

ATlaT

UNIX® SYSTEM V
RELEASE 4
Programmer's Guide: X11/NeWS®
Graphical Windowing System
tNt Technical Reference Manual

UNIX Software Operation

Copyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

Parts of this book are reproduced with the permission of the following organizations: Sun Microsys­
terns, Inc., Digital Equipment Corporation (DEC), X Window System is a trademark of Massachusetts
Institute of Technology, X11 is a trademark of Massachusetts Institute of Technology, X11/NeWS is a
registered trademark of Sun Microsystems, Inc.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

The Sun logo, Sun Microsystems, and Sun Workstations are registered trademarks
of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, Sunlnstall, SunOS, Sun View, NFS, NeWS and SPARC
are trademarks of Sun Microsystems, Inc.

POSTSCRIPT is a registered trademark of Adobe Systems
UNIX is a registered trademark of AT&T

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-931858-5

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632
Or call: (201) 592-2498

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T UNIX® System V Release 4

General Use and System Administration
UNIX~ System V Release 4 Network User's and Administrator's Guide
UNIXs System V Release 4 Product Overview and Master Index
UNIXs System V Release 4 System Administrator's Guide
UNIXs System V Release 4 System Administrator's Reference Manual
UNIXs System V Release 4 User's Guide
UNIXs System V Release 4 User's Reference Manual

General Programmer's Series
UNIXS System V Release 4 Programmer's Guide: ANSI C and Programming Support Tools
UNIXs System V Release 4 Programmer's Guide: Character User Interface (FMLI and ETI)
UNIXs System V Release 4 Programmer's Guide: Networking Interfaces
UNIXs System V Release 4 Programmer's Guide: POSIX Conformance
UNIXs System V Release 4 Programmer's Guide: System Services and Application

Packaging Tools
UNIXs System V Release 4 Programmer's Reference Manual

System Programmer's Series
UNIXS System V Release 4 Device Driver Interface / Driver-Kernel Interface (DDI / DK!)

Reference Manual
UNIXs System V Release 4 Programmer's Guide: STREAMS

Migration Series
UNIXS System V Release 4 ANSI C Transition Guide
UNIXs System V Release 4 BSD / XENIXs Compatibility Guide
UNIXs System V Release 4 Migration Guide

Graphics Series

UNIXS System V Release 4 OPEN LOOK'" Graphical User Interface Programmer's
Reference Manual

UNIXs System V Release 4 OPEN LOOKTW Graphical User Interface User's Guide
UNIXs System V Release 4 Programmer's Guide: OPEN LOOK TW Graphical User Interface
UNIXs System V Release 4 Programmer's Guide: Xll/NeWSs Graphical Windowing System

NeWS
UNIXs System V Release 4 Programmer's Guide: Xll/NeWSs Graphical Windowing System

Server Guide
UNIXs System V Release 4 Programmer's Guide: XU/NeWSs Graphical Windowing System

tNt Technical Reference Manual
UNIXs System V Release 4 Programmer's. Guide: Xll/NeWSs Graphical Windowing System

XVIEW Tl•

UNIXs System V Release 4 Programmer's Guide: XWIN TW Graphical Windowing System
Addenda: Technical Papers

UNIXs System V Release 4 Programmer's Guide: XWIN TW Graphical Windowing System
The X Toolkit

UNIXs System V Release 4 Programmer's Guide: XWIN Tl• Graphical Windowing System
Xlib - C Language Interface

Available from Prentice Hall PI

Contents

1 1-1
Introduction

2 2-1
The Wire Service

3 3-1
Canvases

4 4-1
Managing Groups of Canvases

5 5-1
Menus and Other Selection Lists

6 6-1
Controls

Table of Contents

Table of Contents ___________________ _

II

7

8

Graphics

The NeWS Development Environment
Input Model

9 Selections

1 0 Miscellaneous Topics

11 Interface Reference

7-1

8-1

9-1

10-1

11-1

tNt Technical Reference Manual

Figures and Tables

Figure 4-1: Bags
Figure 4-2: Frame Hierarchy
Figure 4-3: Top Down Coordinates
Figure 4-4: Bottom Up Coordinates
Figure 4-5: Compass Point Notation

Table of Contents

4-1
4-14
4-30
4-30
4-32

iii

Preface

Preface
What's in the Chapters

Table of Contents

1
3

Preface

tNt extends Xll /NeWS® in two areas, offering:

• classes of objects that implement the OPEN LOOKTM Graphical User Inter­
face, and

• the Wire Service, an enhanced means of communication between the
server and a client program.

To see what this means to you, let's put it in perspective, beginning with the
generic model of a window system shown below.

Figure 1: Generic Window Architecture

Application

Toolkit

Window System

Operating System

Hardware Platform

Starting from the hardware, each layer of software manages resources and
extends the capabilities of the system.

The operating system manages hardware resources, and provides services to
access them. The type of management and service can vary widely. Simple
operating systems manage the hardware resources, sophisticated operating sys­
tems extend those resources. For example, even primitive operating systems
include a file system of some sort. The file system takes raw mass storage and
turns it into files and directories of files. More sophisticated operating systems
(certainly anything that supports Xll /NeWS, such as UNIX® offer multitasking,

Preface 1

Preface

which does the same thing for the raw processor/memory resource, turning it
into multiple jobs apparently executing at the same time.

The next layer up in the generic model, the window system, applies this same
philosophy to the display resource. The window system takes a raw high reso­
lution display and turns it into multiple virtual displays called windows.

The window system toolkit provides another level of service in allowing you to
manupulate the appearance and function ("look and feel") of the windows. The
toolkit provides varying degrees of assistance to the application in defining the
interface the application's user will see. In some cases the toolkit offers assorted
user interface components for the application builders to use as they see fit. In
other cases, the toolkit implements (and enforces) a standard user interface to be
used by all applications.

The situation with Xll/NeWS is shown in Figure xnewsarch below. What is
unique to Xll/NeWS is that there are two toolkits, one for Xll™ applications
and one for NeWS applications. Both toolkits implement the emerging OPEN
LOOK graphical user interface standard.

2 tNt Technical Reference Manual

Preface

Figure 2: X11/NeWS Architecture

X NeWS
Applications Applications

OPENLOOK

XView™ tNt

XlI/NeWS

SunOS 4.x

Sun 3,4, SPARCTM, 386i

This manual does not address the X Window™ side of XlI/NeWS, but it is
important to remember that it is there because you will occasionally run across
things that owe their existence to the XII side.

What's in the Chapters

The chapters are:

Chapter I, "Introduction" is a brief introduction and includes information on
running tNt demos.

Chapter 2, "The Wire Service" explains the tNt's enhancement to NeWS' support
for client-server communications.

Chapter3, "Canvases" provides details on ClassCanvas which provides the basic
underpinning for windows, menus, and controls.

Preface 3

Preface

Chapter 4, "Managing Groups of Canvases" explains about bags. When you
need to bring a group of canvases together to accomplish some task you'll use a
bag to manage them. This chapter also contains information about managing
the input focus.

Chapter 5, "Menus and Other Selection Lists" explains how tNt enables you to
build menus quickly and associate them with canvases.

Chapter 6, "Controls" explains about the different kinds of controls tNt pro­
vides. Some kinds of controls are scroll bars, sliders, dials, and buttons.

Chapter 7, "Graphics" contains information on the tNt facility for providing
images for buttons, menus, controls and labels without the overhead of using
canvases.

Chapter 8, "The NeWS Development Environment Input Model" is a
comprehensive, in-depth look at the facilities tNt has added to the NeWS sys­
tem for handling user input.

Chapter 9, "Selections" explains how tNt handles user selection of objects like
text and windows.

Chapter 10, "Miscellaneous Topics" has information on ClassTarget, tNt's class
that helps manages references to other objects and helps prevent dangling refer­
ences. This chapter also contains information that helps to define what an tNt
application is.

Chapter 11, "Interface Reference" contains the details of the function calls of the
Wire Service and the method interface for selected tNt classes.

For further information on the OPEN LOOK Graphical User Interface, please
consult:

• OPENLOOK Functional Specification 1.0 Sun Microsystems Inc., part
number 800-3355-05.

• OPEN LOOK ill Style Guide, Sun Microsystems Inc., part number 800-
3356-06.

For information on the XlI/NeWS server, see:

4

• NeWS Programmer's Guide, Sun Microsystems Inc., part number 800-2379-
04.

tNt Technical Reference Manual

Preface

For information on the PostScript® Language, see:

• POSTSCRIPT Language Reference Manual, Adobe Systems Inc., Addison Wes­
ley, 1985, ISBN 0-201-10174-2.

Preface 5

1 Introduction

Introduction
Philosophy
Learning the System
Conventions

Table of Contents

1-1
1-1
1-1
1-2

Introduction

The NeWS Development Environment provides a powerful and flexible exten­
sion to the NeWS window system. It is object-oriented in design and imple­
ments much of the look and feel described in the OPEN LOOK UI specification.

The toolkit is composed of two pieces: a set of PostScript classes which imple­
ment parts of the OpenLook specification, and completely replaces the Lite
toolkit; and a C library, called the Wire Service, which significantly enhances
CPS as the client/server communications package.

The two parts of the toolkit are quite independent. You can use only the
PostScript components in a server-resident program, or even communicate with
a client process via unadorned CPS. Similarly, the Wire Service does not rely on
the PostScript classes at all, and could theoretically be used with any other
server-side toolkit.

Philosophy

The philosophy behind the PostScript-based portion of the NeWS Development
Environment is to provide a useful set of OPENLOOK components, under­
pinned by a powerful and flexible set of intrinsic classes that are not specific to
any particular user interface.

The Wire Service is intended to provide the lowest common denominator in
client-server communications needs. It handles registration of client-side call­
backs, a notification mechanism by which to call them, and a synchronization
system for server / client communication. It is almost transparent in its simpli­
city.

Learning the System

As with any powerful system, the NeWS Development Environment takes some
effort to learn. To help you learn to get all the power out of the toolkit,
demonstration code has been built directly into the the class hierarchy. This
comes in the form of Idemo methods in many of the classes. However, in order
to decrease the size of the code that the toolkit loads into the server, the demo
methods are not available by default. To enable them you must put the follow­
ing line in the .user.ps file in your home directory.

Introduction 1-1

Introduction

systemdict /IncludeDemos? true put

Two files, bag-example.ps and selections-example.ps have been included on the
tape that includes this documentation. Once you've started the server you can
execute these examples via psh(1). Complete listing of the code for these exam­
ple can be found in the following chapters:

bag-example.ps Chapter 4. Managing Groups of Canvases
selections-example.ps Chapter 8. Selections

Conventions

Several conventions are used in this manual:

1-2

• Toolkit methods are in bold.

• PostScript operators are in helvetica-bold.

• Code examples are in 10-point helvetica.

• At the beginning of major sections the relevant portion of the toolkit's
class tree is reproduced to provide a connection between the subject being
discussed and its location in the class hierarchy.

tNt Technical Reference Manual

2 The Wire Service

The Wire Service
Purpose of the Wire Service
An overview of the components

• The Notifier
• Connection Management
• Resource Allocation
• Server-client synchronization

Notification
Connection Management
Resource Allocation

• Tag Allocation
• Token Allocation

Server-Client synchronization
Building a typical application

Table of Contents

2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-5
2-8
2-8
2-9
2-11
2-12

The Wire Service

Purpose of the Wire Service

The NeWS Wire Service is a server-client communications package that provides
support and management of server connections, a client notifier, and shared
resources. The Wire Service has four primary components: a notifier, a connec­
tion manager, a tag/token allocator, and a server-client synchronization
mechanism.

Connection management enables a client to initiate multiple connections to one
or more servers. Allocation of handles allows the C language to reference
PostScript objects in the server (Tokens) and the PostScript language to reference
C objects in the client (Tags). Event notification associates client procedures with
specific events. When the event is received, the notifier will execute the
appropriate procedure. Synchronization permits a server process to pause and
wait for notification from a client process.

An overview of the components

The Notifier
The Notifier provides a lightweight mechanism for allowing clients to register
callback functions associated with asynchronous messages from the server(s).
Using the tag allocator, a client reserves a range of tags and associates a C pro­
cedure with each tag. When a tag is read from one of the server connections, the
Notifier invokes the appropriate procedure. The notifier supports both applica­
tions that wish to "own" control of the main loop construct (e.g., Madntosh
style applications) and those that wish to be solely callback driven (e.g., Sun­
view style).

Connection Management
Connection management is the second major component of the Wire Service.
An application can open a single connection to a NeWS server or multiple con­
nections to a single server or multiple servers. A connection is abstracted to the
notion of a Wire and facilities are provided for various forms of manipulation
(opening, closing, temporarily disabling, etc.). Events from the server come
back on the wire and are read using normal CPS operations (see the NeWS
Programmer's Guide).

The Wire Service 2·1

The Wire Service

Resource Allocation
There are two resource allocators in the Wire Service: a tag allocator and a
token allocator. While they have parallel architectures, they have complemen­
tary purposes. Tags are used to keep a handles toC procedures that can be used
in the server, and tokens are handles to server objects for client manipulation.

Tags are allocated individually or in ranges on a per-client basis. Thus a single
tag/ callback pair that is registered with the Notifier can be used from multiple
wires (and hence multiple servers). To provide compatibility with tag usage in
applications written with statically defined tags, a range of tags can be reserved
and removed from the allocator.

Tokens are also allocated individually or in ranges but, unlike tags, tokens are
allocated on a per-connection basis. Since there is no counterpart to the Notifier
in NeWS, the application is responsible for the registration of the token in the
server as well as keeping track of the wire/token association. Tokens, as pro­
vided by the Wire Service, are implemented by using the usertokens provided
by CPS. To provide compatibility with applications written using the userto­
kens, a range of tokens can be reserved and removed from the allocator.

Server-client synchronization
The final component of the Wire Service is the server-client synchronization
mechanism. CPS provides a mechanism for a client process to block pending
notification from a server process. The Wire Service provides a complementary
mechanism which will allow a server process to block pending notification from
a client process. This provides symmetrical facilities for synchronous communi­
cations.

Notification

The notifier in the wire service reads a single tag from one or more server con­
nections. Depending on its value, the tag is then dispatched to a user defined
procedure. Before the message is dispatched, the notifier will set the PostScript
and PostScriptInput pointers to the appropriate connection.

wire_RegisterTag associates a pointer to a function and a pointer to client data
with a specific tag. When the tag reaches the head of the input queue, the

2-2 tNt Technical Reference Manual

The Wire Service

notifier calls the function. The client function associated with a tag can be
retrieved using wire _ TagFunction. The client data is retrieved using
wire _ TagData.

Two modes of notification are offered. For event-driven applications,
wire _EnterNotifer will allow the notifier to control the dispatch of tags until
wire _ExitNotifier is called. In this model, the application can eliminate con­
trol loops related to tag processing. On the other hand, applications which are
not event-driven might need to maintain finer control of message processing.
Using wire_Notify, these programs can implement a control loop and still use
the notifier to dispatch messages.

The wire _WouldNotify function reports whether there are pending tags on the
input queue of a particular wire or all wires. wire_SkipEvent consumes the
initial tokens on the wire until the next tag is detected. When no input is pend­
ing, this function will not block.

Example

(continued on next page)

The Wire Service 2-3

The Wire Service

2·4 tNt Technical Reference Manual

The Wire Service

Connection Management

The client connection to one or more servers is established using the wire ser­
vice function wire_Open. One parameter is passed to wire_Open to indicate
the server. This parameter can take three forms:

• A null value implying the default server named in either the NEWSSERVER
or DISPLAY environmental variable.

• A parameter in the format "hostname", meaning the default server on the
specified host.

• A parameter in the format of either the NEWSSERVER string or DISPLAY
string (see the Xll/NeWS Server Guide) to direct the connection to the
appropriate host.

When the connection to the server is successful, a wire Connection structure
is allocated in the wire connection table. This is returned as a wire Wire and
is used as a handle to refer to the connection in subsequent calls. -

During the open process, the connection is enabled through a call to the
wire_Enable. One parameter, a wire_Wire, is passed to wire_Enable to
indicate the appropriate connection to activate. In addition, another function,
wire_Disable is available to disable a connection should the application need
to ignore input from the server for a limited time. To disable a wire, the call
wire_Disable (theWire) is made.

The Wire Servlctt 2-5

The Wire Service

The CPS functions and the server communicate using the PSFILE pointers,
PostScript and PostScriptInput. Therefore, the wire service intrQduces the con­
cept of the "Current Wire." Whenever a wire_Wire becomes the current wire,
its file pointers are moved into the global variables, PostScript cmd PostScriptIn­
put. Thus all CPS communication takes place on the Current Wire To make a
wire the "Current WIre", a call to wire SetCurrent (theWire) is made and
becomes the current wire. The current wire is returned by a call to
wire_Current () .

Each connection has three function pointers for handling abnormal conditions:
death, disease, and unknowntag.

When the connection is terminated abnormally (not via a call to
wire_Close (), the death function is called.

When the first token in the input queue is not a tag, the notifier calls the disease
function. This function is responsible for consuming the offending tokens.

When the first token in the input queue is not a registered tag, the notifier calls
the unknowntag function.

Wire_Open provides the new wire_Wire with default functions for these
problems. The wire_Problems function can be used to register private
handlers. This function requires four parameters: a wire_Wire, a death func­
tion pointer, a disease function pointer, and a unknowntag function pointer. A
null function pointer value will leave the current function unchanged.

The Wire_Close function terminates a connection to the server. The
wire_ALLWlRES constant can be passed to wire_Enable, wire_Disable,
wire_WouldNotify, and wire_Close to effect all connections. For example,
the call, wire_Close (wire_ALLWlRES), would terminate all connections.

An application might need to maintain state information. The wire_SetData
function can associate a client data pointer with a connection~ The information is
retrieved using wire_Data.

The application can determine the current wire using the wire_Current func­
tion. The Wire_Valid function will indicate whether a particular wire is opera­
tional.

2-6 tNt Technical Reference Manual

The Wire Service

Example

The Wire Service 2-7

The Wire Service

Resource Allocation

Tag Allocation
Using the CPS libraries, the programmer is responsible for the allocation of tags.
Without careful supervision, applications may duplicate tag values, leading to
confusion and madness. The wire service provides routines to allocate or reserve
a range of tags. Tags are no longer constant values, but are generated in a
dynamic manner. In addition, tags can be assigned to a list of client variables.

wire_AllocateTags reserves a range of client tags. This function is passed an
integer (N), which indicates the number of tags required. It returns an integer
(M), ensuring that the tag values, (M) through (M+N-l), have not been allocated
in the past.

wire ReserveTags allows the wire service to coexist with both CPS and
private tag allocation schemes. This function is passed an integer (N), which
represents the highest tag value to be reserved. wire_ReserveTags should be
executed prior to wire_Open and wire_AllocateTags.

wire_AllocateNamedTags assigns tag values to client variables. This func­
tion is passed a null terminated array of pointers to integers. It reserves and
assigns a tag value to each of the pointers.

2-8 tNt Technical Reference Manual

________________________ The WIre ServIce

Example

Token Allocation

The Wire Service references server objects through user defined tokens (usertoken
as defined in CPS). wire_AllocateTokens, wire_ReserveTokens, and
wire_AllocateNarnedTokens are similar to the tag allocation functions, with
some exceptions. For instance, tokens are allocated on a per connection basis,
either tokens must be used with the connection they were defined on or care
must be taken to align tokens across connections via the use of
wire _ReserveTokens. In addition, the application is responsible for register­
ing the usertokens in the server.

The Wire Service 2-9

The Wire Service

Example

2-10 tNt Technical Reference Manual

The Wire Service

Server-Client synchronization

The synchronization mechanism provided by the wire service allows a server
process to initiate a synchronous call to the client. A call is made to the
PostScript function wire_Synch with an executable procedure on the stack.
The procedure is executed and then wire_Synch sends a marker to the client.
The server process then blocks until the client acknowledges receipt of the
marker.

One of the more common uses of this facility will be to paint of canvases that
need some functionality in C for repainting. The server, upon getting the
PaintCanvas request, initiates the client code and then blocks before painting the
rest of the canvas. In the example below, the client will handle the
REDRAW_TAG before acknowledging receipt of the marker. This would allow
the client to paint the rest of the canvas, if desired.

wire_Synch expects to find the userdict on the dictionary stack. If
wire_Synch is to called from another process, make sure that the necessary
information is in the current userdict.

Example

The Wire Service 2-11

The Wire Service

Building a typical application

A typical application consists of three or more files containing the C routines,
the code to be loaded into the server, and the cps code.

main. c: This file would contain the C code for the application. It should
include the file <wire. h> and "main_cps. h" and be linked with libwire.a and
libcps.a.

main_cps. cps: This file should contain the CPS code for communicating to the
server. It should be run through the CPS preprocessor to generate main_cps. h
which is included in main.c

main. ps: This contains most of the PostScript code needed by the application.
It is typically loaded through a CPS call defined in main_cps. cps.

Note: Assuming that the environment variable $OPENWINHOME is set to the
directory containing a properly installed version of OpenWindows, then the fol­
lowing consists of a sample compilation:

2-12 tNt Technical Reference Manual

3 Canvases

Canvases
Introduction
Canvas Creation & Destruction
Canvas Appearance
Activation and Deactivation
Canvas Damage Repair
Help and Menus
Canvas Tree Manipulation and Enumeration
Canvas Geometry
User Interaction Utilities
Canvas Validation
Canvas Cursors
Canvas Focus Management

Table of Contents

3-1
3-1
3-2
3-3
3-4
3-5
3-6
3-6
3-8
3-9
3-10
3-11
3-11

Canvases

I ntrodu ctio n

Object ~ ClassCanvas ~
ClassBag

ClassControl

ClassSelectionList

The NeWS canvas is a surface on which the PostScript language can be used to
perform drawing operations. Canvases are arranged in a hierarchical manner,
with the root being the device canvas or framebuffer. Both the shape and loca­
tion of a canvas can be altered. While the default shape is rectangular, the
NeWS operator reshapecanvas will change the shape to match the region out­
lined by the current path.

The NeWS Development Environment's OassCanvas combines a NeWS canvas
object and an event manager process to create a self-sufficient user interface
item. Examples of OassCanvas subclasses span the range of simple user inter­
face objects like buttons, sliders and scrollbars to more elaborate objects such as
windows and menus. Even complete applications such as word processors and
drawing editors are defined as a text canvas or a drawing canvas augmented by
associated menus and property sheets.

ClassCanvas itself is rather minimal, assuming that most interesting user inter­
face objects will be created as subclasses. Oients creating such objects will
therefore need to know the details of creating and designing a subclass of
ClassCanvas.

OassCanvas instances are "smart NeWS canvases", being able to manage many
of the attributes of their NeWS canvas object. Thus they can paint themselves,
repair their damaged areas, determine their shape, and map and unmap them­
selves. In the following discussion, "canvas" is used to mean an instance of the
Toolkit's OassCanvas; using "NeWS canvas" to refer to the NeWS canvas object.
Although is it useful to make this distinction in the following discussion, the
NeWS canvas object is actually the same object as the ClassCanvas instance; this
being done by adding the necessary keys to the NeWS canvas object to tum it
into an instance.

Canvases 3·1

Canvases

Canvases can access their parent, sibling, and child canvases; providing the basis
for a "container hierarchy". One particular ClassCanvas subclass, ClassBag,
relies on this capability to implement compound canvas instances such as win­
dows, property sheets and command frames, all of which are composed of
nested canvases. (See Chapter 4, "Managing Groups of Canvases" for informa­
tion on ClassBag.)

Certain attributes of canvases inherit through this container hierarchy rather
than through the class hierarchy. For example, the FillColor, StrokeColor, and
TextColor of canvas instances default to being their parent canvas'.

A canvas can be either opaque or transparent. Drawing occurs on an opaque
canvas that will also conceal the regions of canvases beneath it. You can draw
to transparent canvas but anything drawn on a transparent canvas is painted on
the first opaque canvas beneath it. A transparent canvas is used to define
regions which are sensitive to input but do not interfere with drawing in other
canvases.

Canvas Creation & Destruction

Canvases are created by calling Inew with the parent canvas (either ClassCanvas
instance or NeWS canvas object> as an argument. The canvas will be a created
as a child of the given parent canvas. The initial values of several of the
corresponding NeWS canvas attributes may be specified as class variables. Thus
redefining the class variable /Transparent or /Mapped will change the initial
value of the corresponding NeWS canvas.

When a canvas is destroyed, it deactivates itself and tells the system to remove
any references to it. References to the canvas that are not known by the canvas
are presumed to be "soft" or under client control. The client must remove any
reference to the canvas to complete the garbage collection of the canvas. The
most obvious reference is the client handle to the canvas created during Inew.
Less obvious are references left on the operand or diet stacks. Similarly, the
canvas cannot be the current canvas for any process. Reference "leaks" will be
quite obvious: the canvas will not go away from the screen. (Note: Ides troy
does not unmap the canvas.)

3-2 tNt Technical Reference Manual

Methods:
Inew
Inewinit
Idestroy
!Retained
ISaveBehind
II'ransparent
/Mapped
IEventsConsumed

Canvas Appearance

Canvases

Canvases are responsible for their shape and graphical contents. The graphical
contents of a canvas is determined by the lPaintCanvas method which defaults
to using the values of several ClassCanvas class variables. The canvas is filled
with FillColor, and the edge of the canvas is stroked with StrokeColor using a
stroke width of BorderStroke. The colors may be manipulated with Isetcolors
and Igetcolors.

A TextColor and TextFont are also available for canvases containing text. The
font is initialized from the parameters TextFamily, TextSize, and TextEncoding.
The font may be manipulated by Isettextparams, ltextparams, Isettextfont and
Itextfont.

The lPaintCartvas method may be set using Isetpaintproc. The procedure argu­
ment will be method compiled, thus can contain "self" and "super" usage. Four
utilities are provided for filling and stroking the canvas by the painting pro­
cedure.

Iscroll provides a simple painting aid for scrolling. This procedure simply uses
the NeWS operator copyarea to displace the current contents of the canvas the
desired amount. Iscroll then calls lPaintScrolledArea which is generally over­
ridden to be "smart." The default sets the clip path properly (even for oddly
shaped canvases) and calls lPaintCanvas.

Subclassers may override the default rectangular shape by overriding the Ipath
method. This method simply takes a bounding box and creates a path just
fitting that box.

Canvases 3-3

Canvases

Methods:
Ipaint
Isetpaintproc
Isetcolors
Igetcolors
Isettextparams
Itextparams
Isettextfont
Itextfont
Iscroll
Ipath

lPaintCanvas
lFillCanvas
IStrokeCanvas
IStrokeAndFillCanvas
lFillCanvaslnterior
lFillColor
IStrokeColor
1B0rderStroke
fI'extColor
fI'extFamily
fI'extSize
fI'extEncoding
fI'extFont
lPaintScrolledArea

Activation and Deactivation

Each canvas has an associated event manager that may be activated and deac­
tivated. Damage is handled by this event manager, as are the help facility and
automatic menu management.

When activated, a canvas uses its parent canvas' event manager if there is one,
otherwise it creates its own. The canvas creates the interests it wants the event
manager to manage in the lMakeInterests method (see chapter 7, "Interests").
These interests must contain their own callback; see the section "Executable
Matches" in Chapter 7, "Interests."

3-4

Methods:
lactivate
Ideactivate
lactive?
leventmgr

lMakelnterests
ICreateEventMgr

tNt Technical Reference Manual

Canvases

Canvas Damage Repair

When the Retained attribute is true, the window system is requested to store a
duplicate of the canvas pixels in memory. As the canvas suffers damage, the
window system repairs the damage using the copy. The use of Retained is a
hint which means that your lPaintCanvas or lFixCanvas method is not called.

When opaque canvases are mapped, or when part of a canvas is exposed by
moving a covering canvas, the canvas is sent a /Damaged event. The ClassCan­
vas event manager responds to this event by calling the canvas' lHandleFix
method. This method sets the canvas clip path, then calls the lfix method.
(Note: the canvas clip is not the same as the clip path.)

The lfix method checks to see whether the intersection of the canvasclip and the
canvas is empty. If not, it calls the IFixCanvas method which defaults to
lPaintCanvas. The test is made as a trivial rejection test to avoid unnecessary
painting.

Although the transparency of a canvas is set during initialization via the class
variable /Transparent, it can also be dynamically changed using the Isettran­
sparent method.

A sub-canvas of the opaque canvas handling damage may also desire forked
painting. For example, in response to a menu command, the "client" tran­
sparent canvas of an application may have to repaint itself. It may call1damage
on itself; which will cause the event manager of the opaque parent to fork dam­
age repair.

When the SaveBehind attribute is true (the default for Toolkit menus), the win­
dow system is requested to save pixels underneath this canvas when it is
displayed. When this canvas is no longer displayed, the server should be able
to repair the damage using the cached pixels. The SaveBehind attribute is use­
ful for transitory canvases such as menus. It is also a hint.

Canvases

Methods:
lfix
Isettransparent
Itransparent?

!Transparent
IHandleFix
IFixCanvas

3-5

Canvases

Help and Menus

The default canvas event management also handles triggering a help procedure
from the HelpKey, and popping up a menu from the MenuButton.

When the HelpKey is pressed (as determined by the current UI), the HelpProc is
called if non-null. This may be dynamically set using the Isetbelp method, or
can be set by the subclass via the /HelpProc class variable. Clients may cause
the help proc to be executed directly through some alternative user interface by
simply calling Icallhelp. /help returns the current HelpProc.

Similarly, if the MenuButton is pressed, the CanvasMenu is popped up and
activated if non-null. The menu may be provided either by subclassers via the
CanvasMenu class variable, or by clients via the Isetmenu method. Menu call­
backs generally will require the ClassTarget facility. If AutoTargetMenu is true,
the canvas is installed as the menu's target just prior to popping up.

Both help and menu may be set even after the canvas is activated; it will modify
the running event manager properly. The same holds for damage discussed in
the preceeding section.

Methods:
Isethelp
/help
Icallhelp
Isetmenu
Imenu
lautotargetmenu
lautotargetmenu?

lHelpProc
ICanvasMenu
I Au toTargetMenu

Canvas Tree Manipulation and Enumeration

The NeWS canvases are maintained in a tree rooted at the framebuffer. Because
the NeWS canvas objects are identical to the ClassCanvas instances, the
instances are automatically organized into a tree. (For an explanation of the
difference between the canvas tree and the class tree see the NeWS Programmer's
Guide.) The initial position of a canvas in the canvas tree is determined by the
parent argument to Inew. This can be changed using the Ireparent method.

3-6 tNt Technical Reference Manual

Canvases

The canvas can change its location among its siblings using Itotop and Itobot­
tom.

There are many enumeration procedures for retrieving canvases relative to the
current canvas. Iparent returns the parent canvas while Iparents returns all par­
rents to the framebuffer. Iparentdescendant returns the first parent descending
from a given class between the given canvas and the framebuffer. Iparentdes­
cendant is useful, for example, for a canvas to get its window frame:

All of a canvas' siblings, including itself, are obtained via Isiblings+ and
Isiblings-; the n+" version being from back to front. A list of a canvas' siblings
above or below but, not including itself, is obtained by using Isiblingsabove or
Isiblingsbelow. A list of all my children is obtained by Ichildren+ or
Ichildren-; the n+n & n_n as with siblings. Idescendants returns all canvases
below me, including me.

For performance reasons, these lists do not check that the canvases are true
instances. To remove non-instances from an array, use IFilterNonInstances.

The canvas tree is used to implement a container hierarchy. An object is said to
inherit through the container hierarchy if it includes a class variable that
defaults to its parent's value. Thus the colors all inherit though the container
hierarchy. This is logical: it makes more sense for a color to default to its
parent's value than its superclasses.

Canvases

Methods:
Inew
Ireparent
Itotop
Itobottom
Iparent
Iparents
Iparentdescendant
Isiblings+

Isiblings­
Isiblingsabove
Isiblingsbelow
Ichildren+
Ichildren­
Idescendants
IFilterN onlnstances

3-7

Canvases

Canvas Geometry

The canvas may be reshaped or moved to change its size or location. Reshaping
is done by specifying a bounding box; the canvas will reshape itself, using Ipath,
to just fill that bbox. You move a canvas by specifying the position of the lower
left comer of its bounding box. Both operations specify their coordinates using
the CfM (current transform matrix). This means that whatever scale, rotation,
and translation is in effect will be used during the reshape or move.

This use of the CTM is vital to the flexibility of the NeWS Development
Environment. It allows a vertical scrollbar to be made from a horizontal
scrollbar by simply rotating the CTM before placing it. It allows scaling of an
entire application by reshaping its window with the CTM scaled. It allows nest­
ing of windows within other windows because they do not assume they are
poSitioned relative to the framebuffer.

Each NeWS canvas object has its own coordinate system; that which is in effect
when "reshapecanvs" is called. This defines the CfM established each time
"setcanvas" is called. The NeWS Development Environment has adopted the
protocol that both Ireshape and Imove specify their coordinates relative to the
bounding box with orgin at the lower left comer. The canvas itself may use any
scale, and even translation it likes. It must, however, return the /size, /location,
and /bbox in the caller's CTM with a lower-left origin.

To help with separating the caller's coordinates and the canvas' coordinates, the
Transform utility tranaslates from the callers space to the canvas'. This defaults
to a simple translate to the caller's lower left comer. It is commonly overriden
to give the canvas a 0-1 coordinate system to simplify calculations:

3-8 tNt Technical Reference Manual

Canvases

In sum, the caller "owns" the positioning and size of the canvas in whatever
CTM desired; the canvas itself "owns" its default (private) CfM.

Canvases typically manage data which imposes size constraints on the canvas.
The canvas should not be sized below its Iminsize. The canvas might also have
a Ipreferredsize somewhat greater than that size. Thus a text editor might
choose to display at least one line of 20 characters as its minsize, but choose a
preferred size of 80 characters by 40 lines. The Ire shape method does not
inforce the minsize limit. This must be done by the client. This is done to
avoid unnecessary checking that the client can more easily do. Typically the
client will "know" enough of the semantics of the application canvas layout to
impose these limits in a simple manner. Ilockminsize may be used by a client
to install a simple, constant, non-cakulated, minsize in a canvas after perform­
ing the calculation the first time.

Methods:
Ireshape
Imove
Isize
Ilocation
Ibbox
Iminsize

User Interaction Utilities

rrransform
Ilockminsize
Ipreferredsize

ClassCanvas provides simple user interaction methods with reasonable default
bahavior. These procedures are based on the "getfromuser" utility (triggered on
UpTransition) and use the Ipath method to provide reasonable default behavior.

The utilities are typically called after a DownTransition has been processed,
often in an interest provided in the canvas' MakeInterests. The following would
provide trivial dynamic resizing and moving of the associated canvas:

Canvases 3-9

Canvases

Canvas Validation

Methods:
Istretchcomer
Ibboxfromuser
Ireshapefromuser
Imovefromuser

To help optimize flicker-free, high perfonnance re-painting of canvases after
changes to their contents, OassCanvas supports a simple validation scheme.
When changes are made to a canvas that cause its image to need updating, the
canvas is sent linvalidate. When the canvas next is told to paint itself, it first
checks to see if it is valid. If not, it sends itself the Ivalidate method. Note that
several invalidations may be made without causing the repaint to occur.

Ivalidate should be overridden to change any internal parameters of the canvas
required by the PaintCanvas routine. OassBag, for example, will call its Ilayout
method from Ivalidate.

3-10

Methods:
linvalidate
Ivalidate
Ivalid?
I?validate

tNt Technical Reference Manual

Canvases

Canvas Cursors

ClassCanvas supports defaulting the cursor associated with a canvas, and set­
ting this cursor interactively. This facility attempts to use shared "well known"
cursors; cursors whose name is known to the system. Generally subclassers
simply define the class variable ICursorlmage to be a well known cursor name.
The CursorMask is assumed to be the next glyph in the cursor font; set it to a
non-null value to override this assumption. Use the Isetcursor method to use
any non-shared cursor you might need. The names of the NeWS Development
Environment's cursors are:

Ibasic
Imove
Icopy
Ibusy
Istop

Methods:
Isetcursor

Ipanning Irtarr
Inavigation Ixhair
Inouse Ixcurs
Iptr Ihourg
lbeye

Subclassing Methods:
ICursorImage
ICursorMask

Canvas Focus Management

For an explanation of Focus Management see Chapter 4, Managing Groups of
Canvases, section "Focus Management."

Canvases 3-11

4 Managing Groups of Canvases

Managing Groups of Canvases
Introduction
Bags

• Creation and destruction
• Insertions and Removals
• Access to Bag Clients
• Graphics State Utilities
• Sizing Protocols
• Layout and Invalidation
• Activation and Event Management
• Painting and Damage Repair

Containers
• Client Naming
• Creating a Container
• Getting and Setting the Client
• Size Negotiations

OpenLookPane
• Controlling the Scrollbars

Frames
• Frame Attributes
• Opening, Closing and Zooming
• Manipulating a Frame Menu's Default Behavior
• Subframes
• Notification
• Selection and Focus
• Freezing
• Idemo Method
• Frame Class Hierarchy
• OPEN LOOK Frames
• Frame Size and Placement
• Subframe Functions
• Shared Frame Menus
• Instantiating Frames
• Subclassing Frames
• Adding Frame Attributes

Table of Contents

4-1
4-1
4-1
4-2
4-3
4-5
4-6
4-6
4-7
4-8
4-9
4-10
4-10
4-10
4-11
4-12
4-13
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-20
4-21
4-21
4-22
4-23
4-23
4-24
4-24
4-24
4-26

Table of Contents _______________________ _

II

Utility Bags
• AbsoluteBag
• RowColumnBags
• Flex Bags

Example of Bag Usage and Subclassing
Focus Management

• Focus Definitions
• Focus Forwarding
• Focus Noticing
• How Focus Forwarding and Noticing Works

4-28
4-29
4-31
4-32
4-35
4-39
4-40
4-41
4-41
4-42

tNt Technical Reference Manual

Managing Groups of Canvases

Introduction

A bag is a canvas that is designed explicitly to manage a group of 'child' NeWS
Development Environment canvases. (See the NeWS Programmer's Guide an
explanation of the parent/child relationships in the NeWS canvas hierarchy.)
ClassBag is the basis for many of the NeWS Development Environment's com­
ponents - frames are bags, panes are bags, an application's control area will
typically be a bag of control canvases. Whenever a group of canvases are
brought together to achieve some effect, a bag will manage them.

Figure 4-1: Bags

ClassCanvas ClassBag ClassContainer ~ ClassFrame
L RooCohmmLa,..., RowCohmmB ..

FlexBag

AbsoluteBag

"' OpenLookPane

Bags

As an intrinsic class ClassBag is rarely instantiated directly. It is designed
expressly for subclassing. ClassBag extends the NeWS canvas hierarchy model
in the following important ways:

• Child canvases (called 'clients' of the bag) can be given names when they
are added to the bag. These names may be used later to refer to these can­
vases. This feature obviates the need for application programs to hold
references to every canvas in their application.

• Instances of any subclass of OassGraphic (commonly referred to as
'graphics') can also be managed as clients of the bag.

• Bags explicitly manage the layout of their clients. Different bags have dif­
ferent layout policies, but OassBag controls when the layout procedure is
activated. Because the NeWS Development Environment assumes that
layout may be an expensive operation, bags minimize the number of times
the layout procedure is called by the use of a validation scheme.

Managing Groups of Canvases 4-1

ManagIng Groups of canvases

• Bags manage the sharing of event managers. Ina typical toolkit applica­
tion there is one event manager process watching for mouse actions and
keystrokes for each frame in the application. Via its activation and deac­
tivation primitives, ClassBag allows every canvas in a frame to share the
same event manager.

• Bags manage the damage repair for their transparent child canvases. This
effectively means that most canvases inside a frame can be transparent,
and a significant space improvement can be gained over using opaque
canvases. The bag will also take care of painting the graphics they
manage when damage occurs. This allows graphics to be treated as light­
weight canvases which are not sensitive to input.

Creation and destruction
Uke all canvases, bags expect a canvas object to be on the top of the stack when
Inew is called. This canvas becomes the parent of the newly created canvas.
There is no requirement that the parent of a bag be another bag.

When Ides troy is sent to a bag it also sends Idestroydependent to each of its
clients. This defaults to sending Ides troy to them. Whole bag hierarchies can be
destroyed in this way. Frames for example will destroy all their ornaments and
their client subtree when Ides troy is sent to them.

If you wish to prevent some client of a bag from being destroyed when the bag
is destroyed, you should override the client's Idestroydependent method, and
not allow it to default to Idestroy. Canvases that are still bag clients after Ides­
troydependent is called are reparented to an offscreen canvas so that the bag
can be disposed of completely.

4·2

Methods:
Inew
Inewinit
Idestroy
Idestroydependent

tNt TechnIcal Reference Manual

Managing Groups of Canvases

Insertions and Removals

The laddclient method is used to insert a canvas or a graphic into a bag. (See
section 2 on ClassBag for a detailed explanation of the syntax of laddclient.)
There are three independent choices to make when adding a client to a bag.

1. The client may be an instance or a class. If the client is ClassCanvas or
any subclass of ClassCanvas then the class itself may be used as an argu­
ment to laddclienl For other classes (e.g., ClassGraphic) laddclient must
be given an instance. Given a class, the bag will send Inew to the class to
obtain the instance. Adding clients as classes is slightly faster (NeWS
does not have to reparent the client canvas) and more compact than
preinstantiating them. If a class is supplied, then the application must
also provide arguments for the later instantiation of the class. For exam­
ple, the above bag insertion could be done using the class OpenLookBut­
ton in the following way:

The button's label and callback are the arguments that will be handed to
Inew by the bag in this example. (A parent canvas argument is not pro­
vided with the class because the bag itself will become the parent of the
newly created canvas.) The lNewClient method is used to instantiate
clients when a class is added. INewClient defaults to calling Inewdefault
on the class.

2. A client mayor may not be named. If a name is provided for laddclient
the client can be retrieved later by providing the same name to Iget­
byname. If 'null' is given as a name for all bag clients, then bags save
space by not maintaining the name/client mapping. Access the clients by
insertion order in this case. For example, '0 / getbyname bag send'
returns the first client inserted in the bag.

3. A client mayor may not have "baggage." Baggage is unformatted infor­
mation used by subclasses of ClassBag. Typically it provides layout infor­
mation to the subclass. For example, an AbsoluteBag require~ that two
numbers (the x,y coordinates) be provided as baggage when adding a
client. These numbers get wrapped in an array along with the instance:

Managing Groups of Canvases 4-3

Managing Groups of Canvases

When adding a client to a subclass that does not require baggage (for
example RowColumnBag), the array is not required:

Sophisticated subclasses that wish to change the way client references are
maintained by the bag may override /RegisterClient and /DeRegister­
Client. For example, if an application is keeping references to every client
of the bag via some external mechanism the application can prevent the
bag from duplicating this effort by overriding these methods and provid­
ing its own Iclientlist method.

To remove a client from a bag use Iremoveclient. This method expects an
integer (if the client was added with a null name), or the client itself as argu­
ments. To move an object from one bag to another it must first be removed
from the first, and then added to the second.

4-4

Methods:
laddclient
lremoveclient
Igetbyname
INewClient
IRegisterClient
IDeRegisterClient

tNt Technical Reference Manual

Managing Groups of Canvases

Access to Bag Clients

There are a number of methods for interacting with the clients of a bag.

!baggage and Isetbaggage can be used to retrieve and modify the subclass­
specific information passed in during ladddient. Bag layout procedures for
example, usually call1baggage on each client to get their layout information.

The number of clients is returned by Iclientcount. The set of clients is returned
as an array by Iclientlist. Igraphicclientcount and Igraphicdientlist provide the
same information, but only for those clients that are graphics. To retrieve the
list of clients that are canvases, use the OassCanvas methods Ichildren+ or
Ichildren-.

An arbitrary object can be presented to Iclient? A boolean is returned; it indi­
cates whether or not this object is a client of the bag. Note that the bag does
not maintain a reverse index from objects to names. Given an object that is
known to be in the bag there is no way to find out what name was Specified for
it during laddclient.

A convenience wrapper around Idientlist is Iforeachdient. It takes a procedure
and foralls it over the list of clients. Isendclient sends a method to a named
client of the bag. For example, to change the label on the button in the previous
example call:

Managing Groups of Canvases 4-5

--~- -- ----

Managing Groups of Canvases

Graphics State Utilities

Methods:
/baggage
Isetbaggage
Iclient?
Iclientcount
Iclientlist
Igraphicclientcount
Igraphicclientlist
Ichildren+
Ichildren­
Iforeachclient
Isendclient

When subclassing a bag it is often desirable to establish the bag's canvas as the
current canvas. This is especially true when measuring the size of a bag client,
or laying the bag out. ClassBag provides two utilities, /BagBegin and /BagEnd
which it uses internally to set and restore the graphics state for this purpose.
Certain subclasser methods are called from within a /BagBegin /BagEnd context,
and it is important to take advantage of this so that the subclasser doesn't dupli­
cate the effort. The methods !Layout, /Minsize, IPreferredSize are currently
treated this way. Each will be discussed below.

Sizing Protocols

Methods:
/BagBegin
/BagEnd

ClassCanvas establishes two important sizing interfaces: Iminsize and Iprefer­
redsize. ClassBag turns these into protocols by making them hierarchical: most
bags when sent Iminsize ask their clients the same question, and use the results
to calculate their own answer. Ipreferredsize works in the same way.

ClassBag cannot perform this recursive Iminsize (or Ipreferredsize) calculation
itself. It does not know how to combine the various answers it would get.
Subclasses of ClassBag do have this knowledge however, and are expected to
take their clients into account when calculating Iminsize or Ipreferredsize. For

4-6 tNt Technical Reference Manual

Managing Groups of Canvases

example, the Iminsize for OassContainer asks Iminsize of its main client, then
adds a pair of constants to leave room for the borders of the container.

If the minimum size calculation for a subclass of ClassBag does not require that
the bag be established as the current canvas, then you can override Iminsize
directly. If an application requires that the bag be the current canvas it should
override lMinSize. In lMinSize one can assume that the graphics state has
been set up correctly. The same applies for Ipreferredsize and IPreferredSize.

Layout and Invalidation

Methods:
Iminsize
IMinSize
Ipreferredsize
IPreferredSize

ClassBag uses the term 'layout' to mean the positioning (and perhaps resizing)
of bag clients once the size and shape of the bag itself has been established.
Performing layout, by overriding the ILayout method, is the responsibility of all
subclasses of ClassBag. The bag will be the current canvas when ILayout is
called, so it is the job of the subclasser to Imove or Ireshape each client of the
bag to take advantage of the current Isize of the bag.

Applications do not normally call /layout (which calls /Layout inside a IBagBe­
gin, /BagEnd pair) themselves. Instead, each bag maintains a 'valid' flag which
it uses to decide whether layout is necessary. This flag is checked as the first
phase of both Ipaint and lfix. If the layout has been invalidated, /layout is
called before painting begins in earnest. The methods which automatically
invalidate the layout are: Ireshape, laddclient, and Iremoveclient. An applica­
tion that does not wish to have the layout invalidated when any of these
methods are called, should override I?invalidate. To manually invalidate the
layout (perhaps because the geometry of one of the clients changed in some
way), applications should call the bag's linvalidate method.

Most applications that use bags will never call1layout, /validate, I?validate,
linvalidate, !?invalidate, or Ivalid? They will simply override /Layout and rely
on the validation protocol to call this method when layout is required.

Managing Groups of Canvases 4-7

Managing Groups of Canvases

Methods:
/layout
/layout
I?validate
I?invalidate
linvalidate
Ivalid?
Ivalidate
Ireshape

Activation and Event Management
ClassBag plays an important role in the event management for a hierarchy of
canvases. The OassCanvas /activate is responsible for searching up the canvas
hierarchy looking for an already active canvas (one that has an event manager
process handling it). If it fails to find an event manager lactivate will create
one. After an event manager is found or created, the canvas's /MakeInterests
method is called and the resulting interests are expressed in the event manager
process.

ClassBag overrides lactivate and augments the ClassCanvas' lactivate by recur­
sively calling lactivate down the tree on its client canvases. The upshot of this is
that a single lactivate method sent to the root of a bag hierarchy causes every
canvas in the tree to become active. All their interests are expressed in a single
event manager process created at the root of the tree. In particular, to make
every canvas inside an application's frame sensitive to input, it suffices to send
lactivate to the frame.

Ide activate undoes the effect of lactivate. It removes the interests for every can­
vas in the bag hierarchy rooted at the canvas to which the method was sent. It
then kills the event manager process if this process was created expressly for the
given bag.

lactive? returns true if there is an event manager process alive and fielding
events on this canvas.

Removing a client from the bag (via Iremoveclient) causes it to be deactivated if
and only if it shares an event manager with the bag. In practice this means that
if an application activated a client before putting it into the bag the client will
still be active after removing it from the bag.

4-8 tNt Technical Reference Manual

Methods:
lactivate
Ideactivate
lactive?

Managing Groups of Canvases

Painting and Damage Repair
ClassCanvas establishes simple interpretations for Ipaint and lfix. Ipaint is
called by the application to manually refresh a canvas. When NeWS generates a
/Damage event lfix is called to repaint some damaged portion of a canvas.

ClassBag extends these methods by making them recursive. The Ipaint method
sent to a bag not only paints the bag's canvas (by calling its lPaintCanvas
method), but also calls Ipaint on its mapped child canvases, using IPaintChil­
dren. A bag's Ipaint method also has the responsibility for painting the graphic
clients of the bag and does so by calling lPaintGraphicChildren. The recursive
nature of ClassBag's Ipaint is responsible for the fact that a Ipaint sent to a
frame will refresh every canvas inside the frame.

The lfix protocol is a little more complex because NeWS distributes /Damage
events only to the opaque canvases in the damaged area. The lfix method in
ClassBag only takes responsibility for recursively fixing those child canvases
that are transparent. lFixChildren propagates lfix down the tree, and lPaintGra­
phicChildren is still called on each bag encountered in the recursion. The end
result is that lFixCanvas is called once for every canvas inside or overlapping
the damaged region.

Methods:
Ipaint
lfix
lFixCanvas
lPaintCanvas

Managing Groups of Canvases

lFixChildren
lPaintChildren
lPaintGraphicChildren

4-9

Managing Groups of Canvases

Containers

A container is a kind of bag that is specialized to handle one major client, and
zero or more minor ones. Usually the minor clients are allocated a fixed amount
of real estate in the bag, and the major one grows and shrinks as the bag
changes size.

ClassContainer is not designed to be instantiated directly. It is subclassed within
the toolkit, and these subclasses are themselves instantiated.

Frames are the most important subclass of containers. The major client of a
frame is the canvas that occupies the interior of the window. The minor clients
are the ornaments (resize comers, close box, footer, etc.) that surround the win­
dow interior. When a frame is reshaped the minor clients are moved to new
positions on the edge of the frame, and the major client is reshaped to take up
all the remaining area.

Because of its special significance the major client of a container is often referred
to simply as 'the client' of the container. Hence we often refer to the interior
canvas of a frame as 'the client of the frame'.

Client Naming

ClassBag leaves the business of associating a name with each client up to the
application. ClassContainer restricts client naming in the following important
way: the major client of a container always has the name' /Client'. This is in
fact how ClassContainer distinguishes the major client from the others. When
adding minor clients to a container, you may give them any name other than
/Client.

Creating a Container

Containers expect the major client to be presented as an argument to Inew when
creating an instance of some subclass of ClassContainer. In common with
ClassBag's laddclient syntax, this client argument may be either an instance, or
an array containing a class and the arguments required to instantiate that class.
For example, there are two ways to create a frame containing a vanilla
ClassCanvas instance:

4-10 tNt Technical Reference Manual

Managing Groups of Canvases

in which an instance of the canvas is handed in, or

in which a class is handed in, and the container automatically instantiates this
class. The second version above is not only more terse, it is also more efficient.
The client canvas does not need to be reparented from the framebuffer. It is
created with the container as its parent.

It is also legal to present 'null' as the client argument when instantiating a con­
tainer. Until set otherwise such a container will have no client whatsoever.

Methods:
Inew
Inewinit

Getting and Setting the Client

The major client of a container can be changed at any time by calling Isetclient
on that container./setclient returns the previous client (if any) of the container.

This current client is returned by the method Iclient (Note that Iclient is just a
thinly veiled call to Igetbyname using the /Oient name.)

Managing Groups of Canvases 4-11

Managing Groups of Canvases

Size Negotiations

Methods:
Isetclient
Idient

Containers maintain four class variables to help position the major client inside
the container. These are the (usually constant) amounts of border space to leave
to the top, right, bottom and left of the major client when laying it out. The
method /BorderWidths sums up the left and right borders, and /BorderHeights
sums the top and bottom space.

lfitdient takes a proposed client size, and returns the total size of the container
necessary to give the client the specified width and height./unfitdient does the
reverse. It tells you how big the client will become if the container is reshaped
to the given size. Both these methods make use of /BorderWidths and /Bor­
derHeights.

The Iminsize of a container is the Iminsize of the major client added onto the
size of the borders. Similarly, the /preferredsize of the container is the /prefer­
redsize of the client plus the size of the borders.

4-12

Methods:
lfitclient
lunfitdient

lBorderLeft
lBorderBottom
lBorderRight
lBorderTop
lBorderHeights
lBorderWidths

tNt Technical Reference Manual

Managing Groups of Canvases

OpenLookPane
OpenLookPane is a subclass of ClassContainer whose job is arrange either one
or two scrollbars around some canvas. This canvas is the major client (named
/Client) of the container, and will presumably be manipulated by the scrollbars.

The scrollbars are not automatically connected to the client canvas. To use an
OpenLookPane you must not only provide a client canvas, but also provide the
callbacks for the scrollbar(s) to update it. (See Chapter 6, Controls, the ScrollBar
section.)

Controlling the Scroll bars

The class variables IUseHSbar? and IUseVSbar? control whether or not the
pane, when instantiated, will have a horizontal and/or a vertical scrollbar. Verti­
cal scrollbars appear to the right of the client canvas, horizontal ones to the bot­
tom.

The subclasser methods ICreateVerticalScrollbar and ICreateHorizontal­
Scrollbar by default return instances of OpenLookVerticalScrollbar and Open­
LookHorizontalScrollbar respectively. You should override these if you have
your own scrollbar that you wish the pane to use.

The subclasser methods ICreateHSbarNotify and ICreateVSbarNotify return the
notification procedures for the scrollbars. Override these methods to make your
scrollbars control your client canvas.

Methods:
ICreateVerticalScrollbar
ICreateHorizontalScrollbar
ICreateHSbarNotify
ICreate VSbarN otify

Managing Groups of Canvases

Class Variables:
UseHSbar?
IUseVSbar?

4·13

Managing Groups of Canvases

Pane Sizing
The Iminsize of a pane is the maximum of the Iminsize of the client canvas and
the minsize of whichever scrollbars happen to be present. Currently there is no
analagous calculation for the Ipreferredsize of an OpenLookPane. The Iprefer­
redsize thus defaults to the pane's /minsize.

Figure 4-2: Frame Hierarchy

OassContainer--;;. ClassFrame

Frames

Methods:
Iminsize

-'---;a" OpenLookBaseFrame

ClassCommandFram6---f.~ OpenLookCommandFrame

ClassHelpFrame OpenLookHelpFrame

OpenLookFrame

ClassIconFrame OpenLooklconFrame

ClassNoticeFrame --~ OpenLookNoticeFrame

CIassPropertyFrame OpenLookPropertyFrame

ClassFrame implements window frames. It is an intrinsic class that provides a
set of protocols and utility methods that are useful for many different types of
windows. As an intrinsic class, ClassFrame is not intended to be instantiated
itself. Instead it provides a framework on which to build subclasses that can be
instantiated. OPEN LOOK frames are the classes meant to be instantiated.

A frame manages a single "client" canvas. The frame wraps that canvas with a
border that may include various ornaments managed by the frame. Examples
of ornaments are a title area, reshape controls, close or grow boxes; etc.

4-14 tNt Technical Reference Manual

Managing Groups of Canvases

A frame has a number of attributes, e.g. "is it reshapeable?", or "can it be
closed?" There will be some visual indication of these attributes, often in the
form of some ornament, e.g. a control or graphic. Or, there may be a menu
item corresponding to the attribute. ClassFrame defines a minimal protocol for
these attributes, but leaves the implementation of ornaments or menu choices to
subclasses. The frame is a bag, so the subclass may use it to hold any orna­
ments.

A frame can have associated with it some number of secondary frames, known
as "subframes". ClassFrame defines an icon to be a standard subframe, but
leaves the creation of an icon to subclasses. Other subframes may be added by
subclasses. ClassFrame provides mechanisms for managing the list of subframes
and ways to send messages between superframes and subframes.

Other intrinsic frame facilities include the ability to be selected and to have the
input focus, notification of the client when the frame's state changes as the
result of a user interaction, temporarily freezing processing of events, opening
and closing (i.e. unmapping a frame and mapping its associated icon frame),
zooming the frame to a larger size, and restoring ("unzooming") it to its normal
size.

Frame Attributes

A frame has a set of attributes, each having a name and a boolean value. The
standard set of attributes for ClassFrame are:

lOose
IFooter
I Label
/Pin
IReshape

True to allow closing the frame to an icon
True to display a footer area
True to display a label (title) area
True to allow the frame to be pinned (stay up)
True to allow the frame to be reshaped

The attributes usually correspond to some sort of control, e.g., a close box or
label (title) area. The attributes are known outside the frame by their names,
e.g., lLabel. Each attribute has a default value specified by the frame subclass.
These default values may be overridden for a particular frame instance with a
parameter to Inew when the frame is created. You may query or change the
attributes for an existing frame with the lirameattribute and Isetframeattribute
methods.

Managing Groups of Canvases 4-15

Managing Groups of Canvases

The implementation and behavior of frame attributes is entirely up to frame
subclasses. A client user of a frame should make no assumptions about how the
attributes are displayed to the user or how they are implemented. A typical
implementation by a subclass is to create a control corresponding to an attribute
and to put the control in the frame's bag. Or, a subclass may use an attribute to
enable or disable an item on the frame's menu. Another possibility is to use the
attribute simply to enable or disable some feature of the frame with no visible
indication, e.g., the IReshape attribute could simply allow a frame to be
reshaped when the user presses a mouse button on part of its border.

Each of the standard attributes has several related methods. For example, the
IFooter attribute has methods Isetfooter and Ifooter to set and retrieve the
footer messages for the frame.

Additional attributes may be defined by subclasses.

Methods:
Inew
Iframeattribute
Isetframeattribute
Ifooter
Isetfooter
Ilabel
Isetlabel

Opening, Closing and Zooming
An intrinsic notion of frames is that they may be closed to an icon, zoomed to a
larger size, and opened or unzoomed back to their normal size. An icon is a
subframe with the predefined name Ilcon. When a frame is closed, it is
unmapped and its icon subframe, if present, is mapped. Icons may be any size
or shape, and may display any image. When a frame is zoomed, it is reshaped
to a larger size. By default, the larger size is the width of the unzoomed win­
dow and the height of the framebuffer.

4-16 tNt Technical Reference Manual

Managing Groups of Canvases

Methods:
lopen
lopened?
Iflipiconic
Izoom
Izoomed?
Iflipzoom

Manipulating a Frame Menu's Default Behavior

You can intercept common user-issued window commands such as refresh,
zoom, close (iconicize), reshape and quit. The next five subsections explain the
methods you can use to change the toolkit's default actions for these commands.

The client canvas of a frame will be stretched to take up the available space
automatically when the frame is reshaped. If this is not the behavior you desire
you can override the client's Ireshape method.

In order to constrain the way in which a frame can be reshaped, several options
are available. One way to prevent reshaping altogether for a time is by dynami­
cally adding and removing the resize-corners via the Isetframeattribute method
(see below). To prevent a frame from being made smaller than some size,
specify a min size for your client canvas (or the frame itself). Even more com­
plex nondefault reshape behavior is possible by overriding the frame's Ireshape
method. For example if you wanted a frame with dimensions that were always
some multiple of 10 points the override to Ireshape would be:

This would change the width and height arguments before executing the default
reshape action.

Managing Groups of Canvases 4-17

Managing Groups of Canvases

Refresh
Some applications may wish to be informed that "refresh" was called from the
frame menu (as opposed to a normal damage event). For example, calling
refresh from the window menu might cause the client to reprocess some data
file rather than just initiate a repaint. This behavior can be achieved by overrid­
ing the Ipaint method. When a frame receives explicit refreshes (like those
called from the frame menu) Ipaint is called. Thus to change the behavior of
explicit refreshes Ipaint must be overridden.

Iconlclze
Some users may want to know when a window is iconicized. For example, a
game may want to suspend the game clock until the window is reopened. To
achieve this and similar behavior, override lopen. lopen takes a boolean argu­
ment, false for iconifying the frame, true for deiconifying it.

Zoom
Override Izoom to implement changes to a frame's behavior when Zoom is
selected from the frame menu. Like lopen, Izoom takes a boolean argument.

Quit

You can interpose on "Quit" by overriding Idestroyfromuser in the frame. This,
in tum, overrides the quit sent from both the frame and icon menus. For exam­
ple, if an application wanted to put up a confirming notice before the quit was
executed Idestroyfromuser would be overridden to show it. The callback from
the confirming button would send the destroy method to the frame.

Subframes
A frame (the "superframe") may manage one or more subframes. ClassFrame
defines the following behavior for subframes:

• Destroying a superframe destroys its subframes.

• Subframes share the event manager of their superframe.

• Activating/deactivating a superframe does the same for its subframes.

• Freezing/unfreezing a superframe does the same for its subframes.

4-18 tNt Technical Reference Manual

Managing Groups of Canvases

A frame has a dictionary of its subframes, so each subframe has a name associ­
ated with it. The subframe list is managed with the laddsubframe and Irema­
vesubframe methods. Each subframe has a reference to its superframe, accessed
with the Isuperframe method. Subframes may be nested more than one level
deep.

Notification

Methods:
I addsu bframe
Iremove sub frame
Isubframe
Isubframe?
Isubframes
Isuperframe
Irootframe
Isendsubframe
Isendsuperframe

Frames provide a notification mechanism similar to that of controls. The client
application may provide a notification procedure, using Isetnotifyproc, that will
be called whenever the state of the frame changes as the result of a user interac­
tion. The notify proc can obtain the reason for the notification via the
Inotifyreason method.

Currently only a small number of interactions cause notification to happen.
These are:

Reason
lNotifyPin
lNotifyProps
IN otifyReset
IN otify Apply

Interaction
Frame pinned/unpinned
Property sheet brought up
Reset chosen in the property frame menu
Apply chosen in property frame menu

The above four names are the values obtained from a call to the Inotifyreason
method from the frame's notify proc. The notify proc is set via Isetnotifyproc.
This simply means that some event occurred, e.g., a frame was unpinned. You
can do something when you are notified that the event occurred or you can
ignore it.

Managing Groups of Canvases 4-19

Managing Groups of Canvases

Selection and Focus

Methods:
Isetnotifyproc
Inotifyproc
Isetnotiiyreason
Inotifyreason
Icallnotify

A frame may be selected or given the input focus. Typically this will be done
automatically by selection and focus managers. Frames have methods to give
visual feedback that they are selected or have the focus.

Freezing

Methods:
lreflectfocus
Ireflectselected
Isetfocus
Ifocus?
Isetselected
Iselected?
Iselectedframes
Inotifyselected
Isendselected

A frame may be "frozen", i.e., made to ignore most events. Typically a frame is
frozen because the user is being notified of a situation such as an error and
must give some input before the application can proceed. When a frame is
frozen, the only events it processes are those for damage repair and loss of focus
or selection. A frozen frame is not the same as the OPEN LOOK ill Specification
defines as busy.

4·20 tNt Technical Reference Manual

/demo Method

Methods:
Ifreeze
Ifreezeall

Managing Groups of Canvases

ClassFrame includes a Idemo method that can be sent to any derived subclass.
The method sends Inew to the class to which Idemo was sent. Examples:

Frame Class Hierarchy

There are six intrinsic frame types, defined in subclasses of ClassFrame:

ClassBaseFrame
ClassCommandFrame
ClassHelpFrame
ClassIconFrame
ClassNoticeFrame
ClassPropertyFrame

These classes do not provide any additional functionality beyond that provided
by ClassFrame. These classes exist to be abstract superclasses that have
corresponding look and feel classes, such as OpenLookBaseFrame. These classes
will typically be used as follows. By a client:

Managing Groups of Canvases 4-21

Managing Groups of Canvases

By a subclasser:

ClassFrame contains behavior that is shared by all frame types. The frame type
classes contain behavior that is particular to the specific types. You should sub­
class ClassFrame to define data and methods that are shared by more than one
frame type. You should subclass the frame type classes, mixing in your subclass
of ClassFrame, to define the individual frame types. In many cases a particular
behavior will be shared by most frame types but for one frame type it will be
different. Use the class hierarchy to implement this - define the common
behavior in your ClassFrame subclass, then override the appropriate methods in
the class for the different frame type. This is preferable to having a single
shared method that has conditional code based on frame type.

OPEN LOOK Frames

Class OpenLookFrame is a subclass of ClassFrame that implements functionality
shared by OPEN LOOK frame types. The six OPEN LOOK frame types are
implemented as subclasses of the six intrinsic frame types. Multiple inheritance
is used to give each of these classes two superclasses: the intrinsic frame class
and class OpenLookFrame. OpenLookFrame implements appearance and
behavior that is shared by all the OPEN LOOK frame types. The class, and
several helper classes, implements the frame label, footer, reshape corners, menu
button, etc. These ornaments correspond to the frame attributes, e.g., /Reshape,
/Footer, defined in ClassFrame. OpenLookFrame also includes the following
features that are shared among more than one frame type including OpenLook­
BaseFrame. Behavior that is particular to one frame type is typically imple­
mented in that type's subclass.

4-22 tNt Technical Reference Manual

___________________ Managing Groups of Canvases

Frame Size and Placement
Like all canvases, frames have the notion of a preferred size. By default a
frame's preferred size is a frame large enough to display its owner, label, and
footer in their entirety. Frames also display their clients at the clients preferred
size. To change this default, override Ipreferredsize.

The Iplace method computes a default size and placement for a frame. If the
frame has already has been reshaped that size is preserved and the frame is
only moved in response to a place message. If the frame has a superframe (see
below for an explanation of superframes) it is positioned so its upper left comer
is coincident with the upper left comer of the super frame. If the frame doesn't
have a superframe (as most base frames don't) then the frame is poSitioned suc­
cessively down the diagonal of the screen starting at the upper left corner.

If the frame has not been shaped yet (i.e., it has no size), Iplace shapes it to its
preferred size. It is then positioned either relative to its superframe or to a
default location based on the gravity setting. In ClassBaseFrame and its superc­
lasses Iplace defaults to Ireshapefromuser.

The gravity setting is used to calculate default positions for frames. For OPEN
LOOK frames the gravity setting also determines where Iplace will start tiling
frames. Frame gravity is set by sending Isetgravity to a specific frame class.
The choices for gravity setting are dependent upon the particular frame class:
normal OPEN LOOK frames expect names like /UpperLeft, /UpperRight, etc.
Icons expect names like /Top, /Bottom, etc. For OpenLookBaseFrames gravity
defaults to /UpperLeft. Iseticongravity is supported for backwards compatibil­
ity. It just calls Isetgravity on the base frame's icon.

Subframe Functions

Methods:
/place
Isetgravity

OpenLookFrame overrides the lopen method so when a superframe is opened
or closed all its subframes are also opened or closed. The Itoptop and Itobot­
tom methods are also overridden so subframes are sent to the top or bottom
with their superframe.

Managing Groups of Canvases 4-23

Managing Groups of Canvases

Shared Frame Menus

Methods:
lop en
lopensubframes
Iclosesubframes
Itotop
Itobottom

OpenLookFrame creates menus that are shared by all frames. There is one
menu that is shared between base and icon frames, and another that is shared
between property and command frames. If a client needs to modify the menu
for a particular frame, the code that creates the frame menu should be copied
and modified. This code can be found in OLframe.ps. Once modified the new
menu should be stored with Isetmenu.

Instantiating Frames

The frame subclasses whose names begin with "OpenLook" are the subclasses
that you should instantiate. Each frame type subclass implements behavior that
is particular to that type of frame. For example, OpenLookBaseFrame automati­
cally creates an icon frame as a subframe when a base frame is created.
Another example is the override of the lopen method in class Open­
LookHelpFrame. It calls the Ipin method whenever a help frame is opened,
since all OPEN LOOK help frames are supposed to be pinned when they are
opened.

Subclasslng Frames

This section describes techniques for defining your own frame subclasses.

Subclasslng a Single Frame Type
The following is sample code to subclass a single frame type:

4-24 tNt Technical Reference Manual

Managing Groups of Canvases

You should generally send Idefaultclass to the intrinsic frame class instead of
subclassing one of the OPEN LOOK frame classes directly. If your subclass
builds on the variables and methods in the intrinsic class rather than the Open
Look class, it should be possible for someone to change the default look and feel
and still use your subclass.

Subclasslng Several Frame Types
Here's some standard code to subclass more than one frame type:

Class MyFrame contains everything that is needed by more than one frame
type. Things needed by a single frame type are defined in that type's class.

Managing Groups of Canvases 4-25

Managing Groups of Canvases

Each of the frame type classes has two superclasses: MyFrame, providing com­
mon new functionality; and the default implementation of the intrinsic frame
class, providing the default frame type's functionality.

ClassFrame contains utility methods (for example, lBaseFrameCreate) that can
be used by subclasses to create frames that are associated with one another. For
example, OPEN LOOK base frames have associated icon frames, so OpenLook­
BaseFrame calls IIconFrameCreate. There are two levels of control that sub­
classers can use to change the way associated frames are created. First, the
IFooFrameCreate methods can be overridden. This provides the most flexibil­
ity, but is often more than is needed. If the only thing a subclass wants to do is
to change the class that is instantiated, it can override the IFooFrameClass
methods to return the proper classes. Each IFooFrameCreate method in
ClassFrame instantiates the class returned by IFooFrameClass. This is done in
the example above, where IBaseFrameClass and IIconFrameClass are overrid­
den to return MyBaseFrame and MyIconFrame. The default frame classes (e.g.,
OpenLookHelpFrame) are used for the other frame types. Note that the
IFooFrameClass's are executable procedures rather than direct references to the
classes. Deferring the evaluation of the classes avoids the problem of the classes
not being defined yet when class MyFrame is being defined.

Adding Frame Attributes
Adding a new frame attribute in a subclass is simple. Here's an outline of how
you might add a new control to the frame border. For this example, let's
assume the attribute controls whether the frame is "zoomable", that is whether it
can grow to the full height of the screen. If it is zoomable, the frame will have a
"zoom box" control in its border.

First, define the new attribute by defining a variable in the subclass. The
boolean value of the class variable is the default value used by all instances of
this class. This value can be overridden for a particular instance by parameters
to the Inew or Isetframeattribute methods.

4·26 tNt Technical Reference Manual

Managing Groups of Canvases

Override the /Ornaments method to include the new attribute. This method
returns attribute names on the stack and is used to construct an array of attri­
butes that have associated ornaments, such as controls or graphics. The orna­
ments are created and laid out in the order they are returned by the IOma­
ments method. If the painting order of the new ornament is important, the
override method should do a super send then search through the attributes on
the stack and insert the new one in the appropriate place. If the painting order
doesn't matter, the method can simply add the new ornament at the end of the
list:

The subclass must provide the following methods for the new control:

Managing Groups of Canvases 4-27

Managing Groups of Canvases

Utility Bags

There are many ways an application might want to layout the clients of a bag.
The NeWS Development Environment includes three utility bags that provide
support for laying out an arbitrary number of arbitrarily-sized bag clients in
three different ways. The names of the subclasses are: AbsoluteBag,
RowColumnBag and FlexBag.

4-28 tNt Technical Reference Manual

Managing Groups of Canvases

AbsoluteBag

The absolute in the name of this bag refers to the location of the AbsoluteBag's
clients. AbsoluteBags position their clients at application-specified x,y coordi­
nates and keep them there no matter what the size of the bag. Clients added to
AbsoluteBags must have an x,y coordinate as baggage. (For more information
on baggage see the "Insertion and Removals" section above.)

mlnslze
When the minsize message is sent to AbsoluteBag it attempts to calculate a rea­
sonable size for itself based on the x,y coordinates of the clients and their sizes
(not their minsizes). Basically, AbsoluteBag uses the position and size informa­
tion of its clients to calculate the smallest bounding box that fits all its clients.
Thus AbsoluteBag's minsize calculation tries to ensure that all its clients are visi­
ble. However, the minsized layout many not be "pretty."

If a class is passed to laddclient then AbsoluteBag creates a minsized client.

Coordinate system
Only absolute bags support two orientations of the coordinate system: top-down
(the default) where the origin is at the upper left corner of the bag; and the nor­
mal NeWS bottom-up system where the origin is at the lower left corner of the
bag. Use /settopdown to change the orientation of the origin in absolute bags;
Isettopdown takes a boolean argument, true for top-down and false for bottom­
up.

In the top-down system the coordinates given to the bag for each client are
taken as the distance from the top-left corner of the bag to the top-left corner of
the client:

Managing Groups of Canvases 4·29

Managing Groups of Canvases

Figure 4-3: Top Down Coordinates

(0,0) .-:-------------,
bag

(x,y) I' t c len

true Itopdown

(absolute bags only)

Figure 4-4: Bottom Up Coordinates

4·30

client
(x,y) '---------'

(0,0) bag

false Itopdown

(standard NeWS coordinates)

tNt Technical Reference Manual

Managing Groups of Canvases

RowColumnBags

As the name of this ClassBag subclass implies RowColumnBags are designed to
layout clients in a grid of rows and columns. Clients added to
RowColumnBags do not take any baggage. The default layout for
RowColumnBags is row major order, with one column and as many rows as
there are clients. This layout is identical to the default layout of menus.
RowColumnBags inherit their layout from the RowColumnLayout mixin class.

The arrangement of RowColumnBag clients can be changed using Isetlay­
outstyle. IseUayoutstyle takes three arguments: a boolean first argument to
determine row or column major layout (true for row major; false for column
major), the number of rows and the number of columns. If the number of rows
and columns are specified then those numbers of rows and columns are created.
If one of the row/column arguments is null then the appropriate value is calcu­
lated by dividing the number of items to be displayed by the other, known
value. If null is specified for both arguments then the bag is layed out in the
default style.

Every cell in the grid of a RowColumnBag is the same size. When calculating
its minsize RowColumnBag uses the maximum minsize of all its client's min­
sizes. Thus if a RowColumnBag had six clients of varying minsizes, it would
determine which of the six clients had the largest minsize and multiply the size
by six (the number of clients) in order to calculate its own minsize.

By default RowColumnBags do not put any space between cells of the layout
grid or between the grid and the borders of the bag. To change the default
spacing use Isetgaps to add horizontal and/or vertical spacing between cells.
Isetgaps takes two arguments the horizontal gap (or null) and the vertical gap
(or null). The spacing is given in points. Use Igaps to determine the amount of
space between cells. Igaps returns two numbers, the horizontal gap and the
vertical gap. Both values are in points.

You can also change the size of the border by using Isetborder. Isetborder takes
the number of points of white space you want between the client grid and the
bag's inside edge.

Managing Groups of Canvases 4-31

Managing Groups of Canvases

Flex Bags

A FlexBag is a bag in which the positions of clients are determined by execut­
able code they pass in during laddclient This code is executed each time the
bag is layed out. Compass-point notation is used so that clients may be placed
relative to a comer of another client. To aid you in relative positioning of
clients, utilities are provided. See the section "FlexBag Positioning Utilities"
below. FlexBag use the NeWS bottom-up coordinate system.

The compass-point notation refers to a client's bounding box (c is center):

Figure 4-5: Compass Point Notation

n
nw-----------------, ne

w c e

sw~-------------~se s

Adding Clients

The order of insertion into a FlexBag is critical if the bag is being used for rela­
tive layout. During each call to !Layout the position code is executed in the
order in which the clients were inserted. In other words, do not make the posi­
tion of an earlier addition depend on the position of a later one. Incorrect results
will follow.

FlexBag's layout code expects clients to be passed to laddc1ient using the fol­
lowing form:

4-32 tNt Technical Reference Manual

Managing Groups of Canvases

The executable must return x,y coordinates that determine where the given
compass-point of the given client is placed in the bag. The client can be either a
class (if it is a canvas) or an instance. For example:

puts the bottom left comer of mybutton at position 200 300 in myflexbag. Simi­
larly:

would create an instance of OpenLookButton with the label Buttonl and no call­
back, make it a client of myflexbag, and place the bottom left comer of the but­
ton at position 200 300 in myflexbag.

FlexBag also recognizes the compass-point notation in reference to itself. When
positioning clients relative to the bag's coordinates the FlexBag code recognizes
the following executable form:

Managing Groups of Canvases 4-33

Managing Groups of Canvases

Thus:

places the client so that its center will be offset 10,10 from the center of the bag.
See the section "FlexBag Position Utilities" below for an explanation of POSI­
TION and XYADD.

Clients can be added to flex bags with no layout information. In this case you
should set the bag's default layout specification by using Isetlayoutspec. Iset­
layoutspec takes the same arguments as you use when adding clients, a
compass-point (or null) and an executable that returns a position.

mlnslze

FlexBags calculate their minsize based on the positioning information given to
the bag when clients are added. You should note that while FlexBag don't
presume that any shape or size client is being put in them the FlexBag code
attempts to make an "intelligent" guess as to what its minsize should be by
using a heuristic. For complicated relational positioning of FlexBag clients the
heuristic may yield an arrangement of the clients that you find unacceptable. If
that should occur use the ClassCanvas method Ilockminsize to override
FlexBag's calculation.

FlexBag Positioning Utilities

FlexBags provide five positioning utilities. They are /POSITION, /WIDTH,
/HEIGHT, /XY ADD, and /XYSUB. These utilities are especially useful for
positioning clients relative either to other clients or to the flex bag itself. POSI­
TION, WIDTH, and HEIGHT take either a canvas instance, the name of a client
or "Previous" or "Current" which refer to the previous and current clients,
respectively.

/POSITION takes a compass-point and a client's name, a canvas, or a bag and
returns the x,y position of the compass-point of that canvas. For example, to
position a client so that it is always in the center of the bag an application could
do:

4-34 tNt Technical Reference Manual

Managing Groups of Canvases

[/c {lc self POSITION} ... J
I I I

client bag bag
cen ter center

This code fragment makes the client's center and the bag's center coincide.

/WIDTH takes a client name, a bag, or a canvas and returns its width in points.

/HEIGHT takes a client name, a bag, or a canvas and returns its height in
points.

An application could use /WIDTH and /HEIGHT together to position a client
relative to the size of the bag:

This example positions the center of a client 1/4 of the flex bag's width and at
1/2 the bag's height. Since these are relative positions they are preserved
independently of the bag's size.

/XY ADD does 2-D vector addition on two sets of x,y coordinates. The syntax
is: xl yl x2 y2 XYADD xl+x2 yl +y2.

/XYSUB does 2-D vector subtraction on two sets of x,y coordinates. The syntax
is: xl yl x2 y2 XYSUB x2-xl y2 -yl.

Example of Bag Usage and Subclassing

The following example code shows how an application programmer might typi­
cally subclass ClassBag, and use the result as the client of an OPEN LOOK
frame (or any bag for that matter).

Managing Groups of Canvases 4-35

--------~--

Managing Groups of Canvases

4-36 tNt Technical Reference Manual

Managing Groups of Canvases

Managing Groups of Canvases 4-37

Managing Groups of Canvases

4-38 tNt Technical Reference Manual

Managing Groups of Canvases

Focus Management

ClassBag provides mechanisms for "focus forwarding" and "focus noticing".
When a bag receives the input focus, it may forward the focus to another canvas
that is an immediate child or a more remote descendant. A bag may be
interested in noticing when the focus is given to one of its descendants directly.
These concepts are best explained with an example.

Suppose you have an OPEN LOOK frame (whose class is a subclass of
ClassBag) containing a control area (a bag) containing a text control. You want
the user to be able to click the mouse on the frame and then to be able to type
to the text control. Oicking on the frame will give it the input focus. However,
it is not the frame that is interested in key strokes, but rather the text control, so
the frame must forward the focus to the text control. The frame title area
highlights when the input focus is anywhere inside the frame. This means the
frame must notice the change of focus, even if the user clicks the mouse directly
on the text control so it gets the focus without any intervention from the frame.

Managing Groups of Canvases 4-39

Managing Groups of Canvases

Note: the above example assumes the click-to-type focus style is being used.
Focus forwarding and noticing also works with the follow mouse focus style.
The mechanism built into OassBag and used by ClassFrame allow behavior
such as that described above to be implemented very simply. How this is done
is described below.

Focus Definitions

Focus Client
A canvas interested in receiving the input focus, either for the purpose of
procesing keys itself or for passing the focus on to another canvas that will con­
sume keys. A canvas is designated a focus client via the utility functions
addfocusclient and removefocusclient.

Key Consumer
A canvas that processes keyboard input. Set by the /setkeyconsumer method in
OassCanvas. A key consumer must also express appropriate interests in keys.

Focus Forwarder
A bag that upon receiving the input focus passes the focus on to another canvas.
The automatic mechanism for doing this is controlled by the /FocusForwarder?
class variable in OassBag. Focus forwarding is generally an attribute of an
entire class, but may be enabled for specific instances by promoting /FocusFor­
warder?

Focus Target
For a focus forwarder bag, the canvas to which the input focus will be for­
warded by the automatic forwarding mechanism. The focus target is main­
tained automatically, but may be set explicitly with the /setiocustarget method
in OassBag.

FocuS Notlcer
A bag that is interested in being notified when the input focus enters or leaves
itself or any of its descendant canvases. Controlled by the class variable
IFocusNoticer? in OassBag.

4-40 tNt Technical Reference Manual

Managing Groups of Canvases

Focus Forwarding

All key consumers are generally focus clients, but not all focus clients are key
consumers. A focus client that is not a key consumer is usually a focus for­
warder, transferring the input focus to a descendant canvas that is a key consu­
mer.

ClassBag provides a mechanism for automatically handling focus forwarding.
In the simplest case, a class that is a subclass of bag simply sets the IFocusFor­
warder? class variable to true. This causes an appropriate interest to be created
by IMakeInterests so the bag will be able to receive the input focus. It also
causes FocusTarget to be initialized and maintained for the bag. When the
input focus is given to the bag, it is automatically transfered to the focus target.
More elaborate behavior can be achieved by overriding methods in a subclass of
ClassBag.

Class Variable:
IFocusForwarder7

The variable IFocusForwarder? is defined as false in ClassBag and true in
OpenLookFrame. A subclass of ClassBag that is not a subclass of OpenLook­
Frame must redefine this variable to be true to enable focus forwarding.

Focus NotiCing

ClassBag provides a simple mechanism for noticing when the input focus enters
or leaves the bag or any of its descendant canvases. In the simplest case, a sub­
class sets the IFocusNoticer? class variable to true. This causes an appropriate
interest to be created by IMakeInterests. The subclass then overrides the INoti­
ceFocusEnterExit method to take whatever action is necessary, such as provid­
ing some sort of highlighting.

Class Variable:
IFocusNoticer7

Managing Groups of Canvases 4-41

ManagIng Groups of Canvases

Method:
lNoticeFocusEnterExit

The variable IFocusNoticer? is defined as false in ClassBag and true in Open­
LookFrame. A subclass of ClassBag that is not a subclass of OpenLookFrame
must redefine this variable to be true to enable focus noticing.

How Focus Forwarding and Noticing Works
What follows is a detailed description of the mechanisms involved in focus for­
warding and noticing. This is useful for subclassers who want to change some
aspect of this behavior.

When a focus forwarder bag or any of its descendant canvases gets the input
focus, the INoticeFocus method is called. This method calls INoticeSelfFocus if
the focus is for the bag itself or INoticeDescendantFocus if the focus is for a
descendant canvas. INoticeSelfFocus checks to see if there is a focus target (i.e.
if FocusTarget is not null), and if so transfers the focus to that canvas via the
ITransferFocus method. INoticeDescendantFocus sets FocusTarget to the can­
vas receiving the focus. This makes sure FocusTarget is set to the most recent
focus recipient, even when focus forwarding does not take place, e.g. when the
focus goes from outside the bag directly to a key consumer canvas or when the
focus goes from one key consumer canvas to another within the same bag.

Methods:
IN oticeFocus
IN oticeSelfFocus
IN oticeDescendantFocus
IrransferFocus

When a new value for FocusTarget is needed, the /MakeFocusTarget method is
called. For example, it is called when adding a key consumer canvas to a bag
that has no focus target, or when removing a key consumer canvas that is the
focus target. A subclasser can override /MakeFocusTarget to implement algo­
rithms for determining which canvas should be the focus target. By default, the
first key consumer canvas added to a bag becomes the initial focus target, and
FocusTarget is set to null if the current focus target is removed.

4-42 tNt TechnIcal Reference Manual

Managing Groups of Canvases

Methods:
lMakeFocusTarget

When a key consumer canvas is added to a bag, the laddkeyconsumer method
is called for the bag. This method calls / addfocusdescendant for itself and all of
the bags from its parent to the framebuffer. The /addfocusdescendant method
sets the focus target if it is not already set. The / addfocusdescendant message
is sent to all bags up the canvas hierarchy so they can all have the opportunity
to set their focus targets. An analogous procedure takes place when a key con­
sumer canvas is removed from a bag. The Iremovekeyconsumer method is
called and it calls /removefocusdescendant up the canvas hierarchy. The
/removefocusdescendant method calls /MakeFocusTarget to get a new focus
target if the canvas being removed is the current focus target for the bag. The
/addkeyconsumer and /removekeyconsumer methods are also called when a
change is made to whether a canvas is a key consumer.

Methods:
laddkeyconsumer
Iremovekeyconsumer
laddlocusdescendant
Iremovelocusdescendant
Isetkeyconsumer (ClassCanvas)

Subclassers way want to develop algorithms for setting a bag's focus target
based on the last times canvases had the input focus. For example, a OassBag
subclass might override /MakeFocusTarget so that when the current focus tar­
get canvas is removed from a bag other key consumer canvases in the bag are
checked and the one that had the focus most recently becomes the new focus
target. ClassCanvas provides the Isetlastfocustime and Ilastfocustime methods
as a standard way of storing and retrieving the last time a canvas had the input
focus. Key consumer canvases should call / setlastfocustime when they receive
the input focus. This will allow them to be placed in bags that use last focus
time.

Managing Groups of canvases 4-43

Managing Groups of Canvases

4-44

Methods:
flastfocustime (ClassCanvas)
Isetlastfocustime (ClassCanvas)

Methods:
Isetfocustarget
Ifocustarget
Isetkeyconsumer
Iremovefocusdescendant
Iremovekeyconsumer
laddfocusdescendant
laddkeyconsumer
flastfocustime
/MakeFocusTarget
IN oticeDescendantFocus
IN oticeFocus
IN oticeFocusEnterExit
IN oticeSelfFocus

Class Variables:
lFocusForwarder7
lFocusNoticer7
lFocusTarget

tNt Technical Reference Manual

5 Menus and Other Selection Lists

Menus and Other Selection Lists
Introduction
Menus

• Introduction
• Creating Menus
• Laying Out Menus
• Manipulating Menus
• Menu Values
• Pinned Menus
• Callbacks, Targets and Isetmenu

Settings
• OpenLookXSetting
• OpenLookChoggle

OpenLookNonXSetting
• Example

Table of Contents

5-1
5-1
5-1
5-1
5-2
5-4
5-5
5-5
5-6
5-6
5-8
5-8
5-12
5-12
5-13

Menus and Other Selection Lists

Introduction

OassCanvas 7 ClassSelectionList ~ ClassMenu --;. OpenLookMenu

" OpenLookXSetting~ OpenLookNonXSetting

ClassTarget " OpenLookChoggle

ClassSelectionList is the basis for menus and setting controls (Exclusive, NonEx­
clusive and Choggles). It is not designed to be instantiated directly. The idea
behind a selection list is that a single canvas manages a grid of regularly spaced
items that can be independently selected via the mouse. The most common use
of selection lists is for menus.

Menus

This section covers the more important details of the programmer's interface for
OPEN LOOK menus. For information on using OPEN LOOK menus please
consult the OPEN LOOK ill Style Guide.

This section concentrates on the OpenLookMenu class. This section covers those
methods deemed most important for using menus. The complete set of
methods associated with OpenLookMenu and its superclasses can be found in
section 2.

Introduction
ClassMenu is an intrinsic class implementing menus; it supports hierarchical
pop-up pinnable menus. ClassMenu, as with other intrinsic classes, is meant to
be subclassed rather than instantiated; it provides the foundation for OpenLook­
Menu. You can subclass ClassMenu if you want functionality that is substan­
tially different from that which OPEN LOOK menus provides. And while
OpenLookMenu is generally intended for instantiation, it can be subclassed to
implement small changes in the class, such as having all menus come up using a
font that differs from the default.

Applications can automatically associate a menu with another canvas. The
NeWS Development Environment takes special care to manage the relationship
between canvases and their associated menus. By default, an instance of
ClassCanvas does not have a menu but ClassCanvas has been designed to

Menus and Other Selection Lists 5·1

Menus and Other Selection Lists

expect a menu. The NeWS Development Environment provides procedures to
facilitate this relationship through the ClassCanvas method Isetmenu. For an
explanation of Isetmenu see "Callbacks, Targets and /setmenu" in this chapter.

Creating Menus
Menus consist of arrays of items. OpenLookMenus can have four types of
items: command, submenu, exclusive, and nonexclusive. The visual look, type
and callback of menu items are specified by a set of triples specified at the time
of menu creation. That is, the triples, one for each item, can be given as argu­
ments to the new method when a menu is instantiated.

The most common way to describe an item is:

[thing I graphic null I submenu I genproc proclnu1l1
callback

field
visual type
field field

This way of specifying items can be used to create menus with an arbitrarily
large number of items. Item types can be mixed using the above model. For
example the following code would specify three types of items in one menu:

5-2 tNt Technical Reference Manual

Manus and Other Selection Lists

A less general way of specifying a triple can be used:

[thing I graphic ... J null I submenu I genproc
visual type
field field

proclnull
callback
field

This way of specifying menus is used to create menus where all the items will
be of the same type and have the same callback.

Visual Look Field

You can specify the visual look field of the triple using either a graphic or a
thing, both described in ClassGraphic. Whatever graphic is used for the visual
field, by default, will be inserted in an instance of OpenLookMenuButton­
Graphic.

A thing is a PostScript data structure, either a string or an array. The array con­
tains the string as well as optional attributes used to display the string. Two
common attributes used are a font to render the string in and a color to render
the font in.

Type Field

The type field is used to indicate the type of the menu. The type field is one of:

• null to specify a command menu item

• a submenu (sublist) or a procedure to create a submenu (genproc)

• an array containing the name IExclusive to specify an exclusive item

• an array containing the name INonexclusive to specify a nonexclusive
item

Callback Field

The callback field is null when the item is of type submenu. If the item is not of
type submenu then the callback field specifies the action to be taken when the
item is selected. If non-null the callback field must be an executable PostScript
array that consumes the menu from the stack.

Manus and Other Selection Lists 5-3

Menus and Other Selection Lists

limitations

The NeWS Development Environment's OPEN LOOK menus do have some lim­
itations and as such, do not currently allow for some OPEN LOOK VI func­
tionality. Menus containing both exclusive and nonexclusive choices are not
supported well. For example: a menu is created that has two command items,
three exclusive items and one nonexclusive item. One might expect that for the
purposes of menu manipulation the menu had four items: the two command
items, the non exclusive item and the three exclusive items grouped as a single
item. In fact in the NeWS Development Environment, menus cannot handle this
grouping of items.

This lack of grouping ability means that a menu cannot contain two sets of
exclusive items that operate independently. Turning on any exclusive item in a
menu will tum off all others.

Laying Out Menus
The default menu layout is one column and the number of rows equal to the
number of items. However, you can layout menus with multiple rows and
columns. Moreover, you can specify whether the menli will be layed out in row
major or column major order.

To set the layout of a menu instance to be other then the default use Isetlay­
outstyle. IseUayoutstyle takes a RowMajor? boolean first argument; true lays
out the menu as row major and false lays out the menu as column major. The
next two arguments specify the number of rows and the number of columns
respectively; either or both may be null.

If you specify the number of rows and/or columns, then those number of rows
and/or columns are created. If you specify null for one of the arguments then
the appropriate value is calculated automatically by dividing the number of
items to be displayed by the other, known value. If null is specified for both
rows and columns the menu is layed out in the default style.

If you specify a matrix that is too large for the number of items there will be
empty spots in the matrix. If too many items are specified for the size of the
matrix the excess items will not be shown.

You can query the layout specifications of a menu using Ilayoutstyle. The
RowMajor? boolean, the number of rows, and the number of columns are
returned.

5-4 tNt Technical Reference Manual

Menus and Other Selection LIsts

Manipulating Menus
Once you have created a menu several methods are available to change features
or query current menu settings. Some of the more commonly used methods
allow a program to insert, delete, disable and determine the last item selected
on the menu.

You can access menu items using their index. The terms location and index are
used interchangeably.

Use linsert to put a new item into an existing menu at a specified location.
linsert takes an index and an item triple as arguments and preserves the menu's
default. Similarly, Idelete removes an item at the specified location while
preserving the menu's default selection. Any field of an item's triple can be
changed using Ichange. If all the fields aren't being changed then null is used
as placeholder when the triple is passed into Ichange.

Enabling and disabling an item refers to two things: the visual state of the item
and the ability of the item to get the combination of mouse drags and button
ups. An item that is enabled will be highlighted on a mouse drag and execute
its callback on the button up. An item that is disabled will get neither the
mouse drag or the button up. A disabled item is "grayed out" to distinguish it
from an item that is enabled.

Use lenableitem to enable a menu item and Idisableitem to disable an item.
The litemenabled? method allows you to query an item to determine if it is
enabled or disabled.

Menu Values
The value of a menu is the index of the last item selected. Send Ivalue to a
menu instance to determine its current value.

Use Isetvalue to change the value of a menu. If an item is an exclusive item and
it is turned on when Isetvalue is called on it, the item is not turned off. Use
Inonxvalue to determine which nonexclusive menu items are turned on. It
returns an array of the indices of all the nonexclusive items currently set. If no
nonexclusive values are set an empty array is returned. Use Ixvalue to deter­
mine which exclusive value is currently set. It returns the index of the item.
Isetvalue does not execute an item's callback. Applications that want an item's
callback executed immediately after the item is set should call1doaction.

Menus and Other Selection LIsts 5-5

Menus and Other Selection Lists

Pinned Menus

It is worthwhile noting that there are no programmer interfaces to allow access
to the pinned version of the menu. The pinned version is a copy of the menu.
Code in class OperiLookMenu will perform the necessary actions to keep the
pinned copy up-to-date with changes made to the menu.

To give menus a pin (or to remove it) use Isetpinnable. Use Ipinnable7 to
query a menu to determine if it is pinnable.

Callbacks, Targets and Isetmenu
After a menu is built several conditions must be met before the "right" thing can
happen when a menu item is selected. First a menu and a canvas must be asso­
ciated so that MENU down produces the correct menu. Second, when a MENU
up occurs the correct callback is executed. Finally when the callback is exe­
cuted the correct object is affected. The NeWS Development Environment pro­
vides several methods and a mixin class to help you manage the relationship
between menus and other canvases.

You can use the OassCanvas method Isetmenu to associate a menu with
another canvas. Isetmenu takes a menu as its argument and is sent to a canvas.

Using Isetmenu causes the canvas to express an interest in the MENU button
down and to display the menu when one is noticed. When Isetmenu is used
menu callbacks will execute in a process forked from the canvas's event
manager process. Having the callback execute in the canvas's event manager
process group guarantees that the same userdict and stdout (for sending tag­
prints), exists when the callback is executed as when the canvas was activated.

However, before the correct callback can be executed a program must determine
which item was selected. Determining which item was selected is easy because
when an item is selected the menu is pushed on the stack.

With the menu on the stack programs can cali/value to determine which menu
item was selected. Ivalue returns the index of the last item selected. Thus in
the simplest case to determine which item was selected a callback would con­
tain:

5-6 tNt Technical Reference Manual

Menus and Other Selection Lists

With the item selected identified the correct callback can be executed. Then the
callback needs to send its methods to the correct object.

The NeWS Development Environment provides targets to help programs send
callback methods to the correct object. If Isetmenu was used to associate the
menu with a canvas then the ClassTarget method, Isendtarget can be used to
send the callback methods to the canvas. Isendtarget is sent to the menu. Thus
in the simplest case the callback would contain:

Isetmenu associates a menu with another canvas; it doesn't set the target.
Instead, by default canvases set the target of their menus to be themselves when
the menu is brought up over them (see Chapter 3, Canvases).

Using Targets Manually
While most applications will want the Toolkit to manage menus, functionality is
provided to allow applications to handle menus manually. If you require
manual handling of menu display, e.g., having different menus pop-up in dif­
ferent areas of the same canvas, should not use Isetmenu.

Such applications could, for example, express interest in MENU mouse down,
calculate where in the canvas the mouse was when the mouse down was
received, then make an explicit call to Ishowat to display the correct menu for
that region of the canvas.

Targets can be set explicitly using Isettargel In addition, applications that don't
want the canvas over which a menu is brought up to be the target of the menu
can change the default behavior by using the ClassCanvas method lautotarget­
menu:

Menus and Other Selection Lists 5-7

Menus and Other Select/on Lists

See Chapter 8 for a complete discussion on using targets.

Shared Menus
Since canvases are the default target of the menus brought up over them, appli­
cations can easily share the same menu between different instances of a canvas.
There are two cases:

1. All instances of a class share the same menu. Use lCanvasMenu a
ClassCanvas class variable:

2. Share a common menu between instances of different classes. Then an
application would use Isetmenu and send the menu to each canvas
instance.

Settings

OpenLookXSetting

This class implements the Open Look exclusive setting control. Since this class
is derived from OassSelectionList, entire group of settings uses a single canvas,
has a single event manager.

Although not derived from OassControl, exclusive settings behave much like
controls. They have a single value and a client-supplied notify proc. They may
be placed into bags along with controls. However, a difference is that although
individual items may be disabled, there is no Idisable method that applies to
the entire setting group.

5-8 tNt Technical Reference Manual

Menus and Other Selection Lists

Exclusive settings are created from a list of items. The list is similar to the one
used to create menus, except there is nothing corresponding to a submenu.
There are two fonns of parameter to Inew:

The first form is an array of graphic/proc pairs. Each graphic may be either an
instance of a graphic class, or may be a "thing" suitable to create an instance of
class OpenLookXSettingGraphic. The proc is a notify proc like that of any
menu or control. It is called with the exclusive setting on the operand stack.
The second form uses a single proc for all items and is used when the same
notify proc is used for all setting items.

As with menus, the items in a setting are ordered. The value of the setting con­
trol is an integer corresponding to the selected item. The first item is numbered
O. The ClassSelectionList methods for managing lists can be used to insert,
delete and change items. Individual items can be enabled and disabled.

Methods: (all in ClassSelectionList)
linsert
Idelete
Ichange
lenableitem
I disab leitem
litemenabled

OpenLookXSetting uses a row Icolumn layout algorithm to arrange its choices
(it has class RowColumnLayout as a superclass as well as ClassSelectionList).
The lsetlayoutstyle method is used to control whether the exclusive choices are
arranged in a row, a column or a matrix.

Menus and Other Selection Lists 5-9

Menus and Other Select/on Lists

Example

Methods: (all in class RowColumnLayout>
Isetlayoutstyle
Ilayoutstyle
Icellcount

This code builds a demo frame that contains a bag that contains a simple
exclusive setting. When an item is selected, the frame's footer displays the new
setting.

5-10 tNt Technical Reference Manual

Menus and Other Selection Lists

Notes:

The creation of the frame and bag are kept very simple for this example. A
RowColumnBag is used so we don't have to provide any information about the
position of the setting.

It is not necessary to / activate the setting when it is put inside a bag - the bag
does this automatically.

The Isettarget method is used to make the setting's target be the frame. The
setting's notify proc uses Isendtarget to call the Isetfooter method in the frame.
The Isendtarget method is sent to the setting, which is on the operand stack .
when the notify proc is called.

The Ivaluething method returns the "thing" corresponding to the current value
of the setting control. This will be one of the strings (300), (1200), etc.

The bag is explicitly painted at the very end of the example because the frame
and bag were already activated earlier in the example. (The frame is activated
by the Idemo method.) In many actual cases the bag will be populated with
controls before its frame is activated. When the frame is activated the bag and
its controls will be painted automatically, eliminating the need for an explicit
call to / paint.

The default layout style is to place the setting items in a single column. This
may be changed with the / setlayoutstyle method. For example, the following
will change the above setting control from vertical to horizontal:

Menus and Other Selection Lists 5-11

Menus and Other Selection LIsts

OpenLookChoggle

An OpenLookChoggle is a variation on the OpenLookXSetting in which it is
possible for no item to be selected. If the user clicks the mouse on the selected
item, it is deselected and no other item is selected. The /value method will
return null for the control when no item is selected. Other than this difference,
OpenLookChoggles are exactly the same as OpenLookXSettings. The name
"choggle" is a blend of "choice" and "toggle" and was once used in the Open
Look specification to as the name for what is now called simply a "variation on
exclusive settings".

OpenLookNonXSetting

A nonexclusive setting is a group of choice items, any number of which may be
selected at the same time. Clicking on an item toggles its selected state. This is
a multiple valued control- its value is an array of values corresponding to the
selected items. The /setvalue method takes either a single value of an array of
values, /value returns an array of values, and /valuething returns an array of
things.

Methods:
Ivalue
Isetvalue
Ivaluething

The spacing between the setting choices is 4 by default. This may be changed
with the /setgaps method.

Class OpenLookNonXSetting is a subclass of OpenLookXSetting. Except for
their having mulitple values and the spacing of their choices, nonexclusive set­
tings are identical to exclusive settings. Their settings are specified by the same
parameter to /new, items may be inserted, deleted or changed the same way,
and the layout style is controlled the same way.

5-12 tNt Technical Reference Manual

Menus and Other Selection Lists

Example

This example creates a nonexclusive setting and adds it to the bag from the pre­
vious example.

Notes:

This example assumes the exclusive setting from the previous example is still
laid out as a column. If it is a row, the example still works, but doesn't look as
good.

The /valuething method returns an array of things for the nonexclusive setting.
Each thing is a string such as (Bold) or (Italic). A single string is built by
appending together all the strings in the array. The resulting string is used to
change the right part of the frame's footer.

Menus and Other Selection Lists 5·13

Menus and Other Selection Lists

The layout style for the bag is set in this example because a second client is
being added to the bag and therefore it matters whether the bag layout is in a
row or a column.

Here are some examples of setting and retrieving the value of the nonexclusive
setting.

5-14 tNt Technical Reference Manual

6 Controls

Controls 6-1
Introduction 6-1
ClassControl 6-1

• Value 6-1
• Notification 6-2
• Enabled I Disabled State 6-3
• Tracking 6-3

ClassDialControl 6-5

• Deltas 6-5
• Normalization 6-6

Class Button 6-7
• Graphic 6-7
• Notification and Value 6-8
• OpenLookButton 6-8
• Button Examples 6-8
• OpenLookButtonStack 6-11
• OpenLookAbbrButton 6-14
• OpenLookAbbrButtonStack 6-14

Analog Controls 6-16

• Sliders 6-16
• Scrollbars 6-17
• Simple Scrollbar Example 6-19

Fields 6-20
• ClassTextControl 6-20
• OpenLookTextControl 6-22
• OpenLookNumeric 6-22

Table of Contents

Controls

Introduction

OassButton .
~ < OassScrollbar ---;;. OpenLookHonzontalScrollbar

OassCanvasOassControl ~
~ Ope~kHOrizontalSlider OpenLookVerticalScrollbar

OassTarget OpenLookVerticalSlider

ClassControl

Controls are canvases with the following features:

• a value

• a notify (callback) procedure

• a state of enabled or disabled

• a tracking process that is created for user interaction

Value

A control has a "value" that may be changed via a user interaction or program­
matically. The general mechanism provided by ClassControl allows a control's
value to be any object. Subclasses will generally define some domain of legal
values for the controls they define. For example, a check box might allow only
the values true and false, a dial might allow integers from 0 to 10, and a text
field might allow any character string. Each subclass defines what happens if an
attempt is made to set the value to something not in the domain of legal values.
A subclass might allow multiple values, in which case the control value might
actually be an array of the current values.

A subclass of ClassControl must provide a lPainlValue method. This method is
called whenever the control's value changes. The method may either paint the
control according to the new value, or may compare the new value to the old
and do an incremental paint.

Controls 6-1

Controls

Notification

Methods:
Ivalue
Isetvalue
lPaintValue

If a control's value changes as the result of an interaction initiated by the user,
the client application is informed via the "notify" procedure. This is a fragment
of code that is supplied as an argument to Inew for the control, or may be set
with the Isetnotifyproc method. The notify proc is called with the control itself
on the operand stack. The notify proc can query the control for its value or any
other relevant information. The notify proc must remove the control from the
stack. It is generally best to not rely on a particular execution context from
within the notify proc. Here's a sample notify proc that prints the current value
of the control:

The methods Icallnotify and Ichecknotify cause notification to take place, i.e.
the control is pushed onto the operand stack and the control's notify procedure
is executed. The Icallnotify method unconditionally notifies. The Ichecknotify
method calls ICallNotify? and uses the returned boolean value to decide if
Icallnotify should be called. Generally, you should call1checknotify, not
Icallnotify. The ICallNotify? method can be overridden by a subdasser to con­
trol when notification takes place. The default ICallNotify? method checks to
see if the current value of the control is different from the value at the last
notification, and if so the notification takes place.

Some controls are output-only and therefore do not support user interactions
and do not do automatic notification. The only way notification can take place
for these controls is via an explicit call to Ichecknotify or Icallnotify. An exam­
ple is a read-only text control.

6-2 tNt Technical Reference Manual

Controls

All controls take a notify proc as an argument to their Inew method. If the
argument is null, no notification takes place. Since controls are canvases, they
also take a parent canvas as an argument to new. Control subclasses will often
define additional parameters to Inew.

Enabled I Disabled State

Methods:
Inew
Isetnotifyproc
Inotifyproc
Ichecknotify
Icallnotify
Inotifiedvalue
ICallNotify?

A control has an enabled/disabled state that is changed by the lenable and Idis­
able methods. A disabled control is "read only" and does not respond to user
input. Typically a disabled control will offer a visual indication of its state, such
as dimming itself.

Tracking

Methods:
lenable
Idisable
lenabled?
lPaintEnabledState

"Tracking" refers to the temporary processing of certain events during user
interaction with a control. It is typically initiated by the user clicking the mouse
in the control. At that time certain tracking interests are expressed, allowing
processing of, for example, mouse button up events to terminate tracking and
mouse enter/exit events for highlighting the control.

Controls automatically express an interest in the down transition of PointButton
(defined by The OPEN LOOK UI as the left mouse button, if not overridden by
the user.) This causes the IEventHandler method to be called, which by default
does nothing. A subclass will typically override this method to call/StartTrack.·
ing, which will call1track.on if the control is enabled. The Itrackon method

Controls 6·3

Controls

creates a track manager process (accessable via the Itrackmgr method) and
expresses the transient tracking interests.

There are several "standard" tracking methods that, if supplied by a control sub­
class, will be called automatically during tracking. If IClientDrag is supplied, it
will be called for every mouse movement within the control. If IClientEnter or
IClientExit is defined, it will be called when the mouse cursor enters or leaves
the control. The IClientDown and IClientUp methods are called at the start and
end of tracking.

If a IClientRepeat method is provided, a timer interest is expressed and the
method will be called after a time interval specified by ClientStartTime. The
IClientRepeat method will typically take some action, such as calling IClient­
Down, and then generate another timeout event so it will be called again:

Note that the event passed as argument to IClientRepeat will not have mean­
ingful /XLocation and /YLocation fields. The event's /Name will be
/TimeOutEvent rather than the name of the event that started tracking.

6-4

Methods
Itrackon
Itrackoff
Itrackmgr
Itrackinterests
IStartTracking
lEnd Tracking
IClientDown
IClientUp
lBuildTrackInterest

IClientDrag
IClientEnter
IClientExit
IClientRepeat
IClientStartTime
IClientRepeatTime
IEventHandler
lMakeTrackInterests

tNt Technical Reference Manual

Controls

ClassDialControl

A dial is a control with a numerical value bounded by minimum and maximum
values. Examples of dials are circular knobs and meters, linear scrollbars and
thermometer-type gauges.

User interaction with the dial may change its value either to an absolute value,
or to a value computed by adding or subtracting a "delta" to the current value.
Values are constrained to be within the dial's "range", i.e. between its minimum
and maximum values. The granularity of the dial may be controlled via "nor­
malization". For example, a dial may have a range of 0 to 100 and normalization
may be used to contrain legal values to multiples of 10. Normalization values
will generally be less than or equal to delta values.

Deltas

Methods:
Isetrange
Irange
ICheck ValueBounds

Deltas are named increments for amounts a dial's value may change relative to
its current value. Deltas are defined in subclasses of OassDialControl. For
example, a scrollbar may have deltas named /Line and /Page. A delta may be a
constant value or an executable code fragment that produces a dynamically
computed value.

The Isetdelta method allows you to define new delta names and values for a
control. The lincrementvalue method takes an integer and a delta name and
changes the dial's value by the delta amount multiplied by the integer you sup­
ply. The Imotion method returns the amount and delta name of the last change
in the dial's value. It is most useful when called from the dial's notify proc.

Controls 6-5

Controls

Normalization

Methods:
Isetdelta
Idelta
Imotion
lincrementvalue
ISetMotion

The normalization value, which may be either constant or dynamically com­
puted, specifies the difference between consecutive legal values of the dial. For
example, a dial with a minimum value of 0, a maximum value of 100 and a nor­
malization of 2 could have only even values from 0 to 100. Delta values will
usually be some integral mulitple of the normalization value. Normalization is
most commonly used to contrain the values a dial may acquire from an absolute
motion, rather than from a relative motion involving a delta.

6-6

Methods:
Isetnormalization
Inormalization
!Normalize

tNt Technical Reference Manual

ClassButton

CIas.:CanvTcIassControl

ClasaTuget

Controls

OpenLookAnchorButton

~ ~ OpenLookAbblfiutton ~ OpenLookAbbrButtonStack
OpenLookButton OpenLookButtonStack ;T "'

_Button OpenLookMenuPin DpenLooIeXSettingContro1 OpenLookFrameClose

OpenLookNumerlcButton "' OpenLookCheckBox

OpenLookPln "'

Cla .. DIalControl

Cla .. TextContl'Ol

OpenLookNumerlc

OpenLookFramecomen

OpenLookFrameP\n

A button is a very simple control, having a graphic and a boolean value. When
the value is true, the button is highlighted. When the mouse is clicked on the
button, tracking is started. When the mouse cursor is inside the button, the but­
ton is highlighted. When the mouse button is released, the button's notify proc
is called, and the button's value is set back to false, causing it to be
unhighlighted.

Graphic
A button contains a graphic, which determines the button's appearance. When
you create a button, you must supply either an existing graphic instance, or a
"thing", from which a graphic may be created. If you supply a terminal graphic,
it determines the button's appearance completely. If you supply a thing or a
non-terminal graphic, it is enclosed inside another graphic that supplies the but­
ton border.

Controls 6-7

Controls

Notification and Value

Methods:
Inew
Isetgraphic
Igraphic
IEnGraphic
IUnGraphic
ICreateGraphic

When you use a button you are generally interested in the notification that takes
place when the button is pressed but not the button's value. The notify proc
gets called when the mouse button is released on the button. The value of the
button is true when it is highlighted and false otherwise; so the value will
always be true during the notification.

Open LookButton
Class OpenLookButton implements a button with OPEN LOOK appearance. As
with all buttons, the appearance of the button is specified via a "thing" or
graphic parameter to Inew.

Button Examples
The simplest possible button has a trivial notify proc and has the framebuffer as
its parent canvas:

6-8 tNt Technical Reference Manual

Controls

Notes:

The notify proc is called with the button itself on the operand stack. Since the
"Done!" message does not use the button at all, the button is simply popped
from the stack.

The Ipaint method call is necessary because the button has the fr~ebuffer as its
parent canvas. Since the button is a transparent canvas and the framebuffer
does not automatically ask transparent children to paint themselves, the /paint
must be explicit. If the button had been placed inside a bag, the Ipaint would
not be needed because bags automatically paint their child canvases.

A slightly more involved and realistic example puts the button inside a bag
which is inside a frame.

Controls 6-9

Controls

Notes:

The creation of the frame and bag are kept very simple for this example. A
RowColumnBag is used so we don't have to provide any information about the
position of the button.

It is not necessary to / activate the button when it is put inside a bag-the bag
does this automatically.

The Isettarget method is used to make the button's target be the frame. The
button's notify proc uses Isendtarget to call the Ipaint method in the frame. The
/sendtarget method is sent to the button, which is on the operand stack when
the notify proc is called. Another technique for repainting the frame would be
to send Ipaint to the parent of the parent of the button (the button's immediate
parent is the bag). This is somewhat messier and less flexible than using a tar­
get.

6-10 tNt Technical Reference Manual

Controls

Open LookB uttonStack
An OpenLookButtonStack is an OpenLookButton that has a menu associated
with it. A different graphic (class OpenLookButtonStackGraphic) is used so the
button contains an arrow to indicate there is a menu. The name "stack" is an
artifact of an earlier Open Look revision in which what is now called a "menu
button" was called a "button stack".

The Inew method includes a specification for the menu: either a menu object
itself or an array that can be used to create the menu. If the parameter is an
array, it is used to instantiate the menu, and has the following form:

Menus created in this way have the framebuffer as their parent. The Isetmenu
method allows you to change the menu associated with a button stack, and, like
Inew, it takes either a menu instance or a menu specification array as its argu­
ment.

Notification

Methods:
Inew
Isetmenu

Notification for OPEN LOOK button stacks is different than for most other con­
trols. For most controls if you do not provide a notify proc, no notification will
take place. However, for button stacks, if you provide no notify proc, pressing
the button will cause the notify proc for the default item on the associated menu
to be executed. For most cases this is the desired behavior so the notify proc
parameter to /new for the button stack will be null.

Controls 6-11

Controls

Methods:
lNotifyUser

OPEN LOOK button stacks display the menu default in the button when the
button is pressed. This is implemented by the lDisplayDefault and
IUnDisplayDefault methods, which may be overridden by subclassers.

6·12

Methods:
lDisplayDefault
IUnDisplayDefault

tNt Technical Referenea Manual

Controls

Button Stack Example

Notes:

The button stack menu performs various operations on a frame, which is esta­
blished as the menu's target. The menu has no submenus, so that parameter is
null for each menu item. Some of the frame methods take arguments, which are
included in the menu item notify procs.

Controls 6-13

Controls

The notify proc for the button itself is omitted, i.e. is null. When the user clicks
on the button, the notify proc for the default menu item is called. The notify
proc for the button itself is omitted, i.e. is null. When the user clicks on the but­
ton, the notify proc for the default menu item is called.

For button stacks, the target for the menu is automatically set to the target for
the button stack. It is not necessary to explicitly set the target for the menu;
only the button stack target is set in the example.

OpenLookAbbrButton

Class OpenLookAbbrButton implements a small square button with an arrow
inside it and an optional label to its right.

The button label may be an arbitrary graphic. The argument may be a "thing",
in which case it is used to create an instance of class OpenLookLabelGraphic. If
no graphic is desired, the parameter to Inew should be null.

The direction that the button's arrow points may be changed via the Isetarrow
method, which takes arguments ILeft, lRight, IUp and IDown. The default
arrow direction is down.

OpenLookAbbrButtonStack

Class OpenLookAbbrButtonStack combines OpenLookAbbrButton and Open­
LookButtonStack to produce an an abbreviated button, a label, and a menu.
The button's label reflects the most recent selection from the menu. When a
menu item is chosen, the item's notify proc is called and the button stack label
is changed to match the menu item. As with button stacks, the menu default is
previewed in the button's label when the button is pressed. When the button is
released, the label reverts to its previous value, and the button stack notify proc
is called. If there is no notify proc for the button stack (the parameter to Inew
was null), the notify proc for the default menu item is called.

The button stack's label, menu, notify proc and parent canvas are specified as
paramters to Inew. The label is specified as a "thing" or as a graphic. The
parameter may be null, in which case no label is displayed, either initially or
when a menu item is selected. The menu is specified the same as for class
OpenLookButtonStack. The notify proc is the proc called when the abbreviated
button is pressed, and may be null. Remember that each item in the associated
menu may also have its own notify proc.

6-14 tNt Technical Reference Manual

Controls

Example

Notes:

The menu is created and then used as a parameter when the button stack is
created. This is necessary in this example so the menu may contain exclusive
choices. If "normal" menu items were wanted, it would be possible to create the
menu implicitly with an array parameter to the Inew method of OpenLookAh­
brButtonStack.

Controls 6-15

Controls

The initial button label, "Text", is padded. with blanks so the label graphic that is
created. will be large enough to accommodate the largest menu item label, "Key­
board Equivalents". This is really just a workaround for a toolkit bug.

The menu callback simply prints the selected. menu item label on the console.
In an actual application the callback would probably use Isendtarget to call a
method in some object associated with the menu.

The following variation on the menu notify proc causes the menu's default to be
changed to the menu item following the current choice every time a menu item
is chosen. Since clicking on the abbreviated. button chooses the default menu
item, the effect of this code is to build an abbreviated. menu button that steps
through the menu choices sequentially.

Analog Controls

Sliders
Sliders are a simple subclass of ClassDialControl. They implement a subset of
OPEN LOOK sliders as described. in the OPEN LOOK ill Specification. A slider
only defines one delta, jLine. There's currently no way to show the users what
the actual value of the slider is, because there is no way to display the scale.
There are no tick marks, and there is no way to tell what the minimum and
maximum values of the slider are. You can get some of this functionality if you
are willing to write some postscript code. You will have to write some code to
display the current, minimum and maximum values of the slider with numeric
controls. But you will have to use a FlexBag or your own subclass of OassBag
to group them together in a reasonable way.

6-'6 tNt Technical Reference Manual

Controls

The following code will create and activate a slider:

The slider's callback simply prints the current value of the slider. It could be
modified to display the new value in a numeric control.

Scroll bars

ClassScrollbar is a descendant of OassControl, and like all controls, has a target
at which it directs certain actions. A typical target, or client, for a scrollbar is
some sort of text canvas, a canvas that knows how to display text and scroll
through it. A scrollbar must be given a target to scroll, a callback, and must
have certain parameters (called deltas) set to values appropriate for that applica­
tion (see below for an example). The scrollbar will handle painting itself, updat­
ing its position and value, and will automatically call its callback when a change
has occurred. It is the responsibility of the callback to inform the scrollbar's tar­
get of the type of action that has occurred, e.g., scroll one line, or one page, or
to the end of the document.

ClassScrollbar is a subclass of OassDialControl. It defines some new deltas
appropriate to scrollbars. The scrollbar deltas are named /Line, /Page and
/Document. They specify how much to increase or decrease the value of the
scrollbar when a user selects a particular type of scrolling. For example, values
for these deltas might be specified in units of lines, and so /Line would be set
to 1, /Page would be the number of lines visible in a page, and /Document
would be the number of lines in the document. These deltas are set by the
scrollbar's target.

Controls 6·17

Controls

Scrollbars know how to scroll by lines, by pages, to absolute positions, and to
the beginning and end of whatever's being scrolled. These types of scrolling
correspond to motions defined by scrollbars. The motion names are /Line,
/Page, lDocument and / Absolute.

When the scrollbar's callback is called, it should query the scrollbar for the type
of motion that occurred with the Imotion method. Imotion returns a value and
the motion name. The callback uses the value and the motion name to update
the target appropriately. How the value is interpreted depends on the kind of
motion. When the motion is / Absolute the value is the current value of the
scrollbar and the target should arrange to scroll to that position. Otherwise, the
value is either 1 or -1, depending on whether the scrollbar moved forward or
backward, respectively, a line or page, or to the beginning or end of the docu­
ment.

There is another special purpose delta called IView. The scrollbar uses IView
in conjunction with the IDocument delta to display the proportion indicator.
/View defaults to the current value of the IPage delta.

While a scrollbar knows about its target, that target will often also want to
know about its scrollbar. For instance, a text editor will want to update the
scrollbar's deltas whenever some lines have been inserted or deleted, or set a
new value when some user action in the editor causes the document to be
scrolled to a different place, e.g., searching.

ClassScrollbar is an abstract class; that is, it is never instantiated itself, but rather
is subclassed. To create a scrollbar, use OpenLookHorizontalScrollbar or Open­
LookVerticalScrollbar. They are subclasses of ClassScrollbar, and all they do in
the subclass is handle the OpenLook scrollbar look and feel.

6-18 tNt Technical Reference Manual

Controls

Simple Scroll bar Example

This sample code uses a simple class called ScrolledObject, which understands
methods for scrolling. This particular object defines methods which just print
out a message saying that it was called, but in a real life application they would
actually do something more useful. This example creates a scrollbar, then creates
one of these scrolled objects, and makes it the target of the scrollbar. Then it
just reshapes, activates, maps and paints the scrollbar. The callback for the
scrollbar simply queries the scrollbar (which is passed as an argument to the
callback) for the type of motion that occurred, and then performs a case

Controls 6-19

Controls

statement to figure out what method to call, and then it sendtarget's that
method to the scrollbar's target.

Fields

ClassTextControl

A text control is a control whose value is a string. Text controls several
methods of OassControl; e.g., ICallNotify? and related methods do a string
comparison rather than a simple 'eq' to determine if the value has changed since
the last notification.

A text control also registers its canvas as an input focus client; if it receives the
focus, keystrokes are treated as characters to be inserted into the control's value.
Certain keystrokes, such as backspace, cause other modifications to the control's
value. The text control calls Ichecknotify (and thus Icallnotify if the value has
changed) whenever it loses the input focus, or when the RETURN key is
pressed; it does not notify on each keystroke.

Text controls are also selection clients. Thus they do not do tracking in the
same way as other controls; they do not override the IEventHandler method,
nor should subclassers do so. Instead they express a Selectable interest, and the
global selection manager handles the appropriate tracking. Much of the code in
OassTextControl is for handling selections; writers of other text-selection code
may wish to look at ClassTextControl for guidance.

Read-only Text

In addition to the enable/disable methods, it is possible to define a text control
as being read-only. This has much the same effect as disabling the control, the
main difference being how it paints. A disabled control may paint dimmed,
whereas the read-only control paints normally but simply refuses to accept user
input.

6·20 tNt Technical Reference Manual

Controls

Methods:
Isetreadonly

Operating on the Text
Text controls offer several methods for programmatically altering the text string.
The inherited method Isetvalue replaced the entire string. The other methods
operate at the current insertion point, which can be set by the user via the
mouse, and can also be set programmatically by Isetposition. (There is unfor­
tunately no position method; clients can obtain the current position by sending
fLeft, which yields the number of characters left of the caret.)

In addition to modifying the text, clients can also change which character
appears at the left edge of the control; characters further to the left are clipped.
This can be used to scroll the text to keep the caret within the visible region.
Many of the text-modifying methods conclude by sending lFitCaret, a subclasser
method that can be overridden to specify that the caret should remain visible.
The default lFitCaret never scrolls the text, but this is overridden by OpenLook­
TextControl (see below). The client method lfitearet calls lFitCaret with no
other changes.

Appearance

Methods:
Isetposition
lfitcaret
linserttext
Idelchar
Idelspan

Idelword
Iscroll
!Left
lFitCaret

The number of characters that can be displayed .in a text control depends on the
size it is given. The Iminsize method for text controls requests a size based on
the number of characters the control is expected to contain. The default is 5
characters, but this can be changed for any given control (or for a subclass).

Much of the visual behavior of a text control is inherited from ClassCanvas.
Two methods of particular interest are listed here.

Controls 6·21

Controls

Open LookTextControl

Methods:
Isetdisplaychars
Isettextparams
Isetcolors

The OPEN LOOK subclass of ClassTextControl adds no new client methods, but
simply overrides some existing methods to provide OPEN LOOK functionality.
Specifically, it paints scroll buttons when the text extends beyond the end of the
control, it paints a line just under the baseline of the text, and it overrides
lFitCaret to keep the caret visible after most operations. OpenLookTextControl
is the default class for ClassTextControl; i.e., it is obtained by sending Inewde­
fault to ClassTextControl.

OpenLookNumeric
There is no "intrinsic" numeric control; there is only the OPEN LOOK form. A
numeric control combines a text control with a pair of buttons that modify the
numeric value by a specified increment, which is initially 1 but can be changed
with Isetincrement (If the increment is set to zero, the increment/decrement
buttons are removed.) The Ivalue of a numeric control is a PostScript number
(integer or real). It is by default restricted to the range -32768 to +32767, but
this range can be changed by calling Isetrange (or the individual methods Iset­
min and Isetmax).

Non-numeric characters can be typed into the text control, but will result in the
value being replaced with zero the next time the notifyproc is called. (This
occurs the same as for any other text control: on the RETURN key or loss of
input focus, if the contents have been changed.)

Methods:
Isetincrement
Isetrange
Isetmin
Isetmax

6·22 tNt Technical Reference Manual

7 Graphics

Graphics 7-1
Introduction 7-1

• Using OpenLookLabelGraphics 7-2
ClassGraphic 7-3

• State 7-3
• Size Negotiation 7-5
• Rendering Support 7-7
• Validation 7-10
• Building your own graphic 7-10

Examples 7 -13
• Example 2: Complete code for the SimpleColorGraphic 7-15
• Example 3: OPEN LOOK compatible version of

SimpleColorGraphic 7 -17

Table of Contents

Graphics

aassGraphic

aassCaret

OassNullGraphic ~OpenLookHorzSliderElevatorGraphic~ OpenLookVertSJiderGraphic
OpenLookAnchorGraphic ~ OpenLookNumericButtonGraphic
OpenLookCheckGraphic OpenLookScrollButtonGraphic ~ OpenLookAbbrButtonGraphic

OpenLookLabelGraphic

OpenLookMenuButtonGraphic -< OpenLookButtonGraphic ~ OpenLookButtonPullRightGraphic

OpenLookPinGraphic OpenLookMenuButtonStackGraphic~ OpenLookButtonStackGraphic

OpenLookSbarElevatorGraphic ~OpenLookVentSbarElevatorGraphic

OpenLookXSetting

FrameLabelGraphic

Introduction

Graphics are provided by the NeWS Development Environment as a packaging
of a drawable object that knows how to reflect its state visually in an efficient
manner. Graphics are designed to be very light weight so that they can be used
as the images for buttons, menus, controls, and labels. There is no canvas associ­
ated with a graphic, so using a graphic does not imply the overhead of a NeWS
canvas object or of a OassCanvas object.

Another characteristic that makes graphics lighter weight than canvases is that
they do not establish or maintain the graphics context. Any operation on a
graphic, including Isetsize, Ipaint or Iminsize, is sensitive to the current canvas
and transformation matrix and is likely to permanently alter the graphics con­
text by changing the color or font. Users should be aware of this and wrap any
calls to graphics in a gsavelgrestore when appropriate. On the other hand, if a
series of calls to graphics are going to be made, as in the case of menus, it is
necessary to do only a single gsave/grestore pair for the whole series.

Graphics 7·,

Graphics

Using OpenLookLabelGraphics

Graphic instances are useful where a canvas interface is needed but a real
instance of ClassCanvas is unnecessary. One example of this is labels on con­
trols. By default the NeWS Development Environment controls do not come
with labels but it is easy to construct a control with a label by packaging them
together in a bag. There is a special subclass of ClassGraphic called OpenLook­
LabelGraphic that can be used just for this. Most common control labels are
text so that is what we will use in this example. To create a label, you need to
send Inew to OpenLookLabelGraphic along with the thing you would like to
display as the label. In this case it is the string "My Label:".

If you want to make your label use a different font than the default you can
pass the font in with the string like this:

You can also change the color of the label in a similar fashion.

Now to complete the example we need to add the label to a bag along with a
control. In this case I use an instance of an FlexBag to hold a label and a slider.
I'll position the label to the left of the slider. Notice that I don't set the font or
the color of the label; it will automatically inherit the text font and color from
the bag.

7·2 tNt Technical Reference Manual

Graphics

ClassGraphic

The base class for all graphics is ClassGraphic. OassGraphic is an abstract super
class. This means that OassGraphic can not instantiated directly, rather Class­
Graphic must be subclassed and then the subclass instantiated. ClassGraphic
packages a number of useful utilities that a subclasser or user of a graphic
might be interested in using. It is not necessary to use all of the features that are
packaged in ClassGraphic when building a subclass.

State

One of the most commonly used features of ClassGraphic is "state". The state
transitions in a graphic are designed to be painted as efficiently as possible. For
example, if a menu item is highlighted by drawing a box around it, the graphic
should be able to draw that box without re-drawing the text. There are a
number of methods can be used to efficiently manage the state of the graphic.

Graphics 7-3

Graphics

Methods:
Isetinitstate
Isetstate
Isetelement
Istate
trranslateState
IEquivelantState7
Ipaint
!Fix

The states that a given graphic can reflect are completely up to the implementor
of the graphic. There are two basics forms for the state supported by Class­
Graphic, the state can be represented by any PostScript object type, or as an
array of PostScript objects. The array case is provided as a convenience since it
is a very common way of maintaining a number of axes of state (dependent or
independent). Notice that since the graphic puts few restrictions on the form of
the state, only graphics that understand the same states can be used inter­
changeably. Graphic implementors are encouraged to describe the form of the
state for their graphic above its definition. Objects that take graphics are also
encouraged to publish the form of the state that they expect so that users know
which types of graphics can be used with that object.

Each graphic class will respond in a unique way to changes in graphic state.
Therefore, graphics implementors must override methods that directly interpret
the meaning of the graphic state. Typically those methods are IFix and Ipaint
!Fix is called when some element of the graphic state is changed by a call to
Isetstate. It takes as an argument a single boolean or an array of booleans,
depending on how many independent states the graphic has. Each value in the
array indicates a change in the corresponding state in the state array. !Fix
should use these booleans to update only those graphic elements that have been
directly afected by the change in state. For instance, one element of graphic
state might indicate that the graphic should have a highlighted border. When
that state element is changed the graphic should just update the border and not
completely repaint itself. This will reduce the flashin the graphic as it changes
state and increase the percieved speed of the update.

The Ipaint method also must concern itself with the state. Ipaint is called when
the graphic needs to be drawn completely. The graphic implementor should
make sure that their /paint method reflects the current state of the graphic
when it is done.

7-4 tNt Technical Reference Manual

Graphics

Graphics implementors may also need to override IEquivelantState?
IEquivelantState? is called by Isetstate to see if the new state is different from
the old state (it is called for each element of the array when the array form is
used). This method should return "true" if the old state and the new state differ,
it should return "false" if the states are the same. The default implementation for
IEquivelantState? is:

This will only work if the state elements are simple type (keywords, booleans,
integers, etc.). If the state is represented by a more complex type (like a diction­
ary), then IEquivalentState? will need to be overridden compare the old state
and the new state appropriately. In the case of a dictionary, it may be appropri­
ate to compare the two dictionaries element by element. Notice that
IEquivalentState? does not need to be overridden for state maintained as an
array of simple types since it is called for each element of the array.

ClassGraphic does not initialize the state automatically, that is considered a
subclasser's responsibility. The method Isetinitstate should be called within
Inewinit to initialize the graphics state to one of its possible values.

Size Negotiation

ClassGraphic has a number of methods to support the manipulation of the size
of the graphic as well as support for size negotiation. ClassGraphic is designed
to work as a position independent object. That is that the graphiC will always
render at the "currentpoint" (defined in the process's NeWS graphics state).
Some users of graphics find it convenient to treat the graphic like a OassCanvas
object for some operations (like positioning), so a number of ClassCanvas like
position support methods exist. In general, it is recommended that these
methods be avoided. The following list of methods can be used for size negotia­
tion:

Graphics 7-5

Graphics

Size Methods:
Iminisize
Ipreferredsize
Isetsize
Isize

Location Methods:
Imove
Ilocation
Ireshape
Ipaintat

The Iminsize method is used to determine the smallest size that the graphic can
be made. ClassGraphic defines Iminsize to return a width and height of zero, so
graphic implementors should override Iminsize to return the correct width and
height for their graphics. ClassGraphic does not attempt to enforce the
minimum size, rather it is expected that users of the graphic will call1minsize
and respect the returned values. This is a performance consideration born of the
fact that Iminsize is typically a very complex function and should only be called
when needed. The user of a graphic is in the best position to determine when
they might violate the minimum size.

The Ipre£erredsize size method is similar to Iminsize. Ipre£erredsize returns the
width and height (larger than minsize) that the graphic can best be rendered at.
For example, a scrollbar maybe able to be rendered so that some of its parts are
not visible, it ideally it would like to be big enough to display all its parts and
have some room to move. This size would be the scrollbar's preferred size.
ClassGraphic defines Ipre£erredsize to return the minimum size. A graphic
implementor should override Ipreferredsize if the graphic has a preferred size
different from the minimum size.

The size of the graphic can be set with the Isetsize method. This method rarely
needs to be overridden. There is no checking of the width and height arguments
to ensure that they are larger than the minimum size. The user of the graphic is
responsible for using reasonable arguments. Isetsize has the side effect of
invalidating the graphic (see validation below).

The Isize method will return the current width and height of the graphic. If Iset­
size has not been previously called the graphic's minimum size will be returned.

The various location methods simple set, and retrieve the positional values that
are the arguments (lreshape calls Isetsize with the width and height arguments).
These methods only perform a small subset of the functions of the similar
methods in ClassCanvas. There use is discouraged.

7·6 tNt Technical Reference Manual

Graphics

Rendering Support

The various rendering support methods in OassGraphic are also commonly
used. Graphics have a number drawing methods in common with OassCanvas.
The following methods and class variables can be used to support the rendering
of a graphic:

Methods:
Ipaint
IFix
Isetthing
Ithing
Ithingatom
Ithingsequivalent?
I setterminal
Iterminal?
IThingSize
IShowThing

Oass Variables:
IStrokeColor
lTextColor
!FmColor
lDisabledColor
lTextFamily
lTextSize
lTextEncoding
lTextFont

ClassGraphic assumes that it is always rendered on a OassCanvas instance.
This allows the various variables above to inherit their values from the canvas
that they are rendered on. These variables can be used at any time as argu­
ments to PostScript operators (ex. setcolor, setfont) or methods. Graphics imple­
mentors can also choose to override the variables default behavior (getting their
value from the canvas) by setting them to other values. Since these are well
known names that users can change the defaults for in the UserProfile diction­
ary, graphic implementors are encouraged to use them.

The Ipaint and !Fix method have been discussed already. These are the two
methods that get called to actually render the graphic. Ipaint should render the
entire graphic including the elements of its current state. IFix should do the
most optimal job possible of painting the change in state indicated by its argu­
ments. These methods should both render the graphic relative to the
"currentpoint". When a user of a graphic calls either the Ipaint method or Iset­
state (/setstate will call !Fix) they should ensure that the current NeWS graphics
state is correctly set up. The current point should be the location that the
graphic is to be rendered at and the canvas should be the canvas that the
graphic should be rendered on.

Graphics 7-7

Graphics

ClassGraphic supports a completely optional set of utilities for manipulating a
"thing". These methods are supplied solely as an aid to graphic implementors
that which to use them. A "thing" is generally used to hold the user supplied
part of the graphic. The graphics that are used in tNt menus for menu com­
mand items, menu pullright items, and menu choice items all use
ClassGraphic's thing support to hold the user supplied labels (usually strings).
A thing is a simple specification that allows for a visible part, called the "atom"
and some number of modifiers to affect the rendering of the atom. The thing
specification looks like:

atom, or [atom modifier modifier ... J
An atom is either a string, executable array, instance of a graphic, or a canvas.

A modifier is any number of a font, a color, a pair of numbers, or a name.

The Isetthing method can be called (typically in Inewinit) to set the current
"thing" for the graphic. The Ithing method will return the current thing of the
graphic. The Ithingatom method will return the atom of the current thing of the
graphic. Ithingsequivalent? will compare its argument to see if it is equivalent
to the current thing of the graphic. The two methods fl'hingSize and IShowTh­
ing know how to parse a thing to return its width and height or to show it at
the current point. These methods should be called from methods like Ipaint, /Fix
or Iminsize.

The case where the atom is a string is the most common. The string is shown in
the current font at the "currentpoint" such that the whole string is above and
two the right of the current point when the CTM is the "defaultmatrix". The
size of the thing is determined by the bounding box of the string.

The executable array form of an atom is used to supply a drawing procedure
for the atom. The executable array must take one argument on the stack, a name
that is either Isize, or Ipaint The executable array should return the width and
the height that the drawing will occupy if the argument is Isize. The image
should be rendered in the current NeWS graphics state if the argument to the
executable array is Ipaint The following is an example of the executable array
form of an atom:

7-8 tNt Technical Reference Manual

Graphics

Notice that the array should assume that the current point, current color, etc.,
are available in the current NeWS graphics state.

The atom of thing can also be another graphic. The trhingSize method will
query the graphic for its size by calling the graphic's Isize method, so the user
should ensure that the correct size for the graphic has been set. The IShowTh­
ing method will call the graphic's Ipaint method.

The canvas for of the atom has not been implemented as of this writing. A can­
vas can still be specified, but no bits will be rendered when IShowThing is
called. When trhingSize is called on a thing with a canvas as its atom a width
and height of zero will be returned.

Most of the modifiers for a thing change the current graphics state in some way.
A modifier that is a font will set the current font to new font. A color modifier
will change the current color. Numeric modifiers need to be specified as a pair,
they cause the current point to be moved relatively by numeric pair (x then y).
The final modifier type is the name of a method in the graphic that the thing is
passed to. This method is executed every time either trhingSize or IShowThing
is called. Here are a few example of valid things:

Graphics 7-9

Graphics

The last two methods listed above, Isetterminal and Iterminal? are used by the
graphic user to determine whether a given graphic should be treated as a
"thing" or should be treated as a stand alone graphic. The Iterminal? method is
used by the the NeWS Development Environment menu code to determine if a
graphic should be used as a thing to one of the menu's graphic types or treated
as the complete menu item.

Validation

ClassGraphic has a number of methods that are used to track and modify the
current validity of the graphic for painting.

The use of a IShowThing is currently the only method of ClassGraphic that
requires that an instance of its subclass be valid. Many of ClassGraphic's subc­
lasses do take advantage of validation. The Ivalidate method can be overridden
to cache certain values in order to improve painting speed. One common use of
validation is to cache the location of the "thing" relative to the current point for
the current thing, size and font. The graphic is invalidated and then re-validated
before the next time it is used. Deferring the validation until the time that the
information is need allows for a number of operation that might invalidate the
graphic to occur without having to validate the graphic each time.

Methods
Ivalid?
Ivalidate
/?validate
linvalidate
N alidateThing

Building your own graphic

Building a useful subclass of ClassGraphic is quite simple. The following exam­
ple is a very simple graphic that has two states, either /Normal or
/Highlighted. The graphic is a box that is filled a color that is specified as part
of Inew and is not outlined when the graphic is in its" /Normal" state and is
outlined with a thick border when the graphic is in its "Highlighted" state. The
initial state for this graphic will be "/Normal".

7-10 tNt Technical Reference Manual

Graphics

Inewinit is overridden to consume the color argument to the graphic and to
establish the initial state of the graphic. In this case, the state of the graphic is
initialized by calling Isetinitstate in Inewinit with the name /Normal. Here is
the code for /newinit:

The second method that is overridden is Ipaint. Notice that Ipaint checks to see
what the current state is and only paints the highlighting box if it is needed. See
the complete example 1 for the details of the /PaintColorFrame and
/PaintColorinterior utilities. Here is the code for Ipaint (notice that super is not
called):

The !Fix method must also be completely overridden. !Fix will be called with a
boolean that indicated whether the state has changed. The body of the IFix
method is wrapped in an "{ ... } if" so that no work is done if the argument to
fix is "false". If the argument to !Fix is true then the state has changed and the
new state needs to be reflected. In the code that follows the state is checked, if it
is /Highlighted the the current color is set to the stoke color, if it is /Normal
the current color is set to the fill color. Then the highlight frame is painted by
the /PaintColorFrame utility (see Example 1 for the details of /PaintColor­
Frame). Painting the highlight box in the fill color will have the effect or erasing
just the highlight box. When fix is called the main color box is never re-drawn.

Graphics 7·11

Graphics

The override of Iminsize in this example is very simple, it simply returns a
width and height of "30". This value is fairly arbitrary. However, the minsize
does need to be at least big enough to accommodate the colored box and the
highlighting box.

The final method that must be overridden is lequivalent? This is the method
that is called when a user wants to compare this graphic and some other
graphic that they might have (for example, a search method in a menu). Since
this method has no default implementation in ClassGraphic it must be provided
by each subclass. lequivalent? needs to be carefully written since the graphic
handed in may not understand the same methods as the graphic that is being
implemented. In this case, another graphic is considered equivalent to this
graphic if the color handed into Inew is the same. The lequivalent? first checks
that the graphic handed in as an argument understands the correct methods,
and then checks that the colors are the same. If either of these tests fail, the
lequivalent? returns false.

7-12 tNt Technical Reference Manual

Examples

Methods:
Inewinit
Ipaint
!Fix
Iminsize
lequivalent?

Graphics

Example 1 contains the complete code for the graphic just described. The follow­
ing code can be entered in an interactive session to try the graphic:

Graphics 7-13

Graphics

Example 2 contains a subclass of SimpleColorGraphic that supports the same
states as the graphics required for the NeWS Development Environment menus
and buttons. This graphic can be used in a tNt menu to build a color selection
menu. The Inewinit method for this graphic calls the Isetterminal method with
"true". This marks the graphic so that the menu or button will not try to treat it
as a "thing", but will install it directly.

7-14 tNt Technical Reference Manual

Graphics

Example 2: Complete code for the SimpleColorGraphic

Graphics 7-15

Graphics

7-16 tNt Technical Reference Manual

Example 3: OPEN LOOK compatible version of
SimpleColorGraphic

Graphics

Graphics

7-17

Graphics

7-18 tNt Technical Reference Manual

8 The NeWS Development
Environment Input Model

The NeWS Development Environment
Input Model 8-1
Introduction 8-1
Review of NeWS Input 8-2
Executable Matches 8-3
Main Class Hierarchies 8-5

• ClassEventMgr 8-5
• ClassKeyboard 8-5
• Class Interest 8-5

Branch Hierarchies 8-6
• ClassNotifylnterest 8-6
• ClassDependentinterest 8-7
• Keyboard Processing 8-7

Methods 8-9
• Class Interest 8-9
• ClassNotifylnterest 8-10
• ClassDependentinterest 8-11
• ClassShiftlnterest 8-12
• ClassKeyslnterest 8-12

Examples 8-14
• Example 1: Simplest Keyboard Processing 8-14
• Example 2: Adding Function Keys 8-15
• Underlying Mechanisms of Examples 1 and 2 8-17
• Example 3: Reading the Number Pad 8-19
• Example 4: Non-Standard Uses 8-21
• Complex Example 8-23

Table of Contents

The NeWS Development Environment Input
Model

OassInterest

OassKeysInterest
OassDependentInterest -<

OassShiftInterest

OassEnterSubtreeInterest i OassEnterSe1flnterest

OassNotifyInterest OassFocusSe1flnterest

OassSharedlnterest OassFocusSubtreeInterest

TunerInterest OassSelectable

~
OassOLSelectable DragText5electable

~aSS5electableUI ~Desktop5electable~ TextCtrl5electable

Frame5electable
TransferInterest ~ AsciiTransferInterest

Introduction

The basic NeWS input system, as described in the NeWS Programmer's Guide,
provides a complete mechanism for handling user inputs in PostScript applica­
tions. However, it is defined at a fairly low level; the amount of detailed
knowledge required to build applications at this level is daunting. Further, it
has no relation to the class system in which the NeWS Development Environ­
ment is built; this leads to inconsistencies and conflicts in the structure of appli­
cations if both are used.

A "class-based" layer of facilities has been built on top of the fundamental input
and process primitives. This encapsulates many common forms of processing,
and has a uniform style with the rest of the NeWS Development Environment
class system. This layer comprises class hierarchies under three base classes;
ClassEventMgr, ClassKeyboard, and ClassInterest. ClassEventMgr provides a
process which expresses interests, awaits events which match those interests,
and then dispatches to client handlers for those events. ClassKeyboard is a util­
ity class which provides the definition of the keyboard attached to the server,
along with a number of methods for inquiring and manipulating aspects of that
definition. Classlnterest itself provides a fairly thin veneer on the interests

The NeWS Development Environment Input Model 8-1

The NeWS Development Environment Input Model

defined by the server; it has a rich tree of subclasses which provide for a great
deal of common input processing such as keyboard input and selections.

The facilities described in this section are, in tum, used by higher-level com­
ponents of the NeWS Development Environment. For instance, many applica­
tions which require keyboard input can get it conveniently via the OpenLook­
TextControl. Even where the NeWS Development Environment does not pro­
vide all the desired functionality, it is unlikely that the lowest-level facilities are
the appropriate ones to use. The first few examples described in this chapter
show ways to get straightforward keyboard input; check them before deciding
whether you should master all the intervening material.

For the simplest clients, there is no need to use an instance of ClassInterest.
Interests returned by the MakeInterest utility in OassCanvas are equally accept­
able to an event manager. This level of use might be appropriate, for instance,
for detecting button hits on a canvas, without reference to focus, selections, etc.

Review of NeWS Input

Let's briefly review the underlying server semantics for input. An input event is
one of the "magic dictionary" objects (type leventtype). It has a number of
fields defined by the server, including Name, Action, Canvas, Process, KeyState,
and TimeStamp; clients are free to add other fields just as though the event
were a standard dictionary. Input events are generated by the server in
response to hardware and window system activity (key presses, window cross­
ings, etc.). Events are also generated by client processes running in NeWS. The
server distributes an event by matching it against interests expressed by
processes, where an interest is simply another event which has some of its
Name, Action, and Canvas fields filled in with desired values. Interests may be
directed at sets of values (rather than single values) by storing compound
objects (arrays or dictionaries) in the relevant fields.

The executable match facility is available and mentioned in the server documenta­
tion, but receives relatively little emphasis. This is a central component of the
NeWS Development Environment's subclasses of ClassInterest, so we will
describe it in some detail here.

8-2 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Executable Matches

When a dictionary appears in the Name, Action, or Canvas field of an interest,
it specifies that an event will match any of a number of values (the keys in the
dictionary). What happens when such a match is found depends on the value
associated with the key in the dictionary. If the dictionary value is not execut­
able, it replaces the value in the event being delivered. This form can be used,
for example, to translate a key code into a character. But if the dictionary value
is executable, the value in the field is not modified; instead the executable value
is evaluated in the context of the awaitevent which receives the event. If more
than one of those three fields has an executable match, all are evaluated; the
order is Name, then Action, then Canvas.

Let's consider a simplified keyboard example. An event generated in response
to a key press on the 'A' key will have a keycode in its Name field (e.g., 28493);
its Action will be lDownTransition, and it will have null in its Canvas field.

First consider how this would be handled without executable matches. The
client might use an interest defined with

That interest would be expressed in a process that then executed some code like

The matched events will be returned by the awaitevent (with the keycode
translated to a character); the client's KeyDown method consumes that event,
and then the loop returns to the awaitevent.

The NeWS Development Environment Input Model 8-3

The NeWS Development Environment Input Model

An equivalent formulation using executable matches would use an interest like

and the event-processing loop is simply

The translation from keycode to character happens the same way in both cases;
but by convention an executable match consumes matched events. If there is
more than one executable match in a single interest, the last (and only the last>
should consume the event. It is important that there be no mixing of interests
which use executable matches in the same process with those that don't; the
stack discipline requires that a process use one or the other uniformly.

The executable match style has some advantage in expressive clarity: the way a
particular value is handled is closely associated with that value. It also ensures
the system can provide handlers for events it needs to process, while allowing
the client to add other events to be handled in the same process. For these rea­
sons, all instances of ClassEventMgr require executable-match interests.

tNt Technical Reference Manual

The NeWS Development EnvIronment Input Model

Main Class Hierarchies

Now let's return to the three main classes involved in processing user inputs.

ClassEventMgr

ClassEventMgr is the NeWS Development Environment analogue of the
forkeventmgr and ExpressEmgrlnterests utilities. It provides for starting a pro­
cess which will express a set of interests (/new, Iclearcontext, Isetname); adding
and removing interests from the set managed by that process (/addclient,
laddclients, lremoveclient, Iremoveclients); and shutting down the event
manager process (/destroy, Iqueuedestroy, Iremoveallclients).

It also provides a set of inquiry methods (/name, lactive?, Igetprocess, linterests,
Iprocessstate), mechanisms for evaluating executable code in the event manager
process (/callmanager, largcallmanager), and support for a robust form of
eventmgr, which is not killed by errors occurring in handlers for the events it is
receiving (/makerobust). As mentioned above, any interest passed to an
instance of ClassEventMgr must specify an executable match.

ClassKeyboard

ClassKeyboard provides the description of the server's keyboard - what keys
are available on it, where the characters and modifier keys are, what escape
sequences are associated with which function keys, etc. It also provides a
number of utility methods to clients interested in keyboard processing; the most
useful are ItoChar, ItoControl, ItoControlChar, ItoLower, ItoMeta, Ikeyforsym­
bol, Ibuildkeydict, and the pair Iremovefunctionkey and lrestorefunctionkey.

Class Interest

Classlnterest and its subclasses are the NeWS Development Environment analo­
gue of the eventmgrinterest utility; they are the workhorses of input processing.
It is possible to instantiate Classlnterest itself; the result is an interest little dif­
ferent from that returned by createevent. Rather, most clients deal with subc­
lasses of this class (both their own, and a few system-defined subclasses).

The NeWS Development environment Input Model 8-5

The NeWS Development Environment Input Model

Branch Hierarchies

There are two main branches to the class tree under ClassInterest: ClassNo­
tifylnterest and OassDependentInterest. They often occur in related groups.
Both of these subclasses require that their instances specify executable matches
(unlike Classlnterest itself, which mayor may not, at the client's convenience).

ClassNotlfylnterest

A Notify interest matches an event which acts as a trigger or initiates a state.
The two most common examples are assignment of focus to a particular canvas
(OassFocusSelfInterest) and detection of a mouse-button down or other event
which initiates a selection-making dialogue (ClassSelectable). The Notify
interest may also detect the event which terminates the state it initiated;
ClassFocusSelfinterest does, but OassSelectable does not. A Notify interest is
normally handed to an eventmanager shortly after it is created, and remains
active thereafter for the life of its client.

Three other subclasses of OassNotifylnterest are less frequently used, but are
provided for completeness. ClassFocusSubtreelnterest triggers when focus is
assigned to a canvas or any of its descendants in the window hierarchy.
ClassEnterSelfinterest detects entry of the cursor directly into a particular canvas
(whether or not this causes the canvas to become the input focus). OassEnter­
SubtreeInterest detects entry of the cursor into a canvas or any of its descen­
dants.

ClassFocusSelfinterest has one additional side effect: when it is activated, it
establishes its canvas as a focus client. That is, it tells the global focus manager
that the canvas is interested in being sent focus events. If the canvas is a
ClassCanvas, the FocusSelfinterest calls Isetkeyconsumer (which in tum calls
addfocusclient>; otherwise it calls addfocusclient directly. The FocusSelfinterest
likewise takes care of removing the canvas as a focus client when the interest is
deactivated. Note that the other three subclasses do not register the canvas as a
focus client.

tNt Technical Reference Manual

The NeWS Development Environment Input Model

ClassDependentinterest

When a Notify interest is triggered (i.e., when an event arrives which matches
the interest), one of the things the handler does is to express other interests
which should only be active for the duration of the state initiated by the Notify
interest. These transient interests MUST in tum be instances of some subclass of
ClassDependentlnterest.

For a focus Notify interest, the dependent interests concern keyboard events, on
both shift keys and those that directly produce characters. (These will be
instances of ClassShiftInterest and ClassKeyslnterest, respectively.)

Dependents of a Selectable will handle mouse motion or crossing events, and
button-up on the triggering button; these dependents are less structured than in
the keyboard realm.

Generally, a DependentInterest will be global (i.e., it will be a pre-child interest
on the root canvas), while a Notify interest will be expressed on a particular
canvas.

Keyboard Processing

Keyboard processing is normally handled by instances of ClassFocusSelfinterest,
ClassShiftInterest, and ClassKeyslnterest. Straightforward keyboard clients are
provided for in methods which hide almost all of the interrelations of these
classes; see the first examples below. (For these purposes, a "straightforward
keyboard client" is one which requires only ASCII characters off the standard
typing array of the keyboard, in the usual shift combinations. By default, the
usual shifts are Control, Shift, Meta, and CapsLock; Meta may be excluded from
that set by defining /MetaKeys? to false in the UserProfile dict at startup.) More
sophisticated use involves deeper understanding of these classes, and is
addressed in succeeding sections.

There are two main sources of complication in handling keyboard input:

The client should not get keyboard events when it is not the focus. However,
when it becomes the focus, it should get events regardless of the cursor location.
(Click-to-type will not work unless this criterion is met.)

The interpretation of keys varies with the shift state, but different clients and
different keyboards may require different definitions of which keys determine
the shift state. For instance, emacs will almost certainly use the Meta keys, but
other editors may apply other interpretations to those keys.

The NeWS Development Environment Input Model 8-7

The NeWS Development Environment Input Model

Similarly, some keyboards have a NumLock key which should change the right
pad to be a numeric key-pad, but should not affect keys in the standard typing
array.

A brief sketch of how keyboard events are delivered to clients will indicate how
these problems are addressed.

An instance of ClassFocusSelfInterest detects when the client's canvas has been
assigned focus; until that happens, the client is uninterested in keyboard events.
When the client gets focus, the focus Notify interest activates its associated Shift
interests and Keys interests. A Shift interest determines the state of interesting
shift keys when it is activated, and tracks up- and down- transitions on its shift
keys to maintain that state as long as it is active. A Keys interest generally
notices down-transitions on standard keys, translates them to characters, and
delivers them to the client. The translation performed by a Keys interest is
determined by the dictionary in its Name; when a Shift interest recognizes a
change in the shift state, it causes new dictionaries to be stored in the Names of
its associated Keys interests. When the client canvas loses focus, the dependent
interests (Shift interests and Keys interests) are deactivated by the focus Notify
interest.

This second problem is addressed by the relationship of Shift interests and Keys
interests. A Keys interest has an lupdate method that causes the interest to
modify itself based on an externally provided state. The default behavior is that
lupdate takes an integer and modifies the Name field of the interest based on
that integer, as follows.

When a Shift interest is activated, and again whenever the state of the shift keys
changes, it reports the shift state to each of its associated Keys interests. Each
Keys interest uses the shift state to index into an array of dicts, and stores the
selected dict into its Name field. The array of dicts is precomputed so that the
diet corresponding to a particular shift state will map keystations into ASCII
characters according to that shift state. The result is that most keystrokes are
converted directly into ASCII characters without having to examine the shift
state on each keystroke; the additional work for handling shift keys is done only
when the shift keys themselves change state.

Multiple Keys interests may be associated with a single Shift interest, and multi­
ple Shift interests may be associated with a single Notify interest. Methods are
provided in each class for inserting and removing interests at each location in
the hierarchy.

8-8 tNt Technical Reference Manual

The NeWS Development Environment Input Model

It is also possible for a Dependent interest to be activated independently,
despite its name. This is primarily useful for a global Shift interest which main­
tains a fully-defined shift state, without any associated Keys interests, for
inquiries by random clients.

Methods

This section summarizes the interesting methods of these various classes.
Methods for ClassKeyboard are discussed in a separate section. Two other data
structures are crucial to the understanding of keyboard processing in the subc­
lasses of Classlnterest: the ShiftDict and Map.

A ShiftDict is a dictionary that specifies how a shift state is computed from a set
of keys; it associates device-keycodes to a bit in the shift state, or to some pro­
cedure that does more complicated state maintenance. This is a little tricky; if
you're going to build your own ShiftDict, see the full description below.

A Map is a dictionary that carries some set of keycodes to values such as char­
acters. At any time a Keys interest is active, its Name field will contain such a
map.

Each Keys interest has an associated set of Maps: an array of 2n dicts, where n
is the number of bits in the shift state. If a shift-key transition is detected, the
map corresponding to the new shift state is stored in the Name field; this is how
different values are reported for the same key depending on shift state.

Classlnterest

/new

/interest

canvas action name /new interest
Create a new instance of the class.

-- /interest interest
Analogous to /canvas in ClassCanvas; obtains
the NeWS interest that corresponds to the Clas­
sInterest. (Currently this is "self", but clients
may use this method to isolate themselves in
case the implementation changes.)

The NeWS Development Environment Input Model 8-9

The NeWS Development Environment Input Model

/activate

/deactivate

/Active?

/destroy

ClassNotifylnterest
/Notifyln

/NotifyOut

/TestTriqqer

8-10

event lactivate

Express the interest. Redundant (but safe) if
already expressed. If the Process field in the
interest is non-null, the interest is expressed for
that process; otherwise it is expressed for the
current process. The event argument is present
because some subclasses require it, and callers
may not know whether this particular interest
belongs to such a claSs. If no useful event is
available to hand to lactivate, use nullevent.

-- Ideactivate

Revoke the interest. No-op if the interest has
not been expressed.

-- IAdive? bool

Has this interest been activated (expressed)?

-- Idestroy

Automatically nulls out the Name, Action, and
Canvas fields, to facilitate garbage collection.

event INotifyIn

Activate all Dependent interests of this Notify
interest. Generally called as part of an execut­
able match in the Notify interest, so the trigger­
ing event is on the stack.

event lNotifyOut

Deactivate all Dependents. No-op if they have
not been activated.

-- rrestTrigger bool

Tests whether the triggering event for this
interest has already occurred. This is used when
the Notify itself is activated, when it wants to
determine if it should immediately activate its

tNt Technical Reference Manual

/finddependent

ClassDependentlnterest

/new

/new

/adddependency

/removedependency

The NeWS Development Environment Input Model

Dependents. The default implementation for
fl'estTrigger is to return 'false'; it is overridden
by subclassers.

value lfinddependent Dependent true/false

Find the Dependent interest (if any) registered
using the given value. (See ladddependency
below.) The laddsuite method in a Keys interest
uses this method to avoid creating two identical
Shift interests.

any Nint canvas action name Inew Dint

null canvas action name Inew Dint

If a non-null Notify interest is provided, the
Dependent interest is automatically registered
with the Nint, in which case the "any" argument
must be provided for use with ladddependency.

any Nint ladddependency

Make this interest dependent on a specified
Notify interest. The Dependent is first discon­
nected from its current Notify, if any. The "any"
is a value that can later be used to obtain the
Dependent from the Notify using lfinddepen­
dent. If this Dependent is a Shift interest, it
calls ladddependency for its associated Keys
interests so that they will all be activated by the
same Notify interest.

-- lremovedependency

Disconnect this interest from its current Notify,
if any. If this interest is a Shift interest, it calls
Iremovedependency for its Keys interests as
well.

The NeWS Development Environment Input Model 8-11

The NeWS Development Environment Input Model

ClassShiftlnterest
/new

/destroyempty

/shiftstate

/modifierdown?

ClassKeyslnterest

/new

8-12

shiftdict Nint Inew Sint
This method is not often called by clients;
instead, Shift interests are created by calling
laddsuite for a OassKeysInterest (below). The
I Action and ICanvas fields for a Shift interest
are hard-wired. The shiftdiet gets stored in the
/Name field; if the diet is null, the default shifts
(which mayor may not include Meta, depend­
ing on /MetaKeys? in UserProfile) are used. The
Notify interest can be null to create a global
Shift interest. If it is non-null, the shiftdiet is
used as the "any" for ladddependency.

-- Idestroyempty

Destroy this Shift interest if it has no associated
Keys interests.

-- Ishiftstate int

Return the current shift state of this interest.

name Imodifierdown? bool

Return whether a given modifier is down,
according to this interest. The argument is a
name evaluated by sending it to the interest.
Usually the name is a class variable.
ClassShiftInterest defines class variables for
these common shift names: IShift, ICaps, ICon­
trol, IMeta.

downproc upproc maps shiftdict Inew
interest
The usual interest fields are hard-wired. Name is
initially null, to be updated when we hear from
the Shift interest; Canvas is null because Keys
interests are always global, etc. The client­
supplied parameters are instead a proc to be

tNt Technical Reference Manual

_____________ The NeWS Development Environment Input Model

/addshift

/removeshift

/update

/shiftstate

/addsuite

called when a key is seen to go down (null if
none), another proc for keys going up, an array
of Tn keymap diets, and a shiftdict to be used
when building the Shift interest. The keymaps
and shiftdict can be null to get the correspond­
ing defaults. Note that unwanted downprocs
and upprocs should be null, not nullproc, for
maximum efficiency.

Sint laddshift

Link this interest with a particular Shift interest.
The Keys is first disconnected from its current
Shift, if any. The Shift tells you which Notify to
hook up to (by calling ladddependency).

-- lremoveshift

Disconnect this interest from its current Shift, if
any.

int lupdate

Update this interest based on the Shift's new
state. The Keys interest selects the specified diet
from the "maps" array supplied to Inew, and
stores the dictionary in the interest's Name field.

-- Ishiftstate int

Return the current shift state of the associated
Shift interest. This method is provided for
clients who let the Keys interest create the Shift
(using the methods below), so the client has no
handle by which to ask the Shift directly.

notify-int laddsuite

Add a Keys interest to the structure under a
given Notify interest. If the Notify already has a
Shift interest that uses the shift diet given to the
Keys' Inew method, the Keys is added to that
Shift. Otherwise a new Shift interest is created
and added to the Notify, and the Keys is added
to the new Shift.

The NeWS Development Environment Input Model 8-13

The NeWS Development Environment Input Model

/removesuite

/defaultkeys

/metakeys

Examples

-- lremovesuite

Unlink a Keys interest from its Notify/Shift
structure. If this leaves the Shift with no Keys,
the Shift is destroyed.

downproc canvas Idefaultkeys Hint

This creates a Notify interest in input focus on
the given canvas, and also a Keys interest with
the given downproc and no upproc, using the
default keymaps and shift diet. The Keys'
/addsuite is called to create the Shift interest and
hook everything together, and the NOTIFY
interest (not the Keys) is returned. Thus,
/defaultkeys is often called in a ClassCanvas's
lMakeInterests method.

downproc canvas Imetakeys Hint

Same as /defaultkeys, except it always includes
the Meta shift keys rather than using the default
specified via the User Profile lMetaKeys?
boolean.

Example 1: Simplest Keyboard Processing

A client which needs only ASCII characters from the standard typing array of
the keyboard has very little to do; it simply creates one more interest for its
frame or canvas event manager to manage. This example, which uses the
ReportChar procedure, extracts a character from the Name of an event and
prints it on the current file.

8-14 tNt Technical Reference Manual

The NeWS Development Environment Input Model

The method /defaultkeys returns a single focus Notify interest. As a side effect
of expressing that interest, the client's canvas is declared a focus client; that is,
the global focus manager is told that the focus should be assigned to that canvas
under the appropriate circumstances. Now, when focus is assigned to the client
canvas, the Notify interest will activate default Shift and Keys interests. The
first will track the state of the shift keys; the latter will translate keycodes to
characters according to the current shift-state, and invoke ReportChar to handle
those characters. ReportChar will be called with an event on the stack, which it
consumes.

The underlying mechanisms for all this are discussed below.

Example 2: Adding Function Keys

Suppose a client wants to receive function-key events, reported by the name of
the key, as well as the simple ASCII characters. Let's re-write the first example
to do this.

The NeWS Development Environment Input Model 8-15

The NeWS Development Environment Input Model

The client now is using two private methods, /ReportChar and /ReportFunction,
to respond to keyboard events. /ReportChar handles the default keys, while a
second Keys interest is constructed to catch function-key events, and handle
them with /ReportFunction. In both cases, the client wants only to see the key­
pressesi key-releases are uninteresting. The method Idefaultkeys gives this
behavior automatically. A general Keys interest, as created for the function
keys, allows treating up and down transitions independentlYi passing null in
place of a handler for either transition causes it to be ignored.

We want this interest to share the default-keys interest's shift dieti but the shift
state should not affect the reported values of the function keys. Therefore we
construct a keymaps array by simply making enough copies of the same map.
This map is the IFKeyNames diet supplied by ClassKeyboard, which maps key­
codes to function-key names Oike IFunctionFl)i "enough" is determined by
matching the size of the default keymaps array. The shift diet is "null", which
results in this Keys interest using the same shift diet as Idefaultkeys.

Having created this second Keys interest, we tell it to insert itself as another
dependent of the Notify interest returned by Idefaultkeysi and MakeInterests
returns just the Notify interest. Processing by the event manager is just as in
Example 1.

8-16 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Underlying Mechanisms of Examples 1 and 2

The method Idefaultkeys performs the following magic:

1. A Notify interest in focus directly in the client's canvas is created:

This is special to Idefaultkeys and Imetakeys which are ordinary Keys.
Interests do not create their own Notify interests.

2. A Keys interest is created using the default keymaps, and a dict is created
when a DownTransition is received on any of the specified keys.

3. A Shift interest in the default set of shift keys is created.

The three interests are chained together, and the Notify interest is returned.
When the OassFocusSelfinterest is activated, it in tum declares the client canvas
(can) to be a focus client:

(The latter is used if the canvas is a ClassCanvas. The method Isetkeyconsumer
in turn calls addfocusclient.) OassFocusSelfinterest also calls removefocusclient
(or false Isetkeyconsumer) when deactivated.

Sometime later, the user performs an action that assigns the focus to can (e.g.,
clicks in the window). A focus notification event is sent, and it matches the
FocusSelfinterest.

Executable match code in the FocusSelfinterest loops over its Dependents, send­
ing lactivate with the notification event to each. (In this case, there are two: the
anonymous Keys interest and Shift interest created by Idefaultkeys.)

The NeWS Development Environment Input Model 8-17

The NeWS Development Environment Input Model

The Shift interest's lactivate method computes its shift state based on the event's
KeyState, expresses the Shift interest, and sends lupdate with the shift state to
each of its Keys interests. (There is only one of these in the first example: the
one created by Ide£aultkeys. The second example also has the function-key
interest attached to the same Shift interest.)

The Keys interest's lupdate method uses the shift state to select an appropriate
diet from its Maps and stores that in its Name field.

Now a key-down on any of the standard keys will match the Keys interest; the
diet in the Name field will translate the key code to the appropriate character
(in the case selected by the current shift state), and the NeWS event mechanism
will automatically store the translated value back into the event (NOT the
interest). The diet in the Action field then causes the client's callback to be
called with the translated event on the stack.

If a shift-key transition comes through while these interests are active,
executable-match code in the Shift interest recomputes its shift state and sends
the new value with lupdate to the Keys, thus updating the translation dict in its
Name field.

The function-key interest is another Keys interest, which arrives at a similar
object via a more explicit specification.

The keymap that maps keycodes to names has already been computed by Class­
Keyboard, so we simply share that. If we had desired instead to get the
appropriate escape sequences, like ""[[224z" for the Fl key, we could have used
a parallel map, FKeyStrings.

The Maps field of the interest is set to an array which consists of 16 copies of
this diet (or 8, if MetaKeys? is false). Thus, this diet will be stored in the Name
of the interest regardless of the state of the shift keys. The Action field is set to
be a diet in which lDownTransition is defined to a proc that sends /Report­
Function to the canvas. If a proc had been passed in place of the null argument
to Inew, IUpTransition would be defined to that proc; but as it is, there is only
one entry in the diet.

This Keys interest is associated with the same Notify and Shift interests as the
first; it is activated, updated, and deaetivated at the same time and with the
same arguments.

8-18 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Example 3: Reading the Number Pad

The keyboard has a Num Lock key on the right keypad, which affects all the
right-pad keys below the top row. The lock should be treated like Caps; one
press sets it, the next clears it. (Also like Caps, it's a matter of taste whether it
should take effect globally or on a per-window basis.) One way to get this is to
define a shift state which has only 1 bit, and to track the Num Lock key exactly
as the Caps key is tracked in the Shiftlnterest code:

Next we define a keymap with 17 entries, for the 17 keys on the right pad that
should be affected by the Num Lock key:

The NeWS Development Environment Input Model 8-19

The NeWS Development Environment Input Model

The Ibulldkeydict method executes the { ... } proc in the context of ClassKey­
board, so keyforsymbol and toChar can be invoked directly. The { ... } puts
keycode/value pairs on the stack, and /buildkeydict then defines those pairs
into the given diet.

The other keymap, for use when NumLock is not set, has no entries, so we'll
use nulldict in that position of the Maps array:

Now, the following code would go in the canvas' Makelnterests:

The sense of all this is, "when the NumLock is set, accept and translate those 17
keys to the characters given on key-down; otherwise ignore everything." Rais­
ing the priority prevents those keys from also being interpreted as function
keys, in the function-key interest created earlier.

Note that this Keys interest has a different Shift interest than the two defined
above, although they are dependent on the same Notify interest. An alternative
approach would have used a single shift diet (with 5 bits of state). However,
this would have have required larger Maps arrays all around, and construction
of a larger shift diet to cover all the possibilities. Either approach would be rea­
sonable.

8·20 tNt Technical Reference Manual

The NeWS Development Environment Input Model

Example 4: Non-Standard Uses

Now let's look at a simple example of non-standard usage. Suppose you want
to have a pinball game that uses the shift keys to control the flippers. Thus you
want to be notified of both down and up transitions on the shift keys, and don't
care about any other keys. Moreover, you want to be notified directly about the
shift keys, rather than having them modify the treatment of other keys.

Here is the complete PostScript code for implementing the canvas, suitable for
psh'ing. The discussion that follows will center on the keyboard-related aspects.

The NeWS Development Environment Input Model 8-21

The NeWS Development Environment Input Model

All the keyboard information is concentrated in the methods IMakeInterests
and lKeyEvent, and the lKeyMap dictionary.

lKeyMap is defined using ClassKeyboard to translate the symbolic names /Left­
Shift and lRightShift into the keystations specific to the user's hardware. The
dictionary maps the key corresponding to /LeftShift into the name /Left, and
similarly for lRight.

In lMakeInterests, the canvas first creates a FocusSelfInterest, which will trigger
whenever this canvas has the focus. (Again, when this interest is expressed,
which is done automatically as part of lactivate to the ClassFrame, it will regis­
ter the canvas as a focus client.) Then it creates a Keys interest and hangs it off
the FocusSelfInterest (using laddsuite), SO the Keys interest will be active when,
and only when, the canvas has the focus.

8-22 tNt Technical Reference Manual

The NeWS Development Environment Input Model

The Keys interest itself is fairly simple. Since it is not using any shifts as
"modifier keys", it uses nulldict as its shiftdict. (Note that this is not the same
as using null, which would result in the Keys using a default shiftdict.) The
Maps array has only a single map in it, since the shift state will always be zero.
The map is the /KeyMap dict, which matches events involving the two shift
keys.

Thus, while this canvas has the focus, any transitions on the shift keys will
match the Keys interest. The Name field in the event will be updated to contain
either /Left or IRight. Then the Action (DownTransition or UpTransition) will
cause either the downproc or the upproc to be called. These procs were con­
structed via buildsend (defined in uti1.ps); they put a boolean on the stack to
indicate the direction of the transition, then call /KeyEvent to extract the Name
(/Left or /Right) from the event and store the boolean in the named instance
variable.

Complex Example
Finally, here's a particularly complex example. Suppose you don't want the
standard keys, but rather you want to see the F3 thru F7 function keys, going
up as well as down, and (on them) you have the following requirements for
shift-key processing:

• you don't care about the state of Shift or Caps

• you do want to distinguish Meta and Control

• Meta should be treated as a locking shift key

Push it once, it's on; push it again, it's off. You also want these keys to "follow
the mouse"; they should be delivered to you whenever the cursor is in your
window, regardless of the focus.

This example exercises most of the features of Oasslnterest &: ClassKeyboard, so
let's just work it through all the way, with commentary.

First, assume you've established an event manager as before, either by creating
it explicitly or by making your canvas a client of a BaseFrame. The next step is
to arrange a Notify interest which is triggered by having the cursor in your
window's subtree, independent of the focus:

The NeWS Development Environment Input Model 8-23

The NeWS Development Environment Input Model

The keys we're interested in will have different keycodes on different keyboards
(or may not exist at all), so we need to ask OassKeyboard's help in building a
basic keymap. The Ibuildkeydict method was described in an earlier example.

On one keyboard, this defines the following diet:

This gives us a dict for translating unshifted function keys. Suppose we want
Control to override Meta -- if control is down, it doesn't matter whether Meta is
on or off. Then we need two more maps, which can be built conveniently from
fkeysO:

8-24 tNt Technical Reference Manual

The NeWS Development Environment Input Model

(If we wanted the Control-Meta combination to be distinct, we'd need one more
diet; as it is, we'll reuse fkeysC.)

Finally, let's assemble these into a Maps array, for which Meta flips the 1-bit of
the shift state, and Control the 2-bit:

That completes the Maps array. But we also need a non-standard ShiftDiet, to
accommodate our differences from the default, again using Ibuildkeydict.

The NeWS Development Environment Input Model 8-25

The NeWS Development Environment Input Model

A reference to the code for ClassShiftInterest may prove helpful here.

The Meta keys tweak the I-bit, and Control the 2-bit. The Shift interest handles
simple on/off shift keys automatically; if the value associated with the key is an
int (as is the "2" for IControl), the bit gets turned on/off depending on the new
state of the key. (If more than one key controls the same bit, e.g., /LeftShift and
lRightShift, then the bit is on if either key is down.) If the value is not an
integer, it should be an executable array that computes some off-to-the-side
information and then stores 0 in the Name of the event.

LockChange is a utility in OassShiftInterest, which maintains up to 16 bits of
locking-shift-state. It maintains the state on a per-window basis; converting it to
have global effect is left, as an exercise, to the reader. (Hint: try demoting LOck­
State from an instance- to a class- variable.) The executable matches on
/Le£tMeta and lRightMeta are constructed using the buildinterestsend utility in
util.ps; the results procs extract the Shift interest from the event and send the
/Lock Change method to it, giving "1" as the lock bit being changed.
/LockChange also handles storing 0 into the Name field as mentioned above.

Now that we've set things up, we'll actually create some interests using these
diets, and make them available to the event manager.

We then pass fni back as part of a lMakeInterests method, or hand it directly to
an event manager (and call addfocusclient) as we did in the first examples.

8-26 tNt Technical Reference Manual

9 Selections

~~~oos ~ 
Introduction 9-1 

• Caveats 9-2 
Retrieving Selection Values 9-3 
When and How to Transfer a Selection Value 9-8 
Making Selections 9-11 
Registering a New Selection; Unregistering an Old One 9-17 
Responding to Selection Requests 9-18 
Utilities 9-20 
Class Structure 9-23 
Selection Example 9-24 

Table of Contents 





Selections 

Introduction 

A selection is an indication of some data of interest to the user - almost 
always, some information visible on the screen which is about to be used in an 
operation. The most common example is text that is to be moved or copied 
from one place to another. Many other objects can be selected, and many 
operations besides move/copy are possible; for instance, a window may be 
selected so that its properties may be inquired or manipulated. The NeWS 
Development Environment provides a ClassSelection, whose instances (Selec­
tions) describe such a selected chunk of data. 

The window system has a global registry which keeps track of a few selections; 
registering a selection causes any previously registered value to be deselected, 
and makes the current selection available to all clients of the window system. 
This registry is implemented inside ClassSelection, although its facilities are also 
accessible outside the class system, through utility procedures defined in sys­
temdict. The registered selections are identified by a Rank, which may be any 
non-null PostScript object; the standard ranks are /PrimarySelection, /Secondar­
ySelection, and /ShelfSelection. The ShelfSelection is also commonly referred to 
as the ClipBoard. 

The instance variables for ClassSelection contain attributes of the selection. 
Some of these are required by ClassSelection's processing: Holder is the canvas 
responsible for the selection, and Rank is a global identifier, as described above. 
Others are attributes which support the user interface for making selections: 
Level is an integer indicating the "size" of the objects selected (for text, 0 - 4 
might indicate empty, character, word, line, and paragraph). The full set of UI 
selection attributes is detailed below. Finally, a Selection usually also contains 
information stored by the client to identify the selection - e.g., for a text editor, 
either what the selection contents are, or how to contact the client with a query. 

There are two kinds of processing done with respect to selections: Making them 
and communicating their values. Inquiring the value of an existing selection is 
relatively easy (and common), so it will be addressed first. This section is pri­
marily concerned with instances of some subclass of ClassSelection. 

Making selections is somewhat more complicated, connected as it is to issues of 
user interface and UI independence. It gets a longer discussion, starting with 
the section "Making Selections." This section deals both with Selections and 
with Selectables (instances of some subclass of ClassSelectable). 

Selections 9-1 



Selections 

Finally, once a selection has been made, it must expect to have requests posed 
to it; the last section covers how to respond to such queries. 

Caveats 

It is important to recognize that a selection can exist without being registered in 
the global database - instances of (subclasses of) ClassSelection are used 
privately in several parts of the system before being made available to the world 
at large. 

Another important point is that much of the processing described in this docu­
ment is initiated outside the application. For instance, global VI code will 
recognize that a function key has been released, or a Drag action performed, sig­
naling that a selection transfer should take place. Similarly, the VI layer, not the 
application, is responsible for determining which user actions indicate a selec­
tion is to be made or adjusted. This separation is maintained by defining Sub­
ClassResponsibiIity methods in the low-level semantic and VI superclasses, and 
requiring subclasses which actually get instantiated to implement those 
methods. 

One implication of this second point is that the Selection's methods will often be 
invoked in some foreign process (the global UI manager, or even in another 
client's process). They must, consequently, be self-contained - if they need 
some data such as the connection to the C-side client, that must be reachable 
from the Selection instance. 

One more cautionary note: In order to provide some separation between appli­
cations and particular user interfaces (such as the OPEN LOOK user interface), 
a layer of indirection is inserted into the class structure for Selectables; clients 
create their own subclass of ClassSelectable by subclassing its defaultclass, not 
CLassSelectable itself, nor any particular UI's subclass of ClassSelectable. This is 
explained in more detail below. 

9-2 tNt Technical Reference Manual 



Selections 

Retrieving Selection Values 

Applications can retrieve the value of a selection by sending a message to it. 
This may require that the application first find that selection in the global regis­
try. The relevant methods are 

rank Igetselection Selection I null 
key Iquery false I value true 

request-dict Irequest response-dict 

There is a Igetselection utility procedure in systemdict, which simply sends the 
Igetselection message to OassSelection. The single argument will normally be 
one of the Rank names given above, although, as mentioned, it may be any 
non-null PostScript object. If there is a selection currently registered under that 
rank, it is returned, else null. 

The other two methods above are sent to a Selection; Irequest is the more gen­
eral (and complex). 

A single attribute of a selection can be retrieved most conveniently with the 
Iquery method. It takes the name of the attribute desired (e.g., /ContentsAscii), 
and returns the associated value and true, assuming there is such a value; if not, 
it simple returns false. 

!Request is defined to allow multiple requests, and requests with parameters. 
This may be preferable in several circumstances: when the request is an opera­
tion which takes arguments, Irequest must be used. There is also a capability 
for requester and holder to negotiate the form of the requested data (described 
below); this also requires use of lrequest. Finally, when the cost of communicat­
ing with the holder of the selection is high (e.g. the holder must communicate 
with its C-side client through a slow communication link in order to respond to 
any request), it may be advantageous to batch queries in a single call to 
Irequest. 

The argument to Irequest is a dictionary which contains the complete request. 
Each key in the dictionary names a selection attribute or an operation the selec­
tion should perform. For an operation, the corresponding value in the diction­
ary may be a parameter or array of parameters; for requested attributes, the ori­
ginal value in the dictionary doesn't matter. The selection will return a similar 
dictionary (or modified copy of the same dictionary, as convenient), with results 
and requested attributes in the value for each key wherever possible; if it cannot 
store a result, it will store the value /UnknownRequest. 

Selections 9-3 



Selections 

The following fragments illustrate use of Iquery and Irequest: 

The set of request keys passed to the selection holder is open-ended; any set of 
clients that can agree on the interpretation of a new key, may use that key to 
communicate among themselves. A convention for the most common requests 
has not yet been established; but a number of the most useful are suggested 
here. In general, request names should develop parallel to the conventions of 
the XII Window System, as documented in David Rosenthal's Inter-Client Com­
munication Conventions Manual (to be distributed by the X Consortium). 

Most keys represent requests for the Selection to render its value in a named 
format. The most common of these is IContentsAscii; others appear in the 
table. IContentsAscii prescribes the selection rendered as a PostScript string, 
without text attributes (font, typeface, etc.). 

9-4 tNt Technical Reference Manual 



Selections 

Certain keys request that the client modify the selection in some way. Two 
"operation-type" keys are specified here: /DeleteContents and /ReplaceCon­
tents. (Of course, other operations may be defined as clients agree on them.) 

/DeleteContents tells the client to delete the contents of the selection. Note that 
this is not the same as merely deselecting or destroying the Selection instance; 
e.g., in a text item /DeleteContents means remove the selected span of charac­
ters from the text. Since there are no parameters required for this operation, 
either of Iquery or Irequest will work for it. Assuming the holder is willing and 
able to comply, a null value will be returned. 

/ReplaceContents involves a deletion, just like /DeleteContents; but then new 
data passed as an argument to the request should be stored in place of the 
deleted material, and the replacement should be selected. In this case (where 
the requester must be able to pass an argument to the request), the Iquery 
method will not work. Instead, the Irequest method is used, with a request dict 
for its argument. In the request dict, the key /ReplaceContents is defined, with 
the replacement contents as its value. This style of passing parameters enables a 
consistent interface to be maintained between requester and selection holder, 
regardless of the particular requests. 

I ..•. ·· .•••. · .• · ••... : ....•..•••.. ·.·.·.1 •. · ... ·.·····.·:.·.· .. •.· .. • •. ·.1·.. No Toolkit selecti?ns cu~r~ntly support (or &tempi to use) the lRepl""eCon­NOTE tents request. It IS speCified here so that clients who may choose to Imple-
> ment it will have a consistent protocol. The protocol described above 
. ... matches that in the ICCCM. 

Since Iquery retrieves only one selection attribute at a time, the requester can 
easily control the order in which requests are processed. This is not so easy 
with Irequest: The order of objects in a dictionary is undefined, so if there is a 
required order to the requests, the requester must take special pains. It should 
define only one key in the request dictionary, /RequestSequence, and its value 
should be an array. The Oth, 2nd, etc. elements of the array will be taken as 
requests, and the following (odd-numbered) element for each will be the 
corresponding parameter/value. In the diet returned by Irequest, the value 
associated with /RequestSequence will be an array in which the odd-numbered 
elements are the values returned by selection holder. 

A similar mechanism allows the requester and holder to negotiate over the form 
of response. The requester uses the key /RequestChoiee, which is defined to an 
array similar to the one used with /RequestSequence. In this case, the keys in 
the even-numbered positions of the array are included in the order of the 
requester's preference. The holder may then choose any of the requests in the 

Selections 9-5 



Selections 

RequestChoice to respond to; the key /RequestChoice is redefined to a new 
array containing the singie key responded to and its corresponding value. If 
none of the choices is acceptable, the array should be replaced by /UnknownRe­
quest. (If one of the choices in. the /RequestChoice array is in turn a 
/RequestSequence, it is deemed responded to only if all the requests in the 
sequence are acceptable.) 

Like IReplaceContents, the lRequestChoice key is not currently supported by 
the NeWS Development Environment. Individual clients may choose to 
implement it if they are willing to run the risk of having their code become 
obsolete. 

The full details of request processing are described below under "Responding to 
Requests." 

The following table summarizes the conventional request names currently pro­
posed. Those keys marked with'" are not currently implemented by The NeWS 
Development Environment, but are defined so that clients who wish to use such 
requests will have a common interface. Certain other keys, marked with ...... , 
ARE implemented by some or all Toolkit selections, but are retained only for 
compatibility with the old "Lite" toolkit; their use is not encouraged. 

Name Argument Result 

/Canvas none The selected object, if it is a NeWS 
canvas. 

/ContentsAscii none A PostScript string containing the 
selected text, as described above. 

/ContentsPostScript none A PostScript object, which, when 
executed, will recreate the selected 
value. (This is likely to be most 
useful for graphical objects, which 
can be redrawn in a new environ-
ment.) 

/DeleteContents none The contents of the selection are 
deleted, as described above. 

tNt Technical Reference Manual 



Selections 

Name Argument Result 

IFirstindex .. none The count of how many objects of 
size Level precede the first object in 
the selection. 

ILevel" none The multi~lick level of the selec-
tion; see discussion under "Making 
Selections", below. 

lLastIndex .. none The count of how many objects of 
size Level precede the last such 
object in the selection. 

IRequestChoice .. [request arg ... J A list of alternative requests (with 
parameters for each) of which the 
holder should respond to one, as 
described above. 

IRequestSequence [request arg ... J A list of requests (with parameters 
for each) which the holder should 
respond to in order, as described 
above. 

lSelectionObjsize .... none The size of the selection as meas-
ured in units of Levell; e.g., for 
text, the number of characters. 
Note the lower~ase 's' in Objsize. 

lSelectionStartIndex .... none The count of how many units of 
Levell precede the first such unit 
in the selection. 

lSelectionLastIndex .... none The count of how many units of 
Level 1 precede the last such unit 
in the selection. 

ITransferSelection .. dict[ ... lSource: One selection is requested to per-
Selection ... J form a transfer between itself and 

another; see the note at the end of 
the next section. 

Selections 9·7 



Selections 

When and How to Transfer a Selection Value 

Clients will occasionally decide on their own initiative that they should retrieve 
a selection value; for instance, the second example above would probably be 
triggered by invocation of a "Breakpoint" panel button or menu command. But 
most of the time, global user interface code will determine that a selection 
transfer is called for. If a client can accept input from the user (keystrokes or 
mouse drawings, for instance), then it should generally also be ready to accept 
the contents of a selection. Whenever the UI code determines this is appropri­
ate, it will send an event to the destination of the transfer. 

This event's Name is ITransferSelection, and its Action is a diet describing the 
transfer that is to be made. The most interesting item in this dict will be the 
key lSource, which will be defined to the Selection whose value should be 
transferred. The event's Canvas is also Significant: if it is null, the event has 
been "dropped off the cursor," and the value should be inserted as close as pos­
sible to the event's location. If the Canvas is non-null, the event was directed to 
the canvas, not a location; the value should be inserted at the canvas' most 
recent insertion point. Of course, some canvases may constrain all insertions to 
a particular location; for instance, a terminal emulator will probably be append­
only. 

The NeWS Development Environment defines two subclasses of Oasslnterest 
which a client can instantiate in its lMakeInterests method, in order to receive 
and process ITransferSelection events. TransferInterest is an interest in a given 
canvas being the destination of a ITransferSelection event. The client supplies a 
method to be called when a transfer event is matched. 

The client's method takes an event and a selection source. It leaves the event 
unchanged (it is there for examination if needed but should not be consumed). 
It consumes the selection in sending queries Irequests to it to effect the transfer, 
and returns a boolean which is true if the client succeeded in the transfer. If the 
selection is not of a type acceptable to the client (if, for instance, all queries 
return. IUnknownRequest), the client should return false. This will cause the 
event to be redistributed further up the canvas tree. 

9-8 tNt Technical Reference Manual 



Selections 

AsciiTransferInterest is a special case of TransferInterest for canvases that 
require simple text selections. If the selection does not respond to a request for 
IContentsAscii, the AsciiTransferInterest refuses to accept the transfer. If ICon­
tentsAscii works, the resulting text is given to the client-supplied method. The 
client can also specify that the method must be called once per character instead 
of being called once with the entire string (by passing false as the third argu­
ment of Inew). 

Thus, most clients should never have to worry about constructing an interest in 
ITransferSelection, nor about terminating the transaction in which the selection 
is transferred. Typically it suffices to put a single line in your canvas's lMak­
eInterests method, such as: 

and then write a suitable linserttext method (in this example, one that consumes 
a string). 

Clients which construct their own interest in ITransferSelection events must 
satisfy a few requirements: 

1. When they receive such an event, they should make appropriate requests 
to the Source selection, just like clients using a TransferInterest. 

2. If they cannot accept the selection, they must redistribute the ITransfer­
Selection event themselves, to give ancestor canvases a chance to deal 
with it. 

3. If the transfer succeeds, the recipient should complete the transaction by 
sending a message to the VI code: 

Selections 9-9 



Selections 

or 

where MySelectable is any subclass of [/defaultclass ClassSelectable send]. The 
Itransfemnished method requires the description-<iiet from the I TransferSelec­
tion event's Action on the stack (and consumes it). This method is needed 
because only the recipient knows when it is finished with the transfer, and vari­
ous cleanup actions (such as deleting the Source if the transfer is a Move vs a 
Copy, or unhighlighting the source, etc.) must wait until the transfer is over. 

Implementation note: It is possible for a Selection to be sent a ITransferSelec­
tion request directly, rather than through an event. That is, a selection may 
receive a request whose key is ITransferSelection; the associated value will be a 
description-diet just like the one contained in the Action of a ITransferSelection 
event. In this case the Selection receiving the request is expected to insert the 
value at its current insertion point - there is no convention for passing specific 
coordinates. Since there is no UI code driving the transfer, the destination 
Selection must attend to other details: it should delete its own current value if 
its IPendingDelete? attribute is true; it should send a lDeleteContents request 
to the Source Selection if the key lDeleteSource? in the transfer description-diet 
is true; if either it or the Source has Rank of lSecondarySelection, it should send 
Ideselect to that. This latter form of transfer is intended to handle operations 
such as exchanging two selections. However, no such requests are currently 
being generated by the Open Look UI manager, and no client Selections 
currently support such transfers. 

9-10 tNt Technical Reference Manual 



Selections 

Making Selections 

A selection client is a canvas which can contain a selection, or be one itself (e.g. 
a text window or a frame). The NeWS Development Environment provides util­
ity classes to cover common text selection clients (DragTextSelectable) and also 
for the frame and icon windows for applications, which are selectable objects. 
Application programmers will want to avail themselves of these if possible; they 
are described at the end of this document. 

Other selection clients will subclass 2 classes: ClassSelection, introduced above, 
and (a subclass of) ClassSelectable, whose instances are interests in user actions. 
In both, there are SubClassResponsibility methods which the client must imple­
ment in its own subclass. 

This discussion of making selections will probably be more intelligible after a 
high-level sketch of the protocol. Here is a typical sequence of operations for a 
selection-client application: 

• The application creates a new Selectable. This is usually done inside a 
canvas's IMakeInterests method, so that the general canvas mechanism 
handles forking an event manager and expressing the interest <the Select­
able). 

• VI-specific code inherited in the Selectable matches certain events (which 
events get matched depends on the particular VD, and decides a selection 
action has occurred. 

• The UI-specific code calls a SubClassResponsibility method (lnewselec­
tion); the client's Selectable subclass returns a new Selection of the 
appropriate class (i.e., the client's Selection subclass). 

• The UI code then sets instance variables within that Selection to indicate 
what's going on (multiclick level, etc.). 

• Next it calls more SubClassResponsibility methods to get the client to 
finish resolving the operation. E.g., the client might need to resolve 
mouse coordinates into a character index and then highlight the selected 
text. 

• When the VI code decides that the user action is complete (e.g., a mouse 
button is released), it registers the Selection in the global dictionary so 
that other applications can access it. 

Selections 9-11 



Selections 

Note that most of the goings-on are driven by the VI code. Clients need write 
relatively little code for their particular selections. In particular, clients should 
not try to interpret raw device events - some are not readily accessible to the 
client (/Copy key when the client holds the selection, but not the focus); most 
are subject to user-modification (some left-handers swap the meaning of the 
mouse buttons and function keys for left-handed use); and user interfaces are 
subject to many changes an application will do well to ignore if it can. 

Selections have been introduced already. There is more to be said about them, 
but first we consider Selectables. 

A Selectable is a NotifyInterest on a single canvas; it watches for some event in 
a small set which initiate making a selection (e.g., button-down on the Point or 
Adjust buttons). When an initiating event is seen, it expresses interests in other 
events like mouse motion and the corresponding button-up, and starts up some 
state machinery which implements the current user-interface for making selec­
tions. It also causes creation of a new Selection, to be used in communicating to 
the client about the selection that is being made; see the Inewselection method. 

The definition of a subclass of OassSelectable should be parameterized as fol­
lows, to avoid wiring a particular Vser Interface into the application. 

The SubClassResponsibility methods in a Selectable are: 

9-12 

event rank holder 
event selection 
event selection 
event selection 
event selection 
event selection 
event selection pos 

Inewselection selection 
Iselectat 
ladjustto 
Idragat 
Idragto 
linselection? bool 
lattachinsertionpoint 

tNt Technical Reference Manual 



Again, most clients will also elaborate 

holder canvas type Inewinit interest 
Idestroy 

Selections 

The client makes a Selectable instance for each selectable canvas, typically by 
sending Inew to a subclass of Selectable as part of the canvas's IMakeInterests 
method. The 'type' parameter tells the global VI code what sort of VI to use for 
selections on this canvas. There are currently three types defined; others may 
be added as needed. (The VI manager will invoke some reasonable default 
behavior for any unrecognized type.) The known types are: 

/Text 
/Graphics 
/Canvas 

Text within the canvas can be selected 
Graphics objects within the canvas can be selected 
The canvas itself can be selected (e.g., a frame) 

The holder should be a canvas which uniquely identifies this client; it will be the 
same as the Holder attribute of selections made in this canvas. It is used by 
ClassSelectable in an identity test, to determine whether an existing selection is 
held by this client. Normally, the holder and canvas arguments to Inew will be 
the same. But if a single selection may exist in two or more canvases (e.g. a 
split view in a text editor, or several icons on the desktop), then the Selectables 
for those two canvases should have the same holder. This supports such 
behavior as starting a selection in one canvas of a split view and then extending 
it by clicking in the other canvas. 

When a Selectable interest is satisfied, its activation procedures will often start a 
new selection. This involves a send to the client's Inewselection method, with 
appropriate rank and holder arguments. This method in the Selectable should 
create a new Selection instance (by sending Inew to the client's subclass of 
ClassSelection). The returned instance gets its attributes filled in by the VI layer 
of Selectable, and is then passed back to the client in sends to its other Sub­
ClassResponsibility methods. 

The other six SubClassResponsibility methods of a Selectable all take an event 
and a Selection instance. (One method also takes a third parameter.) The event 
is useful only for its coordinates - extracting the Coordinates array from an 
event automatically transforms them according to the current canvas and graph­
ics context. The Selection contains all the other parameters of the method, as 
described later. The methods should operate as follows: 

Selections 9-13 



Selections 

/selectat 

/adjustto 

/draqat 

/draqto 

/inselection? 

/attachinsertionpoint 

9-14 

event selection Iseledat 

Resolve the coordinates of the event to an object, 
and start a selection on it with the given attri­
butes. Note again that the Selection instance 
will already have been created via a separate 
call to Inewselection. 

event selection ladjustto 

Adjust the boundary of the given selection to lie 
on the object at the event's coordinates, again 
attending to the attributes in the selection. 

event selection Idragat 

Initiate user feedback for a Drag (direct­
manipulation move or copy) of the given selec­
tion; e.g., start an overlaid image of the value 
being dragged). If a grasp-point is needed (i.e., 
if the cursor coordinates are needed in order to 
position the feedback), use the coordinates of the 
given event. 

event selection Idragto 

Move a Drag-image so its grasp-point is at the 
coordinates of the given event, or give other 
feedback of a Drag in progress. 

event selection linselection? bool 

Return true or false as the location of the given 
event is, or is not, within the given selection. 
(The global UI code uses this to resolve multi­
clicks or other special behavior reslllting from 
clicking within an existing selection.) 

event selection 
postionname lattachinsertionpoint 

Note the specified point for later use as an inser­
tion point if a value is copied to the selection. 
In particular, if this is a primary selection, the 
canvas should usually change its input focus 

tNt Technical Reference Manual 



Key (Name) 

ILevel 

IPendingDelete? 

IDeleteSource? 

lPin 

Selections 

Selections 

location. The positionname, together with the 
position of the event and the endpoints of the 
given Selection, are interpreted as for the ICom­
puteNamedPosition utility, described later. 
Unlike the five other methods listed above, this 
one actually has a default implementation that 
simply ignores (pops) its arguments. 

Now we return to ClassSelection, for the attri­
butes used in the selection-making process. 
These are: 

Value Type Interpretation 

int The "size" of objects to be selected. For 
instance, in text, 1 may indicate a character, 2 a 
word, 3 a line or sentence, etc. Essentially, for 
OPEN LOOK, Level is a multi-click count. 

bool True if the selection should be replaced by the 
next user input action (always, for primary 
selections in OPEN LOOK). 

bool Meaningful only if the selection is being passed 
to a /drag-at or /dragto method, in which 
case the key is true if the operation is a Move 
rather than a Copy. 

any Tells the client where to "anchor" the selection 
during an /adjustto operation. The pin can 
be a name, in which case it can be evaluated 
using IComputeNamedPosition (described 
below under "Utilities"), or it may be an arbi-
trary value (typically an int) representing a 
previously computed anchor point. 

9-15 



Selections 

Key (Name) Value Type 

I Preview? bool 

lRank any 

IRegistered? bool 

IHilited? bool 

IStyie any 

9·16 

Interpretation 

True if the selection is still being adjusted by 
the user; when the user finishes (e.g., releases 
the mouse button), the client will get a last 
/selectat or /adjustto message with IPre-
view? set to false. Many clients will ignore 
IPreview?; it is provided as an accelerator for 
clients that wish to postpone moving some 
selection info to a more permanent location 
until the selection settles down. 

Most selections have Rank eq IPrimarySelec-
tion. Selections made while some function-keys 
are down have Rank eq lSecondarySelection. 
(These get reflected differently, and have spe-
cial uses.) The Oipboard has Rank eq IShelf-
Selection. Other Ranks are possible, though 
not currently used. 

True if the selection has been registered in the 
global database via /setselection. 

This key is defined only if the Type of the 
Selectable which made the selection is ICan-
vas. For these, it shows the previewed-state (as 
distinguished from the true state) of the selec-
tion. E.g., Adjust-down on an icon [de]-hiIites 
it immediately, and then toggles its hiliting as 
you slide off & on the icon. 

The style of highlighting recommended by the 
VI manager. Currently defined values are 
lDefauIt, IInvert, lOutline, IStrikeThru, and 
IUnderscore. Clients may ignore this value if 
they think it does not apply to their selection 
type, basing their highlighting instead on 
lRank and IPendingDelete? 

Finally, to assist clients in correctly reflecting 
changes to the selection, every time the 
ladjustto message is sent, the accompanying 
selection will have the name IChanged defined 

tNt Technical Reference Manual 



Selections 

to an array of some of the above names; each 
key in the array has changed value since the 
previous adjustment. 

Notes: 

It is possible for an ladjustto to indicate a point 
outside the area in which contents can be 
displayed (e.g. off the bottom of a text window). 
This supports an auto-scroll feature, such as 
defined by the OPEN LOOK user interface. 
When an application gets such an ladjustto, it 
should (if possible) scroll some new data into 
the visible region from the hidden region indi­
cated by the location of the ladjustto, and select 
everything up to that border. It should repeat 
this process as long as ladjustto messages con­
tinue to be received. T autoscroll doesn't work ye' - new 

< messages are not generated. Clients 
.•••••••.•. willing to be obsoleted in the next 

.. •.•. release can repeat the scroll operation 
on their own until an ladjustto is 
received with coordinates inside the 
canvas, or with IPreview? set to false. 

Registering a New Selection; Unregistering an Old 
One 

When the VI layer decides that a selection specification has been completed, it 
sends Isetselection to the Selection; the default implementation registers the 
instance in the global database. Clients may override Isetselection if they need 
to adjust state or maintain any additional information when one of their selec­
tions becomes publicly available. Of course, it is also possible for a client to 
create a new selection on its own initiative and send it Isetselection; it will get 
registered just the same. 

Selections 9-17 



Selectlone 

When a new selection is registered, any old selection already registered under 
that rank is sent a Ideselect message. Ideselect is a strict SubClassResponsibility 
method: there is no implementation in OassSelection. The subclasser's method 
should at least de-hilite the selection; most selections will also destroy them­
selves. However, a deselected Selection might be retained, for instance to sup­
port restoring the selection in an Undo operation. 

Just as a client may register a selection on its own initiative, it can unregister 
one by sending lunsetselection to it. A warning given above bears repeating 
here: It often happens that a Ideselect message is generated in the client which 
is making a new selection (the cause of this one being deselected); the message­
send in this context is in danger of communicating with the wrong client. For 
instance, printing data over currentprocess' stdout is likely to send it over the 
wrong connection. Clients must take care to store some access back to their 
generating client in selections they create, so they can communicate with it reli­
ably when that selection receives a message while running in another process. 
Other messages that may be sent to a selection face analogous dangers: 
Isinglerequest and Ides troy in particular are liable to be sent to a selection while 
running in some process other than the selections' Holder's client. Equivalent 
care is reqUired in these cases to respond in the proper context. 

Responding to Selection Requests 

Selections respond to requests through either of two methods: 

request-dict 
oldval request-key 

/request 
/singlerequest 

=> response-dict 
=> newval 

Subclassers must override AT LEAST ONE of these two methods. 

The first has been described from the requester's point of view above. The 
default implementation in OassSelection is in terms of Isinglerequest: the 
request-dict is enumerated with forall, and each request/value pair is passed to 
Isinglerequest. (If /RequestSequence is found, it is passed to its own enumera­
tor, which in turn calls Isinglerequest. When /RequestChoice is implemented it 
will work similarly.) If a selection holder wishes to batch processing of 
requests, it should override the Irequest method. Any such override is then 
responsible for supporting /RequestSequence and /RequestChoice. 

9-18 tNt Technical Reference Manual 



Selections 

Instead of overriding Irequest, a subclasser may choose to override Isinglere­
quest. The key passed to a Selection's Isinglerequest method identifies the 
nature of the request. Most keys represent requests for the Selection to render 
its value in a named format. For these requests, the value currently on the stack 
is to be discarded, and the client should put the requested value on the stack. 

Certain keys request that the client modify the selection in some way. For these 
requests, the oldval on the stack contains arguments, if any, to be used in the 
operation. Even if no arguments are needed, the Isinglerequest method must 
be sure to remove the value from the stack; likewise, even if there is no return 
value, Isinglerequest must store something (typically 'null') on the stack. This 
ensures a uniform interface to Isinglerequest. (If neither the old val nor the 
newval is meaningful, the old val can simply be left on the stack as the returned 
value. See the /DeleteContents case in the example below.) 

For any request (value or action), the client may choose not to support the 
requested key. If so, Isinglerequest should pop the oldval and return /Unk­
nownRequest. 

Most clients will choose to override Isinglerequest rather than Irequest, since 
the code is considerably simpler. A typical/singlerequest method might look 
like: . 

Note that Isinglerequest is not required to support /RequestSequence or 
/RequestChoice. Since clients making such requests must always go through 
the Irequest method (rather than Iquery), it is left to the Irequest method to 
handle breaking up the /RequestSequence or /RequestChoice into a series of 
calls to Isinglerequest. 

Selections 9-19 



Selections 

Utilities 

The NeWS Development Environment defines five subclasses of particular 
interest to clients and/or implementors of selections. Two of these, TransferIn­
terest and AsciiTransferInterest, have been described above. The remaining 
three comprise two convenience subclasses of OassSelection, and a subclass of 
ClassSelectable which provides some of the basic functionality of selectable text. 

StaticSelection is a selection whose value never changes; it responds to queries 
by looking up the queried keys in a constant dict. When a selection is copied to 
the Clipboard, the VI manager sends /checkpoint to the Selection to obtain a 
static copy. The default /checkpoint method calls /Checkpoint, which in tum 
sends a /request to obtain the value of the selection in several formats, and 
stashes the results in a StaticSelection. Clients may override /checkpoint if they 
are willing to take responsibility for maintaining a static copy of their value. 

E.g., a text window might prefer not to copy a potentially large string to the 
Clipboard, but could instead cache the necessary pointers back to its data. 
However, if the text window's data subsequently changes, the text window 
must be sure that the static copy is not affected. If the static copy is about to 
become invalid, the text window can call/Checkpoint (mixed case) to fall back 
on creating a StaticSelection. 

StringSelection is a special case of StaticSelection that only knows how to render 
itself as ContentsAscii. This is to make it easy for clients to wrap a string inside 
a selection preparatory to handing it to a canvas via a lTransferSelection 
request. (See /sendtocanvas, below.) A StringSelection is intended to be created 
directly via /new instead of via a ClassSelectable, and thus does not expect 
rank/holder arguments; its /new method takes just a string. 

DragTextSelectable provides assistance for clients whose selections are character 
strings, and who want to use an overlay canvas to display the selection during a 
drag-move or drag-copy operation. It fills in the /dragat and /dragto methods 
for you. Subclassers will generally wish to override the /CurrentText method 
for greater efficiency (the default uses the normal/query mechanism, whereas 
individual subclasses can usually obtain the text by more direct methods). Sub­
classers may also need to override /CurrentFont, if the TextFont of their 
Selection's Holder-canvas is not suitable. 

9·20 tNt Technical Reference Manual 



Selections 

Assorted utility methods: 

IComputeNamedPosition { % first last current positionname => pos 

In ClassSelectable. First, last, current, and pos are numeric values refer­
ring to the location of a selection (in the client's interpretation); first/last 
are the endpoints of an existing selection, while current is typically the 
poSition corresponding to the coordinates of a recent event. Position­
name is one of the values defined for the /Pin in a Selection, and is 
interpreted as follows: 

/LowEnd 
/HighEnd 
/NearEnd 
/FarEnd 
/ AtPoint 

the low end of the existing selection (first) 
the high end of the existing selection (last) 
whichever of first/last is closer to current 
whichever of first/last is further from current 
the cursor position (current) 

This is used for interpreting lattachinsertionpoint, and also for inter­
preting the /Pin to establish one endpoint in preparation for subsequent 
ladjustto messages. 

/computepin { % first last current => pin-point 

In ClassSelection. If the Selection's /Pin is a name, Icomputepin calls 
IComputeNamedPosition and stores the result as the new value of /Pin. 
Otherwise the previously computed /Pin value is returned unchanged. 
This should be done on every Iselectat or ladjustto; the VI manager will 
override /Pin again if the anchor is to change. 

Icomputerange { % first last current => newfirst newlast 

In ClassSelectio~. Same as Icomputepin, but it returns the pinned posi­
tion and the current position, in sorted order. 

Icheckpoint { % rank => selection 

ICheckpoint { % rank => selection 

In ClassSelection. See earlier discussion re StaticSelection. 

ICanRenderAs { % - => namearray 

In ClassSelection. A list of names describing the formats in which the 
selection might be able to render itself. The list is used by /Checkpoint 
to decide the formats to install in the StaticSelection. If s okay for the list 
to include formats that the Selection in fact cannot handle; they'll just 

Selections 9-21 



Selections 

get mapped to IUnknownRequest in the static copy. The default list is: 

IContentsAscii lSelectionObjsize 
IContentsPostScript lSelectionStartindex 
lSelectionLastindex 

Subclassers can override this to extend (or truncate) the list, so that 
stuffing their selections to the Clipboard will include all appropriate for­
mats. NOTE: The list should NOT include ICanvas, even though tne 
selection's Isinglerequest method might handle such a request. This is 
because copying a lCanvas value to the ClipBoard can result in the can­
vas staying on the screen after its application has been destroyed. 

Itransferfinished { % tdict => -

In [ldefaultclass ClassUI send] (or any descendant thereof). Handles all 
cleanup following a transfer, such as deleting the source if the transfer 
was a Move, unhighlighting the source if appropriate, etc. 

Called automatically by TransferInterest and AsciiTransferInterest, so 
most clients need not worry about it. 

Isendtocanvas { % canvas [delete?] =>-

9-22 

In ClassSelection. Sends the selection to the given canvas via a 
ITransferSelection event. The selection need not be registered with the 
global manager. The optional bool says whether the selection should be 
deleted after the transfer. (Default is false.) The canvas can be null to 
send the event to the canvas(es} currently under the pointer. For exam­
ple, the following would send a string to the current input focus: 

tNt Technical Reference Manual 



/query { % key => value true 
% => false 

In ClassSelection. See discussion under Transferring & Querying. 

Igetselection {% rank => sel I null 

In systemdict. Looks up the given rank in the global registry and 
returns the Selection (if any) currently registered for that rank. 

E.g., 

Iclearselection {% rank => --

Selections 

In systemdict. Removes from the global registry the Selection (if any) 
currently registered for the given rank. 

Class Structure 

This section should be of interest only to UI implementors, i.e., people who 
want to supplant the Open Look UI manager with a different look and feel. All 
other readers may skip this part. 

Implementing a specific look and feel involves subclassing three classes: Clas­
sUI, ClassSelectable, and ClassFunctionKey. This is the only time that those 
classes should be subclassed directly; normal clients should always subclass 
from Udefaultclass Class:XXXX send]. A look and feel implementor will sub­
class ClassUI, then use that subclass as a mix-in when creating the other two 
subclasses. For example, ClassOLSelectable inherits from ClassSelectable and 
ClassOLUI. 

Having defined the three subclasses, you can install the new look and feel by 
sending /InstallUI to the subclass of ClassUI, e.g., /InstallUI ClassOLUI send. 
This builds three new subclasses: ClassSpecificUI is a subclass of the given sub­
class of ClassUI. ClassSelectableUI inherits from the subclass of ClassSelectable, 
and similarly for ClassFunctionKeyUI. These three new subclasses are actually 

Selections 9-23 



Selections 

the / defaultclasses for ClassUI, ClassSelectable, and ClassFunctionKey; thus they 
are the classes that all clients subclass from. 

(The function key portion of this hierarchy is beyond the scope of this docu­
ment.) 

The purpose of the additional layer of subclassing is to enable a new look and 
feel to be installed in a running system. Redefining an existing class reuses the 
class dictionary, so every ClientSelectable's superclass pointer to ClassSelecta­
bieUI will always remain valid. 

Selection Example 

What follows is a lengthly example demonstrating how selections work in the 
NeWS Development Environment. Also included on the tape that this docu­
ment was on is this selections example as an executable. On the tape the name 
of this example is selections-example.ps. 

Example 

9-24 tNt Technical Reference Manual 



Selections 

Selections 9-25 



Selections 

9·26 tNt Technical Reference Manual 



Selections 

Selections 9-27 



Selections 

9-28 tNt Technical Reference Manual 



Selections 

Selections 9-29 



Selections 

9-30 tNt Technical Reference Manual 



Selections 

Selections 9·31 



Selections 

9-32 tNt Technical Reference Manual 



Selections 

Selections 9·33 



Selections 

9-34 tNt Technical Reference Manual 



Selections 

Selections 9-35 



Selections 

9-36 tNt Technical Reference Manual 





/. 



1 0 Miscellaneous Topics 

Miscellaneous Topics 
ClassTarget 

• Setting and Getting the Target 
• Sending to the Target 
• Example 
• Automatic Menu Targets 
• Disappearing Targets 
• How Targets Work 

NeWS Development Environment Applications 
• Taxonomy of Applications 
• Starting an Application 
• Killing an Application 

Table of Contents 

10-1 
10-1 
10-1 
10-2 
10-2 
10-3 
10-3 
10-3 
10-4 
10-4 
10-4 
10-6 





Miscellaneous Topics 

ClassTarget 

ClassTarget is designed to allow application programmers to safely keep a refer­
ence to one object inside another object. Target references are 'safe' in the sense 
that they look after all the associated NeWS reference counting issues. (See the 
Memory Management chapter in the XlI/NeWS reference manual for a full 
explanation of reference counting in the Xll/NeWS server.) 

You can instantiate ClassTarget directly, but applications will more commonly 
use this class as a mix-in. At present ClassTarget is mixed-in to ClassControl 
and ClassSelectionList, and hence its features can be used directly in any control 
or menu. 

The reason that controls and menus include ClassTarget is because they both 
have callback procedures in which application programmers specify the action 
that should take place when a button is pressed, a slider is dragged, a menu 
item is selected, and so on. Typically this action will consist of sending a mes­
sage to some other object. It is the target mechanism that maintains the refer­
ence to this other object. 

Setting and Getting the Target 

Sending /settarget to an instance of some subclass of ClassTarget associates a 
target object with it. The Itarget method returns this object. The argument to 
Isettarget can be any NeWS object, although it will typically be an instance of 
some class. If your target is not an instance (or a class), the Isendtarget method 
(see below) will cause a a typecheck error. 

It is not usually necessary to explicitly un-set a target. The act of destroying an 
object with a mixed-in target will automatically clear that target reference. A tar­
get can however be manually cleared by calling the method Icleartarget. 

Miscellaneous Topics 

Methods: 
Isettarget 
Icleartarget 
Itarget 

10-1 



Miscellaneous Topics 

Sending to the Target 
The target mechanism does not automatically dispatch your callback to some 
remote object. You must explicitly do this by calling Isendtarget from within 
your callback. If the target is currently null /sendtarget will cause an error. 

Methods: 
Isendtarget 

Example 

The following example assumes that we want to create an OpenLookButton 
whose purpose is to print something in the footer of a frame (not necessarily the 
one containing the button) when the button is pressed. Assume that we already 
have a frame called /myframe: 

When mybutton is pressed the button itself will be put on the stack, and the 
callback executed. The '5 -1 roll' makes the button the subject of the /sendtarget 
method, which in tum makes myframe the subject of the Isetfootu method. 
Finally the left-hand footer is set to the string "Got it!". 

Note that Isettarget is called after the button is created, but before it is activated. 
If the button were activated before the call to Isettarget there would a chance 
that the user could press it while the target was still null. This would cause an 
error. 

10·2 tNt Technical Reference Manual 



Miscellaneous Topics 

Note finally that since the callback does not contain a direct reference to any 
particular frame, there is nothing to prevent the application from changing the 
button's target (via Isettarget) at any time. This would cause the /setfooter mes­
sage to be sent to some other object the next time the user pressed the button. 
Of course, this new target object should be some other frame (or should at least 
understand the Isetfooter message). 

Automatic Menu Targets 

In recognition of the fact that the obvious target for a menu callback is the can­
vas which received the MENU press and caused the menu to be shown, 
ClassCanvas includes code to automatically set the target for menus that it 
manages. 

By default (and unless the automatic menu targeting is defeated) every time a 
menu is brought up the canvas which received the MENU press sets itself to be 
the target of the menu before showing it. See the sections on Menus and 
ClassCanvas for a more detailed explanation of this behavior. 

Disappearing Targets 

Targets do not ensure the continued existence of the objects they reference. If 
the application removes its last hard reference to the targetted object, the target­
ting mechanism will notice this and clear the (soft) target reference. Thus it is 
possible for a target to become null without having been explicitly cleared by 
the application. Robust applications which expect this behavior should not 
blindly use Isendtarget in their callbacks. They should first test whether there is 
still a target to send to. 

How Targets Work 

A target consits of two NeWs data structures: a soft reference to the remote 
object, and an interest in that object's obsolesence expressed in the global UI 
event manager. 

When no more hard references to the targetted object exist NeWS sends an 
/Obsolete event signalling that its useful life has come to an end, and all 
remaining references (the soft ones) should be cleared so that storage allocated 
for the object can be reclaimed. 

Miscellaneous Topics 10-3 



Miscellaneous Topics 

This IObsolete event is caught not only by the object itself (through the stan­
dard mechanism in class Object), but also by the instance of OassTarget which 
is referencing it. On receipt of this event the ClassTarget instance silently 
removes its reference to the targeted object, thus allowing it to be reclaimed. 

NeWS Development Environment Applications 

Taxonomy of Applications 
tNt application programs fall into three natural categories, depending on their 
complexity: 

1. PostScript-only applications. These are small programs, often demonstra­
tion programs, that execute entirely in the server. The code to implement 
these programs is typically downloaded via psh(1), and is usually places 
in the userdict associated with the psh connection. 

2. PostScript I CPS applications. Any application with a client-side will use 
CPS, and those without asynchronous messages from the server to the 
client may not need to use the Wire Service. 

3. PostScript I CPS I Wire Service applications. This is the most general 
category, and will include most medium and large scale applications. 
These applications typically start by sending PostScript code to the server 
via CPS. They then enter the Wire Service's Notifier, which receives and 
distributes the user interface events that require client-side processing. 

Starting an Application 
See the Wire Service sections of this manual and the CPS section in the NeWS 
2.0 Programmer's Guide for details of starting an application with a client-side. 
What follows are the simple details of starting a PostScript-only application, or 
the PostScript-based component of a mixed client-server application. 

Below is a standard template for starting the PostScript component of an tNt 
application. It is explained below. 

10-4 tNt Technical Reference Manual 



Miscellaneous Topics 

Most applications start by placing a base frame on the screen. The client of this 
frame will be an instance of some application-specific class. 

It is important that a reference to this frame be maintained in some non­
transient dictionary. Without this reference the frame and its contents would be 
reclaimed by the NeWS memory management system immediately. This is the 
reason for defining / frame in the userdict. 

Typical applications then activate the frame, by sending the /activate method to 
it. This has the effect of starting event management on the frame and every 
canvas within it. 

The next task is to establish a position and size for the application. /place per­
forms this task. It consults the desktop manager for a position, obtains a size by 
sending the /preferredsize method to the frame. 

Next the frame is made visible by sending the /map method to it. After this 
point the application is running independently, and responding to user input. 

Finally, and only if the application is completely server-based and loaded via 
psh(1), the cliche "newprocessgroup currentfile closefile" should be executed. 
This has the effect of breaking the connection with the psh without killing the 
application. 

Miscellaneous Topics 10-5 



Miscellaneous Topics 

Killing an Application 
PostScript-only applications that were launched in the above manner may be 
killed in two ways: 

• By the user selecting "Destroy" from the frame's menu. Applications can 
defeat this destruction by overriding the frame's Idestroyfromuser 
method. 

• By the application removing the reference to its base frame in the userdict. 
This will cause all the resources consumed by the application to be 
reclaimed by the NeWS server. 

Applications with a client component can most simply kill themselves by break­
ing their connection. The most obvious way to do this is to exit their UNIX pro­
cess. 

10-6 tNt Technical Reference Manual 



---- -------~~ 





11 Interface Reference 

Interface Reference 
Introduction 
Wire Service 

• Error Handling 
• Connection Management 
• Handle Allocation and Registration 
• Notifier 
• Ease Of Use Macros 
• Synchronization 
• Constants 

AbsoluteBag 
• Direct Methods 
• Class Variables 

ClassBag 
• Direct Methods 
• Subclass Methods 
• Class Variables 

ClassBaseFrarne 
ClassButton 

• Direct Methods 
• Subclass Methods 

ClassCanvas 
• Direct Methods 
• Subclass Methods 
• Class Variables 

ClassCommandFrame 
ClassContainer 

• Direct Methods 
• Subclass Methods 
• Class Variables 

ClassControl 
• Direct Methods 
• Subclass Methods 
• Class Variables 

Table of Contents 

11-1 
11-1 
11-1 
11-2 
11-2 
11-8 
11-12 
11-13 
11-14 
11-15 
11-15 
11-15 
11-18 
11-19 
11-19 
11-26 
11-29 
11-30 
11-30 
11-30 
11-31 
11-31 
11-32 
11-42 
11-47 
11-48 
11-49 
11-49 
11-51 
11-52 
11-52 
11-54 
11-58 
11-60 



Table of Content. ______________________ _ 

1/ 

ClassDialControl 
Class Frame 
ClassHelpFrame 
ClasslconFrame 
ClassMenu 
ClassPropertyFrame 
ClassSelectionList 
ClassTarget 

• Direct Methods 
• Subclass Methods 

ClassTextControl 
• Direct Methods 
• Subclass Methods 
• Class Variables 

FlexBag 
• Direct Methods 
• Utility Methods 

Object 
• Direct Methods 
• Subclass Methods 
• Class Variables 

~enlookAbbrButton 
• Direct Methods 

OpenlookAbbrButtonStack 
~enlookBaseFrarne 

• Direct Methods 
~enlookButton 

• Direct Methods 
• Class Variables 

~enlookButtonStack 
• Direct Methods 
• Subclass Methods 

OpenlookCheckBox 
OpenlookChoggle 
~enlookCommandFrame 
OpenlookFrarne 
OpenlookHelpFrame 
OpenlookHorizontalScrollbar 

11-61 
11-61 
11-62 
11-62 
11-62 
11-63 
11-63 
11-63 
11-64 
11-65 
11-65 
11-66 
11-73 
11-75 
11-76 
11-n 
11-80 
11-81 
11-81 
11-85 
11-86 
11-86 
11-86 
11-90 
11-90 
11-91 
11-102 
11-102 
11-105 
11-106 
11-106 
11-110 
11-110 
11-111 
11-111 
11-112 
11-112 
11-112 

tNt Technical Reference Manual 



Table of Contents 

OpenLookHorizontalSlider 11-113 

• Direct Methods 11-113 
• Subclass Methods 11-114 

OpenLooklconFrame 11-115 
OpenLookMenu 11-116 

• Direct Methods 11-116 
OpenLookNonXSetting 11-122 

• Direct Methods 11-122 
OpenLookNoticeFrame 11-127 
OpenLookNu me ric 11-127 

• Direct Methods 11-128 
• Class Variables 11-133 

OpenLookPane 11-134 
OpenLookPropertyFrame 11-134 
OpenLookTextControl 11-135 

• Direct Methods 11-135 
• Subclass Methods 11-142 
• Class Variables 11-144 

OpenLookVerticalScrollbar 11-145 
• Direct Methods 11-145 
• Subclass Methods 11-148 

OpenLookVerticalSlider 11-148 
OpenLookXSetting 11-149 

• Direct Methods 11-149 
Subclass Methods 11-154 
OpenLookXSettingControl 11-154 
RowColumnBag 11-154 

• Direct Methods 11-155 
RowColumnLayout 11-157 

• Direct Methods 11-158 
• Subclass Methods 11-159 
• Class Variables 11-160 

Table of Contents iii 





Interface Reference 

Introduction 

The following sections detail the programmer's interface to tNt. First, the Wire 
Service functions are described, then the method interface for selected classes on 
the server side of tNt. 

Note that for the server side, the reference is incomplete. Only the most com­
monly used classes are described, and only selected methods are given for those 
classes. 

Wire Service 

The purpose of the NeWS Wire Service is to provide a server-client communi­
cations package of sufficient generality to support diverse client applications 
and toolkits. 

The Wire Service is nearly independent of the PostScript language server com­
ponents of tNt. It does not presume the existence of any particular class, and 
should work as well with Lite clients as those based on the new PostScript 
toolkit (with the exception of the synchronizatrion routines.) It is an extension 
to cps. 

The components of the Wire Service are: 

• a connection manager to handle multiple connections to one or more 
servers; 

• "handle" allocation procedures, so that items on one side of the wire may 
be referred to from the other side; 

• a lightweight notifier on the C-side so that asynchronous messages from 
the server(s) can be dispatched to client functions; 

• and a synchronization package so that server-based code can make RPC­
style calls across the wire. These four components are described below, 
after the error conventions and reporting facilities. 

Interface Reference 11-1 



Interface Reference 

Error Handling 
Most Wire Service interface functions return a value which can be coerced to an 
integer and tested for a 0 return value. Many of them return a boolean: TRUE for 
sucess, FALSE for failure. 

When an error has occurred, its type is available in the wire _ Ermo global vari­
able, and a descriptive string is pointed to by wire_ErrorString. Like its 
UNIX equivalent the error condition is not cleared immediately after an error. It 
remains set until the next error. The function wire_Perrer prints the current 
error string to standard error, prefixed by the user-supplied string. 

Connection Management 
The first component of the wire Service is the connection management routines, 
which support multiple connections per server and multiple servers per applica­
tion. 

11-2 tNt Technical Reference Manual 



Interface Reference 

wire_Open takes an argument to specify the particular server to connect to. An 
argument of NULL will cause the the NEWSSERVER environment variable to be 
used. If there is no such environment variable, DISPLAY is used. If this also 
does not exist then the current host i s used with default port 2000. If the argu­
ment is not NULL then it should be a hostname, a NEWSSERVER-style string, or 
a DISPLAY-style string. These formats are discussed in the XlI/NeWS docu­
mentation. 

wire_Close is straight-forward. If the argument is wire_ALLWlRES, all of the 
connections will be closed. In this case, FALSE will be returned if there is an 
error with any of the connections. 

wire_PSinput and wire_PSoutput are accessor functions to the psio file 
pointers. These are needed if a program wishes to access the psio files. (More 
details may be found in the NeWS Programmer's Guide.) Note that the current 
implementation uses 2 file descriptors per connection. Thus, the number of 
available wires is determined by the number of available file descriptors in the 
system. This is highly implementation-specific and may be changed in the 
future. 

Interface Reference 11-3 



Interface Reference 

wire_SetCurrent has the effect of moving the appropriate file pointers into 
the PostScript and PostScrlptInput global variables. All libcps calls will 
thereafter use this connection. The act of opening a wire does not set it to be the 
current wire. This must be done manually. 

wire_Current returns the current connection. It is necessary because the 
Notifier (see below) may itself change the current connection, depending on 
where the next message has come from. Qients that do not want to reply down 
the same connection as their up-coming message will have to call 
wire_SetCurrent again before they write. 

wire_Valid returns TRUE if w is a valid wire, or FALSE if it is not. 

11-4 tNt Technical Reference Manual 



Interface Reference 

Applications may associate client data with each connection via the 
wire SetData and wire Data interfaces. The most common use of this will 
be to reestablish some per.:connection application context when processing a 
message from a particular connection. 

wire_Disable is used to remove a wire from the Notifier temporarily. Later, 
wire Enable can be used to restore Notifer service to the wire. While a con­
nection is disabled, the Notifier will not read any messages from it, and no func­
tions will be called on its behalf. The purpose of this function is to allow a client 
to negotiate with one server, and guarantee that it won't be interrupted by mes­
sages from another. When first opened, a connection is enabled. Disabling a 
wire only affects its input side; writes to a disabled wire will succeed. The func­
tion wire_Enabled reports whether a particular connection is currently 
enabled. 

wire_ALLWIRES may be passed as a paramater to wire_Disable and 
wire_Enable in order to disable/enable all of the wires in a single call. An 
error is reported if there is a problem with anyone of the connections. 

Interface Reference 11-5 



Interface Reference 

Application programmers may supply three functions that the notifier will call 
after particular abnormal events. If the connection is terminated, other than by a 
call to wire_Close, (*death) () is called. This user-supplied function should 
not attempt to close the offending wire. If the notifier finds a token at the head 
of an input queue that is not recognizable as a dispatching tag, (*disease) 0 
is called, and the current connection is preset to the offending one. It is the 
responsibility of this function to consume the leading non-tag values from the 
stream. Finally, if the notifier finds a dispatching tag which has not been 
registered using wire_ReqisterTaq, (*unknowtaq) 0 is called. A NULL 
argument to any of these three arguments to Problems will leave that function 
unchanged. 

11-6 tNt Technical Reference Manual 



Interface Reference 

If wire Problems is not called, the functions wire DeathDefault, 
wire_D!seaseDefault and wire_UnknownTaqDefault are used. 
wire_DeathDefault prints a message to stderr, DiseaseDefault cleans up 
the queue and prints a message to stderr, and wire_UnknownTaqDefault eats 
the tag and any following arguments, also printing a message to stderr. 

If wire_Problems is called with wire_ALLWIRES as the first parameter, then 
the same set of callbacks will used for all connections. 

wire _ SkipEvent consumes the initial token on the current wire and any 
remaining input upto, but not including the next tag. If there is no next tag on 
the current wire wire_SkipEvent will not block waiting for one. This func­
tion is useful when writing disease and unknowntaq functions. 

wire AddFileHandler adds a file to the Notifier's list of files to check. When 
data is detected on the file, the callback is called and passed the data pointer. 
wire RemoveFileHandler removes a file from the list. Note that the file is 
not a wire Wire and cannot be enabled or disabled. There are no restrictions 
imposed on the file and it is up to the client to handle all operations within the 
callback. 

Note that these routines all take a file pointer. If a file descriptor is desired in 
the application program, a call to fdopen can be made with no adverse side­
effects. 

Interface Reference 11·7 



Interface Reference 

Certain clients of the Wire Service may want to build data structures that are 
indexed by a wire. For this reason a pair of procedures (currently macros) are 
provided that map a wire into a unique small integer and back again. This is 
meant to be used in those cases where client does not want to use the client 
data field associated. with the connection. 

Handle Allocation and Registration 
Both the C and PostScript language components need to reference remote 
objects. The C programmer may need to modify or query some PostScript 
language object he created. earlier. Similarly, any PostScript language object 
which wishes to notify the client of a user event needs some way to specify the 
appropriate C function to invoke. Since references to PostScript language 
objects can not be passed across the wire, and C pointers can not easily be 
stored. in the PostScript language world, we provide two "handle allocators" 
which generate and remember unique identifiers. 

11-8 tNt Technical Reference Manual 



Interface Reference 

The Wire Service uses "tags", as provided by CPS, to drive its notifier. Before 
you can register a callback with the notifier, you must obtain a tag to associate 
with the callback. 

wire_AllocateTags takes a number N and returns another M, such that none 
of the integers M, M+l, ... M+N-l are already allocated. These integers are han­
dles whose primary use will be to dispatch messages from the server to client 
functions. 

wire_AllocateNamedTags is a thin wrapper around wire_AllocateTags. 
It takes a NULL terminated array of pointers to integers, and assigns a tag 
through each of these pointers. Here is a typical use: 

Interface Reference 11-9 



Interface Reference 

wire_ReserveTags is provided to allow dynamically-allocated tags to coexist 
with old-style constant tags. If you know that some piece of code uses tag 
values 1..50, then before calling AllocateTags you should call 
wire_ReserveTags (50). This facility can also be used to leave space for your 
own private tag allocator if the one provided by the Wire Service doesn't meet 
your needs. Note: ReserveTags must be called before any connections are 
opened. 

wire_RegisterTag allows you to associate a function pointer and a user data 
pointer with a tag. If this tag is ever found on the wire by the notifier, your 
function will be called. TagFunction and TagData retrieve the previously 
registered information. 

The Wire Service uses CPS usertokens as handles to PostScript language objects. 
These tokens are allocated on a per connection basis. The application is reponsi­
ble for the registration of the usertoken in the server. These three calls are 
analogous to the above calls for tag allocation, except that they are done on a 
per-wire basis. Unlike wire_ReserveTags, wire_ReserveTokens is called 
after the connection has been opened. 

11·10 tNt Technical Reference Manual 



Interface Reference 

There is no equivalent to wire_ReqisterTaq () because this cannot be done 
from the C process - you need a reference to the PostScript language object to 
register it. Here is how you should use the usertoken facility for registering 
your server-side objects: 

Interface Reference 11-11 



Interface Reference 

Notlfler 

The purpose of the Notifier is to read tags from one or more server connections, 
and depending on their value, call particular client functions. The functions that 
are called are those that were previously registered using RegisterTag (). The 
Wire Service provides both popular styles of notification: the notifier itself can 
handle the main loop, or else the client program can repeatedly request the 
dispatching of a single incoming message. The two styles can also be mixed in 
the same application. 

Wire_Notify causes a single tag to be read from one of the active connections. 
(Round-robin scheduling is used when there is more than one connection with 
data ready for reading.) This tag is used as an index into the table of registered 
procedures. The procedure is then called with the handle and registered data as 
arguments. (See the function my_slider_handler in the example below). 
Wire_Notify has the side-effect of setting the current connection, so that 
registered functions can read further arguments from the wire using normal 
CPS and psio functions. If there is no data available on any of the active connec­
tions, wire_Notify will block until some message arrives or the period 
specified in the timeout parameter expires. If a timeout occurs or the block is 
interrupted by a system call, Wire_Notify will return an error. 

11·12 tNt Technical Reference Manual 



Interface Reference 

wire_WouldNotify does not block, and reports whether there are any pend­
ing messages on the specified wire. The special argument, wire_ALLWIRES, 
causes this procedure to return TRUE if any of the active connections have input. 

wire_EnterNotifier will be the main-loop for many client applications. It is 
reentrant, and can be intermixed with calls to wire Notify. In fact, it will do 
little more than repeatedly call wire_Notify itselCA call to 
wire_EnterNotifier will not return until the corresponding 
wire ExitNotifier has been executed. 

wire_ExitNotifier is called when the application programmer wants to exit 
from a (possibly nested) notifier loop. The corresponding 
wire_EnterNotifier will return as soon as the registered procedure which 
called wire_ExitNotifier itself returns. Pending messages are not processed 
in any way. 

Ease Of Use Macros 

The following macros are provided to enable data to be easily read from the 
current connection. It is assumed that the user of these macros knows the type 
of the data on the wire. Thus there is no type checking or error reporting. If the 
data is of the wrong type, garbage may be returned and the wire may be left in 
an undetermined state. The caveat to this is that numeric arguments are con­
verted by CPS (floating to integer and vice versa). 

Interface Reference 11-13 



Interface Reference 

Synchronization 
CP S provides a mechanism for a client process to block pending notification 
from a server process. The wire service provides a complementary mechanism 
which will allow a server process to block pending notification from a client 
process. This will provide symmetric facilities for synchronous communications. 

The server interface looks like: 

The proc is executed, and wire_Sync guarantees it will not return until the C 
client has acknowledged dealing with anything sent to it by the proc. Thus, for 
example, the PostScript program can ask the C program to send it some value, 
or to do some painting, etc., and be sure that C has responded to the request 
before trying to do any more PostScript language code. Naturally, this makes 
some assumptions about the client; hence the requirement that the client be built 
on the Wire Service. 

The client interface is: 

wire_InSync simply checks to if the specified wire is responding to a syn­
chronised request from the server, which means that PostScript language code 
sent now may be executed before PostScript language code sent earlier. This is 
a subtle but important point. 

11·14 tNt Technical Reference Manual 



Interface Reference 

Constants 

The following constants are defined in the wire service: 

AbsoluteBag 

Subclass of Class Bag 
Source file: bagutlls.ps 

This class can be directly Instantiated 

An AbsoluteBag is a general purpose bag in which clients are given an absolute 
position when they are inserted. Regardless of the size and shape of the bag, 
clients always remain in this position thereafter. 

Direct Methods 

/addclient 

Interface Reference 

name I null [x y client] laddclient 
name I null [x y client_class_args 
client_class] laddclient 
There are several parameters required to add a 
client to an absolute bag: 

• name, the client may be named or 
unnamed (null as the first argument), 

11-15 



Interface Reference 

/baggage 

/clientcount 

/clientlist 

/destroy 

/location 

/minsize 

11-16 

• baggage, which must be present in an 
absolute bag. It consists of the x and y 
coordinates at which the client will be 
located. 

• client, which may be an instance or a class 
to instantiate, along the same lines as 
described in the section on ClassBag. 

In the example below, the bag makes an 
instance of OpenLookButton, and stores it in the 
bag with the client name supplied. 

Ib1 [2050 (Foo) { ... } OpenLookButton) laddclient mybag send 

See the ClassBag section for details on the nam-
ing and instantiation of bag clients. 

client !baggage [x y] 

Returns the baggage, which specifies the abso­
lute position of the client in the bag. 

- Iclientcount n 
Returns the number of clients currently in the 
bag. 

- Iclientlist [clientl client2 ... ] 
Returns an array of clients, with the canvas 
clients in the same order as they were inserted 
into the bag, unless explicitly changed by the 
application. 

- Idestroy 
Destroy the bag and its clients. Refer to the 
ClassBag Idestroy method for the additional 
information on the use of this method. 

- /location x y 
Return the location of the origin of the bag rela­
tive to the CTM. 

lminsize minwidth minheight 
Compute the minimum acceptable size for this 
bag, This is how big the bag must be to hold the 
clients at their current sizes (not their minumum 

tNt Technical Reference Manual 



/move 

/new 

/preferredsize 

/removeclient 

/reshape 

/sendclient 

/setbaggage 

Interface Reference 

Interface Reference 

sizes). A well behaved application will respect 
this size when reshaping the bag in response to 
user mouse actions. 

x y Imove 
Move the origin of the bag to the specified loca­
tion, in CTM coordinates. 

parentcanvas Inew instance 
Create an absolute bag parented to the specified 
canvas. 

- Ipreferredsize preferredwidth prefer­
redheight 
Calculate the "ideal" size of the bag, which 
defaults to the minimum size. Well behaved 
applications will respect this size when initially 
displayed the bag. 

client I name In Iremovedient oldclient 
true 
client I name In Iremoveclient false 
Remove the client given, named or indexed in 
the argument. The method returns true and the 
client object if the client is found, otherwise it 
returns false. 

x y w h Ireshape 
Reshape the bag to the dimensions given and 
invalidate it. This results in the bag being layed 
out as the first step in painting it. 

<args> /method /name Isendclient results 
Send the specified method, with any arguments, 
to the named client. An error results if the 
client is not in the bag. 

client [x y] Isetbaggage 
Set the client's positioning coordinates. 

11-17 



Interface Ref.rence 

/settopdown 

/size 

/topdown? 

Class Variables 
/TopDown? 

see also: 
ClassBag 

11·18 

bool lietlopdown 
Define the orientation of the bag's coordinate 
system as seen by clientS: true sets the coordi­
nates "top-down', false sets them ''bottom-up''. 
See the Itopdown7 method for more details. 

- Isize w h 
Return the. width and height of the bag in coor­
dinates of the CfM. 

- Itopdownl bool 
Return the positioning of the bag's coordinate 
system: true if the coordinates are "top-down', 
with (0,0) at the upper left corner of the bag. 
False means the coordinates are ''bottom-up'', 
with (0,0) at the bottom left comer, which is the 
standard NeWS orientation. 

Note first, that this positioning effects the clients 
of the bag as well as the bag itself. If the bag's 
cooldinates are "top-down" (origin at the upper 
left), then so is the origin of each client. 

Note second, that this variable only effects the 
orientation of clients inside the bag. Externally, 
as a NeWS canvas, the bag's origin remains at 
the lower left comer, regardless of this variable. 

This boolean variable reflects the positioning of 
the bag's coordinate system: true if the coordi­
nates are "tOp-down', false if the coordinates 
are ''bottom-up''. See the Itopdown? method 

for more details. 

tNt Technical Reference Manual 



Class Bag 

Subclass of ClassCanvas 
Source file: bag.ps 

Interface Reference 

This class should be subclassed rather than directly Instantiated. 
A bag is a type of canvas that manages a group of clients, either canvases or 
graphics. Bags formalize the concept of containment. 

When a client canvas is added to a bag, it is reparented to the bag, becoming a 
child of the bag in the NeWS canvas tree. Thus, in most applications, the inte­
rior canvases descended from the application's base frame are typically bags. 

A bag provides its clients with names, shared event management, and collective 
layout and damage repair. 

Direct Methods 

/activate 

/addclient 

Interface Reference 

- lactivate 
Activate event management for the bag and all 
its canvas clients. This method is called recur­
sively on clients that are themselves bags. 

name I null [... client] laddclient 
name I null [ ... clientclass] laddclient 
name I null client laddclient 
There are several ways to add a client to a bag. 

The client can be specified as an instance of a 
subclass of either ClassCanvas or ClassGraphic. 
Or the client can be specified by a subclass of 
ClassCanvas, in which case, the bag will instan­
tiate the class and accept that instance as its 
client. If arguments are required to instantiate 
the class, they must be supplied along with the 
"baggage" described below. Note that a parent 
argument is not required when specifying a 
class to instantiate: the bag will be the parent. 

11·19 



Interface Reference 

/addfocusdescendant 

11·20 

The client may be named or unnamed. The 
name may be any legal dictionary key in the 
PostScript language. If a name is given, the 
client can later be accessed by supplying that 
name to the Igetbyname method. If null is 
given as the name, the client is accessed by the 
order in which it was put into the bag, the first 
client being number O. 

The application must remember the insertion 
order of unnamed clients. The bag will return a 
client given its index, but there is no method for 
which the bag returns the index. 

The client can be accompanied by "baggage", 
which is data bundled into an alTay with the 
client instance (or class). This infonnation is 
used by bag subclasses, typically in laying out 
the clients. The arguments necessary to instan­
tiate a client from a class are supplied next to 
the baggage, but are not consumed during 
instantiation and are not stored. 

Note that if you move a client from one bag to 
another, you must first send lremoveclient to 
the.bag the client is leaving before sending 
laddclient to the bag the client is entering. 

For examples of adding a client to a bag, see the 
introductory section, Bags. 

client laddfocusdescendant 
This method is used to notify all parent bags of 
this bag that they have a new descendant that is 
interested in input focus. This can happen 
either because a new key consumer was added 
to this bag or because an existing client changed 
status, becoming interested. 

The method is called automatically when adding 
a client to a bag. It is not generally necessary to 
override this method, either. 

tNt Technical Reference Manual 



/addkeyconsurner 

/baggage 

/client? 

/clientcount 

/clientlist 

/deactivate 

/destroy 

Interface Reference 

Interface Reference 

client laddkeyconsumer 
This method is called automatically when 
adding to the bag a client that is interested in 
keyboard input (a key consumer). 

client /baggage [data] 
Returns the baggage data that was passed in 
when client was added to the bag. 

/ name Iclient? boolean 
Returns true if name belongs to an existing client 
in the bag. 

- Iclientcount n 
Returns the number of clients currently in the 
bag. 

- Iclientlist [clientl client2 ... ] 
Returns an array of clients, with the canvas 
clients in the same order as they were inserted 
into the bag, unless explicitly changed by the 
application. 

- Ideactivate 
Tum off event management for the bag and all 
clients. This removes all interests expressed by 
the bag and clients. It also kills the event 
manager process if it is owned by the bag, oth­
erwise it notifies the event manager that the bag 
is no longer active. 

- Idestroy 
Destroy the bag and its clients; send Idestroy­
dependent to each client and remove any associ­
ated baggage. This method is called automati­
cally when the NeWS memory reference count 
on the bag goes to zero. 

Any clients remaining after sending Idestroy­
dependent are reparented to an offscreen can­
vas. This allows a subclasser to override Ides­
troydependent for any client that should not be 

11-21 



Interface Reference 

/destroydependent 

/focustarget 

/foreachclient 

/getbyname 

/graphicclientcount 

/graphicclientlist 

/?invalidate 

11-22 

destroyed as the result of destroying the bag 
and other clients. 

- Idestroydependent 
This method is sent to each client of a bag when 
the bag is destroyed. By default, it does Ides­
troy self send. Override this method for any 
client that should not be destroyed at the same 
time as the bag and other clients. 

- Ifocustarget canvas I null 
Return the current input focus target for the 
bag, or null if there is none. The focus target for 
a bag is the client canvas to which the bag will 
forward input focus when the bag receives it. 

proc Iforeachclient 
Call the given procedure for each client in the 
bag, with the client on the top of the operand 
stack. 

name Igetbyname client true 
name Igetbyname false 
Return the client named by the argument and 
true if the client exists in the bag. Otherwise 
return false. 

Note that the name may be an integer if the 
client was entered without a name. 

- Igraphicclientcount n 
Return the number of graphic clients in the bag. 
The total number of clients (lclientcount) minus 
this number equals the number of canvas clients. 

- Igraphicclientlist [clientl client2 ... ] 
Return an array of graphic clients of the bag, or 
the nullarray if there are none. To get an array 
of canvas clients, use Ichildren+. 

methodname /?invalidate 
This method is used to control which methods 
invalidate the bag; a method will call1?invali­
date with its own name as the argument and 

tNt Technical Reference Manual 



/invalidate 

/lastfocustime 

/layout 

/location 

/minsize 

Interface Reference 

Interface Reference 

I?invalidate will decide whether to invalidate 
the bag. By default the following methods call 
I?invalidate: laddclient, Iremoveclient, Ireshape. 
Override this method if you want a bag not to 
invalidate automatically after one of those 
methods listed above. 

- linvalidate 
This method is called by the toolkit (through 
/?invalidate) to mark the bag invalid, meaning 
that its layout is out of date. The application 
does not normally call this method directly, but 
instead it is indirectly invoked by laddclient, 
Iremoveclient, Ireshape. 

- !lastfocustime time 
Return the time when the bag last had the input 
focus. 

- !layout 
Perform layout on all clients of the bag to move 
and/or reshape them based on the current size 
and shape of the bag. Note that this method is 
not usually directly called by an application, but 
is invoked indirectly by laddclient, Irema­
veclient, Ireshape. 

- !location x y 
Return the location of the bag's origin in CTM 
coordinates. 

lminsize minwidth minheiqht 
Compute the minimum acceptable size for this 
bag. A well behaved application will respect 
this size when reshaping the bag in response to 
user mouse actions. 

When subclassing, override this method if the 
calculations do not require the current canvas to 
be the bag. (If the calculations do require the 
bag as the current canvas, override lMinSize 
instead.) 

11-23 



Interface Reference 

/move 

/new 

/newinit 

/preferredsize 

/removeclient 

x y Imove 
Place the origin of the bag at the point (x,y) in 
the coordinates of the CTM. 

parentcanvas Inew instance 
Create a bag parented to the specified canvas. 

- Inewinit 
Override this method to initialize a bag with 
arguments supplied to Inew. The overridden 
Inewinit should use the arguments in its initiali­
zation and consume them (remove them from 
the stack). 

- Ipreferredsize preferredwidth prefer­
redheight 
Calculate the "ideal" size of the bag. Well 
behaved applications will respect this size when 
initially displayed the bag. 

When subclassing, override this method if the 
calculations do not require the bag to be the 
current canvas. (If the calculations do require the 
bag as the current canvas, override IPreferred­
Size instead.) 

client I name In Iremovedient oldclient 
true 
client I name In Iremoveclient false 
Remove the client given, named or indexed in 
the argument. The method returns true and the 
client object if the client is found, otherwise it 
returns false. The effect is to remove the client 
and any of its baggage, reparent the client to an 
offscreen canvas, and deactivate it if it was using 
the bag's event manager. If the client was 
activated before being added to the bag (had its 
own event manager) it remains active. 

/removefocusdescendant client lremovefoc:usdescendant 
This method is sent to notify a bag that a des­
cendant (canvas) client has stopped being 
interested in input focus. If that descendant was 

11-24 tNt Technical Reference Manual 



/removekeyconsurner 

/reshape 

/sendclient 

/setbaggage 

/setfocustarget 

/size 

/valid? 

Interface Reference 

Interface Reference 

the focus target, this method calls lMakeFocus­
Target to obtain a new focus target. This 
method is used a bag (/removekeyconsumer) to 
notify any parent bags when a child stops con­
suming keys. 

client lremovekeyconsumer 
Notify parent bags that a child of this bag has 
stopped being a key consumer. This can happen 
either because the child was removed from the 
bag, or remained in the bag but revoked its 
interests in keyboard focus events. This method 
is not directly called by an application, but is 
invoked through Iremoveclient. 

x y w h Ireshape 
Reshape the bag to the dimensions given and 
invalidate it. This results in the bag being layed 
out as the first step in painting it. 

<args> /method /name Isenddient results 
Send the given method with arguments to the 
named client. 

client [attributes] Isetbaggage 
Store the extra information ("baggage") for the 
client. Typically in bags this information is used 
in layout. 

clientcanvas I null Isetfocustarget 
The argument is stored in the /FocusTarget vari­
able. If it is null, the bag will cease to be 
interested in input focus. Otherwise, the client 
canvas named in the argument becomes the 
focus target for the bag. 

- Isize w h 
Return the current size of the bag in the coordi­
nates of the eTM. 
- Ivalid? boolean 
Return true if the bag's layout is valid. 

11-25 



Interface Reference 

/?validate 

/validate 

Subclass Methods 
/BagBegin 

/BagEnd 

/CheaplntegerClient 

/CheaplntegerName? 

/DeRegisterByName 

/DeRegisterByOrder 

11-26 

- nvalidate 
Validate if the bag's layout is currently invalid. 

- !validate 
Layout the bag in preparation for painting. 
This method is not generally called explicitly by 
an application, but rather gets invoked through 
Ipaint or lfix. 

- lBagBegin 
Set the bag as the current canvas and save the 
current NeWS graphic context, establishing a 
"bag context". This allows layout procedures to 
operate in the OM of the bag. 

- lBagEnd 
Restore the previous NeWS graphics context. 

int ICheapIntegerClient client 
Return the client corresponding to the array 
index given as an argument. 

int ICheapIntegerName? boolean 
Returns true if the argument is an integer and 
clients are stored by number in an array. 

/naJJ'te lDeRegisterByName oldclient true 
/ name lDeRegisterByName false 
Remove the named client from the bag. Return 
the named client and true if the client is in the 
bag, otherwise, return false. 

client lint lDeRegisterByOrder client true 
client lint lDeRegisterByOrder false 
Remove the client indicated by the argument, 
either the client object itself or its index in the 
internal client array. The method returns the 
client object and true if it was present, otherwise 
false. 

tNt Technical Reference Manual 



________________________ Interface Reference 

/DeReqisterClient 

/FixChildren 

/Layout 

/MakeFocusTarqet 

/MinSize 

/NewClient 

Interface Reference 

/nanve I client IDeRegisterClient oldclient 
true 
/nanve I client IDeRegisterClient false 
Remove a client, whether stored by name or by 
order of insertion. 

- lFixChildren 
This method sends / fix to each canvas, not 
graphic, client of the bag 

- /Layout ... 
Override this method to perform specific layout 
functions for a subclass, such as placement and 
sizing relative to the bag. When this method is 
called by /layout, the bag will be the current 
canvas, so the subclass can use information 
about the bag's size and coordinates. 

newcanvas I null IMakeFocusTarget 
newcanvas' I null 
Override this method to decide which client 
should receive the input focus. This method is 
called when adding a key consumer to a bag 
that has no focus target or when removing the 
current focus target. 

- /MinSize w h 
This method is called by /minsize with the bag 
as the current canvas to calculate the minimum 
size for the bag. Override it to implement spe­
cial calculations for a subclass, for example bas­
ing the minimum size of the bag on the 
minimum sizes of clients. 

parentcanvas lNewClient instance 
This method is used when creating a bag client 
from a clientclass given as an argument to 
ladddient It is executed in the context of the 
class being instantiated. Override this method 
to provide special treatment of a newly created 
client instance. 

11-27 

- --- -------



Interface Reference 

/NoticeDescendantFocus event lNoticeDescendantFocus 
This method is called by lNoticeFocus when the 
input focus has moved into a child of the bag; it 
sets the focus target variable (lFocusTarget) to 
the child canvas. 

/NoticeFocus event lNoticeFocus 
This method is the callback from the interest 
expressed by the bag in noticing input focus 
changes; it is called when input focus enters a 
focus-forwarding bag or any of its children. It 
determines the focus target and transfers the 
focus to it via ffransferFocus. If the focus 
changes on the bag itself, lNoticeSelfFocus is 
called. If the focus changes on a client of the 
bag, INoticeDescendantFocus is called. 

/NoticeFocusEnterExit event lNoticeFocusEnterExit 
This method is called when focus enters or 
leaves a bag hierarchy; not when focus shifts 
from one client to another client of a bag. Over­
ride it when special behavior is required on 
gaining or losing input focus. 

/NoticeSelfFocus event lNoticeSelfFocus 
This method is called when focus moves into or 
out of a bag. It transfers the focus to the client 
canvas indicated by lFocusTarget. 

/PaintChildren - lPaintChildren 
This method is called by /paint to paint each 
canvas client of the bag. 

/PaintGraphicChildren - lPainlCraphicChildren 
This method is called by / paint to paint each 
graphiC client of the bag. 

/PreferredSize IPreferredSize w h 
This method is called by /preferredsize with the 
bag as the current canvas. By default it returns 
Iminsize. Override it to perform any special cal­
culations for a subclass, for example, considering 
the preferred sizes of clients. 

11·28 tNt Technical Reference Manual 



/ReqisterByName 

/ReqisterByOrder 

/ReqisterClient 

/TransferFocus 

Class Variables 

/FocusForwarder? 

/FocusNoticer? 

/FocusTarqet 

see also: 
ClassCanvas 

Interface Reference 

Interface Reference 

/naJJll! client lRegisterByName 
This method adds a client to the bag by name. 

client lReglsterByOrder 
This method adds a client to the bag by the 
order of insertion. 

/nanelnull client lRegisterClient 
This method adds a client to the bag by name or 
by the order of insertion, depending on the 
argument given. 

canvas rrransferFocus 
Transfer input focus to the client indicated by 
the IFocusTarget variable. 

This variable reflects the bag's interest in input 
focus on behalf of its clients. When true, this 
variable indicates that the bag will receive input 
focus and then pass it on ("forwward" it) to the 
client indicated by IFocusTarget. 

This variable is true when the bag is interested 
in being notified whenever input focus enters or 
leaves it or any of its descendants. 

The client stored in this variable receives the 
input focus if the IFocusForwarder? variable is 
true. 

11-29 



Interface Reference 

Class BaseFrame 

Subclass of Class Frame 
Source file: frame.ps 

ThiS class should be subelassed rather than directly Instantiated. 
This class is not for direct use; rather it supports frame (window) subclasses, 
such as the OPEN LOOK window frames. If you need a simple window frame 
for immediate use, consider one of the OPEN LOOK frames: 

• OpenLookBaseFrame 

• OpenLookPropertyFrame 

• OpenLookNoticeFrame 

• OpenLookCommandFrame 

• OpenLookHelpFrame 

Class Button 

Subclass of ClassControl 
Source file: button.ps 

This class should be subelassed rather than directly Instantiated. 
This class is the superclass for OpenLookButton as well as various pins and 
anchor boxes used throughout the toolkit. The following methods should be stu­
died in conjuction with ClassControl. 

Direct Methods 

/graphic 

/setgraphic 

11·30 

- Igraphic obj 
Return the graphic object of the button. 

thing I graphic Isetgraphic 
Convert the argument to a graphic, if necessary, 
and store it as the button's graphic. Then, 
invalidate the button to require layout before 
repainting. 

tNt Technical Reference Manual 



Subclass Methods 

/CreateGraphic 

/EnGraphic 

/unGraphic 

see also: 
ClassControl 

ClassCanvas 

Subclass of Object 
Source file: canvas.ps 

Interface Reference 

thing ICreateGraphic graphic 
This method is SubClassResponsibiIity. 

Override it to create a graphic from the thing 
supplied. 

thinglgraphic IEnGraphic graphic 
Return a graphic corresponding to the argument 
supplied. If the argument is a terminal graphic, 
return it as is. Otherwise, use /CreateGraphic 
to make it into a graphic. 

graphic /UnGraphic thinqI qraphic 
Return the thing or graphic that was supplied to 
construct this graphic. If the object is already a 
terminal graphic, return it as is. 

This class can be directly Instantiated, but Is usually subclassed. 
ClassCanvas provides the structure underneath most of what you see on the 
screen (the "look" of the toolkit), as well as linking it to input (the "feel" of the 
toolkit). A tNt canvas is basically a NeWS canvas with additional structure to 
support object oriented programming, display of the canvas, event management, 
and NeWS canvas tree operations. 

Interface Reference 



Interface Reference 

Direct Methods 
/activate 

/active? 

/autotargetmenu 

/autotargetmenu? 

/bbox 

/bboxfromuser 

/callhelp 

/canvas 

11-32 

- lactivate 
Activate event management for this canvas; 
express the interests returned by the Imakein­
lerests method. Create an event manager for 
the canvas if one cannot be found in one of its 
parent canvases. 

- lactive? bo01 
Return true if event management has been 
activated on the canvas. 

boo1 lautotaIgetmenu 
When true (the defaulO, the canvas is automati­
cally made the target for its associated menu 
whenever the menu is popped up. 

- lautotargetmenu? bo01 
Return true if the canvas is automatically the 
target of its associated menu when the menu is 
popped up 

- Ibbox x y w h 
Return a bounding box for the canvas computed 
by the NeWS getbbox operator. 

- Ibboxfromuser x y w h 
Return a bounding box determined by mouse 
movement from the user. This method causes 
the cursor on the screen to change to a crosshair, 
and the NeWS process to block waiting for the 
user to press down the SELECT button. The 
user presses and drags out a rectangle that 
becomes the bounding box when the button is 
released. 

- IcaIlhelp 
Call the help procedure for this canvas. 

- Icanvas canvas 
This method returns the NeWS canvas object 
associated with this tNt canvas instance. 

tNt Technical Reference Manual 



/children+ 

/children-

/deactivate 

/descendants 

/destroy 

/eventrngr 

/farthestcorner 

Interface Reference 

Interface Reference 

- Ichildren+ array 
Return an array of NeWS canvases, the children 
of this canvas in the NeWS canvas tree. The 
array is ordered from the bottom canvas first to 
the top canvas last. 

- Ichildren- array 
Return an array of NeWS canvases, the children 
of this canvas in the NeWS canvas tree. The 
array is ordered top canvas first to bottom can­
vas last. 

- Ideactivate 
Tum off event management for this canvas. If 
the canvas's event manager is shared with 
another canvas, notify the event manager to 
Ide activate canvas for this canvas. If the event 
manager is owned by this canvas, destroy it. 

- Idescendants array 
Return an array of canvases, the descendants (if 
any) of this canvas. The array is ordered by 
proximity to this canvas, children before 
grandchildren. Within each generation, top can­
vases come before bottom canvases. 

- Idestroy 
Destroy this canvas, have it removed from the 
canvas tree and interest lists. Before the NeWS 
server can reclaim the memory used by the can­
vas, all references to it must be remove. When 
subclassing, override this method to make sure 
any additional references you have made to an 
instance of the subclass are removed. 

- leventmgr eventmqr 
Return the event manager process for this can­
vas. 

x y Ifarthestcomer x' y' 
Return the comer of the canvas farthest from the 
given point, in the coordinates of the eTM. 

11-33 



Int~rface Reference 

/fix 

/getcolors 

/help 

/invalidate 

/isinside? 

/keyconsumer? 

/lastfocustime 

/location 

/lockminsize 

11-34 

- lfix 
Called by the damage handler to repaint only 
the damaged area of a canvas using lFixCanvas. 
To paint the entire canvas use /paint 

- Igetc:QIQr& 8trokecolor fillcolor 
textcolor 
Return the three colors of a canvas, used for 
stroking its outline, filling the interior, and text. 
By default these colors are those of the parent 
canvas. 

- !help proc I null 
Return the canvas's help procedure (as set by 
/sethelp), or null if there is none. 

- linvalidate 
Mark the canvas "invalid", the interpretation of 
which is left to subclasses. In the case of bags, 
for example, invalid means that the bag's layout 
is out of date. 

xO yO xl yl lisinside? bool 
Return true if the canvas is inside the box 
specified by its lower left and upper right 
comers respectively. 

- Ikeyccmsumer? bool 
Return true if the canvas is interested in input 
focus. 

- llastfCK:Ustime time 
Return the last time the input focus was on this 
canvas. 

- llocatiQn x y 
Return the location of the origin of the canvas 
relative to the CTM. 

null I vh llCK:kminsize 
Change the minimum size (lminslze) for this 
canvas instance. If the argument is null, restore 
the default value for the class. 

tNt Technical Ref~rence Manual 



/makeinterests 

/map 

/mapped? 

/menu 

/methodancestors 

/minsize 

Interface Reference 

Interface Reference 

- Imakeinterests array 
Return an array containing the interests of this 
canvas, using the lMakeInterests method. In 
normal use, this method is nor directly called by 
an application. 

- Imap 
Set the /Mapped attribute of the canvas. Refer 
to the NeWS 2.0 Programmer's Guide for the 
model of how this affects the canvas becoming 
visible on the screen. 

- Imapped? bo01 
Return true if the canvas is currently mapped 
onto the screen. 

- Imenu menu I null 
Return the menu object associated with this can­
vas as set by Isetmenu and stored in the ICan­
vasMenu variable The menu is displayed when­
ever the MENU button is pressed with the 
pointer over the canvas. Return null if there is 
no menu set. 

method Imethodancestors array 
Return an array of the ancestors in the NeWS 
canvas tree that recognize the method supplied 
as an argument. If the class to which the 
method is sent recognizes the method, it is 
included in the array. If the sender of this 
method does not want the immediate recipient 
of the method included, it should send the 
method to the parent. 

- Iminsize w h 
Return the minimum size for this canvas as 
specified by the subclass of ClassCanvas to 
which it belongs. This value is used by the util­
ity functions Ireshapefromuser and 
Istretchcorner, which will not allow any user 
mouse action to make the canvas smaller than 

11-35 



Interface Reference 

/move 

/movefromuser 

/new 

/newinit 

/paint 

/parent 

/parentdescendant 

11-36 

Iminsize, the smallest that the user can make the 
canvas with the mouse. 

x y Imove 
Move the origin of the canvas to the specified 
location in the coordinates of the CI'M. 

- Imoveiromuser 
Interactively move the canvas. This method 
uses a class variable IDragFrame? to control 
whether or not a wire frame or the canvas itself 
is shown as the canvas is moved. 

parentcanvas Inew instance 
Return a new canvas instance, with the specified 
canvas as its parent. The parentcanvas argu­
ment is consumed by Inewobject. 

args I - Inewinit 
This method is called by /new to initialize an 
instance. It is overridden to allow subclassers to 
perform any specific initialization on the 
instance. When it is overridden, the method 
should first do Inewinit super send so that the 
superclass can do its initialization. Then it 
should do any specific inititalization the class 
requires and consume the arguments on the 
stack. 

- Ipaint 
Paint the entire canvas, using the lPaintCanvas 
method. 

- Iparent instance 
Return the NeWS canvas that is this canvas's 
parent in the canvas tree. 

canvasl Iparentdescendant canvas2 true 
canvasl Iparentdescendant false 
Note that this method is sent to a class, not an 
instance. 
This method asks a class to return the canvas 
closest to the given canvas in the NeWs canvas 

tNt Technical Reference Manual 



/parents 

/path 

/place 

/preferredsize 

/reparent 

Interface Reference 

Interface Reference 

tree that is also an instance of a subclass of that 
class. (Basically, it asks a class "which is the 
canvas closest to me that is also a descendant of 
you?") For example, 

mycanvas IparentdeSCl9ndant ClassFrame send 
returns the frame surrounding mycanvas and 
true. If there is no such canvas, the method 
returns only false. 

- Iparents array 
Return an array of the canvas's ancestors 
ordered from its (immediate) parent first to 
framebuffer last. 

x y w h Ipath 
Using the arguments to define a bounding box, 
this method returns a path that is the shape of 
the canvas sized to fit the box. You should 
override this method for any subclass that is not 
rectangular in shape. 

- Iplace 
This method is overridden by subclasses that 
have a default placement scheme. For example, 
frames override this method to specify their 
default placement on the framebuffer. OPEN 
LOOK frames override it to do staggered layout. 
The default action is to reshape the canvas from 
user input (lreshapefromuser). 

- Ipreferredsize width height 
This method allows a subclasser to specify the 
size a canvas should be when it is started. (For 
example, the Iplace method in frames calls Ipre­
ferredsize on its client canvas.) By default, this 
method simply calls Iminsize. You should over­
ride this method (or IPreferredSize) to specify 
the 'ideal' size for a canvas subclass. 

newparentcanvas Ireparent 
Move the canvas in the NeWS canvas tree, to 
have the given canvas as its parent. 

11-37 



Interface Reference 

/reshape 

/reshapefromuser 

/scroll 

/setcolors 

/setcursor 

11-38 

Note: do not call this method when using bags; 
they handle reparenting themselves. 

x y w h lreshape 
Reshape the canvas to fit the bounding box 
specified by the arguments, in the coordinates of 
the CfM. This method allows the toolkit or the 
application to position the canvas on its parent. 

- lreshapefromuser 
Reshape the canvas from user interaction. First, 
an application sends this method to a canvas. 
Next, the cursor on the canvas changes to a 
crosshair, and the application's NeWS process 
blocks until the user performs a press-drag­
release with the SELECT button. Then, the can­
vas is then resized to fit the resulting bounding 
box. but no smaller than the minimum size 
(/minsize). 

dx dy Iscroll 
Scroll the contents of the canvas by the given 
increments. Non-retained canvases should over­
ride lPaintSaolledArea to update the canvas. 

strokecolor fillcolor 
textcolor Isetcolon 
Sets the colors for stroking the border of the 
canvas, filling its interior, and drawing text. 
Null as an argument means do not change that 
value. 

intlkwd intlkwdlnull I~nor 
cursorobject I~r 
The arguments to this method are either a 
NeWS cursor object or the parameters to iden­
tify one in a special dictionary (/Cursors). These 
are the image and the mask identifiers, respec­
tively. They can be either a keyword such as 
ptr or an integer. A null second argument 
means that the mask is the next item in the 

tNt Technical Reference Manual 



/seteventmqr 

/sethelp 

/setkeyconsumer 

/setlastfocustime 

/setmenu 

/setpaintproc 

/settextfont 

Interface Reference 

Interface Reference 

dictionary following the image specified in the 
argument. 

eventmqr I null Iseteventmgr 
Make the argument the event manager for this 
canvas. If the argument is null, there will be no 
event manager. Normally an application does 
not call this method to set its event manager, 
using lactivate to do it implicitly. 

proc I null Isethelp 
Install or remove the canvas's help procedure. 

bool lsetkeyconsumer 
This method stores its value as a variable to 
indicate whether the canvas will respond to 
input focus. True means interested in input 
focus. Simple applications using /OassKeysIn­
terest do not need to call this method. 

time lsetlastfocustime 
Promotes a variable to store the time when the 
input focus was last in this canvas. Simple appli­
cations do not need to use this method. 

menu I null Isetmenu 
Install or remove a popup menu for this canvas. 
The menu is activated by the user pressing the 
MENU button when the pointer is over the can­
vas. 

proc Isetpaintproc 
This method redefines the painting procedure of 
a canvas (lPaintCanvas). 

font Isettextfont 
Set the text font object for a subclass or an 
instance. Note that because the font itself is 
stored, it may not agree with the font parame­
ters specified by lsettextparams. If there is a 
difference, the font takes precedence over the 
parameters. 

11-39 



Interface Reference 

/settextpararns 

/settransparent 

/siblings+ 

/siblings-

/siblingsabove 

/siblingsbelow 

/size 

/stretchcorner 

11-40 

family pointsize encoding Isettextparams 
Stores the parameters defining the text font for 
the canvas. 

bool Isettransparent 
Set the transparency for the canvas (the rrran­
sparent key). If false; the canvas is !!I.ade opaque 
and an interest in lOamage is automatically 
expressed 

- Isiblings+ array 
Return an array of NeWS canvases with the 
same parent as this canvas, including this can­
vas. The array is ordered by how the canvases 
(would) appear on the screen bottom first to top 
last. 

- Isiblings- array 
Return an array of NeWS canvases with the 
same parent as this canvas, including this can­
vas. The array is ordered by how the canvases 
(would) appear on the screen top first to bottom 
last. 

- Isiblingsabove array 
Return an array of NeWS canvases on top of 
this one in the canvas tree, from the canvas 
immediately above to the one on top. 

- Isiblingsbelow array 
Return an array of NeWS canvases below this 
one in the canvas tree, from the canvas immedi­
ately below to the one on the bottom. 

- Isize w h 
Return the width and height of the canvas in 
CTM. 

x y Istretchcomer 
event Istretchcomer 
Reshape the canvas from user interaction with 
the farthest comer fixed, subject to minimum 
size constraints. If an event is supplied, its 

tNt Technical Reference Manual 



/textfont 

/textparams 

/tobottom 

/totop 

/transparent? 

/unmap 

/valid? 

!?validate 

/validate 

Interface Reference 

Interface Reference 

position is used to determine where the user 
began the interaction by pressing a button. Oth­
erwise, the coordinates are supplied directly. 

- Itextfont font 
Return the text font of the canvas. 

- Itextparams family pointsize encoding 
Return the text font parameters of the canvas. 

- Itobottom 
Move the canvas to the bottom of its sibling list 
using the canvastobottom NeWS operator. 

- Itotop 
Move the canvas to the bottom of its sibling list 
using the canvastotop NeWS operator. 

- Itransparent? bool 
Return the transparency of the canvas, true if 
transparent, false if opaque. 

- lunmap 
Unmap the canvas. 

- Ivalid? bool 
Return true if the canvas is marked valid. 

- nvalidate 
Validate the canvas if it is currently invalid. 

- Ivalidate 
Mark the canvas as valid. OassCanvas does not 
itself interpret what validity means, but leaves it 
to subclasses to do so by overriding the indi­
cated methods. For example, to a bag valid 
means not requiring layout at the moment. 

11-41 



Interface Reference 

Subclass Methods 

/BuildCanvasSend 

/Canvas 

/CreateEventMgr 

/Oamagelnterest 

11-42 

name I array lBuildCanvasSend proc 
This method builds a callback for use with an 
interest in an event on this canvas. When a suit­
able event occurs and matches the interest the 
callback will send a i'fieSSage to this canvas. 
That message is the name of a method or an 
array (executable or not) that was given as the 
argument to BuildCanvasSend. 
The callback is constructed so that it can identify 
this canvas from information in the event: the 
nnterest key of the event contains the interest, 
whose ICanvas key contains this canvas. The 
callback finds this canvas and sends the method 
name or array to it, making the array executable 
if necessary. 

For example: 

MenuButton IMenuNotify BuildCanvasSend 
IDownTransition Canvas eventmgrinterest 

PointButton {pop /OpenFrame} BuildCanvasSend 
IOownTransition Canvas eventmgrinterest 

application programmers will usually invoke 
IBuildCanvasSend indirectly through the 
simpler lMakeInterest method. 

- ICanvas canvas 
Return the NeWS canvas associated with this 
instance. 

- ICreateEventMgr emgr 
Create an event manager for this canvas. This 
method is automatically called by lactivate if the 
canvas did not inherit an event manager from its 
parent. 

- lDamagelnterest interest 
Return the canvas's stored damage interest. 

tNt Technical Reference Manual 



/DescendantsRecurse 

/DisabledColor 

/EventMgr 

/FillCanvas 

/FillCanvaslnterior 

/FillColor 

/FilterNonlnstances 

/FixCanvas 

Interface Reference 

Interface Reference 

can lDescendantsRecurse can canO canl 
can2 ... 
Return an array of canvases, the descendants (if 
any) of this canvas. The array is ordered by 
proximity to this canvas, children before 
grandchildren. Within each generation, top can­
vases corne before bottom canvases. This 
method is used by Idescendants. 

- lDisabledColor color 
Return the color used if the canvas is "disabled", 
the interpretation of which is left to subclasses. 
This method is a convenience to subclasses such 
as controls that have enabled and disabled 
states. 

- IEventMgr eventmqr 
Return the event manager for this canvas. 

color lFillCanvas 
Fill the entire canvas using color. 

color inset lFillCanvaslnterior 
Fill the inside of the canvas using color. Leave an 
unpainted edge inset wide in canvas coordinates. 

- lFillColor color 
Return the fill color of the canvas. 

array lFilterNonlnstances array' 
This method removes NeWS canvases that are 
not tNt canvases, ("non-instances") from arrays 
returned by methods that list canvases such as 
Ichildren+, Ichildren-, Isiblings+, Isiblings-, 
Isiblingsabove, Isiblingsbelow, Idescendants, 
Iparents. 

- lFixCanvas 
This is the method that handles the repainting of 
damaged portions of a canvas. It should be 
overridden in those subclasses that are able to 
efficiently repaint a damaged area rather than 
the entire canvas. 

11-43 



Interface Reference 

/GetCursorEncoding 

/HandleFix 

/HandleHelp 

/HandleMenu 

/HelpInterest 

/MakeInterest 

/MakeInterests 

11·44 

IGetCursorEncoding 

event IHandleFix 
This is the callback for the damage interest 
(lDamageInterest). 

event IHandleHelp 
This is the callback for the help interest (/Hel­
pInterest). 

event lHandleMenu 
This is the callback for the menu interest 
(lMenuInterest). 

- IHelplnterest interest 
Return the help interest object. 

name callback action canvas IMakelnterest 
interest 
This method is used when overriding IMakeIn­
terests to create a single interest that includes 
the callback argument as an executable match on 
the fAction field. The name, canvas and action 
arguments are the values placed in the fName, 
fCanvas and fAction keys of the interest, respec­
tively. The canvas argument is usually this can­
vas (fCanvas). When an event matches the 
interest, the callback is executed with the event 
on the stack. 

- IMakelnterests interestlist 
This method returns an array of the interests of 
this canvas. It is overridden to express addi­
tional interests in events over this canvas and to 
specify callbacks to execute when those events 
occur. As an example, consider: 

IMakelnterests { 
IMakelnterests super send 

} def 

PointButton /my-method IDownTransition Canvas 
IMakelnterest self send 

tNt Technical Reference Manual 



/Mapped 

/Menulnterest 

/MgrOwner? 

/PaintCanvas 

/PaintScrolledArea 

/SetActive 

/SetGlobalCursor 

/SharedDamage? 

/SharedHelp? 

/SharedMenu? 

Interface Reference 

Interface Reference 

This procedure sends lMakeInterests to its 
superclass to get any interests expressed there. 
The procedure then adds an interest in down 
transitions of the POINT button over this can­
vas, using the lMakelnterest method. 

- ~apped bool 
Returns true if the canvas is mapped; the default 
is the same value as fI'ransparent. 

- ~enulnterest interest 
Returns the menu interest of the canvas. 

- IMgrOwner? bool 
Returns true if this canvas created its own event 
manager. 

- lPaintCanvas 
Paint the entire canvas. Subclassers will want to 
override this method to correctly paint the can­
vas. 

dx dy lPaintScrolledArea 
This method is called by /scroll to paint the 
area of the canvas that was scrolled. 

bool ISetActive 

/cursor /cursormask 
null ISetGlobalCursor 

- ISharedDamage? bool 
Indicates that an interest in damage should be 
expressed if the canvas is opaque. 

- ISharedHelp? bool 
Indicates that an interest in the help key should 
be expressed if there is a help procedure. 

- ISharedMenu? bool 
Indicates that an interest in the MENU button 
should be expressed if there is a menu associ­
ated with the canvas. 

11-45 



Interface Reference 

/Siblings+ 

/Siblings-

/StrokeAndFillCanvas 

/StrokeCanvas 

/StrokeColor 

/TextColor 

/TextEncoding 

/TextFamily 

/TextFont 

/TextSize 

/Transform 

11-46 

canO I null ISiblings+ canO canl can2... I 
Return the NeWS canvases with the same parent 
as this canvas, including this canvas. The array 
is ordered by how the canvases would be lay­
ered on the screen bottom first to top last. This 
method is used by siblings+. 

canO I null ISiblings- canO canl can2... I 
Return the NeWS canvases with the same parent 
as this canvas, including this canvas. The array 
is ordered by how the canvases would be lay­
ered on the screen top first to bottom last. This 
method is used by siblings-. 

edgecolor inset 
fillcolor ISlrokeAndFillCanvas 
Draw a border which is inset wide around the 
canvas using edgecolor, and fill the interior with 
fillcolor. 

color inset ISlrokeCanvas 
Draw a border inset units inside the canvas (in 
CTM) stroke it with color. 

- ISlrokeColor color 
Return the stroke color. 

- rrextColor color 
Return the text color. 

- rrextEncoding array 
Returns the canvas's PostScript language encod­
ing vector, an array containing the mapping of 
character names to character codes 

- rrextFamiIy name 

- rrextFont font 

- rrextSize integer 
Returns the current point size of text. 

x y w h rrransform x' y' w' h' 
This method is overridden to change the default 
CTM of the canvas. The following example 

tNt Technical Reference Manual 



/XOYOFromUser 

Class Variables 

/Active? 

/AutoTargetMenu 

/BorderStroke 

/CanvasMenu 

/CursorFont 

/Cursorlmage 

/CursorMask 

/Cursors 

/DragFrame? 

/EventMgrSet? 

Interface Reference 

Interface Reference 

shows rrransform overridden to map the coor­
dinates of a canvas onto the unit square .. nf 

!Transform { % x Y w h => x' y' w' h' 

4 2 roll translate scale 0 0 1 1 

} def 

- IXOYOFromUser x y 
Block until the user clicks the mouse on this can­
vas; return the location of the mouse click. 

This variable is true if the canvas is ready for 
user interaction. 

This variable is true if the canvas automatically 
sets itself as the target object of its installed 
menu when the menu is shown. 

This variable is the size of the border around the 
canvas when painted by lPaintCanvas. 

This variable stores the canvas's menu. 

This variable stores the default cursor font of the 
canvas. 

This variable stores the default cursor image of 
the canvas. 

This variable stores the default cursor mask of 
the canvas. 

This variable stores a dictionary containing the 
cursor objects of the canvas. 

This variable indicates whether to drag the can­
vas (false) or just a wire frame (true) when mov­
ing the canvas. 

This variable is true if the canvas has an event 
manager. 

11-47 



Interface Reference 

/EventsConsumed 

/HelpProc 

/KeyConsumer? 

/LastFocusTime 

/Retained 

/SaveBehind 

/StdCursorFont 

/Transparent 

see also: 
Object 

This variable stores a list of all the events the 
canvas consumes. 

This variable stores the canvas's help procedure, 
if it has one. 

This variable is true if the canvas is interested in 
keyboard input, regardless of whether the can­
vas actually consumes them or passes them on. 

This variable stores the last time the canvas had 
the input focus. 

This variable is true if the canvas is retained. 

This variable is the NeWS ISaveBehind hint to 
the server about how to handle damage to 
underlying canvases when this canvas is put on 
screen. 

This variable stores a dictionary of cursor fonts. 

This variable is true if the canvas is transparent. 

ClassCommandFrame 

Subclass of Class Frame 
Source file: frame.ps 

This class should be subclassed rather than directly Instantiated. 
This class is not for direct use; rather it supports frame (window) subclasses, 
such as the OPEN LOOK window frames. If you need a simple window frame 
for immediate use, consider one of the OPEN LOOK frames: 

• OpenLookBaseFrame 
• OpenLookPropertyFrame 

11·48 tNt Technical Reference Manual 



Interface Reference 

• OpenLookNoticeFrame 
• OpenLookCommandFrame 
• OpenLookHelpFrame 

see also: 
ClassFrame 

ClassContainer 

Subclass of Class Bag 
Source file: bag .ps 

This class can be directly instantiated, but is usually subclassed. 
A container is a bag with defined border areas and a special client, named 
IClient. When the bag is reshaped, the bag takes for itself a fixed amount of 
space for the borders, specified by class variables. All remaining space goes to 
IClient. 

Examples of subclasses of ClassContainer are frames and panes. 

Direct Methods 

/client 

/destroy 

/destroydependent 

/fitclient 

Interface Reference 

- Iclient client I null 
Return the container's designated main client, 
the IClient object, or null if empty. 

- Idestroy 
Destroy the container and its client. Refer to 
/destroy in Class Bag for more information on this 
method. 

- Idestroydependent 
Override this method for any client that should 
not be destroyed at the same time as the con­
tainer and other clients. 

w h lfitclient w' h' 
Add the container's borders to the size of 
IClient to obtain the size the container must be 
to fit a client of the given size. 

11-49 



Interface Reference 

/location 

/minsize 

/move 

/new 

/newinit 

/preferredsize 

11-50 

- /location x y 
Return the location of the bag's origin in aM 
coordinates. 

lminsize minwidth minheight 
The minimum size for a container is by default 
the minimu.-n size of IClient with the border 
sizes added. 

x y Imove 
Move the origin of the container to the point 
(x,y) in the coordinates of the aM. 

clientlnull parentcanvas In~ instance 
clientclass parentcanvas Inew instance 
[args clientclass] parentcanvas Inew 
instance 
This method creates a new container, calling 
Inewinit to perform initialization once the 
instance is created. The arguments to Inew are: 

• the parent canvas of the container being 
created 

• the client canvas of the container, or the 
class from which to create an instance to 
be the client, or null. The client instance 
or the class to be instantiated forms See 
laddclient in ClassBag for more details on 
specifiying the client instance or a class to 
be instantiated. 

client I null Inewinit 
This method is called from Inew and consumes 
the client argument while initializing the new 
client. 

- Ipreferredsize preferredwidth prefer­
redheight 
Calculate the preferred size of the container, by 
default, the preferred size of its designated client 
plus the size of border areas. 

tNt Technical Reference Manual 



/reshape 

/setclient 

/size 

/unfitclient 

Subclass Methods 

/BorderHeights 

/BorderWidths 

/LayoutClient 

Interface Reference 

Interfsce Reference 

x y v h Ireshape 
Reshape the container to the given size. Later, 
during layout the borders (and any secondary 
clients) are given their fixed amount of space, 
and the designated client absorbs all remaining 
space. 

nevclient I null lsetclient oldclient I null 
Set IClient for the container; return the previous 
IClient or null if there was none. Supplying 
null removes the existing client, if there was 
one, without setting a new one. 

- Isize v h 
Return the current size of the container in the 
coordinates of the CI'M. 

v h lunfitclient v, h' 
Subtract the borders from the size of the con­
tainer to obtain the size IClient must be to fit 
into the container. 

- lBorderHeights number 
This method returns the total border height of 
the container, the sum of the heights of the 
header at the top plus the footer at the bottom. 
Override this method if your container has a dif­
ferent layout or geometry. 

- lBorderWidths number 
This method returns the total border width of 
the container, the sum of the widths of the left 
and right borders. Override this method if your 
container has a different layout or geometry. 

- /LayoutClient 
Position the client in the container as specified 
by the Border variables: 

11-51 



Interface Reference 

Class Variables 

/BorderBottom 

/SorderLeft 

/SorderRiqht 

/SorderTop 

ClassControl 

• lBorderLeft units from the left edge, 

• lBorderRight units from the right edge, 

• lBorderBottom units from the bottom, and 

• lBorderTop units from the top. 

Override this method for containers with a 
different arrangement or geometry. 

This variable should be overridden to define 
how far from the bottom of the container the 
client is placed. 

This variable should be overridden to define 
how far from the left edge of the container the 
client is placed. 

This variable should be overridden to define 
how far from the right edge of the container the 
client is placed. 

This variable should be overridden to define 
how far from the top of the container the client 
is placed. 

Subclass of ClassCanvas,ClassTarget 
Source file: control.ps 

This class should be subclassed rather than directly Instantiated. 
A control is a canvas that responds to user input with visual feedback. A con­
trol consists of: 

11·52 tNt Technical Reference Manual 



Interface Reference 

• a value and some way to dynamically display it on screen. 
The value can be any PostScript language object, although subclasses usu­
ally restrict the value. 

• a notification procedure, or callback, 
which is called whenever the control's value changes as the result of user 
interaction. The notification procedure is executed with the control object 
on the operand stack, and can therefore find any specific information 
about the control (for example, its value); 

• a target object 
to which the notification procedure can send a message. Often, user 
action on a control will do more than simply change the control's value. 
The target allows the control to specify another object to notify with its 
callback procedure. For example, if you want a menu to appear in 
response to pressing a mouse button over a control, you would make the 
menu the target for the control's callback. 

• a tracking process, 
which is a simple event manager that watches for activity on a mouse but­
ton identified in the class variable /ControIButton. (Usually the SELECf 
button is designated.) The tracking process is initiated when the button is 
pressed and watches for /MouseDragged, /EnterEvent, /ExitEvent and 
/UpTransition events. When the /UpTransition occurs the notification 
procedure is executed. 

• a state of enabled or disabled: 
when the control is disabled, it no longer responds to user input. Usually, 
the functionality that displays the control's value will indicate the 
control's state as well 

The Simplest example of a directly usable control is OpenLookButton. In this 
case the control's value is represented with a graphic (an instance of a subclass 
of ClassGraphic). The graphic is drawn (and redrawn) to represent the value of 
the graphic. having a different appearance when enabled than when disabled. 

Interface Reference 11·53 



Interface Reference 

Direct Methods 

/activate 

/active? 

/callnotify 

/checknotify 

/cleartarqet 

/deactivate 

/destroy 

/disable 

11·54 

- lactivate 
Activate event management for this control; 
express the interests returned by the Imakein­
terests method. Create an event manager for 
the control if one cal".not be found in one of its 
parent canvases. An application does not usu­
ally call this method directly. Instead, controls 
are commonly grouped together in a bag, and 
the bag controls activation for all of its clients. 

- lactive? bool 
Return true if event management has been 
activated on the control. 

- lcallnotify 
Call the control's notify procedure uncondition­
ally, with the control itself on the operand stack. 

object I null Ichecknotify 
This method sends ICallNotify? to the control 
and if true is returned, the notify procedure is 
called. This mechanism provides conditional 
notification based on criteria specified by the 
subclasser in overriding ICallNotify? 

object I null Ic:leartarget 
Selectively clear the target. If null is given, set 
the target to nUll. If an object is given, set the 
target to null only if the target is the object. 

- Ideactivate 
Tum off event management for this control. If 
the event manager is owned by this control, des­
troy it. 

- Idestroy 
Tum off tracking if it is on, and destroy the con­
trol. 

- Idisable 
Set the control to the disabled state, in which 
user interaction is not allowed. Generally the 

tNt Technical Reference Manual 



/enable 

/enabled? 

/location 

/minsize 

/move 

/new 

/newinit 

/notifiedvalue 

/notifyproc 

Interface Reference 

Interface Reference 

appearance of the control on screen changes 
whed disabled. 

- lenable 
Set the control's state to enabled, and display it 
accordingly with lPaintEnabledState. 

- lenabled? bool 
Return true if the control is currently enabled, 
false if it is disabled. When disabled, the con­
trol does not respond to user input. 

- lIocation x y 

Return the location of the origin of the control 
relative to the CTM. 

- Iminsize w h 
Return the smallest size the control can be and 
still appear intelligible. 

x y Imove 
Move the origin of the control to the specified 
location in the coordinates of the CTM. 

{notifyproc}lnull parentcanvas Inew 
Create a new instance of the control, specifying 
the control's parent canvas and its notification 
procedure. When subclassing, additional argu­
ments consumed by Inewinit should appear 
before the notification procedure. 

{noti fyproc} I null Inewinit 
This method is called from Inew to after creat­
ing an instance. Inewinit does superclass initial­
ization, sets the notify procedure to the supplied 
argument and initializes the variable that stores 
the control's last notify value. 

- Inotifiedvalue any 
Return the value the control had the last time 
the notification procedure was called. 

- Inotifyproc proc 
Return the control's current notify procedure. 

11-55 



Interface Reference 

/preferredsize 

/reshape 

/sendtarget 

/setnotifyproc 

/settarget 

/setvalue 

/size 

/target 

/trackinterests 

11·56 

- Ipreferredsize width height 
Return the control's preferred size. For most 
controls (except OPEN LOOK scrollbars), this 
will be the minimum size, Iminsize. 

x y w h Ireshape 
Reshape the control to fit t.~e bounding box 
specified by the arguments, in the coordinates of 
the CTM. This method allows the toolkit or the 
application to position the control on its parent 
canvas. 

args /method lsendtarget results 
Send method and its arguments to the current 
target object. This method is often used inside 
the control's notification procedure to send a 
message to the target object of the control. 

proc lsetnotifyproc 
Set the control's notify procedure, overwriting 
the previous one. 

ob j ect Isettarget 
Set the target object for the control. This should 
be done just after the control is created, before 
the notification can be invoked. Sending a mes­
sage to a nonexistent target results in an error. 

any Isetvalue 
Set the value of the control. It is a subclass 
issue to define the set of legal values for a con­
trol, and what action to take given an illegal 
value. 

- Isize w h 
Return the width and height of the control in 
the coordinates of the CTM. 

- Itarget object 
Return the target object of the control. 

- Itraddnterests [interests] 
Return an array containing the tracking interests 

tNt Technical Reference Manual 



/trackmqr 

/trackoff 

/trackon 

/value 

Interface Reference 

Interface Reference 

of the control. This method is not usually called 
directly by an application. 

- Itrackmgr eventmqr I null 
Return the tracking event manager for this con­
trol. 

- Itrackoff 
Turn tracking off for the control. Destroy the 
tracking event manager as soon as it has han­
dled any pending events. 

This method is not usually called directly by an 
application, but is invoked automatically 
through IStopTracking when the user releases 
/ControlButton after pressing it over the con­
trol. 

- Itrackon 
Tum on tracking in response to the user press­
ing the indicated mouse button (/ControlBuHon) 
over the control. If there is no tracking event 
manager, create one and call /MakeTrackIn­
terests to express the control's tracking interests. 

This method is not usually called directly by an 
application, but is invoked automatically 
through IStartTracking when the user presses 
down / ControlBuHon over the control. 

- Ivalue any 
Return the current value of the control. The set 
of values will be restricted by most subclasses, 
which have the responsibility for ensuring that 
illegal values do not get stored. 

11-57 



Interface Reference 

Subclass Methods 

/BuildTracklnterest 

/CallNotify? 

/ClientDown 

/ClientDraq 

/ClientEnter 

/ClientExit 

/ClientRepeat 

11·58 

name action canvas 
method lBuildTrackInterest interest I -
This method is called by lMakeTracklnterests to 
build one interest from the arguments supplied. 
The name, action, and cant'a,S arguments go into 
the interest as their respective key values. 
method is the name of the callback procedure; it 
is a method in the control class that handles the 
event 

object I null ICallNotify? bool 
Override this method to define the criteria for 
calling the notification procedure. The default 
criterion is that the current value of the control 
is different than the value when the last 
notification was performed (lNotifiedValue). 

event IClientDown 
Override this method to implement special 
behavior at the start of tracking. 

event IClientDrag 
Override this method to provide a tracking 
interest callback for every mouse movement 
inside the control. 

event IClientEnter 
Override this method to provide a tracking 
interest callback for mouse movements into the 
control. 

event IClientExit 
Override this method to provide a tracking 
interest callback for mouse movements out of 
the control. 

event IClientRepeat 
a periodic action controlled by the IClien­
tRepeatTime and IClientStartTime variables. 

tNt Technical Reference Manual 



/ClientUp 

/EndTracking 

/EventHandler 

/EventToXY 

/MakeTracklnterests 

/PaintEnabledState 

Interface Reference 

Interface Reference 

event IClientUp 
Override this method to implement special 
behavior at the end of tracking. 

event IEndTracking 
This method is called automatically in response 
to a tracking interest in the IUpTransition of the 
IControlButton. It calls IClientUp to do any 
special handling (none by default> and then 
turns off tracking with Itrackoff. 

event IEventHandler 
When the control is initialized, it expresses an 
interest in IControlAction on the IControlBut­
ton, with this method as the callback. By 
default, the interest is in the 1D0wnTransition of 
the PointButton. When an event occurs that 
matches the interest, this method is called with 
the event on the operand stack. 
Override this method to define the control's 
behavior when that event occurs. Typically, the 
override will include a call to/StartTracking. 

event IEventToXY x y 

Extract the XLocation and YLocation from the 
event, and return them. 

- lMakeTracklnterests [interests] 
Override this method to specify which tracking 
interests a subclass needs. This method is called 
from Itrackinterests to generate an array of 
interests 

bool lPaintEnabledState 
Override this method if the control's appearance 
on screen depends on whether it is enabled or 
disabled. This method is called by lenable and 
Idisable: 

• with the control as the current canvas 

11-59 



Interface Reference 

/PaintValue 

/StartTrackinq 

Class Variables 

/Active? 

/ClientRepeatTime 

/ClientStartTime 

/ControlAction 

11-60 

• inside gsave ••• grestore 

• with the boolean arguments true and false 
respectively. 

newvalue lPaintValue 
This method is SubClassResponsihility and must 
be overridden to display the value of the con­
trol. 

Subclassers should note that this method is 
called by Isetvalue with the control's new value 
on the stack, while the previous value is still 
available through Ivalue. Thus, old and new 
values of the control are both available to this 
method if it needs them, for example, to per­
form incremental painting. 

event IStartTracldng 
Start event tracking for this control, if the con­
trol is enabled. This method is called in 
response to a tracking interest in the !Down­
Transition of the ControlButton. It calls 
IClientDown to do any special handling (none 
by default) and then turns on tracking with 
Itrackon. 

This variable is true if the control has event 
management turned on. 

This variable is the interval for a timer interest 
controlling when the IClientRepeat method is 
called. 

This variable is the starting time for a timer 
interest controlling when the IClientRepeat 
method is called. 

This variable specifies the action of the IControl­
Button that starts tracking. By default it is the 
!DownTransition. 

tNt Technical Reference Manual 



/ControlButton 

see also: 
ClassCanvas,ClassTarget 

ClassDialControl 

Subclass of ClassControl 
Source File: dlal.ps 

Interface Reference 

This variable specifies which mouse button the 
control is interested in, by default it is the 
PointButton. 

ThiS class should be subclassed rather than Instantiated. 
ClassDialControls is the basis for "analog" controls, which have a bounded 
numerical value that changes in resonse to user interaction. Commonly used 
dial controls are scrollbars and sliders. 

see also: 
ClassControl, OpenLookVerticalScrollbar 

Class Frame 

Subclass of ClassContalner 
Source file: frame.ps 

This class should be subclassed rather than directly Instantiated. 
ClassFrame is designed for the management of windows (frames) on the frame­
buffer. It is an instrinsic class supporting the OpenLook frames: 

• OpenLookBaseFrame, 
• OpenLookCommandFrame, 
• OpenLookHelpFrame 
• OpenLookIconFrame 
• OpenLookNoticeFrame 
• OpenLookPropertyFrame 

Interface Reference 11-61 



Interface Reference 

see also: 
ClassContainer, OpenLookBaseFrame 

ClassHelpFrame 

Subclass of ClassFrame 
Source file: frame.ps 

This class should be subclassed rather than directly Instantiated. 
This class is not for direct use; rather it supports subclasses of window frame, 
such as the OPEN LOOK window frames. If you need a simple window frame 
for immediate use, consider one of the OPEN LOOK frames: OpenLook­
BaseFrame, OpenLookPropertyFrame, OpenLookNoticeFrame, OpenLookCom­
mandFrame, OpenLookHelpFrame. 

ClasslconFrame 

Subclass of Class Frame 
Source file: frame.ps 

ThiS class should be subclassed rather than directly Instantiated. 
This class is not for direct use; rather it supports frame (window) subclasses, 
such as the OPEN LOOK window frames. If you need a simple window frame 
for immediate use, consider one of the OPEN LOOK frames: OpenLook­
BaseFrame, OpenLookPropertyFrame, OpenLookNoticeFrame, OpenLookCom­
mandFrame, OpenLookHelpFrame. 

ClassMenu 

Subclass of ClassSelectionList 
Source file: menu.ps 

This class should be subclassed rather than directly Instantiated. 
This class is suports hierarchical, pop-up, pinnable menus. It is not immediately 
instantiatable, but forms the underpinning for OpenLookMenu. 

11-62 tNt Technical Reference Manual 



_______________________ Interface Reference 

ClassPropertyFrame 

Subclass of ClassFrame 
Source file: frame.ps 

This class should be subclassed rather than directly Instantiated. 
This class is not for direct use; rather it supports frame (window) subclasses, 
such as the OPEN LOOK window frames. If you need a simple window frame 
for immediate use, consider one of the OPEN LOOK frames: OpenLook­
BaseFrame, OpenLookPropertyFrame, OpenLookNoticeFrame, OpenLookCom­
mandFrame, OpenLookHelpFrame. 

ClassSelection List 

Subclass of ClassCanvas,ClassTarget 
Source file: selectlst.ps 

This class should be subclassed rather than directly Instantiated. 

In a selection list, a single canvas manages a grid of regularly spaced items 
which can be independently selected via the mouse. This class is the basis for 
menus (OpenLookMenu) and setting controls (Exclusive, NonExclusive, and 
Choggles). 

ClassTarget 

Subclass of Object 
Source file: target.ps 

This class can be directly Instantiated. 

ClassTarget, typically used as a mix-in class, provides facilities to any class 
whose instances need to send messages to other objects. Controls and menus 
are examples of such classes, as callbacks from these classes typically involve 
sending a message to some other object. The target connection is one-way and 
is maintained as long as the targeted object persists. 

Interface Reference 11-63 



Interface Reference 

The connection is actually implemented as a soft reference to the targeted object. 
If the targeted object should become obsolete the soft reference is removed and 
the target is set to null. 

Direct Methods 
/cleartarqet 

/destroy 

/sendtarqet 

/settarqet 

11-64 

object I null Idear--.arget 
Selectively clear the target. If null is given, the 
target is cleared. If object is given, the target is 
cleared only if the object and the traget are the 
same. This ensures that the target cannot be 
incorrectly cleared. 

- Idestroy 
Clear the target (with lc1eartarget) and then 
proceed with the normal object destruction. 

args /method lsendtarget results 
Send the method and arguments to the targeted 
object. Any menu or control can have a "target" 
which you can set, get, and send to. For exam­
ple, if you have a button that needs to send a 
message to object too when the button's callback 
is executed: 

Ib (Hello) {Ifoo-method Isendtarget 3 -1 roll send} 
framebuffer Inew OpenLookButton send def 

100 /settarget b send 

When the button is pressed, foo-method will be 
sent to 100. 
You can change the target at any time if you 
want to make your control send to different 
objects at different times. An error results·from 
sending anything to a null target. 

object Isettarget 
Set the target object, overwriting the previous 
target, if there was one. 

tNt Technical Reference Manual 



_______________________ Interface Reference 

/tarqet 

Subclass Methods 
/ChanqedTarqet 

/FreshTarqet 

/ObsoleteTarqet 

/RemovedTarqet 

see also: 
OpenLookMenu, ClassControl 

ClassTextControl 

Subclass of ClassControl 
Source file: txtctrl.ps 

- ltarget object 
Return the target object, which has a soft refer­
ence to it. 

old-target IChangedTarget 
This method is called whenever a target 
changes. Override it to add special processing if 
necessary. 

- IFreshTarget 
This method is invoked whenever the target is 
changed from null to an object. Override this 
method to provide special processing for this 
case. 

IObsoleteTarget 
This method is called when the target becomes 
obsolete. Override it to add special processing. 

lRemovedTarget 
This method is called whenever a target is 
removed (becomes null). Override this method 
to provide special processing for this case. 

This class should be subclassed rather than directly Instantiated. 
A text control accepts user keystrokes, displays them and calls the supplied 
notify proc. It interacts with the UI-independent selection mechanism, providing 
simple text selections. 

Interface Reference 11-65 

---.-----~. 



Interface Reference 

Direct Methods 

/callnotify 

/checknotify 

/cleartarget 

/delchar 

/delspan 

/delword 

11-66 

- Icallnotify 
Call the client's notifyproc, and also make a 
copy of the string. The copy will not be affected 
by subsequent user keystrokes, so Ichecknotify 
will be able to determine whether the value has 
changed. 

object I null Ichecknotify 
Call the client's notifyproc only if the current 
text differs from the text as of the last call to 
Icallnotify. This method is called automatically 
when the text control loses the input focus, or 
when the user types the RETURN key. 

object I null Icleartarget 
Selectively clear the target used by the Isendtar­
get method. This method is called automatically 
when the text control is destroyed. See ClassTar­
get for more about targets and their uses. 

n Idelchar 
Delete n characters from the text, starting at the 
current caret position. If n is negative, delete 
characters to the left of the caret, otherwise to 
the right. 

left rightplusone Idelspan 
Delete a span of characters from the text, 
independent of where the caret is. If the caret 
and I or a selection is within the deleted region, 
it is adjusted accordingly. Character positions 
start with zero; thus left is the number of char­
acters before the first to be deleted, and the 
number of characters deleted is rightplusone 
minus left. 

- Idelword 
Delete characters backward from the caret posi­
tion until (a) at least one alphanumeric has been 
deleted and (b) the character ahead of the caret 
is not alphanumeric. The method 

tNt Technical Reference Manual 



/demo 

/destroy 

/disable 

/enable 

/enabled? 

/fitcaret 

/fontoffset 

Interface Reference 

Interface Reference 

IAlphaNumeric? is used to determine whether a 
character can be part of a word. 

- Idemo instance 
Create a sample text control whose parent is the 
framebuffer. The control is actually an instance 
of the default subclass (i.e., OpenLookTextCon­
troD. 

- Idestroy 
Destroy this control. In addition to clearing the 
target and removing the canvas from the canvas 
tree, etc., this method disables the caret, in case 
for example the caret needs to stop a forked 
process used to implement blinking. (The 
default ClassCaret does not.) 

- Idisable 
Cause the control to stop responding to user 
actions. The control repaints to display its dis­
abled status, and will no longer accept the input 
focus. 

- lenable 
Cause the control to respond to user actions, 
provided that it is not a read-only text control. 
The control repaints to display its enabled 
status, and will become the input focus if the 
user clicks the mouse over it. 

- lenabled? bool 
Return true if the control is currently enabled, 
even if it is read-only. 

- Ifitearet 
Call1FitCaret, which does nothing in this class. 
Subclassers may override lFitCaret to provide a 
method that brings the caret into the visible 
region of the control. 

- Ifontoffset int 
Compute the vertical offset for drawing charac­
ters without cutting them off at the bottom of 

11-67 



Interface Reference 

/inserttext 

/invisiblecaret 

/location 

/minsize 

/move 

11-68 

the canvas, and also leaving enough room for 
the caret. The value is 'promoted', i.e., the first 
time Ifontoffset is called it stores the resulting 
value in the instance under the name Ifontoffset, 
so that subsequent calls are much faster. The 
cached value is discarded (unpromoted) if the 
canvas becomes invalid, e.g. if Isettextparams is 
called. 

char linserttext 
string linserttext 
Insert a character or a string into the text at the 
current caret position. The caret is moved to the 
end of the inserted text. If a pending-delete pri­
mary selection spans the caret, the selected text 
is deleted before adding the new text. Any other 
existing selections are adjusted appropriately. 

- linvisiblecaret 
Make the caret invisible, usually in preparation 
for other operations that will cause painting. 
This method is not normally used at all, since 
the methods that cause painting (such as linsert­
text,./delchar, etc.) all call1InvisibleCaret, which 
assumes that the text control is the current can­
vas. 

- !location x y 
Return the location of the origin (lower left 
corner) of the text control relative to the CTM. 

- lminsize minwidth minheight 
Return the minimum size for this control. The 
minimum height is determined by the font size, 
and the width is determined by the font and by 
the number of characters that the control is sup­
posed to leave room for, as set using Iset­
displaychars. 

x y Imove 
Move the origin (lower left) of the text control to 

tNt Technical Reference Manual 



/new 

/newinit 

/notifiedvalue 

/notifyproc 

/painttext 

/preferredsize 

Interface Reference 

Interface Reference 

the specified location in the coordinates of the 
CTM. 

callback parent Inew instance 
Return a new text control instance with the 
specified callback procedure 
and parent canvas. The control initially contains 

no text, but does contain a caret. 

callback Inewinit 
This method does Inewinit super send to store 
the callback procedure, then performs other ini­
tialisation specific to text controls. 

- Inotifiedvalue strinq 
Return the value the control had the last time 
Icallnotify was sent. 

- Inotifyproc proc 
Return the current callback proc without invok­
ing it. 

n Ipainttext 
Paint the text, starting with the character at posi­
tion n. If character n is off the left edge of the 
canvas, painting starts at the edge of the canvas. 
If n < 0, all the text is painted and the remainder 
of the canvas is cleared; otherwise the canvas is 
left unchanged beyond the end of the text. This 
method is intended mainly for use from other 
methods; clients should generally send Ipaint to 
paint the control. Ipainttext operates by setting 
the current canvas and font, then calling the 
internal methods IInvisibleCaret, lPaintText, 
and IVisibleCaret. 

- Ipreferredsize width heiqht 
Text controls do not presume any preferred size 
beyond the minimum required to display a cer­
tain number of characters. Thus they use the 
default Ipre£erredsize method, which simply 
calls Iminsize. 

11-69 



Interface Reference 

/removefocus 

/reshape 

/restorefocus 

/scroll 

/sendtarget 

/setcolors 

/setdisplaychars 

11-70 

event Iremovefocus 
Handle the input focus being moved to another 
canvas. This method disables the caret and calls 
/checknotify, which calls the client's notifyproc 
if the text has been changed. 

x y w h Ireshape 
Reshape the control to fit the bounding box 
specified by the arguments, in the coordinates of 
the CTM. 

- IrestorefoC\ls 
Activate the caret if the control is enabled. 
This method is called automatically when the 
text control is given the input focus. 

n Iscroll 
Scroll the text to make a different portion visible 
within the limits of canvas. The left edge of the 
canvas always marks the beginning of a charac­
ter; scrolling changes the character at this loca­
tion. A positive number nn scrolls to the right; a 
negative number scrolls to the left. 

args /method Isendtarget results 
This method can be invoked within the 
notifyproc in order to send a message to some 
other instance. Many clients will not need to use 
this indirection. See OassTarget for more details. 

strokecolor fillcolor 
textcolor Isetcolors 
Set the colors for painting the text and its back­
ground (fillcolor). Null as an argument means 
do not change that value. The control swaps the 
fillcolor and textcolor to highlight selections. 
Subclasses may use the strokecolor for underlin­
ing or similar ornamentation, though OpenLook­
TextControl uses the textcolor so that it can be 
included in the highlighting. 

n Isetdisplaychars 
Set the minimum number of characters that the 

tNt Technical Reference Manual 



/setnotifyproc 

/setposition 

/setreadonly 

/settarget 

/settextparams 

Interface Reference 

Interface Reference 

control should be able to display. This number 
is used in computing Iminsize for the control. 
The number can be retrieved via the /Display­
Chars variable. 

proc Isetnotifyproc 
Store the proc as the new callback to be used by 
Icallnotify, in place of the one provided to Inew. 

event Isetposition 
n Isetposition 
Move the caret to the specified position. Position 
o puts the caret to the left of the first character. 
If an event is given, the coordinates in the event 
are resolved to the nearest character boundary. 
The current caret location can be obtained from 
the variable !Left. 

bool lsetreadonly 
Make the text read-only or not, depending on 
the bool. If the text becomes read-only, the can­
vas is removed from the list of potential input 
foci; if it becomes writeable it is added back. A 
read-only text control behaves much the same as 
a disabled one (see Idisable), the main difference 
being that a disabled control will typically be 
painted light gray, whereas a read-only one will 
paint normally. 

object lsettarget 
Set the target used by the Isendtarget method. 
See ClassTarget for more about targets and their 
uses. 

family pointsize encoding Isettextparams 
Set the text parameters that determine the font 
for the control. If any of the arguments is null, 
that parameter is not changed. The control then 
marks itself as invalid (i.e., calls linvalidate) so 
that various cached values such as Ifontoffset 
and the font itself will be recomputed. 

11-71 



Interface Reference 

/setvalue 

/size 

/starttext 

/stoptext 

/strlen 

/target 

/value 

/visiblecaret 

11·72 

string lsetvalue 
Replace the contents of the text control with the 
given string. If the string differs from the old 
contents, the control is repainted. 

- Isize w h 
Retu..rn the width a.l\d height of the control in 
the CI'M. 

- Istarltext 
This method activates the caret. It is called from 
Irestorefocus. 

- Istoptext 
This method disables the caret. It is called from 
Iremovefoc:us and Ides troy. Clients may also 
need to send Istoptext to newly created text con­
trols to disable their initial carets. 

- Istrlen n 
Return the number of characters of text 
currently stored in the control. This method is 
equivalent to, but more efficient than, Ivalue 
length. 

- ltarget object 
Return the current target (if any) used by 
Isendtarget. See ClassTarget for more details. 

- Ivalue string 
Return the contents of the control as a PostScript 
string. If the string is empty, a zero-length string 
is returned, not null. 

- lvisiblecaret 
Make the caret visible, usually after other paint­
ing has finished. This method is not normally 
used at all, since the methods that cause paint­
ing (such as linserttex~ Idelchar, etc.) all call 
NisibleCaret, which assumes that the text con­
trol is the current canvas. 

tNt Technical Reference Manual 



Subclass Methods 

/AlphaNumeric? 

/CaretPosition 

/DeHighlight 

/EOL 

/FitCaret 

/Highlight 

Interface Reference 

Interface Reference 

n IAlphaNumeric? bool 
Determine whether the character at the specified 
index is part of a word. This method is called by 
Idelword, and also when making word-level 
selections. The default method texts for letters, 
digits, and underscore. See IAlphaNumericT­
able. 

- ICaretPosition x 
Return the x-coordinate of the caret relative to 
the left edge of the canvas. 

start end lDeHighlight last 
Paint the characters in positions startstart 
through end-l, and return the index of the next 
character to be painted. The characters are 
painted using the canvas's IFmColor as back­
ground and lTextColor for the text and under­
line. This method is called by lPaintText and in 
tum calls lPaintNText. 

- IEOL 
This method is called when either a RETURN 
eM) or NEWLINE cn character is typed into 
the control. It calls Ichecknotify. 

/method lFitCaret bool 
Scroll the text if desired so as to bring the 
current caret position into the region between 
the left and right edges of the canvas. Return 
true if any scrolling was done, so the caller will 
know to repaint the text. (/FitCaret does not 
itself do any painting.) The parameter is the 
name of the operation just performed, one of: 
Idelspan, lfitcaret, linserttext, or Isetposition. 
The default IFitCaret never does any scrolling. 
Subclassers may override this behavior to cause 
scrolling after selected operations. 

start end /Highlight last 
This is the same as /DeHighlight (q.v.) except 

11-73 



Interface Reference 

/InterestingRank 

/InvisibleCaret 

/PaintText 

/PaintNText 

11-74 

the background and foreground colors are 
reversed. It is called by lPaintText for painting 
characters within the primary selection. 

rank IInterestingRank bool 
Return true if the selection rank is one that the 
text control knows how to deal wilh. By default 
the only interesting ranks are IPrimarySelection 
and ISecondarySelection. (lShelfSelection is 
handled by the global UI mechanism.) For each 
interesting rank there is also a correspondingly 
named instance variable, used for maintaining 
information about that selection. (These vari­
ables are of no interest to clients or subclassers, 
except insofar as subclassers must be careful not 
to use those variable names for other informa­
tion.) 

- IInvisibleCaret 
Send a message to the caret to make it vanish, 
usually in preparation for other painting. This 
method assumes that the text control is the 
current canvas. Many methods use the 
sequence: !TextBegin, IInvisibleCaret, paint 
some portion of the text, IVisibleCaret, !Tex­
tEnd. 

n lPaintText 
This method performs most of the work of 
Ipainttext (q.v.). It can assume that the text 
control's canvas is the current canvas, and the 
control's font is the current font. Subclassers 
may override this method to provide additional 
painting; e.g., OpenLookTextControl repaints the 
scroll buttons after the text is drawn. 

textcolor backcolor start 
end lPaintNText last 
This method is called by /Highlight and 
/DeHighlight to paint portions of the text using 
the given colors for the text and background. 
The characters painted are those in positions 

tNt Technical Reference Manual 



/Scroll 

/TextBegin 

/TextEnd 

/VisibleCaret 

Class Variables 

/AlphaNumericTable 

Interface Reference 

Interface Reference 

startstart through endend-l. This range may be 
empty. lPaintNText returns the index of the 
next character to be painted, the larger of 
endend and startstart. This method assumes that 
the text control is the current canvas and the 
control's font is the current font. 

n IScroll 
This is the same as / scroll except no painting is 
done. Subclassers may use /Scroll when over­
riding /FitCaret, to perform scrolling while leav­
ing any painting for later. 

- trextBegin 
Save the graphics context, then set the text 
control's canvas and font as the current canvas 
and font. This method is called at the beginning 
of several other methods to establish the context 
for painting and other CI'M-based operations. 

- trextEnd 
Restore the graphics context saved by ITextBe­
gin. 

- NisibleCaret 
Send a message to the caret telling it to become 
visible, and where it should be located. This 
method assumes that the text control is the 
current canvas. 

This is a dictionary whose keys are single char­
acters (integers). The associated values are 
ignored. A character appears as a key if and 
only if that character is considered part of a 
word. This dictionary is used by 
IAlphaNumeric?, and can be overridden by sub­
c1assers to change the definition of word­
selection and Idelword. Note: Subclassers who 
wish to change this dictionary should be careful 

11-75 



Interface Reference 

/DisplayChars 

/Left 

/ReadOnly? 

see also: 
ClassControl 

FlexBag 

Subclass of Class Bag 
Source file: bagutlls.ps 

to copy it first; otherwise the changes will affect 
all text controls. That is, do not subclass like 
this: 

%add dollarsign and percent to alphanumeric set 
AlphaNumericTable begin 
($%) {null def} forall 
end 

Instead, write this: 
% add dollarsign and percent to alphanumeric set 
IAlphaNumericTable dictbegin 
AlphaNumericTable {def} forall 
($%) {null def} forall 
dictend def 

The minimum number of characters that the 
control should be able to display. The default 
value is 5, unless overridden by subclassing or 
by Isetdisplaychars. 

The number of characters to the left of the caret; 
hence, the current caret position. 

True if the control is read-only. This value 
defaults to false, but can be overridden by sub­
classers or Isetreadonly. 

This class can be directly Instantiated 
A FlexBag is a general purpose bag whose clients are layed out using executable 
code passed in with them during laddclient. FlexBags are particularly suited to 
the task of relative positioning. 

11·76 tNt Technical Reference Manual 



Direct Methods 

/addclient 

Interface Reference 

Interface Reference 

name I null [client] laddclient 
namelnull [compass-POint position-proc 
client] laddclient 
The naming and instantiation of a flexbag client 
are the same as for ClassBag. In particular, the 
client argument may be either an instance or a 
class to instantiate, with necessary arguments. 
For more details, see the addclient method in 
ClassBag. 

If baggage is supplied, it consists of a reference 
point on the client (compass yoint) and a posi­
tioning procedure (position yroc) that determines 
where to place that point on the client in the 
bag. The client's reference point is specified 
with a compass-style notation: 

comers of the client: /nw, /sw, /ne, /se 
midpoints of the client's edges: /n, /s, /e, /w 
center of the client: / c 

The positioning procedure is any executable that 
returns an (x,y) coordinate location. This posi­
tion is where the reference point of the client is 
placed when the flexbag is layed out. The pro­
cedure can simply return two fixed values. Or, 
it can perform calculations of its own based on 
some intrinsic properties of the client. Or the 
position procedure can use the utility pro­
cedures supplied by class FlexBag to perform 
positioning relative to other clients of the 
flexbag. These procedures (fHEIGHT, 
/WIDTH, /POSITION, /XY ADD, /XYSUB) are 
described below. 

Note that both of the reference point and posi­
tioning procedure may be unspecified, in which 
case a default value will be used (see Isetlay­
outspec). 

11-77 



Interface Reference 

/baggage 

Iclientcount 

/clientlist 

/demo 

/destroy 

/layoutspec 

/location 

/minsize 

11-78 

client /baggage [conpass...,point 
position...,proc] 
Return the positioning data for the client, its 
reference point in compass notation and its posi­
tioning procedure. 

- Idientcoynt n 
Return the number of clients currently in the 
bag. 

- Iclientlist [clientl client2 ... ] 
Return an array of clients in the same order as 
they were inserted into the bag. 

- Idemo frame_instance 
This method creates a sample flexbag that illus­
trates the use of absolute, relative, and default 
positioning. The frame object that encloses the 
bag is left on the operand stack by Idemo. To 
use this method be sure to load the demo code 
with the IIncludeDemos7 flag. 

- Idestroy 
Destroy the bag and its clients. Refer to the 
Idestroy method in ClassBag for the additional 
information on the use of this method. 

- !layoutspec conpass...,point position...,proc 
Return the default layout specification, which is 
used if no baggage was specified when adding a 
client to the bag. Initially, there is no default 
layout; it must be specified with Isetlayoutspec. 

- !location x y 
Return the location of the origin of the bag in 
the coordinates of the CTM. 

lminsize minwidth minheight 
Compute the minimum acceptable size for this 
bag, based on the actual sizes of its clients and 
the padding between them. For a flexbag this 
requires a heuristic calculation. This problem 
can be circumvented by calling Ilockminsize. 

tNt Technical Reference Manual 



/move 

/new 

/paddinq 

/preferredsize 

/removeclient 

/reshape 

/sendclient 

/setbaqqaqe 

/setlayoutspec 

Interface Reference 

Interface Reference 

x y Imove 
Move the origin of the canvas to the specified 
location in the coordinates of the CTM. 

parentcanvas Inew instance 
Create a new flexbag. 

- Ipadding paddinq_width paddinq_heiqht 
Return the sizes of the padding between clients 
used by Iminsize to avoid unrelated clients 
being placed too close together. 

- Ipreferredsize preferredwidth prefer­
redheiqht 
Calculate the preferred or "i deal" size of the 
bag, which by default is its minimum size. 

client I name In Iremoveclient oldclient 
true 
client I name In Iremoveclient false 
Remove the client given, named or indexed in 
the argument. The method returns true and the 
client object if the client is found, otherwise it 
returns false. 

x y w h Ireshape 
Reshape the bag to the dimensions given and 
invalidate it. This results in the bag being layed 
out as the first step in painting it. 

<arqs> /method /name lsendclient results 
Send the given method with arguments to the 
named client. An error results if the client is not 
present in the bag. 

client [compass-point 
position-proc] Isetbaggage 
Store the baggage for the bag. This consists of a 
compass point and a positioning procedure, as 
described under laddclienl 

compass-pointlnull 
position-proc Inull Isetlayoutspec 
Set the default positioning parameters for the 

11-79 



Interface Reference 

/setpadd!ng 

/s!ze 

Utility Methods 

bag. This specification is used whenever a 
specification is not given when the client is 
added. If either argument is null, the 
corresponding parameter is not changed. 

width height /setpadding 
Set the padding between clients used in calcl..!lat­
ing the minumum size of the bag. 

- /size w h 
Return the width and height of the bag in the 
coordinates of the CTM. 

The following methods are defined in class F1exBag for use in positioning clients 
of a flexbag. Used in the position procedure (position poe) of a client, they are 
executed by the /layout method of the bag. 

The client argument given to these methods can be: 

• a client of the flexbag, 

• P rev!ous, indicating the previous client (the one that was layed out 
immediately before this client 

• Current, indicating this client, 

• self, indicating the flexbag. 

/HEIGHT 

/POSITION 

/WIDTH 

11-80 

name I client !HEIGHT height 
Return the height of the given client, which may 
be specified either by name or by the client 
itself. 

compass ..,point name I client !POSITION xy 
Return the (x,y) position of the indicated com­
pass point on the given client. The client may be 
specified either by name or by the canvas itself. 

name I client /WIDTH width 
Return the width of the given client, which may 
be specified either by name or by the canvas 
itself. 

tNt Technical Reference Manual 



/XYADD 

/XYSUB 

see also: 
ClassBag 

Object 

Subclass of null 
Source File: class.ps 

Interface Reference 

xl yl x2 y2 IXYADD xl+x2 yl+y2 
Return the vector sum of the two points given. 

xl yl x2 y2 IXYSUB xl-x2 yl-y2 
Return the vector difference of the two points 
given. 

ThiS class should be subclassed, even though it can be directly 
instantiated. 
The class Object is the ultimate superclass of every class in the tNt toolkit. Much 
of the class system's functionality is implemented here. 

Direct Methods 

/class 

/class? 

/classinit 

/classdestroy 

Interface Reference 

-- /class class 
Sent to an instance, Iclass returns the class object 
from which this instance was created. 

-- Iclass? bool 
Return true if the object of the send is a class; 
false if it is an instance, or any other NeWS dic­
tionary. 

-- Iclassinit 
This method is called automatically after class 
definition, but before any instances are created. 
Override it if you need to perform per-class ini­
tialization that cannot be done as the class is 
being built. 

class Iclassdestroy 
Remove a class from the system. This is a utility, 

11-81 



Interface Reference 

/classname 

/cleanoutclass 

/defaultclass 

/descendantof? 

/destroy 

/destroydependent 

11-82 

rather than a method. It is not sent to the class 
concerned, but consumes it as an argument. 

-- lc1assname classname 
Sent to a class, this method returns the name of 
the class. sent to an instance it returns the name 
of the instance's class. 

-- Icleartoutclass 
Clean out a class dictionary for reuse. Whenever 
a class is redefined this method is called 
automatically. The effect of this is that instances 
or subclasses of the old class will immediately 
start using the new class code. 

-- Idefaultclass class 
Returns a default subclass if one has been 
defined, self otherwise. A default subclass is 
considered to be a reasonable subclass to instan­
tiate for normal use. Many instrinsic classes 
have OPEN LOOK equivalents as their default 
subclass. 

instance I class Idescendantof? bool 
Test to see if the argument is a descendant of 
the class or instance being sent to. 

-- Idestroy 
Destroy this object. This method is called 
automatically when NeWS detects that there are 
no more hard references to it. Subclassers 
should override this method to break any circu­
lar reference chains that include a soft reference 
to the object. When Idestroy returns, all refer­
ences to the object should have been removed. 

-- Idestroydependent 
This method is sent to dependent objects (child 
canvases, and subframes are examples of such 
objects) in the process of destroying an object. 
Class Object imposes no semantics on what 
should happen to the dependent object in this 
case. 

tNt Technical Reference Manual 



/doit 

/installmethod 

/instanceof? 

/name 

/named? 

/new 

/newdefault 

/newinit 

Interface Reference 

Interface Reference 

<args> proc Idoit <results> 
Execute the given procedure from within the 
context of the object of the send. In particular 
self resolves to that instance, and super to its 
superclass. 

name proc linstallmethod 
Create or overwrite a method with the given 
name and given procedural body. This method 
can be sent either to a class or to an instance. In 
the former case the result of linstallmethod is 
indistinguishable from having defined this 
method is the class originally. 

obj linstanceof? bool 
This method is sent to a class, not an instance. It 
returns true if the given object is an instance of 
the class. 

-- lname name 
Return the name of an instance or class. If name 
was not set by Isetname, then the name of an 
instance is the name of its class. Sending name 
to a class returns the classname unless the Iset­
name method has been applied to it. 

-- lnamed? bool 
Returns true if the object of the send has had it's 
name set via the lsetname method. This method 
can be sent to either an instance or a class. 

-- Inew instance 
Create an initialized instance of this class. This 
method should only be sent to a class. It calls 
Inewobject followed by Inewinit. 

-- Inewdefault instance 
Create an instance using whatever Idefaultclass 
returns. 

-- Inewinit 
Initialize an instance. Override this method to 
perform your per-instance initialization, and 

11-83 



Interface Reference 

/newmaqic 

/newobject 

/obsolete 

/?promote 

/promote 

/promoted? 

/setname 

/subclasses 

/superclasses 

11-84 

consume any arguments that your subclass 
requires be presented to Inew. 

<creation args> dict Inewmagic instance 
Convert an existing magic dictionary object, into 
an object to which sends can be performed. The 
converted magic dictionary becomes an instance 
of the class to which this message is sent. 

<creation args> Inewobject instance 
Create an instance of a class, but do not initial­
ize it. 

-- lobsolete 
Handle an instance becoming 'obsolete'. This 
method will be sent when an instance loses its 
last hard references. By default, lobsolete calls 
Idestroy to clean up the remaining soft refer­
ences. 

name object I?promote 
Promote object to be an instance variable associ­
ated with name only if the argument value is 
different from an existing instance variable 
value. 

name object Ipromote 
Promote object to be an instance variable whose 
name is the first argument. 

name Ipromoted? bool 
Return true if name is an instance variable, false 
otherwise. 

name Isetname 
Set the name of a class or instance. 

-- Isubclasses [class ... ] 
Return an array of class objects that are the 
currently defined immediate subclasses of the 
class to which this message is sent. 

-- Isuperclasses array 
Return an array of class objects which define the 

tNt Technical Reference Manual 



/understands? 

/unpromote 

Subclass Methods 

Interface Reference 

superclass chain for this class. The array is 
returned in order, from most distant to most 
immediate superclass. 

name lunderstands? bool 
Return true if name is defined in the context of 
the instance or class to which this mesasage is 
sent. 

name lunpromote 
Remove a variable from an instance. No error 
will occur if no such variable existed. 

/HandleObsoleteClass -- lHandleObsoleteClass 
Called by IObsoleteEventHandler when a class 
goes obsolete. By default this calls Idestroyc1ass 

/HandleObsoleteInstance -- IHandleObsoletelnstance 
Called by IObsoleteEventHandler when an 
instance goes obsolete. By default this calls 
lobsolete. 

/HandleObsoleteOther -- lHandleObsoleteOther 
Called by IObsoleteEventHandler when an 
object that is not a a class or an instance 
becomes obsolete. 

/ObsoleteEventHandler event IObsoleteEventHandler 
A callback method that is invoked by a global 
obsolete event manager when a class object 
becomes obsolete. Uses the I Action value in an 
event to call one of lHandleObsoleteClass, 
lHandleObsoleteInstance or lHandleOb­
soleteOther. 

Interface Reference 11-85 



Interface Reference 

Class Variables 
/ClassName 

/DefaultClass 

/ObsoleteEventMgr 

Class variable used to hold the name of the 
class. 

Variable referencing the default subclass of a 
class. This variable is self by default. Refer­
enced by ideiauitciass. 

A shared event manager whose job it is to call 
IObsoleteEventHandler when an obsolescence 
event is received. 

OpenLookAbbrButton 

Subclass of OpenLookButton 
Source file: OLbutton.ps 

This class can be directly instantiated 
This class implements OpenLook Abbreviated buttons: the graphic for the but­
ton appears to the right of it, rather than inside it. This class is directly instanti­
able, but is also mixed into OpenLookAbbrButtonStack. 

Direct Methods 
/callnotify 

/cleartarget 

/demo 

/destroy 

11-86 

- Icallnotify 
Call the button's notify procedure uncondition­
ally, with the button itself on the operand stack. 

object I null Icleartarget 
Selectively clear the target used by the Isendtar­
get method. This method is called automatically 
when the button is destroyed. See Class Target for 
more about targets and their uses. 

- Idemo instance 
Create a sample abbreviated button and leave it 
on the stack. 

- Idestroy 
Tum off tracking if it is on, and destroy the but­
ton. If the menu was passed in as an array and 

tNt Technical Reference Manual 



/disable 

/enable 

/enabled? 

/qraphic 

/location 

/minsize 

/move 

/new 

Interface Reference 

Interface Reference 

constructed on-the-fly by the button then it too 
will be destroyed. Otherwise it is up to the 
caller who passed the menu in to ensure its des­
truction. 

- Idisable 
Stop responding to user actions; set the button's 
state to false, paint the button accordingly, and 
remove the tracking process when current 
requests are serviced. 

- lenable 
Set the button's state to enabled, and display it 
accordingly with lPaintEnabledState. 

- lenabled? bool 
Return true if the button is currently enabled, 
false if it is disabled. When disabled, the button 
does not respond to user input. 

- Igraphic ob j 
Return the graphic object that represents the 
button on screen. 

- /location x y 
Return the location of the origin of the button 
relative to the CTM. 

- Iminsize width height 
Return the smallest size the button can be and 
still appear intelligible. 

x y Imove 
Move the origin of the button to the specified 
location in the coordinates of the CTM. 

thing I graphic menularray notify 
parentcanvas Inew instance 
The arguments to Inew specify: 

• a parent canvas of the button. 

11-87 



Interface Reference 

11-88 

• a notification procedure or callback, 
which is executed whenever the SELECT 
button pressed and released over the can­
vas. Remember that tracking for an 
OPEN LOOK button begins when the 
mouse cursor enters the canvas and the 
SELECT button is pressed. Notification 
occurs when the SELECT button is 
released over the canvas. In order for the 
button to correctly function this callback 
must be null. While you may install you 
own button callback, the resulting 
behavior is likely to not be OpenLook 
compliant. The default callback for abbre­
viated buttons implements the required 
OpenLook functionality by executing the 
default selection from the button menu 
when the SELECT button is released. 

• a menu or menu specification. 
If an array is passed in it is assumed to be 
a specification for a menu that the button 
should instantiate automatically. It does 
this by sending Inewdefault to 
ClassMenu: [menu specification] frame­
buffer Inewdefault ClassMenu send The 
result should be a a valid menu instance. 
Note that this interface does not support 
all the supported interfaces to Inew in 
OassMenu. The menu passed into Inew 
(as an instance or a specification) is 
displayed whenever the MENU button is 
pressed over the button. If the supplied 
callback was null the default callback of 
the menu will be executed when the 
SELECT button is released over the but­
ton. 

tNt TechnIcal Reference Manual 



/notifyproc 

/preferredsize 

/sendtarqet 

/setarrow 

/setqraphic 

/setqraphic 

/setnotifyproc 

/settarqet 

Interface Reference 

Interface Reference 

• a graphic or thing to be made into a 
graphic. 
If the object supplied is a thing or a non­
tenninal graphic, /CreateGraphic is called 
to make an instance of OPEN LOOKBut­
tonGraphic from the argument. 

- Inotifyproc proc 
Return the button's current notify procedure. 

- Ipreferredsize width heiqht 
Return the preferred or "ideal" size for this but­
ton, which by default is the minimum size 
Uminsize). 

arqs /method Isendtarget results 
This method can be invoked within the 
notifyproc in order to send a message to some 
other instance. Many clients will not need to use 
this indirection. See ClassTarget for more details. 

/Leftl/Riqhtl/Upl/Down lsetarrow 
Abbreviated buttons display an arrow that indi­
cates in which direction the menu will be 
displayed. This method will set the arrow direc­
tion to one of four values and ensure that the 
menu is appropriately positioned when it is 
displayed. 

thinq Iqraphic Isetgraphic 

thinq Iqraphic Isetgraphic 
Convert the argument to a graphic, if necessary, 
and store it as the button's graphic. Then, invali­
date the button to require layout before repaint­
ing. 

proc lsetnotifyproc 
Set the notification procedure for the button. 

object Isettarget 
Set the target used by the /sendtarget method. 
Note that the button itself does not typically 

11-89 



Interface Reference 

/size 

/target 

see also: 
OpenLookButton 

have a callback of its own. Instead, it usually 
relies upon the button to provide all its call­
backs. Thus setting the target of the menu will 
also set the target of its menu. See OassTarget 
for more about targets and their uses. 

- Isize w h 
Return the width and height of the button rela­
tive to the CTM. 

- ltarget object 
Returns the current target used by the Isendtar­
get method. See ClassTarget for more about tar­
gets and their uses. 

OpenLookAbbrButtonStack 

Subclass of OpenLookAbbrButton,OpenLookButtonStack 
Source file: OLbutton.ps 

This class can be directly Instantiated 
This class implements OPEN LOOK abbreviated button menus (previously 
called button stacks). 

see also: 
OpenLookAbbrButton,OpenLookButtonStack 

OpenLookBaseFrame 

Subclass of OpenLookFrame,ClassBaseFrame 
Source file: OLframe.ps 

11-90 tNt Technical Reference Manual 



Interface Reference 

This class can be directly Instantiated 

Most applications will use an instance of this class as their main window on the 
screen. The methods documented below are those of interest to the user rather 
than the expert subclasser. 
An OPEN LOOK Base Frame is characterized by the following attributes: 

• a header area on the top of the frame containing a header label and a 
menu button, 

• an icon subframe, named /Icon, into which the frame closes 

• a menu shared with the icon subframe 

• an footer area at the bottom of the frame, containing messages on the left 
and / or right sices of the footer 

• resize corners that permit the user to initiate resizing the frame by press­
ing the SELECT button on the resize corners 

• a single client canvas in the middle of the frame. 

Direct Methods 

/activate 

/active? 

/addsubframe 

/busy? 

/callnotify 

Interface Reference 

-- lactivate 
Activate event management for the frame and 
any subframes. 

-- lactive? bool 
Return true if event management has been 
activated on the frame (and subframes). 

name frame laddsubframe 
Add frame as a subframe by rIIlme and activate 
event management for it. 

-- !busy? bool 

Return true if the frame is busy, which means 
the frame is temporarily not interested in input 
because it is processing a previous request. The 
busy state is indicated on screen with the /busy 
cursor, by default the hourglass. 

-- lcallnotify 
Call the frame's notification procedure, which 

11-91 



Interface Reference 

/changed? 

/client 

/closesubframes 

/deactivate 

/demo 

/destroy 

/destroyfromuser 

/fitclient 

11·92 

was stored by Isetnotifyproc. Commonly, the 
reason for notification is given to the frame 
using Isetnotifyreason before calling the 
notification procedure. 

-- Ichanged? bool 
Return the frame's IChanged? variable. This ca.1'\ 
be used by subclassers to indicate some change 
of state of interest to them. 

-- Iclient client I null 
Return the frame's client canvas (lClient), or 
null if there is none. 

-- Iclosesubframes 
Close all open subframes and store their names 
internally; lopensubframes can later be used to 
open them. 

-- Ideactivate 
Tum off event management for the frame and 
subframes. 

-- Idemo frame 
This is a demonstration method that will put on 
screen a simple OPEN LOOK Base Frame. 

-- Ides troy 
Destroy the frame and its subframes , deselect­
ing them as necessary. 

-- Idestroyfromuser 
Destroy the frame, allowing the application to 
intervene if necessary (for example, to ask the 
user to save files). Override this method to pro­
vide special processing when destroying a 
frame. 

w h lfitclient w' h' 
Validate the frame if necessary, and then return 
the size the frame should be for its client to fit 
into it. 

tNt Technical Reference Manual 



/flashframe 

/flipiconic 

/flipselected 

/flipzoom 

/focus? 

/footer 

/frameattribute 

/freeze 

/freezeall 

Interface Reference 

Interface Reference 

-- Iflashframe 
Briefly repaint the frame with the focus indica­
tion reversed; then repaint the frame as it was. 
This creates a flashing effect on screen. This 
method is used, for example, in the menu for 
OPEN LOOK popup frames to identify the 
owner of the popup frame. 

-- IBipiconic 
Toggle the frame's iconic state. If it is open, 
close it into an icon; if it is an icon, open it. 

sourceframe IBipselected 
If the sourceframe is currently selected, deselect it 
and make this frame selected instead. 

-- Iflipzoom 
Toggle the zoomed state of the frame; if it is 
enlarged (zoomed) make it normal size and vice 
versa. 

-- Ifocus? bool 
Return true if the frame has the input focus. 

-- Ifooter graphic I thing I null 
graphic I thing I null 
Return the left and right footers of the frame. 
The argument returned for each footer can be 
either a graphic, a thing from which a graphic is 
made, or null. 

name Iframeattribute bool 
Return the value of one of the frame attributes. 
See /new for a list of frame attributes. 

bool Ifreeze 
Freeze the frame when the argument is true, 
unfreeze when the argument is false. This 
makes the frame insensitive to events except 
damage and loss of focus or selection (/Dam­
aged, lLoseFocus, lLoseSeledion). 

bool Ifreezeall 
This method freezes (true) or unfreezes (false) 

11-93 



Interface Reference 

/gravity 

/label 

/location 

/map 

/mapped? 

/menu 

/minsize 

11-94 

all frames in the frame hierarchy of the reci­
pient. If the recipient is a root frame, it and all 
subframes freeze or unfreeze, as dictated by the 
argument. If the recipient is a subframe, how­
ever, its superframe(s) and their other descen­
dant frames will freeze/unfreeze as well as the 
recipient and its subframes. 

-- Igravity 
/UpperLeftl/UpperRightl/LowerLeftl/LowerRight 
Return the gravity variable for the frame. This 
is the side of the screen where the frame will 
tend to be placed when it is opened. 

-- !label graphic I thing I null 
Return the label of the frame, which may be a 
graphic, a thing from which a graphic is made, 
or null. 

-- /location x y 

Return the location of the origin of the frame in 
coordinates of the e1M. 
-- lmap 
Map the frame and move it to the top. 

-- lmapped? bool 
Return true if the frame is currently mapped. 

-- Imenu menu I null 
Return the menu object associated with this 
frame as set by Isetmenu and stored in the 
ICanvasMenu variable The menu is displayed 
whenever the MENU button is pressed with the 
pointer over the frame. Return null if there is 
no menu set. 

-- lminsize minwidth minheight 
Return the minimum size for this frame based 
on the minumum size its main client (lClient) 
requires. 

tNt Technical Reference Manual 



/move 

/new 

Interface Reference 

Interface Reference 

When subdassing, override this method if the 
calculations do not require the current canvas to 
be the frame. (If the calculations do require the 
frame as the current canvas, override /MinSize 
instead.) 

x y Imove 
Move the origin of the frame to the specified 
location in the coordinates of the CTM. 

clientcanvaslnull AVList 
parentcanvas In~ instance 
clientclass AVList parentcanvas Inew 
instance 
[args clientclass] AVList 
parentcanvas Inew instance 
This method creates a new frame, calling 
Inewinit to perform initialization once the 
instance is created. The arguments to Inew are: 

• the parent canvas of the frame being 
created 

• an attribute-value list (AVList), 
which is an array or dictionary of the 
attributes of the frame and their initial 
values. By default, an OPEN LOOK base 
frame has the IClose, /Footer, ILabel, and 
IReshape attributes set to true and /Pin set 
to false. To create an instance with dif­
ferent attribute values, the A V -list would 
be of the form [ attribute bool ], for exam­
ple [ /Reshape false]. The contents of the 
A V -list may be null, in which case, specify 
O. A dictionary can also be used to 
specify the AV list, with the attribute 
names as keys. 

dictbegin IFooter false def IReshape false def dictend 

11-95 



Interface Reference 

Inewinit 

Inotifyproc 

Inotifyreason 

Inotifyselected 

lopen 

lopened? 

11-96 

• the client, 
either the client canvas itself, or the class 
from which to create an instance to be the 
client, or null. Specify the client as an 
argument if it has already been instan­
tiated when the frame is created. Specify 
null if the client is to be added at a iater 
time. Specify a class as the client argu­
ment to have this method create an 
instance of that class as the client. If no 
additional processing is done on the client 
between its creation and its being added 
to the frame, it is more efficient to specify 
a class than an instance. Finally, if addi­
tional arguments are required to create an 
instance, group them into an array, fol­
lowing the c1ientc1ass. 

Inewinit 
Process the arguments to Inew, and create an 
icon subframe. 

-- Inotifyproc proc 
Return the frame's notification procedure. 

-- Inotifyreason keyword 
Return the reason the frame's notification pro­
cedure was called. This information was saved 
by sending /setnotiiyreason to the frame before 
sending 

obj proc Inotifyselected 
This method is sent to a class to have proc sent 
to all selected instances of that class. 

boo1 lopen 
Open or close the frame and its subframes 
depending on the sense of the argument: open if 
true, close if false. 

-- lopened? boo1 
Return true if this frame is open. 

tNt Technical Reference Manual 



lopensubframes 

lowner 

Ipin 

Ipinned? 

Iplace 

Ipopuphelp 

Ipreferredsize 

I remove sub frame 

Ireshape 

Interface Reference 

Interface Reference 

-- lopensubframes 
Open the subframes that had previously been 
closed and stored using Iclosesubframes. 

-- lowner graphic I thing I null 
Returns the portion of the frame's label that 
indicates the frame's owner (superframe). 

-- Ipin 
Pin the frame, if it is pinnable. This method 
invokes the pin notification procedure, /PinNa-
tify. 

-- Ipinned? bool 
Returns true if the frame is currently pinned. 

-- Iplace 
This method computes a default location for the 
frame and places it there. If the frame has 
already been sized, it keeps that size. Other­
wise, the frame assumes its preferred size. 

object Ipopuphelp 
Create and pop up a help frame and display 
help about the specified object. If sent to a sub­
frame, this message is passed on to the frame's 
superframe. The help frame is created as a sub­
frame with the name /Help. If a help frame has 
already been created, it is reused. 

Ipreferredsize preferredwidth prefer­
redheight 
Return the frame's preferred size, which is based 
on the preferred size of its main client, IClient. 

name lremovesubframe oldsubframe true 
name lremovesubframe false 
Remove the name subframe, if it exists, returning 
the subframe and true. If the subframe does not 
exist, return false. Note that the frame is not 
deactivated by this method. 

x y w h Ireshape 
Reshape the frame to fit the given coordinates 

11-97 



Interface Reference 

/reshapefromuser 

/rootframe 

/selected? 

/selectedframes 

/sendrootframe 

/sendselected 

/sendsubframe 

/sendsuperframe 

11-98 

and invalidate the frame. This forces the frame 
and its clients to do layout before repainting. 

-- lreshapefromuser 
This method is used by an application to initiate 
user interaction to reshape the frame. First, the 
cursor will change, by default to a crosshair. 
Next, the NeWS process will block until the user 
drags the mouse to sweep out a bounding box. 
Then, the frame will be resized to fit the bound­
ing box. 

-- lrootframe frame 
Returns the root frame of this frame. A root 
frame is a frame that has no superframe. 

-- lselected? bo01 

Returns true if this frame is the selection target. 

-- Iselectedframes [se1ectedframes] 
This method is sent to a subclass of OassFrame 
and returns an array of its instances that are 
selected. 

<methodarqs> /method lsendroothame 
Send method together with the supplied argu­
ments to the frame's root frame. 

/method I array Isendselected 
This method is sent to a subclass of OassFrame 
to send the arguments to each selected instance 
of that class. The arguments may be a method 
name or an array of the form larg arg ••• 
Imethod]. The array may be executable or not. 

arqs. .. /method subframe lsendsubframe 

Send method and args to sub frame. If the sub­
frame does not exist, an error occurs. 

methodarqs /method Isendsupemame 
Send /method and methodargs to the frame's super 
frame. 

tNt Technical Reference Manual 



/setbusy 

/setchanged 

/setclient 

/setfocus 

/setfooter 

/setframeattribute 

/setgravity 

Interface Reference 

Interface Reference 

bool lsetbusy 
Mark the frame as busy (true) or not busy 
(false). 

bool Isetchanged 
Mark the frame as "changed". This facility is 
provided for subclassers or applictions that need 
to maintain additional state for their frames. 

newclient Isetclient oldclient I null 
Set the frame's client to the specified canvas. 
Return the previous client, or null if there was 
none. or null if there was none. 

bool Isetfocus 
Give the frame the input focus. 

LgraphiclLthinglnull 
Rgraphic I Rthing I null Isetfooter 
Set the objects that define the right and left 
footer elements. Each element can be null, a 
graphic, or a thing from which a graphic is 
made. Null does not change the existing ele­
ment, if there is one. To remove an element, set 
it to nullstring. 

name bool Isetframeattribute 
array Isetframeattribute 
dict Isetframeattribute 
This method is used to dynamically change 
frame attributes, poSSibly resulting in the frame 
requiring validation afterwards. The arguments 
are of the form attribute bool. If there are several 
argument pairs, they may be enclosed in an 
array: 

[attl bool att2 bool2 ] 
Alternatively, the argument-value pairs may be 
enclosed in a dictionary: 

dictbegin attl bool1 def att2 bool2 def dictend 

/UpperLeftl/UpperRightl/LowerLeftl/LowerRigh1 
/setgravity --
Set the frame's gravity, which is the side of the 

11-99 



Interface Reference 

/seticon 

/seticongravity 

/seticonlabel 

/setlabel 

/setnotifyproc 

/setnotifyreason 

/setowner 

/setproperties 

11-100 

screen the frame will tend toward when first 
opened. 

{paint} , [array] ,canvas' (string> '/name Iseticon 

Create the frame's icon as specified: 

{paini} 
[args .. class J 
canvas 
(string) 
/name 

paint procedure of the icon canvas 
an instance is created and used for the icon 
use this canvas as the icon image 

use the string as the icon image 
get character from iconfont 

/Left , /Right , /Top ,/Bottom Iseticongravity 

Set the gravity variable for the frame's icon. 

(string> Iseticonlabel 
Set the label for the frame's icon, removing the 
old label if there was one. Use nullgraphic for 
no label. 

graphic' thing' null Isetlabel 
Store a new value for the frame's label: a 
graphic, a thing from which a graphic is made, 
or null. 

proc Isetnotifyproc 
Set the notification procedure for the frame. 
This procedure is called with the frame itself on 
the operand stack whenever a user action 
changes the state of the frame. 

keyword Isetnotifyreason 
This method is used to supply a reason for cal­
ling the notification procedure, just before cal­
ling it. 

graphic, thing' null Isetowner 
Set the portion of the frame's label that indicates 
the frame's owner (superframe). 

-- Isetproperties 
If a properties subframe already exists for this 

tNt Technical Reference Manual 



/size 

/subframe 

/subframe? 

/subframes 

/superframe 

/toback 

/tofront 

/unfitclient 

/unmap 

/unpin 

Interface Reference 

Interface Reference 

frame, open it. Otherwise, create one and open 
it. The properties frame is shared. 

-- Isize w h 
Return the current width and height of the 
frame. 

name Isubframe frame true 
name Isubframe false 
Return the named subframe and true if the sub­
frame exists, otherwise return false. This can be 
used to retrieve the icon (/Icon), for example. 

name Isubframe? bool 
Returns true if subframe name exists. 

-- Isubframes diet 
Return a dictionary whose keys are the names of 
subframes of this frame, and whose values are 
the subframe instances. 

-- Isuperframe frame 
Return this frame's superframe or this frame 
itself if it has no superframe. 

-- Itoback 
Move the frame and its subframes to the bottom 
(back) on the screen. 

-- Itofront 
Move the frame and its subframes to the top 
(front) on the screen. 

w h lunfitclient w' h' 
Return the size the frame's client should be to fit 
into the frame. This is the opposite of /fitclient, 
which says how big the frame should be to hold 
the client. Note that, if necessary, the frame is 
validated first. 

-- lunmap 
Unmap the frame and give up being selected. 

-- lunpin 
If the frame is pinned, unpin it. 

11-101 



Interface Reference 

/zoom 

/zoomed? 

see also: 

bool Izoom 
Expand the frame to full size if the argument is 
true, or revert to normal size if false. 

-- Izoomed? bool 
Return true if the frame is currently full size. 

OpenLookFrame, ClassBaseFrame 

OpenLookButton 
Subclass of Class Button 
Source file: OLbutton.ps 

This class can be directly Instantiated. 

This class implements OpenLook buttons. It is also the main superclass for but­
ton stacks and abbreviated buttons. 

Direct Methods 
/callnot!fy 

/cleartarget 

/default? 

11·102 

- lcallnotify 
Call the button's notify procedure uncondition­
ally, with the button itself on the operand stack. 

object I null Icleartarget 
Selectively clear the target. If null is given, the 
target is cleared. If object is given, the target is 
cleared only if the object and the traget are the 
same. This ensures that the target cannot be 
incorrectly cleared. 

Note that the Idestroy method of any object 
pointed to by a target should clear the target as 
part of destroying the object. 

- Idefault? bool 
Return true if this button has been designated 
the default (for a menu, for example) 

tNt Technical Reference Manual 



/demo 

/destroy 

/disable 

/enable 

/enabled? 

/graphic 

/location 

/minsize 

/move 

/new 

Interface Reference 

Interface Reference 

- Idemo instance 
Show a sample OPEN LOOK button, whose call­
back writes to the console. 

- Idestroy 
Tum off tracking if it is on, and destroy the but­
ton. 

- Idisable 
Stop responding to user actions; set the button's 
state to false, paint the button accordingly, and 
remove the tracking process when current 
requests are serviced. 

- lenable 
Set the button's state to enabled, and display it 
accordingly with lPaintEnabledState. 

- lenabled? bool 
Return true if the button is currently enabled, 
false if it is disabled. When disabled, the button 
does not respond to user input. 

- Igraphic obj 

Return the graphic object that represents the 
button on screen. 

- !location x y 
Return the location of the origin of the button 
relative to the CTM. 

- Iminsize w h 
Return the smallest size the button can be and 
still appear intelligible. 

x y Imove 
Move the origin of the button to the specified 
location in the coordinates of the CTM. 

thinglgraphic notifyproc 
parentcanvas Inew instance 
The arguments to Inew specify: 

11-103 



Interface Reference 

/notifyproc 

/preferredsize 

/sendtarqet 

11-104 

• a parent canvas of the button. 

• a notification procedure or callback, 
which is executed whenever the SELECT 
button on the mouse is released over the 
button. Remember that tracking for an 
OPEN LOOK button begins when t.~e 
mouse cursor enters the button and the 
SELECT button is pressed. Notification 
occurs when the SELECT button is 
released over the button. 

• a graphic or thing to be made into a 
graphic. 
If the object supplied is a thing or a non­
terminal graphic, ICreateGraphic is called 
to make an instance of OpenLookButton­
Graphic from the argument. 

- Inotifyproc proc 
Return the button's current notify procedure. 

- IprefelTedsize width height 
Return the preferred or "ideal" size for this 
button, which by default is the minimum size 
(/minsize). 

args /method lsendtarget results 
Send the method and arguments to the target 
object. Any button can have a "target" which 
you can set, get, and send to. For example, if 
you have a button that needs to send a message 
to object foo when the button's callback is exe­
cuted: 

Ib (Hello) {Ifoo-method lsendtarget 3 -1 roll send} 

framebuffer lnew OpenLookButton send def 

foo /settarget b send 
When the button is pressed, foo-method will be 
sent to foo. You can change the target at any 
time if you want to make your button send to 
different objects at different times. 

tNt Technical Reference Manual 



/setdefault 

/setqraphic 

/setnotifyproc 

/settarqet 

/size 

/tarqet 

Class Variables 
/Default 

Interface Reference 

Interface Reference 

An error results from sending anything to a null 
target 

bool lsetdefault 
Mark this button as a default. Currently this 
only affects the graphical look of the button by 
drawing an extra "default ring" drawn in it. 

thing I graphic Isetgraphic 
Convert the argument to a graphic, if necessary, 
and store it as the button's graphic. Then, 
invalidate the button to require layout before 
repainting. 

proc lsetnotifyproc 
Set the button's notify procedure, overwriting 
the previous one. 

object lsettarget 
Set the target object, overwriting the previous 
target, if there was one. 

- Isize w h 
Return the width and height of the button in the 
coordinates of the CI'M. 

- ltarget object 
Return the target of this button. If left unset, 
this value defaults to the button itself. See 
ClassTarget for a more complete description of 
targets and their usage in controls and menus. 

An OPEN LOOK button has an additional 
binary state named !Default, which is not con­
nected with its enabled/disabled state or its 
on/ off value. It is used, for example, in OPEN 
LOOK button menus to designate one button as 
the default selection for the menu. The button 
designated as the default is painted with an ring 
inside its outline. The default value of this vari­
able is false. 

11-105 



Interface Reference 

see also: 
ClassButton 

OpenLookButtonStack 

Subclass of Open Look Button 
Source file: OLbutton.ps 

This class can be directly Instantiated. 
This class implements OpenLook Button Stacks (now called Button Menus in 
OPEN LOOK), as well as being the primary superclass for OpenLook Abbrevi­
ated Button Stacks. 

Direct Methods 

I demo - Idemo instance 
Create a demonstration button stack on the 
framebuffer. This method will only be available 
if IIncludeDemos? was true at the time this 
class was read in. 

Idestroy - Idestroy 
Tum off tracking if it is on, and destroy the but­
ton. If the menu was passed in as an array and 
constructed on-the-fly by the button then it too 
will be destroyed. Otherwise it is up to the 
caller who passed the menu in to ensure its des­
truction. 

Idisable - Idisable 
Stop responding to user actions; set the button's 
state to false, paint the button accordingly, and 
remove the tracking process when current 
requests are serviced. 

I enable - lenable 
Set the button's state to enabled, and display it 
accordingly with lPaintEnabledState. 

lenabled? - lenabled? bool 
Return true if the button is currently enabled, 

11-106 tNt Technical Reference Manual 



/qraphic 

/location 

/menu 

/menubelow 

/menubelow? 

/move 

Interface Reference 

Interface Reference 

false if it is disabled. When disabled, the button 
does not respond to user input. When enabled 
it will respond to both the SELECI' and MENU 
mouse buttons. 

- Igraphic obj 
Return the graphic object that represents the 
button on screen. 

- /location x y 
Return the location of the origin of the button 
relative to the CI'M. 

- Imenu menu I null 
Return the menu object associated with this but­
ton as set by Inew or Isetmenu. The menu is 
displayed whenever the MENU button is 
pressed with the pointer over the canvas. The 
menu default is executed if the button callback 
is null and SELECI' button is pressed and 
released over the canvas. Return null if there is 
no menu set. 

bool Imenubelow 
This method is used to determine on which side 
of the button the menu will pop-up on. By 
default the menu is displayed below the button 
stack. passing false to this method would cause 
the menu to pop-up to the right of the button. 
The functionality to position the menu to the 
right of the button has not yet been imple­
mented so only true should be passed to this 
method for now. 

- Imenubelow? bool 
Returns true of the menu for this button will be 
displayed below the button. Othertwise the 
menu will come up to the right of the button. 

x y Imove 
Move the origin of the button to the specified 
location in the coordinates of the CTM. 

11·107 



Interface Reference 

/new 

11-108 

thing menularray notifyproc 
parentcanvas Inew instance 
The arguments to Inew specify: 

• a parent canvas of the button. 

• a notification procedure or callback, 
which is executed whenever the SELECT 
button pressed and released over the can­
vas. Remember that tracking for an 
OPEN LOOK button begins when the 
mouse cursor enters the canvas and the 
SELECT button is pressed. Notification 
occurs when the SELECT button is 
released over the canvas. In order for the 
button to correctly function this callback 
must be null. While you may install you 
own button callback, the resulting 
behavior is likely to not be OPEN LOOK 
compliant. The default callback for abbre­
viated button stacks implements the 
required OpenLook functionality by exe­
cuting the default selection from the but­
ton menu when the SELECT button is 
released. 

• a menu or menu specification. 
If an array is passed in it is assumed to be 
a specification for a menu that the button 
should instantiate automatically. It does 
this by sending Inewdefault to 
ClassMenu: [menu specification] frame­
buffer Inewdefault ClassMenu send The 
result should be a a valid menu instance. 
Note that this interface does not support 
all the supported interfaces to Inew in 
ClassMenu. The menu passed into Inew 
(as an instance or a specification) is 
displayed whenever the MENU button is 
pressed over the button. If the supplied 
callback was null the default callback of 

tNt Technical Reference Manual 



/newinit 

/preferredsize 

/setgraphic 

/setmenu 

Interface Reference 

Interface Reference 

the menu will be executed when the 
SELECf button is released over the but­
ton. 

• a graphic or thing to be made into a 
graphic. 
If the object supplied is a thing or a non­
terminal graphic, ICreateGraphic is called 
to make an instance of OPEN LOOK But­
tonGraphic from the argument. 

thing menu I array notify Inewinit 
This method is called by Inew and is responsible 
for consuming the callback, the menu 
speicification, and the thing or graphic. This is 
primarily a method used by subclassersi users 
should not call this method directly. 

- Ipreferredsize width height 
Return the preferred or "ideal" size for this but­
ton, which by default is the minimum size 
(/minsize). 

thing I graphic Isetgraphic 
Convert the argument to a graphic, if necessary, 
and store it as the button's graphic. Then, invali­

. date the button to require layout before repaint­
ing. 

menu I array Isetmenu 
Install or remove a popup menu for this canvas. 
The menu is activated by the user pressing the 
MENU button when the pointer is over the but­
ton. The menu defauilt is activated by by the 
user pressing and releasing the SELECf button 
when the pointer is over the button. If an array 
is passed in it is assumed to be a specification 
for a menu that the button should instantiate 
automatically. It does this by sending Inewde­
fault to ClassMenu: 

11-109 



Interface Reference 

!size 

Subclass Methods 

!DisplayDefault 

!UnDisplayDefault 

see also: 
OpenLookButton 

OpenLookCheckBox 

[menu specification] framebuffer lnewdefault ClassMenu send 

The result should be a a valid menu instance. 
Note that this interface does not support all the 
supported interfaces to Inew in ClassMenu. 

- Isize w h 
Return the \vidth a,.~d height of the button rela­
tive to the CTM. 

- lDisplayDefault 
This method displays the default menu selection 
in place of the button graphic. Typically this 
method is called automatically when the user 
presses the SELECT mouse button over an 
active, enabled button stack. 

- /UnDisplayDefault 
This method displays the button graphic in 
place of the default menu selection. 

Subclass of OpenLookXSettingControl 
Source file: OLxctrl.ps 

This class can be directly Instantiated. 
This class implements OPEN LOOK check boxes, a nonexclusive setting used in 
lists of yes-no choices. The implementation of this class is subject to change in 
the future. 

see also: 
OpenLookXSettingControl 

11-110 tNt Technical Reference Manual 



OpenLookChoggle 

Subclass of OpenLookXSetting 
Source file: OLxset.ps 

This class can be directly Instantiated. 

Interface Reference 

This classs implements OpenLook "choggles", which is a set of items, of which 
zero or one is selected at any time. It can be thought of as an exclusive setting 
that can be turned off altogether. 

see also: 
OpenLookXSetting 

OpenLookCommandFrame 

Subclass of OpenLookFrame,ClassCommandFrame 
Source file: OLframe.ps 

This class can be directly Instantiated. 
This class is OpenLookBasePrame with the following differences; command 
frames: 

• have a pin 

• do not have a footer 

• cannot be closed into an icon (have no "iconic" state) 

• cannot be quit from or closed into an icon (pressing SELECf over the 
close box or selecting "Dismiss" from their menu simply unrnaps them 
from the screen.) 

see also: 
OpenLookBasePrame 

Interface Reference 11·111 



Interface Reference 

OpenLookFrame 

Subclass of Class Frame 
Source file: OLframe.ps 

This class should be subclassed rather than directly Instantiated. 
This class is used to "mix-in" OpenLook features into frame subclasses. For 
example, it is mixed in with ClassBaseFrame to produce OpenLookBaseFrame. 
Likewise, it is mixed in to produce the other OPEN LOOK frame types: com­
mand, icon, help, notice, and property. 

OpenLookHelpFrame 

Subclass of OpenLookFrame,ClassHelpFrame 
Source file: OLframe.ps 

This class can be directly Instantiated. 
This class is OpenLookBaseFrame with the following differences; Help frames: 

• have a pin 

• do not have a footer 

• do not have a resize tab. 

• cannot be quit or closed into an icon (pressing SELECT over the close box 
or selecting 'Dismiss" from their menu simply unmaps them from the 
screen). 

see also: 
OpenLookBaseFrame 

OpenLookHorizontalScrollbar 

Subclass of ClassScrollbar,ClassBag 
Source file: OLsbar.ps 

11·112 tNt Technical Reference Manual 



Interface Reference 

This class can be directly Instantiated 

The only differences between this class and OpenLookVerticalScrollbar are: 

1. the vertical scrollbar has an origin in the upper left corner, whereas Open­
LookHorizontalScrollbar uses the standard lower left origin. 

2. The menu associated with the vertical scrollbar has "Here to top", 
whereas OpenLookHorizontalScrollbar has "Here to left". 

see also: 

OpenLookVerticalScrollbar, ClassScrollbar, OassBag 

OpenLookHorizontalSlider 

Subclass of ClassDlalControl 
Source file: OLsllder.ps 

This class can be directly Instantiated 

An OpenLookHorizontal~ider is an analog control. Users can pick up and drag 
the drag box, or click to me left or right of it. This class has the same interface 
as OpenLookVerticalSlider. 

Direct Methods 

/destroy 

/minsize 

/motion 

/new 

Interface Reference 

-- Idestroy 
Destroys the slider drag box and then destroys 
itself. 

-- lminsize minwidth minheight 
Returns the minimum width and height of the 
slider. This leaves enough room for the drag box 
only. 

-- Imotion motion 
Returns the current motion, as set by ISetMo­
lion. The motion for sliders is either IAbsolute, 
when the drag box is dragged, or /Line, when 
the mouse is clicked outside the drag box. 

notifyproc parentcanvas Inew instance 
Creates and returns an instance of a slider. The 

11·113 



Interface Reference 

/newinit 

/setdelta 

/setnormalization 

/setnotifyproc 

/setposition 

/setrange 

Subclass Methods 

/ClientDown 

/ClientDrag 

11-114 

parentcanvas is consumed by Inewobject. 
Inewinit consumes the notifyproc. 

notifyproc Inewinit 
Initializes the slider. This does the normal con­
trol initialization and then creates the slider drag 
box. 

name value Isetdelta 
This sets the specified delta to the value. The 
only delta that is used by sliders is !Line. 

number Isetnormalization 
The normalization defines the granularity of the 
values for the slider. 

proc Isetnotifyproc 
Takes the argument proc and makes it the call­
back for the slider. The callback will be called 
by Ichecknotify with the slider itself on the 
stack. 

event Isetposition 
Expects an X/V pair or an event (which it then 
turns into an X/V pair) and sets the value of the 
slider according to that specified position. 

min max Isetrange 
Sets the range displayed by the slider. 

event IClientDown 
This method is called when the user mouses 
down over the slider. This sets the slider 
motion according to where the mouse hit 
occurred. If the mouse hit occurs inside the 
slider drag box, the motion is lAb solute, other­
wise it is !Line. 

event IClientDrag 
This drags the drag box if the motion is IAbso­
lute, that is, if the last IClientDown was inside 

tNt Technical Reference Manual 



/ClientUp 

/PaintCable 

/PaintCanvas 

/SetMotion 

see also: 
ClassDialControl 

OpenLooklconFrame 

Interface Reference 

the drag box. This calls Ichecknotify. If you 
don't want notification on every drag event, 
override ICallNotify? to return false when the 
current motion is IAbsolute. 

event IClientUp 
This method is called when the user lets go of 
the mouse button that caused IClientDown to 
be called. If the motion was /Line then the drag 
box is moved now. If the motion was IAbsolute 
the drag box is already positioned. Ichecknotify 
is called in either case. 

-- lPaintCable 
Paints the slider cable. 

-- lPaintCanvas 
Paints the slider with the current value. 

event ISetMotion 
Sets the motion of the slider to be IAbsolute 
when the drag box is dragged, and to /Line 
when the mouse is clicked outside the drag box 
(but otherwise inside the slider). 

Subclass of OpenLookFrame,ClasslconFrame 
Source file: OLframe.ps 

This class can be directly Instantiated. 
An OpenLookIconFrame is automatically created to accompany every Open­
LookBaseFrame; it is a full blown frame that by default has no resize comers, 
footer, or pin. 

Interface Reference 11-115 



Interface Reference 

see also: 
OpenLookBasePrame 

OpenLookMenu 
Subclass of Class Menu 
Source file: OLmenu.ps 

This class can be directly Instantiated 
This class implements pop-up and stay-up pinnable OpenLook menus. It is 
meant to be directly instantiated. Also note that OassCanvas 
provides code to watch for the menu button, and show any menu registered 
via / setmenu. 

Direct Methods 

/change 

/cleartarget 

/default 

/delete 

11-116 

location thinqlqraphic 
qenproclsublistlnull proclnull Ichange 

Replace the menu item at the specified location. 
The arguments other than location are the same 
as for /new. This method invalidates the menu, 
so it must be repainted after the change. 

object I null Icleartarget 
Clear the menu target. If an object is supplied 
as a parameter, the target will be cleared only if 
the current target matches the parameter. See 
ClassTarget for more about targets and their 
uses. 

- Idefault index 
Return the index of the default menu item. 

location Idelete 
Delete the menu item at the specified location. 
This invalidates the menu, so it should be 
repainted after the change. 

tNt Technical Reference Manual 



/demo 

/destroy 

/disableitem 

/doaction 

/dodefault 

/enableitem 

/graphic 

/inse~t 

Interface Reference 

Interface Reference 

- Idemo canvas 
Invoke a demonstration menu. The purpose of 
this menu is to show how to use some com­
monly used methods of Open Look menus. 

- Idestroy 
Destroy the menu and its pinned copy if 
present. 

index Idisableitem 
Disables a menu item rendering it unselectable. 
The item's color is changed to DisabledColor to 
indicate its disabled state. 

- Idoadion 
Execute the action associated with the currently 
selected menu item, i.e. the item whose index 
matches the menu's current value. If the item 
has a notify proc, it is called. If the item has a 
submenu, the notify proc of the submenu's 
default item is called. 

- Idodefault 
Execute the action associated with the default 
menu item. The menu's value is set to its 
default, and / doaction is called. This method 
does nothing if the menu has no default or if the 
default item is disabled. 

index lenableitem 
Enable the menu item at the specified location. 

location Igraphic graphic 
Return the graphic associated with the menu 
item at the specified location. 

location graphic procedurelmenulnull 
proc linsert 
Insert a new menu item at the specified location. 
Except for location, the arguments are the same 
as for /new. This method invalidates the menu, 
so it must be repainted after the change. 

11-117 



Interface Reference 

/itemcount 

/itemenabled? 

/label 

/layout 

/layoutstyle 

/maxlocation 

/new 

/newinit 

/nonxvalue 

11·118 

- litemcount inteqer 
Return the number of items in the menu. 

location litemenabled7 bool 
Return true if the item at the specified location 
is enabled. 

- ,1abel qraphic i null 
Return the graphic associated with the menu's 
label. 

- !layout width height 
Arrange the menu label, pin and items accord­
ing to the layout style specified by /setlay­
outstyle. Returns the size of the menu. 

- !layoutstyle RowMajor? Rows I null 
Columnslnull 
Return the layout style for the menu. See class 
RowColumnLayout. 

- lmaxlocation location 
The largest location of the menu. Menu locations 
are specified as small integers ranging from 
0 ... n-1, where n is the total number of control 
items in the menu. 

[thinqlqraphic qenproclsublistlnull 
proc I null ... ] parent Inew inst 
thinglqraphic ... ] qenproclnull proclnull 
parent Inew inst 
Create a menu. See the OpenLook Menu section 
for a description of the parameters. 

[thinqlqraphic qenproclsublistlnull 
proc I null ... ] Inewinit 
[thinglgraphic ... ] genproclnull 
proc I null Inewinit 

- Inonxvalue [nonxvalues ... ] I null 
Return an array of nonexclusive menu items 
currently selected. Returns an empty array if no 
nonexclusive items are selected. Returns null if 
the menu contains no nonexclusive items. 

tNt Technical Reference Manual 



/notifyproc 

/owner 

/pin 

/pinnable? 

/pinned? 

/popdown 

/popup 

/searchqraphic 

/searchthinq 

Interface Reference 

Interface Reference 

location Inotifyproc procedure I null 
Return the notify proc associated with a particu­
lar menu item. 

- lowner string I null 
Return the owner string or graphic associated 
with the menu. 

- Ipin 
Pin a pinnable menu. 

- Ipinnable? bool 
Return true if the menu is pinnable. 

- Ipinned? bool 
Return truetrue if the menu is pinned. 

- Ipopdown 
Remove the menu and any submenus from the 
screen. 

x y Ipopup 
Pop up the menu at the specified location, rela­
tive to the CTM. The menu is activated. 

graphic Isearchgraphic index true 
graphic Isearchgraphic false 
graphic startloc Isearchgraphic index 
true 
graphic startloc lsearchgraphic false 
Search for the menu item having the given 
graphic. If a starting location is given, begin the 
search at that item The search ends with the 
last menu item and does not wrap around. 

thing Isearchthing index true 
thing Isearchthing false 
thing startloc Isearchthing index true 
thing startloc Isearchlhing false 
Search for the menu item having the given 
thing. If a starting location is given, begin the 
search at that item The search ends with the 
last menu item and does not wrap around. 

11-119 



Interface Reference 

/sendtarget 

/setdefault 

/setgraphic 

/setlabel 

/setlayoutstyle 

/setnotifyproc 

/setowner 

/setpinnable 

11-120 

args /method lsendtugd results 
This method can be invoked within the 
notifyproc in order to send a message to some 
other instance. See OassTarget for more details. 

index Isddefault 
Set t..he default menu item. 

location thing I graphic Isdgraphic 
Set or change the graphic at the specified menu 
item location. 

null I graphic I thing Isdlabel 
Set or change the label at the top of the menu. 

RowMajor? Rowslnull 
Col umns I null lsetlayoutstyle 
Change the layout style of the menu. See class 
RowColumnLayout. 

location procedurelnull hdno6~roc 
Change the notification procedure (callback) 
associated with a menu item. Note that if you 
specify a single notify proc when creating a 
menu, the notify proc is duplicated for each 
menu item. You may therefore change indivi­
dual menu item callbacks without affecting oth­
ers. Also, to change the callbacks for all menu 
items, you must call1setnotiiyproc for each item 
in the menu. 

string I null I proc Isetowner 
Set the owner field of a menu. When the menu 
is pinned, the owner field is shown to the left of 
the menu label. This helps users distinguish oth­
erwise identical coexisting pinned menus. The 
owner is a string that may either be specified 
explicitly or may be returned by a piece of exe­
cutable code (the proc). 

bool lsetpinnable 
Set the menu to be pinnable. By default a menu 
does not have a pin. 

tNt Technical Reference Manual 



/setsublist 

/settarget 

/setvalue 

/showat 

/sublist 

/sublist? 

/target 

/value 

/valuething 

Interface Reference 

Interface Reference 

location genproc I sublist I null Isetsublist 

Set the submenu associated with a menu item. 
The submenu may either be a menu instance or 
may be a procedure that returns a menu 
instance. 

object lsettarget 
Set the target used by the / send target 
method. See OassTarget for more about targets 
and their uses. 

index I null lsetvalue 
Set the current value of the menu. 

x y Ishowat 
event Ishowat 
Draw the menu at specified x and y locations 
and start a tracking manager for the menu. 
Showat has the same effect as pressing the menu 
button. 

location Isublist sublist I null 
Get the submenu associated with a menu item. 
Returns null if there is no submenu for the item. 

location Isublist? boolean 
Return true if the specified menu item has an 
associated submenu. 

- Itarget object 
Return the target object. 

- Ivalue index 
Return the last selected menu item. The value is 
an integer from 0 to one less than the number of 
items in the menu. The value will be null if the 
menu is displayed, but no item is selected. 

- Ivaluething thing I null 
Returns the thing associated with the current 
value. 

11·121 



Interface Reference 

/xvalue - Ixvalue index I null 
Return the selected exclusive menu item. 
Returns null if the menu contains no exclusive 
menu items or if "one are selected. 

OpenLookNonXSetting 

Subclass of OpenLookXSettlng 
Source file: OLxset.ps 

This class can be directly Instantiated. 
This class implements an Open Look nonexclusive setting group. The group 
displays multiple setting items on a single canvas. The group acts like a control 
in that it has a single value, although since more than one Setting item may be 
selected at once, the value is an array of all selected valueS. Each item has an 
associated notify procedure that is called when the item is selected or 
deselected. 

Direct Methods 

/adjust 

/border 

/chanqe 

/cleartarqet 

11-122 

location ladjust 
Toggle the value of the item indicated by loca­
tion. 1f location is greater than the number of 
items, toggle the last one. 

- !border number 
Return the size of the border around the entire 
group of settings. 

~ocation thinglgraphic 
genproclsublistlnull proclnull Ichange 

Change the setting item at the specified location. 
'the parameters, other than location, are the 
same as for Inew. 

object I null Icleartarget 
Clear the control's target object. If an object is 
supplied as a parameter, the target will be 

tNt Technical Reference Manual 



/clientcount 

/clientlist 

/delete 

/demo 

/destroy 

/disableitem 

/doaction 

/enableitem 

/gaps 

/graphic 

/insert 

/invalidate 

Interface Reference 

Interface Reference 

cleared only if the current target matches the 
parameter. See Class Target for more about tar­
gets and their uses. 

- Iclientcount int 
Return the number of items in the setting. 

- Iclientlist array 
Return an array of dictionaries, one per item in 
the control group. 

location Idelete 
Delete the specified setting item from the group. 

- Idemo instance 
Create a demonstration nonexclusive setting on 
the framebuffer. 

- Idestroy 
Destroy the exclusive setting control. 

index Idisableitem 
Disable the item at the specified location. 

- Idoadion 

index lenableitem 
Enable the item at the specified location. 

- Igaps horizontalgap verticalgap 
Return the amount of space between the setting 
items. 

location Igraphic graphic 
Return the graphic for the specified setting item. 

location thinglgraphic 
genproclsublistlnull proclnull Imsert 
Insert a new setting item at the specified posi­
tion in the group. The parameters, other than 
location, are the same as for Inew. 

- linvalidate 
Invalidate the setting and all of its item graph­
ics. 

11-123 



Interface Reference 

/itemcount 

/itemenabled? 

/layout 

/layoutstyle 

/location 

/maxlocation 

/minsize 

/move 

/new 

/notifyproc 

/preferredsize 

11·124 

- litemcount integer 
Return the number of items in the setting group. 

location litemenabled? bool 
Return true if the specified item is enabled. 

- !layout 
Layout the setting items. This sizes and places 
the items according to the layout style for the 
setting. 

- !layoutstyle RowMajor? Rows I null 
Columnslnull 
Return the layout style for the menu. See 
RowColumnLayout. 

- !location x y 

Return the location of the setting canvas. 

- lmaxlocation location 
The location of the last item in the control. Item 
locations range from 0 to Imaxlocation. Imaxlo­
cation is one less than litemcount. 

- lminsize minwidth minheight 
Return the minimum size of the setting. 

x y Imove 
Move the setting's canvas to the specified loca­
tion, relative to the CfM. 

[thinglgraphic proclnull ... J 
canvas Inew instance 
Create a nonexclusive setting group. Refer to 
the introductory section OPEN LOOK Settings 
for the details of the arguments. 

location Inotifyproc procedure I null 
Return the notify proc for the item at the 
Specified location. 

- Ipreferredsize width height 
Return the preferred size of the setting group. 

tNt Technical Reference Manual 



/reshape 

/searchgraphic 

/searchthing 

/sendtarget 

/setborder 

/setgaps 

/setgraphic 

Interface Reference 

Interface Reference 

x y w h Ireshape 
Reshape the setting group's canvas, and invali­
date the setting group. 

graphic Isearchgraphic index true 
graphic Isearchgraphic false 
graphic startloc lsearchgraphic index 
true 
graphic startloc lsearchgraphic false 
Search for the setting item having the given 
graphic. If a starting location is given, begin the 
search at that item. The search ends with the 
last menu item and does not wrap around. 

thing Isearchthing index true 
thing Isearchthing false 
thing startloc Isearchthing index true 
thing startloc Isearchthing false 
Search for the setting item having the given 
thing in its graphic. If a starting location is 
given, begin the search at that item. The search 
ends with the last menu item and does not wrap 
around. 

args /method lsendtarget results 
Send a message to the target object. Typically 
used in the control's notify proc. See OassTarget 
for more details. 

number Isetborder 
Set the size of the border around the entire 
group of settings. 

horizontalgaplnull 
verticalgap I null Isetgaps 
Change the amount of space between the setting 
items. A null parameter leaves that value 
unchanged. 

location thinglgraphic lsetgraphic 
Change the graphic for the specified setting 
item. 

11-125 



Interface Reference 

/setlayoutstyle 

/setnotifyproc 

/settarget 

/setvalue 

/target 

/value 

/valuething 

11-126 

RowMajor? Rowslnull 
Columns I null lsetlayoutstyle 
Change the layout style of the menu. See 
RowColumnLayout for a more complete descrip­
tion of the arguments. 

location procedure I null Isetnctifyproc 
Change the notification procedure (callback) 
associated with a setting item. Note that if you 
specify a single notify proc when creating the 
setting group, the notify proc is duplicated for 
each item. You may therefore change individual 
item callbacks without affecting others. Also, to 
change the callbacks for all items, you must call 
Isetnotifyproc for each item. 

object Isettarget 
Set the target used by the Isendtarget method. 
See ClassTarget for more detail about targets and 
their uses. 

index I [index index ... ] Isetvalue 
Change the value of the setting. If a single 
index is supplied, that item is selected and all 
other items are deselected. If an array is sup­
plied, the items specified by the indices in the 
array are selected. 

- ltarget object 
Return the target object. See OassTarget. 

- Ivalue index 
Return an array of indices corresponding to 
selected items. If no items are selected, an 
empty array is returned. 

- Ivaluething [things] 
Return the thing of the graphic of the selected 
item, or null. 

tNt Technical Reference Manual 



see also: 

OpenLookXSetting, RowColumnLayout, ClassTarget 

OpenLookNoticeFrame 

Subclass of OpenLookFrame,ClassNotlceFrame 
Source file: OLframe.ps 

This class can be directly Instantiated. 

Interface Reference 

This class is OpenLookBaseFrame with the following differences; command 
frames: 

• have a pin 

• do not have a footer 

• cannot be closed into an icon (have no "iconic" state) 

• resist being frozen. 

see also: 

OpenLookBaseFrame 

OpenLookNumeric 

Subclass of ClassControl,ClassBag 
Source file: OLnumctrl.ps 

This class can be directly Instantiated 

An Open Look numeric control is a ClassBag that contains an OpenLook­
TextControl plus a pair of buttons that increment and decrement the numeric 
value displayed in the text control. The numeric value may be either integer or 
real. Many methods that pertain to the text control, such as Isettextparams, are 
implemented also in OpenLookNumeric, which simply passes the messages to 
the underlying text control. 

Interface Reference 11-127 



Interface Reference 

Direct Methods 

/callnotify 

/checknotify 

/cleartarqet 

/decrement 

/demo 

/destroy 

/disable 

11-128 

- Icallnotify 
Call the client's notifyproc, and remember the 
current value for use by Ichecknotify. 

object I null Ichecknotify 
Can the dienes notifyproc only if the current 
value differs from the value as of the last call to 
Icallnotify. This method is called automatically 
whenever the text control calls its notifyproc, 
i.e., when RETURN is typed or the control loses 
the input focus after the text has been changed. 
(Note that it is possible for the text to change 
without changing the numeric value, e.g., by 
adding zeroes at the front.) 

object I null Ideartarget 
Selectively clear the target used by the Isendtar­
get method. This method is called automatically 
when the numeric control is destroyed. See 
ClassTarget for more about targets and their 
uses. 

- Idecrement 
Decrement the value by one unit. The unit 
defaults to 1, but can be changed by the Isetin­
crement method. The decrement button sends a 
Idecrement message. 

- Idemo instance 
Create a sample numeric control whose parent is 
the framebuffer. 

- Idestroy 
Destroy this control. This recursively destroys 
the text control and buttons. 

- Idisable 
Cause the control to stop responding to user 
actions. This recursively disables the text control 
and buttons. 

tNt Technical Reference Manual 



tenable 

/enabled? 

/increment 

/location 

/minsize 

/move 

/new 

/newinit 

Interface Reference 

Interface Reference 

- lenable 
Cause the control to respond to user actions. 
This recursively enables the text control and but­
tons. 

- lenabled1 b001 
Return true if the control is currently enabled. 

- lincrement 
Increment the value by one unit. The unit 
defaults to 1, but can be changed by the Isetin­
aement method. The increment button sends a 
lincrement message. 

- ~ocation x y 
Return the location of the origin (normally the 
lower left comer) of the control relative to the 
CTM. 

- Iminsize minwidth minheight 
Return the minimum size for this control. In 
addition to leaving room for a specified number 
of characters and text scroll buttons (see 
ClassTextControl and OpenLookTextControl), this 
method leaves room for the increment or decre­
ment buttons. 

x y Imove 
Move the origin (lower left) of the control to the 
specified location in the coordinates of the CI'M. 

notifyproc parent canvas Inew instance 
Return a new numeric control instance with the 
specified callback proc and parent canvas. The 
control initially contains no text; if asked for its 
Ivalue it will return the IDefaultValue (q.v.). 

notifyproc Inewinit 
Create the enclosed text control and buttons, 
then store the notifyproc using Inewinit super 
send. 

11-129 



Interface Reference 

/notifiedvalue 

/notifyproc 

/preferredsize 

/reshape 

/sendtarget 

/setcolors 

/setdisplaychars 

11-130 

- Inotifiedvalue any 
Return the value the control had the last time 
/callnotify was sent. 

- Inotifyproc proc 
Return the current callback proc without invok­
ing it. 

- Ipreferredsize preferredwidth prefer­
redheight 
Numeric controls do not presume any preferred 
size beyond the minimum required. Thus they 
use the default /pre£erredsize method, which 
simply calls /minsize. 

x y w h Ireshape 
Reshape the control to fit the bounding box 
specified by the arguments, in the coordinates of 
theCTM. 

args /method Isendtarget results 
This method can be invoked within the 
notifyproc in order to send a message to some 
other instance. Many clients will not need to use 
this indirection. See OassTarget for more details. 

strokecolor fillcolor 
textcolor Isetcolors 
Set the colors for painting the text and its back­
ground. Null as an argument means do not 
change that value. The strokecolor is used for 
painting the buttons. After callihg /setcolors, 
clients must call/invalidate and then /paint to 
cause the text control to repaint using the new 
colors. 

n Isetdisplaycbars 
Set the minimum number of characters that the 
control should be able to display. This message 
is handed off to the underlying text control, 
which uses it to determine /minsize. 

tNt TechnIcal Reference Manual 



/setincrement 

/setmax 

/setmin 

/setnotifyproc 

/setrange 

/settarget 

Interface Reference 

Interface Reference 

increment Isetincrement 
Set the amount by which the value is changed 
by lincrement and Idecrement. A negative 
value will cause lincrement to decrease the 
value and Idecrement to increase it. Setting the 
increment to zero causes the 
increment/decrement buttons to be removed 
from the control. The current increment can be 
examined via the /Increment instance variable. 

max Isetmax 
Set the maximum value permitted for the con­
trol. Any attempt to set a value greater than the 
maximum (by typing a larger number, or by the 
lincrement method) sets it instead to the max­
imum. When the value is equal to the max­
imum, the increment button is disabled. The ini­
tial maximum value is 32767. 

min Isetmin 
Set the minimum value permitted for the con­
trol. Any attempt to set a value less than the 
minimum (by typing a smaller number, or by 
the Idecrement method) sets it instead to the 
minimum. When the value is equal to the max­
imum, the decrement button is disabled. The ini­
tial minimum value is -32767. 

proc Isetnotifyproc 
Store the proc as the new callback to be used by 
Icallnotify, in place of the one provided to /new. 

min max Isetrange 
Set both the minimum and maximum values for 
the control, as described for Isetmin and Iset­
max. 

object Isettarget 
Set the target used by the Isendtarget method. 
See ClassTarget for more about targets and their 
uses. 

11-131 



Interface Reference. _______________________ _ 

/settextparams 

/setvalue 

/size 

/target 

/value 

/ButtonNotify 

/ButtonY 

11-132 

family pointsize encoding Isettextparams 

Set the text parameters that detennine the font 
for the control. This message is handed off to 
the underlying text control, as well as being 
applied to the numeric control's own canvas 
(since it affects the size of the increment or 
decrement buttons). 

n Isetvalue 
Replace the current value with the given 
number, subject to min/max constraints, and 
change the text in the text control accordingly. 

- Isize w h 
Return the width and height of the control in 
the CfM. 

- Itarget object 
Return the current target (if any) used by 
IsendtargeL See ClassTarget for more details. 

- Ivalue nwn 
Return the current value of the control, obtained 
by interpreting the text control's value as a 
PostScript token. If the resulting object is neither 
lintegertype nor Irealtype, Ivalue instead 
returns the IDefaultValue for the control. 

buttoninstance IButtonNotify 
This is the callback used for the 
increment/decrement buttons. The default 
behavior is to send Ivalue to the buttoninstance 
to determine which button has been pressed, 
and then send either lincrement or Idecrement, 
as appropriate, to the numeric control. 

- IButtonY y 
Return the y-coordinate for positioning the 
increment/decrement buttons. By default they 
are placed so as to align with the baseline of the 
text. 

tNt Technical Reference Manual 



/CallBack 

/DefaultValue 

Class Variables 
/Gap 

see also: 
ClassControl, ClassBag 

Interface Reference 

Interface Reference 

obj ICallBack 
This is the notifyproc for the underlying text 
control. It is called when the text control 
receives a RETURN keystroke or when it loses 
the input focus, provided the text string has 
been changed. The default behavior is to nor­
malise the value by applying the min/max con­
straints and removing extraneous zeroes, then to 
send Ichecknotify which invokes the numeric 
control's own callback if the value has changed. 

!Default Value 
Return a default value to be used if the text 
string is unreasonable. This message is sent by 
Ivalue and ICallBack if the string does not 
represent an integer or real value. (Thus, in par­
ticular, an empty string will yield lDefaultValue 
rather than zero.) The default behavior is to 
return the value halfway between the minimum 
and maximum values, truncated to an integer. 
Note that the default min/max values yield a 
lDefaultValue of zero. 

This is the amount of space to leave between the 
text control and the increment/decrement but­
tons. The default is 2. 

11·133 



Interface Reference 

OpenLookPane 

Subclass of ClassContainer 
Source fIle: OLpane.ps 

This class should be subclassed, rather than directly Instantiated 
An OpenLookPane is a container with scrollbars and a client canvas. The 
scrollbars (none, one, or two) are not automatically connected to the canvas; this 
should be achieved via subclassing. 

see also: 
ClassContainer, OpenLook VerticalScrollbar 

Open LookPropertyFrame 

Subclass of OpenLookFrame,ClassPropertyFrame 
Source file: OLframe.ps 

This class can be directly instantiated. 
This class is OpenLookBaseFrame with the following differences; property 
frames: 

• have a pin 

• do not have a footer 

• cannot be closed into an icon (have no "iconic" state) 

• cannot be quit from (pressing SELECT over the close box or selecting 
"Dismiss" from their menu simply unmaps them from the screen. 

see also: 
OpenLookBaseFrame 

"·'34 tNt Technical Reference Manual 



Interface Reference 

OpenLookTextControl 

Subclass of ClassControl 
Source file: txtctrl.ps 

This class can be directly Instantiated 

An Open Look text control augments the basic text control with Open Look 
features such as scroll buttons. (The Open Look selection features are obtained 
indirectly from ClassTextControl, which hooks into a UI-independent mechan­
ism). 

Direct Methods 

/callnotify 

/checknotify 

/cleartarget 

/delchar 

Interface Reference 

- Icallnotify 
Call the client's notifyproc, and also make a 
copy of the string. The copy will not be affected 
by subsequent user keystrokes, so Ichecknotify 
will be able to determine whether the value has 
changed. 

object I null Ichecknotify 
Call the client's notifyproc only if the current 
text differs from the text as of the last call to 
Icallnotify. This method is called automatically 
when the text control loses the input focus, or 
when the user types the RETURN key. 

obj ect I null Icleartarget 
Selectively clear the target used by the Isendtar­
get method. This method is called automatically 
when the text control is destroyed. See ClassTar­
get for more about targets and their uses. 

n Idelchar 
Delete abs(n) characters from the text, starting at 
the current caret position. If n is negative, delete 
characters to the left of the caret, otherwise to 
the right. After the deletion, the text is scrolled 
if necessary to bring the caret into the visible 
region. 

11-135 



Interface Reference 

/delspan 

/delword 

/demo 

/destroy 

/disable 

/enable 

11-136 

left rightplusone Idelspan 
Delete a span of characters from the text, 
independent of where the caret is. If the caret 
and/or a selection is within the deleted region, it 
is adjusted accordingly. Character positions start 
with zero; thus left is the number of characters 
before the first to be deleted, and the number of 
characters deleted is rightplusone minus left. 
After the deletion, the text is scrolled if neces­
sary to bring the caret into the visible region. 

- Idelword 
Delete characters backward from the caret posi­
tion until (a) at least one alphanumeric has been 
deleted and (b) the character ahead of the caret 
is not alphanumeric. The method 
/AlphaNumeric? is used to determine whether a 
character can be part of a word. 

- Idemo instance 
Create a sample text control whose parent is the 
framebuffer. 

- Idestroy 
Destroy this control. In addition to clearing the 
target and removing the canvas from the canvas 
tree, etc., this method disables the caret, in case 
for example the caret needs to stop a forked 
process used to implement blinking. (The 
default ClassCaret does not.) The /destroy 
method also clears some cached references to the 
text control's scroll buttons, so that they can be 
destroyed as well. 

- Idisable 
Cause the control to stop responding to user 
actions. The control repaints to display its dis­
abled status, and will no longer accept the input 
focus. 

- tenable 
Cause the control to respond to user actions, 

tNt Technical Reference Manual 



/enabled? 

/fitcaret 

/fontoffset 

/inserttext 

/invisiblecaret 

Interface Reference 

Interface Reference 

provided that it is not a read-only text control. 
The control repaints to display its enabled 
status, and will become the input focus if the 
user clicks the mouse over it. 

- lenabled? bool 
Return true if the control is currently enabled, 
even if it is read-only. 

- lfitcaret 
Call /FitCaret, which scrolls the text left or right 
to bring the caret into the visible region. 

- Ifontoffset int 
Compute the vertical offset for drawing charac­
ters without cutting them off at the bottom of 
the canvas, and also leaving enough room for 
the caret. The value is 'promoted', i.e., the first 
time Ifontoffset is called it stores the resulting 
value in the instance under the name Ifontoffset, 
so that subsequent calls are much faster. The 
cached value is discarded (unpromoted) if the 
canvas becomes invalid, e.g. if Isettextparams is 
called. 

char I string linserttext 
Insert a character or a string into the text at the 
current caret position. The caret is moved to the 
end of the inserted text, and the text is scrolled 
if necessary to bring the caret into the visible 
region. If a pending-delete primary selection 
spans the caret, the selected text is deleted 
before adding the new text. Any other existing 
selections are adjusted appropriately. 

- linvisiblecaret 
Make the caret invisible, usually in preparation 
for other operations that will cause painting. 
This method is not normally used at all, since 
the methods that cause painting (such as linsert­
text, Idelchar, etc.) all call nnvisibleCaret, which 

11-137 



Interface Reference 

/location 

/minsize 

/move 

/new 

/newinit 

/notifiedvalue 

/notifyproc 

/painttext 

11·138 

assumes that the text control is the current can­
vas. 

- /location x y 
Return the location of the origin (nonnally the 
lower left comer) of the text control relative to 
thecrM. 

- lminsize minwidth minheight 
Return the minimum size for this control. In 
addition to leaving room for a specified number 
of characters (see ClassTextControl), this method 
adds to the minimum width to leave room for 
the two scroll buttons. 

x y Imove 
Move the origin (lower left) of the text control to 
the specified location in the coordinates of the 
CTM. 

notifyproc parent Inew instance 
Return a new text control instance with the 
specified callback procedure and parent canvas. 
The control initially contains no text, but does 
contain a caret. 

callback Inewinit 
This method does Inewinit super send to store 
the callback procedure, 
then performs other initialisation specific to text 

controls. 

- Inotifiedvalue string 
Return the value the control had the last time 
Icallnotify was sent. 

- Inotifyproc proc 
Return the current callback proc without invok­
ing it. 

n Ipainttext 
Paint the text, starting with the character at posi­
tion nn. If character nn is off the left edge of 
the canvas, painting starts at the edge of the 

tNt Technical Reference Manual 



/preferredsize 

/removefocus 

/reshape 

/restorefocus 

/scroll 

Interface Reference 

Interface Reference 

canvas. If n < 0, all the text is painted and the 
remainder of the canvas is cleared; otherwise the 
canvas is left unchanged beyond the end of the 
text. The scroll arrows, if present, are restored 
after the text is painted. This method is intended 
mainly for use from other methods; clients 
should generally send Ipaint to paint the con­
trol. Ipainttext operates by setting the current 
canvas and font, then calling the internal 
methods IInvisibleCaret, lPaintText, and Nisi­
bleCaret. 

- Ipreferredsize width height 
Text controls do not presume any preferred size 
beyond the minimum required to display a cer­
tain number of characters. Thus they use the 
default Ipreferredsize method, which simply 
calls Iminsize. 

event Iremovefocus 
Handle the input focus being moved to another 
canvas. This method disables the caret and calls 
Ichecknotify, which calls the client's notifyproc 
if the text has been changed. 

x y w h Ireshape 
Reshape the control to fit the bounding box 
specified by the arguments, in the coordinates of 
the CfM. 

- Irestoref~s 

Activate the caret if the control is enabled. This 
method is called automatically when the text 
control is given the input focus. 

n Iscroll 
Scroll the text to make a different portion visible 
within the limits of canvas. The left edge of the 
canvas always marks the beginning of a charac­
ter; scrolling changes the character at this loca­
tion. A positive number nn scrolls to the right; a 
negative number scrolls to the left. 

11-139 



Interface Reference 

/sendtarget 

/setcolors 

/setdisplaychars 

/setnotifyproc 

/setposition 

/setreadonly 

11-140 

args /method Isendtarget results 
This method can be invoked within the 
notifyproc in order to send a message to some 
other instance. Many clients will not need to use 
this indirection. See OassTarget for more details. 

strokecolor fillcolor 
textcolor Isetcolors 
Set the colors for painting the text and its back­
ground (fillcolor). Null as an argument means 
do not change that value. The control swaps the 
fillcolor and textcolor to highlight selections. The 
strokecolor is not used used for painting the 
scroll buttons; the underlining is done using the 
textcolor so that it can be included in the 
highlighting. 

n Isetdisplaychars 
Set the minimum number of characters that the 
control should be able to display. This number 
is used in computing Iminsize for the control. 
The number can be retrieved via the !Display· 
Chars variable. 

proc /setnotifyproc 
Store the proc as the new callback to be used by 
Icallnotify, in place of the one provided to Inew. 

event /setposition 
n /setposition 
Move the caret to the specified position. Position 
o puts the caret to the left of the first character. 
If an event is given, the coordinates in the event 
are resolved to the nearest character boundary. 
The current caret location can be obtained from 
the variable !Left Once the caret is placed, the 
text is scrolled if necessary to bring the caret 
into the visible region. 

bool /setreadonly 
Make the text read-only or not, depending on 
the bool. If the text becomes read-only, the 

tNt Technical Reference Manual 



_______________________ Interface Reference 

/settarget 

/settextparams 

/setvalue 

/size 

/starttext 

/stoptext 

/strlen 

Interface Reference 

canvas is removed from the list of potential 
input foci; if it becomes writeable it is added 
back. A read-only text control behaves much the 
same as a disabled one (see Idisable), the main 
difference being that a disabled control will typi­
cally be painted light gray, whereas a read-only 
one will paint normally. 

object Isettarget 
Set the target used by the Is end target method. 
See ClassTarget for more about targets and their 
uses. 

family pointsize encoding Isettextparams 
Set the text parameters that determine the font 
for the control. If any of the arguments is null, 
that parameter is not changed. The control then 
marks itself as invalid (i.e., calls linvalidate) so 
that various cached values such as Ifontoifset 
and the font itself will be recomputed. 

string Isetvalue 
Replace the contents of the text control with the 
given string. If the string differs from the old 
contents, the control is repainted. 

- Isize w h 
Return the width and height of the control in 
theCTM. 

- Istarttext 
This method enables the caret. It is called from 
Irestorefocus. 

- Istoptext 
This method disables the caret. It is called from 
Iremovefocus and Idestroy. Oients may also 
need to send Istoptext to newly created text con­
trols to disable their initial carets. 

- Istrlen n 
Return the number of characters of text 
currently stored in the control. This method is 

11-141 



Interface Reference 

/target 

1. __ ',,-
I va....L.UC 

/visiblecaret 

Subclass Methods 

/AlphaNumeric? 

/CaretPosition 

/DeHighlight 

11-142 

equivalent to, but more efficient than, Ivalue 
length. 

- Itarget object 
Return the current target (if any) used by 
Isendtarget. See ClassTarget for more details. 

- ivalue string 
Return the contents of the control as a PostScript 
string. If the string is empty, a zero-length string 
is returned, not null. 

- lvisiblecaret 
Make the caret visible, usually after other paint­
ing has finished. This method is not normally 
used at all, since the methods that cause paint­
ing (such as /inserttext, Idelchar, etc.) all call 
NisibleCaret, which assumes that the text con­
trol is the current canvas. 

n IAlphaNumeric? bool 
Determine whether the character at the specified 
index is part of a word. This method is called by 
Idelword, and also when making word-level 
selections. The default method texts for letters, 
digits, and underscore. See IAlphaNumericT­
able. 

- ICaretPosition x 
Return the x-coordinate of the caret relative to 
the left edge of the canvas. 

start end /DeHighlight last 
Paint the characters in positions startstart 
through endend-l, and return the index of the 
next character to be painted. The characters are 
painted using the canvas's IFillColor as back­
ground and ITextColor for the text and under­
line. This method is called by lPaintText and in 
tum calls lPaintNText. 

tNt Technical Reference Manual 



/EOL 

/FitCaret 

/Highlight 

/InterestingRank 

/PaintText 

Interface Reference 

Interface Reference 

- IEOL 
This method is called when either a RETURN 
eM) or NEWLINE cn character is typed into 
the control. It calls Ichecknotify. 

/method lFitCaret 0001 
Scroll the text so as to bring the current caret 
position into the region between the left and 
right edges of the canvas. Return true if any 
scrolling was done, so the caller will know to 
repaint the text. (JFitCaret does not itself do any 
painting.) The method-name parameter is 
ignored; OpenLookTextControls scroll after all 
relevant operations. 

start end IHighlight last 
This is the same as /DeHighlight except the 
background and foreground colors are reversed. 
It is called by IPaintText for painting characters 
within the primary selection. 

rank IInterestingRank bool 

Return true if the selection rank is one that the 
text control knows how to deal with. By default 
the only interesting ranks are IPrimarySelection 
and ISecondarySelection. (JShelfSelection is 
handled by the global VI mechanism.) For each 
interesting rank there is also a correspondingly 
named instance variable, used for maintaining 
information about that selection. (These vari­
ables are of no interest to clients or subclassers, 
except insofar as subclassers must be careful not 
to use those variable names for other informa­
tion.) 

n lPaintText 
This method performs most of the work of 
Ipainttext. It can assume that the text control's 
canvas is the current canvas, and the control's 
font is the current font. OpenLookTextControl 
overrides IPaintText to include repainting the 
scroll buttons after the text is drawn. 

11-143 



Interface Reference 

/PaintNText 

/TextBegin 

/TextEnd 

Class Variables 

/AlphaNumericTable 

/DisplayChars 

11-144 

textcolor backcolor start 
end lPaintNText last 
This method is called by /Highlight and 
/DeHighlight to paint portions of the text using 
the given colors for the text and background. 
The characters painted are those in positions 
siart through end-i. This range may be empty. 
lPaintNText returns the index of the next char­
acter to be painted, the larger of end and start. 
This method assumes that the text control is the 
current canvas and the control's font is the 
current font. OpenLookTextControl overrides 
lPaintNText to underline the text (using the 
supplied textcolor). 

- rrextBegin 
Save the graphics context, then set the text 
control's canvas and font as the current canvas 
and font. This method is called at the beginning 
of several other methods to establish the context 
for painting and other CfM-based operations. 

- rrextEnd 
Restore the graphics context saved by rrextBe­
gin. 

This is a dictionary whose keys are single char­
acters (integers). The associated values are 
ignored. A character appears as a key if and 
only if that character is considered part of a 
word. This dictionary is used by 
IAlphaNumeric?, and can be overridden by sub­
dassers to change the definition of word­
selection and Idelword. See ClassTextControl for 
a warning regarding subclassing this variable. 

The minimum number of characters that the 
control should be able to display. The default 

tNt Technical Reference Manual 



/Left 

/ReadOnly? 

see also: 
ClassTextControl 

Interface Reference 

value is 5, unless overridden by subclassing or 
by Isetdisplaychars. 

The number of characters to the left of the caret; 
hence, the current caret position. 

True if the control is read-only. This value 
defaults to false, but can be overridden by sub­
classers or Isetreadonly. 

OpenLookVerticalScrollbar 

Subclass of OpenLookHorlzontalScrollbar 
Source file: OLsbar.ps 

This class can be directly Instantiated 
An OpenLookVerticalScrollbar is an analog control that allows the user to scroll 
through a large document, for example. It is the default vertical scrollbar for an 
OPEN LOOK pane. This entry also covers OpenLookHorizontalScrollbar. The 
only differences between the two are: 

• OpenLookVerticalScrollbar has an origin in the upper left comer, whereas 
OpenLookHorizontalScrollbar uses the standard lower left origin . 

• The menu associated with OpenLookVerticalScrollbar has "Here to top", 
whereas OpenLookHorizontalScrollbar has "Here to left" 

Direct Methods 

/abbreviated? 

/destroy 

Interface Reference 

-- labbreviated? bool 

Returns true if the scrollbar is displayed in its 
abbreviated form: with the two arrow controls, 
but no drag box. 

-- Idestroy 
This destroys the scrollbar menu, and then des­
troys the scrollbar itself. 

11-145 



Interface Reference 

/disable 

/enable 

/exchlastvalue 

/heretostart 

/menu 

/minsize 

/new 

/newinit 

11-146 

-- Idisable 
This disables the scrollbar. The scrollbar will be 
repainted to show that it is disabled, and the 
mouse clicks will have no affect. 

-- lenable 
This is the opposite of disable. The scrollbar is 
repainted to indicate that it is enabled, and 
mouse clicks will be accepted again. 

-- lexchlastvalue 
This exchanges the current scrollbar value with 
the previous value. 

event Iheretostart 
x y Iheretostart 
Increments the scrollbar value by part of a view. 
/heretostart expects an x/y pair or an event 
(which it then turns into an x/y pair). The new 
value of the scrollbar will be such that the part 
of the document at the x/y position will be 
displayed at the top of the view. This is how 
HereToTop is implemented. 

-- Imenu menu 
Returns the scrollbar menu. 

-- lminsize minwidth minheight 
Returns the size of the scrollbar in its abbrevi­
ated form. 

notifyproc parent Inew scrollbar 
Creates a scrollbar with the specified notify 
proc. The parent canvas is consumed by 
/newobject, /notifyproc is consumed by 
/newinit. 

notifyproc Inewinit 
This method is called by /new to initialize the 
instance. The notifyproc is consumed by 
ClassControl's /newinit. This also creates the 
scrollbar's anchor and elevator controls. 

tNt Technical Reference Manual 



/preferredsize 

/setdelta 

/setmenu 

/setrange 

/starttohere 

Interface Reference 

Interface Reference 

-- Ipreferredsize preferredwidth prefer­
redheight 
Often preferred size is the same as minsize, but 
in the case of OpenLook scrollbars, /preferred­
size is the size to fit the entire elevator. /min­
size is the size of an abbreviated scrollbar, and 
/preferredsize is the next size up from that. 

name value Isetdelta 
The scrollbar deltas are named /Line, /Page and 
/Document, and they specify how much to 
increase or decrease the value of the scrollbar 
when the user selects a particular type of scrol­
ling. Typical values for these deltas might be 
specified in units of lines, and so /Line would 
be set to 1, /Page would be the number of lines 
visible in a page, and /Document would be the 
number of lines in the document. 

menu Isetmenu 
Set the menu for the scrollbar. You do not nor­
mally need to call this method as OpenLook 
scrollbars come with a standard menu. 

min max Isetrange 
Set the range of the scrollbar. 

event Istarttohere 
x y Istarttohere 
Decrements the scrollbar value by part of a 
view. /starttohere expects an x/y pair or an 
event (which it then turns into an x/y pair). 
The new value of the scrollbar will be such that 
the part of the document at the top of the view 
will now be displayed at the specified x/y posi­
tion. This is how TopToHere is implemented. 

11-147 



Interface Reference 

Subclass Methods 
/ClientDown 

/Clientup 

/MaxHit 

/MinHit 

/PaintCable 

/PaintCanvas 

/PaintValue 

event IClientDown 
This method is called when the user mouses 
down over the scrollbar. This saves away the 
current value of the scrollbar, and then 
processes the mouse event. 

event IClientUp 
This method is called when the user lets go of 
the mouse button that caused IClientDown to 
be called. 

anchor-control lMaxHit 
Called when the high anchor button is hit. 

anchor-control lMinHit 
Called when the low anchor button is hit. 

value lPaintCable 
Called to paint the scrollbar's cable and propor­
tion indicator. 

-- lPaintCanvas 
Called to paint the entire scrollbar. 

value lPaintValue 
Paints the scrollbar with specified value. 

OpenLookVerticalSlider 

Subclass of OpenLookHorizontalSllder 
Source file: OLslider.ps 

This class can be directly instantiated 

This slider is a horizontal OPEN LOOK slideattr rotated 90°; it has the same 
interface as OpenLook VerticalSlider. 

11-148 tNt Technical Reference Manual 



Interface Reference 

see also: 
OpenLookHorizontalSlider 

OpenLookXSetting 

Subclass of RowColumnLayout,ClassSelectlonList 
Source file: OLxset.ps 

This class can be directly instantiated. 
This class implements an Open Look exclusive setting group. The group 
displays multiple setting items on a single canvas. The group acts like a control 
in that it has a single value. Each item has an associated notify procedure that 
is called when the item is selected. 

Direct Methods 

/border 

/change 

/cleartarget 

/clientcount 

/clientlist 

Interface Reference 

- !border number 
Return the size of the border around the entire 
group of settings. 

location thinglgraphic 
genproclsublistlnull proclnull Ichange 

Change the setting item at the specified location. 
The parameters, other than location, are the 
same as for Inew. 

object I null Icleartarget 
Clear the control's target object. If an object is 
supplied as a parameter, the target will be 
cleared only if the current target matches the 
parameter. See ClassTarget for more about tar­
gets and their uses. 

- Iclientcount n 
Return the number of items in the setting. 

- Iclientlist array 
Return an array of dictionaries, one per item in 
the control group. 

11·149 



Interface Reference 

/delete 

/demo 

Idestroy 

/disableitem 

/doaction 

/enableitem 

/gaps 

/graphic 

/insert 

/invalidate 

/itemcount 

/itemenabled? 

11-150 

location Idelete 
Delete the specified setting item from the group. 

- Idemo instance 
Create a demonstration exclusive setting on the 
framebuffer. 

- idestroy 
Destroy the exclusive setting control. 

index Idisableitem 
Disable the item at the specified location. 

- Idoaction 
Execute the notify proc associated with the 
currently selected setting item. i.e. the item 
whose index matches the setting's current value. 

index lenableitem 
Enable the item at the specified location. 

- Igaps horizontalgap verticalgap 
Return the amount of space between the setting 
items. By default, and by the OPEN LOOK 
specification, the values are both o. 
location Igraphic graphic 
Return the graphic for the specified setting item. 

location thinglgraphic 
genproclsublistlnull proclnull Imsert 
Insert a new setting item at the specified posi­
tion in the group. The parameters, other than 
location, are the same as for Inew. 

- linvalidate 
Invalidate the setting and all of its item graph­
ics. 

- litemcount integer 
Return the number of items in the setting group. 

location litemenabled? bool 
Return true if the specified item is enabled. 

tNt Technical Reference Manual 



/layout 

/layoutstyle 

/location 

/maxlocation 

/minsize 

/move 

/new 

/notifyproc 

/preferredsize 

/reshape 

/searchgraphic 

Interface Reference 

Interface Reference 

- /layout 
Layout the setting items. This sizes and places 
the items according to the layout style for the 
setting. 

- /layoutstyle RowMajor? Rows I null 
Columnslnull 
Return the layout style for the menu. See class 
RowColumnLayout. 

- /location x y 

Return the location of the setting canvas. 

- Imaxlocation location 
The location of the last item in the control. Item 
locations range from 0 to Imaxlocation. Imaxlo­
cation is one less than litemcount. 

- Iminsize minwidth minheight 
Return the minimum size of the setting. 

x y Imove 
Move the setting's canvas to the specified loca­
tion, relative to the CfM. 

[thinglgraphic proclnull ... ] 
canvas Inew instance 
Create an exclusive setting group. Refer to the 
introductory section OPEN LOOK Settings for 
the details of the arguments. 

location Inotifyproc procedure I null 
Return the notify proc for the item at the 
specified location. 

- Ipreferredsize width height 
Return the preferred size of the setting group. 

x y w h Ireshape 
Reshape the setting group's canvas. Invalidates 
the setting group. 

graphic Isearchgraphic 
graphic Isearchgraphic 

index true 
false 

11-151 



Interface Reference 

/searchthing 

/sendtarget 

/setborder 

/setgaps 

/setgraphic 

/setlayoutstyle 

/setlayoutstyle 

11·152 

graphic startloc Isearchgraphic index 
true 
graphic startloc Isearchgraphic false 
Search for the setting item having the given 
graphic. If a starting location is given, begin the 
search at that item. The search ends with the 
last menu item and does not wrap around. 

thing Isearchthing index true 
thing Isearchthing false 
thing startloc Isearchthing index true 
thing startloc Isearchthing false 
Search for the setting item having the given 
thing in its graphic. If a starting location is 
given, begin the search at that item. The search 
ends with the last menu item and does not wrap 
around. 

args /method Isendtarget results 
Send a message to the target object. Typically 
used in the control's notify proc. See ClassTarget 
for more details. 

number Isetborder 
Set the size of the border around the entire 
group of settings. 

horizontalgaplnull 
verticalgap I null Isetgaps 
Change the amount of space between the setting 
items. A null parameter leaves that value 
unchanged. 

location thinglgraphic Isetgraphic 
Change the graphic for the specified setting 
item. 

RowMajor? Rowslnull 
Columns I null Isetlayoutstyle 

RowMajor? Rowslnull 
Columns I null Isetlayoutstyle 
Change the layout style of the menu. 

tNt Technical Reference Manual 



/setnotifyproc 

/settarget 

/setvalue 

/size 

/target 

/value 

/valuething 

Interface Reference 

Interface Reference 

See RowColumnLayout. 

location procedure I null Isetnotiiyproc 
Change the notification procedure (callback) 
associated with a setting item. Note that if you 
specify a single notify proc when creating the 
setting group, the notify proc is duplicated for 
each item. You may therefore change individual 
item callbacks without affecting others. Also, to 
change the callbacks for all items, you must call 
Isetnotifyproc for each item. 

object Isettarget 
Set the target used by the Isendtarget method. 
See ClassTarget for more about targets and their 
uses. 

index Isetvalue 
Change the value of the setting. The item 
corresponding to the supplied index is selected 
and the previously selected item, if there was 
one, is deselected. 

-- Isize w h 
Validate the setting and return its size in the 
coordinates of the CTM. 

- Itarget object 
Return the target object. See ClassTarget. 

- Ivalue index 
Return the location of the selected item. The 
first item is number O. Returns null if there is 
no selected item. Note that this can happen if 
the value is never changed from its initial value 
or if it is explicitly set to null with Isetvalue. It 
can not happen as the result of a user interac­
tion. 

- Ivaluething thing I null 
Return the thing of the graphic of the selected 
item. Returns null if the Ivalue of the setting is 
null. 

11-153 



Interface Reference 

Subclass Methods 

/DeHighlight 

/Highlight 

index lDeHighlight 

index !Highlight 

see also: 

RowColumnLayout,ClassSelectionList 

OpenLookXSettingControl 

Subclass of OpenLookButton 
Source file: OLxctrl.ps 

This class should be subclassed, rather than Instantiated directly. 
This class exists only as a superclass to OpenLookCheckBox. Its purpose is to 
make a control out of a single setting item .. 

see also: 
OpenLookButton,OpenLookCheckBox 

RowColumnBag 

Subclass of AowColumnLayout,ClassBag 
Source file: bagutlls.ps 

This class may be directly Instantiated. 
A RowColumnBag is a general purpose bag in which the clients are layed out 
on an equally spaced matrix. The interface for controlling this matrix is the same 
as that offered in class RowColumnLayout, one of the ancestors of this class. 
The interface is also similar to that used in OpenLookMenu for laying out menu 
items. 

11·154 tNt Technical Reference Manual 



Direct Methods 

/addclient 

/border 

/clientcount 

/clientlist 

/destroy 

/gaps 

/layoutstyle 

Interface Reference 

Interface Reference 

name I null client laddclient 
namelnull [client_class args 
client_class] laddclient 
Add a client to the bag. The client may be 
specified by either an instance or by a class to 
instantiate, with the arguments necessary to do 
so. 

No baggage needs to be specified, since the 
clients will be layed out as a matrix specified by 
Isetlayoutstyle. The clients are stored in a linear 
array in the order they are inserted into the bag. 
This array is then mapped onto the matrix that 
is displayed. 

- /border int 

- Iclientcount n 
Return the number of clients currently in the 
bag. 

- Iclientlist [clientl client2 ... ] 
Return an array of clients in the same order as 
they were inserted into the bag. 

- Idestroy 
Destroy the bag and its clients. Refer to the /des­
troy method in Class Bag for the additional infor­
mation on the use of this method. 

- Igaps horizontalgap verticalgap 
Return the horizontal and vertical gaps between 
cells in the matrix to be layed out, as specified 
by Isetgaps. 

- Ilayoutstyle RowMa jor? Rows I null 
Columnslnull 
Return the layout specification as described in 
class RowColumnLayout. The three arguments 
returned indicate whether row or column order 
is used, how many rows, and how many 
columns. 

11-155 



Interface Reference 

/location 

/rninsize 

/rnove 

/new 

/preferredsize 

/rernoveclient 

/reshape 

/sendclient 

11-156 

- /location x y 

Return the location of the origin of the bag in 
the coordinates of the CN. 

lminsize minwidth minheight 
Compute the minimum acceptable size for this 
bag, as if all clients were as big as t.'1e laigest 
minimum size of any client. A well behaved 
application will respect this size when reshaping 
the bag in response to user mouse actions. 

x y Imove 
Move the origin of the canvas to the specified 
location in the coordinates of the CI'M. 

parentcanvas Inew instance 
Create an instance of class RowColumnBag. 

- Ipreferredsize preferredwidth prefer­
redheight 
Calculate the "ideal" size of the bag, which 
defaults to the minimum size. Well behaved 
applications should respect this size when ini­
tially displayed the bag. 

client I name In Iremovedient oldclient 
true 
client I name In Iremoveclient false 
Remove the client given, named or indexed in 
the argument. The method returns true and the 
client object if the client is found, otherwise it 
returns false. Refer to the Iremoveclient 
method in Class Bag for the additional informa­
tion on the use of this method. 

x y w h Ireshape 
Reshape the bag to the dimensions given and 
invalidate it. This will later result in the bag 
being layed out as the first step in painting it. 

<args> /method /name Isendclient results 
Send the given method with arguments to the 
named client. 

tNt Technical Reference Manual 



/setborder 

/setgaps 

/set layout style 

/size 

see also: 

RowColurnnLayout,ClassBag 

RowColumnLayout 

Subclass of Object 
Source file: OLutil.ps 

Interface Reference 

nwnber Isetborder 
Set the space used at the border of the matrix, 
and invalidate to mark the matrix as needing 
layout. 

horizontalgaplnull 
verticalgap I null Isetgaps 
Set the horizontal and vertical spacing between 
cells in the matrix, and invalidate to mark the 
matrix as needing layout. If either argument is 
null, that spacing is not changed. 

RowMajor? Rowslnull 
Columns I null Isetlayoutstyle 
Set the layout parameters of the matrix, and 
invalidate to mark it as needing layout. 

- Isize w h 
Return the width and height of the canvas in 
CTM. 

This class should be mixed Into another subclass rather than directly 
Instantiated. 
This class is a mix-in to perform grid-style layout and point location on a can­
vas. It has a similar interface and behavior to the layout code found in 
ClassMenu. 

The basic idea behind laying out rows and columns is to specify the size of a 2 
dimensional matrix and how to fill it in from a 1 dimensional array of elements. 
The argument listed below as RowMajor? is a boolean specifying how to fill in 
the matrix: 

true = Row major order, fill rows first 
false = Column major order, fill columns first 

Interface Reference 11·157 



Interface Reference 

The size of the matrix is specified by arguments listed below as Rows I null and 
Columns I null. 

• both arguments are specified numerically, 
the layout has that number of rows and columns, and if there are more 
items than will fit into the specified matrix, those items are not displayed. 

ii both are null, 
use the default layout specification, as given by Isetlayoutstyle. 

• one is specified numerically and one is null, 
then the matrix has the specified number of rows or columns and what­
ever number of columns or rows are needed to display all the items. 

Thus, a 7 item array with 3 rows and null columns is displayed as follows, 
depending on whether row major or column major order was specified: 

Direct Methods 

/border 

Icellcount 

/gaps 

/invalidate 

11-158 

Row Major Column Major 
012 a 3 6 
3 4 5 1 4 
625 

- !border number 
Return the size of the borders around the 
matrix. 

- Icellcount columns rows 
Return the number of columns and rows to be 
used in laying out the matrix. 

- Igaps horizontalgap verticalgap 
Return the horizontal and vertical gaps between 
cells in the matrix to be layed out. 

- linvalidate 
Remove previously stored values for heights 
and widths and invalidate the matrix to mark it 
as needing layout. The values discarded are: 
IArrayHeight, IArrayWidth, IMinCellHeight, 
lMinCellWidth, ICellHeight, ICellWidth, 
ICellCols, ICellRows. 

tNt Technical Reference Manual 



/layoutstyle 

/setborder 

/setgaps 

/setlayoutstyle 

Subclass Methods 

/ArrayHeight 

/ArrayWidth 

/CellCols 

/CellHeight 

Interface Reference 

Interface Reference 

- Ilayoutstyle RowMajor? Rows I null 
Columnslnull 
Return the layout specification, as described 
above: row or column order, how many rows 
and how many columns. 

nwnber Isetborder 
Set the space used at the border of the matrix, 
and invalidate to mark the matrix as needing 
layout. 

horizontalgaplnull 
verticalgap I null Isetgaps 
Set the horizontal and vertical spacing between 
cells in the matrix, and invalidate to mark the 
matrix as needing layout. If either argument is 
null, that spacing is not changed. 

RowMajor? Rowslnull 
Col umns I null Isetlayoutstyle 
Set the layout parameters of the matrix, and 
invalidate to mark it as needing layout. 

- IArrayHeight arrayheight 
Return the height of the entire matrix, with gaps 
and borders. 

- IArrayWidth arraywidth 
Return the width of the entire matrix, with gaps 
and borders. 

- ICellCols cols 
Return the number of columns to be used in lay­
ing out the matrix. This number was either sup­
plied as an argument or it is calculated from the 
specified layout and the number of rows. 

- ICellHeight cellheight 
Return the height of a cell in the matrix. This is 
the maximum height of any item plus the verti­
cal cell spacing (CellVertGap). 

"-159 



Interface Reference 

/CellRows 

/CellWidth 

/Layout 

/MinSize 

/XYToValue 

Class Variables 
/Border 

/CellHorzGap 

/CellVertGap 

/LayoutCols 

/LayoutRows 

11-160 

- ICellRows rows 
Return the number of rows to be used in laying 
out the matrix. This number was either sup­
plied as an argument or it is calculated from the 
specified layout and the number of columns. 

- ICellWidth cellwidth 
Return the width of a cell in the matrix. This is 
the maximum width of any item plus the hor­
izontal cell spacing (CellHorzGap). 

- ILayout 
This method calls /Rowcolumnlayout to per­
form the actual layout of the matrix. 

- IMinSize minw minh 
Returns the minimum width and height for the 
matrix. This is determined by the largest 
minimum size of all objects being layed out. 

x y lXYToValue indexlnull 
This method converts a location on the canvas 
into the index of the matrix item that contains 
the location. The method returns null if the 
location is not in the canvas area occupied by 
the matrix. 

This variable stores the size of the border. 

This variable stores the horizontal gap (distance) 
between cells in the layout. 

This variable stores the vertical distance between 
cells in the layout. 

This variable stores the number of columns to be 
used in laying out the matrix; by default the 
value is 1 

This variable stores the number of rows to be 
used in laying out the matrix. By default the 

tNt Technical Reference Manual 



/RowMajor? 

see also: 
Object 

Interface Reference 

Interface Reference 

value is null, which means to use as many rows 
as necessary. 

This variable stores the boolean specifying row 
major order (true) or column major order (false). 

11·161 






