
, , PRO G· R A ~ M MIN G
- - " '.. -

PROGRAMMING
WITH UNIX
SYSTEM CALLS
UNIX® SVR4.2

.~ • UNIX
PRESS

PROGRAMMING
WITH UNIX
SYSTEM CALLS

UNIX SVR4.2

• ~ UNIX
Press

Copyright © 1992,1991 UNIX System laboratories, Inc.
Copyright © 1990,1989,1988,1987,1986,1985,1984 AT&T
All Rights Reserved
Printed In USA

Published by Prentice-Hail, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any rneans-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions, whether
such errors, omissions, or statements result from negligence, accident, or any other cause. USL furth­
er assumes no liability arising out of the application or use of any product or system described herein;
nor any liability for incidental or consequential damages arising from the use of this document. USL
disclaims all warranties regarding the Information contained herein, whether expressed, implied
or statutory, including Implied warranties of merchantability or fitness for a particular purpose.
USL makes no representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein imply the grant­
ing of any license to make, use or sell equipment constructed in accordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARK

Intel386 is a registered trademark of Intel Corporation.
OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
X Window System is a trademark of the Massachusetts Institute of Technology.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-017674-5

UNIX
PRESS

A Prentice Hall Title

PRENTICE HALL

ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4.2 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4.2 documentation, please
call (515) 284-6761.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales Department
PTR Prentice Hall
113 Sylvan Avenue
Englewood Cliffs, N.J. 07632

or

Phone: (201) 592-2863
FAX: (201) 592-2249

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 461-7107.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

1 Introduction
Introduction 1-1
Application Programming in the UNIX System Environment 1-7
UNIX System Calls and Libraries 1-16

2 UNIX System Calls and Libraries
Introduction 2-1
Libraries and Header Files 2-2
System Calls 2-26

3 File and Device Input/Output
Introduction 3-1
Input/Output System Calls 3-2
File and Record Locking 3-11
Basic STREAMS Operations 3-26
Benefits of STREAMS 3-29
STREAMS Mechanism 3-34

4 Process Management
Introduction 4-1
Program Execution & Process Creation 4-3
Timer Operations 4-11
Process Scheduling 4-12
Memory Management 4-43

Table of Contents

5

6

7

8

ii

Terminal Device Control
Introduction
STREAMS-Based Terminal Subsystem
STREAMS-based Pseudo-Terminal Subsystem

Internationalization
Introduction
Locales
Character Representation
Cultural and Language Conventions
Message Handling
kbd
Internationalization Facilities

Directory and File Management
Introduction
Structure of the File System
Symbolic Links
Summary of UNIX System Files & Directories
File Access Controls
Security Considerations

Signals, Job Control and Pipes
I ntrod uction
Signals
Job Control and Session Management
Basic Interprocess Communication - Pipes
STREAMS-Based Pipes and FIFOs

5-1
5-22
5-33

6-1
6-4
6-6
6-18
6-24
6-32
6-34

7-1
7-2
7-14
7-27
7-55
7-66

8-1
8-2
8-15
8-24
8-27

Table of Contents

9

10

A

GL

IN

Interprocess Communication
Introduction
Messages
Semaphores
Shared Memory
IPC Programming Example

STREAMS Polling and Multiplexing
Introduction
STREAMS Input/Output Polling
STREAMS Input/Output Multiplexing
Persistent Links

Guidelines for Writing Trusted Software
Writing Trusted Software
Trust and Security
Writing Trusted Commands
Trusting Shell Scripts
Trusting Public Library Routines
Installing Trusted Commands and Data
Summary

Glossary
Glossary

Index
Index

Table of Contents

9-1
9-3
9-30
9-59
9-82

10-1
10-2
10-10
10-26

A-1
A-4
A-9
A-16
A-19
A-21
A-23

GL-1

IN-1

iii

iv Table of Contents

Figures and Tables

Figure 1-1: A Simple ETI Program
Figure 1-2: Simple Streams
Figure 1-3: STREAMS-based Pipe
Figure 2-1: Excerpt from string(3C) Manual Page
Figure 2-2: How strc:q;> () Is Used in a Program
Figure 2-3: String Operations
Figure 2-4: Classifying 8-Bit Character-Coded Integer Values
Figure 2-5: Converting Characters, Integers, or Strings
Figure 2-6: Standard liD Functions and Macros
Figure 2-7: Math Functions
Figure 2-8: libgen Functions
Figure 2-9: Using argv[l] to Pass a File Name
Figure 2-10: Using Command Line Arguments to Set Flags
Figure 2-11: File and Device liD Functions
Figure 2-12: Terminal Device Control Functions
Figure 2-13: Directory and File System Control Functions
Figure 2-14: Process Management Functions
Figure 2-15: Signal Management Functions
Figure 2-16: Basic Interprocess Communication Functions
Figure 2-17: Advanced Interprocess Communication Functions
Figure 2-18: Memory Management Functions
Figure 2-19: Miscellaneous System Functions
Figure 3-1: simplified version of cp
Figure 3-2: Stream to Communication Driver
Figure 3-3: X.25 Multiplexing Stream
Figure 3-4: Protocol Migration
Figure 3-5: Module Reusability
Figure 3-6: Case Converter Module
Figure 4-1: Process Status
Figure 4-2: Process Primitives
Figure 4-3: Example of fork ()
Figure 4-4: The UNIX System V Release 4 Process Scheduler
Figure 4-5: Process Priorities (Programmer View)
Figure 4-6: What Gets Returned by PC_GETPARMS

Figure 4-7: Process State Transition Diagram

Table of Contents

1-14
1-17
1-18
2-5
2-7
2-9
2-11
2-12
2-13
2-14
2-16
2-24
2-25
2-27
2-27
2-28
2-29
2-30
2-30
2-31
2-31
2-32
3-8
3-27
3-31
3-32
3-33
3-39
4-1
4-5
4-7
4-14
4-17
4-31
4-40

v

Figure 5-1: Improving TTY performance - canonical mode
Figure 5-2: Improving TTY performance - raw mode
Figure 5-3: Improving TTY performance - flow control
Figure 5-4: STREAMS-based Terminal Subsystem
Figure 5-5: Pseudo~tty Subsystem Architecture
Figure 6-1: EUC Code Set Representations
Figure 6-2: EUC and Corresponding 32-bit Wide-character Representation
Figure 6-3: Enhanced Commands
Figure 7-1: A Sample File System
Figure 7-2: Diagram of a Full Path-Name
Figure 7-3: Full Path-Name of the /home/starship Directory
Figure 7-4: Relative Path-Name of the draft Directory
Figure 7-5: Relative Path-Name from starship to outline
Figure 7-6: Example Path-Names
Figure 7-7: File Tree with Symbolic Link
Figure 7-8: Symbolic Links with RFS: Example 1
Figure 7-9: Symbolic Links with RFS: Example 2
Figure 7-10: Directory Tree from root
Figure 7-11: Excerpt from jete/profile
Figure 7-12: Sample /ete/vfstab File
Figure 7-13: File Types
Figure 7-14: Description of Output Produced by the Is -1 Command
Figure 7-15: umask(l) Settings for Different Security Levels
Figure 7-16: File Access Permissions
Figure 7-17: Directory Access Permissions
Figure 7-18: Setting File Privileges
Figure 7-19: Retrieving File Privileges
Figure 7-20: Adding and Clearing Process Privileges
Figure 7-21: Setting Process Privileges Using PUTPRV
Figure 7-22: Retrieving Process Privileges
Figure 8-1: Signal programming example
Figure 8-2: Signal programming example
Figure 8-3: system () - Signal programming example
Figure 8-4: popen ()
Figure 8-5: pelose ()
Figure 8-6: Pushing Modules on a STREAMS-based Pipe
Figure 8-7: Server Sets Up a Pipe
Figure 8-8: Processes X and Y Open lusr/toserv
Figure 9-1: ipe-penn Data Structure
Figure 9-2: Operation Permissions Codes
Figure 9-3: msgget () System Call Example
Figure 9-4: msgetl () System Call Example
Figure 9-5: msgop() System Call Example
Figure 9-6: Operation Permissions Codes
Figure 9-7: semget () System Call Example

5-18
5-19
5-21
5-23
5-34
6-6
6-12
6-36
7-5
7-8
7-9
7-10
7-11
7-13
7-17
7-24
7-25
7-27
7-42
7-44
7-55
7-56
7-59
7-62
7-62
7-71
7-72
7-74
7-75
7-76
8-9
8-10
8-12
8-25
8-26
8-29
8-36
8-37
9-6
9-9
9-12
9-17
9-25
9-37
9-40

vi Table of Contents

Figure 9-8: semctl () System Call Example
Figure 9-9: semop() System Call Example
Figure 9-10: Operation Permissions Codes
Figure 9-11: shmget () System Call Example
Figure 9-12: shmctl () System Call Example
Figure 9-13: shmop() System Call Example
Figure 10-1: Many-to-One Multiplexor
Figure 10-2: One-to-Many Multiplexor
Figure 10-3: Many-to-Many Multiplexor
Figure 10-4: Internet Multiplexing Stream
Figure 10-5: X.25 Multiplexing Stream
Figure 10-6: Protocol Multiplexor
Figure 10-7: Before Link
Figure 10-8: IP Multiplexor after First Link
Figure 10-9: IP Multiplexor
Figure 10-10: TP Multiplexor
Figure 10-11: openO of MUXdriver and Driver1
Figure 10-12: Multiplexor after I_PLINK
Figure 10-13: Other Users Opening a MUXdriver
Figure A-1: Correct Regulation of Access in C Programs
Figure A-2: Correct Use of Privilege in a Shell Script
Figure A-3: Shell Script Using Commands From TFM Database
Table 5-1: Terminal Device Control Functions
Table 5-2: Terminal Device Control Character Array
Table 10-1: siginfo_t Data Available to the Signal Handler

Table of Contents

9-48
9-56
9-64
9-67
9-72
9-79
10-10
10-11
10-11
10-12
10-14
10-16
10-18
10-19
10-20
10-22
10-27
10-28
10-29
A-11
A-17
A-18
5-2
5-4
10-8

vii

1 Introduction

Introduction 1-1
Audience and Prerequisite Knowledge 1-1
Related Books and Documentation 1-2

• UNIX System V Programming Books 1-2
• Reference Manual Set 1-2

The C Connection 1-4
Hardware/Software Dependencies 1-4
Information in the Examples 1-4
Notation Conventions 1-5
Manual Page References 1-5

Application Programming in the UNIX
System Environment 1-7
UNIX System Tools and Languages 1-8

• Facilities Covered and Not Covered in This Guide 1-8
Programming Tools and Languages in the UNIX System

Environment 1-9
• The C Language 1-9
• Shell 1-10
• awk 1-10
• lex 1-11
• yacc 1-11
• m4 1-11
• bc and dc 1 -11

Character User Interfaces 1-12
• cu rses 1 -12
• FMLI 1-12
• ETI 1-13

Graphical User Interfaces 1-15
• XWIN Graphical Windowing System 1-15
• OPEN LOOK Graphical User Interface 1-15

Table of Contents

UNIX System Calls and Libraries 1-16
File and Device Input/Output 1-16

• STREAMS Input/Output 1-16
• File and Record Locking 1-20
• Where to Find More Information 1-21

Memory Management 1-22
• The Memory Mapping Interface 1-22
• Where to Find More Information 1-22

Process Management and Scheduling 1-23
• Where to Find More Information 1-23

Interprocess Communications 1-24
• Where to Find More Information 1-25

Symbolic Links 1-26
• Where to Find More Information 1-27

ii Table of Contents

Introduction

This book, Programming with UNIX System Calls concentrates on how to use the
system services provided by the UNIX operating system kernel. It is designed to
give you information about application programming in a UNIX system environ­
ment. It does not attempt to teach you how to write programs. Rather, it is
intended to supplement texts on programming by concentrating on the other ele­
ments that are part of getting application programs into operation.

Throughout this chapter and the rest of this book, you will find pointers and refer­
ences to other guides and manuals where information is described in detail. In
particular, you will find numerous references to UNIX Software Development Tools
and Programming in Standard C.

UNIX Software Development Tools describes the tools provided in the UNIX System
environment for building, maintaining and packaging programs. Programming in
Standard C describes the C programming environment, libraries, compiler, link
editor and file formats as well as tools for analyzing and debugging C programs.
UNIX Software Development Tools, Programming in Standard C and Programming
with UNIX System Calls are closely connected. Much of the information in these
volumes used to be in the Release 3.2 version of the Programmer's Guide. For
Release 4 of UNIX System V, the information has been made into a series of
guides.

Audience and Prerequisite Knowledge

Programming with UNIX System Calls is intended for the Independent Software
Vendor (ISV) who develops UNIX System software applications to run on
Intel386™ microprocessor-based computer systems.

As the title suggests, we are addressing software developers. No special level of
programming involvement is assumed. We hope the book will be useful to people
who work on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system software,
may find that Programming with UNIX System Calls lacks the depth of information
they need. For them we recommend the Operating System API Reference.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory / file structure is assumed. If you feel shaky about your mastery of these
basic tools, you might want to look over the User's Guide before tackling this one.

Introduction 1-1

Related Books and Documentation

Throughout this book, you will find pointers and references to other guides and
manuals where information is described in more detail. In particular, you will
find references to other programming guides (this document being a part of the
programming guide series) and reference manuals. Both of these document sets
are described below.

UNIX System V Programming Books

The components of UNIX System V include the Graphical User Interface (GUI),
the shell command line interface (CLl), the Application Program Interface (API),
and the Device Driver Interface/Driver Kernel Interface (DDI/DKI). This docu­
ment is part of a series of UNIX System V programming guides which includes
the following:

• Programming in Standard C - Discusses the UNIX system programming
environment and utilities and provides details of the C language, file for­
mats, link editor, libraries, and tools.

• UNIX Software Development Tools - Describes tools for developing and
packaging application software.

• Character User Interface Programming - Provides guidelines on how to
develop a menu and form-based interface that operates on ASCII character
terminals running on UNIX System V Release 4.2.

• Graphical User Interface Programming - Describes how to develop applica­
tion software using the Moolit toolkit, 3D visuals, and mouseless operation.

• Network Programming Interfaces - Describes networking services such as the
Transport Library Interface (TLl), the Remote Procedure Call (RPC) and the
Network Selection facility.

Reference Manual Set

The reference manual set contains manual pages which formally and comprehen­
sively describe features of the UNIX operating system. References to this docu­
mentation can be found throughout this book. Therefore, the reference manual set
is recommended as a companion set to the UNIX System V programming guides.
It is composed of the following text:

1-2

• Command Reference - Describes all user and administrator commands in the
UNIX system.

Introduction

• Operating System API Reference - Describes UNIX system calls and C
language library functions.

• System Files and Devices Reference - Describes file formats, special files
(devices), and miscellaneous system facilities.

• Device Driver Reference - Describes functions used by device driver
software.

Introduction 1·3

The C Connection

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. Nevertheless, the relationship
between the UNIX operating system and C has always been and remains very
close. Most of the code in the UNIX operating system is written in the C language,
and over the years many organizations using the UNIX system have come to use
C for an increasing portion of their application code. Thus, while Programming
with UNIX System Calls is intended to be useful to you no matter what language(s)
you are using, you will find that, unless there is a specific language-dependent
point to be made, the examples assume you are programming in C. Programming
in Standard C gives you detailed information about C language programming in
the UNIX environment.

Hardware/Software Dependencies

Nearly all the text in this book is accurate for any computer running UNIX System
V Release 4.0, with the exception of hardware-specific information such as
addresses.

If you find commands that work a little differently in your UNIX system environ­
ment, it may be because you are running under a different release of the software.
If some commands just don't seem to exist at all, they may be members of pack­
ages not installed on your system. If you do find yourself trying to execute a non­
existent command, talk to the administrators of your system to find out what you
have available.

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly dif­
ferent output. Some displays depend on a particular machine configuration that
may differ from yours. Changes between releases of the UNIX system software
may cause small differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they com­
pile and work as represented. Where code fragments are shown, while we can't
say that they have been compiled, we have attempted to maintain the same stan­
dards of coding accuracy for them.

1-4 Introduction

Notation Conventions

Whenever the text includes examples of output from the computer and/ or com­
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX System V documentation:

• All computer input and output is shown in a constant-width font. Com­
mands that you type in from your terminal are shown in constant-width
type. Text that is printed on your terminal by the computer is shown in
constant-width type.

• Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from the
text that represents computer output or input. Comments that explain the
input or output are shown in the same type font as the rest of the display.
An italic font is used to show substitutable text elements, such as the word
"filename" for example.

• Because you are expected to press the (RETURN) key after entering a com­
mand or menu choice, the (RETURN) key is not explicitly shown in these
cases. If, however, during an interactive session, you are expected to press
(RETURN) without having typed any text, the notation is shown.

• Control characters are shown by the string" CTRL-" followed by the
appropriate character, such as "D" (this is known as "CTRL-D "). To enter
a control character, hold down the key marked /I (CTRL) " (or /I

(CONTROL) ") and press the rn key.

• The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#).

• When the # prompt is used in an example, the command illustrated may be
executed only by root.

Manual Page References

Manual pages are referred to with the function name showing first in constant
width font, followed by the section number appearing in parenthesis in normal
font. For example, the Executable and Linking Format Library (ELF) manual page
appears as elf(3E). Reference manuals are not referred to individually; however,
individual sections are referred to as "Section 3E in the Reference Manuals."

Introduction 1-5

Section (1)

Sections (2), (3)

Sections (4), (5), (7), (8)

Command Reference

Operating System API Reference

System Files and Devices Reference

Note that the Command Reference describes commands appropriate for general
users and system administrators as well as for programmers.

1-6 Introduction

Application Programming in the UNIX System
Environment

This section introduces application programming in a UNIX system environment.
It briefly describes what application programming is and then moves on to a dis­
cussion on UNIX system tools and where you can read about them, and to
languages supported in the UNIX system environment and where you can read
about them.

Programmers working on application programs develop software for the benefit
of other, nonprogramming users. Most large commercial computer applications
involve a team of applications development programmers. They may be employ­
ees of the end-user organization or they may work for a software development
firm. Some of the people working in this environment may be more in the project
management area than working programmers.

Application programming has some of the following characteristics:

• Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in the UNIX Software Development Tools). change requests, track­
ing, and so on.

• Applications must be developed more robustly.

- They must be easy to use, implying character or graphical user
interfaces.

- They must check all incoming data for validity (for example, using
the Data Validation Tools described in UNIX Software Development
Tools).

- They should be able to handle large amounts of data.

• Applications must be easy to install and administer

(see" Application Software Packaging" and "Modifying the sysadm Inter­
face" in UNIX Software Development Tools).

Application Programming 1-7

UNIX System Tools and Languages

Let's clarify the term "UNIX system tools." In simple terms, it means an existing
piece of software used as a component in a new task. In a broader context, the
term is used often to refer to elements of the UNIX system that might also be
called features, utilities, programs, filters, commands, languages, functions, and so
on. It gets confusing because any of the things that might be called by one or
more of these names can be, and often are, used simply as components of the solu­
tion to a programming problem. The chapter's aim is to give you some sense of
the situations in which you use these tools, and how the tools fit together. It refers
you to other chapters in this book or to other documents for more details.

Facilities Covered and Not Covered in This Guide

Programming with UNIX System Calls is about facilities used by application pro­
grams in a UNIX system environment, so let's take a minute to talk about which
tools we mean, which ones are not going to be covered in this book, and where
you might find information about those not covered here. Actually, the subject of
things not covered in Programming with UNIX System Calls might be even more
important to you than the things that are. We couldn't possibly cover everything
you ever need to know about UNIX system tools in this one volume.

Tools not covered in this text:

• the login procedure

• UNIX system editors and how to use them

• how the file system is organized and how you move around in it

• shell programming

Information about these subjects can be found in the User's Guide and a number of
commercially available texts.

Tools that are covered in this text apply to application software development.
This text also covers tools for packaging application and device driver software
and for customizing the administrative interface.

1-8 Introduction

Programming Tools and Languages in the UNIX
System Environment

In this section we describe a variety of programming tools supported in the UNIX
system environment. By "programming tools" we mean those offered for use on
a computer running a current release of UNIX System V. Since these are
separately purchasable items, not all of them will necessarily be installed on your
machine. On the other hand, you may have programming tools and languages
available on your machine that came from another source and are not mentioned
in this discussion.

The C Language

C is intimately associated with the UNIX system since it was originally developed
for use in recoding the UNIX system kernel. If you need to use a lot of UNIX sys­
tem function calls for low-level I/O, memory or device management, or interpro­
cess communication, C is a logical first choice. Most programs, however, don't
require such direct interfaces with the operating system, so the decision to choose
C might better be based on one or more of the following characteristics:

• a variety of data types: characters, integers of various sizes, and floating
point numbers

• low-level constructs (most of the UNIX system kernel is written in C)

• derived data types such as arrays, functions, pointers, structures, and
unions

• multidimensional arrays

• scaled pointers and the ability to do pointer arithmetic

• bitwise operators

• a variety of flow-of-control statements: if, if-else, switch, while, do­
while, and for

• a high degree of portability

Refer to the Programming in Standard C for complete details on C.

It takes fairly concentrated use of the C language over a period of several months
to reach your full potential as a C programmer. If you are a casual programmer,
you might make it easier for yourself if you choose a less demanding program­
ming facility such as those described below.

Application Programming 1-9

Shell

You can use the shell to create programs (new commands). Such programs are
also called shell procedures. Refer to the UNIX Software Development Tools for
information on how to create and execute shell programs using commands, vari­
ables, positional parameters, return codes, and basic programming control struc­
tures.

awk
The awk program (its name is an acronym constructed from the initials of its
developers) scans an input file for lines that match pattern(s) described in a
specification file. Upon finding a line that matches a pattern, awk performs actions
also described in the specification. It is not uncommon that an awk program can
be written in a couple of lines to do functions that would take a couple of pages to
describe in a programming language like FORTRAN or C. For example, consider
a case where you have a set of records that consist of a key field and a second field
that represents a quantity, and the task is to output the sum of the quantities for
each key. The pseudocode for such a program might look like this:

SORT RECORDS

Read the first record into a hold area;
Read additional records until EOF;
{

If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;

If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

At EOF, write out the last record fran the hold area.

An awk program to accomplish this task would look like this:

{ qty[$l] += $2 }
END {for (key in qty) print key, qty [key] }

This illustrates only one characteristic of awk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a requirement
of the pseudoprogram.

For detailed information on awk, see the 1/ awk Tutorial" chapter in the UNIX
Software Development Tools and aWk(l) in the Command Reference.

1-10 Introduction

lex
lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical
analyzer is interested in the vocabulary of a language rather than its grammar,
which is a system of rules defining the structure of a language. lex can produce C
language subroutines that recognize regular expressions specified by the user,
take some action when a regular expression is recognized, and pass the output
stream on to the next program.

For detailed information on lex, see the "lex" chapter in the UNIX Software
Development Tools and lex(l) in the Command Reference.

yaee
yaee (Yet Another Compiler Compiler) is a tool for describing an input language
to a computer program. yaee produces a C language subroutine that parses an
input stream according to rules laid down in a specification file. The yaee
specification file establishes a set of grammatical rules together with actions to be
taken when tokens in the input match the rules. lex may be used with yaee to
control the input process and pass tokens to the parser that applies the grammati­
cal rules.

For detailed information on yaee, see the "yaee" chapter in UNIX Software
Development Tools and yaee(l) in the Command Reference.

m4
m4 is a macro processor that can be used as a preprocessor for assembly language
and C programs. For details, see the "m4" chapter of Programming in Standard C
andm4(1) in the Command Reference.

be and de
be enables you to use a computer terminal as you would a programmable calcula­
tor. You can edit a file of mathematical computations and call be to execute them.
The be program uses de. You can use de directly, if you want, but it takes a little
getting used to since it works with reverse Polish notation. be and de are
described in Section 1 of the Command Reference.

Application Programming 1-11

Character User Interfaces

curses
Actually a library of C functions, curses is included in this list because the set of
functions comprise a sublanguage for dealing with terminal screens. If you are
writing programs that include interactive user screens, you will want to become
familiar with this group of functions.

For detailed information on curses, see the Character User Interface Programming

FMLI
The Form and Menu Language Interpreter (FMLI) is a high-level programming
tool having two main parts:

• The Form and Menu Language, a programming language for writing scripts
that define how an application will be presented to users. The syntax of the
Form and Menu Language is very similar to that of the UNIX system shell
programming language, including variable setting and evaluation, built-in
commands and functions, use of and escape from special characters, redirec­
tion of input and output, conditional statements, interrupt signal handling,
and the ability to set various terminal attributes. The Form and Menu
Language also includes sets of "descriptors," which are used to define or
customize attributes of frames and other objects in your application.

• The Form and Menu Language Interpreter, fmli, which is a command inter­
preter that sets up and controls the video display screen on a terminal, using
instructions from your scripts to supplement FMLI's predefined screen con­
trol mechanisms. FMLI scripts can also invoke UNIX system commands
and C executables, either in the background or in full screen mode. The
Form and Menu Language Interpreter operates similarly to the UNIX com­
mand interpreter sh. At run time it parses the scripts you have written,
thus giving you the advantages of quick prototyping and easy maintenance.

FMLI provides a framework for developers to write applications and application
interfaces that use menus and forms. It controls many aspects of screen manage­
ment for you. This means that you do not have to be concerned with the low-level
details of creating or placing frames, providing users with a means of navigating
between or within frames, or processing the use of forms and menus. Nor do you
need to worry about on which kind of terminal your application will be run.
FMLI takes care of all that for you.

1-12 I ntrod uction

For details see the FMLI chapter in the Character User Interface Programming

ETI

The Extended Terminal Interface (ETI) is a set of C library routines that promote
the development of application programs displaying and manipulating windows,
panels, menus, and forms and that run under the UNIX system. ETI consists of

• the low-level (curses) library

• the panel library

• the menu library

• the fonnlibrary

• the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the
standard C library. For example, there's a routine printw() that behaves much
like printf () and another routine getch () that behaves like getc (). The
automatic teller program at your bank might use printw() to print its menus and
getch() to accept your requests for withdrawals (or, better yet, deposits). A
visual screen editor like the UNIX system screen editor vi might also use these
and other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes the
amount a cursor has to move around a screen to update it. For example, if you
designed a screen editor program with ETI routines and edited the sentence

ETI is a great package for creating fonne and menus.

to read

ETI is the best package for creating fonne and menus.

the program would change only" the best" in place of" a great fl. The other
characters would be preserved. Because the amount of data transmitted-the
output-is minimized, cursor optimization is also referred to as output
optimization.

Cursor optimization takes care of updating the screen in a manner appropriate for
the terminal on which an ETI program is run. This means that ETI can do what­
ever is required to update many different terminal types. It searches the ter­
minfo database to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs? First,
it saves you time in describing in a program how you want to update screens.
Second, it saves a user's time when the screen is updated. Third, it reduces the
load on your UNIX system's communication lines when the updating takes place.

Application Programming 1-13

Fourth, you don't have to worry about the myriad of terminals on which your
program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to move a cur­
sor to the middle of a terminal screen and print the character string BullsEye.
For now, just look at their names and you will get an idea of what each of them
does:

Figure 1-1: A Simple ETI Program

#inc1ude <curses.h>

main 0
(

initscrO;

move (LINES/2 - 1, COLS/2 - 4);
addstr("Bu11s");
refresh 0 ;
addstr(IIEyeIl) ;

refreshO;
endwinO;

For complete information on ETI, refer to the ETI chapter in the Character User
Interface Programming.

1-14 Introduction

Graphical User Interfaces

XWIN Graphical Windowing System

The XWIN Graphical Windowing System is a network-transparent window sys­
tem. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output
requests from various application programs (referred to as "clients"). Each client
is located on either the same machine or on another machine in the network.

The clients use xlib, a C library routine, to interface with the window system by
means of a stream connection.

"Widgets" are a set of code and data that provide the look and feel of a user inter­
face. The C library routines used for creating and managing widgets are called the
X Intrinsics. They are built on top of the X Window System, monitor events related
to user interactions, and dispatch the correct widget code to handle the display.
Widgets can then call application-registered routines (called callbacks) to handle
the specific application semantics of an interaction. The X Intrinsics also monitor
application-registered, nongraphical events and dispatch application routines to
handle them. These features allow programmers to use this implementation of an
OPEN LOOK toolkit in data base management, network management, process
control, and other applications requiring response to external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of widgets
in addition to xlib. Refer to the "XWIN Graphical Windowing System" chapter
of the Graphical User Interface Programming guide for general information about the
designofX.

OPEN LOOK Graphical User Interface

The OPEN LOOK Graphical User Interface is a software application that creates a
user-friendly graphical environment for the UNIX system. It replaces the tradi­
tional UNIX system commands with graphics that include windows, menus, icons,
and other symbols. Using a hand-held pointing device (a "mouse"), you manipu­
late windows by moving them, changing their size and running them in the back­
ground. You can have multiple applications running at the same time by creating
more than one window on your screen.

For more information, refer to the Graphical User Interface Programming guide.

Application Programming 1-15

UNIX System Calls and Libraries

This section describes the UNIX system services supplied by UNIX system calls
and libraries for the C programming language. It introduces such topics as the
process scheduler, virtual memory, interprocess communication, file and record
locking, and symbolic links. The system calls and libraries that programs use to
access these UNIX system services are described in detail later in this book.

File and Device Input/Output

UNIX system applications can do all I/O by reading or writing files, because all
I/O devices, even a user's terminal, are files in the file-system. Each peripheral
device has an entry in the file-system hierarchy, so that deviCe-names have the
same structure as file-names, and the same protection mechanisms apply to
devices as to files. Using the same I/O calls on a terminal as on any file makes it
easy to redirect the input and output of commands from the terminal to another
file. Besides the traditionally available devices, names exist for disk devices
regarded as physical units outside the file-system, and for absolutely addressed
memory.

STREAMS Input/Output

STREAMS is a general, flexible facility and a set of tools for development of UNIX
system communication services. It supports the implementation of services rang­
ing from complete networking protocol suites to individual device drivers.
STREAMS defines standard interfaces for character input/ output within the ker­
nel, and between the kernel and the rest of the UNIX system. The associated
mechanism is simple and open-ended. It consists of a set of system calls, kernel
resources, and kernel routines.

The standard interface and mechanism enable modular, portable development
and easy integration of high-performance network services and their components.
STREAMS does not impose any specific network architecture. The STREAMS
user interface is upwardly compatible with the character I/O user level functions
such as open () , close () , read () , wri te () , and ioctl (). Benefits of STREAMS
are discussed in more detail later in this chapter.

A "Stream" is a full-duplex processing and data transfer path between a
STREAMS driver in kernel space and a process in user space.

1·16 Introduction

Figure 1-2: Simple Streams

User Process

User Space

- - - -- - - - --

downstream
Kernel Space

j
Stream Head

Module
(optional)

Driver 1
upstream

External Interface

In the kernel, a Stream is constructed by linking a Stream head, a driver, and zero
or more modules between the Stream head and driver. The "Stream head" is the
end of the Stream nearest to the user process. All system calls made by a user
level process on a Stream are processed by the Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe is a full-duplex (bidirec­
tional) data transfer path in the kernel. It implements a connection between the
kernel and one or more user processes and also shares properties of STREAMS­
based devices.

UNIX System Services 1-17

Figure 1-3: STREAMS-based Pipe

User Process

User

A STREAMS driver may be a device driver that provides the services of an exter­
nal I/O device, or a software driver, commonly referred to as a pseudo-device
driver. The driver typically handles data transfer between the kernel and the
device and does little or no processing of data other than conversion between data
structures used by the STREAMS mechanism and data structures that the device
understands.

A STREAMS module represents processing functions to be performed on data
flowing on the Stream. The module is a defined set of kernel-level routines and
data structures used to process data, status, and control information. Data pro­
cessing may involve changing the way the data is represented, adding/ deleting
header and trailer information to data, and/or packetizing/ depacketizing data.
Status and control information includes signals and input/ output control informa­
tion.

1·18 Introduction

Each module is self-contained and functionally isolated from any other com­
ponent in the Stream except its two neighboring components. The module com­
municates with its neighbors by passing messages. The module is not a required
component in STREAMS, whereas the driver is, except in a STREAMS-based pipe
where only the Stream head is required.

One or more modules may be inserted into a Stream between the Stream head and
driver to perform intermediate processing of messages as they pass between the
Stream head and driver. STREAMS modules are dynamically interconnected in a
Stream by a user process. No kernel programming, assembly, or link editing is
required to create the interconnection.

STREAMS uses queue structures to keep information about given instances of a
pushed module or opened STREAMS device. A queue is a data structure that con­
tains status information, a pointer to routines for processing messages, and
pointers for administering the Stream. Queues are always allocated in pairs; one
queue for the read-side and the other for the write-side. There is one queue pair
for each driver and module, and the Stream head. The pair of queues is allocated
whenever the Stream is opened or the module is pushed (added) onto the Stream.

Data is passed between a driver and the Stream head and between modules in the
form of messages. A message is a set of data structures used to pass data, status,
and control information between user processes, modules, and drivers. Messages
that are passed from the Stream head toward the driver or from the process to the
device, are said to travel downstream (also called write-side). Similarly, messages
passed in the other direction, from the device to the process or from the driver to
the Stream head, travel upstream (also called read-side).

A STREAMS message is made up of one or more message blocks. Each block con­
sists of a header, a data block, and a data buffer. The Stream head transfers data
between the data space of a user process and STREAMS kernel data space. Data
to be sent to a driver from a user process is packaged into STREAMS messages
and passed downstream. When a message containing data arrives at the Stream
head from downstream, the message is processed by the Stream head, which
copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain message
types sent upstream may cause the Stream head to perform specific actions, such
as sending a signal to a user process. Other message types are intended to carry
information within a Stream and are not directly seen by a user process.

UNIX System Services 1-19

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent the
sort of error that can occur when two or more users of a file try to update informa­
tion at the same time. The classic example is the airlines reservation system where
two ticket agents each assign a passenger to Seat A, Row 5 on the 5 o'clock flight
to Detroit. A locking mechanism is designed to prevent such mishaps by blocking
Agent B from even seeing the seat assignment file until Agent A's transaction is
complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified por­
tion of the file is locked. (Remember, in the UNIX system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places a
read lock on a file, other processes can also read the file but all are prevented from
writing to it, that is, changing any of the data. If a process places a write lock on a
file, no other processes can read or write in the file until the lock is removed.
Write locks are also known as exclusive locks. The term shared lock is sometimes
applied to read locks.

Another distinction needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the sys­
tem calls that read, write, or create files. This is done through a permission flag
established by the file's owner (or the superuser). Advisory locking means that
the processes that use the file take the responsibility for setting and removing
locks as needed. Thus, mandatory may sound like a simpler and better deal, but it
isn't so. The mandatory locking capability is included in the system to comply
with an agreement with /usr/group, an organization that represents the interests
of UNIX system users. The principal weakness in the mandatory method is that
the lock is in place only while the single system call is being made. It is extremely
common for a single transaction to require a series of reads and writes before it
can be considered complete. In cases like this, the term atomic is used to describe
a transaction that must be viewed as an indivisible unit. The preferred way to
manage locking in such a circumstance is to make certain the lock is in place
before any I/O starts, and that it is not removed until the transaction is done.
That calls for locking of the advisory variety.

1-20 Introduction

Where to Find More Information

Chapter 3 in this book discusses file and device I/O including file and record lock­
ing in detail with a number of examples. There is an example of file and record
locking in the sample application in Chapter 2. The manual pages that specifically
address file and record locking are fcntl(2), lockf(3) and clnnod(2) in the Operat­
ing System API Reference and fcnt1(5) in the System Files and Devices Reference.
fcnt1(2) describes the system call for file and record locking (although it isn't
limited to that only) fcntl(5) tells you the file control options. The subroutine
lockf(3) can also be used to lock sections of a file or an entire file. Setting clnnod
so that all portions of a file are locked will ensure that parts of files are not
corrupted.

UNIX System Services 1-21

Memory Management

The UNIX system includes a complete set of memory-mapping mechanisms. Pro­
cess address spaces are composed of a vector of memory pages, each of which can
be independently mapped and manipulated. The memory-management facilities

• unify the system's operations on memory

• provide a set of kernel mechanisms powerful and general enough to sup­
port the implementation of fundamental system services without special­
purpose kernel support

• maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects

The system's virtual memory consists of all available physical memory resources
including local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual memory are refer­
enced though the UNIX file system. However, not all file system objects are in the
virtual memory; devices that the UNIX system cannot treat as storage, such as ter­
minal and network device files, are not in the virtual memory. Some virtual
memory objects, such as private process memory and shared memory segments,
do not have names.

The Memory Mapping Interface

The applications programmer gains access to the facilities of the virtual memory
system through several sets of system calls.

• mmap () establishes a mapping between a process's address space and a
virtual memory object.

• mprotect () assigns access protection to a block of virtual memory

• munmap () removes a memory mapping

• getpagesize () returns the system-dependent size of a memory page.

• mincore () tells whether mapped memory pages are in primary memory

Where to Find More Information

Chapter 4 in this book gives a detailed description of the virtual memory system.
Refer to mmap(2), mprotect(2), munmap(2), getpagesize(2) and mincore(2) in the
Operating System API Reference for these manual pages.

1-22 Introduction

Process Management and Scheduling

The UNIX system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user requests;
it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy adjusts
process priorities dynamically in an attempt to give good response time to interac­
tive processes and good throughput to CPU-intensive processes.

The scheduler offers a real-time scheduling policy as well as a time-sharing policy.
Real-time scheduling allows users to set fixed priorities- priorities that the sys­
tem does not change. The highest priority real-time user process always gets the
CPU as soon as it is runnable, even if system processes are runnable. An applica­
tion can therefore specify the exact order in which processes run. An application
may also be written so that its real-time processes have a guaranteed response
time from the system.

For most UNIX system environments, the default scheduler configuration works
well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of their
processes. However, for some applications with strict timing constraints,
real-time processes are the only way to guarantee that the application's require­
ments are met.

Where to Find More Information

Chapter 4 in this book gives detailed information on the process scheduler, along
with relevant code examples. See also priocntl(l) in the Command Reference,
priocnt1(2) in the Operating System API Reference, and dispadmin(lM) in the
Command Reference.

UNIX System Services 1-23

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
Business applications running on a UNIX system computer, however, often need
more sophisticated methods of communication. In applications, for example,
where fast response is critical, a number of processes may be brought up at the
start of a business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation example
again for a moment, if a customer calls to reserve a seat on the 5 o'clock flight to
Detroit, you don't want to have to say, "Yes, sir; just hang on a minute while I
start up the reservations program." In transaction-driven systems, the normal
mode of processing is to have all the components of the application standing by
waiting for some sort of an indication that there is work to do.

To meet requirements of this type, the UNIX system offers a set of nine system
calls and their accompanying header files, all under the umbrella name of inter­
process communications (IPC).

The IPC system calls come in sets of three; one set each for messages, semaphores,
and shared memory. These three terms define three different styles of communi­
cation between processes:

messages

semaphores

shared memory

1-24

Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con­
tained in an array the size of which is determined by the
system administrator. The default maximum size for the
array is 25.

Communication takes place through a common area of
main memory. One or more processes can attach a seg­
ment of memory and as a consequence can share what­
ever data is placed there.

Introduction

The sets of IPC system calls are:

msgget semget
msgctl semctl
msgop semop

shmget
shmctl
shmop

The 1/ get" calls each return to the calling program an identifier for the type of
IPC facility that is being requested.

The 1/ ctl " calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data
structures associated with the identifiers picked up by the 1/ get" calls.

The 1/ op" manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop () has calls
that send or receive messages. semop () (the only one of the three that is actually
the name of a system call) is used to increment or decrement the value of a sema­
phore, among other functions. shmop () has calls that attach or detach shared
memory segments.

Where to Find More Information

Chapter 9 in this book gives a detailed description of IPC, with many code exam­
ples that use the IPC system calls. An example of the use of some IPC features is
included in the liber application in Chapter 9. The system calls are described in
Section 2 of the Operating System API Reference.

UNIX System Services 1-25

Symbolic Links

A symbolic link is a special type of file that represents another file. The data in a
symbolic link consists of the path name of a file or directory to which the symbolic
link file refers. The link that is formed is called symbolic to distinguish it from a
regular (also called a hard) link. A symbolic link differs functionally from a regu­
lar link in three major ways.

• Files from different file systems may be linked.

• Directories, as well as regular files, may be symbolically linked by any user.

• A symbolic link can be created even if the file it represents does not exist.

When a user creates a regular link to a file, a new directory entry is created con­
taining a new file name and the inode number of an existing file. The link count of
the file is incremented.

In contrast, when a user creates a symbolic link, (using the In(l) command with
the -s option) both a new directory entry and a new inode are created. A data
block is allocated to contain the path name of the file to which the symbolic link
refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For example,
it frequently happens that a disk partition (such as root) runs out of disk space.
With symbolic links, an administrator can create a link from a directory on that file
system to a directory on another file system. Such a link provides extra disk space
and is, in most cases, transparent to both users and programs.

Symbolic links can also help deal with the built-in path names that appear in the
code of many commands. Changing the path names would require changing the
programs and recompiling them. With symbolic links, the path names can effec­
tively be changed by making the original files symbolic links that point to new
files.

In a shared resource environment like RFS, symbolic links can be very useful. For
example, if it is important to have a single copy of certain administrative files,
symbolic links can be used to help share them. Symbolic links can also be used to
share resources selectively. Suppose a system administrator wants to do a remote
mount of a directory that contains sharable devices. These devices must be in
/dev on the client system, but this system has devices of its own so the administra­
tor does not want to mount the directory onto /dev. Rather than do this, the
administrator can mount the directory at a location other than /dev and then use
symbolic links in the /dev directory to refer to these remote devices. (This is simi­
lar to the problem of built-in path names since it is normally assumed that devices
reside in the /dev directory.)

1-26 Introduction

Finally, symbolic links can be valuable within the context of the virtual file system
(VFS) architecture. With VFS, new services, such as higher performance files, net­
work IPC, and FACE servers, may be provided on a file system basis. Symbolic
links can be used to link these services to home directories or to places that make
more sense to the application or user. Thus, you might create a data base index
file in a RAM-based file system type and symbolically link it to the place where
the data base server expects it and manages it.

Where to Find More Information

Chapter 7 in this book discusses symbolic links in detail. Refer to symlink(2) in
the Operating System API Reference for information on creating symbolic links. See
also stat(2), rename(2), link(2), readlink(2) and unlink(2) in the same manual,
and In(l) in the Command Reference.

UNIX System Services 1-27

2 UNIX System Calls and Libraries

Introduction

Libraries and Header Files
Header Files
How to Use Library Functions
C Library (Iibe)

• Subsection 3C Routines
• Subsection 3S Routines

Math Library (libm)
General Purpose Library (Iibgen)
Standard I/O Library

• Three Files You Always Have
• Named Files

How C Programs Communicate with the Shell
• Passing Command Line Arguments

System Calls
Input/Output and File System Calls

• File and Device 1/0
• Terminal Device Control
• Directory and File System Control

Process and Memory System Calls
• Processes
• Signals
• Basic Interprocess Communication
• Advanced Interprocess Communication
• Memory Management

Miscellaneous System Calls
UNIX System Call Error Handling

Table of Contents

2-1

2-2
2-2
2-4
2-9
2-9
2-12
2-14
2-16
2-18
2-19
2-19
2-22
2-23

2-26
2-27
2-27
2-27
2-28
2-29
2-29
2-30
2-30
2-31
2-31
2-32
2-33

Introduction

This chapter introduces the system calls and other system services you can use to
develop application programs. Each application performs a different function, but
goes through the same basic steps: input, processing, and output. For the input
and output steps, most applications interact with an end user at a terminal. Dur­
ing the processing step, sometimes an application needs access to special services
provided by the operating system (for example, to interact with the file system,
control processes, manage memory, and more). Some of these services are pro­
vided through system calls and some through libraries of functions.

Introduction 2-1

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/ output, string handling, and
other high-level operations that are not explicitly provided by the C language.
Header files contain definitions and declarations that your program will need if it
calls a library function. They also contain function-like macros that you can use in
your program as you would a function.

In this part, we'll talk a bit more about header files and show you how to use
library functions in your program. We'll also describe the contents of some of the
more important standard libraries, and tell you where to find them in the Operat­
ing System API Reference. We'll close with a brief discussion of standard I/O.

Header Fi les

Header files serve as the interface between your program and the libraries sup­
plied by the C compilation system. Because the functions that perform standard
I/O, for example, very often use the same definitions and declarations, the system
supplies a common interface to the functions in the header file <stdio. h>. By
the same token, if you have definitions or declarations that you want to make
available to several source files, you can create a header file with any editor, store
it in a convenient directory, and include it in your program as described in the
first part of this chapter.

Header files traditionally are designated by the suffix . h, and are brought into a
program at compile time. The preprocessor component of the compiler does this
because it interprets the #include statement in your program as a directive. The
two most commonly used directives are #include and #define. As we have
seen, the # inc 1 ude directive is used to call in and process the contents of the
named file. The #define directive is used to define the replacement token string
for an identifier. For example,

#define NULL 0

defines the macro NULL to have the replacement token sequence O. See the section
on "C Language" , in the Programming in Standard C guide for the complete list of
preprocessing directives.

Many different . h files are named in the Operating System API Reference. Here we
are going to list a number of them, to illustrate the range of tasks you can perform
with header files and library functions. When you use a library function in your
program, the manual page will tell you which header file, if any, needs to be

2-2 UNIX System Calls and Libraries

included. If a header file is mentioned, it should be included before you use any
of the associated functions or declarations in your program. It's generally best to
put the #include right at the top of a source file.

assert. h assertion checking

ctype. h character handling

ermo. h error conditions

float.h floating point limits

limits.h other data type limits

locale. h program's locale

math.h mathematics

setjmp.h nonlocal jumps

signal.h signal handling

stdarg.h variable arguments

stddef.h common definitions

stdio. h standard input/ output

stdlib. h general utilities

string. h string handling

time.h date and time

unistd.h system calls

Libraries and Header Files 2-3

How to Use Library Functions

The manual page for each function describes how you should use the function in
your program. Manual pages follow a common format; although, some manual
pages may omit some sections:

• The NAME section names the component(s) and briefly states its purpose.

• The SYNOPSIS section specifies the C language programming interface(s).

• The DESCRIPTION section details the behavior of the component(s).

• The EXAMPLE section gives examples, caveats and guidance on usage.

• The FILES section gives the file names that are built into the program.

• The SEE ALSO section lists related component interface descriptions.

• The DIAGNOSTICS section outlines return values and error conditions.

The NAME section lists the names of components described in that manual page
with a brief, one-line statement of the nature and purpose of those components.

The SYNOPSIS section summarizes the component interface by compactly
representing the order of any arguments for the component, the type of each argu­
ment (if any) and the type of value the component returns.

The DESCRIPTION section specifies the functionality of components without
stipulating the implementation; it excludes the details of how UNIX System V
implements these components and concentrates on defining the external features
of a standard computing environment instead of the internals of the operating sys­
tem, such as the scheduler or memory manager. Portable software should avoid
using any features or side-effects not explicitly defined.

The SEE ALSO section refers the reader to other related manual pages in The UNIX
System V Reference Manual Set as well as other documents. The SEE ALSO sec­
tion identifies manual pages by the title which appears in the upper corners of
each page of a manual page.

Some manual pages cover several commands, functions or other UNIX System V
components; thus, components defined along with other related components
share the same manual page title. For example, references to the function
callocO cite malloc(3) because the function callocO is described with the
function mallocO in the manual page entitled malloc(3).

2-4 UNIX System Calls and Libraries

As an example manual page, we'll look at the strcmpO function, which compares
character strings. The routine is described on the string manual page in Section
3, Subsection 3C, of the Operating System API Reference. Related functions are
described there as well, but only the sections relevant to strcmpO are shown in
the following figure.

Figure 2-1: Excerpt from string(3C) Manual Page

NAME

SYNOPSIS

string: strcat, strdup, strncat, strcrnp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr I strpbrk, strspn, strcspn, strok - string operations.

#include <string.h>

int strcmp(const char *sptrl, const char *sptr2);

DESCRIPTION

strcmp () compares its arguments and returns an integer less than, equal to, or
greater than 0, according as the first argument is lexicographically less than,
equal to, or greater than the second.

As shown, the DESCRIPTION section tells you what the function or macro does.
It's the SYNOPSIS section, though, that contains the critical information about how
you use the function or macro in your program. Note that the first line in the
SYNOPSIS is

#include <string.h>

That means that you should include the header file <string. h> in your program
because it contains useful definitions or declarations relating to s trcmpO.

Libraries and Header Files 2-5

In fact, <string. h> contains the strcmpO "function prototype" as follows:

extern int strcmp(const char *, const char *);

A function prototype describes the kinds of arguments expected and returned by a
C language function. Function prototypes afford a greater degree of argument
type checking than old-style function declarations, and reduce the chance of using
the function incorrectly. Including <string. h>, assures that the C compiler
checks calls to strcmpO against the official interface. You can, of course, examine
<string. h> in the standard place for header files on your system, usually the
/ us r / inc 1 ude directory.

The SYNOPSIS for a C library function closely resembles the C language declara­
tion of the function and its arguments. The SYNOPSIS tells the reader:

• the type of value returned by the function;

• the arguments the function expects to receive when called, if any;

• the argument types.

For example, the SYNOPSIS for the macro feofO is:

#include <stdio.h>

int feof(FILE *sfP

The SYNOPSIS section for feofO shows that:

• The macro feofO requires the header file <stdio. h>

• The macro feofO returns a value of type int

• The argument sfP is a pointer to an object of type FILE

To use feofO in a program, you need only write the macro call, preceded at some
point by the # incl ude control line, as in the following:

#include <stdio.h> /* include definitions */

main() {
FILE *infile; /* define a file pointer */

while (!feof(infile» { /* until end-of-file */
/* operations on the file */

}

}

2-6 UNIX System Calls and libraries

By way of further illustration, let's look at how you might use strcmpO in your
own code. The following figure shows a program fragment that will find the bird
of your choice in an array of birds.

Figure 2-2: How strcmp () Is Used in a Program

#include <string.h>

/* birds must be in alphabetical order */
char *birds[] = {I'albatross", "canary", ncardinal ", "ostrich", "penguin ll };

/* Return the index of the bird in the array. */
/* If the bird is not in the array. return -1 */

int is_bird(const char *string}

int low, high, midpoint;
int CIrIP_value;

/* use a binary search to find the bird */
low = 0;
high = sizeof(birds}/sizeof(char *} - 1;
while(low <= high}
{

midpoint = (low + high}/2;
cmp_value = strcmp(string. birds[midpoint]);
if (cmp_value < O)

high = midpoint - 1;
else if (crop_value > O)

low == midpoint + 1;

else /* found a match */
return midpoint i

return -1;

Libraries and Header Files 2-7

The format of a SYNOPSIS section only resembles, but does not duplicate, the for­
mat of C language declarations. To show that some components take varying
numbers of arguments, the SYNOPSIS section uses additional conventions not
found in actual C function declarations:

• Text in courier represents source-code typed just as it appears.

• Text in italic usually represents substitutable argument prototypes.

• Square brackets [] around arguments indicate optional arguments.

• Ellipses ... indicate that the previous arguments may repeat.

• If the type of an argument may vary, the SYNOPSIS omits the type.

For example, the SYNOPSIS for the function printfO is:

#include <stdio.h>

int printf (char *fmt [I arg ...])

The SYNOPSIS section for printfO shows that the argument arg is optional, may
be repeated and is not always of the same data type. The DESCRIPTION section of
the manual page provides any remaining information about the function
printfO and the arguments to it.

The DIAGNOSTICS section specifies return values and possible error conditions.
The text in the DIAGNOSTICS takes a conventional form which describes the
return value in case of successful completion followed by the consequences of an
unsuccessful completion, as in the following example:

On success, lseekO returns the value of the resulting file-offset, as
measured in bytes from the beginning of the file.

On failure, 1 seekO returns -1, it does not change the file-offset, and
errno equals:

EBADF if f i 1 des is not a valid open file-descriptor.

EINVAL if whence is not SEEK_SET, SEEK_CUR or SEEK_END.

ESPIPE if fildes denotes a pipe or FIFO.

The <errno . h> header file defines symbolic names for error conditions which are
described in intro(2) of the Operating System API Reference. For more information
on error conditions, see the section entitled "UNIX System Call Error Handling"
in this chapter.

2-8 UNIX System Calls and Libraries

C Library (libc)

In this section, we describe some of the more important routines in the standard C
library. As we indicated in the first part of this chapter, libc contains the system
calls described in Section 2 of the Operating System API Reference, and the C
language functions described in Section 3, Subsections 3C and 3S. We'll explain
what each of these subsections contains below. We'll look at system calls at the
end of the section.

Subsection 3C Routines

Subsection 3C of the Operating System API Reference contains functions and macros
that perform a variety of tasks:

• string manipulation

• character classification

• character conversion

Figure 2-3 lists string-handling functions that appear on the string page in Sub­
section 3C of the Operating System API Reference. Programs that use these func­
tions should include the header file <string. h>.

Figure 2-3: String Operations

strcat

strncat

strcmp

strncmp

Append a copy of one string to the end of another.

Append no more than a given number of characters from one
string to the end of another.

Compare two strings. Returns an integer less than, greater than,
or equal to 0 to show that one is lexicographically less than,
greater than, or equal to the other.

Compare no more than a given number of characters from the
two strings. Results are otherwise identical to strcmpO.

Libraries and Header Files 2-9

Figure 2-3: String Operations (continued)

strcpy

strncpy

strdup

strchr

strrchr

strleIJ.

strpbrk

strspIJ.

strcspIJ.

strstr

strtok

2·10

Copy a string.

Copy a given number of characters from one string to another.
The destination string will be truncated if it is longer than the
given number of characters, or padded with null characters if it
is shorter.

Return a pointer to a newly allocated string that is a duplicate of
a string pointed to.

Return a pointer to the first occurrence of a character in a string,
or a null pointer if the character is not in the string.

Return a pointer to the last occurrence of a character in a string,
or a null pointer if the character is not in the string.

Return the number of characters in a string.

Return a pointer to the first occurrence in one string of any char­
acter from the second, or a null pointer if no character from the
second occurs in the first.

Return the length of the initial segment of one string that con­
sists entirely of characters from the second string.

Return the length of the initial segment of one string that con­
sists entirely of characters not from the second string.

Return a pointer to the first occurrence of the second string in
the first string, or a null pointer if the second string is not found.

Break up the first string into a sequence of tokens, each of which
is delimited by one or more characters from the second string.
Return a pointer to the token, or a null pointer if no token is
found.

UNIX System Calls and Libraries

Figure 2-4 lists functions and macros that classify 8-bit character-coded integer
values. These routines appear on the conv(3C) and ctype(3C) pages in Subsection
3C of the Operating System API Reference. Programs that use these routines should
include the header file <ctype . h>.

Figure 2-4: Classifying a-Bit Character-Coded Integer Values

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

toupper

_toupper

tolower

_to lower

toascii

Is c a letter?

Is c an uppercase letter?

Is c a lowercase letter?

Is c a digit [0-9]?

Is c a hexadecimal digit [0-9], [A-F], or [a-f]?

Is c alphanumeric (a letter or digit)?

Is c a space, horizontal tab, vertical tab, new-line, form-feed, or
carriage return?

Is c a punctuation character (neither control nor alphanumeric)?

Is c a printing character?

Same as isprintO except false for a space.

Is c a control character or a delete character?

Is c an ASCII character?

Change lower case to upper case.

Macro version of toupperO.

Change upper case to lower case.

Macro version of tolowerO.

Turn off all bits that are not part of a standard ASCII character;
intended for compatibility with other systems.

Libraries and Header Files 2-11

Figure 2-5 lists functions and macros in Subsection 3C of the Operating System API
Reference that are used to convert characters, integers, or strings from one
representation to another. The left-hand column contains the name that appears
at the top of the manual page; the other names in the same row are related func­
tions or macros described on the same manual page. Programs that use these rou­
tines should include the header file < s tdl ib . h>.

Figure 2-5: Converting Characters, Integers, or Strings

a64l l64a Convert between long integer and base-64 ASCII
string.

ecvt fevt gcvt Convert floating point number to string.

l3tol ltol3 Convert between 3-byte packed integer and long
integer.

strtod atof Convert string to double-precision number.

strtol atol atoi Convert string to integer.

strtoul Convert string to unsigned long.

Subsection 3S Routines

Subsection 3S of the Operating System API Reference contains the so-called standard
I/O library for C programs. Frequently, one manual page describes several
related functions or macros. In Figure 2-6, the left-hand column contains the name
that appears at the top of the manual page; the other names in the same row are
related functions or macros described on the same manual page. Programs that
use these routines should include the header file <stdio. h>. We'll talk a bit
more about standard I/O in the last subsection of this chapter.

2-12 UNIX System Calls and Libraries

Figure 2-6: Standard I/O Functions and Macros

fclose fflush Close or flush a stream.

ferror feof clearerr fHeno Stream status inquiries.

fopen freopen fdopen Open a stream.

fread fwrite Input/ output.

fseek rewind ftell Reposition a file pointer in a
stream.

getc get char fgetc getw Get a character or word from a
stream.

gets fgets Get a string from a stream.

popen pclose Begin or end a pipe to / from a
process.

printf fprintf sprintf Print formatted output.

putc putchar fputc putw Put a character or word on a
stream.

puts fputs Put a string on a stream.

scanf fscanf sscanf Convert formatted input.

setbuf setvbuf Assign buffering to a stream.

system Issue a command through the
shell.

tmpfHe Create a temporary file.

tmpnam teIli>nam Create a name for a temporary
file.

ungetc Push character back into input
stream.

vprintf vfprintf vsprintf Print formatted output of a
varargs argument list.

Libraries and Header Files 2-13

Math Library (libm)

The math library, 1 ibm, contains the mathematics functions supplied by the C
compilation system. These appear in Subsection 3M of the Operating System API
Reference. Here we describe some of the major functions, organized by the manual
page on which they appear. Note that functions whose names end with the letter
f are single-precision versions, which means that their argument and return types
are float. Programs that use math functions should include the header file
<math.h>.

Figure 2-7: Math Functions

erf(3M)

erf

erfc

exp(3M)

exp expf

cbrt

log logf

loglO loglOf

pow powf

sq:rt sq:rtf

floor(3M)

floor floorf

ceil ceilf

2·14

Compute the error function of x, defined as
x

. ~ =-f e- t2 dt.
'In 0

Compute 1.0 - erf (x), which is used because of
the extreme loss of relative accuracy if erfO is
called for large x and the result subtracted from
1.0 (e.g., for x = 5,12 places are lost).

Compute eX.

Compute the cube root of x.

Compute the natural logarithm of x.
The value of x must be positive.

Compute the base-ten logarithm of x.
The value of x must be positive.

ComputexY•

If x is zero, y must be positive.
If x is negative, y must be an integer.

Compute the non-negative square root of x.
The value of x must be non-negative.

Compute the largest integer not greater than x.

Compute the smallest integer not less than x.

UNIX System Calls and Libraries

Figure 2-7: Math Functions (continued)

copysign Compute x but with the sign of y.

fmod fmodf Compute the floating point remainder of the
division of x by y: x if y is zero, otherwise the
number f with same sign as x, such that x = iy + f
for some integer i, and I f I < I y I .

fabs fabsf Compute I x I , the absolute value of x.

rint Compute as a double-precision floating point
number the integer value nearest the double-
precision floating point argument x, and rounds
the return value according to the currently set
machine rounding mode.

remainder Compute the floating point remainder of the
division of x by y: NaN if y is zero, otherwise the
value r = x - yn, where n is the integer value
nearest the exact value of x/y, and n is even
whenever In - x/y I = 1/2.

gamma (3M)

gamma 19amma Compute In(I r(x) I), where r(x) is defined as
x

f e-ft x - 1 dt.
0

hypot(3M)

hypot Compute sqrt(x * x + y * y), taking precautions
against overflows.

matherr(3M)

matherr Error handling.

trig(3M)

sin sinf Compute the sine of x, measured in radians.

cos cosf Compute the cosine of x, measured in radians.

tan tanf Compute the tangent of x, measured in radians.

asin asinf Compute the arcsine of x, in the range
[-1t/2, +1t/2].

Libraries and Header Files 2-15

Figure 2·7: Math Functions (continued)

acos

atan

atan2

sinh(3M)

sinh

cosh

tanh

asinh

acosh

atanh

acosf

atanf

atan2f

sinhf

coshf

tanhf

Compute the arccosine of x, in the range
[O,+1t].

Compute the arctangent of x, in the range
(-1t/2, +1t/2).

Compute the arctangent of y/x, in the range
(-1t, +1t], using the signs of both arguments to
determine the quadrant of the return value.

Compute the hyperbolic sine of x.

Compute the hyperbolic cosine of x.

Compute the hyperbolic tangent of x.

Compute the inverse hyperbolic sine of x.

Compute the inverse hyperbolic cosine of x.

Compute the inverse hyperbolic tangent of x.

General Purpose Library (libgen)

libgen contains general purpose functions, and functions designed to facilitate
internationalization. These appear in Subsection 3G of the Operating System API
Reference. Figure 2-8 describes functions in 1 ibgen. The header files
< 1 ibgen . h> and, occasionally, <regexp . h> should be included in programs
that use these functions.

Figure 2·8: libgen Functions

advance step

basename

bgets

2·16

Execute a regular expression on a string.

Return a pointer to the last element of a path
name.

Read a specified number of characters into a

UNIX System Calls and Libraries

Figure 2-8: libgen Functions (continued)

bufsplit

compile

copylist

dirname

eaccess

gmatch

isencrypt

mkdirp

p20pen p2close

pathfind

regcmp

regex

rmdirp

Libraries and Header Files

buffer from a stream until a specified character
is reached.

Split the buffer into fields delimited by tabs and
new-lines.

Return a pointer to a compiled regular expres­
sion that uses the same syntax as ed.

Copy a file into a block of memory, replacing
new-lines with null characters. It returns a
pointer to the copy.

Return a pointer to the parent directory name of
the file path name.

Determine if the effective user ID has the
appropriate permissions on a file.

Check if name matches shell file name pattern.

Use heuristics to determine if contents of a char­
acter buffer are encrypted.

Create a directory and its parents.

p2openO is similar to popenO [see popen] .
It establishes a two-way connection
between the parent and the child.
p2close () closes the pipe.

Search the directories in a given path for a
named file with given mode characteristics. If
the file is found, a pointer is returned to a string
that corresponds to the path name of the file. A
null pointer is returned if no file is found.

Compile a regular expression and return a
pointer to the compiled form.

Compare a compiled regular expression against
a subject string.

Remove the directories in the specified path.

2-17

Figure 2-8: libgen Functions (continued)

strccpy strcadd

strecpy

strfind

strrspn

strtrns

Standard 1/0 Library

strccpy copies the input string to the output
string, compressing any C-like escape sequences
to the real character. strcadd is a similar func­
tion that returns the address of the null byte at
the end of the output string.

Copy the input string to the output string,
expanding any non-graphic characters with the
C escape sequence. Characters in a third argu­
ment are not expanded.

Return the offset of the first occurrence of the
second string in the first string. -1 is returned if
the second string does not occur in the first.
Trim trailing characters from a string. It returns
a pointer to the last character in the string not in
a list of trailing characters.

Return a pointer to the string that results from
replacing any character found in two strings
with a character from a third string. This func­
tion is similar to the t r command.

The functions in Subsection 3S of the Operating System API Reference constitute the
standard I/O library for C programs. In this section, we want to discuss standard
I/O in a bit more detail. First, let's briefly define what I/O involves. It has to do
with

• reading information from a file or device to your program;

• writing information from your program to a file or device;

• opening and closing files that your program reads from or writes to.

2-18 UNIX System Calls and Libraries

Three Files You Always Have
Programs automatically start off with three open files: standard input, standard
output, and standard error. These files with their associated buffering are called
streams, and are designated stdin, stdout, and stderr, respectively. The shell
associates all three files with your terminal by default.

This means that you can use functions and macros that deal with stdin, stdout,
or stderr without having to open or close files. get sO, for example, reads a
string from stdin; putsO writes a string to stdout. Other functions and macros
read from or write to files in different ways: character at a time, getcO and
putcO; formatted, scanfO and printfO; and so on. You can specify that output
be directed to stderr by using a function such as fprintfO. fprintfO works
the same way as print fO except that it delivers its formatted output to a named
stream, such as stderr.

Named Files
Any file other than standard input, standard output, and standard error must be
explicitly opened by you before your program can read from or write to the file.
You open a file with the standard library function fopenO. fopenO takes a path
name, asks the system to keep track of the connection between your program and
the file, and returns a pointer that you can then use in functions that perform other
I/O operations.

The pointer is to a structure called FILE, defined in <stdio. h>, that contains
information about the file: the location of its buffer, the current character position
in the buffer, and so on. In your program, then, you need to have a declaration
such as

FILE *fin;

which says that fin is a pointer to a FILE. The statement

fin = fopen("filename", "r");

associates a FILE structure with filename, the path name of the file to open, and
returns a pointer to it. The "r" means that the file is to be opened for reading.
This argument is known as the mode. There are modes for reading, writing, and
both reading and writing.

In practice, the file open function is often included in an if statement:

if «fin = fopen("filename", "r"» == NULL)
(void)fprintf(stderr,"Cannot open input file %s\n",

"filename");

Libraries and Header Files 2-19

which takes advantage of the fact that fopenO returns a NULL pointer if it cannot
open the file. To avoid falling into the immediately following code on failure, you
can call exi to, which causes your program to quit:

2-20

if «fin = fopen("filenarne", "r"» == NULL) {

}

(void) fprintf (stderr, "Cannot open input file %s\n",
"filename") ;

exit(l);

UNIX System Calls and Libraries

Once you have opened the file, you use the pointer f in in functions or macros to
refer to the stream associated with the opened file:

int Ci

C = getc(fin) i

brings in one character from the stream into an integer variable called c. The vari­
able c is declared as an integer even though we are reading characters because
getcO returns an integer. Getting a character is often incorporated in some flow­
of-control mechanism such as

while «c = getc(fin» != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getcO are all defined in <stdio. h>. getcO and other macros in the standard
I/O package keep advancing a pointer through the buffer associated with the
stream; the UNIX system and the standard I/O functions are responsible for see­
ing that the buffer is refilled if you are reading the file, or written to the output file
if you are producing output, when the pointer reaches the end of the buffer.

Your program may have multiple files open simultaneously, 20 or more depend­
ing on system configuration. If, subsequently, your program needs to open more
files than it is permitted to have open simultaneously, you can use the standard
library function fcloseO to break the connection between the FILE structure in
<stdio. h> and the path names of the files your program has opened. Pointers to
FILE may then be associated with other files by subsequent calls to fopenO. For
output files, an fcloseO call makes sure that all output has been sent from the
output buffer before disconnecting the file. exi to closes all open files for you,
but it also gets you completely out of your process, so you should use it only
when you are sure you are finished.

Libraries and Header Files 2-21

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on the
command line, which is to say, by the shell. When you execute a C program, com­
mand line arguments are made available to the function mainO in two parame­
ters, an argument count, conventionally called argc, and an argument vector,
conventionally called argv. (Every C program is required to have an entry point
named mainO.) argc is the number of arguments with which the program was
invoked. argv is an array of pointers to character strings that contain the argu­
ments, one per string. Since the command name itself is considered to be the first
argument, or argv [0 l, the count is always at least one. Here is the declaration
formainO:

int
main(int argc, char *argv[])

For two examples of how you might use run-time parameters in your program,
see the last subsection of this chapter.

The shell, which makes arguments available to your program, considers an argu­
ment to be any sequence of non-blank characters. Characters enclosed in single
quotes ('abc de f ') or double quotes ("abc de f ") are passed to the program
as one argument even if blanks or tabs are among the characters. You are respon­
sible for error checking and otherwise making sure that the argument received is
what your program expects it to be.

rn addition to argc and argv, you can use a third argument: envp is an array of
pointers to environment variables. You can find more information on envp in the
Operating System API Reference under exec in Section 2 and in the System Files and
Devices Reference under environ in Section 5.

C programs exit voluntarily, returning control to the operating system, by return­
ing from mainO or by calling the exi to function. That is, a return (n) from
mainO is equivalent to the call exi t (n). (Remember that mainO has type "func­
tion returning int.") Your program should return a value to say whether it com­
pleted successfully or not. The value gets passed to the shell, where it becomes the
value of the $? shell variable if you executed your program in the foreground. By
convention, a return value of zero denotes success, a non-zero return value means
some sort of error occurred. You can use the macros EXIT_SUCCESS and
EXIT_FAILURE, defined in the header file <stdlib. h>, as return values from
mainO or argument values for exi to.

2·22 UNIX System Calls and Libraries

Passing Command Line Arguments

As described above, information or control data can be passed to a C program as
an argument on the command line. When you execute the program, command
line arguments are made available to the function mainO in two parameters, an
argument count, conventionally called argc, and an argument vector, convention­
ally called argv. argc is the number of arguments with which the program was
invoked. argv is an array of pointers to characters strings that contain the argu­
ments, one per string. Since the command name itself is considered to be the first
argument, or argv [0 l, the count is always at least one.

If you plan to accept run-time parameters in your program, you need to include
code to deal with the information. Figure 2-9 and Figure 2-10 show program frag­
ments that illustrate two common uses of run-time parameters:

• Figure 2-9 shows how you provide a variable file name to a program, such
that a command of the form

$ prog filename

will cause prog to attempt to open the specified file .

• Figure 2-10 shows how you set internal flags that control the operation of a
program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options
specified. The getoptO function used in the example is the most common
way to process arguments in UNIX system programs. getoptO is
described in Subsection 3C of the Operating System API Reference.

Libraries and Header Files 2-23

Figure 2-9: Using argv[l] to Pass a File Name

2-24

#include <stdio.h>

int
main(int argo, char *argv[])
{

FILE *fin;
int chI

switch (arge)
{

case 2:

if «fin = fopen(argv[lJ. "r"'» == NULL)

f* First string (%s) is program name (argv[O]). *f
f* Second string (%s) is name of file that could *f
f* not be opened (argv[l]). *f

(void)fprintf(stde=, "'%s: Cannot open input file %s\n"',
argv[O], argv[l]);

break;

case 1:

return·(2) ;

fin = stdin;
break;

default:
(void)fprintf(stde=, "Usage: %s [file]\n"', argv[OJ);
return(2);

while «ch = getc(fin» 1= EOF)
(void) putchar (ch) ;

return (0);

UNIX System Calls and Libraries

Figure 2-10: Using Command Line Arguments to Set Flags

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int oflag = 0;
int pflag = 0;
int rflag = 0;
int ch;

f* Function flags *f

while «ch = getopt(argc, argv, "opr"» 1= -1)
{

f* For options present, set flag to 1. *f
f* If Wlknown options present, print error message. *f

switch (ch)
{

case '0':
of lag =
break;

case 'pi:

pflag =
break;

case 'r':

1;

1;

rflag = 1;
break;

default:
(void) fprintf (stde=, "Usage: %s [-opr]\n", argv[O]);
return(2);

f* Do other processing controlled by oflag, pflag, rflag. *f
return(O);

Libraries and Header Files 2-25

System Calls

UNIX system calls are the interface between the kernel and the user programs that
run on top of it. The UNIX system kernel is the software on which everything else
in the UNIX operating system depends. The kernel manages system resources,
maintains file-systems and supports system-calls. readO, wri teO and the other
system calls in Section 2 of the Operating System API Reference define what the
UNIX system is. Everything else is built on their foundation. Strictly speaking,
they are the only way to access such facilities as the file system, interprocess com­
munication primitives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are writing a C program, for example, you can use
the library functions described in Section 3 of the Operating System API Reference.
When you use these functions, the details of their implementation on the UNIX
system are transparent to the program, for example, that the system call readO
underlies the freadO implementation in the standard C library. In other words,
the program will generally be portable to any system, UNIX or not, with a con­
forming C implementation. (See Chapter 2 of the Programming in Standard C guide
for a discussion of the standard C library.)

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use readO in a pro­
gram that performed a simple input/ output operation. Other operations, how­
ever, including most multitasking mechanisms, do require direct interaction with
the UNIX system kernel. These operations are the subject of the first part of this
book. This chapter lists the system calls in functional groups, and includes brief
discussions of error handling. For details on individual system calls, see Section 2
of the Operating System API Reference.

A C program is automatically linked with the system calls you have invoked
when you compile the program. The procedure may be different for programs
written in other languages. Check the Programming in Standard C guide for details
on the language you are using.

2-26 UNIX System Calls and Libraries

Input/Output and File System Calls

File and Device 1/0
These system calls perform basic input/ output operations on UNIX system files.

Figure 2-11: File and Device 1/0 Functions

open

creat
close
read
getmsg
1 seek
fcntl
ioctl

write
putmsg

Terminal Device Control

open a file for reading or writing
create a new file or rewrite an existing one
close a file descriptor
transfer data from/ onto a file or device
get/put message from/onto a stream
move file I/O pointer
file I/O control
device I/O control

These system calls deal with a general terminal interface for the control of asyn­
chronous communications ports.

Figure 2-12: Terminal Device Control Functions

tcgetattr
tcdrain
tcflow
cfgetispeed
cfsetispeed
tcgetsid
tcgetpgrp
tcsetpgrp

System Calls

tcsetattr
tcflush
tcsendbreak.
cfgetospeed
cfsetospeed

get and set terminal attributes
line control functions
line control functions
get baud rate functions
set baud rate functions
get terminal session ID
get terminal foreground process group ID
set terminal foreground process group ID

2-27

Directory and File System Control

These system calls allow creation of new directories (and other types of files), link­
ing to existing files, obtaining or modifying file status information, and allow you
to control various aspects of the file system.

Figure 2-13: Directory and File System Control Functions

link.
access
mknod

chmod fchmod
chown fchown
utime
stat fstat
pathconf fpathconf
getdents

mkdir
readlink.
rename
rmdir
symlink.
unlink.
ustat
sync

mount umount
statfs fstatfs
sysfs

2-28

lchown

lstat

link to a file
determine accessibility of a file
make a directory, special, or regular file
change mode of file
change owner and group of a file
set file access and modification times
get file status
get configurable path name variables
read directory entries and put in file system­
independent format
make a directory
read the value of a symbolic link
change the name of a file
remove a directory
make a symbolic link to a file
remove directory entry
get file system statistics
update super block
mount/unmount a file system
get file system information
get file system type information

UNIX System Calls and Libraries

Process and Memory System Calls

Processes
These system calls control user processes.

Figure 2-14: Process Management Functions

fork
execl
execv

exit
wait
setuid
getpgrp

chdir

chroot
nice
get context

get groups

getpid
getuid
getgid

pause

priocntl
setpgid

setsid
kill

System Calls

execle

execve
_exit

waitpid
setgid
setpgrp

fchdir

setcontext
setgroups
getppid

geteuid
getegid

create a new process
execlp execute a file with a list of arguments
execvp execute a file with a variable list

terminate process
waitid wait for child process to change state

set user and group IDs
get and set process group ID
change working directory
change root directory
change priority of a process
get and set current user context
get or set supplementary group IDs

getpgid get process and parent process IDs
get real user and effective user
get real group and effective group
suspend process until signal
process scheduler control
set process group ID
set session ID
send a signal to a process or group of processes

2-29

Signals

Signals are messages passed by the UNIX system to running processes.

Figure 2-15: Signal Management Functions

sigaction

sigaltstack
sigignore
sighold

sigset
sigpending

sigprocmask
sigsuspend
sigsend

sigpause
sigrelse
signal

sigsendset

detailed signal management
set/ get signal alternate stack context
simplified signal management
simplified signal management
simplified signal management
examine blocked and pending signals
change or examine signal mask
install a signal mask and suspend process
send a signal to a process or group of processes

Basic Interprocess Communication

These system calls connect processes so they can communicate. pipe is the sys­
tem call for creating an interprocess channel. dup is the call for duplicating an
open file descriptor. (These IPC mechanisms are not applicable for processes on
separate hosts.)

Figure 2-16: Basic Interprocess Communication Functions

2·30

pipe

dup
open file-descriptors for a pipe
duplicate an open file-descriptor

UNIX System Calls and Libraries

Advanced Interprocess Communication

These system calls support interprocess messages, semaphores, and shared
memory and are effective in data base management. (These IPe mechanisms are
also not applicable for processes on separate hosts.)

Figure 2-17: Advanced Interprocess Communication Functions

msgget
msgctl
msgop

semget

semctl
semop

shmget

slnnctl
shmop

Memory Management

get message queue
message control operations
message operations
get set of semaphores
semaphore control operations
semaphore operations
get shared memory segment identifier
shared memory control operations
shared memory operations

These system calls give you access to virtual memory facilities.

Figure 2-18: Memory Management Functions

getpagesize

memcntl
mmap

nprotect
nrunmap

plock

brk

System Calls

sbrk

get system page size
memory management control
map pages of memory
set protection of memory mapping
unmap pages of memory
lock process, text, or data in memory
dynamically allocate memory space

2-31

Miscellaneous System Calls

These are system calls for such things as administration, timing, and other
miscellaneous purposes.

Figure 2-19: Miscellaneous System Functions

acct
alarm
getrlimit

modload
moduload
modpath

modadm
profil

sysconf

sysi86

time
uadmin

ulimit
uname

2-32

setrlimit

stime

enable or disable process accounting
set a process alarm clock
control maximum system resource consumption
loads dynamically loadable kernel module
unloads kernel module
change path from which modules are loaded
module administration
execution time profile
method for application's determination of value
for system configuration
machine-specific functions
get/ set time
administrative control
get and set user limits
get/ set name of current UNIX system

UNIX System Calls and Libraries

UNIX System Call Error Handling

UNIX system calls that fail to complete successfully almost always return a value
of -1 to your program. (If you look through the system calls in Section 2, you will
see that there are a few calls for which no return value is defined, but they are the
exceptions.) In addition to the -1 returned to the program, the unsuccessful sys­
tem call places an integer in an externally declared variable, errno. In a C pro­
gram, you can determine the value in errno if your program contains the follow­
ing statement:

#include <errno.h>

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno. The value in errno is not cleared on suc­
cessful calls, so your program should check it only if the system call returned a -1
indicating an error. The following list identifies the error numbers and symbolic
names defined in the <errno . h> header file, and described in intro(2) of the
Operating System API Reference.

System Calls 2-33

Error

Number

1

2

3

4

5

6

7

8

9

2-34

EPERM

ENOENT

ESRCH

EINTR

EIO

ENXIO

E2BIG

Symbolic

Name

ENOEXEC

EBADF

Description

Not privileged
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or a process with
the appropriate privilege. It is also returned for attempts by
ordinary users to do things allowed only to the super-user.

No such file or directory
A file name is specified and the file should exist but fails to,
or one of the directories in a path name fails to exist.

No such process
No process can be found corresponding to the that specified
by PID in the ki 11 or ptrace routine.

Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system ser­
vice routine. If execution is resumed after processing the sig­
nal, it will appear as if the interrupted routine call returned
this error condition.

I/O error
Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it actu­
ally applies.

No such device or address
I/O on a special file refers to a subdevice which does not
exist, or exists beyond the limit of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

Arg list too long
An argument list longer than ARG_MAX bytes is presented to
a member of the exec family of routines. The argument list
limit is sum of the size of the argument list plus the size of
the environment's exported shell variables.

Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid format
[see a.out(4)].

Bad file number
Either a file descriptor refers to no open file, or a readO
[respectively, wri teO] request is made to a file that is open
only for writing (respectively, reading).

UNIX System Calls and libraries

Error

Number

10

11

12

13

14

System Calls

ECHILD

EAGAIN

ENOMEM

EACCES

EFAULT

Symbolic

Name Description

No child processes
A wai t routine was executed by a process that had no exist­
ing or unwaited-for child processes.

No more processes
For example, the fork routine failed because the system's
process table is full or the user is not allowed to create any
more processes. Or a system call failed because of
insufficient memory or swap space.

Not enough space
During execution of an exec, brk, or sbrk routine, a pro­
gram asks for more space than the system is able to supply.
This is not a temporary condition; the maximum size is a sys­
tem parameter. The error may also occur if the arrangement
of text, data, and stack segments requires too many segmen­
tation registers, or if there is not enough swap space during
the fork routine. If this error occurs on a resource associ­
ated with Remote File Sharing (RFS), it indicates a memory
depletion which may be temporary, dependent on system
activity at the time the call was invoked.

Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

Bad address
The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno poten­
tially may be set to EFAULT any time a routine that takes a
pointer argument is passed an invalid address, if the system
can detect the condition. Because systems will differ in their
ability to reliably detect a bad address, on some implementa­
tions passing a bad address to a routine will result in
undefined behavior.

2-35

Error

Number

15

16

17

18

19

20

21

22

23

2-36

Symbolic

Name

ENOTBLK

EBUSY

EEXIST

EXDEV

ENODEV

ENOTDIR

EISDIR

EINVAL

ENFlLE

Description

Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the mount routine).

Device busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

File exists
An existing file was mentioned in an inappropriate context
(e.g., call to the link routine).

Cross-device link
A link to a file on another device was attempted.

No such device
An attempt was made to apply an inappropriate operation to
a device (e.g., read a write-only device).

Not a directory
A non-directory was specified where a directory is required
(e.g., in a path prefix or as an argument to the chdir rou­
tine).

Is a directory
An attempt was made to write on a directory.

Invalid argument
An invalid argument was specified (e.g., unmounting a non­
mounted device, mentioning an undefined signal in a call to
the signal or kill routine. Also set by the functions
described in the math package (3M).

File table overflow
The system file table is full (i.e., SYS_OPEN files are open, and
temporarily no more files can be opened).

UNIX System Calls and Libraries

Error

Number

24

25

26

27

28

29

30

31

32

System Calls

EMFILE

ENOTTY

Symbolic

Name

ETXTBSY

EFBIG

ENOSPC

ESPIPE

EROFS

EMLINK

EPIPE

Description

Too many open files
No process may have more than OPEN_MAX file descriptors
open at a time.

Not a typewriter
A call was made to the ioctl routine specifying a file that is
not a special character device.

Text file busy
An attempt was made to execute a pure-procedure program
that is currently open for writing. Also an attempt to open
for writing or to remove a pure-procedure program that is
being executed.

File too large
The size of a file exceeded the maximum file size, FCHR_MAX
[see getrlimit(2)].

No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device. In the fen t 1 rou­
tine, the setting or removing of record locks on a file cannot
be accomplished because there are no more record entries
left on the system.

Illegal seek
A call to the lseek routine was issued to a pipe.

Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

Too many links
An attempt to make more than the maximum number of
links, LINK_MAX, to a file.

Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error is
returned if the signal is ignored.

2·37

Error

Number

33

34

35

36

37

38

39

40

41

42

43

44

45

46

2-38

EDOM

ERANGE

ENOMSG

EIDRM

ECHRNG

Symbolic

Name

EL2NSYNC

EL3HLT

EL3RST

ELNRNG

El.lNATCH

ENOCSI

EL2HLT

EDEADLK

ENOLCK

Description

Math argument out of domain of func
The argument of a function in the math package (3M) is out
of the domain of the function.

Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

No message of desired type
An attempt was made to receive a message of a type not
existing on the specified message queue [see msgop(2)].

Identifier removed
This error is returned to processes that resume execution due
to the removal of an identifier from the file system's name
space [see msgctl(2), semctl(2), and shmctl(2)].

Channel number out of range

Level 2 not synchronized

Level 3 halted

Level 3 reset

Link number out of range

Protocol driver not attached

No CSI structure available

Level 2 halted

Deadlock condition
A deadlock situation was detected and avoided. This error
pertains to file and record locking.

No record locks available
There are no more locks available. The system lock table is
full [see fcntl(2)].

UNIX System Calls and Libraries

Error

Number

60

61

62

63

64

65

66

67

System Calls

ENOSTR

Symbolic

Name

ENODATA

ETIME

ENOSR

ENONET

ENOPKG

EREMOTE

ENOLINK

Description

Device not a stream
A putmsg or getmsg system call was attempted on a file
descriptor that is not a STREAMS device.

No data available

Timer expired
The timer set for a STREAMS ioctl call has expired. The
cause of this error is device specific and could indicate either
a hardware or software failure, or perhaps a timeout value
that is too short for the specific operation. The status of the
ioctl operation is indeterminate.

Out of stream resources
During a STREAMS open, either no STREAMS queues or no
STREAMS head data structures were available. This is a
temporary condition; one may recover from it if other
processes release resources.

Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs
when users try to advertise, unadvertise, mount, or unmount
remote resources while the machine has not done the proper
startup to connect to the network.

Package not installed
This error occurs when users attempt to use a system call
from a package which has not been installed.

Object is remote
TIlis error is RFS specific. It occurs when users try to adver­
tise a resource which is not on the local machine, or try to
mount/unmount a device (or pathname) that is on a remote
machine.

Link has been severed
This error is RFS specific. It occurs when the link (virtual cir­
cuit) connecting to a remote machine is gone.

2-39

Error

Number

68

69

70

71

74

76

77

2-40

EADV

ECOMM

EPROTO

Symbolic

Name

EMULTIHOP

EDOTDOT

EBADMSG

Description

Advertise error
This error is RFS specific. It occurs when users try to adver­
tise a resource which has been advertised already, or try to
stop the RFS while there are resources still advertised, or try
to force unmount a resource when it is still advertised.

Srmount error
This error is RFS specific. It occurs when an attempt is made
to stop RFS while resources are still mounted by remote
machines, or when a resource is readvertised with a client
list that does not include a remote machine that currently has
the resource mounted.

Communication error on send
This error is RFS specific. It occurs when the current process
is waiting for a message from a remote machine, and the vir­
tual circuit fails.

Protocol error
Some protocol error occurred. This error is device specific,
but is generally not related to a hardware failure.

Multihop attempted
This error is RFS specific. It occurs when users try to access
remote resources which are not directly accessible.

Error 76
This error is RFS specific. A way for the server to tell the
client that a process has transferred back from mount point.

Not a data message
During a readO, getmsgO, or ioctlO I_RECVFD system
call to a STREAMS device, something has come to the head of
the queue that can't be processed. That something depends
on the system call:
readO: control information or a passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

UNIX System Calls and Libraries

Error

Number

78

79

80

81

82

83

84

85

86

System Calls

Symbolic

Name

ENAMETOOLONG

EOVERFLOW

ENOTUNIQ

EBADFD

EREMCHG

ELlBACC

ELIBBAD

ELIBSCN

ELIBMAX

Description

File name too long
The length of the path argument exceeds PATH_MAX, or the
length of a path component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect; [see limits(4)].

Error 79
Value too large to be stored in data type.

Name not unique on network
Given log name not unique.

File descriptor in bad state
Either a file descriptor refers to no open file or a read request
was made to a file that is open only for writing.

Remote address changed

Cannot access a needed shared library
Trying to exec an a. out that requires a shared library and
the shared library doesn't exist or the user doesn't have per­
mission to use it.

Accessing a corrupted shared library
Trying to exec an a. out that requires a shared library (to
be linked in) and exec could not load the shared library.
The shared library is probably corrupted .

. lib section in a. out corrupted
Trying to exec an a. out that requires a shared library (to
be linked in) and there was erroneous data in the .lib sec­
tion ofthe a. out. The .lib section tells exec what shared
libraries are needed. The a. out is probably corrupted.

Attempting to link in more shared libraries than system
limit
Trying to exec an a. out that requires more static shared
libraries than is allowed on the current configuration of the
system. See the Advanced System Administration guide.

2-41

Error

Number

87

88

89

90

91

92

93

94

95

96

97

98

99

2-42

Symbolic

Name

ELIBEXEC

EILSEQ

ENOSYS

ELOOP

ERESTART

ESTRPIPE

ENOTEMPTY

EUSERS

ENOTSOCK

EDESTADDRREQ

EMSGSIZE

EPROTOTYPE

ENOPROTOOPT

Description

Cannot exec a shared library directly
Attempting to exec a shared library directly.

Error 88
Illegal byte sequence. Handle multiple characters as a single
character.

Operation not applicable

Number of symbolic links encountered during path name
traversal exceeds MAXSYMLINKS

Error 91
Interrupted system call should be restarted.

Error 92
Streams pipe error (not externally visible).

Directory not empty

Too many users
Too many users.

Socket operation on non-socket
Self-explanatory.

Destination address required
A required address was omitted from an operation on a tran­
sport endpoint. Destination address required.

Message too long
A message sent on a transport provider was larger than the
internal message buffer or some other network limit.

Protocol wrong type for socket
A protocol was specified that does not support the semantics
of the socket type requested.

Protocol not available
A bad option or level was specified when getting or setting
options for a protocol.

UNIX System Calls and Libraries

Error

Number

120

121

122

123

124

125

126

127

128

129

130

System Calls

Symbolic

Name

EPROTONOSUPPORT

ESOCKTNOSUPPORT

EOPNOTSUPP

EPFNOSUPPORT

EAFNOSUPPORT

EADDRlNUSE

EADDRNOTAVAIL

ENETDOWN

ENETUNREACH

ENETRESET

ECONNABORTED

Description

Protocol not supported
The protocol has not been configured into the system or no
implementation for it exists.

Socket type not supported
The support for the socket type has not been configured into
the system or no implementation for it exists.

Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram
transport endpoint.

Protocol family not supported
The protocol family has not been configured into the system
or no implementation for it exists. Used for the Internet pro­
tocols.

Address family not supported by protocol family
An address incompatible with the requested protocol was
used.

Address already in use
User attempted to use an address already in use, and the
protocol does not allow this.

Cannot assign requested address
Results from an attempt to create a transport endpoint with
an address not on the current machine.

Network is down
Operation encountered a dead network.

Network is unreachable
Operation was attempted to an unreachable network.

Network dropped connection because of reset
The host you were connected to crashed and rebooted.

Software caused connection abort
A connection abort was caused internal to your host
machine.

2-43

Error

Number

131

132

133

134

143

144

145

146

147

2-44

Symbolic

Name

ECONNRESET

ENOBUFS

EISCONN

ENOTCONN

ESHlJTOOWN

ETOOMANYREFS

ETIMEDOUT

ECONNREFUSED

EHOSTOOWN

Description

Connection reset by peer
A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote host due
to a timeout or a reboot.

No buffer space available
An operation on a transport endpoint or pipe was not per­
formed because the system lacked sufficient buffer space or
because a queue was full.

Transport endpoint is already connected
A connect request was made on an already connected tran­
sport endpoint; or, a sendto or sendmsg request on a con­
nected transport endpoint specified a destination when
already connected.

Transport endpoint is not connected
A request to send or receive data was disallowed because the
transport endpoint is not connected and (when sending a
datagram) no address was supplied.

Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport
endpoint had already been shut down.

Too many references: cannot splice

Connection timed out
A connect or send request failed because the connected party
did not properly respond after a period of time. (The timeout
period is dependent on the communication protocol.)

Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to con­
nect to a service that is inactive on the remote host.

Host is down
A transport provider operation failed because the destina­
tion host was down.

UNIX System Calls and Libraries

Error Symbolic

Number Name Description

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an
unreachable host.

149 Operation already in progress
An operation was attempted on a non-blocking object that
already had an operation in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect) was attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

152 ENOLOAD Cannot load required module
An attempt made to load a module failed.

153 ERELOC Relocation error in loading module
Symbolic referencing error.

154 ENOMATCH No symbol is found matching the given spec

156 EBADVER Version number mis-matched
The version number associated with a module is not sup-
ported by the kernel.

157 ECONFIG Configured kernel resource exhausted

System Calls 2-45

3 File and Device Input/Output

Introduction 3-1

Input/Output System Calls 3-2
File Descriptors 3-3
Reading and Writing Files 3-4
Opening, Creating and Closing Files 3-6
Random Access - IseekO 3-9

File and Record Locking 3-11
Terminology 3-11
File Protection 3-13

• Opening a File for Record Locking 3-13
• Setting a File Lock 3-14
• Setting and Removing Record Locks 3-16
• Getting Lock Information 3-21
• Deadlock Handling 3-23

Selecting Advisory or Mandatory Locking 3-23
• Caveat Emptor-Mandatory Locking 3-25

Record Locking and Future Releases of the UNIX System 3-25

Basic STREAMS Operations 3-26

Table of Contents

ii

Benefits of STREAMS
Standardized Service Interfaces
Manipulating Modules

• Protocol Portability
• Protocol Substitution
• Protocol Migration
• Module Reusability

STREAMS Mechanism
STREAMS System Calls

• getmsgO and putmsgO

• poliO
Opening a STREAMS Device File
Creating a STREAMS-based Pipe
Adding and Removing Modules
Closing the Stream
Stream Construction Example

• Inserting Modules
• Module and Driver Control

3-29
3-29
3-30
3-30
3-31
3-31
3-32

3-34
3-34
3-35
3-35
3-35
3-36
3-36
3-37
3-37
3-38
3-40

Table of Contents

Introduction

This chapter discusses the UNIX System file and record locking facility. Manda­
tory and advisory file and record locking are both available on current releases of
the UNIX System. The intent of this capability is to provide a synchronization
mechanism for programs accessing the same stores of data simultaneously. Such
processing is characteristic of many multiuser applications, and the need for a
standard method of dealing with the problem has been recognized by standards
advocates like lusr I group, an organization of UNIX System users from
businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

Also included in this chapter is a description of how file and record locking capa­
bilities can be used. Examples are given for the correct use of record locking.
Misconceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism, not
a security mechanism.

The remainder of this chapter describes the STREAMS mechanism as it relates to
input! output operations.

Introduction 3-1

Input/Output System Calls

The lowest level of I/O in UNIX System V provides no buffering or other such ser­
vices, but it offers the most control over what happens. System-calls that
represent direct entries into the UNIX System V kernel control all user I/O. UNIX
System V keeps the system-calls that do I/O simple, uniform and regular to elim­
inate differences between files, devices and styles of access. The same read and
write system-calls apply to ordinary disk-files and I/O devices such as terminals,
tape-drives and line-printers. They do not distinguish between "random" and
"sequential" I/O, nor do they impose any logical record size on files. Thus, a sin­
gle, uniform interface handles all communication between programs and peri­
pheral devices, and programmers can defer specifying devices from program­
development until program-execution time.

All I/O is done by reading or writing files, because all peripheralI/O devices,
even a user's terminal, are files in the file-system. Each supported device has an
entry in the file-system hierarchy, so that device-names have the same structure as
file-names, and the same protection mechanisms work on both devices and files.

A file is an ordered set of bytes of data on a I/O-device. The size of the file on
input is determined by an end-of-file condition dependent on device-specific
characteristics. The size of a regular-file is determined by the position and
number of bytes written on it, no predetermination of the size of a file is necessary
or possible.

Besides the traditionally available devices, names exist for disk devices regarded
as physical units outside the file-system, and for absolutely addressed memory.
The most important device in practice is the user's terminal. Treating a
communication-device in the same way as any file by using the same I/O calls
make it easy to redirect the input and output of commands from the terminal to
another file; although, some differences are inevitable. For example, UNIX System
V ordinarily treats terminal input in units of lines because character-erase and
line-delete processing cannot be completed until a full line is typed. Programs try­
ing to read some large number of bytes from a terminal must wait until a full line
is typed, and then may be notified that some smaller number of bytes were actu­
ally read. All programs must prepare for this eventuality in any case, because a
read from any disk-file returns fewer bytes than requested when it reaches the end
of the file. Ordinarily, reads from a terminal are fully compatible with reads from
a disk-file.

3-2 File and Device Input/Output

File Descriptors

UNIX System V File and Device I/O functions denote a file by a small positive
integer called a "file-descriptor" and declared as follows:

int fildes

where fildes represents the file-descriptor, and the file-descriptor denotes an open
file from which data is read or onto which data is written. UNIX System V main­
tains all information about an open file; the user program refers to the file only by
the file-descriptor. Any I/O on the file uses the file-descriptor instead of the file­
name to denote the file.

Multiple file-descriptors may denote the same file, and each file-descriptor has
associated with it information used to do I/O on the file:

• a file-offset that shows which byte in the file to read or write next;

• file-status and access-modes (e.g., read, write, read/write) [see open(2)];

• the 'close-on-exec' flag [see fcntl(2)].

Doing 1/ 0 on the user's terminal occurs commonly enough that special arrange­
ments make this convenient. When the command interpreter (the "shell") runs a
program, it opens three files, called the standard input, the standard output and the
standard error output, with file-descriptors 0,1 and 2. All of these are normally
connected to the terminal; thus, a program reading file-descriptor 0 and writing
file-descriptors 1 and 2, can do terminal I/O without opening the files. If I/O is
redirected to and from files with < and>, as in:

prog <infile >outfile

the shell changes the default assignments for file-descriptors 0 and 1 from the ter­
minal to the named files. Similar conventions hold for I/O on a pipe. Normally
file-descriptor 2 remains attached to the terminal, so error messages can go there.
In all cases, the shell changes the file assignments, the program does not. The pro­
gram can ignore where its output goes, as long as it uses file-descriptor 0 for input
and 1 and 2 for output.

Input/Output System Calls 3-3

Reading and Writing Files

The functions readO and writeO do I/O on files. For both, the first argument is a
file-descriptor, the second argument is a buffer in the user program where the
data comes from or goes to and the third argument is the number of bytes of data
to transfer. Each call returns a count of the number of bytes actually transferred.
These calls look like:

n = read <fildes, buffer, count);

n = write <fildes, buffer, count);

Up to count bytes are transferred between the file denoted by fildes and the byte
array pointed to by buffer. The returned value n is the number of bytes actually
transferred.

For writing, the returned value is the number of bytes actually written; it is gen­
erally an error if this fails to equal the number of bytes requested. In the writeO
case, n is the same as count except under exceptional conditions, such as I/O errors
or end of physical medium on special files; in a readO, however, n may without
error be less than count.

For reading, the number of bytes returned may be less than the number requested,
because fewer than count bytes remained to be read. If the file-offset is so near the
end of the file that reading count characters would cause reading beyond the end,
only sufficient bytes are transferred to reach the end of the file, also, typewriter­
like terminals never return more than one line of input. (When the file is a termi­
nal, readO normally reads only up to the next new-line, which is generally less
than what was requested.)

When a readO call returns with n equal to zero, the end of the file has been
reached. For disk-files this occurs when the file-offset equals the current size of
the file. It is possible to generate an end-of-file from a terminal by use of an escape
sequence that depends on the device used. The function readO returns 0 to sig­
nify end-of-file, and returns -1 to signify an error.

The number of bytes to be read or written is quite arbitrary. The two most com­
mon values are 1, which means one character at a time ("unbuffered"), and 512,
which corresponds to a physical block size on many peripheral devices. This
latter size is most efficient, but even character at a time I/ 0 is not overly expen­
sive. Bytes written affect only those parts of a file implied by the position of the
file-offset and the count; no other part of the file is changed. If the last byte lies
beyond the end of the file, the file grows as needed.

3-4 File and Device Input/Output

A simple program using the readO and writeO functions to copy its input to its
output can copy anything, since the input and output can be redirected to any file
or device.

#define BUFSIZE 512

roainO 1* copy input to output *1
{

char buf[BUFSIZE];
int ni

while «n = read(O, buf, BUFSIZE)} > O}
write (1, buf, n);

exit(O};

If the file size is not a multiple of BUFSIZE, some readO will return a smaller
number of bytes to be written by wri teO: the next call to readO after that will
return zero indicating end-of-file.

To see how readO and writeO can be used to construct higher level functions like
getcharO and putcharO, here is an example of getcharO which does unbuffered
input:

#define CMASK 0377 1* for making char's> 0 *1

getchar(} 1* unbuffered single character input *1

char Ci

return«read(O, &c, I} > O} ? c & CMASK : EOF};

The variable c must be declared char, because readO accepts a character pointer.
The character returned must be masked with 0377 to ensure that it is positive; oth­
erwise, sign extension may make it negative.

Input/Output System Calls 3-5

The second version of getcharO does input in big chunks, and hands out the
characters one at a time.

#define CMASK 0377 /* for making char's> 0 */

#define BUFSIZE 512

getchar() /* buffered version */
{

static char buf[BUFSIZE];
static char *bufp = buff

static int n = 0;

if (n == 0) { /* buffer is empty */

n = read(O, buf, BUFSIZE);
bufp = buf;

return«--n >= 0) ? *bufp++ & CMASK : EOF);

Opening, Creating and Closing Files

Other than the default standard input, output and error files, you must explicitly
open files in order to read or write them. The two functions that do this are:
openO and creatO [see open(2) and creat(2) in the Operating System API Refer­
ence]. To read or write a file assumed to exist already, it must be opened by the
following call:

fildes = open(name, oflag);

The argument name is a character string that represents a UNIX System V file­
system path-name. The oflag argument indicates whether the file is to be read,
written, or "updated", that is, read and written simultaneously. The returned
value fildes is a file-descriptor used to denote the file in subsequent calls that read,
write or otherwise manipulate the file.

3-6 File and Device Input/Output

The function openO resembles the function fopenO in the Standard I/O Library,
except that instead of returning a pointer to FILE, openO returns a file-descriptor
which is just an int [see fopen(3S) and stdio(3S) in the Operating System API
Reference]. Moreover, the values for the access mode argument ojtag are different
(the flags are found in /usr/include/fcntl.h):

O_RDONLY for read access.

O_WRONLY for write access.

O_RDWR for read and write access.

The function openO returns -1 if any error occurs; otherwise it returns a valid
open file-descriptor.

Trying to openO a file that does not exist causes an error; hence, creatO is used to
create new files, or to re-write old ones. The creatO system-call creates the given
file if it does not exist, or truncates it to zero length if it does exist; creatO also
opens the new file for writing and, like openO, returns a file-descriptor. Calling
creatO as follows:

fildes = creat (name, pm ode) ;

returns a file-descriptor if it created the file identified by the string name, and -1 if
it did not. Trying to creatO a file that already exists does not cause an error, but
if the file already exists, creatO truncates it to zero length.

If the file is brand new, creatO creates it with the protection mode specified by
the pmode argument. The UNIX System V file-system associates nine bits of pro­
tection information with a file, controlling read, write and execute permission for
the owner of the file, for the owner's group, and for any other users. Thus, a three­
digit octal number specifies the permissions most conveniently. For example,
0755 specifies read, write and execute permission for the owner, and read and execute
permission for the group and all other users.

Input/Output System Calls 3·7

A simplified version of the UNIX System V utility cp (a program which copies one
file to another) illustrates this:

Figure 3-1: simplified version of cp

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW owner, R group & others */

main (argc, argv)
int argo;
char *argv[];

/* cp: copy fd1 to fd2 */

int fd1, fd2, n;
char buf [BUFSIZE] ;

if (argc != 3)
error ("Usage: cp from to", NULL);

if «fd1 = open (argv [1] , 0» == -1)
error(lIcp: can't open %s", argv[l]);

if «fd2 = creat(argv[2] , PMODE» == -1)
error("cp: can't create %a", argv[2])i

while «n = read(fd1, buf, BUFSIZE» > 0)
if (write(fd2, buf, n) != n)

error("cp: write error", NULL);

exit (0);

error(sl, s2) /* print error message and die */
char *81, *82;

printf(sl, s2);
printf("\nll);

exit(l);

The main simplification is that this version copies only one file, and does not per­
mit the second argument to be a directory.

3-8 File and Device Input/Output

As stated earlier, there is a limit, OPEN_MAX, on the number of files which a process
may have open simultaneously. Accordingly, any program which intends to pro­
cess many files must be prepared to re-use file-descriptors. The function closeO
breaks the connection between a file-descriptor and an open file, and frees the
file-descriptor for use with some other file. Termination of a program via exitO
or return from the main program closes all open files.

Random Access - IseekO

Normally, file I/O is sequential: each readO or writeO proceeds from the point
in the file right after the previous one. This means that if a particular byte in the
file was the last byte written (or read), the next I/O call implicitly refers to the
immediately following byte. For each open file, UNIX System V maintains a file­
offset that indicates the next byte to be read or written. If n bytes are read or writ­
ten, the file-offset advances by n bytes. When necessary, however, a file can be
read or written in any arbitrary order using IseekO to move around in a file
without actually reading or writing.

To do random (direct-access) I/O it is only necessary to move the file-offset to the
appropriate location in the file with a call to IseekO. Calling IseekO as follows:

lseek <fildes, offset, whence);

or as follows:

location = lseek (fildes, offset, whence);

forces the current position in the file denoted by file-descriptor fildes to move to
position offset as specified by whence. Subsequent reading or writing begins at the
new position. The file-offset associated with fildes is moved to a position offset
bytes from the beginning of the file, from the current position of the file-offset or
from the end of the file, depending on whence; offset may be negative. For some
devices (e.g., paper tape and terminals) IseekO calls are ignored. The value of
location equals the actual offset from the beginning of the file to which the file­
offset was moved. The argument offset is of type off_t defined by the header file
<types.h> as a long;fildes and whence are int's.

Input/Output System Calls 3-9

The argument whence can be SEEK_SET, SEEK_CUR or SEEK_END to specify that
offset is to be measured from the beginning, from the current position, or from the
end of the file respectively. For example, to append a file, seek to the end before
writing:

lseek(jildes, OL, SEEK_END);

To get back to the beginning ("rewind"),

lseek<fildes, OL, SEEK_SET);

Notice the OL argument; it could also be written as (long) o.
With lseekO, you can treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of
bytes from any arbitrary point in a file:

3-10

get(fd, p, buf, n) 1* read n b¥tes from position p *1
int fd, ni

long p;
char *buf;

lseek(fd, p, SEEK_SET); 1* move to p *1
return (read (fd, buf, n»;

File and Device Input/Output

File and Record Locking

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a syn­
chronization mechanism for programs accessing the same stores of data simul­
taneously. Such processing is characteristic of many multiuser applications, and
the need for a standard method of dealing with the problem has been recognized
by standards advocates like /usr/group, an organization of UNIX system users
from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Misconcep­
tions about the amount of protection that record locking affords are dispelled.
Record locking should be viewed as a synchronization mechanism, not a security
mechanism.

The manual pages for the fcntlO system call, the lockfO library function, and
fcntl data structures and commands are referred to throughout this section [see
fcntl(5»). You should read them before continuing.

Terminology

Before discussing how to use record locking, let us first define a few terms.

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the programs
that use the files.

Cooperating Processes
Processes that work together in some well-defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care­
fully set to restrict noncooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

File and Record Locking 3-11

Read (Share) Locks
These are used to gain limited access to sections of files. When a read lock
is put on a record, other processes may also read lock that record, in
whole or in part. No other process, however, may have or obtain a write
lock on an overlapping section of the file. If a process holds a read lock it
may assume that no other process will be writing or updating that record
at the same time. This access method also lets many processes read the
given record. This might be necessary when searching a file, without the
contention involved if a write or exclusive lock were used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a
write lock is put on a record, no other process may read or write lock that
record, in whole or in part. If a process holds a write lock it may assume
that no other process will be reading or writing that record at the same
time.

Advisory Locking
A form of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creatO, openO, readO,
or writeO. The control over records is accomplished by requiring an
appropriate record lock request before I/O operations. If appropriate
requests are always made by all processes accessing the file, then the
accessibility of the file will be controlled by the interaction of these
requests. Advisory locking depends on the individual processes to
enforce the record locking protocol; it does not require an accessibility
check at the time of each I/ 0 request.

Mandatory Locking

3-12

A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creatO, openO, readO and
writeO system calls. If a record is locked, then access of that record by
any other process is restricted according to the type of lock on the record.
The control over records should still be performed explicitly by requesting
an appropriate record lock before I/O operations, but an additional check
is made by the system before each I/O operation to ensure the record
locking protocol is being honored. Mandatory locking offers an extra syn­
chronization check, but at the cost of some additional system overhead.

File and Device Input/Output

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by a process with the appropriate privilege. The permissions
of the directory in which the file resides can also affect the ultimate disposition of
a file. Note that if the directory permissions allow anyone to write in it, then files
within the directory may be removed, even if those files do not have read, write or
execute permission for that user. Any information that is worth protecting, is
worth protecting properly. If your application warrants the use of record locking,
make sure that the permissions on your files and directories are set properly. A
record lock, even a mandatory record lock, will only protect the portions of the
files that are locked. Other parts of these files might be corrupted if proper pre­
cautions are not taken.

Only a known set of programs and/ or administrators should be able to read or
write a data base. This can be done easily by setting the set-groupoID bit of the
data base accessing programs [see chmod(l)]. The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of such
file protection, although record locking is not used, is the mail command. In that
command only the particular user and the mail command can read and write in
the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid open
file descriptor. If read locks are to be done, then the file must be opened with at
least read accessibility, and with write accessibility for write locks.

~ Mapped files cannot be locked: if a file has been mapped, any attempt to use 1_":';1 file 0' mco,d locking on the file falls. See _p(2).

For our example we will open our file for both read and write access:

File and Record Locking 3-13

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd;
char *filename;

main (argc, argv)
int argc;

char *argv(];

/* file descriptor */

extern void exit(), perror();

/* get data base file name fram command line and open the
* file for read and write access~
*/

if (argc < 2) {
(void) fprintf(stderr, "usage: %s filename\n", argv[O]);
exit(2) ;

}

filename = argv[l];
fd = open(filename, O_RDWR);
if (fd < 0) {

perror(filename);
exit(2) ;
}

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods depend
on how the lock interacts with the rest of the program. There are also questions of
performance as well as portability. Two methods will be given here, one using the
fcntlO system call, the other using the /usr/group standards compatible
lockfO library function call.

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero (0) until the end of the maximum file size. This
point extends beyond any real end of the file so that no lock can be placed on this
file beyond this point. To do this the value of the size of the lock is set to zero.
The code using the fcntlO system call is as follows:

3-14 File and Device Input/Output

#include <fcntl.h>
#define MAX_TRY 10
int try;

struct flock lck;

txy = 0;

/* set up the record locking structure, the address of which
* is passed to the fcntl system call.
*/

lck.l_type = F_WRLCK;
lck.l_whence = 0;
lck.l_start = OL;

/* setting a write lock */
/* offset I_start from beginning of file */

ICk.I_Ien = OL; /* until the end of the file address space */

/* Attempt locking MAX_TRY times before giving up.
*/

while (fcntl(fd, F_SETLK, &lck) < 0) {

if (errno == EAGAIN II errno == EACCES)
/* there might be other errors cases in which
* you might txy again.
*/

if (++txy < MAX_TRY) {
(void) sleep(2);
continue;

(void) fprintf(stderr, "File busy txy again later!\n");
return;

perror(Ufcntl ll) ;

exit (2) ;

This portion of code tries to lock a file. This is attempted several times until one of
the following things happens:

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockfO function, the code is as follows:

File and Record Locking 3-15

#include <unistd.h>
#define MAX_TRY 10
int try;

try = 0;

/* make sure the file pointer
* is at the beginning of the file.
*/

lseek(fd, OL, 0);

/* Attempt locking MAX_TRY times before giving up.
*/

while (lockf(fd, F_TLOCK, OL) < 0) {
if (ermo == EAGAIN II ermo == EACCES)

/* there might be other errors cases in which
* you might try again.
*/

if (++try < MAX_TRY) (
sleep(2);
continue;

(void) fprintf(stderr,"File busy try again later!\n");
return;

perror ("lockf") ;
exit(2);

It should be noted that the lockfO example appears to be simpler, but the fcntlO
example exhibits additional flexibility. Using the fcntlO method, it is possible to
set the type and start of the lock request simply by setting a few structure vari­
ables. lockfO merely sets write (exclusive) locks; an additional system call,
lseekO, is required to specify the start of the lock.

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting and
real problem. There are two records (these records may be in the same or different
file) that must be updated simultaneously so that other processes get a consistent
view of this information. (This type of problem comes up, for example, when
updating the interrecord pointers in a doubly linked list.) To do this you must
decide the following questions:

3-16 File and Device Input/Output

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain all
the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list. For
the example, we will assume that the record after which the new record is to be
inserted has a read lock on it already. The lock on this record must be changed or
promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no other
process is holding a read lock in the same section of the file. If there are processes
with pending write locks that are sleeping on the same section of the file, the lock
promotion succeeds and the other (sleeping) locks wait. Promoting (or demoting)
a write lock to a read lock carries no restrictions. In either case, the lock is merely
reset with the new lock type. Because the /usr/group lockf function does not
have read locks, lock promotion is not applicable to that call. An example of
record locking with lock promotion follows:

File and Record Locking 3-17

3-18

struct record

f* data portion of record *f

long prey;
long next;

f* index to previous record in the list *f
f* index to next record in the list *f

} ;

f* Lock promotion using fcntl(2)
* When this routine is entered it is assumed that there are read
* locks on "here" and IInext".

* If write locks on "here" and "next" are obtained:
* Set a write lock on "this".

Return index to lithia" record.
* If any write lock is not obtained:
* Restore read locks on IIherel! and "next II •

* Remove all other locks.

*f
long

Return a -1.

set3lock (this, here, next)
long this, here, next;

struct flock lck;

lck.l_type = F_WRLCK;
ICk.l_whence = 0;

f* setting a write lock *f
f* offset I_start fram beginning of file *f

lck.l_start = here;
Ick.I_Ien = sizeof(struct record);

1* promote lock on "here" to write lock */

if (fcntl(fd, F_SETLKW, &lck) < 0) {
return (-1);

1* lock "thislI with write lock */

lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0)

1* Lock on lithia" failed;
* demote lock on "herel! to read lock.
*f

lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);

1* promote lock on "next ll to write lock */
lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0)

1* Lock on "next" failed;
* demote lock on "herel! to read lock,

*f

(continued on next page)

File and Device Input/Output

lck.l_type = F_RDLCK;
lck.l_start = here;

(void) fcntl(fd, F_SETLK, &lck);
/* and remove lock on "this" ~

*/
lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl(fd, F_SETLK, &lck);
return (-1);/* cannot set lock, try again or ~it */

return (this);

The locks on these three records were all set to wait (sleep) if another process was
blocking them from being set. This was done with the F _SETLKW command. If the
F _SETLK command was used instead, the fcntlO system calls would fail if
blocked. The program would then have to be changed to handle the blocked con­
dition in each of the error return sections.

Let us now look at a similar example using the lockfO function. Since there are
no read locks, all (write) locks will be referenced generically as locks.

/* Lock promotion using lockf(3)
* When this routine is entered it is assumed that there are
* no locks on "herell and IInext".

* If locks are obtained:
Set a lock on "thisl'.
Return index to "this" record.

* If any lock is not obtained:

*/

Remove all other locks.
Return a -1.

#include <unistd.h>

long
set310ck (this, here, next)
long this, here, next;

1* lock "here" *1
(void) Iseek(fd, here, 0);

File and Record Locking

(continued on next page)

3-19

if (lockf(fd, F_LOCK, sizeof(struct record» < 0) {
return (-1);

/* lock "this" */
(void) lseek(fd, this, 0);
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) {

/* Lock on "this" failed.
* Clear lock on "here".
*/

(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record»;
return (-1);

/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) {

1* Lock on "next" failed.
* Clear lock on "here" #

*/

(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record»;

1* and remove lock on II this II •

*/
(void) 1 seek (fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record»;
return (-1);/* cannot set lock, try again or quit */

return (this);

Locks are removed in the same manner as they are set, only the lock type is dif­
ferent (F _UNLCK or F _ULOCK). An unlock cannot be blocked by another process
and will only affect locks that were placed by this process. The unlock only affects
the section of the file defined in the previous example by lck. It is possible to
unlock or change the type of lock on a subsection of a previously set lock. This
may cause an additional lock (two locks for one system call) to be used by the
operating system. This occurs if the subsection is from the middle of the previ­
ously set lock.

3-20 File and Device Input/Output

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is set
up as in the previous examples and the F _GETLK command is used in the fcntlO
call. If the lock passed to fcntlO would be blocked, the first blocking lock is
returned to the process through the structure passed to fcntlO. That is, the lock
data passed to fcntlO is overwritten by blocking lock information. This informa­
tion includes two pieces of data that have not been discussed yet, I-pid and
I_sysid, that are only used by F _GETLK. (For systems that do not support a dis­
tributed architecture the value in I_sysid should be ignored.) These fields
uniquely identify the process holding the lock.

If a lock passed to fcntlO using the F _GETLK command would not be blocked by
another process's lock, then the I_type field is changed to F_UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to print
all the segments locked by other processes. Note that if there are several read
locks over the same segment only one of these will be found.

struct flock 1ck;

f* Find and print "write lock" blocked segments of this file. *f
(void) printf ("sysid pid type start 1ength\n");
1ck.1_whence = 0;
1ck.1_start = OL;
1ck.1_1en = OL;
do {

1ck.1_type = F_WRLCK;
(void) fcnt1(fd, F_GETLK, &lck);
if (lck.1_type != F_UNLCK) {

File and Record Locking

(void) printf (n%5d %5d IYoC %8d %8d\n ll ,

1ck.1_sysid,
1ck.1J)id,
(lck.1_type == F_WRLCK) 'W' 'R',

1ck.1_start,
1ck.1_1en) ;

f* if this lock goes to the end of the address
* space, no need to look further, so break out.
*f

if (lck.1_1en == 0)
break;

/* otherwise, look for new lock after the one
* just found.
*f

1ck.1_start += 1ck.1_1en;

3-21

fcntlO with the F_GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockfO function with the F_TEST command can also be used to test if there is
a process blocking a lock. This function does not, however, return the information
about where the lock actually is and which process owns the lock. A routine using
lockfO to test for a lock on a file follows:

/* find a blocked record. */
/* seek to beginning of file */
(void) lseek(fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*/

if (lockf(fd, F_TEST, OL) < 0) {
switch (errno) {

case EACCES:
case EAGAIN:
(void) printf ("file is locked by another process\n");
break;
case EBADF:
/* bad argument passed to lockf */
perror (IIlockf ") ;
break;
default:
(void) printf("lockf: unknown error <%d>\n", errno);
break;
}

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for each
file. If the parent were to seek to a point in the file, the child's file pointer would
also be at that location. This feature has important implications when using
record locking. The current value of the file pointer is used as the reference for the
offset of the beginning of the lock, as described by I_start, when using a
I_whence value of 1. If both the parent and child process set locks on the same
file, there is a possibility that a lock will be set using a file pointer that was reset by
the other process. This problem appears in the lockfO function call as well and is
a result of the /usr/group requirements for record locking. If forking is used in a
record locking program, the child process should close and reopen the file if either
locking method is used. This will result in the creation of a new and separate file
pointer that can be manipulated without this problem occurring. Another solu­
tion is to use the fcntlO system call with a I_whence value of 0 or 2. This makes
the locking function atomic, so that even processes sharing file pointers can be
locked without difficulty.

3-22 File and Device Input/Output

Deadlock Handling

There is a certain level of deadlock detection/ avoidance built into the record lock­
ing facility. This deadlock handling provides the same level of protection granted
by the /usr/group standard lackfO call. This deadlock detection is only valid
for processes that are locking files or records on a single system. Deadlocks can
only potentially occur when the system is about to put a record locking system call
to sleep. A search is made for constraint loops of processes that would cause the
system call to sleep indefinitely. If such a situation is found, the locking system
call will fail and set erma to the deadlock error number. If a process wishes to
avoid the use of the systems deadlock detection it should set its locks using
F_GETLK instead of F_GETLKW.

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be made
clear in a subsequent section. Whether or not locks are enforced by the I/O sys­
tem calls is determined at the time the calls are made by the permissions on the
file [see chmod(2)]. For locks to be under mandatory enforcement, the file must be
a regular file with the set-groupoID bit on and the group execute permission off. If
either condition fails, all record locks are advisory. Mandatory enforcement can
be assured by the following code:

File and Record Locking 3-23

#ieplude <sys/types.h>
#ieplude <sys/stat.h>

int mode;
struct stat buf;

if (stat (filename, &buf) < 0) {
perror(llprogramll) ;

exit (2);

1* get currently set mode *1
mode = buf .stJOO(ie;
1* remove group execute pennission fran mode * 1
mode &= -(S_IEXEC»3);
1* set 'set group id bit' in mode *1
mode 1= S_ISGIO;
if (cbmod(filename, mode) < 0)

perror (liprogram") ;

exit(2);

Files that are to be record locked should never have any type of execute permis­
sion set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory
locking. This can be done with the command:

chmod +1 file

The 1s(1) command shows this setting when you ask for the long listing format:

Is -1 file

causes the following to be printed:

-rw---1--- 1 user group size mod time file

3·24 File and Device Input/Output

Caveat Emptor-Mandatory Locking

• Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the pro­
cess should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this way.

• As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not have
to be performed for every II 0 request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system environ­
ment. In such an environment the system on which the locking process resides
may be remote from the system on which the file and record locks reside. In this
way multiple processes on different systems may put locks upon a single file that
resides on one of these or yet another system. The record locks for a file reside on
the system that maintains the file. It is also important to note that deadlock
detection/ avoidance is only determined by the record locks being held by and for
a single system. Therefore, it is necessary that a process only hold record locks on
a single system at any given time for the deadlock mechanism to be effective. If a
process needs to maintain locks over several systems, it is suggested that the pro­
cess avoid the sleep-when-blocked features of fcntlO or lockfO and that the pro­
cess maintain its own deadlock detection. If the process uses the sleep-when­
blocked feature, then a timeout mechanism should be provided by the process so
that it does not hang waiting for a lock to be cleared.

File and Record Locking 3·25

Basic STREAMS Operations

This section describes the basic set of operations for manipulating STREAMS
entities.

A STREAMS driver is similar to a traditional character I/O driver in that it has
one or more nodes associated with it in the file system, and it is accessed using the
openO system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver causes
separate Streams to be connected between a user process and the driver. The file
descriptor returned by the openO call is used for further access to the Stream. If
the same minor device is opened more than once, only one Stream is created; the
first openO call creates the Stream, and subsequent openO calls return a file
descriptor that references that Stream. Each process that opens the same minor
device shares the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using the
writeO system call and receive data from the device using the readO system call.
Access to STREAMS drivers using readO and writeO is compatible with the trad­
itional character I/O mechanism.

The closeO system call closes a device and dismantles the associated Stream
when the last open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the
user program interacts with a communications device that provides point-to-point
data transfer between two computers. Data written to the device transmitted over
the communications line, and data arriving on the line can be retrieved by reading
from the device.

3-26 File and Device Input/Output

#include <fcntl.h>

main()
{

char buf [1024];
int fd, count;

if «fd = open("/ciev/camnJ01", O_RDWR» < 0) (
pe=or("epen failed");
exit(l);

while «count = read(fd, buf, 1024» > 0)
if (write (fd, buf, count) != count) {

perror ("write failed II) ;
break;

exit(O);

In the example, /dev/comm/Ol identifies a minor device of the communications
device driver. When this file is opened, the system recognizes the device as a
STREAMS device and connects a Stream to the driver. Figure 3-2 shows the state
of the Stream following the call to openO.

Figure 3-2: Stream to Communication Driver

Basic STREAMS Operations

User
Process

Stream Kernel Space
Head

Communications
Driver

3-27

This example illustrates a user reading data from the communications device and
then writing the input back out to the same device. In short, this program echoes
all input back over the communications line. The example assumes that a user
sends data from the other side of the communications line. The program reads up
to 1024 bytes at a time, and then writes the number of bytes just read.

The readO call returns the available data, which may contain fewer than 1024
bytes. If no data is currently available at the Stream head, the readO call blocks
until data arrive.

Similarly, the writeO call attempts to send count bytes to /dev/comm/Ol. How­
ever, STREAMS implements a flow control mechanism that prevents a user from
exhausting system resources by flooding a device driver with data.

Flow control controls the rate of message transfer among the modules, drivers,
Stream head, and processes. Flow control is local to each Stream and advisory
(voluntary). It limits the number of characters that can be queued for processing
at any queue in a Stream, and limits buffers and related processing at any queue
and in anyone Stream, but does not consider buffer pool levels or buffer usage in
other Streams. Flow control is not applied to high-priority messages.

If the Stream exerts flow control on the user, the writeO call blocks until flow con­
trol is relieved. The call does not return until it has sent count bytes to the device.
exitO, which is called to terminate the user process, also closes all open files, and
thereby dismantling the Stream in this example.

3-28 File and Device Input/Output

Benefits of STREAMS

STREAMS provides the following benefits:

• A flexible, portable, and reusable set of tools for development of UNIX sys­
tem communication services.

• Easy creation of modules that offer standard data communications services
and the ability to manipulate those modules on a Stream.

• From user level, modules can be dynamically selected and interconnected;
kernel programming, assembly, and link editing are not required to create
the interconnection.

STREAMS also greatly simplifies the user interface for languages that have com­
plex input and output requirements.

Standardized Service Interfaces

STREAMS simplifies the creation of modules that present a service interface to
any neighboring application program, module, or device driver. A service inter­
face is defined at the boundary between two neighbors. In STREAMS, a service
interface is a specified set of messages and the rules that allow passage of these
messages across the boundary. A module that implements a service interface
receives a message from a neighbor and responds with an appropriate action (for
example, sends back a request to retransmit) based on the specific message
received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However,
rational sequences are generally constructed by connecting modules with compati­
ble protocol service interfaces. For example, a module that implements an X.25
protocol layer, as shown in Figure 3-2, presents a protocol service interface at its
input and output sides. In this case, other modules should only be connected to
the input and output side if they have the compatible X.25 service interface.

Benefits of STREAMS 3-29

Manipulating Modules

STREAMS provides the capabilities to manipulate modules from the user level, to
interchange modules with common service interfaces, and to change the service
interface to a STREAMS user process. These capabilities yield further benefits
when implementing networking services and protocols, including:

• User level programs can be independent of underlying protocols and physi­
cal communication media.

• Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

• Higher level services can be created by selecting and connecting lower level
services and protocols.

The following examples show the benefits of STREAMS capabilities for creating
service interfaces and manipulating modules. These examples are only illustra­
tions and do not necessarily reflect real situations.

Protocol Portability

Figure 3-3 shows how the same X.25 protocol module can be used with different
drivers on different machines by implementing compatible service interfaces. The
X.25 protocol module interfaces are Connection Oriented Network Service
(CONS) and Link Access Protocol- Balanced (LAPB).

3·30 File and Device Input/Output

Figure 3-3: X.2S Multiplexing Stream

I

\

Machine A

X.2S
Protocol Layer

Module

LAPB
Driver

Machine A

Protocol Substitution

\

I

CONS
INTERFACE

SAME

MODULE

LAPB
INTERFACE

DIFFERENT
DRIVER

Machine B

------ ------

X.2S
Protocol Layer

Module

------ ------

LAPB
Driver

MachineB

Alternate protocol modules (and device drivers) can be interchanged on the same
machine if they are implemented to an equivalent service interface.

Protocol Migration

Figure 3-4 illustrates how STREAMS can move functions between kernel software
and front-end firmware. A common downstream service interface allows the tran­
sport protocol module to be independent of the number or type of modules below.
The same transport module connects without change to either an X.2S module or
X.2S driver that has the same service interface.

By shifting functions between software and firmware, developers can produce
cost effective, functionally equivalent systems over a wide range of configurations.
They can rapidly incorporate technological advances. The same transport proto­
col module can be used on a lower capacity machine, where economics may pre­
clude the use of front-end hardware, and also on a larger scale system where a
front-end is economically justified.

Benefits of STREAMS 3-31

Figure 3-4: Protocol Migration

Class 1
Transport
Protocol

------- -------

X.25
Packet Layer

Protocol

LAPB
-< Driver f-

j

Module Reusability

SAME
MODULES

CONS
Interface

KERNEL

HARDWARE
-

/

\

Class 1
Transport
Protocol

X.25
Packet Layer

Driver f-

/

Figure 3-5 shows the same canonical module (for example, one that provides
delete and kill processing on character strings) reused in two different Streams.
This module is typically implemented as a filter, with no downstream service
interface. In both cases, a tty interface is presented to the Stream's user process
because the module is nearest to the Stream head.

3-32 File and Device Input/Output

Figure 3-5: Module Reusability

User
Process

-----r-----
Canonical
Module

Terminal
Emulator
Module

Class 1
Transport
Protocol

X.25
Packet Layer

Protocol

LAPB
Driver

Benefits of STREAMS

SAME
INTERFACE

SAME
MODULE

User
Process

Canonical
Module

Raw
TTY

Driver

3-33

STREAMS Mechanism

This chapter shows how to construct, use, and dismantle a Stream using
STREAMS-related systems calls. General and STREAMS-specific system calls pro­
vide the user level facilities required to implement application programs. This
system call interface is upwardly compatible with the traditional character I/O
facilities. The openO system call recognizes a STREAMS file and creates a Stream
to the specified driver. A user process can receive and selid data on STREAMS
files using readO and writeO in the same way as with traditional character files.
The ioctlO system call enables users to perform functions specific to a particular
device. STREAMS ioctlO commands [see streamio(7)] support a variety of
functions for accessing and controlling Streams. The last closeO in a Stream dis­
mantles a Stream.

In addition to the traditional ioctlO commands and system calls, there are other
system calls used by STREAMS. The polIO system call enables a user to poll mul­
tiple Streams for various events. The putmsgO and getmsgO system calls enable
users to send and receive STREAMS messages, and are suitable for interacting
with STREAMS modules and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of
modules and drivers. The Stream head handles most system calls so that the
related processing does not have to be incorporated in a module or driver.

STREAMS System Calls

The STREAMS-related system calls are as follows:

openO Open a Stream

Close a Stream

Read data from a Stream

Write data to a Stream

Control a Stream

closeO

readO

writeO

ioctlO

getmsgO

putmsgO

Receive a message at the Stream head

Send a message downstream

3-34 File and Device Input/Output

pollO Notify the application program when selected events occur
on a Stream

pipeO Create a channel that provides a communication path
between multiple processes

A STREAMS device responds to the standard character I/O system calls, such as
readO and writeO, by turning the request into a message. This feature ensures
that STREAMS devices may be accessed from the user level in the same manner as
non-STREAMS character devices. However, additional system calls provide other
capabilities.

getmsgO and putmsgO
The putmsgO and getmsgO system calls enable a user process to send and receive
STREAMS messages, in the same form the messages have in kernel modules and
drivers. readO and writeO are not designed to include the message boundaries
necessary to encode messages.

The advantage of this capability is that a user process, as well as a STREAMS
module or driver, can implement a service interface.

poliO
The pollO system call allows a user process to monitor a number of streams to
detect expected I/O events. Such events might be the availability of a device for
writing, input data arriving from a device, a hangup occurring, an error being
detected, or the arrival of a priority message. See poll(2) in the Operating System
API Reference for more information.

Opening a STREAMS Device File

One way to construct a Stream is to open [see open(2)] a STREAMS-based driver
file.

If the openO call is the initial file open, a Stream is created. (There is one Stream
per major / minor device pair.)

If this is the initial open of this Stream, the driver open routine is called. If
modules have been specified to be autopushed, they are pushed immediately after
the driver open. When a Stream is already open, further opens of the same Stream
result in calls to the open procedures of all pushable modules and the driver open.
Note that this is done in the reverse order from the initial Stream open. In other
words, the initial open processes from the Stream end to the Stream head, while
later opens process from the Stream head to the Stream end.

STREAMS Mechanism 3-35

Creating a STREAMS-based Pipe

In addition to opening a STREAMS-based driver, a Stream can be created by creat­
ing a pipe [see pipe(2)]. Because pipes are not character devices, STREAMS
creates and initializes a streamtab structure for each end of the pipe.

When the pipeO system call is executed, two Streams are created. STREAMS fol­
lows the procedures similar to those of opening a driver; however, duplicate data
structures are created. That is, two entries are allocated in the user's file table and
two vnodes are created to represent each end of the pipe. The file table entries are
initialized to point to the allocated vnodes and each vnode is initialized to specify
a file oftype FIFO.

Each Stream header represents one end of the pipe, and it points to the down­
stream half of each Stream head queue pair. Unlike STREAMS-based devices,
however, the downstream portion of the Stream terminates at the upstream por­
tion of the other Stream.

Adding and Removing Modules

As part of constructing a Stream, a module can be added (pushed) with an ioctlO
I_PUSH [see streamio(7)] system call. The push inserts a module beneath the
Stream head. Because of the similarity of STREAMS components, the push opera­
tion is similar to the driver open. First, the address of the qinit structure for the
module is obtained.

Next, STREAMS allocates a pair of queue structures and initializes their contents
as in the driver open.

Then, CLnext values are set and modified so that the module is interposed
between the Stream head and its neighbor immediately downstream. Finally, the
module open procedure (located using qini t) is called.

Each push of a module is independent, even in the same Stream. If the same
module is pushed more than once on a Stream, there will be multiple occurrences
of that module in the Stream. The total number of pushable modules that may be
contained on anyone Stream is limited by the kernel parameter NSTRPUSH.

An ioctlO I_POP [see streamio(7)] system call removes (pops) the module
immediately below the Stream head. The pop calls the module close procedure.
On return from the module close, any messages left on the module's message
queues are freed (deallocated). Then, STREAMS connects the Stream head to the
component previously below the popped module and deallocates the module's
queue pair. I_PUSH and I_POP enable a user process to alter dynamically the
configuration of a Stream by pushing and popping modules as required. For

3-36 File and Device Input/Output

example, a module may be removed and a new one inserted below the Stream
head. Then the original module can be pushed back after the new module has
been pushed.

Closing the Stream

The last closeO to a STREAMS file dismantles the Stream. Dismantling consists
of popping any modules on the Stream and closing the driver. Before a module is
popped, the closeO may delay to allow any messages on the write message queue
of the module to be drained by module processing. Similarly, before the driver is
closed, the closeO may delay to allow any messages on the write message queue
of the driver to be drained by driver processing. If O_NDELAY (or O_NONBLOCK) is
clear, closeO waits up to 15 seconds for each module to drain and up to 15
seconds for the driver to drain [see open(2)]. If O_NDELAY (or O_NONBLOCK) is set,
the pop is performed immediately and the driver is closed without delay. Mes­
sages can remain queued, for example, if flow control is inhibiting execution of the
write queue serviceO procedure. When all modules are popped and any wait for
the driver to drain is completed, the driver close routine is called. On return from
the driver close, any messages left on the driver's queues are freed, and the queue
and stdata structures are deallocated.

~
STREAMS frees only the messages contained on a message queue. Any

NOTE message or data structures used internally by the driver or module must be
freed by the driver or module close procedure.

Finally, the user's file table entry and the vnode are deallocated and the file is
closed.

Stream Construction Example

The following example extends the previous communications device echoing
example (see the section "Basic STREAMS Operations" in this chapter) by insert­
ing a module in the Stream. The (hypothetical) module in this example can con­
vert (change case, delete, and/ or duplicate) selected alphabetic characters.

STREAMS Mechanism 3-37

Inserting Modules

An advantage of STREAMS over the traditional character I/O mechanism stems
from the ability to insert various modules into a Stream to process and manipulate
data that pass between a user process and the driver. In the example, the charac­
ter conversion module is passed a command and a corresponding string of charac­
ters by the user. All data passing through the module are inspected for instances
of characters in this string; the operation identified by the command is performed
on all matching characters. The necessary declarations for this program are
shown below:

#include <string.h>
#include <fcntl.h>
#include <stropts.h>

#define BUFLEN 1024

/*

* These defines would typically be
* found in a header file for the module
*/

#define XCASE
#define DELETE

1 /* change alphabetic case of char */

2 /* delete char */
#define DUPLICATE 3 /* duplicate char */

maine)
{

char buf [BUFLENI ;
int fd.l count;
struct strioctl strioctl;

The first step is to establish a Stream to the communications driver and insert the
character conversion module. The following sequence of system calls accom­
plishes the following display:

3-38

if «fd = open(" /dev/cOl1U1l/01", O_RDWR» < 0) {
perror("open failed");
exit(l);

if (ioctl (fd, I_PUSH, "chconv") < 0)
perror("ioctl I_PUSH failed");
exit(2);

File and Device Input/Output

The I_PUSH ioctlO call directs the Stream head to insert the character conversion
module between the driver and the Stream head, creating the Stream shown in
Figure 3-6. As with drivers, this module resides in the kernel and must have been
configured into the system before it was booted, unless the system has an autoload
capability.

Figure 3-6: Case Converter Module

-

User
Process

Stream

Head

Character
Converter

Communications
Driver

-
___ ~s_e~ ~pace

Kernel Space

An important difference between STREAMS drivers and modules is illustrated
here. Drivers are accessed through a node or nodes in the file system and may be
opened just like any other device. Modules, on the other hand, do not occupy a
file system node. Instead, they are identified through a separate naming conven­
tion, and are inserted into a Stream using I_PUSH. The name of a module is
defined by the module developer.

Modules are pushed onto a Stream and removed from a Stream in Last-In-First­
Out (UFO) order. Therefore, if a second module was pushed onto this Stream, it
would be inserted between the Stream head and the character conversion module.

STREAMS Mechanism 3-39

Module and Driver Control

The next step in this example is to pass the commands and corresponding strings
to the character conversion module. This can be done by issuing ioctlO calls to
the character conversion module as follows:

/* change all uppercase vowels to lowercase */
strioctl.ic_cmd = XCASE;
strioctl.ic_tfmout = 0;
strioctl.ic_dp = .IAEIOU";

/* default timeout (15 sec) */

strioctl.ic_len = strlen(strioctl.ic_qp);

if (ioctl(fd, I_STR, &strioctl) < 0)
perror("ioctl I_STR failed");
axit(3);

/* delete all instances of the chars 'x' and 'X' */
strioctl.ic_cmd = DELETE;
strioctl. ic_dp = "xX·I ;

strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0)
perror("ioctl I_STR failed");
exit(4);

ioctlO requests are issued to STREAMS drivers and modules indirectly, using
the I_STR ioctlO call [see streamio(7)]. The argument to I_STR must be a
pointer to a strioctl structure, which specifies the request to be made to a
module or driver. This structure is defined in <stropts .h> and has the following
format:

struct strioctl

} ;

int ic_cmd; /* ioctl request */

int ic_timout; /* ACK/NAK timeout */
int ie_len;
char *ic_qp;

/* length of data argument */
/* ptr to data argument */

where ic_cmd identifies the command intended for a module or driver,
ic_timout specifies the number of seconds an I_STR request should wait for an
acknowledgement before timing out, ic_len is the number of bytes of data to
accompany the request, and ic_dp points to that data.

3-40 File and Device Input/Output

In the example, two separate commands are sent to the character conversion
module. The first sets ic_cmd to the command XCASE and sends as data the string
"AEIOU"; it converts all uppercase vowels in data passing through the module to
lowercase. The second sets ic_cmd to the command DELETE and sends as data the
string "xX"; it deletes all occurrences of the characters 'x' and 'X' from data pass­
ing through the module. For each command, the value of ic_timout is set to
zero, which specifies the system default timeout value of 15 seconds. The ic_dp
field points to the beginning of the data for each command; ic_len is set to the
length of the data.

I_STR is intercepted by the Stream head, which packages it into a message, using
information contained in the strioctl structure, and sends the message down­
stream. Any module that does not understand the command in ic_cmd passes the
message further downstream. The request will be processed by the module or
driver closest to the Stream head that understands the command specified by
ic_cmd. The ioctlO call will block up to ic_timout seconds, waiting for the tar­
get module or driver to respond with either a positive or negative acknowledge­
ment message. If an acknowledgement is not received in ic_timout seconds, the
ioctlO call will fail.

~
Only one I_STR request can be active on a Stream at one time. Further

NOTE requests will block until the active I_STR request is acknowledged and the
system call completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR

request. If data is returned by the target module or driver, ic_dp must point to a
buffer large enough to hold that data, and ic_len will be set on return to show
the amount of data returned:

while «count = read(fd. buf. BUFLEN» > 0) {
if (write(fd. buf. count) != count) {

perrcr ("write failed");
break;

exit(O);

Note that the character conversion processing was realized with no change to the
communications driver.

STREAMS Mechanism 3-41

The exitO system call dismantles the Stream before terminating the process. The
character conversion module is removed from the Stream automatically when it is
closed. Alternatively, modules may be removed from a Stream using the I_POP
ioctlO call described in streamio(7). This call removes the topmost module on
the Stream, and enables a user process to alter the configuration of a Stream
dynamically, by popping modules as needed.

A few of the important ioctlO requests supported by STREAMS have been dis­
cussed. Several other requests are available to support operations such as deter­
mining if a given module exists on the Stream, or flushing the data on a Stream.
These requests are described fully in streamio(7).

3-42 File and Device Input/Output

4 Process Management

Introduction 4-1

Program Execution & Process Creation 4-3
Program Execution - execlO and execvO 4-3
Process Creation - forkO 4-5
Control of Processes - forkO and waitO 4-8
Process Termination 4-9

Timer Operations 4-11

Process Scheduling 4-12
How the Process Scheduler Works 4-14

• Time-Sharing Class 4-15
• System Class 4-16
• Real-Time Class 4-16

Scheduler Commands and Function Calls 4-17
• The priocnti Command 4-19
• The priocntiO System Call 4-24
• The priocntlsetO System Call 4-35

Scheduler Interaction with Other Functions 4-38
• Kernel Processes 4-38
• forkO, execO 4-38
• nice 4-38
• init 4-38

Scheduler Performance 4-39
• Process State Transition 4-40
• Software Latencies 4-41

Table of Contents

Memory Management 4-43
Memory Management Facilities 4-43

• Virtual Memory, Address Spaces and Mapping 4-43
• Networking, Heterogeneity and Integrity 4-44

Memory Management Interfaces 4-45
• Creating and Using Mappings 4-46
• Removing Mappings 4-51
• Cache Control 4-51
• Other Mapping Functions 4-55

Address Space Layout 4-55

ii Table of Contents

Introduction

A process is the execution of a program; most UNIX System V commands execute
as separate processeE •. Each process is a distinct entity, able to execute and ter­
minate independently of all other processes. Each user can have many processes
in the system simultaneously. In fact, it is not always necessary for the user to be
logged into the system while those processes are executing.

Whenever you execute a command in the UNIX system you are initiating a pro­
cess that is numbered and tracked by the operating system. A flexible feature of
the UNIX system is that processes can be generated by other processes. This hap­
pens more than you might ever be aware of. For example, when you log in to
your system you are running a process, very probably the shelL If you then use an
editor such as vi, take the option of invoking the shell from vi, and execute the ps
command, you will see a display something like the one in the following figure
(which shows the results of a ps -f command):

As you can see, user abc (who went through the steps described above) now has
four processes active. It is an interesting exercise to trace the chain that is shown
in the Process ID (PID) and Parent Process ID (PPID) columns. The shell that was
started when user abc logged on is process 24210; its parent is the initialization
process (process ID 1). Process 24210 is the parent of process 24631, and so on.

The four processes in the example above are all UNIX system shell-level com­
mands, but you can spawn new processes from your own program. You might
think, "Well, it's one thing to switch from one program to another when I'm at my
terminal working interactively with the computer; but why would a program
want to run other programs, and if one does, why wouldn't I just put everything
together into one big executable module?"

Introduction 4-1

Overlooking the case where your program is itself an interactive application with
diverse choices for the user, your program may need to run one or more other
programs based on conditions it encounters in its own processing. (If it's the end
of the month, go do a trial balance, for example.) The usual reasons why it might
not be practical to create one large executable are:

• The load module may get too big to fit in the maximum process size for
your system.

• You may not have control over the object code of all the other modules you
want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes
might need to be done. There are two ways to do it:

• exec(2)-stop this process and start another

• fork(2)-start an additional copy of this process

4·2 Process Management

Program Execution & Process Creation

Program Execution - execlO and execvO

Overlays, performed by the family of exec system-calls, can change the executing
program, but can not create new processes. Processes are created (or spawned) by
the system-call f~rkO, which is discussed later.

exec is the name of a family of functions that includes execlO, execvO, exec leO,
execveO, execlpO, and execvpO. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide dif­
ferent ways of pulling together and presenting the arguments of the function. An
example of one version (execlO) might be:

exec 1 ("/usr/bin/prog2", "prog", progarg1, progarg2, (char *)0);

For execlO the argument list is

/usr/bin/prog2

prog

progarg1,
progarg2

(char *)0

path name of the new process file

the name the new process gets in its argv [0]

arguments to prog2 as char *'s

a null char pointer to mark the end of the arguments

Check the exec(2) manual page in the Operating System API Reference for the rest
of the details. The key point of the exec family is that there is no return from a
successful execution: the new process overlays the process that makes the exec
system call. The new process also takes over the Process ID and other attributes of
the old process. If the call to exec is unsuccessful, control is returned to your pro­
gram with a return value of -1. You can check ermo to learn why it failed.

The system-call execlO executes another program, without returning; thus, to print
the date as the last action of a running program, use:

exec 1 ("/bin/date", "date", NULL);

The first argument to execlO is the file-name of the command; you have to know
where it is found in the file-system. The second argument is conventionally the
program name (that is, the last component of the file-name), but this is seldom
used except as a place-holder. If the command takes arguments, they are strung
out after this; the end of the list is marked by a NULL argument.

Program Execution & Process Creation 4-3

The execlO call overlays the existing program with the new one, runs that, then
exits, without returning to the original program.

More realistically, a program might fall into two or more phases that communi­
cate only through temporary files. Here it is natural to make the second pass sim­
ply an execlO call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can't be found or is not exe­
cutable. If you don't know where date is located, say:

execl("/bin/date", "date", NULL);
exec I ("/usr/bin/date", "date", NULL);
printf (stderr, "Someone stole ' date' \n") ;

A variant of execlO called execvO is useful when you don't know in advance
how many arguments there are going to be. The call is:

execv <filename, argp);

Where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execvO can tell where the list ends. As with exec I 0 ,filename is
the file in which the program is found, and argp[O] is the name of the program.
(This arrangement is identical to the argv array for C program arguments.)

Neither of these functions provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know precisely
where the command is located. Nor do you get the expansion of metacharacters
like" <If, ">", "*", "?" and" []" in the argument list. If you want these, use
execlO to invoke the shell sh, which then does all the work. Construct a string
cmdline that contains the complete command as it would have been typed at the
terminal, then say:

exec I ("/bin/sh", "sh", "-c", cmdline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat
the next argument as a whole command line, so it does just what you want. The
only problem is in constructing the right information in cmdline.

Unless we can regain control after running a program with execlO or execvO,
what we've talked about so far isn't really all that useful. Any process may exec
(cause execution of) a file. Doing an exec does not change the process-id; the pro­
cess that did the exec persists, but after the exec it is executing a different pro­
gram. Files that were open before the exec remain open afterwards. If a program
(for example, the first pass of a compiler) wishes to overlay itself with another pro­
gram (for example, the second pass), then it simply execs the second program.
This is analogous to a "goto" in programming.

4-4 Process Management

Process Creation - forkO

If a process wishes to regain control after exec-ing a second program, it should
forkO a child-process, have the child exec the second program, and the parent
waitO for the child. This is analogous to a "call" except that the forkO system
call creates a new process that is an exact copy of the calling process. The follow­
ing figure depicts what is involved in executing a program with a typical forkO as
the first step:

Figure 4-2: Process Primitives

Program A

wait 0
Process 1
(Parent)

forkO
~ (asleep) -1l _--

Process 2
(Child)

Program A Program B

exitO

Because the exec functions simply overlay the new program on the old one, to
save the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new overlaying program to finish.

Program Execution & Process Creation 4-5

The system-call forkO does the splitting as in the following call:

proc_id = fork();

The newly created process, known as the "child-process," is a copy of the image of
the original process, called the "parent-process." The system-call forkO splits the
program into two copies, both of which continue to run, and which differ only in
the value of the "process-id" kept in proc_id. In the child-process, proc_id
equals zero; in the parent-process, proc_id equals a non-zero value that is the
process number of the child-process. Thus, the basic way to call, and return from,
another program is:

if (fork() == 0) /* in child * /
execl("/hin/sh", "sh", "_C", cmd, NULL);

And in fact, except for handling errors, this is sufficient. The forkO is zero, so it
calls execlO which does the cmd and then dies. In the parent, forkO returns non­
zero so it skips the execlO. (If there is any error, forkO returns -1).

A child inherits its parent's permissions, working-directory, root-directory, open
files, etc. This mechanism permits processes to share common input streams in
various ways. Files that were open before the forkO are shared after the forkO.
The processes are informed through the return value of forkO as to which is the
parent and which is the child. In any case the child and parent differ in three
important ways:

• The child has a different process-id.

• The child has a different parent-process-id.

• All accounting variables are reset to appropriate values in the child.

The forkO system-call creates a child-process with code and data copied from the
parent-process that created the child-process. Once the copying is completed, the
new (child) process is placed on the runnable queue to be scheduled. Each child­
process executes independently of its parent-process, although the parent may
explicitly wait for the termination of that child or any of its children. Usually the
parent waits for the death of its child at some point, since this waitO call is used to
free the process-table entry used by the child. See the discussion under "Process
Termination" for more detail.

Calling forkO creates a new process that is an exact copy of the calling process.
The one major difference between the two processes is that the child gets its own
unique process 10. When the forkO process has completed successfully, it returns
a 0 to the child process and the child's process 10 to the parent. If the idea of hav­
ing two identical processes seems a little funny, consider this:

4-6 Process Management

• Because the return value is different between the child-process and the
parent, the program can contain the logic to determine different paths.

• The child-process could say, "Okay, I'm the child; I'm supposed to issue an
exec for an entirely different program."

• The parent-process could say, "My child is going to exec a new process; I'll
issue a waitO until I get word that the new process is finished."

Your code might include statements like the following:

Figure 4-3: Example of fork()

#include <erma.h>

pid_t ch--l)id;
int ch_stat, status;
char *p_argl, *p_arg2;
void exit () ;

if «ch--l)id = fork(» < 0) {

1* Could not fork ••• check errno *1

else if (ch--l)id == 0) { 1* child *1
(void)execl("/usr/bin/prog2", "prog", p_argl, p_arg2, (char *)NULL);
exit(2); 1* execl() failed *1

else { 1* parent *1
While «status = wait(&ch~tat» 1= ch--l)id)

if (status < 0 && errno == ECHILe)
break;

erma = 0;

Program Execution & Process Creation 4-7

Because the new exec'd process takes over the child-process ID, the parent knows
the ID. What this boils down to is a way of leaving one program to run another,
returning to the point in the first program where processing left off.

Keep in mind that the fragment of code above includes minimal checking for error
conditions, and has potential for confusion about open files and which program is
writing to a file. Leaving out the possibility of named files, the new process
created by the forkO or exec has the three standard files that are automatically
opened: stdin, stdout, and stderr. If the parent has buffered output that
should appear before output from the child, the buffers must be flushed before the
fork. Also, if the parent and the child-process both read input from a stream,
whatever is read by one process will be lost to the other. That is, once something
has been delivered from the input buffer to a process the pointer has moved on.

Process-creation is essential to the basic operation of UNIX System V because each
command run by the Shell executes in its own process. In fact, execution of a Shell
command or Shell procedure involves both a forkO and an overlay. This scheme
makes a number services easy to provide. I/O redirection, for example, is basically
a simple operation; it is performed entirely in the child-process that executes the
command, and thus no memory in the Shell parent-process is required to rescind
the change in standard input and output. Background processes likewise require
no new mechanism; the Shell merely refrains from waiting for commands execut­
ing in the background to complete. Finally, recursive use of the Shell to interpret a
sequence of commands stored in a file is in no way a special operation.

Control of Processes - forkO and waitO

A parent-process can suspend its execution to wait for termination of a child­
process with waitO or waitpidO. More often, the parent wants to wait for the
child to terminate before continuing itself as follows:

int status;

if (fork() == 0)
execl (...);

wait(&status);

The previous code fragment avoids handling any abnormal conditions, such as a
failure of the execlO or forkO, or the possibility that there might be more than
one child running simultaneously. (The function waitO returns the process-id of
the terminated child, which can be checked against the value returned by forkO.)
In addition, this fragment avoids dealing with any funny behavior on the part of
the child (which is reported in status).

4-8 Process Management

The low-order eight bits of the value returned by waitO encodes the termination
status of the child-process; 0 signifies normal termination and non-zero to signify
various kinds of abnormalities. The next higher eight bits are taken from the argu­
ment of the call to exitO which caused a normal termination of the child-process.
It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file-descriptors are available for
use. When this program calls another one, correct etiquette suggest making sure
the same conditions hold. Neither forkO nor the exec calls affects open files in
any way. If the parent is buffering output that must come out before output from
the child, the parent must flush its buffers before the execlO. Conversely, if a
caller buffers an input stream, the called program loses any information that has
been read by the caller.

Process Termination

Processes terminate in one of two ways:

• Normal Termination occurs by a return from mainO or when requested by
an explicit call to exitO or _exitO .

• Abnormal Termination occurs as the default action of a signal or when
requested by abortO.

On receiving a signal, a process looks for a signal-handling function. Failure to
find a signal-handling function forces the process to call exitO, and therefore to
terminate. The functions _exitO, exitO and abortO terminate a process with the
same effects except that abortO makes available to waitO or waitpidO the status
of a process terminated by the signal SIGABRT [see exit(2) and abort(2)].

As a process terminates, it can set an eight-bit exit status code available to its
parent. Usually, this code indicates success (zero) or failure (non-zero), but it can
be used in any manner the user wishes. If a signal terminated the process, the sys­
tem first tries to dump an image of core, then modifies the exit code to indicate
which signal terminated the process and whether core was dumped. This is pro­
vided that the signal is one that produces a core dump [see signal(5)]. Next, all
signals are set to be ignored, and resources owned by the process are released,
including open files and the working directory. The terminating process is now a
"zombie" process, with only its process-table entry remaining; and that is unavail­
able for use until the process has finally terminated. Next, the process-table is
searched for any child or zombie processes belonging to the terminating process.
Those children are then adopted by init by changing their parent-process-id to
1). This is necessary since there must be a parent to record the death of the child.
The last actions of exi to are to record the accounting information and exit code

Program Execution & Process Creation 4-9

for the terminated process in the zombie process-table entry and to send the
parent the death-of-child signal, SIGCHLD [see "Signals, Job Control and Pipes"].

If the parent wants to wait until a child terminates before continuing execution,
the parent can call waitO, which causes the parent to sleep until a child zombie is
found (meaning the child terminated). When the child terminates, the death-of­
child signal is sent to the parent although the parent ignores this signal. (Ignore is
the default disposition. Applications that fork children and need to know the
return status should set this signal to other than ignore.) The search for child zom­
bies continues until the terminated child is found; at which time, the child's exit
status and accounting information is reported to the parent (remember the call to
exitO in the child put this information in the child's process-table entry) and the
zombie process-table entry is freed. Now the parent can wake up and continue
executing.

4·10 Process Management

Timer Operations

A process can suspend itself for a specific period of time with the function sleepO
or suspend itself indefinitely with the function pauseO until a signal arrives to
reactivate the process. The function alarmO schedules a signal to arrive at a
specific time, so a pauseO suspension need not be indefinite.

#include <stdio.h>
#include <signal.h>

struct sigaction new_act, old_act;
int alarm_count = 5; /* initialize number of alarms */

main () {
void alarm_action{);

/*
* pass signal and function to sigaction

*/
new_act.sa_handler = alarm_action;
sigaction(SIGALRM, &new_act, &old_act)i

alarm(5) ; /* set alarm clock for 5 seconds */

pause(); /* suspend process until receipt of signal */

void alarm_action()
/*
* print the number of alarms remaining
*/

printf ("\t<"od\007>", alarm_count);
/*
* pass signal and function to sigaction
*/

new_act.sa_handler = alarm_action;
sigaction(SIGALRM, &new_act, &old_act}i

alarm(5) ;
if (--alarm_count)

pause{) ;

/* set alarm clock for 5 seconds */
/* decrement alarm count */
/* suspend process */

The preceding example shows how you can use the signalO, alarmO and pauseO
system-calls to alternately suspend and resume a program.

Timer Operations 4-11

Process Scheduling

The UNIX system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user requests;
it uses these priorities to assign processes to the CPU.

UNIX System V Release 4 gives users absolute control over the order in which cer­
tain processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the Release 4 scheduler uses a time-sharing policy like the policy used
in previous releases. A time-sharing policy adjusts process priorities dynamically
in an attempt to provide good response time to interactive processes and good
throughput to processes that use a lot of CPU time.

The UNIX System V Release 4 scheduler offers a real-time scheduling policy as
well as a time-sharing policy. Real-time scheduling allows users to set fixed prior­
ities on a per-process basis. The highest-priority real-time user process always
gets the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX environments, the default scheduler configuration works well and
no real-time processes are needed: administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for an application include strict
timing constraints, real-time processes sometimes provide the only way to satisfy
those constraints.

~ Real-time processes used carelessly can have a dramatic negative effect on
I .~TE I ,he perlormance of ,;me-shar;ng processes.

This chapter is addressed to programmers who need more control over order of
process execution than they get using default scheduler parameters.

4-12 Process Management

Because changes in scheduler administration can affect scheduler behavior, pro­
grammers may also need to know something about scheduler administration. For
administrative information on the scheduler, see the Advanced System Administra­
tion guide. There are also a few reference manual entries with information on
scheduler administration:

• dispadmin(lM) tells how to change scheduler configuration in a running
system.

• tS_dptbl(4) and rt_dptbl(4) describe the time-sharing and real-time
parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows:

• "How the Process Scheduler Works" tells what the scheduler does and how
it does it. It also introduces scheduler classes.

• The "Commands and Function Calls" section describes and gives examples
of the priocntl(l) command and the priocntl(2) and priocntlset(2) sys­
tem calls, the user interface to scheduler services. The priocntl functions
allow you to retrieve scheduler configuration information and to get or set
scheduler parameters for a process or a set of processes.

• The "Interaction with Other Functions" section describes the interactions
between the scheduler and related functions.

• The "Performance" section discusses scheduler latencies that some applica­
tions must be aware of and mentions some considerations other than the
scheduler that application designers must take into account to ensure that
their requirements are met.

Process Scheduling 4-13

How the Process Scheduler Works

The following figure shows how the UNIX System V Release 4 process scheduler
works:

Figure 4-4: The UNIX System V Release 4 Process Scheduler

Global Scheduling
Priority Order

Highest First

Lowest Last

Class-Specific
Priorities

Real-Time
Priorities

System
Priorities

Time-Sharing
Priorities

Scheduler Process
Classes Queues

Time-Sharing
Processes

When a process is created, it inherits its scheduler parameters, including scheduler
class and a priority within that class. A process changes class only as a result of a
user request. The system manages the priority of a process based on user requests
and a policy associated with the scheduler class of the process.

In the default configuration, the initialization process belongs to the time-sharing
class. Because processes inherit their scheduler parameters, all user login shells
begin as time-sharing processes in the default configuration.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs-the scheduler always runs the run­
nable process with highest global priority. Numerically higher priorities run first.
Once the scheduler assigns a process to the CPU, the process runs until it uses up

4-14 Process Management

its time slice, sleeps, or is preempted by a higher-priority process. Processes with
the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
may assign per-process time slices to real-time processes.

You can display the global priority of a process with the -cl options of the ps(l)
command. You can display configuration information about class-specific priori­
ties with the priocntl(l) command and the dispadmin(lM) command.

By default, all real-time processes have higher priorities than any kernel process,
and all kernel processes have higher priorities than any time-sharing process.

~ As long as there is a runnable real-time process, no kernel process and no
I .~TE I ,;me-shar;ng process runs.

The next sections describe the scheduling policies of the three default classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to interactive
processes and good throughput to CPU-bound processes. The scheduler switches
CPU allocation frequently enough to provide good response time, but not so fre­
quently that it spends too much time doing the switching. Time slices are typi­
cally on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after
only a little CPU use (a process sleeps, for example, when it starts an I/O operation
such as a terminal read or a disk read); frequent sleeps are characteristic of interac­
tive tasks such as editing and running simple shell commands. On the other hand,
the time-sharing policy lowers the priority of a process that uses the CPU for long
periods without sleeping.

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be cPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the CPU, it
gets a bigger chunk of time. If a higher-priority process becomes runnable during
a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters in
the time-sharing parameter table ts_dptbl. This table contains information
specific to the time-sharing class.

Process Scheduling 4-15

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging demon. The system class is
reserved for use by the kernel; users may neither add nor remove a process from
the system class. Priorities for system class processes are set up in the kernel code
for those processes; once established, the priorities of system processes do not
change. (User processes running in kernel mode are not in the system class.)

Real-Time Class

The real-time class uses a fixed-priority scheduling policy so that critical processes
can run in predetermined order. Real-time priorities never change except when a
user requests a change. Contrast this fixed-priority policy with the time-sharing
policy, in which the system changes priorities in order to provide good interactive
response time.

Privileged users can use the priocntl command or the priocntl system call to
assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in the
real-time parameter table rt_dpthl. This table contains information specific to
the real-time class.

4-16 Process Management

Scheduler Commands and Function Calls

Here is a programmer's view of default process priorities:

Figure 4-5: Process Priorities (Programmer View)

Global Scheduling Class-Specific Scheduler
Priority Order Priorities Classes

Highest First

Lowest Last

RTmax o

o 0
o

+ TSmax
o

-TSmax

o
o

o

Real-Time
Class

System
Class

Time-Sharing
Class

From a user or programmer's point of view, a process priority has meaning only
in the context of a scheduler class. You specify a process priority by specifying a
class and a class-specific priority value. The class and class-specific value are
mapped by the system into a global priority that the system uses to schedule
processes.

• Real-time priorities run from zero to a configuration-dependent maximum.
The system maps them directly into global priorities. They never change
except when a user changes them .

• System priorities are controlled entirely in the kernel. Users cannot affect
them.

Process Scheduling 4-17

• Time-sharing priorities have a user-controlled component (the "user prior­
ity") and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process
basis in order to provide good overall system performance; users cannot
affect the system-controlled component. The scheduler combines these two
components to get the process global priority.

The user priority runs from the negative of a configuration-dependent max­
imum to the positive of that maximum. A process inherits its user priority.
Zero is the default initial user priority.

The "user priority limit" is the configuration-dependent maximum value of
the user priority. You may set a user priority to any value below the user
priority limit. With appropriate permission, you may raise the user priority
limit. Zero is the default user priority limit.

You may lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user priority
to get better service. Because you cannot set the user priority above the user
priority limit, you must raise the user priority limit before you raise the user
priority if both have their default values of zero.

An administrator configures the maximum user priority independent of glo­
bal time-sharing priorities. In the default configuration, for example, a user
may set a user priority only in the range from -20 to +20, but 60 time­
sharing global priorities are configured.

A system administrator's view of priorities is different from that of a user or pro­
grammer. When configuring scheduler classes, an administrator deals directly
with global priorities. The system maps priorities supplied by users into these
global priorities. See the Advanced System Administration guide.

The ps -eel command reports global priorities for all active processes. The
prioentl command reports the class-specific priorities that users and program­
mers use.

~ Global process priorities and user-supplied priorities are in ascending order:
I N~TE I numerically higher priorities run first.

The priocntl(l) command and the priocntl(2) and priocntlset(2) system calls
set or retrieve scheduler parameters for processes. The basic idea for setting prior­
ities is the same for all three functions:

4-18 Process Management

• Specify the target processes.

• Specify the scheduler parameters you want for those processes.

• Do the command or system call to set the parameters for the processes.

You specify the target processes using an ID type and an ID. The ID type tells
how to interpret the ID. [This concept of a set of processes applies to signals as
well as to the scheduler; see sigsend(2)]. The following table lists the valid ID
types that you may specify.

priocnt1 ID types

process ID
parent-process ID
process group ID
session ID
class ID
effective user ID
effective group ID
all processes

These IDs are basic properties of UNIX processes. [See intro(2)]. The class ID
refers to the scheduler class of the process. priocnt1 works only for the time­
sharing and the real-time classes, not for the system class. Processes in the system
class have fixed priorities assigned when they are started by the kernel.

The prioentl Command

The priocnt1 command comes in four forms:

• priocnt1 -1 displays configuration information.

• priocnt1 -d displays the scheduler parameters of processes.

• priocnt1 -s sets the scheduler parameters of processes.

• priocnt1 -e executes a command with the specified scheduler parameters.

1. Here is the output of the -1 option for the default configuration.

Process Scheduling 4-19

$ priocntl -1
CONFIGURED CLASSES

SYS (System Class)

FC (Time sharing)
Configured FC User priority Range: -30 through 30

TS (Time Sharing)
Configured TS User Priority Range: -20 through 20

VC (up/ix-like Class)
Configured VC User Priority Range: -20 through 20

RT (Real Time)
Maximum Configured RT Priority: 59

2. The -d option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

priocntl -d -i idtype idlist

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding 10 types in
idlist:

idtype
pid
ppid
pgid
sid
class
uid
gid
all

idlist
process IDs
parent-process IDs
process group IDs
session IDs
class names (TS or RT)
effective user IDs
effective group IDs

Here are some examples of the -d option of priocntl:

4-20 Process Management

$ # display info on all processes
$ priocnt1 -d -i all

$ # display info on all time-sharing processes:
$ priocnt1 -d -i class TS

$ # display info on all processes with user ID 103 or 6626
$ priocnt1 -d -i uid 103 6626

3. The -8 option sets scheduler parameters for a process or a set of processes. The
syntax for this option is

priocnt1 -8 -c class class_options -i idtype islist

idtype and idlist are the same as for the -d option described above.

class is TS for time-sharing or RT for real-time. You must be superuser to create a
real-time process, to raise a time-sharing user priority above a per-process limit, or
to raise the per-process limit above zero. Class options are class-specific:

Class-specific options for priocnt1

class -c class options meaning
real-time RT -p pri priority

-t tsle time slice
-r res resolution

time-sharing TS -p upri user priority
-m uprilim user priority limit

For a real-time process you may assign a priority and a time slice.

• The priority is a number from 0 to the real-time maximum as reported by
priocnt1 -1; the default maximum is 59.

• You specify the time slice as a number of clock intervals and the resolution
of the interval. Resolution is specified in intervals per second. The time
slice, therefore, is tslc/res seconds. To specify a time slice of one-tenth of a
second, for example, you could specify a tsle of 1 and a res of 10. If you
specify a time slice without specifying a resolution, millisecond resolution (a
res of 1000) is assumed.

Process Scheduling 4-21

If you change a time-sharing process into a real-time process, it gets a default
priority and time slice if you don't specify one. If you wish to change only the
priority of a real-time process and leave its time slice unchanged, omit the -t
option. If you wish to change only the time slice of a real-time process and leave
its priority unchanged, omit the -p option.

For a time-sharing process you may assign a user priority and a user priority limit.

• The user priority is the user-controlled component of a time-sharing prior­
ity. The scheduler calculates the global priority of a time-sharing process by
combining this user priority with a system-controlled component that
depends on process behavior. The user priority has the same effect as a
value set by nice (except that nice uses higher numbers for lower priority).

• The user priority limit is the maximum user priority a process may set for
itself without being superuser. By default, the user priority limit is O. You
must be superuser to set a user priority limit above o.

Both the user priority and the user priority limit must be within the user priority
range reported by the priocnt1 -1 command. The default range is -20 to +20.

A process may lower and raise its user priority as often as it wishes, as long as the
value is below its user priority limit. It is a courtesy to other users to lower your
user priority for big chunks of low-priority work. On the other hand, if you lower
your user priority limit, you must be superuser to raise it. A typical use of the
user priority limit is to reduce permanently the priority of child-processes or of
some other set of low-priority processes.

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the new
user priority limit. If you attempt to set the user priority above the user priority
limit, the user priority is set to the user priority limit.

Here are some examples of the -8 option of priocnt1:

4·22 Process Management

make process with ID 24668 a real-time process with default parameters:
priocntl -s -c RT -i pid 24668

make 3608 RT with priority 55 and a one-fifth second time slice:
priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

change all processes into time-sharing processes:
priocntl -s -c TS -i all

for uid 1122, reduce TS user priority and user priority limit to -10:
priocntl -s -c TS -p -10 -m -10 -i uid 1122

4. The -e option sets scheduler parameters for a specified command and executes
the command. The syntax for this option is

priocntl -e -c class class_options command [command arguments]

The class and class options are the same as for the -s option described above.

start a real-time shell with default real-time priority:
priocntl -e -c RT /bin/sh

$ # run make with a time-sharing user priority of -10:
$ priocntl -e -c TS -p -10 make bigprog

The priocntl command subsumes the function of nice, which continues to work
as in previous releases. nice works only on time-sharing processes and uses
higher numbers to assign lower priorities. The final example above is equivalent
to using nice to set an "increment" of 10:

nice -10 make bigprog

Process Scheduling 4-23

The priocntlO System Call

#include
#include
#include
#include
#include

<sys/types.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntl (idtype_ t idtype, id_ t id, int cmd,
cmd_struct arg);

The priocntl system call gets or sets scheduler parameters of a set of processes.
The input arguments:

• idtype is the type of ID you are specifying.

• id is the ID.

• cmd specifies which priocntlO function to perform. The functions are
listed in the table below.

• arg is a pointer to a structure that depends on cmd.

Here are the valid values for idtype, which are defined in <priocntl.h>, and their
corresponding ID types in id:

idtype
P_PID
P_PPID
P_PGID
P_SID
P_CID
P_UID
P_GID
P_ALL

Interpretation of id
process ID (of a single process)
parent-process ID
process group ID
session ID
class ID
effective user ID
effective group ID
all processes

Here are the valid values for cmd, their meanings, and the type of arg:

4-24 Process Management

priocntlO Commands
cmd argType Function

PC_GETCID pcinfo_t get class ID and attributes
PC_GETCLINFO pcinfo_t get class name and attributes
PC_SETPABMS pcpanns_t set class and scheduling parameters
PC_GETPABMS pcpanns_t get class and scheduling parameters

Here are the values priocntl returns on success:

• The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

• PC_SETPABMS returns o.
• PC_GETPABMS returns the process ID of the process whose scheduler proper­

ties it is returning.

On failure, priocntlO returns -1 and sets errno to indicate the reason for the
failure. See priocntl(2) for the complete list of error conditions.

PC _ GETCID, PC _ GETCLINFO

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler parameters for
a class based on the class ID or class name. Both commands use the pc info struc­
ture to send arguments and receive return values:

typedef struct pcinfo {

id_t pc_cid; 1* class id *1
char pc_clname[PC_CLNMSZ]; 1* class name *1
long pc_clinfo[PC_CLINFOSZ]; 1* class information *1

} pcinfo_t;

The PC_GETCID command gets scheduler class ID and parameters given the class
name. The class ID is used in some of the other priocntl commands to specify a
scheduler class. The valid class names are TS for time-sharing and RT for real­
time.

Process Scheduling 4-25

For the real-time class, pc_clinfo contains an rtinfo structure, which holds
rt_maxpri, the maximum valid real-time priority; in the default configuration,
this is the highest priority any process can have. The minimum valid real-time
priority is zero. rt_maxpri is a configurable value; the Advanced System Adminis­
tration guide tells how to configure process priorities.

typedef struct rtinfo {
short rt_maxprii /* maximum real-time priority */

} rtinfo_ti

For the time-sharing class, pc_clinfo contains a tsinfo structure, which holds
ts_maxupri, the maximum time-sharing user priority. The minimum time­
sharing user priority is -ts_maxupri. ts_maxupri is also a configurable value.

typedef struct tsinfo {
short ts_maxuprii /* limits of user priority range */

} tsinfo_ti

The following program is a cheap substitute for priocntl -1; it gets and prints
the range of valid priorities for the time-sharing and real-time scheduler classes.

4-26 Process Management

/*
* Get scheduler class IDs and priority ranges.
*/

lIinclude <sys/types.h>
lIinclude <sys/priocntl.h>
lIinclude <sys/rtpriocntl.h>
lIinclude <sys/tspriocntl.h>
lIinclude <stdio.h>
lIinclude <string.h>
lIinclude <stdlih.h>
lIinclude <errno.h>

main ()

pcinfo_t
tsinfo_t
rtinfo_t
short

pcinfo;
*tsinfop;
*rtinfop;
maxtsupri, maxrtpri;

/* time sharing */
(void) strcpy (pcinfo.pc_clname, "TS");
if (priocntl (OL, OL, PC_GETCID, &pcinfo) == -lL) {

perror ("PC_GETCID failed for time-sharing class");
exit (1);

tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;
maxtsupri = tsinfop->ts_maxupri;
(void) printf("Time sharing: ID %J.d, priority range -%d through %d\n",

pcinfo.pc_cid, maxtsupri, maxtsupri);

/* real time */
(void) strcpy(pcinfo.pc_clname, "RT");
if (priocntl (OL, OL, PC_GETCID, &pcinfo) == -lL) {

perror ("PC_GETCID failed for real-time class");
exit (2);

rtinfop = (struct rtinfo *) pcinfo.pc_clinfo;
maxrtpri = rtinfop->rt_maxpri;
(void) printf("Rea1 time: ID %J.d, priority range 0 through %d\n",

pcinfo.pc_cid, maxrtpri);
return (0);

The following screen shows the output of this program, called getcid in this
example.

Process Scheduling 4-27

$ getcid
Time sharing: ID 1, priority range -20 through 20
Real time: ID 2, priority range 0 through 59

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class ID and maximum priority in the class.

4-28

All the following examples omit the lines that include header files. The exam­
ples compile with the same header files as in the first example above.

/*
* Return class ID and maximum priority.
* Input argument name is class name.
* Maximum priority is returned in *maxpri.
*/

id_t
schedinfo (name, maxpri)

char *name;
short *maxpri;

pcinfo_t
tsinfo_t
rtinfo_t

info;
*tsinfop;
*rtinfop;

(void) strcpy(info.pc_clname, name);
if (priocntl (OL, OL, PC_GETCID, &info)

return (-1);

if (strcmp(name, "TS") == 0) {

-lL) {

tsinfop = (struct tsinfo *) info.pc~clinfo;

*maxpri = tsinfop->ts_maxupri;
else if (strcmp(name, "RT") == 0) {

else {

rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

return (-1);

return (info.pc_cid);

Process Management

The PC_GETCLINFO command gets a scheduler class name and parameters given
the class ID. This command makes it easy to write applications that make no
assumptions about what classes are configured.

The following program uses PC_GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID, which retrieves the class ID of a process given the process ID; this
function is given in the following section.

1* Get scheduler class name given process ID. *1

main (arge, argv)
int argc;
char *argv[];

pcinfo_t
id_t
id_t

pcinfo;
pid, classID;
getclassID();

if «pid = atoi(argv[l]» <= 0)
perror (Jlbad pid");
exit (1);

if «classID = getclassID(pid» == -1)
perror (liunknown class ID");
exit (2);

pcinfo.pc_cid = classID;
if (priocntl (OL, OL, PC_GETCLINFO, &pcinfo) == -lL) {

perror ("PC_GETCLINFO failed");
exit (3);

(void) printf ("process ID %d, class %s\n", pid, pcinfo.pc_clname);

PC_GETPARMS, PC_SETPARMS

The PC_GETPARMS command gets and the PC_SETPARMS command sets scheduler
parameters for processes. Both commands use the pcpanns structure to send
arguments or receive return values:

typedef struct pcpanns {
id_t pc_cid; /* process class */
long pc_clpanns[PC_CLPARMSZ]; /* class specific */

} pcpanns_t;

Process Scheduling 4-29

Ignoring class-specific information for the moment, we can write a simple function
for returning the scheduler class 10 of a process, as promised in the previous sec­
tion.

/*
* Return scheduler class ID of process with ID pid.
*/

getclassID (pid)
id_t pid;

pcpanns;

pcparms.pe_cid = PC_CLNlJLL;
if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {

return (-1);

return (pcparms .pe_cid) ;

For the real-time class, pc_clparms contains an rtparms structure. rtparms
holds scheduler parameters specific to the real-time class:

typedef struct rtparms {

short rt-pri; 1* real-time priority *1
ulong rt_tqsecs; 1* seconds in time quantum *1
long rt_tqnsecs; 1* additional nsecs in quantum *1

} rtparms_t;

rt-pri is the real-time priority; rt_tqsecs is the number of seconds and
rt_tqnsecs is the number of additional nanoseconds in a time slice. That is,
rt_tqsecs seconds plus rt_tqnsecs nanoseconds is the interval a process may
use the CPU without sleeping before the scheduler gives another process a chance
at the CPU.

For the time-sharing class, pc_clparms contains a tsparms structure. tsparms
holds the scheduler parameter specific to the time-sharing class:

typedef struct tsparms {

short ts_uprilim; 1* user priority limit *1
short ts_upri; 1* user priority *1

} tspa:rntS_t;

4-30 Process Management

ts_upri is the user priority, the user-controlled component of a time-sharing
priority. ts_uprilim is the user priority limit, the maximum user priority a pro­
cess may set for itself without being superuser. These values are described above
in the discussion of the -s option of the priocnt1 command. Both the user prior­
ity and the user priority limit must be within the range reported by the priocntl
-1 command; this range is also reported by the PC_GETCID and PC_GETCLINFO
commands to the priocnt1 system call.

The PC_GETPARMS command gets the scheduler class and parameters of a single
process. The return value of the priocnt1 is the process ID of the process whose
parameters are returned in the pcparms structure. The process chosen depends
on the idtype and id arguments to priocnt1 and on the value of
pcparms. pc_cid, which contains PC_CLNULL or a class ID returned by
PC_GETCID:

Figure 4-6: What Gets Returned by PC_GETPARMS

Number of Processes pc_cid
Selected by

idtype and id RT class ID TS class ID PC_CLNULL

RT parameters TS parameters class and
1 of process of process parameters of

selected selected process selected

RT parameters TS parameters
More than 1 of highest- of process with (error)

priority RT pro- highest user
cess priority

If idtype and id select a single process and pc_cid does not conflict with the
class of that process, priocnt1 returns the scheduler parameters of the process. If
they select more than one process of a single scheduler class, priocnt1 returns
parameters using class-specific criteria as shown in the table. priocnt1 returns an
error in the following cases:

• idtype and id select one or more processes and none is in the class
specified by pc_cid.

• idtype and id select more than one process and pc_cid is PC_CLNULL.

• idtype and id select no processes.

Process Scheduling 4-31

The following program takes a process 10 as its input and prints the scheduler
class and class-specific parameters of that process:

4-32

1*
* Get scheduler class and parameters of
* process whose pid is input argument.

*1

main (arge, argy)

int argc;
char *argy[];

pcparms_t

rtpann'Lt
tsparms_t
id_t
id_t

short
ulong
long

pcpanns;
*rtparmsp;

*tsparmsp;
pid, rtID, tsID;
schedinfo () ;
priority, tsraaxpri, rtmaxpri;

secs;
nsecs;

pcparms.pc_cid = PC_CLNOLL;

rtparmsp = (rtpa:ons_t *) pcparms.pc_clpa:ons;
tsparmsp = (tspa:ons_t *) pcparms.pc_clpa:ons;
if «pid = atoi(argv[l]» <= 0) {

perror ("bad pid");
exit (1);

1* get scheduler properties for this pid *1
if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms)

perror ("GETPARMS failed");
exit (2);

1* get class IDs and maximum priorities for TS and RT *1
if «tsID = schedinfo ("TS", &tsmaxpri» == -1) {

perror ("schedinfo failed for TS");
exit (3);

if «rtID = schedinfo ("RT", &rtmaxpri» == -1) {
perror ("schedinfo failed for RT");
exit (4);

1* print results *1
if (pcparms.pc_cid == rtID)

priority = rtparmsp->rt-pri;
secs = rtpa:onsp->rt_tqsecs;
nsecs = rtparmsp->rt_tqnsecs;

-1) {

(void) printf ("process %d: RT priority %d\n",

(continued on next page)

Process Management

pid, priority);
(void) printf (.. time slice %ld sees, %ld nsecs\n",

sees, nsecs) i
} else if (pcparms.pc_cid == tsID) {

priority = tsparmsp->ts_uprii

} else {

(void) printf ("process eyed: TS priority %d\n",
pid, priority);

printf ("Unknown scheduler class 'Yod\n",
pcparms.pc_cid) ;

exit (5);

return (0);

The PC_SETPARMS command sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be
changed. The pcpanns structure contains the new parameters: pc_cid contains
the ID of the scheduler class to which the processes are to be assigned, as returned
by PC_GETCID; pc_clpanns contains the class-specific parameters:

• If pc_cid is the real-time class ID, pc_clpanns contains an rtpanns struc­
ture in which rt-pri contains the real-time priority and rt_tqsecs plus
rt_tqnsecs contains the time slice to be assigned to the processes .

• If pc_cid is the time-sharing class ID, pc_clpanns contains a tspanns
structure in which ts_uprilim contains the user priority limit and ts_upri
contains the user priority to be assigned to the processes.

The following program takes a process ID as input, makes the process a real-time
process with the highest valid priority minus 1, and gives it the default time slice
for that priority. The program calls the schedinfo function listed above to get the
real-time class ID and maximum priority.

Process Scheduling 4-33

1*
* IDput arg is proc ID. Make process a real-time
* process with highest priority minus 1.

*1

main (argo, argv)
int argo;

char *argv[];

pcparJIIS_t
rtpanns_t
id_t
id_t

short

pcpa:rms;

*rtparmsp;
pid, rtID;
schedinfo() ;
maxrtpri;

if «pid = atoi(argv[l]» <= 0)
perror (nbad, pid II) ;
exit (1);

1* Get highest valid RT priority. *1
if «rtID = schedinfo ("RT", &maxrtpri» == -1)

perror ("schedinfo failed for RT");
exit (2);

1* Change proc to RT, highest prio - 1, default time slice *1
pcparms.pc_cid = rtID;
rtpannsp = (struct rtparms *) pcpanns.pc_clparms;
rtparmsp->rt...llri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_TQDEF;

if (priocntl (P_PID, pid, PC_SBTPARMS, i<pcparms) == -1) {
perror ("PC_SETPARMS failed");
exit (3);

The following table lists the special values rt_tqnsecs can take when
PC_SETPARMS is used on real-time processes. When any of these is used,
rt_tqsecs is ignored. These values are defined in the header file rtpriocntl. h:

4-34 Process Management

RT_TQINF
RT_TQDEF
RT_NOCHANGE

Time Slice
infinite
default
unchanged

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time slice
configured for the real-time priority being set with the SETPARMS call.
RT_NOCHANGE specifies no change from the current time slice; this value is useful,
for example, when you change process priority but do not wish to change the time
slice. (You can also use RT_NOCHANGE in the rt-pri field to change a time slice
without changing the priority.)

The priocntlsetO System Call

inc lude
#include
#include
inc lude
#include
inc lude

<sys/types.h>
<sys/sign.al.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntlset(procset_t *psp, int cmd,
cmd _struct arg);

The priocntlset system call changes scheduler parameters of a set of processes,
just like priocntl. priocntlset has the same command set as priocntl; the
cmd and arg input arguments are the same. But while priocntl applies to a set
of processes specified by a single idtype/id pair, priocntlset applies to a set of
processes that results from a logical combination of two idtype/id pairs. The
input argument psp points to a procset structure that specifies the two
idtype/id pairs and the logical operation to perform. This structure is defined in
procset.h:

typedef st:r:uct procset {

idop_t p-op; 1* operator connecting *1
1* left and right sets *1

1* left set: *1
idtype_t p_lidtype; 1* left ID type *1
id_t p_lid; 1* left ID *1

1* right set: *1
idtype_t p_ridtype; 1* right ID type *1
id_t p_rid; 1* right ID *1

procset_t;

Process Scheduling 4-35

p_lidtype and p_lid specify the ID type and ID of one (I/leftl/) set of processes;
p_ridtype and p_rid specify the 10 type and ID of a second (I/right") set of
processes. p_op specifies the operation to perform on the two sets of processes to
get the set of processes to operate on. The valid values for p_op and the processes
they specify are:

• POP_DIFF: set difference-processes in left set and not in right set

• POP_AND: set intersection-processes in both left and right sets

• POP_OR: set union-processes in either left or right sets or both

• POP _XOR: set exclusive-or-processes in left or right set but not in both

The following macro, also defined in procset . h, offers a convenient way to ini­
tialize a procset structure :

#define setprocset(psp, op, ltype,
(psp) ->p_op
(psp)->p_lidtype
(psp) ->p_lid
(psp)->p_ridtype
(psp) ->p_rid

lid, rtype,
(op); \
(ltype); \

(lid); \
(rtype); \

(rid) ;

rid) \

Here is a situation where priocntlset would be useful: suppose an application
had both real-time and time-sharing processes that ran under a single user 10. If
the application wanted to change the priority of only its real-time processes
without changing the time-sharing processes to real-time processes, it could do so
as follows. (This example uses the function schedinfo, which is defined above in
the section on PC_GETCID.)

4-36 Process Management

1*
* Change real-time priorities of this uid
* to highest real-time priority minus 1.
*1

main (argc, argy)

int argc;
char *argy[];

procset_t
pcpaJ:ll1S_t
struct rtparms
id_t
id_t
short

procset;
pcpaJ:lI1S ;

*rtparmspi
rtclassID;
scbedinfo () ;
maxrtpri;

1* left set: select processes with same uid as this process *1
procset.p_lidtype = P_UID;
procset.p_lid = getuid();

1* get info on real-time class *1
if «rtclassID = schedinfo ("RT", &maxrtpri»

perror (" schedinfo failed");
exit (1);

1* right set: select real-time processes *1
procset.p_ridtype = P_CID;
procset.p_rid = rtclassID;

1* select only ~ RT processes *1
procset.p_QP = POP_AND;

1* specify new scheduler parameters *1
pcparms.pc_cid = rtclassID;
rtpanosp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt-pri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_NOCHANGE;
if (priocntlset (&procset, PC_SETPARMS, &pcparms)

perror ("priocntlset failed");
exit (2);

-1) {

-1) {

priocntl offers a simple scheduler interface that is adequate for many applica­
tions; applications that need a more powerful way to specify sets of processes can
use priocntlset.

Process Scheduling 4-37

Scheduler Interaction with Other Functions

Kernel Processes

The kernel assigns its demon and housekeeping processes to the system scheduler
class. Users may neither add processes to nor remove processes from this class,
nor may they change the priorities of these processes. The command ps -cel
lists the scheduler class of all processes. Processes in the system class are
identified by a SYS entry in the CLS column.

If the workload on a machine contains real-time processes that use too much CPU,
they can lock out system processes, which can lead to all sorts of trouble. Real­
time applications must ensure that they leave some CPU time for system and other
processes.

f~rkO, execO
Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2) and exec(2) system calls.

nice

The nice(l) command and the nice(2) system call work as in previous versions of
the UNIX system. They allow you to change the priority of only a time-sharing
process. You still use lower numeric values to assign higher time-sharing priori­
ties with these functions.

To change the scheduler class of a process or to specify a real-time priority, you
must use one of the priocntl functions. Use higher numeric values to assign
higher priorities with the priocntl functions.

init

The init process (process ID 1) may be assigned to any class configured on the
system. Because most processes normally inherit the scheduler properties of
init, init must be the only process specified by idtype and id or by the
procset structure. However, init should be assigned to the time-sharing class
unless there are compelling reasons to do otherwise.

4-38 Process Management

Scheduler Performance

Because the scheduler determines when and for how long processes run, it has an
overriding importance in the performance and perceived performance of a system.

By default, all processes are time-sharing processes. A process changes class only
as a result of one of the priocntl functions.

In the default configuration, all real-time process priorities are above any time­
sharing process priority. This implies that as long as any real-time process is run­
nable, no time-sharing process or system process ever runs. So if a real-time appli­
cation is not written carefully, it can completely lock out users and essential kernel
housekeeping.

Besides controlling process class and priorities, a real-time application must also
control several other factors that influence its performance. The most important
factors in performance are CPU power, amount of primary memory, and I/O
throughput. These factors interact in complex ways. For more information, see
the chapter on performance management in the Advanced System Administration
guide. In particular, the sar(l) command has options for reporting on all the fac­
tors discussed in this section.

Process Scheduling 4-39

Process State Transition

Applications that have strict real-time constraints may need to prevent processes
from being swapped or paged out to secondary memory. Here's a simplified
overview of UNIX process states and the transitions between states:

Figure 4-7: Process State Transition Diagram

running

assign CPU preempt

runnable
in memory

swap in swap out

runnable
swapped

wakeup

wakeup

sleep

sleeping
in memory

swap out

sleeping
swapped

An active process is normally in one of the five states in the diagram. The arrows
show how it changes states.

• A process is running if it is assigned to a cpu. A process is preempted­
that is, removed from the running state-by the scheduler if a process with
a higher priority becomes runnable. A process is also preempted if it con­
sumes its entire time slice and a process of equal priority is runnable.

• A process is runnable in memory if it is in primary memory and ready to
run, but is not assigned to a cpu.

• A process is sleeping in memory if it is in primary memory but is waiting
for a specific event before it can continue execution. For example, a process
is sleeping if it is waiting for an I/O operation to complete, for a locked
resource to be unlocked, or for a timer to expire. When the event occurs, the
process is sent a wakeup; if the reason for its sleep is gone, the process
becomes runnable.

4-40 Process Management

• A process is runnable and swapped if it is not waiting for a specific event
but has had its whole address space written to secondary memory to make
room in primary memory for other processes.

• A process is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to make
room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory:

• When the system is short of primary memory, it writes individual pages of
some processes to secondary memory but stiIlleaves those processes run­
nab Ie. When a process runs, if it accesses those pages, it must sleep while
the pages are read back into primary memory.

• When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes to secondary memory and marks
those processes as swapped. Such processes get back into a schedulable
state only by being chosen by the system scheduler demon process, then
read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a pro­
cess is ready to run again. For processes that have strict timing requirements, this
delay can be unacceptable. To avoid swapping delays, real-time processes are
never swapped, though parts of them may be paged. An application can prevent
paging and swapping by locking its text and data into primary memory. For more
information see memcntl(2) in the Operating System API Reference. Of course, how
much can be locked is limited by how much memory is configured. Also, locking
too much can cause intolerable delays to processes that do not have their text and
data locked into memory. Tradeoffs between performance of real-time processes
and performance of other processes depend on local needs. On some systems,
process locking may be required to guarantee the necessary real-time response.

Software Latencies

Designers of some real-time applications must have information on software
latencies to analyze the performance characteristics of their applications and to
predict whether performance constraints can be met. These latencies depend on
kernel implementation and on system hardware, so it is not practical to list the
latencies. It is useful, however, to describe some of the most important latencies.
Consider the following time-line:

Process Scheduling 4-41

PI P2 PI P2 calls
sleeps runs awakened scheduler -+-

tl t2 t3 t4

PI
runs

tS

PI returns from
system call

I .. time

t6

PI and P2 represent processes; tl through t6 represent points in time. Suppose
that PI has a higher priority than all other active processes, including P2. PI runs
and does a system call that causes it to sleep at time tl, waiting for I/O. P2 runs.
The I/O device interrupts, resulting in a wakeup at time t3 that makes PI run­
nable. If P2 is running in user mode at time t3, it is preempted immediately and
the interval (t4 - t3) is, for practical purposes, zero. If P2 is running in kernel
mode at time t3, it is preempted as soon as it gets to a kernel preemption point, a
point in kernel code where data structures are in a consistent state and where the
state of the current process (P2 in this example) may be saved and a different pro­
cess run. Therefore, if P2 is running in kernel mode at time t3, the interval (t4 - t3)
depends on kernel preemption points, which are spread throughout the kernel. It
is useful to know both a typical time to preemption and a maximum time to
preemption; these times depend on kernel implementation and on hardware.
Eventually, the scheduler runs (at time t4), finds that a higher-priority process PI
is runnable, and runs it. We refer to the interval (tS - t4) as the software switch
latency of the system. This latency is, for practical purposes, a constant; again it is
an implementation-dependent value. At time t6, PI returns to the user program
from the system call that put it to sleep at time tl. For simplicity, suppose that the
program is getting only a few bytes of data from the I/O device. In this simple
case, the interval (t6 - tS) consists basically of the overhead of getting out of the
system call. We refer to the interval (t6 - t3) as the software wakeup latency of the
system; this is the interval from the 1/ 0 device interrupt until the user process
returns to application level to deal with the interrupt (assuming that it is the
highest priority process). So the software wakeup latency is composed of a
preemption latency, context-switch time, and a part of system call overhead. Of
course, the latency increases as the system call asks for more data.

This discussion of latencies assumes that the text and data of the processes are in
primary memory. An application may have to use process locking to guarantee
that its processes do not get swapped or paged out of primary memory. See the
discussion in the previous section.

4-42 Process Management

Memory Management

Memory Management Facilities

The UNIX system provides a complete set of memory management mechanisms,
providing applications complete control over the construction of their address
space and permitting a wide variety of operations on both process address spaces
and the variety of memory objects in the system. Process address spaces are com­
posed of a vector of memory pages, each of which can be independently mapped
and manipulated. Typically, the system presents the user with mappings that
simulate the traditional UNIX process memory environment, but other views of
memory are useful as well.

The UNIX memory-management facilities:

• Unify the system's operations on memory.

• Provide a set of kernel mechanisms powerful and general enough to sup­
port the implementation of fundamental system services without special­
purpose kernel support.

• Maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects.

Virtual Memory, Address Spaces and Mapping

The system's virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the vir­
tual memory are referenced though the UNIX file system. However, not all file
system objects are in the virtual memory; devices that cannot be treated as storage,
such as terminal and network device files, are not in the virtual memory. Some
virtual memory objects, such as private process memory and shared memory seg­
ments, do not have names.

A process's address space is defined by mappings onto objects in the system's vir­
tual memory (usually files). Each mapping is constrained to be sized and aligned
with the page boundaries of the system on which the process is executing. Each
page may be mapped (or not) independently. Only process addresses which are
mapped to some system object are valid, for there is no memory associated with
processes themselves-all memory is represented by objects in the system's virtual
memory.

Memory Management 4-43

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The virtual memory's associated
physical storage is thus accessed by transforming process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object address
may be the subject of many process mappings. An important characteristic of a
mapping is that the object to which the mapping is made is not affected by the
mere existence of the mapping. Thus, it cannot, in general, be expected that an
object has an "awareness" of having been mapped, or of which portions of its
address space are accessed by mappings; in particular, the notion of a "page" is
not a property of the object. Establishing a mapping to an object simply provides
the potential for a process to access or change the object's contents.

The establishment of mappings provides an access method that renders an object
directly addressable by a process. Applications may find it advantageous to
access the storage resources they use directly rather than indirectly through read
and write. Potential advantages include efficiency (elimination of unnecessary
data copying) and reduced complexity (single-step updates rather than the read,
modify buffer, write cycle). The ability to access an object and have it retain its
identity over the course of the access is unique to this access method, and facili­
tates the sharing of common code and data.

Networking, Heterogeneity and Integrity

VM is designed to fit well with the larger UNIX heterogeneous environment. This
environment makes extensive use of networking to access file systems-file sys­
tems that are now part of the system's virtual memory. Networks are not con­
strained to consist of similar hardware or to be based upon a common operating
system; in fact, the opposite is encouraged, for such constraints create serious bar­
riers to accommodating heterogeneity. While a given set of processes may apply a
set of mechanisms to establish and maintain the properties of various system
objects-properties such as page sizes and the ability of objects to synchronize
their own use-a given operating system should not impose such mechanisms on
the rest of the network.

As it stands, the access method view of a virtual memory maintains the potential
for a given object (say a text file) to be mapped by systems running the UNIX
memory management system and also to be accessed by systems for which virtual
memory and storage management techniques such as paging are totally foreign,
such as PC-DOS. Such systems can continue to share access to the object, each
using and providing its programs with the access method appropriate to that sys­
tem. The unacceptable alternative would be to prohibit access to the object by less
capable systems.

4-44 Process Management

Another consideration arises when applications use an object as a communications
channel, or otherwise try to access it simultaneously. In both cases, the object is
shared; thus, applications must use some synchronization mechanism to maintain
the integrity of their actions on it. The scope and nature of the synchronization
mechanism is best left to the application. For example, file access on systems
which do not support virtual memory access methods must be indirect, by way of
read and write. Applications sharing files on such systems must coordinate their
access using semaphores, file locking, or some application-specific protocols.
What is required in an environment where mapping replaces read and write as
the access method is an operation, such as fsync, that supports atomic update
operations.

The nature and scope of synchronization over shared objects is application­
defined from the outset. If the system tried to impose automatic semantics for
sharing, it might prohibit other useful forms of mapped access that have nothing
to do with communication or sharing. By providing the mechanism to support
integrity, and leaving it to cooperating applications to apply the mechanism, the
needs of applications are met without eliminating diversity. Note that this design
does not prohibit the creation of libraries that provide abstractions for common
application needs. Not all abstractions on which an application builds need be
supplied by the "operating system."

Memory Management Interfaces

The applications programmer gains access to VM facilities through several sets of
system calls. The next sections summarize these calls, and provide examples of
their use. For details, see the Operating System API Reference.

Memory Management 4-45

Creating and Using Mappings

caddr_t
mmap(caddr_t addr, size_t len, int prot, int flags, int jd, ofCt off);

nnnap establishes a mapping between a process's address space and an object in the
system's virtual memory. All other system functions that contribute to the
definition of an address space are built from nnnap, the system's most fundamental
function for defining the contents of an address space. The format of an nnnap call
is:

)
nnnap establishes a mapping from the process's address space at an address paddr
for len bytes to the object specified by fd at offset off for len bytes. A successful call
to nnnap returns paddr as its result, which is an implementation-dependent func­
tion of the parameter addr and the setting of the MAP_FIXED bit ofjlags, as
described below. The address range (paddr, paddr + len) must be valid for the
address space of the process and the range (off, off + len) must be valid for the vir­
tual memory object. (The notation (start, end) denotes the interval from start to
end, including start but excluding end.)

~ The mapping established by mmap replaces any previous mappings for the
I N~T: J process's pages ;n the range [padd" padd, + 1m) .

The parameter prot determines whether read, execute, write or some combination
of accesses are permitted to the pages being mapped. To deny all access, set prot
to PROT_NONE. Otherwise, specify permissions by an OR of PROT_READ,

PROT_EXECUTE, and PROT_WRITE.

4-46 Process Management

A write access must fail if PROT_WRITE has not been set, though the behavior of
the write can be influenced by setting MAP _PRIVATE in the flags parameter, which
provides other information about the handling of mapped pages, as described
below:

• MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of them
must be specified. The mapping type describes the disposition of store
operations made by this process into the address range defined by the map­
ping operation. If MAP_SHARED is specified, write references will modify the
mapped object. No further operations on the object are necessary to effect a
change - the act of storing into a MAP_SHARED mapping is equivalent to
doing a write system call.

The private copy is not created until the first write; until then, other
users who have the object mapped MAP_SHARED can change the
object. That is, if one user has an object mapped MAP_PRIVATE and
another user has the same object mapped MAP_SHARED, and the
MAP_SHARED user changes the object before the MAP_PRIVATE user
does the first write, then the changes appear in the MAP_PRIVATE
user's copy that the system makes on the first write. If an application
needs isolation from changes made by other processes, it should use
read to make a copy of the data it wishes to keep isolated.

On the other hand, if MAP_PRIVATE is specified, an initial write reference to
a page in the mapped area will create a copy of that page and redirect the
initial and successive write references to that copy. This operation is some­
times referred to as copy-an-write and occurs invisibly to the process caus­
ing the store. Only pages actually modified have copies made in this
manner. MAP_PRIVATE mappings are used by system functions such as
exec(2) when mapping files containing programs for execution. This per­
mits operations by programs such as debuggers to modify the "text" (code)
of the program without affecting the file from which the program is
obtained.

The mapping type is retained across a fork.

Memory Management 4-47

• MAP_FIXED informs the system that the value returned by mmap must be
addr, exactly. The use of MAP_FIXED is discouraged, as it may prevent an
implementation from making the most effective use of system resources.
When MAP_FIXED is not set, the system uses addr as a hint to arrive at paddr.
The paddr so chosen is an area of the address space that the system deems
suitable for a mapping of len bytes to the specified object. An addr value of
zero grants the system complete freedom in selecting paddr, subject to con­
straints described below. A non-zero value of addr is taken as a suggestion
of a process address near which the mapping should be placed. When the
system selects a value for paddr, it never places a mapping at address 0, nor
replaces any extant mapping, nor maps into areas considered part of the
potential data or stack "segments." The system strives to choose alignments
for mappings that maximize the performance of the its hardware resources.

The file descriptor used in a mmap call need not be kept open after the mapping is
established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses occupied by
this mapping; or until the mapping is removed either by process termination or a
call to munmap. Although the mapping endures independent of the existence of a
file descriptor, changes to the file can influence accesses to the mapped area, even
if they do not affect the mapping itself. For instance, should a file be shortened by
a call to truncate(), such that the mapping now "overhangs" the end of the file,
then accesses to that area of the file which "does not exist" will result in SIGBUS

signals. It is possible to create the mapping in the first place such that it
"overhangs" the end of the file - the only requirement when creating a mapping
is that the addresses, lengths, and offsets specified in the operation be possible
(that is, within the range permitted for the object in question), not that they exist at
the time the mapping is created (or subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how it
has been mapped (for instance, by attempting a store operation into a mapping
that was established with only PROT_READ access), then a SIGSEGV signal will
result. SIGSEGV signals will also result on any attempt to reference an address not
defined by any mapping.

4-48 Process Management

In general, if a program makes a reference to an address that is inconsistent with
the mapping (or lack of a mapping) established at that address, the system will
respond with a SIGSEGV violation. However, if a program makes a reference to an
address consistent with how the address is mapped, but that address does not
evaluate at the time of the access to allocated storage in the object being mapped,
then the system will respond with a SIGBUS violation. In this manner a program
(or user) can distinguish between whether it is the mapping or the object that is
inconsistent with the access, and take appropriate remedial action.

Using nnnap to access system memory objects can simplify programs in a variety of
ways. Keeping in mind that nnnap can really be viewed as just a means to access
memory objects, it is possible to program using nnnap in many cases where you
might program with read or write. However, it is important to realize that nnnap
can only be used to gain access to memory objects - those objects that can be
thought of as randomly accessible storage. Thus, terminals and network connec­
tions cannot be accessed with nnnap because they are not "memory." Magnetic
tapes, even though they are memory devices, can not be accessed with nnnap
because storage locations on the tape can only be addressed sequentially. Some
examples of situations which can be thought of as candidates for use of nnnap over
more traditional methods of file access include:

• Random access operations - either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is variable,
create "windows" of mappings to the object.

• Efficiency - even in situations where access is sequential, if the object being
accessed can be accessed via nnnap, an efficiency gain may be obtained by
avoiding the copying operations inherent in accesses via read or write.

• Structured storage - if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to the
file is treated just as though the tables were in memory. Previously, pro­
grams could not simply make storage or table alterations in memory and
save them for access in subsequent runsi however, when the addresses of a
table are defined by mappings to a file, then changes to that storage are
changes to the file, and are thus automatically recorded in it.

• Scattered storage - if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation.

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Memory Management 4-49

Mapping /dev/zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap. /dev/zero is a special device,
that responds to read as an infinite source of bytes with the value 0, but when
mapped creates an unnamed object to back the mapped region of memory. The
following code fragment demonstrates a use of this to create a block of scratch
storage in a program, at an address of the system's choosing.

/*

* Function to allocate a block of zeroed storage. Parameter·
* is the number of b¥tes desired. The storage is mapped as
* MAP_SHARED, so that if a fork occurs, the child process
* will be able to access and modify the storage. If we wished
* to cause the child's modifications (as well as those by the
* parent) to be invisible to the ancestry of processes, we
* would use MAP_PRIVATE.
*/

caddr_t
get_zero_storage(int len);

int fd;
caddr_t result;

if «fd = open("/dev/zero", O_RIlWR» == -1)
return «caddr_t) -1);

result = mmap(O, len, PROT_READIPROT_WRITE, MAP_SHARED, fd, 0);
(void) close(fd);
return (result);

As written, this function permits a hierarchy of processes to use the area of allo­
cated storage as a region of communication (for implicit interprocess communica­
tion purposes). Later in this chapter we will describe a set of system facilities that
provide a similar function packaged for accomplishing the same purpose without
requiring that the processes be in a parent-child hierarchy.

In some cases, devices or files are only useful if accessed via mapping. An exam­
ple of this is frame buffer devices used to support bit-mapped displays, where
display management algorithms function best if they can operate randomly on the
addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define multi­
ple pages of an address space, there is no restriction that subsequent operations on
those addresses must operate on the same number of pages. For instance, an mmap
operation defining ten pages of an address space may be followed by subsequent
munmap (see below) operations that remove every other page from the address
space, leaving five mapped pages each followed by an unmapped page. Those

4-50 Process Management

unmapped pages may subsequently be mapped to different locations in the same
or different objects, or the whole range of pages (or any partition, superset, or sub­
set of the pages) used in other mmap or other memory management operations.
Further, it must be noted that any mapping operation that operates on more than
a single page can "partially succeed" in that some parts of the address range can
be affected even though the call returns a failure. Thus, an mmap operation that
replaces another mapping, if it fails, may have deleted the previous mapping and
failed to replace it. Similarly, other operations (unless specifically stated other­
wise) may process some pages in the range successfully before operating on a
page where the operation fails.

Not all device drivers support memory mapping. mmap fails if you try to map a
device that does not support mapping.

Removing Mappings

)
munmap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process. It is not an error to remove mappings from
addresses that do not have them, and any mapping, no matter how it was esta­
blished, can be removed with munmap. munmap does not in any way affect the
objects that were mapped at those addresses.

Cache Control

The UNIX memory management system can be thought of as a form of "cache
management", in which a processor's primary memory is used as a cache for
pages from objects from the system's virtual memory. Thus, there are a number of
operations which control or interrogate the status of this "cache", as described in
this section.

Memory Cache Control

Memory Management 4-51

int
memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg, int attr, int mask);

mementl provides several control operations over mappings in the range [addr,
addr + len) , including locking pages into physical memory, unlocking them, and
writing pages to secondary storage. The functions described in the rest of this sec­
tion offer simplified interfaces to the mementl operations.

Memory Page Locking

int
mlock(caddr_t addr, size_t len);

int
munlock(caddr_t addr, size_t len);

mloek causes the pages referenced by the mapping in the range [addr, addr + len)
to be locked in physical memory. References to those pages (through other map­
pings in this or other processes) will not result in page faults that require an I/O
operation to obtain the data needed to satisfy the reference. Because this opera­
tion ties up physical system resources, and has the potential to disrupt normal sys­
tem operation, use of this facility is restricted to the superuser. The system prohi­
bits more than a configuration-dependent limit of pages to be locked in memory
simultaneously, the call to mloek will fail if this limit is exceeded.

munloek releases the locks on physical pages. If multiple mloek calls are made
through the same mapping, only a single munloek call will be required to release
the locks (in other words, locks on a given mapping do not nest.) However, if dif­
ferent mappings to the same pages are processed with mloek, then the pages will
stay locked until the locks on all the mappings are released.

Locks are also released when a mapping is removed, either through being
replaced with an nnnap operation or removed explicitly with munmap. A lock will
be transferred between pages on the "copy-an-write" event associated with a
MAP_PRIVATE mapping, thus locks on an address range that includes
MAP_PRIVATE mappings will be retained transparently along with the copy-on­
write redirection (see nnnap above for a discussion of this redirection).

4-52 Process Management

Address Space Locking

int
mlockall(int flags);

int
munlockall(void);

mlockall and munlockall are similar in purpose and restriction to mlock and
munlock, except that they operate on entire address spaces. mlockall accepts a
flags argument built as a bit-field of values from the set:

MCL_CURRENT Current mappings
MCL_FUTURE Future mappings

If flags is MCL_CURRENT, the lock is to affect everything currently in the address
space. If flags is MCL_FUTURE, the lock is to affect everything added in the future.
If flags is (MCL_CURRENT I MCL_FUTURE), the lock is to affect both current and
future mappings.

munlockall removes all locks on all pages in the address space, whether esta­
blished by mlock or mlockall.

Memory Cache Synchronization

int
msync (caddr_t addr, Siz9_t len, int flags);

msync supports applications which require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent com­
munications in a distributed environment. msync causes all modified copies of
pages over the range [addr, addr + len) to be flushed to the objects mapped by those
addresses. In the cache analogy discussed previously, msync is the cache "write­
back," or flush, operation. It is similar in purpose to the fsync operation for files.

msync optionally invalidates such cache entries so that further references to the
pages cause the system to obtain them from their permanent storage locations.

The flags argument provides a bit-field of values that influences the behavior of
msync. The bit names and their interpretations are:

Memory Management 4-53

MS_SYNC

MS_ASYNC

MS_INVALIDATE

synchronized write
return immediately
invalidate caches

MS_SYNC causes msync to return only after all I/O operations are complete.
MS_ASYNC causesmsync to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped objects
to be invalidated, requiring them to be reobtained from the object's storage upon
the next reference.

Memory Page Residency

int
mincore(caddr_t addr r size_t len, char *vec);

mincore determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). Using the I/cache concept"
described earlier, this function can be viewed as an operation that interrogates the
status of the cache, and returns an indication of what is currently resident in the
cache. The status is returned as a char-per-page in the character array referenced
by *vec (which the system assumes to be large enough to encompass all the pages
in the address range). Each character contains either a 1/1" (indicating that the
page is resident in the system's primary storage), or a I/O" (indicating that the
page is not resident in primary storage.) Other bits in the character are reserved
for possible future expansion - therefore, programs testing residency should test
only the least significant bit of each character.

mincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this infor­
mation may quickly be outdated. Only locked pages are guaranteed to remain in
memory.

4·54 Process Management

Other Mapping Functions

)
sysCOIlf returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of syscollf to obtain that information. Note that it is not
unusual for page sizes to vary even among implementations of the same instruc­
tion set, increasing the importance of using this function for portability.

int
mprotect(caddr_t addr, size_t len, int prot);

I'I\Protect has the effect of assigning protection prot to all pages in the range [addr,
addr + len). The protection assigned can not exceed the permissions allowed on
the underlying object. For instance, a read-only mapping to a file that was opened
for read-only access can not be set to be writable with I'I\Protect (unless the map­
ping is of the MAP_PRIVATE type, in which case the write access is permitted since
the writes will modify copies of pages from the object, and not the object itself).

Address Space Layout

Traditionally, the address space of a UNIX process has consisted of exactly three
segments: one each for write-protected program code (text), a heap of dynamically
allocated storage (data), and the process's stack. Text is read-only and shared,
while the data and stack segments are private to the process.

System V Release 4 still uses text, data, and stack segments, though these should
be thought of as constructs provided by the programming environment rather
than by the operating system. As such, it is possible to construct processes that
have multiple segments of each "type," or of types of arbitrary semantic value -
no longer are programs restricted to being built only from objects the system was
capable of representing directly. For instance, a process's address space may con­
tain multiple text and data segments, some belonging to specific programs and
some shared among multiple programs. Text segments from shared libraries, for
example, typically appear in the address spaces of many processes. A process's

Memory Management 4-55

address space is simply a vector of pages, and there is no necessary division
between different address-space segments. Process text and data spaces are sim­
ply groups of pages mapped in ways appropriate to the function they provide the
program.

While the system may have multiple areas that can be considered "data" seg­
ments, for programming convenience the system maintains operations to operate
on an area of storage associated with a process's initial "heap storage area." A
process can manipulate this area by calling brk and sbrk:

caddr_t
brk(caddr_t addr);

sbrk(int incr);

brk sets the system's idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system's page size).

sbrk, the alternate function, adds incr bytes to the caller's data space and returns
a pointer to the start of the new data area.

A process's address space is usually sparsely populated, with data and text pages
intermingled. The precise mechanics of the management of stack space is
machine-dependent. By convention, page a is not used. Process address spaces
are often constructed through dynamic linking when a program is exec'ed.
Operations such as exec and dynamic linking build upon the mapping operations
described previously. Dynamic linking is described further in the Programming in
Standard C guide.

4-56 Process Management

5 Terminal Device Control

Introduction 5-1
Terminal Device Control Functions 5-2

• Baud Rates 5-3
• Input Modes 5-3
• Output Modes 5-4
• Control Modes 5-4
• Local Modes and Lin~ Disciplines 5-4
• Special Control Characters 5-4

Opening a Terminal Device File 5-6
Input Processing and Reading Data 5-6

• Canonical Mode Input 'processing 5-7
• Non-Canonical Mode Input Processing 5-9

Writing Data and Output Processing 5-11
Closing a Terminal Device File 5-11
Special Characters 5-12
The Controlling-Terminal and Process-Groups 5-15
Session Management and Job Control 5-16
Improving Terminal 1/0 Performance 5-17

• TTY in Canonical Mode 5-17
• TTY in Raw Mode 5-18
• TTY Flow Control 5-19

STREAMS-Based Terminal Subsystem 5-22
Line Discipline Module 5-24

• Default Settings 5-25
• Open and Close Routines 5-25
• Read-Side Processing 5-26
• Write-Side Processing 5-27
• EUC Handling in Idterm 5-28

Support of termiox 5-31
Hardware Emulation Module 5-31

Table of Contents

STREAMS-based Pseudo-Terminal
Subsystem 5-33
Line Discipline Module 5-33
Pseudo-tty Emulation Module - ptem 5-35
Remote Mode 5-37
Packet Mode 5-37
Pseudo-tty Drivers - ptm and pts 5-38

• grantptO 5-41
• unlockptO 5-42
• ptsnameO 5-42

ii Table of Contents

Introduction

This chapter discusses the general terminal interface to control asynchronous com­
munication ports. The functions on the termio(7) manual page are used to access
and configure the hardware interface to a terminal.

Also included in this chapter is a discussion of the mechanisms involved with
opening and closing a terminal device file, as well as input/ output processing.

The remainder of this chapter addresses the STREAMS mechanism as it relates to
terminal device control. The STREAMS-based terminal subsystem provides a uni­
form interface for implementing character I/O devices and networking protocols
in the kernel. Also discussed here is the notion of the STREAMS-based pseudo­
terminal subsystem which provides the user with an identical interface to the
STREAMS-based terminal subsystem.

Introduction 5-1

Terminal Device Control Functions

Terminal Device Control functions offer a general terminal interface for control­
ling asynchronous communication-ports in a device-independent manner using
parameters stored in the termios structure which is defined by the <termios. h>
header file [see termios(7)). UNIX System V also uses termios to control the
operation of network-connections.

Table 5-1: Terminal Device Control Functions

F eature/F unction Description

General Terminal Characteristics
- get output baud-rate
- set output baud-rate
- get input baud-rate
- set input baud-rate
General Terminal Control Functions
- get state of terminal
- set state of terminal
- line control function
- line control function
- line control function
- line control function
- get foreground process-group-id
- set foreground process-group-id

Interface

cfgetospeed ()
cfsetospeed()
cfgetispeed ()
cfsetispeed ()

tcgetattr ()
tcsetattr ()

tcsendbreak ()
tcdrain()
tcflush()
tcflow()

tcgetpgrp ()
tcsetpgrp ()

The termios structure stores the values of settable terminal I/O parameters used
by functions to control terminal I/O characteristics and the operation of a
terminal-device-file. The <termios .h> header file defines the termios structure
to contain at least the following members [see termios(7)):

tcflag_t c_iflag; 1* input modes *1
tcflag_t c_oflag; 1* output modes *1
tcflag_t c_cflag; 1* control modes *1
tcflag_t c_lflag; 1* local modes *1
cc_t c_cc [NCCS] ; 1* control chars *1

The <termios.h> header file defines the type tcflag_t as long, the type cc_t as
char. The <termios. h> header file also defines the symbolic-constant NCCS as the
size of the control-character array.

5-2 Terminal Device Control

Baud Rates

The structure termies stores the input and output baud-rates in c_cflag. The
table below shows symbolic names defined in <termies .h> and the baud-rate
each represents:

BO hang up
B50 50 baud
B75 75 baud
BllO 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

Note that the zero baud-rate, BO, is used to terminate the connection. If BO is
specified, the modem control lines are no longer asserted; normally, this discon­
nects the line [see cfsetespeed(2) and tcsetattr(2)]:

The termies structure members c_iflag, c_eflag, c_cflag and c_lflag take
as values the bitwise inclusive-OR of bitwise distinct masks with symbolic names
defined by the <termies . h> header file [see termies(7)].

Input Modes

The input-modes field c_iflag specifies treatment of terminal input. Calling
readO on a terminal-device-file works as described in "Input Processing and
Reading Data" and the value of c_iflag along with the value of c_lflag deter­
mine how to process input read from the terminal [see "Input Modes" and "Local
Modes" in termies(7)].

Introduction 5-3

Output Modes

The output-modes field c_oflag specifies treatment of terminal output. Calling
writeO on a terminal-device-file works as described in "Writing Data and Output
Processing" and the value of c_oflag determines how to process output written
to the terminal [see "Output Modes" in termios(7)].

Control Modes

The control-modes field c_cflag specifies communication control for terminals.
The value of c_cflag controls characteristics of the communications-port to a
terminal-device, but the underlying hardware may fail to support all c_cflag
values [see "Control Modes" in termios(7)]. A communication-port other than
an asynchronous serial connection may ignore some of the control-modes; for
example, if an attempt is made to set the baud-rate on a network-connection to a
terminal on another host, the baud-rate mayor may not be set on the connection
between the terminal and the machine it is directly connected to.

Local Modes and Line Disciplines

The local-modes field c_lflag specifies the line-discipline for the terminal. The
line-discipline works as described in "Canonical Mode Input Processing" and
"Non-Canonical Mode Input Processing" and the value of c_lflag along with
the value of c_iflag determine how the line-discipline acts on input from a
terminal-device-file [see "Local Modes" and "Input Modes" in termios(7)].

Special Control Characters

The array c_cc specifies the special control-characters that affect the operation of
the communication-port and the processing of terminal input and output as
described in "Special Characters" below. For each entry of the control-character
array c_cc, the following are typical default values:

Table 5-2: Terminal Device Control Character Array

Subscript Subscript Character Character
Value Name Value Description

0 VINTR ASCII DEL INTR character
1 VQUIT ASCIIFS QUIT character
2 VERASE # ERASE character
3 VKILL @ KILL character
4 VEOF ASCII EOT EOF character
5 VEOL ASCII NUL EOL character
6 reserved

5-4 Terminal Device Control

Table 5·2: Terminal Device Control Character Array

Subscript Subscript Character
Value Name Value

7 reserved
8 VSTART
9 VSTOP

10 VSUSP

ASCII DCI
ASCIIDC3
ASCII SUB

(continued)

Character
Description

START character
STOP character
SUSP character

The subscript values are unique, except that the VMIN and VTlME subscripts may
have the same value as the VEOF and VEOL subscripts respectively. The
<tennios • h> header file defines the relative positions, subscript names and
default values for the control-character array c_cc [see "Special Control Charac­
ters" in tennios(7)].

The NL and CR character cannot be changed. The INTR, QUIT, ERASE, KILL, EOF,
EOL, SUSP, STOP and START characters can be changed as follows:

struct termios term;

term.c_cc[VINTR] = 'a';
term.c_cc[VQUIT] = 'b';
term.c_cc[VERASE] = 'c';
term.c_cc[VKILL] = 'd';
tenn.c_cc[VEOF] = 'e';
term.c_cc[VEOL] = 'f';
tenn.c_cc[VSUSP] = 'g';
term.c_cc[VSTOP] = 'h';
tenn.c_cc[VSTART] = 'i';

where a, b, c, d, e, f, g, hand i are the INTR, QUIT, ERASE, KILL, EOF, EOL, SUSP,
STOP and START characters respectively.

Implementations which prohibit changing the START and STOP characters may
ignore the character values in the c_cc array indexed by the VSTART and VSTOP

subscripts when tcsetattrO is called, but return the character value when
tcsetattrO is called [see tcsetattr(2)].

If _POSIX_VDISABLE is defined for the terminal-device-file, and the value of one of
the changeable special control-characters equals _POSIX_ VDlSABLE, that function
is disabled; that is, the special character is ignored on input and is not recognized
[see "Special Characters" below]. If lCANON is clear, the value of
POSIX VDlSABLE lacks any special meaning for the VMIN and VTlME entries of the
c_cc array.

Introduction 5·5

Opening a Terminal Device File

When a terminal-device-file is opened, it normally causes the process to wait until
a connection is established. In practice, application-programs seldom open such
files; instead, at system-initialization time special-programs open terminal-device­
files as the standard input, standard output and standard error files [see stdio(4)].

Opening a terminal-device-file with the flag O_NONBLOCK clear on the openO
system-call causes the process to block until the terminal-device is ready and
available [see open(2)]. The flag CLOCAL can also affect the openO system-call [see
"Control Modes" in termios(7)].

Input Processing and Reading Data

A terminal-device accessed through an open terminal-device-file ordinarily
operates in full-duplex mode. This means data may arrive at any time, even while
output is occurring. Each terminal-device-file has associated with it an input­
queue, into which the system stores incoming data before the process reads that
data. The system imposes a limit of MAX_INPUT, the maximum allowable number
of bytes of input data, on the number of bytes of data that it stores in the input­
queue. Data is lost only when the input-queue becomes completely full, or when
an input line exceeds MAX_INPUT. The behavior of the system when this limit is
exceeded is implementation-dependent.

In UNIX System V, if the data in the terminal-device-file input-queue exceeds
MAX_INPUT and IMAXBEL is clear, all the bytes of data saved up to that point are
discarded without any notice, but if IMAXBEL is set and the data in the terminal­
device-file input-queue exceeds MAX_INPUT, the ASCII BEL character is echoed.
Further input is not stored, and any data already present in the input-queue
remains undisturbed.

Two general kinds of input processing are available, determined by whether the
terminal-device-file is operating in canonical mode or non-canonical mode. These
modes are described in "Canonical Mode Input Processing" and "Non-Canonical
Mode Input Processing". Additionally, input is processed according to the
c_iflag and c_lflag fields [see "Input Modes" and "Local Modes" in ter­
mios(7)]. Such processing can include echoing, which in general means transmit­
ting input data bytes immediately back to the terminal when they are received
from the terminal. This is useful for terminals that can operate in full-duplex
mode.

5-6 Terminal Device Control

The way a process reading from a terminal-device-file gets data depends on
whether the terminal-device-file is operating in canonical mode or non-canonical
mode. How readO operates on a terminal-device-file also depends on how openO
or fcntlO set the flag O_NONBLOCK for the file [see open(2) and fcntl(2)]:

If O_NONBLOCK and O_NDELAY are clear,
readO blocks until data is available or a signal
interrupts the readO operation.

If O_NONBLOCK is set, readO completes, without blocking, in one of the fol­
lowing three ways:

1. If enough bytes of data are available to satisfy the entire request,
readO completes successfully and returns the number of bytes it
transferred.

2. If too few bytes of data are available to satisfy the entire request,
readO completes successfully, having transferred as much data as it
could, and returns the number of bytes it actually transferred.

3. If no data is available, readO returns -1 and errno equals EAGAIN.

When data become available depends on whether the input-processing mode is
canonical or non-canonical. The following sections, "Canonical Mode Input Pro­
cessing" and "Non-Canonical Mode Input Processing", describe each of these
input-processing modes.

Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines.
A line is delimited by the new-line (, \n') character, end-of-file (EOF) character or
end-of-line (EOL) character [see "Special Characters" below for more information
on EOF and EOL].

Processing terminal input in units of lines means that a program attempting a
readO from a terminal-device-file is suspended until an entire line is typed, or a
signal is received. Also, no matter how many bytes of data a readO may request
from a terminal-device-file, it transfers at most one line of input. It is not, how­
ever, necessary to read the entire line at once; a readO may request any number of
bytes of data, even one, without losing any data remaining in the line of input.

If MAX_CANON is defined for this terminal-device, it is a limit on the number of
bytes in a line. The behavior of the system when this limit is exceeded is
implementation-dependent. If MAX_CANON is not defined for this terminal-device,
there is no such limit [see "Pathname Variable Values"].

Introduction 5-7

It should be noted that there is a possible inherent deadlock if the program and
the implementation conflict on the value of MruCCANON. With both ICANON and
IXOFF set when more than MAX_CANON characters transmitted without a line-feed,
transmission is stopped, the line-feed (or carriage-return if ICRLF is set) never
arrives, and the readO is never satisfied.

A program should never set IXOFF if it is using canonical-mode unless it knows
that (even in the face of a transmission error) the conditions described previously
cannot be met or unless it is prepared to deal with the possible deadlock in some
other way, such as time-outs.

~
This would only occur if the transmitting side was a communications device

NOTE (i.e. an asyncronous port). This normally will not happen since the transmit-
ting side is a user at a terminal.

It should also be noted that this can be made to happen in non-canonical-mode if
the number of characters received that would cause IXOFF to be sent is less than
VMIN when VTIME equals zero.

In UNIX System V, if the data in the line-discipline buffer exceeds MAX_CANON in
canonical mode and IMAXBEL is clear, all the bytes of data saved in the buffer up to
that point are discarded without any notice, but if IMAXBEL is set and the data in
the line-discipline buffer exceeds MAX_INPUT, the ASCII BEL character is echoed.
Further input is not stored, and any data already present in the input-queue
remains undisturbed.

During input, erase and kill processing occurs whenever either of two special char­
acters, the ERASE and KILL characters is received [see "Special Characters"]. This
processing affects data in the input-queue that has yet to be delimited by a new­
line, EOF or EOL character. This un-delimited data makes up the current line. The
ERASE character deletes the last character (if any) in the current line; it does not
erase beyond the beginning of the line. The KILL character deletes all data (if any)
in the current line; it optionally outputs a new-line character. The ERASE and KILL
characters have no effect if the current line lacks any data.

Both the ERASE and KILL characters operate on a key-stroke basis independently
of any backspacing or tabbing. Typically, # is the default ERASE character, and @

is the default KILL character. The ERASE and KILL characters themselves are not
placed in the input-queue.

5-8 Terminal Device Control

Non-Canonical Mode Input Processing

In non-canonical input processing, input bytes are not assembled into lines, and
erase and kill processing does not occur. The values of the MIN and TIME
members of the c_cc array determine how to process any data received.

MIN is the minimum number of bytes of data that a readO should return when it
completes successfully. If MIN exceeds MAJCINPUT, the response to the request is
implementation-defined. In UNIX System V, the maximum value that can be
stored for MIN in c_cc [VMIN] is 256, less than MAX_INPUT which equals 512; thus,
the MIN value can never exceed MAX_INPUT. TIME is a read-timer with a 0.10
second granularity used to time-out bursty and short-term data transmissions.
The four possible interactions between MIN and TIME follow:

1. (MIN> 0 , TIME>O).

Because TIME>O, it serves as an inter-byte timer activated on receipt of the
first byte of data, and reset on receipt of each byte of data. MIN and TIME
interact as follows:

• As soon as a byte of data is received, the inter-byte timer starts
(remember that the timer is reset on receipt of each byte)

• If MIN bytes of data are received before the inter-byte timer
expires, the readO completes successfully.

• If the inter-byte timer expires before MIN bytes of data are
received, the readO transfers any bytes received up until then.

When TIME expires, a readO transfers at least one byte of data because the
inter-byte timer is enabled if and only if a byte of data was received. A pro­
gram using this case must wait for at least one byte of data to be read before
proceeding. In case (MIN>O, TIME>O), a readO blocks until receiving a byte
of data activates MIN and TIME, or a signal interrupts the readO. Thus, the
readO transfers at least one byte of data.

2. (MIN >0 , TIME=O).

Because TIME=O, the timer plays no role and only MIN is significant. A
readO completes successfully only on receiving MIN bytes of data (i.e., the
pending readO blocks until MIN bytes of data are received) or a signal
interrupts the readO. Use these values only when the program cannot con­
tinue until a predetermined number of bytes of data are read. A program
using this case to do record-based terminal I/O may block indefinitely in a
readO·

Introduction 5-9

3. (MIN=O, TIME>O).

Because MIN =0, TIME no longer serves as an inter-byte timer, but now
serves as a read-timer activated when a readO is processed (in canon). A
readO completes successfully as soon as any bytes of data are received or
the read-timer expires. A readO does not transfer any bytes of data if the
read-timer expires. If the read-timer does not expire, a readO completes
successfully if and only if some bytes of data are received. In case
(MIN=O, TIME >0), the readO does not block indefinitely waiting for a byte
of data. If no bytes of data are received within TIME*0.10 seconds after the
readO starts, it returns 0 having read no data. If the buffer holds data when
a readO starts, the read-timer starts as if it received data immediately. MIN
and TIME are useful when a program can assume that data is not available
after a TIME interval and other processing can be done before data is avail­
able.

4. (MIN=O, TIME=O).

Without waiting for more bytes of data to be received, a readO returns the
minimum of either the number of bytes of data requested or the number of
bytes of data currently available. In this case, a readO immediately
transfers any bytes of data present, or if no bytes of data are available, it
returns 0 having read no data. In case (MIN=O, TIME=O), readO operates
identically to the O_NDELAY flag in canonical mode.

MIN/TIME interactions serve different purposes and thus do not parallel one
another. In case [2]: (MIN> 0 , TIME = 0), TIME lacks effect, but with the conditions
reversed in case [3]: (MIN=O, TIME>O), both MIN and TIME playa role in that
receiving a single byte satisfies the MIN criteria. Furthermore, in case [3]:
(MIN=O, TIME >0), TIME represents a read-timer, while in case [1]:
(MIN> 0 , TIME >0), TIME represents an inter-byte timer,

Cases [1] and [2], where MIN>O, handle burst mode activity (e.g., file-transfers),
where programs need to process at least MIN bytes of data at a time. In case [1],
the inter-byte timer acts as a safety measure; in case [2], the timer is turned off.

Cases [3] and [4] handle single byte, timed transfers like those used by screen­
based programs that need to know if a byte of data is present in the input-queue
before refreshing the screen. In case [3], the readO is timed, while in case [4], it is
not.

One should also note that MIN is always just a minimum, and does not define a
record length. Thus, if a program tries a readO of 20 bytes when 25 bytes of data
are present and MIN is la, the readO returns 20 bytes of data. In the special case
of MIN =0, this still applies: if more than one byte of data is available, all data is
returned immediately.

5-10 Terminal Device Control

Writing Data and Output Processing

When a process writes data onto a terrninal-device-file, c_oflag controls how to
process those bytes [see "Output Modes" in tennios(7)]. UNIX System V pro­
vides buffering such that a call to writeO schedules data for transfer to the device,
but has not necessarily completed the transfer when the call returns [see write(2)
for the effects of O_NONBLOCK on writeOl.

Closing a Terminal Device File

The last process to close a terminal-device-file causes any output remaining to be
sent to the device and any input remaining to be discarded. Following these
actions, if the flag HUPCL is set in the control-modes and the communication-port
supports a disconnect function, the terminal-device does a disconnect.

Because the POSIX.l standard is silent on whether a closeO blocks waiting for
transmission to drain, or even if a closeO might flush any pending output, a pro­
gram concerned about how data in terminal input and output-queues are handled
should call the appropriate functions such as tcdrainO to ensure the desired
behavior [see close(2) and tcdrain(2)].

Introduction 5-11

Special Characters

Certain characters have special functions on input or output or both. These func­
tions and their typical default character values are summarized below:

INTR

QUIT

ERASE

KILL

EOF

5·12

(typically, rub out or ASCII DEL) sends an interrupt signal, SIGINT,

to all processes in the foreground process-group for which the ter­
minal is the controlling-terminal. Receiving the signal SIGINT

normally forces a process to terminate, but a process may arrange
to ignore the signal or to call a signal-catching function [see
sigaction(2)] .

If ISIG is set, the INTR character is recognized and acts as a spe­
cial character on input and is discarded when processed [see
"Local Modes" in tennios(7)].

(typically, control-\ or ASCII FS) sends a quit signal, SIGQUIT, to
all processes in the foreground process-group for which the termi­
nal is the controlling-terminal. Receiving the signal SIGQUIT nor­
mally forces a process to terminate just as the signal SIGINT does
except that, unless a receiving process makes other arrangements,
it not only terminates but a core image file (called CORE) will be
created in the current working directory of the process [see
sigaction(2)].

If ISIG is set, the QUIT character is recognized and acts as a spe­
cial character on input and is discarded when processed [see
"Local Modes" in tennios(7)].

(typically, the character #) erases the most recently input character
in the current line [see "Canonical Mode Input Processing"]. It
does not erase beyond the start of a line.

If ICANON is set, the ERASE character is recognized and acts as a
special character on input and is discarded when processed [see
"Local Modes" in tennios(7)].

(typically, the character @) deletes the entire line, as delimited by
an EOF, EOL or NL character.

If ICANON is set, the KILL character is recognized and acts as a spe­
cial character on input and is discarded when processed [see
"Local Modes" in tennios(7)].

(typically, control-d or ASCII EOT) generates an EOF, from a termi­
nal. On receiving EOF, a readO immediately passes any bytes of
data it holds to the process without waiting for a new-line, and
discards the EOF. If EOF occurred at the beginning of a line, a

Terminal Device Control

NL

EOL

SUSP

STOP

START

Introduction

readO holds no bytes of data, and returns a byte count of zero, the
standard end-of-file indication.

If lCANON is set, the EOF character is recognized' and acts as a spe­
cial character on input and is discarded when processed [see
"Local Modes" in termios(7)].

(ASCII LF) is the normal line delimiter, (I \n ,), which can not be
changed or escaped.

If lCANON is set, the NL character is recognized and acts as a spe­
cial character on input [see "Local Modes" in termios(7)].

(typically, ASCII NUL) is an additional line delimiter, like the NL
character. EOL is not normally used.

If lCANON is set, the EOL character is recognized and acts as a spe­
cial character on input [see "Local Modes" in termios(7)].

(typically, control-z or ASCII SUB) sends an stop signal, SIGTSTP,
to all processes in the foreground process-group for which the ter­
minal is the controlling-terminal.

If job-control is supported and ISIG is set, the SUSP character is
recognized and acts as a special character on input and is dis­
carded when processed [see "Local Modes" in termios(7)].

(typically, control-s or ASCII DC3) temporarily suspends output.
It is useful with CRT terminals to prevent output from disappear­
ing before it can be seen. While output is suspended, STOP char­
acters are ignored not read. The STOP character can be changed
through the c_cc array [see "Special Control Characters" in ter­
mios(7)].

If IXON (output control) is set or IXOFF (input control) is set, the
STOP character is recognized and acts as a special character on
both input and output. If IXON is set, the STOP character is dis­
carded when processed [see "Input Modes" in termios(7)].

(typically, control-q or ASCII DO) resumes output suspended by a
STOP character. While output is not suspended, START characters
are ignored and not read. The START character can be changed
through the c_cc array [see "Special Control Characters" in ter­
mios(7)].

If IXON (output control) is set or IXOFF (input control) is set, the
START character is recognized and acts as a special character on
both input and output. If IXON is set, the START character is dis­
carded when processed [see "Input Modes" in termios(7)].

5-13

CR

MIN

TIME

(ASCII CR) is a line delimiter, (, \r'), which is translated into the
NL character, and it has the same effect as the NL character if
lCANON and ICRNL are set and IGNCR is clear.

If lCANON is set, the NL character is recognized and acts as a spe­
cial character on input [see "Local Modes" in termios(7)].

controls terminal I/O during raw mode (ICANON off) processing
[see "Non-Canonical Input Processing"].

controls terminal I/O during raw mode (ICANON off) processing
[see "Non-Canonical Input Processing"].

The NL and CR character cannot be changed. The INTR, QUIT, ERASE, KILL, EOF,
EOL, SUSP, STOP and START characters can be changed through the c_cc array
[see "Special Control Characters" in termios(7)].

The ERASE, KILL and EOF characters may be entered literally (their special mean­
ing escaped) by preceding them with the escape character (, \ '). In this case, no
special function is done and the escape character is not read as input.

5-14 Terminal Device Control

The Controlling-Terminal and Process-Groups

A terminal may belong to a process as its controlling-terminal, which is a terminal
uniquely associated with one session. Each process of a session with a
controlling-terminal has the same controlling-terminal assigned to it. Each session
may have at most one controlling-terminal associated with it and vice versa. A
terminal may be assigned to at most one session as the controlling-terminal. Cer­
tain input sequences from the controlling-terminal cause signals to be sent to all
processes in the process-group for the controlling-terminal [see termios(7)]. The
controlling-terminal plays a special role in handling quit and interrupt signals [see
"Special Characters" below].

The controlling-terminal for a session is acquired by the session-leader, which is
the process that created the session; the session-id of a session equals the process­
id of the session-leader. When a session-leader acquires a controlling-terminal for
its session, it thereby becomes the controlling-process of that session [see set­
sid(2)]. Should the terminal later cease to be a controlling-terminal for the session
of the session-leader, the session-leader ceases to be a controlling-process.

When a session-leader without a controlling-terminal opens a terminal-device-file
and the flag O_NOCTTY is clear on openO, that terminal becomes the controlling­
terminal assigned to the session-leader if the terminal is not already assigned to
some session [see open(2)]. When any process other than a session-leader opens a
terminal-device-file, or the flag O_NOCTTY is set on openO, that terminal does not
become the controlling-terminal assigned to the calling-process.

A controlling-terminal distinguishes one of the process-groups in the session
assigned to it as the foreground process-group; all other process-groups in the ses­
sion are background process-groups. By default, when the session-leader acquires a
controlling-terminal, the process-group of the session-leader becomes the fore­
ground process-group of the controlling-terminal. The foreground process-group
plays a special role in handling signal-generating input characters [see "Special
Characters" above].

A new process inherits the controlling-terminal through the forkO operation [see
fork(2)]. When a process calls setsidO to create a new session, the process relin­
quishes its controlling-terminal; other processes remaining in the old session with
that terminal as their controlling-terminal continue to have it [see setsid(2)].
When all file-descriptors that denote the controlling-terminal in the system are
closed (whether or not it is in the current session), it is unspecified whether all
processes that had that terminal as their controlling-terminal cease to have any
controlling-terminal. Whether and how a session-leader can reacquire a
controlling-terminal after the controlling-terminal is relinquished in this fashion is

Introduction 5-15

unspecified. A process does not relinquish its controlling-terminal simply by clos­
ing all of its file-descriptors that denote the controlling-terminal if other processes
continue to have it open.

When a session-leader terminates, the current session relinquishes the
controlling-terminal allowing a new session-leader to acquire it. Any further
attempts to access the terminal by other processes in the old session may be
denied and treated as if modem-disconnect was detected on the terminal.

Session Management and Job Control

If _POSIX_JOB_CONTROL is defined, UNIX System V supports job-control and com­
mand interpreter processes supporting job-control can assign the terminal to dif­
ferent jobs, or process-groups, by placing related processes in a single process­
group and assigning the process-group with the terminal. A process may examine
or change the foreground process-group of a terminal assuming the process has
the required permissions [see tcgetpgrp(2) and tcsetpgrp(2)]. The termios
facility aids in this assignment by restricting access to the terminal by processes
outside of the foreground process-group [see "Job Control" in the chapter "Sig­
nals and Pipes" in this guide].

When there is no longer any process whose process-id or process-groupoid
matches the process-groupoid of the foreground process-group, the terminal lacks
any foreground process-group. It is unspecified whether the terminal has a fore­
ground process-group when there is no longer any process whose process-group­
id matches the process-groupoid of the foreground process-group, but there is a
process whose process-id matches the process-groupoid of the foreground
process-group. Only a successful call to tcsetpgrpO or assignment of the
controlling-terminal as described can make a process-group the foreground
process-group of a terminal [see tcsetpgrp(2)].

Background process-groups in the session of the session-leader are subject to a
job-control line-discipline when they attempt to access their controlling-terminal.
Typically, they are sent a signal that causes them to stop, unless they have made
other arrangements [see signal(4)]. An exception is made for processes that
belong to a orphaned process-group, which is a process-group none of whose
members have a parent in another process-group within the same session and
thus share the same controlling-terminal. When these processes attempt to access
their controlling-terminal, they return errors, because there is no process to con­
tinue them if they should stop [see "Job Control" in "Signals and Pipes"].

5·16 Terminal Device Control

Improving Terminal I/O Performance

For user-level programs that read and write to terminals, the TTY subsystem in
UNIX System V provides a flexible interface, known as the termio facility. The
flexibility of the termio facility enables users to perform efficient TTY I/O in a
wide range of applications. However, the improper use of this termio can result
in inefficient user programs. This section discusses writing programs that use
termio and focuses on the topics of buffer size, canonical mode, raw mode and
flow control and provides several code examples.

User programs that read from terminal devices must read from TTYs in either
canonical mode or raw mode.

TTY in Canonical Mode

In canonical mode, characters are read from the device and processed before being
returned. This processing translates kill and erase characters. Characters are not
returned until a new line (NL), end of file (EOF), or end of line (EOL) is read, which
means that characters are returned a line at a time. Canonical mode is usually
associated with terminals.

An important factor to consider when using canonical mode is what to do when
reading from a TTY device for which characters are not available. If the O_NDELAY

flag has been set for the TTY, then such readOs return a 0, indicating that no char­
acters are available. Otherwise, readOs will not return until a character is avail­
able. If a program can perform other processing when characters are not available
from a TTY, then the O_NDELAY flag should be set for the TTY. This might require
programs to be more complicated, but the complication are offset by an increase in
efficiency.

The following function opens a TTY device for reading or writing (line 12), places
it in canonical mode (line 23), and sets the O_NDELAY option so that readOs are not
blocked when characters are not available (line 12).

Introduction 5-17

Figure 5-1: Improving TTY performance - canonical mode

1 #include <fcntl.h>
2 #include <termio.h>
3
4 extern struct termio old_tenn;

setup1 (TTY)
char *TTYi

int fid;
struct termio new_term;

if ({fid = open {TTY, O_RDWRI O_NDELAY)) == -1)

printf(lIopen failed. \n") i

exit{l);

else if (ioctl{fid, TCGETA, &old_tenn) == -1)
{

printf (n ioctl get failed. \n n) ;
exit{l);

new_term = old_term;
new_term. c_Iflag 1= lCANON;
if (ioctl{fid, TCSETA, &new_tenn) == -1)

printf{nioctl set failed. \nn);
exit (I) ;

return fid;

TTY in Raw Mode

In raw mode, characters are read and returned as is; that is, without being pro­
cessed. Reading from a TTY device in raw mode is faster than reading from a TTY
device in canonical mode. In the interest of efficiency, raw mode should be used
when characters do not need to be canonically processed.

Just as in canonical mode, TTY devices that are in raw mode must deal with the
problem of what to do when reading from a device for which characters are not
available. The O_NDELAY flag only applies to TTY devices that are in canonical
mode. The same function is provided by the MIN and TIME values for raw TTY
devices. By choosing appropriate values of MIN and TIME, a programmer can
help maximize efficiency when reading from TTY devices in raw mode.

5-18 Terminal Device Control

The following function inputs a TTY that has previously been opened in raw
mode and sets the MIN and TIME options to be 0 so that readOs will not be
blocked when characters are not available.

Figure 5-2: Improving TTY performance - raw mode

1 #include <termio.h>
2

3 extern struct termio old_tenn;
4

5 setup2(fid)
6 int fid;

struct ter.mio new_ter.m;

if (ioctl(fid, TCGETA, &old_tenn) == -1)

printf (" ioctl get failed. \n") ;
exit (1) ;

new_term = old_term;
new_tenn.c_lf1ag &= -ICANON;
new_tenn.c_cc[VMINl = 0;
new_tenn.c_cc[VTlMEl = 0;

if (ioctl(fid, TCSETA, &new_tenn) == -1)

printf("ioctl set failed. \n") i
exit (1);

TTY Flow Control

Flow control becomes a problem when a program that reads from a TTY device
that cannot keep up with the number of characters that are coming into the TTY.
If this happens, characters are over-written in the TTY input queue before they can
be read by the program.

Conversely, when a program writes to a TTY, the device might not be able to keep
up with the TTY. When this happens, characters that are written by a program to
a TTY are not being seen by the appropriate device.

Introduction 5-19

The tennio facility provides a mechanism called software flow control to solve
this problem. If a program cannot keep up with the characters coming into a TTY,
the TTY sends a STOP character to the originator. The originator, upon receipt of
the STOP character, stops sending characters to the TTY until it received a START
character. The TTY sends the START character when the program has sufficiently
emptied its input queue.

If a device cannot keep up with a TTY, the device sends a STOP character to the
TTY. Upon receipt of the STOP character, the TTY stops sending characters to the
terminal until it receives a START character. The terminal sends the START charac­
ter when it has sufficiently emptied its input queue. The TTY then blocks writeOs
to the TTY until the TTY's output has sufficiently emptied.

Three different options are provided for flow control: IXON, IXOFF, and lXANY. If
IXOFF is set, then software flow control is enabled on the TTY's input queue. The
TTY transmits a STOP character when the program cannot keep up with its input
queue and transmits a START character when its input queue in nearly empty
again.

If IXON is set, software flow control is enabled on the TTY's output queue. The
TTY blocks writeOs by the program when the device to which it is connected can­
not keep up with it. If lXANY is set, then any character received by the TTY from
the device restarts the output that has been suspended.

The following function (see the following figure) sets the lXANY, IXOFF, and lXANY

options for a TTY device that has previously been opened so that software flow
control is enabled for both input and output.

5-20 Terminal Device Control

Figure 5-3: Improving TTY performance - flow control

1 #include <termio.h>
2

3 extern struct termio old_tenn;

4

5 setup3 (fid)

6 int fid;
7 {

8 st:ruct te:rmio new_term;

9
if (ioctl(fid, TCGETA, &old_tenn) == -1)

printf (" ioctl get failed. \n") ;
exit (1) ;

new_ter.m = old_ter.m;
new_term.c_iflag 1= IXON 1 lXOFF 1 lXANY;

if (ioctl(fid, TCSETA, &new_tenn) == -1)

printf("ioctl set failed. \n");
exit (1) ;

When you design programs that read and write for the TTY subsystem, remember
to address buffer size, canonical! raw mode and flow control concerns to ensure
programming efficiency. For further information, see the following references:

• termio(7) in the System Files and Devices Reference.

• open(2), read(2), and ioctl(2) in the Operating System API Reference.

• termio(BA_ENV) in the System V Interface Definition.

Introduction 5-21

STREAMS-Based Terminal Subsystem

UNIX System V Release 4 implements the terminal subsystem in STREAMS. The
STREAMS-based terminal subsystem (see Figure 5-4) provides many benefits:

• Reusable line discipline modules. The same module can be used in many
STREAMS where the configuration of these STREAMS may be different.

• Line discipline substitution. Although UNIX System V provides a standard
terminal line discipline module, another one conforming to the interface
may be substituted. For example, a remote login feature may use the termi­
nal subsystem line discipline module to provide a terminal interface to the
user.

• Internationalization. The modularity and flexibility of the STREAMS-based
terminal subsystem enables an easy implementation of a system that sup­
ports multiple byte characters for internationalization. This modularity also
allows easy addition of new features to the terminal subsystem.

• Easy customizing. Users may customize their terminal subsystem environ­
ment by adding and removing modules of their choice.

• The pseudo-terminal subsystem. The pseudo-terminal subsystem can be
easily supported.

• Merge with networking. By pushing a line discipline module on a network
line, you can make the network look like a terminal line.

5-22 Terminal Device Control

Figure 5-4: STREAMS-based Terminal Subsystem

User Process

User Space

- - - -- - - - --

Kernel Space
downstream

j
Stream Head

Line
Discipline

TTY
Driver 1

upstream

The initial setup of the STREAMS-based terminal subsystem is handled with the
ttymon(lM) command within the framework of the Service Access Facility (SAF)
or the autopush facility. The autopush facility is discussed in Appendix C.

The STREAMS-based terminal subsystem supports termio, the termios
specification of the POSIX standard, multiple byte characters for internationaliza­
tion, the interface to asynchronous hardware flow control and peripheral controll­
ers for asynchronous terminals [see termio(7), termios(7) and termiox(7)].
XENIX and BSD compatibility can also be provided by pushing the ttcompat
module [see ttcompat(7)].

STREAMS-Based Terminal Subsystem 5-23

To use shl with the STREAMS-based terminal subsystem, the sxt driver is imple­
mented as a STREAMS-based driver. However, the sxt feature is being phased
out and users are encouraged to use the job control mechanism. Note that both
shl and job control should not be run simultaneously.

Line Discipline Module

A STREAMS line discipline module called ldterm [see ldterm(7)] is a key part of
the STREAMS-based terminal subsystem. Throughout this chapter, the terms
"line discipline" and ldterm are used interchangeably and refer to the STREAMS
version of the standard line discipline and not the traditional character version.
ldterm performs the standard terminal I/O processing that was traditionally
done through the linesw mechanism.

The termio and termios specifications describe four flags that are used to control
the terminal: c_iflag (defines input modes), c_oflag (defines output modes),
c3flag (defines hardware control modes), and c_lflag (defines terminal func­
tions used by ldterm). To process these flags elsewhere (for example, in the
firmware or in another process), a mechanism is in place to tum on and off the
processing of these flags. When ldterm is pushed, it sends an M_CTL message
downstream, which asks the driver which flags the driver will process. The driver
sends back that message in response if it needs to change ldterm's default pro­
cessing. By default, ldterm assumes that it must process all flags except c_cflag,
unless it receives a message telling otherwise.

5-24 Terminal Device Control

Default Settings

When Idterm is pushed on the Stream, the open routine initializes the settings of
the termio flags. The default settings are

c_iflag BRKINTIICRNLIIXONIISTRIPllXANY

c_oflag = OPOSTIONLCRITAB3

c_cflag = 0
c_lflag ISIGllCANONIECHOIECHOK

In canonical mode (ICANON flag in c_lflag is turned on), readO from the terminal
file descriptor is in message nondiscard (RMSGN) mode [see streamio(7)]. This
implies that in canonical mode, readO on the terminal file descriptor always
returns at most one line regardless of how many characters have been requested.
In noncanonical mode, readO is in byte-stream (RNORM) mode.

Open and Close Routines

The open routine of the Idterm module allocates space for holding state informa­
tion.

The Idterm module establishes a controlling tty for the line when an M_SETOPTS

message (so_flags is set to SO_ISTTY) is sent upstream. The Stream head allo­
cates the controlling tty on the open, if one is not already allocated.

To maintain compatibility with existing application-programs that use the
O_NDELAY flag, the openO routine sets the SO_NDELON flag on in the so_flags field
of the stroptions structure in the M_SETOPTS message.

The open routine fails if there is insufficient space for allocating the state structure,
or when an interrupt occurs while the open is sleeping until memory becomes
available.

The close routine frees all the outstanding buffers allocated by this Stream. It also
sends an M_SETOPTS message to the Stream head to undo the changes made by the
open routine. The Idterm module also sends M_START and M_STARTI messages
downstream to undo the effect of any previous M_STOP and M_STOPI messages.

STREAMS-Based Terminal Subsystem 5-25

Read-Side Processing

The Idterm module's read-side processing has putO and serviceO procedures.
Idterm can send the following messages upstream:

M_DATA,M_BREAK,M_PCSIG,M_SIG,M_FLUSH,M_ERROR,M_IOCACK,M_IOCNAK,
M_HANGUP, M_CTL, M_SETOPTS, M_COPYOUT, and M_COPYIN (see Appendix A).

The Idterm module's read-side processes M_BREAK, M_DATA, M_CTL, M_FLUSH,
~HANGUP, and M_IOCACK messages. All other messages are sent upstream
unchanged.

The putO procedure scans the message for flow control characters (IXON), signal
generating characters, and after (possible) transformation of the message, queues
the message for the serviceO procedure. Echoing is handled completely by the
serviceO procedure.

In canonical mode if the ICANON flag is on in c_lfla9, canonical processing is
performed. If the ICANON flag is off, noncanonical processing is performed [see
termio(7) for more details]. HandlingVMIN/VTIME in the STREAMS environment
is somewhat complicated, because readO needs to activate a timer in the Idterm
module in some cases; hence, read notification becomes necessary. When a user
issues an ioctlO to put Idterm in noncanonical mode, the Idterm module sends
an M_SETOPTS message to the Stream head to register read notification. Further
reads on the terminal file descriptor causes the Stream head to issue an ~READ
message downstream and data are sent upstream in response to the M_READ mes­
sage. With read notification, buffering of raw data is performed by Idterm. It is
possible to canonize the raw data when the user has switched from raw to canoni­
cal mode. However, the reverse is not possible.

To summarize, in noncanonical mode, the Idterm module buffers all data until a
request for the data arrives in the form of an M_READ message. The number of
bytes sent upstream is the argument of the M_READ message.

Input flow control is regulated by the Idterm module by generating M_STARTI
and M_STOPI high-priority messages. When sent downstream, receiving drivers
or modules take appropriate action to regulate the sending of data upstream.
Output flow control is activated when Idterm receives flow control characters in
its data stream. The Idterm module then sets an internal flag indicating that out­
put processing is to be restarted/ stopped and sends an M_START /M_STOP message
downstream.

5-26 Terminal Device Control

Write-Side Processing

Write-side processing of the ldtenn module is performed by the write-side putO
and serviceO procedures. The ldtenn module supports the following ioctlOs:

TCSETA,TCSETAW,TCSETAF,TCSETS,TCSETSW,TCSETSF,TCGETA,TCGETS,TCXONC,

TCFLSH, TCSBFl{, TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE.

All ioctlOs not recognized by the ldtenn module are passed downstream to the
neighboring module or driver. BSD functionality is turned off by IEXTEN [see
tennio(7) for more details].

The following messages can be received on the write-side:

M_DATA,M_DELAY,M_BREAK,M_FLUSH,M_STOP,M_START,M_STOPI,M_STARTI,

M_READ, M_IOCDATA, M_CTL, and M_IOCTL.

On the write-side, the ldtenn module processes M_FLUSH, M_DATA, M_IOCTL, and
M_READ messages, and all other messages are passed downstream unchanged.

An M_CTL message is generated by ldtenn as a query to the driver for an intelli­
gent peripheral and to determine the functional split for tennio processing. If all
or part of tennio processing is done by the intelligent peripheral, ldtenn can turn
off this processing to avoid computational overhead. This is done by sending an
appropriate response to the M_CTL message, as follows: [see also ldtenn(7)].

• If all the tennio processing is done by the peripheral hardware, the driver
sends an M_CTL message back to ldtenn with ioc_cmd of the structure
iocblk set to MC_NO_CANON. If ldtenn is to handle all tennio processing,
the driver sends an M_CTL message with ioc_cmd set to MC_DO_CANON.

Default is MC_DO_CANON.

• If the peripheral hardware handles only part of the tennio processing, it
informs ldtenn in the following way:

The driver for the peripheral device allocates an M_DATA message large
enough to hold a tennios structure. The driver then turns on those
c_iflag, c_oflag, and c_lflag fields of the tennios structure that are
processed on the peripheral device by ORing the flag values. The M_DATA

message is then attached to the b_cont field of the M_CTL message it
received. The message is sent back to ldtenn with ioc_cmd in the data
buffer of the M_CTL message set to MC_PART_CANON.

The ldtenn module does not check if write-side flow control is in effect before for­
warding data downstream. It expects the downstream module or driver to queue
the messages on its queue until flow control is lifted.

STREAMS-Based Terminal Subsystem 5-27

EUC Handling in Idterm

The idea of letting post-processing (the o_flags) happen off the host processor is
not recommended unless the board software is prepared to deal with international
(EUC) character sets properly. The reason for this is that post-processing must
take the EUC information into account. Idtenn knows about the screen width of
characters (that is, how many columns are taken by characters from each given
code set on the current physical display) and it takes this width into account when
calculating tab expansions. When using multibyte characters or multicolumn
characters Idtenn automatically handles tab expansion (when TAB3 is set) and
does not leave this handling to a lower module or driver.

By default, multibyte handling by Idtenn is turned off. When Idtenn receives an
EUC_WSET ioctlO call, it turns multibyte processing on, if it is essential to handle
properly the indicated code set. Thus, if one is using single byte 8-bit codes and
has no special multicolumn requirements, the special multicolumn processing is
not used at all. This means that multibyte processing does not reduce the process­
ing speed or efficiency of Idtenn unless it is actually used.

The following describes how the EUC handling in Idtenn works:

First, the multibyte and multicolumn character handling is only enabled when the
EUC_WSET ioctlO indicates that one of the following conditions is met:

• Code set consists of more than one byte (including the SS2 and / or SS3) of
characters.

• Code set requires more than one column to display on the current device, as
indicated in the EUC_WSET structure.

Assuming that one or more of the above conditions, EUC handling is enabled. At
this point, a parallel array, used for other information, is allocated. When a byte
with the high bit arrives, it is checked to see if it is SS2 or SS3. If so, it belongs to
code set 2 or 3. Otherwise, it is a byte that comes from code set 1. Once the
extended code set flag has been set, the input processor retrieves the subsequent
bytes, as they arrive, to build one multibyte character. A counter field tells the
input processor how many bytes remain to be read for the current character. The
parallel array holds the display width of each logical character in the canonical
buffer. During erase processing, positions in the parallel array are consulted to
figure out how many backspaces need to be sent to erase each logical character.
(In canonical mode, one backspace of input erases one logical character, no matter
how many bytes or columns that character consumes.) This greatly simplifies
erase processing for EUe.

5-28 Terminal Device Control

The t_IDaXeUC field holds the maximum length, in memory bytes, of the Eve
character mapping currently in use. The eucwioc field is a substructure, which
holds information about each extended code set.

The t_eucign field aids in output post-processing (tab expansion). When charac­
ters are output, ldte:rm keeps a column to show the current cursor column. When
it sends the first byte of an extended character, it adds the number of columns
required for that character to the output column. It then subtracts one from the
total width in memory bytes of that character and stores the result in t_eucign.
This field tells ldte:rm how many bytes to ignore for the purposes of column cal­
culation. (ldte:rm calculates the appropriate number of columns when it sees the
first byte of the character.)

The field t_eucwarn is a counter for occurrences of bad extended characters. It is
mostly useful for debugging. After receiving a certain number of invalid EVe
characters (perhaps because of some problem on the line or with declared values),
a warning is given on the system console.

There are two relevant files for handling multibyte characters: <euc. h> and
<eucioctl.h>. The <eucioctl.h> header contains the structure that is passed
with EUC_WSET and EUC_WGET calls. The normal way to use this structure is to get
CSWIDTH (see note below) from the locale using a mechanism such as getwidthO
or setlocaleO and then copy the values into the structure in <eucioctl.h>, and
send the structure using an I_STR ioctlO call. The EUC_WSET call informs the
ldte:rm module about the number of bytes in extended characters and how many
columns the extended characters from each set consume on the screen. This
allows ldte:rm to treat multibyte characters as single entities for erase processing
and to calculate correctly tab expansions for multibyte characters.

~ I..C_CTYPE (instead of CSWIDTH) should be used in the environment in UNIX y System V Release 4 systems. See chrtbl(1M) 'n< more mfonnation.

The file <euc. h> has the structure with fields for Eve width, screen width, and
wide character width. The following functions are used to set and get EVe widths
(these functions assume the environment where the eucwidth_t structure is
needed and available):

STREAMS-Based Terminal Subsystem 5-29

#include <eucioctl.h> 1* need same other things too, like
stropts.h */

struct eucioc euew;
eucwidth_t width;

/* for EUC_WSET/EUC_WGET to line discipline */
/* return struct from ~etwidth() */

Send EUC code widths to line discipline.

set_euc(e)

/*

set_euc(struct eucioc *e)

struct strioctl sb;

sb.ic_cmd = EUC_WSET;
sb.ic_timout = 15;

sb.ic_len = sizeof(struct eucioc)i
sb.ic_dp = (char *) e;

if (ioctl(O, I_STR, &sb) < 0)
fail ();

* euclook
*/

Get current EUC code widths from line discipline.

euclook(e)
euclook(struct eucioc *e)

struct strioctl sh;

sb.ic_crnd = EUC_WGET;
sb.ic_timout = 15i

sb.ic_len = sizeof(struct eucioc)i

sb.ic_dp = (char *) e;
if (ioctl(O, I_STR, &sb) < 0)

fail ();
printf (IICSWIDTH=9rcd:'Yod, 9--od: 9rad, 9-od:%dO I

e->eucw[l], e->scrw[l],
e->eucw[2], e->scrw[2],
e->eucw[3], e->scrw[3]);

The brief discussion of multiple byte character handling by the Idterm module
was provided here for those interested in internationalization applications in
UNIX System V.

5-30 Terminal Device Control

Support of termiox

UNIX System V Release 4 includes the extended general terminal interface [see
tenniox(7)] that supplements the tennio(7) general terntinal interface by adding
for asynchronous hardware flow control, isochronous flow control and clock
modes, and local implementations of additional asynchronous features.
tenniox(7) is handled by hardware drivers if the board supports it.

Hardware flow control supplements the tennio(7) IXON, IXOFF, and lXANY char­
acter flow control. The tenniox(7) interface allows for both unidirectional and
bidirectional hardware flow control. Isochronous communication is a variation of
asynchronous communication where two communicating devices provide
transmit and/ or receive clock to each other. Incoming clock signals can be taken
from the baud rate generator on the local isochronous port controller. Outgoing
signals are sent on the receive and transmit baud rate generator on the local iso­
chronous port controller.

Terminal parameters are specified in the tenniox structure that is defined in the
<tenniox. h>.

Hardware Emulation Module

If a Stream supports a terminal interface, a driver or module that understands all
ioctlOs to support terminal semantics (specified by tennio and tennios) is
needed. If there is no hardware driver that understands all ioctlO commands
downstream from the ldtenn module, a hardware emulation module must be
placed downstream from the ldtenn module. The function of the hardware emu­
lation module is to understand and acknowledge the ioctlOs that may be sent to
the process at the Stream head and to mediate the passage of control information
downstream. The combination of the ldtenn module and the hardware emula­
tion module behaves as if there were a terminal on that Stream.

The hardware emulation module is necessary whenever there is no tty driver at
the end of the Stream. For example, it is necessary in a pseudo-tty situation where
there is process-to-process communication on one system and in a network situa­
tion where a tennio interface is expected (for example, remote login) but there is
no tty driver on the Stream.

Most actions taken by the hardware emulation module are the same regardless of
the underlying architecture. However, some actions differ depending on whether
the communication is local or remote and whether the underlying transport proto­
col supports the remote connection.

STREAMS-Based Terminal Subsystem 5-31

Each hardware emulation module has an open, close, read queue putO procedure,
and write queue putO procedure.

The hardware emulation module does the following:

• Processes, if appropriate, and acknowledges receipt of the following
ioctlOs on its write queue by sending an M_IOCACK message back
upstream: TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA,

TCGETS, and TCSBRK.

• Acknowledges the Extended UNIX Code (EUC) ioctlOs.

• If the environment supports windowing, it acknowledges the windowing
ioctlOs TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE. If the environment does
not support windowing, an M_IOCNAK message is sent upstream.

• If any other ioctlOs are received on its write queue, it sends an M_IOCNAK
message upstream.

• When the hardware emulation module receives an M_IOCTL message of type
TCSBRK on its write queue, it sends an M_IOCACK message upstream and the
appropriate message downstream. For example, an M_BREAK message could
be sent downstream.

• When the hardware emulation module receives an M_IOCTL message on its
write queue to set the baud rate to 0 (TCSETAW with CBAUD set to BO), it
sends an ~IOCACK message upstream and an appropriate message down­
stream; for networking situations this probably is an M_PROTO message,
which is a TPI T_DISCON_REQ message requesting the transport provider to
disconnect.

• All other messages (M_DATA, and so forth) not mentioned here are passed to
the next module or driver in the Stream.

The hardware emulation module processes messages in a way consistent with the
driver that exists below.

5-32 Terminal Device Control

STREAMS-based Pseudo-Terminal Subsystem

The pseudo-terminal subsystem (pseudo-tty) supports a pair of STREAMS-based
devices called the "master" device and "slave" device. The slave device provides
processes with an interface that is identical to the terminal interface. However,
where all devices that provide the terminal interface have some hardware device
behind them, the slave device has another process manipulating it through the
master half of the pseudo terminal. Anything written on the master device is
given to the slave as an input and anything written on the slave device is
presented as an input on the master-side.

Figure 5-5 illustrates the architecture of the STREAMS-based pseudo-terminal sub­
system. The master driver called ptm is accessed through the clone driver [see
clone(7)] and is the controlling part of the system. The slave driver called pts
works with the Idterm module and the hardware emulation module to provide a
terminal interface to the user process. An optional packetizing module called
pckt is also provided. It can be pushed on the master-side to support packet
mode.

The number of pseudo-tty devices that can be installed on a system depends on
available memory.

Line Discipline Module

In the pseudo-tty subsystem (see Figure 5-5), the line discipline module Idterm is
pushed on the slave side to present the user with the terminal interface.

Idterm may turn off the processing of the c_iflag, c_oflag, and c_lflag fields
to allow processing to take place elsewhere. The Idterm module may also turn off
all canonical processing when it receives an M_CTL message with the MC_NO_CANON

command to support remote mode. Although Idterm passes through messages
without processing them, the appropriate flags are set when a "get" ioctlO, such
as TCGETA or TCGETS, is issued to show that canonical processing is being per­
formed.

STREAMS-based Pseudo-Terminal Subsystem 5-33

Figure 5-5: Pseudo-tty Subsystem Architecture

Client
Process

Server
Process

____________ 1 _______________________ user _____ _

t Kernel

5-34

Stream
Head

Line
Discipline

Hardware

Emulation

Module

Slave

PTS

Stream
Head

,-------,
: PCKT :
I Module I
L _______ -.l

Master

PTM

Terminal Device Control

Pseudo-tty Emulation Module - ptem

Because the pseudo-tty subsystem has no hardware driver downstream from the
ldtenn module to process the terminal ioctlO calls, another module that under­
stands the ioctlO commands is placed downstream from the ldtenn. This
module, known as ptem, processes all the terminal ioctlO commands and medi­
ates the passage of control information downstream.

ldtenn and ptem together behave like a real terminal. Because there is no real ter­
minal or modem in the pseudo-tty subsystem, some of the ioctlO commands are
ignored and cause only an acknowledgement of the command. The ptem module
keeps track of the terminal parameters set by the various "set" commands such as
TCSETA or TCSETAW but does not usually perform any action. For example, if one
of the "set" ioctlOs is called, none of the bits in the c_cflag field of tennio has
any effect on the pseudo-terminal except if the baud rate is set to o. When setting
the baud rate to 0, it has the effect of hanging up the pseudo-terminal.

The pseudo-terminal has no concept of parity so none of the flags in the c_iflag
that control the processing of parity errors have any effect. The delays specified in
the c_oflag field are not also supported.

The ptem module does the following:

• Processes, if appropriate, and acknowledges receipt of the following
ioctlOs on its write queue by sending an M_IOCACK message back
upstream:

TCSETA,TCSETAW, TCSETAF,TCSETS, TCSETSW,TCSETSF,TCGETA,TCGETS,
and TCSBRK.

• Keeps track of the window size; information needed for the TIOCSWINSZ,
TIOCGWINSZ, and JWINSIZE ioctlO commands.

• When it receives any other ioctlO on its write queue, it sends an M_IOCNAK
message upstream.

• It passes downstream the following ioctlOs after processing them:

TCSETA,TCSETAW,TCSETAF,TCSETS, TCSETSW, TCSETSF,TCSBRK,and
TIOCSWINSZ.

• ptem frees any M_IOCNAK messages it receives on its read queue in case the
pckt module is not on the pseudo-terminal subsystem and the above
ioctlOs get to the master's Stream head, which then sends an M_IOCNAK
message.

STREAMS-based Pseudo-Terminal Subsystem 5-35

• In its open routine, the ptem module sends an M_SETOPTS message
upstream requesting allocation of a controlling tty.

• When the ptem module receives an M_IOCTL message of type TCSBRK on its
read queue, it sends an ~IOCACK message downstream and an ~BREAK
message upstream.

• When it receives an ioctlO message on its write queue to set the baud rate
to 0 (TCSETAW with CBAUD set to BO), it sends an M_IOCACK message
upstream and a O-length message downstream.

• When it receives an M_IOCTL of type TIOCSIGNAL on its read queue, it sends
an M_IOCACK downstream and an M_PCSIG upstream where the signal
number is the same as in the M_IOCTL message.

• When the ptem module receives an M_IOCTL of type TIOCREMOTE on its read
queue, it sends an M_IOCACK message downstream and the appropriate
M_CTL message upstream to enable/ disable canonical processing.

• When it receives an M_DELAY message on its read or write queue, it discards
the message and does not act on it.

• When it receives an M_IOCTL message with type JWINSIZE on its write
queue and if the values in the jwinsize structure of ptem are not zero, it
sends an M_IOCACK message upstream with the jwinsize structure. If the
values are zero, it sends an M_IOCNAK message upstream.

• When it receives an M_IOCTL message of type TIOCGWINSZ on its write
queue and if the values in the winsize structure are not zero, it sends an
M_IOCACK message upstream with the winsize structure. If the values are
zero, it sends an M_IOCNAK message upstream. It also saves the information
passed to it in the winsize structure and sends a STREAMS signal message
for signal SIGWINCH upstream to the slave process if the size changed.

• When the ptem module receives an M_IOCTL message with type
TIOCGWINSZ on its read queue and if the values in the winsize structure are
not zero, it sends an M_IOCACK message downstream with the winsize
structure. If the values are zero, it sends an M_IOCNAK message down­
stream. It also saves the information passed to it in the winsize structure
and sends a STREAMS signal message for signal SIGWINCH upstream to the
slave process if the size changed.

• All other messages not mentioned above are passed to the next module or
driver.

5-36 Terminal Device Control

Remote Mode

A feature known as remote mode is available with the pseudo-tty subsystem. This
feature is used for applications that perform the canonical function normally done
by the Idtenn module and tty driver. The remote mode allows applications on
the master-side to turn off the canonical processing. An ioctlO TIOCREMOTE with
a nonzero parameter [ioctl (fd, TIOCREMOTE, 1)] is issued on the master-side
to enter the remote mode. When this occurs, an M_CTL message with the com­
mand MC_NO_CANON is sent to the Idtenn module indicating that data should be
passed when received on the read-side and no canonical processing is to take
place. The remote mode may be disabled by ioctl (fd, TIOCREMOTE, 0).

Packet Mode

The STREAMS-based pseudo-terminal subsystem also supports a feature called
packet mode. This is used to inform the process on the master-side when "state"
changes have occurred in the pseudo-tty. Packet mode is enabled by pushing the
pckt module on the master-side. Data written on the master-side is processed
normally. When data is written on the slave-side or when other messages are
encountered by the pckt module, a header is added to the message so it can be
retrieved later by the master-side with a getmsgO operation.

The pckt module does the following:

• When a message is passed to this module on its write queue, the module
does no processing and passes the message to the next module or driver.

• The pckt module creates an M_PROTO message when one of the following
messages is passed to it:

M_DATA,M_IOCTL,M_PROTO/M_PCPROTO,M_FLUSH,M_START/M_STOP,

M_STARTI/M_STOPI, and M_READ.

All other messages are passed through. The M_PROTO message is passed
upstream and retrieved when the user issues getmsg(2).

• If the message is an M_FLUSH message, pckt does the following:

If the flag is FLUSHW, it is changed to FLUSHR (because FLUSHR was the origi­
nal flag before the pta driver changed it), packetized into an M_PROTO mes­
sage, and passed upstream. To prevent the Stream head's read queue from
being flushed, the original M_FLUSH message must not be passed upstream.

If the flag is FLUSHR, it is changed to FLUSHW, packetized into an M_PROTO

message, and passed upstream. To flush the write queues properly, an
M_FLUSH message with the FLUSHW flag set is also sent upstream.

STREAMS-based Pseudo-Terminal Subsystem 5-37

If the flag is FLUSHRW, the message with both flags set is packetized and
passed upstream. An M_FLUSH message with the FLUSHW flag set is also sent
upstream.

Pseudo-tty Drivers - ptm and pts

In order to use the pseudo-tty subsystem, a node for the master-side driver
/dev/ptmx and N number of slave drivers must be installed. (N is determined at
installation time.) The names of the slave devices are /dev/pts/M where M has
the values a through N-l. A user accesses a pseudo-tty device through the master
device (called ptm) that in turn is accessed through the clone driver [see clone(7)].
The master device is set up as a clone device where its major device number is the
major for the clone device and its minor device number is the major for the ptm
driver.

The master pseudo-driver is opened by the openO system call with /dev/ptmx as
the device to be opened. The clone open finds the next available minor device for
that major device; a master device is available only if it and its corresponding
slave device are not already open. There are no nodes in the file system for master
devices.

When the master device is opened, the corresponding slave device is automati­
cally locked out. No user may open that slave device until it is unlocked. A user
may invoke a function grantptO that will change the owner of the slave device to
that of the user who is running this process, change the group 1D to tty, and
change the mode of the device to 0620. Once the permissions have been changed,
the device may be unlocked by the user. Only the owner or superuser can access
the slave device. The user must then invoke the unlockptO function to unlock the
slave device. Before opening the slave device, the user must call the ptsnameO
function to obtain the name of the slave device. The functions grantptO,
unlockptO, and ptsnameO are called with the file descriptor of the master device.
The user may then invoke the OPenO system call with the name that was returned
by the ptsnameO function to open the slave device.

The following example shows how a user may invoke the pseudo-tty subsystem:

5-38 Terminal Device Control

int fdm fds;
char *slavename;

extern char *ptsname () ;

fdm = open("/dev/ptrox", O_RDWR}; /* open master */
grantpt(fdm}; /* change permission of slave */

unlockpt(fdm}; /* unlock slave */
slavename = ptsname(fdm}; /* get name of slave */
ids = open(slavename, O_RDWR) i /+ open slave *1
ioctl (fds, I_PUSH, "ptem"); /* push ptem * /

ioctl (fds, I_PUSH, "ldtenn") ; / * push ldtenn * /

Unrelated processes may open the pseudo-device. The initial user may pass the
master file descriptor using a STREAMS-based pipe or a slave name to another
process to enable it to open the slave. After the slave device is open, the owner is
free to change the permissions.

~ Certain programs such as write and wall are set group-ID (setgid) to tty y aod are also able to access the slave device

After both the master and slave have been opened, the user has two file descrip­
tors that provide full-duplex communication using two Streams. The two Streams
are automatically connected. The user may then push modules onto either side of
the Stream. The user also needs to push the ptem and ldte:r:m modules onto the
slave-side of the pseudo-terminal subsystem to get terminal semantics.

The master and slave drivers pass all STREAMS messages to their adjacent
queues. Only the M_FLUSH needs some processing. Because the read queue of one
side is connected to the write queue of the other, the FLUSHR flag is changed to
FLUSHW flag and vice versa.

When the master device is closed, an M_HANGUP message is sent to the slave device
that will render the device unusable. The process on the slave-side gets the ermo
ENXIO when attempting to write on that Stream but it will be able to read any data
remaining on the Stream head read queue. When all the data has been read,
readO returns 0 indicating that the Stream can no longer be used.

On the last close of the slave device, a O-length message is sent to the master
device. When the application on the master-side issues a readO or getmsgO and 0
is returned, the user of the master device decides whether to issue a closeO that
dismantles the pseudo-terminal subsystem. If the master device is not closed, the
pseudo-tty subsystem will be available to another user to open the slave device.

STREAMS-based Pseudo-Terminal Subsystem 5-39

Because a-length messages are used to indicate that the process on the slave-side
has closed and should be interpreted that way by the process on the master-side,
applications on the slave-side should not writeO a-length messages. If that
occurs, the writeO returns 0, and the a-length message is discarded by the ptem
module.

The standard STREAMS system calls can access the pseudo-tty devices. The slave
devices support the O_NDELAY and O_NONBLOCK flags. Because the master-side
does not act like the terminal, if O_NONBLOCK or O_NDELAY is set, readO on the
master side returns -1 with ermo set to EAGAIN if no data is available, and
writeO returns -1 with err:no set to EAGAIN if there is internal flow control.

The master driver supports the ISPTM and UNLKPT ioctlOs that are used by the
functions grantptO, unlockptO, and ptsnameO [see grantpt(3C), unlockpt(3C),
ptsname(3C)]. The ioctlO ISPTM determines whether the file descriptor is that of
an open master device. On success, it returns the major/minor number (type
dev_t) of the master device that can be used to determine the name of the
corresponding slave device. The ioctlO UNLKPT unlocks the master and slave
devices. It returns 0 on success. On failure, the ermo is set to EINVAL indicating
that the master device is not open.

The format of these commands is

int ioctl (int fd, int command, int arg)

where command is either ISPTM or UNLKPT and arg is O. On failure, -1 is returned.

When data is written to the master-side, the entire block of data written is treated
as a single line. The slave-side process reading the terminal receives the entire
block of data. Data is not input-edited by the Idterm module regardless of the
terminal mode. The master-side application is responsible for detecting an inter­
rupt character and sending an interrupt signal SIGINT to the process in the slave­
side. This can be done as follows:

ioctl <fd, TIOCSIGNAL, SIGINT)

where SIGINT is defined in the file <signal.h>. When a process on the master­
side issues this ioctlO, the argument is the number of the signal that should be
sent. The specified signal is then sent to the process group on the slave-side.

To summarize, the master driver and slave driver have the following characteris­
tics:

• Each master driver has a one-to-one relationship with a slave device based
on major/minor device numbers.

5·40 Terminal Device Control

• Only one open is allowed on a master device. Multiple opens are allowed
on the slave device according to standard file mode and ownership permis­
sions.

• Each slave driver minor device has a node in the file system.

• An open on a master device automatically locks out an open on the
corresponding slave driver.

• A slave cannot be opened unless the corresponding master is open and has
unlocked the slave.

• To provide a tty interface to the user, the Idterm and ptem modules are
pushed on the slave-side.

• A closeO on the master sends a hang-up to the slave and renders both
Streams unusable after all data has been consumed by the process on the
slave side.

• The last closeO on the slave-side sends a O-length message to the master
but does not sever the connection between the master and slave drivers.

grantpt()

The grantptO function changes the mode and the ownership of the slave device
that is associated with the given master device. Given a file descriptor fd,
grantptO first checks that the file descriptor is that of the master device. If so, it
obtains the name of the associated slave device and sets the user ID to that of the
user running the process and the group ID to tty. The mode of the slave device is
set to 0620.

If the process is already running as root, the permission of the slave can be
changed directly without invoking this function. The interface is

grantpt (int fd>

The grantptO function returns 0 on success and -1 on failure. It fails if one or
more of the following occurs: fd is not an open file descriptor, fd is not associated
with a master device, the corresponding slave could not be accessed, or a system
call failed because no more processes could be created.

STREAMS-based Pseudo-Terminal Subsystem 5-41

unlockptO
The unlockptO function clears a lock flag associated with a master/slave device
pair. Its interface is

unlockpt (int fd)

The unlockptO returns 0 on success and -1 on failure. It fails if one or more of
the following occurs: fd is not an open file descriptor or fd is not associated with a
master device.

ptsnameO
The ptsnameO function returns the name of the slave device that is associated with
the given master device. It first checks that the file descriptor is that of the master.
If it is, it then determines the name of the corresponding slave device
/dev/pts/M and returns a pointer to a string containing the null-terminated
pathname. The return value points to static data whose content is overwritten by
each call. The interface is

char *ptsname (int fd)

The ptsnameO function returns a non-NULL pathname on success and a NULL
pointer upon failure. It fails if one or more of the following occurs: fd is not an
open file descriptor or fd is not associated with the master device.

5-42 Terminal Device Control

6 Internationalization

Introduction
Discussion
Organization

Locales

Character Representation
"8-bit Clean"
Character Classification and Conversion

• Sign Extension
• Characters Used as Indices

Wide Characters
• Multibyte and Wide-character Conversion
• Input/Output
• Character Classification and Conversion
• curses Support
• C Language Features

System-defined Words

Cultural and Language Conventions
Date and Time
Numeric and Monetary Information
String Collation

Table of Contents

6-1
6-2
6-3

6-4

6-6
6-7
6-9
6-10
6-10
6-11
6-12
6-13
6-14
6-15
6-15
6-16

6-18
6-18
6-20
6-21

ii

Message Handling
mkmsgs and gettxtO (System V-specific)
exstrO and srchtxtO (System V-specific)
catapenO and catcloseO (X/Open)
gencat and catgetsO (X/Open)
%n$ Conversion Specifications

kbd
Building kbd Tables

I nternationalization Facilities
Interface Standards
Enhanced Commands

6-24
6-25
6-25
6-28
6-29
6-30

6-32
6-32

6-34
6-34
6-35

Table of Contents

Introduction

This chapter describes the programming interface to the UNIX System V interna­
tionalization feature. Its primary audience is the application programmer in C,
although it may be of interest to system programmers and, to a lesser extent,
administrators. We assume that readers are experienced in the UNIX system and
the C language.

The chapter consists of a discussion of the programming interface, and covers only
as much of the interface as programmers will need to get started. Much of the
details can be found in the manual pages of the reference set. A list of UNIX sys­
tem commands that have been enhanced for internationalization is provided in
this chapter.

For the most part, the discussion concentrates on the System V implementation of
ANSI standard C functions. These routines are supported in turn by the X/Open
consortium, of which many System V vendors are members. To provide as realis­
tic a view as possible, we give the locations of files used by these functions as they
would be installed on a System V target implementation. You should not assume
that these will be their locations on other X/Open or ANSI C-conforming systems,
nor should you assume that these locations are permanent even on System V ins­
tallations. In other words, the path names we provide should not be hardcoded in
programs intended to be portable across UNIX or C language implementations.
Similarly, the discussion below of "extended UNIX code" (EUC) is specific to Sys­
tem V, and should not be taken to describe the character encoding elsewhere.

Of course, both System V and X/Open go beyond the ANSI C standard in other
ways, most importantly in providing facilities for handling program messages in
international contexts. In this regard, note that System V offers two distinct
approaches to message handling, one of which is standard to X/Open. Although
we describe both approaches below, keep in mind that the X/Open method is
employed throughout much of Europe, so you can generally count on wider sup­
port for it than for the System V -specific method. By and large, System V interna­
tionalization is aligned with the X/Open Portability Guide Issue 4. We depart from
it significantly only in not providing full support for internationalized regular
expressions at this time.

Introduction 6-1

Discussion

This chapter describes C language functions that you can use to write UNIX appli­
cations that will process input and generate output in a user's native language or
cultural environment. It shows you how to use these functions and some associ­
ated commands to create programs that make no assumptions about the language
environments in which they will be run, and so are portable across these environ­
ments. We'll also look at a STREAMS module called kbd (for "keyboard display")
that can be programmed to alter or supplement data as it flows between the physi­
cal terminal and a user process to produce language-dependent effects: for exam­
ple, characters that cannot be entered from terminal keyboards, for instance, or
overstriking sequences on printers.

The basic idea behind the internationalization interface is that at any time a C pro­
gram has a current "locale": a collection of information on which it relies for
language- or culture-dependent processing. This information is supplied by
implementations and seen by the program only at run time. Because the informa­
tion is stored externally to the program, applications need not make - and should
not make if they mean to be portable - any assumptions about

• the code sets used by the implementation in which they are executed. The 7-
bit US ASCII code set, for example, cannot represent every member of the
Spanish character set; the 8-bit code sets used for most European languages
cannot represent every ideogram and phonogram in the Japanese language.

• the cultural and language conventions of the application's users. The same
date is formatted in the United States as 6/14/90, in Great Britain as
14/6/90, in Germany as 14.6.90. Similar problems arise in formatting
numeric and monetary values. By language conventions we mean, for
instance, that the sharp s in German is collated as ss; the character ch in
Spanish collated after all other character sequences starting with c.

• the language of the messages in which the program communicates with the
user. Interactive applications in an English-speaking setting usually will
query users at some point for a yes or no response; in a German-language
setting the responses will be j a or nein; in a French one oui or non. Pro­
gram error messages will differ much more widely than that across
languages: File not found, Fichier inexistant, and so on.

A typical locale, then, consists of an encoding scheme; databases that describe the
conventions appropriate to some nationality, culture, and language; and a file
which you supply, that contains your program's message strings in whatever
language the locale implements.

6-2 Internationalization

Organization

The discussion is organized in terms of these three elements of a locale. "Charac­
ter Representation" describes the character encoding used by System V imple­
mentations that support the internationalization feature, and the ANSI C library
functions that perform code set-dependent tasks. It also discusses the sequences of
bytes, or "multibyte characters," that are needed to encode Asian-language ideo­
grams. "Cultural and Language Conventions" looks at ANSI C functions that col­
late strings and format cultural information in locale-dependent ways. "Message
Handling" describes the functions you use to generate program messages in a
user's native language. The "kbd" section outlines the function of the STREAMS
module used as the keyboard display interface. The last section looks at the pro­
gramming interface to the Message Logging and Monitoring Utilities. Before we
turn to this material, there's some background we need to give on how C pro­
grams determine their locales.

1--------' For the relationship of System V internationalization to the ANSI C and : N~"'I){fOpeo staodacds, see the "Iotmductioo" sectioo io the begiooiog 01 this
I chapter.

Introduction 6-3

Locales

One or more locales is provided by every UNIX system implementation that sup­
ports the internationalization feature. Each UNIX System V program begins in the
"C" locale, which causes all library functions to behave as they have historically;
any other locale will cause certain of these functions to behave in the appropriate
language- or culture-dependent ways. Locales can have names that are strings -
"french", "german", and so forth (or "fr" and "de", following ISO conventions)
- but only "C" and "" are guaranteed. When given as the second argument to
the ANSI C set locale function, the string "" tells the program to change its
current locale to the one set by the user, or the system administrator for all users,
in the UNIX system shell environment. Any other argument will cause the pro­
gram to change its current locale to the one specified by the string.

Locales are partitioned into categories:

LC_CTYPE
LC_TlME
LC_MONETARY
LC_NUMERIC
LC_COLLATE
LC_MESSAGES

character representation information
date and time printing information
currency printing information
numeric printing information
sorting information
message information

In the implementation's view, these categories are files in directories named
for each locale it supports; the directories themselves are usually kept in
/usr/lib/locale. In the user's view, the categories are environment variables
that can be set to given locales:

$ LC_COLLATE=german export LC_COLLATE
$ LC_CTYPE=french export LC_CTYPE

In the program's view, the categories are macros that can be passed as the first
argument to setlocaleO to specify that it change the program's locale for just
that category. That is,

setlocale(LC_COLLATE, "");

tells the program to use the sorting information for the locale specified in the
environment, in this case, german, but leaves the other categories unchanged.

LC_ALL is the macro that specifies the entire locale. Given the environment setup
above, the code

setlocale(LC_ALL, "");

would allow a user to work in a French interface to a program while sorting

6-4 Internationalization

German text files. Incidentally, the LANG environment variable is the user
equivalent of LC_ALL; setting it to spanish, for instance, causes all the categories
to be set to spanish in the environment. LANG is checked after the environment
variables for individual categories, so a user could set a category to french and
use LANG to set the other categories to spanish.

setlocaleO, then, is the interface to the program's locale. Any program that has
a need to use language or cultural conventions should put a call such as

#include <locale.h>
/* ... * /
setlocale(LC_ALL, "");

early in its execution path. You'll generally want to use"" as the second argu­
ment to setlocaleO so that your application will change locales correctly for
whatever language environment in which it is run. Occasionally, though, you
may want to change the locale or a portion of it for a limited duration in a way
that's transparent to the user.

Suppose, for example, there are parts of your program that need only the ASCII
upper- and lowercase characters guaranteed by ANSI C in the <ctype. h> header.
In these parts, in other words, you want the program to see the character
classification information in LC_CTYPE for the "C" locale. Since the user of the
program in a non-ASCII environment will presumably have set LC_CTYPE to a
locale other than "C", and will not be able to change its setting mid-program,
you'll have to arrange for the program to change its LC_CTYPE locale whenever it
is in those parts. setlocaleO returns the name of the current locale for a given
category and serves in an inquiry-only capacity when its second argument is a
null pointer. So you might want to use code something like this:

char *oloc;
/* ... * /
oloc = setlocale(LC_CTYPE, NULL);
if (setlocale(LC_CTYPE, "C") != 0)
{

}

/ * use temporarily changed locale * /
(void)setlocale(LC_CTYPE, oloc);

The setlocale(3C) function is described in section (3C) of the reference manual
set.

Locales 6-5

Character Representation

Every System V implementation that supports the internationalization feature can
represent up to four code sets concurrently in an 8-bit byte stream. The code sets
are configured in a scheme called "extended UNIX code," or EUe. The primary
code set (code set 0) is always 7-bit US ASCII. Each byte of any character in a sup­
plementary code set (code sets 1,2, or 3) has the high-order bit set; code sets 2 and
3 are distinguished from code set 1 and each other by their use of a special "shift
byte" before each character.

Figure 6-1: EUC Code Set Representations

Code Set EUC Representation

0 Oxxxxxxx

1 lxxxxxxx [lxxxxxxx [•••]]

2 SS2 lxxxxxxx [lxxxxxxx [...]]

3 SS31xxxxxxx [lxxxxxxx [•.•]]

SS2 is represented in hexadecimal by Ox8e, SS3 by Ox8f.

EUe is provided mainly to support the huge number of ideograms needed for I/O
in an Asian-language environment. To work within the constraints of usual com­
puter architectures, these ideograms are encoded as sequences of bytes, or "multi­
byte characters." Because single-byte characters (the digits 0-9, say) can be inter­
mixed with multibyte characters, the sequence of bytes needed to encode an ideo­
gram must be self-identifying: regardless of the supplementary code set used, each
byte of a multibyte character will have the high-order bit set; if code sets 2 or 3 are
used, each multibyte character will also be preceded by a shift byte. In a moment,
we'll take a closer look at multibyte characters and at the implementation-defined
integral type wchar_t that lets you manipulate variablewidth characters as uni­
formly sized data objects called "wide characters." We'll also discuss the func­
tions you use to manage multibyte and wide characters.

Of course, programmers developing applications for less complex linguistic envi­
ronments need not concern themselves with the details of multibyte or wide char­
acter processing. In Europe, for instance, a single 8-bit code set can hold all the
characters of the major languages. In these environments, at least one 8-bit charac­
ter set will be represented in the EUe code sets, usually code sets 0 and 1. Other
character sets may be represented simultaneously, in various combinations.
Applications will work correctly with any standard 7- or 8-bit character set,

6-6 Internationalization

provided (1) they are "8-bit clean" - they make no assumptions about the con­
tents of the high-order bit when processing characters; and (2) they use correctly
the functions supplied by the interface for codeset-dependent tasks - character
classification and conversion, in other words. We'll take a brief look at these
issues now.

"8-bit Clean"

UNIX system applications written for 7-bit US ASCII environments have some­
times assumed that the high-order bit is available for purposes other than charac­
ter processing. In data communications, for instance, it was often used as a parity
bit. On receipt and after a parity check, the high-order bit was stripped either by
the line discipline or the program to obtain the origina17-bit character:

char c;
/* bitwise AND with octal value 177 strips high-order bit * /
c &= 0177;

Other programs used the high-order bit as a private data storage area, usually to
test a flag:

char c;
/* ... */
c 1= 0200;
/* ... */
c &= 0177;

/* .•. */

/ * bitwise OR with octal value 200 sets flag * /

/* bitwise AND removes flag * /

if (c & 0200) /* test if flag set * /
{

/* •.. */
}

c &= 0177; / * original character * /

Neither of these practices will work with 8-bit or larger code sets. To show you
how to store data in a codeset-independent way, we'll look at code fragments
from a UNIX system program before and after it was made 8-bit clean. In the first
fragment, the program sets the high-order bit of characters quoted on the
command line:

Character Representation 6-7

#define LITERAL '\"

#define QUOTE 0200
register iot c;
register char *argp = arg->argval;

if (c = = LITERAL) / * character is a single quote * /
{

/ * get next character until next single quote * /
while « c = getc () && c ! = LITERAL)

*argp++ = (c I QUOTE);

In the next fragment, the same data are stored by internally placing backslashes
before quoted characters in the command string:

#define LITERAL '\"
register int Ci

register unsigned char *argp = arg->argval;

if (c == LITERAL)
{

while «c = getc() && c != LITERAL)
{

/. precede each character within single quotes with a backs/ash * /
*argp++ = '\\'i
*argp++ = c;

Because the data are stored in 8-bit character values rather than the high-order bit
of the quoted characters, the program will work correctly with code sets other
than US ASCII. Note, by the way, the use of the type unsigned char in the
declaration of the character pointer in the second fragment. We'll discuss the
reasons why you use it in the next section.

6·8 Internationalization

Character Classification and Conversion

The ANSI C functions declared in the <ctype . h> header file classify or convert
character-coded integer values according to type and conversion information
in the program's locale. All the classification functions except isdigitO and isx­
digitO can return nonzero (true) for single-byte supplementary code set charac­
ters when the LC_CTYPE category of the current locale is other than "e". In a
Spanish locale, isalpha (, n') should be true. Similarly, the case conversion func­
tions toupperO and tolowerO will appropriately convert any single-byte supple­
mentary code set characters identified by the isalphaO function.

The point of these functions is to let you determine a character's type or case
without reference to its numeric value in a given code set. Whereas a program
written for a US ASCII environment might test whether a character is printable
with the code

if (c <= 037 I I c == 0177)

a codeset-independent program will use isprintO:

if (!isprint(c))

Similarly,

c = toupper(c);

will do the same thing as

if(c >= 'a' && c <= 'z')
c += ' a' -'A';

without relying on the fact that upper- and lowercase characters are numerically
contiguous in the US ASCII code set.

The <ctype. h> functions are almost always macros that are implemented using
table lookups indexed by the character argument. Their behavior is changed by
resetting the table(s) to the new locale's values, so there should be no performance
impact. The classification functions are described on the ctype(3C) manual page,
the conversion functions on the conv(3C) page. Both single- and multibyte charac­
ter classification and conversion routines are declared in the <wctype.h> header,
and described on the pages wctype(3W) and wconv(3W). Note that the multibyte
routines are not part of the ANSI C standard, nor are the single-byte functions
isasciiO and toasciiO.

Character Representation 6·9

Sign Extension

In some C language implementations, character variables that are not explicitly
declared signed or unsigned are treated as nonnegative quantities with a range
typically from a to 255. In other implementations, they are treated as signed quan­
tities with a range typically from -128 to 127. When a signed object of type char is
converted to a wider integer, the machine is obliged to propagate the sign, which
is encoded in the high-order bit of the new integer object. If the character variable
holds an eight-bit character with the high-order bit set, the sign bit will be pro­
pagated the full width of an object of type int or long, producing a negative
value.

You can avoid this problem (which typically occurs with the ctype functions) by
declaring as unsigned any object of type char that is liable to be converted to a
wider integer. In the example we showed earlier, for instance, the declaration of
the character pointer as of type unsigned char would guarantee that on any
implementation the values pointed at will be nonnegative.

Characters Used as Indices

A related problem arises when characters are used as indices into arrays and
tables. If a table has been defined to contain only 128 possible characters, the
amount of allocated memory will be exceeded if an eight-bit character whose
value is greater than 127 is used as an index. Moreover, if the character is signed,
the index may be negative.

The solution, at least when dealing with 8-bit code sets, is obviously to increase
the size of the table from the 7-bit maximum of 128 to the 8-bit maximum of 256.
And again, to declare the object that will hold the character as type unsigned
char.

6-10 Internationalization

Wide Characters

Earlier in this section we looked at multibyte characters that are needed to
represent Asian-language ideograms. We noted that because single-byte charac­
ters can be intermixed with multibyte characters, the sequence of bytes needed to
encode an ideogram must be self-identifying: regardless of the supplementary
code set used, each byte of a multibyte character will have the high-order bit set.
In this way, any byte of a multibyte character can always be distinguished from a
member of the primary, 7-bit US ASCII code set, whose high-order bit is not set
(or "0"). If code sets 2 or 3 are used, each multibyte character will also be preceded
by a shift byte; that is, if code set 1 were dedicated to a single-byte character set,
either of code sets 2 or 3 could be used to represent multibyte characters. Given
some set of these encodings, then any program interested in the next character
will be able to determine whether the next byte represents a single-byte character
or the first byte of a multibyte character. If the latter, then the program will have
to retrieve bytes until the character is complete.

Some of the inconvenience of handling multibyte characters would be eliminated,
of course, if all characters were a uniform number of bytes. ANSI C provides the
implementation-defined integral type wchar_t to let you manipulate variable­
width characters as uniformly sized data objects called wide characters. Since
there can be thousands or tens of thousands of ideograms in an Asian-language
set, programs should use a 32-bit sized integral value to hold all members.
wchar_t is defined in the headers <stdlib.h> and <widec.h> as a typedef
declaration of long.

Implementations provide libraries with functions that you can use to manage mul­
tibyte and wide characters. We'll look at these functions below.

For each wide character there is a corresponding EUC representation and vice
versa; the wide character that corresponds to a regular single-byte character is
required to have the same numeric value as its single-byte value, including the
null character. There is no guarantee that the value of the macro EOF can be stored
in a wchar_t, just as EOF might not be representable as a char.

Character Representation 6-11

Figure 6-2: EUC and Corresponding 32-bit Wide-character Representation

Code Set EUC Code Representation Wide-character
Representation

0 0= 0000000000000000000000000=

1 1= 0011000000000000000000000=

lxxxx>oo<l= 001100000000000000==

lxxxx>oo<l=l= 00110000000=

2 SS21= 0001000000000000000000000=

SS2 lxxxx>oo<lxxxx>oo< 000100000000000000==

SS21=1=1= 00010000000=

3 SS31= 0010000000000000000000000=

SS3 l=lxxxx>oo< 001000000000000000==

SS3 1=1=1= 00100000000=

Most of the functions provided let you convert multibyte characters into wide
characters and back again. Before we turn to the functions, we should note that
most application programs will not need to convert multibyte characters to wide
characters in the first place. Programs such as diff, for example, will read in and
write out multibyte characters, needing only to check for an exact byte-for-byte
match. More complicated programs such as grep, that use regular expression pat­
tern matching, may need to understand multibyte characters, but only the com­
mon set of functions that manages the regular expression needs this knowledge.
The program grep itself requires no other special multibyte character handling.
Finally, note that except for libe, the libraries described below are archives, not
shared objects. They cannot be dynamically linked with your program.

Multibyte and Wide-character Conversion

ANSI C provides five library functions that manage multibyte and wide charac­
ters:

6-12

mblenO length of next multibyte character
mbtoweO convert multibyte character to wide character
wctombO convert wide character to multibyte character
mbstowesO convert multibyte character string to wide character string
wcstombsO convert wide character string to multibyte character string

Internationalization

The first three functions are described on the mbchar(3C) manual page, the last
two on the mbstring(3C) page. You decide at compile time which process codes
your program by linking it with either libc or libw.

Input/Output

Since most programs will convert between multibyte and wide characters just
before or after performing I/O, libw provides routines that let you manage the
conversion within the II ° function itself. getwcO, for instance, reads bytes from a
stream until a complete EUe character has been seen and returns it in its wide­
character representation. getwsO does the same thing for strings; putwcO and
putwsO are the corresponding write versions. Of course, these routines and others
are functionally similar to the stdio(3S) functions; they differ only in their han­
dling of EUe representations. See section 3W in the Operating System API Refer­
ence for details. Here is a look at how you can expect the functions to work.

Given the following declarations

#include <stdio.h>
#include <widec.h>

wchar_t sl [BUFSIZ]; /* declare array 51 to store wide characters * /
char s2 [BUFSIZ]; /* declare array 52 of characters for EUe

representation * /
a multibyte string can be input into sl using getwsO:

getws(sl); / * read EUe characters from stdin and convert
them to wchar_t characters in sl * /

getsO and strtowsO:

gets(s2);
strtows(sl, s2);

/* read EUe string from stdin into s2 * /
/* convert EUe characters in s2 to

wchar_t characters in sl * /

the %ws conversion specifier for scanfO:

scanf (n%ws n, sl); /* read EUe string from stdin and convert
to a wchar_t string in sl * /

the %s conversion specifier for scanfO and strtowsO:

scanf(n%sn, s2);
strtows(sl, s2);

Character Representation

/* read EUe string from stdin into s2 * /
/ * convert EUe string in s2 to a

wchar_t string in sl * /

6-13

You can use putwsO, wstostrO, and the %ws conversion specifier for printfO in
the same way for output.

Character Classification and Conversion

Single- and multibyte character classification and conversion functions are pro­
vided in libc and libw. You can use these routines to test 7-bit US ASCII charac­
ters, for instance, in their wide-character representations, or to determine whether
multibyte characters are ideograms, phonograms, or the like. See the wctype(3W)
and wconv(3W) manual pages in the Operating System API Reference for details.

As noted, these routines are declared in the <wctype.h> header. Implementations
provide another standard header, <xctype. h>, that can be used to define private
character classification and conversion rules with the _iswctypeO and
_trwctypeO routines. <wctype. h> includes <xctype. h> which contains nothing
initially. y The header file /=/i=lude/=type.h was or;g;nally des;gned to

specify the definition of native language character and symbol classification
and conversion routines. To avoid conflict among different locales that
might share character classification functions with identical names, an
application should include its locale-specific header, for example,
/usr/include/ jctype.h for a Japanese locale, /usr/include/ kctype.h for
a Korean locale, etcetera. This localized header should not be included in
/usr/include/wctype.h.

USL's localization packages implement such header files.

Here is some background on what <xctype. h> might contain.

The _iswctypeO and _trwctypeO functions are supplied by System V to allow
you to define native language character classifications and conversion rules. The
rules themselves are coded into the character class table that is created by
chrtbl(lM) and/ or wchrtbl(lM) utility. These two functions get their informa­
tion from the character class table. These functions have the following format:

_iswctype(c, _En)
_trwctype(c, _En)

_iswctypeO returns nonzero if c is a member of the set of characters specified by
_En. _trwctypeO returns a corresponding converted character if c is a member of
the set of characters specified by _En. _En is a bit mask defined in the specification
to the wchrtbl(lM) command, which generates EUC character class tables.
Because it is a bit mask, combinations of _En can be supplied to these functions.

As an example of the use of _iswctypeO, assume that the flag _En_XYZ is defined
in the character class table as being true for the uppercase letters x, Y and Z. Simi­
larly, assume that the flag _En_xyz is defined for the lowercase letters x, y and z.
The following macro, when declared in <xctype. h>, would then return true

6·14 Internationalization

when the parameter c was a member of the set { X, x, Y, y, z, z }:

#define isXYZ_anycase(c)

Whereas the following macro would return true only for uppercase values:

curses Support

32-bit versions of certain curses functions are provided in libcurses and
declared in <curses. h>. Check the 3X manual pages in the Operating System API
Reference, especially curses(3X), for some of the things you need to look out for in
using these functions.

C Language Features

To give even more flexibility to the programmer in an Asian environment, ANSI C
provides 32-bit wide character constants and wide string literals. These have the
same form as their non-wide versions except that they are immediately prefixed
by the letter L:

'x'
,¥ '
L'x'
L'¥'
"abc¥xyz"
L"abc¥xyz"

regular character constant
regular character constant
wide character constant
wide character constant
regular string literal
wide string literal

Note that multibyte characters are valid in both the regular and wide versions.
The sequence of bytes necessary to produce the ideogram ¥ is encoding-specific,
but if it consists of more than one byte, the value of the character constant ,¥, is
implementation-defined, just as the value of ' ab' is implementation-defined. A
regular string literal contains exactly the bytes (except for escape sequences)
specified between the quotes, including the bytes of each specified multibyte char­
acter. Of course, programs using this feature will probably not be portable.

When the compilation system encounters a wide character constant or wide string
literal, each multibyte character is converted (as if by calling the mbtowcO func­
tion) into a wide character. Thus the type of L'¥' is wchar_t and the type of
L"abc¥xyz" is array of wchar_t with length eight. (Just as with regular string
literals, each wide string literal has an extra zero-valued element appended, but in
these cases it is a wchar_t with value zero.)

Character Representation 6-15

Just as regular string literals can be used as a short-hand method for character
array initialization, wide string literals can be used to initialize wchar_t arrays:

wchar_t *wp L"a¥z" ;
wchar_t x[] L"a¥z" ;
wchar_t y[] {L' a' , L'¥' , L' z' , O} ;
wchar_t z [] = {' a' , L'¥' , 'Zl, '\O'};

In the above example, the three arrays x, y and z as well as the array pointed to by
wp, have the same length and all are initialized with identical values.

Adjacent wide string literals will be concatenated, just as with regular string
literals. Adjacent regular and wide string literals produce undefined behavior.

System-defined Words

The UNIX system uses a number of special words to identify system resources,
user and group names, process IDs, peripherals, and other information. The fol­
lowing should be specified only with characters from the primary code set:

• process ID numbers

• message queue, semaphore, and shared memory identifiers

• external symbol names and fill patterns for the cc and as commands

• layer names

Although the following can be specified with supplementary code set characters,
we recommend against it:

• user names

• group names

• passwords

• names of devices, terminals, and special devices

• printer names and printer class names

• system names

• disk pack, diskette, and tape label/volume names

• RFS resource names

• environment variable names

The following can be specified with primary or supplementary code set characters,
subject to length limitations imposed by the file system:

6-16 Internationalization

• filenames

• directory names

• command names

• file system names

File name prefixes of the form s. , or suffixes of the form • c, must be specified
with characters from the primary code set.

Character Representation 6-17

Cultural and Language Conventions

In this section we'll look at how programs interpret or print the formatted date
and time, or formatted numeric and monetary values, in locale-dependent ways.
We'll also look at the functions you use to collate strings according to the rules of
the language the locale implements.

Date and Time

The ANSI C function strftimeO provides a sprintfO-like formatting of the
values in a struct tm, along with some date and time representations that
depend on the LC_CTlME category of the current locale. (strftimeO supersedes
ctimeO and ascftimeO, although, for the sake of compatibility with older sys­
tems, these routines format the date and time correctly for a given locale.) Here is
how you might use strftimeO to print the current date in a locale-dependent
way:

#include <stdio.h>
#include <locale.h>

#include <time.h>

main 0
{

timeLt tval;
struct tm *tIrptr;

char buf [BUFSIZ1;

tval = time (NULL) ;

tmptr = localtime(&tval);

setlocale (LC_ALL, " ") ;

strftime (buf, BUFSIZE, "%x", tIrptr);
puts(buf);

In this case, strftimeO puts characters into the array pointed to by buf, as con­
trolled by the string pointed to by '?aX. '?aX is a directive that provides an
implementation-defined date representation appropriate to the locale. In a Span­
ish locale, for example, the current date June 14, 1990, might be represented as 14
Junio 1990 or 14/6/90 or any other way the implementation deems appropriate
to the locale. No particular format is guaranteed.

6-18 Internationalization

Use the 9-oX directive to obtain the locale's appropriate time representation:

strftime(buf, BUFSIZE, "9-oX 9-oX", tltl>tr)

or 9-00 to obtain both the date and time representation. Check the strftime(3C)
manual page in the Operating System API Reference for the other directives.

Although it requires a bit more work, you can control the format of the date and
time for different locales by using printfO with the message retrieval functions
gettxtO or catgetsO. Suppose, for example, you want the current date June 14,
1990, to be displayed in a British locale as 14/6/90, in a German locale as
14.6.90, and in a U.S. locale as 6/14/90. What you need, in other words, is some
way to switch the arguments to printfO depending on the program's current
locale. The %n$ form of conversion specification lets you convert the nth argument
in a printfO argument list rather than the next unused argument. That is,

printf (gettxt ("progmsgs: 9", "9-od/9-od/9-od\n"),
tm-> tm. mon,
tm->tm.mday,
tm->tm.year) ;

will produce the locale-dependent date displays we want, so long as the string
whose index is 9 in the message file progmsgs reads, in the British locale

"9-02 $d/%1$d/%3$d \n"

in the German locale

"9-o2$d. %l$d. %3$d\n"

and in the U.S. locale

"%1$d/9-02$d/%3$d\n" /* or simply "%d/%d/9-od\n" */

You can use scanfO in a similar way to interpret formatted dates in the input:

int month, day, year;
scanf (gettxt ("progmsgs: 9", "9-od/%d/9-od\n"),

&month, &day, &year);

Note that the %n$ form of conversion specification has a wider application than
the one we've described here, as we'll show in the "Message Handling" section
below. There, too, we'll take a closer look at gettxtO and catgetsO. Detailed
information concerning printf(3S), scanf(3S), gettxt(3C) and catgets(3C) can
be found in the Operating System API Reference.

Cultural and Language Conventions 6-19

Numeric and Monetary Information

The ANSI C localeconvO function returns a pointer to a structure containing
information useful for formatting numeric and monetary information appropriate
to the current locale's LC_NUMERIC and LC_MONETARY categories. (This is the only
function whose behavior depends on more than one category.) For numeric
values the structure describes the decimal-point (radix) character, the thousands
separator, and where the separator(s) should be located. Other structure members
describe how to format monetary values, as in the following, somewhat contrived
example. Assuming setlocaleO has been called, the code

int thousands = 1;
int rest = 234;
int frac = 56;

struct lconv *lptr;
Iptr = localeconv();

printf ("%sS--odCYoC%d%c%d\n" I

Iptr->currency_symbol,
thousands, Iptr->mon_thousands_sep[O], rest,
Iptr->mon_decimal-PQint[O], frac);

will print kr1. 234,56 in a Norwegian locale, F 1.234,56 in a Dutch locale, and
SFrs .1, 234.56 in a Swiss locale. Check localeconv(3C) in the Operating System
API Reference for details.

localeconvO aside, functions that write or interpret printable floating values -
printfO and scanfO, for example - will use a decimal-point character other
than a period (.) when the LC_NUMERIC category of the current locale is other than
"C". There is no provision for converting numeric values to printable form with
thousands separator-type characters, but when converting from a printable form
to an internal form, implementations are allowed to accept such additional forms,
again in other than the "C" locale. Functions that make use of the decimal-point
character are the printfO and scanfO families, atofO, and strtodO. Functions
that are allowed implementation-defined extensions for the thousands separator
are atofO, atoiO, atolO, strtodO, strtolO, strtoulO, and the scanfO family.

6-20 Internationalization

String Collation

ANSI C provides two functions for locale-dependent string compares. strcollO
is analogous to strcmpO except that the two strings are compared according to the
LC_COLLATE category of the current locale. [see strcoll(3C) and strcmp(3C)].
Conceptually, collation occurs in two passes to obtain an appropriate ordering of
accented characters, two-character sequences that should be treated as one (the
Spanish character ch, for example), and single characters that should be treated as
two (the sharp s in German, for instance). Since this comparison is not necessarily
as inexpensive as strcmpO, the strxfrmO function is provided to transform a
string into another. Therefore, any two such after-translation strings can be passed
to strcmpO to get an ordering identical to what strcollO would have returned if
passed the two pre-translation strings. You are responsible for keeping track of
the strings in their translated and printable forms. Generally, you should use
strxfrm() when a string will be compared a number of times.

Cultural and Language Conventions 6-21

The following example uses Qsort(3C) and strcoll(3C) to sort lines in a text file:

6-22

#include <stdio.h>
#include <string.h>
#include <locale.h>

char table [ELEMEm'S] [WIm'H];

main(argc, argv)
int argo;

char **argv;

FILE *fp;
int nel, i;

set locale (LC_ALL, "");

if «fp = fopen(argv[l] , "r"» == NULL) {
fprintf (stderr, gettxt ("progmsgs: 2" ,

"Can't open %8\n", argv[l]);
exit(2);

for (nel = 0; nel < ELEMENTS &&

fgets(table[nel], WIm'H, fp); ++nel);

fclose(fp);

if (nel >= ELEMENTS)
fprintf (stderr, gettxt (nprogmsgs:3",

"File too large\n");
exit(3);

qsort (table, nel, WIm'H, strcoll);
for (i = 0; i < nell ++1)

fputs(table(i), stdout);
return(O);

Internationalization

The next example does the same thing with a function that uses strxfrm():

ccmpare (sl, s2)
char *81, *82;

char *tmp;
int result;
size_t n1 = strxfnn(NULL, sl, 0) + 1;
size_t n2 = strxfrm(NULL, s2, 0) + 1;

if «tmp = malloc(n1 + n2» == NULL)
return strcmp(sl, s2);

(void)strxfrm(tmp, sl, n1);
(void)strxfrm(tmp + n1 + 1, s2, n2);

result = strcmp(tmp, tmp + n1 + 1);
free(tmp);
return (result) ;

AssumingmallocO succeeds, the return value of COIl\Pare (sl, s2) should
correspond to the return value of strcoll (sl, s2). Although it is too compli­
cated to show here, it would probably be better to hold onto the strings for subse­
quent comparisons rather than transforming them each time the function is called.
Details of strcoll(3C) and strxfrm(3C) can be found in the Operating System API
Reference.

Cultural and Language Conventions 6·23

Message Handling

As the examples in earlier sections may have suggested, the general approach
behind the message handling feature is to separate messages from program source
code, replacing hard-coded character strings with function calls that fetch the
strings from a file. You supply the file, which contains your program's messages
in whatever language the locale implements. You can adapt your applications to
different locales, then, without having to change and recompile source code.

In this section we'll look at the System V-specific and X/Open message handling
facilities as they might be used to adapt an "English-speaking" program to a
French locale. The code fragment below queries the English-speaking user for an
affirmative or negative response, and reads the response:

6-24

#include <stdio.h>

main()
(

int yes();

while (1)
{

puts ("Choose (yin)");

if (yes(»
puts("yes");

else
puts(nno ll);

static int
yes()
(

int i, hi

i = b = getchar();
while (b != '\n' && b != '\0' && b 1= EOF)

b = getchar () ;
return (i == 'y');

International ization

mkmsgs and gettxtO (System V-specific)

You use the mlansgs command to store the strings for a given locale in a file that
can be read by the message retrieval function gettxtO. mlansgs accepts an input
file consisting of text strings separated by newlines. If the file fr. str contains

Votre choix (o/n)
oui
non

the command

$ mlansgs -0 -i french fr.str progmsgs

will generate a file called progmsgs that, when installed in the directory
lusr/lib/locale/french/LC_MESSAGES, can be read by gettxtO such that

puts (gettxt ("progmsgs: 1", "Choose (yin) "»;

will display

Votre choix (o/n)

in a French locale. gettxtO takes as its first argument the name of the file created
by mlansgs and the number of the string in the file, counting from 1. You hard­
code the second argument, not necessarily in English, in case gettxtO fails to
retrieve the message string from the current locale, or the "e" locale.

exstrO and srchtxtO (System V-specific)

Once you have created the message files for the different locales, you can use the
exstr command to extract the strings from the original source code and replace
them with calls to gettxtO. If the name of the source file is prog. c, the command

$ exstr -e prog.c > prog.strings

will produce the following output in prog. strings:

prog.c:9:8:::Choose (yin)
prog.c:ll:8:::yes
prog.c:13:8:: :no

The first three fields in each entry are the file name, the line number in which the
string appears in the file, and the character position of the string in the line. You
fill in the next two fields with the name of the message file and the index of the
string in the file:

Message Handling 6-25

prog.c:9:8:progmsgs:l:Choose (yin)
prog.c:ll:8:progmsgs:2:yes
prog.c:13:8:progmsgs:3:no

Now the command

$ exstr -rd prog.c < prog.strings > intl.c

will produce in intl.c

#include <stdio.h>

extern char *gettxt () ;
main()
{

int yes();

while (1)

{

puts (gettxt ("progmsgs.1", "Choose (yIn)"»;

if (yes(»

static int
yea()
{

int i , h;

else

i = b = getchar();

puts (gettxt ("progmsgs.2" , "yes"»;

puts (gettxt ("progmsgs. 3", "no"»;

while (b 1= '\n' && b 1= '\0' && b 1= EOF)
b = getchar () ;

return(i == 'y');

The completed source code would look like this:

6-26 Internationalization

#inc1ude <stdio.h>
#inc1ude <unistd.h>
#inc1ude <string.h>
#inc1ude <loca1e.h>
#define RESPLEN 16

char yesstr[RESPLEN];
extern char *gettxt () ;
main()
(

int yes();

I * assumed to be long enough * I

set locale (LC_ALL, "");

I * save local yes string for subsequent comparisons * I
strcpy(yesstr, gettxt("progmsgs:2", "yes"»;

while(l)
(

puts (gettxt ("progmsgs:l", "Choose (yin) "»;
if (yes ()

puts (yesstr) ;
else

puts (gettxt ("progmsgs: 3" , "no"»;

static int
yes()
(

int i, bi

i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)

b = getchar () ;
return(i == (int) yesstr[O]);

The srchtxt command lets you display or search for text strings in message files
installed in a given locale. Among other ways, you might want to use it to see
how other programs have translated messages similar to yours. Details of the
mkmsgs(l), exstr(l), srchtxt(l) and gettxt(3C) commands can be found in the
Operating System API Reference.

Message Handling 6·27

catopenO and catcloseO (X/Open)

As noted in the "Introduction" section at the beginning of this chapter, the
X/Open messaging interface is the de facto standard throughout much of Europe,
so you can generally count on wider support for it than for the System V-specific
version. The principal difference between the interfaces lies in where your mes­
sage files, or message catalogs, to use the X/Open terminology, are located on the
target system. System V-specific message files must be installed in the standard
place. X/Open message catalogs can be installed anywhere on the system, which
means that programs must search their environments for the location of message
catalogs at run time.

Users specify message catalog search paths with the NLSPATH environment vari­
able. The value of NLSPATH is used by the function catopenO to locate the mes­
sage catalog named in its first argument. Users will almost always find it con­
venient to use the 'YoL and 'YoN substitution fields when setting NLSPATH:

$ NLSPATH= "'YoL/'YoN" export NLSPATH

In this example, the value of the LANG locale category is substituted for %L. The
value of the first argument to catopenO is substituted for 'YoN. So if the name of the
catalog given to catopenO is progmsgs, and if the environment variable
LC_MESSAGES is set to french, then the value of NLSPATH would be
/usr/lib/locale/french/LC_MESSAGES/progmsgs on a System V implementa­
tion. For more on NLSPATH, see the catopen(3C) manual page.

The call to catopenO would look like:

nl_catd catd;
catd = catopen ("progmsgs", 0);

where catopenO and the type nl_catd are defined in the header <nl_types .h>.
catd is a message catalog descriptor that can be passed as an argument to subse­
quent calls of the catgetsO and catcloseO functions. We'll look at catgetsO in
the next section; catcloseO closes the message catalog identified by catd. The
second argument to catopenO is not used by implementations currently and
should be set to o.

6-28 Internationalization

gencat and catgetsO (X/Open)

You use the geneat command to store the strings for a given locale in a catalog
that can be read by the message retrieval function eatgetsO. The gene at input
file for our example would be:

$set
1 votre ehoix (o/n)
2 oui
3 non

The $set directive specifies that the three messages are members of set 1. A sub­
sequent $set directive would mean that the following messages are members of
set 2, and so on. The messages for each module of an application, then, can be
assigned to different sets, making it easier to keep track of message numbers
across source files: the messages for any given module will always be numbered
consecutively from 1. Note that each message in a gene at input file must be num­
bered. For details of the input file syntax, see the geneat(l) manual page in the
Command Reference.

If the geneat input file is named fr. str, the command

$ geneat progmsgs fr.str

will generate a catalog called progmsgs that, when installed in the appropriate
directory, can be read by eatgetsO such that

puts (eatgets(eatd, 1, 1, "Choose (yin)"»;

will display

Votre ehoix (o/n)

in a French locale. eatd is the message catalog descriptor returned by the earlier
call to eatopenO; the second and third arguments are the set and message
numbers, respectively, of the string in the catalog. Again, you hard-code the final
argument in case eatgetsO fails. Details on geneat(l) can be found in the Com­
mand Reference; eatgets(3C) and eatopen(3C) can be found in the Operating Sys­
tem API Reference.

The X/Open version of our example follows:

Message Handling 6-29

#include <stdio.h>
#include <nl_types.h>
#include <string.h>
#include <locale.h>
#define RESPLEN 16

char yesstr[RESPLEN];
extern char *catgets();
main()
(

int yes();

1* assumed to be long enough * I

nl_catd catd;
setlocale (LC_ALL, 1I11);

catd = catopen("progmsgsll, 0);

I * save local yes string for subsequent comparisons * I
strcpy(yesstr, catgets(catd, 1, 2, "yes"»;

while (1)
(

puts (catgets (catd, 1, 1, "Choose (yIn)"»;
if (yes()

puts (yesstr) ;
else

puts (catgets (catd, 1, 3, "no"»;

static int
yes()
(

int i, b;
i = b = getchar();
while (b != '\n' && b != '\0' && b != EOF)

b = getchar () ;
return(i == (int) yesstr[O]);

%n$ Conversion Specifications

Earlier we noted that the %n$ form of conversion specification lets you convert the
nth argument in a printfO or scanfO argument list rather than the next unused
argument. We showed you how you could use the feature to control the format of
the date and time in different locales, and suggested that 9-011$ had a wider

6-30 Internationalization

application than that. What we had in mind were cases in which the rules of a
given language were built into print statements such as

printf ("'3-08 %s\n",
func == MAP ? "Can't map" : "Can't create", pathname);

The problem with this code is that it assumes that the verb precedes the object of
the sentence, which is not the case in many languages. In other words, even if we
rewrote the fragment to use gettxtO, and stored translations of the strings in
message files in the appropriate locales, we would still want to use the %n$
conversion specification to switch the arguments to printfO depending on the
locale. That is, the printfO format string

"%l$s %2$s\n"

in an English-language locale would be written

1I'3-02$s %l$s\n"

in a locale in which the object of the sentence precedes the predicate.

Message Handling 6-31

kbd

As noted, kbd is a STREAMS module that can be programmed to alter or supple­
ment data as it flows between the physical terminal and a user process to produce
language-dependent effects. It translates strings in the input stream according to
instructions given in tables compiled with the kbdcomp command. In a European
environment these instructions might describe how to compose characters that
cannot be entered from terminal keyboards (so-called compose and dead keys), or
how to map one key to another (a German user of a QWERTY keyboard, for
instance, will want the yand z keys swapped). In an Asian-language environ­
ment, where the number of ideograms far exceeds the number of keys on most
keyboards, kbd might be used to implement a dictionary lookup scheme that con­
verts single-byte input to multibyte characters.

The compiled tables are loaded with the kbdload command, and attached to user
processes with the kbdset command. Public tables, which are loaded when the
system is first brought up, are retained in memory across invocations and made
available to all users. Private tables can be defined and loaded by users, but do
not remain resident in memory. kbd also supports the use of external kernel­
resident functions as if they were tables. These functions, which must be regis­
tered with the alp ("algorithm pool management") module, are needed for code
set conversions that would be difficult or impossible with normal kbd tables.

In this section, we'll take a brief look at how you might build a kbd table. We pro­
vide this material for background only. Most programmers will not have occasion
to use kbd. For more on the STREAMS facility, see the STREAMS Modules and
Drivers. Detailed information concerning alp(7), alpq(l), kbd(7), kbdcomp(lM),
kbdload(lM), kbdpipe(l), and kbdset(l) can be found in the reference set.

Building kbd Tables

A kbd table typically consists of a map declaration of the form

map (name) {
expressions

}

The expressions we'll look at here have the forms

keylist (string string)
define (word value)
word (extension result)

6-32 Internationalization

In the following example of a map for a German-language environment

map (gennan) {

}

keylist(yzYZ zyZY)
define(umlaut '\042')
umlaut(a '\0344')
umlaut(o '\0366')
umlaut(u '\0374')
define(sharp '\044)
sharp(ss '\0315')

the keylist expression causes the yand z keys to be swapped by defining y as z
and vice versa in the lookup table generated by kbdcomp for this map. The first
define expression causes the double quote key (octal 042 in the code set being
used) to be defined as a dead key such that whenever it is followed by an a, 0 or u
in the input, it will produce the umlaut version of that character in the code set.
The second define does the same thing with the sharp key and the characters ss
to produce the German sharp s. Check the kbdcomp(l) manual page for details.
The mappings are summarized below:

Input Output

y z
z y
"a a
"0 0
"u u
#ss ~

kbd 6-33

Internationalization Facilities

Interface Standards

The functions discussed in this chapter are listed below by task. In the first table,
pages describing utilities compatible with both the ANSI C and X/Open standards
are denoted by an asterisk (*); pages describing utilities compatible with the
X/Open standard only are denoted by a dagger (t).

Application Programming

locale specification setlocale(3C)*, environ(5)

character classification conv(3C)*, ctype(3C)*

multibyte/wide character mbchar(3C)* , mbstring(3C)*
conversion

wide character handling all (3W) t

curses wide character all (3X)
handling

date and time strftime(3C)*, strftime(4)*
nl_langinfo(3C) t, langinfo(5) t
getdate(3C)

numeric and monetary localeconv(3C)*
conventions nl_langinfo(3C) t, langinfo(5) t

string collation strcoll(3C)*, strxfnn(3C)*

formatted input/ output printf(3S)*, scanf(3S)*

message handling gencat(l) t, catgets(3C) t,
catopen(3C) t, nl_types(5) t
exstr(l), gettxt(l), mkmsgs(l),
srchtxt(l), gettxt(3C)

message management and lfmt(l), pfmt(l), addsev(3C),
monitoring lfmt(3C), pfmt(3C), setcat(3C),

set label (3C)

6-34 Internationalization

System Programming and Administration

character tables

monetary tables

collation tables

date and time databases

STREAMS

Enhanced Commands

chrtbl(lM), wChrtbl(lM)

montbl(lM)

colltbl(lM)

strftime(4)

alpq(l), kbdpipe(l), kbdset(l),
pseudo(l), kbdc~(lM), kbdload(lM),
eucioct1(5), iconv(5), alp(7), kbd(7)

All System V commands are "8-bit clean." They make no assumptions about the
contents of the high-order bit when processing characters. Accordingly, they will
work correctly with any standard 7- or 8-bit character set, provided the en­
vironment variables LC_CTYPE or LANG have been set to a locale in which the char­
acter set is implemented. Similar arrangements have been made for commands
that use locale-dependent date and time representations and collation.

Many of these commands have been further enhanced to process multibyte char­
acters, again, provided the environment variables LC_CTYPE or LANG have been set
to a locale in which the multibyte character set is implemented. In the manual
pages, these characters are described as "supplementary code set characters" in
reference to their EVC representation. Check the manual pages for the degree of
multibyte support provided. The commands are listed in Figure 6-3.

Finally, many commands have been enhanced to produce locale-specific message
output, provided the environment variables LC_MESSAGES or LANG have been set
to a locale in which the message output is stored. Note that commands that pro­
duce localized output messages use the System V-specific messaging interface.
These commands are also listed in Figure 6-3.

Internationalization Facilities 6-35

Figure 6-3: Enhanced Commands

Command Multibyte Message
Name Support Facility

accept y y
admin y
ar y
at y
atq y
atrm y
awk y y
banner y
basename y
batch y
bfs y
cancel y y
cat y y
cb Y
cc Y
cd Y
cflow Y
chgrp Y
chmod Y
chown Y
CIrq) Y
col Y
COOlIn Y
cp Y
cpio Y y
cron y
crontab y
csplit y Y
ctccpio Y
cu y
cut y y
cxref y

6-36 Internationalization

Figure 6-3: Enhanced Commands (continued)

Command Multibyte Message
Name Support Facility

date y y
dd Y Y
delta y
devnm y
df Y
diff Y
dircmp y
dirname y
disable y
du y
echo y
ed y y
edit y y
egrep y y
enable y
env y
ex y y
expr y y
fgrep y y
file y y
find y y
fsdb y
gencat y
getopt y y
getopts y
get txt y
getty y
grep y y
iconv y
join y y
jsh Y Y
kill Y

Internationalization Facilities 6-37

Figure 6-3: Enhanced Commands (continued)

Command Multibyte Message
Name Support Facility

lex y
In y
login y
lp Y Y
lpadmin y
lpfilter y
lpforms y
lpmove y
lpsched y
lpshut y
lpstat y y
lpusers y
ls y y
m4 y
mail y y
mailx y y
mesg y
mkdir y
mv y
mvdir y
nawk y y
newform y
newgrp y
news y
nl y y
nlsadmin y
nohup y
od y y
pack y
passwd y
paste y y
peat y

6-38 Internationalization

Figure 6-3: Enhanced Commands (continued)

Command Multibyte Message
Name Support Facility

pg y y
pr y y
ps y
pwd y
red y y
regcmp y
reject y
rfuadmin y
:on y
rmdir y
rsh y y
selli Y
sdiff y
sed y y
sh Y Y
shl Y y
sleep y
sort y y
split y
srchtxt y
stty y
sttydefs y
su y
sum y
sysadm y
tabs y
tail y y
tar y
tee y
test y y
touch y
tr y y

Internationalization Facilities 6-39

Figure 6-3: Enhanced Commands (continued)

Command Multibyte Message
Name Support Facility

tty y
ttyadm y
ttymon y
umask y
uname y
uniq y y
unpack y
uucleanup y
uucp y
uulog y
uuname y
uux y
vedit y y
vi Y y
view y y
wait y
wall y y
we y y
who y
write y y
yacc y y

6-40 Internationalization

7 Directory and File Management

Introduction

Structure of the File System
Types of Files

• Regular Files
• Directory Files
• Special Files

Organization of Files
File Naming
Path Names

• Full Path Names
• Relative Path Names

Symbolic Links
Properties of Symbolic Links
Using Symbolic Links

• Creating Symbolic Links
• Removing Symbolic Links
• Accessing Symbolic Links
• Copying Symbolic Links
• Linking Symbolic Links
• Moving Symbolic Links
• File Ownership and Permissions

Using Symbolic Links with RFS
Archiving Commands

Table of Contents

7-1

7-2
7-2
7-2
7-2
7-3
7-4
7-6
7-6
7-7
7-10

7-14
7-16
7-18
7-18
7-20
7-20
7-20
7-21
7-22
7-23
7-23
7-26

Summary of UNIX System Files &
Directories 7-27
UNIX System Directories 7-28
Directories and Files 7-29
Directory and File Relocations 7-30

• Directories in root 7-33
• Directories in fetc 7-35
• Files in fetc 7-38
• Directories in fusr 7-45
• Files in fusr 7-47
• Directories in /var 7-49
• Files in fvar 7-52

File Access Controls 7-55
File Protection 7-56

• File Permissions 7-57
• Setting Default Permissions 7-59
• How to Determine Existing Permissions 7-60
• How to Change Existing Permissions 7-63
• A Note on Permissions and Directories 7-64
• An Alternative Method 7-65

Security Considerations 7-66
What Security Means to Programmers 7-66

• What Is Security? 7-66
• How Basic Security Works 7-67

Privileges 7-68
• Privileges Associated with a File 7-69
• Manipulating File Privileges 7-70
• Privileges Associated with a Process 7-72
• Manipulating Process Privileges 7-73

ii Table of Contents

Introduction

UNIX System V File System functions create and remove files and directories, and
inspect and modify their characteristics. Processes use these functions to access
files and directories for subsequent I/O operations. One of the most important
services provided by an operating system is to maintain a consistent, orderly and
easily accessed file-system. The UNIX System V file-system contains directories of
files arranged in a tree-like structure. The UNIX System V file-system is simple in
structure; nevertheless, it is more powerful and general than those often found
even in considerably larger operating systems.

All UNIX System V files have a consistent structure to conceal physical properties
of the device storing the file, such as the size of a disk track. It is not necessary,
nor even possible, to preallocate space for a file. The size of a file is the number of
bytes in it, with the last byte determined by the high-water mark of writes to the
file. UNIX System V presents each file as a featureless, randomly addressable
sequence of bytes arranged as a one-dimensional array of bytes ending with EOF.

The UNIX System V file-system organizes files and directories into a tree-like
structure of directories with files attached anywhere (and possibly multiply) into
this hierarchy of directories. Files can be accessed by a "full-path-name" or
"relative-path-name", have independent protection modes, are automatically allo­
cated and de-allocated, and can be linked across directories.

In the hierarchically arranged directory tree-structure, each directory contains a
list of names (character strings) and the associated file index, which implicitly
refers to the same device as does the directory. Because directories are themselves
files, the naming structure is potentially an arbitrary directed graph. Administra­
tive rules restrict it to have the form of a tree, except that non-directory-files may
have several names (entries in various directories).

The same non-directory-file may appear in several directories under possibly dif­
ferent names. This feature is called linking; a directory-entry for a file is sometimes
called a link. UNIX System V differs from other systems in which linking is per­
mitted in that all links to a file have equal status. That is, a file does not exist
within a particular directory; the directory-entry for a file consists merely of its
name and a pointer to the information actually describing the file. Thus, a file
exists independently of any directory-entry, although in practice a file is removed
along with the last link to it.

I ntrod uction 7-1

Structure of the File System

Types of Files

From the point of view of the user, there are three types of files:

1. regular-files.

2. directory-files.

3. special-files.

The user and user application programs access all three types of files simply as a
string of bytes, and must interpret the file appropriately. In UNIX System V, files
normally reside on a disk.

Regular Files

Regular-files contain whatever information users write onto them (e.g., character
data, source programs or binary objects). Any file other than a special-file or a
directory-file is a regular-file. Every file is a (one-dimensional) array of bytes;
UNIX System V imposes no further structure on the contents of files. A file of text
consists simply of a string of characters, with the new-line character delimiting
lines. Binary files are sequences of words as they appear in memory when the file
executes. Some programs operate on files with more structure; for example, the
assembler generates, and the loader expects, object files in a specific format. The
programs that use files dictate their structure, not the system.

Directory Files

Directory-files (also called "directories") provide the mapping (paths) between the
names of files and the files themselves. Directories induce a tree-like structure on
the file-system as a whole to create a hierarchical system of files with directories as
the nodes in the hierarchy. A directory is a file that catalogs the files, including
directories (sub-directories), directly beneath it in the hierarchy.

Each user owns a directory of files, and may also create sub-directories to contain
groups of files conveniently treated together. A directory behaves exactly like a
regular-file except that only the operating system can write onto it. UNIX System
V controls the contents of directories; however, users with permission may read a
directory just like any other file.

7-2 Directory and File Management

The operating system maintains several directories for its own use. One of these is
the root-directory. Each file in the file-system can be found by tracing a path from
the root-directory through a chain of directories until the desired file is reached.
Other system directories contain any programs provided for general use; that is,
all commands; however, it is by no means necessary that a program reside in one of
these directories for it to be executed.

Entries in a directory-file are called links. A link associates a file-identifier with a
file-name. Each directory has at least two links, 1/ • 1/ (dot) and /I •• " (dot-dot). The
link dot refers to the directory itself; while dot-dot refers to the parent of the direc­
tory in which dot-dot appears. Programs may read the current-directory using
1/ • " without knowing its complete path-name.

The root-directory, which is the top-most node of the hierarchy, has itself as its
parent-directory; thus, 1/ / " is the path-name of both the root-directory and the
parent-directory of the root-directory.

The directory structure is constrained to have the form of a rooted tree. Except for
the special entries 1/ • " and 1/ •• ", each directory must appear as an entry in
exactly one other directory, which is its parent. The reason for this is to simplify
the writing of programs that visit sub-trees of the directory structure, and more
important, to avoid the separation of portions of the hierarchy. If arbitrary links
to directories were permitted, it would be quite difficult to detect when the last
connection from the root-directory to a directory was severed.

Special Files

Special files constitute the most unusual feature of the UNIX System V file-system.
Each supported I/O device is associated with at least one special file. Special files
are read and written just like regular-files, but requests to read or write result in
activation of the associated device-handler (driver) rather than the normal file
mechanism.

An entry for each special-file resides under the directory 1/ /dev", although a link
may be made to one of these files just as it may to a regular-file. For example, to
write on magnetic tape one may write on the file 1/ /dev/mt". Special files exist
for peripheral devices such as terminal ports, communication links, disk drives,
tape drives and for physical main memory. Of course, the active disks and
memory special-files are protected from indiscriminate access by appropriate read
and write permissions.

There are several advantages to treating I/ 0 devices this way:

• file and device I/O are as similar as possible; all I/O is treated uniformly,
and the same system calls work on all types of files.

Structure of the File System 7-3

• file and device names have the same syntax and meaning, so that a program
expecting a file-name as a parameter can be passed a device name.

• the same protection mechanism works on special-files, directory-files and
regular-files.

Organization of Files

The file system is made up of a set of regular files, special flIes, symbolic links, and
directories. These components provide a way to organize, retrieve, and manage
information electronically. Chapter 2 on "File and Device Input/Output" intro­
duced some of the properties of directories and files; this section will review them
briefly before discussing how to use them.

• A regular file is a collection of characters stored on a disk. It may contain
text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A symbolic link is a file that points to another file.

• A directory is a collection of files and other directories (sometimes called
subdirectories). Use directories to group files together on the basis of any
criteria you choose. For example, you might create a directory for each pro­
duct that your company sells or for each of your student's records.

The set of all the directories and files is organized into a tree shaped structure.
Figure 7-1 shows a sample file structure with a directory called root (/) as its
source. By moving down the branches extending from root, you can reach several
other major system directories. By branching down from these, you can, in turn,
reach all the directories and files in the file system.

7-4 Directory and File Management

Figure 7-1: A Sample File System

EJ
o = Directories

o = Regular Files

V = Special Files

= Branch

letters

\ /
I outlinJ I table II sander1 I joruwon I

In this hierarchy, files and directories that are subordinate to a directory have
what is called a parenti child relationship. This type of relationship is possible for
many layers of files and directories. In fact, there is no limit to the number of files
and directories you may create in any directory that you own. Neither is there a
limit to the number of layers of directories that you may create. Thus, you have

Structure of the File System 7-5

the capability to organize your files in a variety of ways, as shown in the preced­
ing figure.

File Naming

Strings of 1 to {NAME_MAX} characters may be used to name a regular-file,
directory-file or special-file. {NAME_MAX} must be at least 14, and the characters
may be any from the set of all character values excluding null and slash, " / ". The
following are examples of legal directory or file names:

memo
file.d

MEMO

chap3+4
section2
iteml-10

ref:list
outline

A regular-file, special-file or directory may have any name that conforms to the
following rules:

• All characters other than / are legal.

• Non-printing characters including space, tab and backspace, are best
avoided. If you use a space or tab in a directory or file-name, you must
enclose the name in quotation-marks on the command-line.

• Note that it is generally unwise to use" * ", "? ", " ! ", " [II or "] II as part
of file-names because of the special meaning given these characters for file­
name expansion by the command interpreter [see system(2)]. Other charac­
ters to avoid are the hyphen, " < ", "> ", backslash, single and double
quotes, accent grave, vertical bar, caret, curly braces and parentheses.

• Avoid using a +, - or • as the first character in a file-name.

• Upper case and lower case characters are distinct to the UNIX system. For
example, the system considers a directory (or file) named draft to be dif­
ferent from one named DRAFT.

Path Names

The name of a file may take the form of a path-name, which is a sequence of direc­
tory names separated from one another by 1/ / II and ending in a file-name. In a
program, a path-name is a null-terminated character-string starting with an
optional slash, " / ", followed by zero or more directory-names separated by
slashes and optionally followed by a file-name.

7·6 Directory and File Management

More precisely, a path-name is a null-terminated character-string as follows:

<path_name> : : = <file_name> I <path-prefix><file_naIDe> I / I • I ••
<path-prefix> : : = <rtprefix> I / <rtprefix> I empty
<rtprefix> : : = <dirname> / I <rtprefix><dirname> /

where <file_name> is a string of 1 to {NAME_MAX} significant characters (other
than slash and null), and <dirname> is a string of 1 to {NAME_MAX} significant
characters (other than slash and null) that names a directory. The result of names
not produced by the grammar are undefined. A null string is undefined and may
be considered an error. As a limiting case, the path-name" I" refers to the root­
directory itself. An attempt to create or delete the path-name slash by itself is
undefined and may be considered an error. The meanings of" • " and" •• " are
defined earlier under the heading "Directory Files" .

The sequence of directories preceding the file-name is called a path-prefix, and if
the path-prefix begins with a slash, the search begins in the root-directory. This is
called a full-path-name.

Full Path Names

A full path name (sometimes called an "absolute path name") starts in the root
directory and leads down through a unique sequence of directories to a particular
directory or file. Because a full path name always starts at the root of the file sys­
tem, its leading character is always a I (slash). The final name in a full path name
can be either a file name or a directory name. All other names in the path must be
directories. You can use a full path name to reach any file or directory in the
UNIX system in which you are working.

To understand how a full path name is constructed and how it directs you, con­
sider the following example. Suppose you are working in the starship directory,
located in lhome. You issue the pwd command and the system responds by print­
ing the full path name of your working directory: lhome/starship.

Structure of the File System 7-7

The following figure and key diagrams the elements of this path name:

Figure 7-2: Diagram of a Full Path-Name

/ (leading)

home

= the slash that appears as the first character
in the path name is the root of the file system

= system directory one level below root in the
hierarchy to which root points or branches

/ (subsequent) = the next slash separates or delimits the
directory names home and starship

starship = current working directory

root

system
directory

delimiter

r-A,j,_A\
/hom.e/starship

home
directory

The following path-name:

/usr/bin/send

causes a search of the root-directory for directory II usr ", then a search of II usr"
for II bin" , finally to find II send" in II bin". The file II send" maybe a directory,
regular or special-file. A null-prefix (or for that matter, any path-prefix without an
initial II /") causes the search to begin in the current-directory of the user. Thus,
the simplest form of path-name, II alpha", refers to a file found in the current­
directory, and the path-name" alpha/beta" specifies the file named II beta" in
sub-directory II alpha" of the current-directory. This relative-path-name allows a
user to quickly specify a sub-directory without needing to know (or input) the
full-path-name.

7-8 Directory and File Management

The dashed lines in Figure 7-3 trace the full path to /home/starship.

Figure 7-3: Full Path-Name of the /home/starship Directory

sbin

o = Directories

D = Regular Files

V = Special Files

= Branch

Structure of the File System 7-9

Relative Path Names

A relative path name gives directions that start in your current working directory
and lead you up or down through a series of directories to a particular file or
directory. By moving down from your current directory, you can access files and
directories you own.

For example, suppose you are in the directory starship in the sample system and
starship contains directories named draft, letters, and bin and a file named
mbox. The relative path name to any of these is simply its name, such as draft or
mbox. Figure 7-4 traces the relative path from starship to draft.

Figure 7-4: Relative Path-Name of the draft Directory

o = Directories

D = Regular Files

The draft directory belonging to starship contains the files outline and table.
The relative path name from starship to the file outline is draft/outline.

7-10 Directory and File Management

Figure 7-5 traces this relative path. Notice that the slash in this path name
separates the directory named draft from the file named outline. Here, the
slash is a delimiter showing that outline is subordinate to draft; that is, outline
is a child of its parent, draft.

Figure 7-5: Relative Path-Name from starship to outline

imrs

o = Directories

D = Regular Files

So far, the discussion of relative path-names has covered how to specify names of
files and directories that belong to, or are children of, the current directory. You
can move down the system hierarchy level by level until you reach your destina­
tion. You can also, however, ascend the levels in the system structure or ascend
and subsequently descend into other files and directories.

By moving up from your current directory, you pass through layers of parent
directories to the grandparent of all system directories, root. From there you can
move anywhere in the file system.

Structure of the File System 7-11

The relative-path-name is just one of the mechanisms built into the file-system to
alleviate the need to use full-path-names. By convention, the path-prefix" •• "
refers to the parent-directory (i.e., the directory containing the current-directory),
and the path-prefix" . " refers to the current-directory.

A relative path-name begins with one of the following: a directory or file name; a
" • " (pronounced dot), which is a shorthand notation for your current directory;
or a " .. " (pronounced dot dot), which is a shorthand notation for the directory
immediately above your current directory in the file system hierarchy. The direc­
tory represented by" •• " (dot dot) is called the parent directory of . (your
current directory).

To ascend to the parent of your current directory, you can use the " •• " notation.
This means that if you are in the directory named" draft" in the sample file
system, " .• " is the path-name to " starship", and " .. / .• " is the path-name to
" starship '" s parent directory, "home".

From" draft", you can also trace a path to the file" sanders" by using the path
name" •• /letters/sanders". The" •. " brings you up to "starship". Then
the names" letters" and" sanders" take you down through the " letters"
directory to the" sanders" file.

Keep in mind that you can always use a full path-name in place of a relative one.

Figure 7-6 shows some examples of full and relative path names.

7-12 Directory and File Management

Figure 7-6: Example Path-Names

Path Name

/

/usr/bin

/home/starship/bin/tools

bin/tools

tools

Meaning

full path name of the root directory

full path name of the bin directory that belongs
to the usr directory that belongs to root (con­
tains most executable programs and utilities)

full path name of the tools directory belonging
to the bin directory that belongs to the star­
ship directory belonging to home that belongs to
root

relative path name to the file or directory tools
in the directory bin

If the current directory is /, then the UNIX sys­
tem searches for /usr/bin/tools. However, if
the current directory is starship, then the sys­
tem searches the full path
/home/starship/bin/tools.

relative path name of a file or directory tools in
the current directory.

Moving files to the directory" • " moves them into the current-directory. In addi­
tion, files can be linked across directories. Linking a file to the current-directory
obviates the need to supply a path-prefix when accessing the file. When created, a
process has one current-directory and one root-directory associated with it, which
can differ for other processes. See the chapter entitled "Process Management" for
more detail on processes.

Structure of the File System 7-13

Symbolic Links

A symbolic link is a special type of file that represents another file. The data in a
symbolic link consists of the path name of a file or directory to which the symbolic
link file is linked. The link that is formed is called symbolic to distinguish it from
a regular (also called a hard) link such as can be created by using the In(l) com­
mand. A symbolic link differs functionally from a regular link in three major
ways: files from different file systems may be linked together; directories as well
as regular files may be symbolically linked by any user; and a symbolic link can be
created even if the file it represents does not exist.

In order to understand how a symbolic link works, it is necessary to understand
how the UNIX operating system views files. (The following description pertains
to files that belong to the standard System V file system type.) The internal
representation of a file is contained in an inode, which contains a description of
the layout of the file data on disk as well as information about the file, such as the
file owner, the access permissions, and the access times. Every file has one inode,
but a file may have several names, all of which point to the inode. Each name is
called a regular (or hard) link.

When a file is created, an inode is allocated for it, the file contents are stored in
data blocks, and an entry is created in a directory. A directory is a file whose data
is a sequence of entries, each consisting of an inode number and the name of a file.
The inode initially has a link count of one, which means that this file has one name
(or one link to it).

We are now in a position to understand the difference between the creation of a
regular and a symbolic link. When a user creates a regular link to a file with the
In(l) command, a new directory entry is created containing a new file name and
the inode number of an existing file. The link count of the file is incremented.

In contrast, when a user creates a symbolic link both a new directory entry and a
new inode are created. A data block is allocated to contain the path name of the
file to which the symbolic link refers. The link count of the referenced file is not
incremented.

Symbolic links can be used to solve a variety of common problems. For example,
it frequently happens that a disk partition (such as root) runs out of disk space.
With symbolic links, an administrator can create a link from a directory on that file
system to a directory on another file system. Such a link provides extra disk space
and is, in most cases, transparent to both users and programs.

7·14 Directory and File Management

Symbolic links can also help deal with the built-in path names that appear in the
code of many commands. Changing the path names would require changing the
programs and recompiling them. With symbolic links, the path names can effec­
tively be changed by making the original files symbolic links that point to new
files.

In a shared resource environment like RFS, symbolic links can be very useful. For
example, if it is important to have a single copy of certain administrative files,
symbolic links can be used to help share them. Symbolic links can also be used to
share resources selectively. Suppose a system administrator wants to do a remote
mount of a directory that contains sharable devices. These devices must be in
/dev on the client system, but this system has devices of its own so the administra­
tor does not want to mount the directory onto /dev. Rather than do this, the
administrator can mount the directory at a location other than /dev and then use
symbolic links in the /dev directory to refer to these remote devices. (This is simi­
lar to the problem of built-in path names since it is normally assumed that devices
reside in the /dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file system
(VFS) architecture. With VFS new services, such as higher performance files,
events, and network IPC, may be provided on a file system basis. Symbolic links
can be used to link these services to home directories or to places that make more
sense to the application or user. Thus one might create a database index file in a
RAM-based file system type and symbolically link it to the place where the data­
base server expects it and manages it.

The phrases "following symbolic links" and "not following symbolic links" as
they are used in this document refer to the evaluation of the last component of
a path name. In the evaluation of a path name, if any component other than
the last is a symbolic link, the symbolic link is followed and the referenced file
is used in the path name evaluation. However, if the last component of a path
name is a symbolic link, the link mayor may not be followed.

Symbolic Links 7-15

Properties of Symbolic Links

This section summarizes some of the essential characteristics of symbolic links.
Succeeding sections describe how symbolic links may be used, based on the
characteristics outlined here.

As we have seen above, a symbolic link is a new type of file that represents
another file. The file to which it refers may be of any type; a regular file, a direc­
tory, a character-special, block-special, or FIFO-special file, or another symbolic
link. The file may be on the local system or on a remote system. In fact, the file to
which a symbolic link refers does not even have to exist. In particular, the file
does not have to exist when the symbolic link is created or when it is removed.

Creation and removal of a symbolic link follow the same rules that apply to any
file. To do either, the user must have write permission in the directory that con­
tains the symbolic link. The ownership and the access permissions (mode) of the
symbolic link are ignored for all accesses of the symbolic link. It is the ownership
and access permissions of the referenced file that are used.

A symbolic link cannot be opened or closed and its contents cannot be changed
once it has been created.

If /usr/jan/junk. is a symbolic link to the file /etc/passwd, in effect the file
name /etc/passwd is substituted for junk. so that when the user executes

cat /usr/jan/junk.

it is the contents of the file /etc/passwd that are printed.

Similarly, if /usr/jan/junk. is a symbolic link to the file •• /junk2, executing

cat /usr/jan/junk

is the same as executing

cat /usr/jan/ .. /junk.2

or

cat /usr/junk.2

When a symbolic link is followed and brings a user to a different part of the file
tree, we may distinguish between where the user really is (the physical path) and
how the user got there (the virtual path). The behavior of /usr/hin/pwd, the shell
built-in pwd, and .• are all based on the physical path. In practical terms this
means that there is no way for the user to retrace the path which brought the user
to the current position in the file tree.

7·16 Directory and File Management

y Other shells may use the virtual path. For e,ample, by defautt the Kom
shell pwd uses the virtual path, though there is an option allowing the user
to make it use the physical path.

Figure 7-7: File Tree with Symbolic Link

/

usr

src include

uts sys
-7/usr/src/uts/sys

sys

Consider the case shown in Figure 7-7 where /usr/include/sys is a symbolic
link to /usr/src/uts/sys. Here if a user enters

cd /usr/include/sys

and then enters pwd, the result is

/usr/src/uts/sys

If the user then enters cd followed by pwd, the result is

/usr/src/uts

Symbolic Links 7-17

Using Symbolic Links

Creating Symbolic Links

Syntax and Semantics

To create a symbolic link, the new system call 8ymlink(2) is used and the owner
must have write permission in the directory where the link will reside. The file is
created with the user's user-id and group-id but these are subsequently ignored.
The mode of the file is created as 0777. y No chec~ng is done when a symbolic link is crealed. There is nothing to

stop a user from creating a symbolic link that refers to itself or to an ances­
tor of itself or several links that loop around among themselves. Therefore,
when evaluating a path name, it is important to put a limit on the number of
symbolic links that may be encountered in case the evaluation encounters
a loop. The variable MAXSYMLINKS is used to force the error ELOOP after
MAXSYMLINKS symbolic links have been encountered. The value of MAX­
SYMLINKS should be at least 20.

To create a symbolic link, the In command is used with the -s option [see In(l)].
If the -8 option is not used and a user tries to create a link to a file on another file
system, a symbolic link will not be created and the command will fail.

The syntax for creating symbolic links is as follows:

In -s sourcefilel [sourcefile2 ...] target

With two arguments:

• sourcefilel may be any path name and need not exist.

• target may be an existing directory or a non-existent file.

• If target is an existing directory, a file is created in directory target whose
name is the last component of sourcefilel (, basena.m.e sourcefilel '). This file
is a symbolic link that references sourcefilel.

• If target does not exist, a file with name target is created and it is a symbolic
link that references sourcefilel.

• If target already exists and is not a directory, an error is returned.

• sourcefilel and target may reside on different file systems.

7-18 Directory and File Management

With more than two arguments:

• For each source file, a file is created in target whose name is source file or its last
component (, basename source file ') and is a symbolic link to source file.

• If target is not an existing directory, an error is returned.

• Each source file and target may reside on different file systems.

Examples

The following examples show how symbolic links may be created.

In -s /usr/src/uts/sys /usr/include/sys

In this example /usr/include is an existing directory. But file sys does not exist
so it will be created as a symbolic link that refers to /usr/src/uts/sys. The
result is that when file /usr/include/sys/x is accessed, the file
/usr/src/uts/sys/x will actually be accessed.

This kind of symbolic link may be used when files exist in the directory
/usr/src/uts/sys but programs often refer to files in /usr/include/sys.
Rather than creating corresponding files in /usr/include/sys that are hard links
to files in /usr/src/uts/sys, one symbolic link can be used to link the two direc­
tories. In this example /usr / include/ sys becomes a symbolic link that links the
former /usr/include/sys directory to the /usr/src/uts/sys directory.

In -s /etc/group

In this example the target is a directory (the current directory), so a file called
group (' basename /etc/group') is created in the current directory that is a
symbolic link to /etc/group.

In -s /fsl/jan/abc /var/spool/abc

In this example we imagine that /fsl/jan/abc does not exist at the time the com­
mand is issued. Nevertheless, the file /var/spool/abc is created as a symbolic
link to /fsl/jan/abc. Later, /fsl/jan/abc may be created as a directory, regu­
lar file, or any other file type.

The following example illustrates the use of more than two arguments:

In -s /etc/group /etc/passwd

The user would like to have the group and passwd files in the current directory
but cannot use hard links because / etc is a different file system. When more than
two arguments are used, the last argument must be a directory; here it is the
current directory. Two files, group and passwd, are created in the current direc­
tory, each a symbolic link to the associated file in /etc.

Symbolic Links 7-19

Removing Symbolic Links

Normally, when accessing a symbolic link, one follows the link and actually
accesses the referenced file. However, this is not the case when one attempts to
remove a symbolic link. When the nn(l) command is executed and the argument
is a symbolic link, it is the symbolic link that is removed; the referenced file is not
touched.

Accessing Symbolic Links

Suppose abc is a symbolic link to file def. When a user accesses the symbolic link
abc, it is the file permissions (ownership and access) of file def that are actually
used; the permissions of abc are always ignored. If file def is not accessible (that
is, either it does not exist or it exists but is not accessible to the user because of
access permissions) and a user tries to access the symbolic link abc, the error mes­
sage will refer to abc, not file def.

Copying Symbolic Links

This section describes the behavior of the cp(l) command when one or more argu­
ments are symbolic links. With the cp(l) command, if any argument is a symbolic
link, that link is followed. Then the semantics of the command are as described in
the Command Reference. Suppose the command line is

cp sym file3

where sym is a symbolic link that references a regular file testl and file3 is a
regular file. After execution of the command, file3 gets overwritten with the
contents of the file testl.

If the last argument is a symbolic link that references a directory, then files are
copied to that directory. Suppose the command line is

cp filel sym symd

where filel is a regular file, sym is a symbolic link that references a regular file
testl, and symd is a symbolic link that references a directory DIR. After execu­
tion of the command, there will be two new files, DIR/filel and DIR/sym that
have the same contents as filel and testl.

7·20 Directory and File Management

Linking Symbolic Links

This section describes the behavior of the In(l) command when one or more argu­
ments are symbolic links. To understand the difference in behavior between this
and the cp(l) command, it is useful to think of a copy operation as dealing with
the contents of a file while the link operation deals with the name of a file.

Let us look at the case where the source argument to In is a symbolic link. If the
-s option is specified to In, the command calls the symlinkO system call [see sym­
link(2)]. symlinkO does not follow the symbolic link specified by the source
argument and creates a symbolic link to it. If -s is not specified, In invokes the
link(2) system call. link follows the symbolic link specified by the source argu­
ment and creates a hard link to the file referenced by the symbolic link.

For the target argument, In invokes a statO system call [see stat(2)]. If statO
indicates that the target argument is a directory, the files are linked in that direc­
tory. Otherwise, if the target argument is an existing file, it is overwritten. This
means that if the second argument is a symbolic link to a directory, it is followed,
but if it is a symbolic link to a regular file, the symbolic link is overwritten.

For example, if the command line is

In sym filel

where sym is a symbolic link that references a regular file foo, and filel is a reg­
ular file, filel is overwritten and hard-linked to foo. Thus a hard link to a regu­
lar file has been created.

If the command is

In -s sym filel

where the files are the same as in first example, filel is overwritten and becomes
a symbolic link to sym.

If the command is

In filel sym

where the files are the same as in the first example, sym is overwritten and hard­
linked to filel.

When the last argument is a directory as in

In filel sym symd

where symd is a symbolic link to a directory DIR, and filel and sym are the same
as in the first example, the file DIR/filel is hard-linked to filel and DIR/sym is
hard-linked to foo.

Symbolic Links 7-21

Moving Symbolic Links

This section describes the behavior of the mv(l) command. Like the In(l) com­
mand, mv(l) deals with file names rather than file contents. With two arguments,
a user invokes the mv(l) command to rename a file. Therefore, one would not
want to follow the first argument if it is a symbolic link because it is the name of
the file that is to be changed rather than the file contents. Suppose that sym is a
symbolic link to /etc/passwd and abc is a regular file. If the command

mv sym abc

is executed, the file symis renamed abc and is still a symbolic link to
/etc/passwd. If abc existed (as a regular file or a symbolic link to a regular file)
before the command was executed, it is overwritten.

Suppose the command is

mv syml filel symd

where syml is a symbolic link to a regular file foo, filel is a regular file, and
syrad is a symbolic link that references a directory DIR. When the command is exe­
cuted, the files Syml and filel are moved from the current directory to the DIR
directory so that there are two new files, DIR/ syml, which is still a symbolic link
to foo, and DIR/filel.

In System V Release 4, the mv(l) command uses the rename(2) system call. If the
first argument to rename(2) is a symbolic link, rename(2) does not follow it;
instead it renames the symbolic link itself. In System V prior to Release 4, a file
was moved using the link(2) system call followed by the unlink(2) system call.
Since link(2) and unlink(2) do not follow symbolic links, the result of those two
operations is the same as the result of a call to rename(2).

7-22 Directory and File Management

File Ownership and Permissions

The system calls chmodO, chownO and chgrpO are used to change the mode and
ownership of a file. If the argument to chmodO, chownO or chgrpO is a symbolic
link, the mode and ownership of the referenced file rather than of the symbolic
link itself will be changed. (See the section on "Symbolic Links" that follows in
this chapter). In such cases, the link is followed.

Once a symbolic link has been created, its permissions cannot be changed. By
default, the chown(l) and chgrp(l) commands change the owner and group of the
referenced file. However, a new -h option enables the user to change the owner
and group of the symbolic link itself. This is useful for removing files from sticky
directories.

Using Symbolic Links with RFS Y To use symbolic links on two systems running RFS, both systems must be
running System V Release 4. In cases where the server is a System V
Release 4 system but the client is not, errors will be generated when the
client encounters a symbolic link.

When using symbolic links in an RFS environment, it is important to understand
how pathnames are evaluated. The rule by which evaluations are performed is
simple. Symbolic links that a client encounters on the server are interpreted in
accordance with the client's view of the file tree.

Users on a server system must keep this rule in mind when they create symbolic
links in order to avoid problems. The examples that follow illustrate situations in
which failure to consider the client's view of the file tree can lead to problems.

Symbolic Links 7·23

Figure 7-8: Symbolic Links with RFS: Example 1

CLIENT SERVER

/ /

I I
usr ----------------------~~ usr

A
src include

uts

I

sys ~ /usrlsrc/uts/sys

or
---Y •• fsre/uta/ays

sys

vnode.h

In the example shown in Figure 7-8, the server advertises its /usr file system as
USR. If the server creates the symbolic link /usr/include/sys as an absolute
pathname to /usr/src/uts/sys, evaluation of the link will work as intended as
long as a client mounts USR as /usr. Another way of saying this is that if the file
tree naming conventions are the same on the client and the server, things will
work as intended. However, if the client mounts USR as /mnt/usr, when the
symbolic link /usr/src/uts/sys is evaluated, the evaluation will be done with
respect to the client's view of the file tree and will not cross the mount point back
to the server but will remain on the client. Thus the client will not access the file
intended. In this situation the server should create the symbolic link as a relative
path name, .. /src/uts/sys, so that evaluation will produce the desired results
regardless of where the client mounts USR.

7-24 Directory and File Management

Figure 7-9: Symbolic Links with RFS: Example 2

CLIENT SERVER

/

I

/~
I 3b2

--------~3~usr ~ usr

/~
usr

I
src

src include

I
uts

or
I

sys

I

uts

I

SYS -j. /usr/src/uts/sys

----7 •• fsre/uts/sys

sys

~
vnode. h new. h. /3b2/usr/src/uts/sys/new.h

new.h

Figure 7-9 shows another potential problem situation in which the server adver­
tises its /usr file system as USR. But in this case the server has a symbolic link
from /usr/src/uts/sys/new.h to /3b2lusr/src/uts/sys/new.h. Because the
referenced file, /3b2/usr/src/uts/sys/new.h, is outside of the advertised
resource, users on the server can access this file but users on the client cannot. In
this example, it would make no difference if the symbolic link was a relative rather
than an absolute pathname, because the directory /3b2 on the server is not part of
the client's name space. When the system evaluates the symbolic link, it will look
for the file on the client and will not follow the link as intended.

Symbolic Links 7-25

Archiving Commands

The epio(l) command copies file archives usually to or from a storage medium
such as tape, disk, or diskette. By default, epio does not follow symbolic links.
unles thee -L option used with the -0 and -p options to indicates that symbolic
links should be followed. Note that this option is not valid with the -i option.

Normally, a user invokes the find(l) command to produce a list of filenames and
pipes this into the epio(l) command to create an archive of the files listed. The
find(l) command also has a new option -follow to indicate that symbolic links
should be followed. If a user invokes find(l) with the -follow option, then
epio(l) must also be invoked with its new option -L to indicate that it too should
follow symbolic links.

When evaluating the output from find(l), following or not following symbolic
links only makes a difference when a symbolic link to a directory is encountered.
For example, if /usr/jan/symd is a symbolic link to the directory .. /joe/test
and files testl and test2 are in directory /usr/joe/test, the output of a find
starting from /usr/jan includes the file /usr/jan/symd if symbolic links are not
followed, but includes /usr/jan/symd/testl and /usr/jan/symd/test2 as well
as /usr/jan/symd if symbolic links are followed.

If the user wants to preserve the structure of the directories being archived, it is
recommended that symbolic links not be followed on both commands. (This is the
default.) When this is done symbolic links will be preserved and the directory
hierarchy will be duplicated as it was. If the user is more concerned that the con­
tents of the files be saved, then the user should use the -L option to epio(l) and
the -follow option to find(l) to follow symbolic links. y The user should lake care nollo mix modes, thaI is, Ihe user should either

follow or not follow symbolic links for both epio(1) and find(1). If modes
are mixed, an archive will be created but the resulting hierarchy created by
epio -i may exhibit unexpected and undesirable results.

The -i option to epio(l) copies symbolic links as is. So if a user creates an archive
to be read in on a pre-System V Release 4 system, it may be more useful to follow
symbolic links because System V prior to Release 4 lacked symbolic links and the
result of copying in a symbolic link will be a regular file containing the path name
of the referenced file.

7-26 Directory and File Management

Summary of UNIX System Files & Directories

UNIX system files are organized in a hierarchy; their structure is often described
as an inverted tree. At the top of this tree is the root directory, the source of the
entire file system. It is designated by a / (slash). All other directories and files
descend and branch out from root, as shown in the following figure:

Figure 7-10: Directory Tree from root

stand sbin

term

tmp

o = Directories

o = Regular Files

V = Special Files

= Branch

The following section provides brief descriptions of the root directory and the sys­
tem directories under it, as shown in an earlier figure.

Summary of UNIX System Files & Directories 7-27

UNIX System Directories

7-28

/

/stand

/sbin

/dev

/etc

/home

/tmp

/var

/usr

/usr/bin

/usr/lib

the source of the file system (called the root directory)

contains programs and data files used in the booting process

contains essential executables used in the booting process and
in manual system recovery

contains special files that represent peripheral devices, such
as:

console
lp
term/*
dsk/*

console
line printer
user terminal(s)
disks

contains machine-specific administrative configuration files
and system administration databases

the root of a subtree for user directories

contains temporary files, such as the buffers created for edit­
ing a file

the root of a subtree for varying files such as log files

contains other directories, including lib and bin

contains many executable programs and utilities, including
the following:

cat
date
login
grep
mkdir
who

contains libraries for programs and languages

Directory and File Management

Directories and Files

This section describes:

• Directories and files that are important for administering a system

• Directories that are new for this software release

• The reorganization of the directory structure introduced in this release

• The new organization of the root file system, and significant directories
mounted on root o To maintain a secure environment, do not change the file or directory per­

~~"'/ m;ss;ons from those ass;gned at the t;me of ;nstallat;on.

Summary of UNIX System Files & Directories 7-29

Directory and File Relocations

For this software release, many commands and directories have been relocated.
This section lists the commands that have been moved, the locations of these com­
mands in UNIX System V Release 4, and the locations of the same commands in
earlier releases of the UNIX system. UNIX System V Release 4.0 provides symbolic
links between the old and new locations. However, in future software releases,
these links may be removed. The asterisk (*) means that all files in the directory
indicated have been moved to the new location.

Pre-Release 4 Location

/bin/*

/etc/bcheckrc
/etc/chroot
/etc/crash
/etc/cron
/etc/dcopy
/etc/devmn
/etc/dfsck
/etc/ff
/etc/fsck
/etc/fsdb
/etc/fstyp
/etc/fuser
/etc/getty
/etc/grpck
/etc/init
/etc/install
/etc/killall
/etc/labelit
/etc/ldsysdUlli>
/etc/link
/etc/log/*
/etc/mkfs
/etc/mknod
/etc/mount
/etc/mountall
/etc/mvdir
/etc/ncheck

7-30

Release 4 Location

/usr/bin/*

/sbin/bcheckrc
/usr/sbin/chroot
/usr/sbin/crash
/usr/sbin/cron
/usr/sbin/dcopy
/usr/sbin/devnm
/usr/sbin/dfsck
/usr/sbin/ff
/sbin/fsck
/sbin/fsdb
/sbin/fstyp
/usr/sbin/fuser
/usr/sbin/getty
/usr/sbin/grpck
/sbin/init
/usr/sbin/install
/usr/sbin/killall
/ sbin/ labeli t
/usr/sbin/ldsysdUlli>
/usr/sbin/link
/var/adm/log/*
/sbin/mkfs
/sbin/mknod
/sbin/mount
/sbin/mountall
/usr/sbin/mvdir
/usr/sbin/ncheck

Directory and File Management

Pre-Release 4 Location

/ete/prfdc
/ete/prfld
/ete/prfpr
/ete/prfsnap
/ete/prfstat
/ete/prtvtoe
/ete/pwck
/ete/reO
/ete/rel
/ete/re2
/ete/re3
/ete/re6
/ete/nnount
/ete/rmountall
/ete/rumountall
/ete/setelk
/ete/setmnt
/ete/shutdown
/ete/swap
/ete/sysdef
/ete/telinit
/ete/termcap
/ete/uadmin
/ete/umount
/ete/umountall
/ete/unlink
/ete/utmp
/ete/voleopy
fete/wall
/ete/whodo
/ete/wtmp

/lib/*

/shlib/*

/unix

Release 4 Location

/usr/sbin/prfde
/usr/sbin/prfld
/usr/sbin/prfpr
/usr/sbin/prfsnap
/usr/sbin/prfstat
/sbin/prtvtoe
/usr/sbin/pwck
/sbin/reO
/sbin/rel
/sbin/re2
/sbin/re3
/sbin/reO
/usr/sbin/nnount
/usr/sbin/nnountall
/usr/sbin/rumountall
/sbin/setelk
/sbin/setmnt
/sbin/shutdown
/usr/sbin/swap
/usr/sbin/sysdef
/sbin/init
/usr/share/lib/termcap
/sbin/uadmin
/sbin/umount
/sbin/umountall
/usr/sbin/unlink
/var/adm/utng;>
/usr/sbin/voleopy
/usr/sbin/wall
/usr/sbin/whodo
/var / adm/wtmp

/usr/lib/*

/usr/lib/*

/stand/unix

Summary of UNIX System Files & Directories 7-31

Pre-Release 4 Location

/usr/adm/*
/usr/bin/fumount
/usr/bin/fusage
/usr/bin/nlsadmin
/usr/bin/powerdown
/usr/bin/sadp
/usr/bin/strace
/usr/bin/strclean
/usr/bin/strerr

/usr/lib/cron/*
/usr/lib/spell/hlista
/usr/lib/spell/hstop
/usr/lib/ter.minfo/*
/usr/lib/uucp/Devconfig
/usr/lib/uucp/Devices
/usr/lib/uucp/Dialcodes
/usr/lib/uucp/Dialers
/usr/lib/uucp/Per.missions
/usr/lib/uucp/Poll
/usr/lib/uucp/Sysfiles
/usr/lib/uucp/Systems
/usr/mail/*
/usr/man/*
/usr/net/nls/dbfconv
/usr/net/nls/listen
/usr/nserve/*
/usr/nserve/nserve
/usr/nserve/rfudaemon
/usr/nserve/TPnserve
/usr/pub/*
/usr/spool/*
/usr/tmp/*

Release 4 Location

/var/adm/*
/usr/sbin/fumount
/usr/sbin/fusage
/usr/sbin/nlsadmin
/usr/sbin/powerdown
/usr/sbin/sadp
/usr/sbin/strace
/usr/sbin/strclean
/usr/sbin/strerr

/etc/cron.d/*
/usr/share/lib/spell/hlista
/usr/share/lib/spell/hstop
/usr/share/lib/ter.minfo/*
/etc/uucp/Devconfig
/etc/uucp/Devices
/etc/uucp/Dialcodes
/etc/uucp/Dialers
/etc/uucp/Per.missions
/etc/uucp/Poll
/etc/uucp/Sysfiles
/etc/uucp/Systems
/var/mail/*
/usr/share/man/*
/usr/lib/saf/dbfconv
/usr/lib/saf/listen
/etc/rfs/*
/usr/lib/rfs/nserve
/usr/lib/rfs/rfudaemon
/usr/lib/rfs/TPnserve
/usr/share/lib/*
/var/spooll*
/var/trrrp/*

There are some additional directories in root that did not appear in previous
software releases. These directories are:

7-32 Directory and File Management

I export I opt I sbin I stand Ivar
Ihome Iproe

The root directories are explained in the next section. Important administrative
files and subdirectories are explained later.

Directories in root

The I (root) file system contains executables and other files necessary to boot and
run the system. The directories of the root file system are explained next.

Ibek

The Ibek directory is used to mount a backup file system for restoring files.

lboot

The lboot directory contains configurable object files created by the
lusr I sbin/mkboot program (see mkboot(lM)).

leonf

The leonf directory contains files that define the hardware drivers, software
drivers, and system parameters used to build the UNIX system file Istand/unix.
The idbuild(lm) command is used for this purpose.

Idev

The Idev directory contains block and character special files that are usually asso­
ciated with hardware devices or STREAMS drivers.

Idgn

The Idgn directory contains diagnostic programs.

lete

The lete directory contains machine-specific configuration files and system
administration databases.

I export

The lexport directory contains the default root of the exported file system tree.

Ihome

The Ihome directory contains user directories.

I install

The linstall directory is used by the packaging commands to mount add-on
packages for installation and removal (linstall file system).

Summary of UNIX System Files & Directories 7-33

/lost+found

The /lost+found directory is used by fsck to save disconnected files and direc­
tories.

/mnt

The /mnt directory is used to mount file systems for temporary use.

/opt

The /opt directory is the mount point from which add-on application packages
are installed.

/proc

The /proc directory is the mount point of the proc file system which provides
information on the system's processes.

/save

The / save directory is used by packaging commands for saving data on floppy
diskettes.

/sbin

The / sbin directory contains executables used in the booting process and in
manual recovery from a system failure.

/stand

The / stand directory is used as the mount point for the boot file system, which
contains the standalone (bootable) programs and data files necessary for the sys­
tem boot procedure.

/tmp

The /tmp directory contains temporary files.

/usr

The /usr directory is the mount point of the usr file system.

/var

The /var directory is the mount point of the var file system. It contains those files
and directories that vary from machine to machine, such as tmp, spool and mail.
The /var file system also contains administrative directories such as /var/adm
and /var/opt, the latter is installed by application packages.

7-34 Directory and File Management

Directories in fete

This section describes the directories under the /etc directory, which contain
machine-specific configuration files and system administration databases.

/etc/bkup

This directory contains machine-specific files and directories for the extended
backup and restore operations. Also contained here are files and directories that
allow restore operations to be performed from single-user mode (system state 1).

/etc/bkup/method

This directory contains files that describe all the extended backup and restore
methods currently used on your computer.

/etc/cron.d

This directory contains administrative files for controlling and monitoring cron
activities.

/etc/default

This directory contains files that assign default values to certain system parame­
ters.

/etc/init.d

This directory contains executable files used in upward and downward transitions
to all system states. These files are linked to files beginning with s (start) or K

(stop) in /etc/rcn .d, where n is the appropriate system state. Files are executed
from the /etc/rc n .d directories.

/etc/lp

This directory contains the configuration files and interface programs for the LP
print service.

/etc/mail

This directory contains files used in administering the electronic mail system.

/etc/mail/lists

This directory contains files, each of which contains a mail alias. The name of each
file is the name of the mail alias that it contains. (See the mailx(l) command for a
description of the mail alias format.)

Summary of UNIX System Files & Directories 7-35

/etc/rc.d

This directory contains executable files that perform the various functions needed
to initialize the system to system state 2. The files are executed when
/usr/sbin/rc2 is run. (Files contained in this directory before UNIX System V
Release 3.0 were moved to /etc/rc2 .d. This directory is maintained only for
compatibility reasons.)

/etc/rcO.d

This directory contains files executed by /usr/sbin/rcO for transitions to system
states 0, 5, and 6. Files in this directory are linked from the ·/etc/init.d direc­
tory, and begin with either a K or an S. K shows processes that are stopped, and S

shows processes that are started when entering system states 0, 5, or 6.

/etc/rc1.d

This directory contains files executed by /usr/sbin/rcl for transitions to system
state 1. Files in this directory are linked from the / etc/ ini t . d directory, and
begin with either a K or an S. K shows processes that should be stopped, and S

shows processes that should be started when entering system state 1.

/etc/rc2.d

This directory contains files executed by /usr/sbin/rc2 for transitions to system
state 2. Files in this directory are linked from the /etc/init.d directory, and
begin with either a K or an S. K shows processes that should be stopped, and S

shows processes that should be started when entering system state 2.

7-36 Directory and File Management

/etc/rc3.d

This directory contains files executed by /usr/sbin/rc3 for transitions to system
state 3 (multi-user mode). Files in this directory are linked from the /etc/init.d
directory, and begin with either a K or an s. K shows processes that should be
stopped, and S shows processes that should be started when entering system state
3.

/etc/saf

This directory contains files and subdirectories used by the Service Access Facility.
The following commands in /usr/sbin use /etc/saf subdirectories for data
storage and retrieval: nlsadmin, pmadm and sacadm. The following files are
included:

_sysconfig

/etc/save.d

A list of port monitors to be started by the Service
Access Controller (SAC). Each port monitor listed in this
table has a --P11ltab file in the /etc/saf/ pm tag direc­
tory, where pmtag is the tag of this port monitor (such as
/etc/saf/starlan for the starlan port monitor).

The configuration script used to modify the environ­
ment for the Service Access Facility.

This directory contains files used by the sysadm command for backing up data on
floppy diskettes. The following files are included:

except

timestamp/ ...

/etc/shutdown.d

A list of the directories and files that should not be
copied as part of a backup is maintained in this file.

The date and time of the last backup (volume or incre­
mental) is maintained for each file system in the
/etc/save.d/timestamp directory.

This directory is maintained only for compatibility reasons. The files contained in
this directory prior to UNIX System V Release 3.0 were executable files that
invoked the various functions required during the transition to the single-user
mode (system states 1, s, or S). These files are now located in /etc/rcO .d.

Summary of UNIX System Files & Directories 7-37

Files in fete

The following files are used in machine-specific configuration and system
administration databases.

/etc/bkup/bkexcept.tab

This file contains a list of files to be excluded from an incremental backup.

/etc/bkup/bkhist.tab

This file contains information about the success of all back~p attempts.

/etc/bkup/bkreg.tab

This file contains instructions to the system for performing backup operations on
your computer.

/etc/bkup/bkstatus.tab

This file contains the status of backup operations currently taking place.

/etc/bkup/rsmethod.tab

This file contains descriptions of the types of objects that may be restored using
the full or partial restore method.

/etc/bkup/rsnotify.tab

This file contains the electronic mail address of the operator to be notified when­
ever restore requests require operator intervention.

/etc/bkup/rsstatus.tab

This file contains a list of all restore requests made by users of your computer.

/etc/bkup/rsstrat.tab

This file specifies a strategy for selecting archives when handling restore requests.
In completing restore operations for these requests, the backup history log is used
to navigate through the backup tape to find the desired files and or directories.

7-38 Directory and File Management

/ete/d-passwd

This file contains a list of programs that will require dial-up passwords when run
from login. Each line in the file is formatted as

program: encrypted yassword :

where program is the full path to any programs into which a user can log in and
run. The password referred to in the encrypted yassword is the one that will be
used by the dial-up password program. This password must be entered before
the user is given the login prompt. It is used in conjunction with the file
/ete/dialups.

/ete/default/eron

This file contains the default status (enable or disable) for the CRONLOG opera­
tion.

fete/default/login

This file may contain the following parameters that define a user's login environ­
ment:

ALTSHELL

CONSOLE

HZ

IDLEWEEKS

PASSREQ

PATH

SUPATH

TIMEOUT

TIME ZONE

ULIMIT

UMASK

Alternate shell status available to users (yes or no).

Root login allowed only at the console terminal.

Number of clock ticks per second.

Number of weeks a password may remain unchanged
before the user is denied access to the system.

Password requirement on logins (yes or no).

User's default PATH.

Root's default PATH.

Number of seconds allowed for logging in before a timeout
occurs.

Time zone used within the user's environment.

File size limit (ulimit).

User's value for umask.

Summary of UNIX System Files & Directories 7-39

/ete/default/passwd

This file contains the following information about the length and aging of user
passwords:

MINWEEKS

MAXWEEKS

PASSLENGTH

WARNWEEKS

/ete/default/su

Minimum number of weeks before a password can be
changed.

Maximum number of weeks a password can be unchanged.

Minimum number of characters in a password.

Number of weeks before a password expires that the user is
to bewamed.

This file contains values for the following parameters affecting the work of
privileged users:

SULOG

CONSOLE

PATH

SUPATH

/ete/deviee.tab

A pathname that identifies a file in which a log of all su
attempts may be created.

Pathnames of the console on which are broadcast messages
notifying you whenever someone attempts to su root.

PATH used for su users.

PATH used for su root users.

This file is the device table. It lists the device alias, path to the vnode, and special
attributes of every device connected to the computer.

/ete/devloek.tab

This file is created at run time and lists the reserved (locked) devices. Device
reservations do not remain intact across system reboots.

7-40 Directory and File Management

/ etc/ saf /pmtag / _config

This file contains a configuration script used to customize the environment for the
port monitor tagged as pmtag (such as /etc/saf/starlan/ _config for the star­
Ian port monitor). Port monitor configuration scripts are optional.

/etc/dgroup.tab

This file lists the group or groups to which a device belongs.

/etc/dialups

This file contains a list of terminal devices that cannot be accessed without a dial­
up password. It is used in conjunction with the file /etc/d-passwd.

/etc/group

This file describes each user group to the system. An entry is added for each new
group with the groupadd command.

/etc/inittab

This file contains instructions for the / shin/ ini t command. The instructions
define the processes created or stopped for each initialization state. Initialization
states are called system states or run states. By convention, system state 1 (or S or
s) is single-user mode; system states 2 and 3 are multi-user modes. (See init­
tab(4) in the System Files and Devices Reference for additional information.)

/etc/mail/mailcnfg

This file permits per-site customizing of the mail subsystem. See the mailcnfg(4)
manual page in the System Files and Devices Reference and the" Administering the
Mail Subsystem" chapter in the Basic System Administration guide.

/etc/mail/mailsurr

This file lists actions to be taken when mail containing particular patterns is pro­
cessed by mail. This can include routing translations and logging. See the mail­
surr(4) manual page in the System Files and Devices Reference.

/etc/mail/mailx.rc

This file contains defaults for the mailx program. It may be added by the system
administrator. See mailx(l).

Summary of UNIX System Files & Directories 7-41

/ete/mail/notifyand /ete/mail/notify. sys

These files are used by the notify program to determine the location of users in a
networked environment and to establish systems to use in case of file error.

/ete/motd

This file contains the message of the day. The message of the day is displayed on
a user's screen after that user has successfully logged in. (The commands that pro­
duce this output on the screen are in the fete/profile file.) This message should
be kept short and to the point. The /var /news files should be used for lengthy
messages.

/ete/passwd

This file identifies each user to the system. An entry is automatically added for
each new user with the useradd command, removed with the userdel command,
and modified with the usermod command.

fete/profile

This file contains the default profile for all users. The standard (default) environ­
ment for all users is established by the instructions in the fete/profile file. The
system administrator can change this file to set options for the root login. For
example, the six lines of code shown in Figure 7-11 can be added to the
fete/profile. This code defines the erase character, automatically identifies the
terminal type, and sets the TERM variable when the login ID is root.

Figure 7-11: Excerpt from fete/profile

1 if [${LOGNNME} = root 1
2 then
3 stty echoe
4 echo "Terminal: 5 export TERM

6 fi

7-42 Directory and File Management

/etc/rfs/rmnttab

This file is created by the rmount(lM) command. This file contains a listing of
unsuccessfully mounted resources or disconnected resources. These resources are
polled by the rmnttry(lM) cron entry.

/etc/dfs/dfstab

This file specifies the Remote File Sharing resources from your machine that are
automatically shared to remote machines when entering RFS mode (system state
3). Each entry in this file should be a share(lM) command line.

/etc/saf/pmtag/-pmtab

This is the administrative file for the port monitor tagged as pmtag. It contains an
entry for each service available through the pm tag port monitor.

/etc/saf/_sactab

This file contains information about all port monitors for which the Service Access
Controller (SAC) is responsible.

/etc/saf/_sysconfig

This file contains a configuration script to customize the environments for all port
monitors on the system. This per-system configuration file is optional.

/etc/TIMEZONE

This file sets the time zone shell variable TZ. The TZ variable is initially esta­
blished for the system via the sysadm setup command. The TZ variable in the
TIME ZONE file is changed by the sysadm timezone command. The TZ variable can
be redefined on a user (login) basis by setting the variable in the associated .pro­
file. The TIMEZONE file is executed by /usr/sbin/rc2. (See timezone(4) in the
System Files and Devices Reference for more information.)

/etc/ttydefs

This file contains information used by ttymon port monitor to set the terminal
modes and baud rate for a TTY port.

Summary of UNIX System Files & Directories 7-43

/etc/vfstab

This file provides default values for file systems and remote resources. The fol­
lowing information can be stored in this file:

• The block and character devices on which file systems reside

• The resource name

• The location where a file system is usually mounted

• The file system type

• Information on special mounting procedures

These defaults do not override command line arguments that have been entered
manually. (See mountal1(lM) in the Command Reference for additional informa­
tion.) Figure 7-12 shows a sample of this file.

Figure 7-12: Sample /etc/vfstab File

1 #special fsckdev mountp fstype fsckpass autornnt mntflags
2 /dev/SA/diskettel /dev/rdiskette /install s5 no

7-44 Directory and File Management

Directories in /usr

This section describes the directories in the /usr file system. The /usr file system
contains architecture-dependent and architecture-independent files and system
administration databases that can be shared.

/usr/bin

This directory contains public commands and system utilities.

/usr/include

This directory contains public header files for C programs.

/usr/lib

This directory contains public libraries, daemons, and architecture dependent
databases.

/usr/lib/lp

This directory contains the directories and files used in processing requests to the
LP print service.

/usr/lib/mail

This directory contains directories and files used in processing mail.

/usr/lib/mail/surrcmd

This directory contains programs necessary for mail surrogate processing.

/usr/sadm/bkup

This directory contains executables for the extended backup and restore services.

/usr/sbin

This directory contains executables used for system administration.

/usr/share

This directory contains architecture independent files that can be shared.

/usr/share/lib

This directory contains architecture independent databases.

Summary of UNIX System Files & Directories 7-45

/usr/sadni/skel

This directory contains the files and directories built when using the useradd
command with the -m argument. All directories and files under this location are
built under the $HOME location for the new user.

/usr/ucb

This directory contains binaries from the BSD Compatibility Package.

/usr/ucbinclude

This directory contains header files from the BSD Compatibility Package.

/usr/ucblib

This directory contains libraries from the BSD Compatibility Package.

7-46 Directory and File Management

Files in lusr

This section describes the files in the /usr directories, which contain architecture­
dependent and architecture-independent files and system administrative data­
bases that can be shared.

/usr/sbin/reO

This file contains a shell script executed by /usr / sbin/ shutdown for transitions to
single-user state, and by /sbin/init for transitions to system states 0, 5, and 6.
Files in the /ete/shutdown.d and /ete/reO.d directories are executed when
/usr/sbin/reO is run. The file KOOANNOUNCE in /ete/reO.d prints the message
System services are now being stopped. Any task that you want executed
when the system is taken to system states 0, s, 5, or 6 is done by adding a file to the
/ete/reO.d directory.

/usr/sbin/rel

This file contains a shell script executed by /sbin/init for transitions to system
state 1 (single-user state). Executable files in the /ete/re.d directory and any
executable files beginning with S or K in the /ete/rel.d directories are executed
when /usr/sbin/rel is run. All files in re1.d are linked from files in the
/ete/init.d directory. Other files may be added to the /ete/rel.d directory as
a function of adding hardware or software to the system.

/usr/sbin/re2

This file contains a shell script executed by /sbin/init for transitions to system
state 2 (multi-user state). Executable files in the /ete/re.d directory and any exe­
cutable files beginning with S or K in the /ete/re2.d directories are executed
when /usr/sbin/re2 is run. All files in re2.d are linked from files in the
/ete/init.d directory. Other files maybe added to the /ete/re2.d directory as
a function of adding hardware or software to the system.

/usr/sbin/re3

This file is executed by /sbin/init. It executes the shell scripts in /ete/re3.d
for transitions to RFS mode (system state 3).

/usr/sbin/re6

This shell script is run for transitions to system state 6 (for example, using shut­
down -i6). If the kernel needs reconfiguring, the /sbin/buildsys script is run.
If reconfiguration succeeds, /usr/sbin/re6 reboots without running diagnostics.
If reconfiguration fails, it spawns a shell.

Summary of UNIX System Files & Directories 7-47

/usr/sbin/shutdown

This file contains a shell script to shut down the system gracefully in preparation
for a system backup or scheduled downtime. After stopping all nonessential
processes, the shutdown script executes files in the /etc/shutdown.d directory by
calling /usr/sbin/rcO for transitions to system state 1 (single-user state). For
transitions to other system states, the shutdown script calls /sbin/init.

/usr/share/lib/mailx/mailx.helpand
/usr/share/lib/mailx/mailx.help.

Help files for mailx. The file mailx.help. - contains help messages for mailx's
tilde commands. See mailx(l) in the Command Reference.

7-48 Directory and File Management

Directories in /var
This section describes the directories of the /var directory, which contain files and
directories that vary from machine to machine.

/var/adm.

This directory contains system logging and accounting files.

/var/cron

This directory contains the cron log file.

/var/lp

This directory contains log files for the LP print service.

/var/mail

This directory contains subdirectories and mail files that users access with the
mail(l) and mailx(l) commands.

/var/mail/:saved

This directory contains temporary storage for mail messages while mail is run­
ning. Files are named with the user's ID while they are in /var /mail.

/var/news

This directory contains news files. The file names are descriptive of the contents of
the files; they are analogous to headlines. When a user reads the news, using the
news command, an empty file named . news_time is created in his or her login
directory. The date (time) of this file is used by the news command to determine if
a user has read the latest news file(s).

/var/opt

This directory is created and used by application packages.

/var/options

This directory contains a file (or symbolic link to a file) that identifies each utility
installed on the system. This directory also contains information created and used
by application packages (such as temporary files and logs).

Summary of UNIX System Files & Directories 7-49

/vax/preserve

This directory contains backup files for vi and ex.

/var/sadm

This directory contains logging and accounting files for the backup and restore
services, software installation utilities, and package management facilities.

/var/sadm/pkg

This directory contains data directories for installed software packages.

/var/saf

This directory contains log files for the Service Access Facility.

/vax/spool

This directory contains temporary spool files.

/var/spool/cron/crontabs

This directory contains crontab files for the adm, root and sys logins. Users
whose login IDs are in the /etc/cron. d/cron. allow file can establish their own
crontab file using the crontab command. If the cron. allow file does not exist,
the /etc/cron.d/cron.deny file is checked to determine if the user should be
denied the use of the crontab command.

As root, you can use the crontab command to make the desired entries. Revi­
sions to the file take effect at the next reboot. The file entries support the calen­
dar reminder service and the Basic Networking Utilities. Remember, you can use
the cron command to decrease the number of tasks you perform with the sysadm
command; include recurring and habitual tasks in your crontab file. (See cron­
tab(l) in the Command Reference for additional information.)

/var/spool/lp

This directory contains temporary print job files.

/var/spool/smtpq

This directory contains Simple Mail Transfer Protocol (SMTP) directories and log
files. Directories named host contain messages spooled to be sent to that host.
Files named LOG. n contain the logs from the past seven days (Sunday's log is
called log. 0). The current day's log is simply LOG.

7·50 Directory and File Management

/var/spool/uucp

This directory contains files to be sent by uucp.

/var/spool/uucppublic

This directory contains files received by uucp.

/var/tmp

This directory contains temporary files.

/var/uucp

This directory contains logging and accounting files for uucp.

Summary of UNIX System Files & Directories 7-51

Files in /var

This section describes the files in the /var directories, which contain information
that varies from machine to machine.

/var/adm/spellhist

If the Spell Utility is installed, this file contains a history of all words that the
spell command fails to match. Periodically, this file should be reviewed for
words that you can add to the dictionary. Clear the spellhist file after review­
ing it. (Refer to spell(l) in the Command Reference for information on adding
words to the dictionary, cleaning up the spellhist file, and other commands that
can be used with the Spell Utility.)

/var/adm/utng;>

This file contains information on the current system state. This information is
accessed with the who command.

/var/adm/utmpx

This file contains information similar to that in the /var/adm/utnp file, along with
a record of the remote host.

/var / adm/wtng;>

This file contains a history of system logins. The owner and group of this file must
be adm, and the access permissions must be 664. Each time login is run this file is
updated. As the system is accessed, this file increases in size. Periodically, this file
should be cleared or truncated. The command line >/var/adm/wtmp when exe­
cuted by root creates the file with nothing in it. The following command lines
limit the size of the /var/adm/wtng;> file to the last 3600 characters in the file:

tail -3600c /var/adm/wtng;> > /var/tng;>/wtng;>
mv /var/tnp/wtng;> /var/adm/wtmp

The /usr/sbin/cron, /usr/sbin/rcO, or /usr/sbin/rc2 command can be used
to clean up the wtng;> file. You can add the appropriate command lines to the
/var/spool/cron/crontabs/root file or add shell command lines to directories
such as /etc/rc2 .d, /etc/rc3 .d, and so on.

7-52 Directory and File Management

/var/adm/wtIt\Px

This file contains information similar to that in the /var/adm/wtIt\P file, along with
a record of the remote host.

/var/adm/loginlog

If this file exists, it is a text file that contains one entry for each group of five con­
secutive unsuccessful attempts to log in to the system.

/var/adm/sulog

This file contains a history of substitute user (su) command usage. As a security
measure, this file should not be readable by others. The /var / adm/ sulog file
should be truncated periodically to keep the size of the file within a reasonable
limit. The /usr/sbin/cron, the /usr/sbin/rcO, or the /usr/sbin/rc2 com­
mand can be used to clean up the sulog file. You can add the appropriate com­
mand lines to the /var/spool/cron/crontabs/root file or add shell command
lines to directories such as /etc/rc2 .d, /etc/rc3 .d, and so on. The following
command lines limit the size of the log file to the last 100 lines in the file:

tail -100 /var/adm/sulog > /var/tIt\P/sulog
mv /var/tIt\P/sulog /var/adm/sulog

/var/cron/log

This file contains a history of all actions taken by /usr / sbin/ cron. The
/var/cron/log file should be truncated periodically to keep the size of the file
within a reasonable limit. The /usr/sbin/cron, /usr/sbin/rcO, or
/usr/sbin/rc2 command can be used to clean up the /var/cron/log file. You
can add the appropriate command lines to the
/var/spool/cron/crontabs/root file or add shell command lines in the follow­
ing directories (as applicable): / etc/rc2.d, / etc/rc3.d, (and so on). The following
command lines limit the size of the log file to the last 100 lines in the file:

tail -100 /var/cron/log > /var/tmp/log
mv /var/tIt\P/log /var/cron/log

Summary of UNIX System Files & Directories 7-53

/var/sadm/bkup/logs/bklog

This file contains a process log used when troubleshooting a backup operation.

/var/sadm/bkup/logs/bkrs

This file contains a process log used when troubleshooting a backup or restore
operation for which a method was not specified.

/var/sadm/bkup/logs/rslog

This file contains a process log used when troubleshooting a restore operation.

/var/sadm/bkup/toc

This file contains table of contents entries created by a backup method.

7-54 Directory and File Management

File Access Controls

When the Is -1 command displays the contents of a directory, the first column of
output describes the "mode" of the file. This information tells you not only what
type of file it is, but who has permission to access it. This first field is 10 characters
long. The first character defines the file type and can be one of the following
types:

Figure 7-13: File Types

Type Symbol

Text, programs, etc.
Directories d
Character special c
Block special b
FIFO (named pipe) special p

Symbolic links 1

Using this key to interpret the previous screen, you can see that the starship
directory contains three directories and two regular disk files.

The next several characters, which are either letters or hyphens, identify who has
permission to read and use the file or directory. (Permissions are discussed in the
description of the chmod.O function under" Accessing and Manipulating Files"
later in this chapter.)

The following number is the link count. For a file, this equals the number of users
linked to that file. For a directory, this number shows the number of directories
immediately under it plus two (for the directory itself and its parent directory).

Next, the login name of the file's owner appears (here it is starship), followed by
the group name of the file or directory (project).

The following number shows the length of the file or directory entry measured in
units of information (or memory) called bytes. The month, day, and time that the
file was last modified is given next. Finally, the last column shows the name of the
directory or file.

Figure 7-14 identifies each column in the rows of output from the Is -1
command.

File Access Controls 7-55

Figure 7-14: Description of Output Produced by the Is -1 Command

File -J~
type ~

number of
blocks used

owner
name

number
of links

total 30

group
name

rwxr-xr-x 3 starship proj
rwxr-xr-x 2 starship proj
rwxr-xr-x 2 starship proj
rwx- - - - - - 2 starship proj
rw------- 1 starship proj

~

permissions

File Protection

length of
file in bytes

96 Oct 27 08:16
64 Nov 1 14: 19
80Nov 8 08:41

12301 Nov 2 10: 15
40 Oct 27 10:00

~

I
time/ date last

modified

name

bin
draft
letters

list
mbox

Because the UNIX operating system is a multi-user system, you usually do not
work alone in the file system. System users can follow pathnames to various
directories and read and use files belonging to one another, as long as they have
permission to do so.

lf you own a file, you can decide who has the right to read it, write in it (make
changes to it), or, if it is a program, to execute it. You can also restrict permissions
for directories. When you grant execute permission for a directory, you allow the
specified users to change directory to it and list its contents with the Is command
[see ls(I)]. Only the owner or a privileged user can define the following:

7-56 Directory and File Management

• which users have permission to access data

• which types of permission they have (that is, how they are allowed to use
the data)

This section introduces access-permissions for files and discusses file protection.

File Permissions

UNIX System V defines access-control and privilege mechanisms to allow for
extended-security-controls that implement security policies different from those in
UNIX System V, but which avoid altering or overriding the defined semantics of
any functions in UNIX System V. Although quite simple, the access-control
scheme has some unusual features. Each UNIX System V user has a unique user­
identification (user-id) number, as well as a shared group-identification (group-id)
number. A file is tagged with the user-id and group-id of its owner, and a set of
access-permission-bits when created by openO, creatO, mkdirO, mknodO and
mkfifoO [see open(2), creat(2), mkdir(2), mknod(2) and mkfifo(2)]. UNIX System
V file-access-control uses the access-permission-bits to specify independent read,
write and execute permissions for the owner of the file, for any members of the
owner's group and for any other users. For directories, execute permission means
search permission. These access-permission-bits are changed by chmodO, and are
read by statO and fstatO [see chmod(2), stat(2) and fstat(2)].

When a process requests file-access-permission for read, write or execute/ search,
access is determined as follows:

1. If the effective-user-id of the process is a user with appropriate access­
permissions (such as a privileged user).

a. If read, write or directory search permission is requested, access is
granted.

b. If execute permission is requested, access is granted if execute per­
mission is granted to at least one user by the file-permission-bits
or by an alternate-access-control mechanism; otherwise, access is
denied.

2. Otherwise:

a. The read, write and execute/search access-permissions on a file are
granted to a process if one or more of the following are true [see
chmod(2)]:

File Access Controls 7-57

• The appropriate access-permission-bit of the owner por­
tion of the file-mode is set and the effective-user-id of the
process matches the user-id of the owner of the file

• The appropriate access-permission-bit of the group por­
tion of the file-mode is set, the effective-group-id of the
process matches the group-id of the file and the
effective-user-id of the process fails to match the user-id
of the owner of the file.

• The appropriate access-permission-bit of the other por­
tion of the file-mode is set, the effective-group-id of the
process fails to match the group-id of the file and the
effective-user-id of the process fails to match the user-id
of the owner of the file.

Otherwise, the corresponding access-permissions on a file are
denied to the process.

b. Access is granted if an alternate-access-control mechanism is not
enabled and the requested access-permission-bit is set for the class
to which the process belongs, or if an alternate-access-control
mechanism is enabled and it allows the requested access; other­
wise, access is denied.

Implementations may provide additional-file-access-control or alternate-file­
access-control mechanisms, or both. An additional-access-control mechanism only
further restricts the file-access-permissions defined by the file-permission-bits. An
alternate-access-control mechanism shall:

1. specify file-permission-bits for the file-owner-class, file-group-class and
file-ather-class of the file, corresponding to the access-permissions, that
statO and fstatO return.

2. Be enabled only by explicit user action, on a per-file basis by the file-owner
or a user with the appropriate-privilege.

3. Be disabled for a file after the file-permission-bits are changed for that file
with chmodO. The disabling of the alternate mechanism need not disable
any additional mechanisms defined by an implementation.

UNIX System V recognizes one particular user-id, the "super-user", as exempt
from the usual constraints on file access; thus, for example, programs may be writ­
ten to dump and reload the file-system without unwanted interference from the
protection system. A process is recognized as a super-user process and is granted
special privileges if its effective-user-id is O.

7-58 Directory and File Management

Setting Default Permissions

When a file is created its default permissions are set. These default settings may
be changed by placing an appropriate umask command in the system profile
(fete/profile).

Figure 7-15: umask(1) Settings for Different Security Levels

Level of Security umask Disallows

Permissive 0002 w for others
Moderate 0027 w for group, rwx for others
Severe 0077 rwx for group and others

File Access Controls 7-59

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a file or a directory
by using Is -1 to produce a long listing of a directory's contents.

In the first field of the Is -1 output, the next nine characters are interpreted as
three sets of three bits each. The first set refers to the owner's permissions; the
next to permissions of members in the file's group; and the last to all others.
Within each set, the three characters show permission to read, to write, and to exe­
cute the file as a program, respectively. For a directory, "execute" permission is
interpreted to mean permission to search the directory for a specified file. For
example, typing Is -1 while in the directory named starship/bin in the sample
file-system produces the following output:

$ Is -1

total 35
-rwxr-xr-x 1 starship
-rw-r--r-- 1 starship
drwx--x--x 2 starship
$

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

Permissions for the display and list files and the tools directory are shown on
the left of the screen under the line total 35, and appear in this format:

-rwxr-xr-x
-rw-r--r--
drwx--x--x

(for the display file)
(for the list file))

(for the tools directory)

After the initial character, which describes the file type (for example, a - (dash)
symbolizes a regular file and a d a directory), the other nine characters that set the
permissions comprise three sets of three characters. The first set refers to permis­
sions for the owner, the second set to permissions for group members, and the last
set to permissions for all other system users. Within each set of characters, the r, W

and x show the permissions currently granted to each category. If a dash appears
instead of an r, wor x permission to read, write or execute is denied.

The following diagram summarizes this breakdown for the file named display.

7-60 Directory and File Management

user group others

~
rwxr-xr-x

/
\~

\
'" Permission to write to

the file denied to
group and other

read write execute

As you can see, the owner has r, w, and x permissions and members of the group
and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally the letter s or the
letter 1 may appear in the permissions line, instead of an r, W or x. The letter s
(short for set user ID or set group ID) represents a special type of permission to
execute a file. It appears where you normally see an x (or -) for the user or group
(the first and second sets of permissions). From a user's point of view it is
equivalent to an x in the same position; it implies that execute permission exists. It
is significant only for programmers and system administrators. (See the Basic Sys­
tem Administration guide for details about setting the user or group ID.) The letter
1 indicates that locking will occur when the file is accessed. It does not mean that
the file has been locked.

File Access Controls 7-61

The permissions are as follows:

Figure 7-16: File Access Permissions

Symbol Explanation

r The file is readable.
w The file is writable.
x The file is executable.

This permission is not granted.
1 Mandatory locking will occur during access.

(The set-group-ID bit is on and the group
execution bit is off.)

s The set-user-ID or set-group-ID bit is on,
and the corresponding user or group
execution bit is also on.

s The set-user-ID bit is on and the user
execution bit is off.

t The sticky and the execution bits for other are on.
T The sticky bit is turned on, and the execution

bit for other is off.

Figure 7-17: Directory Access Permissions

Symbol Explanation

r The directory is readable.
w The directory may be altered

(files may be added or removed).
x The directory may be searched. (This permission

is required to cd to the directory.)
t File removal from a writable directory is limited to

the owner of the directory or file unless the file
is writable.

7-62 Directory and File Management

How to Change Existing Permissions

After you have determined what permissions are in effect, you can change them
by calling the cbmod command in the following format:

cbmod who+permission jile(s)

or

cbmod who=permission jile(s)

The following list defines each component of this command line.

cbmod

who

name of the program

one ofthree user groups (u, g or 0)
u= user
g=group
0= others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r, wand x)
r =read

jile(s)

w=write
x = execute

file (or directory) name(s) listed; assumed to be branches
from your current directory, unless you use full path­
names.

The chmod command will not work if you type a space(s) between who, the
instruction that gives (+) or denies (-) permission, and the permission.

The following examples show a few possible ways to use the cbmod command. As
the owner of display, you can read, write, and run this executable file. You can
protect the file against being accidentally changed by denying yourself write (w)
permission. To do this, type the command line:

cbmod u-w display

After receiving the prompt, type Is -1 and press the RETURN key to verify that
this permission has been changed, as shown in the following screen.

File Access Controls 7-63

$ chmod u-w display
$ Is -1
total 35

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

As you can see, you no longer have permission to write changes into the file. You
will not be able to change this file until you restore write permission for yourself.

Now consider another example. Notice that permission to write into the file
display has been denied to members of your group and other system users.
However, they do have read permission. This means they can copy the file into
their own directories and then make changes to it. To prevent all system users
from copying this file, you can deny them read permission by typing:

chmod go-r display

The g and 0 stand for group members and all other system users, respectively, and
the -r denies them permission to read or copy the file. Check the results with the
Is -1 command.

$ chmod go-r display
$ Is -1
total 35

project

project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

For more information, refer to ls(l) and chmod(l) in the Command Reference.

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission for directories as
well as files. Simply specify a directory name instead of a file name on the com­
mand line.

However, consider the impact on various system users of changing permissions
for directories. For example, suppose you grant read permission for a directory to
yourself (u), members of your group (g), and other system users (0). Every user
who has access to the system will be able to read the names of the files contained

7-64 Directory and File Management

in that directory by running the 18 -1 command. Similarly, granting write per­
mission allows the designated users to create new files in the directory and
remove existing ones. Granting permission to execute the directory allows desig­
nated users to move to that directory (and make it their current directory) by
using the cd command.

An Alternative Method

There are two methods by which the chmod command can be executed. The
method described above, in which symbols such as r, wand x are used to specify
permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to specify
permissions using three octal numbers, ranging from a to 7. (The octal number
system is different from the decimal system that we typically use on a day-to-day
basis.) To learn how to use the octal method, see the chmod(l) entry in the Com­
mand Reference.

File Access Controls 7-65

Security Considerations

This section gives the software developer information on various security features
and their impact on writing applications. While many of the security features, like
Mandatory Access Control, are available only if the Enhanced Security Utilities
are installed and running, it is to your advantage to program your application so
that it will run on UNIX System V Release 4 with and without the Enhanced Secu­
rity Utilities installed. This way, you can avoid programming the same applica­
tion for each environment.

What Security Means to Programmers

As a programmer on UNIX System V Release 4, you need a general understanding
of how security affects you and protects your files on the computer system. You
also need to understand the difference between basic security and enhanced secu­
rity. Finally, you need to understand the term Trusted Computing Base (TCB), an
all-encompassing term which describes the mechanisms used to enforce Enhanced
Security.

What Is Security?

Security for a computing system means that the information on the system is pro­
tected from unauthorized disclosure or modification. If each user had a personal
non-networked computing system that was kept locked up, each user's files
would be secure. But isolation and physical security are not practical in most cir­
cumstances.

On a computer system that many people share, the simplest security mechanism
would be to allow only the owner of a file to access that file. That would be incon­
venient, however, since one of the benefits of a computer system is the sharing of
resources. For example, it would be wasteful for each user to have a private copy
of each command. Commands are usually shared, but users often want to restrict
access to the contents of data files.

On a secure system, each user has a unique identity and a level of authorization
associated with that identity. For security to work, the computer system must
have some way of identifying users, their level of authorization, and their files.
For the most part, while you are logged in, all data you enter, create, and process
belongs to you. Data is stored in named files on the computer system. Each file
you own is kept separate from the rest of your files and from the files belonging to
other users.

7-66 Directory and File Management

As a programmer, you are also concerned with the impact of security on users
who run your programs.

A secure computer system must have a mechanism that makes access decisions,
that is, one that decides who can access what, based upon user identity and
authorization.

There are many ways in which the security of a computer system can be violated.
Unauthorized access to read or write files can be the result of:

• the abuse of privileges by administrators

• malicious programs that gain privileges or access to files

• idle browsing of files that are inadequately protected

Most computer systems provide some degree of basic security.

How Basic Security Works

An operating system stores and processes information in the form of electronic
data. In doing so, it provides an interface between you, the user of the computer,
and the computer. An operating system provides you with commands, library
routines, functions, and programs that allow you to tell the computer how to store
and process the information that belongs to you.

A computer system enforces basic security by making access decisions, that is, by
deciding who can access what. In order to make access decisions, a computer sys­
tem uniquely identifies each user on the system and stores information in named
files, each of which belongs to a single user on the system. It would be a potential
violation of security if users could access any files at will.

UNIX System V supplies basic security through the use of the login and passwd
(password) mechanisms, which identify you to the system and put you in control
of your data. Also included in basic security are access mode bits, which give
users some control over what other users can access their files. It is not a violation
of basic security for users to have the ability to share individual files with specific
other users.

Security Considerations 7-67

Privileges

Privilege, in the simplest terms, is the ability to override system restrictions on the
actions of users. All operating systems allow users to exercise special privilege,
under certain conditions, to perform sensitive system operations. Sensitive system
operations are those which affect the configuration of the system or its availability
to users.

Most users cannot, for example, execute commands affecting the hardware or
software configuration of the system. Activities such as mounting and checking
file systems, adding users, modifying user profiles, adding and removing peri­
pherals, installing application software, password administration, and administra­
tion of the user terminal lines, are restricted to certain users.

In UNIX System V Release 4.0 and previous releases, the restriction of privilege is
implemented by designating a special user identifier (UID) of 0; the login name
historically associated with this UID is root.

When a person logs in as root, that person has unrestricted access to every file on
the system, and the ability to alter system operation. Commands that execute sen­
sitive system operations check to see whether the effective UID of the process
requesting the operation is o. If it is, the user process is given unlimited access to
the system.

The root login in UNIX System V Release 4.0 and previous releases possesses, in
effect, the one privilege necessary to override all system restrictions on command
execution and access: the superuser privilege.

UNIX System V Release 4.2 supplements this privilege mechanism with a more
flexible mechanism to suit the needs of the user community. Now, rather than
investing the power to issue any command on the system to one user, you can
give partial super-user power to several users. By assigning privileges linked to
specific tasks, you essentially assign a role to each such user.

This privilege mechanism is actually a combination of the old UID functionality
supported in the UNIX operating system for over 20 years, and new, discrete
privilege functionality.

The most important advantage of this privilege mechanism over the pure UID­
based privilege mechanism is the fine granularity with which it can apportion sys­
tem privileges to executing processes. For example, you might assign someone to
the role of mail administrator. That person would have all the privileges neces­
sary to oversee maintenance and troubleshooting of the mail subsystem, but no
others; he or she wouldn't be able to add and delete user accounts, reorganize file
systems, or do any other administrative work unrelated to electronic mail.

7·68 Directory and File Management

The superuser privilege can be replaced by a list of discrete privileges based on
the categorization of sensitive system operations into groups of operations exercis­
ing the same kind of privilege. In other words, many different commands might
need to override discretionary read access restrictions on files to perform their
functions; defining a privilege such as P_DACREAD, and designating it as one of the
possible privileges a command can have allows for a more controlled propagation
of privileges by processes than the superuser privilege.

This means that there are two ways to acquire privilege with the superuser
module (SUM) provided in SVR4.2: first, when the effective UID of a new process
is equal to the tunable parameter PRIVID, and also, when an executable with fixed
privileges is executed. With PRIVID set equal to 0, this behavior preserves the
omnipotence of a process with effective uid o. The system is delivered with PRI­

VID equal to o.

It is important to recognize that the list of system privileges, and fixed privileges
on files, are all part of the basic privilege mechanism provided by the operating
system.

Privileges Associated with a File

For every executable file there may be a set of privileges that are acquired when
that program is executed via an exec system call. This set of privileges is known
as fixed privileges: they are always given to the new program, independent of the
privileges of the parent or calling-process. Each executable file can have two sets
of privileges associated with it that are propagated when that program is executed
via an exec system call:

• Fixed privileges are always given to the new program, independent of the
calling or parent process's privileges.

• Inheritable privileges will exist in the new program only if they existed in
the previous program. Inheritable privileges are given to the new program
only if they exist in the calling process's privilege set; inheritable privileges
are only used by the LPM privilege module, not by the SUM privilege
module. (See "Privilege Policy Modules" below.)

These sets are disjoint, that is, a privilege can not be defined as both fixed and
inheritable for the same file. If an executable file does not require any privileges
then this set is empty.

Security Considerations 7-69

y Privileges associated wUh a liIe are removed when the validity information
for the file changes (for example, when the file is opened for writing or
when the modes of the file change). This removes the file from the Trusted
Computing Base; the privileges must be set again in order for the com­
mand to run with privilege.

Manipulating File Privileges

Use the fileprivO system call to set, retrieve, or count the privileges associated
with a file [see filepriv(2)]. An administrative command also provides these
same basic functions [see filepriv(lM)].

The fileprivO system call has three command types:

• PUTPRV sets the privileges associated with a file. This is an absolute setting;
the specified privileges replace any previously existing privileges for the
file.

• GETPRV retrieves the privileges associated with a file.

• CNTPRV returns the number of privileges associated with a file.

privilege(5) lists the names of the privileges as well as some other important
items. priv(5) lists some functions used to easily indicate to fileprivO the par­
ticular privilege set to which a privilege belongs.

Some of the above command types require a list of privileges or return such a list.
PUTPRV requires an array of privilege descriptors that lists the privileges to be set.
A privilege descriptor is an integral data type that is assigned a value defining the
privilege and the set it is in. Functions have been defined to make this task sim­
plier. Use PID_inher to indicate an inheritable privilege. For example,
PID_fixed(P_DACREAD) would indicate the P_DACREAD privilege in the fixed set.
Similarly PID_inher (P_MACREAD) would indicate the P_MACREAD privilege in the
inheritable set.

Figure 7-18 shows a code fragment that sets file privileges. Some of the privilege
sets indicated in this example mayor may not exist or be valid for your particular
system.

7-70 Directory and File Management

Figure 7-18: Setting File Privileges

#inc1ude <priv.h>

priv_t privd[3];

/*
* Set P_DACREAD and P_DACWRITE as iIlheritab1e and
* P_SETUID as fixed for file /sbin/testprog.
* This process must have P_SETFPRIV, P_DACREAD, P_DACWRITE, and

* P_SETUID in its ~ set.

*/
privd[O] = PIILinher(P_DACREAD);

privd[1] = ~lLinher(P_DACWRlTE);
privd[2] = pm3ixed(P_SETUID);
if (filepriv("/sbin/testprog", PUTPRV, privd, 3) == -1) (

/* Sane error occurred, display the error and exit. */
perror("filepriv PUTPRV error");
exit(l);

In this example, privileges are being set for the executable file / sbin/testprog.
The privileges P_DACREAD and P_DACWRITE are made inheritable, while P_SETUID
is made fixed. PIlLinher and PIlLfixed are used to assign values to the privilege
descriptors; the PIlLinher function marks P_DACREAD and P_DACWRlTE as inherit­
able while pm_fixed marks P_SETUID as fixed. The call to filepriv using
PUTPRV will set the indicated privileges for the file. If an error occurred, perror is
called to display an error message [see perror(3C)] and the program terminates.

A privilege that is being set for a file must exist in the maximum set of the pro­
cess making the fileprivO system call.

~
~ Since the PUTPRV command for fileprivO is a privileged operation, a pro­

NOTE cess using this system call must have the appropriate privilege in its working
set. See intro(2) for a list of privileges.

Use the GETPRV command for the fileprivO system call to determine the
privileges associated with a file. This command also requires a pointer to an array
of privilege descriptors. You must ensure that the array is large enough to contain
all the privileges associated with the file.

Security Considerations 7-71

Figure 7-19 shows a code fragment that will retrieve the privileges associated with
a file.

Figure 7-19: Retrieving File Privileges

#include <priv.h>

priv_t *privp;
int cnt;
/*

* Dete%mine the number of privileges for /sbin/testprog.

*/
if «ent = filepriv(n/sbin/testprog", CNTPRV, (priv_t *)0, 0» == -1) {

/* filepriv failed; display error and exit. */
perror (II filepri v CNTPRV error");
exit(1);

if (cnt > 0) {

/*
* malloc some memory and get the privileges.
*/

if «privp = (priv_t *)malloe(cnt * sizeof(priv_t» == NULL) (

exit(1); /* Couldn't malloc so exit. */

if (filepriv(" Isbin/testprog", GETPRV, privp, cnt) == -1)
/* filepriv failed; display error and exit. */
perror (II filepri v GETPRV error");

exit(1);

In this example, the CNTPRV command is used to determine the number of
privileges. This number is then used to determine the amount of memory to
request when calling mallocO for an array large enough to contain all the
privileges. [see malloc(3C)]. fileprivO is then called with the GETPRV com­
mand to retrieve the actual privileges.

Privileges Associated with a Process

After a forkO, the privileges of the parent and child processes are identical. How­
ever, when an exec system call is performed, the privileges of the new program
are determined from those of the program performing the exec and from the
privileges associated with the executable file.

7-72 Directory and File Management

Each process has three sets of privileges:

• The maximum set contains all the privileges granted to the process.

• The working set contains all the privileges currently being used by the pro­
cess.

• The saved set contains all privileges acquired by executing files with fixed
privileges.

How the privileges for a new process are determined is specific to the privilege
(policy) module installed.

Manipulating Process Privileges

Use the procpriv system call to add, put, remove, retrieve, or count privileges
associated with the calling process. This system call has five command types:

• SETPRV adds the requested privileges to the working set for the current pro­
cess. Privileges already in the working set are not affected; they remain in
the set. Requested privileges not in the current maximum set are ignored.

• PUTPRV sets the working and maximum sets for the current process. This is
an absolute setting; the specified privileges replace the current working and
maximum sets. Privileges requested which are not in the current maximum
set are ignored.

• CLRPRV removes the requested privileges from either the working or max­
imum set. If a privilege is removed from the maximum set, it is also
removed from the working set if it exists there, since the working set is
always a subset of the maximum set.

• GETPRV retrieves the working and maximum privilege sets for the current
process.

• CNTPRV returns the number of privileges associated with the current pro­
cess.

Figure 7-20 shows a code fragment that does a setuid and uses procpriv to set
and clear the appropriate privilege as needed.

Security Considerations 7-73

Figure 7-20: Adding and Clearing Process Privileges

#include <priv.h>

priv_t privd[2];
int uid;

privd[O] = pm_work (P_SETUID) ;
privd[l] = pm_max (P_SETUID) ;
1*
* Add P_SETUID to the working set of the current process. P_SETUID
* must be in the ~ working set to be successful.
*1

if (procpriv(SETPRV, privd, 1) == -1) {

1*

1* It failed, so display error and exit. *1
perror(IIprocpriv SETPRV error");
exit (1) ;

* Change to user id "uid ll (previously initialized)
*1

if (setuid(uid) == -1) {

1*

1*
* It failed, perhaps P_SETUID wasn't in our maximum working
* set. Display error and exit.
*1

perror("setuid error");
exit (1) ;

* We don't need P_SETUID any more so remove it from the working
* and maximum sets.

*1
if (procpriv(CLRPRV, privd, 2) == -1) {

1*
* It failed, so display error and exit.
*1

perror ("procpri v CLRPRV error");
exit(l);

The first call to procpriv sets the P_SETUID privilege in the process's working set.
Note that the count of 1 in the system call indicates that only one (the first) ele­
ment of the array pri vd is to be used. Once the privilege is in the working set,
setuid is called. Since P _SETUID will not be required by the program any more,
procpri v is again called, this time with the CLRPRV command.

7-74 Directory and File Management

Note in this case that the count of 2 indicates that both elements of array privd

are to be used, thus removing the privilege from both the maximum and working
sets. Note that if the privilege had only been removed from the maximum set, the
system would have also removed it from the working set, since the working set
must be a subset of the maximum set, that is, the working set can not contain
privileges which are not in the maximum set.

Use the PUTPRV command for procpriv similarly to SETPRV, but remember that
the setting is absolute, that is, the indicated privileges replace both the current
working and maximum sets. The privileges you request must exist in the current
maximum set.

Figure 7-21 shows a code fragment that uses the PUTPRV command to set the max­
imum and working sets.

Figure 7-21: Setting Process Privileges Using PUTPRV

#include <priv.h>

priv_t privd[2];

/*
* Set the maximrum set to P_SETUID. The working set is empty since

* it is not set here.
*/

if {procpriv{PUTPRV, privd, I} == -I} {
/* It failed, so display error and exit. */
perror ("procpri v PUTPRV error II) ;

exit{l} ;

In this example, the privilege descriptor is set to P_SETUID in the maximum set. If
P_SETUID is already in the maximum set, procpriv causes the new maximum set
to contain only P_SETUID. The new working set will be empty, since no privileges
are defined for it.

The GETPRV and CNTPRV commands work in a manner similar to their counter­
parts in the filepriv system call. Figure 7-22 shows a code fragment that will
retrieve the privileges associated with a process.

Security Considerations 7-75

Figure 7-22: Retrieving Process Privileges

#inelude <priv.h>

priv_t *privp;

int ant;

/*
* Determine the number of privileges for this process.
*/

if «ent = proepriv(CNTPRV, (priv_t *)0, 0» == -1) {
/* proepriv failed; display error and exit. */
perror(lIprocpriv CNTPRV error ll);
exit(l);

if (ent > 0) {
/*

* malloe same memory and get the privileges.
*/

if «privp = (priv_t *)malloe(ent * sizeof(priv_t» == NULL) {
/* Couldn't malloe so exit. */
exit(l);

if (procpriv(GETPRV, privp, ent) == -1) {
/* procpriv failed; display error and exit. */
perror(lIprocpriv GETPRV errorll);
exit(l) ;

In this example, the number of privileges returned by the CNTPRV command to
proepri v is used to determine the amount of memory to request when calling
malloe. proepriv is then called with the GETPRV command to retrieve the actual
privileges.

With proper use, the privilege mechanism provides a way to restrict execution of
sensitive system functions and improves the security of the system. See "Guide­
lines for Writing Trusted Software" in this guide.

7-76 Directory and File Management

8 Signals, Job Control and Pipes

Introduction 8-1

Signals 8-2
Protecting Critical Sections 8-3
Signal Types 8-4
Signal Handlers 8-5
Sending Signals 8-13
Signal Stacks 8-14

Job Control and Session Management 8-15
Overview of Job Control 8-15

• Job Control Terminology 8-16
• Job Control Signals 8-17
• The Controlling-Terminal and Process-Groups 8-18
• Terminal Access Control 8-18
• Modem Disconnect 8-20

STREAMS-based Job Control 8-21
• Allocation and Deallocation 8-21
• Hung-up Streams 8-22
• Hangup Signals 8-22
• Accessing the Controlling-Terminal 8-22

Basic Interprocess Communication - Pipes 8-24

Table of Contents

STREAMS-Based Pipes and FIFOs 8-27
Creating and Opening Pipes and FIFOs 8-27

• Accessing Pipes and FIFOs 8-29
• Flushing Pipes and FIFOs 8-31
• Named Streams 8-32
• Unique Connections 8-35

ii Table of Contents

Introduction

The UNIX kernel provides several means by which processes can communicate
with each other. This chapter provides a detailed discussion on three of these
facilities; that is signals, pipes, and job control.

Signals are a communications mechanism between processes and the kernel. They
notify a process that a certain event has occurred, and they can be sent to a process
or a group of processes. Based on the type of signal received, a process might take
some necessary action. Included in this chapter is a discussion on the types of sig­
nals, signal handlers, how signals are sent, and the signal stack feature.

Job control provides a means of managing processes during a login session. The
discussion here includes an overview of job control, and STREAMS-based job con­
trol.

Also included in this chapter is a section devoted to pipes, and one on STREAMS­
based pipes and FIFOs. Pipes are a mechanism which provide a means of passing
information from one running process to another. As of UNIX System v Release 4,
pipes and FIFOs have become STREAMS-based for network applications. For
completeness, a discussion of this subject has also been included.

Introduction 8-1

Signals

A signal is an asynchronous notification of an event, and is the most frequently
used means for one process to indicate the occurrence of some event that may
have an impact on another process. Process signalling involves two specific
functions:

• the function killO which sends a signal.

• the function sigactionO which establishes how to handle a signal.

A signal is said to be "generated for" (or "sent to") a process when the event that
causes the signal first occurs. Examples of such events include hardware-faults,
timer-expiration and terminal-activity as well as any call to killO [see kill(2) in
the Operating System API Reference]. In some circumstances, the same event gen­
erates signals for multiple processes.

There are two categories of signals, those generated externally, such as a break
from a terminal, and those generated internally (a process fault). Both types are
treated identically. There are several ways a signal can be generated, some of
which are:

• A user-mode attempting to write into protected memory.

• An error during a system-call.

• Some condition raised at the controlling-terminal of a process (such as break
or hangup).

• An explicit system-call to killO.

• Expiration of the alarm clock timer or the generation of the trap signal dur­
ing process tracing.

Signals interrupt the normal flow of control in a process. Signals do not directly
affect the execution of a process; but rather, request that the process take some
action. Each process has established actions to take in response to signals [see
"Signal Actions" in siginfo(5)].

A signal is said to be "delivered" to a process when the process receives the signal
and takes the action established for it. Signal delivery resembles the occurrence of
a hardware interrupt: the signal is normally blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify the
handler to which a signal is delivered, or specify that the signal is to be blocked or
ignored. A process may also specify that a default action is to be taken when
signals occur.

8-2 Signals, Job Control and Pipes

Some signals will cause a process to exit when they are not caught. This may be
accompanied by creation of a core image file, containing the current memory
image of the process for use in post-mortem debugging. A process may choose to
have signals delivered on a special stack, so that sophisticated software stack
manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously,
the order in which they are delivered to a process is implementation-specific. Sig­
nal routines normally execute with the signal that caused their invocation to be
blocked, but other signals may yet occur. Mechanisms are provided whereby crit­
ical sections of code may protect themselves against the occurrence of specified
signals.

Protecting Critical Sections

To block a section of code against one or more signals, a sigprocmask call may be
used to add a set of signals to the existing mask and return the old mask:

sigprocmask(SIG_BLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

The old mask can then be restored later with sigprocmask,

sigprocmask(SIG_UNBLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

The sigprocmask call can be used to read the current mask without changing it
by specifying a null pointer as its second argument.

It is possible to check conditions with some signals blocked and then to pause
waiting for a signal and restoring the mask, by using:

Signals

sigsuspend(mask);
sigset_t *mask;

8-3

Signal Types

The signals defined by the system fall into one of five classes: hardware condi­
tions, software conditions, input/ output notification, process control, or resource
control. The file /usr / include/ signal. h defines the set of signals that may be
delivered to a process.

Hardware signals are derived from exceptional conditions which may occur dur­
ing execution. Such signals include SIGFPE representing floating point and other
arithmetic exceptions, SIGILL for invalid instruction execution, SIGSEGV for
addresses outside the currently assigned area of memory or for accesses that
violate memory protection constraints and SIGBUS for accesses that result in
hardware related errors. Other, more CPU-specific hardware signals exist, such as
SIGABRT, SIGEMT, and SIGTRAP.

Software signals reflect interrupts generated by user request: SIGINT for the nor­
mal interrupt signal; SIGQUIT for the more powerful quit signal that normally
causes a core image to be generated; SIGHUP and SIGTERM that cause graceful pro­
cess termination, either because a user has hung up, or by user or program
request; and SIGKILL, a more powerful termination signal that a process cannot
catch or ignore. Programs may define their own asynchronous
events using SIGUSRl and SIGUSR2. Other software signals (SIGALRM,

SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGPOLL signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A process
may request to receive a SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The SIGSTOP signal is a powerful stop signal, because it cannot be caught.
Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request,
input request, or output request respectively is the reason for stopping the pro­
cess. A SIGCONT signal is sent to a process when it is continued from a stopped
state. Processes may receive notification with a SIGCHLD signal when a child­
process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs
when a process nears its CPU time limit and SIGXFSZ warns that the limit on file
size creation has been reached.

8-4 Signals, Job Control and Pipes

Signal Handlers

For each signal, the <signal. h> header file establishes the default signal-action to
be one of the following:

Abort On receipt of the signal, the receiving-process terminates
abnormally with all the consequences outlined in exit(2).

Exit On receipt of the signal, the receiving-process terminates
normally with all the consequences outlined in exit(2).

On receipt of the signal, the receiving-process stops. Stop

Ignore On receipt of the signal, the receiving-process ignores it.

As the default action for a signal typically is to terminate a process, a process must
use sigactionO to alter the default action for a signal and to prearrange how it
will handle the signal. The function sigactionO takes three arguments:

• the first argument specifies the signal.

• the second argument specifies how to handle it.

• the third argument returns the previous signal-action.

The first argument to sigactionO is just an integer code number that represents a
signal. The second and third arguments designate one of three types of actions
that can be established for a signal:

1. to take the default action for the signal - SIG_DFL

2. to ignore the signal- SIG_IGN

3. to catch the signal by calling a function - a pointer to a signal-action

The <signal. h> header file defines the special values used to request that the
default action for the signal be taken (SIG_DFL) or that the signal be ignored
(SIG_IGN) as well as the structure sigaction used to specify a signal-handling
function. The second and third arguments to the function sigactionO are
pointers to the structure sigaction defined by the <signal. h> header file. The
<signal. h> header file also defines symbolic names for the signal-numbers and
must always be included when signals are used.

Signals 8-5

To control the way a signal is delivered, a process calls sigactionO to associate a
handler with that signal. The call

#include <signal.h>

struct sigaction {
void (*sa_handler){);
sigset_t sa_mask;
int sa_flags;

};

sigaction{signo, sa, osa)
int signo;
struct sigaction *sa;
struct sigaction *osa;

assigns interrupt handler address sa_handler to signal signe. If osa is nonzero,
the previous signal action is returned.

Each handler address specifies either an interrupt routine for the signal, that the
signal is to be ignored, or that a default action (usually process termination) is to
occur if the signal occurs. The constants SIG_IGN and SIG_DFL used as values for
sa_handler cause ignoring or defaulting of a condition.

~
There are two things that must be done to reset a signal handler from within a

NOTE Signal handler. Resetting the routine that catches the signal [signal (n,
SIG_DFL) ; 1 is only the first. It's also necessary to unblock the blocked signal,
which is done with sigprocmask.

sa_mask specifies the set of signals to be masked when the handler is invoked; it
implicitly includes the signal which invoked the handler. Five operations are per­
mitted on signal sets.

1. A call to sigemptyset empties a set.

2. A call to sigfillset fills a set with every signal currently supported.

3. A call to sigaddset adds specified signals to a set.

4. A call to sigdelset deletes specified signals from a set.

S. A call to sigismember tests membership in a set.

Signals sets should always be initialized with a call to sigemptyset or sig­
fillset.

sa_flags specifies special properties of the signal, such as whether system calls
should be restarted if the signal handler returns, if the signal action should be
reset to SIG_DFL when it is caught, and whether the handler should operate on
the normal run-time stack or a special signal stack (see "Signal Stacks" below).

8-6 Signals, Job Control and Pipes

If osa is nonzero, the previous signal action is returned.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then
it will be delivered. The process of signal delivery adds the signal to be delivered
and those signals specified in the associated signal handler's sa_mask to a set of
those masked for the process, saves the current process context, and places the
process in the context of the signal handling routine. The call is arranged so that if
the signal handling routine exits normally the signal mask will be restored and the
process will resume execution in the original context. If the process wishes to
resume in a different context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for delays. It delays the
delivery of signals much as a raised hardware interrupt priority level delays
hardware interrupts. Preventing an interrupt from occurring by changing the
handler is analogous to disabling a device from further interrupts.

The signal handling routine sa_handler is called by a C call of the form

(*sa_handler) (signo, infop, ucp);
int signo;
siginfo_t *infop;
ucontext_t *ucp;

signo gives the number of the signal that occurred. infop is either equal to 0, or
points to a structure that contains information detailing the reason why the signal
was generated. This information must be explicitly asked for when the signal's
action is specified. The ucp parameter is a pointer to a structure containing the
process's context prior to the delivery of the signal, and will be used to restore the
process's context upon return from the signal handler.

Signals 8-7

In the following example, the first call to sigactionO causes interrupts to be
ignored; while the second call to sigactionO restores the default action for inter­
rupts, which is to terminate the process:

main(){
#include <signal.h>
struct sigaction new_act, old_act;

nBW_act.sa_handler = SIG_IGN;
sigaction(SIGINT, &nBW_act, &old_act);

nBW_act.sa_handler = SIG_DFL;
sigaction(SIGINT, &new_act, &old_act);

In both cases, sigactionO returns the previous signal-action in the final argument
sig_act.

Initially, all signals are set to SIG_DFL or SIG_IGN prior to entry of the function
mainO [see exec(2) in the Operating System API Reference]. Once an action is esta­
blished for a specific signal, it usually remains established until another action is
explicitly established by a call to either signalO, sigsetO, sigignoreO or
sigactionO, or until the process execs [see signal(2), sigset(2) and
sigaction(2) as well as exec(2) in the Operating System API Reference]. When a
process execs, all signals set to catch the signal are reset to SIG_DFL. Alterna­
tively, a process may request that the action for a signal automatically be reset to
SIG_DFL after catching it [see signal(2) and sigaction(2)].

Instead of the special values SIG_IGN or SIG_DFL, the second argument to
sigactionO may specify a signal-handling function; in which case, the specified
function is called when the signal occurs. Most commonly this facility is used to
allow the program to clean up unfinished business before terminating, for
example, to delete a temporary file, as in the following example:

8-8 Signals, Job Control and Pipes

Figure 8-1: Signal programming example

#include <signal.h>

mainO {

}

struct sigaction new_act, old_act;
void on_intr () ;

new_act.sa_handler ~ SIG_IGN;
sigaction(SIGINT, &new_act, &old_act);
if (old_act.sa_handler 1= SIG_IGN) {

new_act. sa_handler = on~ntr;
sigaction(SIGINT, &new_act, &old_act);

/* do processing */

exit(O);

void on_intrO {
unlink(tempfile);
exit(l);

Before establishing on_intr as the signal-handling function for the interrupt sig­
nal SIGINT, the program tests the state of interrupt handling, and continues to
ignore interrupts if they are already being ignored. This is needed because signals
like interrupt are sent to all processes started from a specific terminal. Accord­
ingly, when a program runs as a background-process, without any interaction
(started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground-processes. If this program began by announcing
that all interrupts be caught by the function on_intr regardless, that would undo
the shell's efforts to protect it when run in the background.

The solution, shown above, is to call sigactionO for SIGINT first to get the
signal-action currently established for the interrupt signal, which is returned in
the third argument to sigactionO. If interrupt signals were already being
ignored, the process should continue to ignore them; otherwise, they should be
caught. In that case, the second call to sigactionO for SIGINT establishes a new
signal-action which specifies on_intr as the signal-handling function.

A more sophisticated program may wish to intercept and interpret it as a request
to stop what it is doing and return to its own command-processing loop. Think of
a text-editor: interpreting a long printout should not cause it to terminate and lose
the work already done. The outline of the code for this case is probably best writ­
ten as follows:

Signals 8-9

Figure 8-2: Signal programming example

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main(} {

1*

struct sigaction new_act, old_act;
void on_intr(};

* save original status and current stack position
*1

1*

new_act. sa_handler = SIG_IGN;
sigaction(SIGINT, &new_act, &old_act);

setjmp(sjbuf); 1* save current stack position *1

* unless interrupts are ignored, change signal-action
*1

1*

if (old_act. sa_handler != SIG_IGN) (
new_act. sa_handler = on_intr;
sigaction(SIGINT, &new_act, &old_act);

* main processing loop
*1

void on_intr ()
1*
* print message
*1

printf ("\nlnterrupt \n") ;

longjmp(sjbuf); 1* return to saved state *1

The <setjmp.h> header file declares the type jmp_buf an object in which the state
can be saved, and the program above declares sjbuf to be of type jmp_buf which
is an array of some type. The function setjmpO saves the current context of the
user-process in sjbuf. When an interrupt occurs, a call to the function on_intr is
forced, which prints a message and could set flags or do something else. The func­
tion longjmpO takes as argument an object stored into by setjmpO, and restores
control to the location after the call to setjmpO, so control (and the stack level)
pops back to place in the program mainO where the signal is set up and the main
loop entered. Notice, by the way, that the signal gets set again after an interrupt
occurs. This is necessary; most signals are automatically reset to their default
action when they occur.

8-10 Signals, Job Control and Pipes

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked-list. If the function called on
occurrences of a signal sets a flag and then returns instead of calling exitO or
longjmpO, execution resumes at the exact point it was interrupted. The interrupt
flag can then be tested later.

This approach has the following difficulty. Suppose the program is reading the
terminal when the interrupt is sent. The specified function is duly called; it sets its
flag and returns. If it were really true, as said earlier, that "execution resumes at
the exact point it was interrupted," the program would continue reading the ter­
minal until the user typed another line. This behavior might well be confusing,
since the user might not know the program is reading, and presumably would
prefer to have the signal take effect instantly. The method chosen to resolve this
difficulty is to terminate the readO from the terminal when execution resumes
after the signal, with readO returning an error-code (EINTR) which indicates the
interruption.

As a consequence, programs which catch and resume execution after signals
should be prepared for "errors" caused by interrupted system-calls. (The ones to
watch out for in particular are waitO and pauseO as well as any readO from the
terminal).

A program whose on_intr function just sets intflag, resets the interrupt signal,
and returns, should usually include code like the following when it reads the stan­
dard input or directly from a terminal-device [see intro(2) in the Operating System
API Reference].

if (getchar{) == EOF)
if (intflag)

1* EOF caused ~ interrupt *1
else

1* actual end-of-file *1

A final subtlety to keep in mind becomes important when signal-handling is com­
bined with execution of other programs. Suppose a program catches interrupts,
and also includes a method (like"!" in the editor) whereby other programs can
be executed. Then the code should look something like this:

Signals

if (fork{) == 0)
exec (. . .);

new act. sa handler = SIG_IGN; I * ignore interrupts * I
sigaction{SIGINT, &new_act, &old_act);

wait{&status); 1* until the child completes *1

new_act. sa_handler on_intr; I * restore interrupts * I
sigaction{SIGINT, &new_act, &old_act);

8-11

Why is this? Again, its not obvious but not really difficult. Suppose the program
called catches its own interrupts. When this subprogram gets interrupted, it
receives the signal, returns to its main loop and probably tries to read the terminal.
But the calling-program also pops out of its wait for the subprogram and tries to
read the terminal. Two processes trying to read the terminal is very unfortunate,
since the system randomly decides which should get each line of input. A simple
solution is for the parent to ignore interrupts until the child completes.

This reasoning is reflected in the function system() as follows:

Figure 8-3: system(} - Signal programming example

#include <signal.h>

system (cmd_str) /* run command string */
char *cmd_str;

int status;
pid_t wpid. xpid;
struct sigaction sig_act, i_stat, ~stat;

if «xpid=fork(» == 0) (
execl("/bin/sh", "sh", "-e", cmd_str, 0);
_exit(127);

sig_act.sa_handler = SIG_IGN;
sigaction(SIGINT. &sig_act. &i_stat);

sig_act.sa_handler = SIG_IGN;
sigaction(SIGQUIT. &sig_act. &~stat);

while («wpid=wait(&status» != xpid) && (wpid != -1))

8-12

if (wpid == -1)
status = -1;

sigaction(SIGINT. &i_stat. &sig_act);
sigaction(SIGQUIT. &~stat. &sig_act);

return (status) ;

Signals, Job Control and Pipes

Sending Signals

A signal may be sent to a process by another process, from the terminal or by the
system itself. For most signals, a process can arrange to be terminated on receipt
of a signal, to ignore it completely or to catch it and act on it in some way defined
by the user-process. For example, an INTERRUPT signal may be sent by depressing
an appropriate key on the terminal (delete, break or rubout). The action taken
depends on the requirements of the specific program being executed. For
example:

• The shell invokes most commands in such a way that they stop executing
immediately (die) when an interrupt is received. For example, the pr (print)
command normally dies, allowing the user to stop unwanted output.

• The shell itself ignores interrupts when reading from the terminal because
the shell should continue execution even when the user terminates a com­
mand like pr.

• The editor ed chooses to catch interrupts so that it can halt its current action
(especially printing) without allowing itself to be terminated.

A process can send a signal to another process or group of processes with the calls:

kill (pid, signa);
int pid, signa;

sigsend(idtype, id, signa);
idtype_t idtype;
id_t id;

Unless the process sending the signal is privileged, its real or effective user ID
must be equal to the receiving process's real or saved user ID.

Signals can also be sent from a terminal device to the process group or session
leader associated with the terminal. See termia(7).

Signals 8-13

Each type of signal is represented by a specific integer value; for example, the
value 1 represents the hangup signal. The signal-number indexes the signal-array
of the receiving-process. For each type of signal, the signal-array contains the
address of a signal-handling function defined in the user-process. If no function
has been defined, the entry is 0 or 1. If the value is 1, the signal is set to be
ignored; and if 0, the signal is set to take the default action.

A child-process inherits the actions of the parent for the defaulted and ignored sig­
nals. Caught signals are reset to the default action in the child-process. This is
necessary since the address linkage for signal-handling functions specified in the
parent are no longer appropriate in the child.

Signal Stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigaltstack {

int ss_size;
int ss_flags;

} ;

sigaltstack(ss, oss}
struct sigaltstack *ss;
struct sigaltstack *oss;

to provide the system with a stack based at ss_sp of size ss_size for delivery of
signals. The system automatically adjusts for direction of stack growth.
ss_flags indicates whether the process is currently on the signal stack and
whether the signal stack is disabled.

When a signal is to be delivered and the process has requested that it be delivered
on the alternate stack (see sigaction above), the system checks whether the pro­
cess is on a signal stack. If it is not, then the process is switched to the signal stack
for delivery, with the return from the signal arranged to restore the previous
stack.

If the process wishes to take a non-local exit from the signal routine or run code
from the signal stack that uses a different stack, a sigaltstack call should be
used to reset the signal stack.

8-14 Signals, Job Control and Pipes

Job Control and Session Management

An overview of Job Control is provided here for completeness and because it
interacts with the STREAMS-based terminal subsystem. This section describes
how to use a Stream as a controlling-terminal. More information on Job Control
can be obtained from the following manual pages: exit(2), getpgid(2),
getpgrp(2), getsid(2), kill(2), setpgid(2), setpgrp(2), setsid(2),
sigaction(2), signal(2), sigsend(2), tennios(2), waitid(2), waitpid(3C), sig­
nal(5), and tennio(7).

Overview of Job Control

Job Control is a feature supported by the BSD UNIX operating system. It is also
an optional part of the IEEE PlO03.1 POSIX standard. Job Control breaks a login
session into smaller units called jobs. Each job consists of one or more related and
cooperating processes. One job, the foreground job, is given complete access to
the controlling terminal. The other jobs, called background jobs, are denied read
access to the controlling terminal and given conditional write and ioctlO access
to it. The user may stop an executing job and resume the stopped job either in the
foreground or in the background.

Under Job Control, background jobs do not receive events generated by the termi­
nal and are not informed with a hangup indication when the controlling process
exits. Background jobs that linger after the login session has been dissolved are
prevented from further access to the controlling-terminal, and do not interfere
with the creation of new login sessions.

If _POSIX_JOB_CONTROL is defined, UNIX System V supports job-control and com­
mand interpreter processes supporting job-control can assign the terminal to dif­
ferent jobs, or process-groups, by placing related processes in a single process­
group and assigning the process-group with the terminal. A process may examine
or change the foreground process-group of a terminal assuming the process has
the required permissions [see tcgetpgrp(2) and tcsetpgrp(2)]. The tennios
facility aids in this assignment by restricting access to the terminal by processes
outside of the foreground process-group [see "Terminal Access Control"].

When there is no longer any process whose process-id or process-group-id
matches the process-group-id of the foreground process-group, the terminal lacks
any foreground process-group. It is unspecified whether the terminal has a fore­
ground process-group when there is no longer any process whose process-group­
id matches the process-group-id of the foreground process-group, but there is a
process whose process-id matches the process-group-id of the foreground

Job Control and Session Management 8-15

process-group. Only a successful call to tcsetpgrpO or assignment of the
controlling-terminal as described can make a process-group the foreground
process-group of a terminal [see tcsetpgrp(2)].

Background process-groups in the session of the session-leader are subject to a
job-control line-discipline when they attempt to access their controlling-terminal.
Typically, they are sent a signal that causes them to stop, unless they have made
other arrangements [see signal(4)]. An exception is made for processes that
belong to a orphaned process-group, which is a process-group none of whose
members have a parent in another process-group within the same session and
thus share the same controlling-terminal. When these processes attempt to access
their controlling-terminal, they return errors, because there is no process to con­
tinue them if they should stop [see "Terminal Access Control"].

Job Control Terminology

The following defines terms associated with Job Control:

• Background Process-group - a process-group that is a member of a session
that established a connection with a controlling-terminal and is not the fore­
ground process-group.

• Controlling Process - a session leader that established a connection to a
con trolling-terminal.

• Controlling Terminal- a terminal that is associated with a session. Each
session may have at most one controlling-terminal associated with it and a
controlling-terminal may be associated with at most one session. Certain
input sequences from the controlling-terminal cause signals to be sent to the
process-groups in the session associated with the controlling terminal.

• Foreground Process Group - each session that establishes a connection
with a controlling-terminal distinguishes one process-group of the session
as a foreground process-group. The foreground process-group has certain
privileges that are denied to background process-groups when accessing its
controlling-terminal.

• Orphaned Process Group - a process-group in which the parent of every
member in the group is either a member of the group, or is not a member of
the process-group's session.

• Process Group - each process in the system is a member of a process-group
that is identified by a process-group ID. Any process that is not a process­
group leader may create a new process-group and become its leader. Any
process that is not a process-group leader may join an existing process­
group that shares the same session as the process. A newly created process
joins the process-group of its creator.

8-16 Signals, Job Control and Pipes

• Process Group Leader - a process whose process ID is the same as its pro­
cess group ID.

• Process Group Lifetime - a time period that begins when a process-group
is created by its process-group leader and ends when the last process that is
a member in the group leaves the group.

• Process ID - a positive integer that uniquely identifies each process in the
system. A process ID may not be reused by the system until the process life­
time, process-group lifetime, and session lifetime ends for any process ID,
process-group ID, and session ID sharing that value.

• Process Lifetime - a time period that begins when the process is forked and
ends after the process exits, when its termination has been acknowledged by
its parent process.

• Session - each process-group is a member of a session that is identified by
a session ID.

• Session ID - a positive integer that uniquely identifies each session in the
system. It is the same as the process ID of its session leader.

• Session Leader - a process whose session ID is the same as its process and
process-group ID.

• Session Lifetime - a time period that begins when the session is created by
its session leader and ends when the lifetime of the last process-group that is
a member of the session ends.

Job Control Signals

The following signals manage Job Control [see also signal(5)]:

SIGCONT

SIGSTOP

SIGTSTP

SIGTTIN

SIGTTOU

Sent to a stopped process to continue it.

Sent to a process to stop it. This signal cannot be caught or
ignored.

Sent to a process to stop it. It is typically used when a user
requests to stop the foreground process.

Sent to a background process to stop it when it attempts to
read from the controlling-terminal.

Sent to a background process to stop it when one attempts
to write to or modify the controlling-terminal.

Job Control and Session Management 8-17

The Controlling-Terminal and Process-Groups

A session may be allocated a controlling-terminal. For every allocated
controlling-terminal, Job Control elevates one process group in the controlling
process's session to the status of foreground process group. The remaining
process-groups in the controlling process's session are background process­
groups. A controlling-terminal gives a user the ability to control execution of jobs
within the session. Controlling-terminals playa central role in Job Control. A
user may cause the foreground job to stop by typing a predefined key on the
controlling-terminal. A user may inhibit access to the controlling-terminal by
background jobs. Background jobs that attempt to access a terminal that has been
so restricted will be sent a signal that typically causes the job to stop. (See the sec­
tion titled" Accessing the Controlling Terminal" later in this chapter.)

Terminal Access Control

If a process is in the foreground process-group of its controlling-terminal, readO
works as described in "Input Processing and Reading Data". If any process in a
background process-group attempts to read from its controlling-terminal when
job-control is supported, the signal SIGTTIN is sent to its process-group unless one
of these special cases apply:

• If the reading-process either ignores or blocks the signal SIGTTIN or if the
reading-process is a member of an orphaned process-group, attempting to
read the controlling-terminal fails without sending the signal SIGTTIN, the
readO returns -1 and errno equals EIO.

The default action of the signal SIGTTIN is to stop the process to which it is sent
[see signal(4)].

If a process is in the foreground process-group of its controlling-terminal, writeO
works as described in "Writing Data and Output Processing". If any process in a
background process-group attempts to write onto its controlling-terminal when
the flag TOSTOP is set in the c_lf1ag field of the termios structure, the signal
SIGTTOU is sent to the process-group unless one of these special cases apply:

• If the writing-process either ignores or blocks the signal SIGTTOU, attempt­
ing to write the controlling-terminal proceeds without sending the signal
SIGTTOU.

• If the writing-process neither ignores nor blocks the signal SIGTTOU and if
the writing-process is a member of an orphaned process-group, attempting
to write the controlling-terminal fails without sending the signal SIGTTOU,
the writeO returns -1 and errno equals EIO.

8-18 Signals, Job Control and Pipes

If the flag TOSTOP is clear, attempting to write the controlling-terminal proceeds
without sending the signal SIGTTOU.

Certain calls that set terminal parameters are treated the same as writeO calls,
except that the flag TOSTOP is ignored; thus, the effect is the same as terminal
writeO calls when the flag TOSTOP is set [see tcgetattr(2) and tcsetattr(2)].

If the implementation supports job-control, unless otherwise noted, processes in a
background process-group are restricted in their use of the terminal-control­
functions [see tcdrain(2), tcflow(2), tcflush(2), tcgetattr(2), tcgetpgrp(2),
tcsendbreak(2), tcsetattr(2), tcsetsid(2), tcsetpgrp(2)]. Attempts to per­
form these functions cause the process-group to be sent the signal SIGTTOU. If the
calling-process either ignores or blocks the signal SIGTTOU, attempting to perform
a control-function proceeds without sending the signal SIGTTOU.

The default action of the signal SIGTTOU is to stop the process to which it is sent
[see signal(4)].

All terminal-control-functions operate on an open file-descriptor and they affect
the underlying terminal-device-file denoted by the file-descriptor, not the open­
fife-description that represents it.

If a member of a background process-group attempts to invoke an ioctlO on its
controlling-terminal, and that ioctlO modifies terminal parameters (e.g.,
TIOCSPGRP, TCSETA, TCSETAW or TCSETAF) its process-group is sent SIGTTOU,

which normally causes the members of that process-group to stop .

• If the calling-process either ignores or blocks the signal SIGTTOU, attempt­
ing to perform a terminal-control-function on the controlling-terminal
proceeds without sending the signal SIGTTOU.

• If the calling-process neither ignores nor blocks the signal SIGTTOU and if
the calling-process is a member of an orphaned process-group, attempting
to perform a terminal-control-function on the controlling-terminal fails
without sending the signal SIGTTOU, the ioctlO returns -1 and errno
equals EIO.

The terminal access controls described in this section apply only to a process
accessing its controlling-terminal because these controls are for the purpose of
job-control, not security, and job-control relates only to a controlling-terminal for a
process. Normal file-access-permissions handle security. A process accessing a
terminal other than the controlling-terminal is effectively treated the same as a
member of the foreground process-group.

If a process in a background orphaned process-group calls readO or writeO, stop­
ping the process-group is undesirable, as it is no longer under the control of a job­
control shell that can put it into foreground again. Accordingly, calls to readO
and writeO by such processes receive an immediate return error.

Job Control and Session Management 8-19

The terminal-driver must repeatedly do a foreground/background/ orphaned
process-group check until either the process-group of the calling-process is
orphaned or the calling-process moves into the foreground. If a calling-process is
in the background and should receive a job-control signal, the terminal-driver
sends the appropriate signal (SIGTTIN or SIGTTOU) to every process in the
process-group of the calling-process then lets the calling-process receive the signal
immediately, usually by blocking the process so it reacts to the signal right away.
Note, however, that after the process catches the signal and the terminal-driver
regains control, the driver must repeat the foreground/background/ orphaned
process-group check. The process may still be in the background, either because a
job-control shell continued the process in the background, or because the process
caught the signal and did nothing.

The terminal-driver repeatedly does the foreground/background/ orphaned
process-group check whenever a process tries to access the terminal. For writeO
or the line-control functions, the check is done on entering the function. For
readO, the check is done not only on entering the function but also after blocking
the process to wait for input data (if necessary). If the process calling readO is in
the foreground, the terminal-driver tries to get data from the input-queue, and if
the queue is empty, blocks the process to wait for data. When data are input and
the terminal-driver regains control, it must repeat the
foreground/background/ orphaned process-group check again because the pro­
cess may have moved to the background from the foreground while it blocked to
wait for input data. [see "job-control" in the "Glossary"].

Modem Disconnect

The following arrangements are made to allow processes that read from a
terminal-device-file and test for end-of-file to terminate appropriately when a
modem-disconnect is detected on the terminal-device:

• All processes with that terminal as the controlling-terminal receive a hang­
up signal, SIGHUP, if CLOCAL is clear in the c_cflags for the terminal [see
"Control Modes" in terrnios(4)]. Unless other arrangements are made, the
signal SIGHUP forces the processes to terminate [see signal(4) and sigac­
tion(2)]. If the signal SIGHlJP is ignored or caught by a signal-catching
function, any subsequent readO returns 0 to indicate end-of-file until the
terminal-device-file is closed [see read(2)] .

• If the controlling-process is not in the foreground-process-group of the ter­
minal, the signal SIGTSTP is sent to all processes in the foreground-process­
group for which the terminal is the controlling-terminal. Unless other
arrangements are made, the signal SIGTSTP forces the processes to ter­
minate [see signal(4) and sigaction(2)].

8-20 Signals, Job Control and Pipes

• Processes in background-process-groups that try a readO or a writeO of the
controlling-terminal after a modem-disconnect while the terminal is still
assigned to the session receive appropriate the signal SIGTTIN or SIGTTOU
respectively [see read(2) and write(2)]. Unless other arrangements are
made, the signal SIGTTIN or SIGTTOU forces the processes to terminate [see
signal(4) and sigaction(2)].

STREAMS-based Job Control

Job Control requires support from a line discipline module on the controlling­
terminal's Stream. The TCSETA, TCSETAW, and TCSETAF commands of tennio(7)
allow a process to set the following line discipline values relevant to Job Control:

SUSP character

TOSTOP flag

A user defined character that, whe:n. typed, causes the
line discipline module to request that the Stream head
sends a SIGTSTP signal to the foreground process with
an M_PCSIG message, which by default
stops the members of that group. If the value of SUSP
is zero, the SIGTSTP signal is not sent, and the SUSP
character is disabled.

If TOSTOP is set, background processes are inhibited
from writing to their controlling-terminal.

A line discipline module must record the SUSP suspend character and notify the
Stream head when the user has typed it, and record the state of the TOSTOP bit and
notify the Stream head when the user has changed it.

Allocation and Deallocation

A Stream is allocated as a controlling-terminal for a session if

• The Stream is acting as a terminal

• The Stream is not already allocated as a controlling-terminal

• The Stream is opened by a session leader that does not have a controlling­
terminal.

Drivers and modules can inform the Stream head to act as a terminal Stream by
sending an M_SETOPTS message with the SO_ISTTY flag set upstream. This state
may be changed by sending an M_SETOPTS message with the SO_ISNTTY flag set
upstream.

Job Control and Session Management 8-21

Controlling-terminals are allocated with the open(2) system call. A Stream head
must be informed that it is acting as a terminal by an M_SETOPTS message sent
upstream before or while the Stream is being opened by a potential controlling
process. If the Stream head is opened before receiving this message, the Stream is
not allocated as a controlling-terminal.

Hung-up Streams

When a Stream head receives an M_HANGUP message, it is marked as hung-up.
Streams that are marked as hung-up are allowed to be reopened by their session
leader if they are allocated as a controlling-terminal, and by any process if they are
not allocated as a controlling-terminal. This way, the hangup error can be cleared
without forcing all file descriptors to be closed first.

If the reopen is successful, the hung-up condition is cleared.

Hangup Signals

When the SIGHUP signal is generated by an M_HANGUP message (instead of an
M_SIG or M_PCSIG message), the signal is sent to the controlling process instead of
the foreground process-group, since the allocation and deallocation of
controlling-terminals to a session is the responsibility of that process-group.

Accessing the Controlling-Terminal

If a process attempts to access its controlling-terminal after it has been deallocated,
access is denied. If the process is not holding or ignoring SIGHUP, it is sent a
SIGHUP signal. Otherwise, the access fails with an EIO error.

Members of background process-groups have limited access to their controlling
terminals:

• If the background process is ignoring or holding the SIGTTIN signal or is a
member of an orphaned process-group, an attempt to read from the
controlling-terminal fails with an EIO error. Otherwise, the process is sent a
SIGTTIN signal, which by default stops the process .

• If the process is attempting to write to the terminal and if the terminal's TOS­

TOP flag is clear, the process is allowed access.

8-22

The TOSTOP flag is set on reception of an M_SETOPTS message with the
SO_TOSTOP flag set in the so_flags field. It is cleared on reception of an
M_SETOPTS message with the SO_TONSTOP flag set.

Signals, Job Control and Pipes

• If the terminal's TOSTOP flag is set and a background process is attempting
to write to the terminal, the write succeeds if the process is ignoring or hold­
ing SIGTTOU. Otherwise, the process stops except when it is a member of an
orphaned process-group, in which case, it is denied access to the terminal
and it is returned an EIO error .

• If a background process is attempting to perform a destructive ioctl (an
ioctlO that modifies terminal parameters), the ioctlO call succeeds if the
process is ignoring or holding SIGTTOU. Otherwise, the process will stop
except when the process is a member of the orphaned process-group. In
that case, the access to the terminal is denied and an EIO error is returned.

Job Control and Session Management 8-23

Basic Interprocess Communication - Pipes

The system-call pipeO creates a pipe, a type of unnamed FIFO (First In First Out)
file used as an I/O channel between two cooperating processes: one process writes
onto the pipe, while the other reads from it. Most pipes are created by the shell, as
in:

Is I pr

which connects the standard output of Is to the standard input of pr. Sometimes,
however, it is most convenient for a process to set up its own plumbing; this sec­
tion illustrates how to establish and use the pipe connection.

Since a pipe is both for reading and writing, pipeO returns two file-descriptors as
follows:

int fd[2];

stat = pipe(fd);
if (stat == -1)

1* there was an error •.. *1

where fd is an array of two file-descriptors, with fd [0] for the read end of the
pipe and fd [1] for the write end of the pipe. These may be used in readO,
writeO and closeO calls just like any other file-descriptors.

Implementation of pipes consists of implied IseekO operations before each readO
or writeO in order to implement first-in-first-out. The system looks after buffer­
ing the data and synchronizing the two processes to prevent the writer from
grossly out-producing the reader and to prevent the reader from overtaking the
writer. If a process reads a pipe which is empty, it will wait until data arrive; if a
process writes into a pipe which is full, it will wait until the pipe empties some­
what. If the write end of the pipe is closed, a subsequent readO will encounter
end-of-file.

To illustrate the use of pipes in a realistic setting, consider a function
popen(cmd, mode), which creates a process cmd, and returns a file-descriptor that
will either read or write that process, according to mode; thus, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent writeO calls using
the file-descriptor fout send data to that process through the pipe.

8·24 Signals, Job Control and Pipes

Figure 8·4: popen ()

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a. b) (mode == READ ? (b) (a»
static int POPen-pid;

popen(cmd. mode)

char *cmd;
int mode;

int p[2);

if (pipe(p) < 0)
return (NULL) ;

if «popen-pid = fork(» == 0) (
close(tst(p[WRlTE). p[READ));
close (tst (0. 1»;
dup(tst(p[READ). p[WRITE));
close(tst(p[READ). p[WRlTE));
execl(lI/bin/sh", Ilshll, II_C II , end, 0);

_exit(l) /* disaster occurred if we got here */

if (popen-pid == -1)
return (NULL) ;

close(tst(p[READ). p[WRlTE));
return(tst(p[WRlTE). p[READ));

The function popen() first calls pipe() to create a pipe, then calls forkO to create
two copies of itself. The child decides whether it is supposed to read or write,
closes the other end of the pipe, then calls the shell (via execlO) to run the desired
process. The parent likewise closes the end of the pipe it does not use. These
closeO operations are necessary to make end-of-file tests work properly. For
example, if a child that intends to read fails to close the write end of the pipe, it
will never encounter the end-of-file on the pipe, just because there is one writer
potentially active. The sequence of close() operations in the child is a bit tricky.
Suppose that the task is to create a child-process that will read data from the
parent. Then the first close() closes the write end of the pipe, leaving the read
end open.

To associate a pipe with the standard input of the child, use the following:

close(tst(O, 1»;
dup(tst(p[READ], p[WRITE]»;

The close() call closes file-descriptor 0, the standard input, then the dup() call
returns a duplicate of the open file-descriptor. File-descriptors are assigned in

Basic Interprocess Communication - Pipes 8·25

increasing order and dupO returns the first available one, so the dupO call effec­
tively copies the file-descriptor for the pipe (read end) to file-descriptor 0 making
the read end of the pipe the standard input. (Although somewhat tricky, it's a
standard idiom.) Finally, the old read end of the pipe is closed. A similar
sequence of operations takes place when the child-process must write to the
parent-process instead of reading from it. To finish the job we need a function
pcloseO to close a pipe created by popenO.

Figure 8-5: pclose ()

#include <signal.h>

pclose(fd) /* close pipe descriptor */
int fd;

struct sigaction o_act, h_act, i_act, ~act;
extern pid_t popen-pid;
pid_t cJ>id;
int c_stat;

close(fd);

sigaction(SIGINT, SIG_IGN, &i_act);
sigaction(SIGQUIT, SIG_IGN, &~act);
sigaction(SIGHUP, SIG_IGN, &h_act);

while «c-pid=wait(&c_stat»!=-1 && c-pid!=popen-pid);
if (c-pid == -1)

c_stat = -1;

sigaction(SIGINT, &i_act, &o_act)i
sigaction(SIGQUIT, &~act, &o_act);
sigaction(SIGHUP, &h_act, &o_act);

return(c_stat);

The main reason for using a separate function rather than closeO is that it is
desirable to wait for the termination of the child-process. First, the return value
from pcloseO indicates whether the process succeeded. Equally important when
a process creates several children is that only a bounded number of unwaited-for
children can exist, even if some of them have terminated; performing the waitO
lays the child to rest. The calls to sigactionO make sure that no interrupts, etc.,
interfere with the waiting process [see sigaction(2)].

The routine as written has the limitation that only one pipe may be open at once,
because of the single shared variable popen-pid; it really should be an array
indexed by file-descriptor. A popenO function, with slightly different arguments
and return value is available as part of the Standard I/O Library [see stdio(3S)].

8-26 Signals, Job Control and Pipes

STREAMS-Based Pipes and FIFOs

A pipe in the UNIX system is a mechanism that provides a communication path
between multiple processes. Before Release 4, UNIX System V had "standard"
pipes and named pipes (also called FIFOs). With standard pipes, one end was
opened for reading and the other end for writing, thus data flow was unidirec­
tional. FIFOs had only one end; typically, one process opened the file for reading
and another process opened the file for writing. Data written into the FIFO by the
writer could then be read by the reader.

To provide greater support and development flexibility for networked applica­
tions, pipes and FIFOs have become STREAMS-based in UNIX System V Release
4. The basic interface remains the same but the underlying implementation has
changed. Pipes now provide a bidirectional mechanism for process communica­
tion. When a pipe is created by the pipeO system call, two Streams are opened
and connected together, thus providing a full-duplex mechanism. Data flow is on
a FIFO basis. Previously, pipes were associated with character devices and the
creation of a pipe was limited to the capacity and configuration of the device.
STREAMS-based pipes and FIFOs are not attached to STREAMS-based character
devices, eliminating configuration constraints and the number of opened pipes to
the number of file descriptors for that process.

~ The remainder of this chapter uses the terms "pipe" and "STREAMS-based y pipe" interchangeably.

Creating and Opening Pipes and FIFOs

FIFOs, which are created by mknod(2) or mkfifo(3C) behave like regular file sys­
tem nodes but are distinguished from other file system nodes by the p in the first
column when the Is -1 command is executed. Data written to the FIFO or read
from the FIFO flow up and down the Stream in STREAMS buffers. Data written
by one process can be read by another process.

FIFOs are opened in the same way as other file system nodes using the openO sys­
tem call. Any data written to the FIFO can be read from the same file descriptor in
a FIFO manner. Modules can also be pushed on the FIFO. See open(2) for the res­
trictions that apply when opening a FIFO.

STREAMS-Based Pipes and FIFOs 8-27

A STREAMS-based pipe is created by the pipeO system call that returns two file
descriptors, fd[O] and fd[l]. Both file descriptors are opened for reading and
writing. Data written to fd[O] becomes data read from fd[l] and vice versa.

Each end of the pipe has knowledge of the other end through internal data struc­
tures. Subsequent reads, writes, and closes are aware of whether the other end of
the pipe is open or closed. When one end of the pipe is closed, the internal data
structures provide a way to access the Stream for the other end so that an
M_HANGUP message can be sent to its Stream head.

After successful creation of a STREAMS-based pipe, 0 is returned. If pipeO is
unable to create and open a STREAMS-based pipe, it will fail with errno set as
follows:

ENFILE

EMFILE

ENOSR

EINTR

File table is overflowed.

Cannot allocate more file descriptors for the process.

Could not allocate resources for both Stream heads.

Signal was caught while creating the Stream heads.

STREAMS modules can be added to a STREAMS-based pipe with the ioctlO
I_PUSH. A module can be pushed onto one or both ends of the pipe (see Figure 8-
6). However, a pipe maintains the concept of a midpoint so that if a module is
pushed onto one end of the pipe, that module cannot be popped from the other
end.

8-28 Signals, Job Control and Pipes

Figure 8-6: Pushing Modules on a STREAMS-based Pipe

User Process

User

----------- ---------------- ---------

Stream Head Stream Head Kernel

Module Module

Accessing Pipes and FIFOs

STREAMS-based pipes and FIFOs can be accessed through the operating system
routines read(2), write(2), ioctl(2), close(2), putmsg(2), getmsg(2), and poll(2).
If FIFOs, openO is also used.

Reading from a Pipe or FIFO

The readO [or getmsg()] system call is used to read from a pipe or FIFO. A user
reads data from a Stream (not from a data buffer as was done prior to Release 4).
Data can be read from either end of a pipe.

On success, the readO returns the number of bytes read and placed in the buffer.
When the end of the data is reached, the readO returns o.
When a user process attempts to read from an empty pipe (or FIFO), the following
will happen:

STREAMS-Based Pipes and FIFOs 8-29

• If one end of the pipe is closed, a is returned indicating the end of the file.

• If no process has the FIFO open for writing, readO returns a to indicate the
end of the file.

• If some process has the FIFO open for writing, or both ends of the pipe are
open, and O_NDELAY is set, readO returns a.

• If some process has the FIFO open for writing, or both ends of the pipe are
open, and O_NONBLOCK is set, readO returns -1 and sets ermo to EAGAIN.

• If O_NDELAY and O_NONBLOCK are not set, the readO call blocks until data is
written to the pipe, until one end of the pipe is closed, or the FIFO is no
longer open for writing.

Writing to a Pipe or FIFO

When a user process calls the writeO system call, data is sent down the associated
Stream. If the pipe or FIFO is empty (no modules pushed), data written is placed
on the read queue of the other Stream for STREAMS-based pipes, and on the read
queue of the same Stream for FIFOs. Because the size of a pipe is the number of
unread data bytes, the written data is reflected in the size of the other end of the
pipe.

Zero Length Writes If a user process issues wri teO with a as the number of bytes
to send down a STREAMS-based pipe or FIFO, a is returned, and by default no
message is sent down the Stream. However, if a user requires that a a-length mes­
sage be sent downstream, an ioctlO call may be used to change this default
behavior. The flag SNDZERO supports this. If SNDZERO is set in the Stream head,
writeO requests of *LO*1 bytes generate a a-length message and send the message
down the Stream. If SNDZERO is not set, no message is generated and 0 is returned
to the user.

To toggle the SNDZERO bit, the ioctlO I_SWROPT is used. If arg in the ioctlO call
is set to SNDZERO and the SNDZERO bit is off, the bit is turned on. If arg is set to a
and the SNDZERO bit is on, the bit is turned off.

The ioctlO I_GWROPT is used to return the current write settings.

Atomic Writes If multiple processes simultaneously write to the same pipe, data
from one process can be interleaved with data from another process, if modules
are pushed on the pipe or the write is greater than PIPE_BUF. The sequence of
data written is not necessarily the sequence of data read. To ensure that writes of
less than PIPE_BUF bytes are not be interleaved with data written from other
processes, any modules pushed on the pipe should have a maximum packet size
of at least PIPE_BUF.

8-30 Signals, Job Control and Pipes

PIPE_BUF is an implementation-specific constant that specifies the maximum
number of bytes that are atomic in a write to a pipe. When writing to a pipe,
write requests of PIPE_BUF or less bytes are not interleaved with data from
other processes doing writes on the same pipe. However, write requests
greater than PIPE_BUF bytes may have data interleaved on arbitrary byte
boundaries with writes by other processes whether the O_NONBLOCK or
O_NDELAY flag is set.

If the module packet size is at least the size of PIPE_BUF, the Stream head pack­
ages the data in such a way that the first message is at least PIPE_BUF bytes. The
remaining data may be packaged into smaller or larger blocks depending on
buffer availability. If the first module on the Stream cannot support a packet of
PIPE_BUF, atomic writes on the pipe cannot be guaranteed.

Closing a Pipe or FIFO

The claseO system call closes a pipe or FIFO and dismantles its associated
Streams. On the last close of one end of a pipe, an M_HANG'UP message is sent
upstream to the other end of the pipe. Later readO or getmsgO calls on that
Stream head return the number of bytes read and 0 when there is no more data.
Later wri teO or putmsgO requests will fail with erma set to EIO. If the pipe has
been mounted using fattachO, the pipe must be unmounted before calling
claseO; otherwise, the Stream will not be dismantled. If the other end of the pipe
is mounted, the last close of the pipe will force it to be unmounted.

Flushing Pipes and FIFOs

When the flush request is initiated from a user iactlO or from a flushqO routine,
the FLUSHR and/ or FLUSHW bits of an M_FLUSH message have to be switched. The
point of switching the bits is the point where the M_FLUSH message is passed from
a write queue to a read queue. This point is also known as the midpoint of the
pipe.

The midpoint of a pipe is not always easily detectable, especially if there are
numerous modules pushed on either end of the pipe. In that case, there needs to
be a mechanism to intercept all messages passing through the Stream. If the mes­
sage is an M_FLUSH message and it is at the Streams midpoint, the flush bits need
to switched.

This bit switching is handled by the pipemod module. pipemod should be pushed
onto a pipe or FIFO where flushing of any kind takes place. The pipemod module
can be pushed on either end of the pipe. The only requirement is that it is pushed
onto an end that previously did not have modules on it. That is, pipemod must be
the first module pushed onto a pipe so that it is at the midpoint of the pipe itself.

STREAMS-Based Pipes and FIFOs 8-31

The pipemod module handles only M_FLUSH messages. All other messages are
passed on to the next module by the putnextO utility routine. If an M_FLUSH mes­
sage is passed to 0 pipemod and the FLUSHR and FLUSHW bits are set, the message
is not processed but is passed to the next module by the putnextO routine. If only
the FLUSHR bit is set, the FLUSHR bit is turned off and the FLUSHW bit is set. The
message is then passed to the next module by putnextO. Similarly, if the FLUSHW

bit is the only bit set in the M_FLUSH message, the FLUSHW bit is turned off and the
FLUSHR bit is turned on. The message is then passed to the next module on the
Stream.

The pipem.od module can be pushed on any Stream that desires the bit switching.
It must be pushed onto a pipe or FIFO if any form of flushing must take place.

Named Streams

Some applications may want to associate a Stream or STREAMS-based pipe with
an existing node in the file system name space. For example, a server process may
create a pipe, name one end of the pipe, and allow unrelated processes to com­
municate with it over that named end.

fattachO
A STREAMS file descriptor can be named by attaching that file descriptor to a
node in the file system name space. The routine fattachO [see also fattach(3C)]
is used to name a STREAMS file descriptor. fattach(3C). Its format is

int fat tach (int fildes, char *fildes)

where fildes is an open file descriptor that refers to either a STREAMS-based pipe
or a STREAMS device driver (or a pseudo device driver), and path is an existing
node in the file system name space (for example, regular file, directory, character
special file, and so forth).

The path cannot have a Stream already attached to it. It cannot be a mount point
for a file system nor the root of a file system. A user must be an owner of the path
with write permission or a user with the appropriate privileges to attach the file
descriptor.

If the path is in use when the routine fattachO is executed, those processes access­
ing the path are not interrupted and any data associated with the path before the
call to the fattachO routine will continue to be accessible by those processes.

After a Stream is named, all subsequent operations [for example, open(2)] on the
path operate on the named Stream. Thus, it is possible that a user process has one
file descriptor pointing to the data originally associated with the path and another
file descriptor pointing to a named Stream.

8-32 Signals, Job Control and Pipes

Once the Stream has been named, the statO system call on path shows informa­
tion for the Stream. If the named Stream is a pipe, the stat(2) information shows
that path is a pipe. If the Stream is a device driver or a pseudo-device driver, path
appears as a device. The initial modes, permissions, and ownership of the named
Stream are taken from the attributes of the path. The user can issue the system
calls chmodO and chownO to alter the attributes of the named Stream and not affect
the original attributes of the path, nor the original attributes of the STREAMS file.

The size represented in the statO information reflects the number of unread bytes
of data currently at the Stream head. This size is not necessarily the number of
bytes written to the Stream.

A STREAMS-based file descriptor can be attached to many different paths at the
same time (that is, a Stream can have many names attached to it). The modes,
ownership, and permissions of these paths may vary, but operations on any of
these paths access the same Stream.

Named Streams can have modules pushed on them, be polled, be passed as file
descriptors, and be used for any other STREAMS operation.

fdetachO
A named Stream can be disassociated from a file with the fdetachO routine [see
also fdetach(3C)], which has the following format:

int fdetach (char *path)

where path is the name of the previously named Stream. Only the owner of path or
the user with the appropriate privileges may disassociate the Stream from its
name. The Stream may be disassociated from its name while processes are access­
ing it. If these processes have the named Stream open at the time of the fdetachO
call, the processes do not get an error, and continue to access the Stream. How­
ever, after the disassociation, later operations on path access the underlying file
rather than the named Stream.

If only one end of the pipe is named, the last close of the other end causes the
named end to be automatically detached. If the named Stream is a device and not
a pipe, the last close does not cause the Stream to be detached.

If there is no named Stream or the user does not have access permissions on path
or on the named Stream, fdetachO returns -1 with erma set to EINVAL. Other­
wise, fdetachO returns 0 for success.

A Stream remains attached with or without an active server process. If a server
aborted, the only way a named Stream is cleaned up is if the server executed a
clean up routine that explicitly detached and closed down the Stream.

STREAMS-Based Pipes and FIFOs 8-33

If the named Stream is that of a pipe with only one end attached, clean up occurs
automatically. The named end of the pipe is forced to be detached when the other
end closes down. If there are no other references after the pipe is detached, the
Stream is deallocated and cleaned up. Thus, a forced detach of a pipe end occurs
when the server is aborted.

If both ends of the pipe are named, the pipe remains attached even after all
processes have exited. In order for the pipe to become detached, a server process
has to explicitly invoke a program that executes the fdetachO routine.

To eliminate the need for the server process to invoke the program, the
fdetach(lM) command can be used. This command accepts a pathname that is a
path to a named Stream. When the command is invoked, the Stream is detached
from the path. If the name is the only reference to the Stream, the Stream is also
deallocated.

A user invoking the fdetach(lM) command must be an owner of the named
Stream or a user with the appropriate permissions.

isastreamO
The function isastreamO [see also isastream(3C)] may be used to determine if a
file descriptor is associated with a STREAMS device. Its format is

int isastream (int fi1des)

where fildes refers to an open file. isastreamO returns 1 if fildes represents a
STREAMS file, and 0 if not. On failure, isastreamO returns -1 with ermo set to
EBADF.

This function is useful for client processes communicating with a server process
over a named Stream to check whether the file has been overlaid by a Stream
before sending any data over the file.

File Descriptor Passing
Named Streams are useful for passing file descriptors between unrelated
processes. A user process can send a file descriptor to another process by invok­
ing the ioctlO I_SENDFD on one end of a named Stream. This sends a message
containing a file pointer to the Stream head at the other end of the pipe. Another
process can retrieve that message containing the file pointer by invoking the
ioctlO I_RECVFD on the other end of the pipe.

Named Streams in Remote Environment
If a user on the server machine creates a pipe and mounts it over a file that is part
of an advertised resource, a user on the client machine (that has remotely named
the resource) may access the remotely named Stream. A user on the client
machine is not allowed to pass file descriptors across the named Stream and gets

8-34 Signals, Job Control and Pipes

an error when the ioctlO request is attempted. If a user on the client machine
creates a pipe and attempts to attach it to a file that is a remotely named resource,
the system call fails.

The following three examples are given as illustrations:

1. Suppose the server advertised a resource /dev/foo, created a STREAMS­
based pipe, and attached one end of the pipe onto /dev/foo/spipe. All
processes on the server machine will be able to access the pipe when they
open Idev/foo/spipe. Now suppose that client XYZ mounts the adver­
tised resource /dev/foo onto its /mnt directory. All processes on client
XYZ will be able to access the STREAMS-based pipe when they open
/mnt/spipe.

2. If the server advertised another resource /dev/fog and client XYZ mounts
that resource onto its /install directory and then attaches a STREAMS­
based pipe onto /install, the mount fails with ermo set to EBUSY,

because /install is already a mount point. If client XYZ attached a pipe
onto /install/spipe, the mount also fails with ermo set to EREMOTE,

because the mount requires crossing an RFS (Remote File System) mount
point.

3. Suppose the server advertised its /usr/control directory and client XYZ
mounts that resource onto its /tmp directory. The server now creates a
STREAMS-based pipe and attaches one end over its /usr directory. When
the server opens /usr it accesses the pipe. On the other hand, when the
client opens /tmp, it accesses what is in the server's /usr/control direc­
tory.

Unique Connections

With named pipes, client processes may communicate with a server process by
using a module called connld that enables a client process to gain a unique, non­
multiplexed connection to a server. The connld module can be pushed onto the
named end of the pipe. If connld is pushed on the named end of the pipe and
that end is opened by a client, a new pipe is created. One file descriptor for the
new pipe is passed back to a client (named Stream) as the file descriptor from the
openO call and the other file descriptor is passed to the server. The server and the
client may now communicate through a new pipe.

Figure 8-7 illustrates a server process that has created a pipe and pushed the
connld module on the other end. The server then invokes the fattachO routine
to name the other end /usr/toserv.

STREAMS-Based Pipes and FIFOs 8-35

Figure 8·7: Server Sets Up a Pipe

/usr/toserv

When process X (procx) opens /usr/toserv, it gains a unique connection to the
server process that was at one end of the original STREAMS-based pipe. When
process Y (procy) does the same, it also gains a unique connection to the server.
Figure 8-8 shows that the server process has access to three separate STREAMS­
based pipes using three file descriptors.

conn1d is a STREAMS-based module that has an openO, c10seO, and putO pro­
cedure. conn1d is opened when the module is pushed onto the pipe for the first
time and whenever the named end of the pipe is opened. The conn1d module dis­
tinguishes between these two opens with the ~tr field of its read queue. On the
first openO, this field is set to 1 and the routine returns without further processing.
On later openOs, the field is checked for 1 or O. If the 1 is present, the conn1d
module creates a pipe and sends the file descriptor to a client and a server. When
the named Stream is opened, the open routine of conn1d is called. The conn1d
open fails if

• The pipe ends cannot be created.

• A file pointer and file descriptor cannot be allocated.

• The Stream head cannot stream the two pipe ends.

• A failure occurs while sending the file descriptor to the server.

The open is not complete until the server process receives the file descriptor using
the ioctlO I_RECVFD.

The setting of the O_NDELAY or O_NONBLOCK flag has no affect on the open.

The conn1d module does not process messages. All messages are passed to the
next object in the Stream. The read and write putO routines call putnextO to send
the message up or down the Stream.

8·36 Signals, Job Control and Pipes

Figure 8-8: Processes X and Y Open lusr/toserv

/usr/toserv
fdx ____ f~Y' ____ _

Q
I C+d I

STREAMS-Based Pipes and FIFOs 8-37

9 Interprocess Communication

Introduction

Messages
Using Messages
Getting Message Queues

• Using msggetO
• Example Program

Controlling Message Queues
• Using msgctlO
• Example Program

Operations for Messages
• Using msgopO
• Example Program

Semaphores
Using Semaphores
Getting Semaphores

• Using semgetO
• Example Program

Controlling Semaphores
• Using semctlO
• Example Program

Operations On Semaphores
• Using semopO
• Example Program

Table of Contents

9-1

9-3
9-4
9-8
9-8
9-11
9-14
9-14
9-15
9-20
9-20
9-22

9-30
9-32
9-36
9-36
9-39
9-42
9-42
9-44
9-53
9-53
9-54

ii

Shared Memory
Using Shared Memory
Getting Shared Memory Segments

• Using shmgetO
• Example Program

Controlling Shared Memory
• Using shmctlO
• Example Program

Operations for Shared Memory
• Using shmopO
• Example Program

IPC Programming Example
liber, A Library System

9-59
9-60
9-63
9-63
9-66
9-69
9-69
9-70
9-76
9-76
9-77

9-82
9-82

Table of Contents

Introduction

UNIX System V provides several mechanisms that allow processes to exchange
data and synchronize execution. The simpler of these mechanisms are pipes,
named pipes, and signals. These are limited, however, in what they can do. For
instance,

• Pipes do not allow unrelated processes to communicate.

• Named pipes allow unrelated processes to communicate, but they cannot
provide private channels for pairs of communicating processes; that is, any
process with appropriate permission may read from or write to a named
pipe.

• Sending signals, via the killO system call, allows arbitrary processes to
communicate, but the message consists only of the signal number.

UNIX System V also provides an InterProcess Communication (IPC) package that
supports three, more versatile types of interprocess communication. For example,

• Messages allow processes to send formatted data streams to arbitrary
processes.

• Semaphores allow processes to synchronize execution.

• Shared memory allows processes to share parts of their virtual address
space.

When implemented as a unit, these three mechanisms share common properties
such as

• each mechanism contains a "get" system call to create a new entry or
retrieve an existing one

• each mechanism contains a "control" system call to query the status of an
entry, to set status information, or to remove the entry from the system

• each mechanism contains an "operations" system call to perform various
operations on an entry

This chapter describes the system calls for each of these three forms of !Pc.
This information is for programmers who write multiprocess applications. These
programmers should have a general understanding of what semaphores are and
how they are used.

Introduction 9-1

Information from other sources would also be helpful. See the manual pages
ipcs(l) and ipcnn(l) in the Command Reference and the following manual pages in
the Operating System API Reference:

intro(2) msgget(2)
msgop(2) semget(2)
semop(2) shmget(2)
shmop(2)

msgctl(2)
semctl(2)
shmctl(2)

Included in this chapter are several example programs that show the use of these
IPC system calls. Since there are many ways to accomplish the same task or
requirement, keep in mind that the example programs were written for clarity and
not for program efficiency. Usually, system calls are embedded within a larger
user-written program that makes use of a particular function provided by the
calls.

9-2 Interprocess Communication

Messages

The message type of IPC allows processes (executing programs) to communicate
through the exchange of data stored in buffers. This data is transmitted between
processes in discrete portions called messages. Processes using this type of IPC
can send and receive messages.

Before a process can send or receive a message, it must have the UNIX operating
system generate the necessary software mechanisms to handle these operations. A
process does this using the msgget system call. In doing this, the process becomes
the owner / creator of a message queue and specifies the initial operation permis­
sions for all processes, including itself. Subsequently, the owner / creator can relin­
quish ownership or change the operation permissions using the msgctl system
call. However, the creator remains the creator as long as the facility exists. Other
processes with permission can use msgctl to perform various other control func­
tions.

Processes which have permission and are attempting to send or receive a message
can suspend execution if they are unsuccessful at performing their operation.
That is, a process which is attempting to send a message can wait until it becomes
possible to post the message to the specified message queue; the receiving process
isn't involved (except indirectly, for example, if the consumer isn't consuming, the
queue space will eventually be exhausted) and vice versa. A process which
specifies that execution is to be suspended is performing a "blocking message
operation." A process which does not allow its execution to be suspended is per­
forming a "nonblocking message operation."

A process performing a blocking message operation can be suspended until one of
three conditions occurs:

• It is successful.

• It receives a signal.

• The message queue is removed from the system.

System calls make these message capabilities available to processes. The calling
process passes arguments to a system call, and the system call either successfully
or unsuccessfully performs its function. If the system call is successful, it performs
its function and returns applicable information. Otherwise, a known error code
(-1) is returned to the process, and an external error number variable, errno, is
set accordingly.

Messages 9-3

Using Messages

Before a message can be sent or received, a uniquely identified message queue and
data structure must be created. The unique identifier is called the message queue
identifier (msqid); it is used to identify or refer to the associated message queue
and data structure.

The message queue is used to store (header) information about each message
being sent or received. This information, which is for internal use by the system,
includes the following for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message queue.
This data structure contains the following information related to the message
queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

9-4 Interprocess Communication

~ All include files discussed in this chapter are located in the /usr/include Q or /usr/include/sys directories.

,

The definition for the associated message-queue data structure msqid_ds includes
the following members:

struct ipc----pe:rm msg---..penni

struct meg *mag_first;
struct mag *msg_lasti
ulong msg_cbytes;

ulong ms9_qn\lltLi

ulong msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctimei

} ;

1* operation permission struct */
f* ptr to first message on q *f
f* ptr to last message on q *f
f* current # bytes on q *f
f* # of messages on q *f
f* max # of bytes on q *f
f* pid of last msgsnd *f
f* pid of last msgrcv *f
f * last msgsnd time * f
f* last msgrcv time *f
f * last change time * f

In UNIX System V Release 4.0, the value of MSG_PAD equals 4. In UNIX System V
Release 4.1, MSG_PAD is a symbolic constant.

The C programming language data structure definition for the message-queue
data structure msqid_ds is located in the sys/msg . h header file.

Note that the msg-'perm member of this structure uses ipc-'perm as a template.
The figure below breaks out the operation permissions data structure. In UNIX
System V Release 4.0, the definition of the ipc-'perm data structure is as follows:

Messages 9-5

Figure 9-1: ipc-perm Data Structure

struct ipc-P9:rm

} ;

uid_t
gid_t
uid_t
gid_t
mode_t
ulong
key_t
long

uidi
gid;
cuid;
cgid;
mode;
seq;

key;
pad[4];

1* owner's user id */
1* owner's group id */

1* creator's user id */
1* creator's group id */

1* access modes */
/* slot usage sequence number */
/* key */
1* reserve area */

The C programming language data structure definition for the interprocess com­
munication permissions data structure ipc-penn is located in the sys/ipc.h
header file and is common to all IPC facilities.

The msgget system call is used to perform one of two tasks:

• to get a new message queue identifier and create an associated message
queue and data structure for it

• to return an existing message queue identifier that already has an associated
message queue and data structure

Both tasks require a key argument passed to the msgget system call. For the first
task, if the key is not already in use for an existing message queue identifier, a
new identifier is returned with an associated message queue and data structure
created for the key.

There is also a provision for specifying a key of value zero, known as the private
key (IPC_PRIVATE). When specified, a new identifier is always returned with an
associated message queue and data structure created for it unless a system-tunable
parameter would be exceeded. The ipcs command will show the key field for
the msqid as all zeros.

For the second task, if a message queue identifier exists for the key specified, the
value of the existing identifier is returned. If you do not want to have an existing
message queue identifier returned, a control command (IPC_EXCL) can be
specified (set) in the msgflg argument passed to the system call (see "Using
msgget" for how to use this system call).

9-6 Interprocess Communication

When performing the first task, the process that calls msgget becomes the
owner / creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains
the creator. The message queue creator also determines the initial operation per­
missions for it.

Once a uniquely identified message queue and data structure are created, msgop
(message operations) and msgctl (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving mes­
sages. The msgsnd and msgrcv system calls are provided for each of these opera­
tions (see "Operations for Messages" for details of the msgsnd and msgrcv system
calls.

The msgctl system call permits you to control the message facility in the follow­
ingways:

• by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

• by changing operation permissions for a message queue (IPC_SET)

• by changing the size (msg_qbytes) of the message queue for a particular
message queue identifier (IPC_SET)

• by removing a particular message queue identifier from the UNIX operating
system along with its associated message queue and data structure
(IPC_RMID)

See the section "Controlling Message Queues" for details of the msgctl system
call.

Messages 9·7

Getting Message Queues

This section describes how to use the msgget system call. The accompanying pro­
gram illustrates its use.

Using msggetO

The synopsis found in the msgget(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);

All of these include files are located in the /usr/include/sys directory of the
UNIX operating system.

The following line in the synopsis:

int msgget (key_t key, int msgflg);

informs you that msgget is a function that returns an integer-type value. It also
declares the types of the two formal arguments: key is of type key _t, and msgflg
is of type into key_t is defined by a typedef in the sys/types.hheader file to
be an integral type.

The integer returned from this function upon successful completion is the message
queue identifier that was discussed earlier. Upon failure, the external variable
erma is set to indicate the reason for failure, and the value -1 (which is not a
valid msqid) is returned.

As declared, the process calling the msgget system call must supply two argu­
ments to be passed to the formal key and msgflg arguments.

9·8 Interprocess Communication

A new msqid with an associated message queue and data structure is provided if
either

or

• key is equal to IPC_PRIVATE,

• key is a unique integer and the control command IPC_CREAT is specified in
the msgflg argument.

The value passed to the msgflg argument must be an integer-type value that will
specify the following:

• operations permissions

• control fields (commands)

Operation permissions determine the operations that processes are permitted to
perform on the associated message queue. "Read" permission is necessary for
receiving messages or for determining queue status by means of a msgctl
IPC_STAT operation. "Write" permission is necessary for sending messages.

The following figure reflects the numeric values (expressed in octal notation) for
the valid operation permissions codes.

Figure 9-2: Operation Permissions Codes

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific value is derived by adding or bitwise ORing the octal values for the
operation permissions wanted. That is, if read by user and read/write by others is
desired, the code value would be 00406 (00400 plus 00006). There are constants
located in the sys/msg.h header file which can be used for the user operations
permissions. They are as follows:

MSG_W 0200 /* write permissions by owner * /

MSG_R 0400 1* read permissions by owner * I

Messages 9-9

Control flags are predefined constants (represented by all upper-case letters). The
flags which apply to the msgget system call are IPC_CREAT and IPC_EXCL and are
defined in the sys/ipc.h header file.

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This is accomplished by
adding or bitwise ~Ring (I) them with the operation permissions; the bit posi­
tions and values for the control commands in relation to those of the operation
permissions make this possible.

The msgflg value can easily be set by using the flag names in conjunction with the
octal operation permissions value:

msqid = msgget (key, (IPC_CREAT 0400»;

msqid = msgget (key, (IPC_CREAT IPC_EXCL I 0400»;

As specified by the msgget(2) entry in the Operating System API Reference, success
or failure of this system call depends upon the argument values for key and
msgflg or system-tunable parameters. The system call will attempt to return a
new message queue identifier if one of the following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a message queue identifier associated with it and
(msgflg and IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

msqid = msgget (IPC_PRIVATE, msgflg);

The system call will always be attempted. Exceeding the MSGMNI system-tunable
parameter always causes a failure. The MSGMNI system-tunable parameter deter­
mines the systemwide number of unique message queues that may be in use at
any given time.

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It
will cause the system call to return an error if a message queue identifier already
exists for the specified key. This is necessary to prevent the process from thinking
that it has received a new identifier when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a new message queue identifier is
returned if the system call is successful.

Refer to the msgget(2) manual page in the Operating System API Reference for
specific, associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

9-10 Interprocess Communication

Example Program
Figure 9-3 is a menu-driven program. It allows all possible combinations of using
the msgget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-8) by including the required header files as specified
by the msgget(2) entry in the Operating System API Reference. Note that the
sys/ermo.h header file is included as opposed to declaring ermo as an external
variable; either method will work.

Variable names have been chosen to be as close as possible to those in the synopsis
for the system call. Their declarations are self explanatory. These names make the
programs more readable are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

key used to pass the value for the desired key

opperm used to store the desired operation permissions

flags used to store the desired control commands (flags)

opperm_flags used to store the combination from the logical ~Ring of the
opperm and flags variables; it is then used in the system
call to pass the msgflg argument

msqid used for returning the message queue identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation per­
missions code, and finally for the control command combinations (flags) which are
selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows errors to be observed for invalid
combinations.

Next, the menu selection for the flags is combined with the operation permissions,
and the result is stored in the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored in the msqid variable (line
53).

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals -1,
a message indicates that an error resulted, and the external ermo variable is
displayed (line 57).

Messages 9-11

If no error occurred, the returned message queue identifier is displayed (line 61).

The example program for the msgget system call follows. We suggest you name
the program file msgget . c and the executable file msgget.

Figure 9-3: msgget () System Call Example

9-12

/*This is a program to illustrate
**the message get, msgget(),
**system call capabilities.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <errno.h>

/*Start of main C language program*/
main()
{

key_t key;
int opperm, flags;
int msqid, opperm_flags;
/*Enter the desired key*/
printf ("Enter the desired key in hex = ");
scanf (1I%x", &key) i

/*Enter the desired octal operation
permissions. *1

printf("\nEnter the operation\n");
printf ("permissions in octal = II) i

scanf (119-00", &oppenn) i

/*Set the desired flags.*/
printf (" \nEnter corresponding number to\n") i
printf ("set the desired flags: \n") ;
printf ("No flags O\n");
printf("IPC_CREAT
printf ("IPC_EXCL
printf ("IPC_CREAT and IPC_EXCL
printf(" Flags

/*Get the flag(s) to be set.*/
scanf (n9-od, II, &flags);

/*Check the values.*/

l\n") ;
2\n") ;
3\n") ;
") ;

printf ("\nkey =Ox.9'oX, opperm = 0%0, flags = O"oO\n",
key, opperm, flags);

/*Incorporate the control fields (flags) with
the operation permissions*/

switch (flags)
{

case 0: /*NO flags are to be set.*/

(continued on next page)

Interprocess Communication

Figure 9-3: msgget () System Call Example (continued)

Messages

opperm~flags = (opperm I 0);
break;

case 1: /*Set the IPC~CREAT flag.*/
opperm~flags = (opperm I IPC~CREAT);
break;

case 2: /*Set the IPC~EXCL flag.*/
opperm~flags = (oppenn I IPC~EXCL);
break;

case 3: /*Set the IPC CREAT and IPC EXCL flags.*/
oppenn~flags = (oppenn I IPC~CREAT I IPCj:XCL);

/*Call the msgget system call.*/
msqid = msgget (key, opperm~flags);

/*Perform the following if the call is unsuccessful.*/
if(msqid == -1)

{

printf (II \nThe msgget call failed, error number = 9-od \n" I ermo);

I*Return the msqid upon successful campletion.*/
else

printf ("\nThe msqid = 9-od\n", msqid);
exit (0);

9-13

Controlling Message Queues

This section describes how to use the msgctl system call. The accompanying pro­
gram illustrates its use.

Using msgctlO
The synopsis found in the msgctl(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, end, buf)

int msqid, cmd;

struct msqid_ds *buf;

The msgctl system call requires three arguments to be passed to it; it returns an
integer-type value.

When successful, it returns a zero value; when unsuccessful, it returns a -1.

The msqid variable must be a valid, non-negative, integer value. In other words,
it must have already been created by using the msgget system call.

The cmd argument can be anyone of the following values:

return the status information contained in the associated data
structure for the specified message queue identifier, and place
it in the data structure pointed to by the buf pointer in the
user memory area.

for the specified message queue identifier, set the effective user
and group identification, operation permissions, and the
number of bytes for the message queue to the values contained
in the data structure pointed to by the buf pointer in the user
memory area.

remove the specified message queue identifier along with its
associated message queue and data structure.

To perform an IPC_SET or IPC_RMID control command, a process must have:

9·14 Interprocess Communication

• an effective user id of OWNER/CREATOR, or

• an effective user id of root (if the system is running with the SUM privilege
module), or

• the P _OWNER privilege.

Read permission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the following example program. If
you need more information on the logic manipulations in this program, read the
msgget(2) entry in the Operating System API Reference; it goes into more detail than
would be practical for this document.

Example Program

Figure 9-4 is a menu-driven program. It allows all possible combinations of using
the msgctl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the msgctl(2) entry in the Operating System API Reference. Note in this pro­
gram that ermo is declared as an external variable, and therefore, the
sys/errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis for the system call. Their declarations are self explanatory. These
names make the program more readable and are perfectly valid since they are
local to the program.

The variables declared for this program and what they are used for are as follows:

uid

gid

mode

bytes

rtrn

Messages

used to store the IPC_SET value for the effective user
identification

used to store the IPC_SET value for the effective group
identification

used to store the IPC_SET value for the operation permissions

used to store the IPC_SET value for the number of bytes in the
message queue (msg_qbytes)

used to store the return integer value from the system call

9-15

msqid

command

choice

buf

used to store and pass the message queue identifier to the sys­
tem call

used to store the code for the desired control command so that
subsequent processing can be performed on it

used to determine which member is to be changed for the
IPC_SET control command

used to receive the specified message queue identifier's data
structure when an IPC_STAT control command is performed

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET
command gets the values to set

Note that the msqid_ds data structure in this program (line 16) uses the data
structure, located in the sys/msg.h header file of the same name, as a template for
its declaration.

The next important thing to observe is that although the buf pointer is declared to
be a pointer to a data structure of the msqid_ds type, it must also be initialized to
contain the address of the user memory area data structure (line 17). Now that all
of the required declarations have been explained for this program, this is how it
works.

First, the program prompts for a valid message queue identifier which is stored in
the msqid variable (lines 19,20). This is required for every msgctl system call.

Then the code for the desired control command must be entered (lines 21-27) and
stored in the command variable. The code is tested to determine the control com­
mand for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is performed
(lines 37, 38) and the status information returned is printed out (lines 39-46); only
the members that can be set are printed out in this program. Note that if the sys­
tem call is unsuccessful (line 106), the status information of the last successful call
is printed out. In addition, an error message is displayed and the ermo variable
is printed out (line 108). If the system call is successful, a message indicates this
along with the message queue identifier used (lines 110-113).

If the IPC_SET control command is selected (code 2), the first thing is to get the
current status information for the message queue identifier specified (lines 50-52).
This is necessary because this example program provides for changing only one
member at a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of these members, it
would cause repetitive failures for this control command until corrected. The next

9·16 Interprocess Communication

thing the program does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored in the choice variable (line 60). Now,
depending upon the member picked, the program prompts for the new value
(lines 66-95). The value is placed into the appropriate member in the user memory
area data structure, and the system call is made (lines 96-98). Depending upon
success or failure, the program returns the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is performed
(lines 100-103), and the msqid along with its associated message queue and data
structure are removed from the UNIX operating system. Note that the buf
pointer is ignored in performing this control command, and its value can be zero
or NULL. Depending upon the success or failure, the program returns the same
messages as for the other control commands.

The example program for the msgctl system call follows. We suggest that you
name the source program file msgctl. c and the executable file msgctl.

Figure 9-4: msgctl () System Call Example

1 /*This is a program to illustrate
2 **the message control, msgctlO,
3 **system call capabilities.

4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/msg.h>

10 /*Start of main C language program*/
11 main 0
12 {
13 extern int erma;
14 int uid, gid, mode, bytes;
15 int rtrn, msqid, camnand, choice;
16 struct msqid_ds msqid_ds, *buf;
17 buf = &msqid_ds;

18 /*Get the msqid, and ccmnand. * /
19 printf ("Enter the msqid = ");
20 scanf ("%d", &lIISqid);
21 printf("\nEnter the nwnber for\n");
22 printf ("the desired camnand: \n");

23
24

25
26
27

Messages

printf ("IPC_STAT
printf ("IPC~
printf ("IPC_RMID
printf ("Entry
scanf ("%dil, &cammand);

l\n");
2\n");
3\nll);
II);

(continued on next page)

9-17

Figure 9-4: msgctl () System Call Example (continued)

9-18

/*Check the values.*/
printf ("\nmsqid =%d. ccmmand = %d\n".

msqid. ccmnand);

switch (command)
{

case 1: /*Use msgctl() to duplicate
the data structure for

msqid in the msqid_ds area pointed
to by buf and then print it out.*/

rtrn = msgctl (msqid. IPC_STAT.
buf);

printf ("\nThe USER ID = %d\n".
buf->msg-..PE!nn. uid) ;

printf ("The GROUP ID = %d\n".
buf->msg-..PE!rm.gid);

printf ("The operation permissions O%o\n".
buf->msg-..PE!rm.mode);

printf (liThe msg_qbytes ~ %d\n l' ,

buf->msg_qbytes) ;
break;

case 2: /*Select and change the desired
meffiber(s) of the data structure.*/

/*Get the original data for this msqid
data structure first.*/

rtrn = msgctl (msqid. IPC_STAT. buf);
printf ("\nEnter the number for the\n");
printf ("member to be changed: \n") ;
printf ("msg-penn. uid
printf("msg-penn.gid

printf ("msg-..PE!rm.mode
printf ("msg_qbytes
printf ("Entry

scanf (1I%d", &choice);

l\n");

2\n");
3\n");
4\n");
");

/*Only one choice is allowed per
pass as an invalid entry will

cause repetitive failures until
msqid_ds is updated with

IPC_STAT.*/

switch (choice) {
case 1:

printf (" \nEnter USER ID = ");
scanf ("%1d". &uid);
buf->msg-penn.uid =(uid_t)uid;

printf("\nUSER ID = %d\n".
buf->msg-perm. uid) ;

break;
case 2:

(continued on next page)

Interprocess Communication

Figure 9-4: msgctl () System Call Example (continued)

75
76

77

78
79
80
81
82

83
84

85

86
87

88
89

90
91

92
93
94

95

printf (" \DEnter GROUP ID = ");

scanf ("%d", &gid) i

buf->msg-penn.gid = gid;
printf("\nGROUP ID = %d\n",

buf->msg-penn.gid);
break;

case 3:
printf (" \DEnter MODE = ");

scanf("%o", &mode);

buf->msg-perm.mode = mode;
printf("\nMODE = O%o\n",

buf->msg-perm.mode);
break;

case 4:
"); printf (" \DEnter msQ....bytes

scanf ("%d", &bytes);
buf->msg_QP¥tes = bytes;
printf("\nmsg_qbytes = 9-od\n",

buf->msg_qbytes) ;
break;

/*00 the cbange.*/
rtrn = msgctl(msqid, IPC_SET,

buf);

96
97
98
99 break;

100 case 3: /*Remove the JllSqid along with its
101 associated message queue
102 and data structure.*/
103 rtrn = msgctl(msqid, IPC_RMID, (struct msqid_ds *) NULL);
104
105 /*Perfonn the following if the call is unsuccessful.*/
106 if(rtrn == -1)
107 {
108 printf ("\nTh.e msgctl call failed, error number = %d\n", errno);
109

110 /*Return the msqid upon successful cornpletion.*/
111 else
112 printf ("\nMsgctl was successful for msqid = %d\n",
113 msqid);
114 exit (0);

115

Messages 9-19

Operations for Messages

This section describes how to use the msgsnd and msgrcv system calls. The
accompanying program illustrates their use.

Using msgopO
The synopsis found in the msgop(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgSZi

long msgtyp;
int msgflg;

Sending a Message
The msgsnd system call requires four arguments to be passed to it. It returns an
integer value.

When successful, it returns a zero value; when unsuccessful, msgsnd returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other words,
it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that con­
tains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data struc­
ture pointed to by the msgp argument. This is the length of the message. The
maximum size of this array is determined by the MSGM'AX system-tunable param­
eter.

9-20 Interprocess Communication

The msgflg argument allows the "blocking message operation" to be performed
if the IPC_NOWAIT flag is not set ((msgflg and IPC_NOWAIT)= = 0); the operation
would block if the total number of bytes allowed on the specified message queue
are in use (msg_qbytes or MSGMNB), or the total system-wide number of messages
on all queues is equal to the system- imposed limit (MSGTQL). If the IPC_NOWAIT

flag is set, the system call will fail and return a -l.

The value of the msg_qbytes data structure member can be lowered from MSGMNB

by using the msgctl IPC_SET control command, but only the root (if the SUM
privilege module is installed) can raise it afterwards.

Further details of this system call are discussed in the following program. If you
need more information on the logic manipulations in this program, read "Using
msgget". It goes into more detail than would be practical for every system call.

Receiving Messages

The msgrcv system call requires five arguments to be passed to it; it returns an
integer value.

When successful, it returns a value equal to the number of bytes received; when
unsuccessful it returns a-i.

The msqid argument must be a valid, non-negative, integer value. In other words,
it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that will
receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired (see
the msgflg argument below).

The msgtyp argument is used to pick the first message on the message queue of
the particular type specified. If it is equal to zero, the first message on the queue is
received; if it is greater than zero, the first message of the same type is received; if
it is less than zero, the lowest type that is less than or equal to its absolute value is
received.

The msgflg argument allows the "blocking message operation" to be performed
if the IPC_NOWAIT flag is not set ((msgflg and IPC_NOWAIT) == 0); the operation
would block if there is not a message on the message queue of the desired type
(msgtyp) to be received. If the IPC_NOWAIT flag is set, the system call will fail
immediately when there is not a message of the desired type on the queue.
msgflg can also specify that the system call fail if the message is longer than the
size to be received; this is done by not setting the MSG_NOERROR flag in the
msgflg argument ((msgflg and MSG_NOERROR)) == 0). If the MSG_NOERROR flag is
set, the message is truncated to the length specified by the msgsz argument of
msgrcv.

Messages 9-21

Further details of this system call are discussed in the following program. If you
need more information on the logic manipulations in this program, read "Using
msgget". It goes into more detail than would be practical for every system call.

Example Program
Figure 9-5 is a menu-driven program. It allows all possible combinations of using
the msgsnd and msgrcv system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the msgop(2) entry in the Operating System API Reference. Note that in this pro­
gram errno is declared as an external variable; therefore, the sys/errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis. Their declarations are self explanatory. These names make the
program more readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

sndbuf

rcvbuf

msgp

i

9-22

used as a buffer to contain a message to be sent (line 13); it uses
the msgbufl data structure as a template (lines 10-13). The
msgbufl structure (lines 10-13) is a duplicate of the msgbuf
structure contained in the sys/msg. h header file, except that
the size of the character array for mtext is tailored to fit this
application. The msgbuf structure should not be used directly
because mtext has only one element that would limit the size
of each message to one character. Instead, declare your own
structure. It should be identical to msgbuf except that the size
of the mtext array should fit your application.

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers

used as a counter for inputing characters from the keyboard,
storing them in the array, and keeping track of the message
length for the msgsnd system call; it is also used as a counter to
output the received message for the msgrcv system call

Interprocess Communication

c

flag

flags

choice

rtrn

msqid

msgsz

msgflg

msgtyp

used to receive the input character from the get char function
(line 50)

used to store the code of IPC_NOWAIT for the msgsnd system
call (line 61)

used to store the code of the IPC_NOWAIT or MSG_NOERROR

flags for the msgrcv system call (line 117)

used to store the code for sending or receiving (line 30)

used to store the return values from all system calls

used to store and pass the desired message queue identifier for
both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of flags
for receiving

used for specifying the message type for sending or for picking
a message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer initialized to point to it (line 22); this will allow the data structure
members affected by message operations to be observed. They are observed by
using the msgctl (IPC_STAT) system call to get them for the program to print
them out (lines 80-92 and lines 160-167).

The first thing the program prompts for is whether to send or receive a message.
A corresponding code must be entered for the desired operation; it is stored in the
choice variable (lines 23-30). Depending upon the code, the program proceeds as
in the following msgsnd or msgrcv sections.

msgsndO

When the code is to send a message, the msgp pointer is initialized (line 33) to the
address of the send data structure, sndbuf. Next, a message type must be entered
for the message; it is stored in the variable msgtyp (line 42), and then (line 43) it is
put into the mtype member of the data structure pointed to by msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure
(lines 48-51). This will continue until an end-of-file is recognized which, for the
getchar function, is a CTRL-d immediately following a carriage return
(RETURN).

Messages 9-23

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the IPC_NOWAIT
flag. The program does this by requesting that a code of a 1 be entered for yes or
anything else for no (lines 57-65). It is stored in the flag variable. If a 1 is entered,
IPC_NOWAIT is logically ORed with msgflg; otherwise, msgflg is set to zero.

The msgsnd system call is performed (line 69). If it is unsuccessful, a failure mes­
sage is displayed along with the error number (lines 70-72). If it is successful, the
returned value is printed and should be zero (lines 73-76).

Every time a message is successfully sent, three members of the associated data
structure are updated. They are:

represents the total number of messages on the message
queue; it is incremented by one.

contains the process identification (PID) number of the last
process sending a message; it is set accordingly.

contains the time in seconds since January 1,1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accord-
ingly.

These members are displayed after every successful message send operation (lines
79-92).

msgrcvO
When the code is to receive a message, the program continues execution as in the
following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested; it is stored in msqid (lines 100-103).

The message type is requested; it is stored in msgtyp (lines 104-107).

The code for the desired combination of control flags is requested next; it is stored
in flags (lines 108-117). Depending upon the selected combination, msgflg is set
accordingly (lines 118-131).

Finally, the number of bytes to be received is requested; it is stored in msgsz (lines
132-135).

The msgrcv system call is performed (line 142). If it is unsuccessful, a message
and error number is displayed (lines 143-145). If successful, a message indicates
so, and the number of bytes returned and the msg type returned (because the

9-24 Interprocess Communication

value returned may be different from the value requested) is displayed followed
by the received message (lines 150-156).

When a message is successfully received, three members of the associated data
structure are updated. They are:

contains the number of messages on the message queue; it is
decremented by one.

contains the PID of the last process receiving a message; it is
set accordingly.

contains the time in seconds since January 1,1970, Greenwich
Mean Time (GMT) that the last process received a message; it
is set accordingly.

Figure 9-5 shows the msgop system calls. We suggest that you put the program
into a source file called msgop. c and then compile it into an executable file called
msgop.

Figure 9-5: msgop () System Call Example

Messages

/*This is a program to illustrate
**the message operations, IIISgop () ,
**system call capabilities.
*/

/*Include necessa~ header files.*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

struct msgbufl (
long mtype;
char ~ext[81921;

) sndbuf, rcvbuf, *msgp;

/*Start of main C language program*/
main()
(

extern int errno;
int i, a, flag, flags, choice;
int rtrn, msqid, msgsz, IIISgflg;
long mtype, msgtyp;
struct msqid_ds msqid_ds, *buf;
buf = &msqid_ds;

/*Select the desired operation.*/
printf ("Enter the corresponding\n");

(continued on next page)

9-25

Figure 9-5: msgop () System Call Example (continued)

9-26

25
26
27

28
29

30

31
32

33

34
35
36
37

38

39
40

41
42
43

44
45

46
47

48
49
50
51

52
53

54

55
56

57
58

59
60
61
62

63
64
65

66
67

printf ("code to send or\n");
printf(lIreceive a message:\nll);
printf(USend l\nU);

printf { "Receive
printf (uEntry

scanf (1I%d1l , &choice);

2\nU);
U);

if(choice == 1) /*Send a message.*/

msgp = &sndbuf; /*Point to user send structure.*/

printf (U \nEnter the msqid of\n U) ;

printf(Uthe message queue to\nU);
printf (uhand1e the message = U);

scanf (u%du, &msqid);

/*Set the message type.*/
printf("\nEnter a positive integer\nll);

printf (Umessage type (long) for the \n U) ;

printf ("message = ") i

scant (U%ld u, &msgtyp);

msgp->mtype = msgtyp;

/*Enter the message to send.*/
printf (U \nEnter a message: \nU);

/*A control-d (~d) terminates as

EOF.*/

/*Get each character of the message

and put it in the mtext array.*/

forti = 0; «c = getchar(» != EOF); i++)
sndbuf.mtext[ij = c;

I*Deter.mine the message size.*/
msgsz = i;

/*Echo the message to send.*/
for(i = 0; i < msgsz; i++)

putchar(sndhuf.mtext[ij);

/*Set the IPC_NOWAIT flag if

desired.*/
printf(U\nEnter a 1 if you want \nU);

printf (Uthe IPC_NOWAIT flag set: U) ;
scant (u%du, &flag);

if(flag == 1)
msgflg IPC_NOWAIT;

else
msgflg 0;

/*Check the msgflg.*/
printf (U\nmsgflg = 09-.o\nU, msgflg);

(continued on next page)

Interprocess Communication

Figure 9-5: msgop() System Call Example (continued)

68
69
70
71

72
73
74
75
76

77

78
79

80
81

82

83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99

100
101
102
103

104
105
106
107

108
109
110
111
112

~

Messages

/*Send the message.*/
rtrn = msgsnd(msqid, (const void*) msgp, msgsz, msgflg);

if(rtrn == -1)
printf("\nMsgsnd failed. Error = %d\n",

ermo);

else {
/*Print the value of test which

Should be zero for successful.*/
printf (" \nValue returned = %d\n", rtrn);

/*Print the size of the message
sent.*/

printf (" \nMsgsz = %d\n", msgsz);

/*Check the data structure update.*/
msgctl (msqid, IPC_STAT, buf);

/*Print out the affected members.*/

/ *Print the incremented IllJlDber of
messages on the queue. * /

printf ("\nThe msg_~ = %d\n",
buf->msg_qnum) ;

/*Print the process id of the last sender.*/
printf ("The msg_lspid = %d\n",

buf->msg_lspid);
/*print the last send time.*/
printf("The msg_stime = %d\n",

buf->msg_stime) ;

if (choice == 2) /*Receive a message.*/
{

/*Initialize the message pointer
to the receive buffer.*/

msgp = &rcvbuf;

/*Specify the message queue which contains
the desired message.*/

printf (" \DEnter the msqid = ");
scanf("%d", &msqid);

/*Specify the specific message on the queue
~ using its type.*/

printf (" \DEnter the msgtyp = ");
scanf ("%ld", &IlISgtyp);

/*configure the control flags for the

desired actions.*/
printf("\nBnter the corresponding code\n");
printf("to select the desired flags: \n");
printf ("No flags O\n") ;

(continued on next page)

9-27

Figure 9·5: msgop () System Call Example (continued)

9·28

printf ("IfSG_NOERROR
printf(nIPC_NOWAIT
printf ("IfSG_NOERROR and IPC_NOI'IAIT
printf (" Flags
scanf ("%d", &flags);

switch (flags) (

case 0:
msgflg = 0;
break;

case 1:
msgflg = MSG_NOERROR;

break;

case 2:
msgflg = IPC_NOI'IAIT;
break;

case 3:
msgflg = MSG_NOERROR I IPC_NOI'IAIT;
break;

l\n");
2\n");
3\n");
");

!*BPecify the number of ~es to receive.*!
printf("\nEnter the number of ~es\n");
printf("to receive (msgsz) = ");
scanf ("%<i", &:msgsz);

!*Check the values for the axguments. *!
printf("\mnsqid =%d\n", msqid);
printf("\nmsgtyp = %ld\n", msgtyp);
printf("\mnsgsz = %d\n", msgsz);
printf("\mnsgflg = O%o\n", msgflg);

!*call msgrcv to receive the message. *!
rtrn = msgrcv(msqid, (void*), msgp, msgsz, msgtyp, msgflg);

if(rtrn == -1)
printf ("\nMsgrcv failed., Error = %d\n", errno);

else {
printf ("\nMsgctl was successful\n");
printf("for msqid = %d\n",

msqid);

!*Print the number of ~es received,
it is equal to the return
value.*!

printf("Bytes received = %d\n", rtrn);

!*Print the received message.*!
for(i = 0; i<rtrn; i++)

putchar(rcvbuf.mtext[i]);

(continued on next page)

Interprocess Communication

Figure 9-5: msgop() System Call Example (continued)

Messages

/*Check the associated data structure.*/
msgctl(11ISQ:id, IPC_STAT, buf);
/*Print the decremented number of messages.*/
printf ("\nThe msg_QIlum = %d\n", buf->msg_qnum);
/*Print the process id of the last receiver.*/
printf ("The msg_lrpid = %d\n", buf->msg_lrpid);
/*Print the last message receive time*/
printf ("The msg_rtime = %d\n", buf->msg_rtime);

9-29

Semaphores

The semaphore type of IPC allows processes (executing programs) to communi­
cate through the exchange of semaphore values. Since many applications require
the use of more than one semaphore, the UNIX operating system has the ability to
create sets or arrays of semaphores. A semaphore set can contain one or more
semaphores up to a limit set by the system administrator. The tunable parameter,
SEMMSL, has a default value of 25. Semaphore sets are created by using the
semget (semaphore get) system call.

The process performing the semget system call becomes the owner I creator, deter­
mines how many semaphores are in the set, and sets the initial operation permis­
sions for all processes, including itself. This process can subsequently relinquish
ownership of the set or change the operation permissions using the semetlO
(semaphore control) system call. The creating process always remains the creator
as long as the facility exists. Other processes with permission can use semetl to
perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore
grants permission.

Each semaphore within a set can be incremented and decremented with the
semopO system call (documented in the Operating System API Reference).

To increment a semaphore, an integer value of the desired magnitude is passed to
the semop system call. To decrement a semaphore, a minus (-) value of the
desired magnitude is passed.

The UNIX operating system ensures that only one process can manipulate a sema­
phore set at any given time. Simultaneous requests are performed sequentially in
an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the pro­
cess is successful, then the semaphore value is greater than that certain value.
Otherwise, the semaphore value is not. While doing this, the process can have its
execution suspended (IPC_NOWAIT flag not set) until the semaphore value would
permit the operation (other processes increment the semaphore), or the sema­
phore facility is removed.

The ability to suspend execution is called a "blocking semaphore operation." This
ability is also available for a process which is testing for a semaphore equal to
zero; only read permission is required for this test; it is accomplished by passing a
value of zero to the sem.op (semaphore operation) system call.

9-30 Interprocess Communication

On the other hand, if the process is not successful and did not request to have its
execution suspended, it is called a "nonblocking semaphore operation." In this
case, the process is returned a known error code (-1), and the external errno vari­
able is set accordingly.

The blocking semaphore operation allows processes to communicate based on the
values of semaphores at different points in time. Remember also that IPC facilities
remain in the UNIX operating system until removed by a permitted process or
until the system is reinitialized.

Operating on a semaphore set is done by using the semop system call.

When a set of semaphores is created, the first semaphore in the set is semaphore
number zero. The last semaphore number in the set is numbered one less than the
total in the set.

A single system call can be used to perform a sequence of these
"blocking/ nonblocking operations" on a set of semaphores. When performing a
sequence of operations, the blocking/nonblocking operations can be applied to
any or all of the semaphores in the set. Also, the operations can be applied in any
order of semaphore number. However, no operations are done until they can all
be done successfully. For example, if the first three of six operations on a set of ten
semaphores could be completed successfully, but the fourth operation would be
blocked, no changes are made to the set until all six operations can be performed
without blocking. Either the operations are successful and the semaphores are
changed, or one ("nonblocking") operation is unsuccessful and none are changed.
In short, the operations are "atomically performed."

Remember, any unsuccessful nonblocking operation for a single semaphore or a
set of semaphores causes immediate return with no operations performed at all.
When this occurs, an error code (-1) is returned to the process, and the external
variable errno is set accordingly.

System calls (documented in the Operating System API Reference) make these sema­
phore capabilities available to processes. The calling process passes arguments to
a system call, and the system call either successfully or unsuccessfully performs its
function. If the system call is successful, it performs its function and returns the
appropriate information. Otherwise, a known error code (-1) is returned to the
process, and the external variable errno is set accordingly.

Semaphores 9-31

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely identified
data structure and semaphore set (array) must be created. The unique identifier is
called the semaphore set identifier (semid); it is used to identify or refer to a par­
ticular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in a
semaphore set is user selectable. The following members are in each structure
within a semaphore set:

• semaphore value

• PIO performing last operation

• number of processes waiting for the semaphore value to become greater
than its current value

• number of processes waiting for the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains the following information related to the semaphore
set:

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

9·32 Interprocess Communication

The definition for the semaphore set (array member) sern is as follows:

struct sem

ushort
pid_t
ushort
ushort

);

semval;
sempid;
semncnti
semzcnti

1* semaphore value *1
1* pid of last operation *1
1* # awaiting semval > cval *1
1* # awaiting semval = 0 * I

Likewise, the definition for the associated semaphore data structure sernid_ds
contains the following members:

};

struct ipc.....PE!rm sem-perm; 1* operation permission struct *1
struct sem *seJn_base; 1* ptr to first semaphore in set *1
ushort seJn_nsems; 1* # of semaphores in set *1

sem_otime; 1* last semop time *1
sem_ctime; 1* last change time * I

In UNIX System V Release 4.0, the value of SEM_PAD equals 4. In UNIX System V
Release 4.1, SEM_PAD is a symbolic constant.

The C programming language data structure definition for the semaphore set
(array member) and for the semid_ds data structure are located in the sys/sern.h
header file.

Note that the sern-penn member of this structure uses ipc-penn as a template.
The figure entitled "ipc.....penn Data Structure" breaks out the operation permis­
sions data structure.

The ipc""'penn data structure is the same for all IPC facilities; it is located in the
sys/ ipc • h header file and is shown in the "Messages" section.

Semaphores 9·33

The sernget system call is used to perform two tasks:

• to get a new semaphore set identifier and create an associated data structure
and semaphore set for it

• to return an existing semaphore set identifier that already has an associated
data structure and semaphore set

The task performed is determined by the value of the key argument passed to the
sernget system call. For the first task, if the key is not already in use for an exist­
ing sernid and the IPC_CREAT flag is set, a new sernid is returned with an associ­
ated data structure and semaphore set created for it provided no system tunable
parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), which is known as
the private key (IPC_PRIVATE). When this key is specified, a new identifier is
always returned with an associated data structure and semaphore set created for
it, unless a system-tunable parameter would be exceeded. The ipcs command
will show the key field for the sernid as all zeros.

When performing the first task, the process which calls semget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Semaphores"). The creator of the semaphore set also
determines the initial operation permissions for the facility.

For the second task, if a semaphore set identifier exists for the key specified, the
value of the existing identifier is returned. If you do not want to have an existing
semaphore set identifier returned, a control command (IPC_EXCL) can be specified
(set) in the semflg argument passed to the system call. The system call will fail if
it is passed a value for the number of semaphores (nsems) that is greater than the
number actually in the set; if you do not know how many semaphores are in the
set, use 0 for nsems. (see "Using semget" for how to use this system call).

Once a uniquely identified semaphore set and data structure are created, semop
(semaphore operations) and semetl (semaphore control) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for zero.
The semop system call is used to perform these operations (see "Operations On
Semaphores" for details of the semop system call.

The semetl system call permits you to control the semaphore facility in the fol­
lowing ways:

• by returning the value of a semaphore (GETVAL)

9-34 Interprocess Communication

• by setting the value of a semaphore (SETVAL)

• by returning the PID of the last process performing an operation on a sema­
phore set (GETPID)

• by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

• by returning the number of processes waiting for a semaphore value to
equal zero (GETZCNT)

• by getting all semaphore values in a set and placing them in an array in user
memory (GETALL)

• by setting all semaphore values in a semaphore set from an array of values
in user memory (SETALL)

• by retrieving the data structure associated with a semaphore set (IPC_STAT)

• by changing operation permissions for a semaphore set (IPC_SET)

• by removing a particular semaphore set identifier from the UNIX operating
system along with its associated data structure and semaphore set
(IPC_RMID)

See the section "Controlling Semaphores" for details of the semctl system call.

Semaphores 9-35

Getting Semaphores

This section describes how to use the semget system call. The accompanying pro­
gram illustrates its use.

Using semget()
The synopsis found in the semget(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

iIlt semget (key, nsems, semflag)

int nsems, semflag;

The following line in the synopsis:

int semget (key, nsems, semflg)

informs you that semget is a function with three formal arguments that returns an
integer-type value. The next two lines:

key_t key;
int nsems, semflg;

declare the types of the formal arguments. key _t is defined by a typedef in the
sye/types.h header file to be an integer.

The integer returned from this system call upon successful completion is the sema­
phore set identifier that was discussed above.

The process calling the semget system call must supply three actual arguments to
be passed to the formal key, nsems, and semflg arguments.

9-36 Interprocess Communication

A new semid with an associated semaphore set and data structure is created if
either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and semflg ANDed with IPC_CREAT is "true."

The value passed to the semflg argument must be an integer that will specify the
following:

• operation permissions
• controlfields (commands)

Figure 9-6 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 9-6: Operation Permissions Codes

Operation Permissions
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific value is derived by adding or bitwise ORing the values for the opera­
tion permissions wanted. That is, if read by user and read/ alter by others is
desired, the code value would be 00406 (00400 plus 00006). There are constants
#define'd in the sys/sem.h header file which can be used for the user (OWNER).
They are as follows:

0200
0400

/* alter permission b¥ owner */
/* read permission b¥ owner */

Control flags are predefined constants (represented by all upper-case letters). The
flags that apply to the semget system call are IPC_CREAT and IPC_EXCL and are
defined in the sys/ipc.h header file.

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This specification is
accomplished by adding or bitwise ORing (I) them with the operation

Semaphores 9-37

permissions; the bit positions and values for the control commands in relation to
those of the operation permissions make this possible.

The semflg value can easily be set by using the flag names in conjunction with the
octal operation permissions value:

semid = semget (key, nsems, (IPC_CREAT

semid = semget (key, nsems, (IPC_CREAT

0400»;

IPC_EXCL I 0400»;

As specified by the semget(2) entry in the Operating System API Reference, success
or failure of this system call depends upon the actual argument values for key,
nsems, and semflg, and system-tunable parameters. The system call will attempt
to return a new semaphore set identifier if one of the following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a semaphore set identifier associated with it and
(semflg & IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

semid = semget(IPC_PRIVATE, nsems, semflg);

Exceeding the SEMMNI, SEMMNS, or SEMMSL system-tunable parameters will always
cause a failure. The SEMMNI system-tunable parameter determines the maximum
number of unique semaphore sets (semid's) that may be in use at any given time.
The SEMMNS system-tunable parameter determines the maximum number of sema­
phores in all semaphore sets system wide. The SEMMSL system-tunable parameter
determines the maximum number of semaphores in each semaphore set.

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It
will cause the system call to return an error if a semaphore set identifier already
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) identifier when it has not. In
other words, when both IPC_CREAT and IPC_EXCL are specified, a new sema­
phore set identifier is returned if the system call is successful. Any value for
semflg returns a new identifier if the key equals zero (I PC_PRIVATE) and no
system-tunable parameters are exceeded.

Refer to the semget(2) manual page in the Operating System API Reference for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

9·38 Interprocess Communication

Example Program

Figure 9-7 is a menu-driven program. It allows all possible combinations of using
the semget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-8) by including the required header files as specified
by the semget(2) entry in the Operating System API Reference. Note that the
sys/errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the program
more readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

key

oppenn

flags

semid

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used to store the combination from the logical ORing of the
oppenn and flags variables; it is then used in the system call
to pass the semflg argument

used for returning the semaphore set identification number for
a successful system call or the error code (-1) for an unsuccess­
fulone.

The program begins by prompting for a hexadecimal key, an octal operation per­
missions code, and the control command combinations (flags) which are selected
from a menu (lines 15-32). All possible combinations are allowed even though
they might not be viable. This allows observing the errors for invalid combina­
tions.

Next, the menu selection for the flags is combined with the operation permissions;
the result is stored in oppenn_flags (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57); its value is
stored in nsems.

Semaphores 9-39

The system call is made next; the result is stored in the semid (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the error
code (-1), it is tested to see if an error occurred (line 63). If semid equals -1, a
message indicates that an error resulted and the external erma variable is
displayed (line 65). Remember that the external erma variable is only set when a
system call fails; it should only be examined immediately following system calls.

If no error occurred, the returned semaphore set identifier is displayed (line 69).

The example program for the semget system call follows. We suggest that you
name the source program file semget . c and the executable file semget.

Figure 9-7: semget () System Call Example

9-40

1 /*This is a program to illustrate
2 **the semaphore get, semget(),
3 **system call capabilities.*/

4

5
6

7

8

9
10

11
12

13

14

15
16
17

18

19
20

21
22

23

24

25

26

27

28

29
30

31

32

#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>
<errno.h>

/*Start of main C language program*/
main 0
{

/*declare as long integer*/
int opperm, flags, nSemB;

int semid, qpperm_flagsi

/*Enter the desired key*/
printf (" \nEnter the desired key in hex = ");
scanf(II9-'QKII, &key);

/*Enter the desired octal operation
permissions.*/

printf ("\nEnter the operation \n") ;
printf ("permissions in octal = ");

scanf ("9-00" I &oppenn);

/*Set the desired flags.*/
printf ("\nEnter corresponding number to \n") ;
printf ("set the desired flags: \n") ;
printf ("No flags = 0 \n") ;
printf ("IPC_CREAT
printf("IPC_EXCL
printf ("IPC_CREAT and IPC_EXCL
printf (" Flags
/*Get the flags to be set.*/
scanf ('''''ad'', &flags);

= l\n");
= 2\n");
= 3\n");

= ");

(continued on next page)

Interprocess Communication

Figure 9-7: semget () System Call Example (continued)

Semaphores

/*Error checking (debugging)*/
printf (lI\nkey =OK'..Qt, opperm = 0'700, flags = '7od\n",

key, oppenn, flags);
/*Incorporate the control fields (flags) with

the operation per.missions.*/
switch (flags)
{

case 0: /*No flags are to be set.*/
oppenn_flags ~ (oppenn I 0);
break;

case 1: /*Set the IPC_CREAT flag.*/
opperm_flags ~ (opperm I IPC_CREAT);
break;

case 2: /*Set the IPC_EXCL flag.*!
oppenn_flags ~ (opperm I IPC_EXCL);
break;

case 3: /*Set the IPC_CREAT and IPC_EXCL
flags. */

oppenn_flags ~ (opperm I IPC_CREAT

/*Get the number of semaphores for this set.*/
printf("\nEnter the number of\n");
printf ("desired semaphores for\n");
printf("this set (25 max) ~ ");

scant (n'Yod ", &nsems);

/*Check the entry.*/
printf(lI\nNsems = <J..-od\n", neems);

/*Call the semget system call.*/
semid ~ semget(key, nsems, opperm_flags);

/*Perfonn the following if the call is unsuccessful.*/
if (semid ~~ -1)

{

printf(IIThe semget call failed, error number CYod\n ll , erma);

/*Return the semid upon successful completion.*/

else
printf ("\nThe semid ~ "'.,d \n", semid);

exit(O);

9-41

Controlling Semaphores

This section describes how to use the sernetl system call. The accompanying pro­
gram illustrates its use.

Using semctl()

The synopsis found in the sernetl(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, senm.um, end, arg)
int semid, end;
int semnum;
union senrun

} arg;

int val;
struct semid_ds *buf;
ushort *array;

The sernetl system call requires four arguments to be passed to it, and it returns
an integer value.

The semid argument must be a valid, non-negative, integer value that has already
been created by using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates to
sequences of operations (atomically performed) on the set. When a set of sema­
phores is created, the first semaphore is number 0, and the last semaphore is num­
bered one less than the total in the set.

The cmd argument can be replaced by one of the following values:

GETVAL

SETVAL

GETPID

GETNCNT

9-42

return the value of a single semaphore within a semaphore set

set the value of a single semaphore within a semaphore set

return the PID of the process that performed the last operation
on the semaphore within a semaphore set

return the number of processes waiting for the value of a par­
ticular semaphore to become greater than its current value

Interprocess Communication

GETZCNT return the number of processes waiting for the value of a par­
ticular semaphore to be equal to zero

GETALL

SETALL

return the value for all semaphores in a semaphore set

set all semaphore values in a semaphore set

return the status information contained in the associated data
structure for the specified semid, and place it in the data struc­
ture pointed to by the buf pointer in the user memory area;
arg .buf is the union member that contains pointer

for the specified semaphore set (semid), set the effective
user / group identification and operation permissions

remove the specified semaphore set (semid) along with its
associated data structure.

To perform an IPC_SET or IPC_RMID control command, a process must have:

• an effective user id of OWNER/ CREATOR, or

• an effective user id of root (if the system is running with the SUM privilege
module), or

• the P_OWNER privilege,

The remaining control commands require either read or write permission, as
appropriate.

The arg argument is used to pass the system call the appropriate union member
for the control command to be performed. For some of the control commands, the
arg argument is not required and is simply ignored.

• arg. val required: SETVAL

• arg. buf required: IPC_STAT, IPC_SET

• arg. array required: GETALL, SETALL

• argignored:GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

The details of this system call are discussed in the following program. If you need
more information on the logic manipulations in this program, read "Using
semget". It goes into more detail than would be practical for every system call.

Semaphores 9·43

Example Program

Figure 9-8 is a menu-driven program. It allows all possible combinations of using
the sernetl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the sernetl(2) entry in the Operating System API Reference. Note that in this
program errno is declared as an external variable, and tnerefore the
sys/errno.h header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names make
the program more readable and are perfectly valid since they are local to the pro­
gram.

The variables declared for this program and what they are used for are as follows:

c

i

length

uid

gid

mode

retrn

semid

semnum

9·44

used to receive the specified semaphore set identifier's data
structure when an IPC_STAT control command is performed

used to receive the input values from the scanf function (line
119) when performing a SETALL control command

used as a counter to increment through the union arg. array
when displaying the semaphore values for a GETALL (lines 98-
100) control command, and when initializing the arg. array
when performing a SETALL (lines 117-121) control command

used as a variable to test for the number of semaphores in a set
against the i counter variable (lines 98, 117)

used to store the IPC_SET value for the user identification

used to store the IPC_SET value for the group identification

used to store the IPC_SET value for the operation permissions

used to store the return value from the system call

used to store and pass the semaphore set identifier to the sys­
tem call

used to store and pass the semaphore number to the system
call

Interprocess Communication

cmd

choice

semvals[]

arg.val

arg.buf

arg.array

used to store the code for the desired control command so that
subsequent processing can be performed on it

used to determine which member (uid, gid, mode) for the
IPC_SET control command is to be changed

used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL)

used to pass the system call a value to set, or to store a value
returned from the system call, for a single semaphore (union
member)

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values, or where the IPC_SET

command gets the values to set (union member)

a pointer passed to the system call which locates the array in
the user memory where the GETALL control command is to
place its return values, or when the SETALL command gets the
values to set (union member)

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the sys/sem.h header file of the same name as a template for
its declaration.

Note that the semvals array is declared to have 25 elements (0 through 24). This
number corresponds to the maximum number of semaphores allowed per set
(SEMMSL), a system-tunable parameter.

Now that all of the required declarations have been presented for this program,
this is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored in
the semid variable (lines 24-26). This is required for all semetl system calls.

Then, the code for the desired control command must be entered (lines 17-42), and
the code is stored in the cmd variable. The code is tested to determine the control
command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting for a
semaphore number is displayed (lines 48, 49). When it is entered, it is stored in
the semnum variable (line 50). Then, the system call is performed, and the sema­
phore value is displayed (lines 51-54). Note that the arg argument is not required
in this case, and the system call will simply ignore it. If the system call is success­
ful, a message indicates this along with the semaphore set identifier used (lines
197,198); if the system call is unsuccessful, an error message is displayed along
with the value of the external errno variable (lines 194,195).

Semaphores 9-45

If the SETVAL control command is selected (code 2), a message prompting for a
semaphore number is displayed (lines 55,56). When it is entered, it is stored in
the semnum variable (line 57). Next, a message prompts for the value to which the
semaphore is to be set; it is stored as the arg. val member of the union (lines 58,
59). Then, the system call is performed (lines 60, 62). Depending upon success or
failure, the program returns the same messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 63-66), and the PID of
the process performing the last operation is displayed. Note that the arg argu­
ment is not required in this case, and the system call will simply ignore it.
Depending upon success or failure, the program returns the same messages as for
GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting for a
semaphore number is displayed (lines 67-71). When entered, it is stored in the
semnum variable (line 73). Then, the system call is performed and the number of
processes waiting for the semaphore to become greater than its current value is
displayed (lines 73-76). Note that the arg argument is not required in this case,
and the system call will simply ignore it. Depending upon success or failure, the
program returns the same messages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message prompting for a
semaphore number is displayed (lines 77-80). When it is entered, it is stored in the
semnum variable (line 81). Then the system call is performed and the number of
processes waiting for the semaphore value to become equal to zero is displayed
(lines 82-85). Depending upon success or failure, the program returns the same
messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program first performs an
IPC_STAT control command to determine the number of semaphores in the set
(lines 87-93). The length variable is set to the number of semaphores in the set
(line 93). The arg . array union member is set to point to the semvals array
where the system call is to store the values of the semaphore set (line 96). Now, a
loop is entered which displays each element of the arg. array from zero to one
less than the value of length (lines 98-104). The semaphores in the
set are displayed on a single line, separated by a space. Depending upon success
or failure, the program returns the same messages as for GETVAL above.

If the SETALL control command is selected (code 7), the program first performs an
IPC_STAT control command to determine the number of semaphores in the set
(lines 107-110). The length variable is set to the number of semaphores in the set
(line 113). Next, the program prompts for the values to be set and enters a loop
which takes values from the keyboard and initializes the semvals array to contain
the desired values of the semaphore set (lines 115-121). The loop puts the first
entry into the array position for semaphore number zero and ends when the

9·46 Interprocess Communication

semaphore number that is filled in the array equals one less than the value of
length. The arg. array union member is set to point to the semvals array from
which the system call is to obtain the semaphore values. The system call is then
made (lines 122-125). Depending upon success or failure, the program returns the
same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is performed
(line 129), and the status information returned is printed out (lines 130-141); only
the members that can be set are printed out in this program. Note that if the sys­
tem call is unsuccessful, the status information of the last successful one is printed
out. In addition, an error message is displayed, and the ermo variable is printed
out (line 194).

If the IPC_SET control command is selected (code 9), the program gets the current
status information for the semaphore set identifier specified (lines 145-149). This
is necessary because this example program provides for changing only one
member at a time, and the semctl system call changes all of them. Also, if an
invalid value happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command until
corrected. The next thing the program does is to prompt for a code corresponding
to the member to be changed (lines 150-156). This code is stored in the choice
variable (line 157). Now, depending upon the member picked, the program
prompts for the new value (lines 158-181). The value is placed into the appropri­
ate member in the user memory area data structure, and the system call is made
(line 184). Depending upon success or failure, the program returns the same mes­
sages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call is per­
formed (lines 186-188). The semaphore set identifier along with its associated data
structure and semaphore set is removed from the UNIX operating system.
Depending upon success or failure, the program returns the same messages as for
the other control commands.

The example program for the semctl system call follows. We suggest that you
name the source program file semctl. c and the executable file semctl.

Semaphores 9-47

Figure 9-8: sernetl () System Call Example

9-48

/*This is a program to illustrate
**the semaphore control, semctl(),
**system call capabilities.
*/

/*Include necessary header files.*/
#include <stdio.h>
#include
#include
#include

<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

/*Start of main C language program*/
main()
{

extern int errno;
struct semid_ds semid_ds;
int c, i, length;
int uid, gid, mode;
int retrn, semid, semnum, cmd, choice;
ushort semvals[2S];
union semun

int val;
struct semid_ds *buf;
ushort *arraYi

arg;

/*Enter the semaphore ID.*/
printf (IlEnter the semid = 11);

scanf (n%d II I &semid) i

/*Choose the desired command.*/
printf("\nEnter the nUlllber for\nn);
printf("the desired cmd:\n");
printf ("GETVAL l\n") ;
printf ("SETVAL 2\n");
printf ("GETPID 3\n");

printf ("GETNCNT 4\nn);
printf ("GETZCNT S\n");
printf ("GETALL 6\nll) i

printf ("SETALL 7\n");
printf (nIpc_STAT 8\nn);
printf ("IPC_SET 9\n") ;
printf("IPC_RMID lO\nn);
printf ("Entry n);
scanf ("9--ed II I &cmd) ;

/*Check entries.*/
printf ("\nsemid =%d, cmd "'od\n\n",

semid, cmd);

/*Set the command and do the call.*/
switch (cmd)

(continued on next page)

Interprocess Communication

Figure 9-8: semctl () System Call Example (continued)

Semaphores

case 1: /*Get a specified value.*/
printf ("\llED.ter the semnum = ");
scanf (1I%dI', &.semnum);

/*Do the system call.*/
retrn = semctl (semid, semnum, GETVl\L, arg);
printf("\nTbe semval = %d", retrn);
break;

case 2: /*Set a specified value.*/
printf(n\IJEnter the semnum = ");
scanf ("%(ilr, &'semnum);

printf("\llED.ter the value = ");
scanf ("%dn, &a.rg. val) ;
/*Do the system call.*/
retrn = semctl (semid, semnum, SETVlU., arg);
break;

case 3: /*Get the process ID.*/
retrn = semctl(semid, 0, GETPID, arg);
printf("\nTbe sempid = %d", retrn);
break;

case 4: /*Get the number of processes
waiting for the semaphore to
becane greater than its current
value.*/
printf ("\llED.ter the semnum = ");
scanf (I'%d." I &semnum);

/*Do the system call.*/
retrn = semctl (semid, semnum, GETNCNT, arg);
printf (n \nTbe semncnt = %dn, retrn);
break;

case 5: /*Get the number of processes
waiting for the semaphore
value to became zero.*/
printf ("\llED.ter the semnum = n);
scanf ("%CI" I &semnum);

/*Do the system call.*/
retrn = semctl (semid, semnum, GETZCNT, arg);
printf("\nTbe semzcnt = %dn, retrn);
break;

case 6: /*Get all of the semaphores.*/
/*Get the number of semaphores in

the semaphore set.*/
arg.buf = &semid_ds;
retrn = semctl(semid, 0, IPC_STAT, arg);
if (retrn == -1)

gato ERROR;
length = arg.buf->sem-psems;

(continued on next page)

9-49

Figure 9-8: semctl () System Call Example (continued)

9-50

/*Get and print all semaphores in the

specified set.*/
arg.array = semvals;
retrn = semetl (samid, 0, GETALL, arg);
for (i = 0; i < length; i++)
{

printf("%d", semvals[i]);

/*Separate each
semaphore.*/

printf(1I ");

break;

case 7: /*Set all semaphores in the set.*/
/*Get the number of semaphores in

the set.*/
arg.buf = «semid_ds;
retrn = semetl(samid, 0, IPC_STAT, arg);
if (retrn == -1)

gato ERROR;
length = arg.buf->sem_nsems;
printf("Length = %d\n", length);
/*Set the semaphore set values.*/
printf("\nEnter each value:\n");
for(i = 0; i < length; i++)
{

scanf (I'%(ill I &.c);

semvals[i] = c;

/*Do the system call.*/
arg.array = semvals;
retrn = semetl(semid, 0, SETALL, arg);
break;

case 8: /*Get the status for the semaphore set.*/
/*Get and print the current status values.*/
arg.buf = «samid_ds;
retrn = semetl (samid, 0, IPC_STAT, arg);
printf ("\nThe USER IO = %d\n",

arg.buf->semLPenn.uid);
printf ("The GROUP IO = %d\n",

arg.buf->semLPerm.gid);
printf ("The operation permissions = O%o\n",

arg .buf->seJll--Penn.mode) ;
printf ("The number of semaphores in set = %d\n",

arg.buf->s~nsems);

printf ("The last semcp time = %d\n",
arg.buf->seJll_otime);

printf ("The last change time = %d\n",
arg.buf->seJll_ctime);

(continued on next page)

Interprocess Communication

Figure 9-8: semetl () System Call Example (continued)

Semaphores

break;

case 9: j"Select and change the desired
member of the data structure."j

j"Get the current status values."j
arg.buf = &semid_ds;
retrn = semctl(semid, 0, IPC_STAT, arg.buf);
if (retrn == -1)

goto ERROR;
I"Select the member
printf("\nEnter the
printf ("member to be

to change. "I
number for the\n");

changed: \n") ;
l\n") ; printf (II sem'-perm. uid

printf ("semJjerm.gid
printf ("sem....,Perm.mode
printf ("Entry
scanf (n<7od.lI , &choice);
switch (choice) {

2\n") ;
3\n") ;

");

case 1: I*Change the user ID."I
printf ("\nEnter USER ID = ");

scanf (""'od", &uid);
arg.buf->sem-perm.uid = uid;
printf ("\nUSER ID = "'od\n",

arg.buf->semJjerm.uid);
break;

case 2: I"Change the group ID.*I
printf ("\nEnter GROUP ID = ");
scanf (l19-'o:d, II I &gid);

arg.buf->sem-perm.gid = gid;
printf ("\nGROUP ID = "'od\n",

arg .buf->sem-perm.gid);
break;

case 3: I*Change the mode portion of
the operation

permissions.*/
printf ("\nEnter MODE in octal ") ;
scanf ("<Y00" I &mode);

arg.buf->sem-perm.mode = mode;
printf("\nMODE = O"'oO\n",

arg.buf->semJjerm.mode);
break;

I*Do the change."1
retrn = semctl(semid, 0, IPC_SET, arg);
break;

case 10:

retrn

j"Remove the semid along with its
data structure.*1

semctl(semid, 0, IPC_RMID, arg);

(continued on next page)

9-51

Figure 9-8: semctl () System Call Example (continued)

9-52

/*Perform the following if the call is unsuccessful.*/
if (retrn == -1)

{

ERROR:
printf (11\nThe sernetl call failed! I error number = %d\n", ermo);
exit(O) ;

printf (" \n \nThe semctl system call was successful \n") ;
printf ("for semid = "'od\n", semid);
exit (0);

Interprocess Communication

Operations On Semaphores

This section describes how to use the semop system call. The accompanying pro­
gram illustrates its use.

Using semopO
The synopsis found in the semop(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int sernid;
struct sambuf *sops;
unsigned nsopsi

The semop system call requires three arguments to be passed to it and returns an
integer value which will be zero for successful completion or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other words,
it must have already been created by using the semget system call.

The sops argument points to an array of structures in the user memory area that
contains the following for each semaphore to be changed:

• the semaphore number (sem_num)

• the operation to be performed (sem_op)

• the control flags (sem_flg)

The *sops declaration means that either an array name (which is the address of
the first element of the array) or a pointer to the array can be used. sembuf is the
tag name of the data structure used as the template for the structure members in
the array; it is located in the sys/sem.h header file.

The nsops argument specifies the length of the array (the number of structures in
the array). The maximum size of this array is determined by the SEMOPM system­
tunable parameter. Therefore, a maximum of SEMOPM operations can be per­
formed for each semop system call.

Semaphores 9-53

The semaphore number (seIn_num) determines the particular semaphore within
the set on which the operation is to be performed.

The operation to be performed is determined by the following:

• if SeIn_Op is positive, the semaphore value is incremented by the value of
SeIn_Op

• if SeIn_Op is negative, the semaphore value is decremented by the absolute
value of SeIn_Op

• if SeIn_Op is zero, the semaphore value is tested for equality to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT-this operation command can be set for any operations in the
array. The system call will return unsuccessfully without changing any
semaphore values at all if any operation for which IPC_NOWAIT is set cannot
be performed successfully. The system call will be unsuccessful when try­
ing to decrement a semaphore more than its current value, or when testing
for a semaphore to be equal to zero when it is not.

• SEM_tJNDO---this operation command is used to tell the system to undo the
process's semaphore changes automatically when the process exits; it allows
processes to avoid deadlock problems. To implement this feature, the sys­
tem maintains a table with an entry for every process in the system. Each
entry points to a set of undo structures, one for each semaphore used by the
process. The system records the net change.

Example Program

Figure 9-9 is a menu-driven program. It allows all possible combinations of using
the semop system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the shmop(2) entry in the Operating System API Reference. Note that in this pro­
gram errno is declared as an external variable; therefore, the sys/errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis. Their declarations are self explanatory. These names make the
program more readable and are perfectly valid since they are local to the program.

9-54 Interprocess Communication

The variables declared for this program and what they are used for are as follows:

sembuf[10]

sops

string[8]

rtrn

flags

SemJlUIn

i

semid

nsops

used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten is the standard value of the tun­
able parameter SEMOPM, the maximum number of operations
on a semaphore set for each semop system call

used as a pointer (line 14) to the sembuf array for the system
call and for accessing the structure members within the array

used as a character buffer to hold a number entered by the
user

used to store the return value from the system call

used to store the code of the IPC_NOWAIT or SEM_UNDO flags
for the semop system call (line 59)

used to store the semaphore number entered by the user for
each semaphore operation in the array

used as a counter (line 31) for initializing the structure
members in the array, and used to print out each structure in
the array (line 78)

used to store the desired semaphore set identifier for the sys­
tem call

used to specify the number of semaphore operations for the
system call; must be less than or equal to SEMOPM

First, the program prompts for a semaphore set identifier that the system call is to
perform operations on (lines 18-21). semid is stored in the semid variable (line
22).

A message is displayed requesting the number of operations to be performed on
this set (lines 24-26). The number of operations is stored in the nsops variable
(line 27).

Next, a loop is entered to initialize the array of structures (lines 29-76). The sema­
phore number, operation, and operation command (flags) are entered for each
structure in the array. The number of structures equals the number of semaphore
operations (nsops) to be performed for the system call, so nsops is tested against
the i counter for loop control. Note that sops is used as a pointer to each element
(structure) in the array, and sops is incremented just like i. sops is then used to
point to each member in the structure for setting them.

Semaphores 9-55

After the array is initialized, all of its elements are printed out for feedback (lines
77-84).

The sops pointer is set to the address of the array (lines 85, 86). sembuf could be
used directly, if desired, instead of sops in the system call.

The system call is made (line 88), and depending upon success or failure, a
corresponding message is displayed. The results of the operation(s) can be viewed
by using the semctl GETALL control command.

The example program for the semop system call follows. We suggest that you
name the source program file semop.c and the executable file semop.

Figure 9-9: semop () System Call Example

9-56

1 /*This is a program to illustrate
2 **the semaphore operations, semop() ,
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7

8

9
10
11
12

13

14

15
16
17

18
19

20
21

22
23

#include
#include
#include

<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

/*Start of main C language program* /
main()
{

extern int erma;
struct sambuf sembuf[10], *sops;
char string[8];
int retrn, flags, sem_num, i, Semidi
unsigned nsops;

/*Enter the semaphore ID.*/
printf (" \nEnter the semid of\n");
printf ("the semaphore set to\n");
printf ("be operated on = ");
scanf ("%d", &semid);
printf (" \nsemid = %dll I semid);

/*Enter the number of operations.*/ 24
25

26
27
28

printf ("\nEnter the number of semaphore \n") ;
printf ("operations for this set = ");

29
30
31

scanf ("%d", &nsops);
printf("\nsops = %d", nsops);

/*Initialize the array for the
number of operations to be performed.*/

for(i = 0, sops = sambuf; i < nsopsi i++, sops++)

(continued on next page)

Interprocess Communication

Figure 9-9: semop () System Call Example (continued)

32

Semaphores

/*This detezmines the semaphore in

the semaphore set.*/
printf ("\DEnter the semaphore \n") ;
printf ("number (sem_num) = ");

scanf (lI'Ycd II, &SeIO_nuIn) i

sopS->SeItLnum = sem_numi
printf (" \nThe senLnum = %d", sops->senLnum);

/*Enter a (-)number to decrement,

an unsigned number (no +) to increment,

or zero to test for zero. These values
are entered into a string and converted

to integer values.*/
printf ("\DEnter the operation for\n");

printf("the semaphore (senLop) = ");
scanf ("%S", string);
sops->sem_op = atoi(string);
printf ("\nsem_op = ~od\n", sops->sem_op);

/*Specify the desired flags.*/
printf ("\DEnter the corresponding\n");

printf ("number for the desired\n");
printf("flags:\n") ;
printf (IiNa flags

printf ("IPC_NOWAIT

printf (" SEICUNDO

printf (" IPC_NOWAIT and SEM_UNDO

printf (" Flags
scanf ("%d", &flags);

switch (flags)
{

case 0:
sops->sem_flg 0;
break;

case 1:
sops->sem_flg

break;

case 2:
sops->sem_flg

break;

case 3:
sops->sem_flg

break;

SEM_UNDO;

O\n") ;
1\n");
2\n") ;
3\n") ;
");

printf("\nFlags Q9-00\nll , sops->sem_flg);

(continued on next page)

9-57

Figure 9-9: semop () System Call Example (continued)

77 I*Print out each structure in the array.*1
78 forti = 0; i < nsops; i++)
79

80 printf("\nsem_num = %d\n", sembuf[i].senLnum);
81 printf("sem_op = %d\n", sambuf[i].sE!!!Lop);
82 printf("sem_flg = O%o\n", sembuf[i].sem_flg);
83 printf(" ");
84

85 sops sambuf; I*Reset the pointer to
86 sambuf[O].*1

87 1*00 the semqp system call. * 1
88 retrn = semqp(semid, sops, nsops);
89 if(retrn == -1)
90 printf("\nSemqp failed, error = %d\n", erme);
91
92 else {

93 printf ("\nSemqp was successful \n");
94 printf (" for semid = %d\n··, semid);

95 printf ("Value returned = %d\n", retrn);
96
97

9-58 Interprocess Communication

Shared Memory

The shared memory type of IPC allows two or more processes (executing pro­
grams) to share memory and, consequently, the data contained there. This is done
by allowing processes to set up access to a common virtual memory address
space. This sharing occurs on a segment basis, which is memory management
hardware-dependent.

This sharing of memory provides the fastest means of exchanging data between
processes. However, processes that reference a shared memory segment must
reside on one processor. Consequently, processes running on different processors
(such as in a Remote File Sharing (RFS) network or a multiprocessing environ­
ment) may not be able to use shared memory segments.

A process initially creates a shared memory segment facility using the sbmget sys­
tem call. Upon creation, this process sets the overall operation permissions for the
shared memory segment facility, sets its size in bytes, and can specify that the
shared memory segment is for reference only (read-only) upon attachment.

If the memory segment is not specified to be for reference only, all other processes
with appropriate operation permissions can read from or write to the memory
segment.

shmat (shared memory attach) and shmdt (shared memory detach) can be per­
formed on a shared memory segment.

shmat allows processes to associate themselves with the shared memory segment
if they have permission. They can then read or write as allowed.

shmdt allows processes to disassociate themselves from a shared memory seg­
ment. Therefore, they lose the ability to read from or write to the shared memory
segment.

The original owner / creator of a shared memory segment can relinquish owner­
ship to another process using the sbmctl system call. However, the creating pro­
cess remains the creator until the facility is removed or the system is reinitialized.
Other processes with permission can perform other functions on the shared
memory segment using the sbmctl system call.

Shared Memory 9-59

System calls (documented in the Operating System API Reference) make these
shared memory capabilities available to processes. The calling process passes
arguments to a system call, and the system call either successfully or unsuccess­
fully performs its function. If the system call is successful, it performs its function
and returns the appropriate information. Otherwise, a known error code (-1) is
returned to the process, and the external variable erma is set accordingly.

Using Shared Memory

Sharing memory between processes occurs on a virtual segment basis. There is
only one copy of each individual shared memory segment existing in the UNIX
operating system at any time.

Before sharing of memory can be realized, a uniquely identified shared memory
segment and data structure must be created. The unique identifier created is
called the shared memory identifier (sbmid); it is used to identify or refer to the
associated data structure. The data structure includes the following for each
shared memory segment:

• operation permissions

• segment size

• segment descriptor (for internal system use only)

• PID performing last operation

• PID of creator

• current number of processes attached

• last attach time

• last detach time

• last change time

In UNIX System V Release 4, the definition for the associated shared-memory
segment data structure sbmid_ds is as follows:

9-60 Interprocess Communication

1*
There is a shared mem id data structure for each segment in the system.

*1
struct shmid_ds {

struct ipcJlerm slunJlerm; 1* operation permission struct *1
int slnn_segsz; 1* segment size * /
struct region *shm_regi 1* ptr to region structure */
char pad[4J; 1* for swap compatibility *1
pid_t slun_lpid; 1* pid of last slunop *1
pid_t slun_cpid; 1* pid of creator *1
ushort slun_nattch; 1* used only for shminfo *1
ushort slun_cnattch; 1* used only for shminfo * I
time_t slun_atime: 1* last slunat time *1
time_t slun_dtime; 1* last shmdt time *1
time_t slun_ctime: 1* last change time *1

} ;

The C programming language data structure definition for the shared memory
segment data structure shmid_ds is located in the sys/smn.h header file.

Note that the smn""'perm member of this structure uses ipc""'perm as a template.
The ipc""'perm data structure is the same for all IPC facilities; it is located in the
sys/ipc.h header file and shown in the figure entitled "ipc.....perm Data
Structure" .

The shmget system call performs two tasks:

• it gets a new shared memory identifier and creates an associated shared
memory segment data structure for it

• it returns an existing shared memory identifier that already has an associ­
ated shared memory segment data structure

The task performed is determined by the value of the key argument passed to the
smnget system call.

For the first task, if the key is not already in use for an existing shared memory
identifier at the security level of the calling process and the IPC_CREAT flag is set
in smnflg, a new identifier is returned with an associated shared memory seg­
ment data structure created for it provided no system-tunable parameters would
be exceeded.

There is also a provision for specifying a key of value zero which is known as the
private key (IPC_PRIVATE); when specified, a new shmid is always returned with
an associated shared memory segment data structure created for it unless a
system-tunable parameter would be exceeded. The ipcs command will show the
key field for the shmid as all zeros.

Shared Memory 9-61

For the second task, if a slnnid exists for the key specified, the value of the existing
slnnid is returned. If it is not desired to have an existing slnnid returned, a control
command (IPC_EXCL) can be specified (set) in the shmflg argument passed to the
system call. "Using shmget" discusses how to use this system call.

When performing the first task, the process that calls shmget becomes the
owner / creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Shared Memory"). The creator of the shared
memory segment also determines the initial operation permissions for it.

Once a uniquely identified shared memory segment data structure is created,
shmop (shared memory segment operations) and shmctl (shared memory control)
can be used.

Shared memory segment operations consist of attaching and detaching shared
memory segments. shmat and shmdt are provided for each of these operations
(see "Operations for Shared Memory" for details of the shmat and shmdt system
calls).

The shmctl system call permits you to control the shared memory facility in the
following ways:

• by retrieving the data structure associated with a shared memory segment
(IPC_STAT)

• by changing operation permissions for a shared memory segment (I PC_SET)

• by removing a particular shared memory segment from the UNIX operating
system along with its associated shared memory segment data structure
(IPC_RMID)

• by locking a shared memory segment in memory (SmCLOCK)

• by unlocking a shared memory segment (SHM_UNLOCK)

See the section "Controlling Shared Memory" for details of the shmctl system
call.

9-62 Interprocess Communication

Getting Shared Memory Segments

This section describes how to use the shmget system call. The accompanying pro­
gram illustrates its use.

Using shmgetO

The synopsis found in the shmget(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)

int size, shmflg;

All of these include files are located in the /usr/include/sys directory of the
UNIX operating system. The following line in the synopsis:

int shmget (key, size, shmflg)

informs you that shmget is a function with three formal arguments that returns an
integer-type value. The next two lines:

key_t key;
int size, shmflg;

declare the types of the formal arguments. key _t is defined by a typedef in the
sys/types.h header file to be an integer.

The integer returned from this function (upon successful completion) is the shared
memory identifier (sbmid) that was discussed earlier.

As declared, the process calling the shmget system call must supply three argu­
ments to be passed to the formal key, size, and shmflg arguments.

Shared Memory 9-63

A new shmid with an associated shared memory data structure is provided if
either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and shmflg ANDed with IPC_CREATis "true" (not
zero).

The value passed to the shmflg argument must be an integer-type value and will
specify the following:

• operations permissions

• control fields (commands)

Access permissions determine the read/write attributes and modes determine the
user / group / other attributes of the shmflg argument. They are collectively
referred to as "operation permissions."

Figure 9-10 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 9-10: Operation Permissions Codes

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding or bitwise ORing the octal values for
the operation permissions desired. That is, if read by user and read/write by oth­
ers is desired, the code value would be 00406 (00400 plus 00006). There are con­
stants located in the sys/shm.h header file which can be used for the user
(OWNER). They are:

9-64

SmCR 0400
smcw 0200

Interprocess Communication

Control flags are predefined constants (represented by all upper-case letters). The
flags that apply to the sbmget system call are IPC_CREAT and IPC_EXCL and are
defined in the sys/ipc.h header file.

The value for shmflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This is accomplished by
adding or bitwise ~Ring (I) them with the operation permissions; the bit posi­
tions and values for the control commands in relation to those of the operation
permissions make this possible.

The shmflg value can easily be set by using the names of the flags in conjunction
with the octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT 0400»;

shmid = sbmget (key, size, (IPC_CREAT IPC_EXCL I 0400»;

As specified by the sbmget(2) entry in the Operating System API Reference, success
or failure of this system call depends upon the argument values for key, size, and
shmflg, and system-tunable parameters. The system call will attempt to return a
new shmid if one of the following conditions is true:

• key is equal to IPC_PRIVATE .

• key does not already have a shmid associated with it and (shmflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

shmid = shmget(IPC_PRIVATE, size, shmflg);

The SHMMNI system-tunable parameter determines the maximum number of
unique shared memory segments (shmids) that may be in use at any given time. If
the maximum number of shared memory segments is already in use, an attempt to
create an additional segment will fail.

IPC_EXCL is another control command used in conjunction with IPC_CREAT. It
will cause the system call to return an error if a shared memory identifier already
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) shmid when it has not. In other
words, when both PC_CREAT and IPC_EXCL are specified, a unique shared
memory identifier is returned if the system call is successful. Any value for
shmflg returns a new identifier if the key equals zero (IPC_PRIVATE) and no
system-tunable parameters are exceeded.

Shared Memory 9-65

The system call will fail if the value for the size argument is less than SHMMIN or
greater than SHMMAX. These tunable parameters specify the minimum and max­
imum shared memory segment sizes.

Refer to the shmget(2) manual page in the Operating System API Reference for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

Example Program

Figure 9-11 is a menu-driven program. It allows all possible combinations of
using the shmget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-7) by including the required header files as specified
by the shmget(2) entry in the Operating System API Reference. Note that the
sys/errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

Variable names have been chosen to be as close as possible to those in the synopsis
for the system call. Their declarations are self explanatory. These names make the
program more readable and are perfectly valid since they are local to the program.

The variables declared for this program and what they are used for are as follows:

key

opperm

flags

slmlid

size

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used for returning the message queue identification
number for a successful system call or the error code (-1)
for an unsuccessful one

used to specify the shared memory segment size

used to store the combination from the logical ~Ring of the
opperm and flags variables; it is then used in the system
call to pass the slmlflg argument

The program begins by prompting for a hexadecimal key, an octal operation per­
missions code, and finally for the control command combinations (flags) which are
selected from a menu (lines 14-31). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for invalid
combinations.

9-66 Interprocess Communication

Next, the menu selection for the flags is combined with the operation permissions;
the result is stored in the oppernLflags variable (lines 35-50).

A display then prompts for the size of the shared memory segment; it is stored in
the size variable (lines 51-54).

The system call is made next; the result is stored in the shmid variable (line 56).

Since the slnnid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals -1,
a message indicates that an error resulted and the external ermo variable is
displayed (line 60).

If no error occurred, the returned shared memory segment identifier is displayed
(line 64).

The example program for the slnnget system call follows. We suggest that you
name the source program file slnnget. c and the executable file slnnget.

Figure 9-11: shmget () System Call Example

1 /*This is a program to illustrate
2 **the shared memory get, shmget(),

3 **system call capahilities.*/

4
5

6
7

#include
#include

#include
#include

<sys/types.h>
<sys/ipc.h>

<sys/shm.h>

<errno.h>

8 /*Start of main C language program*/
9 main()

10 {

11 /*declare as long integer*/

12 int opperm, flags;
13 int shmdd, size, opper.m_flagsi
14 /*Enter the desired key*/
15 printf("Enter the desired key in hex = ");
16 scanf("'-oX", &key);

17 /*Enter the desired octal operation

18 permissions. * /
19 printf("\nEnter the operation\n");
20 printf ("permissions in octal = II);

21 scanf (U<J.-QQII, &opperm) i

22 /*Set the desired flags.*/
23 printf (" \nEnter corresponding number to\n");

24 printf("set the desired flags:\n");

25 printf("No flags = O\n");

26

27

Shared Memory

printf ("IPC_CREAT
printf ("IPC_EXCL

= l\n");

= 2\n");

(continued on next page)

9-67

Figure 9·11: shmget () System Call Example (continued)

9·68

printf ("IPC_CREAT and IPC_EXCL 3\n");
printf (" Flags ");
I*Get the flag(s) to be set.*/
scanf ("%d". &flags);

/*Check the values.*/
printf ("\nkey =OX%X. oppenn = 0%0. flags = %d\n".

key. OppeDll. flags);

I*Incorporate the control fields (flags) with
the operation pe:t1llissions*1

switch (flags)
{

case 0: I*No flags are to be set.*/
opperIlLflags = (oppeDll I 0);
break;

case 1: /*Set the IPC_CREAT flag.*1
oppeDll_flags = (OppeDll I IPC_CREAT);
break;

case 2: I*Set the IPC_EXCL flag.*/
opperIlLflags = (oppeDll I IPC_EXCL);
break;

case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
oppeDll_flags = (oppeDll I IPC_CREAT I IPC_EXCL);

/*Get the size of the segment in bytes.*1
printf ("\nEnter the segment");
printf (" \nsize in bytes = ");
scanf ("%d ll I &size) i

/*Call the shmget system call.*1
shmid = shmget (key. size. oppeDll_flags);

I*Perfonn the following if the call is unsuccessful.*/
if(shmid == -1)
{

printf (" \nThe shmget call failed. error number = %d\n". errno);

I*Return the shmid upon successful campletion.*/
else

printf ("\nThe shmid = %d\n". shmid);
exit(O);

Interprocess Communication

Controlling Shared Memory

This section describes how to use the sbmctl system call. The accompanying pro­
gram illustrates its use.

Using shmctlO
The synopsis found in the sbmctl(2) entry in the Operating System API Reference is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)

int shmid, cmd;

struct shmid_ds *buf;

The sbmctl system call requires three arguments to be passed to it. It returns an
integer value which will be zero for successful completion or -1 otherwise.

The shmid variable must be a valid, non-negative, integer value. In other words,
it must have already been created by using the shmget system call.

The cmd argument can be replaced by one of following values:

smCLOCK

return the status information contained in the associated data
structure for the specified shmid and place it in the data struc­
ture pointed to by the buf pointer in the user memory area

for the specified shmid, set the effective user and group
identification, and operation permissions

remove the specified shmid with its associated shared memory
segment data structure

lock the specified shared memory segment in memory; must
have appropriate privileges to perform this operation

lock the shared memory segment from memory; must have
appropriate privileges to perform this operation

To perform an IPC_SET or IPC_RMID control command, a process must have:

Shared Memory 9-69

• an effective user id of OWNER/ CREATOR, or

• an effective user id of root (if the system is running with the SUM privilege
module), or

• the P_OWNER privilege.

Only root (if the SUM privilege module is installed) can perform a SHM_LOCK or
SHM_UNLOCK control command.

A process must have read permission to perform the IPC_STAT control command.

The details of this system call are discussed in the example program. If you need
more information on the logic manipulations in this program, read "Using
shmget". It goes into more detail than would be practical for every system call.

Example Program

Figure 9-12 is a menu-driven program. It allows all possible combinations of
using the shmctl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the shmctl(2) entry in the Operating System API Reference. Note that in this
program ermo is declared as an external variable, and therefore, the
sys/ermo.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis for the system call. Their declarations are self explanatory. These
names make the program more readable and are perfectly valid since they are
local to the program.

The variables declared for this program and what they are used for are as follows:

uid

gid

mode

rtm

shmid

9·70

used to store the IPC_SET value for the user identification

used to store the IPC_SET value for the group identification

used to store the IPC_SET value for the operation permissions

used to store the return integer value from the system call

used to store and pass the shared memory segment identifier
to the system call

Interprocess Communication

command

choice

buf

used to store the code for the desired control command so that
subsequent processing can be performed on it

used to determine which member for the IPC_SET control
command is to be changed

used to receive the specified shared memory segment
identifier's data structure when an IPC_STAT control com­
mand is performed

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET

command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the data
structure of the same name located in the sys/shm.h header file as a template for
its declaration.

The next important thing to observe is that although the buf pointer is declared to
be a pointer to a data structure of the shmid_ds type, it must also be initialized to
contain the address of the user memory area data structure (line 17).

Now that all of the required declarations have been explained for this program,
this is how it works.

First, the program prompts for a valid shared memory segment identifier which is
stored in the shmid variable (lines 18-20). This is required for every shmctl sys­
tem call.

Then, the code for the desired control command must be entered (lines 21-29); it is
stored in the command variable. The code is tested to determine the control com­
mand for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is performed
(lines 39, 40) and the status information returned is printed out (lines 41-71). Note
that if the system call is unsuccessful (line 139), the status information of the last
successful call is printed out. In addition, an error message is displayed and the
ermo variable is printed out (lines 141). If the system call is successful, a message
indicates this along with the shared memory segment identifier used (lines 143-
147).

If the IPC_SET control command is selected (code 2), the first thing done is to get
the current status information for the shared memory identifier specified (lines
88-90). This is necessary because this example program provides for changing
only one member at a time, and the system call changes all of them. Also, if an
invalid value happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command until

Shared Memory 9-71

corrected. The next thing the program does is to prompt for a code corresponding
to the member to be changed (lines 91-96). This code is stored in the choice vari­
able (line 97). Now, depending upon the member picked, the program prompts
for the new value (lines 98-120). The value is placed in the appropriate member in
the user memory area data structure, and the system call is made (lines 121-128).
Depending upon success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is performed
(lines 125-128), and the shmid along with its associated message queue and data
structure are removed from the UNIX operating system. Note that the buf
pointer is ignored in performing this control command and its value can be zero
or NULL. Depending upon the success or failure, the program returns the same
messages as for the other control commands.

If the Sm!LLOCK control command (code 4) is selected, the system call is performed
(lines 130,131). Depending upon the success or failure, the program returns the
same messages as for the other control commands.

If the smCUNLOCK control command (code 5) is selected, the system call is per­
formed (lines 133-135). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

The example program for the shmctl system call follows. We suggest that you
name the source program file shmctl. c and the executable file shmctl.

Figure 9-12: shmctl () System Call Example

1 I*This is a program to illustrate
2 **the shared memory control, shmctl(),
3 **system call capabilities.
4 *1

5 I*Include necessary header files.*1
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>

10 I"Start of main C language program*1
11 main()
12 {

13 exte:r:n int ernlOi

14 int uid, gid, mode;
15 int rtrn, shmid, command, choice;
16 struct shmid_ds shmid_ds, *buf;
17 buf = &shmid_ds;

~ h
(continued on next page)

9-72 Interprocess Communication

Figure 9-12: shmctl () System Call Example (continued)

Shared Memory

!*Get the shrnid, and command. *!

printf ("Enter the slunid = ");
scanf ("9-od", &slunid);

printf ("\nEnter the number for\n");
printf ("the desired command: \n");

printf ("IPC_STAT

printf ("IPC_SET

printf ("IPC_RMID
printf ("SHM_LOCK

printf ("SHICUNLOCK
printf ("Entry
scanf ("9-od", &cClllllllaIld);

!*Check the values.*!

l\n") ;

2\n");

3\n") ;
4\n");

5\n");

");

printf ("\nslunid =9-od, command = 9-od\n",

slunid, cClllllllaIld);

switch (command)
(

case 1: !*Use sbmctl() to get

the data structure for
slunid in the slunid_ds area pointed

to by buf and then print it out.*!

rtrn = sbmct1(slunid, IPC_STAT,
buf);

printf (11\nThe USER ID = 'Yod\nll,

buf->shm"'penn.uid) ;
printf ("The GROUP ID = 9-od\n",

buf->shm...P9nn.gid);
printf (liThe creator's ID :::: 9--od,\n ll ,

buf->shm...P9rm.cuid) ;
printf (liThe creator's group ID :::: CYod\n",

buf->shm"'penn.cgid) ;

printf ("The operation permissions:::: O%o\nll ,

buf->shm...P9nn.mode) ;
printf (liThe slot usage sequence\n");
printf ("number :::: O'YoX\n II,

buf->shm-penn.seq);
printf (liThe key: 09--aX\n ",

buf->shm-penn.key);
printf ("The segment size = 9-od\n",

buf->shm_segsz);

printf ("The pid of last shmop = 9-od\n",
buf->shm_1pid) ;

printf ("The pid of creator = 9-od\n",

buf->shm_cpid) ;

printf ("The current # attached = 9-od\n",
buf->shm_nattch);

printf {liThe last sbmat time :::: %ld\n",

(continued on next page)

9-73

Figure 9-12: shmctl () System Call Example (continued)

9-74

buf->shm_atime);

printf ("The last slnndt time = %ld\n",
buf->shm_dtime);

printf ("The last change time = %ld\n",
buf->shm_ctime);

break;

/* Lines 71 - 85 deleted */

case 2: /*Select and change the desired
member(s) of the data structure.*/

/*Get the original data for this shmid
data structure first.*/

rtrn = shmctl (shmid, IPC_STAT, buf);

printf ("\nEnter the number for the \n") ;
printf("member to be changed:\n");
printf("shm-'perm.uid l\n");

printf ("shm-'perm.gid 2\n");
printf ("sbm-penn.mode
printf ("Entry

scanf ("CYc:d1l I &choice);

switch (choice) {

case 1:

3\n");

");

printf("\nEnter USER ID = ");
scanf ("%d", &uid);

buf->shm-'perm.uid = uid;

printf (" \nUSER ID = ""00. \n" ,
buf->shm-'perm.uid);

break;

case 2:
printf ("\nEnter GROUP ID ") ;
scanf ("""00.", &gid);

buf->shm-'perm.gid = gid;

printf("\nGROUP ID = %d\n",
buf->shmJ)6rm.gid) ;

break;

case 3:
printf ("\nEnter MODE in octal ") ;
scanf ("9--00 II, &mode) i

buf->shm-'perm.mode = mode;

printf ("\nMODE = 0%0 \n" ,
buf->shm-'perm.mode);

break;

/*Do the change.*/
rtrn = shmctl(shmid, IPC_SET,

buf);

(continued on next page)

Interprocess Communication

Figure 9-12: slnnctl () System Call Example (continued)

Shared Memory

break;

case 3: I*Remove the shmid along with its
associated
data structure.*1

rtrn = shmctl(shmid. IPC_RMID. (struct shmid_ds *) NOLL);

break;

case 4: I*Lock the shared memory segment*1
rtrn = shmctl(shmid. SlIMJOCK. (struct shmid_ds *) NOLL);

break;
case 5: I*unl.ock the shared memory

segment. *1
rtrn = shmctl (shmid. SlIM_UNLOCK. (struct shmid_ds *) NOLL);
break;

I*Perfo:cm the following if the call is unsuccessful. * I
if(rtrn == -1)
{

printf ("\n'l'he shmctl call failed. error number = %d\n". erma);

I*Return the shmid upon successful caropletion.*1
else

printf ("\nShmctl was successful for shmid = %d\n".
shmid);

exit (0);

9-75

Operations for Shared Memory

This section describes how to use the shmat and shmdt system calls. The accom­
panying program illustrates their use.

Using shmopO
The synopsis found in the shmop(2) entry in the Operating System API Reference is
as follows:

#fnclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *shmat (shm!d, shmaddr, shmflg)
int shmid;
void *shmaddr;
int shmflg;

int shlrdt (shmaddr)
void *shmaddr;

Attaching a Shared Memory Segment

The shmat system call requires three arguments to be passed to it. It returns a
character pointer value. Upon successful completion, this value will be the
address in memory where the process is attached to the shared memory segment
and when unsuccessful the value will be -1.

The shmid argument must be a valid, non-negative, integer value. In other words,
it must have already been created by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the shmat
system call. If it is zero, the UNIX operating system picks the address where the
shared memory segment will be attached. If it is user supplied, the address must
be a valid address that the UNIX operating system would pick.

9-76 Interprocess Communication

The following illustrates some typical address ranges.

OxcOOcOOOO
OxcOOeOOOO
OxcOlOOOOO
Oxc0l20000

Note that these addresses are in chunks of 20,000 hexadecimal. It would be wise
to let the operating system pick addresses so as to improve portability.

The shmflg argument is used to pass the SHl'CRND and SmCRDONLY flags to the
shmat system call.

Detaching Shared Memory Segments

The shmdt system call requires one argument to be passed to it. It returns an
integer value which will be zero for successful completion or -1 otherwise.

Further details on shmat and shmdt are discussed in the example program. If you
need more information on the logic manipulations in this program, read "Using
shmget". It goes into more detail than would be practical for every system call.

Example Program

Figure 9-13 is a menu-driven program. It allows all possible combinations of
using the shmat and shmdt system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the shmop(2) entry in the Operating System API Reference. Note that in this pro­
gram erma is declared as an external variable; therefore, the sys/erma.h
header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis. Their declarations are self explanatory. These names make the
program more readable and are perfectly valid since they are local to the program.

Shared Memory 9-77

The variables declared for thls program and what they are used for are as follows:

addr

laddr

flags

i

attach

shmid

shmflg

retrn

detach

used to store the address of the shared memory segment for
the shmat and shmdt system calls and to receive the return
value from the shmat system call

used to store the desired attach/ detach address entered by the
user

used to store the codes of the smCRND or SHM_ROONLY flags for
the shmat system call

used as a loop counter for attaching and detaching

used to store the desired number of attach operations

used to store and pass the desired shared memory segment
identifier

used to pass the value of flags to the shmat system call

used to store the return values from the shmdt system call

used to store the desired number of detach operations

This example program combines both the shmat and shmdt system calls. The pro­
gram prompts for the number of attachments and enters a loop until they are done
for the specified shared memory identifiers. Then, the program prompts for the
number of detachments to be performed and enters a loop until they are done for
the specified shared memory segment addresses.

shmatO
The program prompts for the number of attachments to be performed, and the
value is stored at the address of the attach variable (lines 19-23).

A loop is entered using the attach variable and the i counter (lines 23-72) to per­
form the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines
26-29); it is stored in the shmid variable (line 30). Next, the program prompts for
the address where the segment is to be attached (lines 32-36); it is stored in the
laddr variable (line 37) and converted to a pointer (line 39). Then, the program
prompts for the desired flags to be used for the attachment (lines 40-47), and the
code representing the flags is stored in the flags variable (line 48). The flags
variable is tested to determine the code to be stored for the shmflg variable used
to pass them to the shmat system call (lines 49-60). The system call is executed
(line 63). If successful, a message stating so is displayed along with the attach
address (lines 68-70). If unsuccessful, a message stating so is displayed and the
error code is displayed (line 65). The loop then continues until it finishes.

9·78 Interprocess Communication

shmdt()

After the attach loop completes, the program prompts for the number of detach
operations to be performed (lines 73-77) and the value is stored in the detach vari­
able (line 76).

A loop is entered using the detach variable and the i counter (lines 80-98) to per­
form the specified number of detachments.

In this loop, the program prompts for the address of the shared memory segment
to be detached (lines 81-85); it is stored in the laddr variable (line 86) and con­
verted to a pointer (line 88). Then, the shmdt system call is performed (line 89). If
successful, a message stating so is displayed along with the address that the seg­
ment was detached from (lines 95, 96). If unsuccessful, the error number is
displayed (line 92). The loop continues until it finishes.

The example program for the shmop system calls follows. We suggest that you
name the source program file shmop. c and the executable file shmop.

Figure 9-13: slunop(} System Call Example

1

2
3
4

5
6
7

8

9
10

11
12

13

14
15
16
17

18
19

20
21

22

/*This is a program to illustrate
**the shared memory operations, shmop() ,
**system call capabilities.
*/

/*Include necessary header files.*/
#include <stdio.h>
#include <sys/types.h>
#include
#include

<sys/ipc.h>
<sys/smn.h>

/*Start of main C language program*/
main 0
{

extern int errnoi
void *addrj
long laddr;
int flags, i, attach;
int slunid, slunflg, retrn, detach;

/*Loop for attaclunents by this process.*/
printf ("Enter the number of\n");
printf ("attaclunents for this\n");
printf("process (1-4). \n");
printf(" Attacmnents ; ");

scanf ("9-od", &attach); 23
24 printf ("Number of attaches ; 9-od\n", attach);

25 for(i ; 1; i <; attach; i++) {

(continued on next page)

Shared Memory 9-79

Figure 9-13: slnnop(} System Call Example (continued)

9-80

I*Enter the shared memory ID.*I
printf (" \nEnter the shmid of\n");

printf ("the shared memory segment to\n");
printf ("be operated on = ");

scanf ("\!-oo.", &shmid);

printf("\nshmid = %d\n", shmid);

I*Enter the value for shmaddr.*1
printf("\DEnter the value for\n");

printf("the shared memory address\n");
printf("in hexadecimal: \n");

printf (" Shmaddr = ");
scanf ("%lx", &laddr) i
addr = (void*) laddr;
printf("The desired address = Ox%lx\n", (long)addr);

I*specify the desired flags.*1
printf (" \DEnter the corresponding\n");

printf ("number for the desired\n");

printf ("flags: \n");
printf ("SIIICRND

printf ("SIIICRDONLY

printf ("SIIICRND and SHM_RDONLY

printf (" Flags
scanf ("\!-oo.", &flags);

switch (flags)

(

case 1:
shmflg SHM_RND;

break;

case 2:
shmflg = SHM_RDONLY;

break;

case 3:

l\n") ;
2\n") ;

3\n") ;

");

shmflg SIIICRND I SHM_RDONLY;

break;

printf (" \nFlags = O\!-oO\n", shmflg);

I*Do the shmat system call.*1
addr = shmat(shmid, addr, shmflg);
if(addr == (char*) -1) (

printf("\nShmat failed, error = 9-'ad.\n", errno)i

else {
printf ("\nShmat was successful \n");

printf ("for shmid = %d\n", shmid);
printf("The address = Ox%lx\n", (long)addr);

(continued on next page)

Interprocess Communication

Figure 9-13: shmop() System Call Example (continued)

Shared Memory

/*Loop for detachments b¥ this process.*/
printf ("Enter the number of\n");
printf ("detachments for this\n");
printf ("process (1-4). \n") ;
printf(" Detacbments = ");

scanf ("%d", &detach);
printf ("NUmber of attaches = %d\n", detach);
forti = 1; i <= detach; i++) (

/*Enter the value for shmaddr.*/
printf("\nBnter the value for\n");
printf("the shared memory address\n");
printf (" in hexadecilDal: \n") ;
printf (" Sbmaddr = ");
scanf ("%lx", &laddr);
addr = (void*) laddr;
printf("Tbe desired address = Ox%lx\n", (lcmg)addr);

/*Do the Shmdt system call.*/
retrn = sl:mdt(addr);
if(retrn == -1) (

printf("Error = %d\n", erma);

else {
printf (" \nSbmdt was successful \n") ;
printf("for address = Ox.%1x\n", (lcmg)addr);

9-81

IPC Programming Example

liber, A Library System

To illustrate the use of UNIX system programming tools in the development of an
application, we are going to pretend we are engaged in the development of a com­
puter system for a library. The system is known as liber. The early stages of sys­
tem development, we assume, have already been completed; feasibility studies
have been done, the preliminary design is described in the coming paragraphs.
We are going to stop short of producing a complete detailed design and module
specifications for our system. You will have to accept that these exist. In using
portions of the system for examples of the topics covered in this chapter, we will
work from these virtual specifications.

We make no claim as to the efficacy of this design. It is the way it is only in order
to provide some passably realistic examples of UNIX system programming tools
in use. It is not an application, but rather is code fragments only.

liber is a system for keeping track of the books in a library. The hardware con­
sists of a single computer with terminals throughout the library. One terminal is
used for adding new books to the data base. Others are used for checking out
books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning of the day
and remain running while the library is in operation. Associated with each termi­
nal is a program specific to the function of that terminal, each running as a
separate UNIX process. The system has one master index that contains the unique
identifier of each title in the library. When the system is running the index is
mapped into the address space of each process. Semaphores are used to syn­
chronize access to the index. In the pages that follow fragments of some of the
system's programs are shown to illustrate the way they work together. The
startup program performs the system initialization; opening the semaphores and
the index file; mapping the index file into memory; and kicking off the other pro­
grams. The id numbers for the semaphores (wrtsem, and rdsem) are written to a
file during initialization, this file is then read by all the subsidiary programs so
that all use the same semaphores.

All the programs share access to the index file. They gain access to it with the fol­
lowing code:

9-82 Interprocess Communication

/*
* Gain access to the index file, map it in.
* After mapping, free the file descriptor so

* that it will be available for other uses -­
* the mapping will remain until the program

* exits, or until the mapping is removed either
* by munmap{) or by mapping over top of this one

* with another call to mmap(). Note the use of
* the read/write open mode -- all programs but

* "add-hooke ll should open just for read-only.
*/

if «indexjd = open("index.file", O_RDWR» == -1)

/*

(void) fprintf(stderr, "index open failed: "'od\n", erma);
exit (1);

* Establish the mapping. As with the call to

* open{), all programs but "add-books" should
* map with PROT_READ for read-only access.

*/
if «int) (index = (INDEX *)mmap(O, sizeof (INDEX), PROT_READ I PROT_WRITE,

MAP_SHARED, index_fd, 0) == -1)

(void) fprintf(stderr, "shmat failed: "'od\n", ermo);
exit (1) ;

(void) close(index_fd);

The preceding code fragment establishes a mapping to the index file in the
address space of the program. Access to the addresses at which the file is mapped
affect the file directly, no further file operations are required. For instance, if the
access deposits data at the accessed address, then the file will be modified by
operation. If the access examines data, then the file will be accessed. In either
case, the portion of the file containing the information will be obtained or restored
to secondary storage automatically by the system and transparently to the
application.

Of the programs shown, add-books is the only one that alters the index. The
semaphores are used to ensure that no other programs will try to read the index
while add-books is altering it. The checkout program locks the file record for the
book, so that each copy being checked out is recorded separately and the book
cannot be checked out at two different checkout stations at the same time.

The program fragments do not provide any details on the structure of the index or
the book records in the data base.

IPC Programming Example 9-83

9-84

/* liber.h - header file for the
* library system.
*/

typedef ..• INDEX;
typedef struct (

/* data structure for book file index */
/* type of records in book file */

char title(30);
char author(30);

BOOK;

int index_fd;
int wrtSent;

int rdsem;
INDEX *index;

int book_file;
BOOK book_buf;

/* startup program */

/*
* 1. Open index file and map it in.
* 2. Open two semaphores for providing exclusive write access to index.
* 3. Stash id's for shared memory segment and semaphores in a file
* where they can be accessed by the programs.
* 4. Start programs: add-books, card-catalog, and checkout running

on the various terminals throughout the library.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include < sys/sem.h>
#include "1iber.h"

void exit 0 ;
extern int errno;

key_t key;
int slnnid;
int wrtsem;
int rdsem;
FILE *ipc_file;

main 0
{

(continued on next page)

Interprocess Communication

/*
* Open index file and map it.
*/

/* See previous example */

/*
* Get the read/write semaphores.
*/

if «wrtsem = semget(key, 1, IPC_CREAT I 0666» == -1)

(void) fprintf(stderr, "startup: semget failed: errno=%d\n", errno);
exit(1);

if «rdsem = semget(key, 1, IPC_CREAT I 0666» == -1)

(void) fprintf(stderr, "startup: semget failed: errno=%d\n", errno);
exit(1);

(void) fprintf (ipc_file. "%d\n%d\n", wrtsem. rdsem);

/*
* Start the add-books program running on the terminal in the
* basement. Start the checkout and card-catalog programs
* running on the various other terminals throughout the library.

*/

/* card-catalog program*/

/*
* 1. Read screen for author and title.
* 2. Use semaphores to prevent reading index while it is being written.
* 3. Use index to get position of book record in book file.
* 4. Print book record on screen or indicate book was not found.
* 5. Go to 1.

*/

#include
#include
#include
#include
#include
#include

<stdio.h>
<Bys/types .h>
<sys/ipo.h>
<Bys/sem.h>

<f=tl.h>
IIliber.h"

void exit();
extern int errno;

IPC Programming Example

(continued on next page)

9-85

9-86

struct sambuf sop[l);

main 0 (

Wile (1)

(

/*
* Read author/title/subject information from screen.

*/

/*
* Wait for write semaphore to reach 0 (index not being written) •

*/
Sop[O).seIlLop = 1;
if (semop(wrtsem, sop, 1) == -1)

(

(void) fprintf (stde=, "semop failed: %d\n", e=no);

exit(l);

/*
* Increment read semaphore so potential writer will wait
* for us to finish reading the index.

*/
sop[O).sem_op = 0;
if (semop(rdsem, sop, 1) == -1)

(void) fprintf (stderr, "semop failed: %d\n", e=no);
exit(l);

/* Use index to find filepointer(s) for boOk(s) */

/* Decrement read semaphore * /
sop[O).seIlLop = -1;

if (semop(rdsem, sop, 1) == -1)

(

(void) fprintf(stde=, "semop failed: %d\n", e=no);
exit (1) ;

/*
* Now we use the file pointers found in the index to
* read the boOk file. Then we print the information
* on the boOk (s) to the screen.

*/

/*
* Note design alternatives for this portion of the

(continued on next page)

Interprocess Communication

* the code: the book file could be accessed by

* lseek()s to the portion of the file containing
* the record, and then read() could be used to
* obtain the file infonnation. Alte>:natively, the
* entire book file could be mapped into memory, and the
* the record accessed directly without further
* file operations, or the area of the file containing
* the book record could just be mapped and then unmapped

* when the access is complete.

*/

/* while */

/* checkout program */

/*
* 1. Read screen for Dewey Decimal number of book to be checked out.
* 2. Use semaphores to prevent reading iIldex while it is being written.
* 3. Use index to get position of book record in book file.
* 4. If book not fOUIld print message on screen, otbel:wise lock

* book record and read.
* 5. If book already checked out print message on screen, otherwise
* mark record "checked out" and write back to book file.
* 6. Unlock book record.
* 7. Go to 1.
*/

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

#include
#include
#include
#include
#include
#include

<fcnt1.h>
II liber.hll

void exit ();
long lseek();

extern int erma;

struct flock f1l<;
struct sembuf sop[11;
long bookpos;

main()
(

while (1)
(

IPC Programming Example

(continued on next page)

9-87

9·88

/*
* Read Dewey Decimal number fran screen.
*/

/*
* Wait for write semaphore to reach 0 (index not being written).

*/
sop[O].sem_flg = 0;
sop[O].sem_op = 0;
if (semop(wrtsem, sop, 1) == -1)

(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(l);

/*
* Increment read semaphore so potential writer will wait
* for us to finish reading the index.

*/
sop[O].sem_op = 1;
if (semop(rdsem, sop, 1) == -1)

(void) fprintf(stde=, "semop failed: %d\n", errno);
exit(I);

/*
* Now we can use the index to find the book's record position.
* Assign this value to "book;pos".
*/

/* Decrement read semaphore */
sop[O].sem_op = -1;
if (semop(rdsem, sop, 1) == -1)

(void) fprintf (stde=, "semop failed: %d\n", errno);
exit (1) ;

/*
* Lock the book's record in book file, read the record.
* Here again we have the design option of deciding to

* access and update the database through the use of
* seeks, read()s and write()s; or file mapping can
* be used to access the file. File mapping has the
* disadvantage that it does not interact well with
* enforcement-mode locking, although semaphores
* could be used as an alternative s~ization
* mechanism to file locking. File mapping would have
* potential efficiency advantages, eUminating the need
* for repetitive file access operations and attendant
* data copying. For this example, however, we choose

(continued on next page)

Interprocess Communication

* not to use mapping to demonstrate the use of other
* system facilities~
*1

flk.l_type = F_WRLCK;
flk.l_whence = 0;
flk.l_start = bookpos;
flk.I_len = sizeof(BOOK);
if (fcntl(book_file, F_SETLKW, &flk) -1)

(void) fprintf(stderr, "trouble locking: %d\n", ermo);
exit(l);

if (lseek(book_file, bookpos, 0) == -1)

{

(Error processing for lseek);

if (read (book_file, &book_buf, sizeof(BOOK» -1)
{

(Error processing for read);

1*
* If the book is checked out inform the client, otherwise
* mark the book's record as checked out and write it
* back into the book file.
*1

1* Unlock the book's record in book file. *1
flk.l_type = F_UNLCK;
if (fcntl(book_file, F_SETLK, &flk) == -1)
(

(void) fprintf(stderr, "trouble unlocking: 9-od\n", erma);
exit (1) 1

1* while *1

1* add-books program*1

1*
* 1. Read a new book entry fran screen.
* 2. Insert book in book file.
* 3. Use semaphore "wrtsem" to block new readers.
* 4. Wait for semaphore "rdsem" to reach O.
* 5. Insert book into index.
* 6. Decrement wrtsem.
*7. Go to 1.

*1

#include <stdio.h>

IPC Programming Example

(continued on next page)

9-89

9-90

#include
#include
#include
#include

<sys/types.h>
<sys/ipc.h>
<sys/sem.h>
"liber.h"

void exit () ;
extern int erma;
struct sambuf sop[1];
BOOK bookbuf;

main 0
{

for (;;)

/*
* Read information on new book from screen.
*/

addscr(&bookbuf);

/* write new record at the end of the bookfile.
* Code not shown, but
* addscr() returns a 1 if title information has
* been entered, 0 if not.
*/

/*
* Increment write semaphore, blocking new readers from
* accessing the index.
*/

sop[O].sem_flg = 0;
sop[O].sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)

(void) fprintf (stderr, "semop failed: %d\n", ermo);
exit (1) ;

/*
* Wait for read semaphore to reach 0 (all readers to finish
* using the index).
*/

sop[O].sem_op = 0;

if (semop(rdsem, sop, 1) == -1)

(void) fprintf(stderr, "semop failed: 9-.,d\n", ermo);
exit (1) ;

(continued on next page)

Interprocess Communication

/*

* NOW that we have exclusive access to the index we
* insert our new book with its file pointer.

*/

/* Decrement write semaphore, pennitting readers to read index. */
sop[O].sem_op = -1;
if (semqp(wrtsem, sop, 1) == -1)

/* for */

(void) fprintf(stderr, "semqp failed: 9-.d\n", errno);
exit(l);

The example following, addscrO, illustrates two significant points about curses
screens:

1. Information read in from a curses window can be stored in fields that are
part of a structure defined in the header file for the application.

2. The address of the structure can be passed from another function where the
record is processed.

IPC Programming Example 9-91

9-92

#include <curses.h>

WINDOW *c:rrdwin;

addscr(bb)
struct BOOK *bb;

int OJ

initscr() ;
nonl();
noecho();
cbreak();

1* addscr is called fram add-books.
* The user is prompted for title

information.
*/

cmdwin = newwin(6, 40, 3, 20);
mvprintw(O, 0, "This screen is for adding titles to the data base");
mvprintw(l, 0, "Enter a toadd; q to quit: ");
refresh() ;
for (;;)

refresh() ;

c = getch();
switch (c) (

case 'a':

case 'q':

werase(cmdwin) ;

box(cmdwin, 'I', '-');
mvwprintw(cmdwin, 1, 1, "Enter title: ");
wmove(cmdwin, 2, 1);
echo() ;
wrefresh(cmdwin) ;
wgetstr(cmdwin, bb->title);
noecho();
werase (cmdwin) ;
box (cmdwin, 'I', '-');
mvwprintw(cmdwin, 1, 1, "Enter author: tI);

wmove(cmdwin, 2, 1);
echo() ;
wrefresh(cmdwin);
wgetstr(cmdwin, bb->author);
noecho();

werase(cmdwin) ;
wrefresh(cmdwin) ;
endwin();
return(l);

erase() ;
endwin() ;

(continued on next page)

Interprocess Communication

return(O);

Makefile for liber library system

cc = cc
CFLlIGS = -0

all: startup add-boOks checkout card-catalog

startup: liber.h startup.c
$(CC) $ (CFLlIGS) -0 startup startup.c

add-books: add-books.o addscr.o
$(CC) $ (CFLlIGS) -0 add-books add-boOks.o addscr.o

add-boOks. 0: liber. h

checkout: liber.h checkout.c
$(CC) $ (CFLlIGS) -0 checkout checkout.c

card-catalog: liber.h card-catalog.c
$(CC) $ (CFLlIGS) -0 card-catalog card-catalog.c

IPC Programming Example 9-93

I
I
I
I
I
I

I
I
I

I
I
I
I

I

i
I
I
I

I
I
I
I

I
I

I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I
i

1 0 STREAMS Polling and
Multiplexing

Introduction 10-1

STREAMS Input/Output Polling 10-2
Synchronous Input/Output 10-2
Asynchronous Input/Output 10-7
Signals 10-8

• Extended Signals 10-8

STREAMS Input/Output Multiplexing 10-10
STREAMS Multiplexors 10-15
Building a Multiplexor 10-16
Dismantling a Multiplexor 10-23
Routing Data through a Multiplexor 10-24

Persistent Links 10-26

Table of Contents

Introduction

This chapter describes how STREAMS allows user processes to monitor, control,
and poll Streams to allow an effective utilization of system resources. The syn­
chronous polling mechanism and asynchronous event notification within
STREAMS is discussed. STREAMS signal handling between modules and/ or
drivers and user processes is also discussed.

The remainder of this chapter is devoted to STREAMS input/ output multiplexing.
It defines a STREAMS multiplexor, and describes multiplexing drivers. A discus­
sion of how STREAMS multiplexing configurations are created, is included. Code
examples are included to illustrate using both the polling and multiplexing
mechanisms.

Introduction 10-1

STREAMS Input/Output Polling

This section describes the synchronous polling mechanism and asynchronous
event notification within STREAMS.

User processes can efficiently monitor and control multiple Streams with two sys­
tem calls: pollO and the I_SETSIG ioctlO command. These calls allow a user
process to detect events that occur at the Stream head on one or more Streams,
including receipt of data or messages on the read queue and cessation of flow con­
trol.

To monitor Streams with polIO, a user process issues that system call and
specifies the Streams to be monitored, the events to look for, and the amount of
time to wait for an event. The pollO system call blocks the process until the time
expires or until an event occurs. If an event occurs, it returns the type of event and
the Stream on which the event occurred.

Instead of waiting for an event to occur, a user process may want to monitor one
or more Streams while processing other data. It can do so by issuing the
I_SETSIG ioctlO command, specifying one or more Streams and events [as with
poll()]. This ioctlO does not block the process and force the user process to wait
for the event but returns immediately and issues a signal when an event occurs.
The process must specify a signal handler to catch the resultant SIGPOLL signal.

If any selected event occurs on any of the selected Streams, STREAMS causes the
SIGPOLL catching function to be executed in all associated requesting processes.
However, the process(es) will not know which event occurred, nor on what
Stream the event occurred. A process that issues the I_SETSIG can get more
detailed information by issuing a pollO after it detects the event.

Synchronous Input/Output

The pollO system call provides a mechanism to identify those Streams over which
a user can send or receive data. For each Stream of interest, users can specify one
or more events about which they should be notified. The types of events that can
be polled are as follows:

POLLIN

10-2

A message other than an M_PCPROTO is at the front of
the Stream head read queue. This event is maintained
for compatibility with the previous releases of the
UNIX System V.

STREAMS Polling and Multiplexing

POLLRDNORM

POLLRDBAND

POLLPRI

POLLOUT

POLLWRNORM

POLLWRBAND

POLLMSG

A normal (nonpriority) message is at the front of the
Stream head read queue.

A priority message (band> 0) is at the front of the
Stream head queue.

A high-priority message (M_PCPROTO) is at the front of
the Stream head read queue.

The normal priority band of the queue is writable (not
flow controlled).

The same as POLLOUT.

A priority band greater than 0 of a queue downstream
exists and is writable.

An M_SIG or M_PCSIG message containing the SIG­

POLL signal has reached the front of the Stream head
read queue.

Some of the events may not be applicable to all file types. For example, it is not
expected that the POLLPRI event will be generated when polling a regular file.
POLLIN, POLLRDNORM, POLLRDBAND, and POLLPRI are set even if the message is of
zero length.

The polIO system call examines each file descriptor for the requested events and,
on return, shows which events have occurred for each file descriptor. If no event
has occurred on any polled file descriptor, pollO blocks until a requested event or
timeout occurs. pollO takes the following arguments:

• An array of file descriptors and events to be polled.

• The number of file descriptors to be polled.

• The number of milliseconds pollO should wait for an event if no events are
pending (-1 specifies wait forever).

The following example shows the use of pollO. Two separate minor devices of
the communications driver are opened, thereby establishing two separate Streams
to the driver. The pollfd entry is initialized for each device. Each Stream is
polled for incoming data. If data arrives on either Stream, it is read and then writ­
ten back to the other Stream.

STREAMS Input/Output Polling 10-3

#include <fcntl.h>
#include <poll.h>

#define NPOLL 2

main()
{

/* number of file descriptors to poll */

struct pollfd pollfds[NPOLLj;
char buf[l024j;
int count, i;

if «pollfds[Oj.fd = open("/dev/canm/Ol", O_RDWRIO_NDELAY» < 0) {
perror("open failed for /dev/canm/Ol");
exit(l) ;

if «pollfds[lj.fd = open("/dev/canm/02", O_RDWRIO_NDELAY» < 0) {
perror("open failed for /dev/canm/02");
exit (2) ;

The variable pollfds is declared as an array of the pollfd structure that is
defined in <poll. h> and has the following format:

struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

For each entry in the array, fd specifies the file descriptor to be polled and events
is a bitmask that contains the bitwise inclusive OR of events to be polled on that file
descriptor. On return, the revents bitmask indicates which of the requested
events has occurred.

The example continues to process incoming data as follows:

10-4 STREAMS Polling and Multiplexing

pollfds[O].events = POLLIN; 1* set events to poll *1
pollfds[l].events = POLLIN; 1* for incoming data *1
pollfds[O].revents = 0;
pollfds[l].revents = 0;

while (1) {
1* poll and use -1 timeout (infinite) *1
if (poll(pollfds, NPOLL, -1) < 0) {

perror ("poll failed");
exit(3) ;

for (i = 0; i < NPOLL; i++) {
switch (pollfds[i].revents)

case 0:
break;

case POLLIN:

1* no events */

1* echo incoming data on l1ather" Stream * /
while «count = read (pollfds [i] .fd, buf, 1024» > 0)

1*
* the write loses data if flow control
* prevents the transmit at this time.
*1

if (write(pollfds[(i+1)~~] .fd, buf, count) != count)
fprintf(stderr, "writer lost data\n");

pollfds[i].revents = 0;
break;

default:
perror (lierror event");
exit(4);

1* default error case *1

The user specifies the polled events by setting the events field of the pollfd
structure to POLLIN. This requested event directs polIO to notify the user of any
incoming data on each Stream. The bulk of the example is an infinite loop, where
each iteration polls both Streams for incoming data.

The second argument to the polIO system call specifies the number of entries in
the pollfds array (2 in this example). The third argument is a timeout value indi­
cating the number of milliseconds polIO should wait for an event if none occurs.
On a system where millisecond accuracy is not available, timeout is rounded up to
the nearest value available on that system. If the value of timeout is 0, polIO
returns immediately. Here, the value of timeout is -1, specifying that polIO
should block until a requested event occurs or until the call is interrupted.

STREAMS Input/Output Polling 10-5

If the pollO call succeeds, the program looks at each entry in the pollfds array.
If revents is set to 0, no event has occurred on that file descriptor. If revents is
set to POLLIN, incoming data is available. In this case, all data is read from the
polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must have
occurred on that Stream, because POLLIN was the only requested event. The fol­
lowing are pollO error events:

POLLERR

POLLHUP

POLLNVAL

A fatal error has occurred in some module or driver on the
Stream associated with the specified file descriptor.
Further system calls will fail.

A hangup condition exists on the Stream associated with
the specified file descriptor. This event and POLLOUT are
mutually exclusive; a Stream cannot be writable if a
hangup has occurred.

The specified file descriptor is not valid

These events may not be polled by the user, but will be reported in revents

whenever they occur. As such, they are only valid in the revents bitmask.

The example attempts to process incoming data as quickly as possible. However,
when writing data to a Stream, the writeO call may block if the Stream is exerting
flow control. To prevent the process from blocking, the minor devices of the com­
munications driver were opened with the O_NDELAY (or O_NONBLOCK, see note)
flag set. The writeO will not be able to send all the data if flow control is exerted
and O_NDELAY (O_NONBLOCK) is set. This can occur if the communications driver is
unable to keep up with the user's rate of data transmission. If the Stream becomes
full, the number of bytes the writeO sends will be less than the requested count.
For simplicity, the example ignores the data if the Stream becomes full, and a
warning is printed to stderr.

~
For conformance with the IEEE operating system interface standard, POSIX,

NOTE it is recommended that new applications use the O_NONBLOCK flag, which
behaves the same as O_NDELAY unless otherwise noted.

This program continues until an error occurs on a Stream, or until the process is
interrupted.

10-6 STREAMS Polling and Multiplexing

Asynchronous Input/Output

The pallO system call enables a user to monitor multiple Streams in a synchro­
nous fashion. The polIO call normally blocks until an event occurs on any of the
polled file descriptors. In some applications, however, it is desirable to process
incoming data asynchronously. For example, an application may want to do some
local processing and be interrupted when a pending event occurs. Some time­
critical applications cannot afford to block, but must have immediate indication of
success or failure.

The I_SETSIG ioctlO call [see streamio(7)] is used to request that a SIGPOLL sig­
nal be sent to a user process when a specific event occurs. Listed below are events
for the ioctlO I_SETSIG. These are similar to those described for pollO.

A message other than an M_PCPROTO is at the front of the
Stream head read queue. This event is maintained for
compatibility with the previous releases of the UNIX Sys­
temV.

A normal (nonpriority) message is at the front of the
Stream head read queue.

A priority message (band> 0) is at the front of the Stream
head read queue.

A high-priority message (M_PCPROTO) is present at the
front of the Stream head read queue.

A write queue for normal data (priority band = 0) is no
longer full (not flow controlled). This notifies a user that
there is room on the queue for sending or writing normal
data downstream.

The same as S_OUTPUT.

A priority band greater than 0 of a queue downstream
exists and is writable. This notifies a user that there is
room on the queue for sending or writing priority data
downstream.

An M_SIG or M_PCSIG message containing the SIGPOLL

flag has reached the front of Stream head read queue.

An M_ERROR message reaches the Stream head.

An M_HANGUP message reaches the Stream head.

STREAMS Input/Output Polling 10-7

When used with S_RDBAND, SIGURG is generated instead
SIGPOLL when a priority message reaches the front of the
Stream head read queue.

S_INPUT, S_RDNORM, S_RDBAND, and S_HIPRI are set even if the message is of zero
length. A user process may choose to handle only high-priority messages by set­
ting the arg to S_HIPRI.

Signals

STREAMS allows modules and drivers to cause a signal to be sent to user
process(es) through an M_SIG or M_PCSIG message. The first byte of the message
specifies the signal for the Stream head to generate. If the signal is not SIGPOLL

[see signal(2)], the signal is sent to the process group associated with the Stream.
If the signal is SIGPOLL, the signal is only sent to processes that have registered for
the signal by using the I_SETSIG ioctlO.

An M_SIG message can be used by modules or drivers that want to insert an expli­
cit inband signal into a message Stream. For example, this message can be sent to
the user process immediately before a particular service interface message to gain
the immediate attention of the user process. When the M_SIG message reaches the
head of the Stream head read queue, a signal is generated and the M_SIG message
is removed. This leaves the service interface message as the next message to be
processed by the user. Use of the M_SIG message is typically defined as part of the
service interface of the driver or module.

Extended Signals

To enable a process to obtain the band and event associated with SIGPOLL more
readily, STREAMS supports extended signals. For the given events, a special code
is defined in <siginfo. h> that describes the reason SIGPOLL was generated.
Table 10-1 describes the data available in the siginfo_t structure passed to the
signal handler.

Table 10-1: siginfo_t Data Available to the Signal Handler

Event si_signo si_code si_band si_errno

S_INPUT SIGPOLL POLL_IN band readable unused
S_OUTPUT SIGPOLL POLL_OUT band writable unused
S_MSG SIGPOLL POLL_MSG band signaled unused
S_ERROR SIGPOLL POLL_ERR unused Stream error

10-8 STREAMS Polling and Multiplexing

Table 10-1: siginfo_t Data Available to the Signal Handler (continued)

S_HANGUP I SIGPOLL
S_HIPRI SIGPOLL

STREAMS Input/Output Polling

POLL_HUP I unused
POLL_PRI unused I unused

unused

10-9

STREAMS Input/Output Multiplexing

This section describes how STREAMS multiplexing configurations are created and
also discusses multiplexing drivers.

Earlier, Streams were described as linear connections of modules, where each
invocation of a module is connected to at most one upstream module and one
downstream module. While this configuration is suitable for many applications,
others require the ability to multiplex Streams in a variety of configurations. Typi­
cal examples are terminal window facilities, and intemetworking protocols (which
might route data over several subnetworks).

Figure 10-1 shows an example of a multiplexor that multiplexes data from several
upper Streams over a single lower Stream. An upper Stream is one that is
upstream from a multiplexor, and a lower Stream is one that is downstream from
a multiplexor. A terminal windowing facility might be implemented in this
fashion, where each upper Stream is associated with a separate window.

Figure 10-1: Many-to-One Multiplexor

MUX

Figure 10-2 shows a second type of multiplexor that might route data from a sin­
gle upper Stream to one of several lower Streams. An intemetworking protocol
could take this form, where each lower Stream links the protocol to a different
physical network.

10-10 STREAMS Polling and Multiplexing

Figure 10-2: One-to-Many Multiplexor

MUX

Figure 10-3 shows a third type of multiplexor that might route data from one of
many upper Streams to one of many lower Streams.

Figure 10-3: Many-to-Many Multiplexor

MUX

The STREAMS mechanism supports the multiplexing of Streams through special
pseudo-device drivers. Using a linking facility, users can dynamically build,
maintain, and dismantle multiplexed Stream configurations. Simple
configurations like the ones shown in Figure 10-1 through Figure 10-3 can be
further combined to form complex, multilevel, multiplexed Stream configurations.

STREAMS multiplexing configurations are created in the kernel by interconnect­
ing multiple Streams. Conceptually, there are two kinds of multiplexors: upper
and lower multiplexors. Lower multiplexors have multiple lower Streams
between device drivers and the multiplexor, and upper multiplexors have multi­
ple upper Streams between user processes and the multiplexor.

STREAMS Input/Output Multiplexing 10-11

Figure 10-4 is an example of the multiplexor configuration that typically occurs
where intemetworking functions are included in the system. This configuration
contains three hardware device drivers. The IP (Internet Protocol) is a multi­
plexor.

The IP multiplexor switches messages among the lower Streams or sends them
upstream to user processes in the system. In this example, the multiplexor expects
to see the same interface downstream to Module I, Module 2, and Driver 3.

Figure 10-4: Internet Multiplexing Stream

User Processes
A A A _______________ .J _1_ L ______________ _

Module 1

Driver 1

1 1 1
1 1 1
1 1 1

r - - - -"- 'i. J_ - - --,
1 Upper 1

: Multiplexor or 1

Module L __________ .:1

IP
Multiplexor

Driver

Module 2

Driver 2 Driver 3

Figure 10-4 depicts the IP multiplexor as part of a larger configuration. The multi­
plexor configuration, shown in the dashed rectangle, generally has an upper mul­
tiplexor and additional modules. Multiplexors can also be cascaded below the IP
multiplexor driver if the device drivers are replaced by multiplexor drivers.

10-12 STREAMS Polling and Multiplexing

Figure 10-5 shows a multiplexor configuration where the multiplexor (or multi­
plexing driver) routes messages between the lower Stream and one upper Stream.
This Stream performs X.25 multiplexing to multiple independent Switched Virtual
Circuit (SVC) and Permanent Virtual Circuit (PVC) user processes. Upper multi­
plexors are a specific application of standard STREAMS facilities that support
multiple minor devices in a device driver. This figure also shows that more com­
plex configurations can be built by having one or more multiplexed drivers below
and multiple modules above an upper multiplexor.

Developers can choose either upper or lower multiplexing, or both, when design­
ing their applications. For example, a window multiplexor would have a similar
configuration to the X.25 configuration of Figure 10-5, with a window driver
replacing the Packet Layer, a tty driver replacing the driver XYZ, and the child
processes of the terminal process replacing the user processes. Although the X.25
and window multiplexing Streams have similar configurations, their multiplexor
drivers would differ significantly. The IP multiplexor in Figure 10-4 has a dif­
ferent configuration than the X.25 multiplexor, and the driver would implement
its own set of processing and routing requirements in each configuration.

STREAMS Input/Output Multiplexing 10-13

Figure 10-5: X.25 Multiplexing Stream

PVC
Processes

SVC
Processes Processes

- - -- --------- ---------

Modules Modules Modu les

~
I

V
X.2S

Packet Layer Protocol
Multiplexor Driver

--------- ---------I" -,
I I

I Driver XYZ I
I I
I or I

: Lower Multiplexor : L ___________________ ~

In addition to upper and lower multiplexors, you can create more complex
configurations by connecting Streams containing multiplexors to other multi­
plexor drivers. With such a diversity of needs for multiplexors, it is not possible
to provide general purpose multiplexor drivers. Rather, STREAMS provides a
general purpose multiplexing facility, which allows users to set up the
intermodulel driver plumbing to create multiplexor configurations of generally
unlimited interconnection.

10-14 STREAMS Polling and Multiplexing

STREAMS Multiplexors

A STREAMS multiplexor is a driver with multiple Streams connected to it. The
primary function of the multiplexing driver is to switch messages among the con­
nected Streams. Multiplexor configurations are created at user level by system
calls.

STREAMS-related system calls set up the "plumbing," or Stream interconnections,
for multiplexing drivers. The subset of these calls that allows a user to connect
(and disconnect) Streams below a driver is referred to as the multiplexing facility.
This type of connection is referred to as a I-to-M, or lower, multiplexor
configuration. This configuration must always contain a multiplexing driver,
which is recognized by STREAMS as having special characteristics.

Multiple Streams can be connected above a driver by openO calls. There is no
difference between the connections to these drivers, only the functions performed
by the driver are different. In the multiplexing case, the driver routes data
between multiple Streams. In the device driver case, the driver routes data
between user processes and associated physical ports. Multiplexing with Streams
connected above is referred to as an N-to-l, or upper, multiplexor. STREAMS
does not provide any facilities beyond openO and closeO to connect or disconnect
upper Streams for multiplexing purposes.

From the driver's perspective, upper and lower configurations differ only in how
they are initially connected to the driver. The implementation requirements are
the same: route the data and handle flow control. All multiplexor drivers require
special developer-provided software to perform the multiplexing data routing and
to handle flow control. STREAMS does not directly support flow control among
multiplexed Streams.

M-to-N multiplexing configurations are implemented by using both of the above
mechanisms in a driver.

The multiple Streams that represent minor devices are actually distinct Streams in
which the driver keeps track of each Stream attached to it. The STREAMS subsys­
tem does not recognize any relationship between the Streams. The same is true
for STREAMS multiplexors of any configuration. The multiplexed Streams are
distinct and the driver must be implemented to do most of the work.

In addition to upper and lower multiplexors, more complex configurations can be
created by connecting Streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to pro­
vide general-purpose multiplexor drivers. Rather, STREAMS provides a general
purpose multiplexing facility that allows users to set up the intermodulel driver
plumbing to create multiplexor configurations of generally unlimited inter­
connection.

STREAMS Input/Output Multiplexing 10-15

Building a Multiplexor

This section builds a protocol multiplexor with the multiplexing configuration
shown in Figure 10-6. To free users from the need to know about the underlying
protocol structure, a user-level daemon process is built to maintain the multiplex­
ing configuration. Users can then access the transport protocol directly by open­
ing the transport protocol (TP) driver device node.

An internetworking protocol driver (IP) routes data from a single upper Stream to
one of two lower Streams. This driver supports two STREAMS connections
beneath it. These connections are to two distinct networks; one for the IEEE 802.3
standard with the 802.3 driver, and the other to the IEEE 802.4 standard with the
802.4 driver. The TP driver multiplexes upper Streams over a single Stream to the
IP driver.

Figure 10-6: Protocol Multiplexor

____ ~t~~J?_~lV __ u~s~ce_

10-16

Stream
Head

802.4
Driver

TP
Driver

IP
Driver

802.3
Driver

Kernel Space

STREAMS Polling and Multiplexing

The following example shows how this daemon process sets up the protocol mul­
tiplexor. The necessary declarations and initialization for the daemon program
are as follows:

#include <fcntl.h>
#include <stropts.h>

main()
(

/* daeman-ize this process */

switch (fork(»
case 0:

break;
case -1:

perror(11 fork failed") i
exit(2) ;

default:
exit(O) ;

setsid() ;

This multilevel multiplexed Stream configuration is built from the bottom up.
Therefore, the example begins by first constructing the Internet Protocol (IP) mul­
tiplexor. This multiplexing device driver is treated like any other software driver.
It owns a node in the UNIX file system and is opened just like any other
STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creating
separate Streams above each driver as shown in Figure 10-7. The Stream to the
802.4 driver may now be connected below the multiplexing IP driver using the
I_LINK ioctlO call.

STREAMS Input/Output Multiplexing 10-17

Figure 10-7: Before Link

802.4
Driver

daemon

The sequence of instructions to this point is

______ l!~e: ~:ea~~_

IP
Driver

KemelSpace

if «fd_802_4 = open("/dev/802_4". O_RImR» < 0) (
perror("open of /dev/802_4 failed");
exit(l);

perror("open of /dev/ip failed");
exit(2);

/* now link 802.4 to underside of IP */

if (iootl(fd_ip. I_LINK. fd_802_4) < 0) (

perror("I_LINK iootl failed");
exit(3);

I_LINK takes two file descriptors as arguments. The first file descriptor, fd_ip,
must reference the Stream connected to the multiplexing driver, and the second
file descriptor, fd_802_4, must reference the Stream to be connected below the
multiplexor. Figure 10-8 shows the state of these Streams following the I_LINK
call. The complete Stream to the 802.4 driver has been connected below the IP
driver. The Stream head's queues of the 802.4 driver is used by the IP driver to
manage the lower half of the multiplexor.

10-18 STREAMS Polling and Multiplexing

Figure 10-8: IP Multiplexor after First Link

___________ (d~j"0~ _______ U~'S£a'c __

IP
Driver

802.4
Driver

Kernel Space

I_LINK returns an integer value, called muxid, which is used by the multiplexing
driver to identify the Stream just connected below it. This muxid is ignored in the
example, but is useful for dismantling a multiplexor or routing data through the
multiplexor. Its significance is discussed later.

The following sequence of system calls is used to continue building the internet­
working protocol multiplexor (IP):

if «fd_S02_3 = open("/dev/S02_3", O_RIlWR» < O} {
perror("open of /dev/S02_3 failed"};
exit(4} ;

if (ioctl(fd_ip, I_LINK, fd_S02_3) < O} {
perror(III_LINK ioctl failed ll };

exit(S} ;

STREAMS Input/Output Multiplexing 10-19

All links below the IP driver have now been established, giving the configuration
in Figure 10-9.

Figure 10-9: IP Multiplexor

w _______ ~l~ __ wwU~sl'ace .
ControllinJ

Stream

802.4
Driver

IP
Driver

802.3
Driver

KemelSpace

The Stream above the multiplexing driver used to establish the lower connections
is the controlling Stream and has special significance when dismantling the multi­
plexing configuration. This will be illustrated later in this section. The Stream
referenced by fd_ip is the controlling Stream for the IP multiplexor.

l:~ The order in which the Streams in the multiplexing configuration are opened is
NOTE unimportant. If it is necessary to have intermediate modules in the Stream

between the IP driver and media drivers, these modules must be added to the
Streams associated with the media drivers (using I PUSH) before the media
drivers are attached below the multiplexor. -

The number of Streams that can be linked to a multiplexor is restricted by the
design of the particular multiplexor. The manual page describing each driver
(typically found in Section 7) describes such restrictions. However, only one
I_LINK operation is allowed for each lower Stream; a single Stream cannot be
linked below two multiplexors simultaneously.

10-20 STREAMS Polling and Multiplexing

Continuing with the example, the IP driver is now linked below the transport pro­
tocol (TP) multiplexing driver. As seen earlier in Figure 10-6, only one link is sup­
ported below the transport driver. This link is formed by the following sequence
of system calls:

if «fd_tp = open("/dev/tp", OJIDWR» < 0) (
pe=or("open of /dev/tp failed");
exit(6);

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) (

perror("I_LINK ioctl failed");
exit(7);

The multilevel multiplexing configuration shown in Figure 10-10 has now been
created.

STREAMS Input/Output Multiplexing 10-21

Figure 10-10: TP Multiplexor

___________ ~~O~ ________ u~s£~e_
ControllinJ

Stream

802.4
Driver

TP
Driver

IP
Driver

802.3
Driver

Kernel Space

Because the controlling Stream of the IP multiplexor has been linked below the TP
multiplexor, the controlling Stream for the new multilevel multiplexor
configuration is the Stream above the TP multiplexor.

At this point, the file descriptors associated with the lower drivers can be closed
without affecting the operation of the multiplexor. If these file descriptors are not
closed, all later readO, writeO, ioctlO, polIO, getmsgO, and putmsgO system
calls issued to them will fail because I_LINK associates the Stream head of each
linked Stream with the multiplexor, so the user may not access that Stream
directly for the duration of the link.

The following sequence of system calls completes the daemon example:

10-22 STREAMS Polling and Multiplexing

close(fd_B02_4);
close(fd_B02_3);
close (fd_ip) ;

/* HOld multiplexor open forever */
pause() ;

To summarize, Figure 10-10 shows the multilevel protocol multiplexor. The tran­
sport driver supports several simultaneous Streams. These Streams are multi­
plexed over the single Stream connected to the IP multiplexor. The mechanism for
establishing multiple Streams above the transport multiplexor is actually a by­
product of the way in which Streams are created between a user process and a
driver. By opening different minor devices of a STREAMS driver, separate
Streams are connected to that driver. Of course, the driver must be designed with
the intelligence to route data from the single lower Stream to the appropriate
upper Stream.

The daemon process maintains the multiplexed Stream configuration through an
open Stream (the controlling Stream) to the transport driver. Meanwhile, other
users can access the services of the transport protocol by opening new Streams to
the transport driver; they are freed from the need for any unnecessary knowledge
of the underlying protocol configurations and subnetworks that support the tran­
sport service.

Multilevel multiplexing configurations should be assembled from the bottom up
because the passing of ioctlOs through the multiplexor is determined by the
multiplexing driver and cannot generally be relied on.

Dismantling a Multiplexor

Streams connected to a multiplexing driver from above with openO, can be dis­
mantled by closing each Stream with closeO. The mechanism for dismantling
Streams that have been linked below a multiplexing driver is less obvious, and is
described below.

The I_UNLINK ioctlO call disconnects each multiplexor link below a multiplexing
driver individually. This command has the form:

ioctl <fd, I_UNLINK, muxid);

where fd is a file descriptor associated with a Stream connected to the multiplexing
driver from above, and muxid is the identifier that was returned by I_LINK when a

STREAMS Input/Output Multiplexing 10-23

driver was linked below the multiplexor. Each lower driver may be disconnected
individually in this way, or a special muxid value of -1 may disconnect all drivers
from the multiplexor simultaneously.

In the multiplexing daemon program presented earlier, the multiplexor is never
explicitly dismantled because all links associated with a multiplexing driver are
automatically dismantled when the controlling Stream associated with that multi­
plexor is closed. Because the controlling Stream is open to a driver, only the final
call of closeO for that Stream closes it. In this case, the daemon is the only pro­
cess that opens the controlling Stream, so the multiplexing configuration is dis­
mantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, multiplexed
Stream configuration, the controlling Stream for each multiplexor at each level
must be linked under the next higher level multiplexor. In the example, the con­
trolling Stream for the IP driver was linked under the TP driver, which resulted in
a single controlling Stream for the full, multilevel configuration. Because the mul­
tiplexing program relied on closing the controlling Stream to dismantle the multi­
plexed Stream configuration instead of using explicit I_UNLINK calls, the muxid
values returned by I_LINK could be ignored.

An important side-effect of automatic dismantling on the close is that it is not pos­
sible for a process to build a multiplexing configuration with I_LINK and then
exit. This is because exitO closes all files associated with the process, including
the controlling Stream. To keep the configuration intact, the process must exist for
the life of that multiplexor. That is the motivation for implementing the example
as a daemon process.

However, if the process uses persistent links with the I_PLINK ioctlO call, the
multiplexor configuration remains intact after the process exits. Persistent links
are described later in this section.

Routing Data through a Multiplexor

As shown, STREAMS provides a mechanism for building multiplexed Stream
configurations. However, the criteria on which a multiplexor routes data is
driver-dependent. For example, the protocol multiplexor shown before might use
address information found in a protocol header to determine over which subnet­
work data should be routed. It is the multiplexing driver's responsibility to define
its routing criteria.

One routing option available to the multiplexor is to use the muxid value to deter­
mine to which Stream data should be routed (remember that each multiplexor link
is associated with a muxid). I_LINK passes the muxid value to the driver and
returns this value to the user. The driver can therefore specify that the muxid

10-24 STREAMS Polling and Multiplexing

value must accompany data routed through it. For example, if a multiplexor
routed data from a single upper Stream to one of several lower Streams (as did the
IP driver), the multiplexor could require the user to insert the muxid of the desired
lower Stream into the first four bytes of each message passed to it. The driver
could then match the muxid in each message with the muxid of each lower Stream,
and route the data accordingly.

STREAMS Input/Output Multiplexing 10-25

Persistent Links

With I_LINK and I_UNLINK ioctlOs, the file descriptor associated with the
Stream above the multiplexor used to set up the lower multiplexor connections
must remain open for the duration of the configuration. Closing the file descriptor
associated with the controlling Stream dismantles the whole multiplexing
configuration. Some applications may not want to keep a process running merely
to hold the multiplexor configuration together. Therefore, "free-standing" links
below a multiplexor are needed. A persistent link is such a link. It is similar to a
STREAMS multiplexor link, except that a process is not needed to hold the links
together. After the multiplexor has been set up, the process may close all file
descriptors and exit, and the multiplexor remains intact.

Two ioctlOs, I_PLINK and I_PUNLINK, are used to create and remove persistent
links that are associated with the Stream above the multiplexor. closeO and
I_UNLINK are not able to disconnect the persistent links.

The format of I_PLINK is

ioctl <fdO, I_PLINK, fdl)

The first file descriptor,fdO, must reference the Stream connected to the multiplex­
ing driver and the second file descriptor, fdl, must reference the Stream to be con­
nected below the multiplexor. The persistent link can be created in the following
way:

upper_stream_fd = open (" / dey /nrux", O_RDWR);

lower_stream_fd = open ("/dev/driver", OJIDWR);

nruxid = ioctl(upper_stream_fd, I_PLINK, lower_stream_fd);

/*
* save muxid in a file
*/

exit(O);

Figure 10-11 shows how openO establishes a Stream between the device and the
Stream head.

10-26 STREAMS Polling and Multiplexing

Figure 10-11: openO of MUXdriver and Driver1

Driverl

User
Process

________ ~~~r_Sp<:l~e __

Kernel Space

MUXdriver

The persistent link can still exist even if the file descriptor associated with the
upper Stream to the multiplexing driver is closed. The I_PLINK ioctlO returns
an integer value, muxid, that can be used for dismantling the multiplexing
configuration. If the process that created the persistent link still exists, it may pass
the muxid value to some other process to dismantle the link, if the dismantling is
desired, or it can leave the muxid value in a file so that other processes may find it
later. Figure 10-12 shows a multiplexor after I_PLINK.

Persistent Links 10-27

Figure 10-12: Multiplexor after I_PLINK

User
Process

_______________ ~~~r_Sp~~e __
: fd1 : Kernel Space

MUXdriver

Persistent ~
Link ~ --'------'---_--,

Driver1

Several users can open the MUXdriver and send data to Driver1 since the per­
sistent link to Driverl remains intact. This is shown in Figure 10-l3.

10-28 STREAMS Polling and Multiplexing

Figure 10-13: Other Users Opening a MUXdriver

MUXdriver

persisten~---,,----,--_~
Link

Driverl

The I_PUNLINK ioctlO is used for dismantling the persistent link. Its format is

ioctl <fdO, I_PUNLINK, muxid)

where the fdO is the file descriptor associated with Stream connected to the multi­
plexing driver from above. The muxid is returned by the I_PLINK ioctlO for the
Stream that was connected below the multiplexor. The I_PUNLINK removes the
persistent link between the multiplexor referenced by the fdO and the Stream to
the driver designated by the muxid. Each of the bottom persistent links can be
disconnected individually. An I_PUNLINK ioctlO with the muxid value of
MUXID_ALL removes all persistent links below the multiplexing driver referenced
by fdO.

The following dismantles the previously given configuration:

Persistent Links 10-29

fd = open("/dev/mux", O_RIlWR);

1*
* retrieve muxid from the file
*1

ioctl (fd, I_PUNLINK, muxid);

exit(O) ;

The use of the ioctlOs I_PLINK and I_PUNLINK should not be intermixed with
I_LINK and I_UNLINK. Any attempt to unlink a regular link with I_PUNLINK or to
unlink a persistent link with I_UNLINK ioctlO causes the ermo value of EINVAL

to be returned.

Because multilevel multiplexing configurations are allowed in STREAMS, it is
possible to have a situation where persistent links exist below a multiplexor whose
Stream is connected to the above multiplexor by regular links. Closing the file
descriptor associated with the controlling Stream removes the regular link but not
the persistent links below it. On the other hand, regular links are allowed to exist
below a multiplexor whose Stream is connected to the above multiplexor with
persistent links. In this case, the regular links are removed if the persistent link
above is removed and no other references to the lower Streams exist.

The construction of cycles is not allowed when creating links. A cycle could be
constructed by creating a persistent link of multiplexor 2 below multiplexor 1 and
then closing the controlling file descriptor associated with the multiplexor 2 and
reopening it again and then linking the multiplexor 1 below the multiplexor 2, but
this is not allowed. The operating system prevents a multiplexor configuration
from containing a cycle to ensure that messages cannot be routed infinitely, thus
creating an infinite loop or overflowing the kernel stack.

10-30 STREAMS Polling and Multiplexing

A Guidelines for Writing Trusted
Software

Writing Trusted Software A-1
Scope of Trust A-1
How Trust Is Achieved A-2
How to Use This Chapter A-2

Trust and Security A-4
Privilege A-4
Trusted Facility Management A-5
Discretionary Access Control A-7

• Discretionary Access Isolation A-7

Writing Trusted Commands A-9
User Documentation A-9
Parameter and Process Attribute Checking A-9
Privilege and Special Access A-10

• Set-id Commands A-10
Privilege and Special Access in Shared Private Routines A-12
Error Checking A-13
Signal Handling A-13
Handling Sensitive Data A-14
Executing Other Commands A-15
Using Library Routines A-15

Trusting Shell Scripts A-16
User Documentation A-16
Privilege and Special Access A-16

Table of Contents

Executing Commands A-17
Error Checking A-18

Trusting Public Library Routines A-19
Documentation A-19
Privilege and Special Access A-19
Reporting Errors A-20
Handling Sensitive Data A-20
Executing Commands A-20

Installing Trusted Commands and Data A-21
Assigning Access Controls A-21
Assigning Privileges and Special Permissions A-21

Summary A-23

ii Table of Contents

Writing Trusted Software

As a programmer on UNIX System V, you need to be aware of the special care you
need to exercise when designing and writing software for any system. You want
to ensure that the software you write and install for local applications is trusted.

The concept of trusting software is applicable to any system, regardless of the
level of security implemented; the process of trusting software will lead to a more
secure installation.

Trust is the belief that a system element upholds the security policy of an operat­
ing system. If this belief is founded on blind faith, disasters are likely to happen,
so it makes sense to assign trust only when a system element has been shown to
deserve that trust.

For user-level software, this means making sure that a command or library routine
works as advertised, and prevents unauthorized users from circumventing access
controls or mechanisms that protect sensitive system operations. In this section,
trust refers not to blind faith, but to confirmed trustworthiness.

Scope of Trust

The first step in assigning trust to a command or library routine is to determine
whether it has enough access to the system to require trust. Some commands do
not require privilege or access to sensitive information. Such commands need not
be trusted, since they pose no threat.

Other commands either occasionally or routinely obtain access to sensitive opera­
tions, or create that access for themselves through mechanisms like the setuid­
on-exec feature. These commands must be trusted, since they operate in a sensi­
tive environment.

The rules dictating which commands need trust and which commands do not are
straightforward, but matching a command to a rule may not be. The following
command classes must always be trusted:

• commands used by administrative personnel

• commands invoked by other trusted commands

• commands that use privilege (see the "Basic Security" chapter of the Basic
System Administration guide for an explanation of privilege)

Writing Trusted Software A-1

• commands that set their user or group identity to an administrative one on
execution (set-id)

Deciding whether a command is "used by administrative personnel" or "uses
privilege" can be difficult, since this distinction often varies from site to site and
administrator to administrator.

Library routines have similar rules, but these routines are so pervasive the most
reasonable rule is: each library routine must be trusted unless it can be shown not
to be used by trusted code. This principle means that every element of a trusted
command must itself be trusted. This principle includes the private routines
within the command as well as all library routines used by the command.

How Trust Is Achieved

The rules for trust are different for commands and library routines. These rules
are described in detail in the remaining sections of this chapter.

Trust is achieved by following all rules that pertain to writing a given piece of
software and by documenting the methods used to follow those rules. This docu­
mentation must be supplied with every piece of trusted software. It describes the
circumstances under which it is trusted, the methods used to make it trusted, and
warnings about any practices that might jeopardize the trust placed in the
software.

As with all code that is to be incorporated in a running system, trusted software
needs to be reviewed and tested before it is installed. You can have reviewers and
testers read this chapter so that they can familiarize themselves with the special
requirements for trusted software.

How to Use This Chapter

This chapter is divided into sections describing the procedures needed to produce
and install trusted software. You may want to read the "Creating and Managing
User Accounts" and the "Basic Security" chapters of the Basic System Administra­
tion guide for background information.

It is a good idea to become familiar with the background material first, then
proceed with reading the sections of this chapter that explain how to ensure trust
in the kind of software you are writing. Reading the entire chapter is useful, but
not essential. Many rules for ensuring trust are also good general programming
practices, so they may also benefit any programming you do.

A·2 Guidelines for Writing Trusted Software

Finally, be aware that this chapter does not contain the definitive explanation of
trust. Writing software is as much an art as it is a science, and the rules presented
here are only guidelines to gain an understanding of the issues involved. It is by
no means a guarantee that you will produce trusted software if you blindly obey
the rules and dutifully mark the checklists. However, reading the advice here is a
good beginning to learning how to write trusted software.

Writing Trusted Software A-3

Trust and Security

Any discussion of software trust must be based on fundamental understanding of
the security-related system elements. These elements are:

• Privileges

• Trusted Facility Management (TFM)

• Discretionary Access Controls (DAC)

• DAC Isolation Mechanism

The next subsections give a general explanation of these elements of security and
trust. There are other descriptions in the Basic System Administration guide to
which you may want to refer for other perspectives and information.

Privilege

Privilege means "the ability to override system restrictions." This ability is vested
in three ways:

• in any user whose effective identity is root

• by way of the TFM feature

• through fixed privileges assigned to a command

There is a problem with the first approach to overriding system restrictions. A
user (or command) allowed a reasonably mundane privileged action (for example,
reading a protected file without explicit permission) also has permission to per­
form every other privileged action on the system, including the permission to
overwrite all files on the system, add users, kill processes, start and stop network
services, mount and unmount file systems, and many other sensitive operations.
There is no restriction because there is no way to give a "little bit of root" to a
user or command. Any process with an effective user-ID of "0" (root) is con­
sidered omnipotent.

The second and third approaches provide methods of giving a "little bit of root"
to a user or command, and thus address the problem with the first approach.
These approaches can be thought of as "Administrative Least Privilege" since
they introduce the idea of discrete privileges that are associated with command
files and processes.

A·4 Guidelines for Writing Trusted Software

The second and third approaches dissolve the bond between user identity and
privilege, making privilege a process and command attribute instead of a user
attribute. This approach makes sense because command behavior is much easier
to describe and regulate than user behavior.

Process privileges are contained in two sets, "working" and "maximum." The
working set contains the privileges in effect at any particular instant. This set con­
trols the restrictions that the process can override at the moment. The
procpriv(2) system call allows a command to set or clear privileges in the work­
ing set.

The maximum set represents the upper limit of privileges that a process can have
in its working set. These privileges have no effect unless they are also in the work­
ing set, but they are held in reserve for the command to assert at any time. Using
the procpri vO system call, a command can clear a privilege in the maximum set
but cannot set one.

The privilege set associated with a command's executable file determine what is
put in the working and maximum privilege sets when a process executes the com­
mand. The file privilege set is called "fixed." Fixed privileges are useful for com­
mands that do privileged things for ordinary users because they are granted
unconditionally upon execution. The unconditional nature of fixed privileges,
however, means that any program that uses them must strictly enforce all system
policies it can override.

Trusted Facility Management

Historically, the only way a process could acquire privilege was if the value of the
effective user-ID was "0", which is traditionally associated with the root login.
This acquisition could be accomplished in one of two ways:

• logging in as a user whose real user-ID is "0" (i.e. root), or

• executing a command file that is setuid-on-exec and is owned by root.
This results in a process effectively executing as root.

With this release, another method of acquiring privilege has been defined. This
method is the Trusted Facility Management (TFM) mechanism. TFM provides an
interface between users (not privileged) and commands (possibly privileged or
requiring privilege). The primary elements of TFM are the tfadmin(lM) com­
mand, and the TFM database.

Trust and Security A-5

The tfadmin command is invoked with the desired command line as its argu­
ments as in the following example:

tfadmin mount /dev/mydsk /my_mnt-point

The fixed privilege set of the tfadmin command file contains all privileges, so the
exec system call turns on all privileges in the resulting process.

But the tfadmin command cannot be executed successfully by every user. To
open it to such free access would be a violation of trust. When tfadmin is
invoked, the first thing it does is to find out the real identity (real DID) of the
invoking user. It then uses that identity to find the user's entry in the TFM Data­
base.

A TFM database contains two pieces of information:

• the list of privileged commands that define specific roles

• the list of administrative roles and/ or privileged commands to which the
user is assigned

A trusted system may define administrative roles for selected system administra­
tors. Each role is likely to be filled by a different administrator in order that all
sensitive administrative functions not be handled by a single person. This division
of administrative duties into separate roles reduces the chances for misuse of
administrative power. All trusted administrators will be associated with at least
one role and/ or set of privileged commands; a very few administrators may be
associated with more than one role, especially at small sites. But most users are
not associated with any role.

When tfadmin finds the user's entry, it looks for the requested command in the
list of specific commands, and if it does not find it, in the list of roles. Once the
command is found and the user's entry verifies that the user is assigned to a role
that has the authorization to use that command, tfadmin turns on the correct
privileges (found in the database entry for the command) in its maximum set and
executes the command. These privileges are propagated across the chain of execu­
tion of any child processes.

By providing a single point of privileged access to administrative commands and
by basing that access on the real identity of the requesting user, tfadmin elim­
inates the need for privileged ID's and enhances administrative accountability.

A-6 Guidelines for Writing Trusted Software

Discretionary Access Control

Discretionary Access Control (DAC) on a file defines the permissible access to it by
its owner, the owner's group, and all others. It is discretionary because the protec­
tion on this data object is set at the discretion of the owner of the object.

Discretionary Access Isolation

A DAC isolation mechanism is needed to protect files on base systems.

A review of the limitations and pitfalls of discretionary protection is in order.
First, the discretion to change permissions on data resides with the owner. If own­
ership of a piece of data is obtained by a malicious or incompetent user, nothing
can prevent that user from destroying all discretionary protections. Second, dis­
cretionary access controls cannot be used to prevent sensitive software or users
from reading bad data, because the owner of a file can always make its data read­
able by the world, and the world includes sensitive people. Finally, discretionary
access is based on effective user and group identity. Effective identities change
whenever a set-id-on-exec command runs, and they remain changed until the
command sets them back to the real identities or exits. Thus, sensitive discretion­
ary access (and ownership) can be passed from a trusted command to an
untrusted one by accident, exposing the system to attack.

UNIX System V protects sensitive data files by setting the ownership of all such
files to root and supplying setuid-on-exec commands to give users controlled
access to these files. This method provides protection because it makes protected
files accessible only to the most restricted user.

This protection is adequate for most systems, but it is inadequate for protecting
sensitive information on secure systems, because in practice, this has led to a proli­
feration of setuid-on-exec to root commands, some of which might be less
careful than they should about propagating the root user identity to other com­
mands. As a result, not only did the file protection begin to fail, but what had
been the most restricted user identity suddenly became much easier to obtain.

The next attempt was to set up "ghost" user identities other than root to own
sensitive files. Ghost user identities are user ID's in the system that are inaccessi­
ble as a valid user account (i.e. no one can login with this ID. Programmers using
this technique managed to protect root somewhat better, but still left open the
risk of Trojan Horse attacks on the files they were trying to protect. Finally, it
became clear that giving away ownership to files made attacks too easy. Giving
away group access was preferable. True, it was still possible to gain unauthorized
access through imperfect system commands, but at least that access was limited to
reading and writing.

Trust and Security A-7

The currently recommended DAC isolation method calls for the existence of a
/I ghost" owner: sys. This owner has a locked password entry, to make logging in
as that user impossible. In addition, no commands can set their user identity to
sys upon execution. This makes it impossible for a non-privileged process to
obtain this user identity. Groups are defined to provide protection isolated
according to the kinds of commands and users needing access to protected files.
Administrators are assigned multiple group lists that allow direct access to pro­
tected files while normal users may gain access only through set-gid commands.
All files protected by this mechanism are owned by sys and have the appropriate
system group identity.

A-8 Guidelines for Writing Trusted Software

Writing Trusted Commands

The following sections describe how to write trusted commands.

User Documentation

The first line of defense against system damage is accurate and complete docu­
mentation. Before a command can be trusted, its use, behavior, options, and
influence over the system must be fully described. In addition to a full description
of the command, any potentially harmful behavior should be noted, to allow users
to avoid such hazards.

Parameter and Process Attribute Checking

The parameters given to a command at execution are the primary external
influences over the behavior of the command. All parameters passed into a com­
mand at execution, therefore, must be checked and shown to be consistent by the
command before processing starts. This means that a command that has, for
example, two mutually exclusive modes of operation based on command line
options must ensure that only one of these modes is requested at a time. This is
particularly important when one operation might negate the other or cause an
inconsistency in the system, or when the interfaces for two operations are similar
enough to interact in a way that might be misinterpreted by the command.

Process attributes are also important, but, with rare exception, should not be
checked explicitly by a command. The reason for this is that most process attri­
butes are intended to be checked by the operating system itself and will cause
identifiable errors if they are not right. It is unwise to make assumptions about
the way a particular operating system decision will come out based on potentially
flawed knowledge of how the decision is made. Some exceptions to this rule are
the process umask, which should be set as needed by all trusted commands, and
the process ulimit, which, if too small, may lead a trusted command to an error
from which it cannot gracefully recover.

Writing Trusted Commands A-9

Privilege and Special Access

There are two forms of special access in UNIX System V. The first is the access
granted by the set-id feature, and the second is privilege. In the past these have
been bound together through the root effective user identity, and they continue
to be bound in superuser-based versions of UNIX System V.

Set-id Commands

Commands that use the set-id feature to obtain access to files not otherwise avail­
able to an invoking user must carefully control not only their own use of these
access permissions, but how these permissions are granted to other commands.
There is always the possibility of a Trojan Horse when a command executes
another command so care must be taken (see "Executing Other Commands") In
this section, the issue is incorrect use of special access rights. In general, the best
protection against either incorrect use or a Trojan Horse is to reset the effective
user and group identity immediately on entry to a command and only use the spe­
cial identities where they are explicitly needed. The code excerpt in Figure A-I
illustrates the procedure.

A-10 Guidelines for Writing Trusted Software

Figure A-1: Correct Regulation of Access in C Programs

static uid_t
static uid_t

eff_uid, real_uid;
eff-9id, real-9id;

main (argc , argv)
int argc;
char *argv[];
{

/*variable declarations*/
eff_uid = geteuid();
eff-9id = getegid();
real_uid = getuid();
real-9id = getgid();
if (seteuid(real_uid) < O){ /*Set the effective UID to the real*/

error("Cannot reset UID."); /*Report error and exit*/

if (setegid(real-9id) < O){ /*Set the effective GID to the real*/
error ("Cannot reset GID. II) ; I*Report error and exit* /

if (setegid(eff-9id) < O){ /*Assert the effective GID*/
error(IICannot assert GID.");/*Report error and exit*/

fd = open (.. /etc/security_file", O_lUlWR);

if(setegid(real-9id) < O){ /*Set the effective GID to the real*/
cleanup(); /*Restore cansistency*/
error("Cannot reset GID."); /*Report e=or and exit*/

if(fd < OJ{
error("Cannot open file. "); /*Report error and exit*/

/*Process data*/

close(fd);

Writing Trusted Commands A-11

Privilege and Special Access in Shared Private
Routines

A group of related commands occasionally share routines from a common object
module. Such routines may provide database access, device setup and release,
data conversion, etc. The desire to centralize these utility functions leads to crea­
tion of private "libraries." Although these are not usually libraries in the archive
sense, they are collections of useful routines stored in a place that makes them
accessible to a controlled group of commands. Since these routines are private,
they are treated as subsections of the commands that use them. These routines are
designed to cooperate closely with their calling programs, so they are expected to
regulate privilege internally.

Exceptions to this rule occur when different commands have different views of the
same routine or when the designer of a routine believes the routine may be added
to a public library. A private database library may contain a routine to open and
position the database. A command that only needs to query the database might
want to assert only read access override privileges while a command that changes
the database might want to assert both read and write access override privileges.
Such a routine should make no assumptions about what privileges the calling rou­
tine wants to use, but should simply assume that the correct privileges are in
place.

A library routine might also have broad enough usefulness to be a candidate for
public use. The reasons why such a routine might not be placed in a public library
range from a desire to keep the published interface as small as possible to name
conflicts or even lack of staff to make the change. If a programmer believes that a
routine is useful enough to merit consideration for a public library, the program­
mer should follow the rules for writing public library routines, even if the routine
is initially private.

These guidelines apply equally well to special access permissions obtained
through the set-id mechanism as they do to privilege. Wherever these access per­
missions are used instead of privilege, they should be turned on and off as though
they were individual privileges, using the seteuid and setegid system calls as
shown in Figure A-I

A·12 Guidelines for Writing Trusted Software

Error Checking

Almost every system call or library routine can, somehow, encounter an error dur­
ing its operation. While many of these occur only because of programmer error,
each such problem indicates a failure of either the system, the calling program or a
transient parameter like access permission or available memory. If a programmer
chooses to ignore a reported error, the result is a command that, should some
basic assumption of the system fail, could corrupt its environment. For trusted
commands, therefore, every possible error return must be checked and reported.
This rule is not always followed to the letter, since in some cases it is more efficient
to detect the error case downstream from the actual failure. Ignoring errors is
risky and should not be done without strong justification.

Signal Handling

Signals pose a problem in trusted software because they are not predictable.
There are two main areas of concern when it comes to handling signals:

1. maintaining system integrity when a trusted command receives a signal

2. use of privilege and special permission inside signal handling functions

If a signal is received by a trusted command, that command must not simply exit
and leave the system in an inconsistent or insecure state. If a command contains
critical sections that cannot be interrupted, every effort must be made to prevent
signals from interrupting those sections.

On the other hand, a signal usually means either that a system problem has
occurred (like memory exhaustion, an addressing error, or invalid operation) or
that the user has decided to abort the operation. Regardless, it is not correct for a
command to continue processing as though nothing had happened.

A system-generated signal usually signifies a flaw in the command and almost
certainly means that further processing will be based on corrupt data. A user­
generated signal signifies a change of heart by the requesting user and should be
honored where possible by restoring the system to the state it was in before the
command was invoked. If a command receives a signal after it is committed to a
change, the command should finish any steps necessary to ensure consistency and
exit.

Attempts to write signal-safe commands must take into account the possibility of
unforeseen signals and signals that cannot be caught. On any given system, the
set of possible signals is constant, but in general, systems are allowed to have their
own implementation-specific signals.

Writing Trusted Commands A·13

It is better to keep the critical sections of a command as small as possible than to
try to protect large critical sections against interruption. This principle means, for
example, a command that changes a system database should make all changes on
a copy of any sensitive part of the database (for example an index file) before
replacing the original. This limits opportunity for an unknown signal to interrupt
the sensitive part of the command.

When a trusted command is using privilege or some other extraordinary access
and receives a signal, the command may enter a signal handler. Because signals
are unpredictable, it is not a good idea for a command to change the privileges or
other access attributes of its process inside a signal handler. When the handler
returns to the main stream of processing, these attributes must be the same as they
were before the signal occurred, or unpredictable processing will result.

Since signal handlers are not allowed to change process attributes, they should
never do anything that might take advantage of privileges or special access. In
general, a signal handler should set a flag and return or longjump away. Once the
flag is set, the command can recognize the signal and respond to it in an orderly
fashion.

Handling Sensitive Data

While it is important that trusted commands always protect the integrity of the
data they manipulate, they must also prevent information disclosure that might
damage system security. If commands are used exclusively by administrators or
never gain access to sensitive information, then they are mostly exempt from this
concern, but some commands are regularly used by non-administrators and use
privilege or special access to read secret information.

An example is the passwd command. The passwd command retrieves information
from the system password list (not normally readable by users) and reports (and
sometimes changes) that information. In the process of obtaining the information,
passwd must scan through records that are not intended for the eyes of the invok­
ing user. If a signal were to cause passwd to write a core image with one or more
records buffered, it would be possible for an enterprising programmer to extract
secret information from the core image.

It is best to eliminate this possibility by designing databases and commands to
handle only the sensitive information they are authorized to disclose. When it is
impossible to eliminate the risk, programmers should limit the vulnerability of the
command by clearing the contents of any sensitive buffers as soon as they cease to
be needed.

A-14 Guidelines for Writing Trusted Software

Executing Other Commands

Whenever a command executes another command, it must first set its effective
user and group identities to its real user and group identities unless the executed
command needs the special access to do its job. If the executed command needs
the special access, the executing command must take every possible step to ensure
that it executes the correct command with proper parameters and cannot be
misled into executing a Trojan Horse.

A Trojan Horse is a command that imposes itself on a process by looking like the
needed command. It inherits permissions and other attributes (like file descrip­
tors, environment, and so on), from the executing command, and can use these
capabilities to disrupt the system. Measures to prevent Trojan Horse intrusion
include the following:

• using full pathnames for execution

• avoiding the system and popen library routines, which use the shell to
interpret command lines

• carefully making sure the $PATH, $IFS, and other environment variables are
set to safe values whenever the shell must be used

• never allowing special-access rights or file descriptors to survive across an
execution of a user-supplied command name

Using Library Routines

A trusted command must never use an untrusted library routine. This restriction
means that a trusted command must never use a library routine that has an
untrusted call anywhere in its calling sequence, nor a library routine that causes
an untrusted command to be executed. The information derived from the
untrusted command might influence the behavior of the trusted command, or the
command might give away extraordinary access to the untrusted command;
neither action is acceptable.

Writing Trusted Commands A-15

Trusting Shell Scripts

With the introduction of support for multiple file formats in UNIX System V, it is
possible to have set-id and privileged shell scripts. In addition, there have always
been shell scripts that are used by administrators. If a shell script can get adminis­
trative access to the system it must be trusted, so rules for trusting shell scripts are
needed as well.

The primary rule of trusted shell scripts is: any shell script that uses privilege or
special access rights is subject to spoofing and must not be available to non­
administrators.

User Documentation

The documentation needed for a trusted shell script is the same as that for any
other trusted command. See the "User Documentation" part of the "Trusting
Commands" section.

Privilege and Special Access

The shell offers no way to control special access rights granted by the set-id
feature. Without this control, such a shell script must be extremely simple before
it can be trusted. In general, it is not a good idea to use the set-id mechanisms for
shell scripts. Only trusted commands should be used in shell scripts.

The shell has the ability to regulate privilege through the new built-in privs
command.

A-16 Guidelines for Writing Trusted Software

Figure A-2: Correct Use of Privilege in a Shell Script

II! Isbin/sh -p
privs -allprivs max
if [$? -ne 0 1
then

exit $?

fi

privs +mount max
if [$? -ne 0 1
then

exit $?

fi
Isbin/mount Idev/~sk Imnt
privs -allprivs max
if [$? -ne 0 1
then

exit $?

fi

llTurn off all working privileges

liThe priv command will report the error

liThe mount command will report the error

liThe priv command will report the error

Executing Commands

Shell scripts consist mainly of commands, which makes them especially vulner­
able to spoofing attacks. Only trusted commands should be used in shell scripts.
Also, all commands that are not known to be built into the shell itself must be
executed either by their full pathname or through the /sbin/tfadmin command
provided by the TFM feature.

Sometimes, a script will need to use a command with privilege regardless of TFM
data. When this situation occurs, privileges are assigned to the script by way of
TFM. Fixed privileges are assigned by way of the filepriv command. In this
case, the script should turn on only the needed privileges and execute the com­
mand using a full pathname (see Figure A-2).

Another way of executing a privileged command is through the /sbin/tfadmin
command, since this allows the TFM mechanisms to decide whether the user of
the script should have the privilege. In this instance, all commands

Trusting Shell Scripts A-17

to be executed in the script must exist in the TFM database, and all users who exe­
cute the script must have access to them. This case is illustrated in Figure A-3.

In order for a script to propagate privileges whether they are acquired by way of
tfadmin or filepri v, the #! line must be the first line of the script.

Figure A-3: Shell Script Using Commands From TFM Database

#! /sbin/sh -p

if [$1 -ne 0 I
then

exit $1
fi

if [$1 -ne 0 I
then

exit $1
fi

#The pri v COIIIIIB11d will report the error

#The mount ccmnand will report the error

tfadmin mount /dev/lI\Ydsk /nmt
if [$1 -ne 0 I
then #The pri v cOllllllUld will report the error

exit $?
fi

Error Checking

Most commands report the errors they encounter and exit with a non-zero return
code on failure. Shell scripts, therefore, usually do not need to bother reporting
errors. Nonetheless, shell scripts should check for errors. A command that fails
and reports an error indicates a problem in the shell script. If that error might
cause the system to be left in an inconsistent state by the script, the error must be
caught and handled. Whether the error is specially reported depends on the par­
ticular circumstances.

For example, if the failing command redirects its standard error output to a file or
to /dev/null, the shell script must report an error to avoid failing silently.

If, on the other hand, the command does nothing to redirect messages, then the
command's error message should be enough to tell the user what happened.

A-18 Guidelines for Writing Trusted Software

Trusting Public Library Routines

While commands obtain their privilege and special access through kernel mechan­
isms, library routines obtain their access rights and privileges from the commands
that call them. Additionally, library routines usually serve a single purpose
instead of offering a spectrum of options. These differences dictate the rules for
library routines described below.

Documentation

The most important aspect of trusting a library routine is the documentation used
by a programmer to decide how and when that routine should be used. This
description should include basic elements such as the interface to the routine,
what the routine does, and what error conditions might be encountered by the
routine. Additionally, any privileged routine should have a description of the
privileges it can use and the reason it might use each privilege. Also, any interest­
ing side effects of the routine should be detailed. These include opening, closing,
deleting or creating files, executing commands, setting global variables, allocating
heap storage, changing process attributes, sending signals, or any other behavior
that is not immediately obvious to the reader.

Finally, the description should include a section describing any non-trusted uses
of the routine. If, for example, a user can cause the routine to fill past the end of a
buffer by feeding it too much data, this possibility should be stated in the descrip­
tion. By supplying as much information as possible to the programmer who will
use the routine, the documenter allows the programmer to choose routines wisely
and use them correctly.

Privilege and Special Access

Public libraries provide many useful functions, such as file 10 buffering, memory
allocation, and mathematical processing. These routines are intended for use by a
wide variety of applications, with a wide variety of needs and goals.

A library routine, therefore, should not try to guess the intent of the calling pro­
gram. It should simply do its job and return. The rule for public library routines
and privilege or special access is: no public routine should change the privilege or
access environment of a process unless that is its primary purpose. There should
be no exceptions to this rule, since a trusted command must always be in full con­
trol of its privileges and special access rights.

Trusting Public Library Routines A-19

Reporting Errors

The only way a command can detect and recover from an error is to use the infor­
mation reported by the system calls and library routines that encountered the
error. A library routine, therefore, must report every possible error case as infor­
matively as possible to the calling program. Where several different failure modes
are possible, each should be reported uniquely so that the calling program can
take any necessary corrective action or can restore system integrity before exiting.
It is not correct for a library routine to cause a process to exit as the result of an
error, since the calling program may need to clean up before exiting. The rule is:
library routines must report all errors as accurately as possible.

Handling Sensitive Data

Library routines sometimes need to retrieve sensitive data for a trusted command.
The designer of such routines must be aware of the risk that this data might be
accidentally disclosed in a core file or some other unprotected data object. For a
more detailed discussion of this problem and its solutions, see the "Handling Sen­
sitive Data" section of "Trusting Commands" .

Executing Commands

Whenever a library routine executes a shell level command it must take great care
to ensure that the command is executed correctly and with the right parameters.
For library routines that handle requests to execute a command this requirement
is limited to making sure the request is followed exactly as issued. Library rou­
tines (like system or popen) that execute commands independently of the specific
request must use full pathnames, and be certain that the commands they execute
are themselves trusted.

A·20 Guidelines for Writing Trusted Software

Installing Trusted Commands and Data

The access isolation and privilege mechanisms described in the "Creating and
Managing User Accounts" chapter of the Basic System Administration guide
depend on the software installation procedures. Defining special levels and group
identities serves no purpose if those levels and groups are not used correctly.
Defining a set of privileges and kemellevel mechanisms to enforce and control
them serves no purpose if every command gets all fixed privileges. As much care
must be put into defining the installation parameters of a command and its data
objects as goes into writing the command and designing its data. This section
establishes principles upon which installation decisions can be made.

Assigning Access Controls

All trusted data must be protected from unauthorized changes. This decision is
based on the question "does any non-administrator need to use this information?"
not "is this information too sensitive for non-administrators to see?"

Discretionary access controls provide a finer access granularity. These permis­
sions should be assigned based on logical groupings of data according to the
needs of a set of commands and administrators. Since the discretionary controls
are the only protections available to the base system, they should be assigned as
though they were protecting a system on which all files are public and writable
unless restricted by DAC.

The actual permissions placed on a given file depend entirely on the needs of the
commands that use the file. The group bits, however, should be used instead of
the owner bits to grant controlled access to files. This methodology allows the
designer to use set-uid root for non-access related privilege and still take advan­
tage of DAC controls on a least privilege system.

Assigning Privileges and Special Permissions

Privileges are assigned to executable files (commands) based on the needs of the
command and the knowledge that the command will not misuse the privileges.
These two factors are equally important: Even though a programmer knows that a
command will not abuse a particular privilege, the command must need that
privilege or it does not get it. Furthermore, even though a command needs a
privilege, it must be shown to use the privilege properly or it does not get it.

Installing Trusted Commands and Data A·21

After determining what privileges a command can have, the next step is to
determine whether the command needs privileges that are propagated through
tfadmin, or fixed privileges.

Using fixed privilege calls for extremely careful programming. A command with
fixed privilege must never use untrusted data for security-relevant decision mak­
ing. This means that a shell script can never have fixed privilege, since the
environment a shell script inherits is untrusted and influences the shell's behavior
(a command that uses the system or popen library routines can never have fixed
privilege for the same reason). Other possible disqualifications are the following:

• commands that are controlled by user-supplied script files

• commands that are controlled by data from standard input

Privileges acquired through tfadmin are more carefully controlled, so they do not
require the extensive limitations placed on fixed privilege. Any privileged com­
mand, however, must uphold system policies when it uses privilege and must
obey both the spirit and the letter of the rules of trust described in these guide­
lines.

Special access rights should be used in favor of privileges wherever possible. A
program that needs discretionary access to a well-defined set of files should be
setgid to the group to which those files belong. The files should be as accessible
as necessary to their group. If, for example, a command needs to read a file foo
and read and write a file bar and the group of the files foo and bar is sys, the
command should be setgid to sys. The file foo should be readable by group
while the file bar should be both readable and writable by group. The
P _ DACREAD and P _ DACWRITE privileges should not be used for this purpose,
since they give too much access to the command.

A·22 Guidelines for Writing Trusted Software

Summary

Trusting a command or library routine requires a solid understanding of the risks
encountered by the command or library, the policies of the system, and the princi­
ples of trust. These guidelines offer a brief look at the policies available with
UNIX System V, and a discussion of the principles of trust. The risks encountered
by a particular command or library must be determined by the programmer
attempting to make it trusted.

While some of the rules presented here may seem overly exacting, or even clumsy,
the strenuousness of the rules is the price paid for a secure system. Every rule and
principle described in these guidelines originates from some aspect of an observed
attack on a computer system. The programmer who ignores these rules does so,
not at his or her own risk, since the programmer is unlikely to be affected by the
attack, but at the risk of everyone who uses that programmer's software. The
responsibility of writing trusted software, therefore, must not be taken lightly.

Summary A-23

GLGlossary

Glossary GL-1

Table of Contents

Glossary

The following terms are used throughout the UNIX System V Programming
Series. This glossary includes terms found in:

• Programming with UNIX System Calls

• UNIX Software Development Tools

• Character User Interface Programming

• Graphical User Interface Programming

• Network Programming Interfaces

• Programming in Standard C

a.out

abortive release

access permissions

ADJUST

alias file

alias

alternate keystrokes

Glossary

a.out, historically for "assembler output," is the
default file name for an executable program produced
by the C compilation system.

An abrupt termination of a transport connection,
which may result in the loss of data.

Access checking is performed whenever a subject (a
process) tries to access an object (such as a file or
directory). Permission to access an object is granted
or denied on the basis of mode bits.

The mouse button or keyboard equivalent used to
adjust a selection (d. SELECT); usually the middle
button on a right hand mouse.

A script which contains alias definitions, each on a
separate line. An alias file is optional, but if one is
written, it must be named as an argument when fmli
is invoked.

A short name that can be used in FMLI scripts in
place of a long pathname or a list of paths to search.
An FMLI developer defines aliases in an alias file.
Alias definitions have the format alias=pathname.

A sequence of keystrokes, usually beginning with a
©BbJ key and consisting entirely of keys that are
standard on all keyboards, which cause the same
action to occur that occurs when a named key is

GL-1

anchor

ANSI

API

application

archive

argument

GL-2

pressed. Alternate keystrokes are necessary because
many keyboards do not have a complete set of the
named keys used by FMLI applications. For example,
when the named key CIJ is not available on a key­
board, users can type the alternate keystrokes
(CTRL-u J.

Either end of a Scrollbar widget or a Slider
widget. The part of the widget that remains fixed
while the elevator or drag box moves along.

ANSI is an acronym for the American National Stan­
dards Institute. ANSI establishes standards in the
computing industry from the definition of ASCII (see
below) to the measurement of overall datacom system
performance. ANSI standards have been established
for the Ada, FORTRAN, and C programming
languages.

Application programmer interface.

An executable program, usually unique to one type of
users' work, such as an accounting application.
Applications are frequently interactive environments
in which the user can perform various related tasks.
See "FMLI application."

An archive, or statically linked library, is a collection
of object files each of which contains the code for a
function or a group of related functions in the library.
When you call a library function in your program,
and specify a static linking option on the cc com­
mand line, a copy of the object file that contains the
function is incorporated in your executable at link
time. For further information, see "C Compilation
System" in Programming in Standard C.

A character string or number that follows a command
and controls its execution in some way. There are
two types of arguments: options, and operands.
Options change the execution or output of the com­
mand. Operands provide data that will be operated
on by the command. Arguments to the open com­
mand are saved in built-in variables readable (only)
by the frame opened. Options are also called flags.
Operands specify files or directories to be operated on
by the program. For example, in the command line:

Glossary

ASCII

assembler

asynchronous execution

automatic data

Glossary

$ cc -0 hello hello.c

all the elements after the cc command are arguments.
For further information of how command line argu­
ments are passed to C programs, see "C Compilation
System" in Programming in Standard C.

In the C language, function arguments are enclosed in
a pair of parentheses immediately following the func­
tion name. You can find formal definitions of the
functions supplied with the C compilation system in
cc (1).

An acronym for American Standard Code for Infor­
mation Interchange. ASCII code uses one byte of
computer memory to represent each character. Each
alphanumeric and special character has an ASCII
equivalent. When files and directories are printed
according to the ASCII code equivalent of the first
letter of their names, the order is called ASCII collat­
ing sequence. The order is special characters first,
numbers second, then upper case and lower case
letters.

Assembly language is a programming language that
uses symbolic names to represent the machine
instructions of a given computer. An assembler is a
program that accepts instructions written in the
assembly language of the computer and translates
them into a binary representation of the correspond­
ing machine instructions. Because each assembly
language instruction usually has a one-to-one
correspondence with a machine instruction, programs
written in assembly language are not portable to dif­
ferent machines.

The mode of execution in which Transport Interface
routines will never block while waiting for specific
asynchronous events to occur, but instead will return
immediately if the event is not pending.

Data that is persistent only during the invocation of a
procedure. It describes data belonging to a process.
Automatic data occupies the stack segment. See static
data.

GL-3

background process group

backquoted expression

banner line

bottom level

buffer

button

cable

GL-4

Any process group that is not the foreground process
group of a session that has established a connection
with a controlling terminal.

A command line enclosed in backquotes, whose out­
put is returned as a value. The output of the com­
mand replaces the backquotes and the command line
within the backquotes. In FMLI, this output can be
used as an argument for another command, assigned
to a variable, or assigned to a descriptor.

The top line of the screen in FMLI applications, used
to display the application's title and a Working mes­
sage that indicates when the application is busy.

Lowest of the four lower RPC levels; programs writ­
ten to this level can control many transport-specific
details.

A buffer is a space in computer memory where data is
stored temporarily in convenient units for system
operations. Buffers are often used by programs such
as editors that access and alter text or data frequently.
When you edit a file, for instance, a copy of its con­
tents are read into a buffer; the copy is what you
change. For your changes to become part of the per­
manent file, you must write the buffer's contents back
into the permanent file. This replaces the contents of
the file with the contents of the buffer. When you
quit the editor, the contents of the buffer are flushed.

Generic term for any of several widgets, specifically
RectButton widgets and OblongButton widgets.
The RectButtons are implicitly defined in flattened
widgets, as well. A button, when pressed usually ini­
tiates certain actions, like popping up a menu or exe­
cuting an application routine.

In a Scrollbar widget, the cable is the "line" on
which the elevator moves. One end of the cable is con­
nected to the anchor and the other is connected to the
elevator.

Glossary

callback

cast

character class table

child process

choices menu

click

click-move-click

client

Glossary

A callback routine is a routine written by an applica­
tion programmer and associated with a specific
widget resource. The callback routine is invoked as a
result of a specific activity associated with that widget
(that is, the widget calls back the program via that
routine). For example, the XtNselect resource con­
tains the name of the callback routine that is entered
when a button is pushed or when a CheckBox is
selected; the XtNverification resource contains the
name of the callback routine to invoke when a Text­
Field widget is exited. The act of associating the
name of a callback routine with a widget resource is
called registration.

An expression which describes the nature or use of
that which follows it to the interpreter. In FMLI, casts
are used: (I) to describe whether a file is a menu
definition file, a form definition file, or a text frame
definition file; (2) to indicate how often to evaluate a
descriptor.

A character class table is used for character
classification and conversion. The table is built by the
commands chrtbl (1M) and wchrtbl (1M), and
located in the file usr/lib/locale/LC_CTYPE.

See II fork () ."

A menu that can be provided to show a list of possi­
ble entries to a form field. An FMLI application
developer defines choices where appropriate through
the use of the nnenu descriptor.

The act of pressing and releasing a mouse button
without moving the mouse pointer more than a few
pixels.

A method of user interaction with a set of objects
where the user clicks MENU to display the objects,
moves the pointer over the one of interest, then clicks
MENU or SELECT to select or activate the object.

The transport user in connection-mode that requests a
transport connection.

GL-5

CLTS

command line

command menu

command

commands file

compiler

GL-6

Connectionless Transport Service

The next-to-the-Iast line on the screen in FMLI appli­
cations, where users can enter an application's com­
mands without using the menus provided in the
application.

A menu provided automatically in FMLI applications
that lists a sub-set of the FMLI built-in commands and
any application-specific commands that have been
defined in a commands file. Users can execute a com­
mand in the Command Menu by selecting it, as in any
menu. The Command Menu can be made current by
pressing the (CMO-MENU) function key.

one of a set of executables built into FMLI, such as
open and close, to which descriptors of type com­
mand must evaluate. A command line consists of the
command followed by its arguments. For example:

$ cc filel.c file2.c

instructs the operating system to execute the C com­
piler program, which is stored in the file cc, and to
use the source files filel. c and file2. c as input. A
command line can extend over multiple terminal
lines.

A script in which an FMLI developer can redefine or
disable FMLI built-in commands, and define new,
application-specific commands. The contents of a
commands file are reflected in the Command Menu.
Users can execute a command by selecting it from the
Command Menu, or by typing it on the FMLI com­
mand line. A commands file is optional, but if one is
written, it must be named as an argument when fmli
is invoked.

A compiler is a program that translates a source pro­
gram written in a higher-level language into the
assembly language of the computer the program is to
run on. An assembler translates the assembly
language code into the machine instructions of the
computer. In the C compilation system, these instruc­
tions are stored in object files that correspond to each
of your source files. Each object file contains a binary
representation of the C language code in the

Glossary

corresponding source file. The link editor links these
object files with each other, and with any library func­
tions you have used in your source code, to produce
an executable program called a. out by default. For
further information, see "C Compilation System" in
Programming in Standard C.

composite widget See widget. A widget that is a parent of other widgets,
that physically contains other widgets.

connection establishment The phase in connection-mode that enables two tran­
sport users to create a transport connection between
them.

connection-mode A circuit-oriented mode of transfer in which data is
passed from one user to another over an established
connection in a reliable, sequenced manner.

connection-oriented transport

connectionless transport

container

control area

controlling process

controlling terminal

conversation

Glossary

Connection-oriented transports are reliable and sup­
port byte-stream deliveries of unlimited data size.

Connectionless transports have less overhead than
connection-oriented transports but are less reliable
and maximum data transmissions are limited by
buffer sizes.

A widget that defines a region that holds zero or
more sub-objects of a given type.

The area located directly under the header of a win­
dow. It is used to display "command buttons," if the
application in the window provides them.

A session leader that established a connection to a
controlling terminal.

A terminal that is associated with a session. Each ses­
sion may have, at most, one controlling terminal asso­
ciated with it and a controlling terminal may be asso­
ciated with only one session. Certain input sequences
from the controlling terminal cause signals to be sent
to process groups in the session associated with the
controlling terminal; see tennio(7).

The negotiation and the data transfer between Source
and Destination. Both tasks are accomplished through
selection mechanism.

GL-7

core image

current context

current frame

current process

current program

current

GL-B

A core image is a copy of the memory image of a pro­
cess. A file named core is created in your current
directory when the UNIX operating system aborts an
executing program. The file contains the core image
of the process at the time of the failure. For further
information, see "Using debug from the Command
Line" and" Appendix C - sdb" in Programming in
Standard C.

When using the GUI debugger, the current context
for a Window Set determines what is displayed in
each of the windows. The current context is deter­
mined by the current frame of the current process.
For further information, see "Using debug with the
Graphical User Interface" in Programming in Standard
C.

When using the GUI debugger, the current frame,
along with the current process, determines the
current context. The current frame is shown with a
pointing hand to its left in the Process Pane of the
Context Window. For further information, see
"Using debug with the Graphical User Interface" in
Programming in Standard C.

When using the GUI debugger, the current process,
along with the current frame, determines the current
context. The current process is shown with a pointing
hand to its left in the Process Pane of the Context
Window. For further information, see "Using debug
with the Graphical User Interface" in Programming in
Standard C.

When using the GUI debugger, the current program
is the program containing the current process. The
current program may also contain other processes
derived from the same executable file. For further
information, see "Using debug with the Graphical
User Interface" in Programming in Standard C.

The frame, menu item, form field, or activity in which
the cursor is positioned. An element of the FMLI
screen which is current is usually distinguished in
some way from other screen elements being
displayed-the current frame, for example, may be
shown in bright video, while non-current frames may

Glossary

daemon

data symbol

data transfer

datagram transport

datagram

debugging

default

descriptor

Glossary

be shown in half-bright video. User input is pro­
cessed by, or applies to, the current frame, item, and
so on.

A background process that performs a system-wide
public function. The UNIX System process init may
spawn daemon processes that exist throughout the
lifetime of the system. Daemons (often) continue to
run after their parents terminate. An example of a
daemon process is calendar(l).

A data symbol names a variable that mayor may not
be initialized. Normally, these variables reside in
read/write memory during execution. Compare
"text symboL"

The phase in connection-mode or connectionless­
mode that supports the transfer of data between two
transport users.

See connection less transport.

A unit of data transferred between two users of the
connectionless-mode service.

Debugging is the process of locating and correcting
errors in executable programs. For further informa­
tion, see "Using debug from the Command Line",
"Using debug with the Graphical User Interface",
and" Appendix C - sdb" in Programming in Standard
C.

A default is the way a program will perform a task in
the absence of other instructions, that is, in default of
your specifying something else.

An element of the Form and Menu Language that
defines some aspect of the look (appearance or loca­
tion of an element of your application), or feel (an
action to take in response to user input). A descriptor
is coded in the format dname=value, where dname is
one of the set of Form and Menu Language descrip­
tors and value is, or generates, an expression of a type
appropriate for the particular descriptor. Each Form
and Menu Language descriptor is only meaningful in
a particular context (that is, a menu frame, a form
frame, and so on).

GL-9

deserializing

Desktop

destination

dimmed

directory

display width

double click

downstream

drag area

drag box

drag-and-drop

GL-10

Converting data from XDR format to a machine­
specific representation.

Synonymous with the workspace. It is a metaphor of
the screen to something that many users are familiar
with (for example, screen representation of a user's
office desk with a calculator, clock, file folders, and so
on).

The ending point of the drag-and-drop operation. It
is also referred as the requester.

A visual effect on an object. A control, such as a but­
ton, is dimmed if its visible manifestation represents
the state of just one of several objects that are in
inconsistent states. When such a control is manipu­
lated (for example, by clicking SELECT over the but­
ton), it is no longer dimmed because the manipulation
sets the state for all the objects.

A directory is a type of file used to group and organ­
ize other files or directories. A subdirectory is a direc­
tory that is pointed to by a directory one level above
it in the file system. A directory name is a string of
characters that identifies the directory. It can be a
simple directory name, a relative path name, or a full
path name. For further information, see "Using the
File System" in the User's Guide.

Display width is the width in screen columns
required to display the characters of a particular code
set. Display width is defined in the character class
table.

To press and release a mouse button twice in succes­
sion.

In a stream, the direction from stream head to driver.

In a Scrollbar widget, the drag area is the center
portion of the elevator that is moved by the mouse.

In a Slider widget, the drag box is the portion of the
slider that is moved by the mouse.

A single atomic action to achieve a Conversation
between Source and Destination.

Glossary

dragging

driver

DTM

dynamic frame

dynamic linking

effective group ID
effective user ID

elevator

ELF

environment

Glossary

The act of moving the pointer while a mouse button or
keyboard equivalent is pressed.

In a stream, the driver provides the interface between
peripheral hardware and the stream. A driver can
also be a pseudo-driver, such as a multiplexor or log
driver [see 10g(7)], which is not associated with a
hardware device.

Desktop manager.

A frame whose contents are determined at run-time.

Dynamic linking refers to the process in which exter­
nal references in a program are linked with their
definitions when the program is executed. For
further information, see "C Compilation System" in
Programming in Standard C.

An active process has an effective user ID and an
effective group ID that are used to determine file
access permissions. The effective user ID and effec­
tive group ID are equal to the process's real user ID
and real group ID respectively, unless the process or
one of its ancestors evolved from a file that had the
set-user-ID bit or set-group ID bit set [see exee(2)].

The center portion of a Serollbar widget; that part
which moves along the cable.

ELF is an acronym for the executable and linking for­
mat of the object files produced by the C compilation
system. For further information, see "Object Files" in
Programming in Standard C.

A set of UNIX system shell variables created and
assigned values by the system when a user logs in.
The system executes programs that set these variables
based on information it gets from /ete/profi1e, the
shell, 10gin(I), and the user's .profile file. In
FMLI, variables can be added to the environment
with the set (IF) built-in utility, and removed from
the environment with the unset (IF) utility. FMLI
also defines a local environment that contains vari­
ables known only to the FMLI application.

GL-11

ETSDU

EUC

executable program

executable

exitO

expedited data

Expedited Transport Service Data Unit

Extended UNIX system code. See Programming with
UNIX System Calls

On the UNIX operating system, an executable pro­
gram is a compiled and linked program or a shell pro­
gram. The command to execute either is the name of
the file containing the program. A compiled and
linked program is called an executable object file.
Compare "object file."

A program that can be processed or executed by the
computer without any further translation; a file that
has execute permission, such as an a. out file, or a
shell script.

The exit () function causes a process to terminate.
exit () closes any open files and cleans up most other
information and memory used by the process. An
exit status, or return code, is an integer value that
your program returns to the operating system to say
whether it completed successfully or not. For further
information, see "Introduction" in Programming in
Standard C.

Data that is considered urgent. The specific semantics
of expedited data is defined by the transport protocol
that provides the transport service.

expedited transport service data

expert level

expression

FALSE

GL-12

The amount of expedited user data the identity of
which is preserved from one end of a transport con­
nection to the other.

Second-lowest of the four lower RPC levels. Pro­
grams written to this level can control client and
server characteristics, interface with rpcbind and
manipulate service dispatch.

An expression is a mathematical or logical symbol or
meaningful combination of symbols.

A value to which a Boolean descriptor can evaluate.
FALSE must be the word "false," irrespective of case,
or a non-zero return code.

Glossary

File Class Database

file descriptor

file system type

file system

file type

file

Glossary

Contains file class definitions where each definition
consists of a file class name and a list of properties.
The properties define the visual and metaphor
behavior of files belonging to the file class.

A file descriptor is an integer value assigned by the
operating system to a file when the file is opened by a
process.

Each different file system implementation that is
incorporated into the VFS architecture is referred to
as a file system type. A file system type may support
different file types. The traditional System V file sys­
tem type, a secure file system type, a high perfor­
mance file system type, and an MS-DOS file system
type are examples of potential file system types.

A UNIX file system is a hierarchical collection of
directories and other files that are organized in a tree
structure. The base of the structure is the root (I)
directory; other directories, all subordinate to root,
are branches. The collection of files can be mounted
on a block special file. Each file of a file system
appears exactly once in the inode list of the file sys­
tem and is accessible via a single, unique path from
the root directory of the file system. For further infor­
mation, see "Using the File System" in the User's
Guide.

The general expected characteristics of a file are deter­
mined by its file type. File types include regular file,
character special file, block special file, FIFO, direc­
tory, and symbolic link. Each file type is supported
within some file system type

A file is a potential source of input or a potential des­
tination for output; at some point, then, an
identifiable collection of information. A file is known
to the UNIX operating system as an inode plus the
information the inode contains that tells whether the
file is a plain file, a special file, or a directory. A plain
file contains text, data, programs, or other informa­
tion that forms a coherent unit. A special file is a
hardware device or portion thereof, such as a disk
partition. A directory is a type of file that contains the
names and inode addresses of other plain, special, or

GL-13

filter

flag

flat widget

flattened widget

FMLI application

focus

folder

directory files. For further information, see "Using
the File System" in the User's Guide.

A filter is a program that reads information from the
standard input, acts on it in some way, and sends its
result to the standard output. It is called a filter
because it can be used in a pipeline (see "pipe") to
transform the output of another program. Filters are
different from editors in that they do not change the
contents of a file. Examples of UNIX operating sys­
tem filters are sort, which sorts the input, and wc,
which counts the number of words, characters, and
lines in the input. See sort (1) and wc (1) for more
information.

See "argument."

See widget. A single widget that maintains a collec­
tion of similar user-interface components that
together give the appearance and behavior of many
widgets.

Same as flat widget.

An application developed using the Form and Menu
Language Interpreter (FMLI) to provide and maintain
a user interface relying only on standard characters.
An FMLI application can provide access to other
applications.

To specify a particular area of the screen. (See input
focus and keyboard focus).

A folder represents a directory in a file system. A
folder can contain other folders and files.

foreground process group Each session that has established a connection with a

forkO

GL-14

controlling terminal will distinguish one process
group of the session as the foreground process group
of the controlling terminal. This group has certain
privileges when accessing its controlling terminal that
are denied to background process groups.

fork () is a system call that splits one process into
two, the parent process and the child process, with
separate, but initially identical, text, data, and stack
segments. See fork (2) for more information.

Glossary

form field

form

frame definition file

frame ID number

frame

fundamental block size

gadget

grab

hard key

header file

Glossary

An area of a form consisting of a field label and a field
input area into which a user can enter input.

A visual element of an FMLI application displayed in
a frame. A form is made up of fields that allow a user
to provide input to the application.

A file in which the contents, appearance, functional­
ity, and placement of a menu, form, or text frame are
defined using the Form and Menu Language.

A number assigned by FMLI to a frame when it is
opened. A frame ID number appears at the left in the
title bar of a frame. The frame ID number allows
users to navigate among frames by number.

An independently-scrollable, bordered region of the
screen, used to display FMLI forms, menus, and text.
A frame includes a title bar, frame border, contents,
and-for frames containing more than three lines-a
scroll box.

The minimal file allocation unit. In the case of disk­
based file systems this is a disk sector or a multiple of
disk sectors, smaller than or equal to the preferred
block size (see below).

A windowless object; an object that could be defined
as a widget but, instead, is defined as having its
parent's window resources.

To position the mouse pointer on a resize corner and
take hold of it for the purpose of resizing the window.

A physical key on a computer's keyboard. For exam­
ple, the "Return" or "Enter" key is illustrated as
(Return. J

A header file is a file that usually contains shared data
declarations that are to be copied into source files by
the compiler. Header file names conventionally end
with the characters . h. Header files are also called
include files, for the C language #include directive
by which they are made available to source files. For
further information, see "C Compilation System" in
Programming in Standard C.

GL-15

Help Desk

HELP

highlighted

Home Window

I/O

Icon Menu

icon

ideogram

include file

initial frame

GL·16

A central place on the desktop where users can get
help on the desktop metaphor or any applications
that have registered help information with the desk­
top manager.

The mouse button or keyboard equivalent used to
bring up a GUI Help window.

A visual indication that an object is in a special state.
For two-color ("monochrome") objects, the colors are
exchanged. Multi-color objects cannot be highlighted.

The folder window that shows the desktop directory,
which is the root of the user's folder hierarchy.

I/ 0 stands for input/ output, the process by which
information enters (input) and leaves (output) a com­
puter system. For further information, see "C Compi­
lation System" in Programming in Standard C.

The pop-up menu associated with an icon. When the
mouse MENU button is pressed on an icon, the icon
menu pops up. By default, this menu has a minimum
of three buttons: Open, Delete, and File Properties.
More buttons are possible, depending on the file class
of the icon.

A graphical representation of an object. The visual
consists of a glyph and a label centered below the
glyph. In FMLI, it is a symbol used to indicate an
available function. For example, the caret (~) is an
icon displayed in a frame's border to indicate the con­
tents can be scrolled upwards.

An ideogram is a language symbol usually based on a
pictorial representation of an object or concept. An
ideogram mayor may not have a phonetic value.

See "header file."

The frame, or frames, named as arguments when the
fmli command is invoked. Initial frames are
displayed automatically when an FMLI application is
started, and remain on display in the work area until
the FMLI session is terminated.

Glossary

initialization file

input focus

instance

intermediate level

interpreter

interrupt

interrupt

ISO

kernel

Glossary

A script in which an FMLI developer can define glo­
bal attributes of an application using the Form and
Menu Language. Such things as a transient introduc­
tory frame, a customized banner line, colors for vari­
ous display elements, and restrictions on user access
to the UNIX system can be defined. An initialization
file is optional, but if one is written it must be named
as an argument when fmli is invoked.

To have the cursor on a particular field, designating
that field as "next."

A specific realization of a widget; one particular
widget as opposed to a class of widgets.

Second-highest of the four lower RPC levels; pro­
grams written to this level specify the transport they
require.

A program that allows you to communicate with the
operating system. It reads the commands you enter
and interprets them as requests to execute other pro­
grams, access files, or provide output.

A signal to stop the execution of a process. From the
keyboard, interrupts are usually initiated by pressing
the [DELETE) or [BREAK) key. stty(l) will report
the interrupt key for your session as intr. In FMLI,
the ability of users to interrupt a process defined in an
action or done descriptor can be enabled or disabled
through the use of the interrupt descriptor.

A signal to stop the execution of a process. From the
keyboard, interrupts are usually initiated by pressing
the [DELETE) or [BREAK) key. stty(l) will report
the interrupt key for your session as intr. In FMLI,
the ability of users to interrupt a process defined in an
action or done descriptor can be enabled or disabled
through the use of the interrupt descriptor.

ISO is an acronym for the International Standards
Organization. ISO establishes standards in the com­
puting industry for international markets.

The kernel is the basic resident software of the UNIX
operating system. The kernel is responsible for most
system operations: scheduling and managing the
work done by the computer, maintaining the file

GL-17

keyboard focus

lexical analysis

library

line discipline

link editing

local management

Gl-18

system, and so forth. The kernel has its own text,
data, and stack areas.

The area of the screen that will accept the next input
from the keyboard.

Lexical analysis is the process by which a stream of
characters (often comprising a source program) is
broken up into its elementary words and symbols,
called tokens. The tokens can include the reserved
words of a programming language, its identifiers and
constants, and special symbols such as =, : =, and;.
Lexical analysis enables you to recognize, for
instance, that the stream of characters
printf ("hello, world\n"); is a series of tokens
beginning with printf and not with, say, printf ("h.
In compilers, a lexical analyzer is often called by a
syntactic analyzer, or parser, that analyzes the gram­
matical form of tokens passed to it by the lexical
analyzer. For further information, see UNIX Software
Development Tools

A library is a file that contains object code for a group
of commonly used functions. Rather than write the
functions yourself, you arrange for the functions to be
linked with your program when an executable is
created (see "archive"), or when it is run (see "shared
object").

The line discipline is a STREAMS module that
processes line data in the I/O stream to control the
format and flow of data into and out of the system -
erase and kill character handling, for example. See
also "stream."

Link editing refers to the process in which a symbol
referenced in one module of a program is connected
with its definition in another. With the C compilation
system, programs are linked statically, when an exe­
cutable is created, or dynamically, when it is run. For
further information, see "C Compilation System" in
Programming in Standard C.

The phase in either connection-mode or
connectionless-mode in which a transport user estab­
lishes a transport endpoint and binds a transport
address to the endpoint. Functions in this phase

Glossary

makefile

menu frame

MENU

menu

message line

perform local operations, and require no transport
layer traffic over the network.

A makefile is a file that is used with the program
make to keep track of the dependencies between
modules of a program, so that when one module is
changed, dependent ones are brought up to date. For
further information, see UNIX Software Development
Tools.

A screen display showing a number or choices from
which a user can make a selection(s), and which
invokes some action when a selection is made.

The mouse button or keyboard equivalent used to
display (pop up) a menu.

When unqualified, any of the three states of a GUI
menu: popup menu, stay-up menu, or pinned menu.

The third line from the bottom of the screen in FMLI
applications, used to display one-line messages and
instructions to the user.

message queue identifier A message queue identifier (msqid) is a unique posi­
tive integer created by a msgget system call. Each
msqid has a message queue and a data structure asso­
ciated with it.

message queue In a stream, a linked list of messages awaiting pro­
cessing by a module or driver.

message In a stream, one or more blocks of data or informa­
tion, with associated STREAMS control structures.
Messages can be of several defined types, which iden­
tify the message contents. Messages are the only
means of transferring data and communicating within
a stream.

metacharacters Metacharacters are ASCII characters with special
meanings during pattern processing.

module A module is a program component that typically con­
tains a function or a group of related functions.
Source files and libraries are modules.

Glossary GL-19

multi-select menu

multiplexor

named key

network client

network service

non-current

null pointer

object file

OLWM

onstop event

optimizer

GL-20

A menu which allows the user to mark one or more
items and then select all marked items.

A multiplexor is a driver that allows streams associ­
ated with several user processes to be connected to a
single driver, or several drivers to be connected to a
single user process. STREAMS provides facilities for
constructing multiplexors and for connecting multi­
plexed configurations of streams.

A keyboard key which has a name indicating the
function it performs. For example, [TAB I,
[DELETE), or (ENTER I.

A process that makes remote procedure calls to ser­
vices.

A collection of one or more remote programs.

A frame, or other element on display which is not the
element in which the cursor is currently positioned.

In the C language, a null pointer is a C pointer with a
value of O.

An object file contains a binary representation of pro­
gramming language code. A relocatable object file
contains references to symbols that have not yet been
linked with their definitions. An executable object file
is a linked program. Compare "source file."

OPEN LOOK Window Manager.

When using the GUI debugger, an onstop event
specifies an action for the debugger to perform when­
ever a process stops for any reason. The action may
be one or more of the commands available through
the debugger's command line interface. For further
information, see "Using debug with the Graphical
User Interface" in Programming in Standard C.

An optimizer improves the efficiency of the assembly
language code generated by a compiler. That, in turn,
will speed the execution time of your object code. For
further information, see "Commonly Used cc Com­
mand Line Options" in "C Compilation System" in
Programming in Standard C .

Glossary

option

orderly release

orphaned process group

pane

parent process ID

parent process

parser

path name

peer user

permissions

Glossary

See "argument."

A procedure for gracefully terminating a transport
connection with no loss of data.

A process group in which the parent of every member
in the group is either itself a member of the group, or
is not a member of the process group's session.

The rectangular area within a window where an
application displays text or graphics.

A new process is created by a currently active process
[see fork(2)]. The parent process ID of a process is
the process ID of its creator.

See" fork () ."

A parser, or syntactic analyzer, analyzes the gram­
matical form of tokens passed to it by a lexical
analyzer (see "lexical analysis"). For further informa­
tion, see UNIX Software Development Tools

A path name designates the location of a file in the file
system. It is made up of a series of directory names
that proceed down the hierarchical path of the file
system. The directory names are separated by a slash
character (I). The last name in the path is the file. If
the path name begins with a slash, it is called an abso­
lute, or full, path name; the initial slash means that
the path begins at the root directory. A path name
that does not begin with a slash is known as a relative
path name, meaning relative to your current direc­
tory. For further information, see "Using the File Sys­
tem" in the User's Guide.

The user with whom a given user is communicating
above the Transport Interface.

Permissions define a right to access a file in the file
system. Permissions are granted separately to you,
your group, and all others. There are three basic per­
missions: read, write, and execute. For further infor­
mation, see "Using the File System" in the User's
Guide.

GL-21

ping

pinned menu

pipe

pixel

pixmap

pointer

popup

popup menu

GL-22

A call to procedure 0 of an RPC program. Pinging is
used to verify the existence and accessibility of a
remote program. Pinging can also be used to time
network communications.

A menu that has a pushpin that is "in."
This menu behaves much like a control area in a
pinned command window.

A pipe causes the output of one program to be used
as the input to another program, so that the programs
run in sequence. You create a pipeline by preceding
each command after the first command with the pipe
symbol (I), which indicates that the output from the
process on the left should be routed to the process on
the right.

$ who I we -1

causes the output of the who command, which lists
the users who are logged in to the system, to be used
as the input of the we, or word count, command with
the -1 option. The result is the number of users
logged in to the system. See who (1) and we (1) for
more information.

An addressable point on the screen.

A bitmap of an area of the screen stored within the
program. A "pixmap" is also a defined data type in
the Xt Intrinsics.

The screen representation of the location of the mouse
or equivalent.

As a noun, pop up is a generic term referring to a win­
dow other than the base window. As a verb, this
phrase is the act of making a menu or popup win­
dow visible. As an adjective, it is used to refer to a
window that can be popped up and is spelled with or
without a dash, as in "popup menu" or "pop-up
menu."

A menu that was brought up by pressing MENU.
While MENU remains pressed, the menu remains a
popup menu and operates in a press-drag-release
mode.

Glossary

portability

post

preference

preferred block size

preprocessor

press

press-drag -release

primary source window

primitive widget

privilege

Glossary

Portability refers to the degree of ease with which a
program can be moved, or ported, to a different
operating system or machine.

The FMLI activity of reading and interpreting a frame
definition file, displaying the frame described therein,
and making that frame current.

Synonymous with property settings or options. This
document uses the term preference to avoid confu­
sion with properties that mean name-value pairs.

The unit of transfer for block devices in read/write
operations (also known as "logical block size").

A preprocessor is a program that prepares an input
file for another program. The preprocessor com­
ponent of the C compiler performs macro expansion,
conditional compilation, and file inclusion.

The act of pressing a mouse button or keyboard key.
This is distinct from the act of releasing the button or
key, so that both can be discussed separately. Thus
press SELECT means to press, but not release, the
SELECT mouse button or keyboard equivalent key.

A method of user interaction with a set of objects
where the user presses MENU to display the objects,
drags the pointer over the objects until it is over the
one of interest, then releases MENU to select or
activate the object.

When using the GUI debugger, the primary source
window is displayed when you select the Source Win­
dow button in the Windows menu. The primary win­
dow is always updated to show the current source
line whenever the current process stops. For further
information, see "Using debug with the Graphical
User Interface" in Programming in Standard C.

See widget. A widget that does not have any child
widgets; one that either performs a specific action,
allows input or allows output.

Having appropriate privilege means having the capa­
bility to perform sensitive system operations [see
procpriv(2)].

GL-23

process group ID

process group leader

process group lifetime

process group

process lifetime

process

program

property

GL-24

Each active process is a member of a process group
and is identified by a positive integer called the pro­
cess group ID. This ID is the process ID of the group
leader. This grouping permits the signaling of related
processes [see kill(2)].

A process group leader is a process whose process ID
is the same as its process group ID.

A process group lifetime begins when the process
group is created by its process group leader, and ends
when the lifetime of the last process in the group ends
or when the last process in the group leaves the
group.

Each process in the system is a member of a process
group that is identified by a process group ill. Any
process that is not a process group leader may create
a new process group and become its leader. Any pro­
cess that is not a process group leader may join an
existing process group that shares the same session as
the process. A newly created process joins the pro­
cess group of its parent.

A process lifetime begins when the process is forked
and ends after it exits, when its termination has been
acknowledged by its parent process. See wait(2).

An instance of a program being executed. A number
that identifies an active process. In the UNIX System,
it incorporates the concept of an execution environ­
ment, including contents of memory, register values,
name of the current directory, status of files, and vari­
ous other information. See ps (1) for more informa­
tion on how to determine the process ID of any pro­
cess currently active on your system.

A set of instructions and data kept in an ordinary file.

A name-value pair. Both the name and the value are
strings. A number of attributes may also be attached
to each property. Properties are used throughout the
desktop manager. DTM uses desktop properties.
Each file class described in the file database consists of
a list of properties. These properties are called class
properties. Each file in a file system may have
instance properties associated with it. See Graphical

Glossary

push a button

pushpin

quota

read queue

real group 10
real user 10

realized

register, registration

regular expression

Glossary

User Interface Programming for a detailed explanation
of properties.

The act of moving the pointer to a button widget and
then selecting the button.

A screen object that is part of a popup menu. It can be
pointed to and selected. When it is first selected, it is
"pushed in" and causes the menu to stay up after the
user moves out of it. When it is again selected, it is
pulled out and the menu pops down.

A mechanism for restricting the amount of file system
resources that a user can obtain. The quota mechan­
ism sets limits on both the number of files and the
number of disk blocks that a user may allocate.
Implemented by UFS.

In a stream, the message queue in a module or driver
containing messages moving upstream.

Each user allowed on the system is identified by a
positive integer (0 to UlD_MAX) called a real user ID.
Each user is also a member of a group. The group is
identified by a positive integer called the real group
ID. An active process has a real user ID and real
group ID that are set to the real user ID and real
group 10, respectively, of the user responsible for the
creation of the process.

In the context of the X Toolkit Intrinsics, the point at
which all the data structures of a widget have been
allocated. Windows and other information are not
created when the widget is created with the
xtCreatewidget routine, but are created in a later
call to XtRealizewidget on the widget itself or on an
ancestor widget.

To make a routine name known to the API. When the
application programmer develops a callback routine,
that routine needs to be registered when the widget is
created so that it can be properly invoked.

A regular expression is a string of alphanumeric char­
acters and special characters that describes, in a short­
hand way, a pattern to be searched for in a file.

GL-25

release

remote program

resize corners

resource translation

resource

For further information, see UNIX Software Develop­
ment Tools.

The act of releasing a pressed button or keyboard key,
as in "release MENU."

Software that implements one or more remote pro­
cedures.

Hollow, L-shaped symbols located on all four comers
of a window which, when grabbed, are used to change
the size of the window.

The mechanism by which resource values are made
accessible to widgets. The list of resources is con­
tained in the app-defaults files. Each entry in these
files consists of a resource name/value pair of the
form: app _ name. resource _name: value. Using an aster­
isk in place of the app _name makes the entry available
to any application that recognizes the resource_name.
Any hardcoded value takes precedence over what is
set in the resource file.

An attribute of a widget or a widget class. A resource
is a named data value in the defining structure of a
widget.

root directory/current directory

routine

RPC language

RPC Package

RPC Protocol

GL-26

Each process has associated with it a concept of a root
directory and a current directory for the purpose of
resolving pathname searches. The root directory of a
process need not be the root directory of the root file
system.

A routine is another name for a function.

A C-like programming language recognized by the
rpcgen compiler.

The collection of software and documentation used to
implement and support remote procedure calls in
System V. The RPC Package implements and is a
superset of the functionality of the RPC Protocol.

The message-passing protocol that is the basis of the
RPC package.

Glossary

RPC/XDR

saved group ID
saved user ID

screen

screen-labeled keys

script

scroll indicators

scrolling

secondary

Glossary

See RPC language.

The saved user ID and saved group ID are the values
of the effective user ID and effective group ID prior to
an exec of a file [see exec(2)].

The surface on your computer monitor where infor­
mation is displayed.

The eight function keys, WJ through (£[J, found on
many keyboards, to which the labels displayed on the
last line of the screen in FMLI applications
correspond. The screen-labels indicate the operations
assigned to the function keys.

A file which contains the definition of a frame (a
frame definition file), the definition of global attri­
butes of an FMLI application (an initialization file),
the definitions of application specific commands (a
commands file), a list of aliases for pathnames (an
alias file), or UNIX system shell commands.

Symbols contained in the scroll box of FMLI frames,
to indicate that additional material is available above
or below the current frame borders. The up symbol is
a caret () or up-arrow character, and the down indi­
cator is a v or down-arrow character.

An attribute of FMLI frames which allows a fixed-size
frame to accommodate a larger amount of informa­
tion than can be displayed in it at one time. The first
frameful of information is displayed when the frame
is opened, and users can press named keys or their
alternate keystrokes to move forward to a new frame­
ful of information, or to move back to a previous
frameful.

When using the GUI debugger, the secondary source
window is indicated by an asterisk ('*') in the window
header, and is not updated when the current process
stops. Secondary source windows are created with
the New Source option. For further information, see
"Using debug with the Graphical User Interface" in
Programming in Standard C.

GL-27

SELECT

select

Selection Mechanism

semaphore identifier

serializing

server

service indication

service primitive

service request

sessionID

session Leader

session lifetime

GL-28

The mouse button or keyboard equivalent used to
select and move an object, manipulate a control, or set
the input focus.

To move the pointer to an object and press the SELECT
mouse button. The result is to initiate either an appli­
cation action or a change in the window content or
structure.

The primary mechanism that XU defines for clients
that want to exchange information. Refer to both Xlib
and Inter-Client Communication Manual (ICCCM,
[5]) documents for more details.

A semaphore identifier (semid) is a unique positive
integer created by a semget system call. Each semid
has a set of semaphores and a data structure associ­
ated with it.

Converting data from a machine-specific representa­
tion to XDR format.

The transport user in connection-mode that offers ser­
vices to other users (clients) and enables these clients
to establish a transport connection to it.

The notification of a pending event generated by the
provider to a user of a particular service.

The unit of information passed across a service inter­
face that contains either a service request or service
indication.

A request for some action generated by a user to the
provider of a particular service.

Each session in the system is uniquely identified dur­
ing its lifetime by a positive integer called a session
ID, the process ID of its session leader.

A session leader is a process whose session ID is the
same as its process and process group ID.

A session lifetime begins when the session is created
by its session leader, and ends when the lifetime of
the last process that is a member of the session ends,
or when the last process that is a member in the ses­
sion leaves the session.

Glossary

session A session is a group of processes identified by a com­
mon ID called a session ID, capable of establishing a
connection with a controlling terminal. Any process
that is not a process group leader may create a new
session and process group, becoming the session
leader of the session and process group leader of the
process group. A newly created process joins the ses­
sion of its creator.

shared memory identifier A shared memory identifier (shmid) is a unique posi­
tive integer created by a shmget system call. Each
shmid has a segment of memory (referred to as a
shared memory segment) and a data structure associ­
ated with it. (Note that these shared memory seg­
ments must be explicitly removed by the user after
the last reference to them is removed.)

shared object A shared object, or dynamically linked library, is a
single object file that contains the code for every func­
tion in the library. When you call a library function in
your program, and specify a dynamic linking option
on the cc command line, the entire contents of the
shared object are mapped into the virtual address
space of your process at run time. As its name
implies, a shared object contains code that can be
used simultaneously by different programs at run
time. For further information, see "C Compilation
System" in Programming in Standard C.

shell The shell is the UNIX system program that handles
communication between you and the system. The
shell is known as a command interpreter because it
translates your commands into a language under­
standable by the system. A shell normally is started
for you when you log in to the system. A shell pro­
gram calls the shell to read and execute commands
contained in an executable file. For further informa­
tion, see "Shell Tutorial" in the User's Guide, and the
sh(l) page.

signal event

Glossary

When using the GUI debugger, the signal event
suspends the process and performs the associated
commands whenever the process receives the
specified signal. Multiple events may be created for
the same signal. For further information, see

GL-29

signal

simplified interface

single-select menu

SLK

source file

source

special processes

standard error

standard input

standard output

GL-30

"Using debug with the Graphical User Interface" in
Programming in Standard C.

A signal is a message you send to a process or that
processes send to one another. You might use a sig­
nal, for example, to initiate an interrupt (see above).
A signal sent by a running process is usually a sign of
an exceptional occurrence that has caused the process
to terminate or divert from the normal flow of con­
trol.

The simplest level of the RPC package.

A menu from which a user can select only one item at
a time.

See screen-labeled keys.

Source files contain the programming language ver­
sion of a program. Before a computer can execute the
program, the source code must be translated by a
compiler and assembler into the machine language of
the computer. Compare "object file."

The starting point of the drag-and-drop operation. It
is also referred as the holder.

The process with ID 0 and the process with ID 1 are
special processes referred to as procO and prod; see
ki11(2). procO is the process scheduler. prod is the
initialization process (init); prod is the ancestor of
every other process in the system and is used to con­
trol the process structure.

Standard error is an output stream from a program
that normally is used to convey error messages. On
the UNIX operating system, the default case is to
associate standard error with the user's terminal.

Standard input is an input stream to a program. On
the UNIX operating system, the default case is to
associate standard input with the user's terminal.

Standard output is an output stream from a program.
On the UNIX operating system, the default case is to
associate standard output with the user's terminal.

Glossary

static data

static linking

stay-up menu

stop event

stop expression

stream head

stream

Glossary

Static represents a condition persistent throughout a
process. Static data occupies the data segment and
the bss segment.

Static linking refers to the process in which external
references in a program are linked with their
definitions when an executable is created. For further
information, see "C Compilation System" in Program­
ming in Standard C.

A MoOLIT menu that was brought up and made to
stay on the screen for one round of use. The controls
in this menu behave like controls in an unpinned
command window, except that the menu is removed
from the screen even if nothing is selected from the
menu.

When using the GUI debugger, a stop event suspends
the process and performs the associated commands, if
any, whenever the specified condition in the
program's address space becomes true. For further
information, see "Using debug with the Graphical
User Interface" in Programming in Standard C.

When using the GUI debugger, stop expressions are
special expressions accepted by the stop command.
The expression may include one or more of location,
(expression), or *lvalue, joined by the special &&
(and) or II (or) operators. For further information,
see "Using debug with the Graphical User Interface"
in Programming in Standard C.

In a stream, the stream head is the end of the stream
that provides the interface between the stream and a
user process. The principal functions of the stream
head are processing STREAMS-related system calls,
and passing data and information between a user
process and the stream.

A stream is a full-duplex data path within the kernel
between a user process and driver routines. The pri­
mary components are a stream head, a driver and
zero or more modules between the stream head and
driver. A stream is analogous to a shell pipeline
except that data flow and processing are bidirectional.
For further information, see "Standard I/O" in "C
Compilation System" in Programming in Standard C.

GL-31

STREAMS

string

sub-object

SVID

syntax

syscall event

system call

templates

GL·32

A set of kernel mechanisms that support the develop­
ment of network services and data communication
drivers. It defines interface standards for character
input/ output within the kernel and between the ker­
nel and user level processes. The STREAMS mechan­
ism is composed of utility routines, kernel facilities
and a set of data structures.

A string is a contiguous sequence of characters
treated as a unit. In the C language, a character string
is an array of characters terminated by the null char­
acter, \0.

A sub-object is the equivalent of a primitive widget
contained in a flattened widget. In a Flat Exclusives or
F NonExclusives widget, the sub-objects are the
equivalents of RectButtons. In a Flat CheckBox, the
sub-objects are the equivalents of CheckBox widgets.

System V Interface Definition, which defines the stan­
dard interface for SVR4 and is the basis of other UNIX
operating system standards.

Command syntax is the order in which commands
and their arguments must be put together. The com­
mand always comes first. The order of arguments
varies from command to command. Language syntax
is the set of rules that describes how the elements of a
programming language may legally be used.

When using the GUI debugger, a syscall event
suspends the process and performs the associated
commands whenever the process enters or exits the
specified system calls. Multiple events may be
created for the same system call. For further informa­
tion, see "Using debug with the Graphical User Inter­
face" in Programming in Standard C.

A system call is a request from a program for an
action to be performed by the UNIX operating system
kernel. For further information, see "C Compilation
System" in Programming in Standard C.

Files that are used to be the initial structure and/ or
content of newly created files. Template files are
specified for each file class by the TEMPLATES class
property. (OEMs and ISVs can add new templates).

Glossary

terminal attributes

text frame

text symbol

toggle

top level

transaction

translation

transport address

transport connection

Glossary

Characteristics of the video screen which can be mani­
pulated by an FMLI application developer to provide
visual cues to the application's functionality. They
include underlining, half-bright, bright, and blinking
display of characters, an alternate character set for
line drawing, and others.

a visual element of an FMLI application displayed in
a frame. A text frame displays lines of text; for exam­
ple, help on how to fill in a form field.

A text symbol names a program instruction. Instruc­
tions reside in read-only memory during execution.
Compare "data symbol."

This is an action performed on an object with two
states; it is the switching from one state to the other.

Highest of the four lower RPC levels; programs writ­
ten to this level specify the type of transport they
require.

A transaction refers to the specific transaction type
involving icons dragged from one area on the desk­
top and dropped onto another area. A drag-and-drop
transaction is said to be started when a trigger mes­
sage is sent to the destination client. During the life
of a transaction, information is exchanged between
the source client and the destination client via the
selection mechanism. The transaction is closed when
a done message is sent by the destination client to the
source client. Note that a transaction starts after a
client has determined the drop location and wants to
convey the drag-and-drop information to the client
that had registered drag-and-drop interest on the
drop location. See Graphical User Interface Program­
ming for more details on the drag-and-drop mechan­
ism.

See resource translation.

The identifier used to differentiate and locate specific
transport endpoints in a network.

The communication circuit that is established
between two transport users in connection-mode.

GL-33

transport endpoint

transport interface

transport provider

transport service
data unit

transport user

TRUE

TSDU

UFS

universal address

upstream

user 10

utility

GL-34

The local communication channel between a transport
user and a transport provider.

The library routines and state transition rules that
support the services of a transport protocol.

The transport protocol that provides the services of
the Transport Interface.

The amount of user data whose identity is preserved
from one end of a transport connection to the other.

The user-level application or protocol that accesses
the services of the Transport Interface.

A value to which a Boolean descriptor can evaluate.
Any value other than those defined for FALSE is
interpreted as TRUE.

Transport Service Data Unit

The Unified File System, a derivative of the 4.2BSD
file system. It offers file hardening, supports large
and fragmented block allocations for files, and distri­
buted inode and free block management. Addition­
ally, it supports quotas (see above).

A machine-independent representation of a network
address. -

In a stream, the direction from driver to stream head.

A user 10 is an integer value, usually associated with
a login name, that the system uses to identify owners
of files and directories. The user 10 of a process
becomes the owner of files created by the process and
by descendent processes (see "fork () ").

A software tool of general programming usefulness
built-in to FMLI, such as fmlgrep or message, which
can be used inside backquoted expressions, and
which is executed when the backquoted expression is
evaluated. A built-in utility has a performance
advantage over a UNIX shell utility in that it does not
fork a new process.

Glossary

variable

virtual circuit transport

virtual circuit

Vnode

white space

widget class

widget

window set

window

word wrapping

work area

Glossary

In a program, a variable is an object whose value may
change during the execution of the program or from
one execution to the next. A variable in the shell is a
name representing a string of characters.

See connection-oriented transport.

A transport connection established in connection­
mode.

The operating system's internal representation of a
file (previously known as a file-system-independent
inode).

One or more space, tab, and/ or newline characters.
White space is normally used to separate strings of
characters, and is required to separate a command
from its arguments when it is invoked. For this
toolkit, these characters are space, tab, newline, and
(Return.]

A collection of code and data structures that provides
a generic implementation of a part of a look-and-feel.

A specific example or realization of a widget class.

When using the GUI debugger, a Window Set con­
sists of a Context window, Command window, Event
window, Disassembly window, and one or more
Source windows. The windows in a set all operate on
the same current process. For further information,
see "Using debug with the Graphical User Interface"
in Programming in Standard C.

A work area on the screen that you use to run and
display an application.

An attribute of text frames which prevents words
from being split across two lines when the text frame
is displayed. Word wrapping can be turned on or off
by the developer in the text frame definition file.

In FMLI applications, the area of the screen running
from the second line from the top to the fourth line
from the bottom. The work area is used to display
menus, forms, and text frames.

GL-35

wrapping

write queue

X/Open

XDR language

XDR

zombie

GL-36

An attribute of frames which allows a user to navi­
gate through a list of menu items or form fields as if it
were a circular list. Forward or backward navigation
keys always cause movement to the next logical item
or field. The next logical item or field may differ
according to the navigation key being used (see the
table in Appendix B for complete details).

In a stream, the message queue in a module or driver
containing messages moving downstream.

X/Open is short for the X/Open Company Limited, a
consortium of computer firms dedicated to achieving
open UNIX systems.

A protocol specification language for data representa­
tion. RPC language builds on and is a superset of
XDR.

eXternal Data Representation. Provides an architec­
ture independent representation of data.

A process that has executed the exit system call and
no longer exists, but which leaves a record containing
an exit code and some timing statistics for its parent
to collect. The zombie state is the final state of a pro­
cess.

Glossary

IN Index

Index IN-1

Table of Contents

Index

. (see current directory)

., (see parent directory)

A
absolute path-name (see path-name)
access, permissions A: 7-8

access permission 7: 57

add-books 9: 83

address space of a process 4: 43, 55

addscr 9: 91

advisory locking 3: 12

alp(7) 6: 32

alpq(l) 6: 32

ANSI C 6: 4, 9,11-12,15,18,20-21

application programming 1: 7-8

enhanced security 7: 66-76, A: 1-23

archive 6: 12

archive commands 7: 26

argc and argv 2: 22-25

ascftime(3C) 6: 18

asynchronous input/ output, in pol-
ling 10: 7

atof(3C) 6: 20

atoi(3C) 6: 20

atol(3C) 6: 20

aWk(l) 1: 10

8
background job, in job control 8: 15

bc(l) 1: 11

books, related 1: 2

brk(2) 4: 56

BSD Compatibility Package, files 7: 46

Buffer size TTY 5: 17

Index

c
C language 1 : 9-12

C library
partial contents 2: 9-14

standard I/O 2: 18-25

C locale 6: 4

calculator programs 1 : 11

Canonical mode TTY 5: 17-18

catd 6: 28-30

catgets(3C) 6: 29-30

catopen(3C) 6: 28-30

character class table GL: 5

character classification routines 2: 11

character conversion routines 2: 12

character representation 6: 6-17

classification and conversion 6: 9-10,

14-15

eight-bit clean 6: 7-8

EUC 6: 6-7,11-17

multibyte characters 6: 6, 11-16

sign extension 6: 10

system-defined words 6: 16-17

wide characters 6: 6,11-16

child directory 7: 5

child-process 4: 6

chmod«l) 3: 24

class, scheduler (see scheduler class)
clients GL: 20

code sets 6: 6-17

collation 6: 21-23

communication, interprocess (IPC)
9: 1-81

compiler construction (see yacc(l))
connld(7) 8: 36

controlling-terminal 8: 22

copy, symbolic links 7: 20

ctime(3C) 6: 18

IN-1

<etype. h> 6: 5, 9

current directory 7: 12

curses(3X) 1: 12

wide-character support 6: 15

o
date representation 6: 18-19
de(l) 1: 11

deadlock (file and record locking)
3:23,25

decimal-point character, 6: 20

#define 2:2

deserialize GL: 10

desk calculator programs 1: 11

Idev, zero 4: 50

directory 7: 4

I etc 7: 35-37

list contents of 7: 55-56

naming rules 7: 6

root 7:33-34

tree structure 7: 4

lusr 7: 45-46

Ivar 7: 49-51

Discretionary Access Control (DAC)
7: 67, A: 7-8

access isolation A: 7

limitations A: 7

display width GL: 10
documentation, related 1: 2

dot 7: 12

dot dot 7: 12
downstream, definition 1: 19

driver, STREAMS-based sxt 5: 24

dynamic linking 6: 12

E
eight-bit clean 6: 7-8

environment variables 6: 4-5
envp 2: 22

IN·2

EOF 6: 11

error handling 2: 33-45

lete
directories 7: 35-37

files 7: 38-44
ETI 1: 13-14

EUC 6: 6-7, 11-17

and system-defined words 6: 16-17

EUC handling in Idterm(7) 5: 28

exee(2) 4: 3-5, 7: 72

exit(2) 2: 20-21

exstr(l) 6: 25-27

extended UNIX code (see EUC)

F
fattaeh(3C) 8: 32
felose(3S) 2: 21

fentl«2) 3: 14, 16,21-22

fdetaeh(3C) 8: 33

FIFO (STREAMS) 8: 27

basic operations 8: 27
flush 8: 31

file and device input/ output 1: 16-21,
3:2-10

file and record locking 1: 20, 3: 11-25

file descriptor passing 8: 34

file mode (see permissions, file)
FILE structure 2: 19,21

file system, structure 7: 4--6, 27-28

filepriv(lM) 7: 70
filepriv(2) 7: 70

files
I etc 7: 38-44

lock 1: 20

locking (see locking)
memory-mapped (see mapped files)
naming rules 7: 6

ownership 7: 16,23

permissions 7: 57--65

privilege 7: 69-72

Index

privileges 7: 69

protection 7: 56-65

regular 7: 4

renamed in Release 4.0 7: 30-33

retrieving privileges 7: 72

security 7: 56-65

special 7: 4

/usr 7: 47--48

/var 7: 52-54

floating values, formatting 6: 20

flow control, definition 3: 28

Flow control TTY 5: 17, 19

flush handling, in pipes and FIFOs
8:31

FMLI 1: 12-13

fopen(3S) 2: 19, 21

foreground job, in job control 8: 15

fork(2) 4: 5-8, 7: 72

fsync(2) 4: 45

full path-name (see path-name)
function prototypes 2: 6

G
gencat(l) 6: 29-30

getc(3S) 2: 21

getmsg(2) 3:35

getopt(3C) 2: 23-24

gettxt(3C) 6: 19, 25-27

getwc(3W) 6: 13

getws(3W) 6: 13-14

grantpt(3C) 5: 41

with pseudo-tty driver 5: 38

H
hard link 7: 14, 19

hardware emulation module 5: 31

header files 2: 2-6

Index

#include 2: 2-5

init(lM), scheduler properties 4: 38

inode 7: 14

input/output 2: 12-13, 18-25

multibyte/wide characters 6: 13-14

input/ output polling 10: 2

installation
assigning privileges A: 21

MAC isolation policy A: 21

of trusted software A: 21-22

ioctl(2)
handled by ptem(7) 5: 35

hardware emulation module 5: 32

I_LINK 10: 19

I_PLINK 10: 26

ioctl«2), I_POP 3: 36

ioctl(2), I_PUNLINK 10: 26

ioctl«2), I_PUSH 3: 36

ioctl(2)
I_RECVFD 8: 34

I-,--SENDFD 8: 34

I_SETSIG events 10: 7

ioctl«2), I_STR 3: 40

ioctl(2)
I_UNLINK 10: 23

supported by Idtenn(7) 5: 27

supported by master driver 5: 40

IPC (interprocess communication)
1: 24-25, 9: 1-81

isalpha(3C) 6: 9

isastream(3C) 8: 34

iSdigit(3C) 6: 9

ISO (International Standards Organi-
zation) 6: 4, GL: 17

isprint(3C) 6: 9

_iswctypeO 6: 14

isxdigit(3C) 6: 9

IN-3

J
job control 8: 15

terminology 8: 16

K
kbd(7) 6:32-33

kbdcomp(lM) 6: 32-33

kbd1oad(lM) 6: 32

kbdpipe(l). 6: 32

kbdset(l) 6: 32

kernel preemption point 4: 42

L
LANG 6:5

languages 1: 9-12 (see also C
language)

languages programming 1: 9-15
latencies, software 4: 42

LC_ALL 6: 4-5

LC_COLLATE 6: 4, 21

LC_CTIME 6: 18

LC_CTYPE 6: 4-5, 9

LC_MESSAGES 6: 4, 25

LC_MONETARY 6: 4, 20

LC_NUMERIC 6: 4, 20

LC_TIME 6:4

1dterm(7) 5: 24

1ex(1) 1: 11

libc 6: 12-13

1ibcurses 6: 15

liber 9: 82

libraries 2: 2-25

libc 2: 9-14,18-25

1ibgen 2: 16-18

libm 2: 14-16

wide-character 6: 12-15

libw 6: 13-15

libw16 6: 14-15

IN·4

LIFO, module add/remove 3: 39

line discipline module
close 5: 25

description 5: 24

in job control 8: 21

in pseudo-tty subsystem 5: 33

ioct1(2) 5: 27

open 5: 25

link count 7: 14

loca1econv(3C) 6: 20

<loca1e.h> 6: 5

locales 6: 2-5

lockf((3C) 3: 14-17, 19,22-23

locking 3: 11, 14
advisory 3: 12, 25

file and record 3: 11-25

mandatory 3: 12,23-25

permissions 3: 13
read 3: 12-13, 17

record 3: 14, 16-17

write 3: 12-13, 17

logs
cron 7: 53

login 7: 53

spelling 7: 52

su 7: 53

system logins 7: 52
lower multiplexor 10: 11

lower Stream 10: 10

ls((l) 3: 24

lseek((2) 3: 16

M
m4(1) 1:11

mail ((1) 3: 13

mainO function 2: 22

mandatory locking 3: 12,23

mapped files 4: 46-51

private 4: 47

shared 4: 47

Index

master driver
in pseudo-tty subsystem 5: 33

open 5: 38
math library, partial contents 2: 14-16

mblenO 6: 12

mbstowcsO 6: 12
mbtOWC() 6: 12

M_CTL, with line discipline module
5:24

memcntl(2) 4: 51-52

memory, shared (see shared memory)
memory management 1: 22, 4: 43-56

address spaces 4: 43

address-space layout 4: 55

concepts 4: 43

heterogeneity 4: 44

integrity 4: 44
mapping 4: 43

memcntl(2) 4: 51-52

mincore(2) 4: 54

mlock(3C) 4: 52

mlockall(3C) 4: 53

mmap(2) 4: 46-51

mprotect(2) 4: 55

msyn.c(3C) 4: 53-54

munlock(3C) 4: 52

munlockall(3C) 4: 53
:mu:mnap(2) 4: 51

networking 4: 44

pagesize 4: 55

system calls 4: 45
virtual memory 4: 43

memory-mapped files (see mapped
files)

message block (STREAMS) 1 : 19

message handling 6: 24-31

System V 6: 24-27

X/Open 6: 28-30
message (IPC) 9: 3-29

blocking 9: 3

control (msgctl) 9: 14-15
get (msgget) 9: 8-10

Index

identifier (msqid) 9: 4-7

msgctl example program 9: 15-19

msgget example program 9: 11-13

msgop example program 9: 22-29

operations (msgop) 9: 20-22

permission codes 9: 9-10

queue data structure 9: 4-7

receive 9: 21-22
send 9: 20-21

usage 9: 4-7

message (STREAMS)
definition 1 : 19

handled by pckt(7) 5: 37

handled by ptem(7) 5: 36

ldtenn(7) read-side 5: 26

ldtenn(7) write-side 5: 27

M_FLUSH, packet mode 5: 37
mincore(2) 4: 54

mkmsgs(l) 6: 25-27

mlock(3C) 4: 52

mlockall(3C) 4: 53

mmap(2) 4: 46-51

mode (file) 7: 57 (see also permis-
sions)

monetary representation 6: 20

mprotect(2) 4: 55

M_SETOPTS, with ldterm(7) 5: 25

msgctl(2) 9: 14-19

example program 9: 15-19
usage 9: 14-15

msgget(2) 9: 8-13

example program 9: 11-13
usage 9: 8-10

msgop(2) 9: 20-29

example program 9: 22-29

usage 9: 20-22
msgrcv(2) 9: 21-22

msgsnd(2) 9: 20-21

M_SIG, in signaling 10: 8

msync(3C) 4: 53-54

multibyte characters 6: 6,11-16

classification and conversion
6: 14-15

IN-S

conversion to/from wide characters
6: 12-16

curses(3X) support 6: 15

input/output 6: 13-14
multiplexing, STREAMS 10: 10

multiplexor
building 10: 16, 23

controlling Stream 10: 20
data routing 10: 24

dismantling 10: 23
lower 10: 15

persistent links 10: 26, 30

upper 10: 15

multiplexor ID
in multiplexor building 10: 19

in multiplexor dismantling 10: 24

munlock(3C) 4: 52

munlockall(3C) 4: 53
mu.nma.p(2) 4: 51

N
named Stream

8:32

description 8: 32
fdetach(3C) 8: 33

file descriptor passing 8: 34
isastream(3C) 8: 34

remote 8: 34
nice(l) 4: 38

nice(2) 4: 38
nl_catd 6: 28

NLSPATH 6: 28

<nl_types.h> 6: 28

NSTRPUSH parameter 3: 36

numeric representation 6: 20

o
OJIDELAY, close a Stream 3: 37
O_NONBLOCK, close a Stream 3: 37

IN·6

OPEN LOOK 1: 15

p
packet mode

description 5: 37

messages 5:37

parent directory 7: 5, 12
parent-process 4: 6

parsing 1 : 11

path
physical 7: 16
virtual 7: 16

path-name 7: 6-13
full 7: 7-9

relative 7: 10-13

pc info data structure 4: 26
pCkt(7) 5: 37

pcparms data structure 4: 29

performance, scheduler effect on
4:39-42

permissions 7: 57

change existing 7: 63-64

display 7: 60-61
file 7:16,20,23

files 7: 57-65
impact on directories 7: 64--65

IPC messages 9: 9-10

octal 7: 65

read 7: 60, 63-64

semaphores 9: 37-38
shared memory 9: 64--65

write 7: 60, 63-65

persistent link 10: 26, 30

ping(lM) GL: 22

PIPE_BUF 8: 30
pipemoc'i STREAMS module 8: 31

poll(2) 3: 35
poll (2) 10: 2

pollfd structure 10: 4

polling

Index

error events 10: 6

events 10: 2

example 10: 4

preemption latency 4: 42

preemption point, kernel 4: 42

preprocessor, m4 1: 11

primary code set 6: 6,11-12,16-17

printf(3S)(3W) 6: 14, 19-20,30-31

priocntl(l) 4: 19-23

priocntl(2) 4: 23-35

priocntlset(2) 4: 35-37

priority (see process priority)
priv(5) 7: 70

privilege 7: 68-76, A: 4-5

file 7: 69

fixed 7: 69-72, A: 5

function of 7: 68-76

in shared private routines A: 12

inherited 7: 69-72, A: 5

process 7: 72-73, A: 5

setting on a file 7: 70

privilege(5) 7: 70

process
management 1 : 23

manipulating privileges 7: 73-76

privileges A: 5

scheduling 1: 23

process address space 4: 43, 55

process priority 4: 14-15, 17-18

global 4: 14

real-time 4: 17

setting and retrieving 4: 19-37

system 4: 17

time-sharing 4: 18

process scheduler (see scheduler)
process state transition 4: 40

procpriv(2) 7: 73-76, A: 5

procset data structure 4: 35

programming
application 1: 7-8

languages 1 : 9-15

writing trusted software A: 1-23

Index

prototypes (see function prototypes)
pseudo-tty emulation module 5: 35

pseudo-tty subsystem 5: 33

description 5: 33

drivers 5: 38

ldtenn(7) 5: 33

messages 5: 36

packet mode 5: 37

remote mode 5: 37

ptem(7) 5: 35

ptsname(3C) 5: 42

with pseudo-tty driver 5: 38

putmsg(2) 3: 35

putwc(3W) 6: 13

putws(3W) 6: 13-14

Q
qsort(3C) 6: 22

R
Raw mode TTY 5: 17-18

read lock 3: 12-13, 17, 21

read-side
definition 1 : 19

ldtenn(7) messages 5: 26

ldtenn(7) processing 5: 26

real-time
scheduler class 4: 16

scheduler parameter table 4: 16

records, locking (see locking)
regular file 7: 4

regularlink 7: 14

related books 1: 2

related documentation 1: 2

relative path-name (see path-name)
remote program GL: 26

root, directories 7: 33-34

RPC lower levels
bottom level GL: 4

IN·7

expert level GL: 12

intermediate Level GL: 17

top Level GL: 33

RPC (Remote Procedure Call)
language GL: 26

package GL: 26

protocol GL: 26

simplified interface GL: 30

rpcgen(l) GL: 26

s
sbrkO (see brk(2))
scanf(3S)(3W) 6: 13-14,19-20,30-31

scheduler 1: 23, 4: 12

effect on performance 4: 39-42

real-time policy 4: 16

system policy 4: 16

time-sharing policy 4: 15

scheduler class 4: 14-16

real-time 4: 16

system 4: 16

time-sharing 4: 15

scheduler data structures
pc info 4: 26

pcpanns 4: 29

procset 4: 35

security
files 7: 56-65

policy A: 1

privilege mechanism 7: 68-76

semaphore 9: 30-58

control (semetl) 9: 42-43

get(s~et) 9:36-38

identifier (semid) 9: 32-35

operations (semop) 9: 53-54

permission codes 9: 37-38

semetl example program 9: 44-52

s~et example program 9: 39-41

semop example program 9: 54-58

set data structure 9: 32-35

IN-S

usage 9: 32-35

semetl(2) 9: 42-52

example program 9: 44-52

summary 9: 34

usage 9: 42-43

s~et(2) 9: 36-41

example program 9: 39-41

usage 9: 36-38

semop(2) 9:53-58

example program 9: 54-58

usage 9: 53-54

serialize GL: 28

session management 8: 15

setlocale(3C) 6: 4-5

setprocset macro 4: 36

shared memory 9: 59-81

control (shmctl) 9: 69-70

data structure 9: 60-62

get (sbmget) 9: 63-66

identifier (sbmid) 9: 60-62

operations (shmop) 9: 76-77

permissions 9: 64-65

shmctl example program 9: 70-75

shmget example program 9: 66-68

shmop example program 9: 77-81

usage 9: 60-62

shared objects 6: 12

shiftbytes 6:6,11-12

stunat(2) 9:76-77

shmctl(2) 9: 69-75

example program 9: 70-75

usage 9: 69-70

shmdt(2) 9: 76-77

shmget(2) 9: 63-68

example program 9: 66-68

usage 9: 63-66

shmop(2) 9: 76-81

example program 9: 77-81

usage 9: 76-77

sign extension 6: 10

signal(2) 10: 2

signals 2: 30, 8: 2-14

Index

code blocking 8: 3

extended 10: 8

handlers 8: 5-12

in job control management 8: 17

in STREAMS 10: 8
sending 8: 13-14

stacks 8: 14

types 8: 4

slave driver
in pseudo-tty subsystem 5: 33

open 5: 38
Software flow control TTY 5: 20

software latencies 4: 42

special file 7: 4

srchtxt(l) 6: 27

state transitions, process 4: 40

<stdio.h> header file 2: 2,19
<stdlib.h> 6: 11

sticky bit 7: 62

strcmpO function 2: 5-7

strcoll(3C) 6: 21-23

Stream
controlling-terminal 8: 21

definition 1: 16

hung-up 8: 22

Stream construction
add/remove modules 3: 36
close a Stream 3: 37

example 3: 37

open a Stream 3: 35

Stream head, definition 1: 17
STREAMS

basic operations 3: 26

benefits 3: 29

definition 1 : 16

multiplexing 10: 10

system calls 3: 26, 34

STREAMS driver
definition 1: 18

pseudo-tty 5: 38

pseudo-tty subsystem master 5: 33
pseudo-tty subsystem slave 5: 33

Index

STREAMS input/ output 1: 16-19

STREAMS module
connld(7) 8: 36

control information 1: 18
definition 1 : 18

kbd 6:32-33

line discipline 5: 24
ptem(7) 5: 35

status information 1: 18

STREAMS queue, definition 1: 19

STREAMS system calls 3: 35

STREAMS system calls getrnsg(2)
3:35

STREAMS system calls poll(2) 3: 35

STREAMS system calls putmsg(2)
3:35

STREAMS-based pipe 1: 17

atomic write 8: 30
basic operations 8: 27

creation 3: 36

creation errors 8: 28

definition 8: 27

PIPE~UF 8: 30
STREAMS-based sxt driver 5: 24

strftime(3C) 6: 18-19

string collation (see collation)
<string .h> 2: 5 (see also header

files)
strings, routines 2: 5-7,9-10

strioctl structure 3: 40

strtod(3C) 6: 20

strtol(3C) 6: 20
strtoul(3C) 6: 20

strtows(3W) 6: 13-14

strxfnn(3C) 6: 21-23

subdirectory 7: 4
supplementary code sets 6: 6, 11-12,

16-17

symbolic links 1: 26-27, 7: 4,14

access 7:20

and pre-System V Release 4 systems
7:26

IN-9

content of 7: 14

copy 7: 20

create 7:16,18-19

definition of 7: 14

examples of creating 7: 19

link 7: 21

looping with 7: 18

move 7:22

properties of 7: 16-17

referenced file 7: 16

remove 7:16,20

uses of 7: 14-15

with RFS 7: 23-25

symlink(2) 7: 18

synchronization 4: 45

synchronous input/ output, in polling
10:2

system calls 2: 26-45

directory and file system 2: 28

error handling 2: 33-45

error values 2: 34-45

file and device 10 2: 27

1PC 9: 1-81

list 1PC 2: 30

list memory management 2: 31

list miscellaneous 2: 32

signals 2: 30

terminal10 2:27

user processes 2: 29

system scheduler class 4: 16

system-defined words 6: 16-17

T
Terminals 5: 17

termio(7) 8: 21

default flag values 5: 25

termiox(7), support 5: 31

tfadmin(lM) A: 5

thousands separator 6: 20

time representation 6: 18-19

IN-10

time slice, real-time process 4: 30

<time.h> 6: 18

time-sharing
scheduler class 4: 15

scheduler parameter table 4: 15

tOlower(3C) 6: 9
toupper(3C) 6: 9
transport-level programming GL: 34

trojan horse A: 7,15

trusted commands, writing A: 9-15

Trusted Facility Management (TFM)
A: 5-6

administrative roles A: 6

database A: 5

trusted library routines, writing
A: 19-20

trusted shell scripts, writing A: 16-18

trusted software A: 1-23

command execution A: 15

definition A: 1

error checking A: 13

handling sensitive data A: 14

installation A: 21-22

overview A: 1-3

scope A: 1
signal handling A: 13

_trwctypeO 6: 14

TTY flow control 5: 19

TTY performance buffer size 5: 17

TTY performance canonical mode
5: 17

TTY performance flow control 5: 17

TTY performance raw mode 5: 17

TTY raw mode 5: 18

tty subsystem
benefits 5: 22

description 5: 22

hardware emulation module 5: 31

Idterm(7) 5: 24

setup 5: 23

Index

u
umask(l) 7: 59

unique connection (STREAMS) 8: 35

<unistd.h> 6: 26

universal address GL: 34

UNIX System, files 7: 14

UNIX system services 1: 16-27

unlockpt(3C) 5: 42

with pseudo-tty driver 5: 38

unsigned char 6: 8, 10

upper multiplexor 10: 11

upper Stream 10: 10

upstream 1: 19

user priority 4: 18

/usr
directories 7: 45-46

files 7: 47-48

/usr/lib/locale 6: 4, 25

v
/var

directories 7: 49-51

files 7: 52-54

VFS, architecture 7: 15

virtual memory 1 : 22

virtual memory 4: 43-45 (see also
memory management)

VM (virtual memory) (see memory
management)

w
wait(2) 4: 5, 7-9

wchar_t 6: 6,11-16

wchrtbl(lM) 6: 14

wcstombsO 6: 12

wctombO 6: 12

<wctype.h> 6: 9,14

wide character constants 6: 15-16

Index

wide characters 6: 6,11-16

classification and conversion 6: 9,

14-15

conversion to / from multibyte char­
acters 6: 12-16

curses(3X) support 6: 15

input/output 6: 13-14

wide string literals 6: 15-16

<wi dec . h> 6: 11

widget 1: 15

write lock 3: 12-13, 17

write-side
definition 1: 19

Idterm(7) 5: 27

wstostr(3W) 6: 14

x
<xctype.h> 6: 14

XDR (External Data Representation)
GL: 27

language GL: 36

X/Open GL: 36

message handling 6: 28-30

XWIN 1:15

y
yacc(l) 1: 11

z
zero(7) 4: 50

IN-11

UNIX@ SVR4.2 PUBLISHED BOOKS

----User's Series----

Guide to the UNIX® Desktop
User's Guide

--Administration Series--

Basic System Administration
Advanced System Administration
Network Administration

--Programming Series--

UNIX® Software Development
Tools Programming in Standard C
Programming with UNIX® System Calls
Character User Interface Programming
Graphical User Interface Programming
Network Programming Interface

---Reference Series--­

Command Reference (a-I)
Command Reference (m-z)
Operating System API Reference
Windowing System API Reference
System Files and Devices Reference
Device Driver Reference

PROGRAMMING

For the programmer interested in coding application programs in the
UNIX® environment, Programming with UNIX® System Calls explains the
Process Management, Terminal Device Control, Directory and File
Management, and Interprocess Communications, among others.

This book is part of the UNIX System V Programming Series. Other texts
in this series include:

lJNIX.® Software Development Tools-Describes tools for develop­
ing and packaging application software.

Programming in Standard C-Discusses the UNIX system program­
ming environment and utilities and provides details of the C language,
file formats, link editor, libraries, and tools.

Character User Interface Programming-Provides guidelines on
how to develop a menu and form-based interface that operates on ASCII
character terminals running on UNIX System V.

Graphical User Interface Programming-Describes how to develop
application software using the UNIX desktop programming interfaces,
MoOLfPM (MotifI'M/OPEN LCXJK®Intrinsics Toolkit), and the
Windowing Kom Shell™ (WKSJPM).

Network Programming Interfaces-Describes networking services
such as the Transport Library Interface (TLI), the Remote Procedure Call
(RPC), and the Network Selection facility.

ISBN 0-13-017674-5

UNIX
PRESS

A Prentice Hall Title

90000

9 8013 176745

