Poades 00 Gekale s Ao il | NS S

PROGRAMMING
WITH UNIX

SYSTEM CALLS

UNIX® SVR4.2

SSSSS

PROGRAMMING
WITH UNIX
SYSTEM CALLS

UNIX SVR4.2

P

7
1 2
X

Copyright © 1992, 1991 UNIX System Laboratories, Inc. p
Copyright © 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T

All Rights Reserved

Printed in USA

Published by Prentice-Hall, Inc.
A Simon & Schuster Company

Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions, whether
such errors, omissions, or statements result from negligence, accident, or any other cause. USL furth-
er assumes no liability arising out of the application or use of any product or system described hersin;
nor any liability for incidental or consequential damages arising from the use of this document. USL
disclaims all warranties regarding the information contained herein, whether expressed, implied
or statutory, including implied warranties of merchantability or fitness for a particular purpose.
USL makes no representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein imply the grant-
ing of any license to make, use or sell equipment constructed in accordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARK

Intel386 is a registered trademark of Intel Corporation.

OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

10987654321

ISBN 0-13-0L7L74-5

UNIX
PRESS
A Prentice Hall Title

PRENTICE HALL

ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4.2 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4.2 documentation, please
call (515) 284-6761.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales Department
PTR Prentice Hall

113 Sylvan Avenue
Englewood Cliffs, N.J. 07632

or

Phone: (201) 592-2863
FAX: (201) 592-2249

ATTENTION GOVERNMENT CUSTOMERS:
For GSA and other pricing information, please call (201) 461-7107.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

1 Introduction
Introduction 1-1
Application Programming in the UNIX System Environment 1-7
UNIX System Calls and Libraries 1-16

2 UNIX System Calls and Libraries

Introduction 2-1
Libraries and Header Files 2-2
System Calls 2-26

3 File and Device Input/Output

Introduction 3-1
Input/Output System Calls 3-2
File and Record Locking 3-11
Basic STREAMS Operations 3-26
Benefits of STREAMS 3-29
STREAMS Mechanism 3-34
4 Process Management
Introduction 4-1
Program Execution & Process Creation 4-3
Timer Operations 4-11
Process Scheduling 4-12
Memory Management 4-43

Table of Contents i

Terminal Device Control

Introduction 5-1
STREAMS-Based Terminal Subsystem 5-22
STREAMS-based Pseudo-Terminal Subsystem 5-33
Internationalization

Introduction 6-1
Locales 6-4
Character Representation 6-6
Cultural and Language Conventions 6-18
Message Handling 6-24
kbd 6-32
Internationalization Facilities 6-34
Directory and File Management

Introduction 7-1
Structure of the File System 7-2
Symbolic Links 7-14
Summary of UNIX System Files & Directories 7-27
File Access Controls 7-55
Security Considerations 7-66
Signals, Job Control and Pipes

Introduction 8-1
Signals 8-2
Job Control and Session Management 8-15
Basic Interprocess Communication — Pipes 8-24
STREAMS-Based Pipes and FIFOs 8-27

Table of Contents

9 Interprocess Communication

Introduction 9-1
Messages 9-3
Semaphores 9-30
Shared Memory 9-59
IPC Programming Example 9-82

1 0 STREAMS Polling and Multiplexing

Introduction 10-1
STREAMS Input/Output Polling 10-2
STREAMS Input/Output Multiplexing 10-10
Persistent Links 10-26

A Guidelines for Writing Trusted Software

Writing Trusted Software A-1
Trust and Security A-4
Writing Trusted Commands A-9
Trusting Shell Scripts A-16
Trusting Public Library Routines A-19
Installing Trusted Commands and Data A-21
Summary A-23

Gl
G L ossary iy

Glossary

Ind
IN o IN-1

Index

Table of Contents iii

Table of Contents

Figures and Tables

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:

A Simple ETI Program

Simple Streams

STREAMS-based Pipe

Excerpt from string(3C) Manual Page

How stremp () Is Used in a Program

String Operations

Classifying 8-Bit Character-Coded Integer Values

Converting Characters, Integers, or Strings

Standard I/0O Functions and Macros

Math Functions

libgen Functions

Using argv[1] to Pass a File Name
Using Command Line Arguments to Set Flags
File and Device I/O Functions
Terminal Device Control Functions
Directory and File System Control Functions
Process Management Functions
Signal Management Functions
Basic Interprocess Communication Functions
Advanced Interprocess Communication Functions
Memory Management Functions
Miscellaneous System Functions

simplified version of cp

Stream to Communication Driver

X.25 Multiplexing Stream

Protocol Migration

Module Reusability

Case Converter Module

Process Status

Process Primitives

Example of fork ()

The UNIX System V Release 4 Process Scheduler

Process Priorities (Programmer View)

What Gets Returned by PC_GETPARMS

Process State Transition Diagram

Table of Contents

1-14
1-17
1-18
25
2-7

2-11
2-12
2-13
2-14
2-16
2-24
2-25
2-27
2-27
2-28
2-29
2-30
2-30
2-31
2-31
2-32
3-8

3-27
3-31
3-32
3-33
3-39

4-5
4-7
4-14
4-17
4-31
4-40

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:

Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:
Figure 7-17:
Figure 7-18:
Figure 7-19:
Figure 7-20:
Figure 7-21:
Figure 7-22:

Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-5:
Figure 9-6:
Figure 9-7:

vi

Improving TTY performance — canonical mode
Improving TTY performance — raw mode
Improving TTY performance — flow control
STREAMS-based Terminal Subsystem
Pseudo-tty Subsystem Architecture
EUC Code Set Representations
EUC and Corresponding 32-bit Wide-character Representation
Enhanced Commands
A Sample File System
Diagram of a Full Path-Name
Full Path-Name of the /home/starship Directory
Relative Path-Name of the draft Directory
Relative Path-Name from starship to outline
Example Path-Names
File Tree with Symbolic Link
Symbolic Links with RFS: Example 1
Symbolic Links with RFS: Example 2
Directory Tree from root
Excerpt from /etc/profile
Sample /etc/vEstab File
File Types
Description of Output Produced by the 1s -1 Command
umask(1) Settings for Different Security Levels
File Access Permissions
Directory Access Permissions
Setting File Privileges
Retrieving File Privileges
Adding and Clearing Process Privileges
Setting Process Privileges Using PUTPRV
Retrieving Process Privileges
Signal programming example
Signal programming example
system() — Signal programming example
popen ()
pclose()
Pushing Modules on a STREAMS-based Pipe
Server Sets Up a Pipe
Processes X and Y Open /usr/toserv
ipc_perm Data Structure
Operation Permissions Codes
msgget () System Call Example
msgctl () System Call Example
msgop () System Call Example
Operation Permissions Codes
semget () System Call Example

5-18
5-19
5-21
5-23
5-34
6-6

6-12
6-36
7-5

7-8

7-9

7-10
7-11
7-13
7-17
7-24
7-25
7-27
7-42
7-44
7-55
7-56
7-59
7-62
7-62
7-71
7-72
7-74
7-75
7-76
8-9

8-10
8-12
8-25
8-26
8-29
8-36
8-37
9-6

9-12
9-17
9-25
9-37
9-40

Table of Contents

Figure 9-8: semctl() System Call Example
Figure 9-9: semop () System Call Example

Figure 9-10:
Figure 9-11:
Figure 9-12:
Figure 9-13:
Figure 10-1:
Figure 10-2:
Figure 10-3:
Figure 10-4:
Figure 10-5:
Figure 10-6:
Figure 10-7:
Figure 10-8:
Figure 10-9:

Operation Permissions Codes
shmget () System Call Example
shmet1 () System Call Example
shmop () System Call Example
Many-to-One Multiplexor
One-to-Many Multiplexor
Many-to-Many Multiplexor
Internet Multiplexing Stream
X.25 Multiplexing Stream
Protocol Multiplexor

Before Link

IP Multiplexor after First Link

IP Multiplexor

Figure 10-10: TP Multiplexor

Figure 10-11: open() of MUXdriver and Driver1

Figure 10-12: Multiplexor after | PLINK

Figure 10-13: Other Users Opening a MUXdriver

Figure A-1: Correct Regulation of Access in C Programs
Figure A-2: Correct Use of Privilege in a Shell Script

Figure A-3: Shell Script Using Commands From TFM Database
Table 5-1: Terminal Device Control Functions

Table 5-2: Terminal Device Control Character Array
Table 10-1: siginfo_t Data Available to the Signal Handler

Table of Contents

9-48
9-56
9-64
9-67
9-72
9-79
10-10
10-11
10-11
10-12
10-14
10-16
10-18
10-19
10-20
10-22
10-27
10-28
10-29
A-11
A-17
A-18
5-2

10-8

vii

Introduction

Introduction
Audience and Prerequisite Knowledge
Related Books and Documentation
m UNIX System V Programming Books
m Reference Manual Set
The C Connection
Hardware/Software Dependencies
Information in the Examples
Notation Conventions
Manual Page References

Application Programming in the UNIX

System Environment
UNIX System Tools and Languages

m Facilities Covered and Not Covered in This Guide
Programming Tools and Languages in the UNIX System

Environment
m The C Language
m Shell
m awk
m lex
m yacc
m m4
m bc and dc
Character User Interfaces
m curses
m FMLI
m ETI
Graphical User Interfaces
m XWIN Graphical Windowing System
m OPEN LOOK Graphical User Interface

Table of Contents

—
o @

1
R WY N U L N (U U W G S Qe g O (ol (o)

GO WMNDNN =+ 22200

G UG AT (U U (U U QT G T (T (T G G
1

UNIX System Calls and Libraries
File and Device Input/Output

m STREAMS Input/Output

m File and Record Locking

m Where to Find More Information
Memory Management

= The Memory Mapping Interface

m Where to Find More Information
Process Management and Scheduling

m Where to Find More Information
Interprocess Communications

m Where to Find More Information
Symbolic Links

m Where to Find More Information

1-16
1-16
1-16
1-20
1-21
1-22
1-22
1-22
1-23
1-23
1-24
1-25
1-26
1-27

Table of Contents

Introduction

This book, Programming with UNIX System Calls concentrates on how to use the
system services provided by the UNIX operating system kernel. It is designed to
give you information about application programming in a UNIX system environ-
ment. It does not attempt to teach you how to write programs. Rather, it is
intended to supplement texts on programming by concentrating on the other ele-
ments that are part of getting application programs into operation.

Throughout this chapter and the rest of this book, you will find pointers and refer-
ences to other guides and manuals where information is described in detail. In
particular, you will find numerous references to UNIX Software Development Tools
and Programming in Standard C.

UNIX Software Development Tools describes the tools provided in the UNIX System
environment for building, maintaining and packaging programs. Programming in
Standard C describes the C programming environment, libraries, compiler, link
editor and file formats as well as tools for analyzing and debugging C programs.
UNIX Software Development Tools, Programming in Standard C and Programming
with UNIX System Calls are closely connected. Much of the information in these
volumes used to be in the Release 3.2 version of the Programmer’s Guide. For
Release 4 of UNIX System V, the information has been made into a series of
guides.

Audience and Prerequisite Knowledge

Programming with UNIX System Calls is intended for the Independent Software
Vendor (ISV) who develops UNIX System software applications to run on
Intel386™ microprocessor-based computer systems.

As the title suggests, we are addressing software developers. No special level of
programming involvement is assumed. We hope the book will be useful to people
who work on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system software,
may find that Programming with UNIX System Calls lacks the depth of information
they need. For them we recommend the Operating System API Reference.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory/file structure is assumed. If you feel shaky about your mastery of these
basic tools, you might want to look over the User’s Guide before tackling this one.

Introduction 11

Related Books and Documentation

Throughout this book, you will find pointers and references to other guides and
manuals where information is described in more detail. In particular, you will
find references to other programming guides (this document being a part of the
programming guide series) and reference manuals. Both of these document sets
are described below.

UNIX System V Programming Books

The components of UNIX System V include the Graphical User Interface (GUI),
the shell command line interface (CLI), the Application Program Interface (API),
and the Device Driver Interface/Driver Kernel Interface (DDI/DKI). This docu-
ment is part of a series of UNIX System V programming guides which includes
the following:

m Programming in Standard C — Discusses the UNIX system programming
environment and utilities and provides details of the C language, file for-
mats, link editor, libraries, and tools.

m UNIX Software Development Tools — Describes tools for developing and
packaging application software.

m Character User Interface Programming — Provides guidelines on how to
develop a menu and form-based interface that operates on ASCII character
terminals running on UNIX System V Release 4.2.

m Graphical User Interface Programming — Describes how to develop applica-
tion software using the Moolit toolkit, 3D visuals, and mouseless operation.

m Network Programming Interfaces — Describes networking services such as the
Transport Library Interface (TLI), the Remote Procedure Call (RPC) and the
Network Selection facility.

Reference Manual Set

The reference manual set contains manual pages which formally and comprehen-
sively describe features of the UNIX operating system. References to this docu-
mentation can be found throughout this book. Therefore, the reference manual set
is recommended as a companion set to the UNIX System V programming guides.
It is composed of the following text:

m Command Reference — Describes all user and administrator commands in the
UNIX system.

1-2 Introduction

m Operating System API Reference — Describes UNIX system calls and C
language library functions.

m System Files and Devices Reference — Describes file formats, special files
(devices), and miscellaneous system facilities.

m Device Driver Reference — Describes functions used by device driver
software.

Introduction

The C Connection

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. Nevertheless, the relationship
between the UNIX operating system and C has always been and remains very
close. Most of the code in the UNIX operating system is written in the C language,
and over the years many organizations using the UNIX system have come to use
C for an increasing portion of their application code. Thus, while Programming
with UNIX System Calls is intended to be useful to you no matter what language(s)
you are using, you will find that, unless there is a specific language-dependent
point to be made, the examples assume you are programming in C. Programming
in Standard C gives you detailed information about C language programming in
the UNIX environment.

Hardware/Software Dependencies

Nearly all the text in this book is accurate for any computer running UNIX System
V Release 4.0, with the exception of hardware-specific information such as
addresses.

If you find commands that work a little differently in your UNIX system environ-
ment, it may be because you are running under a different release of the software.
If some commands just don’t seem to exist at all, they may be members of pack-
ages not installed on your system. If you do find yourself trying to execute a non-
existent command, talk to the administrators of your system to find out what you
have available.

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly dif-
ferent output. Some displays depend on a particular machine configuration that
may differ from yours. Changes between releases of the UNIX system software
may cause small differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they com-
pile and work as represented. Where code fragments are shown, while we can’t
say that they have been compiled, we have attempted to maintain the same stan-
dards of coding accuracy for them.

1-4 Introduction

Notation Conventions

Whenever the text includes examples of output from the computer and /or com-
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX System V documentation:

m All computer input and output is shown in a constant-width font. Com-
mands that you type in from your terminal are shown in constant-width
type. Text that is printed on your terminal by the computer is shown in
constant-width type.

m Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from the
text that represents computer output or input. Comments that explain the
input or output are shown in the same type font as the rest of the display.
An italic font is used to show substitutable text elements, such as the word
“ filename " for example.

m Because you are expected to press the (RETURN J key after entering a com-
mand or menu choice, the RETURN J key is not explicitly shown in these
cases. If, however, during an interactive session, you are expected to press

RETURN) without having typed any text, the notation is shown.

m Control characters are shown by the string “ CTRL-" followed by the
appropriate character, such as *’D "’ (this is known as “ CTRL-D”’). To enter
a control character, hold down the key marked ““ (CTRL J ” (or

") and press the (D] key.

m The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#).

m When the # prompt is used in an example, the command illustrated may be
executed only by root.

Manual Page References

Manual pages are referred to with the function name showing first in constant
width font, followed by the section number appearing in parenthesis in normal
font. For example, the Executable and Linking Format Library (ELF) manual page
appears as el£(3E). Reference manuals are not referred to individually; however,
individual sections are referred to as ““Section 3E in the Reference Manuals.”

Introduction 1-5

Section (1) Command Reference
Sections (2), (3) Operating System API Reference
Sections (4), (5), (7), (8) System Files and Devices Reference

Note that the Command Reference describes commands appropriate for general
users and system administrators as well as for programmers.

1-6 Introduction

Application Programming in the UNIX System
Environment

This section introduces application programming in a UNIX system environment.
It briefly describes what application programming is and then moves on to a dis-
cussion on UNIX system tools and where you can read about them, and to
languages supported in the UNIX system environment and where you can read
about them.

Programmers working on application programs develop software for the benefit
of other, nonprogramming users. Most large commercial computer applications
involve a team of applications development programmers. They may be employ-
ees of the end-user organization or they may work for a software development
firm. Some of the people working in this environment may be more in the project
management area than working programmers.

Application programming has some of the following characteristics:

m Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in the UNIX Software Development Tools). change requests, track-
ing, and so on.

m Applications must be developed more robustly.

— They must be easy to use, implying character or graphical user
interfaces.

— They must check all incoming data for validity (for example, using
the Data Validation Tools described in UNIX Software Development
Tools).

- They should be able to handle large amounts of data.

m Applications must be easy to install and administer

(see ““Application Software Packaging” and “Modifying the sysadm Inter-
face” in UNIX Software Development Tools).

Application Programming 1-7

UNIX System Tools and Languages

Let’s clarify the term “UNIX system tools.”” In simple terms, it means an existing
piece of software used as a component in a new task. In a broader context, the
term is used often to refer to elements of the UNIX system that might also be
called features, utilities, programes, filters, commands, languages, functions, and so
on. It gets confusing because any of the things that might be called by one or
more of these names can be, and often are, used simply as components of the solu-
tion to a programming problem. The chapter’s aim is to give you some sense of
the situations in which you use these tools, and how the tools fit together. It refers
you to other chapters in this book or to other documents for more details.

Facilities Covered and Not Covered in This Guide

Programming with UNIX System Calls is about facilities used by application pro-
grams in a UNIX system environment, so let’s take a minute to talk about which
tools we mean, which ones are not going to be covered in this book, and where
you might find information about those not covered here. Actually, the subject of
things not covered in Programming with UNIX System Calls might be even more
important to you than the things that are. We couldn’t possibly cover everything
you ever need to know about UNIX system tools in this one volume.

Tools not covered in this text:

m the login procedure

m UNIX system editors and how to use them

m how the file system is organized and how you move around in it

m shell programming
Information about these subjects can be found in the User’s Guide and a number of
commercially available texts.

Tools that are covered in this text apply to application software development.
This text also covers tools for packaging application and device driver software
and for customizing the administrative interface.

1-8 Introduction

Programming Tools and Languages in the UNIX
System Environment

In this section we describe a variety of programming tools supported in the UNIX
system environment. By “programming tools”” we mean those offered for use on
a computer running a current release of UNIX System V. Since these are
separately purchasable items, not all of them will necessarily be installed on your
machine. On the other hand, you may have programming tools and languages
available on your machine that came from another source and are not mentioned
in this discussion.

The C Language

C is intimately associated with the UNIX system since it was originally developed
for use in recoding the UNIX system kernel. If you need to use a lot of UNIX sys-
tem function calls for low-level I/O, memory or device management, or interpro-
cess communication, C is a logical first choice. Most programs, however, don’t
require such direct interfaces with the operating system, so the decision to choose
C might better be based on one or more of the following characteristics:

m avariety of data types: characters, integers of various sizes, and floating
point numbers

m low-level constructs (most of the UNIX system kernel is written in C)

m derived data types such as arrays, functions, pointers, structures, and
unions

multidimensional arrays
scaled pointers and the ability to do pointer arithmetic

bitwise operators

a variety of flow-of-control statements: if, if-else, switch, while, do-
while, and for

m a high degree of portability

Refer to the Programming in Standard C for complete details on C.

It takes fairly concentrated use of the C language over a period of several months
to reach your full potential as a C programmer. If you are a casual programmer,
you might make it easier for yourself if you choose a less demanding program-
ming facility such as those described below.

Application Programming 19

Shell

You can use the shell to create programs (new commands). Such programs are
also called shell procedures. Refer to the UNIX Software Development Tools for
information on how to create and execute shell programs using commands, vari-
ables, positional parameters, return codes, and basic programming control struc-
tures.

awk

The awk program (its name is an acronym constructed from the initials of its
developers) scans an input file for lines that match pattern(s) described in a
specification file. Upon finding a line that matches a pattern, awk performs actions
also described in the specification. It is not uncommon that an awk program can
be written in a couple of lines to do functions that would take a couple of pages to
describe in a programming language like FORTRAN or C. For example, consider
a case where you have a set of records that consist of a key field and a second field
that represents a quantity, and the task is to output the sum of the quantities for
each key. The pseudocode for such a program might look like this:

- N

SORT RECORDS

Read the first record into a hold area;

Read additional records until EOF;

{

If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;

If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}

At EOF, write out the last record from the hold area.

N J

An awk program to accomplish this task would look like this:

{ qty[$1] += $2 }
END { for (key in qty) print key, qtylkeyl }

This illustrates only one characteristic of awk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a requirement
of the pseudoprogram.

For detailed information on awk, see the “awk Tutorial” chapter in the UNIX
Software Development Tools and awk(1) in the Command Reference.

1-10 Introduction

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical
analyzer is interested in the vocabulary of a language rather than its grammar,
which is a system of rules defining the structure of a language. lex can produce C
language subroutines that recognize regular expressions specified by the user,
take some action when a regular expression is recognized, and pass the output
stream on to the next program.

For detailed information on lex, see the “lex” chapter in the UNIX Software
Development Tools and 1ex(1) in the Command Reference.

yacc

vacc (Yet Another Compiler Compiler) is a tool for describing an input language
to a computer program. yacc produces a C language subroutine that parses an
input stream according to rules laid down in a specification file. The yacc
specification file establishes a set of grammatical rules together with actions to be
taken when tokens in the input match the rules. lex may be used with yacc to
control the input process and pass tokens to the parser that applies the grammati-
cal rules.

For detailed information on yacc, see the “yacc’ chapter in UNIX Software
Development Tools and yacc(1) in the Command Reference.

m4

m4 is a macro processor that can be used as a preprocessor for assembly language
and C programs. For details, see the “m4” chapter of Programming in Standard C
and m4(1) in the Command Reference.

bc and dc

be enables you to use a computer terminal as you would a programmable calcula-
tor. You can edit a file of mathematical computations and call bc to execute them.
The be program uses de. You can use de directly, if you want, but it takes a little
getting used to since it works with reverse Polish notation. bec and dc are
described in Section 1 of the Command Reference.

Application Programming 1-11

Character User Interfaces

curses

Actually a library of C functions, curses is included in this list because the set of
functions comprise a sublanguage for dealing with terminal screens. If you are
writing programs that include interactive user screens, you will want to become
familiar with this group of functions.

For detailed information on curses, see the Character User Interface Programming

FMLI

The Form and Menu Language Interpreter (FMLI) is a high-level programming
tool having two main parts:

m The Form and Menu Language, a programming language for writing scripts
that define how an application will be presented to users. The syntax of the
Form and Menu Language is very similar to that of the UNIX system shell
programming language, including variable setting and evaluation, built-in
commands and functions, use of and escape from special characters, redirec-
tion of input and output, conditional statements, interrupt signal handling,
and the ability to set various terminal attributes. The Form and Menu
Language also includes sets of “descriptors,” which are used to define or
customize attributes of frames and other objects in your application.

m The Form and Menu Language Interpreter, fmli, which is a command inter-
preter that sets up and controls the video display screen on a terminal, using
instructions from your scripts to supplement FMLI’s predefined screen con-
trol mechanisms. FMLI scripts can also invoke UNIX system commands
and C executables, either in the background or in full screen mode. The
Form and Menu Language Interpreter operates similarly to the UNIX com-
mand interpreter sh. At run time it parses the scripts you have written,
thus giving you the advantages of quick prototyping and easy maintenance.

FMLI provides a framework for developers to write applications and application
interfaces that use menus and forms. It controls many aspects of screen manage-
ment for you. This means that you do not have to be concerned with the low-level
details of creating or placing frames, providing users with a means of navigating
between or within frames, or processing the use of forms and menus. Nor do you
need to worry about on which kind of terminal your application will be run.

FMLI takes care of all that for you.

1-12 Introduction

For details see the FMLI chapter in the Character User Interface Programming

ETI

The Extended Terminal Interface (ETI) is a set of C library routines that promote
the development of application programs displaying and manipulating windows,
panels, menus, and forms and that run under the UNIX system. ETI consists of

m the low-level (curses) library
m the panel library

m the menu library

m the formlibrary

m the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the
standard C library. For example, there’s a routine printw() that behaves much
like printf () and another routine getch () that behaves like getc (). The
automatic teller program at your bank might use printw() to print its menus and
getch() to accept your requests for withdrawals (or, better yet, deposits). A
visual screen editor like the UNIX system screen editor vi might also use these
and other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes the
amount a cursor has to move around a screen to update it. For example, if you
designed a screen editor program with ETI routines and edited the sentence

ETI is a great package for creating forms and menus.
to read
ETI is the best package for creating forms and menus.

the program would change only ““ the best” in place of “a great”. The other
characters would be preserved. Because the amount of data transmitted—the
output—is minimized, cursor optimization is also referred to as output
optimization.

Cursor optimization takes care of updating the screen in a manner appropriate for
the terminal on which an ETI program is run. This means that ETI can do what-
ever is required to update many different terminal types. It searches the ter-
minfo database to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs? First,
it saves you time in describing in a program how you want to update screens.
Second, it saves a user’s time when the screen is updated. Third, it reduces the
load on your UNIX system’s communication lines when the updating takes place.

Application Programming 1-13

Fourth, you don’t have to worry about the myriad of terminals on which your
program might be run.

Here’s a simple ETI program. It uses some of the basic ETI routines to move a cur-
sor to the middle of a terminal screen and print the character string BullsEye.

For now, just look at their names and you will get an idea of what each of them
does:

Figure 1-1: A Simple ETI Program

s N

#include <curses.h>

main()
{
initscr();

move(LINES/2 - 1, COLS/2 - 4);
addstr("Bulls");

refresh();

addstr("Eye");

refresh();

endwin() ;

\C J

For complete information on ETI, refer to the ETI chapter in the Character User
Interface Programming.

1-14 Introduction

Graphical User Interfaces

XWIN Graphical Windowing System

The XWIN Graphical Windowing System is a network-transparent window sys-
tem. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output
requests from various application programs (referred to as ““clients’’). Each client
is located on either the same machine or on another machine in the network.

The clients use X1ib, a C library routine, to interface with the window system by
means of a stream connection.

““Widgets”” are a set of code and data that provide the look and feel of a user inter-
face. The C library routines used for creating and managing widgets are called the
X Intrinsics. They are built on top of the X Window System, monitor events related
to user interactions, and dispatch the correct widget code to handle the display.
Widgets can then call application-registered routines (called callbacks) to handle
the specific application semantics of an interaction. The X Intrinsics also monitor
application-registered, nongraphical events and dispatch application routines to
handle them. These features allow programmers to use this implementation of an
OPEN LOOK toolkit in data base management, network management, process
control, and other applications requiring response to external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of widgets
in addition to x1ib. Refer to the “XWIN Graphical Windowing System’” chapter
of the Graphical User Interface Programming guide for general information about the
design of X.

OPEN LOOK Graphical User Interface

The OPEN LOOK Graphical User Interface is a software application that creates a
user-friendly graphical environment for the UNIX system. It replaces the tradi-
tional UNIX system commands with graphics that include windows, menus, icons,
and other symbols. Using a hand-held pointing device (a “mouse”), you manipu-
late windows by moving them, changing their size and running them in the back-
ground. You can have multiple applications running at the same time by creating
more than one window on your screen.

For more information, refer to the Graphical User Interface Programming guide.

Application Programming 1-15

UNIX System Calls and Libraries

This section describes the UNIX system services supplied by UNIX system calls
and libraries for the C programming language. It introduces such topics as the
process scheduler, virtual memory, interprocess communication, file and record
locking, and symbolic links. The system calls and libraries that programs use to
access these UNIX system services are described in detail later in this book.

File and Device Input/Output

UNIX system applications can do all I/O by reading or writing files, because all
I/0O devices, even a user’s terminal, are files in the file-system. Each peripheral
device has an entry in the file-system hierarchy, so that device-names have the
same structure as file-names, and the same protection mechanisms apply to
devices as to files. Using the same I/O calls on a terminal as on any file makes it
easy to redirect the input and output of commands from the terminal to another
file. Besides the traditionally available devices, names exist for disk devices
regarded as physical units outside the file-system, and for absolutely addressed
memory.

STREAMS Input/Output

STREAMS is a general, flexible facility and a set of tools for development of UNIX
system communication services. It supports the implementation of services rang-
ing from complete networking protocol suites to individual device drivers.
STREAMS defines standard interfaces for character input/output within the ker-
nel, and between the kernel and the rest of the UNIX system. The associated
mechanism is simple and open-ended. It consists of a set of system calls, kernel
resources, and kernel routines.

The standard interface and mechanism enable modular, portable development
and easy integration of high-performance network services and their components.
STREAMS does not impose any specific network architecture. The STREAMS
user interface is upwardly compatible with the character I/O user level functions
such as open (), close(), read (), write(), and ioctl(). Benefits of STREAMS
are discussed in more detail later in this chapter.

A ““Stream”’ is a full-duplex processing and data transfer path between a
STREAMS driver in kernel space and a process in user space.

1-16 Introduction

Figure 1-2: Simple Streams

User Space

Kernel Space

downstream

Stream Head

Module
(optional)

Driver

upstream

External Interface

In the kernel, a Stream is constructed by linking a Stream head, a driver, and zero
or more modules between the Stream head and driver. The ““Stream head” is the
end of the Stream nearest to the user process. All system calls made by a user
level process on a Stream are processed by the Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe is a full-duplex (bidirec-
tional) data transfer path in the kernel. Itimplements a connection between the
kernel and one or more user processes and also shares properties of STREAMS-
based devices.

UNIX System Services 1-17

Figure 1-3: STREAMS-based Pipe

Stream Head Stream Head | Kernel

A STREAMS driver may be a device driver that provides the services of an exter-
nal I/O device, or a software driver, commonly referred to as a pseudo-device
driver. The driver typically handles data transfer between the kernel and the
device and does little or no processing of data other than conversion between data
structures used by the STREAMS mechanism and data structures that the device
understands.

A STREAMS module represents processing functions to be performed on data
flowing on the Stream. The module is a defined set of kernel-level routines and
data structures used to process data, status, and control information. Data pro-
cessing may involve changing the way the data is represented, adding/deleting
header and trailer information to data, and/or packetizing/depacketizing data.
Status and control information includes signals and input/output control informa-
tion.

1-18 Introduction

Each module is self-contained and functionally isolated from any other com-
ponent in the Stream except its two neighboring components. The module com-
municates with its neighbors by passing messages. The module is not a required
component in STREAMS, whereas the driver is, except in a STREAMS-based pipe
where only the Stream head is required.

One or more modules may be inserted into a Stream between the Stream head and
driver to perform intermediate processing of messages as they pass between the
Stream head and driver. STREAMS modules are dynamically interconnected in a
Stream by a user process. No kernel programming, assembly, or link editing is
required to create the interconnection.

STREAMS uses queue structures to keep information about given instances of a
pushed module or opened STREAMS device. A queue is a data structure that con-
tains status information, a pointer to routines for processing messages, and
pointers for administering the Stream. Queues are always allocated in pairs; one
queue for the read-side and the other for the write-side. There is one queue pair
for each driver and module, and the Stream head. The pair of queues is allocated
whenever the Stream is opened or the module is pushed (added) onto the Stream.

Data is passed between a driver and the Stream head and between modules in the
form of messages. A message is a set of data structures used to pass data, status,
and control information between user processes, modules, and drivers. Messages
that are passed from the Stream head toward the driver or from the process to the
device, are said to travel downstream (also called write-side). Similarly, messages
passed in the other direction, from the device to the process or from the driver to
the Stream head, travel upstream (also called read-side).

A STREAMS message is made up of one or more message blocks. Each block con-
sists of a header, a data block, and a data buffer. The Stream head transfers data
between the data space of a user process and STREAMS kernel data space. Data
to be sent to a driver from a user process is packaged into STREAMS messages
and passed downstream. When a message containing data arrives at the Stream
head from downstream, the message is processed by the Stream head, which
copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain message
types sent upstream may cause the Stream head to perform specific actions, such
as sending a signal to a user process. Other message types are intended to carry
information within a Stream and are not directly seen by a user process.

UNIX System Services 1-19

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent the
sort of error that can occur when two or more users of a file try to update informa-
tion at the same time. The classic example is the airlines reservation system where
two ticket agents each assign a passenger to Seat A, Row 5 on the 5 o’clock flight
to Detroit. A locking mechanism is designed to prevent such mishaps by blocking
Agent B from even seeing the seat assignment file until Agent A’s transaction is
complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified por-
tion of the file is locked. (Remember, in the UNIX system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places a
read lock on a file, other processes can also read the file but all are prevented from
writing to it, that is, changing any of the data. If a process places a write lock on a
file, no other processes can read or write in the file until the lock is removed.
Write locks are also known as exclusive locks. The term shared lock is sometimes
applied to read locks.

Another distinction needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the sys-
tem calls that read, write, or create files. This is done through a permission flag
established by the file’s owner (or the superuser). Advisory locking means that
the processes that use the file take the responsibility for setting and removing
locks as needed. Thus, mandatory may sound like a simpler and better deal, but it
isn’t so. The mandatory locking capability is included in the system to comply
with an agreement with /usr/group, an organization that represents the interests
of UNIX system users. The principal weakness in the mandatory method is that
the lock is in place only while the single system call is being made. It is extremely
common for a single transaction to require a series of reads and writes before it
can be considered complete. In cases like this, the term atomic is used to describe
a transaction that must be viewed as an indivisible unit. The preferred way to
manage locking in such a circumstance is to make certain the lock is in place
before any I/O starts, and that it is not removed until the transaction is done.
That calls for locking of the advisory variety.

1-20 Introduction

Where to Find More Information

Chapter 3 in this book discusses file and device I/0O including file and record lock-
ing in detail with a number of examples. There is an example of file and record
locking in the sample application in Chapter 2. The manual pages that specifically
address file and record locking are fent1(2), Lock£(3) and chmod(2) in the Operat-
ing System API Reference and £cnt1(5) in the System Files and Devices Reference.
fent1(2) describes the system call for file and record locking (although it isn’t
limited to that only) fent1(5) tells you the file control options. The subroutine
lock£(3) can also be used to lock sections of a file or an entire file. Setting chmod
so that all portions of a file are locked will ensure that parts of files are not
corrupted.

UNIX System Services 1-21

Memory Management

The UNIX system includes a complete set of memory-mapping mechanisms. Pro-
cess address spaces are composed of a vector of memory pages, each of which can
be independently mapped and manipulated. The memory-management facilities

m unify the system’s operations on memory

m provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without special-
purpose kernel support

m maintain consistency with the existing environment, in particular using the
UNIKX file system as the name space for named virtual-memory objects

The system’s virtual memory consists of all available physical memory resources
including local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual memory are refer-
enced though the UNIX file system. However, not all file system objects are in the
virtual memory; devices that the UNIX system cannot treat as storage, such as ter-
minal and network device files, are not in the virtual memory. Some virtual
memory objects, such as private process memory and shared memory segments,
do not have names.

The Memory Mapping Interface

The applications programmer gains access to the facilities of the virtual memory
system through several sets of system calls.

m mmap () establishes a mapping between a process’s address space and a
virtual memory object.

mprotect () assigns access protection to a block of virtual memory
munmap () removes a memory mapping

getpagesize () returns the system-dependent size of a memory page.

mincore () tells whether mapped memory pages are in primary memory

Where to Find More Information

Chapter 4 in this book gives a detailed description of the virtual memory system.
Refer to mmap(2), mprotect(2), munmap(2), getpagesize(2) and mincore(2) in the
Operating System API Reference for these manual pages.

1-22 Introduction

Process Management and Scheduling

The UNIX system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user requests;
it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy adjusts
process priorities dynamically in an attempt to give good response time to interac-
tive processes and good throughput to CPU-intensive processes.

The scheduler offers a real-time scheduling policy as well as a time-sharing policy.
Real-time scheduling allows users to set fixed priorities— priorities that the sys-
tem does not change. The highest priority real-time user process always gets the
CPU as soon as it is runnable, even if system processes are runnable. An applica-
tion can therefore specify the exact order in which processes run. An application
may also be written so that its real-time processes have a guaranteed response
time from the system.

For most UNIX system environments, the default scheduler configuration works
well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of their
processes. However, for some applications with strict timing constraints,
real-time processes are the only way to guarantee that the application’s require-
ments are met.

Where to Find More Information

Chapter 4 in this book gives detailed information on the process scheduler, along
with relevant code examples. See also priocntl1(l) in the Command Reference,
priocntl(2) in the Operating System API Reference, and dispadmin(1M) in the
Command Reference.

UNIX System Services 1-23

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
Business applications running on a UNIX system computer, however, often need
more sophisticated methods of communication. In applications, for example,
where fast response is critical, a number of processes may be brought up at the
start of a business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation example
again for a moment, if a customer calls to reserve a seat on the 5 o’clock flight to
Detroit, you don’t want to have to say, “Yes, sir; just hang on a minute while I
start up the reservations program.” In transaction-driven systems, the normal
mode of processing is to have all the components of the application standing by
waiting for some sort of an indication that there is work to do.

To meet requirements of this type, the UNIX system offers a set of nine system
calls and their accompanying header files, all under the umbrella name of inter-
process communications (IPC).

The IPC system calls come in sets of three; one set each for messages, semaphores,
and shared memory. These three terms define three different styles of communi-
cation between processes:

messages Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con-
tained in an array the size of which is determined by the
system administrator. The default maximum size for the
array is 25.

shared memory Communication takes place through a common area of
main memory. One or more processes can attach a seg-
ment of memory and as a consequence can share what-
ever data is placed there.

1-24 Introduction

The sets of IPC system calls are:

msgget semget shmget
msgctl semctl shmctl
msgop semop shmop

The ““ get " calls each return to the calling program an identifier for the type of
IPC facility that is being requested.

The “ct1” calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data
structures associated with the identifiers picked up by the ““get ” calls.

The “ op” manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop () has calls
that send or receive messages. semop () (the only one of the three that is actually
the name of a system call) is used to increment or decrement the value of a sema-
phore, among other functions. shmop () has calls that attach or detach shared
memory segments.

Where to Find More Information

Chapter 9 in this book gives a detailed description of IPC, with many code exam-
ples that use the IPC system calls. An example of the use of some IPC features is
included in the 1iber application in Chapter 9. The system calls are described in
Section 2 of the Operating System API Reference.

UNIX System Services 1-25

Symbolic Links

A symbolic link is a special type of file that represents another file. The datain a
symbolic link consists of the path name of a file or directory to which the symbolic
link file refers. The link that is formed is called symbolic to distinguish it from a
regular (also called a hard) link. A symbolic link differs functionally from a regu-
lar link in three major ways.

m Files from different file systems may be linked.
m Directories, as well as regular files, may be symbolically linked by any user.
m A symbolic link can be created even if the file it represents does not exist.

When a user creates a regular link to a file, a new directory entry is created con-
taining a new file name and the inode number of an existing file. The link count of
the file is incremented.

In contrast, when a user creates a symbolic link, (using the 1n(1) command with
the -s option) both a new directory entry and a new inode are created. A data
block is allocated to contain the path name of the file to which the symbolic link
refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For example,
it frequently happens that a disk partition (such as root) runs out of disk space.
With symbolic links, an administrator can create a link from a directory on that file
system to a directory on another file system. Such a link provides extra disk space
and is, in most cases, transparent to both users and programs.

Symbolic links can also help deal with the built-in path names that appear in the
code of many commands. Changing the path names would require changing the
programs and recompiling them. With symbolic links, the path names can effec-
tively be changed by making the original files symbolic links that point to new
files.

In a shared resource environment like RFS, symbolic links can be very useful. For
example, if it is important to have a single copy of certain administrative files,
symbolic links can be used to help share them. Symbolic links can also be used to
share resources selectively. Suppose a system administrator wants to do a remote
mount of a directory that contains sharable devices. These devices must be in
/dev on the client system, but this system has devices of its own so the administra-
tor does not want to mount the directory onto /dev. Rather than do this, the
administrator can mount the directory at a location other than /dev and then use
symbolic links in the /dev directory to refer to these remote devices. (This is simi-
lar to the problem of built-in path names since it is normally assumed that devices
reside in the /dev directory.)

1-26 Introduction

Finally, symbolic links can be valuable within the context of the virtual file system
(VES) architecture. With VFS, new services, such as higher performance files, net-
work IPC, and FACE servers, may be provided on a file system basis. Symbolic
links can be used to link these services to home directories or to places that make
more sense to the application or user. Thus, you might create a data base index
file in a RAM-based file system type and symbolically link it to the place where
the data base server expects it and manages it.

Where to Find More Information

Chapter 7 in this book discusses symbolic links in detail. Refer to symlink(2) in
the Operating System API Reference for information on creating symbolic links. See
also stat(2), rename(2), 1ink(2), readlink(2) and unlink(2) in the same manual,
and 1n(1) in the Command Reference.

UNIX System Services 1-27

2 UNIX System Calls and Libraries

Introduction 2-1
Libraries and Header Files 22
Header Files 2-2
How to Use Library Functions 2-4
C Library (libc) 2-9
m Subsection 3C Routines 2-9
m Subsection 3S Routines 2-12
Math Library (libm) 2-14
General Purpose Library (libgen) 2-16
Standard I/O Library 2-18
m Three Files You Always Have 2-19
m Named Files 2-19
How C Programs Communicate with the Shell 2-22
m Passing Command Line Arguments 2-23
System Calls 2-26
Input/Output and File System Calls 2-27
m File and Device I/0 2-27
m Terminal Device Control 2-27
m Directory and File System Control 2-28
Process and Memory System Calls 2-29
m Processes 2-29
m Signals 2-30
m Basic Interprocess Communication 2-30
m Advanced Interprocess Communication 2-31
m Memory Management 2-31
Miscellaneous System Calls 2-32
UNIX System Call Error Handling 2-33

Table of Contents

Introduction

This chapter introduces the system calls and other system services you can use to
develop application programs. Each application performs a different function, but
goes through the same basic steps: input, processing, and output. For the input
and output steps, most applications interact with an end user at a terminal. Dur-
ing the processing step, sometimes an application needs access to special services
provided by the operating system (for example, to interact with the file system,
control processes, manage memory, and more). Some of these services are pro-
vided through system calls and some through libraries of functions.

Introduction 2-1

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/output, string handling, and
other high-level operations that are not explicitly provided by the C language.
Header files contain definitions and declarations that your program will need if it
calls a library function. They also contain function-like macros that you can use in
your program as you would a function.

In this part, we'll talk a bit more about header files and show you how to use
library functions in your program. We'll also describe the contents of some of the
more important standard libraries, and tell you where to find them in the Operat-
ing System API Reference. We'll close with a brief discussion of standard 1/0O.

Header Files

Header files serve as the interface between your program and the libraries sup-
plied by the C compilation system. Because the functions that perform standard
I/0, for example, very often use the same definitions and declarations, the system
supplies a common interface to the functions in the header file <stdio.h>. By
the same token, if you have definitions or declarations that you want to make
available to several source files, you can create a header file with any editor, store
it in a convenient directory, and include it in your program as described in the
first part of this chapter.

Header files traditionally are designated by the suffix .h, and are brought into a
program at compile time. The preprocessor component of the compiler does this
because it interprets the #include statement in your program as a directive. The
two most commonly used directives are #include and #define. As we have
seen, the #include directive is used to call in and process the contents of the
named file. The #define directive is used to define the replacement token string
for an identifier. For example,

#define NULL 0

defines the macro NULL to have the replacement token sequence 0. See the section
on “C Language”, in the Programming in Standard C guide for the complete list of
preprocessing directives.

Many different . h files are named in the Operating System API Reference. Here we
are going to list a number of them, to illustrate the range of tasks you can perform
with header files and library functions. When you use a library function in your
program, the manual page will tell you which header file, if any, needs to be

2-2 UNIX System Calls and Libraries

included. If a header file is mentioned, it should be included before you use any
of the associated functions or declarations in your program. It’s generally best to
put the #include right at the top of a source file.

assert.h assertion checking

ctype.h character handling

errno.h error conditions

float.h floating point limits

limits.h other data type limits

locale.h program’s locale

math.h mathematics

setjmp.h nonlocal jumps

signal.h signal handling

stdarg.h variable arguments

stddef.h common definitions

stdio.h standard input/output

stdlib.h general utilities

string.h string handling

time.h date and time

unistd.h system calls

Libraries and Header Files 2-3

How to Use Library Functions

The manual page for each function describes how you should use the function in
your program. Manual pages follow a common format; although, some manual
pages may omit some sections:

m The NAME section names the component(s) and briefly states its purpose.
m The SYNOPSIS section specifies the C language programming interface(s).
m The DESCRIPTION section details the behavior of the component(s).

The EXAMPLE section gives examples, caveats and guidance on usage.
The FILES section gives the file names that are built into the program.

|
[
m The SEE ALSO section lists related component interface descriptions.
n

The DIAGNOSTICS section outlines return values and error conditions.

The NAME section lists the names of components described in that manual page
with a brief, one-line statement of the nature and purpose of those components.

The SYNOPSIS section summarizes the component interface by compactly
representing the order of any arguments for the component, the type of each argu-
ment (if any) and the type of value the component returns.

The DESCRIPTION section specifies the functionality of components without
stipulating the implementation; it excludes the details of how UNIX System V
implements these components and concentrates on defining the external features
of a standard computing environment instead of the internals of the operating sys-
tem, such as the scheduler or memory manager. Portable software should avoid
using any features or side-effects not explicitly defined.

The SEE ALSO section refers the reader to other related manual pages in The UNIX
System V Reference Manual Set as well as other documents. The SEE ALSO sec-
tion identifies manual pages by the title which appears in the upper corners of
each page of a manual page.

Some manual pages cover several commands, functions or other UNIX System V
components; thus, components defined along with other related components
share the same manual page title. For example, references to the function
calloc() citemalloc(3) because the function calloc() is described with the
function malloc() in the manual page entitled malloc(3).

24 UNIX System Calls and Libraries

As an example manual page, we'll look at the st rcmp() function, which compares
character strings. The routine is described on the st ring manual page in Section
3, Subsection 3C, of the Operating System API Reference. Related functions are
described there as well, but only the sections relevant to st rcmp() are shown in
the following figure.

Figure 2-1: Excerpt from string(3C) Manual Page

7 N

NAME

string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strok—string operations.

SYNOPSIS
#include <string.h>

int strcmp(const char *sptrl, const char *sptr2);

DESCRIPTION

strcmp () compares its arguments and returns an integer less than, equal to, or
greater than 0, according as the first argument is lexicographically less than,
equal to, or greater than the second.

-)

As shown, the DESCRIPTION section tells you what the function or macro does.
It’s the SYNOPSIS section, though, that contains the critical information about how
you use the function or macro in your program. Note that the first line in the
SYNOPSIS is

#include <string.h>

That means that you should include the header file <string.h> in your program
because it contains useful definitions or declarations relating to st rcmp().

Libraries and Header Files 2-5

" Infact, <string.h> contains the st rcmp() “function prototype’ as follows:
extern int strcmp(const char *, const char *);

A function prototype describes the kinds of arguments expected and returned by a
C language function. Function prototypes afford a greater degree of argument
type checking than old-style function declarations, and reduce the chance of using
the function incorrectly. Including <string.h>, assures that the C compiler
checks calls to st rcmp() against the official interface. You can, of course, examine
<string.h> in the standard place for header files on your system, usually the
/usr/include directory.

The SYNOPSIS for a C library function closely resembles the C language declara-
tion of the function and its arguments. The SYNOPSIS tells the reader:

m the type of value returned by the function;
m the arguments the function expects to receive when called, if any;
m the argument types.
For example, the SYNOPSIS for the macro feof() is:
#include <stdio.h>
int feof(FILE *sfp)
The SYNOPSIS section for feof() shows that:
m The macro feof() requires the header file <stdio.h>
® The macro feof() returns a value of type int
m The argument sfp is a pointer to an object of type FILE

To use feof() in a program, you need only write the macro call, preceded at some
point by the #include control line, as in the following:

#include <stdio.h> /* include definitions */

main() {
FILE *infile; /* define a file pointer */

while (!feof(infile)) { /* until end-of-file */
/* operations on the file */

2-6 UNIX System Calls and Libraries

By way of further illustration, let’s look at how you might use st rcmp() in your
own code. The following figure shows a program fragment that will find the bird

of your choice in an array of birds.

Figure 2-2: How strcmp() Is Used in a Program

f

#include <string.h>

/* birds must be in alphabetical order */
char *birds[] = { "albatross", "canary", "cardinal", "ostrich",

/* Return the index of the bird in the array. */
/* If the bird is not in the array, return -1 */

int is bird(const char *string)
{
int low, high, midpoint;
int cmp_value;

/* use a binary search to find the bird */
low = 0;
high = sizeof (birds)/sizeof (char *) - 1;
while(low <= high)
{
midpoint = (low + high)/2;
cmp_value = strcamp(string, birds[midpoint]);
if (cmp_value < 0)
high = midpoint - 1;
else if (cmp value > 0)
low = midpoint + 1;
else /* found a match */
return midpoint;

return -1;

"penguin" };

=\

Libraries and Header Files

The format of a SYNOPSIS section only resembles, but does not duplicate, the for-
mat of C language declarations. To show that some components take varying
numbers of arguments, the SYNOPSIS section uses additional conventions not
found in actual C function declarations:

m Textin courier represents source-code typed just as it appears.

Text in italic usually represents substitutable argument prototypes.

Square brackets [] around arguments indicate optional arguments.

Ellipses . . . indicate that the previous arguments may repeat.
m If the type of an argument may vary, the SYNOPSIS omits the type.
For example, the SYNOPSIS for the function print£() is:
#include <stdio.h>
int printf(char *fmt [, arg ...])

The SYNOPSIS section for print £() shows that the argument arg is optional, may
be repeated and is not always of the same data type. The DESCRIPTION section of
the manual page provides any remaining information about the function
print£() and the arguments to it.

The DIAGNOSTICS section specifies return values and possible error conditions.
The text in the DIAGNOSTICS takes a conventional form which describes the
return value in case of successful completion followed by the consequences of an
unsuccessful completion, as in the following example:

On success, 1seek() returns the value of the resulting file-offset, as
measured in bytes from the beginning of the file.

On failure, 1seek() returns -1, it does not change the file-offset, and
errno equals:
EBADF if fildes is not a valid open file-descriptor.
EINVAL if whence is not SEEK_SET, SEEK_CUR or SEEK_END.
ESPIPE if fildes denotes a pipe or FIFO.
The <errno.h> header file defines symbolic names for error conditions which are
described in intro(2) of the Operating System API Reference. For more information

on error conditions, see the section entitled ““UNIX System Call Error Handling”
in this chapter.

2-8 UNIX System Calls and Libraries

C Library (libc)

In this section, we describe some of the more important routines in the standard C
library. As we indicated in the first part of this chapter, 1ibc contains the system
calls described in Section 2 of the Operating System API Reference, and the C
language functions described in Section 3, Subsections 3C and 3S. We'll explain
what each of these subsections contains below. We'll look at system calls at the
end of the section.

Subsection 3C Routines

Subsection 3C of the Operating System API Reference contains functions and macros
that perform a variety of tasks:

m string manipulation

m character classification

m character conversion

Figure 2-3 lists string-handling functions that appear on the st ring page in Sub-
section 3C of the Operating System API Reference. Programs that use these func-
tions should include the header file <string.h>.

Figure 2-3: String Operations

strcat

strncat

strcmp

strncmp

Append a copy of one string to the end of another.

Append no more than a given number of characters from one
string to the end of another.

Compare two strings. Returns an integer less than, greater than,
or equal to 0 to show that one is lexicographically less than,
greater than, or equal to the other.

Compare no more than a given number of characters from the
two strings. Results are otherwise identical to st rcmp().

Libraries and Header Files 2-9

Figure 2-3: String Operations (continued)

strcpy Copy a string.

strncpy Copy a given number of characters from one string to another.
The destination string will be truncated if it is longer than the
given number of characters, or padded with null characters if it
is shorter.

strdup Return a pointer to a newly allocated string that is a duplicate of
a string pointed to.

strchr Return a pointer to the first occurrence of a character in a string,
or a null pointer if the character is not in the string.

strrchr Return a pointer to the last occurrence of a character in a string,
or a null pointer if the character is not in the string.

strlen Return the number of characters in a string.

strpbrk Return a pointer to the first occurrence in one string of any char-
acter from the second, or a null pointer if no character from the
second occurs in the first.

strspn Return the length of the initial segment of one string that con-
sists entirely of characters from the second string.

strcspn Return the length of the initial segment of one string that con-
sists entirely of characters not from the second string.

strstr Return a pointer to the first occurrence of the second string in
the first string, or a null pointer if the second string is not found.

strtok Break up the first string into a sequence of tokens, each of which
is delimited by one or more characters from the second string.
Return a pointer to the token, or a null pointer if no token is
found.

2-10 UNIX System Calls and Libraries

Figure 2-4 lists functions and macros that classify 8-bit character-coded integer
values. These routines appear on the conv(3C) and ctype(3C) pages in Subsection
3C of the Operating System API Reference. Programs that use these routines should
include the header file <ctype.h>.

Figure 2-4: Classifying 8-Bit Character-Coded Integer Values

isalpha
isupper
islower
isdigit
isxdigit
isalnum

isspace

ispunct
isprint
isgraph
iscntrl
isascii
toupper
_toupper
tolower
_tolower

toascii

Is c a letter?

Is c an uppercase letter?

Is c a lowercase letter?

Is c a digit [0-9]?

Is ¢ a hexadecimal digit [0-9], [A-F], or [a-f]?
Is ¢ alphanumeric (a letter or digit)?

Is c a space, horizontal tab, vertical tab, new-line, form-feed, or
carriage return?

Is c a punctuation character (neither control nor alphanumeric)?
Is ¢ a printing character?

Same as isprint() except false for a space.

Is c a control character or a delete character?

Is ¢ an ASCII character?

Change lower case to upper case.

Macro version of toupper().

Change upper case to lower case.

Macro version of tolower().

Turn off all bits that are not part of a standard ASCII character;
intended for compatibility with other systems.

Libraries and Header Files 2-11

Figure 2-5 lists functions and macros in Subsection 3C of the Operating System API
Reference that are used to convert characters, integers, or strings from one
representation to another. The left-hand column contains the name that appears
at the top of the manual page; the other names in the same row are related func-
tions or macros described on the same manual page. Programs that use these rou-
tines should include the header file <std1ib.h>.

Figure 2-5: Converting Characters, Integers, or Strings

a64l l64a Convert between long integer and base-64 ASCII
string.

ecvt fevt gevt Convert floating point number to string.

13tol 1ltol3 Convert between 3-byte packed integer and long
integer.

strtod atof Convert string to double-precision number.

strtol atol atoi Convert string to integer.

strtoul Convert string to unsigned long.

Subsection 3S Routines

Subsection 3S of the Operating System API Reference contains the so-called standard
I/0 library for C programs. Frequently, one manual page describes several
related functions or macros. In Figure 2-6, the left-hand column contains the name
that appears at the top of the manual page; the other names in the same row are
related functions or macros described on the same manual page. Programs that
use these routines should include the header file <stdio.h>. We'll talk a bit
more about standard I/O in the last subsection of this chapter.

2-12 UNIX System Calls and Libraries

Figure 2-6: Standard I/0O Functions and Macros

fclose
ferror
fopen
fread

fseek

getc

gets

popen

printf
putc

puts
scanf
setbuf

system

tmpfile
tmpnam

ungetc

vprintf

fflush
feof
freopen
fwrite

rewind

getchar

fgets

pclose

fprintf
putchar

fputs
fscanf

setvbuf

tempnam

viprintf

clearerr

fdopen

ftell

fgetc

sprintf

fputc

sscanf

vsprintf

fileno

getw

putw

Close or flush a stream.
Stream status inquiries.
Open a stream.
Input/output.

Reposition a file pointer in a
stream.

Get a character or word from a
stream.

Get a string from a stream.

Begin or end a pipe to/from a
process.

Print formatted output.

Put a character or word on a
stream.

Put a string on a stream.
Convert formatted input.
Assign buffering to a stream.

Issue a command through the
shell.

Create a temporary file.

Create a name for a temporary
file.

Push character back into input
stream.

Print formatted output of a
varargs argument list.

Libraries and Header Files

2-13

Math Library (libm)

The math library, 1ibm, contains the mathematics functions supplied by the C
compilation system. These appear in Subsection 3M of the Operating System API
Reference. Here we describe some of the major functions, organized by the manual
page on which they appear. Note that functions whose names end with the letter
f are single-precision versions, which means that their argument and return types
are f1oat. Programs that use math functions should include the header file
<math.h>.

Figure 2-7: Math Functions

erf(3M)
erf Compute the error function of x, defined as
X
—2—_J et dt.
T o
erfc Compute 1.0 - erf (x), which is used because of
the extreme loss of relative accuracy if er£() is
called for large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).
exp(3M)
exp expf Compute e*.
cbrt Compute the cube root of x.
log logf Compute the natural logarithm of x.
The value of x must be positive.
logl0 logl0f Compute the base-ten logarithm of x.
The value of x must be positive.
pow powf Compute xV.
If x is zero, y must be positive.
If x is negative, y must be an integer.
sqrt sqrtf Compute the non-negative square root of x.
The value of x must be non-negative.
floor(3M)
floor floorf Compute the largest integer not greater than x.
ceil ceilf Compute the smallest integer not less than x.

2-14 UNIX System Calls and Libraries

Figure 2-7: Math Functions (continued)

copysign Compute x but with the sign of y.

fmod fmodf Compute the floating point remainder of the
division of x by y: x if y is zero, otherwise the
number f with same sign as x, such that x =iy + f
for some integer i, and | f| <[y 1.

fabs fabsf Compute | x |, the absolute value of x.

rint Compute as a double-precision floating point
number the integer value nearest the double-
precision floating point argument x, and rounds
the return value according to the currently set
machine rounding mode.

remainder Compute the floating point remainder of the
division of x by y: NaN if y is zero, otherwise the
value r = x - yn, where n is the integer value
nearest the exact value of x/y, and n is even
whenever |n - x/y| = 1/2.

gamma(3M)

gamma lgamma Compute In(| T(x) |), where I'(x) is defined as
X
[e-tee=1ar.
0

hypot(3M)

hypot Compute sgrt(x * x + y * y), taking precautions
against overflows.

matherr(3M)

matherr Error handling.

trig(3M)

sin sinf Compute the sine of x, measured in radians.

cos cosf Compute the cosine of x, measured in radians.

tan tanf Compute the tangent of x, measured in radians.

asin asinf Compute the arcsine of x, in the range

Libraries and Header Files

[-7/2, +m/2].

2-15

Figure 2-7: Math Functions (continued)

acos acosf Compute the arccosine of x, in the range
[0,+=].

atan atanf Compute the arctangent of x, in the range
(-m/2, +1/2).

atan2 atan2f Compute the arctangent of y/x, in the range
(-w, +7], using the signs of both arguments to
determine the quadrant of the return value.

sinh(3M)

sinh sinhf Compute the hyperbolic sine of x.

cosh coshf Compute the hyperbolic cosine of x.

tanh tanhf Compute the hyperbolic tangent of x.

asinh Compute the inverse hyperbolic sine of x.

acosh Compute the inverse hyperbolic cosine of x.

atanh Compute the inverse hyperbolic tangent of x.

General Purpose Library (libgen)

libgen contains general purpose functions, and functions designed to facilitate
internationalization. These appear in Subsection 3G of the Operating System API
Reference. Figure 2-8 describes functions in 1ibgen. The header files
<libgen.h> and, occasionally, <regexp .h> should be included in programs
that use these functions.

Figure 2-8: libgen Functions

advance

basename

bgets

2-16

step

Execute a regular expression on a string.

Return a pointer to the last element of a path
name.

Read a specified number of characters into a

UNIX System Calls and Libraries

Figure 2-8: 1ibgen Functions (continued)

bufsplit

compile

copylist

dirname

eaccess

gmatch

isencrypt

mkdirp

p2open

pathfind

regcmp

regex

rmdirp

p2close

Libraries and Header Files

buffer from a stream until a specified character
is reached.

Split the buffer into fields delimited by tabs and
new-lines.

Return a pointer to a compiled regular expres-
sion that uses the same syntax as ed.

Copy a file into a block of memory, replacing
new-lines with null characters. It returns a
pointer to the copy.

Return a pointer to the parent directory name of
the file path name.

Determine if the effective user ID has the
appropriate permissions on a file.

Check if name matches shell file name pattern.

Use heuristics to determine if contents of a char-
acter buffer are encrypted.

Create a directory and its parents.

p2open() is similar to popen() [see popen] .
It establishes a two-way connection
between the parent and the child.
p2close() closes the pipe.

Search the directories in a given path for a
named file with given mode characteristics. If
the file is found, a pointer is returned to a string
that corresponds to the path name of the file. A
null pointer is returned if no file is found.

Compile a regular expression and return a
pointer to the compiled form.

Compare a compiled regular expression against
a subject string.

Remove the directories in the specified path.

Figure 2-8: 1ibgen Functions (continued)

strccpy

strecpy

strfind

strrspn

strtrns

strcadd

strccpy copies the input string to the output
string, compressing any C-like escape sequences
to the real character. strcadd is a similar func-
tion that returns the address of the null byte at
the end of the output string.

Copy the input string to the output string,
expanding any non-graphic characters with the
C escape sequence. Characters in a third argu-
ment are not expanded.

Return the offset of the first occurrence of the
second string in the first string. -1 is returned if
the second string does not occur in the first.

Trim trailing characters from a string. It returns
a pointer to the last character in the string not in
a list of trailing characters.

Return a pointer to the string that results from
replacing any character found in two strings
with a character from a third string. This func-
tion is similar to the tr command.

Standard 1/O Library

The functions in Subsection 3S of the Operating System API Reference constitute the
standard I/0O library for C programs. In this section, we want to discuss standard
I/0 in a bit more detail. First, let’s briefly define what I/O involves. It has to do

with

m reading information from a file or device to your program;

m writing information from your program to a file or device;

m opening and closing files that your program reads from or writes to.

2-18

UNIX System Calls and Libraries

Three Files You Always Have

Programs automatically start off with three open files: standard input, standard
output, and standard error. These files with their associated buffering are called
streams, and are designated stdin, stdout, and stderr, respectively. The shell
associates all three files with your terminal by default.

This means that you can use functions and macros that deal with stdin, stdout,
or stderr without having to open or close files. gets(), for example, reads a
string from stdin; puts() writes a string to st dout. Other functions and macros
read from or write to files in different ways: character at a time, get c() and
putc(); formatted, scanf() and print £(); and so on. You can specify that output
be directed to stderr by using a function such as fprint£(). £printf() works
the same way as print £() except that it delivers its formatted output to a named
stream, such as stderr.

Named Files

Any file other than standard input, standard output, and standard error must be
explicitly opened by you before your program can read from or write to the file.
You open a file with the standard library function fopen(). fopen() takes a path
name, asks the system to keep track of the connection between your program and
the file, and returns a pointer that you can then use in functions that perform other
1/0 operations.

The pointer is to a structure called FILE, defined in <stdio.h>, that contains
information about the file: the location of its buffer, the current character position
in the buffer, and so on. In your program, then, you need to have a declaration
such as

FILE *fin;
which says that £in is a pointer to a FILE. The statement
fin = fopen("filename", "r");

associates a FILE structure with filename, the path name of the file to open, and
returns a pointer to it. The "r" means that the file is to be opened for reading.
This argument is known as the mode. There are modes for reading, writing, and
both reading and writing.

In practice, the file open function is often included in an i f statement:

if ((fin = fopen("filename", "r")) == NULL)
(void) fprintf (stderr, "Cannot open input file %s\n",
"filename") ;

Libraries and Header Files 2-19

which takes advantage of the fact that fopen() returns a NULL pointer if it cannot
open the file. To avoid falling into the immediately following code on failure, you
can call exit(), which causes your program to quit:

if ((fin = fopen("filename", "r")) == NULL) {
(void) fprintf (stderr, "Cannot open input file %s\n",
"filename");
exit(1);

2-20 UNIX System Calls and Libraries

Once you have opened the file, you use the pointer £in in functions or macros to
refer to the stream associated with the opened file:

int c;
¢ = getc(fin);

brings in one character from the stream into an integer variable called c. The vari-
able c is declared as an integer even though we are reading characters because
getc() returns an integer. Getting a character is often incorporated in some flow-
of-control mechanism such as

while ((¢c = getc(fin)) != EOF)

.

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc() are all defined in <stdio.h>. getc() and other macros in the standard
I/O package keep advancing a pointer through the buffer associated with the
stream; the UNIX system and the standard I/O functions are responsible for see-
ing that the buffer is refilled if you are reading the file, or written to the output file
if you are producing output, when the pointer reaches the end of the buffer.

Your program may have multiple files open simultaneously, 20 or more depend-
ing on system configuration. If, subsequently, your program needs to open more
files than it is permitted to have open simultaneously, you can use the standard
library function £close() to break the connection between the FILE structure in
<stdio.h> and the path names of the files your program has opened. Pointers to
FILE may then be associated with other files by subsequent calls to fopen(). For
output files, an fclose() call makes sure that all output has been sent from the
output buffer before disconnecting the file. exit() closes all open files for you,
but it also gets you completely out of your process, so you should use it only
when you are sure you are finished.

Libraries and Header Files 2-21

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on the
command line, which is to say, by the shell. When you execute a C program, com-
mand line arguments are made available to the function main() in two parame-
ters, an argument count, conventionally called argc, and an argument vector,
conventionally called argv. (Every C program is required to have an entry point
named main().) argc is the number of arguments with which the program was
invoked. argv is an array of pointers to character strings that contain the argu-
ments, one per string. Since the command name itself is considered to be the first
argument, or argv [0], the count is always at least one. Here is the declaration
for main():

int

main(int argc, char *argvl[])
For two examples of how you might use run-time parameters in your program,
see the last subsection of this chapter.

The shell, which makes arguments available to your program, considers an argu-
ment to be any sequence of non-blank characters. Characters enclosed in single
quotes (“abc def ') or double quotes ("abc def") are passed to the program
as one argument even if blanks or tabs are among the characters. You are respon-
sible for error checking and otherwise making sure that the argument received is
what your program expects it to be.

In addition to argc and argv, you can use a third argument: envp is an array of
pointers to environment variables. You can find more information on envp in the
Operating System API Reference under exec in Section 2 and in the System Files and
Devices Reference under environ in Section 5.

C programs exit voluntarily, returning control to the operating system, by return-
ing from main() or by calling the exit() function. Thatis, a return (n) from
main() is equivalent to the call exit (n). (Remember that main() has type “func-
tion returning int.”) Your program should return a value to say whether it com-
pleted successfully or not. The value gets passed to the shell, where it becomes the
value of the $? shell variable if you executed your program in the foreground. By
convention, a return value of zero denotes success, a non-zero return value means
some sort of error occurred. You can use the macros EXIT_SUCCESS and
EXIT_FAILURE, defined in the header file <stdlib.h>, as return values from
main() or argument values for exit().

2-22 UNIX System Calls and Libraries

Passing Command Line Arguments

As described above, information or control data can be passed to a C program as
an argument on the command line. When you execute the program, command
line arguments are made available to the function main() in two parameters, an
argument count, conventionally called argc, and an argument vector, convention-
ally called argv. argc is the number of arguments with which the program was
invoked. argv is an array of pointers to characters strings that contain the argu-
ments, one per string. Since the command name itself is considered to be the first
argument, or argv [0], the count is always at least one.

If you plan to accept run-time parameters in your program, you need to include
code to deal with the information. Figure 2-9 and Figure 2-10 show program frag-
ments that illustrate two common uses of run-time parameters:

m Figure 2-9 shows how you provide a variable file name to a program, such
that a command of the form

$ prog filename
will cause prog to attempt to open the specified file.

m Figure 2-10 shows how you set internal flags that control the operation of a
program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options
specified. The getopt() function used in the example is the most common
way to process arguments in UNIX system programs. getopt()is
described in Subsection 3C of the Operating System API Reference.

Libraries and Header Files 2-23

Figure 2-9: Using argv[1] to Pass a File Name

f 3

#include <stdio.h>

int
main(int argc, char *argv([])
{

FILE *fin;

int ch;

switch (argc)
{
case 2:
if ((fin = fopen(argv[1l], "r")) == NULL)
{
/* First string (%s) is program name (argv[0]). */
/* Second string (%s) is name of file that could */
/* not be opened (argv[1l]). */

(void) fprintf (stderr, "%s: Cannot open input file %s\n",
argv([0], argvl]);
return(2);
}
break;
case 1:
fin = stdin;
break;

default:
(void) fprintf (stderr, "Usage: %s [file]\n", argv[0]);
return(2);

}

while ((ch = getc(fin)) != EOF)
(void)putchar(ch);

return (0);

7.
s

2-24 UNIX System Calls and Libraries

Figure 2-10: Using Command Line Arguments to Set Flags

~

#include <stdio.h>
#include <stdlib.h>

)

int
main(int arge, char *argv(l)
{
int oflag = 0;
int pflag = 0; /* Function flags */
int rflag = 0;
int ch;
while ((ch = getopt(argc, argv, "opr")) != -1)
{
/* For options present, set flag to 1. */

/* If unknown options present, print error message. */

switch (ch)
{
case ‘o’:
oflag
break;
case 'p’:
pflag
break;
case 'r’:
rflag = 1;
break;
default:
(void) fprintf (stderr, "Usage: %s [-oprl\n", argv[0]);
return(2);

n
[y
~

1;

}
}
/* Do other processing controlled by oflag, pflag, rflag. */
return(0);

N\

\

Libraries and Header Files 2-25

System Calls

UNIX system calls are the interface between the kernel and the user programs that
run on top of it. The UNIX system kernel is the software on which everything else
in the UNIX operating system depends. The kernel manages system resources,
maintains file-systems and supports system-calls. read(), write() and the other
system calls in Section 2 of the Operating System API Reference define what the
UNIX system is. Everything else is built on their foundation. Strictly speaking,
they are the only way to access such facilities as the file system, interprocess com-
munication primitives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are writing a C program, for example, you can use
the library functions described in Section 3 of the Operating System API Reference.
When you use these functions, the details of their implementation on the UNIX
system are transparent to the program, for example, that the system call read()
underlies the fread() implementation in the standard C library. In other words,
the program will generally be portable to any system, UNIX or not, with a con-
forming C implementation. (See Chapter 2 of the Programming in Standard C guide
for a discussion of the standard C library.)

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read() in a pro-
gram that performed a simple input/output operation. Other operations, how-
ever, including most multitasking mechanisms, do require direct interaction with
the UNIX system kernel. These operations are the subject of the first part of this
book. This chapter lists the system calls in functional groups, and includes brief
discussions of error handling. For details on individual system calls, see Section 2
of the Operating System API Reference.

A C program is automatically linked with the system calls you have invoked
when you compile the program. The procedure may be different for programs
written in other languages. Check the Programming in Standard C guide for details
on the language you are using.

2-26 UNIX System Calls and Libraries

Input/Output and File System Calls

File and Device I/O

These system calls perform basic input/output operations on UNIX system files.

Figure 2-11: File and Device I/O Functions

open
creat
close
read
getmsg
lseek
fentl
ioctl

write
putmsg

open a file for reading or writing

create a new file or rewrite an existing one
close a file descriptor

transfer data from/onto a file or device
get/put message from/onto a stream
move file I/O pointer

file I/O control

device I/O control

Terminal Device Control

These system calls deal with a general terminal interface for the control of asyn-
chronous communications ports.

Figure 2-12: Terminal Device Control Functions

tcgetattr
tcdrain
tcflow
cfgetispeed
cfsetispeed
tcgetsid
tcgetpgrp
tcsetpgrp

tcsetattr
tcflush
tcsendbreak
cfgetospeed
cfsetospeed

get and set terminal attributes

line control functions

line control functions

get baud rate functions

set baud rate functions

get terminal session ID

get terminal foreground process group ID
set terminal foreground process group ID

System Calls

2-27

Directory and File System Control

These system calls allow creation of new directories (and other types of files), link-
ing to existing files, obtaining or modifying file status information, and allow you
to control various aspects of the file system.

Figure 2-13: Directory and File System Control Functions

link link to a file

access determine accessibility of a file

mknod make a directory, special, or regular file

chmod fchmod change mode of file

chown fchown lchown | change owner and group of a file

utime set file access and modification times

stat fstat lstat get file status

pathconf fpathconf get configurable path name variables

getdents read directory entries and put in file system-
independent format

mkdir make a directory

readlink read the value of a symbolic link

rename change the name of a file

rmdir remove a directory

symlink make a symbolic link to a file

unlink remove directory entry

ustat get file system statistics

sync update super block

mount umount mount/unmount a file system

statfs fstatfs get file system information

sysfs get file system type information

2-28 UNIX System Calls and Libraries

Process and Memory System Calls

Processes

These system calls control user processes.

Figure 2-14: Process Management Functions

fork
execl
execv
exit

wait
setuid
getpgrp
chdir
chroot
nice
getcontext
getgroups
getpid
getuid
getgid
pause
priocntl
setpgid
setsid
kill

execle execlp

execve execvp
_exit
waitpid waitid
setgid

setpgrp

fchdir

setcontext
setgroups
getppid getpgid
geteuid

getegid

create a new process
execute a file with a list of arguments
execute a file with a variable list
terminate process

wait for child process to change state
set user and group IDs

get and set process group ID
change working directory

change root directory

change priority of a process

get and set current user context

get or set supplementary group IDs
get process and parent process IDs
get real user and effective user

get real group and effective group
suspend process until signal
process scheduler control

set process group ID

set session ID

send a signal to a process or group of processes

System Calls

2-29

Signals

Signals are messages passed by the UNIX system to running processes.

Figure 2-15: Signal Management Functions

sigaction
sigaltstack
sigignore
sighold
sigset
sigpending
sigprocmask
sigsuspend
sigsend

sigpause
sigrelse
signal

sigsendset

detailed signal management

set/get signal alternate stack context
simplified signal management

simplified signal management

simplified signal management

examine blocked and pending signals

change or examine signal mask

install a signal mask and suspend process

send a signal to a process or group of processes

Basic Interprocess Communication

These system calls connect processes so they can communicate. pipe is the sys-
tem call for creating an interprocess channel. dup is the call for duplicating an
open file descriptor. (These IPC mechanisms are not applicable for processes on

separate hosts.)

Figure 2-16: Basic Interprocess Communication Functions

pipe
dup

open file-descriptors for a pipe
duplicate an open file-descriptor

2-30

UNIX System Calls and Libraries

Advanced Interprocess Communication

These system calls support interprocess messages, semaphores, and shared
memory and are effective in data base management. (These IPC mechanisms are
also not applicable for processes on separate hosts.)

Figure 2-17: Advanced Interprocess Communication Functions

msgget get message queue

msgctl message control operations

msgop message operations

semget get set of semaphores

semctl semaphore control operations

semop semaphore operations

shmget get shared memory segment identifier
shmetl shared memory control operations
shmop shared memory operations

Memory Management

These system calls give you access to virtual memory facilities.

Figure 2-18: Memory Management Functions

getpagesize get system page size

memcntl memory management control

mmap map pages of memory

mprotect set protection of memory mapping
munmap unmap pages of memory

plock lock process, text, or data in memory
brk sbrk dynamically allocate memory space

System Calls 2-31

Miscellaneous System Calls

These are system calls for such things as administration, timing, and other
miscellaneous purposes.

Figure 2-19: Miscellaneous System Functions

acct enable or disable process accounting

alarm set a process alarm clock

getrlimit setrlimit | control maximum system resource consumption

modload loads dynamically loadable kernel module

moduload unloads kernel module

modpath change path from which modules are loaded

modadm module administration

profil execution time profile

sysconf method for application’s determination of value
for system configuration

sysi86 machine-specific functions

time stime get/set time

uadmin administrative control

ulimit get and set user limits

uname get/set name of current UNIX system

2-32 UNIX System Calls and Libraries

UNIX System Call Error Handling

UNIX system calls that fail to complete successfully almost always return a value
of -1 to your program. (If you look through the system calls in Section 2, you will
see that there are a few calls for which no return value is defined, but they are the
exceptions.) In addition to the -1 returned to the program, the unsuccessful sys-
tem call places an integer in an externally declared variable, errno. In a C pro-
gram, you can determine the value in errno if your program contains the follow-
ing statement:

#include <errno.h>

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno. The value in errno is not cleared on suc-
cessful calls, so your program should check it only if the system call returned a -1
indicating an error. The following list identifies the error numbers and symbolic
names defined in the <errno . h> header file, and described in intro(2) of the
Operating System API Reference.

System Calls 2-33

Error
Number

Symbolic
Name

Description

1

2-34

EPERM

ENOENT

ESRCH

EINTR

EIO

ENXIO

E2BIG

ENOEXEC

EBADF

Not privileged

Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or a process with
the appropriate privilege. It is also returned for attempts by
ordinary users to do things allowed only to the super-user.

No such file or directory
A file name is specified and the file should exist but fails to,
or one of the directories in a path name fails to exist.

No such process
No process can be found corresponding to the that specified
by PID in the kill or ptrace routine.

Interrupted system call

An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system ser-
vice routine. If execution is resumed after processing the sig-
nal, it will appear as if the interrupted routine call returned
this error condition.

1/O error

Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it actu-
ally applies.

No such device or address

1/0 on a special file refers to a subdevice which does not
exist, or exists beyond the limit of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

Arg list too long

An argument list longer than ARG_MAX bytes is presented to
a member of the exec family of routines. The argument list
limit is sum of the size of the argument list plus the size of
the environment’s exported shell variables.

Exec format error

A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid format
[see a.out(4)].

Bad file number

Either a file descriptor refers to no open file, or a read()
[respectively, write()] request is made to a file that is open
only for writing (respectively, reading).

UNIX System Calls and Libraries

Error
Number

Symbolic
Name

Description

10

11

12

13

14

System Calls

ECHILD

EAGAIN

ENOMEM

EACCES

EFAULT

No child processes
A wait routine was executed by a process that had no exist-
ing or unwaited-for child processes.

No more processes

For example, the fork routine failed because the system’s
process table is full or the user is not allowed to create any
more processes. Or a system call failed because of
insufficient memory or swap space.

Not enough space

During execution of an exec, brk, or sbrk routine, a pro-
gram asks for more space than the system is able to supply.
This is not a temporary condition; the maximum size is a sys-
tem parameter. The error may also occur if the arrangement
of text, data, and stack segments requires too many segmen-
tation registers, or if there is not enough swap space during
the fork routine. If this error occurs on a resource associ-
ated with Remote File Sharing (RFS), it indicates a memory
depletion which may be temporary, dependent on system
activity at the time the call was invoked.

Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

Bad address

The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno poten-
tially may be set to EFAULT any time a routine that takes a
pointer argument is passed an invalid address, if the system
can detect the condition. Because systems will differ in their
ability to reliably detect a bad address, on some implementa-
tions passing a bad address to a routine will result in
undefined behavior.

2-35

Error
Number

Symbolic
Name

Description

15

16

17

18

19

20

21

22

23

2-36

ENOTBLK

EBUSY

EEXTIST

EXDEV

ENODEV

ENOTDIR

EISDIR

EINVAL

ENFILE

Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the mount routine).

Device busy

An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

File exists
An existing file was mentioned in an inappropriate context
(e.g., call to the 1ink routine).

Cross-device link
A link to a file on another device was attempted.

No such device
An attempt was made to apply an inappropriate operation to
a device (e.g., read a write-only device).

Not a directory

A non-directory was specified where a directory is required
(e.g., in a path prefix or as an argument to the chdir rou-
tine).

Is a directory
An attempt was made to write on a directory.

Invalid argument

An invalid argument was specified (e.g., unmounting a non-
mounted device, mentioning an undefined signal in a call to
the signal or kill routine. Also set by the functions
described in the math package (3M).

File table overflow

The system file table is full (i.e., SYS_OPEN files are open, and
temporarily no more files can be opened).

UNIX System Calls and Libraries

Error Symbolic

Number Name Description

24 EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors
open at a time.

25 ENOTTY Not a typewriter
A call was made to the ioct1 routine specifying a file that is
not a special character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program
that is currently open for writing. Also an attempt to open
for writing or to remove a pure-procedure program that is
being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size, FCHR_MAX
[see getrlimit(2)].

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device. In the fcnt1 rou-
tine, the setting or removing of record locks on a file cannot
be accomplished because there are no more record entries
left on the system.

29 ESPIPE Illegal seek
A call to the 1seek routine was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of
links, LINK_MAX, to a file.

32 EPIPE Broken pipe

System Calls

A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error is
returned if the signal is ignored.

2-37

Error Symbolic

Number Name Description

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out
of the domain of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type not
existing on the specified message queue [see msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due
to the removal of an identifier from the file system’s name
space [see msgct1(2), semct1(2), and shmet1(2)].

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error
pertains to file and record locking.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is
full [see fcnt1(2)].

2-38 UNIX System Calls and Libraries

Error Symbolic

Number Name Description

60 ENOSTR Device not a stream
A putmsg or getmsg system call was attempted on a file
descriptor that is not a STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired
The timer set for a STREAMS ioct1 call has expired. The
cause of this error is device specific and could indicate either
a hardware or software failure, or perhaps a timeout value
that is too short for the specific operation. The status of the
ioctl operation is indeterminate.

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no
STREAMS head data structures were available. This is a
temporary condition; one may recover from it if other
processes release resources.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs
when users try to advertise, unadvertise, mount, or unmount
remote resources while the machine has not done the proper
startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call
from a package which has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to adver-
tise a resource which is not on the local machine, or try to
mount/unmount a device (or pathname) that is on a remote
machine.

67 ENOLINK Link has been severed

System Calls

This error is RES specific. It occurs when the link (virtual cir-
cuit) connecting to a remote machine is gone.

2-39

Error
Number

Symbolic
Name

Description

68

69

70

71

74

76

77

2-40

ESRMNT

ECOMM

EPROTO

EMULTTHOP

EDOTDOT

EBADMSG

Advertise error

This error is RFS specific. It occurs when users try to adver-
tise a resource which has been advertised already, or try to
stop the RFS while there are resources still advertised, or try
to force unmount a resource when it is still advertised.

Srmount error

This error is RFS specific. It occurs when an attempt is made
to stop RFS while resources are still mounted by remote
machines, or when a resource is readvertised with a client
list that does not include a remote machine that currently has
the resource mounted.

Communication error on send

This error is RFS specific. It occurs when the current process
is waiting for a message from a remote machine, and the vir-
tual circuit fails.

Protocol error
Some protocol error occurred. This error is device specific,
but is generally not related to a hardware failure.

Multihop attempted
This error is RFS specific. It occurs when users try to access
remote resources which are not directly accessible.

Error 76
This error is RFS specific. A way for the server to tell the
client that a process has transferred back from mount point.

Not a data message
During a read(), getmsg(), or ioct1() I_RECVFD system
call to a STREAMS device, something has come to the head of
the queue that can’t be processed. That something depends
on the system call:
read(): control information or a passed file descriptor.
getmsg: passed file descriptor.
ioct1: control or data information.

UNIX System Calls and Libraries

Error
Number

Symbolic
Name

Description

78

79

80

81

82

83

84

85

86

System Calls

ENAMETOOLONG

EQOVERFLOW

ENOTUNIQ

EBADFD

EREMCHG

ELIBACC

ELIBBAD

ELIBSCN

ELIBMAX

File name too long

The length of the path argument exceeds PATH_MAX, or the
length of a path component exceeds NAME_MAX while
_POSTIX_NO_TRUNC is in effect; [see 1imits(4)].

Error 79
Value too large to be stored in data type.

Name not unique on network
Given log name not unique.

File descriptor in bad state
Either a file descriptor refers to no open file or a read request
was made to a file that is open only for writing.

Remote address changed

Cannot access a needed shared library

Trying to exec an a. out that requires a shared library and
the shared library doesn’t exist or the user doesn’t have per-
mission to use it.

Accessing a corrupted shared library

Trying to exec an a . out that requires a shared library (to
be linked in) and exec could not load the shared library.
The shared library is probably corrupted.

.libsectionin a.out corrupted

Trying to exec an a . out that requires a shared library (to
be linked in) and there was erroneous data in the . 1ib sec-
tion of the a.out. The .11ib section tells exec what shared
libraries are needed. The a. out is probably corrupted.

Attempting to link in more shared libraries than system
limit

Trying to exec an a. out that requires more static shared
libraries than is allowed on the current configuration of the
system. See the Advanced System Administration guide.

2-41

Error Symbolic

Number Name Description

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle multiple characters as a single
character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path name
traversal exceeds MAXSYMLINKS

91 ERESTART Error 91
Interrupted system call should be restarted.

92 ESTRPIPE Error 92
Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users
Too many users.

95 ENOTSOCK Socket operation on non-socket
Self-explanatory.

96 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a tran-
sport endpoint. Destination address required.

97 EMSGSIZE Message too long
A message sent on a transport provider was larger than the
internal message buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics
of the socket type requested.

99 ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting
options for a protocol.

2-42 UNIX System Calls and Libraries

Error
Number

Symbolic
Name

Description

120

121

122

123

124

125

126

127

128

129

130

System Calls

EPROTONOSUPPORT

ESOCKTNOSUPPORT

EOPNOTSUPP

EPFNOSUPPORT

EAFNOSUPPORT

EADDRINUSE

EADDRNOTAVAIL

ENETDOWN

ENETUNREACH

ENETRESET

ECONNABORTED

Protocol not supported
The protocol has not been configured into the system or no
implementation for it exists.

Socket type not supported
The support for the socket type has not been configured into
the system or no implementation for it exists.

Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram
transport endpoint.

Protocol family not supported

The protocol family has not been configured into the system
or no implementation for it exists. Used for the Internet pro-
tocols.

Address family not supported by protocol family
An address incompatible with the requested protocol was
used.

Addpress already in use
User attempted to use an address already in use, and the
protocol does not allow this.

Cannot assign requested address
Results from an attempt to create a transport endpoint with
an address not on the current machine.

Network is down
Operation encountered a dead network.

Network is unreachable
Operation was attempted to an unreachable network.

Network dropped connection because of reset
The host you were connected to crashed and rebooted.

Software caused connection abort

A connection abort was caused internal to your host
machine.

2-43

Error
Number

Symbolic
Name

Description

131

132

133

134

143

144

145

146

147

2-44

ECONNRESET

ENOBUFS

EISCONN

ENOTCONN

ESHUTDOWN

ETOOMANYREFS

ETIMEDOUT

ECONNREFUSED

EHOSTDOWN

Connection reset by peer

A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote host due
to a timeout or a reboot.

No buffer space available

An operation on a transport endpoint or pipe was not per-
formed because the system lacked sufficient buffer space or
because a queue was full.

Transport endpoint is already connected

A connect request was made on an already connected tran-
sport endpoint; or, a sendto or sendmsg request on a con-
nected transport endpoint specified a destination when
already connected.

Transport endpoint is not connected

A request to send or receive data was disallowed because the
transport endpoint is not connected and (when sending a
datagram) no address was supplied.

Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport
endpoint had already been shut down.

Too many references: cannot splice

Connection timed out

A connect or send request failed because the connected party
did not properly respond after a period of time. (The timeout
period is dependent on the communication protocol.)

Connection refused

No connection could be made because the target machine
actively refused it. This usually results from trying to con-
nect to a service that is inactive on the remote host.

Host is down

A transport provider operation failed because the destina-
tion host was down.

UNIX System Calls and Libraries

Error Symbolic
Number Name Description

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an
unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that
already had an operation in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect) was attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

152 ENOLOAD Cannot load required module
An attempt made to load a module failed.

153 ERELOC Relocation error in loading module
Symbolic referencing error.

154 ENOMATCH No symbol is found matching the given spec

156 EBADVER Version number mis-matched
The version number associated with a module is not sup-
ported by the kernel.

157 ECONFIG Configured kernel resource exhausted

System Calls

2-45

3 File and Device Input/Output

Introduction 3-1
Input/Output System Calls 3-2
File Descriptors 3-3
Reading and Writing Files 3-4
Opening, Creating and Closing Files 3-6
Random Access — Iseek() 3-9
File and Record Locking 3-11
Terminology 3-11
File Protection 3-13
m Opening a File for Record Locking 3-13
m Setting a File Lock 3-14
m Setting and Removing Record Locks 3-16
m Getting Lock Information 3-21
m Deadlock Handling 3-23
Selecting Advisory or Mandatory Locking 3-23
m Caveat Emptor—Mandatory Locking 3-25

Record Locking and Future Releases of the UNIX System 3-25

Basic STREAMS Operations 3-26

Table of Contents i

Benefits of STREAMS 3-29
Standardized Service Interfaces 3-29
Manipulating Modules 3-30
m Protocol Portability 3-30
m Protocol Substitution 3-31
m Protocol Migration 3-31
m Module Reusability 3-32
STREAMS Mechanism 3-34
STREAMS System Calls 3-34
m getmsg() and putmsg() 3-35
= poll() 3-35
Opening a STREAMS Device File 3-35
Creating a STREAMS-based Pipe 3-36
Adding and Removing Modules 3-36
Closing the Stream 3-37
Stream Construction Example 3-37
m Inserting Modules 3-38
m Module and Driver Control 3-40

Table of Contents

Introduction

This chapter discusses the UNIX System file and record locking facility. Manda-
tory and advisory file and record locking are both available on current releases of
the UNIX System. The intent of this capability is to provide a synchronization
mechanism for programs accessing the same stores of data simultaneously. Such
processing is characteristic of many multiuser applications, and the need for a
standard method of dealing with the problem has been recognized by standards
advocates like /usr/group, an organization of UNIX System users from
businesses and campuses across the country.

Adpvisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

Also included in this chapter is a description of how file and record locking capa-
bilities can be used. Examples are given for the correct use of record locking.
Misconceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism, not
a security mechanism.

The remainder of this chapter describes the STREAMS mechanism as it relates to
input/output operations.

Introduction 3-1

Input/Output System Calls

The lowest level of I/O in UNIX System V provides no buffering or other such ser-
vices, but it offers the most control over what happens. System-calls that
represent direct entries into the UNIX System V kernel control all user I/O. UNIX
System V keeps the system-calls that do I/O simple, uniform and regular to elim-
inate differences between files, devices and styles of access. The same read and
write system-calls apply to ordinary disk-files and I/O devices such as terminals,
tape-drives and line-printers. They do not distinguish between ““random’” and
“sequential” I/O, nor do they impose any logical record size on files. Thus, a sin-
gle, uniform interface handles all communication between programs and peri-
pheral devices, and programmers can defer specifying devices from program-
development until program-execution time.

All1/0 is done by reading or writing files, because all peripheral I/O devices,
even a user’s terminal, are files in the file-system. Each supported device has an
entry in the file-system hierarchy, so that device-names have the same structure as
file-names, and the same protection mechanisms work on both devices and files.

A file is an ordered set of bytes of data on a I/O-device. The size of the file on
input is determined by an end-of-file condition dependent on device-specific
characteristics. The size of a regular-file is determined by the position and
number of bytes written on it, no predetermination of the size of a file is necessary
or possible.

Besides the traditionally available devices, names exist for disk devices regarded
as physical units outside the file-system, and for absolutely addressed memory.
The most important device in practice is the user’s terminal. Treating a
communication-device in the same way as any file by using the same I/O calls
make it easy to redirect the input and output of commands from the terminal to
another file; although, some differences are inevitable. For example, UNIX System
V ordinarily treats terminal input in units of lines because character-erase and
line-delete processing cannot be completed until a full line is typed. Programs try-
ing to read some large number of bytes from a terminal must wait until a full line
is typed, and then may be notified that some smaller number of bytes were actu-
ally read. All programs must prepare for this eventuality in any case, because a
read from any disk-file returns fewer bytes than requested when it reaches the end
of the file. Ordinarily, reads from a terminal are fully compatible with reads from
a disk-file.

3-2 File and Device Input/Output

File Descriptors

UNIX System V File and Device I/O functions denote a file by a small positive
integer called a “’file-descriptor’”” and declared as follows:

int fildes

where fildes represents the file-descriptor, and the file-descriptor denotes an open
file from which data is read or onto which data is written. UNIX System V main-
tains all information about an open file; the user program refers to the file only by
the file-descriptor. Any I/O on the file uses the file-descriptor instead of the file-
name to denote the file.

Multiple file-descriptors may denote the same file, and each file-descriptor has
associated with it information used to do I/O on the file:

m a file-offset that shows which byte in the file to read or write next;
m file-status and access-modes (e.g., read, write, read/write) [see open(2)];

m the ‘close-on-exec’ flag [see fcnt1(2)].

Doing I/0 on the user’s terminal occurs commonly enough that special arrange-
ments make this convenient. When the command interpreter (the “’shell”) runs a
program, it opens three files, called the standard input, the standard output and the
standard error output, with file-descriptors 0, 1 and 2. All of these are normally
connected to the terminal; thus, a program reading file-descriptor 0 and writing
file-descriptors 1 and 2, can do terminal I/O without opening the files. If I/O is
redirected to and from files with < and >, as in:

prog <infile >outfile

the shell changes the default assignments for file-descriptors 0 and 1 from the ter-
minal to the named files. Similar conventions hold for I/O on a pipe. Normally
file-descriptor 2 remains attached to the terminal, so error messages can go there.
In all cases, the shell changes the file assignments, the program does not. The pro-
gram can ignore where its output goes, as long as it uses file-descriptor 0 for input
and 1 and 2 for output.

Input/Output System Calls 3-3

Reading and Writing Files

The functions read() and write() do I/O on files. For both, the first argument is a
file-descriptor, the second argument is a buffer in the user program where the
data comes from or goes to and the third argument is the number of bytes of data
to transfer. Each call returns a count of the number of bytes actually transferred.
These calls look like:

= read (fildes, buffer, count);

n
n = write(fildes, buffer, count);

Up to count bytes are transferred between the file denoted by fildes and the byte
array pointed to by buffer. The returned value 7 is the number of bytes actually
transferred.

For writing, the returned value is the number of bytes actually written; it is gen-
erally an error if this fails to equal the number of bytes requested. In the write()
case, 11 is the same as count except under exceptional conditions, such as I/O errors
or end of physical medium on special files; in a read(), however, n may without
error be less than count.

For reading, the number of bytes returned may be less than the number requested,
because fewer than count bytes remained to be read. If the file-offset is so near the
end of the file that reading count characters would cause reading beyond the end,
only sufficient bytes are transferred to reach the end of the file, also, typewriter-
like terminals never return more than one line of input. (When the file is a termi-
nal, read() normally reads only up to the next new-line, which is generally less
than what was requested.)

When a read() call returns with # equal to zero, the end of the file has been
reached. For disk-files this occurs when the file-offset equals the current size of
the file. Itis possible to generate an end-of-file from a terminal by use of an escape
sequence that depends on the device used. The function read() returns 0 to sig-
nify end-of-file, and returns -1 to signify an error.

The number of bytes to be read or written is quite arbitrary. The two most com-
mon values are 1, which means one character at a time (““‘unbuffered”’), and 512,
which corresponds to a physical block size on many peripheral devices. This
latter size is most efficient, but even character at a time I/O is not overly expen-
sive. Bytes written affect only those parts of a file implied by the position of the
file-offset and the count; no other part of the file is changed. If the last byte lies
beyond the end of the file, the file grows as needed.

34 File and Device Input/Output

A simple program using the read() and write() functions to copy its input to its
output can copy anything, since the input and output can be redirected to any file
or device.

7 N

#define BUFSIZE 512

main() /* copy input to output */
{

char buf [BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit (0);

. J
If the file size is not a multiple of BUFSIZE, some read() will return a smaller

number of bytes to be written by write(): the next call to read() after that will
return zero indicating end-of-file.

To see how read() and write() can be used to construct higher level functions like
getchar() and putchar(), here is an example of getchar() which does unbuffered
input:

f#idefine CMASK 0377 /* for making char’s > 0 */

getchar() /* unbuffered single character input */
{
char c;

return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);

The variable ¢ must be declared char, because read() accepts a character pointer.
The character returned must be masked with 0377 to ensure that it is positive; oth-
erwise, sign extension may make it negative.

Input/Output System Calls 3-5

The second version of getchar() does input in big chunks, and hands out the
characters one at a time.

; D

#define CMASK 0377 /* for making char’s > 0 */
#define BUFSIZE 512

getchar() /* buffered version */
{
static char buf [BUFSIZE] ;
static char *bufp = buf;
static int n=0;

if (n == 0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;
}
return((--n >= 0) ? *bufp++ & CMASK : EOF);

N\ J

Opening, Creating and Closing Files

Other than the default standard input, output and error files, you must explicitly
open files in order to read or write them. The two functions that do this are:
open() and creat() [see open(2) and creat(2) in the Operating System API Refer-
ence]. To read or write a file assumed to exist already, it must be opened by the
following call:

fildes = open(name, oflag) ; A

The argument name is a character string that represents a UNIX System V file-
system path-name. The oflag argument indicates whether the file is to be read,
written, or “updated”, that is, read and written simultaneously. The returned
value fildes is a file-descriptor used to denote the file in subsequent calls that read,
write or otherwise manipulate the file.

3-6 File and Device Input/Output

The function open() resembles the function fopen() in the Standard I/O Library,
except that instead of returning a pointer to FILE, open() returns a file-descriptor
which is just an int [see fopen(3S) and stdio(3S) in the Operating System API
Reference]. Moreover, the values for the access mode argument oflag are different
(the flags are found in /usr/include/fentl.h):

O_RDONLY for read access.
O_WRONLY for write access.

O_RDWR for read and write access.

The function open() returns -1 if any error occurs; otherwise it returns a valid
open file-descriptor.

Trying to open() a file that does not exist causes an error; hence, creat() is used to
create new files, or to re-write old ones. The creat() system-call creates the given
file if it does not exist, or truncates it to zero length if it does exist; creat() also
opens the new file for writing and, like open(), returns a file-descriptor. Calling
creat() as follows:

fildes = creat (name, pmode);

returns a file-descriptor if it created the file identified by the string name, and -1 if
it did not. Trying to creat() a file that already exists does not cause an error, but
if the file already exists, creat() truncates it to zero length.

If the file is brand new, creat() creates it with the protection mode specified by
the pmode argument. The UNIX System V file-system associates nine bits of pro-
tection information with a file, controlling read, write and execute permission for
the owner of the file, for the owner’s group, and for any other users. Thus, a three-
digit octal number specifies the permissions most conveniently. For example,
0755 specifies read, write and execute permission for the owner, and read and execute
permission for the group and all other users.

Input/Output System Calls 3-7

A simplified version of the UNIX System V utility cp (a program which copies one

file to another) illustrates this:

Figure 3-1: simplified version of cp

7

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW owner, R group & others */

main(arge, argv) /* cp: copy fdl to f£d2 */
int argc;

char *argv[1;
int £d1, f£d2, n;
char buf [BUFSIZE];

if (argc != 3)
error("Usage: cp from to", NULL);

if ((£41 = open(argv[l], 0)) == -1)
error("cp: can’t open %s", argvill);
if ((£d2 = creat(argv[2], PMODE)) == ~-1)

error("cp: can’t create %s", argv[2]);

while ((n = read(fdl, buf, BUFSIZE)) > 0)
if (write(£d2, buf, n) != n)
error("cp: write error", NULL);

exit(0);
}
error(sl, s2) /* print error message and die */
char *sl, *s2;
{
printf(sl, s2);
printf ("\n");
exit(1);
}

\

5

J

The main simplification is that this version copies only one file, and does not per-

mit the second argument to be a directory.

File and Device Input/Output

As stated earlier, there is a limit, OPEN_MAX, on the number of files which a process
may have open simultaneously. Accordingly, any program which intends to pro-
cess many files must be prepared to re-use file-descriptors. The function close()
breaks the connection between a file-descriptor and an open file, and frees the
file-descriptor for use with some other file. Termination of a program via exit()
or return from the main program closes all open files.

Random Access — Iseek()

Normally, file I/O is sequential: each read() or write() proceeds from the point
in the file right after the previous one. This means that if a particular byte in the
file was the last byte written (or read), the next I/O call implicitly refers to the
immediately following byte. For each open file, UNIX System V maintains a file-
offset that indicates the next byte to be read or written. If n bytes are read or writ-
ten, the file-offset advances by n bytes. When necessary, however, a file can be
read or written in any arbitrary order using 1seek() to move around in a file
without actually reading or writing.

To do random (direct-access) I/O it is only necessary to move the file-offset to the
appropriate location in the file with a call to 1seek(). Calling 1seek() as follows:

1seek(fildes, offset, whence) ;

or as follows:

location = 1seek(fildes, offset, whence);

forces the current position in the file denoted by file-descriptor fildes to move to
position offset as specified by whence. Subsequent reading or writing begins at the
new position. The file-offset associated with fildes is moved to a position offset
bytes from the beginning of the file, from the current position of the file-offset or
from the end of the file, depending on whence; offset may be negative. For some
devices (e.g., paper tape and terminals) 1seek() calls are ignored. The value of
location equals the actual offset from the beginning of the file to which the file-
offset was moved. The argument offset is of type of£_t defined by the header file
<types.h> as a long; fildes and whence are int’s.

Input/Output System Calls 3-9

The argument whence can be SEEK_SET, SEEK_CUR or SEEK_END to specify that
offset is to be measured from the beginning, from the current position, or from the
end of the file respectively. For example, to append a file, seek to the end before
writing:

lseek(fildes, OL, SEEK_END);

To get back to the beginning (“rewind”’),
lseek (fildes, OL, SEEK_SET);

Notice the 0L argument; it could also be written as (long) 0.

With 1seek(), you can treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of
bytes from any arbitrary point in a file:

7 N

get(fd, p, buf, n) /* read n bytes from position p */
int £4, n;
long p;
char *buf;

1seek(fd, p, SEEK SET); /* move to p */
return(read(fd, buf, n));

o | ¥

3-10 File and Device Input/Output

File and Record Locking

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a syn-
chronization mechanism for programs accessing the same stores of data simul-
taneously. Such processing is characteristic of many multiuser applications, and
the need for a standard method of dealing with the problem has been recognized
by standards advocates like /usr/group, an organization of UNIX system users
from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard 1/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Misconcep-
tions about the amount of protection that record locking affords are dispelled.
Record locking should be viewed as a synchronization mechanism, not a security
mechanism.

The manual pages for the fent1() system call, the lock£() library function, and
fentl data structures and commands are referred to throughout this section [see
fent1(5)]. You should read them before continuing.

Terminology

Before discussing how to use record locking, let us first define a few terms.

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the programs
that use the files.

Cooperating Processes
Processes that work together in some well-defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care-
fully set to restrict noncooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

File and Record Locking 3-11

Read (Share) Locks

These are used to gain limited access to sections of files. When a read lock
is put on a record, other processes may also read lock that record, in
whole or in part. No other process, however, may have or obtain a write
lock on an overlapping section of the file. If a process holds a read lock it
may assume that no other process will be writing or updating that record
at the same time. This access method also lets many processes read the
given record. This might be necessary when searching a file, without the
contention involved if a write or exclusive lock were used.

Write (Exclusive) Locks

These are used to gain complete control over sections of files. When a
write lock is put on a record, no other process may read or write lock that
record, in whole or in part. If a process holds a write lock it may assume
that no other process will be reading or writing that record at the same
time.

Advisory Locking

A form of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creat(), open(), read(),
or write(). The control over records is accomplished by requiring an
appropriate record lock request before I/O operations. If appropriate
requests are always made by all processes accessing the file, then the
accessibility of the file will be controlled by the interaction of these
requests. Advisory locking depends on the individual processes to
enforce the record locking protocol; it does not require an accessibility
check at the time of each I/O request.

Mandatory Locking

3-12

A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat(), open(), read() and
write() system calls. If a record is locked, then access of that record by
any other process is restricted according to the type of lock on the record.
The control over records should still be performed explicitly by requesting
an appropriate record lock before I/O operations, but an additional check
is made by the system before each I/O operation to ensure the record
locking protocol is being honored. Mandatory locking offers an extra syn-
chronization check, but at the cost of some additional system overhead.

File and Device Input/Output

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by a process with the appropriate privilege. The permissions
of the directory in which the file resides can also affect the ultimate disposition of
a file. Note that if the directory permissions allow anyone to write in it, then files
within the directory may be removed, even if those files do not have read, write or
execute permission for that user. Any information that is worth protecting, is
worth protecting properly. If your application warrants the use of record locking,
make sure that the permissions on your files and directories are set properly. A
record lock, even a mandatory record lock, will only protect the portions of the
files that are locked. Other parts of these files might be corrupted if proper pre-
cautions are not taken.

Only a known set of programs and/or administrators should be able to read or
write a data base. This can be done easily by setting the set-group-ID bit of the
data base accessing programs [see chmod(1)]. The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of such
file protection, although record locking is not used, is the mail command. In that
command only the particular user and the mail command can read and write in
the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid open
file descriptor. If read locks are to be done, then the file must be opened with at
least read accessibility, and with write accessibility for write locks.

Mapped files cannot be locked: if a file has been mapped, any attempt to use
NoTe | file or record locking on the file fails. See mmap(2).

For our example we will open our file for both read and write access:

File and Record Locking 3-13

s 3

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd; /* file descriptor */
char *filename;

main(argc, argv)
int argc;

char *argv[];

{

extern void exit(), perror();

/* get data base file name from command line and open the
* file for read and write access.
*/
if (argc < 2) {
(void) fprintf(stderr, "usage: %s filename\n", argv[0]);
exit(2);
}
filename = argv[1];
fd = open(filename, O_RDWR);
if (£d < 0)
perror (filename) ;
exit(2);
}

L y,

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods depend
on how the lock interacts with the rest of the program. There are also questions of
performance as well as portability. Two methods will be given here, one using the
fentl() system call, the other using the /usr/group standards compatible
lock£() library function call.

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero (0) until the end of the maximum file size. This
point extends beyond any real end of the file so that no lock can be placed on this
file beyond this point. To do this the value of the size of the lock is set to zero.
The code using the fent1() system call is as follows:

3-14 File and Device Input/Output

7

#include <fcntl.h>
#define MAX TRY 10
int try;

struct flock 1lck;

)

try = 0;

/* set up the record locking structure, the address of which
* ig passed to the fcntl system call.

*/

1ck.l type = F_WRLCK; /* setting a write lock */

1ck.l_whence = 0; /* offset 1 _start from beginning of file */
1lck.l_start = OL;

1lck.1l_len = 0OL; /* until the end of the file address space */

/* Attempt locking MAX TRY times before giving up.
*/
while (fcntl(fd, F_SETLK, &lck) < 0) {
if (errno == EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.
*/
if (++try < MAX TRY) {
(void) sleep(2);
continue;
}
(void) fprintf(stderr,"File busy try again later!\n");
return;
}
perror ("fcntl");
exit(2);

o J

This portion of code tries to lock a file. This is attempted several times until one of
the following things happens:

m the file is locked

H an error occurs

m it gives up trying because MAX_TRY has been exceeded

To perform the same task using the Lock£() function, the code is as follows:

File and Record Locking 3-15

- N

#include <unistd.h>
#define MAX TRY 10
int try;

try = 0;

/* make sure the file pointer

* is at the beginning of the file.
*/

1lseek(fd, OL, 0);

/* Attempt locking MAX TRY times before giving up.
*/
while (lockf(fd, F_TLOCK, OL) < 0) {
if (errno == EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.
*/
if (++try < MAX TRY) {
sleep(2);
continue;
}
(void) fprintf (stderr,"File busy try again later!\n");
return;
}
perror ("lockf");
exit(2);

It should be noted that the lock£() example appears to be simpler, but the fcnt1()
example exhibits additional flexibility. Using the £cnt1() method, it is possible to
set the type and start of the lock request simply by setting a few structure vari-

ables. lockf() merely sets write (exclusive) locks; an additional system call,
1seek(), is required to specify the start of the lock.

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting and
real problem. There are two records (these records may be in the same or different
file) that must be updated simultaneously so that other processes get a consistent
view of this information. (This type of problem comes up, for example, when
updating the interrecord pointers in a doubly linked list.) To do this you must
decide the following questions:

3-16 File and Device Input/Output

m What do you want to lock?

m For multiple locks, in what order do you want to lock and unlock the
records?

m What do you do if you succeed in getting all the required locks?
® What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain all
the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

m wait a certain amount of time, and try again
m abort the procedure and warn the user
m let the process sleep until signaled that the lock has been freed

B some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list. For
the example, we will assume that the record after which the new record is to be
inserted has a read lock on it already. The lock on this record must be changed or
promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no other
process is holding a read lock in the same section of the file. If there are processes
with pending write locks that are sleeping on the same section of the file, the lock
promotion succeeds and the other (sleeping) locks wait. Promoting (or demoting)
a write lock to a read lock carries no restrictions. In either case, the lock is merely
reset with the new lock type. Because the /usr/group lockf function does not
have read locks, lock promotion is not applicable to that call. An example of
record locking with lock promotion follows:

File and Record Locking 3-17

7

3-18

struct record {
. /* data portion of record */
long prev; /* index to previous record in the list */
long next; /* index to next record in the list */

/* Lock promotion using fcntl(2)

* When this routine is entered it is assumed that there are read
* locks on "here" and "next".

* If write locks on "here" and "next" are obtained:
* Set a write lock on "this".

* Return index to "this" record.

* If any write lock is not obtained:

* Restore read locks on "here" and "next".

* Remove all other locks.

* Return a -1.

*/
long

set3lock (this, here, next)
long this, here, next;
{

struct flock lck;

1lck.1l_type = F_WRLCK; /* setting a write lock */

1lck.l_whence = 0; /* offset 1_start from beginning of file */
lck.1l_start = here;

1ck.1l_len = sizeof (struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {
return (-1);
}
/* lock "this" with write lock */
1ck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0)
/* Lock on "this" failed;
* demote lock on "here" to read lock.
*/
1ck.1l_type = F_RDLCK;
lck.1l_start = here;
(void) fecntl(fd, F_SETLRW, &lck);
return (-1);

-~

}
/* promote lock on "next" to write lock */
1lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
/* Lock on "next" failed;
* demote lock on "here" to read lock,
*/

N

)

(continued on next page)

File and Device Input/Output

a N

1ck.l_type = F_RDLCK;

1lck.1l_start = here;
(void) fentl(fd, F_SETLK, &lck);
/* and remove lock on "this".

*/
lck.1l _type = F_UNILCK;
lck.l_start = this;

(void) fentl(fd, F_SETLK, &lck);
return (-1);/* cannot set lock, try again or quit */

}

return (this);
}

N)

The locks on these three records were all set to wait (sleep) if another process was
blocking them from being set. This was done with the F_SETLKW command. If the
F_SETLK command was used instead, the fcnt1() system calls would fail if
blocked. The program would then have to be changed to handle the blocked con-
dition in each of the error return sections.

Let us now look at a similar example using the lock£() function. Since there are
no read locks, all (write) locks will be referenced generically as locks.

s 3

/* Lock promotion using lockf(3)

* When this routine is entered it is assumed that there are
* no locks on "here" and "next".

* If locks are obtained:

* Set a lock on "this".

* Return index to "this" record.
* If any lock is not obtained:

* Remove all other locks.

* Return a -1.

*/

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

{

/* lock "here" */
(void) lseek(fd, here, 0);

N)

(continued on next page)

File and Record Locking 3-19

if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
return (-1);

}

/* lock "this" */

(void) lseek(fd, this, 0);

if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
/* Lock on "this" failed.
* Clear lock on "here".
*/
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof (struct record));
return (-1);

}

/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof (struct record)) < 0) {

/* Lock on "next" failed.

* Clear lock on "here",

*/ B

(void) lseek(fd, here, 0);

(void) lockf(fd, F_ULOCK, sizeof (struct record));

/* and remove lock on "this".

*/

(void) l1seek(fd, this, 0);

(void) lockf(fd, F_ULOCK, sizeof (struct record));
return (-1);/* cannot set lock, try again or quit */

}

return (this);

}

A J

Locks are removed in the same manner as they are set, only the lock type is dif-
ferent (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another process
and will only affect locks that were placed by this process. The unlock only affects
the section of the file defined in the previous example by 1ck. Itis possible to
unlock or change the type of lock on a subsection of a previously set lock. This
may cause an additional lock (two locks for one system call) to be used by the
operating system. This occurs if the subsection is from the middle of the previ-
ously set lock.

3-20 File and Device Input/Output

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is set
up as in the previous examples and the F_GETLK command is used in the fent1()
call. If the lock passed to fent1() would be blocked, the first blocking lock is
returned to the process through the structure passed to fent1(). That s, the lock
data passed to £cnt1() is overwritten by blocking lock information. This informa-
tion includes two pieces of data that have not been discussed yet, 1_pid and
1_sysid, that are only used by F_GETLK. (For systems that do not support a dis-
tributed architecture the value in 1_sysid should be ignored.) These fields
uniquely identify the process holding the lock.

If a lock passed to fent1() using the F_GETLK command would not be blocked by
another process’s lock, then the 1_type field is changed to F_UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to print
all the segments locked by other processes. Note that if there are several read
locks over the same segment only one of these will be found.

/ N

struct flock lck;

/* Find and print "write lock" blocked segments of this file. */
(void) printf("sysid pid type start length\n");
1lck.l whence = 0;
1ck.l start = OL;
lck.1l len = OL;
do {
1lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {
(void) printf("%5d %5d %c %8d %8d\n",
1ck.1l_sysid,
1ck.1l _pid,
(lck.l_type == F _WRLCK) ? ‘W’ : 'R’,
1ck.1l_start,
1lck.1l len);
/* if this lock goes to the end of the address
* gpace, no need to look further, so break out.
*/
if (1ck.1l_len == 0)
break;
/* otherwise, look for new lock after the one
* just found.
*/
lck.1l _start += 1lck.l len;
}
} while (1ck.l_type != F_UNLCK);

G

.

File and Record Locking 3-21

fentl() with the F_GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf() function with the F_TEST command can also be used to test if there is

a process blocking a lock. This function does not, however, return the information
about where the lock actually is and which process owns the lock. A routine using
lock£() to test for a lock on a file follows:

7 N

/* find a blocked record. */

/* seek to beginning of file */

(void) lseek(fd, 0, OL);

/* set the size of the test region to zero (0)

* to test until the end of the file address space.

*/

if (lockf(fd, F_TEST, OL) < 0) {

switch (errmo) {

case EACCES:
case EAGAIN:
(void) printf("file is locked by another process\n");
break;
case EBADF:
/* bad argument passed to lockf */
perror ("lockf");
break;
default:
(void) printf("lockf: unknown error <%d>\n", errno):
break;
}

-)

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for each
file. If the parent were to seek to a point in the file, the child’s file pointer would
also be at that location. This feature has important implications when using
record locking. The current value of the file pointer is used as the reference for the
offset of the beginning of the lock, as described by 1_start, when using a
1_whence value of 1. If both the parent and child process set locks on the same
file, there is a possibility that a lock will be set using a file pointer that was reset by
the other process. This problem appears in the lockf() function call as well and is
a result of the /usr/group requirements for record locking. If forking is used in a
record locking program, the child process should close and reopen the file if either
locking method is used. This will result in the creation of a new and separate file
pointer that can be manipulated without this problem occurring. Another solu-
tion is to use the fentl() system call with a 1_whence value of 0 or 2. This makes
the locking function atomic, so that even processes sharing file pointers can be
locked without difficulty.

3-22 File and Device Input/Output

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record lock-
ing facility. This deadlock handling provides the same level of protection granted
by the /usr/group standard lock£() call. This deadlock detection is only valid
for processes that are locking files or records on a single system. Deadlocks can
only potentially occur when the system is about to put a record locking system call
to sleep. A search is made for constraint loops of processes that would cause the
system call to sleep indefinitely. If such a situation is found, the locking system
call will fail and set errno to the deadlock error number. If a process wishes to
avoid the use of the systems deadlock detection it should set its locks using
F_GETLK instead of F_GETLKW.

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be made
clear in a subsequent section. Whether or not locks are enforced by the I/O sys-
tem calls is determined at the time the calls are made by the permissions on the
file[see chmod(2)]. For locks to be under mandatory enforcement, the file must be
a regular file with the set-group-ID bit on and the group execute permission off. If
either condition fails, all record locks are advisory. Mandatory enforcement can
be assured by the following code:

File and Record Locking 3-23

7

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

if (stat(filename, &buf) < 0) {
perror ("program") ;
exit (2);
}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);
/* set ’set group id bit’ in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {
perror ("program") ;
exit(2);

o

N

J

Files that are to be record locked should never have any type of execute permis-
sion set on them. This is because the operating system does not obey the record

locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory

locking. This can be done with the command:

chmod +1 file

The 1s(1) command shows this setting when you ask for the long listing format:

1s -1 file

causes the following to be printed:

-rw---1--- 1 user group size

3-24

mod_time file

File and Device Input/Output

Caveat Emptor—Mandatory Locking

m Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

m If multiple reads or writes are necessary for an atomic transaction, the pro-
cess should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this way.

m As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

m Advisory locking is more efficient because a record lock check does not have
to be performed for every I/O request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system environ-
ment. In such an environment the system on which the locking process resides
may be remote from the system on which the file and record locks reside. In this
way multiple processes on different systems may put locks upon a single file that
resides on one of these or yet another system. The record locks for a file reside on
the system that maintains the file. It is also important to note that deadlock
detection/avoidance is only determined by the record locks being held by and for
a single system. Therefore, it is necessary that a process only hold record locks on
a single system at any given time for the deadlock mechanism to be effective. If a
process needs to maintain locks over several systems, it is suggested that the pro-
cess avoid the sleep-when-blocked features of fent1() or lock£() and that the pro-
cess maintain its own deadlock detection. If the process uses the sleep-when-
blocked feature, then a timeout mechanism should be provided by the process so
that it does not hang waiting for a lock to be cleared.

File and Record Locking 3-25

Basic STREAMS Operations

This section describes the basic set of operations for manipulating STREAMS
entities.

A STREAMS driver is similar to a traditional character I/O driver in that it has
one or more nodes associated with it in the file system, and it is accessed using the
open() system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver causes
separate Streams to be connected between a user process and the driver. The file
descriptor returned by the open() call is used for further access to the Stream. If
the same minor device is opened more than once, only one Stream is created; the
first open() call creates the Stream, and subsequent open() calls return a file
descriptor that references that Stream. Each process that opens the same minor
device shares the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using the
write() system call and receive data from the device using the read() system call.
Access to STREAMS drivers using read() and write() is compatible with the trad-
itional character I/O mechanism.

The close() system call closes a device and dismantles the associated Stream
when the last open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the
user program interacts with a communications device that provides point-to-point
data transfer between two computers. Data written to the device transmitted over
the communications line, and data arriving on the line can be retrieved by reading
from the device.

3-26 File and Device Input/Output

7

#include <fentl.h>

main()

{
char buf[1024];
int fd, count;

if ((fd = open("/dev/comm/01", O_RDWR)) < 0) {
perror("open failed");
exit(1l);

}

while ((count = read(fd, buf, 1024)) > 0) {
if (write(£fd, buf, count) != count) {
perror ("write failed");
break;
}
}
exit(0);
}

o

)

In the example, /dev/comm/01 identifies a minor device of the communications

device driver. When this file is opened, the system recognizes the device as a

STREAMS device and connects a Stream to the driver. Figure 3-2 shows the state

of the Stream following the call to open().

Figure 3-2: Stream to Communication Driver

User
Process

______________________ User Space
Stream Kernel Space
Head
Communications
Driver

Basic STREAMS Operations

3-27

This example illustrates a user reading data from the communications device and
then writing the input back out to the same device. In short, this program echoes
all input back over the communications line. The example assumes that a user
sends data from the other side of the communications line. The program reads up
to 1024 bytes at a time, and then writes the number of bytes just read.

The read() call returns the available data, which may contain fewer than 1024
bytes. If no data is currently available at the Stream head, the read() call blocks
until data arrive.

Similarly, the write() call attempts to send count bytes to /dev/comm/01. How-
ever, STREAMS implements a flow control mechanism that prevents a user from
exhausting system resources by flooding a device driver with data.

Flow control controls the rate of message transfer among the modules, drivers,
Stream head, and processes. Flow control is local to each Stream and advisory
(voluntary). It limits the number of characters that can be queued for processing
at any queue in a Stream, and limits buffers and related processing at any queue
and in any one Stream, but does not consider buffer pool levels or buffer usage in
other Streams. Flow control is not applied to high-priority messages.

If the Stream exerts flow control on the user, the write() call blocks until flow con-
trol is relieved. The call does not return until it has sent count bytes to the device.
exit(), which is called to terminate the user process, also closes all open files, and
thereby dismantling the Stream in this example.

3-28 File and Device Input/Output

Benefits of STREAMS

STREAMS provides the following benefits:

m A flexible, portable, and reusable set of tools for development of UNIX sys-
tem communication services.

m Easy creation of modules that offer standard data communications services
and the ability to manipulate those modules on a Stream.

m From user level, modules can be dynamically selected and interconnected;
kernel programming, assembly, and link editing are not required to create
the interconnection.

STREAMS also greatly simplifies the user interface for languages that have com-
plex input and output requirements.

Standardized Service Interfaces

STREAMS simplifies the creation of modules that present a service interface to
any neighboring application program, module, or device driver. A service inter-
face is defined at the boundary between two neighbors. In STREAMS, a service
interface is a specified set of messages and the rules that allow passage of these
messages across the boundary. A module that implements a service interface
receives a message from a neighbor and responds with an appropriate action (for
example, sends back a request to retransmit) based on the specific message
received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However,
rational sequences are generally constructed by connecting modules with compati-
ble protocol service interfaces. For example, a module that implements an X.25
protocol layer, as shown in Figure 3-2, presents a protocol service interface at its
input and output sides. In this case, other modules should only be connected to
the input and output side if they have the compatible X.25 service interface.

Benefits of STREAMS 3-29

Manipulating Modules

STREAMS provides the capabilities to manipulate modules from the user level, to
interchange modules with common service interfaces, and to change the service
interface to a STREAMS user process. These capabilities yield further benefits
when implementing networking services and protocols, including:

m User level programs can be independent of underlying protocols and physi-
cal communication media.

m Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

m Higher level services can be created by selecting and connecting lower level
services and protocols.

The following examples show the benefits of STREAMS capabilities for creating
service interfaces and manipulating modules. These examples are only illustra-
tions and do not necessarily reflect real situations.

Protocol Portability

Figure 3-3 shows how the same X.25 protocol module can be used with different
drivers on different machines by implementing compatible service interfaces. The
X.25 protocol module interfaces are Connection Oriented Network Service
(CONS) and Link Access Protocol - Balanced (LAPB).

3-30 File and Device Input/Output

Figure 3-3: X.25 Multiplexing Stream

Machine A Machine B
B CONS
"""""""" INTERFACE |~
X.25 SAME X.25
Protocol Layer Protocol Layer
Module MODULE Module
LAPB
“““““““““ INTERFACE |
LAPB LAPB
Driver DIFFERENT Driver
Machine A DRIVER Machine B

Protocol Substitution

Alternate protocol modules (and device drivers) can be interchanged on the same
machine if they are implemented to an equivalent service interface.

Protocol Migration

Figure 3-4 illustrates how STREAMS can move functions between kernel software
and front-end firmware. A common downstream service interface allows the tran-
sport protocol module to be independent of the number or type of modules below.
The same transport module connects without change to either an X.25 module or
X.25 driver that has the same service interface.

By shifting functions between software and firmware, developers can produce
cost effective, functionally equivalent systems over a wide range of configurations.
They can rapidly incorporate technological advances. The same transport proto-
col module can be used on a lower capacity machine, where economics may pre-
clude the use of front-end hardware, and also on a larger scale system where a
front-end is economically justified.

Benefits of STREAMS 3-31

Figure 3-4: Protocol Migration

Class 1 Class 1
Transport SAME Transport
Protocol MODULES Protocol
CONS
N Interface
X.25
Packet Layer
Protocol
X.25
LAPB KERNEL Packet Layer
-— - Driver [----—-~-—-—-—-—— . -—-
HARDWARE Driver

Module Reusability

Figure 3-5 shows the same canonical module (for example, one that provides
delete and kill processing on character strings) reused in two different Streams.
This module is typically implemented as a filter, with no downstream service
interface. In both cases, a tty interface is presented to the Stream’s user process
because the module is nearest to the Stream head.

3-32 File and Device Input/Output

Figure 3-5: Module Reusability

User
Process

Canonical
Module

Terminal
Emulator
Module

Class 1
Transport
Protocol

X.25

Protocol

Packet Layer

LAPB
Driver

SAME
INTERFACE

SAME
MODULE

User
Process

Canonical
Module

Raw

Driver

Benefits of STREAMS

3-33

STREAMS Mechanism

This chapter shows how to construct, use, and dismantle a Stream using
STREAMS-related systems calls. General and STREAMS-specific system calls pro-
vide the user level facilities required to implement application programs. This
system call interface is upwardly compatible with the traditional character I/O
facilities. The open() system call recognizes a STREAMS file and creates a Stream
to the specified driver. A user process can receive and senid data on STREAMS
files using read() and write() in the same way as with traditional character files.
The ioctl() system call enables users to perform functions specific to a particular
device. STREAMS ioctl() commands [see streamio(7)] support a variety of
functions for accessing and controlling Streams. The last close() in a Stream dis-
mantles a Stream.

In addition to the traditional ioct1() commands and system calls, there are other
system calls used by STREAMS. The poll() system call enables a user to poll mul-
tiple Streams for various events. The putmsg() and getmsg() system calls enable
users to send and receive STREAMS messages, and are suitable for interacting
with STREAMS modules and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of
modules and drivers. The Stream head handles most system calls so that the
related processing does not have to be incorporated in a module or driver.

STREAMS System Calls

The STREAMS-related system calls are as follows:

open() Open a Stream

close() Close a Stream

read() Read data from a Stream

write() Write data to a Stream

ioctl() Control a Stream

getmsg() Receive a message at the Stream head
putmsg() Send a message downstream

3-34 File and Device Input/Output

poll() Notify the application program when selected events occur
on a Stream

pipe() Create a channel that provides a communication path
between multiple processes

A STREAMS device responds to the standard character I/O system calls, such as
read() and write(), by turning the request into a message. This feature ensures
that STREAMS devices may be accessed from the user level in the same manner as
non-STREAMS character devices. However, additional system calls provide other
capabilities.

getmsg() and putmsg()

The putmsg() and getmsg() system calls enable a user process to send and receive
STREAMS messages, in the same form the messages have in kernel modules and
drivers. read() and write() are not designed to include the message boundaries
necessary to encode messages.

The advantage of this capability is that a user process, as well as a STREAMS
module or driver, can implement a service interface.

poli()

The poll() system call allows a user process to monitor a number of streams to
detect expected I/O events. Such events might be the availability of a device for
writing, input data arriving from a device, a hangup occurring, an error being
detected, or the arrival of a priority message. See poll(2) in the Operating System
API Reference for more information.

Opening a STREAMS Device File

One way to construct a Stream is to open [see open(2)] a STREAMS-based driver
file.

If the open() call is the initial file open, a Stream is created. (There is one Stream
per major/minor device pair.)

If this is the initial open of this Stream, the driver open routine is called. If
modules have been specified to be autopushed, they are pushed immediately after
the driver open. When a Stream is already open, further opens of the same Stream
result in calls to the open procedures of all pushable modules and the driver open.
Note that this is done in the reverse order from the initial Stream open. In other
words, the initial open processes from the Stream end to the Stream head, while
later opens process from the Stream head to the Stream end.

STREAMS Mechanism 3-35

Creating a STREAMS-based Pipe

In addition to opening a STREAMS-based driver, a Stream can be created by creat-
ing a pipe [see pipe(2)]. Because pipes are not character devices, STREAMS
creates and initializes a streamtab structure for each end of the pipe.

When the pipe() system call is executed, two Streams are created. STREAMS fol-

lows the procedures similar to those of opening a driver; however, duplicate data

structures are created. That is, two entries are allocated in the user’s file table and
two vnodes are created to represent each end of the pipe. The file table entries are
initialized to point to the allocated vnodes and each vnode is initialized to specify

a file of type FIFO.

Each Stream header represents one end of the pipe, and it points to the down-
stream half of each Stream head queue pair. Unlike STREAMS-based devices,
however, the downstream portion of the Stream terminates at the upstream por-
tion of the other Stream.

Adding and Removing Modules

As part of constructing a Stream, a module can be added (pushed) with an ioct1()
I_PUSH [see streamio(7)] system call. The push inserts a module beneath the
Stream head. Because of the similarity of STREAMS components, the push opera-
tion is similar to the driver open. First, the address of the ginit structure for the
module is obtained.

Next, STREAMS allocates a pair of queue structures and initializes their contents
as in the driver open.

Then, qg_next values are set and modified so that the module is interposed
between the Stream head and its neighbor immediately downstream. Finally, the
module open procedure (located using ginit) is called.

Each push of a module is independent, even in the same Stream. If the same
module is pushed more than once on a Stream, there will be multiple occurrences
of that module in the Stream. The total number of pushable modules that may be
contained on any one Stream is limited by the kernel parameter NSTRPUSH.

An ioctl() I_POP [see streamio(7)] system call removes (pops) the module
immediately below the Stream head. The pop calls the module close procedure.
On return from the module close, any messages left on the module’s message
queues are freed (deallocated). Then, STREAMS connects the Stream head to the
component previously below the popped module and deallocates the module’s
queue pair. I_PUSH and I_POP enable a user process to alter dynamically the
configuration of a Stream by pushing and popping modules as required. For

3-36 File and Device Input/Output

example, a module may be removed and a new one inserted below the Stream
head. Then the original module can be pushed back after the new module has
been pushed.

Closing the Stream

The last close() to a STREAMS file dismantles the Stream. Dismantling consists
of popping any modules on the Stream and closing the driver. Before a module is
popped, the close() may delay to allow any messages on the write message queue
of the module to be drained by module processing. Similarly, before the driver is
closed, the close() may delay to allow any messages on the write message queue
of the driver to be drained by driver processing. If O_NDELAY (or O_NONBLOCK) is
clear, close() waits up to 15 seconds for each module to drain and up to 15
seconds for the driver to drain [see open(2)]. If O_NDELAY (or O_NONBLOCK) is set,
the pop is performed immediately and the driver is closed without delay. Mes-
sages can remain queued, for example, if flow control is inhibiting execution of the
write queue service() procedure. When all modules are popped and any wait for
the driver to drain is completed, the driver close routine is called. On return from
the driver close, any messages left on the driver’s queues are freed, and the queue
and stdata structures are deallocated.

STREAMS frees only the messages contained on a message queue. Any
NOTE | message or data structures used internally by the driver or module must be
freed by the driver or module close procedure.

Finally, the user’s file table entry and the vnode are deallocated and the file is
closed.

Stream Construction Example

The following example extends the previous communications device echoing
example (see the section ““Basic STREAMS Operations” in this chapter) by insert-
ing a module in the Stream. The (hypothetical) module in this example can con-
vert (change case, delete, and/or duplicate) selected alphabetic characters.

STREAMS Mechanism 3-37

Inserting Modules

An advantage of STREAMS over the traditional character I/O mechanism stems
from the ability to insert various modules into a Stream to process and manipulate
data that pass between a user process and the driver. In the example, the charac-
ter conversion module is passed a command and a corresponding string of charac-
ters by the user. All data passing through the module are inspected for instances
of characters in this string; the operation identified by the command is performed
on all matching characters. The necessary declarations for this program are

shown below:

f

#include <string.h>
#include <fcntl.h>
#include <stropts.h>

#define BUFLEN 1024

/*

* These defines would typically be

* found in a header file for the module
*/

#define DELETE 2 /* delete char */
#define DUPLICATE 3 /* duplicate char */

main()

{

g

char buf [BUFLEN] ;
int £4, count;
struct strioctl strioctl;

#define XCASE 1 /* change alphabetic case of char */

o\

)

The first step is to establish a Stream to the communications driver and insert the
character conversion module. The following sequence of system calls accom-

plishes the following display:

f

if ((£d = open("/dev/comm/01", O_RDWR)) < 0) {
perror("open failed");
exit(1);

}

if (ioctl(fd, I_PUSH, "chconv") < 0) {

perror("ioctl I_PUSH failed");
exit(2);

N

\

)

3-38

File and Device Input/Output

The I_PUSH ioctl() call directs the Stream head to insert the character conversion
module between the driver and the Stream head, creating the Stream shown in
Figure 3-6. As with drivers, this module resides in the kernel and must have been
configured into the system before it was booted, unless the system has an autoload

capability.

Figure 3-6: Case Converter Module

IR _#_,j ________ User Space
Stream Kernel Space
Head

Character
Converter

Communications
Driver

An important difference between STREAMS drivers and modules is illustrated
here. Drivers are accessed through a node or nodes in the file system and may be
opened just like any other device. Modules, on the other hand, do not occupy a
file system node. Instead, they are identified through a separate naming conven-
tion, and are inserted into a Stream using I_PUSH. The name of a module is
defined by the module developer.

Modules are pushed onto a Stream and removed from a Stream in Last-In-First-
Out (LIFO) order. Therefore, if a second module was pushed onto this Stream, it
would be inserted between the Stream head and the character conversion module.

STREAMS Mechanism 3-39

Module and Driver Control

The next step in this example is to pass the commands and corresponding strings
to the character conversion module. This can be done by issuing ioct1() calls to
the character conversion module as follows:

7)

/* change all uppercase vowels to lowercase */
strioctl.ic_cmd = XCASE;

strioctl.ic_timout = 0; /* default timeout (15 sec) */
strioctl.ic_dp = "AEIOU";

strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror("ioctl I_STR failed");
exit(3);

}

/* delete all instances of the chars ’‘x’ and 'X’ */
strioctl.ic_cmd = DELETE;

strioctl.ic_dp = "xX";

strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror("ioctl I_STR failed");
exit(4);

}

= J

ioctl() requests are issued to STREAMS drivers and modules indirectly, using
the I_STR ioctl() call [see streamio(7)]. The argument to I_STR must be a
pointer to a strioctl structure, which specifies the request to be made to a
module or driver. This structure is defined in <stropts.h> and has the following
format:

struct strioctl {
int ic_cmd; /* ioctl request */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data argument */
char *ic_dp; /* ptr to data argument */

where ic_cmd identifies the command intended for a module or driver,
ic_timout specifies the number of seconds an I_STR request should wait for an
acknowledgement before timing out, ic_len is the number of bytes of data to
accompany the request, and ic_dp points to that data.

3-40 File and Device Input/Output

In the example, two separate commands are sent to the character conversion
module. The first sets ic_cmd to the command XCASE and sends as data the string
“AEIOU”; it converts all uppercase vowels in data passing through the module to
lowercase. The second sets ic_cmd to the command DELETE and sends as data the
string ““xX"’; it deletes all occurrences of the characters ‘x” and ‘X’ from data pass-
ing through the module. For each command, the value of ic_timout is set to
zero, which specifies the system default timeout value of 15 seconds. The ic_dp
field points to the beginning of the data for each command; ic_lenis set to the
length of the data.

I_STRis intercepted by the Stream head, which packages it into a message, using
information contained in the strioctl structure, and sends the message down-
stream. Any module that does not understand the command in ic_cmd passes the
message further downstream. The request will be processed by the module or
driver closest to the Stream head that understands the command specified by
ic_cmd. The ioctl() call will block up to ic_timout seconds, waiting for the tar-
get module or driver to respond with either a positive or negative acknowledge-
ment message. If an acknowledgement is not received in ic_timout seconds, the
ioctl() call will fail.

Only one I_STR request can be active on a Stream at one time. Further
NoTeE | requests will block until the active I_STR request is acknowledged and the
system call completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR
request. If data is returned by the target module or driver, ic_dp must point to a
buffer large enough to hold that data, and ic_len will be set on return to show
the amount of data returned:

s =\

while ((count = read(fd, buf, BUFLEN)) > 0) {
if (write(fd, buf, count) != count) {
perror ("write failed");
break;

}
}
exit(0);

N J

Note that the character conversion processing was realized with no change to the
communications driver.

STREAMS Mechanism 3-41

The exit() system call dismantles the Stream before terminating the process. The
character conversion module is removed from the Stream automatically when it is
closed. Alternatively, modules may be removed from a Stream using the I_POP
ioct1() call described in streamio(7). This call removes the topmost module on
the Stream, and enables a user process to alter the configuration of a Stream
dynamically, by popping modules as needed.

A few of the important ioct1() requests supported by STREAMS have been dis-
cussed. Several other requests are available to support operations such as deter-
mining if a given module exists on the Stream, or flushing the data on a Stream.
These requests are described fully in streamio(7).

3-42 File and Device Input/Output

4 Process Management

Introduction 4-1
Program Execution & Process Creation 4-3
Program Execution — execl() and execv() 4-3
Process Creation — fork() 4-5
Control of Processes — fork() and wait() 4-8
Process Termination 4-9
Timer Operations 4-11
Process Scheduling 4-12
How the Process Scheduler Works 4-14
m Time-Sharing Class 4-15
m System Class 4-16
m Real-Time Class 4-16
Scheduler Commands and Function Calls 4-17
m The priocntl Command 4-19
m The priocntl() System Call 4-24
m The priocntiset() System Call 4-35
Scheduler Interaction with Other Functions 4-38
m Kernel Processes 4-38
m fork(), exec() 4-38
= nice 4-38
m init 4-38
Scheduler Performance 4-39
m Process State Transition 4-40
m Software Latencies 4-41

Table of Contents i

Memory Management
Memory Management Facilities
= Virtual Memory, Address Spaces and Mapping
m Networking, Heterogeneity and Integrity
Memory Management Interfaces
m Creating and Using Mappings
m Removing Mappings
m Cache Control
m Other Mapping Functions
Address Space Layout

4-43
4-43
4-43
4-44
4-45
4-46
4-51
4-51
4-55
4-55

Table of Contents

Introduction

A process is the execution of a program; most UNIX System V commands execute
as separate processes. Each process is a distinct entity, able to execute and ter-
minate independently of all other processes. Each user can have many processes
in the system simultaneously. In fact, it is not always necessary for the user to be
logged into the system while those processes are executing.

Whenever you execute a command in the UNIX system you are initiating a pro-
cess that is numbered and tracked by the operating system. A flexible feature of
the UNIX system is that processes can be generated by other processes. This hap-
pens more than you might ever be aware of. For example, when you log in to
your system you are running a process, very probably the shell. If you then use an
editor such as vi, take the option of invoking the shell from vi, and execute the ps
command, you will see a display something like the one in the following figure
(which shows the results of aps -f command):

Figure 4-1: Process Status

PID PPID C STIME TTY TIME COMD
24210 1 0 06:13:14 tty29 0:05 -sh
24631 24210 0 06:59:07 tty29 0:13 vi c2.uli
28441 28358 80 09:17:22 tty29 0:01 ps -f
28358 24631 2 09:15:14 tty29 0:01 sh -i

kEEERE

As you can see, user abc (who went through the steps described above) now has
four processes active. It is an interesting exercise to trace the chain that is shown
in the Process ID (PID) and Parent Process ID (PPID) columns. The shell that was
started when user abc logged on is process 24210; its parent is the initialization
process (process ID 1). Process 24210 is the parent of process 24631, and so on.

The four processes in the example above are all UNIX system shell-level com-
mands, but you can spawn new processes from your own program. You might
think, “Well, it’s one thing to switch from one program to another when I'm at my
terminal working interactively with the computer; but why would a program
want to run other programs, and if one does, why wouldn’t I just put everything
together into one big executable module?”

Introduction 41

Overlooking the case where your program is itself an interactive application with
diverse choices for the user, your program may need to run one or more other
programs based on conditions it encounters in its own processing. (If it's the end
of the month, go do a trial balance, for example.) The usual reasons why it might
not be practical to create one large executable are:

m The load module may get too big to fit in the maximum process size for
your system.

®m You may not have control over the object code of all the other modules you
want to include.
Suffice it to say, there are legitimate reasons why this creation of new processes
might need to be done. There are two ways to do it:
m exec(2)—stop this process and start another

m fork(2)—start an additional copy of this process

4-2 Process Management

Program Execution & Process Creation

Program Execution — execl() and execv()

Opverlays, performed by the family of exec system-calls, can change the executing
program, but can not create new processes. Processes are created (or spawned) by
the system-call fork(), which is discussed later.

exec is the name of a family of functions that includes execl(), execv(), execle(),
execve(), execlp(), and execvp(). They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide dif-
ferent ways of pulling together and presenting the arguments of the function. An
example of one version (execl()) might be:

execl ("/usr/bin/prog2", "prog", progargl, progarg2, (char *)0):

For execl() the argument list is

/usr/bin/prog2 path name of the new process file

prog the name the new process gets in its argv[0]
progargl, arguments to prog2 as char *'g

progarg2

(char *)0 a null char pointer to mark the end of the arguments

Check the exec(2) manual page in the Operating System API Reference for the rest
of the details. The key point of the exec family is that there is no return from a
successful execution: the new process overlays the process that makes the exec
system call. The new process also takes over the Process ID and other attributes of
the old process. If the call to exec is unsuccessful, control is returned to your pro-
gram with a return value of -1. You can check errno to learn why it failed.

The system-call execl() executes another program, without returning; thus, to print
the date as the last action of a running program, use:

execl("/bin/date", "date", NULL):;

The first argument to execl() is the file-name of the command; you have to know
where it is found in the file-system. The second argument is conventionally the
program name (that is, the last component of the file-name), but this is seldom
used except as a place-holder. If the command takes arguments, they are strung
out after this; the end of the list is marked by a NULL argument.

Program Execution & Process Creation 4-3

The execl() call overlays the existing program with the new one, runs that, then
exits, without returning to the original program.

More realistically, a program might fall into two or more phases that communi-
cate only through temporary files. Here it is natural to make the second pass sim-
ply an execl() call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can’t be found or is not exe-
cutable. If you don’t know where date is located, say:

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL):;
printf (stderr, "Someone stole ’‘date’\n");

A variant of execl() called execv() is useful when you don’t know in advance
how many arguments there are going to be. The call is:

execv (filename, argp) ;

Where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execv() can tell where the list ends. As with execl(), filename is
the file in which the program is found, and argp[0] is the name of the program.
(This arrangement is identical to the argv array for C program arguments.)

Neither of these functions provides the niceties of normal command execution.
There is no automatic search of multiple directories — you have to know precisely
where the command is located. Nor do you get the expansion of metacharacters
like “<”, 5", “*”,“?"” and “[1” in the argument list. If you want these, use
execl() to invoke the shell sh, which then does all the work. Construct a string
cmdline that contains the complete command as it would have been typed at the
terminal, then say:

execl("/bin/sh", "sh", "-c¢", cmdline, NULL):;

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat
the next argument as a whole command line, so it does just what you want. The
only problem is in constructing the right information in cmdline.

Unless we can regain control after running a program with execl() or execv(),
what we’ve talked about so far isn’t really all that useful. Any process may exec
(cause execution of) a file. Doing an exec does not change the process-id; the pro-
cess that did the exec persists, but after the exec it is executing a different pro-
gram. Files that were open before the exec remain open afterwards. If a program
(for example, the first pass of a compiler) wishes to overlay itself with another pro-
gram (for example, the second pass), then it simply execs the second program.
This is analogous to a “‘goto” in programming.

4-4 Process Management

Process Creation — fork()

If a process wishes to regain control after exec-ing a second program, it should
fork() a child-process, have the child exec the second program, and the parent
wait() for the child. This is analogous to a ““call” except that the fork() system
call creates a new process that is an exact copy of the calling process. The follow-
ing figure depicts what is involved in executing a program with a typical fork() as
the first step:

Figure 4-2: Process Primitives

Program A
wait()

Process 1 fork() |
(Parent) i F (asleep) -

Program A Program B :
Process 2 exec]

(Child) B
exit()

Because the exec functions simply overlay the new program on the old one, to
save the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new overlaying program to finish.

Program Execution & Process Creation 4-5

The system-call fork() does the splitting as in the following call:

proc_id = fork();

The newly created process, known as the “child-process,” is a copy of the image of
the original process, called the ““parent-process.” The system-call fork() splits the
program into two copies, both of which continue to run, and which differ only in
the value of the “process-id”’ kept in proc_id. In the child-process, proc_id
equals zero; in the parent-process, proc_id equals a non-zero value that is the
process number of the child-process. Thus, the basic way to call, and return from,
another program is:

if (fork() == 0) /* in child */
execl ("/bin/sh", "sh", "-c", cmd, NULL);

And in fact, except for handling errors, this is sufficient. The £ork() is zero, so it
calls execl() which does the cmd and then dies. In the parent, fork() returns non-
zero so it skips the execl(). (If there is any error, fork() returns -1).

A child inherits its parent’s permissions, working-directory, root-directory, open
files, etc. This mechanism permits processes to share common input streams in
various ways. Files that were open before the fork() are shared after the fork().
The processes are informed through the return value of fork() as to which is the
parent and which is the child. In any case the child and parent differ in three
important ways:

m The child has a different process-id.
m The child has a different parent-process-id.

m All accounting variables are reset to appropriate values in the child.

The fork() system-call creates a child-process with code and data copied from the
parent-process that created the child-process. Once the copying is completed, the
new (child) process is placed on the runnable queue to be scheduled. Each child-
process executes independently of its parent-process, although the parent may
explicitly wait for the termination of that child or any of its children. Usually the
parent waits for the death of its child at some point, since this wait() call is used to
free the process-table entry used by the child. See the discussion under “‘Process
Termination” for more detail.

Calling fork() creates a new process that is an exact copy of the calling process.
The one major difference between the two processes is that the child gets its own
unique process ID. When the fork() process has completed successfully, it returns
a 0 to the child process and the child’s process ID to the parent. If the idea of hav-
ing two identical processes seems a little funny, consider this:

4-6 Process Management

m Because the return value is different between the child-process and the
parent, the program can contain the logic to determine different paths.

m The child-process could say, “Okay, I'm the child; I'm supposed to issue an
exec for an entirely different program.”

m The parent-process could say, “My child is going to exec a new process; I'll
issue a wait() until I get word that the new process is finished.”

Your code might include statements like the following:

Figure 4-3: Example of fork()

s S\

#include <errno.h>

pid t ch_pid;

int ch_stat, status;
char *p_argl, *p_arg2;
void exit();

if ((ch_pid = fork()) < 0) {
/* Could not fork... check errno */

}
else if (ch _pid == 0) { /* child */
(void)execl ("/usr/bin/prog2", "prog", p_argl, p_arg2, (char *)NULL);
exit(2); /* execl() failed */
}
else { /* parent */
while ((status = wait(&ch_stat)) != ch_pid) {
if (status < 0 && errno == ECHILD)
break;
errno = 0;

7
L

Program Execution & Process Creation 4-7

Because the new exec’d process takes over the child-process ID, the parent knows
the ID. What this boils down to is a way of leaving one program to run another,
returning to the point in the first program where processing left off.

Keep in mind that the fragment of code above includes minimal checking for error
conditions, and has potential for confusion about open files and which program is
writing to a file. Leaving out the possibility of named files, the new process
created by the fork() or exec has the three standard files that are automatically
opened: stdin, stdout, and stderr. If the parent has buffered output that
should appear before output from the child, the buffers must be flushed before the
fork. Also, if the parent and the child-process both read input from a stream,
whatever is read by one process will be lost to the other. That is, once something
has been delivered from the input buffer to a process the pointer has moved on.

Process-creation is essential to the basic operation of UNIX System V because each
command run by the Shell executes in its own process. In fact, execution of a Shell
command or Shell procedure involves both a fork() and an overlay. This scheme
makes a number services easy to provide. 1/0 redirection, for example, is basically
a simple operation; it is performed entirely in the child-process that executes the
command, and thus no memory in the Shell parent-process is required to rescind
the change in standard input and output. Background processes likewise require
no new mechanism; the Shell merely refrains from waiting for commands execut-
ing in the background to complete. Finally, recursive use of the Shell to interpret a
sequence of commands stored in a file is in no way a special operation.

Control of Processes — fork() and wait()

A parent-process can suspend its execution to wait for termination of a child-
process with wait() or waitpid(). More often, the parent wants to wait for the
child to terminate before continuing itself as follows:

int status;

if (fork() == 0)
execl(...);
wait (&status) ;

The previous code fragment avoids handling any abnormal conditions, such as a
failure of the execl() or fork(), or the possibility that there might be more than
one child running simultaneously. (The function wait() returns the process-id of
the terminated child, which can be checked against the value returned by fork().)
In addition, this fragment avoids dealing with any funny behavior on the part of
the child (which is reported in status).

4-8 Process Management

The low-order eight bits of the value returned by wait() encodes the termination
status of the child-process; 0 signifies normal termination and non-zero to signify
various kinds of abnormalities. The next higher eight bits are taken from the argu-
ment of the call to exit() which caused a normal termination of the child-process.
It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file-descriptors are available for
use. When this program calls another one, correct etiquette suggest making sure
the same conditions hold. Neither fork() nor the exec calls affects open files in
any way. If the parent is buffering output that must come out before output from
the child, the parent must flush its buffers before the execl(). Conversely, if a
caller buffers an input stream, the called program loses any information that has
been read by the caller.

Process Termination

Processes terminate in one of two ways:

m Normal Termination occurs by a return from main() or when requested by
an explicit call to exit() or _exit().

m Abnormal Termination occurs as the default action of a signal or when
requested by abort().

On receiving a signal, a process looks for a signal-handling function. Failure to
find a signal-handling function forces the process to call exit(), and therefore to
terminate. The functions _exit(), exit() and abort() terminate a process with the
same effects except that abort() makes available to wait() or waitpid() the status
of a process terminated by the signal SIGABRT [see exit(2) and abort(2)].

As a process terminates, it can set an eight-bit exit status code available to its
parent. Usually, this code indicates success (zero) or failure (non-zero), but it can
be used in any manner the user wishes. If a signal terminated the process, the sys-
tem first tries to dump an image of core, then modifies the exit code to indicate
which signal terminated the process and whether core was dumped. This is pro-
vided that the signal is one that produces a core dump [see signal(5)]. Next, all
signals are set to be ignored, and resources owned by the process are released,
including open files and the working directory. The terminating process is now a
““zombie”” process, with only its process-table entry remaining; and that is unavail-
able for use until the process has finally terminated. Next, the process-table is
searched for any child or zombie processes belonging to the terminating process.
Those children are then adopted by init by changing their parent-process-id to
1). This is necessary since there must be a parent to record the death of the child.
The last actions of exit() are to record the accounting information and exit code

Program Execution & Process Creation 4-9

for the terminated process in the zombie process-table entry and to send the
parent the death-of-child signal, SIGCHLD [see ““Signals, Job Control and Pipes”].

If the parent wants to wait until a child terminates before continuing execution,
the parent can call wait(), which causes the parent to sleep until a child zombie is
found (meaning the child terminated). When the child terminates, the death-of-
child signal is sent to the parent although the parent ignores this signal. (Ignore is
the default disposition. Applications that fork children and need to know the
return status should set this signal to other than ignore.) The search for child zom-
bies continues until the terminated child is found; at which time, the child’s exit
status and accounting information is reported to the parent (remember the call to
exit() in the child put this information in the child’s process-table entry) and the
zombie process-table entry is freed. Now the parent can wake up and continue
executing.

4-10 Process Management

Timer Operations

A process can suspend itself for a specific period of time with the function sleep()
or suspend itself indefinitely with the function pause() until a signal arrives to
reactivate the process. The function alarm() schedules a signal to arrive at a
specific time, so a pause() suspension need not be indefinite.

s 3

#include <stdio.h>
#include <sigmal.h>

struct sigaction new _act, old_act;
int alarm count = 5; /* initialize number of alarms */

main () {
void alarm action();
/*
* pass signal and function to sigaction
*/
new_act.sa_handler = alarm action;
sigaction(SIGALRM, &new_act, &old_act);

alarm(5); /* set alarm clock for 5 seconds */

pause(); /* suspend process until receipt of sigmal */
}

void alarm action() {

/*
* print the number of alarms remaining
*/

printf ("\t<%d\007>", alarm count);
/*
* pass signal and function to sigaction
*/

new_act.sa_handler = alarm action;
sigaction(SIGALRM, &new_act, &old_act);

alarm(5); /* set alarm clock for 5 seconds */
if (--alarm count) /* decrement alarm count */
pause() ; /* suspend process */

}

- J

The preceding example shows how you can use the signal(), alarm() and pause()
system-calls to alternately suspend and resume a program.

Timer Operations 4-11

Process Scheduling

The UNIX system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user requests;
it uses these priorities to assign processes to the CPU.

UNIX System V Release 4 gives users absolute control over the order in which cer-
tain processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the Release 4 scheduler uses a time-sharing policy like the policy used
in previous releases. A time-sharing policy adjusts process priorities dynamically
in an attempt to provide good response time to interactive processes and good
throughput to processes that use a lot of CPU time.

The UNIX System V Release 4 scheduler offers a real-time scheduling policy as
well as a time-sharing policy. Real-time scheduling allows users to set fixed prior-
ities on a per-process basis. The highest-priority real-time user process always
gets the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX environments, the default scheduler configuration works well and
no real-time processes are needed: administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for an application include strict
timing constraints, real-time processes sometimes provide the only way to satisfy
those constraints.

Real-time processes used carelessly can have a dramatic negative effect on
NoTE | the performance of time-sharing processes.

This chapter is addressed to programmers who need more control over order of
process execution than they get using default scheduler parameters.

4-12 Process Management

Because changes in scheduler administration can affect scheduler behavior, pro-
grammers may also need to know something about scheduler administration. For
administrative information on the scheduler, see the Advanced System Administra-
tion guide. There are also a few reference manual entries with information on
scheduler administration:

m dispadmin(1M) tells how to change scheduler configuration in a running
system.

B ts_dptbl(4) and rt_dptbl(4) describe the time-sharing and real-time
parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows:

m “How the Process Scheduler Works” tells what the scheduler does and how
it does it. It also introduces scheduler classes.

®m The “Commands and Function Calls” section describes and gives examples
of the prioent1(1) command and the priocnt1(2) and priocntlset(2) sys-
tem calls, the user interface to scheduler services. The priocntl functions
allow you to retrieve scheduler configuration information and to get or set
scheduler parameters for a process or a set of processes.

m The “Interaction with Other Functions” section describes the interactions
between the scheduler and related functions.

m The “Performance” section discusses scheduler latencies that some applica-
tions must be aware of and mentions some considerations other than the
scheduler that application designers must take into account to ensure that
their requirements are met.

Process Scheduling 4-13

How the Process Scheduler Works

The following figure shows how the UNIX System V Release 4 process scheduler
works:

Figure 4-4: The UNIX System V Release 4 Process Scheduler

Global Scheduling Class-Specific Scheduler Process

Priority Order Priorities Classes Queues
igh Fi
Hﬁ est K‘st O__O
Real-Time : Real-Time
Priorities : Processes
Of—o—o
Of—o
System ’ System
Priorities : Processes

(O+H—o—0
OH

—O0—0—0
Time-Sharing Time-Sharing
1 ' Priorities . Processes
Lowest Last O+—0—0

When a process is created, it inherits its scheduler parameters, including scheduler
class and a priority within that class. A process changes class only as a result of a
user request. The system manages the priority of a process based on user requests
and a policy associated with the scheduler class of the process.

In the default configuration, the initialization process belongs to the time-sharing
class. Because processes inherit their scheduler parameters, all user login shells
begin as time-sharing processes in the default configuration.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs—the scheduler always runs the run-
nable process with highest global priority. Numerically higher priorities run first.
Once the scheduler assigns a process to the CPU, the process runs until it uses up

4-14 Process Management

its time slice, sleeps, or is preempted by a higher-priority process. Processes with
the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
may assign per-process time slices to real-time processes.

You can display the global priority of a process with the -c1 options of the ps(1)
command. You can display configuration information about class-specific priori-
ties with the priocntl(1) command and the dispadmin(1M) command.

By default, all real-time processes have higher priorities than any kernel process,
and all kernel processes have higher priorities than any time-sharing process.

As long as there is a runnable real-time process, no kernel process and no
NOTE | time-sharing process runs.

|

The next sections describe the scheduling policies of the three default classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to interactive
processes and good throughput to CPU-bound processes. The scheduler switches
CPU allocation frequently enough to provide good response time, but not so fre-
quently that it spends too much time doing the switching. Time slices are typi-
cally on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after
only a little CPU use (a process sleeps, for example, when it starts an I/O operation
such as a terminal read or a disk read); frequent sleeps are characteristic of interac-
tive tasks such as editing and running simple shell commands. On the other hand,
the time-sharing policy lowers the priority of a process that uses the CPU for long
periods without sleeping.

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the CPU, it
gets a bigger chunk of time. If a higher-priority process becomes runnable during
a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters in
the time-sharing parameter table ts_dptbl. This table contains information
specific to the time-sharing class.

Process Scheduling 4-15

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging demon. The system class is
reserved for use by the kernel; users may neither add nor remove a process from
the system class. Priorities for system class processes are set up in the kernel code
for those processes; once established, the priorities of system processes do not
change. (User processes running in kernel mode are not in the system class.)

Real-Time Class

The real-time class uses a fixed-priority scheduling policy so that critical processes
can run in predetermined order. Real-time priorities never change except when a
user requests a change. Contrast this fixed-priority policy with the time-sharing
policy, in which the system changes priorities in order to provide good interactive
response time.

Privileged users can use the priocntl command or the priocntl system call to
assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in the
real-time ‘parameter table rt_dptbl. This table contains information specific to
the real-time class.

4-16 Process Management

Scheduler Commands and Function Calls

Here is a programmer’s view of default process priorities:

Figure 4-5: Process Priorities (Programmer View)

Global Scheduling Class-Specific Scheduler

Priority Order Priorities Classes
ngf\hest Fj;‘st RT max Q
Real-Time
) Class
0 O
O
System
. Class
O
O
+ TS max .
0 . | Time-Sharing
¥ ¥ — TS max Class
Lowest Last O

From a user or programmer’s point of view, a process priority has meaning only
in the context of a scheduler class. You specify a process priority by specifying a
class and a class-specific priority value. The class and class-specific value are
mapped by the system into a global priority that the system uses to schedule
processes.

m Real-time priorities run from zero to a configuration-dependent maximum.
The system maps them directly into global priorities. They never change
except when a user changes them.

m System priorities are controlled entirely in the kernel. Users cannot affect
them.

Process Scheduling 417

m Time-sharing priorities have a user-controlled component (the “user prior-
ity’””) and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process
basis in order to provide good overall system performance; users cannot
affect the system-controlled component. The scheduler combines these two
components to get the process global priority.

The user priority runs from the negative of a configuration-dependent max-
imum to the positive of that maximum. A process inherits its user priority.
Zero is the default initial user priority. '

The ““user priority limit” is the configuration-dependent maximum value of
the user priority. You may set a user priority to any value below the user
priority limit. With appropriate permission, you may raise the user priority
limit. Zero is the default user priority limit.

You may lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user priority
to get better service. Because you cannot set the user priority above the user
priority limit, you must raise the user priority limit before you raise the user
priority if both have their default values of zero.

An administrator configures the maximum user priority independent of glo-
bal time-sharing priorities. In the default configuration, for example, a user
may set a user priority only in the range from -20 to +20, but 60 time-
sharing global priorities are configured.

A system administrator’s view of priorities is different from that of a user or pro-
grammer. When configuring scheduler classes, an administrator deals directly
with global priorities. The system maps priorities supplied by users into these
global priorities. See the Advanced System Administration guide.

The ps -cel command reports global priorities for all active processes. The
priocntl command reports the class-specific priorities that users and program-
mers use.

Global process priorities and user-supplied priorities are in ascending order:
NoTE | numerically higher priorities run first.

The priocnt1(1) command and the priocnt1(2) and priocntlset(2) system calls
set or retrieve scheduler parameters for processes. The basic idea for setting prior-
ities is the same for all three functions:

4-18 Process Management

m Specify the target processes.

m Specify the scheduler parameters you want for those processes.

m Do the command or system call to set the parameters for the processes.
You specify the target processes using an ID type and an ID. The ID type tells
how to interpret the ID. [This concept of a set of processes applies to signals as

well as to the scheduler; see sigsend(2)]. The following table lists the valid ID
types that you may specify.

priocntl ID types

process ID
parent-process ID
process group ID
session ID

class ID

effective user ID
effective group ID
all processes

These IDs are basic properties of UNIX processes. [See intro(2)]. The class ID
refers to the scheduler class of the process. priocntl works only for the time-
sharing and the real-time classes, not for the system class. Processes in the system
class have fixed priorities assigned when they are started by the kernel.

The priocntl Command
The priocntl command comes in four forms:
m priocntl -1 displays configuration information.
m priocntl -d displays the scheduler parameters of processes.

B priocntl -s sets the scheduler parameters of processes.

m priocntl -e executes a command with the specified scheduler parameters.

1. Here is the output of the -1 option for the default configuration.

Process Scheduling 4-19

f

$ priocntl -1
CONFIGURED CLASSES

)

SYS (System Class)

FC (Time sharing)
Configured FC User Priority Range: -30 through 30

TS (Time Sharing)
Configured TS User Priority Range: -20 through 20

VC (UP/ix-like Class)
Configured VC User Priority Range: -20 through 20

RT (Real Time)
Maximum Configured RT Priority: 59

s |)

2. The -d option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

priocntl -d -i idtype idlist

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding ID types in
idlist:

idtype idlist

pid process IDs

ppid parent-process IDs
pgid process group IDs

sid session IDs

class class names (TS or RT)
uid effective user IDs

gid effective group IDs
all

Here are some examples of the -d option of priocntl:

4-20 Process Management

$ # display info on all processes w
$ priocntl -d -i all

$ # display info on all time-sharing processes:
$ priocntl -d -i class TS

$ # display info on all processes with user ID 103 or 6626
$ prioentl -d -i uid 103 6626

3. The -s option sets scheduler parameters for a process or a set of processes. The
syntax for this option is

priocntl -s -c class class options -i idtype islist
idtype and idlist are the same as for the -d option described above.

class is TS for time-sharing or RT for real-time. You must be superuser to create a
real-time process, to raise a time-sharing user priority above a per-process limit, or
to raise the per-process limit above zero. Class options are class-specific:

Class-specific options for priocntl
class -c class options meaning
real-time RT -p pri priority
-t tslc time slice
-r res resolution
time-sharing TS -p upri user priority
-m uprilim user priority limit

For a real-time process you may assign a priority and a time slice.

m The priority is a number from 0 to the real-time maximum as reported by
priocntl -1;the default maximum is 59.

® You specify the time slice as a number of clock intervals and the resolution
of the interval. Resolution is specified in intervals per second. The time
slice, therefore, is tslc/res seconds. To specify a time slice of one-tenth of a
second, for example, you could specify a tslc of 1 and a res of 10. If you
specify a time slice without specifying a resolution, millisecond resolution (a
res of 1000) is assumed.

Process Scheduling 4-21

If you change a time-sharing process into a real-time process, it gets a default
priority and time slice if you don’t specify one. If you wish to change only the
priority of a real-time process and leave its time slice unchanged, omit the -t
option. If you wish to change only the time slice of a real-time process and leave
its priority unchanged, omit the -p option.

For a time-sharing process you may assign a user priority and a user priority limit.

m The user priority is the user-controlled component of a time-sharing prior-
ity. The scheduler calculates the global priority of a time-sharing process by
combining this user priority with a system-controlled component that
depends on process behavior. The user priority has the same effect as a
value set by nice (except that nice uses higher numbers for lower priority).

m The user priority limit is the maximum user priority a process may set for
itself without being superuser. By default, the user priority limit is 0. You
must be superuser to set a user priority limit above 0.

Both the user priority and the user priority limit must be within the user priority
range reported by the priocntl -1 command. The default range is —20 to +20.

A process may lower and raise its user priority as often as it wishes, as long as the
value is below its user priority limit. It is a courtesy to other users to lower your
user priority for big chunks of low-priority work. On the other hand, if you lower
your user priority limit, you must be superuser to raise it. A typical use of the
user priority limit is to reduce permanently the priority of child-processes or of
some other set of low-priority processes.

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the new
user priority limit. If you attempt to set the user priority above the user priority
limit, the user priority is set to the user priority limit.

Here are some examples of the -s option of priocntl:

4-22 Process Management

ﬁ

make process with ID 24668 a real-time process with default parameters:
prioentl -s -c¢ RT -i pid 24668

make 3608 RT with priority 55 and a one-fifth second time slice:
priocentl -8 -¢ RT -p 55 -t 1 -r 5 -i pid 3608

change all processes into time-sharing processes:
priocntl -8 -c¢ TS -i all

for uid 1122, reduce TS user priority and user priority limit to -10:
priocntl -8 -¢ TS -p -10 -m -10 -i uid 1122

=\

J

4. The -e option sets scheduler parameters for a specified command and executes

the command. The syntax for this option is

priocntl -e -c class class_options command [command arguments]

The class and class options are the same as for the -s option described above.

start a real-time shell with default real-time priority:
priocntl ~e -c RT /bin/sh

$ # run make with a time-sharing user priority of -10:
$ priocntl -e -¢ TS -p -10 make bigprog

The prioentl command subsumes the function of nice, which continues to work
as in previous releases. nice works only on time-sharing processes and uses
higher numbers to assign lower priorities. The final example above is equivalent

to using nice to set an “increment’” of 10:

nice -10 make bigprog

Process Scheduling

4-23

The priocntl() System Call

#include
#include
#include
#include
#include

<sys/types.h>
<sys/procset .h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd,
cmd_struct arg);

The priocntl system call gets or sets scheduler parameters of a set of processes.
The input arguments:

idtype is the type of ID you are specifying.

id is the ID.

cmd specifies which prioentl() function to perform. The functions are

listed in the table below.

arg is a pointer to a structure that depends on cmd.

Here are the valid values for idtype, which are defined in <priocntl.hs, and their

corresponding ID types in id:

idtype Interpretation of id
P_PID process ID (of a single process)
P_PPID parent-process ID
P_PGID process group ID
P_SID session ID
P_CID class ID
P_UID effective user ID
P_GID effective group ID
P_ALL all processes

Here are the valid values for cmd, their meanings, and the type of arg:

4-24

Process Management

priocntl() Commands
cmd arg Type Function
PC_GETCID pcinfo t get class ID and attributes
PC_GETCLINFO pcinfo_t get class name and attributes
PC_SETPARMS pcparms_t set class and scheduling parameters
PC_GETPARMS pcparms_t get class and scheduling parameters

Here are the values priocntl returns on success:

m The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

m PC_SETPARMS returns 0.

m PC_GETPARMS returns the process ID of the process whose scheduler proper-
ties it is returning.

On failure, prioent1() returns -1 and sets errno to indicate the reason for the
failure. See priocntl(2) for the complete list of error conditions.

PC_GETCID, PC_GETCLINFO

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler parameters for
a class based on the class ID or class name. Both commands use the peinfo struc-
ture to send arguments and receive return values:

typedef struct pcinfo {

id t pc_cid; /* class id */

char pc_clname[PC CLNMSZ]; /* class name */

long pc_clinfo[PC_CLINFOSZ]; /* class information */
} pcinfo_t;

The PC_GETCID command gets scheduler class ID and parameters given the class
name. The class ID is used in some of the other priocntl commands to specify a
scheduler class. The valid class names are TS for time-sharing and RT for real-
time.

Process Scheduling 4-25

For the real-time class, pc_clinfo contains an rtinfo structure, which holds
rt_maxpri, the maximum valid real-time priority; in the default configuration,
this is the highest priority any process can have. The minimum valid real-time
priority is zero. rt_maxpri is a configurable value; the Advanced System Adminis-
tration guide tells how to configure process priorities.

typedef struct rtinfo {
short rt maxpri; /* maximum real-time priority */
} rtinfo t;

For the time-sharing class, pc_clinfo contains a tsinfo structure, which holds
ts_maxupri, the maximum time-sharing user priority. The minimum time-
sharing user priority is -ts_maxupri. ts_maxupri is also a configurable value.

typedef struct tsinfo {
short ts_maxupri; /* limits of user priority range */
} tsinfo_t;

The following program is a cheap substitute for priocntl -1; it gets and prints
the range of valid priorities for the time-sharing and real-time scheduler classes.

4-26 Process Management

s 3\

/*
* Get scheduler class IDs and priority ranges.
*/

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <errno.h>

main ()
{
pcinfo t pcinfo;
tsinfo t *tsinfop;
rtinfo t *rtinfop;
short maxtsupri, maxrtpri;

/* time sharing */
(void) strcpy (pcinfo.pc_clname, "TS");

if (prioentl (0L, OL, PC_GETCID, &pcinfo) == -1L) {
perror ("PC_GETCID failed for time-sharing class");
exit (1);

}

tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;

maxtsupri = tsinfop->ts_maxupri;

(void) printf("Time sharing: ID %1d, priority range -%d through %d\n",
pcinfo.pc_cid, maxtsupri, maxtsupri);

/* real time */
(void) strcpy(pcinfo.pc_clname, "RT");

if (priocntl (0L, OL, PC_GETCID, &pcinfo) == -1L) {
perror ("PC_GETCID failed for real-time class");
exit (2);

}

rtinfop = (struct rtinfo *) pcinfo.pc_clinfo;

maxrtpri = rtinfop->rt maxpri;

(void) printf("Real time: ID %1d, priority range 0 through %d\n",
pcinfo.pc_cid, maxrtpri);

return (0);

\ J

The following screen shows the output of this program, called getcid in this
example.

Process Scheduling 4-27

$ getcid
Time sharing: ID 1, priority range -20 through 20
Real time: ID 2, priority range 0 through 59

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class ID and maximum priority in the class.

]

All the following examples omit the lines that include header files. The exam-
NoTE | ples compile with the same header files as in the first example above.

-

* Return class ID and maximum priority.

* Input argument name is class name.

* Maximum priority is returned in *maxpri.
*/

id t
schedinfo (name, maxpri)
char *name;

short *maxpri;

{
pcinfo_t info;
tsinfo_t *tsinfop;
rtinfo t *rtinfop;

(void) strcpy(info.pc_clname, name);

if (priocntl (0L, OL, PC_GETCID, &info) == -1L) {
return (-1);

}

if (strcmp(name, "TS") == 0) {
tsinfop = (struct tsinfo *) info.pc_clinfo;
*maxpri = tsinfop->ts_maxupri;

} else if (strcmp(name, "RT") == 0) {
rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

} else {
return (-1);

}

return (info.pc_cid);

N

v

4-28

Process Management

The PC_GETCLINFO command gets a scheduler class name and parameters given
the class ID. This command makes it easy to write applications that make no
assumptions about what classes are configured.

The following program uses PC_GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID, which retrieves the class ID of a process given the process ID; this
function is given in the following section.

- 3

/* Get scheduler class name given process ID. */

main (arge, argv)
int argc;
char *argvl[];

pcinfo t pcinfo;
id t pid, classID;
id t getclassID();

if ((pid = atoi(argv([1])) <= 0) {
perror ("bad pid");
exit (1);
}
if ((classID = getclassID(pid)) == -1) {
perror ("unknown class ID");
exit (2);
}
pcinfo.pc_cid = classID;
if (priocntl (0L, OL, PC_GETCLINFO, &pcinfo) == -1L) {
perror ("PC_GETCLINFO failed");
exit (3);
}
(void) printf("process ID %d, class %s\n", pid, pcinfo.pc_clname);

\ J

PC_GETPARMS, PC_SETPARMS

The PC_GETPARMS command gets and the PC_SETPARMS command sets scheduler
parameters for processes. Both commands use the pcparms structure to send
arguments or receive return values:

typedef struct pcparms {
id t pc_cid; /* process class */
long pc_clparms[PC_CLPARMSZ]; /* class specific */
} pcparms_t;

Process Scheduling 4-29

Ignoring class-specific information for the moment, we can write a simple function
for returning the scheduler class ID of a process, as promised in the previous sec-
tion.

s ~\

*

* Return scheduler class ID of process with ID pid.
*/

getclassID (pid)
id_t pid;
{
pcparms_t pcparms;

pcparms.pc_cid = PC_CLNULL;

if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {
return (-1);

}

return (pcparms.pc_cid);

\ J

For the real-time class, pc_clparms contains an rtparms structure. rtparms
holds scheduler parameters specific to the real-time class:

typedef struct rtparms {
short «rt pri; /* real-time priority */
ulong rt_tgsecs; /* seconds in time quantum */
long rt_tqgnsecs; /* additional nsecs in quantum */
} rtparms_t;

rt_pri is the real-time priority; rt_tgsecs is the number of seconds and
rt_tqgnsecs is the number of additional nanoseconds in a time slice. That is,
rt_tagsecs seconds plus rt_tgnsecs nanoseconds is the interval a process may
use the CPU without sleeping before the scheduler gives another process a chance
at the CPU.

For the time-sharing class, pc_clparms contains a tsparms structure. tsparms
holds the scheduler parameter specific to the time-sharing class:

typedef struct tsparms {
short ts uprilim; /* user priority limit */
short ts_upri; /* user priority */

} tsparms_t;

4-30 Process Management

ts_upri is the user priority, the user-controlled component of a time-sharing
priority. ts_uprilim is the user priority limit, the maximum user priority a pro-
cess may set for itself without being superuser. These values are described above
in the discussion of the -s option of the priocntl command. Both the user prior-
ity and the user priority limit must be within the range reported by the priocntl
-1 command; this range is also reported by the PC_GETCID and PC_GETCLINFO
commands to the priocntl system call.

The PC_GETPARMS command gets the scheduler class and parameters of a single
process. The return value of the priocentl is the process ID of the process whose
parameters are returned in the pcparms structure. The process chosen depends
on the idtype and id arguments to priocntl and on the value of
pcparms.pc_cid, which contains PC_CLNULL or a class ID returned by
PC_GETCID:

Figure 4-6: What Gets Returned by PC_GETPARMS

Number of Processes pc_cid
Selected by
idtype and id RT class ID TS class ID PC_CLNULL
RT parameters TS parameters classand
1 of process of process parameters of
selected selected process selected
RT parameters TS parameters
More than 1 of highest- of process with (error)
priority RT pro- highest user
cess priority

If idtype and id select a single process and pc_cid does not conflict with the
class of that process, priocntl returns the scheduler parameters of the process. If
they select more than one process of a single scheduler class, priocntl returns
parameters using class-specific criteria as shown in the table. priocntl returns an
error in the following cases:

m idtype and id select one or more processes and none is in the class
specified by pc_cid.

m idtype and id select more than one process and pc_cid is PC_CLNULL.

m idtype and id select no processes.

Process Scheduling 4-31

The following program takes a process ID as its input and prints the scheduler

class and class-specific parameters of that process:

-

/*

Get scheduler class and parameters of
* process whose pid is input argument.
*/

main (arge, argv)
int argc;
char *argvl[];

pcparms_t pcparms;

rtparms_t *rtparmsp;

tsparms_t *tsparmsp;

id_t pid, rtID, tsID;

id_t schedinfo();

short priority, tsmaxpri, rtmaxpri;
ulong secs;

long nsecs;

pcparms.pc_cid = PC_CLNULL;
rtparmsp = (rtparms_t *) pcparms.pc_clparms;
tsparmsp = (tsparms_t *) pcparms.pc_clparms;
if ((pid = atoi(argv([l])) <= 0) {

perror ("bad pid");

exit (1);

/* get scheduler properties for this pid */

if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1)
perror ("GETPARMS failed");
exit (2);

/* get class IDs and maximum priorities for TS and RT */

if ((tsID = schedinfo ("TS", &tsmaxpri)) == -1) {
perror ("schedinfo failed for TS");
exit (3);

}

if ((rtID = schedinfo ("RT", &rtmaxpri)) == -1) {
perror ("schedinfo failed for RT");
exit (4);

}

/* print results */
if (pcparms.pc_cid == rtID) {
priority = rtparmsp->rt_pri;
secs = rtparmsp->rt_tgsecs;
nsecs = rtparmsp->rt_tqnsecs;
(void) printf ("process %d: RT priority %d\n",

=\

J

(continued on next page)

4-32

Process Management

pid, priority);
(void) printf (" time slice %ld secs, %ld nsecs\n",
secs, nsecs);
} else if (pcparms.pc_cid == tsID) {
priority = tsparmsp->ts_upri;
(void) printf ("process %d: TS priority %d\n",
pid, priority);
} else {
printf ("Unknown scheduler class %d\n",
pcparms.pc_cid) ;
exit (5);
}
return (0);

}

N)

The PC_SETPARMS command sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be
changed. The pcparms structure contains the new parameters: pc_cid contains
the ID of the scheduler class to which the processes are to be assigned, as returned
by PC_GETCID; pc_clparms contains the class-specific parameters:

m If pc_cid is the real-time class ID, pc_clparms contains an rtparms struc-
ture in which rt_pri contains the real-time priority and rt_tgsecs plus
rt_tgnsecs contains the time slice to be assigned to the processes.

m If pc_cid is the time-sharing class ID, pc_clparms contains a tsparms
structure in which ts_uprilim contains the user priority limit and ts_upri
contains the user priority to be assigned to the processes.

The following program takes a process ID as input, makes the process a real-time
process with the highest valid priority minus 1, and gives it the default time slice
for that priority. The program calls the schedinfo function listed above to get the
real-time class ID and maximum priority.

Process Scheduling 4-33

(/*
Input arg is proc ID. Make process a real-time

* process with highest priority minus 1.
*/

main (argc, argv)
int argc;
char *argv(];

pcparms_t pcparms;
rtparms_t *rtparmsp;
id t pid, rtID;
id_t schedinfo() ;
short maxrtpri;

if ((pid = atoi(argv([l])) <= 0) {
perror ("bad pid");
exit (1);

}

/* Get highest valid RT priority. */
if ((rtID = schedinfo ("RT", &maxrtpri)) == -1) {
perror ("schedinfo failed for RT");
exit (2);
}

/* Change proc to RT, highest prio - 1, default time slice */
pcparms.pc_cid = rtID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt_pri = maxrtpri - 1;
rtparmsp->rt_tgnsecs = RT_TQDEF;

if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1) {
perror ("PC_SETPARMS failed");
exit (3);

}

\

)

The following table lists the special values rt_tqnsecs can take when
PC_SETPARMS is used on real-time processes. When any of these is used,

rt_tgsecs is ignored. These values are defined in the header file rtpriocntl.h:

4-34 Process Management

rt_tgnsecs Time Slice
RT _TQINF infinite
RT_TQDEF default
RT_NOCHANGE unchanged

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time slice
configured for the real-time priority being set with the SETPARMS call.
RT_NOCHANGE specifies no change from the current time slice; this value is useful,
for example, when you change process priority but do not wish to change the time
slice. (You can also use RT_NOCHANGE in the rt_pri field to change a time slice
without changing the priority.)

The priocntlset() System Call

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset (procset_t *psp, int cmd,
cmd_struct arg);

The priocntlset system call changes scheduler parameters of a set of processes,
just like priocntl. priocntlset has the same command set as priocntl; the
cmd and arg input arguments are the same. But while priocntl applies to a set
of processes specified by a single idtype/id pair, priocntlset applies to a set of
processes that results from a logical combination of two idtype/id pairs. The
input argument psp points to a procset structure that specifies the two
idtype/id pairs and the logical operation to perform. This structure is defined in
procset.h:

typedef struct procset {
idop_t p_op; /* operator connecting */
/* left and right sets */
/* left set: */
idtype_t p_lidtype; /* left ID type */
id_t p_1lid; /* left ID */

/* right set: */
idtype_t p_ridtype; /* right ID type */
id t p_rid; /* right ID */
} procset_t;

Process Scheduling 4-35

p_lidtype and p_1id specify the ID type and ID of one (“left”) set of processes;
p_ridtype and p_rid specify the ID type and ID of a second (“right”’) set of
processes. p_op specifies the operation to perform on the two sets of processes to

get the set of processes to operate on. The valid values for p_op and the processes
they specify are:

m POP_DIFF: set difference—processes in left set and not in right set

m POP_AND: set intersection—processes in both left and right sets

m POP_OR: set union—processes in either left or right sets or both

m POP_XOR: set exclusive-or—processes in left or right set but not in both
The following macro, also defined in procset .h, offers a convenient way to ini-
tialize a procset structure :

#define setprocset(psp, op, ltype, 1lid, rtype, rid) \
(psp) ->p_op = (op); \
(psp) ->p_lidtype = (ltype); \

(psp) ->p_1lid = (1id); \
(psp) ->p_ridtype = (rtype); \
(psp) ->p_rid = (rid);

Here is a situation where priocntlset would be useful: suppose an application
had both real-time and time-sharing processes that ran under a single user ID. If
the application wanted to change the priority of only its real-time processes
without changing the time-sharing processes to real-time processes, it could do so
as follows. (This example uses the function schedinfo, which is defined above in
the section on PC_GETCID.)

4-36 Process Management

f

/*
* Change real-time priorities of this uid
* to highest real-time priority minus 1.

*/

main (argc, argv)
int argc;
char *argv[];

{
procset_t procset;
pcparms_t pcparms;
struct rtparms *rtparmsp;
id t rtclassID;
id t schedinfo() ;
short maxrtpri;

/* left set: select processes with same uid as this process */
procset.p_lidtype = P_UID;
procset.p_lid = getuid();

/* get info on real-time class */

if ((rtclassID = schedinfo ("RT", &maxrtpri)) == -1) {
perror ("schedinfo failed");
exit (1);

}

/* right set: select real-time processes */
procset.p_ridtype = P_CID;
procset.p rid = rtclassID;

/* select only my RT processes */
procset.p_op = POP_AND;

/* specify new scheduler parameters */
pcparms.pc_cid = rtclassID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt_pri = maxrtpri - 1;
rtparmsp->rt_tgnsecs = RT NOCHANGE;

if (priocntlset (&procset, PC_SETPARMS, &pcparms) == -1)
perror ("priocntlset failed");
exit (2);

}

N

\

J

priocntl offers a simple scheduler interface that is adequate for many applica-
tions; applications that need a more powerful way to specify sets of processes can

use priocntlset.

Process Scheduling

4-37

Scheduler Interaction with Other Functions

Kernel Processes

The kernel assigns its demon and housekeeping processes to the system scheduler
class. Users may neither add processes to nor remove processes from this class,
nor may they change the priorities of these processes. The command ps -cel
lists the scheduler class of all processes. Processes in the system class are
identified by a SYS entry in the CLS column.

If the workload on a machine contains real-time processes that use too much CPU,
they can lock out system processes, which can lead to all sorts of trouble. Real-
time applications must ensure that they leave some CPU time for system and other
processes.

fork(), exec()

Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2) and exec(2) system calls.

nice

The nice(1) command and the nice(2) system call work as in previous versions of
the UNIX system. They allow you to change the priority of only a time-sharing
process. You still use lower numeric values to assign higher time-sharing priori-
ties with these functions.

To change the scheduler class of a process or to specify a real-time priority, you
must use one of the priocntl functions. Use higher numeric values to assign
higher priorities with the priocntl functions.

init

The init process (process ID 1) may be assigned to any class configured on the
system. Because most processes normally inherit the scheduler properties of
init, init must be the only process specified by idtype and id or by the

procset structure. However, init should be assigned to the time-sharing class
unless there are compelling reasons to do otherwise.

4-38 Process Management

Scheduler Performance

Because the scheduler determines when and for how long processes run, it has an
overriding importance in the performance and perceived performance of a system.

By default, all processes are time-sharing processes. A process changes class only
as a result of one of the priocntl functions.

In the default configuration, all real-time process priorities are above any time-
sharing process priority. This implies that as long as any real-time process is run-
nable, no time-sharing process or system process ever runs. So if a real-time appli-
cation is not written carefully, it can completely lock out users and essential kernel
housekeeping.

Besides controlling process class and priorities, a real-time application must also
control several other factors that influence its performance. The most important
factors in performance are CPU power, amount of primary memory, and I/O
throughput. These factors interact in complex ways. For more information, see
the chapter on performance management in the Advanced System Administration
guide. In particular, the sar(1) command has options for reporting on all the fac-
tors discussed in this section.

Process Scheduling 4-39

Process State Transition

Applications that have strict real-time constraints may need to prevent processes
from being swapped or paged out to secondary memory. Here’s a simplified
overview of UNIX process states and the transitions between states:

Figure 4-7: Process State Transition Diagram

running
1
sleep
assign CPU preempt
runnable wakeup sleeping
in memory in memory
!
swap in swap out swap out
/ \
runnable wakeup sleeping
swapped swapped

An active process is normally in one of the five states in the diagram. The arrows
show how it changes states.

m A process is running if it is assigned to a CPU. A process is preempted—
that is, removed from the running state—by the scheduler if a process with
a higher priority becomes runnable. A process is also preempted if it con-
sumes its entire time slice and a process of equal priority is runnable.

m A process is runnable in memory if it is in primary memory and ready to
run, but is not assigned to a CPU.

m A process is sleeping in memory if it is in primary memory but is waiting
for a specific event before it can continue execution. For example, a process
is sleeping if it is waiting for an I/O operation to complete, for a locked
resource to be unlocked, or for a timer to expire. When the event occurs, the
process is sent a wakeup; if the reason for its sleep is gone, the process
becomes runnable.

4-40 Process Management

m A process is runnable and swapped if it is not waiting for a specific event
but has had its whole address space written to secondary memory to make
room in primary memory for other processes.

m A process is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to make
room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory:

m When the system is short of primary memory, it writes individual pages of
some processes to secondary memory but still leaves those processes run-
nable. When a process runs, if it accesses those pages, it must sleep while
the pages are read back into primary memory.

® When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes to secondary memory and marks
those processes as swapped. Such processes get back into a schedulable
state only by being chosen by the system scheduler demon process, then
read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a pro-
cess is ready to run again. For processes that have strict timing requirements, this
delay can be unacceptable. To avoid swapping delays, real-time processes are
never swapped, though parts of them may be paged. An application can prevent
paging and swapping by locking its text and data into primary memory. For more
information see mement1(2) in the Operating System API Reference. Of course, how
much can be locked is limited by how much memory is configured. Also, locking
too much can cause intolerable delays to processes that do not have their text and
data locked into memory. Tradeoffs between performance of real-time processes
and performance of other processes depend on local needs. On some systems,
process locking may be required to guarantee the necessary real-time response.

Software Latencies

Designers of some real-time applications must have information on software
latencies to analyze the performance characteristics of their applications and to
predict whether performance constraints can be met. These latencies depend on
kernel implementation and on system hardware, so it is not practical to list the
latencies. It is useful, however, to describe some of the most important latencies.
Consider the following time-line:

Process Scheduling 4-41

P1 P2 P1 P2 calls P1 P1 returns from

sleeps runs awakened scheduler runs system call

| l | | | - o
|] l | | | > time

tl t2 t3 t4 t5 t6

P1 and P2 represent processes; t1 through t6 represent points in time. Suppose
that P1 has a higher priority than all other active processes, including P2. P1 runs
and does a system call that causes it to sleep at time t1, waiting for I/O. P2 runs.
The I/0O device interrupts, resulting in a wakeup at time t3 that makes P1 run-
nable. If P2 is running in user mode at time t3, it is preempted immediately and
the interval (t4 - t3) is, for practical purposes, zero. If P2 is running in kernel
mode at time t3, it is preempted as soon as it gets to a kernel preemption point, a
point in kernel code where data structures are in a consistent state and where the
state of the current process (P2 in this example) may be saved and a different pro-
cess run. Therefore, if P2 is running in kernel mode at time t3, the interval (4 - t3)
depends on kernel preemption points, which are spread throughout the kernel. It
is useful to know both a typical time to preemption and a maximum time to
preemption; these times depend on kernel implementation and on hardware.
Eventually, the scheduler runs (at time t4), finds that a higher-priority process P1
is runnable, and runs it. We refer to the interval (t5 - t4) as the software switch
latency of the system. This latency is, for practical purposes, a constant; again it is
an implementation-dependent value. At time t6, P1 returns to the user program
from the system call that put it to sleep at time t1. For simplicity, suppose that the
program is getting only a few bytes of data from the I/O device. In this simple
case, the interval (t6 — t5) consists basically of the overhead of getting out of the
system call. We refer to the interval (t6 — t3) as the software wakeup latency of the
system; this is the interval from the I/O device interrupt until the user process
returns to application level to deal with the interrupt (assuming that it is the
highest priority process). So the software wakeup latency is composed of a
preemption latency, context-switch time, and a part of system call overhead. Of
course, the latency increases as the system call asks for more data.

This discussion of latencies assumes that the text and data of the processes are in
primary memory. An application may have to use process locking to guarantee
that its processes do not get swapped or paged out of primary memory. See the
discussion in the previous section.

4-42 Process Management

Memory Management

Memory Management Facilities

The UNIX system provides a complete set of memory management mechanisms,
providing applications complete control over the construction of their address
space and permitting a wide variety of operations on both process address spaces
and the variety of memory objects in the system. Process address spaces are com-
posed of a vector of memory pages, each of which can be independently mapped
and manipulated. Typically, the system presents the user with mappings that
simulate the traditional UNIX process memory environment, but other views of
memory are useful as well.

The UNIX memory-management facilities:
m Unify the system’s operations on memory.

m Provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without special-
purpose kernel support.

m Maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects.

Virtual Memory, Address Spaces and Mapping

The system’s virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the vir-
tual memory are referenced though the UNIX file system. However, not all file
system objects are in the virtual memory; devices that cannot be treated as storage,
such as terminal and network device files, are not in the virtual memory. Some
virtual memory objects, such as private process memory and shared memory seg-
ments, do not have names.

A process’s address space is defined by mappings onto objects in the system’s vir-
tual memory (usually files). Each mapping is constrained to be sized and aligned
with the page boundaries of the system on which the process is executing. Each
page may be mapped (or not) independently. Only process addresses which are
mapped to some system object are valid, for there is no memory associated with
processes themselves—all memory is represented by objects in the system’s virtual
memory.

Memory Management 4-43

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The virtual memory’s associated
physical storage is thus accessed by transforming process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object address
may be the subject of many process mappings. An important characteristic of a
mapping is that the object to which the mapping is made is not affected by the
mere existence of the mapping. Thus, it cannot, in general, be expected that an
object has an “awareness” of having been mapped, or of which portions of its
address space are accessed by mappings; in particular, the notion of a “page” is
not a property of the object. Establishing a mapping to an object simply provides
the potential for a process to access or change the object’s contents.

The establishment of mappings provides an access method that renders an object
directly addressable by a process. Applications may find it advantageous to
access the storage resources they use directly rather than indirectly through read
and write. Potential advantages include efficiency (elimination of unnecessary
data copying) and reduced complexity (single-step updates rather than the read,
modify buffer, write cycle). The ability to access an object and have it retain its
identity over the course of the access is unique to this access method, and facili-
tates the sharing of common code and data.

Networking, Heterogeneity and Integrity

VM is designed to fit well with the larger UNIX heterogeneous environment. This
environment makes extensive use of networking to access file systems—file sys-
tems that are now part of the system’s virtual memory. Networks are not con-
strained to consist of similar hardware or to be based upon a common operating
system; in fact, the opposite is encouraged, for such constraints create serious bar-
riers to accommodating heterogeneity. While a given set of processes may apply a
set of mechanisms to establish and maintain the properties of various system
objects—properties such as page sizes and the ability of objects to synchronize
their own use—a given operating system should not impose such mechanisms on
the rest of the network.

As it stands, the access method view of a virtual memory maintains the potential
for a given object (say a text file) to be mapped by systems running the UNIX
memory management system and also to be accessed by systems for which virtual
memory and storage management techniques such as paging are totally foreign,
such as PC-DOS. Such systems can continue to share access to the object, each
using and providing its programs with the access method appropriate to that sys-
tem. The unacceptable alternative would be to prohibit access to the object by less
capable systems.

4-44 Process Management

Another consideration arises when applications use an object as a communications
channel, or otherwise try to access it simultaneously. Inboth cases, the object is
shared; thus, applications must use some synchronization mechanism to maintain
the integrity of their actions on it. The scope and nature of the synchronization
mechanism is best left to the application. For example, file access on systems
which do not support virtual memory access methods must be indirect, by way of
read and write. Applications sharing files on such systems must coordinate their
access using semaphores, file locking, or some application-specific protocols.
What is required in an environment where mapping replaces read and write as
the access method is an operation, such as £sync, that supports atomic update
operations.

The nature and scope of synchronization over shared objects is application-
defined from the outset. If the system tried to impose automatic semantics for
sharing, it might prohibit other useful forms of mapped access that have nothing
to do with communication or sharing. By providing the mechanism to support
integrity, and leaving it to cooperating applications to apply the mechanism, the
needs of applications are met without eliminating diversity. Note that this design
does not prohibit the creation of libraries that provide abstractions for common
application needs. Not all abstractions on which an application builds need be
supplied by the “operating system.”

Memory Management Interfaces

The applications programmer gains access to VM facilities through several sets of
system calls. The next sections summarize these calls, and provide examples of
their use. For details, see the Operating System API Reference.

Memory Management 4-45

Creating and Using Mappings

caddr_t
mmap (caddr_t addr, size_t len, int prot, int flags, int fd, off_t off);

mmap establishes a mapping between a process’s address space and an object in the
system’s virtual memory. All other system functions that contribute to the
definition of an address space are built from mmap, the system’s most fundamental
function for defining the contents of an address space. The format of an mmap call
is:

paddr = mmap(addr, len, prot, flags, fd, off);

mmap establishes a mapping from the process’s address space at an address paddr
for len bytes to the object specified by fd at offset off for len bytes. A successful call
to mmap returns paddr as its result, which is an implementation-dependent func-
tion of the parameter addr and the setting of the MAP_FIXED bit of flags, as
described below. The address range [paddr, paddr + len) must be valid for the
address space of the process and the range [off, off + len) must be valid for the vir-
tual memory object. (The notation [start, end) denotes the interval from start to
end, including start but excluding end.)

The mapping established by mmap replaces any previous mappings for the
NOTE | process’s pages in the range [paddr, paddr + len).

1

The parameter prot determines whether read, execute, write or some combination
of accesses are permitted to the pages being mapped. To deny all access, set prot
to PROT_NONE. Otherwise, specify permissions by an OR of PROT_READ,
PROT_EXECUTE, and PROT WRITE.

4-46 Process Management

A write access must fail if PROT_WRITE has not been set, though the behavior of
the write can be influenced by setting MAP_PRIVATE in the flags parameter, which
provides other information about the handling of mapped pages, as described
below:

® MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of them
must be specified. The mapping type describes the disposition of store
operations made by this process into the address range defined by the map-
ping operation. If MAP_SHARED is specified, write references will modify the
mapped object. No further operations on the object are necessary to effect a
change — the act of storing into a MAP_SHARED mapping is equivalent to
doing a write system call.

The private copy is not created until the first write; until then, other

NOTE | users who have the object mapped MAP_SHARED can change the
object. That is, if one user has an object mapped MAP_PRIVATE and
another user has the same object mapped MAP_SHARED, and the
MAP_SHARED user changes the object before the MAP_PRIVATE user
does the first write, then the changes appear in the MAP_PRIVATE
user’s copy that the system makes on the first write. If an application
needs isolation from changes made by other processes, it should use
read to make a copy of the data it wishes to keep isolated.

On the other hand, if MAP_PRIVATE is specified, an initial write reference to
a page in the mapped area will create a copy of that page and redirect the
initial and successive write references to that copy. This operation is some-
times referred to as copy-on-write and occurs invisibly to the process caus-
ing the store. Only pages actually modified have copies made in this
manner. MAP_PRIVATE mappings are used by system functions such as
exec(2) when mapping files containing programs for execution. This per-
mits operations by programs such as debuggers to modify the “text”” (code)
of the program without affecting the file from which the program is
obtained.

The mapping type is retained across a fork.

Memory Management 4-47

®m MAP_FIXED informs the system that the value returned by mmap must be
addr, exactly. The use of MAP_FIXED is discouraged, as it may prevent an
implementation from making the most effective use of system resources.
When MAP_FIXED is not set, the system uses addr as a hint to arrive at paddr.
The paddr so chosen is an area of the address space that the system deems
suitable for a mapping of len bytes to the specified object. An addr value of
zero grants the system complete freedom in selecting paddr, subject to con-
straints described below. A non-zero value of addr is taken as a suggestion
of a process address near which the mapping should be placed. When the
system selects a value for paddr, it never places a mapping at address 0, nor
replaces any extant mapping, nor maps into areas considered part of the
potential data or stack ““segments.” The system strives to choose alignments
for mappings that maximize the performance of the its hardware resources.

The file descriptor used in a mmap call need not be kept open after the mapping is
established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses occupied by
this mapping; or until the mapping is removed either by process termination or a
call to munmap. Although the mapping endures independent of the existence of a
file descriptor, changes to the file can influence accesses to the mapped area, even
if they do not affect the mapping itself. For instance, should a file be shortened by
a call to truncate(), such that the mapping now “overhangs” the end of the file,
then accesses to that area of the file which “does not exist”” will result in SIGBUS
signals. It is possible to create the mapping in the first place such that it
“overhangs” the end of the file — the only requirement when creating a mapping
is that the addresses, lengths, and offsets specified in the operation be possible
(that is, within the range permitted for the object in question), not that they exist at
the time the mapping is created (or subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how it
has been mapped (for instance, by attempting a store operation into a mapping
that was established with only PROT_READ access), then a SIGSEGV signal will
result. SIGSEGV signals will also result on any attempt to reference an address not
defined by any mapping.

4-48 Process Management

In general, if a program makes a reference to an address that is inconsistent with
the mapping (or lack of a mapping) established at that address, the system will
respond with a SIGSEGV violation. However, if a program makes a reference to an
address consistent with how the address is mapped, but that address does not
evaluate at the time of the access to allocated storage in the object being mapped,
then the system will respond with a SIGBUS violation. In this manner a program
(or user) can distinguish between whether it is the mapping or the object that is
inconsistent with the access, and take appropriate remedial action.

Using mmap to access system memory objects can simplify programs in a variety of
ways. Keeping in mind that mmap can really be viewed as just a means to access
memory objects, it is possible to program using mmap in many cases where you
might program with read or write. However, it is important to realize that mmap
can only be used to gain access to memory objects — those objects that can be
thought of as randomly accessible storage. Thus, terminals and network connec-
tions cannot be accessed with mmap because they are not “memory.” Magnetic
tapes, even though they are memory devices, can not be accessed with mmap
because storage locations on the tape can only be addressed sequentially. Some
examples of situations which can be thought of as candidates for use of mmap over
more traditional methods of file access include:

m Random access operations — either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is variable,
create “windows’’ of mappings to the object.

m Efficiency — even in situations where access is sequential, if the object being
accessed can be accessed via mmap, an efficiency gain may be obtained by
avoiding the copying operations inherent in accesses via read or write.

m Structured storage — if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to the
file is treated just as though the tables were in memory. Previously, pro-
grams could not simply make storage or table alterations in memory and
save them for access in subsequent runs; however, when the addresses of a
table are defined by mappings to a file, then changes to that storage are
changes to the file, and are thus automatically recorded in it.

m Scattered storage — if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation.

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Memory Management 4-49

Mapping /dev/zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap. /dev/zero is a special device,
that responds to read as an infinite source of bytes with the value 0, but when
mapped creates an unnamed object to back the mapped region of memory. The
following code fragment demonstrates a use of this to create a block of scratch
storage in a program, at an address of the system’s choosing.

- N

/*

Function to allocate a block of zeroed storage. Parameter -
is the number of bytes desired. The storage is mapped as
MAP_SHARED, so that if a fork occurs, the child process
will be able to access and modify the storage. If we wished
to cause the child’s modifications (as well as those by the
parent) to be invisible to the ancestry of processes, we
would use MAP_PRIVATE.

*/

caddr_t
get_zero_storage(int len);

{

* Ok X ¥ ¥ F* *

int f4;
caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);
result = mmap(0, len, PROT_READ|PROT WRITE, MAP_SHARED, fd, 0);
(void) close(£fd);
return (result);

\C J

As written, this function permits a hierarchy of processes to use the area of allo-
cated storage as a region of communication (for implicit interprocess communica-
tion purposes). Later in this chapter we will describe a set of system facilities that
provide a similar function packaged for accomplishing the same purpose without
requiring that the processes be in a parent-child hierarchy.

In some cases, devices or files are only useful if accessed via mapping. An exam-
ple of this is frame buffer devices used to support bit-mapped displays, where
display management algorithms function best if they can operate randomly on the
addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define multi-
ple pages of an address space, there is no restriction that subsequent operations on
those addresses must operate on the same number of pages. For instance, an mmap
operation defining ten pages of an address space may be followed by subsequent
munmap (see below) operations that remove every other page from the address
space, leaving five mapped pages each followed by an unmapped page. Those

4-50 Process Management

unmapped pages may subsequently be mapped to different locations in the same
or different objects, or the whole range of pages (or any partition, superset, or sub-
set of the pages) used in other mmap or other memory management operations.
Further, it must be noted that any mapping operation that operates on more than
a single page can “partially succeed” in that some parts of the address range can
be affected even though the call returns a failure. Thus, an mmap operation that
replaces another mapping, if it fails, may have deleted the previous mapping and
failed to replace it. Similarly, other operations (unless specifically stated other-
wise) may process some pages in the range successfully before operating on a
page where the operation fails.

Not all device drivers support memory mapping. mmap fails if you try to map a
device that does not support mapping.

Removing Mappings

int
munmap (caddr_t addr, size t len);

munmap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process. It is not an error to remove mappings from
addresses that do not have them, and any mapping, no matter how it was esta-
blished, can be removed with munmap. munmap does not in any way affect the
objects that were mapped at those addresses.

Cache Control

The UNIX memory management system can be thought of as a form of ““cache
management”, in which a processor’s primary memory is used as a cache for
pages from objects from the system’s virtual memory. Thus, there are a number of
operations which control or interrogate the status of this “cache”, as described in
this section.

Memory Cache Control

Memory Management 4-51

int
mementl(caddr t addr, size t len, int cmd, caddr_t arg, int attr, int mask);

memcntl provides several control operations over mappings in the range [addr,
addr + len), including locking pages into physical memory, unlocking them, and
writing pages to secondary storage. The functions described in the rest of this sec-
tion offer simplified interfaces to the mement1 operations.

Memory Page Locking

int

mlock(caddr_t addr, size_t len);
int

munlock (caddr_t addr, size_ t len);

mlock causes the pages referenced by the mapping in the range [addr, addr + len)
to be locked in physical memory. References to those pages (through other map-
pings in this or other processes) will not result in page faults that require an I/O
operation to obtain the data needed to satisfy the reference. Because this opera-
tion ties up physical system resources, and has the potential to disrupt normal sys-
tem operation, use of this facility is restricted to the superuser. The system prohi-
bits more than a configuration-dependent limit of pages to be locked in memory
simultaneously, the call to mlock will fail if this limit is exceeded.

munlock releases the locks on physical pages. If multiple mlock calls are made
through the same mapping, only a single munlock call will be required to release
the locks (in other words, locks on a given mapping do not nest.) However, if dif-
ferent mappings to the same pages are processed with mlock, then the pages will
stay locked until the locks on all the mappings are released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap operation or removed explicitly with munmap. A lock will
be transferred between pages on the “copy-on-write’” event associated with a
MAP_PRIVATE mapping, thus locks on an address range that includes
MAP_PRIVATE mappings will be retained transparently along with the copy-on-
write redirection (see mmap above for a discussion of this redirection).

4-52 Process Management

Address Space Locking

int

mlockall (int flags);
int

munlockall (void) ;

mlockall and munlockall are similar in purpose and restriction to mlock and
munlock, except that they operate on entire address spaces. mlockall accepts a
flags argument built as a bit-field of values from the set:

MCL_CURRENT Current mappings
MCL_FUTURE Future mappings

If flags is MCL_CURRENT, the lock is to affect everything currently in the address
space. If flags is MCL._FUTURE, the lock is to affect everything added in the future.
If flags is (MCL_CURRENT | MCL_FUTURE), the lock is to affect both current and
future mappings.

munlockall removes all locks on all pages in the address space, whether esta-
blished by mlock or mlockall.

Memory Cache Synchronization

int
msync(caddr_t addr, size t len, int flags);

msync supports applications which require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent com-
munications in a distributed environment. msync causes all modified copies of
pages over the range [addr, addr + len) to be flushed to the objects mapped by those
addresses. In the cache analogy discussed previously, msync is the cache “write-
back,” or flush, operation. It is similar in purpose to the £sync operation for files.

msync optionally invalidates such cache entries so that further references to the
pages cause the system to obtain them from their permanent storage locations.

The flags argument provides a bit-field of values that influences the behavior of
msync. The bit names and their interpretations are:

Memory Management 4-53

MS_SYNC synchronized write
MS_ASYNC return immediately
MS_INVALIDATE invalidate caches

MS_SYNC causes msync to return only after all I/O operations are complete.
MS_ASYNC causes msync to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped objects
to be invalidated, requiring them to be reobtained from the object’s storage upon
the next reference.

Memory Page Residency

int
mincore(caddr_t addr, size_t len, char *uvec);

mincore determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). Using the ““cache concept”
described earlier, this function can be viewed as an operation that interrogates the
status of the cache, and returns an indication of what is currently resident in the
cache. The status is returned as a char-per-page in the character array referenced
by *vec (which the system assumes to be large enough to encompass all the pages
in the address range). Each character contains either a “1” (indicating that the
page is resident in the system’s primary storage), or a “0” (indicating that the
page is not resident in primary storage.) Other bits in the character are reserved
for possible future expansion — therefore, programs testing residency should test
only the least significant bit of each character.

mincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this infor-
mation may quickly be outdated. Only locked pages are guaranteed to remain in
memory.

4-54 Process Management

Other Mapping Functions

long
sysconf (PAGESIZE) ;

sysconf returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of sysconf to obtain that information. Note that it is not
unusual for page sizes to vary even among implementations of the same instruc-
tion set, increasing the importance of using this function for portability.

int
mprotect (caddr_t addr, size_t len, int prot);

mprotect has the effect of assigning protection prot to all pages in the range [addr,
addr + len). The protection assigned can not exceed the permissions allowed on
the underlying object. For instance, a read-only mapping to a file that was opened
for read-only access can not be set to be writable with mprotect (unless the map-
ping is of the MAP_PRIVATE type, in which case the write access is permitted since
the writes will modify copies of pages from the object, and not the object itself).

Address Space Layout

Traditionally, the address space of a UNIX process has consisted of exactly three
segments: one each for write-protected program code (text), a heap of dynamically
allocated storage (data), and the process’s stack. Text is read-only and shared,
while the data and stack segments are private to the process.

System V Release 4 still uses text, data, and stack segments, though these should
be thought of as constructs provided by the programming environment rather
than by the operating system. As such, it is possible to construct processes that
have multiple segments of each “type,” or of types of arbitrary semantic value —
no longer are programs restricted to being built only from objects the system was
capable of representing directly. For instance, a process’s address space may con-
tain multiple text and data segments, some belonging to specific programs and
some shared among multiple programs. Text segments from shared libraries, for
example, typically appear in the address spaces of many processes. A process’s

Memory Management 4-55

address space is simply a vector of pages, and there is no necessary division
between different address-space segments. Process text and data spaces are sim-
ply groups of pages mapped in ways appropriate to the function they provide the
program.

While the system may have multiple areas that can be considered “data” seg-
ments, for programming convenience the system maintains operations to operate
on an area of storage associated with a process’s initial “heap storage area.” A
process can manipulate this area by calling brk and sbrk:

caddr_t
brk(caddr_t addr);

caddr_t
sbrk(int incr);

brk sets the system’s idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system’s page size).

sbrk, the alternate function, adds incr bytes to the caller’s data space and returns
a pointer to the start of the new data area.

A process’s address space is usually sparsely populated, with data and text pages
intermingled. The precise mechanics of the management of stack space is
machine-dependent. By convention, page 0 is not used. Process address spaces
are often constructed through dynamic linking when a program is exec’ed.
Operations such as exec and dynamic linking build upon the mapping operations
described previously. Dynamic linking is described further in the Programming in
Standard C guide.

4-56 Process Management

5 Terminal Device Control

Introduction 5-1
Terminal Device Control Functions 5-2
m Baud Rates 5-3
= |nput Modes 5-3
m Output Modes 5-4
m Control Modes 5-4
m Local Modes and Line Disciplines 5-4
m Special Control Characters 5-4
Opening a Terminal Device File 5-6
Input Processing and Reading Data 5-6
m Canonical Mode Input Processing 5-7
m Non-Canonical Mode Input Processing 5-9
Writing Data and Output Processing 5-11
Closing a Terminal Device File 5-11
Special Characters 5-12
The Controlling-Terminal and Process-Groups 5-15
Session Management and Job Control 5-16
Improving Terminal I/O Performance 5-17
m TTY in Canonical Mode 5-17
m TTY in Raw Mode 5-18
m TTY Flow Control 5-19
STREAMS-Based Terminal Subsystem 5-22
Line Discipline Module 5-24
m Default Settings 5-25
m Open and Close Routines 5-25
m Read-Side Processing 5-26
m Write-Side Processing 5-27
m EUC Handling in Idterm 5-28
Support of termiox 5-31
Hardware Emulation Module 5-31

Table of Contents i

STREAMS-based Pseudo-Terminal

Subsystem
Line Discipline Module
Pseudo-tty Emulation Module — ptem
Remote Mode
Packet Mode
Pseudo-tty Drivers — ptm and pts
m grantpt()
m unlockpt()
m ptsname()

5-33
5-33
5-35
5-37
5-37
5-38
5-41
5-42
5-42

Table of Contents

Introduction

This chapter discusses the general terminal interface to control asynchronous com-
munication ports. The functions on the termio(7) manual page are used to access
and configure the hardware interface to a terminal.

Also included in this chapter is a discussion of the mechanisms involved with
opening and closing a terminal device file, as well as input/output processing.

The remainder of this chapter addresses the STREAMS mechanism as it relates to
terminal device control. The STREAMS-based terminal subsystem provides a uni-
form interface for implementing character I/O devices and networking protocols
in the kernel. Also discussed here is the notion of the STREAMS-based pseudo-
terminal subsystem which provides the user with an identical interface to the
STREAMS-based terminal subsystem.

Introduction 5-1

Terminal Device Control Functions

Terminal Device Control functions offer a general terminal interface for control-
ling asynchronous communication-ports in a device-independent manner using
parameters stored in the termios structure which is defined by the <termios.h>
header file [see termios(7)]. UNIX System V also uses termios to control the
operation of network-connections.

Table 5-1: Terminal Device Control Functions

Feature/Function Description Interface
General Terminal Characteristics

— get output baud-rate cfgetospeed ()
—set output baud-rate cfsetospeed ()
— get input baud-rate cfgetispeed ()
— set input baud-rate cfsetispeed()
General Terminal Control Functions

— get state of terminal tcgetattr()
— set state of terminal tcsetattr()
— line control function tcsendbreak()
— line control function tcdrain()
— line control function tcflush()
— line control function tcflow()
— get foreground process-group-id tegetpgrp ()
— set foreground process-group-id tcsetpgrp ()

The termios structure stores the values of settable terminal 1/0 parameters used
by functions to control terminal 1/0 characteristics and the operation of a
terminal-device-file. The <termios.h> header file defines the termios structure
to contain at least the following members [see termios(7)]:

tcflag t c_iflag; /* input modes */
tcflag t c_oflag; /* output modes */
tcflag t c_cflag; /* control modes */
tcflag t c_lflag:; /* local modes */
cc_t c_cc[Ncecs]; /* control chars */

The <termios.h> header file defines the type tcflag_t as long, the type cc_t as
char. The <termios.h> header file also defines the symbolic-constant NCCS as the
size of the control-character array.

5-2 Terminal Device Control

Baud Rates

The structure termios stores the input and output baud-rates in c_cflag. The
table below shows symbolic names defined in <termios.h> and the baud-rate

each represents:

BO
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400

hang up

50 baud

75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

Note that the zero baud-rate, B0, is used to terminate the connection. If BO is
specified, the modem control lines are no longer asserted; normally, this discon-
nects the line [see cfsetospeed(2) and tesetattr(2)]:

The termios structure members ¢_iflag, c_oflag, c_cflag and c_lflag take
as values the bitwise inclusive-OR of bitwise distinct masks with symbolic names
defined by the <termios.h> header file [see termios(7)].

Input Modes

The input-modes field c_iflag specifies treatment of terminal input. Calling
read() on a terminal-device-file works as described in “Input Processing and
Reading Data” and the value of c_iflag along with the value of c_1flag deter-
mine how to process input read from the terminal [see “Input Modes” and ““Local

Modes” in termios(7)].

Introduction

5-3

Output Modes

The output-modes field c_oflag specifies treatment of terminal output. Calling
write() on a terminal-device-file works as described in ““Writing Data and Output
Processing’” and the value of c_oflag determines how to process output written
to the terminal [see ““Output Modes” in termios(7)].

Control Modes

The control-modes field c¢_cflag specifies communication control for terminals.
The value of c_cflag controls characteristics of the communications-port to a
terminal-device, but the underlying hardware may fail to support all c_cflag
values [see ““Control Modes” in termios(7)]. A communication-port other than
an asynchronous serial connection may ignore some of the control-modes; for
example, if an attempt is made to set the baud-rate on a network-connection to a
terminal on another host, the baud-rate may or may not be set on the connection
between the terminal and the machine it is directly connected to.

Local Modes and Line Disciplines

The local-modes field c_1£1ag specifies the line-discipline for the terminal. The
line-discipline works as described in ““Canonical Mode Input Processing”” and
“Non-Canonical Mode Input Processing” and the value of c_1flag along with
the value of c_iflag determine how the line-discipline acts on input from a
terminal-device-file [see ‘“Local Modes”” and “Input Modes” in termios(7)].

Special Control Characters

The array c_cc specifies the special control-characters that affect the operation of
the communication-port and the processing of terminal input and output as
described in “Special Characters” below. For each entry of the control-character
array c_cc, the following are typical default values:

Table 5-2: Terminal Device Control Character Array

Subscript Subscript Character Character

Value Name Value Description
0 VINTR ASCIIDEL INTR character
1 VQUIT ASCII FS QUIT character
2 VERASE # ERASE character
3 VKILL e KILL character
4 VEOF ASCII EOT EOF character
5 VEOL ASCIINUL EOL character
6 reserved

5-4 Terminal Device Control

Table 5-2: Terminal Device Control Character Array (continued)

Subscript Subscript ~ Character Character
Value Name Value Description
7 reserved
8 VSTART ASCII DC1 START character
9 VSTOP ASCIIDC3 STOP character
10 VSuUsP ASCIISUB SUSP character

The subscript values are unique, except that the VMIN and VTIME subscripts may
have the same value as the VEOF and VEOL subscripts respectively. The
<termios.h> header file defines the relative positions, subscript names and
default values for the control-character array c_cc [see “’Special Control Charac-
ters” in termios(7)].

The NL and CR character cannot be changed. The INTR, QUIT, ERASE, KILL, EOF,
EOL, SUSP, STOP and START characters can be changed as follows:

struct termios term;
term.c_cc[VINTR] = ‘a’;
term.c_cc[VQUIT] = ‘b’;
term.c_cc[VERASE] = ‘c¢’;
term.c_cc[VKILL] = ‘d’;
term.c_cc[VEOF] = ‘e’;
term.c_cc[VEOL] = ‘f’;
term.c_cc[VSUSP] = ‘g’;
term.c_cc[VSTOP] = ‘h’;
term.c_cc[VSTART] = ‘i’;

wherea, b, c,d, e, f, g, h and i are the INTR, QUIT, ERASE, KILL, EOF, EOL, SUSP,
STOP and START characters respectively.

Implementations which prohibit changing the START and STOP characters may
ignore the character values in the c_cc array indexed by the VSTART and VSTOP
subscripts when tcsetattr() is called, but return the character value when
tcsetattr() is called [see tesetattr(2)].

If _POSIX_VDISABLE is defined for the terminal-device-file, and the value of one of
the changeable special control-characters equals _POSIX VDISABLE, that function
is disabled; that is, the special character is ignored on input and is not recognized
[see “Special Characters”” below]. If ICANON is clear, the value of
_POSIX_VDISABLE lacks any special meaning for the VMIN and VTIME entries of the
c_cc array.

Introduction 5-5

Opening a Terminal Device File

When a terminal-device-file is opened, it normally causes the process to wait until
a connection is established. In practice, application-programs seldom open such
files; instead, at system-initialization time special-programs open terminal-device-
files as the standard input, standard output and standard error files [see stdio(4)].

Opening a terminal-device-file with the flag O_NONBLOCK clear on the open()
system-call causes the process to block until the terminal-device is ready and
available [see open(2)]. The flag CLOCAL can also affect the open() system-call [see
“Control Modes” in termios(7)].

Input Processing and Reading Data

A terminal-device accessed through an open terminal-device-file ordinarily
operates in full-duplex mode. This means data may arrive at any time, even while
output is occurring. Each terminal-device-file has associated with it an input-
queue, into which the system stores incoming data before the process reads that
data. The system imposes a limit of MAX INPUT, the maximum allowable number
of bytes of input data, on the number of bytes of data that it stores in the input-
queue. Data is lost only when the input-queue becomes completely full, or when
an input line exceeds MAX_INPUT. The behavior of the system when this limit is
exceeded is implementation-dependent.

In UNIX System V, if the data in the terminal-device-file input-queue exceeds
MAX_INPUT and IMAXBEL is clear, all the bytes of data saved up to that point are
discarded without any notice, but if IMAXBEL is set and the data in the terminal-
device-file input-queue exceeds MAX INPUT, the ASCII BEL character is echoed.
Further input is not stored, and any data already present in the input-queue
remains undisturbed.

Two general kinds of input processing are available, determined by whether the
terminal-device-file is operating in canonical mode or non-canonical mode. These
modes are described in ““Canonical Mode Input Processing” and ““Non-Canonical
Mode Input Processing”. Additionally, input is processed according to the
c_iflagand c_1flag fields [see “Input Modes”” and “Local Modes” in ter-
mios(7)]. Such processing can include echoing, which in general means transmit-
ting input data bytes immediately back to the terminal when they are received
from the terminal. This is useful for terminals that can operate in full-duplex
mode.

5-6 Terminal Device Control

The way a process reading from a terminal-device-file gets data depends on
whether the terminal-device-file is operating in canonical mode or non-canonical
mode. How read() operates on a terminal-device-file also depends on how open()
or fentl() set the flag O_NONBLOCK for the file [see open(2) and fcnt1(2)]:

If O_NONBLOCK and O_NDELAY are clear,
read() blocks until data is available or a signal
interrupts the read() operation.

If 0O_NONBLOCK is set, read() completes, without blocking, in one of the fol-
lowing three ways:

1. If enough bytes of data are available to satisfy the entire request,
read() completes successfully and returns the number of bytes it
transferred.

2. If too few bytes of data are available to satisfy the entire request,
read() completes successfully, having transferred as much data as it
could, and returns the number of bytes it actually transferred.

3. If no data is available, read() returns -1 and errno equals EAGAIN.

When data become available depends on whether the input-processing mode is
canonical or non-canonical. The following sections, ““Canonical Mode Input Pro-
cessing”” and ““Non-Canonical Mode Input Processing’’, describe each of these
input-processing modes.

Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines.
A line is delimited by the new-line (" \n’) character, end-of-file (EOF) character or
end-of-line (EOL) character [see “Special Characters” below for more information
on EOF and EOL].

Processing terminal input in units of lines means that a program attempting a
read() from a terminal-device-file is suspended until an entire line is typed, or a
signal is received. Also, no matter how many bytes of data a read() may request
from a terminal-device-file, it transfers at most one line of input. It is not, how-
ever, necessary to read the entire line at once; a read() may request any number of
bytes of data, even one, without losing any data remaining in the line of input.

If MAX CANON is defined for this terminal-device, it is a limit on the number of
bytes in a line. The behavior of the system when this limit is exceeded is
implementation-dependent. If MAX CANON is not defined for this terminal-device,
there is no such limit [see ““Pathname Variable Values”].

Introduction 5-7

It should be noted that there is a possible inherent deadlock if the program and
the implementation conflict on the value of MAX_CANON. With both ICANON and
IXOFF set when more than MAX_CANON characters transmitted without a line-feed,
transmission is stopped, the line-feed (or carriage-return if ICRLF is set) never
arrives, and the read() is never satisfied.

A program should never set IXOFF if it is using canonical-mode unless it knows
that (even in the face of a transmission error) the conditions described previously
cannot be met or unless it is prepared to deal with the possible deadlock in some
other way, such as time-outs.

This would only occur if the transmitting side was a communications device
NoTE | (i.e. an asyncronous port). This normally will not happen since the transmit-
ting side is a user at a terminal.

It should also be noted that this can be made to happen in non-canonical-mode if
the number of characters received that would cause IXOFF to be sent is less than
VMIN when VTIME equals zero.

In UNIX System V, if the data in the line-discipline buffer exceeds MAX_CANON in
canonical mode and IMAXBEL is clear, all the bytes of data saved in the buffer up to
that point are discarded without any notice, but if IMAXBEL is set and the data in
the line-discipline buffer exceeds MAX_INPUT, the ASCII BEL character is echoed.
Further input is not stored, and any data already present in the input-queue
remains undisturbed.

During input, erase and kill processing occurs whenever either of two special char-
acters, the ERASE and KILL characters is received [see “Special Characters”]. This
processing affects data in the input-queue that has yet to be delimited by a new-
line, EOF or EOL character. This un-delimited data makes up the current line. The
ERASE character deletes the last character (if any) in the current line; it does not
erase beyond the beginning of the line. The KILL character deletes all data (if any)
in the current line; it optionally outputs a new-line character. The ERASE and KILL
characters have no effect if the current line lacks any data.

Both the ERASE and KILL characters operate on a key-stroke basis independently
of any backspacing or tabbing. Typically, # is the default ERASE character, and @
is the default KILL character. The ERASE and KILL characters themselves are not
placed in the input-queue.

5-8 Terminal Device Control

Non-Canonical Mode Input Processing

In non-canonical input processing, input bytes are not assembled into lines, and
erase and kill processing does not occur. The values of the MIN and TIME
members of the c_cc array determine how to process any data received.

MIN is the minimum number of bytes of data that a read() should return when it
completes successfully. If MIN exceeds MAX_INPUT, the response to the request is
implementation-defined. In UNIX System V, the maximum value that can be
stored for MIN in c_cc [VMIN] is 256, less than MAX INPUT which equals 512; thus,
the MIN value can never exceed MAX_INPUT. TIME is a read-timer with a 0.10
second granularity used to time-out bursty and short-term data transmissions.
The four possible interactions between MIN and TIME follow:

1. (MIN>0, TIME>0).

Because TIME>0, it serves as an inter-byte timer activated on receipt of the
first byte of data, and reset on receipt of each byte of data. MIN and TIME
interact as follows:

m As soon as a byte of data is received, the inter-byte timer starts
(remember that the timer is reset on receipt of each byte)

m If MIN bytes of data are received before the inter-byte timer
expires, the read() completes successfully.

m If the inter-byte timer expires before MIN bytes of data are
received, the read() transfers any bytes received up until then.

When TIME expires, a read() transfers at least one byte of data because the
inter-byte timer is enabled if and only if a byte of data was received. A pro-
gram using this case must wait for at least one byte of data to be read before
proceeding. In case (MIN>0, TIME>0), a read() blocks until receiving a byte
of data activates MIN and TIME, or a signal interrupts the read(). Thus, the
read() transfers at least one byte of data.

2. (MIN>0, TIME=0).

Because TIME=0, the timer plays no role and only MIN is significant. A
read() completes successfully only on receiving MIN bytes of data (i.e., the
pending read() blocks until MIN bytes of data are received) or a signal
interrupts the read(). Use these values only when the program cannot con-
tinue until a predetermined number of bytes of data are read. A program
using this case to do record-based terminal I/0 may block indefinitely in a
read().

Introduction 5-9

3. (MIN=0, TIME>0).

Because MIN=0, TIME no longer serves as an inter-byte timer, but now
serves as a read-timer activated when a read() is processed (in canon). A
read() completes successfully as soon as any bytes of data are received or
the read-timer expires. A read() does not transfer any bytes of data if the
read-timer expires. If the read-timer does not expire, a read() completes
successfully if and only if some bytes of data are received. In case

(MIN=0, TIME>0), the read() does not block indefinitely waiting for a byte
of data. If no bytes of data are received within TIME*0.10 seconds after the
read() starts, it returns 0 having read no data. If the buffer holds data when
a read() starts, the read-timer starts as if it received data immediately. MIN
and TIME are useful when a program can assume that data is not available
after a TIME interval and other processing can be done before data is avail-
able.

4. (MIN=0, TIME=0).

Without waiting for more bytes of data to be received, a read() returns the
minimum of either the number of bytes of data requested or the number of
bytes of data currently available. In this case, a read() immediately
transfers any bytes of data present, or if no bytes of data are available, it
returns 0 having read no data. In case (MIN=0, TIME=0), read() operates
identically to the O_NDELAY flag in canonical mode.

MIN/TIME interactions serve different purposes and thus do not parallel one
another. In case [2]: (MIN>0, TIME=0), TIME lacks effect, but with the conditions
reversed in case [3]: (MIN=0, TIME>0), both MIN and TIME play a role in that
receiving a single byte satisfies the MIN criteria. Furthermore, in case [3]:
(MIN=0, TIME>0), TIME represents a read-timer, while in case [1]:

(MIN>0, TIME>0), TIME represents an inter-byte timer,

Cases [1] and [2], where MIN >0, handle burst mode activity (e.g., file-transfers),
where programs need to process at least MIN bytes of data at a time. In case [1],
the inter-byte timer acts as a safety measure; in case [2], the timer is turned off.

Cases [3] and [4] handle single byte, timed transfers like those used by screen-
based programs that need to know if a byte of data is present in the input-queue
before refreshing the screen. In case [3], the read() is timed, while in case [4], it is
not.

One should also note that MIN is always just a minimum, and does not define a
record length. Thus, if a program tries a read() of 20 bytes when 25 bytes of data
are present and MIN is 10, the read() returns 20 bytes of data. In the special case
of MIN=0, this still applies: if more than one byte of data is available, all data is
returned immediately.

5-10 Terminal Device Control

Writing Data and Output Processing

When a process writes data onto a terminal-device-file, c_oflag controls how to
process those bytes [see “Output Modes” in termios(7)]. UNIX System V pro-
vides buffering such that a call to write() schedules data for transfer to the device,
but has not necessarily completed the transfer when the call returns [see write(2)
for the effects of O_NONBLOCK on write()].

Closing a Terminal Device File

The last process to close a terminal-device-file causes any output remaining to be
sent to the device and any input remaining to be discarded. Following these
actions, if the flag HUPCL is set in the control-modes and the communication-port
supports a disconnect function, the terminal-device does a disconnect.

Because the POSIX.1 standard is silent on whether a close() blocks waiting for
transmission to drain, or even if a close() might flush any pending output, a pro-
gram concerned about how data in terminal input and output-queues are handled
should call the appropriate functions such as tedrain() to ensure the desired
behavior [see close(2) and tcdrain(2)].

Introduction 5-11

Special Characters

Certain characters have special functions on input or output or both. These func-
tions and their typical default character values are summarized below:

INTR

QUIT

ERASE

KILL

EOF

5-12

(typically, rubout or ASCII DEL) sends an interrupt signal, SIGINT,
to all processes in the foreground process-group for which the ter-
minal is the controlling-terminal. Receiving the signal SIGINT
normally forces a process to terminate, but a process may arrange
to ignore the signal or to call a signal-catching function [see
sigaction(2)].

If ISTGis set, the INTR character is recognized and acts as a spe-
cial character on input and is discarded when processed [see
“Local Modes” in termios(7)].

(typically, control-\ or ASCII FS) sends a quit signal, SIGQUIT, to
all processes in the foreground process-group for which the termi-
nal is the controlling-terminal. Receiving the signal SIGQUIT nor-
mally forces a process to terminate just as the signal SIGINT does
except that, unless a receiving process makes other arrangements,
it not only terminates but a core image file (called CORE) will be
created in the current working directory of the process [see
sigaction(2)].

If ISIG is set, the QUIT character is recognized and acts as a spe-
cial character on input and is discarded when processed [see
“Local Modes” in termios(7)].

(typically, the character #) erases the most recently input character
in the current line [see “’Canonical Mode Input Processing”]. It
does not erase beyond the start of a line.

If ICANON is set, the ERASE character is recognized and acts as a
special character on input and is discarded when processed [see
“Local Modes” in termios(7)].

(typically, the character @) deletes the entire line, as delimited by
an EOF, EOL or NL character.

If ICANON is set, the KILL character is recognized and acts as a spe-
cial character on input and is discarded when processed [see
“Local Modes”<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>