no other case match is
found.

If no case matches, including default, control goes to the statement fol-
lowing statement.

If the code associated with a case is executed, control falls through to the
next case unless a break statement is included.

Each case of a switch must have a unique constant value after conversion
to the type of the controlling expression.

ANSI C and Programming Support Tools

Statements

In practice, statement is usually a compound statement with multiple cases, and
possibly a default; the description above shows the minimum usage. In the
following example, flag gets set to 1if i is 1 or 3, and to 0 otherwise:

switch (i) {

case 1:
case 3:
flag = 1;
break;
default:
flag = 0;

}

Iteration Statements

while

while (expression)
statement

This sequence is followed repetitively:
W expression is evaluated.
m If expression is non-zero, statement is executed.
m If expression is zero, statement is not executed, and the repetition stops.

expression must have scalar type.

do-while

do
statement
while (expression) ;

This sequence is followed repetitively:

B statement is executed.

C Language 3-49

Statements

m expression is evaluated.
m If expression is zero, repetition stops.

(do-while tests loop at the bottom; while tests loop at the top.)

for
for (expressionl; expression2; expression3)
statement
m expression] initializes the loop.
m expression2 is tested before each iteration.
m If expression2 is true:
o statement is executed.
o expression3 is evaluated.
o Loop until expression2 is false (zero).
m Any of expressionl, expression2, or expression3 may be omitted, but not the
semicolons.

m expression] and expression3 may have any type; expression2 must have

scalar type.

Jump Statements

goto
goto identifier;

m Goes unconditionally to statement labeled with identifier.
m Statement is labeled with an identifier followed by a colon, as in:
A2: x=5;

3-50 ANSI C and Programming Support Tools

Statements

m Useful to break out of nested control flow statements.

m Can only jump within the current function.

break

Terminates nearest enclosing switch, while, do, or for statement. Passes
control to the statement following the terminated statement. Example:
for (i=0; i<n; i++) {
if ((al[i] = b[i]) == 0)
break; /* exit for */

continue

Goes to top of smallest enclosing while, do, or for statement, causing it to
reevaluate the controlling expression. A for loop’s expression3 is evaluated
before the controlling expression. Can be thought of as the opposite of the
break statement. Example:
for (i=0; i<n; i++) {
if (a[i] != 0)
continue;
a[i] = b[i];
k+t;

return
return;
return expression;
m return by itself exits a function.

B return expression exits a function and returns the value of expression. For
example,

return a + b;

C Language 3-51

Portability Considerations

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating point arith-
metic and integer division have proven in practice to be not much of a problem.
Other facets of the hardware are reflected in differing implementations. Some
of these, particularly sign extension (converting a negative character into a nega-
tive integer) and the order in which bytes are placed in a word, are nuisances
that must be carefully watched. Most of the others are only minor problems.

The number of variables declared with register that can actually be placed in
registers varies from machine to machine as does the set of valid types.
Nonetheless, the compilers ali do things properly for their own machine; excess
or invalid register declarations are ignored.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified. For example, in
the expression

al[i] = b[i++]
the value of i could be incremented after b[i] is fetched, but before a[i] is
evaluated and assigned to, or it could be incremented after the assignment.

The value of a multi-character character constant may be different for different
machines.

Fields are assigned to words, and characters to integers, right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an
int pointer to a char pointer and inspecting the pointed-to storage) but must
be accounted for when conforming to externally imposed storage layouts.

The lint tool is useful for finding program bugs and non-portable constructs.
For information on how to use lint, see Chapter 5.

3-52 ANSI C and Programming Support Tools

~ 4.C COMPILER DIAGNOSTICS

SOILSONDVIQ HITIdWOD O v

4 C Compiler Diagnostics

Introduction 4-1
Message Types and Applicable Options 4-2
Operator Names in Messages 4-2
Messages 4-3
Operator Names 4-130
Other Error Messages 4-132

Table of Contents i

Introduction

This chapter contains the text and explanation for all the warning and error
messages produced by the AT&T C compiler. The messages are listed in
alphanumeric order (special characters are ignored). Numbers precede capital
letters and capital letters precede lowercase letters. 7, when it represents a
number, comes at the beginning of the list.

The message entries are formatted as follows:

Entry Comment
n extra byte(s) in string literal initializer ignored Text of message.

Type: Warning Options: all Type of message and
command-line options

which must be set for
the message to appear
(all indicates that the
message is independent

of options).
A string literal that initializes a character array contains Explanation of message.
n more characters than the array can hold.
char ca[3] = "abcd"; Example of code that
might generate the mes-
sage.
"file", line 1: warning: 1 extra byte(s) in string Message output.

literal initializer ignored

When an error occurs, the error message is preceded by a file name and line
number. The line number is usually the line on which a problem has been diag-
nosed. Occasionally the compiler must read the next token before it can diag-
nose a problem, in which case the line number in the message may be a higher
line number than that of the offending line.

Note that 1int (Chapter 5) issues all of the messages listed in this chapter, and
additional messages about potential bugs and portability problems.

C Compiler Diagnostics 4-1

Introduction

Message Types and Applicable Options

Each message description includes a Type and an Options field as follows:

Type indicates whether the message is a warning, an error, a fatal
error, or a combination of error types (see below).
tions indicates which cc command options must be set for the mes-
. p .
sage to appear. “all’” implies that the message is independent of
cc options.

The following paragraphs explain the differences between warnings, errors, and
fatals.

Warning messages, in which the word warning: appears after the file name and
line number, provide useful information without interrupting compilation. They
may diagnose a programming error, or a violation of C syntax or semantics, for
which the compiler will nevertheless generate valid object code.

Error messages, which lack the warning: prefix, will cause the cc command to
fail. Errors occur when the compiler has diagnosed a serious problem that
makes it unable to understand the program or to continue to generate correct
object code. It will attempt to examine the rest of your program for other
errors, however. The cc command will not link your program if the compiler
diagnoses errors.

Fatal errors cause the compiler to stop immediately and return an error indica-
tion to the cc command. A fatal error message is prefixed with the word
fatal:. Such messages typically apply to start-up conditions, such as being
unable to find a source file.

Operator Names in Messages
Some messages include the name of a compiler operator, as in:
operands must have arithmetic type: op "+".
Usually the operator in the message is a familiar C operator. At other times the
compiler uses its internal name for the operator, like U-. The "Operator Names"

section of this document, found after the message list, lists these internal names
and describes what they mean.

4-2 ~ ANSI C and Programming Support Tools

Messages

n extra byte(s) in string literal initializer ignored

Type: Warning Options: all

A string literal that initializes a character array contains n more charac-
ters than the array can hold.

char ca[3] = "abcd";
“file", line 1: warning: 1 extra byte(s) in string literal

initializer ignored

0 is invalid in # <number> directive
Type: Error Options: all

The line number in a line number information directive (which the com-
piler uses for internal communication) must be a positive, non-zero
value.

0 "foo.c"

"file", line 1: 0 is invalid in # <number> directive
0 is invalid in #line directive
Type: Error Options: all

This diagnostic is similar to the preceding one, except the invalid line
number appeared in a #line directive.

#line 0

"file", line 1: 0 is invalid in #line directive

C Compiler Diagnostics 4-3

Messages

ANSI C behavior differs; not modifying typedef with "modifier"
Type: Warning Options: -Xa, —Xc

A typedefed type may not be modified with the short, long, signed,
or unsigned type modifiers, although earlier versions of C compilers
permitted it. modifier is ignored. A related message is modifying
typedef with "modifier"; only qualifiers allowed.

typedef int INT;
unsigned INT ui;

"file", line 2: warning: ANSI C behavior differs; not
modifying typedef with "unsigned"

ANSTI C predefined macro cannot be redefined
Type: Warning Options: all
The source code attempted to define or redefine a macro that is

predefined by ANSI C. The predefined macro is unchanged.
#define _ FILE ‘"xyz.c"

“file", line 1: warning: ANSI C predefined macro cannot be
redefined

ANSI C predefined macro cannot be undefined
Type: Warning Options: all

The source code contains an attempt to undefine a macro that is
predefined by ANSI C.

#undef _ FILE_

"file", line 1: warning: ANSI C predefined macro cannot
be undefined

4-4 ANSI C and Programming Support Tools

Messages

ANSI C requires formal parameter before "..."

Type: Warning Options: -Xc, -v

The AT&T C implementation allows you to define a function with a
variable number of arguments and no fixed arguments. ANSI C
requires at least one fixed argument.

£(..0}

“file", line 1: warning: ANSI C requires formal parameter
before "..."

ANSI C treats constant as unsigned: op "“operator"

Type: Warning Options: all

The type promotion rules for ANSI C are slightly different from those of
previous versions of AT&T C. In the current release the default
behavior is to duplicate the previous rules. In future releases the
default will be to use ANSI C rules. You may obtain the ANSI C
interpretation by using the —Xa option for the cc command.

Previous AT&T C type promotion rules were “unsigned-preserving.” If
one of the operands of an expression was of unsigned type, the
operands were promoted to a common unsigned type before the opera-
tion was performed.

ANSI C uses “value-preserving” type promotion rules. An unsigned
type is promoted to a signed type if all its values may be represented in
the signed type.

ANSI C also has a different rule from previous AT&T C versions for the
type of an integral constant that implicitly sets the sign bit.

The different type promotion rules may lead to different program
behavior for the operators that are affected by the unsigned-ness of their
operands:

C Compiler Diagnostics 4-5

m The division operators: /, /=, %, %=.
m The right shift operators: >>, >>=.

m The relational operators: <, <=, >, >=.

The warning message tells you that your program contains an expres-
sion in which the behavior of operator will change in the future. You
can guarantee the behavior you want by inserting an explicit cast in the
expression. :

£ (void) {
int i;
/* constant was integer in AT&T C, unsigned in ANSI C */
i /= 0x£0000000; '

}

“file", line 4: warning: ANSI C treats constant as unsigned:
op " /="
You can get the same behavior as in previous versions of AT&T C by
adding an explicit cast:
£ (void) {
int i;
/* constant was integer in AT&T C, unsigned in ANSI C */
i /= (int) 0x£0000000;

-D option argument not an identifier

Type: Error Options: all

An identifier must follow the -D cc command line option.

cc -D3b2 -c x.c

command line: -D option argument not an identifier

4-6 ANSI C and Programming Support Tools

Messages

-D option argument not followed by "="
Type: Warning Options: all

If any tokens follow an identifier in a -D command line option to the cc
command, the first such token must be =.

cc -DTWO+2 —c x.cC

command line: warning: -D option argument not followed by "="
EOF in argument list of macro: name
Type: Error Options: all

The compiler reached end-of-file while reading the arguments for an
invocation of function-like macro name.

#define mac(a)
mac(argl

"file", line 5: EOF in argument list of macro: mac

EOF in asm function definition

Type: Error Options: all

The compiler reached end-of-file while reading an enhanced asm func-
tion definition.

EOF in character constant

Type: Error Options: all

The compiler encountered end-of-file inside a character constant.

C Compiler Diagnostics 4-7

Messages

EOF in comment

Type: Warning Options: all

The compiler encountered end-of-file while reading a comment.

EOF in string literal

Type: Error Options: all

The compiler encountered end-of-file inside a string literal.

NUL in asm function definition

Type: Warning Options: all

The compiler encountered a NUL (zero) character while reading an
enhanced asm function definition. The NUL is ignored.

-U option argument not an identifier

Type: Error Options: all

An identifier must follow the —U cc command line option.

cc -U3b2 -c x.c

command line: -U option argument not an identifier

a cast does not yield an lvalue

4-8

Type: Warning, Error Options: all

You may not apply a cast to the operand that constitutes the object to be
changed in an assignment operation. The diagnostic is a warning if the
size of the operand type and the size of the type being cast to are the
same; otherwise it is an error.

ANSI C and Programming Support Tools

Messages

£ (void) {
int i;
(long) i = 5;
(short) i = 4;
}

"file", line 3: warning: a cast does not yield an lvalue
"file", line 4: a cast does not yield an lvalue

\a is ANSI C "alert" character
Type: Warning Options: -Xt

In earlier AT&T C products, “\a’ was equivalent to “a’. However,
ANSI C defines “\a’ to be an alert character. In the AT&T implementa-
tion, the corresponding character code is 07, the BEL character.

int ¢ = "\a’;

"file, line 1: warning: \a is ANSI C "alert" character

access through "void" pointer ignored

Type: Warning Options: all

A pointer to void may not be used to access an object. You wrote an
expression that does an indirection through a (possibly qualified)
pointer to void. The indirection is ignored, although the rest of the
expression (if any) is honored.

£0O{

volatile void *vpl, *vp2;

* (vpl = vp2); /* assignment does get done */
}

"file", line 3: warning: access through "void" pointer ignored

C Compiler Diagnostics 4-9

Messages

argument cannot have unknown size: arg #n

Type: Error Options: all

An argument in a function call must have a completed type. You
passed a struct, union, or enum object whose type is incomplete.

£(){
struct s *st;

g(*st);
}

“file", line 3: argument cannot have unknown size: arg #1

argument does not match remembered type: arg #n
Type: Warning Options: -v

At a function call, the compiler determined that the type of the n-th
argument passed to a function disagrees with other information it has
about the function. That other information comes from two sources:

1. An old-style (non-prototype) function definition, or
2. A function prototype declaration that has gone out of scope,
but whose type information is still remembered.
The argument in question is promoted according to the default argu-
ment promotion rules.

This diagnostic may be incorrect if the old-style function definition case
applies and the function takes a variable number of arguments.

4-10 ANSI C and Programming Support Tools

Messages

void f£(i)
int i;
{1}

void g{()
{

f ("erroneous") ;

}
"ﬁle", line 7: warning: argument does not match remembered
type: arg #1

argument is incompatible with prototype: arg #n
Type: Error Options: all

You called a function with an argument whose type cannot be converted
to the type in the function prototype declaration for the function.

struct s {int x;} q:
£ (void) {
~ int g(int,int);
9‘(3'CI);
}

"file", line 4: argument is incompatible with prototype:
arg #2

argument mismatch
Type: Warning Options: all

The number of arguments passed to a macro was different from the
number in the macro definition.

#define twoarg(a,b) atb
int i = twoarg(4);

“file", line 2: warning: argument mismatch

C Compiler Diagnostics 4-11

Messages

argument mismatch: nl argls] passed, n2 expected
Type: Warning Options: -v

At a function call, the compiler determined that the number of argu-
ments passed to a function disagrees with other information it has about
the function. That other information comes from two sources:

1. An old-style (non-prototype) function definition, or

2. A function prototype declaration that has gone out of scope,
but whose type information is still remembered.

This diagnostic may be incorrect if the old-style function definition case
applies and the function takes a variable number of arguments.

extern int out_of scope();

int £()

{ /* function takes no args */
extern int out_of scope (int);

}

int g()

{
£(1); /* f takes no args */
out_of_scope() ; /* out_of scope expects one arg */

}

"file", line 9: warning: argument mismatch: 1 arg passed,
0 expected

"file", line 10: warning: argument mismatch: 0 args passed,
1 expected

array too big

Type: Error Options: all

An array declaration has a combination of dimensions such that the
declared object is too big for the target machine.

4-12 ANSI C and Programming Support Tools

Messages

int bigarray[1000] [1000] [1000];

"file", line 1: array too big

asm() argument must be normal string literal

Type: Error Options: all

The argument to an old-style asm() must be a normal string literal, not
a wide one.

asm(L"wide string literal not allowed");

"ﬁle", line 1: asm() argument must be normal string literal

asm definition cannot have old-style parameters

Type: Error Options: all

The definition of an enhanced asm function may use the ANSI C func-
tion prototype notation to declare types for parameters. It may not
declare parameters by using the old-style C function definition notation
of an identifier list, followed by a declaration list that declares parame-

ter types.

__asm is an extension of ANSI C

Type: Warning Options: -Xc

You declared an enhanced asm function and compiled the code with
-Xc. This warning informs you that the enhanced __asm is a violation
of ANSI C syntax, which the compiler is obliged to diagnose, and is not
a compatible extension. ‘

C Compiler Diagnostics 4-13

Messages

"asm" valid only for function definition
Type: Warning Options: all

The asm storage class may only be used for function definitions. It is
ignored here.

asm int f(void);

"file", line 1: warning: "asm" valid only for function

definition
"#assert identifier (.. " expected
Type: Error Options: all

In a #assert directive, the token following the predicate was not the (
that was expected.

#assert system unix

"file", line 1: "#assert identifier (..." expected
"#assert identifier" expected
Type: Error Options: all

In a #assert directive, the token following the directive was not the
name of the predicate.

#assert 5

"file", line 1: "#assert identifier" expected

414 ANSI C and Programming Support Tools

Messages

"#assert" missing ")"

Type: Error Options: all

In a #assert directive, the parenthesized form of the assertion lacked a
closing).

#assert system(unix

"file", line 1: "#assert" missing ")"

assignment type mismatch
Type: Warning, Error Options: all

The operand types for an assignment operation are incompatible. The
message is a warning when the types are pointer types that do not
match. Otherwise the message is an error.

struct s { int x; } st;
£ (void) {
int i;
char *cp;
const char *ccp;
i=st;
Cp = CcCp;
}

"file", line 6: assignment type mismatch
"file", line 7: warning: assignment type mismatch

auto/register/asm inappropriate here

Type: Error Options: all

A declaration outside any function has storage class auto or register
or a declaration within a function has storage class asm.

C Compiler Diagnostics 4-15

Messages

auto int i;
£ (void) {

asm int j;
}

"file", line 1: auto/register/asm inappropriate here
“file*, line 3: auto/register/asm inappropriate here

automatic redeclares external: name

Type: Warning Options: all

You have declared an automatic variable name in the same block and
with the same name as another symbol that is extern. ANSI C prohi-
bits such declarations, but previous versions of AT&T C allowed them.
For compatibility with previous versions, references to name in this
block will be to the automatic.

£ (void) {
extern int i;
int i;

}

"file", line 3: warning: automatic redeclares external: i

bad file specification
Type: Error Options: all
The file specifier in a #include directive was neither a string literal nor

a well-formed header name.
#include stdio.h

"file", line 1: bad file specification

4-16 / ANSI C and Programming Support Tools

bad octal digit: ‘digit’
Type: Warning Options: -Xt

An integer constant that began with 0 included the non-octal digit digit.
An 8 is taken to have value 8, and a 9 is taken to have value 9, even
though they are invalid.

int i = 08;

"file", line 1: warning: bad octal digit: ‘8’

bad #pragma pack value: n
Type: Warning Options: all

The value n that was specified in a #pragma pack directive was not one
of the acceptable values: 1, 2, or 4. The erroneous value is ignored and
the directive has no effect.

bad token in #error directive: foken

Type: Error Options: all

The tokens in a #error directive must be valid C tokens. The source
program contained the invalid token token.

#error "this is an invalid token

"file", line 1: bad token in #error directive: "
"file", line 1: #error: "this is an invalid token

C Compiler Diagnostics 417

Messages

bad use of "#" or "##" in macro #define

Type: Warning Options: all

In a macro definition, a # or ## operator was followed by a # or ##
operator.

#define bug(s) # # s
#define bug2(s) # ## s

"file", line 1: warning: bad use of "#" or "##" in macro #define
"file", line 2: warning: bad use of "#" or "##" in macro #define

base type is really "type tag": name
Type: Warning Options: -Xt

A type was declared with a struct, union, or enum type specifier‘and
with tag tag, and then used with a different type specifier to declare
name. type is the type specifier that you used for the original declara-
tion.

For compatibility with previous releases of AT&T C, the compiler treats
the two types as being the same. In ANSI C (with the -Xa or -Xc
options), the types are different.

struct s { int x,y,z; };
£ (void) {
union s foo;

}

"file", line 3: warning: base type is really "struct s": foo
"file", line 3: warning: declaration introduces new type in
ANST C: union s

4-18 ANSI C and Programming Support Tools

Messages

bit-field size <= 0: name
Type: Error Options: all
The declaration for bit-field name specifies a zero or negative number of
bits.

struct s { int x:-3; };

"file", line 1: bit-field size <= 0: x

bit-field too big: name
Type: Error Options: all
The declaration for bit-field name specifies more bits than will fit in an

object of the declared type.
struct s { char c:20; };

"file", line 1: bit-field toco big: ¢

"break" outside loop or switch
Type: Error Options: all

A function contains a break statement in an inappropriate place, namely
outside any loop or switch statement.

£ (void) {
break;
}

"file", line 2: "break" outside loop or switch

C Compiler Diagnostics 4-19

Messages

cannot access member of non-struct/union object

Type: Error Options: all

The structure or union member must be completely contained within
the left operand of the . operator.

£ (void) {
struct s { int x; };
char c;
c.x=1;
}
"file", line 4: warning: left operand of "." must be struct/

union object
“file", line 4: cannot access member of non-struct/union object

cannot begin macro replacement with "##"

Type: Warning Options: all

The ## operator is a binary infix operator and may not be the first token
in the macro replacement list of a macro definition.

#define mac(s) ## s

"file", line 1: warning: cannot begin macro replacement with
"##"

cannot concatenate wide and regular string literals

4-20

Type: Warning, Error Options: all

Regular string literals and string literals for wide characters may be con-
catenated only if they are both regular or both wide. The compiler
issues a warning if a wide string literal is followed by a regular one
(and both are treated as wide); it issues an error if a regular string literal
is followed by a wide one.

ANSI C and Programming Support Tools

Messages

#include <stddef.h>
wchar t wa[] = L"abc" "def";
char a[] = "abc" L"def";

"file", line 2: warning: cannot concatenate wide and regular
string literals

"file", line 3: cannot concatenate wide and regular string
literals

cannot declare array of functions or void

Type: Error Options: all

You have attempted to declare an array of functions or an array of
void.

int £[510;

"file", line 1: cannot declare array of functions or void

cannot define "defined"

Type: Warning Options: all

The predefined preprocessing operator defined may not be defined as a
macro name.

#define defined xyz

"file*, line 1: warning: cannot define "defined"

cannot dereference non-pointer type

Type: Error Options: all

The operand of the * (pointer dereference) operator must have pointer
type. This diagnostic is also issued for an array reference to a non-
array.

C Compiler Diagnostics 4-21

Messages

£0{
int i; -
= 4
1[4] =
}

"file", line 3: cannot dereference non-pointer type
"file", line 4: cannot dereference non-pointer type

cannot do pointer arithmetic on operand of unknown size

Type: Error Options: all

An expression involves pointer arithmetic for pointers to objects whose
size is unknown.

£ (void) {
struct s *ps;
g(ps+l);

}

"file*, line 3: cannot do pointer arithmetic on operand
of unknown size

cannot end macro replacement with "#" or "##"

4-22

Type: Warning Options: all

A # or ## operator may not be the last token in the macro replacement
list of a macro definition.

#define macl (s) abc ## s ##
#define mac2(s) s #

"file", line 1: warning: cannot end macro replacement with "#"
or "##"

*file", line 2: warning: cannot end macro replacement with "#"
or “##"

ANSI C and Programming Support Tools

Messages

cannot find include file: filename

Type: Error Options: all

The file filename specified in a #include directive could not be located
in any of the directories along the search path.

#include "where is it.h"

"file", line 1: cannot find include file: "where is it.h"

cannot have "..." in asm function

Type: Warning Options: all

An enhanced asm definition may not be a function prototype definition
with ellipsis notation.

cannot have void object: name

Type: Error Options: all

You may not declare an object of type void.

void v;

"file", line 1: cannot have void object: v

cannot initialize "extern" declaration: name

Type: Error Options: all

Within a function, the declaration of an object with extern storage class
may not have an initializer.

C Compiler Diagnostics 4-23

£ (void) {
extern int i = 1;
}

"file", line 2: cannot initialize "extern" declaration: i

cannot initialize function: name

Type: Error Options: all
A name declared as a function may not have an initializer.
int f£(void) = 3;

"file", line 1: cannot initialize function: £

cannot initialize parameter: name

Type: Error Options: all

Old-style function parameter name may not have an initializer.

int £(i)
int i = 4;
{

}

"file", line 2: cannot initialize parameter: i

cannot initialize typedef: name
Type: Error Options: all

A typedef may not have an initializer.

4-24 ANSI C and Programming Support Tools

Messages

typedef int INT = 1;

"file", line 1: cannot initialize typedef: INT

cannot open file: explanation
Type: Fatal Options: all

The compiler was unable to open an input or output file. Usually this
means the file name argument passed to the cc command was incorrect.
explanation describes why file could not be opened.

cc glorch.c -¢ x.c

command line: fatal: cannot open glorch.c: No such file or
directory

cannot open include file (too many open files): filename

Type: Error Options: all

The compiler could not open a new include file, filename, because too
many other include files are already open. Such a situation could arise
if you have filel that includes file2 that includes file3, and so on. The
compiler supports at least eight levels of “nesting,” up to a maximum
defined by the operating system. The most likely reason for the diag-
nostic is that at some point an include file includes a file that had
already been included. For example, this could happen if filel includes
file2, which includes filel again.

In this example, imagine that the file i1.h contains #include "il.h".

#include "il.h"

"./il.h", line 1: cannot open include file (too many open
. files): "il.h"

C Compiler Diagnostics 4-25

Messages

cannot recover from previous errors
Type: Error Options: all

Earlier errors in the compilation have confused the compiler, and it can-
not continue to process your program. Please correct those errors and

try again.

cannot return incomplete type

Type: Error Options: all

When a function is called that returns a structure or union, the complete
declaration for the structure or union must have been seen already.
Otherwise this message results.

£0{
struct s g():

g();
}

"file", line 3: cannot return incomplete type

cannot take address of bit-field: name

Type: Error Options: all

You cannot take the address of a bit-field member of a structure or
union.

£ (void) {
struct s { int x:3, y:4; } st;
int *ip = &st.y;

}

"file", line 3: cannot take address of bit-field: y

4-26 ANSI C and Programming Support Tools

Messages

cannot take address of register: name

Type: Warning, Error Options: all

You attempted to take the address of name, which is an object that was
declared with the register storage class. You are not permitted to do
so, whether or not the compiler actually allocates the object to a register.
The attempt to take an object’s address may have been implicit, such as
when an array is dereferenced. The diagnostic is an error if a register
was allocated for the object and a warning otherwise.

£ (void) {
register int i;
register int ia[5];
int *ip = &i;
ia[2] = 1;

}

"file", line 4: cannot take address of register: i
"file", line 5: warning: cannot take address of register: ia

cannot take sizeof bit-field: name
Type: Warning Options: all

The sizeof operator may not be applied to bit-fields.

struct s { int x:3; } st;
int i = sizeof(st.x):;

"file", line 2: warning: cannot take sizeof bit-field: x

cannot take sizeof function: name
Type: Error Options: all

The sizeof operator may not be applied to functions.

C Compiler Diagnostics 4-27

Messages

int £(void);
int i = sizeof(f):;

"file", line 2: cannot take sizeof function: £

cannot take sizeof void
Type: Error Options: all

The sizeof operator may not be applied to type void.
void v(void) ; ‘
int i = sizeof(v());

"file", line 2: cannot take sizeof void

cannot undefine "defined"

Type: Error Options: all

The predefined preprocessing operator defined may not be undefined.
#undef defined

"file", line 1: warning: cannot undefine "defined"

case label affected by conversion: value

Type: Warning Options: -v

The value for the case label cannot be represented by the type of the
controlling expression of a switch statement. If the type of the case
expression and the type of the controlling expression have the same
size, the actual bit representation of the case expression is unchanged,
but its interpretation is different. For example, the controlling expres-
sion may have type int and the case expression may have type
unsigned int. In the diagnostic, value is represented as a hexadecimal
value if the case expression is unsigned, decimal if it is signed.

4-28 ANSI C and Programming Support Tools

Messages

£0{

int i;

switch(i){
case Oxffffffffu:

’

}
}

“file", line 5: warning: case label affected by conversion:
OxXffffffff

In this example 0xf£E£££££fu is not representable as an int. When the
case expression is converted to the type of the controlling expression
(int), its effective value is —1. Thit is; the case will be reached if i has
the value -1, rather than Oxffffffff.

"case" outside switch
Type: Error Options: all

A case statement occurred outside the scope of any switch statement.

£ (void) {
case 4: ;

}

"file", line 2: "case" outside switch

character constant too long
Type: Warning Options: all

The character constant contains too many characters to fit in an integer.
Only the first four characters of a regular character constant, and only
the first character of a wide character constant, are used. (Character
constants that are longer than one character are non-portable.)

C Compiler Diagnostics 4-29

Messages

int i = “abcde’;

"file", line 1: warning: character constant too long

character escape does not fit in character

Type: Warning Options: all

A hexadecimal or octal escape sequence in a character constant or string
literal produces a value that is too big to fit in an unsigned char. The
value is truncated to fit. - : ‘ .

char *p = "\x1££\400";

"file", line 1: warning: \x is ANSI C hex escape

"file", line 1: warning: character escape does not fit in
character

“file", line 1: warning: character escape does not fit in
character

character escape does not fit in wide character

Type: Warning Options: all

This message diagnoses a condition similar to the previous one, except
the character constant or string literal is prefixed by L to designate a
wide character constant or string literal. The character escape is too
large to fit in an object of type wchar_t and is truncated to fit.

comment does not concatenate tokens

Type: Warning Options: -Xa, -Xc

In previous releases of AT&T C, it was possible to “paste” two tokens
together by juxtaposing them in a macro with a comment between them.
This behavior was never defined or guaranteed. ANSI C provides a
well-defined operator, ##, that serves the same purpose and should be

ANSI C and Programming Support Tools

Messages

used. This diagnostic warns that the old behavior is not being pro-
vided.

#define PASTE (a,b) a/*GLUE*/b
int PASTE (prefix,suffix) = 1; /* does not create */
/* prefixsuffix */

"file*, line 1: warning: comment does not concatenate tokens
"file", line 2: syntax error, probably missing ",", ";" or "="
"file", line 2: syntax error before or at: suffix

"file", line 2: warning: old-style declaration; add "int"

comment is replaced by "##"

Type: Warning Options: -Xt

This message is closely related to comment does not concatenate
tokens. The diagnostic tells you that the compiler is treating an
apparent concatenation as if it were the ## operator. The source code
should be updated to use the new operator.

#define PASTE(a,b) a/*GLUE#*/b
int PASTE (prefix, suffix) = 1; /* creates prefixsuffix */

"file", line 1: warning: comment is replaced by "##"

const object should have initializer: name

Type: Warning Options: -v

A const object cannot be modified. If you do not supply an initial
value, the object will have a value of zero, or for automatics its value
will be indeterminate.

const int i;

"file", line 1: warning: const object should have initializer:
i

C Compiler Diagnostics 4-31

Messages

"continue" outside loop

Type: Error Options: all

Your program contains a continue statement outside the scope of any
loop.

f (void) {
continue;
}

"file*, line 2: "continue" outside loop

controlling expressions must have scalar type

Type: Error Options: all

The expression for an if, for, while, or do-while must be an
integral, floating-point, or pointer type.
£ (void) {
struct s {int x;} st;
while (st) {}
}

"file", line 3: controlling expressions must have scalar type

conversion of double to float is out of range

4-32

Type: Warning, Error Options: all

A double expression has too large a value to fit in a float. The diag-
nostic is a warning if the expression is in executable code and an error
otherwise.

float £ = le30 * 1e30;

"file", line 1: conversion of double to float is out of range

ANSI C and Programming Support Tools

Messages

conversion of double to integral is out of range

Type: Warning, Error Options: all

A double constant has too large a value to fit in an integral type. The
diagnostic is a warning if the expression is in executable code and an
error otherwise.

int i = 1el00;

"file", line 1: conversion of double to integral is out of
range

conversion of floating-point constant to fype out of range

Type: Error Options: all

A floating-point constant has too large a value to fit in type type (float,
double, long double).

float £ = 1e300f;
"file*, line 1: conversion of floating-point constant to float

out of range

declaration hides parameter: name

Type: Warning Options: all

You have declared an identifier name with the same name as one of the
parameters of the function. References to name in this block will be to
the new declaration.

C Compiler Diagnostics 4-33

Messages

int £(int i,int INT){
int i;
typedef int INT;
}

"file", line 2: warning: declaration hides parameter: i
“file", line 3: warning: declaration hides parameter: INT

declaration introduces new type in ANSI C: fype tag
Type: Warning Options: -Xt

struct, union, or enum f2g has been redeclared in an inner scope. In
previous releases of AT&T C, this tag was taken to refer to the previous
declaration of tag. In ANSI C, the declaration introduces a new type.
When the —Xt option is selected, AT&T C reproduces the earlier

behavior.
struct sl { int x; };
£ (void) {

struct sl;

struct s2 { struct sl *psl; }; /* sl refers to line 1 */
struct sl { struct s2 *ps2; };
}

"file", line 3: warning: declaration introduces new type in
ANST C: struct sl

"default" outside switch
Type: Error Options: all

A default label appears outside the scope of a switch statement.

4-34 ANSI C and Programming Support Tools

£ (void) {
default: ;
}

"file", line 2: "default" outside switch

#define requires macro name

Type: Error Options: all

A #define directive must be followed by the name of the macro to be
defined.

#define +3

"file", line 1: #define requires macro name

digit sequence expected after "#line"
Type: Error Options: all

The compiler expected to find the digit sequence that comprises a line
number after #1ine, but the token it found there is either an inappropri-
ate token or a digit sequence whose value is zero.

#line 09a

“file", line 1: digit sequence expected after "#line"

directive is an upward-compatible ANSI C extension

Type: Warning Options: —Xc

This diagnostic is issued when the AT&T C compiler sees a directive
that it supports, but that is not part of the ANSI C standard, and -Xc
has been selected.

C Compiler Diagnostics 4-35

Messages

#assert system(unix)

"file", line 1: warning: directive is an upward—-compatible
ANST C extension

directive not honored in macro argument list

Type: Warning, Error Options: all

A directive has appeared between the ()’s that delimit the arguments
of a function-like macro invocation. The following directives are disal-
lowed in such a context: #ident, #include, #line, #undef. The diag-
nostic is a warning if it appears within a false group of an if-group, and
an error otherwise.

#define flm(a) at4

int i = flm(
#ifdef flm /* allowed */
#undef flm /* disallowed: error */
4
#else /* allowed */
#undef flm /* disallowed: warn */
6
#endif /* allowed */

):

"file", line 4: directive not honored in macro argument list
"file", line 7: warning: directive not honored in macro
argument list

division by 0

4-36

Type: Warning, Error Options: all

An expression contains a division by zero that was detected at compile-
time. If the division is part of a #if or #elif directive, the result is
taken to be zero.

ANSI C and Programming Support Tools

Messages

The diagnostic is a warning if the division is in executable code, an error
otherwise.

f (void) {
int i = 1/0;
}

"file*, line 2: warning: division by 0

dubious type declaration; use tag only: fag
Type: Warning Options: all

You declared a new struct, union, or enum type with tag tag within a
function prototype declaration or the parameter declaration list of an
old-style function definition, and the declaration includes a declarator
list for type. Calls to the function would always produce a type
mismatch, because the tag declaration goes out of scope at the end of
the function prototype declaration or definition, according to ANSI C’s
scope rules. You could never declare an object of that type outside the
function. You should declare the struct, union, or enum ahead of the
function prototype or function definition and then refer to it just by its
tag.

int f(struct s {int x;} st)

{}

"file", line 1: warning: dubious struct declaration; use tag
only: s
Rewrite this as

struct s {int x;};
int f(struct s st)

{}

C Compiler Diagnostics 4-37

Messages

dubious escape: \c

Type: Warning Options: all

Only certain characters may follow \ in string literals and character con-
stants; ¢ was not one of them. AT&T C ignores the \.

int i = '\q’;

"file", line 1: warning: dubious escape: \q

dubious escape: \<hex value>
Type: Warning Options: all

This message diagnoses the same condition as the preceding one, but
the character that follows \ in the program is a non-printing character.
The hex value between the brackets in the diagnostic is the character’s
code, printed as a hexadecimal number.

dubious reference to type typedef: typedef
Type: Warning Options: all

This message is similar to dubious tag in function prototype:

type tag. A function prototype declaration refers to a fype struct,
union, or enum typedef with name typedef. Because the struct, union,
or enum has been declared within a function, it could not be in scope
when you define the function whose prototype is being declared. The
prototype declaration and function definition thus could never match.

4-38 ANSI C and Programming Support Tools

Messages

£0O{
struct s { int x; };
typedef struct s ST;
extern int g(ST, struct s);
}

“file", line 4: warning: dubious reference to struct typedef:
ST

“file*, line 4: warning: dubious tag in function prototype:
struct s

dubious static function at block level

Type: Warning Options: -Xc

You declared a function with storage class static at block scope. The
ANSI C standard says that the behavior is undefined if you declare a
function at block scope with an explicit storage class other than extern.
Although AT&T C allows you to declare functions this way, other
implementations might not, or they might attach a different meaning to
such a declaration.

void
£ (void) {

static void g(void);
}

"file", line 3: warning: dubious static function at block
level

dubious tag declaration: fype tag
Type: Warning Options: all

You declared a new struct, union, or enum fype with tag tag within a
function prototype declaration or the parameter declaration list of an
old-style function definition. Calls to the function would always pro-
duce a type mismatch, because the tag declaration goes out of scope at

C Compiler Diagnostics 4-39

Messages

the end of the function declaration or definition, according to ANSI C’s
scope rules. You could never declare an object of that type outside the
function.

int f(struct s *);

"file", line 1: warning: dubious tag declaration: struct s

dubious tag in function prototype: fype tag
Type: Warning Options: all

This message is similar to the previous one. A function prototype
declaration refers to a struct, union, or enum type with tag tag. The
tag has been declared within a function. Therefore it could not be in
scope when you define the function whose prototype is being declared.
The prototype declaration and function definition thus could never
match.

£0{
struct s {int x;};
int g(struct s *);

}

"file", line 3: warning: dubious tag in function prototype:
struct s

duplicate case in switch: value

Type: Error Options: all

There are two case statements in the current switch statement that
have the same constant value value.

4-40 ANSI C and Programming Support Tools

Messages

£ (void) {
int i = 5;
switch(i)
case 4:
case 4:

break;

}

}

"file", line 5: duplicate case in switch: 4

duplicate "default" in switch
Type: Error Options: all

There are two default labels in the current switch statement.

£ (void) {
int i = 5;
switch(i)
default:
default:

break;

}

}

"file", line 5: duplicate "default" in switch

duplicate formal parameter: name
Type: Warning Options: all

In a function-like macro definition, name was used more than once as a
formal parameter.

#define add3(a,a,c) a + b + ¢

"file", line 1: warning: duplicate formal parameter: a

C Compiler Diagnostics 4-41

Messages

duplicate member name: member

Type: Error Options: all

A struct or union declaration uses the name member for more than
one member.

union u {
int i;
float i;
};

"file", line 3: duplicate member name: i

duplicate name in % line specification: name

Type: Error Options: all

Formal parameter name was mentioned more than once in the % line of
an enhanced asm function.

#elif follows #else
Type: Warning Options: all

A preprocessing if-section must be in the order #if, optional #elif’s,
followed by optional #else and #endif. The code contains a #elif
after the #else directive.

4-42 ANSI C and Programming Support Tools

Messages

#if defined(ONE)

int i = 1;
#elif defined (TWO)

int i = 2;
#else

int i = 3;
#elif defined (FOUR)

int i = 4;
#endif

"file, line 7: warning: #elif follows #else

#elif has no preceding #if
Type: Error Options: all

An #elif directive must be part of a preprocessing if-section, which
begins with a #if directive. The code in question lacked the #if.

#elif defined (TWO)
int i = 2;
#endif
"file*, line 1: #elif has no preceding #if
“file", line 3: #if-less #endif

#elif must be followed by a constant expression

Type: Error Options: all

There was no expression following the #elif directive.

C Compiler Diagnostics 4-43

Messages

#if defined (ONE)
int i = 1;
#elif
int i = 4;
#endif

“file", line 3: warning: #elif must be followed by a constant
expression

#else has no preceding #if
Type: Error Options: all

An #else directive was encountered that was not part of a preprocess-
ing if-section.

#else

int i =7;

#endif
"ﬁle", line 1: #else has no preceding #if
"file", line 3: #if-less #endif

embedded NUL not permitted in asm()
Type: Error Options: all

The string literal that appears in an old-style asm() contains an embed-
ded NUL character (character code 0).

asm("this is an old-style asm with embedded NUL: \0");

"file*, line 1: embedded NUL not permitted in asm()

4-44 ANSI C and Programming Support Tools

Messages

empty #assert directive
Type: Error Options: all

A #assert directive contained no predicate name to assert.

#assert

"file", line 1: empty #assert directive

empty character constant
Type: Error Options: all

The program has a character constant without any characters in it.

int i = "";

“file", line 1: empty character constant

empty constant expression after macro expansion

Type: Error Options: all

A #if or #elif directive contained an expression that, after macro
expansion, consisted of no tokens.

#define EMPTY
#if EMPTY

char *mesg = "EMPTY is non-empty";
#endif

"file", line 2: empty constant expression after macro
expansion

C Compiler Diagnostics

Messages

empty #define directive line

Type: Error Options: all

A #define directive lacked both the name of the macro to define and
any other tokens.

#define

"file", line 1: empty #define directive line

empty file name

Type: Error Options: all

The file name in a #include directive is null.

#include <>

"file", line 1: empty file name

empty header name

Type: Error Options: all

This diagnostic is similar to the preceding one, but the null file name
arises after macro substitution.

#define NULLNAME <>
#include NULLNAME

"file*, line 2: empty header name

empty predicate argument

4-46

Type: Error Options: all

ANSI C and Programming Support Tools

Messages

The compiler expects to find tokens between the ()’s that delimit
a predicate’s assertions in a #unassert directive. None were present.

#unassert machine()

"file", line 1: empty predicate argument

empty translation unit

Type: Warning Options: all

The source file has no tokens in it after preprocessing is complete. The
ANSI C standard requires the compiler to diagnose a file that has no
tokens in it.

#ifdef COMPILE
int token;
#endif

"file", line 5: warning: empty translation unit

empty #unassert directive
Type: Error Options: all

A #unassert contained no predicate name to discard.

#unassert

"file", line 1: empty #unassert directive

empty #undef directive, identifier expected
Type: Error Options: all

A #undef directive lacked the name of a macro to “undefine.”

C Compiler Diagnostics 4-47

Messages

#undef

"file", line 1: empty #undef directive, identifier expected

{}—enclosed initializer required

Type: Warning Options: all

When you initialize an aggregate, except when you initialize a character
array with a string literal or an automatic structure with an expression,
you must enclose the initializer in { }’s.

int ia[5] = 1;
£ (void) {

struct s { int x,y; } st = 1;
}

"file", line 1: warning: {}-enclosed initializer required
“file", line 3: warning: {}-enclosed initializer required
"file", line 3: struct/union-valued initializer required

end-of-loop code not reached

4-48

Type: Warning Options: all

You have written a loop in such a way that the code at the end of the
loop that the compiler generates to branch back to the beginning of the
loop is not reachable and will never be executed.

£ (void) {
int i = 1;
while (i) {
return 4;
}
}

"file", line 5: warning: end-of-loop code not reached

ANSI C and Programming Support Tools

Messages

enum constants have different types: op “operator"
Type: Warning Options: -v

You have used relational operator operator to compare enumeration con-
stants from two different enumeration types. This may indicate a pro-
gramming error. Note also that the sense of the comparison is known
at compile time, because the constants’ values are known.

enum el { ecll, ecl2 } evl;
enum €2 { ec2l, ec22 } ev2;
void v(void) {

if (ecll > ec22)

4

}

“file", line 4: warning: enum constants have different types:
op ll>ll

enum type mismatch: arg #n
Type: Warning Options: -v

The program is passing an enumeration constant or object to a function
for which a prototype declaration is in scope. The passed argument is
of a different enumerated type from the one in the function prototype,
which may indicate a programming error.

enum el { ecll } evl;
enum e2 { ec2l } ev2;
void ef (enum el);

void v(void) {

ef (ec2l) ;
}

"file", line 6: warning: enum type mismatch: arg #1

C Compiler Diagnostics 4-49

Messages

enum type mismatch: op "“operator"

Type: Warning Options: -v

This message is like the previous one. One of the operands of operator is
an enumeration object or constant, and the other is an enumeration
object or constant from a different enumerated type.

enum el { ecll, ecl2 } evl;
enum e2 { ec2l, ec22 } ev2;
void v(void) {

if (evl > ec22)

’

}

"file", line 4: warning: enum type mismatch: op ">"

enumeration constant hides parameter: name
Type: Warning Options: all

A declaration of an enumerated type within a function includes an
enumeration constant with the same name as parameter name. The
enumeration constant hides the parameter.
int
f(int i){

enume { 1, k, 3, 1 };
}

"file", line 3: warning: enumeration constant hides parameter:
i

enumerator used in its own initializer: name

Type: Warning Options: all

When setting the value of enumerator name in an enumeration type
declaration, you have used name in the expression. ANSI C’s scope

4-50 ANSI C and Programming Support Tools

Messages

rules take name in the expression to be whatever symbol was in scope at
the time.

int i;
£ (void) {

enume { i = i+l, j, k }; /* uses global i in i+l */
}

“file", line 3: warning: enumerator used in its own
initializer: i
"file", line 3: integral constant expression expected

enumerator value overflows INT MAX (2147483647)
Type: Warning Options: all

The value for an enumeration constant overflowed the maximum integer
value.

enum e { el=2147483647, e2 }; /* overflow for e2 */

"file", line 1: warning: enumerator value overflows INT MAX
(2147483647)

#error: tokens
Type: Error Options: all

A #error directive was encountered in the source file. The other tokens
in the directive are printed as part of the message.

#define ONE 2
#if ONE !=1
$error ONE != 1
#endif

"file", line 3: #error: ONE != 1

C Compiler Diagnostics 4-51

Messages

%error encountered in asm function

Type: Error Options: all

A %error specification line was encountered while an enhanced asm
was being expanded.

error in asm; expect ";" or "\n", saw ‘¢’

Type: Error Options: all

In a % line of an enhanced asm function, the compiler expected to read a
semi-colon or new-line and found character c instead.

error writing output file

Type: Error Options: all

An output error occurred while the compiler attempted to write its out-
put file or a temporary file. The most likely problem is that a file sys-
tem is out of space.

") " expected
Type: Error Options: all

In an #unassert directive, the assertion of a predicate to be dropped
must be enclosed in ().

#unassert system(unix

"file", line 1: ")" expected

" (" expected after "# identifier"
Type: Error Options: all

When the # operator is used in a #if or #elif directive to select a

4-52 ANSI C and Programming Support Tools

Messages

predicate instead of a like-named macro, the predicate must be followed
by a parenthesized list of tokens.

#assert system(unix)
#define system "unix"
#if #system
char *systype = system;
#endif

“file", line 3: "(" expected after "# identifier"

" (" expected after first identifier

Type: Error Options: all

In an #unassert directive, the assertion of a predicate to be dropped
must be enclosed in ().

#unassert system unix

"ﬁle", line 1: " (" expected after first identifier

extern and prior uses redeclared as static: name

Type: Warning Options: -Xc, -v

You declared name at file scope as an extern, then later declared the
same object or function as static. ANSI C rules require that the first
declaration of an object or function give its actual storage class. AT&T
C accepts the declaration and treats the object or function as if the first
declaration had been static.

extern int i;
static int i;

"file", line 2: warning: extern and prior uses redeclared as
static: i

C Compiler Diagnostics 4-53

Messages

first operand must have scalar type: op "?:"
Type: Error Options: all

The conditional expressionin a ? : expression must have scalar
(integral, floating-point, or pointer) type.

struct (s { int x; } st;
£ (void) {
int i =st ? 3 : 4;

}

"file", line 3: first operand must have scalar type: op "?:"

floating-point constant calculation out of range: op "operator"

Type: Warning, Error Options: all

The compiler detected an overflow at compile time when it attempted
the operator operation between two floating-point operands. The diag-
nostic is a warning if the expression is in executable code and an error
otherwise.

double dl = 1e300 * 1e300;

"file", line 1: floating-point constant calculation out of
range: op "x"

floating-point constant folding causes exception

Type: Error Options: all

This message is like the previous one, except that the operation caused a
floating-point exception that causes the compiler to exit.

4-54 ANSI C and Programming Support Tools

Messages

formal parameter lacks name: param #n
Type: Error Options: all

In a function prototype definition, you failed to provide a name for the
n-th parameter.

int £(int) {
}

"file", line 1: formal parameter lacks name: param #1

function actually returns double: name

Type: Warning Options: -v

A function that was declared to return type float actually returns
double. This information may be useful to know if you try to write an
assembly language version of the called routine, or if you write the rou-
tine in C++.

float £();

"ﬁle", line 1: warning: function actually returns double: £
function cannot return function or array
Type: Error Options: all

You declared a function whose return type would be a function or
array, rather than, perhaps, a pointer to one of those.

int f(void)[]; /* function returning array of ints #*/

"file", line 1: function cannot return function or array

C Compiler Diagnostics 4-55

Messages

function designator is not of function type

Type: Error Options: all

You used an expression in a function call as if it were the name of a
function or a pointer to a function when it was not.

£ (void) {
char *p;

p{);
}

"file", line 3: function designator is not of function type

function expects to return value: name

Type: Warning Options: -v

The current function was declared with a non-void type, but you used a
return statement with no return value expression.

£ (void) {
return;
}

"ﬁle", line 2: warning: function expects to return value: f

function prototype parameters must have types

4-56

Type: Warning Options: _all

A function prototype declaration cannot contain an identifier list; it
must declare types. The identifier list is ignored.

int £(i);

"file", line 1l: warning: function prototype parameters must
have types

ANSI C and Programming Support Tools

Messages

identifier expected after "#"
Type: Error Options: all

The compiler expected to find an identifier, a predicate name, after a #
in a conditional compilation directive, and none was there.

#if #system(unix) || #
char *os = "sys";
#endif

"file", line 1: identifier expected after "#"

identifier expected after #undef
Type: Error Options: all

A #undef must be followed by the name of the macro to be undefined.
The token following the directive was not an identifier.

#undef 4

"file", line 1: identifier expected after #undef

identifier or "-" expected after -A

Type: Error Options: all

The cc command line argument —A must be followed by the name of a
predicate to assert, or by a —, to eliminate all predefined macros and
predicates. The token following —A was neither of these.

cc —-A3b2 -c x.c

command line: identifier or "-" expected after -A

C Compiler Diagnostics 4-57

Messages

identifier or digit sequence expected after "#"

Type: Error Options: all

An invalid token or non-decimal number follows the # that introduces a
preprocessor directive line.

0x12

"file", line 1: identifier or digit sequence expected after "#"

identifier redeclared: name

4-58

Type: Warning, Error Options: all

You declared the identifier name in a way that is inconsistent with a pre-
vious appearance of name, or you declared name twice in the same
scope.

Previous releases of AT&T C were forgiving of inconsistent redeclara-
tions if the types were “nearly” the same (such as int and long on an
AT&T 3B2 computer). ANSI C considers the types to be different. The
-Xt option will allow you to retain the previous behavior, although the
compiler will issue a warning. When the types are manifestly different,
the diagnostic is always an error. The -Xa and —Xc options always pro-
duce an error when the types are different.

int x;
long x;
int y;
double y;

"file*, line 2: warning: identifier redeclared: x
“file", line 4: identifier redeclared: y

Declarations of functions with and without argument information can
often lead to confusing diagnostics. The following example illustrates.

ANSI C and Programming Support Tools

Messages

int f(char);
int £();

“file", line 2: warning: identifier redeclared: f

According to ANSI C’s type compatibility rules, a function declaration
that lacks type information (i.e., one that is not a function prototype
declaration) is compatible with a function prototype only when each
parameter type is unchanged by the default argument promotion rules.
In the example, char would be affected by the promotion rules (it
would be promoted to int). Therefore the two declarations have
incompatible types.

identifier redeclared; ANSI C requires "static": name
Type: Warning Options: all

You declared name twice at file scope. The first one used storage class
static, but the second one specified no storage class. ANSI C’s rules
for storage classes require that all redeclarations of name after the first
must specify static.

static int i;

int i;

"file", line 2: warning: identifier redeclared; ANSI C
requires "static": i

identifier redefined: name

Type: Error Options: all

You have defined name more than once. That is, you have declared an
object more than once with an initializer, or you have defined a function
more than once.

C Compiler Diagnostics 4-59

Messages

1;
1;

int i
int 1

"file*, line 2: identifier redefined: i

#if must be followed by a constant expression

Type: Warning Options: all

No expression appeared after a #if directive.
#if «

int i = 4;
#endif

"file", line 1: warning: #if must be followed by a constant
expression

#if on line n has no #endif
Type: Error Options: all

The compiler reached end of file without finding the #endif that would
end the preprocessing if-section that began with the if directive that was
on line n. The if directive is one of #if, #ifdef, or #ifndef.

#ifdef NOENDIF
int i = 1;

"file", line 5: #ifdef on line 1 has no matching #endif
"file", line 5: warning: empty translation unit

#if-less #endif
Type: Error Options: all

An #endif directive was encountered that was not part of a preprocess-
ing if-section.

4-60 ANSI C and Programming Support Tools

Messages

int 1 = 1;
#endif

“file", line 2: #if-less #endif

#ifdef must be followed by an identifier
Type: Warning Options: all

A #ifdef preprocessing directive must be followed by the name of the
macro to check for being defined. The source code omitted the
identifier. The #ifdef is treated as if it were false.

#ifdef
int i = 1;
#endif

“file", line 1: warning: #ifdef must be followed by an
identifier

#ifndef must be followed by an identifier
Type: Warning Options: all

The #ifndef directive must be followed by the identifier that is to be
tested for having been defined.

#ifndef
int i = 5;
#endif

“file", line 1: warning: #ifndef must be followed by an
identifier

C Compiler Diagnostics 4-61

Messages

ignoring malformed #pragma int_to unsigned symbol
Type: Warning Options: all
The compiler encountered a #pragma int_to_unsigned directive that
did not have the form shown. The erroneous directive is ignored.
#pragma int to unsigned strlen();

"file", line 1: warning: ignoring malformed #pragma
int_to_unsigned symbol

ignoring malformed #pragma pack (n)
Type: Warning Options: all

The compiler encountered a #pragma pack directive that did not have
the form shown. The erroneous directive is ignored.

ignoring malformed #pragma weak symbol [=vélue]
Type: Warning ' ~ Options: all
The compiler encountered a #pragma weak directive that did not have
the form shown. The erroneous directive is ignored.
#pragma weak write,_ write

"ﬁle" line 1: warning: ignoring malformed #pragma weak
symbol [=value]

implicitly declaring function to return int: name()

Type: Warning Options: -v

The program calls function name, which has not been previously
declared. The compiler warns you that it is assuming that function
name returns int. :

4-62 ‘ ANSI C and Programming Support Tools

Messages

void v(wvoid) {
g();
}

"file", line 2: warning: implicitly declaring function to
return int: g()

improper cast of void expression

Type: Error Options: all

You cannot cast a void expression to something other than void.

£ (void) {
void v(void);
int i = (int) v();

}

"file", line 3: improper cast of void expression

improper member use: name
Type: Warning, Error Options: all

Your program contains an expression with a —=>or . operator, and
name is not a member of the structure or union that the left side of the
operator refers to, but it is a member of some other structure or union.

This diagnostic is an error if the member is not “unique.”” A unique

member is part of one or more structures or unions but has the same
type and offset in all of them.

C Compiler Diagnostics 4-63

Message§

struct sl { int x,y; };
struct s2 { int q,x; };

£ (void) {
struct sl *psl;
psl->r = 3;

}

"file", line 5: warning: improper member use: r

improper pointer subtraction

Type: Warning, Error Options: all

The operands of a subtraction are both pointers, but they point at dif-
ferent types. You may only subtract pointers of the same type that
point to the same array.

The diagnostic is a warning if the pointers point to objects of the same
size, and an error otherwise.

£ (void) {

int #*ip;

char *cp;

int 1 = ip - cp;
}

“file", line 4: improper pointer subtraction

improper pointer/integer combination: arg #n

4-64

Type: Warning Options: all

At a function call for which there is a function prototype declaration in
scope, the code is passing an integer where a pointer is expected, or vice
versa.

ANSI C and Programming Support Tools

Messages

int £(char *);
g(void) {

£(5);
}

"file", line 3: warning: improper pointer/integer combination:
arg #1

improper pointer/integer combination: op "operator"
Type: Warning Options: all

One of the operands of operator is a pointer and the other is an integer,
but this combination is invalid.

£ (void) {
int 1 "abc";
int j =41 ? 4 : "def";

}

"file", line 2: warning: improper pointer/integer combination:

op "t
"file*, line 3: warning: improper pointer/integer combination:
op ":"
"file", line 3: warning: improper pointer/integer combination:
op n_n

inappropriate qualifiers with "void"

Type: Warning Options: all

You may not qualify void (with const or volatile) when it stands by
itself.

int f(const wvoid);

"file", line 1: warning: inappropriate qualifiers with "void"

C Compiler Diagnostics 4-65

Messages

#include <... missing ’>’
Type: Warning Options: all
In a #include directive for which the header name began with <, the

closing > character was omitted.
#include <stdio.h

"file*, line 1: warning: #include <... missing ’>’

#include directive missing file name

Type: Error Options: all

A #include directive did not specify a file to include.

#include

"file", line 1: #include directive missing file name

#include of /usr/include/... may be non-portable
Type: Warning Options: all

The source file included a file with the explicit prefix /usr/include.
Such an inclusion is implementation-dependent and non-portable. On
some systems the list of default places to look for a header might not
include the /usr/include directory. In such a case the wrong file
might be included.

#include </usr/include/stdio.h>

"file", line 1: warning: #include of /usr/include/... may be
non-portable

4-66 ANSI C and Programming Support Tools

Messages

incomplete #define macro parameter list

Type: Error Options: all

In the definition of a function-like parameter, the compiler did not find
a) character on the same (logical) line as the #define directive.

#define mac(a

“file", line 1: incomplete #define macro parameter list

incomplete struct/union/enum fag: name

Type: Error Options: all

You declared an object name, with struct, union, or enum type and tag
tag, but the type is incomplete.

struct s st;

"file", line 1: incomplete struct/union/enum s: st

inconsistent redeclaration of extern: name

Type: Warning Options: all

You have redeclared function or object name with storage class extern
for which there was a previous declaration that has since gone out of
scope. The second declaration has a type that conflicts with the first.

C Compiler Diagnostics 4-67

Messages

£ (void) {
int *p = (int *) malloc(5*sizeof (int));
}
g(void) {
void *malloc();
}

"file", line 5: warning: inconsistent redeclaration of extern:
malloc

inconsistent redeclaration of static: name

Type: Warning Options: all

You have redeclared an object or function that was originally declared
with storage class static. The second declaration has a type that
conflicts with the first.

The two most frequent conditions under which this diagnostic may be
issued are:

1. A function was originally declared at other than file scope and
with storage class static. The subsequent declaration of the
function has a type that conflicts with the first.

2. A function or object was originally declared at file scope and
with storage class static. A subsequent declaration of the
same object or function at other than file scope used storage
class extern (or possibly no storage class, if a function), and
there was an intervening, unrelated, declaration of the same
name.

4-68 ANSI C and Programming Support Tools

Messages

£ (void) {
static int myfunc(void);
}
g (void) {
static char *myfunc(void);
}

"file", line 5: warning: inconsistent redeclaration of static:
myfunc

static int x;
£ (void) {
int x; /* unrelated */
{
extern float x; /* related to first declaration */
}
}
"file", line 5: warning: inconsistent redeclaration of static:
X

inconsistent storage class for function: name

Type: Warning Options: all

ANSI C requires that the first declaration of a function or object at file
scope establish its storage class. You have redeclared function name in
an inconsistent way according to these rules.

g (void) {
~int f£(void);
static int f£(void);
}

"file", line 3: warning: inconsistent storage class for
function: £

C Compiler Diagnostics 4-69

Messages

initialization type mismatch

Type: Warning Options: all

The type of an initializer value is incompatible with the type of the
object being initialized. This specific message usually applies to
pointers.

int a;

unsigned int *pa = &a;

"file", line 2: warning: initialization type mismatch

initializer does not fit: wvalue

Type: Warning Options: all

The value value does not fit in the space provided for it. That is, if it
were fetched from that space, it would not reproduce the same value as
was put in. In the message, value is represented as a hexadecimal value
if the initializer is unsigned, decimal if it is signed.

struct s {signed int ml:3; unsigned int m2:3;} st = {4, 5};
unsigned char uc = 300u;

"<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>