UNIX® SYSTEM V
RELEASE 4

Programmer’s Guide: X11/NeWS®
Graphical Windowing System
tNt Technical Reference Manual

UNIX Software Operation

W

ATsl

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide: X11/NeWS®
Graphical Windowing System
tNt Technical Reference Manual

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

Parts of this book are reproduced with the permission of the following organizations: Sun Microsys-
tems, Inc., Digital Equipment Corporation (DEC), X Window System is a trademark of Massachusetts
Institute of Technology, X11 is a trademark of Massachusetts Institute of Technology, X11/NeWS is a
registered trademark of Sun Microsystems, Inc.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

ATA&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

The Sun logo, Sun Microsystems, and Sun Workstations are registered trademarks
of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, Suninstall, SunOS, Sun View, NFS, NeWS and SPARC
are trademarks of Sun Microsystems, Inc.

PosTScRIPT is a registered trademark of Adobe Systems

UNIX is a registered trademark of AT&T

10987654321

ISBN (0-13-931858-5

UNIX
PRESS

A Prentice Hall Title

P R ENT I CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632

Or call: (201) 592-2498

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator’s Guide

UNIX® System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C and Programming Support Tools

UNIX® System V Release 4 Programmer’s Guide: Character User Interface (FMLI and ETI)

UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces

UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance

UNIX® System V Release 4 Programmer’s Guide: System Services and Application
Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual

System Programmer’s Series

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel Interface (DDI / DKI)
Reference Manual

UNIX® System V Release 4 Programmer’s Guide; STREAMS

Migration Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Migration Guide

Graphics Series

UNIX® System V Release 4 OPEN LOOK™ Graphical User Interface Programmer’s
Reference Manual

UNIX® System V Release 4 OPEN LOOK™ Graphical User Interface User’s Guide

UNIX® System V Release 4 Programmer’s Guide: OPEN LOOK™ Graphical User Interface

UNIX® System V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System
NeWsS

UNIX® System V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System
Server Guide

UNIX® System V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System
tNt Technical Reference Manual

UNIX® System V Release 4 Programmer’s Guide: X11/NeWS® Graphical Windowing System
XVIEW™

UNIX® System V Release 4 Programmer’s Guide: XWIN™ Graphical Windowing System
Addenda: Technical Papers

UNIX® System V Release 4 Programmer’s Guide: XWIN™ Graphical Windowing System
The X Toolkit

UNIX® System V Release 4 Programmer’s Guide: XWIN™ Graphical Windowing System
Xilib — C Language Interface

Available from Prentice Hall

Contents

1 Introduction

1-1

2 The Wire Service

2-1

3 Canvases

3-1

4 Managing Groups of Canvases

4-1

5 Menus and Other Selection Lists

5-1

6 Controls

Table of Contents

6-1

Table of Contents

7 Graphics

7-1
8 The NeWS Development Environment
Input Model
8-1
9 Selections
9-1

1 0 Miscellaneous Topics

10-1

1 1 Interface Reference

ii tNt Technical Reference Manual

Figures and Tables

Figure 4-1: Bags

Figure 4-2: Frame Hierarchy
Figure 4-3: Top Down Coordinates
Figure 4-4: Bottom Up Coordinates
Figure 4-5: Compass Point Notation

Table of Contents

4-1
4-14
4-30
4-30
4-32

Preface

Preface
What's in the Chapters

Table of Contents

—

Preface

tNt extends X11/NeWS® in two areas, offering:

m classes of objects that implement the OPEN LOOK™ Graphical User Inter-
face, and

m the Wire Service, an enhanced means of communication between the
server and a client program.

To see what this means to you, let’s put it in perspective, beginning with the
generic model of a window system shown below.

Figure 1: Generic Window Architecture

Application

Toolkit

Window System

Operating System

Hardware Platform

Starting from the hardware, each layer of software manages resources and
extends the capabilities of the system.

The operating system manages hardware resources, and provides services to
access them. The type of management and service can vary widely. Simple
operating systems manage the hardware resources, sophisticated operating sys-
tems extend those resources. For example, even primitive operating systems
include a file system of some sort. The file system takes raw mass storage and
turns it into files and directories of files. More sophisticated operating systems
(certainly anything that supports X11/NeWS, such as UNIX® offer multitasking,

Preface 1

Preface

which does the same thing for the raw processor/memory resource, turning it
into multiple jobs apparently executing at the same time.

The next layer up in the generic model, the window system, applies this same
philosophy to the display resource. The window system takes a raw high reso-
lution display and turns it into multiple virtual displays called windows.

The window system toolkit provides another level of service in allowing you to
manupulate the appearance and function (“look and feel”) of the windows. The
toolkit provides varying degrees of assistance to the application in defining the
interface the application’s user will see. In some cases the toolkit offers assorted
user interface components for the application builders to use as they see fit. In
other cases, the toolkit implements (and enforces) a standard user interface to be
used by all applications.

The situation with X11/NeWS is shown in Figure xnewsarch below. What is
unique to X11/NeWS is that there are two toolkits, one for X11™ applications
and one for NeWS applications. Both toolkits implement the emerging OPEN
LOOK graphical user interface standard.

2 tNt Technical Reference Manual

Preface

Figure 2: X11/NeWS Architecture

X NeWS
Applications Applications

OPENLOOK

XView™ tNt

X11/NeWS

SunOS 4.x

Sun 3,4, SPARC™, 386i

This manual does not address the X Window™ side of X11/NeWS, but it is
important to remember that it is there because you will occasionally run across
things that owe their existence to the X11 side.

What’s in the Chapters

The chapters are:

Chapter 1, "Introduction” is a brief introduction and includes information on
running tNt demos.

Chapter 2, "The Wire Service" explains the tNt's enhancement to NeWS’ support
for client-server communications.

Chapter3, "Canvases" provides details on ClassCanvas which provides the basic
underpinning for windows, menus, and controls.

Preface 3

Preface

Chapter 4, "Managing Groups of Canvases" explains about bags. When you
need to bring a group of canvases together to accomplish some task you’ll use a
bag to manage them. This chapter also contains information about managing
the input focus.

Chapter 5, "Menus and Other Selection Lists" explains how tNt enables you to
build menus quickly and associate them with canvases.

Chapter 6, "Controls” explains about the different kinds of controls tNt pro-
vides. Some kinds of controls are scroll bars, sliders, dials, and buttons.

Chapter 7, "Graphics" contains information on the tNt facility for providing
images for buttons, menus, controls and labels without the overhead of using
canvases.

Chapter 8, "The NeWS Development Environment Input Model" is a
comprehensive, in-depth look at the facilities tNt has added to the NeWS sys-
tem for handling user input.

Chapter 9, "Selections" explains how tNt handles user selection of objects like
text and windows.

Chapter 10, "Miscellaneous Topics" has information on ClassTarget, tNt's class
that helps manages references to other objects and helps prevent dangling refer-
ences. This chapter also contains information that helps to define what an tNt
application is.

Chapter 11, "Interface Reference" contains the details of the function calls of the
Wire Service and the method interface for selected tNt classes.

For further information on the OPEN LOOK Graphical User Interface, please
consult:

m OPENLOOK Functional Specification 1.0 Sun Microsystems Inc., part
number 800-3355-05.

m OPEN LOOK UI Style Guide, Sun Microsystems Inc., part number 800-
3356-06.

For information on the X11/NeWS server, see:

m NeWS Programmer’s Guide, Sun Microsystems Inc., part number 800-2379-
04.

4 tNt Technical Reference Manual

Preface

For information on the PostScript® Language, see:

® POSTSCRIPT Language Reference Manual, Adobe Systems Inc., Addison Wes-
ley, 1985, ISBN 0-201-10174-2.

Preface 5

1. INTRODUCTION

NOILONAOYLNI '}

1 Introduction

Introduction
Philosophy

Learning the System
Conventions

Table of Contents

[T QT G G |
[
—_ A -

Introduction

The NeWS Development Environment provides a powerful and flexible exten-
sion to the NeWS window system. It is object-oriented in design and imple-
ments much of the look and feel described in the OPEN LOOK UI specification.

The toolkit is composed of two pieces: a set of PostScript classes which imple-
ment parts of the OpenLook specification, and completely replaces the Lite
toolkit; and a C library, called the Wire Service, which significantly enhances
CPS as the client/server communications package.

The two parts of the toolkit are quite independent. You can use only the
PostScript components in a server-resident program, or even communicate with
a client process via unadorned CPS. Similarly, the Wire Service does not rely on
the PostScript classes at all, and could theoretically be used with any other
server-side toolkit.

Philosophy

The philosophy behind the PostScript-based portion of the NeWS Development
Environment is to provide a useful set of OPENLOOK components, under-
pinned by a powerful and flexible set of intrinsic classes that are not specific to
any particular user interface.

The Wire Service is intended to provide the lowest common denominator in
client-server communications needs. It handles registration of client-side call-
backs, a notification mechanism by which to call them, and a synchronization
system for server/client communication. It is almost transparent in its simpli-

city.

Learning the System

As with any powerful system, the NeWS Development Environment takes some
effort to learn. To help you learn to get all the power out of the toolkit,
demonstration code has been built directly into the the class hierarchy. This
comes in the form of /demo methods in many of the classes. However, in order
to decrease the size of the code that the toolkit loads into the server, the demo
methods are not available by default. To enable them you must put the follow-
ing line in the .user.ps file in your home directory.

Introduction 1-1

Introduction

systemdict /IncludeDemos? true put

Two files, bag-example.ps and selections-example.ps have been included on the
tape that includes this documentation. Once you’ve started the server you can

execute these examples via psh(1). Complete listing of the code for these exam-
ple can be found in the following chapters:

bag-example.ps Chapter 4. Managing Groups of Canvases
selections-example.ps Chapter 8. Selections

Conventions

Several conventions are used in this manual:
m Toolkit methods are in bold.
m PostScript operators are in helvetica-bold.
m Code examples are in 10-point helvetica.

m At the beginning of major sections the relevant portion of the toolkit's
class tree is reproduced to provide a connection between the subject being
discussed and its location in the class hierarchy.

1-2 tNt Technical Reference Manual

2. WIRE SERVICE

30IAH3S FHIM ¢

The Wire Service

The Wire Service
Purpose of the Wire Service
An overview of the components

m The Notifier

m Connection Management

m Resource Allocation

m Server-client synchronization
Notification
Connection Management
Resource Allocation

m Tag Allocation

m Token Allocation
Server-Client synchronization
Building a typical application

Table of Contents

2-1

21
2-1
21
2-2
2-2
2-2

2-8
2-8
29
2-11

2-12

The Wire Service

Purpose of the Wire Service

The NeWS Wire Service is a server-client communications package that provides
support and management of server connections, a client notifier, and shared
resources. The Wire Service has four primary components: a notifier, a connec-
tion manager, a tag/token allocator, and a server-client synchronization
mechanism.

Connection management enables a client to initiate multiple connections to one
or more servers. Allocation of handles allows the C language to reference
PostScript objects in the server (Tokens) and the PostScript language to reference
C objects in the client (Tags). Event notification associates client procedures with
specific events. When the event is received, the notifier will execute the
appropriate procedure. Synchronization permits a server process to pause and
wait for notification from a client process.

An overview of the components

The Notifier

The Notifier provides a lightweight mechanism for allowing clients to register
callback functions associated with asynchronous messages from the server(s).
Using the tag allocator, a client reserves a range of tags and associates a C pro-
cedure with each tag. When a tag is read from one of the server connections, the
Notifier invokes the appropriate procedure. The notifier supports both applica-
tions that wish to "own" control of the main loop construct (e.g., MacIntosh
style applications) and those that wish to be solely callback driven (e.g., Sun-
view style).

Connection Management

Connection management is the second major component of the Wire Service.
An application can open a single connection to a NeWS server or multiple con-
nections to a single server or multiple servers. A connection is abstracted to the
notion of a Wire and facilities are provided for various forms of manipulation
(opening, closing, temporarily disabling, etc.). Events from the server come
back on the wire and are read using normal CPS operations (see the NeWS
Programmer’s Guide).

The Wire Service 2-1

The Wire Service

Resource Allocation

There are two resource allocators in the Wire Service: a tag allocator and a
token allocator. While they have parallel architectures, they have complemen-
tary purposes. Tags are used to keep a handles toC procedures that can be used
in the server, and tokens are handles to server objects for client manipulation.

Tags are allocated individually or in ranges on a per-client basis. Thus a single
tag/callback pair that is registered with the Notifier can be used from multiple
wires (and hence multiple servers). To provide compatibility with tag usage in
applications written with statically defined tags, a range of tags can be reserved
and removed from the allocator.

Tokens are also allocated individually or in ranges but, unlike tags, tokens are
allocated on a per-connection basis. Since there is no counterpart to the Notifier
in NeWS, the application is responsible for the registration of the token in the
server as well as keeping track of the wire/token association. Tokens, as pro-
vided by the Wire Service, are implemented by using the usertokens provided
by CPS. To provide compatibility with applications written using the userto-
kens, a range of tokens can be reserved and removed from the allocator.

Server-client synchronization

The final component of the Wire Service is the server-client synchronization
mechanism. CPS provides a mechanism for a client process to block pending
notification from a server process. The Wire Service provides a complementary
mechanism which will allow a server process to block pending notification from
a client process. This provides symmetrical facilities for synchronous communi-
cations.

Notification

The notifier in the wire service reads a single tag from one or more server con-
nections. Depending on its value, the tag is then dispatched to a user defined
procedure. Before the message is dispatched, the notifier will set the PostScript
and PostScriptInput pointers to the appropriate connection.

wire RegisterTag associates a pointer to a function and a pointer to client data
with a specific tag. When the tag reaches the head of the input queue, the

2-2 tNt Technical Reference Manual

The Wire Service

notifier calls the function. The client function associated with a tag can be
retrieved using wire_TagFunction. The client data is retrieved using
wire TagData.

Two modes of notification are offered. For event-driven applications,

wire EnterNotifer will allow the notifier to control the dispatch of tags until
wire ExitNotifier is called. In this model, the application can eliminate con-
trol loops related to tag processing. On the other hand, applications which are
not event-driven might need to maintain finer control of message processing.
Using wire_Notify, these programs can implement a control loop and still use
the notifier to dispatch messages.

The wire_WouldNotify function reports whether there are pending tags on the
input queue of a particular wire or all wires. wire SkipEvent consumes the
initial tokens on the wire until the next tag is detected. When no input is pend-
ing, this function will not block.

Example

v”v”(contmued on next page)

The Wire Service 2-3

The Wire Service

(continued on next page)

2-4 tNt Technical Reference Manual

The Wire Service

Connection Management

The client connection to one or more servers is established using the wire ser-
vice function wire_Open. One parameter is passed to wire_Open to indicate
the server. This parameter can take three forms:

® A null value implying the default server named in either the NEWSSERVER
or DISPLAY environmental variable.

m A parameter in the format "hostname”, meaning the default server on the
specified host.

m A parameter in the format of either the NENSSERVER string or DISPLAY
string (see the X11/NeWS Server Guide) to direct the connection to the
appropriate host.

When the connection to the server is successful, a wire_Connection structure
is allocated in the wire connection table. This is returned as a wire_Wire and
is used as a handle to refer to the connection in subsequent calls.

During the open process, the connection is enabled through a call to the
wire_Enable. One parameter, a wire_Wire, is passed to wire_Enable to
indicate the appropriate connection to activate. In addition, another function,
wire_Disable is available to disable a connection should the application need
to ignore input from the server for a limited time. To disable a wire, the call
wire_Disable (theWire) is made.

The Wire Service 2-5

The Wire Service

The CPS functions and the server communicate using the PSFILE pointers,
PostScript and PostScriptInput. Therefore, the wire service introduces the con-
cept of the "Current Wire." Whenever a wire_Wire becomes the current wire,
its file pointers are moved into the global variables, PostScript and PostScriptIn-
put. Thus all CPS communication takes place on the Current Wire To make a
wire the "Current Wire", a call to wire_SetCurrent (theWire) is made and
becomes the current wire. The current wire is returned by a call to
wire_Current ().

Each connection has three function pointers for handling abnormal conditions:
death, disease, and unknowntag.

When the connection is terminated abnormally (not via a call to
wire_Close ()), the death function is called.

When the first token in the input queue is not a tag, the notifier calls the disease
function. This function is responsible for consuming the offending tokens.

When the first token in the input queue is not a registered tag, the notifier calls
the unknowntag function.

wire_Open provides the new wire_Wire with default functions for these
problems. The wire_Problems function can be used to register private
handlers. This function requires four parameters: a wire_Wire, a death func-
tion pointer, a disease function pointer, and a unknowntag function pointer. A
null function pointer value will leave the current function unchanged.

The wire_Close function terminates a connection to the server. The

wire_ ALLWIRES constant can be passed to wire_Enable, wire Disable,
wire_WouldNotify, and wire_Close to effect all connections. For example,
the call, wire_Close (wire_ALLWIRES), would terminate all connections.

An application might need to maintain state information. The wire_SetData
function can associate a client data pointer with a connection. The information is
retrieved using wire_Data.

The application can determine the current wire using the wire_Current func-
tion. The wire_valid function will indicate whether a particular wire is opera-
tional.

2-6 tNt Technical Reference Manual

The Wire Service

Example

The Wire Service 27

The Wire Service

Resource Allocation

Tag Allocation

Using the CPS libraries, the programmer is responsible for the allocation of tags.
Without careful supervision, applications may duplicate tag values, leading to
confusion and madness. The wire service provides routines to allocate or reserve
a range of tags. Tags are no longer constant values, but are generated in a
dynamic manner. In addition, tags can be assigned to a list of client variables.

wire_AllocateTags reserves a range of client tags. This function is passed an
integer (N), which indicates the number of tags required. It returns an integer
(M), ensuring that the tag values, (M) through (M+N-1), have not been allocated
in the past.

wire_ReserveTags allows the wire service to coexist with both CPS and
private tag allocation schemes. This function is passed an integer (N), which
represents the highest tag value to be reserved. wire_ReserveTags should be
executed prior to wire_Open and wire_AllocateTags.

wire_AllocateNamedTags assigns tag values to client variables. This func-
tion is passed a null terminated array of pointers to integers. It reserves and
assigns a tag value to each of the pointers.

2-8 tNt Technical Reference Manual

The Wire Service

Example

Token Allocation

The Wire Service references server objects through user defined tokens (usertoken
as defined in CPS). wire_AllocateTokens, wire ReserveTokens, and
wire_AllocateNamedTokens are similar to the tag allocation functions, with
some exceptions. For instance, tokens are allocated on a per connection basis,
either tokens must be used with the connection they were defined on or care
must be taken to align tokens across connections via the use of
wire_ReserveTokens. In addition, the application is responsible for register-
ing the usertokens in the server.

The Wire Service 2-9

The Wire Service

Example

2-10 tNt Technical Reference Manual

The Wire Service

Server-Client synchronization

The synchronization mechanism provided by the wire service allows a server
process to initiate a synchronous call to the client. A call is made to the
PostScript function wire_Synch with an executable procedure on the stack.
The procedure is executed and then wire_Synch sends a marker to the client.
The server process then blocks until the client acknowledges receipt of the
marker.

One of the more common uses of this facility will be to paint of canvases that
need some functionality in C for repainting. The server, upon getting the
PaintCanvas request, initiates the client code and then blocks before painting the
rest of the canvas. In the example below, the client will handle the
REDRAW_TAG before acknowledging receipt of the marker. This would allow
the client to paint the rest of the canvas, if desired.

wire_Synch expects to find the userdict on the dictionary stack. If
wire_Synch is to called from another process, make sure that the necessary
information is in the current userdict.

Example

The Wire Service 2-11

The Wire Service

Building a typical application

A typical application consists of three or more files containing the C routines,
the code to be loaded into the server, and the cps code.

main.c: This file would contain the C code for the application. It should
include the file <wire.h> and "main_cps.h" and be linked with libwire.a and
libcps.a.

main_cps.cps: This file should contain the CPS code for communicating to the
server. It should be run through the CPS preprocessor to generate main_cps.h
which is included in main.c

main.ps: This contains most of the PostScript code needed by the application.
It is typically loaded through a CPS call defined in main_cps.cps.

Note: Assuming that the environment variable SOPENWINHOME is set to the
directory containing a properly installed version of OpenWindows, then the fol-
lowing consists of a sample compilation:

2-12 tNt Technical Reference Manual

3 Canvases

Canvases 3-1
Iintroduction 3-1
Canvas Creation & Destruction 3-2
Canvas Appearance 33
Activation and Deactivation 3-4
Canvas Damage Repair 3-5
Help and Menus 3-6
Canvas Tree Manipulation and Enumeration 3-6
Canvas Geometry 3-8
User Interaction Utilities 39
Canvas Validation 3-10
Canvas Cursors 3-11
Canvas Focus Management 3-11

Table of Contents i

Canvases

Introduction

ClassBag
Object —= ClassCanvas ClassControl
ClassSelectionList

The NeWS canvas is a surface on which the PostScript language can be used to
perform drawing operations. Canvases are arranged in a hierarchical manner,
with the root being the device canvas or framebuffer. Both the shape and loca-
tion of a canvas can be altered. While the default shape is rectangular, the
NeWS operator reshapecanvas will change the shape to match the region out-
lined by the current path.

The NeWS Development Environment’s ClassCanvas combines a NeWS canvas
object and an event manager process to create a self-sufficient user interface
item. Examples of ClassCanvas subclasses span the range of simple user inter-
face objects like buttons, sliders and scrollbars to more elaborate objects such as
windows and menus. Even complete applications such as word processors and
drawing editors are defined as a text canvas or a drawing canvas augmented by
associated menus and property sheets.

ClassCanvas itself is rather minimal, assuming that most interesting user inter-
face objects will be created as subclasses. Clients creating such objects will
therefore need to know the details of creating and designing a subclass of
ClassCanvas.

ClassCanvas instances are "smart NeWS canvases”, being able to manage many
of the attributes of their NeWS canvas object. Thus they can paint themselves,
repair their damaged areas, determine their shape, and map and unmap them-
selves. In the following discussion, "canvas” is used to mean an instance of the
Toolkit’s ClassCanvas; using "NeWS canvas" to refer to the NeWS canvas object.
Although is it useful to make this distinction in the following discussion, the
NeWS canvas object is actually the same object as the ClassCanvas instance; this
being done by adding the necessary keys to the NeWS canvas object to turn it
into an instance.

Canvases 3-1

Canvases

Canvases can access their parent, sibling, and child canvases; providing the basis
for a "container hierarchy". One particular ClassCanvas subclass, ClassBag,
relies on this capability to implement compound canvas instances such as win-
dows, property sheets and command frames, all of which are composed of
nested canvases. (See Chapter 4, "Managing Groups of Canvases" for informa-
tion on ClassBag.)

Certain attributes of canvases inherit through this container hierarchy rather
than through the class hierarchy. For example, the FillColor, StrokeColor, and
TextColor of canvas instances default to being their parent canvas’.

A canvas can be either opaque or transparent. Drawing occurs on an opaque
canvas that will also conceal the regions of canvases beneath it. You can draw
to transparent canvas but anything drawn on a transparent canvas is painted on
the first opaque canvas beneath it. A transparent canvas is used to define
regions which are sensitive to input but do not interfere with drawing in other
canvases.

Canvas Creation & Destruction

Canvases are created by calling /new with the parent canvas (either ClassCanvas
instance or NeWS canvas object) as an argument. The canvas will be a created
as a child of the given parent canvas. The initial values of several of the
corresponding NeWS canvas attributes may be specified as class variables. Thus
redefining the class variable /Transparent or /Mapped will change the initial
value of the corresponding NeWS canvas.

When a canvas is destroyed, it deactivates itself and tells the system to remove
any references to it. References to the canvas that are not known by the canvas
are presumed to be "soft" or under client control. The client must remove any
reference to the canvas to complete the garbage collection of the canvas. The
most obvious reference is the client handle to the canvas created during /new.
Less obvious are references left on the operand or dict stacks. Similarly, the
canvas cannot be the current canvas for any process. Reference "leaks" will be
quite obvious: the canvas will not go away from the screen. (Note : /destroy
does not unmap the canvas.)

3-2 tNt Technical Reference Manual

Canvases

Methods:

/new

/newinit

/destroy
/Retained
/SaveBehind
[Transparent
/Mapped
[EventsConsumed

Canvas Appearance

Canvases are responsible for their shape and graphical contents. The graphical
contents of a canvas is determined by the /PaintCanvas method which defaults
to using the values of several ClassCanvas class variables. The canvas is filled

with FillColor, and the edge of the canvas is stroked with StrokeColor using a

stroke width of BorderStroke. The colors may be manipulated with /setcolors

and /getcolors.

A TextColor and TextFont are also available for canvases containing text. The
font is initialized from the parameters TextFamily, TextSize, and TextEncoding.
The font may be manipulated by /settextparams, /textparams, /settextfont and
/textfont.

The /PaintCanvas method may be set using /setpaintproc. The procedure argu-
ment will be method compiled, thus can contain "self" and "super" usage. Four
utilities are provided for filling and stroking the canvas by the painting pro-
cedure.

/scroll provides a simple painting aid for scrolling. This procedure simply uses
the NeWS operator copyarea to displace the current contents of the canvas the
desired amount. /scroll then calls /PaintScrolledArea which is generally over-
ridden to be "smart." The default sets the clip path properly (even for oddly
shaped canvases) and calls /PaintCanvas.

Subclassers may override the default rectangular shape by overriding the /path
method. This method simply takes a bounding box and creates a path just
fitting that box.

Canvases 3-3

Canvases

Methods:
/paint /PaintCanvas
/setpaintproc /FillCanvas
/setcolors /StrokeCanvas
/getcolors /StrokeAndFillCanvas
/settextparams /FillCanvasInterior
/textparams [/FillColor
/settextfont /StrokeColor
/textfont /BorderStroke
/scroll [TextColor
/path [TextFamily
[TextSize
/TextEncoding
[TextFont
/PaintScrolledArea

Activation and Deactivation

Each canvas has an associated event manager that may be activated and deac-
tivated. Damage is handled by this event manager, as are the help facility and

automatic menu management.

When activated, a canvas uses its parent canvas’ event manager if there is one,
otherwise it creates its own. The canvas creates the interests it wants the event
manager to manage in the /Makelnterests method (see chapter 7, "Interests").
These interests must contain their own callback; see the section "Executable

Matches" in Chapter 7, "Interests."

3-4

Methods:

lactivate /Makelnterests
/deactivate = /CreateEventMgr
lactive?

/eventmgr

tNt Technical Reference Manual

Canvases

Canvas Damage Repair

When the Retained attribute is true, the window system is requested to store a
duplicate of the canvas pixels in memory. As the canvas suffers damage, the
window system repairs the damage using the copy. The use of Retained is a
hint which means that your /PaintCanvas or /FixCanvas method is not called.

When opaque canvases are mapped, or when part of a canvas is exposed by
moving a covering canvas, the canvas is sent a /Damaged event. The ClassCan-
vas event manager responds to this event by calling the canvas’ /HandleFix
method. This method sets the canvas clip path, then calls the /fix method.
(Note: the canvas clip is not the same as the clip path.)

The /fix method checks to see whether the intersection of the canvasclip and the
canvas is empty. If not, it calls the /FixCanvas method which defaults to
/PaintCanvas. The test is made as a trivial rejection test to avoid unnecessary
painting.

Although the transparency of a canvas is set during initialization via the class
variable /Transparent, it can also be dynamically changed using the /settran-
sparent method.

A sub-canvas of the opaque canvas handling damage may also desire forked
painting. For example, in response to a menu command, the "client" tran-
sparent canvas of an application may have to repaint itself. It may call /damage
on itself; which will cause the event manager of the opaque parent to fork dam-
age repair.

When the SaveBehind attribute is true (the default for Toolkit menus), the win-
dow system is requested to save pixels underneath this canvas when it is
displayed. When this canvas is no longer displayed, the server should be able
to repair the damage using the cached pixels. The SaveBehind attribute is use-
ful for transitory canvases such as menus. It is also a hint.

Methods:

/fix /Transparent
[settransparent /HandleFix
/transparent? /FixCanvas

Canvases 3-5

Canvases

Help and Menus

The default canvas event management also handles triggering a help procedure
from the HelpKey, and popping up a menu from the MenuButton.

When the HelpKey is pressed (as determined by the current UI), the HelpProc is
called if non-null. This may be dynamically set using the /sethelp method, or
can be set by the subclass via the /HelpProc class variable. Clients may cause
the help proc to be executed directly through some alternative user interface by
simply calling /callhelp. /help returns the current HelpProc.

Similarly, if the MenuButton is pressed, the CanvasMenu is popped up and
activated if non-null. The menu may be provided either by subclassers via the
CanvasMenu class variable, or by clients via the /setmenu method. Menu call-
backs generally will require the ClassTarget facility. If AutoTargetMenu is true,
the canvas is installed as the menu’s target just prior to popping up.

Both help and menu may be set even after the canvas is activated; it will modify
the running event manager properly. The same holds for damage discussed in
the preceeding section.

Methods:

/sethelp /HelpProc

/help /CanvasMenu
/callhelp /AutoTargetMenu
/setmenu

/menu

/autotargetmenu

/autotargetmenu?

Canvas Tree Manipulation and Enumeration

The NeWS canvases are maintained in a tree rooted at the framebuffer. Because
the NeWS canvas objects are identical to the ClassCanvas instances, the
instances are automatically organized into a tree. (For an explanation of the
difference between the canvas tree and the class tree see the NeWS Programmer’s
Guide.) The initial position of a canvas in the canvas tree is determined by the
parent argument to /new. This can be changed using the /reparent method.

3-6 tNt Technical Reference Manual

The canvas can change its location among its siblings using /totop and /tobot-

tom.

There are many enumeration procedures for retrieving canvases relative to the
current canvas. /parent returns the parent canvas while /parents returns all par-
rents to the framebuffer. /parentdescendant returns the first parent descending
from a given class between the given canvas and the framebuffer. /parentdes-
cendant is useful, for example, for a canvas to get its window frame:

All of a canvas’ siblings, including itself, are obtained via /siblings+ and
/siblings-; the "+" version being from back to front. A list of a canvas’ siblings
above or below but, not including itself, is obtained by using /siblingsabove or
/siblingsbelow. A list of all my children is obtained by /children+ or
/children-; the "+" & "-" as with siblings. /descendants returns all canvases
below me, including me.

For performance reasons, these lists do not check that the canvases are true
instances. To remove non-instances from an array, use /FilterNonInstances.

The canvas tree is used to implement a container hierarchy. An object is said to
inherit through the container hierarchy if it includes a class variable that
defaults to its parent’s value. Thus the colors all inherit though the container
hierarchy. This is logical: it makes more sense for a color to default to its
parent’s value than its superclasses.

Canvases

Methods:

/new /siblings-

/reparent /siblingsabove
/totop /siblingsbelow
/tobottom /children+

/parent /children-

/parents /descendants
/parentdescendant /FilterNonlInstances
/siblings+

Canvases

Canvases

Canvas Geometry

The canvas may be reshaped or moved to change its size or location. Reshaping
is done by specifying a bounding box; the canvas will reshape itself, using /path,
to just fill that bbox. You move a canvas by specifying the position of the lower
left corner of its bounding box. Both operations specify their coordinates using
the CTM (current transform matrix). This means that whatever scale, rotation,
and translation is in effect will be used during the reshape or move.

This use of the CTM is vital to the flexibility of the NeWS Development
Environment. It allows a vertical scrollbar to be made from a horizontal
scrollbar by simply rotating the CTM before placing it. It allows scaling of an
entire application by reshaping its window with the CTM scaled. It allows nest-
ing of windows within other windows because they do not assume they are
positioned relative to the framebuffer.

Each NeWS canvas object has its own coordinate system; that which is in effect
when "reshapecanvs"” is called. This defines the CTM established each time
"setcanvas" is called. The NeWS Development Environment has adopted the
protocol that both /reshape and /move specify their coordinates relative to the
bounding box with orgin at the lower left corner. The canvas itself may use any
scale, and even translation it likes. It must, however, return the /size, /location,
and /bbox in the caller's CTM with a lower-left origin.

To help with separating the caller’s coordinates and the canvas’ coordinates, the
Transform utility tranaslates from the callers space to the canvas’. This defaults
to a simple translate to the caller’s lower left corner. It is commonly overriden
to give the canvas a 0-1 coordinate system to simplify calculations:

3-8 tNt Technical Reference Manual

Canvases

In sum, the caller "owns" the positioning and size of the canvas in whatever
CTM desired; the canvas itself "owns" its default (private) CTM.

Canvases typically manage data which imposes size constraints on the canvas.
The canvas should not be sized below its /minsize. The canvas might also have
a /preferredsize somewhat greater than that size. Thus a text editor might
choose to display at least one line of 20 characters as its minsize, but choose a
preferred size of 80 characters by 40 lines. The /reshape method does not
inforce the minsize limit. This must be done by the client. This is done to
avoid unnecessary checking that the client can more easily do. Typically the
client will "know" enough of the semantics of the application canvas layout to
impose these limits in a simple manner. /lockminsize may be used by a client
to install a simple, constant, non-calculated, minsize in a canvas after perform-
ing the calculation the first time.

Methods:

/reshape /Transform
/move Nockminsize
Isize Ipreferredsize
/location

/bbox

/minsize

User Interaction Utilities

ClassCanvas provides simple user interaction methods with reasonable default
bahavior. These procedures are based on the "getfromuser” utility (triggered on
UpTransition) and use the /path method to provide reasonable default behavior.

The utilities are typically called after a DownTransition has been processed,
often in an interest provided in the canvas’ Makelnterests. The following would
provide trivial dynamic resizing and moving of the associated canvas:

Canvases 39

Canvases

Methods:

/stretchcorner
/bboxfromuser
/reshapefromuser
/movefromuser

Canvas Validation

To help optimize flicker-free, high performance re-painting of canvases after
changes to their contents, ClassCanvas supports a simple validation scheme.
When changes are made to a canvas that cause its image to need updating, the
canvas is sent /invalidate. When the canvas next is told to paint itself, it first
checks to see if it is valid. If not, it sends itself the /validate method. Note that
several invalidations may be made without causing the repaint to occur.

/validate should be overridden to change any internal parameters of the canvas
required by the PaintCanvas routine. ClassBag, for example, will call its /layout
method from /validate.

Methods:
/invalidate
/validate
/valid?
Nvalidate

3-10 tNt Technical Reference Manual

Canvases

Canvas Cursors

ClassCanvas supports defaulting the cursor associated with a canvas, and set-
ting this cursor interactively. This facility attempts to use shared "well known"
cursors; cursors whose name is known to the system. Generally subclassers
simply define the class variable /CursorImage to be a well known cursor name.
The CursorMask is assumed to be the next glyph in the cursor font; set it to a
non-null value to override this assumption. Use the /setcursor method to use
any non-shared cursor you might need. The names of the NeWS Development

Environment’s cursors are:

/basic /panning /rtarr
/move /navigation /xhair
/copy /nouse /xcurs
/busy /ptr /hourg
/stop /beye
Methods: Subclassing Methods:
/setcursor /CursorImage
/CursorMask

Canvas Focus Management

For an explanation of Focus Management see Chapter 4, Managing Groups of
Canvases, section "Focus Management."

Canvases

3-11

4. MANAGING GROUPS OF CANVASES

S3ISVANVYD 4O SdNOYHHD HNIDVYNVI v

4 Managing Groups of Canvases

Managing Groups of Canvases 41
Introduction 4-1
Bags 4-1
m Creation and destruction 4-2
m Insertions and Removals 4-3
m Access to Bag Clients 4-5
m Graphics State Utilities 4-6
m Sizing Protocols 4-6
m Layout and Invalidation 4-7
m Activation and Event Management 4-8
m Painting and Damage Repair 4-9
Containers 4-10
m Client Naming 4-10
m Creating a Container 4-10
m Getting and Setting the Client 4-11
m Size Negotiations 4-12
OpenLookPane 4-13
= Controlling the Scrollbars 4-13
Frames 4-14
m Frame Attributes 4-15
= Opening, Closing and Zooming 4-16
m Manipulating a Frame Menu’s Default Behavior 4-17
m Subframes 4-18
m Notification 4-19
m Selection and Focus 4-20
m Freezing 4-20
m /demo Method 4-21
m Frame Class Hierarchy 4-21
m OPEN LOOK Frames 4-22
m Frame Size and Placement 4-23
m Subframe Functions 4-23
® Shared Frame Menus 4-24
m Instantiating Frames 4-24
m Subclassing Frames 4-24
m Adding Frame Attributes 4-26

Table of Contents i

Table of Contents

Utility Bags 4-28
m AbsoluteBag 4-29
m RowColumnBags 4-31
m Flex Bags 4-32
Example of Bag Usage and Subclassing 4-35
Focus Management 4-39
m Focus Definitions 4-40
m Focus Forwarding 4-41
m Focus Noticing 4-41
m How Focus Forwarding and Noticing Works 4-42

il tNt Technical Reference Manual

Managing Groups of Canvases

Introduction

A bag is a canvas that is designed explicitly to manage a group of ‘child’ NeWS
Development Environment canvases. (See the NeWS Programmer’s Guide an
explanation of the parent/child relationships in the NeWS canvas hierarchy.)
ClassBag is the basis for many of the NeWS Development Environment’s com-
ponents — frames are bags, panes are bags, an application’s control area will
typically be a bag of control canvases. Whenever a group of canvases are
brought together to achieve some effect, a bag will manage them.

Figure 4-1: Bags

RowColumnLayout RowColumnBag

ClassCanvas ClassBag ClassContainer i ClassFrame
FlexBag OpenLookPane
AbsoluteBag

Bags

As an intrinsic class ClassBag is rarely instantiated directly. It is designed
expressly for subclassing. ClassBag extends the NeWS canvas hierarchy model
in the following important ways:

m Child canvases (called “clients” of the bag) can be given names when they
are added to the bag. These names may be used later to refer to these can-
vases. This feature obviates the need for application programs to hold
references to every canvas in their application.

m Instances of any subclass of ClassGraphic (commonly referred to as
‘graphics’) can also be managed as clients of the bag.

m Bags explicitly manage the layout of their clients. Different bags have dif-
ferent layout policies, but ClassBag controls when the layout procedure is
activated. Because the NeWS Development Environment assumes that
layout may be an expensive operation, bags minimize the number of times
the layout procedure is called by the use of a validation scheme.

Managing Groups of Canvases 41

Managing Groups of Canvases

m Bags manage the sharing of event managers. In a typical toolkit applica-
tion there is one event manager process watching for mouse actions and
keystrokes for each frame in the application. Via its activation and deac-
tivation primitives, ClassBag allows every canvas in a frame to share the
same event manager.

m Bags manage the damage repair for their transparent child canvases. This
effectively means that most canvases inside a frame can be transparent,
and a significant space improvement can be gained over using opaque
canvases. The bag will also take care of painting the graphics they
manage when damage occurs. This allows graphics to be treated as light-
weight canvases which are not sensitive to input.

Creation and destruction

Like all canvases, bags expect a canvas object to be on the top of the stack when
/mew is called. This canvas becomes the parent of the newly created canvas.
There is no requirement that the parent of a bag be another bag.

When /destroy is sent to a bag it also sends /destroydependent to each of its
clients. This defaults to sending /destroy to them. Whole bag hierarchies can be
destroyed in this way. Frames for example will destroy all their ornaments and
their client subtree when /destroy is sent to them.

If you wish to prevent some client of a bag from being destroyed when the bag
is destroyed, you should override the client’s /destroydependent method, and
not allow it to default to /destroy. Canvases that are still bag clients after /des-
troydependent is called are reparented to an offscreen canvas so that the bag
can be disposed of completely.

Methods:

/new

/newinit

/destroy
/destroydependent

4-2 tNt Technical Reference Manual

Managing Groups of Canvases

Insertions and Removals

The /addclient method is used to insert a canvas or a graphic into a bag. (See
section 2 on ClassBag for a detailed explanation of the syntax of /addclient.)
There are three independent choices to make when adding a client to a bag.

1. The client may be an instance or a class. If the client is ClassCanvas or
any subclass of ClassCanvas then the class itself may be used as an argu-
ment to /addclient. For other classes (e.g., ClassGraphic) /addclient must
be given an instance. Given a class, the bag will send /new to the class to
obtain the instance. Adding clients as classes is slightly faster (NeWS
does not have to reparent the client canvas) and more compact than
preinstantiating them. If a class is supplied, then the application must
also provide arguments for the later instantiation of the class. For exam-
ple, the above bag insertion could be done using the class OpenLookBut-
ton in the following way:

The button’s label and callback are the arguments that will be handed to
/new by the bag in this example. (A parent canvas argument is not pro-
vided with the class because the bag itself will become the parent of the
newly created canvas.) The /NewClient method is used to instantiate
clients when a class is added. /NewClient defaults to calling /newdefault
on the class.

2. A client may or may not be named. If a name is provided for /addclient
the client can be retrieved later by providing the same name to /get-
byname. If ‘null’ is given as a name for all bag clients, then bags save
space by not maintaining the name/client mapping. Access the clients by
insertion order in this case. For example, ‘0 /getbyname bag send’
returns the first client inserted in the bag.

3. A client may or may not have "baggage.” Baggage is unformatted infor-
mation used by subclasses of ClassBag. Typically it provides layout infor-
mation to the subclass. For example, an AbsoluteBag requires that two
numbers (the x,y coordinates) be provided as baggage when adding a
client. These numbers get wrapped in an array along with the instance:

Managing Groups of Canvases 4-3

Managing Groups of Canvases

When adding a client to a subclass that does not require baggage (for
example RowColumnBag), the array is not required:

Sophisticated subclasses that wish to change the way client references are
maintained by the bag may override /RegisterClient and /DeRegister-
Client. For example, if an application is keeping references to every client
of the bag via some external mechanism the application can prevent the
bag from duplicating this effort by overriding these methods and provid-
ing its own /clientlist method.

To remove a client from a bag use /removeclient. This method expects an
integer (if the client was added with a null name), or the client itself as argu-
ments. To move an object from one bag to another it must first be removed
from the first, and then added to the second.

Methods:

/addclient
/removeclient
/getbyname
/NewClient
/RegisterClient
/DeRegisterClient

4-4 tNt Technical Reference Manual

Access to Bag Clients
There are a number of methods for interacting with the clients of a bag.

/baggage and /setbaggage can be used to retrieve and modify the subclass-
specific information passed in during /addclient. Bag layout procedures for
example, usually call /baggage on each client to get their layout information.

The number of clients is returned by /clientcount. The set of clients is returned
as an array by /clientlist. /graphicclientcount and /graphicclientlist provide the
same information, but only for those clients that are graphics. To retrieve the
list of clients that are canvases, use the ClassCanvas methods /children+ or
/children-.

An arbitrary object can be presented to /client?. A boolean is returned; it indi-
cates whether or not this object is a client of the bag. Note that the bag does
not maintain a reverse index from objects to names. Given an object that is
known to be in the bag there is no way to find out what name was specified for
it during /addclient.

A convenience wrapper around /clientlist is /foreachclient. It takes a procedure
and foralls it over the list of clients. /sendclient sends a method to a named
client of the bag. For example, to change the label on the button in the previous
example call:

Managing Groups of Canvases 4-5

Managing Groups of Canvases

Managing Groups of Canvases

Methods:
/baggage
[setbaggage
/client?
/clientcount
/clientlist
/graphicclientcount
/graphicclientlist
/children+
/children-
/foreachclient
/sendclient

Graphics State Utilities

When subclassing a bag it is often desirable to establish the bag’s canvas as the
current canvas. This is especially true when measuring the size of a bag client,
or laying the bag out. ClassBag provides two utilities, /BagBegin and /BagEnd
which it uses internally to set and restore the graphics state for this purpose.
Certain subclasser methods are called from within a /BagBegin /BagEnd context,
and it is important to take advantage of this so that the subclasser doesn’t dupli-
cate the effort. The methods /Layout, /Minsize, /PreferredSize are currently
treated this way. Each will be discussed below.

Methods:
/BagBegin
/BagEnd

Sizing Protocols

ClassCanvas establishes two important sizing interfaces: /minsize and /prefer-.
redsize. ClassBag turns these into protocols by making them hierarchical: most
bags when sent /minsize ask their clients the same question, and use the results
to calculate their own answer. /preferredsize works in the same way.

ClassBag cannot perform this recursive /minsize (or /preferredsize) calculation
itself. It does not know how to combine the various answers it would get.
Subclasses of ClassBag do have this knowledge however, and are expected to
take their clients into account when calculating /minsize or /preferredsize. For

4-6 tNt Technical Reference Manual

Managing Groups of Canvases

example, the /minsize for ClassContainer asks /minsize of its main client, then
adds a pair of constants to leave room for the borders of the container.

If the minimum size calculation for a subclass of ClassBag does not require that
the bag be established as the current canvas, then you can override /minsize
directly. If an application requires that the bag be the current canvas it should
override /MinSize. In /MinSize one can assume that the graphics state has
been set up correctly. The same applies for /preferredsize and /PreferredSize.

Methods:
/minsize
/MinSize
/preferredsize
[PreferredSize

Layout and Invalidation

ClassBag uses the term ‘layout’ to mean the positioning (and perhaps resizing)
of bag clients once the size and shape of the bag itself has been established.
Performing layout, by overriding the /Layout method, is the responsibility of all
subclasses of ClassBag. The bag will be the current canvas when /Layout is
called, so it is the job of the subclasser to /move or /reshape each client of the
bag to take advantage of the current /size of the bag.

Applications do not normally call /layout (which calls /Layout inside a /BagBe-
gin, /BagEnd pair) themselves. Instead, each bag maintains a ‘valid’ flag which
it uses to decide whether layout is necessary. This flag is checked as the first
phase of both /paint and /fix. If the layout has been invalidated, /layout is
called before painting begins in earnest. The methods which automatically
invalidate the layout are: /reshape, /addclient, and /removeclient. An applica-
tion that does not wish to have the layout invalidated when any of these
methods are called, should override /?invalidate. To manually invalidate the
layout (perhaps because the geometry of one of the clients changed in some
way), applications should call the bag’s /invalidate method.

Most applications that use bags will never call /layout, /validate, /?validate,
/invalidate, /?invalidate, or /valid?. They will simply override /Layout and rely
on the validation protocol to call this method when layout is required.

Managing Groups of Canvases 4-7

Managing Groups of Canvases

Methods:

/layout
Nayout
Nvalidate
Rinvalidate
/invalidate
/valid?
/validate
/reshape

Activation and Event Management

ClassBag plays an important role in the event management for a hierarchy of
canvases. The ClassCanvas /activate is responsible for searching up the canvas
hierarchy looking for an already active canvas (one that has an event manager
process handling it). If it fails to find an event manager /activate will create
one. After an event manager is found or created, the canvas’s /Makelnterests
method is called and the resulting interests are expressed in the event manager
process.

ClassBag overrides /activate and augments the ClassCanvas’ /activate by recur-
sively calling /activate down the tree on its client canvases. The upshot of this is
that a single /activate method sent to the root of a bag hierarchy causes every
canvas in the tree to become active. All their interests are expressed in a single
event manager process created at the root of the tree. In particular, to make
every canvas inside an application’s frame sensitive to input, it suffices to send
/activate to the frame.

/deactivate undoes the effect of /activate. It removes the interests for every can-
vas in the bag hierarchy rooted at the canvas to which the method was sent. It
then kills the event manager process if this process was created expressly for the
given bag.

/active? returns true if there is an event manager process alive and fielding
events on this canvas.

Removing a client from the bag (via /removeclient) causes it to be deactivated if
and only if it shares an event manager with the bag. In practice this means that
if an application activated a client before putting it into the bag the client will
still be active after removing it from the bag.

4-8 tNt Technical Reference Manual

Managing Groups of Canvases

Methods:
lactivate
/deactivate
/active?

Painting and Damage Repair

ClassCanvas establishes simple interpretations for /paint and /fix. /paint is
called by the application to manually refresh a canvas. When NeWS generates a
/Damage event /fix is called to repaint some damaged portion of a canvas.

ClassBag extends these methods by making them recursive. The /paint method
sent to a bag not only paints the bag’s canvas (by calling its /PaintCanvas
method), but also calls /paint on its mapped child canvases, using /PaintChil-
dren. A bag’s /paint method also has the responsibility for painting the graphic
clients of the bag and does so by calling /PaintGraphicChildren. The recursive
nature of ClassBag’s /paint is responsible for the fact that a /paint sent to a
frame will refresh every canvas inside the frame.

The /fix protocol is a little more complex because NeWS distributes /Damage
events only to the opaque canvases in the damaged area. The /fix method in
ClassBag only takes responsibility for recursively fixing those child canvases
that are transparent. /FixChildren propagates /fix down the tree, and /PaintGra-
phicChildren is still called on each bag encountered in the recursion. The end
result is that /FixCanvas is called once for every canvas inside or overlapping
the damaged region.

Methods:

/paint /FixChildren

/fix /PaintChildren
[FixCanvas /PaintGraphicChildren
/PaintCanvas

Managing Groups of Canvases 4-9

Managing Groups of Canvases

Containers

A container is a kind of bag that is specialized to handle one major client, and
zero or more minor ones. Usually the minor clients are allocated a fixed amount
of real estate in the bag, and the major one grows and shrinks as the bag
changes size.

ClassContainer is not designed to be instantiated directly. It is subclassed within
the toolkit, and these subclasses are themselves instantiated.

Frames are the most important subclass of containers. The major client of a
frame is the canvas that occupies the interior of the window. The minor clients
are the ornaments (resize corners, close box, footer, etc.) that surround the win-
dow interior. When a frame is reshaped the minor clients are moved to new
positions on the edge of the frame, and the major client is reshaped to take up
all the remaining area.

Because of its special significance the major client of a container is often referred
to simply as ‘the client’ of the container. Hence we often refer to the interior
canvas of a frame as ‘the client of the frame'.

Client Naming

ClassBag leaves the business of associating a name with each client up to the
application. ClassContainer restricts client naming in the following important
way: the major client of a container always has the name ‘/Client’. This is in
fact how ClassContainer distinguishes the major client from the others. When
adding minor clients to a container, you may give them any name other than
/Client.

Creating a Container

Containers expect the major client to be presented as an argument to /new when
creating an instance of some subclass of ClassContainer. In common with
ClassBag’s /addclient syntax, this client argument may be either an instance, or
an array containing a class and the arguments required to instantiate that class.
For example, there are two ways to create a frame containing a vanilla
ClassCanvas instance:

4-10 tNt Technical Reference Manuai

Managing Groups of Canvases

in which an instance of the canvas is handed in, or

in which a class is handed in, and the container automatically instantiates this
class. The second version above is not only more terse, it is also more efficient.
The client canvas does not need to be reparented from the framebuffer. It is
created with the container as its parent.

It is also legal to present ‘null’ as the client argument when instantiating a con-
tainer. Until set otherwise such a container will have no client whatsoever.

Methods:

/new
/newinit

Getting and Setting the Client

The major client of a container can be changed at any time by calling /setclient
on that container. /setclient returns the previous client (if any) of the container.

This current client is returned by the method /client. (Note that /client is just a
thinly veiled call to /getbyname using the /Client name.)

Managing Groups of Canvases 4-11

Managing Groups of Canvases

Methods:

/setclient
/client

Size Negotiations

Containers maintain four class variables to help position the major client inside
the container. These are the (usually constant) amounts of border space to leave
to the top, right, bottom and left of the major client when laying it out. The
method /BorderWidths sums up the left and right borders, and /BorderHeights
sums the top and bottom space.

/fitclient takes a proposed client size, and returns the total size of the container
necessary to give the client the specified width and height. /unfitclient does the
reverse. It tells you how big the client will become if the container is reshaped
to the given size. Both these methods make use of /BorderWidths and /Bor-
derHeights.

The /minsize of a container is the /minsize of the major client added onto the
size of the borders. Similarly, the /preferredsize of the container is the /prefer-
redsize of the client plus the size of the borders.

Methods:

/fitclient /BorderLeft

lunfitclient /BorderBottom
/BorderRight
/BorderTop
/BorderHeights
/BorderWidths

4-12 tNt Technical Reference Manual

Managing Groups of Canvases

OpenLookPane

OpenLookPane is a subclass of ClassContainer whose job is arrange either one
or two scrollbars around some canvas. This canvas is the major client (named
/Client) of the container, and will presumably be manipulated by the scrollbars.

The scrollbars are not automatically connected to the client canvas. To use an
OpenLookPane you must not only provide a client canvas, but also provide the
callbacks for the scrollbar(s) to update it. (See Chapter 6, Controls, the ScrollBar
section.)

Controlling the Scrollbars

The class variables /UseHSbar? and /UseVSbar? control whether or not the
pane, when instantiated, will have a horizontal and/or a vertical scrollbar. Verti-
cal scrollbars appear to the right of the client canvas, horizontal ones to the bot-
tom.

The subclasser methods /CreateVerticalScrollbar and /CreateHorizontal-
Scrollbar by default return instances of OpenLookVerticalScrollbar and Open-
LookHorizontalScrollbar respectively. You should override these if you have
your own scrollbar that you wish the pane to use.

The subclasser methods /CreateHSbarNotify and /CreateVSbarNotify return the
notification procedures for the scrollbars. Override these methods to make your
scrollbars control your client canvas.

Methods:
/CreateVerticalScrollbar
/CreateHorizontalScrollbar
/CreateHSbarNotify
/CreateVSbarNotify

Class Variables:

UseHSbar?
/UseVSbar?

Managing Groups of Canvases 4-13

Managing Groups of Canvases

Pane Sizing

The /minsize of a pane is the maximum of the /minsize of the client canvas and
the minsize of whichever scrollbars happen to be present. Currently there is no
analagous calculation for the /preferredsize of an OpenLookPane. The /prefer-
redsize thus defaults to the pane’s /minsize.

Methods:
/minsize
Figure 4-2: Frame Hierarchy
ClassBaseFrame OpenLookBaseFrame
ClassCommandFram, OpenLookCommandFrame
ClassHelpFrame OpenLookHelpFrame
ClassContainer—> ClassFrame OpenLookFrame

ClassIconFrame OpenLookIconFrame
ClassNoticeFrame OpenLookNoticeFrame
ClassPropertyFrame OpenLookPropertyFrame

Frames

ClassFrame implements window frames. It is an intrinsic class that provides a
set of protocols and utility methods that are useful for many different types of
windows. As an intrinsic class, ClassFrame is not intended to be instantiated
itself. Instead it provides a framework on which to build subclasses that can be
instantiated. OPEN LOOK frames are the classes meant to be instantiated.

A frame manages a single "client” canvas. The frame wraps that canvas with a
border that may include various ornaments managed by the frame. Examples
of ornaments are a title area, reshape controls, close or grow boxes, etc.

4-14 tNt Technical Reference Manual

Managing Groups of Canvases

A frame has a number of attributes, e.g. "is it reshapeable?", or "can it be
closed?" There will be some visual indication of these attributes, often in the
form of some ornament, e.g. a control or graphic. Or, there may be a menu
item corresponding to the attribute. ClassFrame defines a minimal protocol for
these attributes, but leaves the implementation of ornaments or menu choices to
subclasses. The frame is a bag, so the subclass may use it to hold any orna-
ments.

A frame can have associated with it some number of secondary frames, known
as "subframes". ClassFrame defines an icon to be a standard subframe, but
leaves the creation of an icon to subclasses. Other subframes may be added by
subclasses. ClassFrame provides mechanisms for managing the list of subframes
and ways to send messages between superframes and subframes.

Other intrinsic frame facilities include the ability to be selected and to have the
input focus, notification of the client when the frame’s state changes as the
result of a user interaction, temporarily freezing processing of events, opening
and closing (i.e. unmapping a frame and mapping its associated icon frame),
zooming the frame to a larger size, and restoring ("unzooming") it to its normal
size.

Frame Attributes

A frame has a set of attributes, each having a name and a boolean value. The
standard set of attributes for ClassFrame are:

/Close True to allow closing the frame to an icon
/Footer True to display a footer area

/Label True to display a label (title) area

/Pin True to allow the frame to be pinned (stay up)
/Reshape True to allow the frame to be reshaped

The attributes usually correspond to some sort of control, e.g., a close box or
label (title) area. The attributes are known outside the frame by their names,
e.g., /Label. Each attribute has a default value specified by the frame subclass.
These default values may be overridden for a particular frame instance with a
parameter to /new when the frame is created. You may query or change the
attributes for an existing frame with the /frameattribute and /setframeattribute
methods.

Managing Groups of Canvases 4-15

Managing Groups of Canvases

The implementation and behavior of frame attributes is entirely up to frame
subclasses. A client user of a frame should make no assumptions about how the
attributes are displayed to the user or how they are implemented. A typical
implementation by a subclass is to create a control corresponding to an attribute
and to put the control in the frame’s bag. Or, a subclass may use an attribute to
enable or disable an item on the frame’s menu. Another possibility is to use the
attribute simply to enable or disable some feature of the frame with no visible
indication, e.g., the /Reshape attribute could simply allow a frame to be
reshaped when the user presses a mouse button on part of its border.

Each of the standard attributes has several related methods. For example, the
/Footer attribute has methods /setfooter and /footer to set and retrieve the
footer messages for the frame.

Additional attributes may be defined by subclasses.

Methods:

/new
/frameattribute
/setframeattribute
/footer

/setfooter

/label

/setlabel

Opening, Closing and Zooming

An intrinsic notion of frames is that they may be closed to an icon, zoomed to a
larger size, and opened or unzoomed back to their normal size. An iconis a
subframe with the predefined name /Icon. When a frame is closed, it is
unmapped and its icon subframe, if present, is mapped. Icons may be any size
or shape, and may display any image. When a frame is zoomed, it is reshaped
to a larger size. By default, the larger size is the width of the unzoomed win-
dow and the height of the framebuffer.

4-16 tNt Technical Reference Manual

Managing Groups of Canvases

Methods:
/open
/opened?
Mflipiconic
/zoom
/zoomed?
/flipzoom

Manipulating a Frame Menu’s Default Behavior

You can intercept common user-issued window commands such as refresh,
zoom, close (iconicize), reshape and quit. The next five subsections explain the
methods you can use to change the toolkit’s default actions for these commands.

The client canvas of a frame will be stretched to take up the available space
automatically when the frame is reshaped. If this is not the behavior you desire
you can override the client’s /reshape method.

In order to constrain the way in which a frame can be reshaped, several options
are available. One way to prevent reshaping altogether for a time is by dynami-
cally adding and removing the resize-corners via the /setframeattribute method
(see below). To prevent a frame from being made smaller than some size,
specify a minsize for your client canvas (or the frame itself). Even more com-
plex nondefault reshape behavior is possible by overriding the frame’s /reshape
method. For example if you wanted a frame with dimensions that were always
some multiple of 10 points the override to /reshape would be:

This would change the width and height arguments before executing the default
reshape action.

Managing Groups of Canvases 417

Managing Groups of Canvases

Refresh

Some applications may wish to be informed that "refresh” was called from the
frame menu (as opposed to a normal damage event). For example, calling
refresh from the window menu might cause the client to reprocess some data
file rather than just initiate a repaint. This behavior can be achieved by overrid-
ing the /paint method. When a frame receives explicit refreshes (like those
called from the frame menu) /paint is called. Thus to change the behavior of
explicit refreshes /paint must be overridden.

Iconicize

Some users may want to know when a window is iconicized. For example, a
game may want to suspend the game clock until the window is reopened. To
achieve this and similar behavior, override /open. /open takes a boolean argu-
ment, false for iconifying the frame, true for deiconifying it.

Zoom

Override /zoom to implement changes to a frame’s behavior when Zoom is
selected from the frame menu. Like /open, /zoom takes a boolean argument.

Quit

You can interpose on "Quit" by overriding /destroyfromuser in the frame. This,
in turn, overrides the quit sent from both the frame and icon menus. For exam-
ple, if an application wanted to put up a confirming notice before the quit was
executed /destroyfromuser would be overridden to show it. The callback from
the confirming button would send the destroy method to the frame.

Subframes

A frame (the "superframe”) may manage one or more subframes. ClassFrame
defines the following behavior for subframes:

m Destroying a superframe destroys its subframes.
m Subframes share the event manager of their superframe.
m Activating/deactivating a superframe does the same for its subframes.

m Freezing/unfreezing a superframe does the same for its subframes.

4-18 tNt Technical Reference Manual

Managing Groups of Canvases

A frame has a dictionary of its subframes, so each subframe has a name associ-
ated with it. The subframe list is managed with the /addsubframe and /remo-
vesubframe methods. Each subframe has a reference to its superframe, accessed
with the /superframe method. Subframes may be nested more than one level
deep.

Methods:

/laddsubframe
/removesubframe
/subframe
/subframe?
/subframes
/superframe
/rootframe
/sendsubframe
/sendsuperframe

Notification

Frames provide a notification mechanism similar to that of controls. The client
application may provide a notification procedure, using /setnotifyproc, that will
be called whenever the state of the frame changes as the result of a user interac-
tion. The notify proc can obtain the reason for the notification via the
/notifyreason method.

Currently only a small number of interactions cause notification to happen.
These are:

Reason Interaction

/NotifyPin Frame pinned /unpinned

/NotifyProps Property sheet brought up

/NotifyReset Reset chosen in the property frame menu
/NotifyApply Apply chosen in property frame menu

The above four names are the values obtained from a call to the /notifyreason
method from the frame’s notify proc. The notify proc is set via /setnotifyproc.
This simply means that some event occurred, e.g., a frame was unpinned. You
can do something when you are notified that the event occurred or you can
ignore it.

Managing Groups of Canvases 4-19

Managing Groups of Canvases

Selection and Focus

A frame may be selected or given the input focus. Typically this will be done
automatically by selection and focus managers. Frames have methods to give
visual feedback that they are selected or have the focus.

Freezing

A frame may be "frozen", i.e., made to ignore most events. Typically a frame is
frozen because the user is being notified of a situation such as an error and
must give some input before the application can proceed. When a frame is
frozen, the only events it processes are those for damage repair and loss of focus
or selection. A frozen frame is not the same as the OPEN LOOK UI Specification

defines as busy.

4-20

Methods:

/setnotifyproc
/notifyproc
/setnotifyreason
/notifyreason
/callnotify

Methods:

/reflectfocus
/reflectselected
/setfocus
/focus?
/setselected
/selected?
/selectedframes
Inotifyselected
Isendselected

tNt Technical Reference Manual

Managing Groups of Canvases

Methods:

/freeze
/freezeall

/demo Method

ClassFrame includes a /demo method that can be sent to any derived subclass.
The method sends /new to the class to which /demo was sent. Examples:

Frame Class Hierarchy
There are six intrinsic frame types, defined in subclasses of ClassFrame:

ClassBaseFrame
ClassCommandFrame
ClassHelpFrame
ClasslconFrame
ClassNoticeFrame
ClassPropertyFrame

These classes do not provide any additional functionality beyond that provided
by ClassFrame. These classes exist to be abstract superclasses that have
corresponding look and feel classes, such as OpenLookBaseFrame. These classes
will typically be used as follows. By a client:

Managing Groups of Canvases 4-21

Managing Groups of Canvases

By a subclasser:

ClassFrame contains behavior that is shared by all frame types. The frame type
classes contain behavior that is particular to the specific types. You should sub-
class ClassFrame to define data and methods that are shared by more than one
frame type. You should subclass the frame type classes, mixing in your subclass
of ClassFrame, to define the individual frame types. In many cases a particular
behavior will be shared by most frame types but for one frame type it will be
different. Use the class hierarchy to implement this - define the common
behavior in your ClassFrame subclass, then override the appropriate methods in
the class for the different frame type. This is preferable to having a single
shared method that has conditional code based on frame type.

OPEN LOOK Frames

Class OpenLookFrame is a subclass of ClassFrame that implements functionality
shared by OPEN LOOK frame types. The six OPEN LOOK frame types are
implemented as subclasses of the six intrinsic frame types. Multiple inheritance
is used to give each of these classes two superclasses: the intrinsic frame class
and class OpenLookFrame. OpenLookFrame implements appearance and
behavior that is shared by all the OPEN LOOK frame types. The class, and
several helper classes, implements the frame label, footer, reshape corners, menu
button, etc. These ornaments correspond to the frame attributes, e.g., /Reshape,
/Footer, defined in ClassFrame. OpenLookFrame also includes the following
features that are shared among more than one frame type including OpenLook-
BaseFrame. Behavior that is particular to one frame type is typically imple-
mented in that type’s subclass.

4-22 tNt Technical Reference Manual

Managing Groups of Canvases

Frame Size and Placement

Like all canvases, frames have the notion of a preferred size. By default a
frame’s preferred size is a frame large enough to display its owner, label, and
footer in their entirety. Frames also display their clients at the clients preferred
size. To change this default, override /preferredsize.

The /place method computes a default size and placement for a frame. If the
frame has already has been reshaped that size is preserved and the frame is
only moved in response to a place message. If the frame has a superframe (see
below for an explanation of superframes) it is positioned so its upper left corner
is coincident with the upper left corner of the super frame. If the frame doesn’t
have a superframe (as most base frames don’t) then the frame is positioned suc-
cessively down the diagonal of the screen starting at the upper left corner.

If the frame has not been shaped yet (i.e., it has no size), /place shapes it to its
preferred size. It is then positioned either relative to its superframe or to a
default location based on the gravity setting. In ClassBaseFrame and its superc-
lasses /place defaults to /reshapefromuser.

The gravity setting is used to calculate default positions for frames. For OPEN
LOOK frames the gravity setting also determines where /place will start tiling
frames. Frame gravity is set by sending /setgravity to a specific frame class.
The choices for gravity setting are dependent upon the particular frame class:
normal OPEN LOOK frames expect names like /UpperLeft, /UpperRight, etc.
Icons expect names like /Top, /Bottom, etc. For OpenLookBaseFrames gravity
defaults to /UpperLeft. /seticongravity is supported for backwards compatibil-
ity. It just calls /setgravity on the base frame’s icon.

Methods:

Iplace
[setgravity

Subframe Functions

OpenLookFrame overrides the /open method so when a superframe is opened
or closed all its subframes are also opened or closed. The /toptop and /tobot-
tom methods are also overridden so subframes are sent to the top or bottom
with their superframe.

Managing Groups of Canvases 4-23

Managing Groups of Canvases

Methods:

/open
/opensubframes
/closesubframes
/totop
/tobottom

Shared Frame Menus

OpenLookFrame creates menus that are shared by all frames. There is one
menu that is shared between base and icon frames, and another that is shared
between property and command frames. If a client needs to modify the menu
for a particular frame, the code that creates the frame menu should be copied
and modified. This code can be found in OLframe.ps. Once modified the new
menu should be stored with /setmenu.

Instantiating Frames

The frame subclasses whose names begin with "OpenLook" are the subclasses
that you should instantiate. Each frame type subclass implements behavior that
is particular to that type of frame. For example, OpenLookBaseFrame automati-
cally creates an icon frame as a subframe when a base frame is created.

Another example is the override of the /open method in class Open-
LookHelpFrame. It calls the /pin method whenever a help frame is opened,
since all OPEN LOOK help frames are supposed to be pinned when they are
opened.

Subclassing Frames

This section describes techniques for defining your own frame subclasses.

Subclassing a Single Frame Type
The following is sample code to subclass a single frame type:

4-24 tNt Technical Reference Manual

You should generally send /defaultclass to the intrinsic frame class instead of
subclassing one of the OPEN LOOK frame classes directly. If your subclass
builds on the variables and methods in the intrinsic class rather than the Open
Look class, it should be possible for someone to change the default look and feel
and still use your subclass.

Subclassing Several Frame Types
Here’s some standard code to subclass more than one frame type:

Class MyFrame contains everything that is needed by more than one frame
type. Things needed by a single frame type are defined in that type’s class.

Managing Groups of Canvases 4-25

Managing Groups of Canvases

Managing Groups of Canvases

Each of the frame type classes has two superclasses: MyFrame, providing com-
mon new functionality; and the default implementation of the intrinsic frame
class, providing the default frame type’s functionality.

ClassFrame contains utility methods (for example, /BaseFrameCreate) that can
be used by subclasses to create frames that are associated with one another. For
example, OPEN LOOK base frames have associated icon frames, so OpenLook-
BaseFrame calls /IconFrameCreate. There are two levels of control that sub-
classers can use to change the way associated frames are created. First, the
/FooFrameCreate methods can be overridden. This provides the most flexibil-
ity, but is often more than is needed. If the only thing a subclass wants to do is
to change the class that is instantiated, it can override the /FooFrameClass
methods to return the proper classes. Each /FooFrameCreate method in
ClassFrame instantiates the class returned by /FooFrameClass. This is done in
the example above, where /BaseFrameClass and /IconFrameClass are overrid-
den to return MyBaseFrame and MylconFrame. The default frame classes (e.g.,
OpenLookHelpFrame) are used for the other frame types. Note that the
/FooFrameClass’s are executable procedures rather than direct references to the
classes. Deferring the evaluation of the classes avoids the problem of the classes
not being defined yet when class MyFrame is being defined.

Adding Frame Attributes

Adding a new frame attribute in a subclass is simple. Here’s an outline of how
you might add a new control to the frame border. For this example, let’s
assume the attribute controls whether the frame is "zoomable", that is whether it
can grow to the full height of the screen. If it is zoomable, the frame will have a
"zoom box" control in its border.

First, define the new attribute by defining a variable in the subclass. The
boolean value of the class variable is the default value used by all instances of
this class. This value can be overridden for a particular instance by parameters
to the /new or /setframeattribute methods.

4-26 tNt Technical Reference Manual

Managing Groups of Canvases

Override the /Ornaments method to include the new attribute. This method
returns attribute names on the stack and is used to construct an array of attri-
butes that have associated ornaments, such as controls or graphics. The orna-
ments are created and laid out in the order they are returned by the /Orna-
ments method. If the painting order of the new ornament is important, the
override method should do a super send then search through the attributes on
the stack and insert the new one in the appropriate place. If the painting order
doesn’t matter, the method can simply add the new ornament at the end of the
list:

The subclass must provide the following methods for the new control:

Managing Groups of Canvases 4-27

Managing Groups of Canvases

Utility Bags

There are many ways an application might want to layout the clients of a bag.
The NeWS Development Environment includes three utility bags that provide
support for laying out an arbitrary number of arbitrarily-sized bag clients in
three different ways. The names of the subclasses are: AbsoluteBag,
RowColumnBag and FlexBag.

4-28 tNt Technical Reference Manual

Managing Groups of Canvases

AbsoluteBag

The absolute in the name of this bag refers to the location of the AbsoluteBag’s
clients. AbsoluteBags position their clients at application-specified x,y coordi-
nates and keep them there no matter what the size of the bag. Clients added to
AbsoluteBags must have an x,y coordinate as baggage. (For more information
on baggage see the "Insertion and Removals" section above.)

minsize

When the minsize message is sent to AbsoluteBag it attempts to calculate a rea-
sonable size for itself based on the x,y coordinates of the clients and their sizes
(not their minsizes). Basically, AbsoluteBag uses the position and size informa-
tion of its clients to calculate the smallest bounding box that fits all its clients.
Thus AbsoluteBag’s minsize calculation tries to ensure that all its clients are visi-
ble. However, the minsized layout many not be "pretty."

If a class is passed to /addclient then AbsoluteBag creates a minsized client.

Coordinate system

Only absolute bags support two orientations of the coordinate system: top-down
(the default) where the origin is at the upper left corner of the bag; and the nor-
mal NeWS bottom-up system where the origin is at the lower left corner of the
bag. Use /settopdown to change the orientation of the origin in absolute bags;
/settopdown takes a boolean argument, true for top-down and false for bottom-
up.

In the top-down system the coordinates given to the bag for each client are
taken as the distance from the top-left corner of the bag to the top-left corner of
the client :

Managing Groups of Canvases 4-29

Managing Groups of Canvases

Figure 4-3: Top Down Coordinates

0,0) bag
by client
true ftopdown
(absolute bags only)

Figure 4-4: Bottom Up Coordinates

client

(x,y)

0,0 238

false fopdown
(standard NeWS coordinates)

4-30 tNt Technical Reference Manual

Managing Groups of Canvases

RowColumnBags

As the name of this ClassBag subclass implies RowColumnBags are designed to
lay out clients in a grid of rows and columns. Clients added to
RowColumnBags do not take any baggage. The default layout for
RowColumnBags is row major order, with one column and as many rows as
there are clients. This layout is identical to the default layout of menus.
RowColumnBags inherit their layout from the RowColumnLayout mixin class.

The arrangement of RowColumnBag clients can be changed using /setlay-
outstyle. /setlayoutstyle takes three arguments: a boolean first argument to
determine row or column major layout (true for row major; false for column
major), the number of rows and the number of columns. If the number of rows
and columns are specified then those numbers of rows and columns are created.
If one of the row/column arguments is null then the appropriate value is calcu-
lated by dividing the number of items to be displayed by the other, known
value. If null is specified for both arguments then the bag is layed out in the
default style.

Every cell in the grid of a RowColumnBag is the same size. When calculating
its minsize RowColumnBag uses the maximum minsize of all its client’s min-
sizes. Thus if a RowColumnBag had six clients of varying minsizes, it would
determine which of the six clients had the largest minsize and multiply the size
by six (the number of clients) in order to calculate its own minsize.

By default RowColumnBags do not put any space between cells of the layout
grid or between the grid and the borders of the bag. To change the default
spacing use /setgaps to add horizontal and/or vertical spacing between cells.
/setgaps takes two arguments the horizontal gap (or null) and the vertical gap
(or null). The spacing is given in points. Use /gaps to determine the amount of
space between cells. /gaps returns two numbers, the horizontal gap and the
vertical gap. Both values are in points.

You can also change the size of the border by using /setborder. /setborder takes
the number of points of white space you want between the client grid and the
bag’s inside edge.

Managing Groups of Canvases 4-31

Managing Groups of Canvases

Flex Bags

A FlexBag is a bag in which the positions of clients are determined by execut-
able code they pass in during /addclient. This code is executed each time the
bag is layed out. Compass-point notation is used so that clients may be placed
relative to a corner of another client. To aid you in relative positioning of
clients, utilities are provided. See the section "FlexBag Positioning Utilities"
below. FlexBag use the NeWS bottom-up coordinate system.

The compass-point notation refers to a client’s bounding box (c is center):

Figure 4-5: Compass Point Notation

n
nw ne
w C e
sw se
S

Adding Clients

The order of insertion into a FlexBag is critical if the bag is being used for rela-
tive layout. During each call to /Layout the position code is executed in the
order in which the clients were inserted. In other words, do not make the posi-
tion of an earlier addition depend on the position of a later one. Incorrect results
will follow.

FlexBag's layout code expects clients to be passed to /addclient using the fol-
lowing form:

4-32 tNt Technical Reference Manual

The executable must return x,y coordinates that determine where the given
compass-point of the given client is placed in the bag. The client can be either a
class (if it is a canvas) or an instance. For example:

puts the bottom left corner of mybutton at position 200 300 in myflexbag. Simi-
larly:

would create an instance of OpenLookButton with the label Button1 and no call-
back, make it a client of myflexbag, and place the bottom left corner of the but-
ton at position 200 300 in myflexbag.

FlexBag also recognizes the compass-point notation in reference to itself. When
positioning clients relative to the bag’s coordinates the FlexBag code recognizes
the following executable form:

Managing Groups of Canvases 4-33

Managing Groups of Canvases

Managing Groups of Canvases

Thus:

places the client so that its center will be offset 10,10 from the center of the bag.
See the section "FlexBag Position Utilities" below for an explanation of POSI-
TION and XYADD.

Clients can be added to flex bags with no layout information. In this case you
should set the bag’s default layout specification by using /setlayoutspec. /set-
layoutspec takes the same arguments as you use when adding clients, a
compass-point (or null) and an executable that returns a position.

minsize

FlexBags calculate their minsize based on the positioning information given to
the bag when clients are added. You should note that while FlexBag don’t
presume that any shape or size client is being put in them the FlexBag code
attempts to make an "intelligent" guess as to what its minsize should be by
using a heuristic. For complicated relational positioning of FlexBag clients the
heuristic may yield an arrangement of the clients that you find unacceptable. If
that should occur use the ClassCanvas method /lockminsize to override
FlexBag's calculation.

FlexBag Positioning Utilities

FlexBags provide five positioning utilities. They are /POSITION, /WIDTH,
/HEIGHT, /XYADD, and /XYSUB. These utilities are especially useful for
positioning clients relative either to other clients or to the flex bag itself. POSI-
TION, WIDTH, and HEIGHT take either a canvas instance, the name of a client
or "Previous” or "Current" which refer to the previous and current clients,
respectively. :

/POSITION takes a compass-point and a client’s name, a canvas, or a bag and
returns the x,y position of the compass-point of that canvas. For example, to
position a client so that it is always in the center of the bag an application could
do:

4-34 tNt Technical Reference Manual

Managing Groups of Canvases

[/c {/c self POSITION}...]

| I I
client bag bag

center center
This code fragment makes the client’s center and the bag’s center coincide.
/WIDTH takes a client name, a bag, or a canvas and returns its width in points.

/HEIGHT takes a client name, a bag, or a canvas and returns its height in
points.

An application could use /WIDTH and /HEIGHT together to position a client
relative to the size of the bag:

This example positions the center of a client 1/4 of the flex bag’s width and at
1/2 the bag’s height. Since these are relative positions they are preserved
independently of the bag’s size.

/XYADD does 2-D vector addition on two sets of x,y coordinates. The syntax
is: x1 yl x2 y2 XYADD x1+x2 y1 +y2.

/XYSUB does 2-D vector subtraction on two sets of x,y coordinates. The syntax
is: x1 y1 x2 y2 XYSUB x2-x1 y2 -y1.

Example of Bag Usage and Subclassing

The following example code shows how an application programmer might typi-
cally subclass ClassBag, and use the result as the client of an OPEN LOOK
frame (or any bag for that matter).

Managing Groups of Canvases 4-35

Managing Groups of Canvases

(continued on next page)

4-36 tNt Technical Reference Manual

Managing Groups of Canvases

(continued on next page)

Managing Groups of Canvases 4-37

Managing Groups of Canvases

(continued on next page)

4-38 tNt Technical Reference Manual

Managing Groups of Canvases

Focus Management

ClassBag provides mechanisms for "focus forwarding" and "focus noticing".
When a bag receives the input focus, it may forward the focus to another canvas
that is an immediate child or a more remote descendant. A bag may be
interested in noticing when the focus is given to one of its descendants directly.
These concepts are best explained with an example.

Suppose you have an OPEN LOOK frame (whose class is a subclass of
ClassBag) containing a control area (a bag) containing a text control. You want
the user to be able to click the mouse on the frame and then to be able to type
to the text control. Clicking on the frame will give it the input focus. However,
it is not the frame that is interested in key strokes, but rather the text control, so
the frame must forward the focus to the text control. The frame title area
highlights when the input focus is anywhere inside the frame. This means the
frame must notice the change of focus, even if the user clicks the mouse directly
on the text control so it gets the focus without any intervention from the frame.

Managing Groups of Canvases 4-39

Managing Groups of Canvases

Note: the above example assumes the click-to-type focus style is being used.
Focus forwarding and noticing also works with the follow mouse focus style.
The mechanism built into ClassBag and used by ClassFrame allow behavior
such as that described above to be implemented very simply. How this is done
is described below.

Focus Definitions

Focus Client

A canvas interested in receiving the input focus, either for the purpose of
procesing keys itself or for passing the focus on to another canvas that will con-
sume keys. A canvas is designated a focus client via the utility functions
addfocusclient and removefocusclient.

Key Consumer

A canvas that processes keyboard input. Set by the /setkeyconsumer method in
ClassCanvas. A key consumer must also express appropriate interests in keys.

Focus Forwarder

A bag that upon receiving the input focus passes the focus on to another canvas.
The automatic mechanism for doing this is controlled by the /FocusForwarder?
class variable in ClassBag. Focus forwarding is generally an attribute of an
entire class, but may be enabled for specific instances by promoting /FocusFor-
warder?.

Focus Target

For a focus forwarder bag, the canvas to which the input focus will be for-
warded by the automatic forwarding mechanism. The focus target is main-
tained automatically, but may be set explicitly with the /setfocustarget method
in ClassBag.

Focus Noticer

A bag that is interested in being notified when the input focus enters or leaves
itself or any of its descendant canvases. Controlled by the class variable
/FocusNoticer? in ClassBag.

4-40 tNt Technical Reference Manual

Managing Groups of Canvases

Focus Forwarding

All key consumers are generally focus clients, but not all focus clients are key
consumers. A focus client that is not a key consumer is usually a focus for-
warder, transferring the input focus to a descendant canvas that is a key consu-
mer.

ClassBag provides a mechanism for automatically handling focus forwarding.

In the simplest case, a class that is a subclass of bag simply sets the /FocusFor-
warder? class variable to true. This causes an appropriate interest to be created
by /Makelnterests so the bag will be able to receive the input focus. It also
causes FocusTarget to be initialized and maintained for the bag. When the
input focus is given to the bag, it is automatically transfered to the focus target.
More elaborate behavior can be achieved by overriding methods in a subclass of
ClassBag.

Class Variable:
/FocusForwarder?

The variable /FocusForwarder? is defined as false in ClassBag and true in
OpenLookFrame. A subclass of ClassBag that is not a subclass of OpenLook-
Frame must redefine this variable to be true to enable focus forwarding.

Focus Noticing

ClassBag provides a simple mechanism for noticing when the input focus enters
or leaves the bag or any of its descendant canvases. In the simplest case, a sub-
class sets the /FocusNoticer? class variable to true. This causes an appropriate
interest to be created by /Makelnterests. The subclass then overrides the /Noti-
ceFocusEnterExit method to take whatever action is necessary, such as provid-
ing some sort of highlighting.

Class Variable:
[FocusNoticer?

Managing Groups of Canvases 4-41

Managing Groups of Canvases

Method:
/NoticeFocusEnterExit

The variable /FocusNoticer? is defined as false in ClassBag and true in Open-
LookFrame. A subclass of ClassBag that is not a subclass of OpenLookFrame
must redefine this variable to be true to enable focus noticing.

How Focus Forwarding and Noticing Works

What follows is a detailed description of the mechanisms involved in focus for-
warding and noticing. This is useful for subclassers who want to change some
aspect of this behavior.

When a focus forwarder bag or any of its descendant canvases gets the input
focus, the /NoticeFocus method is called. This method calls /NoticeSelfFocus if
the focus is for the bag itself or /NoticeDescendantFocus if the focus is for a
descendant canvas. /NoticeSelfFocus checks to see if there is a focus target (i.e.
if FocusTarget is not null), and if so transfers the focus to that canvas via the
/TransferFocus method. /NoticeDescendantFocus sets FocusTarget to the can-
vas receiving the focus. This makes sure FocusTarget is set to the most recent
focus recipient, even when focus forwarding does not take place, e.g. when the
focus goes from outside the bag directly to a key consumer canvas or when the
focus goes from one key consumer canvas to another within the same bag.

Methods:

/NoticeFocus
/NoticeSelfFocus
/NoticeDescendantFocus
[TransferFocus

When a new value for FocusTarget is needed, the /MakeFocusTarget method is
called. For example, it is called when adding a key consumer canvas to a bag
that has no focus target, or when removing a key consumer canvas that is the
focus target. A subclasser can override /MakeFocusTarget to implement algo-
rithms for determining which canvas should be the focus target. By default, the
first key consumer canvas added to a bag becomes the initial focus target, and
FocusTarget is set to null if the current focus target is removed.

4-42 tNt Technical Reference Manual

Managing Groups of Canvases

Methods:
/MakeFocusTarget

When a key consumer canvas is added to a bag, the /addkeyconsumer method
is called for the bag. This method calls /addfocusdescendant for itself and all of
the bags from its parent to the framebuffer. The /addfocusdescendant method
sets the focus target if it is not already set. The /addfocusdescendant message
is sent to all bags up the canvas hierarchy so they can all have the opportunity
to set their focus targets. An analogous procedure takes place when a key con-
sumer canvas is removed from a bag. The /removekeyconsumer method is
called and it calls /removefocusdescendant up the canvas hierarchy. The
/removefocusdescendant method calls /MakeFocusTarget to get a new focus
target if the canvas being removed is the current focus target for the bag. The
/addkeyconsumer and /removekeyconsumer methods are also called when a
change is made to whether a canvas is a key consumer.

Methods:

/addkeyconsumer
/removekeyconsumer
/addfocusdescendant
/removefocusdescendant
/setkeyconsumer (ClassCanvas)

Subclassers way want to develop algorithms for setting a bag’s focus target
based on the last times canvases had the input focus. For example, a ClassBag
subclass might override /MakeFocusTarget so that when the current focus tar-
get canvas is removed from a bag other key consumer canvases in the bag are
checked and the one that had the focus most recently becomes the new focus
target. ClassCanvas provides the /setlastfocustime and /lastfocustime methods
as a standard way of storing and retrieving the last time a canvas had the input
focus. Key consumer canvases should call /setlastfocustime when they receive
the input focus. This will allow them to be placed in bags that use last focus
time.

Managing Groups of Canvases 4-43

Managing Groups of Canvases

4-44

Methods:

/lastfocustime (ClassCanvas)
/setlastfocustime (ClassCanvas)

Methods:

/setfocustarget
/focustarget
/setkeyconsumer
/removefocusdescendant
/removekeyconsumer
/addfocusdescendant
/addkeyconsumer
/lastfocustime
/MakeFocusTarget
/NoticeDescendantFocus
/NoticeFocus
/NoticeFocusEnterExit
/NoticeSelfFocus

Class Variables:
/FocusForwarder?
/FocusNoticer?
[FocusTarget

tNt Technical Reference Manual

5. MENUS AND OTHER SELECTION LISTS

S1SI1 NOILLO313S H3IH10 ANV SNN3IN 'S

5 Menus and Other Selection Lists

Menus and Other Selection Lists 5-1
Introduction 5-1
Menus 5-1
= Introduction 5-1
m Creating Menus 5-2
m Laying Out Menus 5-4
= Manipulating Menus 5-5
® Menu Values 5-5
m Pinned Menus 5-6
m Callbacks, Targets and /setmenu 5-6
Settings 5-8
m OpenlookXSetting 5-8
m OpenLookChoggle 5-12
OpenLookNonXSetting 5-12
m Example 5-13

Table of Contents i

Menus and Other Selection Lists

Introduction

OpenLookXSetting, OpenLookNonX Setting

ClassCanvas 7 ClassSelectionList i ClassMenu —> OpenLookMenu
OpenLookChoggle

ClassTarget

ClassSelectionList is the basis for menus and setting controls (Exclusive, NonEx-
clusive and Choggles). It is not designed to be instantiated directly. The idea
behind a selection list is that a single canvas manages a grid of regularly spaced
items that can be independently selected via the mouse. The most common use
of selection lists is for menus.

Menus

This section covers the more important details of the programmer’s interface for
OPEN LOOK menus. For information on using OPEN LOOK menus please
consult the OPEN LOOK UI Style Guide.

This section concentrates on the OpenLookMenu class. This section covers those
methods deemed most important for using menus. The complete set of
methods associated with OpenLookMenu and its superclasses can be found in
section 2.

Introduction

ClassMenu is an intrinsic class implementing menus; it supports hierarchical
pop-up pinnable menus. ClassMenu, as with other intrinsic classes, is meant to
be subclassed rather than instantiated; it provides the foundation for OpenLook-
Menu. You can subclass ClassMenu if you want functionality that is substan-
tially different from that which OPEN LOOK menus provides. And while
OpenLookMenu is generally intended for instantiation, it can be subclassed to
implement small changes in the class, such as having all menus come up using a
font that differs from the default.

Applications can automatically associate a menu with another canvas. The
NeWS Development Environment takes special care to manage the relationship
between canvases and their associated menus. By default, an instance of
ClassCanvas does not have a menu but ClassCanvas has been designed to

Menus and Other Selection Lists 5-1

Menus and Other Selection Lists

expect a menu. The NeWS Development Environment provides procedures to
facilitate this relationship through the ClassCanvas method /setmenu. For an
explanation of /setmenu see "Callbacks, Targets and /setmenu” in this chapter.

Creating Menus

Menus consist of arrays of items. OpenLookMenus can have four types of
items: command, submenu, exclusive, and nonexclusive. The visual look, type
and callback of menu items are specified by a set of triples specified at the time
of menu creation. That is, the triples, one for each item, can be given as argu-
ments to the new method when a menu is instantiated.

The most common way to describe an item is:

[thing|graphic null|submenu|genproc proc|null]
visual type callback
field field field

This way of specifying items can be used to create menus with an arbitrarily
large number of items. Item types can be mixed using the above model. For
example the following code would specify three types of items in one menu:

5-2 tNt Technical Reference Manual

Menus and Other Selection Lists

A less general way of specifying a triple can be used:

[thing|graphic . ..] null|submenu|genproc proc|null
visual type callback
field field field

This way of specifying menus is used to create menus where all the items will
be of the same type and have the same callback.

Visual Look Field

You can specify the visual look field of the triple using either a graphic or a
thing, both described in ClassGraphic. Whatever graphic is used for the visual
field, by default, will be inserted in an instance of OpenLookMenuButton-
Graphic.

A thing is a PostScript data structure, either a string or an array. The array con-
tains the string as well as optional attributes used to display the string. Two
common attributes used are a font to render the string in and a color to render
the font in.

Type Field

The type field is used to indicate the type of the menu. The type field is one of:

m null to specify a command menu item

® a submenu (sublist) or a procedure to create a submenu (genproc)

B an array containing the name /Exclusive to specify an exclusive item
® an array containing the name /Nonexclusive to specify a nonexclusive

item

Callback Field

The callback field is null when the item is of type submenu. If the item is not of
type submenu then the callback field specifies the action to be taken when the
item is selected. If non-null the callback field must be an executable PostScript
array that consumes the menu from the stack.

Menus and Other Selection Lists 5-3

Menus and Other Selection Lists

Limitations

The NeWS Development Environment’s OPEN LOOK menus do have some lim-
itations and as such, do not currently allow for some OPEN LOOK UI func-
tionality. Menus containing both exclusive and nonexclusive choices are not
supported well. For example: a menu is created that has two command items,
three exclusive items and one nonexclusive item. One might expect that for the
purposes of menu manipulation the menu had four items: the two command
items, the non exclusive item and the three exclusive items grouped as a single
item. In fact in the NeWS Development Environment, menus cannot handle this
grouping of items.

This lack of grouping ability means that a menu cannot contain two sets of
exclusive items that operate independently. Turning on any exclusive item in a
menu will turn off all others.

Laying Out Menus

The default menu layout is one column and the number of rows equal to the
number of items. However, you can lay out menus with multiple rows and
columns. Moreover, you can specify whether the menu will be layed out in row
major or column major order.

To set the layout of a menu instance to be other then the default use /setlay-
outstyle. /setlayoutstyle takes a RowMajor? boolean first argument; true lays
out the menu as row major and false lays out the menu as column major. The
next two arguments specify the number of rows and the number of columns
respectively; either or both may be null.

If you specify the number of rows and/or columns, then those number of rows
and/or columns are created. If you specify null for one of the arguments then
the appropriate value is calculated automatically by dividing the number of
items to be displayed by the other, known value. If null is specified for both
rows and columns the menu is layed out in the default style.

If you specify a matrix that is too large for the number of items there will be
empty spots in the matrix. If too many items are specified for the size of the
matrix the excess items will not be shown.

You can query the layout specifications of a menu using /layoutstyle. The
RowMajor? boolean, the number of rows, and the number of columns are
returned.

5-4 tNt Technical Reference Manual

Menus and Other Selection Lists

Manipulating Menus

Once you have created a menu several methods are available to change features

or query current menu settings. Some of the more commonly used methods

allow a program to insert, delete, disable and determine the last item selected
on the menu.

You can access menu items using their index. The terms location and index are
used interchangeably.

Use /insert to put a new item into an existing menu at a specified location.
/insert takes an index and an item triple as arguments and preserves the menu'’s
default. Similarly, /delete removes an item at the specified location while
preserving the menu’s default selection. Any field of an item’s triple can be
changed using /change. If all the fields aren’t being changed then null is used
as placeholder when the triple is passed into /change.

Enabling and disabling an item refers to two things: the visual state of the item
and the ability of the item to get the combination of mouse drags and button
ups. An item that is enabled will be highlighted on a mouse drag and execute
its callback on the button up. An item that is disabled will get neither the
mouse drag or the button up. A disabled item is "grayed out” to distinguish it
from an item that is enabled.

Use /enableitem to enable a menu item and /disableitem to disable an item.
The /itemenabled? method allows you to query an item to determine if it is
enabled or disabled.

Menu Values

The value of a menu is the index of the last item selected. Send /value to a
menu instance to determine its current value.

Use /setvalue to change the value of a menu. If an item is an exclusive item and
it is turned on when /setvalue is called on it, the item is not turned off. ~Use
/nonxvalue to determine which nonexclusive menu items are turned on. It
returns an array of the indices of all the nonexclusive items currently set. If no
nonexclusive values are set an empty array is returned. Use /xvalue to deter-
mine which exclusive value is currently set. It returns the index of the item.
/setvalue does not execute an item’s callback. Applications that want an item’s
callback executed immediately after the item is set should call /doaction.

Menus and Other Selection Lists 5-5

Menus and Other Selection Lists

Pinned Menus

It is worthwhile noting that there are no programmer interfaces to allow access
to the pinned version of the menu. The pinned version is a copy of the menu.
Code in class OpenLookMenu will perform the necessary actions to keep the
pinned copy up-to-date with changes made to the menu.

To give menus a pin (or to remove it) use /setpinnable. Use /pinnable? to
query a menu to determine if it is pinnable.

Callbacks, Targets and /setmenu

After a menu is built several conditions must be met before the "right" thing can
happen when a menu item is selected. First a menu and a canvas must be asso-
ciated so that MENU down produces the correct menu. Second, when a MENU
up occurs the correct callback is executed. Finally when the callback is exe-
cuted the correct object is affected. The NeWS Development Environment pro-
vides several methods and a mixin class to help you manage the relationship
between menus and other canvases.

You can use the ClassCanvas method /setmenu to associate a menu with
another canvas. /setmenu takes a menu as its argument and is sent to a canvas.

Using /setmenu causes the canvas to express an interest in the MENU button
down and to display the menu when one is noticed. When /setmenu is used
menu callbacks will execute in a process forked from the canvas’s event
manager process. Having the callback execute in the canvas’s event manager
process group guarantees that the same userdict and stdout (for sending tag-
prints), exists when the callback is executed as when the canvas was activated.

However, before the correct callback can be executed a program must determine
which item was selected. Determining which item was selected is easy because
when an item is selected the menu is pushed on the stack.

With the menu on the stack programs can call /value to determine which menu
item was selected. /value returns the index of the last item selected. Thus in
the simplest case to determine which item was selected a callback would con-
tain:

5-6 tNt Technical Reference Manual

With the item selected identified the correct callback can be executed. Then the
callback needs to send its methods to the correct object.

The NeWS Development Environment provides targets to help programs send
callback methods to the correct object. If /setmenu was used to associate the
menu with a canvas then the ClassTarget method, /sendtarget can be used to
send the callback methods to the canvas. /sendtarget is sent to the menu. Thus
in the simplest case the callback would contain:

/setmenu associates a menu with another canvas; it doesn’t set the target.
Instead, by default canvases set the target of their menus to be themselves when
the menu is brought up over them (see Chapter 3, Canvases).

Using Targets Manually

While most applications will want the Toolkit to manage menus, functionality is
provided to allow applications to handle menus manually. If you require
manual handling of menu display, e.g., having different menus pop-up in dif-
ferent areas of the same canvas, should not use /setmenu.

Such applications could, for example, express interest in MENU mouse down,
calculate where in the canvas the mouse was when the mouse down was
received, then make an explicit call to /showat to display the correct menu for
that region of the canvas.

Targets can be set explicitly using /settarget. In addition, applications that don’t
want the canvas over which a menu is brought up to be the target of the menu
can change the default behavior by using the ClassCanvas method /autotarget-
menu:

Menus and Other Selection Lists 5-7

Menus and Other Selection Lists

Menus and Other Selection Lists

See Chapter 8 for a complete discussion on using targets.

Shared Menus

Since canvases are the default target of the menus brought up over them, appli-
cations can easily share the same menu between different instances of a canvas.
There are two cases:

1. All instances of a class share the same menu. Use /CanvasMenu a
ClassCanvas class variable:

2. Share a common menu between instances of different classes. Then an
application would use /setmenu and send the menu to each canvas
instance.

Settings
OpenLookXSetting

This class implements the Open Look exclusive setting control. Since this class
is derived from ClassSelectionList, entire group of settings uses a single canvas,
has a single event manager.

Although not derived from ClassControl, exclusive settings behave much like
controls. They have a single value and a client-supplied notify proc. They may
be placed into bags along with controls. However, a difference is that although
individual items may be disabled, there is no /disable method that applies to
the entire setting group.

5-8 tNt Technical Reference Manual

Menus and Other Selection Lists

Exclusive settings are created from a list of items. The list is similar to the one
used to create menus, except there is nothing corresponding to a submenu.
There are two forms of parameter to /new:

The first form is an array of graphic/proc pairs. Each graphic may be either an
instance of a graphic class, or may be a "thing" suitable to create an instance of
class OpenLookXSettingGraphic. The proc is a notify proc like that of any
menu or control. It is called with the exclusive setting on the operand stack.
The second form uses a single proc for all items and is used when the same
notify proc is used for all setting items.

As with menus, the items in a setting are ordered. The value of the setting con-
trol is an integer corresponding to the selected item. The first item is numbered
0. The ClassSelectionList methods for managing lists can be used to insert,
delete and change items. Individual items can be enabled and disabled.

Methods: (all in ClassSelectionList)

/insert
/delete
/change
/enableitem
/disableitem
/itemenabled

OpenLookXSetting uses a row/column layout algorithm to arrange its choices
(it has class RowColumnLayout as a superclass as well as ClassSelectionList).
The /setlayoutstyle method is used to control whether the exclusive choices are
arranged in a row, a column or a matrix.

Menus and Other Selection Lists 5-9

Menus and Other Selection Lists

Methods: (all in class RowColumnLayout)

/setlayoutstyle
/layoutstyle
/cellcount

Example

This code builds a demo frame that contains a bag that contains a simple
exclusive setting. When an item is selected, the frame’s footer displays the new
setting.

5-10 tNt Technical Reference Manual

Menus and Other Selection Lists

Notes:

The creation of the frame and bag are kept very simple for this example. A
RowColumnBag is used so we don’t have to provide any information about the
position of the setting.

It is not necessary to /activate the setting when it is put inside a bag -- the bag
does this automatically.

The /settarget method is used to make the setting’s target be the frame. The
setting’s notify proc uses /sendtarget to call the /setfooter method in the frame.
The /sendtarget method is sent to the setting, which is on the operand stack
when the notify proc is called.

The /valuething method returns the "thing" corresponding to the current value
of the setting control. This will be one of the strings (300), (1200), etc.

The bag is explicitly painted at the very end of the example because the frame
and bag were already activated earlier in the example. (The frame is activated
by the /demo method.) In many actual cases the bag will be populated with
controls before its frame is activated. When the frame is activated the bag and
its controls will be painted automatically, eliminating the need for an explicit
call to /paint.

The default layout style is to place the setting items in a single column. This
may be changed with the /setlayoutstyle method. For example, the following
will change the above setting control from vertical to horizontal:

Menus and Other Selection Lists 5-11

Menus and Other Selection Lists

OpenLookChoggle

An OpenLookChoggle is a variation on the OpenLookXSetting in which it is
possible for no item to be selected. If the user clicks the mouse on the selected
item, it is deselected and no other item is selected. The /value method will
return null for the control when no item is selected. Other than this difference,
OpenLookChoggles are exactly the same as OpenLookXSettings. The name
"choggle" is a blend of "choice" and "toggle" and was once used in the Open
Look specification to as the name for what is now called simply a "variation on
exclusive settings".

OpenLookNonXSetting

A nonexclusive setting is a group of choice items, any number of which may be
selected at the same time. Clicking on an item toggles its selected state. This is
a multiple valued control - its value is an array of values corresponding to the
selected items. The /setvalue method takes either a single value of an array of
values, /value returns an array of values, and /valuething returns an array of
things.

Methods:

Ivalue
/setvalue
/valuething

The spacing between the setting choices is 4 by default. This may be changed
with the /setgaps method.

Class OpenLookNonXSetting is a subclass of OpenLookXSetting. Except for
their having mulitple values and the spacing of their choices, nonexclusive set-
tings are identical to exclusive settings. Their settings are specified by the same
parameter to /new, items may be inserted, deleted or changed the same way,
and the layout style is controlled the same way.

5-12 tNt Technical Reference Manual

Menus and Other Selection Lists

Example

This example creates a nonexclusive setting and adds it to the bag from the pre-
vious example.

Notes:

This example assumes the exclusive setting from the previous example is still
laid out as a column. If it is a row, the example still works, but doesn’t look as
good.

The /valuething method returns an array of things for the nonexclusive setting.
Each thing is a string such as (Bold) or (Italic). A single string is built by
appending together all the strings in the array. The resulting string is used to
change the right part of the frame’s footer.

Menus and Other Selection Lists 5-13

Menus and Other Selection Lists

The layout style for the bag is set in this example because a second client is
being added to the bag and therefore it matters whether the bag layout is in a
row or a column.

Here are some examples of setting and retrieving the value of the nonexclusive
setting.

5-14 tNt Technical Reference Manual

6. CONTROLS

STOHLINOD 9 |

6 Controls

Controls 6-1
Introduction 6-1
ClassControl 6-1
m Value 6-1
= Notification 6-2
m Enabled / Disabled State 6-3
m Tracking 6-3
ClassDialControl 6-5
m Deltas 6-5
m Normalization 6-6
ClassButton 6-7
m Graphic 6-7
= Notification and Value 6-8
m OpenlookButton 6-8
m Button Examples 6-8
m OpenLookButtonStack 6-11
m OpenlLookAbbrButton 6-14
m OpenlLookAbbrButtonStack 6-14
Analog Controls 6-16
m Sliders 6-16
= Scrollbars 6-17
= Simple Scrollbar Example 6-19
Fields 6-20
m ClassTextControl 6-20
m OpenLookTextControl 6-22
m OpenlLookNumeric 6-22

Table of Contents i

Controls

Introduction
ClassButton ClassScrollbar —=» OpenLookHorizontalScrollbar
ClassCanvasClassControl:
OpenLookHorizontalSlider ~OpenLookVerticalScrollbar
ClassTarget OpenLookVerticalSlider
ClassControl

Controls are canvases with the following features:
m a value
m a notify (callback) procedure
m a state of enabled or disabled

m a tracking process that is created for user interaction

Value

A control has a "value" that may be changed via a user interaction or program-
matically. The general mechanism provided by ClassControl allows a control’s
value to be any object. Subclasses will generally define some domain of legal
values for the controls they define. For example, a check box might allow only
the values true and false, a dial might allow integers from 0 to 10, and a text
field might allow any character string. Each subclass defines what happens if an
attempt is made to set the value to something not in the domain of legal values.
A subclass might allow multiple values, in which case the control value might
actually be an array of the current values.

A subclass of ClassControl must provide a /PaintValue method. This method is
called whenever the control’s value changes. The method may either paint the
control according to the new value, or may compare the new value to the old
and do an incremental paint.

Controls 6-1

Controls

Methods:

/value
/setvalue
/PaintValue

Notification

If a control’s value changes as the result of an interaction initiated by the user,
the client application is informed via the "notify" procedure. This is a fragment
of code that is supplied as an argument to /new for the control, or may be set
with the /setnotifyproc method. The notify proc is called with the control itself
on the operand stack. The notify proc can query the control for its value or any
other relevant information. The notify proc must remove the control from the
stack. It is generally best to not rely on a particular execution context from
within the notify proc. Here’s a sample notify proc that prints the current value
of the control:

The methods /callnotify and /checknotify cause notification to take place, i.e.
the control is pushed onto the operand stack and the control’s notify procedure
is executed. The /callnotify method unconditionally notifies. The /checknotify
method calls /CallNotify? and uses the returned boolean value to decide if
/callnotify should be called. Generally, you should call /checknotify, not
/callnotify. The /CallNotify? method can be overridden by a subclasser to con-
trol when notification takes place. The default /CallNotify? method checks to
see if the current value of the control is different from the value at the last
notification, and if so the notification takes place.

Some controls are output-only and therefore do not support user interactions
and do not do automatic notification. The only way notification can take place
for these controls is via an explicit call to /checknotify or /callnotify. An exam-
ple is a read-only text control.

6-2 tNt Technical Reference Manual

Controls

All controls take a notify proc as an argument to their /new method. If the
argument is null, no notification takes place. Since controls are canvases, they
also take a parent canvas as an argument to new. Control subclasses will often
define additional parameters to /new.

Methods:

/new
/setnotifyproc
/notifyproc
/checknotify
/callnotify
/notifiedvalue
/CallNotify?

Enabled / Disabled State

A control has an enabled/disabled state that is changed by the /enable and /dis-
able methods. A disabled control is "read only" and does not respond to user
input. Typically a disabled control will offer a visual indication of its state, such
as dimming itself.

Methods:

/enable

/disable

/enabled?
/PaintEnabledState

Tracking

"Tracking" refers to the temporary processing of certain events during user
interaction with a control. It is typically initiated by the user clicking the mouse
in the control. At that time certain tracking interests are expressed, allowing
processing of, for example, mouse button up events to terminate tracking and
mouse enter/exit events for highlighting the control.

Controls automatically express an interest in the down transition of PointButton
(defined by The OPEN LOOK UI as the left mouse button, if not overridden by
the user.) This causes the /EventHandler method to be called, which by default
does nothing. A subclass will typically override this method to call /StartTrack-
ing, which will call /trackon if the control is enabled. The /trackon method

Controls 6-3

Controls

creates a track manager process (accessable via the /trackmgr method) and
expresses the transient tracking interests.

There are several "standard" tracking methods that, if supplied by a control sub-
class, will be called automatically during tracking. If /ClientDrag is supplied, it
will be called for every mouse movement within the control. If /ClientEnter or
/ClientExit is defined, it will be called when the mouse cursor enters or leaves
the control. The /ClientDown and /ClientUp methods are called at the start and
end of tracking.

If a /ClientRepeat method is provided, a timer interest is expressed and the
method will be called after a time interval specified by ClientStartTime. The
/ClientRepeat method will typically take some action, such as calling /Client-
Down, and then generate another timeout event so it will be called again:

Note that the event passed as argument to /ClientRepeat will not have mean-
ingful /XLocation and /YLocation fields. The event's /Name will be
/TimeOutEvent rather than the name of the event that started tracking.

Methods

/trackon /ClientDrag
/trackoff /ClientEnter
/trackmgr /ClientExit
/trackinterests /ClientRepeat
/StartTracking /ClientStartTime
[EndTracking /ClientRepeatTime
/ClientDown [EventHandler
/ClientUp /MakeTrackInterests
/BuildTrackInterest

6-4 tNt Technical Reference Manual

Controls

ClassDialControl

A dial is a control with a numerical value bounded by minimum and maximum
values. Examples of dials are circular knobs and meters, linear scrollbars and
thermometer-type gauges.

User interaction with the dial may change its value either to an absolute value,
or to a value computed by adding or subtracting a "delta" to the current value.
Values are constrained to be within the dial’s "range”, i.e. between its minimum
and maximum values. The granularity of the dial may be controlled via "nor-
malization". For example, a dial may have a range of 0 to 100 and normalization
may be used to contrain legal values to multiples of 10. Normalization values
will generally be less than or equal to delta values.

Methods:

/setrange

/range
/CheckValueBounds

Deltas

Deltas are named increments for amounts a dial’s value may change relative to
its current value. Deltas are defined in subclasses of ClassDialControl. For
example, a scrollbar may have deltas named /Line and /Page. A delta may be a
constant value or an executable code fragment that produces a dynamically
computed value.

The /setdelta method allows you to define new delta names and values for a
control. The /incrementvalue method takes an integer and a delta name and
changes the dial’s value by the delta amount multiplied by the integer you sup-
ply. The /motion method returns the amount and delta name of the last change
in the dial’s value. It is most useful when called from the dial’s notify proc.

Controls 6-5

Controls

Methods:

/setdelta

/delta

/motion
/incrementvalue
/SetMotion

Normalization

The normalization value, which may be either constant or dynamically com-
puted, specifies the difference between consecutive legal values of the dial. For
example, a dial with a minimum value of 0, a maximum value of 100 and a nor-
malization of 2 could have only even values from 0 to 100. Delta values will
usually be some integral mulitple of the normalization value. Normalization is
most commonly used to contrain the values a dial may acquire from an absolute
motion, rather than from a relative motion involving a delta.

Methods:
/setnormalization
/normalization
/Normalize

6-6 tNt Technical Reference Manual

Controls

ClassButton
OpenLookAnchorButton
OpenLookButton gz“l‘”l KAbbriutton QrentookabixButonstack
uttonStack
Clus:CaanChuCuntml assButton OpenLookMenuPin OpenLookXSettingControl OpenLookFrameClose
OpenLookNumericButton { n h "
ClassTarget OpenLookPin Oie
nLookFramePin
ClassDialControl Ope
ClassTextControl
OpenLookNumeric
OpenLookFramecomers

A button is a very simple control, having a graphic and a boolean value. When
the value is true, the button is highlighted. When the mouse is clicked on the
button, tracking is started. When the mouse cursor is inside the button, the but-
ton is highlighted. When the mouse button is released, the button’s notify proc
is called, and the button’s value is set back to false, causing it to be
unhighlighted.

Graphic

A button contains a graphic, which determines the button’s appearance. When
you create a button, you must supply either an existing graphic instance, or a
"thing", from which a graphic may be created. If you supply a terminal graphic,
it determines the button’s appearance completely. If you supply a thing or a
non-terminal graphic, it is enclosed inside another graphic that supplies the but-
ton border.

Controls 6-7

Controls

Methods:

/new
/setgraphic
/graphic
/EnGraphic
/UnGraphic
/CreateGraphic

Notification and Value

When you use a button you are generally interested in the notification that takes
place when the button is pressed but not the button’s value. The notify proc
gets called when the mouse button is released on the button. The value of the
button is true when it is highlighted and false otherwise; so the value will
always be true during the notification.

OpenLookButton

Class OpenLookButton implements a button with OPEN LOOK appearance. As
with all buttons, the appearance of the button is specified via a "thing" or
graphic parameter to /new.

Button Examples

The simplest possible button has a trivial notify proc and has the framebuffer as
its parent canvas:

6-8 tNt Technical Reference Manual

Controls

Notes:

The notify proc is called with the button itself on the operand stack. Since the
"Done!" message does not use the button at all, the button is simply popped
from the stack.

The /paint method call is necessary because the button has the framebuffer as its
parent canvas. Since the button is a transparent canvas and the framebuffer
does not automatically ask transparent children to paint themselves, the /paint
must be explicit. If the button had been placed inside a bag, the /paint would
not be needed because bags automatically paint their child canvases.

A slightly more involved and realistic example puts the button inside a bag
which is inside a frame.

Controls 6-9

Controls

Notes:

The creation of the frame and bag are kept very simple for this example. A
RowColumnBag is used so we don’t have to provide any information about the
position of the button.

It is not necessary to /activate the button when it is put inside a bag—the bag
does this automatically.

The /settarget method is used to make the button’s target be the frame. The
button’s notify proc uses /sendtarget to call the /paint method in the frame. The
/sendtarget method is sent to the button, which is on the operand stack when
the notify proc is called. Another technique for repainting the frame would be
to send /paint to the parent of the parent of the button (the button’s immediate
parent is the bag). This is somewhat messier and less flexible than using a tar-

get.

6-10 tNt Technical Reference Manual

Controls

OpenLookButtonStack

An OpenLookButtonStack is an OpenLookButton that has a menu associated
with it. A different graphic (class OpenLookButtonStackGraphic) is used so the
button contains an arrow to indicate there is a menu. The name "stack" is an
artifact of an earlier Open Look revision in which what is now called a "menu
button" was called a "button stack".

The /new method includes a specification for the menu: either a menu object
itself or an array that can be used to create the menu. If the parameter is an
array, it is used to instantiate the menu, and has the following form:

Menus created in this way have the framebuffer as their parent. The /setmenu
method allows you to change the menu associated with a button stack, and, like
/new, it takes either a menu instance or a menu specification array as its argu-
ment.

Methods:

/new
/setmenu

Notification

Notification for OPEN LOOK button stacks is different than for most other con-
trols. For most controls if you do not provide a notify proc, no notification will
take place. However, for button stacks, if you provide no notify proc, pressing
the button will cause the notify proc for the default item on the associated menu
to be executed. For most cases this is the desired behavior so the notify proc
parameter to /new for the button stack will be null.

Controls 6-11

Controls

Methods:
/NotifyUser

OPEN LOOK button stacks display the menu default in the button when the
button is pressed. This is implemented by the /DisplayDefault and
/UnDisplayDefault methods, which may be overridden by subclassers.

Methods:

/DisplayDefault
/UnDisplayDefault

6-12 tNt Technical Reference Manual

Controls

Button Stack Example

Notes:

The button stack menu performs various operations on a frame, which is esta-
blished as the menu’s target. The menu has no submenus, so that parameter is
null for each menu item. Some of the frame methods take arguments, which are
included in the menu item notify procs.

Controls 6-13

Controls

The notify proc for the button itself is omitted, i.e. is null. When the user clicks
on the button, the notify proc for the default menu item is called. The notify
proc for the button itself is omitted, i.e. is null. When the user clicks on the but-
ton, the notify proc for the default menu item is called.

For button stacks, the target for the menu is automatically set to the target for
the button stack. It is not necessary to explicitly set the target for the menu;
only the button stack target is set in the example.

OpenLookAbbrButton

Class OpenLookAbbrButton implements a small square button with an arrow
inside it and an optional label to its right.

The button label may be an arbitrary graphic. The argument may be a "thing",
in which case it is used to create an instance of class OpenLookLabelGraphic. If
no graphic is desired, the parameter to /new should be null.

The direction that the button’s arrow points may be changed via the /setarrow
method, which takes arguments /Left, /Right, /Up and /Down. The default
arrow direction is down.

OpenLookAbbrButtonStack

Class OpenLookAbbrButtonStack combines OpenLookAbbrButton and Open-
LookButtonStack to produce an an abbreviated button, a label, and a menu.
The button’s label reflects the most recent selection from the menu. When a
menu item is chosen, the item’s notify proc is called and the button stack label
is changed to match the menu item. As with button stacks, the menu default is
previewed in the button’s label when the button is pressed. When the button is
released, the label reverts to its previous value, and the button stack notify proc
is called. If there is no notify proc for the button stack (the parameter to /new
was null), the notify proc for the default menu item is called.

The button stack’s label, menu, notify proc and parent canvas are specified as
paramters to /new. The label is specified as a "thing" or as a graphic. The
parameter may be null, in which case no label is displayed, either initially or
when a menu item is selected. The menu is specified the same as for class
OpenLookButtonStack. The notify proc is the proc called when the abbreviated
button is pressed, and may be null. Remember that each item in the associated
menu may also have its own notify proc.

6-14 tNt Technical Reference Manual

Controls

Example

Notes:

The menu is created and then used as a parameter when the button stack is
created. This is necessary in this example so the menu may contain exclusive
choices. If "normal" menu items were wanted, it would be possible to create the
menu implicitly with an array parameter to the /new method of OpenLookAb-
brButtonStack.

Controls 6-15

Controls

The initial button label, "Text", is padded with blanks so the label graphic that is
created will be large enough to accommodate the largest menu item label, "Key-
board Equivalents". This is really just a workaround for a toolkit bug.

The menu callback simply prints the selected menu item label on the console.
In an actual application the callback would probably use /sendtarget to call a
method in some object associated with the menu.

The following variation on the menu notify proc causes the menu'’s default to be
changed to the menu item following the current choice every time a menu item
is chosen. Since clicking on the abbreviated button chooses the default menu
item, the effect of this code is to build an abbreviated menu button that steps
through the menu choices sequentially.

Analog Controls
Sliders

Sliders are a simple subclass of ClassDialControl. They implement a subset of
OPEN LOOK sliders as described in the OPEN LOOK UI Specification. A slider
only defines one delta, /Line. There’s currently no way to show the users what
the actual value of the slider is, because there is no way to display the scale.
There are no tick marks, and there is no way to tell what the minimum and
maximum values of the slider are. You can get some of this functionality if you
are willing to write some postscript code. You will have to write some code to
display the current, minimum and maximum values of the slider with numeric
controls. But you will have to use a FlexBag or your own subclass of ClassBag
to group them together in a reasonable way.

6-16 tNt Technical Reference Manual

The following code will create and activate a slider:

(% slider = - : :
. {slider value = %0 [/value 4 -1 roll

" Lzontalslider

The slider’s callback simply prints the current value of the slider. It could be
modified to display the new value in a numeric control.

Scrollbars

ClassScrollbar is a descendant of ClassControl, and like all controls, has a target
at which it directs certain actions. A typical target, or client, for a scrollbar is
some sort of text canvas, a canvas that knows how to display text and scroll
through it. A scrollbar must be given a target to scroll, a callback, and must
have certain parameters (called deltas) set to values appropriate for that applica-
tion (see below for an example). The scrollbar will handle painting itself, updat-
ing its position and value, and will automatically call its callback when a change
has occurred. It is the responsibility of the callback to inform the scrollbar’s tar-
get of the type of action that has occurred, e.g., scroll one line, or one page, or
to the end of the document.

ClassScrollbar is a subclass of ClassDialControl. It defines some new deltas
appropriate to scrollbars. The scrollbar deltas are named /Line, /Page and
/Document. They specify how much to increase or decrease the value of the
scrollbar when a user selects a particular type of scrolling. For example, values
for these deltas might be specified in units of lines, and so /Line would be set
to 1, /Page would be the number of lines visible in a page, and /Document
would be the number of lines in the document. These deltas are set by the
scrollbar’s target.

Controls 6-17

Controls

Controls

Scrollbars know how to scroll by lines, by pages, to absolute positions, and to
the beginning and end of whatever’s being scrolled. These types of scrolling
correspond to motions defined by scrollbars. The motion names are /Line,
/Page, /Document and /Absolute.

When the scrollbar’s callback is called, it should query the scrollbar for the type
of motion that occurred with the /motion method. /motion returns a value and
the motion name. The callback uses the value and the motion name to update
the target appropriately. How the value is interpreted depends on the kind of
motion. When the motion is /Absolute the value is the current value of the
scrollbar and the target should arrange to scroll to that position. Otherwise, the
value is either 1 or -1, depending on whether the scrollbar moved forward or
backward, respectively, a line or page, or to the beginning or end of the docu-
ment.

There is another special purpose delta called /View. The scrollbar uses /View
in conjunction with the /Document delta to display the proportion indicator.
/View defaults to the current value of the /Page delta.

While a scrollbar knows about its target, that target will often also want to
know about its scrollbar. For instance, a text editor will want to update the
scrollbar’s deltas whenever some lines have been inserted or deleted, or set a
new value when some user action in the editor causes the document to be
scrolled to a different place, e.g., searching.

ClassScrollbar is an abstract class; that is, it is never instantiated itself, but rather
is subclassed. To create a scrollbar, use OpenLookHorizontalScrollbar or Open-
LookVerticalScrollbar. They are subclasses of ClassScrollbar, and all they do in
the subclass is handle the OpenLook scrollbar look and feel.

6-18 tNt Technical Reference Manual

Controls

Simple Scrollbar Example

This sample code uses a simple class called ScrolledObject, which understands
methods for scrolling. This particular object defines methods which just print
out a message saying that it was called, but in a real life application they would
actually do something more useful. This example creates a scrollbar, then creates
one of these scrolled objects, and makes it the target of the scrollbar. Then it
just reshapes, activates, maps and paints the scrollbar. The callback for the
scrollbar simply queries the scrollbar (which is passed as an argument to the
callback) for the type of motion that occurred, and then performs a case

Controls 6-19

Controls

statement to figure out what method to call, and then it sendtarget’s that
method to the scrollbar’s target.

Fields

ClassTextControl

A text control is a control whose value is a string. Text controls several
methods of ClassControl; e.g., /CallNotify? and related methods do a string
comparison rather than a simple ‘eq” to determine if the value has changed since
the last notification.

A text control also registers its canvas as an input focus client; if it receives the
focus, keystrokes are treated as characters to be inserted into the control’s value.
Certain keystrokes, such as backspace, cause other modifications to the control’s
value. The text control calls /checknotify (and thus /callnotify if the value has
changed) whenever it loses the input focus, or when the RETURN key is
pressed; it does not notify on each keystroke.

Text controls are also selection clients. Thus they do not do tracking in the
same way as other controls; they do not override the /EventHandler method,
nor should subclassers do so. Instead they express a Selectable interest, and the
global selection manager handles the appropriate tracking. Much of the code in
ClassTextControl is for handling selections; writers of other text-selection code
may wish to look at ClassTextControl for guidance.

Read-only Text

In addition to the enable/disable methods, it is possible to define a text control
as being read-only. This has much the same effect as disabling the control, the
main difference being how it paints. A disabled control may paint dimmed,
whereas the read-only control paints normally but simply refuses to accept user
input. :

6-20 tNt Technical Reference Manual

Controls

Methods:
/setreadonly

Operating on the Text

Text controls offer several methods for programmatically altering the text string.
The inherited method /setvalue replaced the entire string. The other methods
operate at the current insertion point, which can be set by the user via the
mouse, and can also be set programmatically by /setposition. (There is unfor-
tunately no position method; clients can obtain the current position by sending
/Left, which yields the number of characters left of the caret.)

In addition to modifying the text, clients can also change which character
appears at the left edge of the control; characters further to the left are clipped.
This can be used to scroll the text to keep the caret within the visible region.
Many of the text-modifying methods conclude by sending /FitCaret, a subclasser
method that can be overridden to specify that the caret should remain visible.
The default /FitCaret never scrolls the text, but this is overridden by OpenLook-
TextControl (see below). The client method /fitcaret calls /FitCaret with no
other changes.

Methods:

/setposition /delword
/fitcaret Iscroll
/inserttext /Left
/delchar [FitCaret
/delspan

Appearance

The number of characters that can be displayed in a text control depends on the
size it is given. The /minsize method for text controls requests a size based on
the number of characters the control is expected to contain. The default is 5
characters, but this can be changed for any given control (or for a subclass).

Much of the visual behavior of a text control is inherited from ClassCanvas.
Two methods of particular interest are listed here.

Controls 6-21

Controls

Methods:

/setdisplaychars
/settextparams
/setcolors

OpenLookTextControl

The OPEN LOOK subclass of ClassTextControl adds no new client methods, but
simply overrides some existing methods to provide OPEN LOOK functionality.
Specifically, it paints scroll buttons when the text extends beyond the end of the
control, it paints a line just under the baseline of the text, and it overrides
[FitCaret to keep the caret visible after most operations. OpenLookTextControl
is the default class for ClassTextControl; i.e., it is obtained by sending /newde-
fault to ClassTextControl.

OpenLookNumeric

There is no "intrinsic" numeric control; there is only the OPEN LOOK form. A
numeric control combines a text control with a pair of buttons that modify the
numeric value by a specified increment, which is initially 1 but can be changed
with /setincrement. (If the increment is set to zero, the increment/decrement
buttons are removed.) The /value of a numeric control is a PostScript number
(integer or real). It is by default restricted to the range -32768 to +32767, but
this range can be changed by calling /setrange (or the individual methods /set-
min and /setmax).

Non-numeric characters can be typed into the text control, but will result in the
value being replaced with zero the next time the notifyproc is called. (This
occurs the same as for any other text control: on the RETURN key or loss of
input focus, if the contents have been changed.)

Methods:

/setincrement
/setrange
/setmin
/setmax

6-22 tNt Technical Reference Manual

7. GRAPHICS
|

SOIHdVYHD "2

7 Graphics

Graphics 7-1
Introduction 71
m Using OpenLookLabelGraphics 7-2
ClassGraphic 7-3
m State 7-3
m Size Negotiation 7-5
=» Rendering Support 7-7
m Validation 7-10
= Building your own graphic 7-10
Examples 7-13
m Example 2: Complete code for the SimpleColorGraphic 7-15
m Example 3: OPEN LOOK compatible version of
SimpleColorGraphic 7-17

Table of Contents i

Graphics

ClassGraphic
ClassCaret
ClassNullGraphic OpenLookHorzSliderElevatorGraphic-3 OpenLookVertSliderGraphic
OpenLookAnchorGraphic OpenLookNumericButtonGraphic
OpenLookCheckGraphic OpenLookScrollButtonGraphic ———» OpenLook AbbrButtonGraphic

LookLabelGraphic

OpenLookMenuButtonGraphic _<OpenLookButtonGraphic OpenLookButtonPullRightGraphic
OpenLookPinGraphic OpenLookMenuButtonStackGraphic OpenLookButtonStackGraphic
OpenLookSbarElevatorGraphic —» OpenLookVentSbarElevatorGraphic
OpenLookXSetting
FrameL.abelGraphic

Introduction

Graphics are provided by the NeWS Development Environment as a packaging
of a drawable object that knows how to reflect its state visually in an efficient
manner. Graphics are designed to be very light weight so that they can be used
as the images for buttons, menus, controls, and labels. There is no canvas associ-
ated with a graphic, so using a graphic does not imply the overhead of a NeWS
canvas object or of a ClassCanvas object.

Another characteristic that makes graphics lighter weight than canvases is that
they do not establish or maintain the graphics context. Any operation on a
graphic, including /setsize, /paint or /minsize, is sensitive to the current canvas
and transformation matrix and is likely to permanently alter the graphics con-
text by changing the color or font. Users should be aware of this and wrap any
“calls to graphics in a gsave/grestore when appropriate. On the other hand, if a
series of calls to graphics are going to be made, as in the case of menus, it is
necessary to do only a single gsave/grestore pair for the whole series.

Graphics 7-1

Graphics

Using OpenLookLabelGraphics

Graphic instances are useful where a canvas interface is needed but a real
instance of ClassCanvas is unnecessary. One example of this is labels on con-
trols. By default the NeWS Development Environment controls do not come
with labels but it is easy to construct a control with a label by packaging them
together in a bag. There is a special subclass of ClassGraphic called OpenLook-
LabelGraphic that can be used just for this. Most common control labels are
text so that is what we will use in this example. To create a label, you need to
send /new to OpenLookLabelGraphic along with the thing you would like to
display as the label. In this case it is the string "My Label:".

If you want to make your label use a different font than the default you can
pass the font in with the string like this:

You can also change the color of the label in a similar fashion.

Now to complete the example we need to add the label to a bag along with a
control. In this case I use an instance of an FlexBag to hold a label and a slider.
I'll position the label to the left of the slider. Notice that I don’t set the font or
the color of the label; it will automatically inherit the text font and color from
the bag.

7-2 tNt Technical Reference Manual

Graphics

ClassGraphic

The base class for all graphics is ClassGraphic. ClassGraphic is an abstract super
class. This means that ClassGraphic can not instantiated directly, rather Class-
Graphic must be subclassed and then the subclass instantiated. ClassGraphic
packages a number of useful utilities that a subclasser or user of a graphic
might be interested in using. It is not necessary to use all of the features that are
packaged in ClassGraphic when building a subclass.

State

One of the most commonly used features of ClassGraphic is "state". The state
transitions in a graphic are designed to be painted as efficiently as possible. For
example, if a menu item is highlighted by drawing a box around it, the graphic
should be able to draw that box without re-drawing the text. There are a
number of methods can be used to efficiently manage the state of the graphic.

Graphics 7-3

Graphics

Methods:
/setinitstate
/setstate
/setelement

/state
[TranslateState
/EquivelantState?
/paint

[Fix

The states that a given graphic can reflect are completely up to the implementor
of the graphic. There are two basics forms for the state supported by Class-
Graphic, the state can be represented by any PostScript object type, or as an
array of PostScript objects. The array case is provided as a convenience since it
is a very common way of maintaining a number of axes of state (dependent or
independent). Notice that since the graphic puts few restrictions on the form of
the state, only graphics that understand the same states can be used inter-
changeably. Graphic implementors are encouraged to describe the form of the
state for their graphic above its definition. Objects that take graphics are also
encouraged to publish the form of the state that they expect so that users know
which types of graphics can be used with that object.

Each graphic class will respond in a unique way to changes in graphic state.
Therefore, graphics implementors must override methods that directly interpret
the meaning of the graphic state. Typically those methods are /Fix and /paint.
[Fix is called when some element of the graphic state is changed by a call to
/setstate. It takes as an argument a single boolean or an array of booleans,
depending on how many independent states the graphic has. Each value in the
array indicates a change in the corresponding state in the state array. /Fix
should use these booleans to update only those graphic elements that have been
directly afected by the change in state. For instance, one element of graphic
state might indicate that the graphic should have a highlighted border. When
that state element is changed the graphic should just update the border and not
completely repaint itself. This will reduce the flashin the graphic as it changes
state and increase the percieved speed of the update.

The /paint method also must concern itself with the state. /paint is called when
the graphic needs to be drawn completely. The graphic implementor should
make sure that their /paint method reflects the current state of the graphic
when it is done.

7-4 tNt Technical Reference Manual

Graphics

Graphics implementors may also need to override /EquivelantState?.
/EquivelantState? is called by /setstate to see if the new state is different from
the old state (it is called for each element of the array when the array form is
used). This method should return "true” if the old state and the new state differ,
it should return "false" if the states are the same. The default implementation for
/EquivelantState? is:

This will only work if the state elements are simple type (keywords, booleans,
integers, etc.). If the state is represented by a more complex type (like a diction-
ary), then /EquivalentState? will need to be overridden compare the old state
and the new state appropriately. In the case of a dictionary, it may be appropri-
ate to compare the two dictionaries element by element. Notice that
[EquivalentState? does not need to be overridden for state maintained as an
array of simple types since it is called for each element of the array.

ClassGraphic does not initialize the state automatically, that is considered a
subclasser’s responsibility. The method /setinitstate should be called within
/mewinit to initialize the graphics state to one of its possible values.

Size Negotiation

ClassGraphic has a number of methods to support the manipulation of the size
of the graphic as well as support for size negotiation. ClassGraphic is designed
to work as a position independent object. That is that the graphic will always
render at the "currentpoint” (defined in the process’s NeWS graphics state).
Some users of graphics find it convenient to treat the graphic like a ClassCanvas
object for some operations (like positioning), so a number of ClassCanvas like
position support methods exist. In general, it is recommended that these
methods be avoided. The following list of methods can be used for size negotia-
tion:

Graphics 7-5

Graphics

Size Methods: Location Methods:
/minisize /move
/preferredsize /location

/setsize /reshape

/size /paintat

The /minsize method is used to determine the smallest size that the graphic can
be made. ClassGraphic defines /minsize to return a width and height of zero, so
graphic implementors should override /minsize to return the correct width and
height for their graphics. ClassGraphic does not attempt to enforce the
minimum size, rather it is expected that users of the graphic will call /minsize
and respect the returned values. This is a performance consideration born of the
fact that /minsize is typically a very complex function and should only be called
when needed. The user of a graphic is in the best position to determine when
they might violate the minimum size.

The /preferredsize size method is similar to /minsize. /preferredsize returns the
width and height (larger than minsize) that the graphic can best be rendered at.
For example, a scrollbar maybe able to be rendered so that some of its parts are
not visible, it ideally it would like to be big enough to display all its parts and
have some room to move. This size would be the scrollbar’s preferred size.
ClassGraphic defines /preferredsize to return the minimum size. A graphic
implementor should override /preferredsize if the graphic has a preferred size
different from the minimum size.

The size of the graphic can be set with the /setsize method. This method rarely
needs to be overridden. There is no checking of the width and height arguments
to ensure that they are larger than the minimum size. The user of the graphic is
responsible for using reasonable arguments. /setsize has the side effect of
invalidating the graphic (see validation below).

The /size method will return the current width and height of the graphic. If /set-
size has not been previously called the graphic’s minimum size will be returned.

The various location methods simple set, and retrieve the positional values that
are the arguments (/reshape calls /setsize with the width and height arguments).
These methods only perform a small subset of the functions of the similar
methods in ClassCanvas. There use is discouraged.

7-6 tNt Technical Reference Manual

Graphics

Rendering Support

The various rendering support methods in ClassGraphic are also commonly
used. Graphics have a number drawing methods in common with ClassCanvas.
The following methods and class variables can be used to support the rendering
of a graphic:

Methods: Class Variables:
/paint /StrokeColor
[Fix [TextColor
/setthing [FillColor
/thing /DisabledColor
/thingatom [TextFamily
/thingsequivalent? /TextSize
/setterminal [TextEncoding
/terminal? [TextFont
/ThingSize

/ShowThing

ClassGraphic assumes that it is always rendered on a ClassCanvas instance.
This allows the various variables above to inherit their values from the canvas
that they are rendered on. These variables can be used at any time as argu-
ments to PostScript operators (ex. setcolor, setfont) or methods. Graphics imple-
mentors can also choose to override the variables default behavior (getting their
value from the canvas) by setting them to other values. Since these are well
known names that users can change the defaults for in the UserProfile diction-
ary, graphic implementors are encouraged to use them.

The /paint and /Fix method have been discussed already. These are the two
methods that get called to actually render the graphic. /paint should render the
entire graphic including the elements of its current state. /Fix should do the
most optimal job possible of painting the change in state indicated by its argu-
ments. These methods should both render the graphic relative to the
"currentpoint”. When a user of a graphic calls either the /paint method or /set-
state (/setstate will call /Fix) they should ensure that the current NeWS graphics
state is correctly set up. The current point should be the location that the
graphic is to be rendered at and the canvas should be the canvas that the
graphic should be rendered on.

Graphics 7-7

Graphics

ClassGraphic supports a completely optional set of utilities for manipulating a
"thing". These methods are supplied solely as an aid to graphic implementors
that which to use them. A "thing" is generally used to hold the user supplied
part of the graphic. The graphics that are used in tNt menus for menu com-
mand items, menu pullright items, and menu choice items all use
ClassGraphic’s thing support to hold the user supplied labels (usually strings).
A thing is a simple specification that allows for a visible part, called the "atom"
and some number of modifiers to affect the rendering of the atom. The thing
specification looks like:

atom, or [atom modifier modifier ...]
An atom is either a string, executable array, instance of a graphic, or a canvas.
A modifier is any number of a font, a color, a pair of numbers, or a name.

The /setthing method can be called (typically in /newinit) to set the current
"thing" for the graphic. The /thing method will return the current thing of the
graphic. The /thingatom method will return the atom of the current thing of the
graphic. /thingsequivalent? will compare its argument to see if it is equivalent
to the current thing of the graphic. The two methods /ThingSize and /ShowTh-
ing know how to parse a thing to return its width and height or to show it at
the current point. These methods should be called from methods like /paint, /Fix
or /minsize.

The case where the atom is a string is the most common. The string is shown in
the current font at the "currentpoint” such that the whole string is above and
two the right of the current point when the CTM is the "defaultmatrix”. The
size of the thing is determined by the bounding box of the string.

The executable array form of an atom is used to supply a drawing procedure
for the atom. The executable array must take one argument on the stack, a name
that is either /size, or /paint. The executable array should return the width and
the height that the drawing will occupy if the argument is /size. The image
should be rendered in the current NeWS graphics state if the argument to the
executable array is /paint. The following is an example of the executable array
form of an atom:

7-8 tNt Technical Reference Manual

Graphics

Notice that the array should assume that the current point, current color, etc.,
are available in the current NeWS graphics state.

The atom of thing can also be another graphic. The /ThingSize method will
query the graphic for its size by calling the graphic’s /size method, so the user
should ensure that the correct size for the graphic has been set. The /ShowTh-
ing method will call the graphic’s /paint method.

The canvas for of the atom has not been implemented as of this writing. A can-
vas can still be specified, but no bits will be rendered when /ShowThing is
called. When /ThingSize is called on a thing with a canvas as its atom a width
and height of zero will be returned.

Most of the modifiers for a thing change the current graphics state in some way.
A modifier that is a font will set the current font to new font. A color modifier
will change the current color. Numeric modifiers need to be specified as a pair,
they cause the current point to be moved relatively by numeric pair (x then y).
The final modifier type is the name of a method in the graphic that the thing is
passed to. This method is executed every time either /ThingSize or /ShowThing
is called. Here are a few example of valid things:

Graphics 7-9

Graphics

The last two methods listed above, /setterminal and /terminal? are used by the
graphic user to determine whether a given graphic should be treated as a
"thing" or should be treated as a stand alone graphic. The /terminal? method is
used by the the NeWS Development Environment menu code to determine if a
graphic should be used as a thing to one of the menu’s graphic types or treated
as the complete menu item.

Validation

ClassGraphic has a number of methods that are used to track and modify the
current validity of the graphic for painting.

The use of a /ShowThing is currently the only method of ClassGraphic that
requires that an instance of its subclass be valid. Many of ClassGraphic’s subc-
lasses do take advantage of validation. The /validate method can be overridden
to cache certain values in order to improve painting speed. One common use of
validation is to cache the location of the "thing" relative to the current point for
the current thing, size and font. The graphic is invalidated and then re-validated
before the next time it is used. Deferring the validation until the time that the
information is need allows for a number of operation that might invalidate the
graphic to occur without having to validate the graphic each time.

Methods
/valid?
/validate
Nvalidate
/invalidate
/ValidateThing

Building your own graphic

Building a useful subclass of ClassGraphic is quite simple. The following exam-
ple is a very simple graphic that has two states, either /Normal or
/Highlighted. The graphic is a box that is filled a color that is specified as part
of /new and is not outlined when the graphic is in its "/Normal" state and is
outlined with a thick border when the graphic is in its "Highlighted" state. The
initial state for this graphic will be "/Normal".

7-10 tNt Technical Reference Manual

Graphics

/newinit is overridden to consume the color argument to the graphic and to
establish the initial state of the graphic. In this case, the state of the graphic is
initialized by calling /setinitstate in /newinit with the name /Normal. Here is
the code for /newinit:

The second method that is overridden is /paint. Notice that /paint checks to see
what the current state is and only paints the highlighting box if it is needed. See
the complete example 1 for the details of the /PaintColorFrame and
/PaintColorInterior utilities. Here is the code for /paint (notice that super is not
called):

The /Fix method must also be completely overridden. /Fix will be called with a
boolean that indicated whether the state has changed. The body of the /Fix
method is wrapped in an "{ ... } if" so that no work is done if the argument to
fix is "false". If the argument to /Fix is true then the state has changed and the
new state needs to be reflected. In the code that follows the state is checked, if it
is /Highlighted the the current color is set to the stoke color, if it is /Normal
the current color is set to the fill color. Then the highlight frame is painted by
the /PaintColorFrame utility (see Example 1 for the details of /PaintColor-
Frame). Painting the highlight box in the fill color will have the effect or erasing
just the highlight box. When fix is called the main color box is never re-drawn.

Graphics 7-11

Graphics

The override of /minsize in this example is very simple, it simply returns a
width and height of "30". This value is fairly arbitrary. However, the minsize
does need to be at least big enough to accommodate the colored box and the
highlighting box.

The final method that must be overridden is /equivalent?. This is the method
that is called when a user wants to compare this graphic and some other
graphic that they might have (for example, a search method in a menu). Since
this method has no default implementation in ClassGraphic it must be provided
by each subclass. /equivalent? needs to be carefully written since the graphic
handed in may not understand the same methods as the graphic that is being
implemented. In this case, another graphic is considered equivalent to this
graphic if the color handed into /new is the same. The /equivalent? first checks
that the graphic handed in as an argument understands the correct methods,
and then checks that the colors are the same. If either of these tests fail, the
/equivalent? returns false.

7-12 tNt Technical Reference Manual

Graphics

Methods:
/newinit
/paint

[Fix
/minsize
/equivalent?

Examples

Example 1 contains the complete code for the graphic just described. The follow-
ing code can be entered in an interactive session to try the graphic:

Graphics 7-13

Graphics

Example 2 contains a subclass of SimpleColorGraphic that supports the same
states as the graphics required for the NeWS Development Environment menus
and buttons. This graphic can be used in a tNt menu to build a color selection
menu. The /newinit method for this graphic calls the /setterminal method with
"true”. This marks the graphic so that the menu or button will not try to treat it
as a "thing", but will install it directly.

7-14 tNt Technical Reference Manual

Example 2: Complete code for the SimpleColorGraphic

(continued on next page)

Graphics

Graphics 7-15

Graphics

7-16

tNt Technical Reference Manual

Graphics

Example 3: OPEN LOOK compatible version of
SimpleColorGraphic

(continued on next page)

Graphics 7-17

Graphics

7-18 tNt Technical Reference Manual

8. NeWS DEVELOPMENT ENVIRONMENT

ININNOHIANT LINIWAOT1IAIA SMN '8

8 The NeWS Development
Environment Input Model

The NeWS Development Environment

Input Model
Introduction
Review of NeWS Input
Executable Matches
Main Class Hierarchies
m ClassEventMgr
m ClassKeyboard
m Classlnterest
Branch Hierarchies
m ClassNotifylnterest
m ClassDependentinterest
m Keyboard Processing
Methods
m Classlinterest
m ClassNotifyinterest
m ClassDependentinterest
m ClassShiftinterest
m ClassKeysinterest
Examples
m Example 1: Simplest Keyboard Processing
m Example 2: Adding Function Keys
m Underlying Mechanisms of Examples 1 and 2
m Example 3: Reading the Number Pad
m Example 4: Non-Standard Uses
m Complex Example

Table of Contents

8-1
8-2

8-5
8-5
8-5
8-5
8-6
8-6
8-7
8-7
8-9
8-9
8-10
8-11
8-12
8-12
8-14
8-14
8-15
8-17
8-19
8-21
8-23

The NeWS Development Environment Input
Model

ClassInterest
ClassKeysInterest
Class ndentInterest
Depe _< ClassShiftInterest
ClassEnterSelfInterest
ClassEnterSubtreelnterest
ClassNotifyInterest ClassFocusSelfInterest
ClassSharedInterest ClassFocusSubtreelnterest
TimerInterest ClassSelectable
ClassOLSelectable DragTextSelectable
ClassSelectableUI DesktopSelectable»TextCtrlSelectable

FrameSelectable
TransferInterest —> AsciiTransferInterest

Introduction

The basic NeWS input system, as described in the NeWS Programmer’s Guide,
provides a complete mechanism for handling user inputs in PostScript applica-
tions. However, it is defined at a fairly low level; the amount of detailed
knowledge required to build applications at this level is daunting. Further, it
has no relation to the class system in which the NeWS Development Environ-
ment is built; this leads to inconsistencies and conflicts in the structure of appli-
cations if both are used.

A "class-based" layer of facilities has been built on top of the fundamental input
and process primitives. This encapsulates many common forms of processing,
and has a uniform style with the rest of the NeWS Development Environment
class system. This layer comprises class hierarchies under three base classes:
ClassEventMgr, ClassKeyboard, and ClassInterest. ClassEventMgr provides a
process which expresses interests, awaits events which match those interests,
and then dispatches to client handlers for those events. ClassKeyboard is a util-
ity class which provides the definition of the keyboard attached to the server,
along with a number of methods for inquiring and manipulating aspects of that
definition. ClassInterest itself provides a fairly thin veneer on the interests

The NeWS Development Environment Input Model 8-1

The NeWS Development Environment Input Model

defined by the server; it has a rich tree of subclasses which provide for a great
deal of common input processing such as keyboard input and selections.

The facilities described in this section are, in turn, used by higher-level com-
ponents of the NeWS Development Environment. For instance, many applica-
tions which require keyboard input can get it conveniently via the OpenLook-
TextControl. Even where the NeWS Development Environment does not pro-
vide all the desired functionality, it is unlikely that the lowest-level facilities are
the appropriate ones to use. The first few examples described in this chapter
show ways to get straightforward keyboard input; check them before deciding
whether you should master all the intervening material.

For the simplest clients, there is no need to use an instance of ClassInterest.
Interests returned by the Makelnterest utility in ClassCanvas are equally accept-
able to an event manager. This level of use might be appropriate, for instance,
for detecting button hits on a canvas, without reference to focus, selections, etc.

Review of NeWS Input

Let’s briefly review the underlying server semantics for input. An input event is
one of the "magic dictionary" objects (type /eventtype). It has a number of
fields defined by the server, including Name, Action, Canvas, Process, KeyState,
and TimeStamp; clients are free to add other fields just as though the event
were a standard dictionary. Input events are generated by the server in
response to hardware and window system activity (key presses, window cross-
ings, etc.). Events are also generated by client processes running in NeWS. The
server distributes an event by matching it against inferests expressed by
processes, where an interest is simply another event which has some of its
Name, Action, and Canvas fields filled in with desired values. Interests may be
directed at sets of values (rather than single values) by storing compound
objects (arrays or dictionaries) in the relevant fields.

The executable match facility is available and mentioned in the server documenta-
tion, but receives relatively little emphasis. This is a central component of the
NeWS Development Environment’s subclasses of ClassInterest, so we will
describe it in some detail here.

8-2 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Executable Matches

When a dictionary appears in the Name, Action, or Canvas field of an interest,
it specifies that an event will match any of a number of values (the keys in the
dictionary). What happens when such a match is found depends on the value
associated with the key in the dictionary. If the dictionary value is not execut-
able, it replaces the value in the event being delivered. This form can be used,
for example, to translate a key code into a character. But if the dictionary value
is executable, the value in the field is not modified; instead the executable value
is evaluated in the context of the awaitevent which receives the event. If more
than one of those three fields has an executable match, all are evaluated; the
order is Name, then Action, then Canvas.

Let’s consider a simplified keyboard example. An event generated in response
to a key press on the ‘A’ key will have a keycode in its Name field (e.g., 28493);
its Action will be /DownTransition, and it will have null in its Canvas field.

First consider how this would be handled without executable matches. The
client might use an interest defined with

That interest would be expressed in a process that then executed some code like

The matched events will be returned by the awaitevent (with the keycode
translated to a character); the client’s KeyDown method consumes that event,
and then the loop returns to the awaitevent.

The NeWS Development Environment Input Model 8-3

The NeWS Development Environment Input Model

An equivalent formulation using executable matches would use an interest like

and the event-processing loop is simply

The translation from keycode to character happens the same way in both cases;
but by convention an executable match consumes matched events. If there is
more than one executable match in a single interest, the last (and only the last)
should consume the event. It is important that there be no mixing of interests
which use executable matches in the same process with those that don’t; the
stack discipline requires that a process use one or the other uniformly.

The executable match style has some advantage in expressive clarity: the way a
particular value is handled is closely associated with that value. It also ensures
the system can provide handlers for events it needs to process, while allowing
the client to add other events to be handled in the same process. For these rea-
sons, all instances of ClassEventMgr require executable-match interests.

8-4 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Main Class Hierarchies

Now let’s return to the three main classes involved in processing user inputs.

ClassEventMgr

ClassEventMgr is the NeWS Development Environment analogue of the
forkeventmgr and ExpressEmgrinterests utilities. It provides for starting a pro-
cess which will express a set of interests (/new, /clearcontext, /setname); adding
and removing interests from the set managed by that process (/addclient,
/addclients, /removeclient, /removeclients); and shutting down the event
manager process (/destroy, /queuedestroy, /removeallclients).

It also provides a set of inquiry methods (/name, /active?, /getprocess, /interests,
/processstate), mechanisms for evaluating executable code in the event manager
process (/callmanager, /argcallmanager), and support for a robust form of
eventmgr, which is not killed by errors occurring in handlers for the events it is
receiving (/makerobust). As mentioned above, any interest passed to an
instance of ClassEventMgr must specify an executable match.

ClassKeyboard

ClassKeyboard provides the description of the server’s keyboard — what keys
are available on it, where the characters and modifier keys are, what escape
sequences are associated with which function keys, etc. It also provides a
number of utility methods to clients interested in keyboard processing; the most
useful are /toChar, /toControl, /toControlChar, /toLower, /toMeta, /keyforsym-
bol, /buildkeydict, and the pair /removefunctionkey and /restorefunctionkey.

Classinterest

ClassInterest and its subclasses are the NeWS Development Environment analo-
gue of the eventmgrinterest utility; they are the workhorses of input processing.
It is possible to instantiate ClassInterest itself; the result is an interest little dif-
ferent from that returned by createevent. Rather, most clients deal with subc-
lasses of this class (both their own, and a few system-defined subclasses).

The NeWS Development Environment Input Model 8-5

The NeWS Development Environment Input Model

Branch Hierarchies

There are two main branches to the class tree under ClassInterest: ClassNo-
tifyInterest and ClassDependentInterest. They often occur in related groups.
Both of these subclasses require that their instances specify executable matches
(unlike ClassInterest itself, which may or may not, at the client’s convenience).

ClassNotifyInterest

A Notify interest matches an event which acts as a trigger or initiates a state.
The two most common examples are assignment of focus to a particular canvas
(ClassFocusSelfInterest) and detection of a mouse-button down or other event
which initiates a selection-making dialogue (ClassSelectable). The Notify
interest may also detect the event which terminates the state it initiated;
ClassFocusSelfInterest does, but ClassSelectable does not. A Notify interest is
normally handed to an eventmanager shortly after it is created, and remains
active thereafter for the life of its client.

Three other subclasses of ClassNotifyInterest are less frequently used, but are
provided for completeness. ClassFocusSubtreelnterest triggers when focus is
assigned to a canvas or any of its descendants in the window hierarchy.
ClassEnterSelfInterest detects entry of the cursor directly into a particular canvas
(whether or not this causes the canvas to become the input focus). ClassEnter-
Subtreelnterest detects entry of the cursor into a canvas or any of its descen-
dants.

ClassFocusSelfInterest has one additional side effect: when it is activated, it
establishes its canvas as a focus client. That is, it tells the global focus manager
that the canvas is interested in being sent focus events. If the canvas is a
ClassCanvas, the FocusSelfInterest calls /setkeyconsumer (which in turn calls
addfocusclient); otherwise it calls addfocusclient directly. The FocusSelfInterest
likewise takes care of removing the canvas as a focus client when the interest is
deactivated. Note that the other three subclasses do not register the canvas as a
focus client.

8-6 tNt Technical Reference Manual

The NeWS Development Environment Input Model

ClassDependentinterest

When a Notify interest is triggered (i.e., when an event arrives which matches
the interest), one of the things the handler does is to express other interests
which should only be active for the duration of the state initiated by the Notify
interest. These transient interests MUST in turn be instances of some subclass of
ClassDependentInterest.

For a focus Notify interest, the dependent interests concern keyboard events, on
both shift keys and those that directly produce characters. (These will be
instances of ClassShiftInterest and ClassKeysInterest, respectively.)

Dependents of a Selectable will handle mouse motion or crossing events, and
button-up on the triggering button; these dependents are less structured than in
the keyboard realm.

Generally, a DependentInterest will be global (i.e., it will be a pre-child interest
on the root canvas), while a Notify interest will be expressed on a particular
canvas.

Keyboard Processing

Keyboard processing is normally handled by instances of ClassFocusSelfInterest,
ClassShiftInterest, and ClassKeysInterest. Straightforward keyboard clients are
provided for in methods which hide almost all of the interrelations of these
classes; see the first examples below. (For these purposes, a "straightforward
keyboard client" is one which requires only ASCII characters off the standard
typing array of the keyboard, in the usual shift combinations. By default, the
usual shifts are Control, Shift, Meta, and CapsLock; Meta may be excluded from
that set by defining /MetaKeys? to false in the UserProfile dict at startup.) More
sophisticated use involves deeper understanding of these classes, and is
addressed in succeeding sections.

There are two main sources of complication in handling keyboard input:

The client should not get keyboard events when it is not the focus. However,
when it becomes the focus, it should get events regardless of the cursor location.
(Click-to-type will not work unless this criterion is met.)

The interpretation of keys varies with the shift state, but different clients and
different keyboards may require different definitions of which keys determine
the shift state. For instance, emacs will almost certainly use the Meta keys, but
other editors may apply other interpretations to those keys.

The NeWS Development Environment Input Model 8-7

The NeWS Development Environment Input Model

Similarly, some keyboards have a NumLock key which should change the right
pad to be a numeric key-pad, but should not affect keys in the standard typing
array.

A brief sketch of how keyboard events are delivered to clients will indicate how
these problems are addressed.

An instance of ClassFocusSelfInterest detects when the client’s canvas has been
assigned focus; until that happens, the client is uninterested in keyboard events.
When the client gets focus, the focus Notify interest activates its associated Shift
interests and Keys interests. A Shift interest determines the state of interesting
shift keys when it is activated, and tracks up- and down- transitions on its shift
keys to maintain that state as long as it is active. A Keys interest generally
notices down-transitions on standard keys, translates them to characters, and
delivers them to the client. The translation performed by a Keys interest is
determined by the dictionary in its Name; when a Shift interest recognizes a
change in the shift state, it causes new dictionaries to be stored in the Names of
its associated Keys interests. When the client canvas loses focus, the dependent
interests (Shift interests and Keys interests) are deactivated by the focus Notify
interest.

This second problem is addressed by the relationship of Shift interests and Keys
interests. A Keys interest has an /update method that causes the interest to
modify itself based on an externally provided state. The default behavior is that
/update takes an integer and modifies the Name field of the interest based on
that integer, as follows.

When a Shift interest is activated, and again whenever the state of the shift keys
changes, it reports the shift state to each of its associated Keys interests. Each
Keys interest uses the shift state to index into an array of dicts, and stores the
selected dict into its Name field. The array of dicts is precomputed so that the
dict corresponding to a particular shift state will map keystations into ASCII
characters according to that shift state. The result is that most keystrokes are
converted directly into ASCII characters without having to examine the shift
state on each keystroke; the additional work for handling shift keys is done only
when the shift keys themselves change state.

Multiple Keys interests may be associated with a single Shift interest, and multi-
ple Shift interests may be associated with a single Notify interest. Methods are
provided in each class for inserting and removing interests at each location in
the hierarchy.

8-8 tNt Technical Reference Manual

The NeWS Development Environment Input Model

It is also possible for a Dependent interest to be activated independently,
despite its name. This is primarily useful for a global Shift interest which main-
tains a fully-defined shift state, without any associated Keys interests, for
inquiries by random clients.

Methods

This section summarizes the interesting methods of these various classes.
Methods for ClassKeyboard are discussed in a separate section. Two other data
structures are crucial to the understanding of keyboard processing in the subc-
lasses of ClassInterest: the ShiftDict and Map.

A ShiftDict is a dictionary that specifies how a shift state is computed from a set
of keys; it associates device-keycodes to a bit in the shift state, or to some pro-
cedure that does more complicated state maintenance. This is a little tricky; if
you’re going to build your own ShiftDict, see the full description below.

A Map is a dictionary that carries some set of keycodes to values such as char-
acters. At any time a Keys interest is active, its Name field will contain such a
map.

Each Keys interest has an associated set of Maps: an array of 2" dicts, where n
is the number of bits in the shift state. If a shift-key transition is detected, the
map corresponding to the new shift state is stored in the Name field; this is how
different values are reported for the same key depending on shift state.

Classinterest

/new canvas action name /new interest
Create a new instance of the class.

/interest —— /interest interest

Analogous to /canvas in ClassCanvas; obtains
the NeWS interest that corresponds to the Clas-
sinterest. (Currently this is "self", but clients
may use this method to isolate themselves in
case the implementation changes.)

The NeWS Development Environment Input Model 8-9

The NeWS Development Environment Input Model

/activate

/deactivate

/Active?

/destroy

ClassNotifylnterest
/NotifyIn

/NotifyOut

/TestTrigger

8-10

event /activate —-

Express the interest. Redundant (but safe) if
already expressed. If the Process field in the
interest is non-null, the interest is expressed for
that process; otherwise it is expressed for the
current process. The event argument is present
because some subclasses require it, and callers
may not know whether this particular interest
belongs to such a class. If no useful event is
available to hand to /activate, use nullevent.

—— /deactivate --

Revoke the interest. No-op if the interest has
not been expressed.

—-- /Active? bool
Has this interest been activated (expressed)?
—— /destroy ——

Automatically nulls out the Name, Action, and
Canvas fields, to facilitate garbage collection.

event /Notifyln -—-

Activate all Dependent interests of this Notify
interest. Generally called as part of an execut-
able match in the Notify interest, so the trigger-
ing event is on the stack.

event /NotifyOut —-

Deactivate all Dependents. No-op if they have
not been activated.

-— [TestTrigger bool

Tests whether the triggering event for this
interest has already occurred. This is used when
the Notify itself is activated, when it wants to
determine if it should immediately activate its

tNt Technical Reference Manual

/finddependent

ClassDependentinterest
/new

/new

/adddependency

/removedependency

Dependents. The default implementation for
[TestTrigger is to return ‘false’; it is overridden
by subclassers.

value /finddependent Dependent true/false

Find the Dependent interest (if any) registered
using the given value. (See /adddependency
below.) The /addsuite method in a Keys interest
uses this method to avoid creating two identical
Shift interests.

any Nint canvas action name /mew Dint
null canvas action name /new Dint

If a non-null Notify interest is provided, the
Dependent interest is automatically registered
with the Nint, in which case the "any" argument
must be provided for use with /adddependency.

any Nint /adddependency --

Make this interest dependent on a specified
Notify interest. The Dependent is first discon-
nected from its current Notify, if any. The "any"
is a value that can later be used to obtain the
Dependent from the Notify using /finddepen-
dent. If this Dependent is a Shift interest, it
calls /adddependency for its associated Keys
interests so that they will all be activated by the
same Notify interest.

-- /removedependency —-

Disconnect this interest from its current Notify,
if any. If this interest is a Shift interest, it calls
/removedependency for its Keys interests as
well.

The NeWS Development Environment Input Model 8-11

The NeWS Development Environment Input Model

The NeWS Development Environment Input Model

ClassShiftinterest

/new shiftdict Nint /new Sint
This method is not often called by clients;
instead, Shift interests are created by calling
/addsuite for a ClassKeysInterest (below). The
/Action and /Canvas fields for a Shift interest
are hard-wired. The shiftdict gets stored in the
/Name field; if the dict is null, the default shifts
(which may or may not include Meta, depend-
ing on /MetaKeys? in UserProfile) are used. The
Notify interest can be null to create a global
Shift interest. If it is non-null, the shiftdict is
used as the "any" for /adddependency.

/destroyempty —— /destroyempty --

Destroy this Shift interest if it has no associated
Keys interests.

/shiftstate —— /shiftstate int
Return the current shift state of this interest.
/modifierdown? name /modifierdown? bool

Return whether a given modifier is down,
according to this interest. The argument is a
name evaluated by sending it to the interest.
Usually the name is a class variable.
ClassShiftInterest defines class variables for
these common shift names: /Shift, /Caps, /Con-
trol, /Meta.

ClassKeysinterest

/new downproc upproc maps shiftdict /new
interest
The usual interest fields are hard-wired. Name is
initially null, to be updated when we hear from
the Shift interest; Canvas is null because Keys
interests are always global, etc. The client-
supplied parameters are instead a proc to be

8-12 tNt Technical Reference Manual

The NeWS Development Environment Input Model

called when a key is seen to go down (null if
none), another proc for keys going up, an array
of 2°n keymap dicts, and a shiftdict to be used
when building the Shift interest. The keymaps
and shiftdict can be null to get the correspond-
ing defaults. Note that unwanted downprocs
and upprocs should be null, not nullproc, for
maximum efficiency.

/addshift sint /addshift -—-

Link this interest with a particular Shift interest.
The Keys is first disconnected from its current
Shift, if any. The Shift tells you which Notify to
hook up to (by calling /adddependency).

/removeshift -- /removeshift —-

Disconnect this interest from its current Shift, if
any.

/update int /update -—-

Update this interest based on the Shift’s new
state. The Keys interest selects the specified dict
from the "maps"” array supplied to /new, and
stores the dictionary in the interest's Name field.

/shiftstate —— /shiftstate int

Return the current shift state of the associated
Shift interest. This method is provided for
clients who let the Keys interest create the Shift
(using the methods below), so the client has no
handle by which to ask the Shift directly.

/addsuite notify-int /addsuite —-

Add a Keys interest to the structure under a
given Notify interest. If the Notify already has a
Shift interest that uses the shift dict given to the
Keys’ /new method, the Keys is added to that
Shift. Otherwise a new Shift interest is created
and added to the Notify, and the Keys is added
to the new Shift.

The NeWS Development Environment Input Model 8-13

The NeWS Development Environment Input Model

/removesuite —- /removesuite —-

Unlink a Keys interest from its Notify/Shift
structure. If this leaves the Shift with no Keys,
the Shift is destroyed.

/defaultkeys downproc canvas /defaultkeys Nint

This creates a Notify interest in input focus on
the given canvas, and also a Keys interest with
the given downproc and no upproc, using the
default keymaps and shift dict. The Keys’
/addsuite is called to create the Shift interest and
hook everything together, and the NOTIFY
interest (not the Keys) is returned. Thus,
/defaultkeys is often called in a ClassCanvas’s
/Makelnterests method.

/metakeys downproc canvas /metakeys Nint

Same as /defaultkeys, except it always includes
the Meta shift keys rather than using the default
specified via the User Profile /MetaKeys?
boolean.

Examples

Example 1: Simplest Keyboard Processing

A client which needs only ASCII characters from the standard typing array of
the keyboard has very little to do; it simply creates one more interest for its
frame or canvas event manager to manage. This example, which uses the
ReportChar procedure, extracts a character from the Name of an event and
prints it on the current file.

8-14 tNt Technical Reference Manual

The NeWS Development Environment Input Model

The method /defaultkeys returns a single focus Notify interest. As a side effect
of expressing that interest, the client’s canvas is declared a focus client; that is,
the global focus manager is told that the focus should be assigned to that canvas
under the appropriate circumstances. Now, when focus is assigned to the client
canvas, the Notify interest will activate default Shift and Keys interests. The
first will track the state of the shift keys; the latter will translate keycodes to
characters according to the current shift-state, and invoke ReportChar to handle
those characters. ReportChar will be called with an event on the stack, which it
consumes.

The underlying mechanisms for all this are discussed below.

Example 2: Adding Function Keys

Suppose a client wants to receive function-key events, reported by the name of
the key, as well as the simple ASCII characters. Let’s re-write the first example
to do this.

The NeWS Development Environment Input Model 8-15

The NeWS Development Environment Input Model

The client now is using two private methods, /ReportChar and /ReportFunction,
to respond to keyboard events. /ReportChar handles the default keys, while a
second Keys interest is constructed to catch function-key events, and handle
them with /ReportFunction. In both cases, the client wants only to see the key-
presses; key-releases are uninteresting. The method /defaultkeys gives this
behavior automatically. A general Keys interest, as created for the function
keys, allows treating up and down transitions independently; passing null in
place of a handler for either transition causes it to be ignored.

We want this interest to share the default-keys interest’s shift dict; but the shift
state should not affect the reported values of the function keys. Therefore we
construct a keymaps array by simply making enough copies of the same map.
This map is the /[FKeyNames dict supplied by ClassKeyboard, which maps key-
codes to function-key names (like /FunctionF1); "enough"” is determined by
matching the size of the default keymaps array. The shift dict is "null”, which
results in this Keys interest using the same shift dict as /defaultkeys.

Having created this second Keys interest, we tell it to insert itself as another
dependent of the Notify interest returned by /defaultkeys; and Makelnterests
returns just the Notify interest. Processing by the event manager is just as in
Example 1.

8-16 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Underlying Mechanisms of Examples 1 and 2
The method /defaultkeys performs the following magic:

1. A Notify interest in focus directly in the client’s canvas is created:

This is special to /defaultkeys and /metakeys which are ordinary Keys.
Interests do not create their own Notify interests.

2. A Keys interest is created using the default keymaps, and a dict is created
when a DownTransition is received on any of the specified keys.

3. A Shift interest in the default set of shift keys is created.
The three interests are chained together, and the Notify interest is returned.

When the ClassFocusSelfInterest is activated, it in turn declares the client canvas
(can) to be a focus client:

(The latter is used if the canvas is a ClassCanvas. The method /setkeyconsumer
in turn calls addfocusclient.) ClassFocusSelfInterest also calls removefocusclient
(or false /setkeyconsumer) when deactivated.

Sometime later, the user performs an action that assigns the focus to can (e.g.,
clicks in the window). A focus notification event is sent, and it matches the
FocusSelfInterest.

Executable match code in the FocusSelfInterest loops over its Dependents, send-
ing /activate with the notification event to each. (In this case, there are two: the
anonymous Keys interest and Shift interest created by /defaultkeys.)

The NeWS Development Environment Input Model 8-17

The NeWS Development Environment Input Model

The Shift interest’s /activate method computes its shift state based on the event’s
KeyState, expresses the Shift interest, and sends /update with the shift state to
each of its Keys interests. (There is only one of these in the first example: the
one created by /defaultkeys. The second example also has the function-key
interest attached to the same Shift interest.)

The Keys interest’s /update method uses the shift state to select an appropriate
dict from its Maps and stores that in its Name field.

Now a key-down on any of the standard keys will match the Keys interest; the
dict in the Name field will translate the key code to the appropriate character
(in the case selected by the current shift state), and the NeWS event mechanism
will automatically store the translated value back into the event (NOT the
interest). The dict in the Action field then causes the client’s callback to be
called with the translated event on the stack.

If a shift-key transition comes through while these interests are active,
executable-match code in the Shift interest recomputes its shift state and sends
the new value with /update to the Keys, thus updating the translation dict in its
Name field.

The function-key interest is another Keys interest, which arrives at a similar
object via a more explicit specification.

The keymap that maps keycodes to names has already been computed by Class-
Keyboard, so we simply share that. If we had desired instead to get the
appropriate escape sequences, like "*[[224z" for the F1 key, we could have used
a parallel map, FKeyStrings.

The Maps field of the interest is set to an array which consists of 16 copies of
this dict (or 8, if MetaKeys? is false). Thus, this dict will be stored in the Name
of the interest regardless of the state of the shift keys. The Action field is set to
be a dict in which /DownTransition is defined to a proc that sends /Report-
Function to the canvas. If a proc had been passed in place of the null argument
to /new, /UpTransition would be defined to that proc; but as it is, there is only
one entry in the dict.

This Keys interest is associated with the same Notify and Shift interests as the
first; it is activated, updated, and deactivated at the same time and with the
same arguments.

8-18 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Example 3: Reading the Number Pad

The keyboard has a Num Lock key on the right keypad, which affects all the
right-pad keys below the top row. The lock should be treated like Caps; one
press sets it, the next clears it. (Also like Caps, it’s a matter of taste whether it
should take effect globally or on a per-window basis.) One way to get this is to
define a shift state which has only 1 bit, and to track the Num Lock key exactly
as the Caps key is tracked in the ShiftInterest code:

Next we define a keymap with 17 entries, for the 17 keys on the right pad that
should be affected by the Num Lock key:

The NeWS Development Environment Input Model 8-19

The NeWS Development Environment Input Model

The /buildkeydict method executes the {...} proc in the context of ClassKey-
board, so keyforsymbol and toChar can be invoked directly. The {...} puts
keycode/value pairs on the stack, and /buildkeydict then defines those pairs
into the given dict.

The other keymap, for use when NumLock is not set, has no entries, so we’ll
use nulldict in that position of the Maps array:

Now, the following code would go in the canvas’ Makelnterests:

The sense of all this is, "when the NumLock is set, accept and translate those 17
keys to the characters given on key-down; otherwise ignore everything." Rais-
ing the priority prevents those keys from also being interpreted as function
keys, in the function-key interest created earlier.

Note that this Keys interest has a different Shift interest than the two defined
above, although they are dependent on the same Notify interest. An alternative
approach would have used a single shift dict (with 5 bits of state). However,
this would have have required larger Maps arrays all around, and construction
of a larger shift dict to cover all the possibilities. Either approach would be rea-
sonable.

8-20 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Example 4: Non-Standard Uses

Now let’s look at a simple example of non-standard usage. Suppose you want
to have a pinball game that uses the shift keys to control the flippers. Thus you
want to be notified of both down and up transitions on the shift keys, and don’t
care about any other keys. Moreover, you want to be notified directly about the
shift keys, rather than having them modify the treatment of other keys.

Here is the complete PostScript code for implementing the canvas, suitable for
psh’ing. The discussion that follows will center on the keyboard-related aspects.

(continued on next page)

The NeWS Development Environment Input Model 8-21

The NeWS Development Environment Input Model

All the keyboard information is concentrated in the methods /Makelnterests
and /KeyEvent, and the /KeyMap dictionary.

/KeyMap is defined using ClassKeyboard to translate the symbolic names /Left-
Shift and /RightShift into the keystations specific to the user’s hardware. The
dictionary maps the key corresponding to /LeftShift into the name /Left, and
similarly for /Right.

In /Makelnterests, the canvas first creates a FocusSelfInterest, which will trigger
whenever this canvas has the focus. (Again, when this interest is expressed,
which is done automatically as part of /activate to the ClassFrame, it will regis-
ter the canvas as a focus client.) Then it creates a Keys interest and hangs it off
the FocusSelfInterest (using /addsuite), so the Keys interest will be active when,
and only when, the canvas has the focus.

8-22 tNt Technical Reference Manual

The NeWS Development Environment Input Model

The Keys interest itself is fairly simple. Since it is not using any shifts as
"modifier keys", it uses nulldict as its shiftdict. (Note that this is not the same
as using null, which would result in the Keys using a default shiftdict.) The
Maps array has only a single map in it, since the shift state will always be zero.
The map is the /KeyMap dict, which matches events involving the two shift
keys.

Thus, while this canvas has the focus, any transitions on the shift keys will
match the Keys interest. The Name field in the event will be updated to contain
either /Left or /Right. Then the Action (DownTransition or UpTransition) will
cause either the downproc or the upproc to be called. These procs were con-
structed via buildsend (defined in util.ps); they put a boolean on the stack to
indicate the direction of the transition, then call /KeyEvent to extract the Name
(/Left or /Right) from the event and store the boolean in the named instance
variable.

Complex Example

Finally, here’s a particularly complex example. Suppose you don’t want the
standard keys, but rather you want to see the F3 thru F7 function keys, going
up as well as down, and (on them) you have the following requirements for
shift-key processing;:

® you don’t care about the state of Shift or Caps
m you do want to distinguish Meta and Control
®m Meta should be treated as a locking shift key
Push it once, it’s on; push it again, it’s off. You also want these keys to "follow

the mouse”; they should be delivered to you whenever the cursor is in your
window, regardless of the focus.

This example exercises most of the features of ClassInterest & ClassKeyboard, so
let’s just work it through all the way, with commentary.

First, assume you’ve established an event manager as before, either by creating
it explicitly or by making your canvas a client of a BaseFrame. The next step is
to arrange a Notify interest which is triggered by having the cursor in your
window’s subtree, independent of the focus:

The NeWS Development Environment Input Model 8-23

The NeWS Development Environment Input Model

The keys we’re interested in will have different keycodes on different keyboards
(or may not exist at all), so we need to ask ClassKeyboard’s help in building a
basic keymap. The /buildkeydict method was described in an earlier example.

On one keyboard, this defines the following dict:

This gives us a dict for translating unshifted function keys. Suppose we want
Control to override Meta -- if control is down, it doesn’t matter whether Meta is
on or off. Then we need two more maps, which can be built conveniently from
fkeys0:

8-24 tNt Technical Reference Manual

The NeWS Development Environment Input Model

(If we wanted the Control-Meta combination to be distinct, we’d need one more
dict; as it is, we'll reuse fkeysC.)

Finally, let’s assemble these into a Maps array, for which Meta flips the 1-bit of
the shift state, and Control the 2-bit:

That completes the Maps array. But we also need a non-standard ShiftDict, to
accommodate our differences from the default, again using /buildkeydict.

The NeWS Development Environment Input Model | 8-25

The NeWS Development Environment Input Model

A reference to the code for ClassShiftInterest may prove helpful here.

The Meta keys tweak the 1-bit, and Control the 2-bit. The Shift interest handles
simple on/off shift keys automatically; if the value associated with the key is an
int (as is the "2" for /Control), the bit gets turned on/off depending on the new
state of the key. (If more than one key controls the same bit, e.g., /LeftShift and
/RightShift, then the bit is on if either key is down.) If the value is not an
integer, it should be an executable array that computes some off-to-the-side
information and then stores 0 in the Name of the event.

LockChange is a utility in ClassShiftInterest, which maintains up to 16 bits of
locking-shift-state. It maintains the state on a per-window basis; converting it to
have global effect is left, as an exercise, to the reader. (Hint: try demoting Lock-
State from an instance- to a class- variable.) The executable matches on
/LeftMeta and /RightMeta are constructed using the buildinterestsend utility in
util.ps; the results procs extract the Shift interest from the event and send the
/LockChange method to it, giving "1" as the lock bit being changed.
/LockChange also handles storing 0 into the Name field as mentioned above.

Now that we’ve set things up, we’ll actually create some interests using these
dicts, and make them available to the event manager.

We then pass fni back as part of a /Makelnterests method, or hand it directly to
an event manager (and call addfocusclient) as we did in the first examples.

8-26 tNt Technical Reference Manual

SNOILO313S ‘6 ‘

Selections

Selections 9-1
Introduction 9-1
m Caveats 9-2
Retrieving Selection Values 9-3
When and How to Transfer a Selection Value 9-8
Making Selections 9-11
Registering a New Selection; Unregistering an Old One 9-17
Responding to Selection Requests 9-18
Utilities 9-20
Class Structure 9-23
Selection Example 9-24

Table of Contents

Selections

Introduction

A selection is an indication of some data of interest to the user — almost
always, some information visible on the screen which is about to be used in an
operation. The most common example is text that is to be moved or copied
from one place to another. Many other objects can be selected, and many
operations besides move/copy are possible; for instance, a window may be
selected so that its properties may be inquired or manipulated. The NeWS
Development Environment provides a ClassSelection, whose instances (Selec-
tions) describe such a selected chunk of data.

The window system has a global registry which keeps track of a few selections;
registering a selection causes any previously registered value to be deselected,
and makes the current selection available to all clients of the window system.
This registry is implemented inside ClassSelection, although its facilities are also
accessible outside the class system, through utility procedures defined in sys-
temdict. The registered selections are identified by a Rank, which may be any
non-null PostScript object; the standard ranks are /PrimarySelection, /Secondar-
ySelection, and /ShelfSelection. The ShelfSelection is also commonly referred to
as the ClipBoard.

The instance variables for ClassSelection contain attributes of the selection.
Some of these are required by ClassSelection’s processing: Holder is the canvas
responsible for the selection, and Rank is a global identifier, as described above.
Others are attributes which support the user interface for making selections:
Level is an integer indicating the "size" of the objects selected (for text, 0 - 4
might indicate empty, character, word, line, and paragraph). The full set of Ul
selection attributes is detailed below. Finally, a Selection usually also contains
information stored by the client to identify the selection — e.g., for a text editor,
either what the selection contents are, or how to contact the client with a query.

There are two kinds of processing done with respect to selections: Making them
and communicating their values. Inquiring the value of an existing selection is
relatively easy (and common), so it will be addressed first. This section is pri-
marily concerned with instances of some subclass of ClassSelection.

Making selections is somewhat more complicated, connected as it is to issues of
user interface and Ul independence. It gets a longer discussion, starting with
the section "Making Selections.” This section deals both with Selections and
with Selectables (instances of some subclass of ClassSelectable).

Selections 9-1

Selections

Finally, once a selection has been made, it must expect to have requests posed
to it; the last section covers how to respond to such queries.

Caveats

It is important to recognize that a selection can exist without being registered in
the global database — instances of (subclasses of) ClassSelection are used
privately in several parts of the system before being made available to the world
at large.

Another important point is that much of the processing described in this docu-
ment is initiated outside the application. For instance, global UI code will
recognize that a function key has been released, or a Drag action performed, sig-
naling that a selection transfer should take place. Similarly, the UI layer, not the
application, is responsible for determining which user actions indicate a selec-
tion is to be made or adjusted. This separation is maintained by defining Sub-
ClassResponsibility methods in the low-level semantic and UI superclasses, and
requiring subclasses which actually get instantiated to implement those
methods.

One implication of this second point is that the Selection’s methods will often be
invoked in some foreign process (the global UI manager, or even in another
client’s process). They must, consequently, be self-contained — if they need
some data such as the connection to the C-side client, that must be reachable
from the Selection instance.

One more cautionary note: In order to provide some separation between appli-
cations and particular user interfaces (such as the OPEN LOOK user interface),
a layer of indirection is inserted into the class structure for Selectables; clients
create their own subclass of ClassSelectable by subclassing its defaultclass, not
CLassSelectable itself, nor any particular UIs subclass of ClassSelectable. This is
explained in more detail below.

9-2 tNt Technical Reference Manual

Selections

Retrieving Selection Values

Applications can retrieve the value of a selection by sending a message to it.
This may require that the application first find that selection in the global regis-
try. The relevant methods are

rank /getselection Selection | null
key /query false | value true
request-dict /request response-dict

There is a /getselection utility procedure in systemdict, which simply sends the
/getselection message to ClassSelection. The single argument will normally be
one of the Rank names given above, although, as mentioned, it may be any
non-null PostScript object. If there is a selection currently registered under that
rank, it is returned, else null.

The other two methods above are sent to a Selection; /request is the more gen-
eral (and complex).

A single attribute of a selection can be retrieved most conveniently with the
/query method. It takes the name of the attribute desired (e.g., /ContentsAscii),
and returns the associated value and true, assuming there is such a value; if not,
it simple returns false.

/Request is defined to allow multiple requests, and requests with parameters.
This may be preferable in several circumstances: when the request is an opera-
tion which takes arguments, /request must be used. There is also a capability
for requester and holder to negotiate the form of the requested data (described
below); this also requires use of /request. Finally, when the cost of communicat-
ing with the holder of the selection is high (e.g. the holder must communicate
with its C-side client through a slow communication link in order to respond to
any request), it may be advantageous to batch queries in a single call to
/request.

The argument to /request is a dictionary which contains the complete request.
Each key in the dictionary names a selection attribute or an operation the selec-
tion should perform. For an operation, the corresponding value in the diction-
ary may be a parameter or array of parameters; for requested attributes, the ori-
ginal value in the dictionary doesn’t matter. The selection will return a similar
dictionary (or modified copy of the same dictionary, as convenient), with results
and requested attributes in the value for each key wherever possible; if it cannot
store a result, it will store the value /UnknownRequest.

Selections 9-3

Selections

The following fragments illustrate use of /query and /request:

The set of request keys passed to the selection holder is open-ended; any set of
clients that can agree on the interpretation of a new key, may use that key to
communicate among themselves. A convention for the most common requests
has not yet been established; but a number of the most useful are suggested
here. In general, request names should develop parallel to the conventions of
the X11 Window System, as documented in David Rosenthal’s Inter-Client Com-
munication Conventions Manual (to be distributed by the X Consortium).

Most keys represent requests for the Selection to render its value in a named
format. The most common of these is /ContentsAscii; others appear in the
table. /ContentsAscii prescribes the selection rendered as a PostScript string,
without text attributes (font, typeface, etc.).

9-4 tNt Technical Reference Manual

Selections

Certain keys request that the client modify the selection in some way. Two
"operation-type" keys are specified here: /DeleteContents and /ReplaceCon-
tents. (Of course, other operations may be defined as clients agree on them.)

/DeleteContents tells the client to delete the contents of the selection. Note that
this is not the same as merely deselecting or destroying the Selection instance;
e.g. in a text item /DeleteContents means remove the selected span of charac-
ters from the text. Since there are no parameters required for this operation,
either of /query or /request will work for it. Assuming the holder is willing and
able to comply, a null value will be returned.

/ReplaceContents involves a deletion, just like /DeleteContents; but then new
data passed as an argument to the request should be stored in place of the
deleted material, and the replacement should be selected. In this case (where
the requester must be able to pass an argument to the request), the /query
method will not work. Instead, the /request method is used, with a request dict
for its argument. In the request dict, the key /ReplaceContents is defined, with
the replacement contents as its value. This style of passing parameters enables a
consistent interface to be maintained between requester and selection holder,
regardless of the particular requests.

No Toolkit selections currently support (or attempt to use) the /ReplaceCon-
tents request. It is specified here so that clients who may choose to imple-
1 ment it will have a consistent protocol. The protocol described above

T matches that in the ICCCM.

Since /query retrieves only one selection attribute at a time, the requester can
easily control the order in which requests are processed. This is not so easy
with /request: The order of objects in a dictionary is undefined, so if there is a
required order to the requests, the requester must take special pains. It should
define only one key in the request dictionary, /RequestSequence, and its value
should be an array. The Oth, 2nd, etc. elements of the array will be taken as
requests, and the following (odd-numbered) element for each will be the
corresponding parameter/value. In the dict returned by /request, the value
associated with /RequestSequence will be an array in which the odd-numbered
elements are the values returned by selection holder.

A similar mechanism allows the requester and holder to negotiate over the form
of response. The requester uses the key /RequestChoice, which is defined to an
array similar to the one used with /RequestSequence. In this case, the keys in
the even-numbered positions of the array are included in the order of the
requester’s preference. The holder may then choose any of the requests in the

Selections 9-5

Selections

RequestChoice to respond to; the key /RequestChoice is redefined to a new
array containing the single key responded to and its corresponding value. If
none of the choices is acceptable, the array should be replaced by /UnknownRe-
quest. (If one of the choices in the /RequestChoice array is in turn a
/RequestSequence, it is deemed responded to only if all the requests in the
sequence are acceptable.)

I obsolete.

Like /ReplaceContents, the /RequestChoice key is not currently supported by
the NeWS Development Environment. Individual clients may choose to
implement it if they are willing to run the risk of having their code become

The full details of request processing are described below under "Responding to

Requests."

The following table summarizes the conventional request names currently pro-
posed. Those keys marked with * are not currently implemented by The NeWS
Development Environment, but are defined so that clients who wish to use such
requests will have a common interface. Certain other keys, marked with **,
ARE implemented by some or all Toolkit selections, but are retained only for
compatibility with the old "Lite" toolkit; their use is not encouraged.

Name Argument Result

/Canvas none The selected object, if it is a NeWS
canvas.

/ContentsAscii none A PostScript string containing the
selected text, as described above.

/ContentsPostScript | none A PostScript object, which, when
executed, will recreate the selected
value. (This is likely to be most
useful for graphical objects, which
can be redrawn in a new environ-
ment.)

/DeleteContents none The contents of the selection are

deleted, as described above.

9-6

tNt Technical Reference Manual

Selections

Name Argument Result
/FirstIndex * none The count of how many objects of
size Level precede the first object in
the selection.
/Level * none The multi-click level of the selec-

tion; see discussion under "Making
Selections"”, below.

/LastIndex * none The count of how many objects of
size Level precede the last such
object in the selection.

/RequestChoice * [request arg ...] | A list of alternative requests (with
parameters for each) of which the
holder should respond to one, as
described above.

/RequestSequence [request arg ...] | A list of requests (with parameters
for each) which the holder should
respond to in order, as described
above.

/SelectionObjsize ** none The size of the selection as meas-
ured in units of Level 1; e.g., for
text, the number of characters.
Note the lower-case ‘s’ in Objsize.

/SelectionStartIindex ** | none The count of how many units of
Level 1 precede the first such unit
in the selection.

/SelectionLastIndex ** | none The count of how many units of
Level 1 precede the last such unit
in the selection.

/TransferSelection * dict[... /Source: | One selection is requested to per-
Selection ...] form a transfer between itself and
another; see the note at the end of
the next section.

Selections 9-7

Selections

When and How to Transfer a Selection Value

Clients will occasionally decide on their own initiative that they should retrieve
a selection value; for instance, the second example above would probably be
triggered by invocation of a "Breakpoint” panel button or menu command. But
most of the time, global user interface code will determine that a selection
transfer is called for. If a client can accept input from the user (keystrokes or
mouse drawings, for instance), then it should generally also be ready to accept
the contents of a selection. Whenever the Ul code determines this is appropri-
ate, it will send an event to the destination of the transfer.

This event’s Name is /TransferSelection, and its Action is a dict describing the
transfer that is to be made. The most interesting item in this dict will be the
key /Source, which will be defined to the Selection whose value should be
transferred. The event’s Canvas is also significant: if it is null, the event has
been "dropped off the cursor,” and the value should be inserted as close as pos-
sible to the event’s location. If the Canvas is non-null, the event was directed to
the canvas, not a location; the value should be inserted at the canvas’ most
recent insertion point. Of course, some canvases may constrain all insertions to
a particular location; for instance, a terminal emulator will probably be append-
only.

The NeWS Development Environment defines two subclasses of ClassInterest
which a client can instantiate in its /MakeInterests method, in order to receive
and process /TransferSelection events. TransferInterest is an interest in a given
canvas being the destination of a /TransferSelection event. The client supplies a
method to be called when a transfer event is matched.

The client’s method takes an event and a selection source. It leaves the event
unchanged (it is there for examination if needed but should not be consumed).
It consumes the selection in sending queries /requests to it to effect the transfer,
and returns a boolean which is true if the client succeeded in the transfer. If the
selection is not of a type acceptable to the client (if, for instance, all queries
return /UnknownRequest), the client should return false. This will cause the
event to be redistributed further up the canvas tree.

9-8 tNt Technical Reference Manual

Selections

AsciiTransferInterest is a special case of TransferInterest for canvases that
require simple text selections. If the selection does not respond to a request for
/ContentsAscii, the AsciiTransferInterest refuses to accept the transfer. If /Con-
tentsAscii works, the resulting text is given to the client-supplied method. The
client can also specify that the method must be called once per character instead
of being called once with the entire string (by passing false as the third argu-
ment of /new).

Thus, most clients should never have to worry about constructing an interest in
/TransferSelection, nor about terminating the transaction in which the selection
is transferred. Typically it suffices to put a single line in your canvas’s /Mak-
elnterests method, such as:

and then write a suitable /inserttext method (in this example, one that consumes
a string).

Clients which construct their own interest in /TransferSelection events must
satisfy a few requirements:

1. When they receive such an event, they should make appropriate requests
to the Source selection, just like clients using a TransferInterest.

2. If they cannot accept the selection, they must redistribute the /Transfer-
Selection event themselves, to give ancestor canvases a chance to deal
with it.

3. If the transfer succeeds, the recipient should complete the transaction by
sending a message to the Ul code:

Selections 9-9

Selections

where MySelectable is any subclass of [/defaultclass ClassSelectable send]. The
/transferfinished method requires the description-dict from the /TransferSelec-
tion event’s Action on the stack (and consumes it). This method is needed
because only the recipient knows when it is finished with the transfer, and vari-
ous cleanup actions (such as deleting the Source if the transfer is a Move vs a
Copy, or unhighlighting the source, etc.) must wait until the transfer is over.

Implementation note: It is possible for a Selection to be sent a /TransferSelec-
tion request directly, rather than through an event. That is, a selection may
receive a request whose key is /TransferSelection; the associated value will be a
description-dict just like the one contained in the Action of a /TransferSelection
event. In this case the Selection receiving the request is expected to insert the
value at its current insertion point — there is no convention for passing specific
coordinates. Since there is no UI code driving the transfer, the destination
Selection must attend to other details: it should delete its own current value if
its /PendingDelete? attribute is true; it should send a /DeleteContents request
to the Source Selection if the key /DeleteSource? in the transfer description-dict
is true; if either it or the Source has Rank of /SecondarySelection, it should send
/deselect to that. This latter form of transfer is intended to handle operations
such as exchanging two selections. However, no such requests are currently
being generated by the Open Look UI manager, and no client Selections
currently support such transfers.

9-10 tNt Technical Reference Manual

Selections

Making Selections

A selection client is a canvas which can contain a selection, or be one itself (e.g.
a text window or a frame). The NeWS Development Environment provides util-
ity classes to cover common text selection clients (DragTextSelectable) and also
for the frame and icon windows for applications, which are selectable objects.
Application programmers will want to avail themselves of these if possible; they
are described at the end of this document.

Other selection clients will subclass 2 classes: ClassSelection, introduced above,
and (a subclass of) ClassSelectable, whose instances are interests in user actions.
In both, there are SubClassResponsibility methods which the client must imple-
ment in its own subclass.

This discussion of making selections will probably be more intelligible after a
high-level sketch of the protocol. Here is a typical sequence of operations for a
selection-client application:

m The application creates a new Selectable. This is usually done inside a
canvas’s /Makelnterests method, so that the general canvas mechanism
handles forking an event manager and expressing the interest (the Select-
able).

m Ul-specific code inherited in the Selectable matches certain events (which
events get matched depends on the particular UI), and decides a selection
action has occurred.

m The Ul-specific code calls a SubClassResponsibility method (/newselec-
tion); the client’s Selectable subclass returns a new Selection of the
appropriate class (i.e., the client’s Selection subclass).

m The Ul code then sets instance variables within that Selection to indicate
what’s going on (multiclick level, etc.).

m Next it calls more SubClassResponsibility methods to get the client to
finish resolving the operation. E.g., the client might need to resolve
mouse coordinates into a character index and then highlight the selected
text.

m When the UI code decides that the user action is complete (e.g., a mouse
button is released), it registers the Selection in the global dictionary so
that other applications can access it.

Selections 9-11

Selections

Note that most of the goings-on are driven by the UI code. Clients need write
relatively little code for their particular selections. In particular, clients should
not try to interpret raw device events - some are not readily accessible to the
client (/Copy key when the client holds the selection, but not the focus); most
are subject to user-modification (some left-handers swap the meaning of the
mouse buttons and function keys for left-handed use); and user interfaces are
subject to many changes an application will do well to ignore if it can.

Selections have been introduced already. There is more to be said about them,
but first we consider Selectables.

A Selectable is a NotifyInterest on a single canvas; it watches for some event in
a small set which initiate making a selection (e.g., button-down on the Point or
Adjust buttons). When an initiating event is seen, it expresses interests in other
events like mouse motion and the corresponding button-up, and starts up some
state machinery which implements the current user-interface for making selec-
tions. It also causes creation of a new Selection, to be used in communicating to
the client about the selection that is being made; see the /newselection method.

The definition of a subclass of ClassSelectable should be parameterized as fol-
lows, to avoid wiring a particular User Interface into the application.

The SubClassResponsibility methods in a Selectable are:

event rank holder /newselection selection
event selection /selectat -

event selection /adjustto -

event selection /dragat -

event selection /dragto -

event selection /inselection? bool
event selection pos /attachinsertionpoint -

9-12

tNt Technical Reference Manual

Selections

Again, most clients will also elaborate

holder canvas type /newinit interest
- /destroy -

The client makes a Selectable instance for each selectable canvas, typically by
sending /new to a subclass of Selectable as part of the canvas’s /Makelnterests
method. The ‘type’ parameter tells the global UI code what sort of UI to use for
selections on this canvas. There are currently three types defined; others may
be added as needed. (The UI manager will invoke some reasonable default
behavior for any unrecognized type.) The known types are:

/Text Text within the canvas can be selected
/Graphics Graphics objects within the canvas can be selected
/Canvas The canvas itself can be selected (e.g., a frame)

The holder should be a canvas which uniquely identifies this client; it will be the
same as the Holder attribute of selections made in this canvas. It is used by
ClassSelectable in an identity test, to determine whether an existing selection is
held by this client. Normally, the holder and canvas arguments to /new will be
the same. But if a single selection may exist in two or more canvases (e.g. a
split view in a text editor, or several icons on the desktop), then the Selectables
for those two canvases should have the same holder. This supports such
behavior as starting a selection in one canvas of a split view and then extending
it by clicking in the other canvas.

When a Selectable interest is satisfied, its activation procedures will often start a
new selection. This involves a send to the client’s /newselection method, with
appropriate rank and holder arguments. This method in the Selectable should
create a new Selection instance (by sending /new to the client’s subclass of
ClassSelection). The returned instance gets its attributes filled in by the Ul layer
of Selectable, and is then passed back to the client in sends to its other Sub-
ClassResponsibility methods.

The other six SubClassResponsibility methods of a Selectable all take an event
and a Selection instance. (One method also takes a third parameter.) The event
is useful only for its coordinates — extracting the Coordinates array from an
event automatically transforms them according to the current canvas and graph-
ics context. The Selection contains all the other parameters of the method, as
described later. The methods should operate as follows:

Selections 9-13

Selections

/selectat

/adjustto

/dragat

/dragto

/inselection?

/attachinsertionpoint

9-14

event selection /selectat -

Resolve the coordinates of the event to an object,
and start a selection on it with the given attri-
butes. Note again that the Selection instance
will already have been created via a separate
call to /newselection.

event selection /adjustto -

Adjust the boundary of the given selection to lie
on the object at the event’s coordinates, again
attending to the attributes in the selection.

event selection /dragat -

Initiate user feedback for a Drag (direct-
manipulation move or copy) of the given selec-
tion; e.g., start an overlaid image of the value
being dragged). If a grasp-point is needed (i.e.,
if the cursor coordinates are needed in order to
position the feedback), use the coordinates of the
given event.

event selection /dragto -

Move a Drag-image so its grasp-point is at the
coordinates of the given event, or give other
feedback of a Drag in progress.

event selection /inselection? bool

Return true or false as the location of the given
event is, or is not, within the given selection.
(The global UI code uses this to resolve multi-
clicks or other special behavior resulting from
clicking within an existing selection.)

event selection

postionname /attachinsertionpoint -

Note the specified point for later use as an inser-
tion point if a value is copied to the selection.

In particular, if this is a primary selection, the
canvas should usually change its input focus

tNt Technical Reference Manual

Selections

location. The positionname, together with the
position of the event and the endpoints of the
given Selection, are interpreted as for the /Com-
puteNamedPosition utility, described later.
Unlike the five other methods listed above, this
one actually has a default implementation that
simply ignores (pops) its arguments.

Now we return to ClassSelection, for the attri-
butes used in the selection-making process.
These are:

Key (Name) Value Type Interpretation

/Level int The "size" of objects to be selected. For
instance, in text, 1 may indicate a character, 2 a
word, 3 a line or sentence, etc. Essentially, for
OPEN LOOK, Level is a multi-click count.

/PendingDelete? | bool True if the selection should be replaced by the
next user input action (always, for primary
selections in OPEN LOOK).

/DeleteSource? bool Meaningful only if the selection is being passed

to a /dragat or /dragto method, in which
case the key is true if the operation is a Move
rather than a Copy.

/Pin any Tells the client where to "anchor" the selection
during an /adjustto operation. The pin can
be a name, in which case it can be evaluated
using /ComputeNamedPosition (described
below under "Utilities"), or it may be an arbi-
trary value (typically an int) representing a
previously computed anchor point.

Selections 9-15

Selections

Key (Name)

Value Type

Interpretation

/Preview?

bool

True if the selection is still being adjusted by
the user; when the user finishes (e.g., releases
the mouse button), the client will get a last
/selectat or /adjustto message with /Pre-
view? set to false. Many clients will ignore
/Preview?; it is provided as an accelerator for
clients that wish to postpone moving some
selection info to a more permanent location
until the selection settles down.

/Rank

any

Most selections have Rank eq /PrimarySelec-
tion. Selections made while some function-keys
are down have Rank eq /SecondarySelection.
(These get reflected differently, and have spe-
cial uses.) The Clipboard has Rank eq /Shelf-
Selection. Other Ranks are possible, though
not currently used.

/Registered?

True if the selection has been registered in the
global database via /setselection.

/Hilited?

bool

This key is defined only if the Type of the
Selectable which made the selection is /Can-
vas. For these, it shows the previewed-state (as
distinguished from the true state) of the selec-
tion. E.g., Adjust-down on an icon [de]-hilites
it immediately, and then toggles its hiliting as
you slide off & on the icon.

/Style

any

The style of highlighting recommended by the
Ul manager. Currently defined values are
/Default, /Invert, /Outline, /StrikeThru, and
/Underscore. Clients may ignore this value if
they think it does not apply to their selection
type, basing their highlighting instead on
/Rank and /PendingDelete?.

9-16

Finally, to assist clients in correctly reflecting
changes to the selection, every time the
/adjustto message is sent, the accompanying
selection will have the name /Changed defined

tNt Technical Reference Manual

Selections

to an array of some of the above names; each
key in the array has changed value since the
previous adjustment.

Notes:

It is possible for an /adjustto to indicate a point
outside the area in which contents can be
displayed (e.g. off the bottom of a text window).
This supports an auto-scroll feature, such as
defined by the OPEN LOOK user interface.
When an application gets such an /adjustto, it
should (if possible) scroll some new data into
the visible region from the hidden region indi-
cated by the location of the /adjustto, and select
everything up to that border. It should repeat
this process as long as /adjustto messages con-
tinue to be received.

autoscroll doesn’t work yet — new
messages are not generated. Clients
willing to be obsoleted in the next
release can repeat the scroll operation
on their own until an /adjustto is
received with coordinates inside the
canvas, or with /Preview? set to false.

cR.}egistering a New Selection; Unregistering an Old
ne

When the UI layer decides that a selection specification has been completed, it
sends /setselection to the Selection; the default implementation registers the
instance in the global database. Clients may override /setselection if they need
to adjust state or maintain any additional information when one of their selec-
tions becomes publicly available. Of course, it is also possible for a client to
create a new selection on its own initiative and send it /setselection; it will get
registered just the same.

Selections 9-17

Selections

When a new selection is registered, any old selection already registered under
that rank is sent a /deselect message. /deselect is a strict SubClassResponsibility
method: there is no implementation in ClassSelection. The subclasser’s method
should at least de-hilite the selection; most selections will also destroy them-
selves. However, a deselected Selection might be retained, for instance to sup-
port restoring the selection in an Undo operation.

Just as a client may register a selection on its own initiative, it can unregister
one by sending /unsetselection to it. A warning given above bears repeating
here: It often happens that a /deselect message is generated in the client which
is making a new selection (the cause of this one being deselected); the message-
send in this context is in danger of communicating with the wrong client. For
instance, printing data over currentprocess’ stdout is likely to send it over the
wrong connection. Clients must take care to store some access back to their
generating client in selections they create, so they can communicate with it reli-
ably when that selection receives a message while running in another process.
Other messages that may be sent to a selection face analogous dangers:
/singlerequest and /destroy in particular are liable to be sent to a selection while
running in some process other than the selections” Holder’s client. Equivalent
care is required in these cases to respond in the proper context.

Responding to Selection Requests

Selections respond to requests through either of two methods:

request-dict /request => response-dict
oldval request-key = /singlerequest => newval

Subclassers must override AT LEAST ONE of these two methods.

The first has been described from the requester’s point of view above. The
default implementation in ClassSelection is in terms of /singlerequest: the
request-dict is enumerated with forall, and each request/value pair is passed to
/singlerequest. (If /RequestSequence is found, it is passed to its own enumera-
tor, which in turn calls /singlerequest. When /RequestChoice is implemented it
will work similarly.) If a selection holder wishes to batch processing of
requests, it should override the /request method. Any such override is then
responsible for supporting /RequestSequence and /RequestChoice.

9-18 tNt Technical Reference Manual

Selections

Instead of overriding /request, a subclasser may choose to override /singlere-
quest. The key passed to a Selection’s /singlerequest method identifies the
nature of the request. Most keys represent requests for the Selection to render
its value in a named format. For these requests, the value currently on the stack
is to be discarded, and the client should put the requested value on the stack.

Certain keys request that the client modify the selection in some way. For these
requests, the oldval on the stack contains arguments, if any, to be used in the
operation. Even if no arguments are needed, the /singlerequest method must
be sure to remove the value from the stack; likewise, even if there is no return
value, /singlerequest must store something (typically ‘null’) on the stack. This
ensures a uniform interface to /singlerequest. (If neither the oldval nor the
newval is meaningful, the oldval can simply be left on the stack as the returned
value. See the /DeleteContents case in the example below.)

For any request (value or action), the client may choose not to support the
requested key. If so, /singlerequest should pop the oldval and return /Unk-
nownRequest.

Most clients will choose to override /singlerequest rather than /request, since
the code is considerably simpler. A typical /singlerequest method might look
like:

Note that /singlerequest is not required to support /RequestSequence or
/RequestChoice. Since clients making such requests must always go through
the /request method (rather than /query), it is left to the /request method to
handle breaking up the /RequestSequence or /RequestChoice into a series of
calls to /singlerequest.

Selections 9-19

Selections

Utilities

The NeWS Development Environment defines five subclasses of particular
interest to clients and/or implementors of selections. Two of these, TransferIn-
terest and AsciiTransferInterest, have been described above. The remaining
three comprise two convenience subclasses of ClassSelection, and a subclass of
ClassSelectable which provides some of the basic functionality of selectable text.

StaticSelection is a selection whose value never changes; it responds to queries
by looking up the queried keys in a constant dict. When a selection is copied to
the Clipboard, the Ul manager sends /checkpoint to the Selection to obtain a
static copy. The default /checkpoint method calls /Checkpoint, which in turn
sends a /request to obtain the value of the selection in several formats, and
stashes the results in a StaticSelection. Clients may override /checkpoint if they
are willing to take responsibility for maintaining a static copy of their value.

E.g., a text window might prefer not to copy a potentially large string to the
Clipboard, but could instead cache the necessary pointers back to its data.
However, if the text window’s data subsequently changes, the text window
must be sure that the static copy is not affected. If the static copy is about to
become invalid, the text window can call /Checkpoint (mixed case) to fall back
on creating a StaticSelection.

StringSelection is a special case of StaticSelection that only knows how to render
itself as ContentsAscii. This is to make it easy for clients to wrap a string inside
a selection preparatory to handing it to a canvas via a /TransferSelection
request. (See /sendtocanvas, below.) A StringSelection is intended to be created
directly via /new instead of via a ClassSelectable, and thus does not expect
rank/holder arguments; its /new method takes just a string.

DragTextSelectable provides assistance for clients whose selections are character
strings, and who want to use an overlay canvas to display the selection during a
drag-move or drag-copy operation. It fills in the /dragat and /dragto methods
for you. Subclassers will generally wish to override the /CurrentText method
for greater efficiency (the default uses the normal /query mechanism, whereas
individual subclasses can usually obtain the text by more direct methods). Sub-
classers may also need to override /CurrentFont, if the TextFont of their
Selection’s Holder-canvas is not suitable.

9-20 tNt Technical Reference Manual

Selections

Assorted utility methods:
/ComputeNamedPosition { % first last current positionname => pos

In ClassSelectable. First, last, current, and pos are numeric values refer-
ring to the location of a selection (in the client’s interpretation); first/last
are the endpoints of an existing selection, while current is typically the
position corresponding to the coordinates of a recent event. Position-
name is one of the values defined for the /Pin in a Selection, and is
interpreted as follows:

/LowEnd the low end of the existing selection (first)
/HighEnd the high end of the existing selection (last)
/NearEnd whichever of first/last is closer to current
/FarEnd whichever of first/last is further from current
/ AtPoint the cursor position (current)

This is used for interpreting /attachinsertionpoint, and also for inter-
preting the /Pin to establish one endpoint in preparation for subsequent
/adjustto messages.

/computepin { % first last current => pin-point

In ClassSelection. If the Selection’s /Pin is a name, /computepin calls
/ComputeNamedPosition and stores the result as the new value of /Pin.
Otherwise the previously computed /Pin value is returned unchanged.
This should be done on every /selectat or /adjustto; the Ul manager will
override /Pin again if the anchor is to change.

/computerange { % first last current => newfirst newlast

In ClassSelection. Same as /computepin, but it returns the pinned posi-
tion and the current position, in sorted order.

/checkpoint { % rank => selection
/Checkpoint { % rank => selection

In ClassSelection. See earlier discussion re StaticSelection.
/CanRenderAs { % - => namearray

In ClassSelection. A list of names describing the formats in which the
selection might be able to render itself. The list is used by /Checkpoint
to decide the formats to install in the StaticSelection. It's okay for the list
to include formats that the Selection in fact cannot handle; they’ll just

Selections 9-21

Selections

get mapped to /UnknownRequest in the static copy. The default list is:

/ContentsAscii /SelectionObjsize
/ContentsPostScript ~ /SelectionStartIndex
/SelectionLastIndex

Subclassers can override this to extend (or truncate) the list, so that
stuffing their selections to the Clipboard will include all appropriate for-
mats. NOTE: The list should NOT include /Canvas, even though the
selection’s /singlerequest method might handle such a request. This is
because copying a /Canvas value to the ClipBoard can result in the can-
vas staying on the screen after its application has been destroyed.

/transferfinished { % tdict => -

In [/defaultclass ClassUI send] (or any descendant thereof). Handles all
cleanup following a transfer, such as deleting the source if the transfer
was a Move, unhighlighting the source if appropriate, etc.

Called automatically by TransferInterest and AsciiTransferInterest, so
most clients need not worry about it.

/sendtocanvas { % canvas [delete?] => -

In ClassSelection. Sends the selection to the given canvas via a
/TransferSelection event. The selection need not be registered with the
global manager. The optional bool says whether the selection should be
deleted after the transfer. (Default is false.) The canvas can be null to
send the event to the canvas(es) currently under the pointer. For exam-
ple, the following would send a string to the current input focus:

9-22 tNt Technical Reference Manual

Selections

/query { % key => value true
% => false
In ClassSelection. See discussion under Transferring & Querying.
/getselection { % rank => sel | null

In systemdict. Looks up the given rank in the global registry and
returns the Selection (if any) currently registered for that rank.

Eg.

/clearselection { % rank => --

In systemdict. Removes from the global registry the Selection (if any)
currently registered for the given rank.

Class Structure

This section should be of interest only to Ul implementors, i.e., people who
want to supplant the Open Look UI manager with a different look and feel. All
other readers may skip this part.

Implementing a specific look and feel involves subclassing three classes: Clas-
sUI, ClassSelectable, and ClassFunctionKey. This is the only time that those
classes should be subclassed directly; normal clients should always subclass
from [/defaultclass ClassXXXX send]. A look and feel implementor will sub-
class ClassUlI, then use that subclass as a mix-in when creating the other two
subclasses. For example, ClassOLSelectable inherits from ClassSelectable and
ClassOLUL

Having defined the three subclasses, you can install the new look and feel by
sending /InstallUI to the subclass of ClassU], e.g., /InstallUI ClassOLUI send.
This builds three new subclasses: ClassSpecificUI is a subclass of the given sub-
class of ClassUI. ClassSelectableUI inherits from the subclass of ClassSelectable,
and similarly for ClassFunctionKeyUI. These three new subclasses are actually

Selections 9-23

Selections

the /defaultclasses for ClassUI, ClassSelectable, and ClassFunctionKey; thus they
are the classes that all clients subclass from.

(The function key portion of this hierarchy is beyond the scope of this docu-
ment.)

The purpose of the additional layer of subclassing is to enable a new look and
feel to be installed in a running system. Redefining an existing class reuses the
class dictionary, so every ClientSelectable’s superclass pointer to ClassSelecta-
bleUI will always remain valid.

Selection Example

What follows is a lengthly example demonstrating how selections work in the
NeWS Development Environment. Also included on the tape that this docu-
ment was on is this selections example as an executable. On the tape the name
of this example is selections-example.ps.

Example

(continued on next page)

9-24 tNt Technical Reference Manual

Selections

(continued on next page)

Selections 9-25

Selections

(continued on next page)

9-26 tNt Technical Reference Manual

Selections

(continued on next page)

Selections 9-27

Selections

(continued on next page)

9-28 tNt Technical Reference Manual

Selections

(continued on next page)

Selections 9-29

Selections

(continued on next page)

9-30 tNt Technical Reference Manual

Selections

(continued on next pége)

Selections 9-31

Selections

(continued on next page)

9-32 tNt Technical Reference Manual

Selections

(continued on next page)

Selections 9-33

Selections

(continue on next Vpé'ge)

9-34 tNt Technical Reference Manual

Selections

(continued on next page)

Selections 9-35

Selections

9-36 tNt Technical Reference Manual

10. MISCELLANEOUS TOPICS

SJIdO1 SNO3ANVTI3OSIN 01

1 0 Miscellaneous Topics

Miscellaneous Topics
ClassTarget
= Setting and Getting the Target
= Sending to the Target
m Example
= Automatic Menu Targets
m Disappearing Targets
m How Targets Work
NeWS Development Environment Applications
= Taxonomy of Applications
m Starting an Application
m Killing an Application

Table of Contents

10-1
10-1
10-1
102
102
103
103
103
10-4
10-4
10-4
106

Miscellaneous Topics

ClassTarget

ClassTarget is designed to allow application programmers to safely keep a refer-
ence to one object inside another object. Target references are ‘safe’ in the sense
that they look after all the associated NeWS reference counting issues. (See the
Memory Management chapter in the X11/NeWS reference manual for a full
explanation of reference counting in the X11/NeWS server.)

You can instantiate ClassTarget directly, but applications will more commonly
use this class as a mix-in. At present ClassTarget is mixed-in to ClassControl
and ClassSelectionList, and hence its features can be used directly in any control
or menu.

The reason that controls and menus include ClassTarget is because they both
have callback procedures in which application programmers specify the action
that should take place when a button is pressed, a slider is dragged, a menu
item is selected, and so on. Typically this action will consist of sending a mes-
sage to some other object. It is the target mechanism that maintains the refer-
ence to this other object.

Setting and Getting the Target

Sending /settarget to an instance of some subclass of ClassTarget associates a
target object with it. The /target method returns this object. The argument to
/settarget can be any NeWS object, although it will typically be an instance of
some class. If your target is not an instance (or a class), the /sendtarget method
(see below) will cause a a typecheck error.

It is not usually necessary to explicitly un-set a target. The act of destroying an
object with a mixed-in target will automatically clear that target reference. A tar-
get can however be manually cleared by calling the method /cleartarget.

Methods:

Isettarget
/cleartarget
/target

Miscellaneous Topics 10-1

Miscellaneous Topics

Sending to the Target

The target mechanism does not automatically dispatch your callback to some
remote object. You must explicitly do this by calling /sendtarget from within
your callback. If the target is currently null /sendtarget will cause an error.

Methods:
/sendtarget

Example

The following example assumes that we want to create an OpenLookButton
whose purpose is to print something in the footer of a frame (not necessarily the
one containing the button) when the button is pressed. Assume that we already
have a frame called /myframe:

When mybutton is pressed the button itself will be put on the stack, and the
callback executed. The ‘5 -1 roll’ makes the button the subject of the /sendtarget
method, which in turn makes myframe the subject of the /setfooter method.
Finally the left-hand footer is set to the string "Got it!".

Note that /settarget is called after the button is created, but before it is activated.
If the button were activated before the call to /settarget there would a chance
that the user could press it while the target was still null. This would cause an
error.

10-2 tNt Technical Reference Manual

Miscellaneous Topics

Note finally that since the callback does not contain a direct reference to any
particular frame, there is nothing to prevent the application from changing the
button’s target (via /settarget) at any time. This would cause the /setfooter mes-
sage to be sent to some other object the next time the user pressed the button.
Of course, this new target object should be some other frame (or should at least
understand the /setfooter message).

Automatic Menu Targets

In recognition of the fact that the obvious target for a menu callback is the can-
vas which received the MENU press and caused the menu to be shown,
ClassCanvas includes code to automatically set the target for menus that it
manages.

By default (and unless the automatic menu targeting is defeated) every time a
menu is brought up the canvas which received the MENU press sets itself to be
the target of the menu before showing it. See the sections on Menus and
ClassCanvas for a more detailed explanation of this behavior.

Disappearing Targets

Targets do not ensure the continued existence of the objects they reference. If
the application removes its last hard reference to the targetted object, the target-
ting mechanism will notice this and clear the (soft) target reference. Thus it is
possible for a target to become null without having been explicitly cleared by
the application. Robust applications which expect this behavior should not
blindly use /sendtarget in their callbacks. They should first test whether there is
still a target to send to.

How Targets Work

A target consits of two NeWs data structures: a soft reference to the remote
object, and an interest in that object’s obsolesence expressed in the global Ul
event manager.

When no more hard references to the targetted object exist NeWS sends an
/Obsolete event signalling that its useful life has come to an end, and all
remaining references (the soft ones) should be cleared so that storage allocated
for the object can be reclaimed.

Miscellaneous Topics 10-3

Miscellaneous Topics

This /Obsolete event is caught not only by the object itself (through the stan-
dard mechanism in class Object), but also by the instance of ClassTarget which
is referencing it. On receipt of this event the ClassTarget instance silently
removes its reference to the targeted object, thus allowing it to be reclaimed.

NeWS Development Environment Applications

Taxonomy of Applications

tNt application programs fall into three natural categories, depending on their
complexity:

1. PostScript-only applications. These are small programs, often demonstra-
tion programs, that execute entirely in the server. The code to implement
these programs is typically downloaded via psh(1), and is usually places
in the userdict associated with the psh connection.

2. PostScript / CPS applications. Any application with a client-side will use
CPS, and those without asynchronous messages from the server to the
client may not need to use the Wire Service.

3. PostScript / CPS / Wire Service applications. This is the most general
category, and will include most medium and large scale applications.
These applications typically start by sending PostScript code to the server
via CPS. They then enter the Wire Service’s Notifier, which receives and
distributes the user interface events that require client-side processing.

Starting an Application

See the Wire Service sections of this manual and the CPS section in the NeWS
2.0 Programmer’s Guide for details of starting an application with a client-side.
What follows are the simple details of starting a PostScript-only application, or
the PostScript-based component of a mixed client-server application.

Below is a standard template for starting the PostScript component of an tNt
application. It is explained below.

10-4 tNt Technical Reference Manual

Most applications start by placing a base frame on the screen. The client of this
frame will be an instance of some application-specific class.

It is important that a reference to this frame be maintained in some non-
transient dictionary. Without this reference the frame and its contents would be
reclaimed by the NeWS memory management system immediately. This is the
reason for defining /frame in the userdict.

Typical applications then activate the frame, by sending the /activate method to
it. This has the effect of starting event management on the frame and every
canvas within it.

The next task is to establish a position and size for the application. /place per-
forms this task. It consults the desktop manager for a position, obtains a size by
sending the /preferredsize method to the frame.

Next the frame is made visible by sending the /map method to it. After this
point the application is running independently, and responding to user input.

Finally, and only if the application is completely server-based and loaded via
psh(1), the cliche "newprocessgroup currentfile closefile” should be executed.
This has the effect of breaking the connection with the psh without killing the
application.

Miscellaneous Topics 10-5

Miscellaneous Topics

Miscellaneous Topics

Killing an Application

PostScript-only applications that were launched in the above manner may be
killed in two ways:

m By the user selecting "Destroy” from the frame’s menu. Applications can
defeat this destruction by overriding the frame’s /destroyfromuser
method.

m By the application removing the reference to its base frame in the userdict.
This will cause all the resources consumed by the application to be
reclaimed by the NeWS server.

Applications with a client component can most simply kill themselves by break-

ing their connection. The most obvious way to do this is to exit their UNIX pro-
cess.

10-6 tNt Technical Reference Manual

11. INTERFACE REFERENCE

3ON3H343H JOV4HILNI LI

1 1 Interface Reference

Interface Reference 11-1
Introduction 11-1
Wire Service 11-1
m Error Handling 11-2
m Connection Management 11-2
m Handle Allocation and Registration 11-8
m Notifier 11-12
m Ease Of Use Macros 11-13
m Synchronization 11-14
m Constants 11-15
AbsoluteBag 11-15
m Direct Methods 11-15
m Class Variables 11-18
ClassBag 11-19
m Direct Methods 11-19
m Subclass Methods 11-26
m Class Variables 11-29
ClassBaseFrame 11-30
ClassButton 11-30
m Direct Methods 11-30
m Subclass Methods 11-31
ClassCanvas 11-31
= Direct Methods 11-32
m Subclass Methods 11-42
m Class Variables 11-47
ClassCommandFrame 11-48
ClassContainer 11-49
m Direct Methods 11-49
m Subclass Methods 11-51
m Class Variables 11-52
ClassControl 11-52
= Direct Methods 11-54
m Subclass Methods 11-58
m Class Variables 11-60

Table of Contents i

Table of Contents

ClassDialControl ' 11-61
ClassFrame 11-61
ClassHelpFrame 11-62
ClasslconFrame 11-62
ClassMenu 11-62
ClassPropertyFrame 11-63
. ClassSelectionList 11-63
ClassTarget 11-63
m Direct Methods 11-64
m Subclass Methods 11-65
ClassTextControl 11-65
m Direct Methods 11-66
m Subclass Methods 11-73
m Class Variables 11-75
FlexBag 11-76
m Direct Methods 11-77
m Utility Methods 11-80
Object 11-81
m Direct Methods 11-81
m Subclass Methods 11-85
m Class Variables 11-86
OpenLookAbbrButton 11-86
m Direct Methods 11-86
OpenLookAbbrButtonStack 11-90
OpenLookBaseFrame 11-90
m Direct Methods 11-91
OpenLookButton 11-102
m Direct Methods 11-102
m Class Variables 11-105
OpenLookButtonStack 11-106
m Direct Methods 11-106
m Subclass Methods 11-110
OpenLookCheckBox 11-110
OpenLookChoggle 11-111
OpenLookCommandFrame 11-111
OpenLookFrame 11-112
OpenLookHelpFrame 11-112
OpenLookHorizontalScrollbar 11-112

i tNt Technical Reference Manual

OpenLookHorizontalSlider

m Direct Methods

m Subclass Methods
OpenLookiconFrame
OpenLookMenu

m Direct Methods
OpenLookNonXSetting

a Direct Methods
OpenLookNoticeFrame
OpenLookNumeric

m Direct Methods

m Class Variables
OpenLookPane
OpenlLookPropertyFrame
OpenLookTextControl

m Direct Methods

m Subclass Methods

m Class Variables
OpenLookVerticalScrollbar

m Direct Methods

m Subclass Methods
OpenLookVerticalSlider
OpenLookXSetting

m Direct Methods
Subclass Methods
OpenLookXSettingControl
RowColumnBag

s Direct Methods
RowColumnLayout

m Direct Methods

m Subclass Methods

m Class Variables

Table of Contents

Table of Contents

11-113
11-113
11-114
11-115
11-116
11-116
11-122
11-122
11-127
11-127
11-128
11-133
11-134
11-134
11-135
11-135
11-142
11-144
11-145
11-145
11-148
11-148
11-149
11-149
11-154
11-154
11-154
11-155
11-157
11-158
11-159
11-160

Interface Reference

Introduction

The following sections detail the programmer’s interface to tNt. First, the Wire
Service functions are described, then the method interface for selected classes on
the server side of tNt.

Note that for the server side, the reference is incomplete. Only the most com-
monly used classes are described, and only selected methods are given for those
classes.

Wire Service

The purpose of the NeWS Wire Service is to provide a server-client communi-
cations package of sufficient generality to support diverse client applications
and toolkits.

The Wire Service is nearly independent of the PostScript language server com-
ponents of tNt. It does not presume the existence of any particular class, and
should work as well with Lite clients as those based on the new PostScript
toolkit (with the exception of the synchronizatrion routines.) It is an extension
to CPs.

The components of the Wire Service are:

®m a connection manager to handle multiple connections to one or more
servers;

m "handle” allocation procedures, so that items on one side of the wire may
be referred to from the other side;

m a lightweight notifier on the C-side so that asynchronous messages from
the server(s) can be dispatched to client functions;

m and a synchronization package so that server-based code can make RPC-
style calls across the wire. These four components are described below,
after the error conventions and reporting facilities.

Interface Reference 111

Interface Reference

Error Handling

Most Wire Service interface functions return a value which can be coerced to an
integer and tested for a 0 return value. Many of them return a boolean: TRUE for
sucess, FALSE for failure.

When an error has occurred, its type is available in the wire_Ermmo global vari-
able, and a descriptive string is pomted to by wire ErrorString Like its
UNIX equivalent the error condition is not cleared immediately after an error. It
remains set until the next error. The function wire_Perror prints the current
error string to standard error, prefixed by the user-supplied string.

Connection Management

The first component of the wire Service is the connection management routines,
which support multiple connections per server and multiple servers per applica-
tion.

11-2 tNt Technical Reference Manual

Interface Reference

wire_Open takes an argument to specify the particular server to connect to. An
argument of NULL will cause the the NEWSSERVER environment variable to be
used. If there is no such environment variable, DISPLAY is used. If this also
does not exist then the current host i s used with default port 2000. If the argu-
ment is not NULL then it should be a hostname, a NEWSSERVER-style string, or
a DISPLAY-style string. These formats are discussed in the X11/NeWS docu-
mentation.

wire_Close is straight-forward. If the argument is wire ALLWIRES, all of the
connections will be closed. In this case, FALSE will be returned if there is an
error with any of the connections.

wire_PSinput and wire_PSoutput are accessor functions to the psio file
pointers. These are needed if a program wishes to access the psio files. (More
details may be found in the NeWS Programmer’s Guide.) Note that the current
implementation uses 2 file descriptors per connection. Thus, the number of
available wires is determined by the number of available file descriptors in the
system. This is highly implementation-specific and may be changed in the
future.

Interface Reference 11-3

Interface Reference

wire_SetCurrent has the effect of moving the appropriate file pointers into
the PostScript and PostScriptInput global variables. All libcps calls will
thereafter use this connection. The act of opening a wire does not set it to be the
current wire. This must be done manually.

wire_Current returns the current connection. It is necessary because the
Notifier (see below) may itself change the current connection, depending on
where the next message has come from. Clients that do not want to reply down
the same connection as their up-coming message will have to call
wire_SetCurrent again before they write.

wire_Valid returns TRUE if w is a valid wire, or FALSE if it is not.

11-4 tNt Technical Reference Manual

Interface Reference

Applications may associate client data with each connection via the
wire_SetData and wire_Data interfaces. The most common use of this will
be to reestablish some per-connection application context when processing a
message from a particular connection.

wire_Disable is used to remove a wire from the Notifier temporarily. Later,
wire_Enable can be used to restore Notifer service to the wire. While a con-
nection is disabled, the Notifier will not read any messages from it, and no func-
tions will be called on its behalf. The purpose of this function is to allow a client
to negotiate with one server, and guarantee that it won’t be interrupted by mes-
sages from another. When first opened, a connection is enabled. Disabling a
wire only affects its input side; writes to a disabled wire will succeed. The func-
tion wire_Enabled reports whether a particular connection is currently
enabled.

wire_ ALLWIRES may be passed as a paramater to wire_Disable and
wire_Enable in order to disable/enable all of the wires in a single call. An
error is reported if there is a problem with any one of the connections.

interface Reference 11-5

Interface Reference

Application programmers may supply three functions that the notifier will call
after particular abnormal events. If the connection is terminated, other than by a
call to wire_Close,(*death) () is called. This user-supplied function should
not attempt to close the offending wire. If the notifier finds a token at the head
of an input queue that is not recognizable as a dispatching tag, (*disease) ()
is called, and the current connection is preset to the offending one. It is the
responsibility of this function to consume the leading non-tag values from the
stream. Finally, if the notifier finds a dispatching tag which has not been
registered using wire RegisterTag, (*unknowtag) () is called. A NULL
argument to any of these three arguments to Problems will leave that function
unchanged.

116 tNt Technical Reference Manual

Interface Reference

If wire_Problems is not called, the functions wire_DeathDefault,
wire_DiseaseDefault and wire_UnknownTagDefault are used.
wire_DeathDefault prints a message to stderr, DiseaseDefault cleans up
the queue and prints a message to stderr, and wire_UnknownTagDefault eats
the tag and any following arguments, also printing a message to stderr.

If wire_Problems is called with wire ALLWIRES as the first parameter, then
the same set of callbacks will used for all connections.

wire_SkipEvent consumes the initial token on the current wire and any
remaining input upto, but not including the next tag. If there is no next tag on
the current wire wire_SkipEvent will not block waiting for one. This func-
tion is useful when writing disease and unknowntag functions.

wire_AddFileHandler adds a file to the Notifier’s list of files to check. When
data is detected on the file, the callback is called and passed the data pointer.
wire_RemoveFileHandler removes a file from the list. Note that the file is
not a wire_Wire and cannot be enabled or disabled. There are no restrictions
imposed on the file and it is up to the client to handle all operations within the
callback.

Note that these routines all take a file pointer. If a file descriptor is desired in
the application program, a call to fdopen can be made with no adverse side-
effects.

Interface Reference 11-7

interface Reference

Certain clients of the Wire Service may want to build data structures that are
indexed by a wire. For this reason a pair of procedures (currently macros) are
provided that map a wire into a unique small integer and back again. This is
meant to be used in those cases where client does not want to use the client
data field associated with the connection.

Handle Allocation and Registration

Both the C and PostScript language components need to reference remote
objects. The C programmer may need to modify or query some PostScript
language object he created earlier. Similarly, any PostScript language object
which wishes to notify the client of a user event needs some way to specify the
appropriate C function to invoke. Since references to PostScript language
objects can not be passed across the wire, and C pointers can not easily be
stored in the PostScript language world, we provide two "handle allocators”
which generate and remember unique identifiers.

11-8 tNt Technical Reference Manual

Interface Reference

The Wire Service uses "tags", as provided by CPS, to drive its notifier. Before
you can register a callback with the notifier, you must obtain a tag to associate
with the callback.

wire_AllocateTags takes a number N and returns another M, such that none
of the integers M, M+1, ... M+N-1 are already allocated. These integers are han-
dles whose primary use will be to dispatch messages from the server to client
functions.

wire_AllocateNamedTags is a thin wrapper around wire_AllocateTags.
It takes a NULL terminated array of pointers to integers, and assigns a tag
through each of these pointers. Here is a typical use:

Interface Reference 119

Interface Reference

wire_ReserveTags is provided to allow dynamically-allocated tags to coexist
with old-style constant tags. If you know that some piece of code uses tag
values 1..50, then before calling AllocateTags you should call

wire_ ReserveTags (50). This facility can also be used to leave space for your
own private tag allocator if the one provided by the Wire Service doesn’t meet
your needs. Note: ReserveTags must be called before any connections are
opened.

wire_RegisterTag allows you to associate a function pointer and a user data
pointer with a tag. If this tag is ever found on the wire by the notifier, your
function will be called. TagFunction and TagData retrieve the previously
registered information.

The Wire Service uses CPS usertokens as handles to PostScript language objects.
These tokens are allocated on a per connection basis. The application is reponsi-
ble for the registration of the usertoken in the server. These three calls are
analogous to the above calls for tag allocation, except that they are done on a
per-wire basis. Unlike wire_ReserveTags, wire_ReserveTokens is called
after the connection has been opened.

11-10 tNt Technical Reference Manual

Interface Reference

There is no equivalent to wire_RegisterTag () because this cannot be done
from the C process — you need a reference to the PostScript language object to
register it. Here is how you should use the usertoken facility for registering
your server-side objects:

Interface Reference 11-11

Interface Reference

Notifier

The purpose of the Notifier is to read tags from one or more server connections,
and depending on their value, call particular client functions. The functions that
are called are those that were previously registered using RegisterTag(). The
Wire Service provides both popular styles of notification: the notifier itself can
handle the main loop, or else the client program can repeatedly request the
dispatching of a single incoming message. The two styles can also be mixed in
the same application.

wire_Notify causes a single tag to be read from one of the active connections.
(Round-robin scheduling is used when there is more than one connection with
data ready for reading.) This tag is used as an index into the table of registered
procedures. The procedure is then called with the handle and registered data as
arguments. (See the function my_slider_handler in the example below).
wire_Notify has the side-effect of setting the current connection, so that
registered functions can read further arguments from the wire using normal
CPS and psio functions. If there is no data available on any of the active connec-
tions, wire_Notify will block until some message arrives or the period
specified in the timeout parameter expires. If a timeout occurs or the block is
interrupted by a system call, wire_Notify will return an error.

11-12 tNt Technical Reference Manual

Interface Reference

wire_WouldNotify does not block, and reports whether there are any pend-
ing messages on the specified wire. The special argument, wire_ ALLWIRES,
causes this procedure to return TRUE if any of the active connections have input.

wire_EnterNotifier will be the main-loop for many client applications. It is
reentrant, and can be intermixed with calls to wire _Notify. In fact, it will do
little more than repeatedly call wire_Notify itself. A call to
wire_EnterNotifier will not return until the corresponding
wire_ExitNotifier has been executed.

wire_ExitNotifier is called when the application programmer wants to exit
from a (possibly nested) notifier loop. The corresponding
wire_EnterNotifier will return as soon as the registered procedure which
called wire_ExitNotifier itself returns. Pending messages are not processed
in any way.

Ease Of Use Macros

The following macros are provided to enable data to be easily read from the
current connection. It is assumed that the user of these macros knows the type
of the data on the wire. Thus there is no type checking or error reporting. If the
data is of the wrong type, garbage may be returned and the wire may be left in
an undetermined state. The caveat to this is that numeric arguments are con-
verted by CPS (floating to integer and vice versa).

Interface Reference 1113

Interface Reference

Synchronization

CPs provides a mechanism for a client process to block pending notification
from a server process. The wire service provides a complementary mechanism
which will allow a server process to block pending notification from a client
process. This will provide symmetric facilities for synchronous communications.

The server interface looks like:
proc /wire_Sync => ——

The proc is executed, and wire_Sync guarantees it will not return until the C
client has acknowledged dealing with anything sent to it by the proc. Thus, for
example, the PostScript program can ask the C program to send it some value,
or to do some painting, etc., and be sure that C has responded to the request
before trying to do any more PostScript language code. Naturally, this makes
some assumptions about the client; hence the requirement that the client be built
on the Wire Service.

The client interface is:

wire_InSync simply checks to if the specified wire is responding to a syn-
chronised request from the server, which means that PostScript language code
sent now may be executed before PostScript language code sent earlier. This is
a subtle but important point.

11-14 tNt Technical Reference Manual

Interface Reference

Constants

The following constants are defined in the wire service:

AbsoluteBag

Subclass of ClassBag
Source file: bagutils.ps

This class can be directly instantiated

An AbsoluteBag is a general purpose bag in which clients are given an absolute
position when they are inserted. Regardless of the size and shape of the bag,
clients always remain in this position thereafter.

Direct Methods

/addclient name |null [x y client] /addclient -
name|null [x y client_class_args
client_class] /addclient -

There are several parameters required to add a
client to an absolute bag:

® name, the client may be named or
unnamed (null as the first argument),

Interface Reference 11-15

Interface Reference

m baggage, which must be present in an
absolute bag. It consists of the x and y
coordinates at which the client will be
located.

m client, which may be an instance or a class
to instantiate, along the same lines as
described in the section on ClassBag.

In the example below, the bag makes an
instance of OpenLookButton, and stores it in the
bag with the client name supplied.

/b1 [20 50 (Foo) {...} OpenLookButton] /addclient mybag send

See the ClassBag section for details on the nam-
ing and instantiation of bag clients.

/baggage client /baggage [x yl
Returns the baggage, which specifies the abso-
lute position of the client in the bag.

/clientcount - /clientcount n
Returns the number of clients currently in the
bag.

/clientlist - J/clientlist [clientl client2 ...]

Returns an array of clients, with the canvas
clients in the same order as they were inserted
into the bag, unless explicitly changed by the
application.

/destroy ~ /destroy -
Destroy the bag and its clients. Refer to the
ClassBag /destroy method for the additional
information on the use of this method.

/location - /location x y
Return the location of the origin of the bag rela-
tive to the CTM.

/minsize /minsize minwidth minheight
Compute the minimum acceptable size for this
bag, This is how big the bag must be to hold the
clients at their current sizes (not their minumum

11-16 tNt Technical Reference Manual

Interface Reference

/move

/new

/preferredsize

/removeclient

/reshape

/sendclient

/setbaggage

Interface Reference

sizes). A well behaved application will respect
this size when reshaping the bag in response to
user mouse actions.

X y /move -
Move the origin of the bag to the specified loca-
tion, in CTM coordinates.

parentcanvas /new instance
Create an absolute bag parented to the specified
canvas.

- [Ipreferredsize preferredwidth prefer-
redheight

Calculate the “ideal” size of the bag, which
defaults to the minimum size. Well behaved
applications will respect this size when initially
displayed the bag.

client|namein /removeclient oldclient
true

client|name|n /removeclient false

Remove the client given, named or indexed in
the argument. The method returns true and the
client object if the client is found, otherwise it
returns false.

x y wh /reshape -

Reshape the bag to the dimensions given and
invalidate it. This results in the bag being layed
out as the first step in painting it.

<args> /method /name /sendclient results
Send the specified method, with any arguments,
to the named client. An error results if the
client is not in the bag.

client [x y] /setbaggage -
Set the client’s positioning coordinates.

1117

Interface Reference

/settopdown

/size

/topdown?

Class Variables
/TopDown?

see also:
ClassBag

11-18

bool /settopdown -

Define the orientation of the bag’s coordinate
system as seen by clients: true sets the coordi-
nates “top-down’, false sets them “bottom-up”.
See the /topdown? method for more details.

- /size wh
Return the width and height of the bag in coor-
dinates of the CTM.

- /topdown? bool

Return the positioning of the bag’s coordinate
system: true if the coordinates are “top-down’,
with (0,0) at the upper left corner of the bag.
False means the coordinates are “bottom-up”’,
with (0,0) at the bottom left corner, which is the
standard NeWS orientation.

Note first, that this positioning effects the clients
of the bag as well as the bag itself. If the bag’s
coordinates are “top-down” (origin at the upper
left), then so is the origin of each client.

Note second, that this variable only effects the
orientation of clients inside the bag. Externally,
as a NeWS canvas, the bag’s origin remains at
the lower left corner, regardless of this variable.

This boolean variable reflects the positioning of
the bag’s coordinate system: true if the coordi-
nates are “top-down’, false if the coordinates
are “bottom-up”. See the /topdown? method
for more details.

tNt Technical Reference Manual

Interface Reference

ClassBag

Subclass of ClassCanvas
Source file: bag.ps

This class should be subclassed rather than directly instantiated.

A bag is a type of canvas that manages a group of clients, either canvases or
graphics. Bags formalize the concept of containment.

When a client canvas is added to a bag, it is reparented to the bag, becoming a
child of the bag in the NeWS canvas tree. Thus, in most applications, the inte-
rior canvases descended from the application’s base frame are typically bags.

A bag provides its clients with names, shared event management, and collective
layout and damage repair.

Direct Methods

/activate - lactivate -
Activate event management for the bag and all
its canvas clients. This method is called recur-
sively on clients that are themselves bags.

/addclient name|null [... client] /addclient -
name|null [... clientclass] /addclient -
name|null client /addclient -

There are several ways to add a client to a bag.

The client can be specified as an instance of a
subclass of either ClassCanvas or ClassGraphic.
Or the client can be specified by a subclass of
ClassCanvas, in which case, the bag will instan-
tiate the class and accept that instance as its
client. If arguments are required to instantiate
the class, they must be supplied along with the
"baggage" described below. Note that a parent
argument is not required when specifying a
class to instantiate: the bag will be the parent.

Interface Reference 11-19

interface Reference

/addfocusdescendant

11-20

The client may be named or unnamed. The
name may be any legal dictionary key in the
PostScript language. If a name is given, the
client can later be accessed by supplying that
name to the /getbyname method. If null is
given as the name, the client is accessed by the
order in which it was put into the bag, the first
client being number 0.

The application must remember the insertion
order of unnamed clients. The bag will return a
client given its index, but there is no method for
which the bag returns the index.

The client can be accompanied by "baggage”,
which is data bundled into an array with the
client instance (or class). This information is
used by bag subclasses, typically in laying out
the clients. The arguments necessary to instan-
tiate a client from a class are supplied next to
the baggage, but are not consumed during
instantiation and are not stored.

Note that if you move a client from one bag to
another, you must first send /removeclient to
the bag the client is leaving before sending
/addclient to the bag the client is entering.

For examples of adding a client to a bag, see the
introductory section, Bags.

client /addfocusdescendant -

This method is used to notify all parent bags of
this bag that they have a new descendant that is
interested in input focus. This can happen
either because a new key consumer was added
to this bag or because an existing client changed
status, becoming interested.

The method is called automatically when adding
a client to a bag. It is not generally necessary to
override this method, either.

tNt Technical Reference Manual

Interface Reference

/addkeyconsumer

/baggage

/client?

/clientcount

/clientlist

/deactivate

/destroy

Interface Reference

client /addkeyconsumer -

This method is called automatically when
adding to the bag a client that is interested in
keyboard input (a key consumer).

client /baggage [data]
Returns the baggage data that was passed in
when client was added to the bag.

/name /client? boolean
Returns true if name belongs to an existing client
in the bag.

- /clientcount n
Returns the number of clients currently in the
bag.

- Iclientlist [clientl client2 ...]
Returns an array of clients, with the canvas
clients in the same order as they were inserted
into the bag, unless explicitly changed by the
application.

- [Ideactivate -

Turn off event management for the bag and all
clients. This removes all interests expressed by
the bag and clients. It also kills the event
manager process if it is owned by the bag, oth-
erwise it notifies the event manager that the bag
is no longer active.

- /destroy -

Destroy the bag and its clients; send /destroy-
dependent to each client and remove any associ-
ated baggage. This method is called automati-
cally when the NeWS memory reference count
on the bag goes to zero.

Any clients remaining after sending /destroy-
dependent are reparented to an offscreen can-
vas. This allows a subclasser to override /des-
troydependent for any client that should not be

11-21

Interface Reference

/destroydependent

/focustarget

/foreachclient

/getbyname

/graphicclientcount

/graphicclientlist

/?invalidate

11-22

destroyed as the result of destroying the bag
and other clients.

-~ /destroydependent -

This method is sent to each client of a bag when
the bag is destroyed. By default, it does /des-
troy self send. Override this method for any
client that should not be destroyed at the same
time as the bag and other clients.

- [/focustarget canvas | null

Return the current input focus target for the
bag, or null if there is none. The focus target for
a bag is the client canvas to which the bag will
forward input focus when the bag receives it.

proc /foreachclient -

Call the given procedure for each client in the
bag, with the client on the top of the operand
stack.

name /getbyname client true

name /getbyname false

Return the client named by the argument and
true if the client exists in the bag. Otherwise
return false.

Note that the name may be an integer if the
client was entered without a name.

- /graphicclientcount n

Return the number of graphic clients in the bag.

The total number of clients (/clientcount) minus

this number equals the number of canvas clients.

- /graphicclientlist [clientl client2 ...]
Return an array of graphic clients of the bag, or
the nullarray if there are none. To get an array
of canvas clients, use /children+.

methodname /?invalidate -

This method is used to control which methods
invalidate the bag; a method will call /?invali-
date with its own name as the argument and

tNt Technical Reference Manual

interface Reference

/invalidate

/lastfocustime

/layout

/location

/minsize

Interface Reference

Ninvalidate will decide whether to invalidate
the bag. By default the following methods call
Rinvalidate: /addclient, /removeclient, /reshape.
Override this method if you want a bag not to
invalidate automatically after one of those
methods listed above.

- finvalidate -

This method is called by the toolkit (through
ltinvalidate) to mark the bag invalid, meaning
that its layout is out of date. The application
does not normally call this method directly, but
instead it is indirectly invoked by /addclient,
/removeclient, /reshape.

- [lastfocustime time
Return the time when the bag last had the input
focus.

- /layout -

Perform layout on all clients of the bag to move
and/or reshape them based on the current size
and shape of the bag. Note that this method is
not usually directly called by an application, but
is invoked indirectly by /addclient, /remo-
veclient, /reshape.

- [location x y
Return the location of the bag’s origin in CTM
coordinates.

/minsize minwidth minheight
Compute the minimum acceptable size for this
bag. A well behaved application will respect
this size when reshaping the bag in response to
user mouse actions.

When subclassing, override this method if the
calculations do not require the current canvas to
be the bag. (If the calculations do require the
bag as the current canvas, override /MinSize
instead.)

11-23

Interface Reference

/move

/new

/newinit

/preferredsize

/removeclient

/removefocusdescendant

11-24

x y /move -
Place the origin of the bag at the point (x,y) in
the coordinates of the CTM.

parentcanvas /new instance

Create a bag parented to the specified canvas.

- /newinit -

Override this method to initialize a bag with
arguments supplied to /new. The overridden
/newinit should use the arguments in its initiali-
zation and consume them (remove them from
the stack). v

- /preferredsize preferredwidth prefer-
redheight

Calculate the “ideal” size of the bag. Well
behaved applications will respect this size when
initially displayed the bag.

When subclassing, override this method if the
calculations do not require the bag to be the
current canvas. (If the calculations do require the
bag as the current canvas, override /Preferred-
Size instead.)

client|name|n /removeclient oldclient
true

client|name|n /removeclient false

Remove the client given, named or indexed in
the argument. The method returns true and the
client object if the client is found, otherwise it
returns false. The effect is to remove the client
and any of its baggage, reparent the client to an
offscreen canvas, and deactivate it if it was using
the bag’s event manager. If the client was
activated before being added to the bag (had its
own event manager) it remains active.

client /removefocusdescendant -

This method is sent to notify a bag that a des-
cendant (canvas) client has stopped being
interested in input focus. If that descendant was

tNt Technical Reference Manual

Interface Reference

/removekeyconsumer

/reshape

/sendclient

/setbaggage

/setfocustarget

/size

/valid?

Interface Reference

the focus target, this method calls /MakeFocus-
Target to obtain a new focus target. This
method is used a bag (/removekeyconsumer) to
notify any parent bags when a child stops con-
suming keys.

client /removekeyconsumer -

Notify parent bags that a child of this bag has
stopped being a key consumer. This can happen
either because the child was removed from the
bag, or remained in the bag but revoked its
interests in keyboard focus events. This method
is not directly called by an application, but is
invoked through /removeclient.

x y w h /reshape -

Reshape the bag to the dimensions given and
invalidate it. This results in the bag being layed
out as the first step in painting it.

<args> /method /name /sendclient results
Send the given method with arguments to the
named client.

client [attributes] /setbaggage -

Store the extra information ("baggage") for the
client. Typically in bags this information is used
in layout.

clientcanvas|null /setfocustarget -

The argument is stored in the /FocusTarget vari-
able. If it is null, the bag will cease to be
interested in input focus. Otherwise, the client
canvas named in the argument becomes the
focus target for the bag.

- /size wh
Return the current size of the bag in the coordi-
nates of the CTM.

- /valid? boolean
Return true if the bag’s layout is valid.

11-25

Interface Reference

/?validate

/validate

Subclass Methods
/BagBegin

/BagEnd

/CheapIntegerClient

/CheapIntegerName?

/DeRegisterByName

/DeRegisterByOrder

11-26

- [Nvalidate -
Validate if the bag’s layout is currently invalid.

- /validate -

Lay out the bag in preparation for painting.
This method is not generally called explicitly by
an application, but rather gets invoked through
/paint or /fix.

- /BagBegin -

Set the bag as the current canvas and save the
current NeWS graphic context, establishing a
"bag context". This allows layout procedures to
operate in the CTM of the bag.

- /BagEnd -
Restore the previous NeWS graphics context.

int /CheaplntegerClient client
Return the client corresponding to the array
index given as an argument.

int /CheapIntegerName? boolean
Returns true if the argument is an integer and
clients are stored by number in an array.

/name /DeRegisterByName oldclient true
/name /DeRegisterByName false

Remove the named client from the bag. Return
the named client and true if the client is in the
bag, otherwise, return false.

client|int /DeRegisterByOrder client true
client|int /DeRegisterByOrder false
Remove the client indicated by the argument,
either the client object itself or its index in the
internal client array. The method returns the
client object and true if it was present, otherwise
false.

tNt Technical Reference Manual

Interface Reference

/DeRegisterClient /name |client /DeRegisterClient oldclient
true
/name |client /DeRegisterClient false
Remove a client, whether stored by name or by
order of insertion.

/FixChildren - [FixChildren -
This method sends /fix to each canvas, not
graphic, client of the bag

/Layout - [Layout -

Override this method to perform specific layout
functions for a subclass, such as placement and
sizing relative to the bag. When this method is
called by /layout, the bag will be the current
canvas, so the subclass can use information
about the bag’s size and coordinates.

/MakeFocusTarget newcanvas | null /MakeFocusTarget
newcanvas’ | null
Override this method to decide which client
should receive the input focus. This method is
called when adding a key consumer to a bag
that has no focus target or when removing the
current focus target.

/MinSize - /MinSize wh
This method is called by /minsize with the bag
as the current canvas to calculate the minimum
size for the bag. Override it to implement spe-
cial calculations for a subclass, for example bas-
ing the minimum size of the bag on the
minimum sizes of clients.

/NewClient parentcanvas /NewClient instance
This method is used when creating a bag client
from a clientclass given as an argument to
/addclient. It is executed in the context of the
class being instantiated. Override this method
to provide special treatment of a newly created
client instance.

Interface Reference . 11-27

Interface Reference

/NoticeDescendantFocus

/NoticeFocus

/NoticeFocusEnterExit

/NoticeSelfFocus

/PaintChildren

/PaintGraphicChildren

/PreferredSize

11-28

event /NoticeDescendantFocus -

This method is called by /NoticeFocus when the
input focus has moved into a child of the bag; it
sets the focus target variable (/FocusTarget) to
the child canvas.

event /NoticeFocus -

This method is the callback from the interest
expressed by the bag in noticing input focus
changes; it is called when input focus enters a
focus-forwarding bag or any of its children. It
determines the focus target and transfers the
focus to it via /TransferFocus. If the focus
changes on the bag itself, /NoticeSelfFocus is
called. If the focus changes on a client of the
bag, /NoticeDescendantFocus is called.

event /NoticeFocusEnterExit -

This method is called when focus enters or
leaves a bag hierarchy; not when focus shifts
from one client to another client of a bag. Over-
ride it when special behavior is required on
gaining or losing input focus.

event /NoticeSelfFocus -

This method is called when focus moves into or
out of a bag. It transfers the focus to the client
canvas indicated by /FocusTarget.

- /PaintChildren -
This method is called by /paint to paint each
canvas client of the bag.

- /PaintGraphicChildren -
This method is called by /paint to paint each
graphic client of the bag.

/PreferredSize w h
This method is called by /preferredsize with the
bag as the current canvas. By default it returns
/minsize. Override it to perform any special cal-
culations for a subclass, for example, considering
the preferred sizes of clients.

tNt Technical Reference Manual

interface Reference

/RegisterByName /name client /RegisterByName -
This method adds a client to the bag by name.
/RegisterByOrder client /RegisterByOrder -

This method adds a client to the bag by the
order of insertion.

/RegisterClient /name [null client /RegisterClient -
This method adds a client to the bag by name or
by the order of insertion, depending on the

argument given.

/TransferFocus canvas /TransferFocus -
Transfer input focus to the client indicated by
the /FocusTarget varia<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>